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Statistics long ago escaped from its origins as a summary term for tables 
of numbers describing quantitative features of 'the State'. Nowadays it is a 
fully-fledged scientific discipline playing a central role in science, industry and 
commerce. It is the discipline of discovering patterns and structure in data. 
Because modern statistical techniques allow one to discern relationships which 
are concealed from the unaided brain, they have been likened to the telescope 
or the microscope, that allow one to see things invisible to the naked eye. 
The aim of this book is to provide an introduction to some of these statistical 
tools. 

This book serves as the core component of the Open University course M246 
Elements of Statistics. Its objective is to provide a solid introduction to the 
basic concepts and methods of modern statistics. 

Its orientation is that it is problem and data driven. That is, we begin with 
the attitude that statistics is about solving problems. We collect data relevant 
to those problems and we analyse those data to answer the problems. To this 
end, the book is heavily illustrated with a large number of real data sets arising 
from real problems. The data sets are small, to make them comprehensible 
to you, the reader, and manageable in the text, but they are real nonetheless. 

The book is also computer-based. The computer is the essential tool in modern 
statistical data analysis and we assume that you will have such a tool. The 
computer and, to a lesser extent, the calculator permit us to forget about the 
low-level mechanics of the arithmetic, and focus on higher-level issues: what 
we want to know and how we can answer the questions using statistical meth- 
ods. In addition to this, you can use your computer to perform simulations 
which demonstrate statistical concepts in strikingly convincing ways. 

Given its central role in an Open University course, the book is aimed at  
those who will be studying with little or no conventional lecture support: it 
is intended primarily for lone study. That explains why there are so many 
worked examples and exercises, and why solutions are given for all of the 
exercises. 

So much for what the book is. It is perhaps also appropriate to say a few 
words about what it is not. 

It is not a book on mathematical statistics. Although we attempt to give 
sound justifications for the concepts and methods we describe, we have not 
hesitated to side-step any lengthy mathematics which we felt would have 
obstructed the focus on the statistical content. In this vein, we have avoided 
exercises which test mathematical skills and understanding rather than stat- 
istical skills and understanding. 

Similarly there are, of course, many topics which, regrettably, we have had to 

omit for reasons of space. Perhaps chief amongst these is our lack of treatment 
of experimental design and sampling methods. A truly comprehensive book at 
this level would be vast, given that statistics is now a very extensive discipline, 
so something had to be omitted. 

The text comprises fourteen chapters which should be studied sequentially. 
Each of the first twelve chapters consists of teaching material interspersed with - 

examples and exercises and fully accounted illustrative data sets (including 
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references to their source); each chapter ends with a summary, listing the main 
points that were studied. Chapter 13 uses a case study approach to revise 
most of the main methods and techniques taught in the course. Chapter 14 
provides a look forward to problems which require a more advanced approach, 
and includes a brief description of how those approaches may be applied. 

Readers are encouraged to work through the exercises in the text, rather than 
merely to read them. Many exercises by their nature involve the use of a 
calculator or a computer, or may require reference to sets of statistical tables. 
In such cases a marginal icon is used to suggest whichever of these may be the 
more appropriate: but, of course, calculators and statistical computer pack- 
ages differ greatly in their competences and readers may find that they prefer 
to do most of the exercises on a computer or they might manage everything 
with a hand-held machine. Our suggestions, if followed, would ensure skilled 
practical use of all three. 

All the exercises have full solutions at the end of the book (they constitute 
nearly one-fifth of the whole text). Where the exercises are computer-based, 
the solutions provided include no particular command syntax or expected 
output format. We might suggest as part of the preamble to an exercise on 
comparing two means that you 'explore the facilities of your computer' which 
is another way of saying 'learn how your computer does t-tests' before you 
embark on the exercise proper. 

In each chapter there are copious illustrative diagrams in addition to examples, 
exercises and tables of data since we believe that in a statistical context as 
well as in others, a picture is often worth a thousand words and, frequently, 
quite a few numbers as well. 

A word about printed accuracy and precision: often in the course of an ex- 
tended calculation we have shown intermediate results and it is helpful to 
see these. However, just as you would pursue the computation yourself, sub- 

sequent calculations are made to the fullest attainable background accuracy 
(usually 12 or 15 significant figures, not all of which are printed) and this is 
reflected in the final result. So you will see instances such as 

when out of context the right-hand side is 16.5053 and should be printed 
(surely?) 16.51. Actually, the denominator is 16.012 764. . . and hence the 
printed result. 

It is easy to get hung up on displayed precision, but you should not. As you 
will see, results are printed sometimes to two decimal places or to four, or 
sometimes to the nearest integer, depending on what they are . . . there is no 
rule for this (how could there be?): we have used whatever seems the most 
appropriate precision at  the time. 

Finally, many of the standard results and formulas given in the text may be 
proved (or confirmed, at least) using calculus. If you know about differen- 
tiation and integration, and if you enjoy practising those skills, you can do 
this. As a notational aid, we have used the integration symbol to show 
when we are interested in 'the area under a curve'. However, the point about 
most of these results is that indeed they are standard: they are there to be 
used, not checked. You do not need to use the techniques of the calculus to 
understand this book. 
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This text, whilst standing alone as an introduction to the wide application 
of the discipline of statistics, forms only part of an Open University under- 
graduate course which itself forms part of a degree profile. Other components 
of the course include a statistical software package with associated manuals 
and guides (including a detailed guide to the solutions of the computer-based 
exercises), a series of eight television programmes under the general title 
Statistics in Action, an audio-tape offering an introduction to computers and 
statistical computing, a booklet of extra problems and exercises, and any 
number of support booklets (study guides, and so on). The course is exam- 
ined through coursework during the academic year and by an ,end-of-year 
examination paper. 

If you would like further information about studying with the Open University, 
either as an undergraduate pursuing a study programme that may extend 
over several years, or as an associate student studying courses independently 
of the university degree structure, you should write to the Central Enquiry 
Service, PO Box 200, The Open University, Milton Keynes, MK7 ~ T z ,  United 
Kingdom. 

Finally, we hope that some of the excitement we have found in analysing data 
and answering research questions will be apparent from the following pages. 
And we hope that you, too, will begin to appreciate the excitement of this 
queen of sciences. 

Fergus Daly 
David J. Hand 
Chris Jones 
Daniel Lunn 
Kevin J. McConway 

Department of Statistics, The Open University, Milton Keynes, MK7 6AA, 
United Kingdom. 
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Chapter 1 

Data 

An excellent approach to achieving an initial understanding of a set of data is to 
summarize the data in graphical form. In this chapter several diagrammatic rep- 
resentations are described. A data set may also be summarized numerically, and 
some common measures are described. The chapter ends with a look forward fo 
the rest of the course. 

Chambers English Dictionary defines the word data as follows. 

data, data, . . . , n.pl. . . .facts given, from which others may be 
inferred: - sing. da'tum(q.v.) . . . . [L. data, things given, pa.p. 
neut. pl. of dare, to give.] 

You might prefer the definition given in the Shorter Oxford English Diction- 
ary. 

data, things given or granted; something known or assumed as fact, 
and made the basis of reasoning or calculation. 

Data arise in many spheres of human activity and in all sorts of different 
contexts in the natural world about us. The science of statistics may be 
described as exploring, analysing and summarizing data; designing or choosing 
appropriate ways of collecting data and extracting information from them; 
and communicating that information. Statistics also involves constructing 
and testing models for describing chance phenomena. These models can be 
used as a basis for making inferences and drawing conclusions and, finally, 
perhaps for making decisions. The data themselves may arise in the natural 
course of things (for 'example, as meteorological records) or, commonly, they 
may be collected by survey or experiment. 

Later in the course, beginning in Chapter 2, we shall look at models for data. 
However, we shall begin here by examining several different data sets and 
describing some of their features. 

Depending on the way they are expressed (perhaps as a mere list or in a 
complicated table), very large data sets can be difficult to appreciate without 
some initial consolidation (perhaps as a series of simpler tables or in a dia- 
grammatic form). The same applies to smaller data sets, whose main message 
may become evident only after some procedure of sorting and summarizing. 

It is now relatively easy to use a statistical computer package to explore data 
and acquire some intuitive 'feel' for them. This means that you can approach 
statistics as a numerical detective rather than as a theoretician who may be 
required to take on board difficult assumptions and preconceptions. 
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Indeed, you would have to  take on trust the direction and validity of any 
theoretical approach unless guided by the structure or 'shape' of your data. 
This is reassuring in that the most important and informative place to  start 
is the logical one, namely with the data themselves, and the computer will 
make your task both possible and relatively quick. 

However, you must take care not to  be misled into thinking that conlputers 
have made statistical theory redundant. Far from it, you will find the com- 
puter can only lead you to  see where theory is needed to underpin a common- 
sense approach or, perhaps, to reach an informed decision. It cannot replace 
such theory and it is incapable of informed reasoning. 

However, if you are to gain real understanding and expertise, your first steps 
are best directed towards learning to use your conlputer to  explore data, and 
to  obtain some tentative inferences from them. 

The technologj explosion of recent years has made relatively cheap and power- 
ful computers available to all of us. Furthermore, it has brought about an 
information explosion which has revolutionized our whole environment. In- 
formation pours in from the media, advertisements, government agencies and 
a host of other sources and, in order to  survive, we must learn to make rational 
choices based on some kind of summary and analysis of it. We need to learn 
to  select the relevant and discard the irrelevant, to sift out what is interesting, 
to have some kind of appreciation of the accuracy and reliability of both our 
information and our conclusions, and to produce succinct summaries which 
can be interpreted clearly and quickly. 

Our methods for summarizing data will involve the computer in producing 
graphical displays as well as numerical calculations. You will see how a pre- 
liminary pictorial analysis of your data can, and indeed should, influence your 
entire approach to choosing a valid, reliable method. 

But we shall begin with the data themselves. In this course, except where it 
is necessary to  make a particular theoretical point, all of the data sets used 
are genuine; none are artificial, contrived or 'adjusted' in any way. 

Statistics exists as an academic and intellectual discipline precisely because 
real investigations need to be carried out. Simple questions, and difficult ones, 

about matters which affect our lives need to be answered; information needs 
to be processed; and decisions need to be made. The idea of the statistician 
as a detective has already been introduced. 'Finding things out' is fun: this 
is the challenge of real data. 

1. I Data and questions 

The data  sets you will meet in this section are very different from each other 
in both structure and character. By the time you have reached the end of this 
chapter, you will have carried out a preliminary investigation of each, ident- 
ified important questions about them and made a good deal of progress with 
some of the answers. As you work through the course developing statistical 
expertise, these data sets will be revisited and different questions addressed. 

There are eight data sets here. Do not spend too long with them at  this early 
stage; you should spend just long enough to see how they are presented and 
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think about the questions that arise. However, if you think you have identified 
something interesting or unusual about any one of them, make a note of your 
idea for later reference. 

Example 1.1 USA workforce 
The first data set comprises the figures published by the US Labor Department 
for the composition of its workforce in 1986. It shows the average numbers 
over the year of male and female workers in the various different employ- 
ment categories and is typical of the kind of data published by government 
departments. 

Table 1 .1  Average composition of the USA workforce during 1986 

Type of employment Male (millions) Female (millions) 

Professional 15.00 11.60 
Industrial 12.90 4.45 
Craftsmen 12.30 1.25 
Sales 6.90 6.45 
Service 5.80 9.60 
Clerical 3.50 14.30 
Agricultural 2.90 0.65 

In spite of this being a small and fairly straightforward data set, it is not 
easy to  develop an intuitive 'feel' for the numbers and their relationships with 
each other when they are displayed as a table. What is the most meaningful 
and appealing way to show the information? How best can you compare the 
male and female workforces in each category? Or is the important question 
perhaps a comparison between the total number of employees in each of the 
seven categories? W 

Example 1.2 Opinion polls 
If you found the data displayed in Table 1.1 awkward to interpret, or even 
if you did not, you should find the layout of the next data set thoroughly 
confusing. On 19 December 1989, the Guardian newspaper published the 
following table of opinion poll figures. 

Table 1 .2  A newspaper summary of voting intentions 

RECENT OPINION POLLS 

Fieldwork Poll Sample Con Lab L. Dem SDP G m  

10-11.11 ICMIGuardian 1416 36 49 6 3 3 
8-13.11 NOP 1628 34 46 9 t 6 
22-23.11 Harrisl Obsvr 1037 36 47 9 1 4 
23-24.11 MORI/S.Times 1068 37 51 4 3 4 
24-25.11 ICM/S. Corr 1460 38 48 3 4 5 
24-26.11 ASL* 801 37 44 4 3 8 
29.11-4.12 NOP 1760 38 45 7 5 
1-4.12 GalluplD. Tele 950 37.5 43.5 9 4 
8-9.12 ICM/Guardian 1333 37 49 4 3 4 
12-14.12 Harrisl Obsvr 978 39 46 6 1 5 
Guardian average of last 5 38 46 6 5 3 
General election June 1987 43 32 Alliance 23 

Where two or more polls were sampling at  the same time, only one average 
is given. *Telephone poll. t NOP no longer records a separate figure for the 
SDP but includes them in Others; average figures are adjusted accordingly. 
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Presumably the column labelled Fieldwork gives the dates during which the 
polls in the second colun~n were carrying out sampling. The precise meaning 
of most of the footnote is anybody's guess and what is the 'Guardian average 
of last S'? How was it calculated? 

When displaying tables of numbers there is much to  be said for clarity and 
simplicity. Tables should not be complicated and Table 1.3, which follows, 
has the information most readers would want. 

Table 1.3 A simpler summary of voting intentions 

DECEMBER OPINION POLLS 

Poll Number of people Percentages 
questioned Con Lab L. Dem Others 

NOP 1760 38 45 7 10 
Gallup/ D. Tele 950 37.5 43.5 9 10 
ICM/ Guardian 1333 37 49 4 10 
Harris/ Obsvr 978 39 46 6 9 

How reliable are such polls? Do they really give an accurate reflection of 
party support? What  are the likely errors? You can see that there is enor- 
mous variation in sample size between the different polls, with NOP's sample 
almost double that of Gallup/Daily Telegraph. Does the way of drawing the 
sample matter, and how do we know that the sample is typical of the voting 
population as a whole? 

Example 1.3 Infants with SlRDS 
This data set comprises recorded birth weights of 50 infants who displayed 
severe idiopathic respiratory distress syndrome (SIRDS). This is a serious 
condition which can result in death. The data appear below in Table 1.4. 

Table 1 .4  Birth weights (in kg) of infants with 
severe idiopathic respiratory distress syndrome 

1.050* 2.500* 
1.175' 1.030* 
1.230' 1.100* 
1:.310* 1.185* 
1.500' 1.225' 
1.600* 1.262' 
1.720* 1.295' 
1.750* 1.300* 
l.77O* 11.550* 
2.275* 1.820' 

* child died 

At first glance, there seems little that one can deduce from these data. The 
babies vary in weight between 1.03 kg and 3.64 kg. Notice, however, that some 
of the children died. Surely the important question concerns early identifi- 
cation of children displaying SIRDS who are a t  risk of dying. Do the children 
split into two identifiable groups? Is it possible to relate the chances of event- 
ual survival to birth weight? H 

Example 1.4 Runners 
The next data set comes from 22 of the competitors in an annual cham- 
pionship run, the Tyneside Great North Run. Blood samples were taken from 

van Vliet, P.K. and Gupta, J.M. 
(1973) Sodium bicarbonate in 
idiopathic respiratory distress 
syndrome. Arch. Diseases in  
Childhood, 48, 249-255. 
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eleven runners before and after the run, and also from another eleven runners 
who collapsed near the end of the race. The measurements are P en- 
dorphin concentrations in pnlol/litre. Unless you have had medical training 
you are unlikely to know precisely what constitutes a plasma P endorphin 
concentration, much less what the units of measurement mean. This is a 
common experience even among expert statisticians working with data from 
specialist experiments, and usually gives little cause for concern. What mat- 
ters is that some physical attribute can be measured, and the measurement 
value is important to  the experimenter. The statistician is prepared to accept 

- - 

that running may have an effect upon the blood, and will ask for clarification 
of medical questions as and when the need arises. The data are given in 
Table 1.5. 

Table 1.5  Blood plasma P endorphin concentration (pmol/l) 

Normal runner before race Same runner after race Collapsed runner after race 

4.3 29.6 66 
4.6 25.1 72 
5.2 15.5 79 

You can see immediately that there is a difference in P endorphin concen- 
tration before and after a race, and you do not need to be a statistician to see 
that collapsed runners have very high P endorphin concentrations compared 
with those who finished the race. But what is the relationship between initial 
and final p endorphin concentrations? What is a typical finishing concen- 
tration? What is a typical concentration for a collapsed runner? How do the 
dispersions of data values compare? 

The table raises other questions. The eleven normal runners (in the first 
two columns) have been sorted according to increasing pre-race endorphin 
levels. This may or may not help make any differences in the post-race levels 
more immediately evident. Is this kind of initial sorting necessary, or even 
common, in statistical practice? The data on the collapsed runners have also 
been sorted. The neat table design relies in part on the fact that there were 
eleven collapsed runners measured, just as there were eleven finishers, but 
the two groups are independent of each other. There does not seem to be 
any particularly obvious reason why the two numbers should not have been 
different. Is it necessary to the statistical design of this experiment that the 
numbers should have been the same? W 

Example 1.5 Cirrhosis and alcoholism 
These data, quoted for several countries in Europe and elsewhere, show the 
average alcohol consumption in litres per person per year and the death rate 
per 100 000 of the population from cirrhosis and alcoholism. It would seem 
obvious that the two are not unrelated to  each other, but what is the relation- 
ship and is it a strong one? How can the strength of such a relationship be 
measured? Is it possible to assess the effect on alcohol-related deaths of taxes 
on alcohol, or of laws that aim to reduce the national alcohol consumption? 

The letter P is the Greek lower-case 
letter beta, pronounced 'beeta'. 

Dale, G., Fleetwood, J.A., 
Weddell, A., Ellis, R.D. and 
Sainsbury, J.R.C. (1987) 
Beta-endorphin: a factor in 'fun 
run' collapse? British Medical 
Journal, 294, 1004. 
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The  da ta  are given in Table 1.6. 

Table 1 .6  Average alcohol consumption and death rate 

Country Alcohol consumption Cirrhosis & alcoholism 
(l/person/year) (death rate/100,000) 

Osborn, J.F. (1979) Statistical 
exercises i n  medical research. 
Blackwell Scientific Publications, 
Oxford, p. 44. 

France 
Italy 
W. Germany 
Austria 
Belgium 
USA 
Canada 
England & Wales 
Sweden 
Japan 
Netherlands 
Ireland 
Norway 
Finland 
Israel 

France has a noticeably higher average annual individual alcohol consumption 
than the  others; the  figure is more than double tha t  of third-placed West 
Germany. The  French alcohol-related death rate is just under double tha t  of 
the  next highest. Should the  figures for France be regarded as atypical? If so, 
how should they be handled when the  da ta  are analysed? 

Example 1.6 Body and brain weights for animals 
The  next da ta  set comprises average body and brain weights for 28 kinds of 
animal, some of them extinct. The  da ta  are given in Table 1.7. 

Table 1.7 Average body and brain weights for animals 

Species Body weight (kg) Brain weight (g) 

Mountain Beaver 
Cow 
Grey Wolf 
Goat 
Guinea Pig 
Diplodocus 
Asian Elephant 
Donkey 
Horse 
Potar Monkey 
Cat 
Giraffe 
Gorilla 
Human 
African Elephant 
Triceratops 
Rhesus Monkey 
Kangaroo 
Hamster 
Mouse 
Rabbit 
Sheep 
Jaguar 
Chimpanzee 
Brachiosaurus 
Rat 
Mole 
Pig 

Jerison, H.J. (1973) Evolution of 
the brain and intelligence. 
Academic Press, New York. 

These data raise interesting 
questions about their collection 
and the use of the word 'average'. 
Presumably some estimates may be 
based on very small samples, while 
others may be more precise. On 
what sampling experiment are the 
figures for Diplodocus, Triceratops 
and other extinct animals based? 
The three-decimal-place 'accuracy' 
given throughout the table here is 
extraordinary (and certainly needs 
justification). 
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Once again it would seem obvious that the two variables, body weight and 
brain weight, are linked: but what is the relationship between them and how 
strong is it? Can the strength of the relationship be measured? Is a larger 
brain really required to  govern a larger body? These data  give rise to a 
common problem in data analysis which experienced practical analysts would 
notice as soon as they look at  such data. Can you identify the difficulty? You 
will see it immediately in Figure 1.14. H 

Example 1.7 Stock-market averages 

Table 1.8 lists the annual highs and lows for the Dow Jones industrial average 
on the New York stock-market from 1954 to 1985. 

Table 1.8 Dow Jones industrial averages 

Year High Low Year High Low 

The World Almanac and Book of, 
Facts 1985. Pharos Books, New 
York. 

These data are known as t i m e  series because they give values measured at  a 
series of times (i.e. a t  consecutive times). Look down the columns for annual 
lows in chronological order. Starting with 1954, you see a steady increase 
followed by a decrease which does not go as low as the 1954 value before it 
starts to increase again. After a little fluctuation, it increases to  the 1968 
value, drops again, hits a high in 1972, 1976, and so on. Notice that the 
values show an overall increase over the 32-year period. The aim, of course, 
is to use these data to  predict highs and lows of the Dow Jones average for 
1986 and subsequent years. 

Example 1.8 Surgical removal of tattoos 
The final data set in this section is different from the others in that the data 
are not numeric. So far you have only seen numeric data  in the form of 
measurements or counts. However, there is no reason why data should not 
be verbal or textual. Table 1.9 comprises clinical data from 55 patients who Lunn, A.D. and McNeil, D.R. 
have had forearm tattoos removed by two different surgical methods. Their (1988) The SPIDA m m d .  

tattoos were of large, medium or small size, either deep or a t  moderate depth. Computing Laboratory, 
Sydney. 

The final result is scored from 1 to 4, where 1 represents a poor removal and 
4 represents an excellent result. In Table 1.9 the two methods of removal are 
denoted A and B. The sex of the patient is also shown. 

7 
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Table 1.9 Surgical removal of tattoos 

Method Sex Size Depth Score Method Sex Size Depth Score 

A M large deep 1 B M medium moderate 2 
A M large moderate 1 B M large moderate 1 
B F small deep 1 A M medium deep 2 
B M small moderate 4 B M large deep 3 
B F large deep 3 A F large moderate 1 
B M medium moderate 4 B F medium deep 2 
B M medium deep 4 A F medium deep 1 
A M large deep 1 A M medium moderate 3 
A M large moderate 4 B M large moderate 3 
A M small moderate 4 A M medium deep 1 
A M large deep 1 A F small deep 2 
A M large moderate 4 A M large moderate 2 
A F small moderate 3 B M large deep 2 
B M large deep 3 B M medium moderate 4 
B M large deep 2 B M medium deep 1 
B F medium moderate 2 B F medium moderate 3 
B M large deep 1 B M large moderate 2 
B F medium deep 1 B M large moderate 2 
B F small moderate 3 B M large moderate 4 
A F small moderate 4 B M small deep 4 
B M large deep 2 B M large moderate 3 
A M medium moderate 4 B M large deep 2 
B M large deep 4 B M large deep 3 
B M large moderate 4 A M large moderate 4 
A M large deep 4 A M large deep 2 
B M medium moderate 3 B M medium deep 1 
A M large deep 1 A M small deep 2 
B M large moderate 4 

Wha t  are the  relative merits of the  two methods of ta t too  removal? Is one 
method simply better, or does it depend upon the  size or depth of the  ta t -  
too? . 
As the  course develops, there will be suggestions from time to  time tha t  you 
use your computer to  produce graphs and perform calculations on these and 
other da ta  sets. 

In  the  next section, some different diagrammatic representations of da ta  are 
described. 

Graphical displays 

The  da ta  set in Example 1.8 in Section 1.1 comprised non-numeric or cat- 
egorical data.  Such da ta  often appear in newspaper reports and are usually 
represented as one or other of two types of graphical display, one type being 
called a pie chart and the  other a bar chart; these are arguably the  graphical 
displays most familiar to  the general public, and are certainly ones tha t  you 
will have seen before. 
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1.2.1 Pie charts 
Suppose we count the numbers of large, medium and small tattoos from the 
data in Table 1.9: there were 30 large tattoos, 16 of medium size and 9 small 
tattoos. A pie chart display of these data is shown in Figure 1.1. 

This is an easy display to construct because the size of each 'slice' is pro- 
portional to the angle it subtends at the centre, which in turn is proportional 
to the count in each category. So, to construct Figure 1.1, you simply draw a 
circle and draw in radii making angles of 

to represent the counts of large, medium and small tattoos respectively. Then 
shade the three sectors in order to distinguish them from each other. 

At first sight the pie chart seems to fulfil the basic requirements of a good stat- 
istical display in that it is informative, easy to construct, visually appealing 
and readily assimilated by a non-expert. 

Pie charts can be useful when all you want the reader to notice is that there 
were more large than medium size tattoos, and more medium than small 
tattoos. In conveying a good impression of the relative nlagnitudes of the 
differences, pie charts have some limitations. They are also only useful for 
displaying a limited number of categories. Figure 1.2 shows a pie chart of the 
number of nuclear power stations in countries where nuclear power is used. 

Japan 

7 

East Germany 
Spain 

Sweden 
- Czechoslovakia 

L Canada 

E West Germany 

Figure 1.2 Nuclear power stations (a pie chart) 

It is not so easy to extract meaningful information from this more detailed 
diagram. You can pick out the main users of nuclear power, and that is about 
all. When trying to construct pie charts with too many categories, a common 
ploy of the graphic designer is to produce a chart which displays the main 
contributors and lumps together the smaller ones. 

small - 
Figure 1 . 1  Tattoo sizes 

In this diagram the names of the 
countries listed are those that 
pertained at the time the data were 
collected. Since then, geographical 
borders and political circumstances 
have altered. 
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Soviet Union 
USA 

Other 

Figure 1.3 Nuclear power stations, smaller groups consolidated 

Figure 1.3 shows how this can be done, but it is still unsatisfactory. Infor- 
mation has been lost: for instance, the reader cannot now compare France's 
nuclear power provision with that of West Germany. 

Pie charts are of limited use in that they are able to give an immediate visual 
impression of proportion for a small llumber of categories, say, four or five 
categories a t  most. However, the pie chart is the most common method used 
by the news media: you can find an example of a pie chart in the business 
section of a daily newspaper on most days of the week. 

1.2.2 Bar charts 
A better way of displaying the data on nuclear power stations is by construc- 
ting a rectangular bar for each country, the length of which is proportional 
to the count. Bars are drawn separated from each other and, since in this 
context order does not matter, in order of decreasing size from top to bottom. 

USA I 

France 

Japan 

UK 

West Germany 

Canada 

Czechoslovakia 

Sweden 

Spain 

East Germany 

South Korea 

0 10 20 30 40 50 60 70 80 90 100 110 120 

Number of nuclear power stations 

Figure 1 .4  Nuclear power stations (a  bar chart) 
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The display in Figure 1.4 is called a bar chart. The bars may be drawn 
vertically or horizontally according to preference and convenience. Those i n  
Figure 1.4 have been drawn l~orizontally because of the lengths of the naines 
of some of the countries. Had the bars been drawn vertically, the names of the  
countries would not have fitted along the horizontal axis unless the bars were 
drawn far apart or the names were printed vertically. The former would make 
comparison difficult, while the latter would make the names difficult to  read. 
However, it is conventional to draw the bars vertically whenever possible and 
Figure 1.5 shows a bar chart of the effectiveness of tattoo removal, using the  
data  in Table 1.9. 

Sometimes order is important. The quality of tattoo removal was given a 
score from 1 to 4, and this ordering has been preserved along the quality 
(horizontal) axis. The vertical axis shows the reported frequency for each 
assessment. Figure 1.6 shows the same bar chart in three dimensions. You 
can see that it is quite difficult to discern the corresponding frequency value 
for each bar. 

This kind of three-dimensional bar chart is c o i ~ ~ i ~ ~ o i ~ l y  used as a television 
graphic for showing data such as the results from an opinion poll on t he  
popularity of the main political parties. Viewers do not necessarily realize 
that they are supposed to  use the back edge of the bar to determine its height. 
If you want to be able to interpret this kind of graphic properly, you need to 
be aware of how misleading it can be. 

Frequency 

20 1 

Quality 

Figure 1.5 Quality assessment, 
surgical removal of 55 tattoos 

Frequency 

Quality 

The danger of using three-dimeasioaal effects is really brought home when two Figure A three-dimensiona' 
bar chart 

data  sets are displayed on the same bar chart. Look at  the data from Table 1.1, 
for example. Without perspective effects, we have a clear, informative display 
that lets us compare the patterns of male and female einployment in the USA. 
We simply plot the bars side by side and distinguish the sexes by shading. 
The bar chart is shown in Figure 1.7. 

Millions 
m Female 

Male 

Professional Industrial Craftsmen Sales Service Clerical Agricultural 
Type of employment 

Figure 1 . 7  USA workforce data, 1986 averages 
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Figure 1.8 is an attempt to display the same infornlation by means of a three- 
dimensional effect. 

Industrial Sales 

Figure 1.8 

It  is now very difficult indeed to identify values. Some blocks are partly 
hidden which makes judgement difficult. The display for Sales is particularly 
misleading; in Figure 1.7 you can see that the bars are almost the same height, 
but in Figure 1.8 this is less obvious. Try to remember this effect next time 
you see such a display in the press and try to  be a little more critical in your 
interpretation of it. 

1.2.3 Histograms 
In Section 1.1 we looked briefly a t  the set of birth weights (given in Table 1.4) 
of infants with severe idiopathic respiratory distress syndrome. The list of 
weights is in itself not very informative, partly because there are so many 
weights listed. Suppose, however, that the weights are grouped as shown in 
Table 1.10. 

Table 1.10 Birth weights (kg) 

Group Birth weight (kg) Frequency 

Such a table is called a grouped frequency table. Each listed frequency gives 
the number of individuals falling into a particular group: for instance, there 
were six children with birth weights between 1.0 and 1.2 kilograms. I t  may 
occur to  you that there is an ambiguity over borderlines between the groups. 
Into which group, for example, should a value of 2.2 go? Should it be included 
in Group 6 or Group 7? Provided you are consistent with your rule over such 
borderlines, it really does not matter. 

For large sets of data, a computer 
would normally be used to obtain a 
grouped frequency table, and it 
would normally be programmed to 
cope with borderline cases. The 
user would simply accept its 
decisions. Even so, it may not 
always manage to be scrupulously 
consistent. The reason for this is 
that the computer's way of storing 
and retrieving individual data 
items does not mimic our own way 
of thinking of numbers and writing 
them down. You should think of 
numbers in the machine as being at 
best within some very small 
neighbourhood (typically a factor 
of about 1 3~10-15) of their 
intended value, or what the user 
might think of as their correct 
value. However, in the great 
scheme of data analysis, the 
problem is negligible. 
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In fact, among the 50 infants there were two with a recorded birth weight of Frequency 
2.2 kg and both have been allocated to Group 7. The infant weighing 2.4 kg 
has been allocated to Group 8. The rule followed here was that borderline 
cases were allocated to the higher of the two possible groups. 

With the data structured like this, certain clmracteristics can be seen even 
though some information has been lost. There seems to be an indication that 
there are two groupings divided somewhere around 2 kg or, perhaps, three 
groupings divided somewhere around 1.5 kg and 2 kg. But the pattern is far 
from clear and needs a helpful picture, such as a bar chart. The categories are 2 

ordered, and notice also that the groups are contiguous (1.0-1.2, 1.2-1.4, and 
so on). This reflects the fact that here the variable of interest (birth weight) is 0 
not a count but a measurement. In this kind of situation, the bars of the bar 
chart are drawn without gaps between them. This is shown in Figure 1.9. This 
kind of bar chart, of continuous data which has been put into a limited number 
of distinct groups or classes, is called a histogram. In this example, the 50 data 
items were allocated to groups of width 0.2 kg: there were 14 groups. The 
classification was quite arbitrary. If the group classifications were narrower, 
there would have been more groups each containing fewer observations; if the 
classifications had been wider, there would have been fewer groups with more 
observations in each group. The question of an optinlal classification is an 
interesting one, and surprisingly complex. 

How many groups should you choose for a histogram? Too few and you will not 

have a picture of the shape, too many and the display will be too fragmented 
to show an overall shape. When these data were introduced in Example 1.3, 
the questions posed were: do the children split into two identifiable groups? . 
Is it possible to relate the chances of eventual survival to birth weight? We 
are not, as yet, in a position to answer these questions, but we can see that 
the birth weights might split into two or three 'clumps1. On the other hand, 
can we be sure that this is no more than a consequence of the way in which 
the borderlines for the groups were chosen? Suppose, for example, we had 
decided to make the intervals of width 0.3 kg instead of 0.2 kg. We would have 
had fewer groups, with Group 1 containing birth weights from 1.0 to 1.3 kg, 
Group 2 containing birth weights from 1.3 to 1.6 kg, and so on, producing the 
histogram in Figure 1.10. 

Frequency 

Birth weight (kg) 

Figure 1 .l0 Birth weights, 0.3 kg group widths 

1 2 3 4 

Birth weight (kg) 

Figure 1.9 Birth weights of 
infants with SIRDS (kg) 

The distinction between 'counting' 
and 'measuring' is quite an 
important one. In later chapters we 
will be concerned with formulating 
different models to express the sort 
of variation that typically occurs in 
different sampling contexts, and it 
matters that the model should be 
appropriate to the type of data. 
Data arising from measurements 
(height, weight, temperature and 
so on) are called continuous data. 
Those arising from counts (family 
size, hospital admissions, monthly 
launches of a lifeboat) are called 
discrete. 
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This looks quite different, but then this is not surprising as the whole display 
has been compressed into fewer bars. The basic shape remains similar and 
you might be tempted to conclude that the choice of grouping does not really 
matter. But suppose we retain groupings of width 0.3 kg and choose a different 
starting point. Suppose we make Group 1 go from 0.8 to 1.1 kg, Group 2 from 
1.1 to 1.4 kg, and so on. The resulting histogram is shown in Figure l . l l ( a ) .  

Frequency Frequency Frequency 

0.8 1.4 2.0 2.6 3.2 3.8 0.85 1.45 2.05 2.65 3.25 3.85 0.9 1.5 2.1 2.7 3.3 3.9 

Birth weight (kg) Birth weight (kg) Birth weight (kg) 

Figure 1 . 1 1  

Figure 1.11 shows three different histograms. Figures l. l l (b) and l. l l (c) 
show histograms in which the first group was started at 0.85 kg and 0.9 kg 
respectively. However, only Figure l . l l ( c )  gives a good indication that the 
data are split into two 'clumps'. What you have seen is a series of visual 
displays of a data set which warn you against trying to reach firm conclusioils 
from histograms. It  is important to realize that they often produce only 
a vague impression of the data-nothing more. One of the problems here 
is that we have only 50 data values, which is not really enough to make a 
clear pattern evident. However, the l~istograms all convey one very important 
message indeed: the data do not appear in a single, concentrated clump. It is a 
fundamental principle in modern practical data analysis that all investigations 
should begin, wherever possible, with one or more suitable diagrams of the 
data. Such displays should certainly show overall patterns or trends, and 
should also be capable of isolating unexpected features which might otherwise 
be missed. Clearly it is a good idea to look at  the way frequencies of data such 
as the birth weights are distributed and, given that any statistical computer 
package will quickly produce a histogram for you, comparatively little effort 
is required. This makes the histogram a valuable analytic tool and, in spite 
of some disadvantages, you will find that you use it a great deal. 

1.2.4 Scatter plots 
In recent years, graphical displays have come into prominence because com- 
puters have made them quick and easy to produce. Techniques of data explo- 
ration have been developed which have revolutionized the subject of statistics, 
and today no serious data analyst would carry out a formal numerical pro- 
cedure without first inspecting the data by eye. Nowhere is this denlonstrated 
more forcibly than in the way a scatter plot reveals a relationship between two 
variables. Look at  the scatter plot in Figure 1.12 of the data on cirrhosis and 
alcoholism from Table 1.6. 
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Death rate (per 100000) 

Consumption (litres/person/year) 

Figure 1 .12  Alcohol-related deaths and consumption 

In a scatter plot, one variable is plotted on the horizontal axis and the other 
on the vertical axis. Each data item corresponds to a point in two-dimensional 
space. For example, the average annual individual consunlption of alcohol in 
France for the time over which the data were collected was 24.7 litres per 
person per year, and the death rate per hundred thousand of the population 
through cirrhosis and alcoholism was 46.1. In this diagram consumption is 
plotted along the horizontal axis and death rate is plotted up the vertical axis. 
The data point a t  the co-ordinate (24.7,46.1) corresponds to France. 

Is there a strong relationship between the two variables? In other words, do 
the points appear to  fit fairly 'tightly' about a straight line or a curve? It is 
fairly obvious that there is, although the picture is not made any easier to 
see since most of the points are concentrated in the bottom left-hand corner. 
There is one point that is a long way from the others and the size of the 
diagram relative to the page is dictated by the available space into which it 
must fit. We remarked upon this point, corresponding to  France, when we 
first looked at the data, but seeing it here really does put into perspective the 
magnitude of the difference between France and the other countries. The best 
way to look for a general relationship between death rate and collsumption of 
alcohol is to  spread out the points representing the more conventional drinking 
habits of other countries by leaving France, an extreme case, out of the plot. 

Death rate (per 100000) 

I 
I I I 

0 5 10 15 

Consumption (litres/person/year) 

Figure 1 . 1 3  Alcohol-related deaths and consumption, excluding France 
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The picture in Figure 1.13 is now much clearer and shows up a general (and 
hardly surprising) rule that the incidence of death through alcohol-related 
disease is strongly linked to  average alcohol consumption, the relationship 
being plausibly linear. A 'linear' relationship means that you could draw a 
straight line through the points which would fit them quite well, and this 
has been done in Figure 1.13. Of course, one would not expect the points to 
sit precisely on the line but to be scattered about it tightly enough for the 
relationship to show. In this case you could conclude that,  given the average 
alcohol consumption in any country not included among those on the scatter 
plot, you would be fairly confident of being able to use your straight line for 
providing a reasonable estimate of the national death rate due to cirrhosis 
and alcoholism. 

It is worth mentioning at  this stage that demonstrating that some sort of 
association exists is not the same thing as demonstrating causation, that,  in 
this case, alcohol use 'causes' (or makes more likely) cirrhosis or an early death. 
For example, if cirrhosis were stress-related, so might be alcohol consun~ption, 
and hence the apparent relationship. It  also should be noted that these data 
were averaged over large populations and (whatever may be inferred from 
them) they say nothing about the consequences for an individual of alcohol 
use. The idea of association between variables, and ways of interpreting that 
association, are dealt with in Chapter 11. 

In leaving out France, that data point was treated as an extreme case. It  
corresponded to data values so atypical, and so far removed from the others, 
that we were wary of using them to draw general conclusions. 

'Extreme', 'unrepresentative', 'atypical' or possibly 'rogue' observations in sets 
of data are all sometimes called outliers. It is important to recognize that,  
while one would wish to  eliminate from a statistical analysis data points which 
were erroneous (wrongly recorded, perhaps, or observed when background 
circumstances had profoundly altered), data points which appear 'surprising' 
are not necessarily 'wrong'. The identification of outliers, and what to do 
with them, is a research question of great interest to the statistician. Once 
a possible outlier has been identified, it should be closely inspected and its 
apparently aberrant behaviour accounted for. If it is to be excluded from the 
analysis there must be sound reasons for its exclusion. Only then can the data 
analyst be happy about discarding it. An example will illustrate the point. 

In our discussion of the data on body and brain weights for animals in 
Example 1.6, we conjectured a strong relationship between these weights on 
the grounds that a large body might well need a large b&in to run it properly. 
At that stage a 'difficulty' with the data was also anticipated. It would be 
useful to  look at  a scatter plot, but you will see the difficulty if you try to 
produce one. Did you spot the problem when it was first mentioned? There 
are many very small weights such as those for the hamster and the mouse 
which simply will not show up properly, if displayed on the same plot as, say, 
those for the elephants! Figure 1.14 shows the difficulty very clearly. 

Now, this often happens and the usual way of getting round the problem is 
to transform the data in such a way as to spread out the points with very 
small values of either variable, and to  pull closer together the points with very 
large values for either variable. The objective is to  reduce the spread in the 
large values relative to  the spread in the small values. (In later chapters, some 
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Brain weight (g) 

1000 ~~~~~ 0 20000 40000 Body weight 60000 (kg) 80000 l00000 

Figure 1 .14 Body weight and brain weight 

attention is given to how we tell the need for a transformation and the way in 
which we decide which transfornlation to use.) In this case it can be done by 
plotting the logarithm of brain weight against the logarithm of body weight. 
The log transformation compresses the large values but stretches the small 
ones. Notice that simply treating the large values as outliers and relnoving 
them would not solve the problem because the tight clumping of points close 
to the origin would still remain. The scatter plot which results from a log 
transformation is shown in Figure 1.15. 

log (brain weight) 

-2 1 I L I I I I l I 

-4 -2 0 2 4 6 8 10 12 

, log (body weight) 

Figure 1 .l5 Body and brain weights after a log transformation 

The plot immediately reveals three apparent outliers to the right of the main 
band of points, and when you discover the animals to which they correspond 
you will not be surprised. They are easily identified by the stratagem of label- 
ling the animals with the first letters of the names of their species and plotting 
the letters in place of the points. This scatter plot is shown in Figure 1.16. 

17 
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log (brain weight) 

0 Giraffe, Horse 
Donkey, Gorilla 

I I I I I l I I 

-4 -2 0 2 4 6 8 10 12 

log (body weight) 

Figure 1 .l 6 Scatter plot, labelled points 

The outlying points are B, D and T which correspond to Brachiosaurus, 
Diplodocus and Triceratops. Excluding these three species, there is a con- 
vincing linear relationship, although the human, the mole and the rhesus 
monkey all appear to have exceptionally high brain weight to body weight 
ratios. 

The scatter plots you have just seen have revealed simple straight line re- 
lationships. Much more complicated patterns can emerge. Let us look at  a 
scatter plot of the data on stock-market averages in Table 1.8 by plotting the 
annual lows against their year. With time series, one might expect a value 
at  a particular time point to depend strongly upon the value at the time 
point immediately preceding it; that is, one might expect the lowest value of 
the Dow Jones average for 1984 to be linked to the lowest value of the Dow 
Jones average for 1983. It is coilventional to represent this linking on a graph 
of a time series by joining adjacent time points with straight lines, and this 
convention is adopted in Figure 1.17. 

Annual low 

I I I I I I 

1955 1960 1965 1970 1975 1980 1985 
Year 

Figure 1 . 1 7  Dow Jones lows, 1954 to 1985 

The overall increasing trend was remarked earlier, when looking at  the values 
themselves, but Figure 1.17 brings out an extra, interesting feature. If you 
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look carefully, you can see that superinlposed upon the steady increase is a 
kind of cyclic behaviour. Clearly there is a strong relationship between suc- 
cessive points because each point shows an increase over the previous year, 
except for a sharp drop which seems to occur every four years. Occasionally 
there is a small drop after three years, but, apart froin some muddled be- 
haviour in the late 1970s, a large drop inevitably follows. Why? What can 
this pattern mean? We can only speculate that the four-year cycle may have 
something to do with the frequency of presidential elections in the USA. The 
unusual performance in the late 1970s may well be a reflection of the market's 
lack of confidence in the Carter administration. 

Once such a pattern has been observed, the very brave among us may use 
it for predicting future stock-market behaviour. Many methods, both crude 
and sophisticated, exist for doing this, and there is a ready nlarket for coin- 
puter programs which attempt to predict stock-market behaviour. With one 
popular method using these data, the predicted low for 1986 is close to 1100, In fact, the 1986 low was 1185 ,and 

and for 1992 it is close to 1278. While it is not unreasonable to use these 1992 low was 3172! 

data to  predict the 1986 value, you should be very wary of extrapolating for 
predictions as far in advance of the data as 1992. 

There is a further useful graphical display which will be described in Section 1.4. 
It  is called a boxplot and, along with the scatter plot, is ainongst the most 
useful and informative of visual sunlnlaries of statistical data. However, you 
need first to have read Section 1.3, which deals with nunlerical sunlmaries of 
data sets. 

The following exercises are designed to help you become acquainted with the 
graphical (and other) facilities offered by your computer. 

Exercise 1.1 
(a) Obtain frequency tables for the SIRDS birth weight data with the follow- 

ing group classifications. 

(i) 1.0-1.2, 1.2-1.4, . . . 
(ii) 1.0-1.3, 1.3-1.6, . . . 
(iii) 0.8-1.1, 1.1-1.4, . . . 

(iv) 0.85-1.15, 1.15-1.45, . . . 
(V) 0.9-1.2, 1.2-1.5, . . . 

(b) Plot histograms for the SIRDS birth weight data with the same group 
classifications as in part (a). 

Exercise 1.2 

(a) Plot the variable death rate against alcohol consunlption for all fifteen 
countries, including France, in the data set recording alcohol-related 
deaths and average individual alcohol consumption. 

(b) Plot these data points again, excluding France from the data set. 
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Exercise 1.3 
(a) For the data set recording body and brain weights for different species 

of animal, sort the species according to decreasing brain weight to body 
weight ratio. 

(b) Obtain a scatter plot of brain weight against body weight (i) before and 
(ii) after a log transformation. 

1.3 Numerical summaries 

Histograms provide a quick way of looking at  data sets, but they lose sight 
of individual observations. However, we may often want to summarize the 
data in numerical terms; for example, we could use a number to suinmarize 

the general level of the values and, perhaps, another number to indicate how 
spread out or dispersed they are. 

1.3.1 The median, the mean and the mode 
Everyone professes to understand what is meant by the term 'average', in 
that it should be representative of a group of objects. The objects may well 
be numbers from, say, a batch or sample of measurements, in wllicll case the 
average should be a number which in some way characterizes the batch as a 
whole. For example, the statement 'a typical adult female in Britain is 160 cm 
tall' would be understood by most people who heard it. Now, not all adult 
females in Britain are the same height: there is considerable variation. To 
state that a 'typical' height is 160 cm is to ignore the variation and summarize 
the distribution of heights with a single number. Even so, it inay be all that 
is needed to answer certain questions. (For example, is a typical adult female 
smaller than a typical adult male?) 

But how should this representative value be chosen? Should it be a typical 
member of the group or should it be some representative measure which can 
be calculated from the collection of individual data values? There are no 
straightforward answers to these questions. In fact, two different ways of 
expressing a representative value are commonly used in statistics, namely 
the median and the mean. The choice of which of these provides the better 
representative numerical summary is fairly arbitrary and is based entirely 
upon the nature of the data themselves, or 'the particular preference of the 
data  analyst, or the use to which the summary statement is to be put. The 
median describes the central value of a set of data. 

The sample median 
The median of a sample of data with an odd number of data values is 
defined to be the middle value of the data set when the values are placed 
in order. If the sample size is even, then the inedian is defined to be 
half-way between the two middle values. 

A third representative measure, the 
mode, is sometimes used. It is a 
less common summary of a set of 
data, because it is not uniquely 
defined. However, as we shall see, 
it is a useful term when describing 
some general characteristics of a 
set of data. 
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Example 1.9 Beta endorphin concentration (collapsed runners) 
The final column of Table 1.5 listed the P endorphin concentration levels for 
11 runners who collapsed towards the end of the Great North Run. The 
observations were already sorted. They were 

Eleven is an odd number, so the middle value of the data set is the sixth value 
(five either side). So, in this case, the sample median is 110 pinol/l. 

Example 1.10 Birth weights, infants with SIRDS 
The data in Table 1.4 are the birth weights (in kg) of 50 infants suffering 
from severe idiopathic respiratory distress syndrome. There are two groups of 
infants: those who survived the condition (there were 23 of these) and those 
who, unfortunately, did not. The data have not been sorted, and it is not an 
entirely trivial exercise to  do this by hand (though it is a task that a-computer 
can handle very easily). The sample size is even: the sample median is defined 
to be the midpoint of the 25th and 26th observations. That is to say, it is 
obtained by splitting the difference between 1.82 (the 25th value) and 1.89 
(the 26th value). This is 

Incidentally, the question of whether or not there are identifiable differences 
between the two groups of infants has already been raised. We explored this, 
not with any great success, using histograms. The next exercise continues this 
exploration. 

Exercise 1.4 

Find the median birth weight for the infants who survived, and for those who 
did not. (Sort the data by hand, rather than using your computer. For data 
sets much larger than about 30, you will appreciate that hand-sorting becomes 
impractical.) 

Exercise 1.5 
The first two columns of Table 1.5 give the blood plasma ,B endorphin con- 
centrations of 11 runners before and after the race (successfully completed). 
There is a marked difference between these concentrations. The data are 
reproduced in Table 1.11 below with the 'After - Before' difference shown. 

Table 1 .l  1 Differences in pre- and post-race ,L? endorphin concentration levels 

Before 4.3 4.6 5.2 5.2 6.6 7.2 8.4 9.0 10.4 14.0 17.8 
After 29.6 25.1 15.5 29.6 24.1 37.8 20.2 21.9 14.2 34.6 46.2 
Difference 25.3 20.5 10.3 24.4 17.5 30.6 11.8 12.9 3.8 20.6 28.4 

Find the median of the 'After - Before' differences given in Table 1.11. 
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Exercise 1.6 
The annual snowfall (in inches) in Buffalo, New York, USA was recorded for Parzen, E. (1979) Nonparametric 
the 63 years from 1910 to 1972. These data are listed in Table 1.12. statistical data modelling. 

J. American Statistical 
Association, 74, 105-31. 

Table 1 . 1  2 Annual snowfall in Buffalo, NY, 1910-1972 (inches) 

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5 25.0 69.3 53.5 
39.8 63.6 46.7 72.9 79.7 83.6 80.7 60.3 79.0 74.4 49.6 54.7 
71.8 49.1 103.9 51.6 82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7 

110.5 65.4 39.9 40.1 88.7 71.4 83.0 55.9 89.9 84.8 105 .2 '113 .7  
124.7 114.5 115.6 102.4 101.4 89.8 71.5 70.9 98.3 55.5 66.1 78.4 
120.5 97.0 110.0 

Use your computer to find the median annual snowfall over this period. 

The second representative measure defined in this course for a collection of 
data is the sample mean. This is simply what most individuals would under- 
stand by the word 'average': all the items in the data list are added together, 
giving the sample total. This number is divided by the number of items (the 

sample size) 

The sample mean 

The mean of a sample is the arithmetic average of the data list, obtained 
by adding together all of the data values and dividing this total by the 
number of items in the sample. 

Denoting the n items in a data set X I ,  ~ 2 ,  . . . ,X,, then the sample size 
is n ,  and the sample mean is given by 

- X1 + X2 + . . . + X,, 1 
X = = -EXi. 

n n 
i= l  

The symbol F denoting the sample 
mean is read 'X-bar'. 

Example 1.9 continued 
From the figures in Table 1.5, the mean P endorphin concentration of collapsed 
runners is 

where the units of ineasurement are pmol/l. 

Exercise 1.7 
Use your calculator to find the mean birth weight of infants who survived H 
SIRDS, and of those who died. What was the mean birth weight for the 
complete sample of 50 infants? 

Exercise 1.8 
Find the mean of the 'After - Before' differences given in Table 1.11. 
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Exercise 1.9 
Use your computer'to find the inean annual snowfall in Buffalo, New York, 
during the years 1910 to 1972 (see Table 1.12). 

Two plausible measures have been defined for describing a typical or rep- 
resentative value for a sainple of data. Which measure should be chosen in 
a statement of that typical value? I11 the examples we have looked at in this 
section, there has been little to choose between the two. Are there principles 
that should be followed? It all depends on the data that we are trying to 
summarize, and our aim in suininarizing them. 

To a large extent deciding between using the sample inean and the sainple 
median depends on how the data are distributed. If their distribution ap- 
pears to be regular and concentrated in the middle of their range, the meail 
is usually used. It is the easier to coinpute because no sorting is involved, 
and as you will see later, it is the easier to  use for drawing inferences about 
the population from which the sample has been taken. (Notice the use of the 
word range here. This is a statement of the extent of the values observed in a 
sample, as in '. . . the observed weights ranged from a ininiin~un of 1.03 kg to 
a maximum of 3.64 kg'. It need not be an exact statement:' '. . . the range of 
observed weights was from l kg to about 4 kg'. However, in Subsection 1.3.2 
we shall see the word 'range' used in a technical sense, as a measure of dis- 
persion in data. This often happens in statistics: a familiar word is given a 
technical meaning. Terms you will coine across later in the course include 
expect, likelihood, confidence, estimator, significant. But we would not wish 
this to  preclude normal English usage of such words. It will usually be clear 
from the context when the technical sense is intended.) 

If, however, the data are irregularly distributed with apparent outliers present, 
then the sample inedian is usually preferred in quoting a typical value, since it 
is less sensitive to such irregularities. You can see this by looking again at  the 
data on collapsed runners in Table, 1.5. The mean endorphin coilcentration is 
138.6 pmol/l, whereas the median concentratioil is 110. The large discrepancy 
is due to the outlier with an endorphin concentration of 414. Excluding this 
outlier brings the mean down to 111.1 while the inedian decreases to 106. 
From this we see that the median is more stable than the inean in the sense 
that outliers exert less influence upon it. The word resistant is soinetiines 

used to describe measures which are insensitive to outliers. The median is 
said to be a resistant measure, whereas the inean is not resistant. 

The data  in Table 1.1 were usefully suininarized in Figure 1.7. The variable 
recorded here is 'type of employment' (professional, industrial, clerical, and so 
on) so the data are categorical and not amenable to  ordering. In this context 
the notion of 'mean type of employment' or 'median type of employment' is 
not a sensible one. For any data set, a third representative measure soinetiines 
used is the mode ,  and it describes the most frequently occurring observation. 
Thus, for males in employment in the USA during 1986, the modal type of em- 
ployment was 'professional'; while, for females, the modal type of einployinent 
was 'clerical'. 

With the help of a computer, 
neither the sample mean nor the 
sample median is easier to calculate 
than the other; but a computer is 
not always ready to hand. 

The word m o d e  can also reasonably be applied to nuinerical data, referring 
again to the most frequently occurriilg observation. But there is a problem of 
definition. For the birth weight data in Table 1.4, there were two duplicates: 
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two of the infants weighed 1.72 kg, and another two weighed 2.20 kg. So there 
would appear to be two modes, and yet to report either one of them as a 
representative weight is to make a great deal of an arithmetic accident. If the 
data are classified into groups, then we can see from Figures 1.9 to 1.11 that 
even the definition of a 'modal group' will depend on the definition of bor- 
derlines (and on what to do with borderline cases). The number of histogram 
peaks as well as their locations can alter. 

However, it often happens that a collection of data presents a very clear picture 
of an underlying pattern, and one which would be robust against changes in 
group definition. In such a case it is common to identify as modes not just 
the most frequently occurring observation (the highest peak) but every peak. 

Here are two examples. Figure 1.18 shows a histogram of chest measurements 
(in inches) of a sample of 5732 Scottish soldiers. This data set is explored and 
discussed in some detail latkr in the course; for the moment, simply observe 
that there is an evident single mode at around 40 inches. The data are said 
to be unimodal. Figure 1.19 shows a histogram of waiting times, varying 
from about 40 nlinutes to about 110 minutes. In fact, these are waiting times 
between the starts of successive eruptions of the Old Faithful geyser in the 
Yellowstone National Park, Wyoming, USA, during August, 1985. Observe 
the two modes. These data are said to be bimodal. 

Frequency 

1200 -1 

Chest (inches) Time (minutes) 

Figure 1 . 1 8  Chest measurements (inches) Figure 1 .l 9 Waiting times 
(minutes) 

Sonletimes data sets may exhibit three modes (trimodal) or many nlodes 
(multimodal). You should be wary of too precise a description. Both the data 
sets in Figures 1.18 and 1.19 were based on large samples, and their message 
is unambiguous. As you will see later in the course, smaller data sets can give 
rise to very jagged histograms indeed, and any message about one or more 
preferred observations is consequently very unclear. 

1.3.2 Measures of spread 
During the above discussion of suitable numerical suimnaries for a typical 
value, you may have noticed that it was not possible to make any kind of 
decision about the relative merits of the sample mean and median without 
introducing the notion of the extent of variation of the data. In practice, 
this means that the alnount of information contained in these measures, when 

24 
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taken in isolation, is not sufficient to  describe the appearance of the data and 
that a more informative numerical summary is needed. In other words, we 
need some measure of the spread of observations if we are to  be happy about 
replacing a data  set by a few summary numbers. 

The range, taken here to mean the difference between the smallest and largest 
data values, is certainly the simplest measure of spread, but it can be mis- 
leading. The range of P endorphin concentrations for collapsed runners is 
414 - 66 = 348, suggesting a fairly wide spread. However, omitting the value 
414 reduces the range to 169 - 66 = 103. This sensitivity to  a single data 
value suggests that this is not a very reliable measure; a much more mod- 
est assessment of dispersion may be more appropriate. By its very nature, 
the range is always going to give prominence to  outliers and therefore cannot 
sensibly be used in this way. 

This example indicates that we need an alternative to the range as a measure 
of spread, and one which is not over-influenced by the presence of a few 
extreme values. An alternative measure is the interquartile range: this is the 
difference between summary measures known as the lower and upper quartiles. 

The sample median has been defined already as in some sense representative 
of a set of data: it is the middle value of the observations. If the number 
of observations is odd, this middle value is easily identified; if the number is 
even, the median is defined to be the midpoint of two middle values. 

It  would be convenient to express this wordy definition in a concise symbolic 
form, and this is easy to  do. Any data sample of size n can be written as a 
list of numbers 

In order to  calculate the sample median it is necessary to sort the data list 
into order, and in any case it is often informative to do this. The sorted list 
can then be written 

where x( l )  is the smallest value in the original list (the minimum) and X(,) is 
the largest (the maximum). Each successive item in the ordered list is greater 
than or equal to the previous item. For instance, the list of six data items 

may be ordered as 

In any such ordered list, the sample median m may be defined to be the 
number 

as long as the right-hand side is correctly interpreted. If the sample size n is 
odd, then the number $ (n  + 1) will be an integer, and there is no problem 
of definition. (For instance, if n = 27 then $ (n + 1) = 14, and the sample 
median is m = X(,,), the middle value, with thirteen data items either side of 
it.) If the sample size n is even (as in the example above, where six numbers 
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are listed) then the number + ( n  + 1) will not be an integer but will have a 
fractional part equal to i. (Such numbers are sometimes called 'half-integer'.) 
For instance, if n = 6 then the sample median is 

If the number x ( ~ + )  is interpreted as the number 'half-way between x ( ~ )  and 
x ( ~ ) '  then you can see that the wordy definition survives intact. It is a very 
obvious interpretation to make, and can be extended. As well as expressing 
through the sample median a representative value for a set of data,  it is useful 
to  be able to say something about the dispersion in the data set through the 
lower quartile (roughly, one-quarter of the way into the data set) and the 
upper quartile (approxin~ately three-quarters of the way through the data 
set). 

Sample quartiles 

If a data set XI, 2 2 , .  . . ,X,  is re-ordered as ~ ( ~ ) , i  = l, 2 , .  . . , n, where 

X(1)  I X(2) I . . . I X(,), 

then the lower sample quartile is defined by 

q L  = x(+(n+l))r 

and the upper sample quartile is defined by 

4 u  = X($("+l)). 

Example 1.11 Quartiles for the SIRDS data 
For the 23 infants who survived SIRDS (Table 1.4), the ordered birth weights 
are given in Solution 1.4. The first quartile is 

qL = %($(23+1)) = x(6) = kg; 

the third quartile is 

= x($(23+l)) = X(18) = 2.830kg. 

Example 1.12 Quartiles when the sample size is awkward 
For the ordered list 1 , 3 , 3 , 6 , 7 , 7  (n  = 6) the lower quartile is given by 

9L = x(+(n+l)) = = x(l:). 

In other words, the number q~ is given by the number three-quarters of the 
way between x ( ~ )  = 1 and x(2) = 3. Their difference is 2: so q~ = X ( I )  + 
3 si(x(2) - x ( ~ ) )  = l + :(2) = 2.5. The upper quartile is given by 

qu = X(:(,+,)) = X ( % )  = 335;). 

So q~ is the number one-quarter of the way between X(S) = 7 and = 7. 
This is just the number 7 itself. H 

The lower and upper sample 
quartiles are sometimes called the 
first and third sample quartiles. 
The median is the second sample 
quartile. Other definitions are 
possible, and you may even be 
familiar with some of them. Some 
practitioners use 

4'L x(L,+$)r PU = X ( 3 , + + j .  

Still others insist that the lower 
and upper quartiles be defined in 
such a way that they are identified 
uniquely with actual sample items. 
Almost all definitions reduce to the 
same thing when it comes to 
identifying the sample median. 
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Exercise 1.10 
(a) Find the lower and upper quartiles for the birth weight data on those 

children who died of the condition. (See Solution 1.4 for the ordered 
data.) 

(b) Find the median, lower and upper quartiles for the data in Table 1.13, 
which give the percentage of silica found in each of 22 chondrites meteors. 
(The data are ordered.) 

Table 1 . 1 3  Silica content of chondrites meteors. 
20.77 22.56 22.71 22.99 26.39 27.08 27.32 27.33 
27.57 27.81 28.69 29.36 30.25 31.89 32.88 33.23 
33.28 33.40 33.52 33.83 33.95 34.82 

Good, I.J. and Gaskins, R.A. 
(1980) Density estimation and 
bump-hunting by the penalized 
likelihood method exemplified by 
scattering and meteorite data. 
J. American Statistical 
Association, 75, 42-56. 

A simple measure of dispersion, the interquartile range, is given by the differ- 
ence q u  - q ~ .  

I T h e  in te rquar t i l e  r a n g e  

The dispersion in a data  set may be simply expressed through the in- 
t e r q u a r t i l e  range ,  which is the difference between the upper and lower 
quartiles, qu - q ~ .  

Exercise 1.1 1 

Use your conlputer to find the lower and upper quartiles and the interquartile 
range for the Buffalo snowfall data in Table 1.12. 

The interquartile range is a useful measure of dispersion in the data and it 
has the excellent property of not being too sensitive to outlying data values. 
However, like the median it does suffer from the disadvantage that its compu- 
tation requires sorting the data. This can be very time-consuming for large 
samples. Anotller measure that is easier to compute and, as you will find in 
later chapters, has good statistical properties is the standard deviation. 

The standard deviation is defined in terms of the differences between the data 
values and their mean. These differences (xi - c),  which can be positive or 
negative, are called residuals.  

Example 1.13 Calculating residuals 

The mean difference in P endorphin coilcentratioil for the 11 runners sainpled 
who completed the Great North Run in Example 1.4 is 18.74 pmol/l ( to two 
decimal places). The eleven residuals are given in the following table. 

 difference,^; 25.3 20.5 10.3 24.4 17.5 30.6 11.8 12.9 3.8 20.6 28.4 
Mean, 5 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 
Residua1,xi-5 6.56 1.76 -8.44 5.66 -1.24 11.86 .-6.94 -5.84 -14.94 1.86 9.66 , 
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If xi is a data value (i = 1 ,2 , .  . . , n,  where n is the sample size) then the i th  
residual can be written 

These residuals all contribute to an overall measure of dispersion in the data. 
Large negative and large positive values both indicate observations far re- 
moved from the sample mean. In some way they need to be combined into a 
single number. 

There is not much point in averaging them: positive residuals will cancel out 
negative ones. In fact their sum is zero, since 

and so, therefore, is their average. What is important is the magnitude of 
each residual, the absolute difference lxi - 571. The absolute residuals could be 
added together and averaged, but this measure (known as the mean absolute 
deviation) does not possess very convenient mathematical properties. Another 
way of eliminating minus signs is to square the residuals and average them. 
This leads to a measure of dispersion known as the sample standard deviation. 

The sample standard deviation 

A measure of the dispersion in a sample 

Xlrx21...,Xn 

with sample mean : is given by the sample standard deviation S ,  
where s is obtained by'averaging the squared residuals, and taking the 
square root of that average: 

There are two important points you should note about this definition. First, 
you should remember to take the square root of the average. The reason for 
this is that the residuals are measured in the same units as the data, and so 
their squares are measured in the squares of those units. After averaging, it is 
necessary to  take the square root, so that the standard deviation is measured 
in the same units as the data. 

Second, although there are n terms contributing to the sum in the numerator, 
the divisor is not the sample size n ,  but n - 1. 

The reason for this surprising amendment will become clear in Chapter 6 of 
the course. Either average (dividing conventionally by n or dividing by n - 1) 
has useful statistical properties, but these properties are subtly different. The 
definition at  (1.1) will be used in this course. 
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Example 1.13 continued 
The sum of the squared residuals for the eleven ,B endorphin concentration 
differences is 

so the sample standard deviation of the differences is 

Notice that a negative residual 
contributes a positive value to the 
calculation of the standard 
deviation. This is because it is 
squared. 

Even for relatively small samples the arithmetic is rather awkward if done 
by hand. Fortunately, it is now common for calculators to have a 'standard 
deviation' button, and all that is required is to key in the data. 

Exercise 1.12 
Use your calculator for each of the following calculations. p 
(a) Confirnl the sample standard deviation for the 11 differences listed in 

Example 1.13. 

(b) Calculate the standard deviation for the 22 silica percentages given in 
Table 1.13. 

(c) Calculate the standard deviation for the ,B endorphin concentrations of 
the 11 collapsed runners. (See Table 1.5.) 

Exercise 1.13 

Use your computer for each of these calculations. 

(a) Compute the standard deviation for the birth weights of all 50 infants in a 

the SIRDS data  set. (See Table 1.4.) 

(b) Find the standard deviation for the annual snowfall in Buffalo, NY. (See 
Table 1.12.) 

In later chapters you will find that the main use of the standard deviation lies 
in making inferences about the population from which the sample is drawn. 
Its most serious disadvantage, like the mean, results from its sensitivity to 
outliers. In Exercise 1.12 you calculated a standard deviation of 98.0 for the 
data  on collapsed runners. Try doing the calculation again, but this time onlit 
the outlier at 414. You will find a drastic reduction in the standard deviation 
to  37.39, a reduction by a factor of almost three! 

Which, then, should you prefer as a measure of spread: range, interquar- 
tile range or standard deviation? For exploring and sunlnlarizing dispersion 
in data  values, the interquartile range is safer, especially when outliers are 
present. For inferential calculations, which you will meet in subsequent chap- 
ters of the course, the standard deviation is used, possibly with extreme values 
removed. The range should only be used as a check on calculations. Clearly 
the mean must lie between the smallest and largest data values, somewhere 
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near the middle if the data are reasonably symmetric; and the standard devi- 
ation, which can never exceed the range, is usually close to about one-quarter 
of it. 

Exercise 1.14 
When hunting insects, bats emit high-frequency sounds and pick up echoes Griffin, D.R., Webster, F.A. and 
of their prey. The data given in Table 1.14 are bat-to-prey detectioll dis- hlIichael, C.R. (1960) The echo 

tames (i.e. distances a t  which the bat first detects the insect) measured in location of 'ying by bats. 
Animal Behaviour, 8 ,  141-154. 

centimetres. 

Table 1 . l 4  Bat-to-prey detection distances ,(cm) 

62 52 68 23 34 45 27 42 83 56 40 

Calculate the median, interquartile range, meall and standard deviation of 
the sample. 

Exercise 1.15 8 The following data are taken from the 1941 Canadian Census and comprise 
the sizes of completed families (numbers of children) born to a sample of 
Protestant mothers in Ontario aged 45-54 and married at age 15-19. The data Keyfitz, N. (1953) A factorial 
are split into two groups according to how many years of formal education arrangement of com~arisons of 

the mothers had received. family size. American J. Sociology, 
53, 470-480. 

Table 1.15 Family size: mothers married aged 15-19 

Mother educated for 6  years or less 

14 13 4  14 10 2  13 5  0  0  13 3  9  2  10 11 13 5  14 

Mother educated for 7 years or more 
0 4 0 2 3 3 0 4 7 1 9 4 3 2 3 2 1 6 6 0 1 3 6 6 5 9 1 0 5 4 3 3 5 2 3 5 - 1 5 5  

Find the median, interquartile range, mean and standard deviation of each of 
the groups of mothers. Cominent on these measures for the two groups. 

For future reference, the square of the sample standard deviation in a sample 
of data is known as the sample variance. 

The sample variance 

The sample variance of a data sample X I ,  xz, . . . , X, is given by 

where is the sample mean. 

Finally, many practitioners find it convenient and u se f~~ l  to characterize a data 
sample in terms of the five-figure summary. 
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The five-figure summary 

For a sample of data, the five-figure, summary lists, in order, 

0 the sample n~inimum, 

a the lower quartile, q ~ ;  

0 the sample median, m;  

0 the upper quartile, qv; 

0 the sample maximum, X(,). 

For instance, the five-figure summary for the snowfall data in Table 1.12 can 
be written 

(25,63.6,79.7,98.3,126.4). 

For the silica data in Table 1.13 it is 

(20.77,26.91,29.03,33.31,34.82). 

1.4 Graphical displays and numerical 
summaries 

Bearing in mind the advice that we should always start a data exploration 
by looking at  a graphical display of the data, we have displays such as bar 
charts and histograms to guide us when looking at  data sets which involve 
only one variable. But the problem with these displays is first, that they can 
have too much detail, and second, that they are not very useful for comparing 
two or more samples. Now that we know how to calculate useful numerical 
summaries of the data, it would be useful to have available a graphical display 
showing the summary statistics in a visually appealing and interpretable way: 
a simple method for doing this is by drawing a boxplot. 

A boxplot is designed to  depict, as clearly as possible, the median, the quar- 
tiles, the range of the data and any outliers which may be present. It  gives 
a clear picture of all of these features and, as you will see, allows a quick 
comparison of data sets. 

A boxplot is simple to construct. I t  will be useful to follow the construction 
through with an example, and we shall use the 'collapsed runners' data in 
Table 1.5. The eleven ,l? endorphin concentrations recorded were 

It  will also be useful to have the five-figure summary for these data, given by 

First, a convenient horizontal scale is drawn, covering the extent of the data: 
say, in this case, a scale from 0 to 500. Against this scale, the three quartiles 
(the first quartile q ~ ,  the second quartile m ,  and the third quartile q u )  are 
drawn in as shown in Figure 1.20. 
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m 
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0 100 200 300 400 500 

p endorphin concentration (pmol/l) 

Figure 1.20 Drawing a boxplot 

The rectangle is the 'box', with edges defined by the lower and upper quartiles; 
the median is shown by a vertical line appropriately located in the box. 

Next, calculate the interquartile range. In this case, 162 - 79 = 83. 'Whiskers' 
are then constructed, extending to the furthest observation within one i.q.r. 
(interquartile range) either side of the box. In this case, 

g" + i.q.r = 162 + 83 

= 245, 

and so the right-hand whisker will extend as far as the observation 169, the 
highest observation not exceeding 245. The nunlber 169 is called the u p p e r  
ad jacen t  value. Similarly, 

q~ - i.q.r. = 79 - 83 

= -4, 

and so the left-hand whisker extends all the way to 66, the lowest obser- 
vation. So, in this case, the lower ad jacen t  value is the same as the sample 
minimum. This is shown in Figure 1.21. 

€U- 
I l I I I I 

0 100 200 300 400 500 

p endorphin concentration (pmol/l)- 

Figure 1.21 Drawing a boxplot, continued 

Finally, any observatiom not covered by the whiskers are marked in as sep- 
arate items. (They may in some circumstances be deemed outliers, or a t  least 

worth special attention.) In this case, the oiily observatioii iiot covered by the 
whiskers is that to the extreme right, the nlaxilnuln observation of 414. This 
is shown in Figure 1.22, which is the completed boxplot. 

p endorphin concentration (pmol/l) 

Figure 1.22 The completed boxplot 

Again, you should be aware that boxplot construction is an area where there 
are no clear rules. All boxplots show the three quartiles, but the conventions 
defining the whiskers vary from text to text and from one computer package 
to another. The whiskers may extend up to one and a half or even two 
interquartile ranges either side of the box; and some approaches distinguish 
moderate and severe outliers with different symbols. The approach adopted 
here is the simplest approach that shows all that needs to be illustrated. 

You can see how a boxplot gives a quick visual assessnlent of the data. The 
length of the box shows the interquartile range and the lengths of the whiskers 
relative to the length of the box give an idea of how stretched out the rest 
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of the values are. The unusually large value is clearly shown in this case and 
the median gives an assessment of the centre. If the sample ~nediail is to be 
used as an estimate of an unknown population value, then the boxplot gives 
an overall feel for the precision of such an estimate. Some kind of assessment 
of symmetry is possible, since synlmetric data will produce a boxplot wl~ich is 
symmetric about the median. However, it should be borne in nlind that this 
particular data set has only 11 values, and this is too sinall a number to infer 
anything definite about any underlying structure. You should now make sure 
you understand boxplots by constructing a couple for yourself. 

Exercise 1.16 

Using a pent" and ruler, construct a boxplot (a) for the silica data in Table 1.13 
and (b) for the snowfall data in Table 1.12. Use the five-figure sunlnlaries given 
at  the end of Section 1.3. 

Boxplots are particularly useful when used for quick comparisons. When 
the data on birth weights of children exhibiting severe idiopathic respiratory 
distress syndronle were introduced in Table 1.4 the question asked was: is it 
possible to relate survival to birth weight? We are now in a good position 
to  make some headway. Figure 1.23 shows comparative boxplots of the two 
groups of birth weights. 

Birth weight (kg) 

Figure 1.23 Comparative boxplots, two groups 

You can see immediately that the median birth weight of children who died 
is less than the lower quartile of birth weights of children who survived. The 
picture immediately gives a compact, quickly assimilated suilmary of the 
data, suggesting that children who survive and children who do not may 
typically have different birth weights. 

Using boxplots you have seen how summary statistics can be represented by 
graphical displays which not only give some feel for the way the data are 
dispersed but also make it possible visually to compare two or inore samples 
of data. 

1.4.1 Data and symmetry 
Figure 1.24 shows a bar chart of some of t,he data of Table 1.15: it shows the 

numbers of children born to  the 35 Protestant mothers in Ontario who had 
at  least seven years' education. 
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Frequency 

Number of children 

Figure 1 .64 Bar chart, family size 

The bar chart shows a marked lack of symmetry. The corresponding boxplot 
is shown in Figure 1.25. 

I - I I I I I I I I 

0 2 4 6 8 10 12 14 16 

Number of children 

Figure 1.25 Boxplot, family size 

Detection of lack of symmetry is of considerable importance in data analysis 
and inference. This is because the most important sunmary measure of the 
data is the typical or central value in the context of which the sample median 
and the sample mean were introduced. Now, when the data are roughly 
symmetrically distributed, all ambiguity is renloved because the median and 
the mean will nearly coincide. When the data are very far from symmetric, 
not only will these ineasures not coincide but we may even be pressed to 
decide whether any sunmary measure of this kind is appropriate. 

A measure of synmletry would clearly be both meaningful and useful. 

The generally accepted measure is the sample skewness, defined as follows. 

The sample skewness 

The sample skewness of a data sample X I ,  x2, . . . , X,, is given by 

where Z is the sanlple mean and s is the sample standard deviation. 

Notice in this formula the term (xi - E ) ~ :  observations greater than the sample 
mean contribute positive terms to the sum, while observations less than the 
sample mean will contribute negative terms. Perfectly synlmetric data would 

34 
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have a skewness of 0. The data of Figures 1.24 and 1.25 have a sample 
skewness of 1.28-the data are said to be positively skewed. 

Exercise 1.17 
Use your computer to calculate the sample skewness for the family size data 
for the first group of 19 mothers, who.had six or less years' education. 

I11 the case of the first group of mothers the sample skewness is negative: the 
data are said to  be negatively skewed. In this case, the asymmetry is rather 
slight. However, the consequences of asyillinetry are iinportant for subsequent 
analyses of the data, as we shall see as the course develops. 

The following exercise is a computer exercise to reinforce some of the ideas 
you have met so far. 

Exercise 1.18 

Data were taken from an experinlent on three groups of mice. The measure- 
ments are amounts of nitrogen-bound bovine serum albumen produced by 
normal mice treated with a placebo (i.e. an inert substance), alloxan-diabetic 
mice treated with a placebo, and alloxan-diabetic mice treated with insulin. 
The data are given in Table 1.16. 

Table 1 .l 6 Nitrogen-based BSA for three groups 
of diabetic mice 

Normal Alloxan-diabetic Insulin treatment 

(a) Sulnmarize the three groups in terms of their five-figure summaries. 

(b) Calculate the mean and standard deviation for each group. 

(c) Calculate the sample skewness for each group. 

(d) Obtain a comparative boxplot for the three groups. Are any differences 
apparent between the three treatments? 

Dolkart, R.E., Halpern, B. and 
Perlman, J.  (1971) Comparison of 
'antibody responses in normal and 
alloxan diabetic mice. Diabetes, 
20, 162-167. 
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1.5 A look ahead 
The examples in this chapter have been drawn from a wide variety of areas, 
the diversity of which serves to illustrate the unlimited range of applicability 
of statistical methods. Statistical ideas, however, are not merely used to 
address questions from a broad range of areas, they are also used to address 
a multitude of different types of problem. 

One important division of problem types is into formulation, estimation and 
testing situations. In the first, we are searching for patterns or structures in 
the data, and you have seen some of that in this chapter. This is done in the 
hope that such patterns or structures might lead to simplified explanation and 
improved understanding of what is going on, thereby helping the formulation 
of hypotheses and theories. Sometimes the word exploratory is used to 
describe statistical methods with this aim in mind because they are being 
used to explore the data to see what can be discovered. Most of the graphical 
methods you have met in this chapter could be described as exploratory. 

Example 1.14 Hypothesizing a linear relationship 
We used an exploratory method to investigate the relationship between alcohol 
consumption and the death rate from cirrhosis and alcoholisn~ (Table 1.6). I t  
is clear from Figures 1.12 and 1.13 that some pattern does exist. We might 
hypothesize a linear relationship of the form 

Death rate = a + ,B (Alcohol consumption), The letter a! is the Greek 

where a and ,B are constants (to be determined numerically by a method which lower-case letter alpha. 

is described in Chapter 10). With this as a basic relationship, a government 
might then wish to  examine its policy of alcohol taxation. 

Example 1.15 Old Faithful geyser, August 1978 

The Old Faithful geyser in Yellowstone National Park has been much ob- 
served: we saw in Figure 1.19 the results of monitoring in 1985. Some years 
earlier, observations were carried out with the objective of deciding whether 
a prediction rule could be formulated so that the Park Rangers would be able 
to tell visitors when the next eruption would be likely to occur, based on the 
duration of the previous eruption. The durations of eruptions and the times 
to next eruption were recorded between 6 am and midnight from 1 to 8 August 
1978. The data are given in Table 1.17. 

Table 1.17 Eruptions of Old Faithful geyser, August 1978 
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 

D I D I D I D I D I D I D I D I  
4.4 74 4.3 76 4.5 71 4.0 71 4.0 67 1.8 53 3.5 50 4.2 73 
3.9 70 1.7 54 3.9 78 3.7 69 2.3 65 4.6 70 2.0 87 4.4 73 
4.0 64 3.9 76 4.4 80 3.7 63 4.4 77 3.5 69 4.3 40 4.1 70 
4.0 72 3.7 65 2.3 51 4.3 64 4.1 72 4.0 66 1.8 76 4.1 84 
3.5 76 3.1 54 3.8 82 3.6 82 4.3 79 3.7 79 4.1 57 4.0 71 
4.1 80 4.0 86 1.9 49 3.8 68 3.3 73 1.2 48 1.8 71 4.1 79 
2.3 48 1.7 40 4.6 80 3.8 71 2.0 53 4.6 90 4.7 70 2.7 58 
4.7 88 4.1 87 1.8 43 3.8 71 4.3 69 1.7 49 4.2 69 4.6 73 
1.7 53 1.8 49 4.7 83 2.5 63 2.9 53 4.0 78 3.9 72 1.9 59 
4.9 71 3.2 76 1.8 49 4.5 79 4.6 78 1.8 52 4.3 51 4.5 76 
1.7 56 1.9 51 4.6 75 4.1 66 1.9 55 4.1 79 1.8 84 2.0 49 
4.6 69 4.6 77 1.9 47 3.7 75 3.6 67 1.9 49 4.5 43 4 . 8 - 7 5  
3.4 72 2.0 49 3.5 78 3.8 56 3.7 68 4.6 75 4.1 75 D = duration of eruption, I = time 

3.4 83 3.7 73 2.9 75 interval to next eruption (minutes) 
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A scatter plot of 'time interval to next eruption' against 'duration of eruption' 
is given in Figure 1.26. H 
Interval (minutes) 

I I I I I 

1 2 3 4 5 

Duration (minutes) 

Figure 1.26 Eruptions of Old Faithful geyser, August 1978 

The scatter plot clearly shows that,  if the duration is large, the interval to 
the next eruption is also likely to be large, and if the duration is small the 
interval is likely to be small. However, the situation is not entirely clear C L I ~  

because the plot also shows some outlying points which are far from the others, 
notably in the bottom right-hand and top left-hand corners of the plot. Two 
statisticians from Bell Laboratories in the United States, Lorraine Denby and 
Daryl Pregibon, were intrigued by this curious distribution of the points and 
explored it by replacing the points on the plot with symbols showing the days 
on which the measuren~ents were taken. This is shown in Figure 1.27, and 
you can see that Day 7 accounts for the anomalous outlying points. 
Interval (minutes) 

0 x 

A A 0  
~6 D 

e e m :  a;:! X Day 1 
'X ' A ~ O ~ ~ . ' ~ . ~  X A Day 2 

!A A 
q Day 3 

O  

A 
A  0 A Day 4 

0 0 

0 
Day 5 

0 Day 6 

0 Day 7 

O Day 8 

Duration (minutes) 

Figure 1.27 Eruptions of Old Faithful geyser, August 1978, day by day 
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This led Denby and Pregibon to check that the results for Day 7 had been 
recorded correctly. They found that a mistake had indeed been made, and 
that the recorded intervals for Day 7 should have been matched with the listed 
duration following the one with which they had originally been matched. This 
led to  the revised scatter plot shown in Figure 1.28. 

Interval (minutes) 

Duration (minutes) 

Figure 1.28 Eruptions of Old Faithful geyser, August 1978, revised plot 

Now the points follow a fairly well-defined pattern (except for one!), and 
predictions can be made. 

Another type of problem concerns testing. Here, statistical methods are used 
to  determine the possible truth of a hypothesis or theory by comparing it with 
a set of data. In effect we are asking if it is likely that the observed data arose 
from a structure such as the one hypothesized or if it is, in fact, extremely 
unlikely. Later chapters will include formal methods for such tests. 

Before we have even the possibility of performing the kind of conlparison in- 
volved in a test, we need to have a mathematical description or explanation 
of the data. In other words, we need to formulate and test a model which 
explains how the data  arose. The first step in such model-building is to decide 
what is relevant. It is impossible to inodel the real world in all its awesome 
complexity and simplifying assunlptions have to  be made. These may be 
along the lines that certain things are irrelevant (Newton, for example, in 
formulating his laws of gravitation, decided that the colour and material of 
gravitating bodies were irrelevant-only distance and mass were important), 
or certain aspects of the data may be too complex to explain (in Table 1.8 
and Figure 1.17, we might decide that short-term fluctuations are too com- 
plex to model and focus our attention on long-term trends). The next three 
chapters will be about constructing probability inodels for data. You will see 
how to formulate common-sense assumptions which lead to tidy mathemat- 
ical descriptions of the way in which the data arise. These will enable you to  
quantify such things as the tests mentioned in the preceding paragraph. 
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Of course, modelling does not end with formulating a plausible mathenlatical 
description of the way data  arise. We also need to test the validity of the 
resulting model. The results of such a test may lead us to accept the ad- 
equacy of a model; we may decide that the patterns in the data are explained 
successfully. But is the test we have used powerful enough? A weak test is one 
which would pass an inadequate model and clearly would not be of much use. 
A powerful test is more discriminating and acceptance will require a closer fit 
between model and data. 

Alternatively, the results of a test may lead us to conclude that the model is 
inadequate: it does not explain successfully the patterns in the data. We say 
that the test has rejected the model and we have to try some other model. 
Sensitive use of statistical methods can lead to ideas about how a rejected 
model may be modified to improve the fit. 

Example 1.16 Incidence of Down's syndrome births, Australia, 1942-1 952 

Table 1.18 shows the incidence of Down's syndronle babies born to Australian 
mothers from 1942 to 1952. The total nunlber of births is also given. The 
mothers are grouped into seven categories, by age. 

Table 1.18 Down's syndrome births 

Age group Number of Down's Total number 
of mother syndrome births of births 
under 20 15 35 555 

20-24 128 207 931 
25-29 208 253 450 
30-34 194 170 970 
35-39 297 86 046 
40-44 240 24 498 

45 and over 37 1 707 

The objective is to model the risk of a child born with the syndrome given 
the mother's age at  the birth. 

Suppose we plot the proportion of Down's syndronle births for each age group 
against the midpoint of the age group; that is, we shall plot the number of 
Down's syndrome births divided by the total number in each age group against 
each interval midpoint, the midpoints being taken to be 17.5, 22.5, 27.5, 32.5, 
37.5, 42.5, 47.5. The plot is shown in Figure 1.29. 

Down's syndrome proportion 

Moran, P.A.P. (1974) Are there 
two maternal age groups in Down's 
syndrome? British Journ,al of 
Psychiatry, 124, 453-455. 

Figure 1.29 Proportion of Down's syndrome births against age of mother 
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You can see how the risk increases with age, but the proportions increase so 
rapidly at  the higher ages that we need to use a transforlnation of the data 
if we are to see what is really happening. In Figure 1.15 we obtained a clear 
scatter plot for the data in Table 1.7 by taking logarithms. I11 this case, we 
want to spread out the small proportions and compress the larger ones whilst 
leaving the ages evenly spread, so we take logarithms of the proportions only. 

In fact, the appropriate transforn~ation is to  plot the variable You are not expected at this stage 

) 
of the course to be able to select an 

1% ( proportion appropriate transformation 
1 - proportion yourself, or to recognize why some 

particular transformation might 
against age. You need not worry about the arithmetic. The transformed plot lead to a more informative view of 
is shown in Figure 1.30. the data. 

proportion 
log ( 

I - proportion 

- 2 

Average maternal age (years) 

Figure 1.30 Down's syndrome plot, after transformation 

The plot shows two groups of points, each approximately linear but with 
different slopes, the changeover point being the midpoint of the 30-35 age 
interval. In fact the fit is almost perfect. 

The model gives the proportion of Down's syndrome births as a function of 
the maternal age and enables us to  estimate the relative risks for different 
ages. H 

Sometimes models are very complex and it is difficult to see what is going on. 
In such cases, one method which is sometimes adopted to gain understanding 
is simulation. A computer program is written which acts as if the model were 
true, and generates data from it. Thus large numbers of simulated random 
samples may be produced and compared. In this way different models may 
be tried and the consistency of their performance may be assessed. You will 
meet computer simulation throughout the text, beginning towards the end of 
Chapter 2. 
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Summary 

An important first stage in any assessment of a collection of data, preced- 
ing any numerical analysis, is to represent the data, if possible, in some 
informative diagrammatic way. Useful graphical representations include 
pie charts, bar charts, histograms, scatter plots and boxplots. Possibly, 
transformations may be useful to aid the representation of the data. 

Most diagrammatic representations have some disadvantages; in partic- 
ular, histograms are very sensitive to the choice of origin and the widths 
of the class interval. 

The design of boxplots varies with analysts' preferences and between 
computer packages. In this course a boxplot exhibits the lower adjacent 
value, the lower quartile, the sample median, the upper quartile and the 
upper adjacent value. The quartiles are spanned by the 'box', the adja- 
cent values by 'whiskers'. Other extreme values are marked individually 
and may be called 'outliers'. 

Numerical summaries for a set of data include the sample median 

m = x  1 (3(n+l)), 

where n  is the sample size; the lower quartile 

the upper quartile 

the minimum value x ( ~ ) ;  and the maximum value X(,). The distance 
X(,) - x(1) is sometimes called the range of the sample; the distance 
qv - q~ is called the interquartile range. 

The data summary ( x ( ~ ) ,  qh, m, qv, X(,)) is called the five-figure sum- 
mary. 

Other summary measures include the sample mean 

the sample standard deviation (a  measure of dispersion) 

((xl - q2 + (X2 - q2 + . . . + (2, - q 2 )  

and the sample skewness (a measure of asymmetry) 

1 
n - l  
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The quantities (xi - 5) are called residuals; the number s2 is known as 
the sample variance. 



Chapter 2 

Models for Data I 

A very common type of statistical experiment involves taking measurements of an 
attribute on some sample from a population (for example, height, weight, pressure, 
income, and so on). What is often observed is that the measurements are not all the 
same, but vary. A mathematical model describing this variability (that is, what sorts 
of measurements are 'likely' and which are 'unlikely') is called a probability model. In 
this chapter we make a start on the exercise of modelling, and some of the language 
of probability is introduced. 

You have already seen some examples of data sets in Chapter 1 .  Here is one 
more. This example is about the results of a botanical experiment. 

Example 2.1 Leaf lengths 
Table 2.1 shows the lengths (in cm) of 100 leaves from an ornamental bush Data provided by D.J. Hand, 
measured by a researcher who wished to obtain an idea of average leaf length. The Open University. 

The bush was of particular interest because it was being grown in a new 
environment. 

Table 2. l Leaf lengths (cm) 

1.6 1.9 2.2 2.1 2.2 1.0 0.8 0.6 1.1 2.2 1.3 1.0 1.1 
0.8 1.4 2.2 2.1 1.3 1.0 1.3 1.1 2.1 1.1 1.1 1.0 0.9 
1.3 2.3 1.3 1.0 1.0 1.3 1.3 1.5 2.4 1.0 1.0 1.3 1.1 
1.3 1.3 0.9 1.0 1.4 2.3 0.9 1.4 1.3 1.2 1.5 2.6 2.7 r 
1.6 1.0 0.7 1.7 0.8 1.3 1.4 1.3 1.5 0.6 0.5 0.4 2.7 
1.6 1.1 0.9 1.3 0.5 1.6 1.2 1.1 0.9 1.2 1.2 1.3 1.4 
1.4 0.5 0.4 0.5 0.6 0.5 0.5 1.5 0.5 0.5 0.4 2.5 1.6 
1.5 2.0 1.4 1.2 1.6 1.4 1.6 0.3 ,0.3 

In this example, leaf length is called a random variable since it varies from 
leaf to leaf and in a way that is unpredictable, i.e. random. In the other 
examples you have examined so far, in Chapter l, other quantities are random 
variables. In the example on infants with severe idiopathic respiratory dis- 
tress syndrome (Chapter 1, Example 1.3), birth weight (in kg) was a random 
variable. In the marathon runners example (Chapter l, Example 1.4), blood 
plasma p endorphin concentration (in pmol/l) was a random variable. 

A random variable may take any value from a set of possible values, but some 
may be more likely than others to occur. If another leaf were to be measured 
from the same bush, we should not be too surprised if its length took a value 
between 0.3 cm (the smallest value from the 100 the researcher measured) 
and 2.7cm (the largest value amongst the 100). However, it is clear from the 
histogram of the 100 leaf lengths in Figure 2.1, that not many leaves have 
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lengths greater than 2.4 cm. Only five of those measured were as long as that,. 
On the other hand, many of the leaves from the sample have lengths between 
0.8 cm and 2.0 cm (68 from the 100, including the three that were 0.8 cm long). 

Frequency 

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 
Leaf length (cm) 

Figure 2.1 Leaf lengths 

If another leaf were to  be taken from the same bush and measured, we might 
feel that it was more likely to  be between 0.8 cm and 2.0 cm long than it was 
to be longer than 2.4cm. Putting this another way, we might say that the 
chance,  or probabi l i ty ,  of obtaining a leaf between 0.8 cm and 2.0 cm long is 
greater than the chance, or probability, of obtaining a leaf longer than 2.4 cm. 
On the same sort of experimental basis, we might feel that there was no chance 
at  all of the bush having any leaves longer than 10 cm. This chapter explores 
the notions of random variable and probability in some detail, showing how 
they are related to  each other and how they can be used t o  shed light on 
natural phenomena. 

In statistics, as in any other science, we observe a natural phenomenon and 
then try to formulate a mode l  to describe it. The models we use, as in many 
other sciences, are mathematical models. However, as also in other sciences, 
we often cannot model the awesome complexity of a natural phenomenon in 
all its detail, and so we make simplifying assumptions. We try to identify 
the important influences and relationships in the system we are studying. 
Then we try to  represent those features with sufficient accuracy so that our 
conclusions or predictions are good enough for the purpose for which we intend 
to use them. 

Statistical techniques are used to  produce models in several ways, some more 
formal than others. You have already seen in Chapter 1, examples of statistics 
being used to  find structures or patterns in data. In this chapter we are 
primarily concerned with probability models: models for how likely it is that 
particular events will occur. 

We shall begin in Section 2.1 by addressing the notions of sample and of popu- 
lation. A population is the set of all possible objects from which the measure- 
ments might be taken--all the leaves on the bush in Example 2.1-while a 
sample is the set on which measurements are actually taken (the leaves that 
are actually measured). Section 2.1 discusses why one might draw a sample 
from a population, rather than measuring all of the objects in the population. 

The concept of probability has already been informally introduced. Prob- 
ability is an abstract concept that can be used to model random phenomena in 
the real world. These models can become fairly intricate, as the systems they 
represent become more and more complex. We shall begin rather simply by 

In this diagram, leaves whose 
recorded lengths were exactly 
0.4 cm (say) have been allocated to  
the class interval 0.4-0.6 cm. 



formulating models for a restricted class of random phenomena where all that 
is of interest to the researcher is whether or not a particular event happened. 
For instance, an insurance underwriter renewing a motorist's annual cover will 
primarily be interested in whether or not a claim has been made; a quality 
inspector, sampling items from a production line, will primarily be concerned 
with whether or not a sampled item is defective; an archer in whether or not 
her next arrow hits the target; a chess master in whether or not he wins his 
next game. 

You can probably appreciate that a model expressing only two possible out- 
comes (Yes-No, Win-Lose, Hit-Miss, Present-Absent) may not be quite ad- 
equate in all these examples: the insurance underwriter will be concerned 
about the size of any claim made against issued policies, or the number of 
claims; the archer in her actual score. Different, more elaborate, models would 
need to be developed to meet these requirements. We shall look at such 
models later in the course. 

In Section 2.2 this concept of probability is extended from situations where 
there are just two possibilities (something occurring or not) to situations where 
more than two outcomes are possible (for example, rolling a die in a board 
game where the possible outcomes are 1,2,3,4,5 and 6) and then to situations 

I where any possible value within a certain range (a continuum) might occur. 

The leaf length example is an example of the latter. The data listed in 
Table 2.1 suggest that the leaf length measurements were only recorded to the 
nearest tenth of a centimetre; however, in practice, leaf length is a continuous 
random variable, not restricted in nature to exact millimetre separation. In 
other words, leaves do not just come in two (or six or twenty) different lengths, 
but can have any length between some minimum and some maximum. This 
kind of consideration is intrinsic to the formulation of probability models for 
observed variation. The idea of determining the probability, for some random 
variable, that a value within a certain range will be observed, is fundamental 
to much of statistics and will recur throughout this course. 

In Section 2.3 two particular models are discussed: the Bernoulli probability 
distribution and the binomial probability distribution. The first of these is 
used to describe situations in which the random variable can take only two 
possible values (corresponding to a response of Yes or No in an opinion poll, The word binary is derived from 
success or failure in an examination, and so on). It is a matter of chance the Latin word binarius; cf. the 

which of the two outcomes is observed. The second distribution is concerned binary 'ystem of which 
uses only the two digits 0 and l. 

with collections of such binary outcomes and looks at the total number of 
outcomes of one kind (for example, the total number of Yeses in an opinion 
poll, or the number of students in a class who pass the examination or the 
total number of defective items in a quality sample.) 

In order to build a mathematical model for a random variable, it is useful 
to match outcomes to numbers. If you are measuring lengths, scores, times 
and so on, then the necessary identification is naturally made. In the case of 
outcomes like Yes-No, Hit-Miss, Pass-Fail, On-Off, then it is usual to match 
one outcome to the number l and the other to the number 0. You would 
then obtain the total number of Yeses in your poll (say) in a very natural 
way by adding together all the 1s and OS. Bernoulli random variables and 
binomial random variables are integer-valued: the possible values observed 
are restricted to integers (whole numbers). Such random variables are called 
discrete. 

45 
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In Section 2.4 we take a first look at a probability model for a particular class 
of continuous random variable (such as leaf length). The model is known as 
the normal distribution. Chapter 5 is devoted to discussing the properties and 
importance of the normal distribution. The section in this chapter is short 
and you need not spend too much time on it. It contains no exercises. 

In Section 2.5 the notions of simulation and the use of a computer to model 
a random phenomenon are briefly introduced: simulation is discussed again 
in more detail in Chapter 4 and throughout later chapters of the course. 

The chapter ends with a series of exercises on the material so far, which you 
are recommended to attempt using a computer. (It is not really feasible to 
attempt them any other way.) The computer exercises in the course should 
be regarded as essential: one learns by doing and not just by reading about 
doing. 

2.1 Random variables and probability 

2.1.1 Samples and populations 
In the leaf length experiment described in the introduction to this chapter, 
the researcher did not completely denude the bush in his investigation. In 
fact, he took the measurements of only 100 leaves. In statistical terminology, 
we say that he measured a sample of 100 leaves from the entire population 
of leaves on the bush. The word population thus refers to all of the leaves 
and the word sample to some subset of them. In the example on infants with 
severe idiopathic respiratory distress syndrome in Chapter 1 (Example 1.3), 
a sample of 50 from the population of all infants with this condition was 
examined. 

The leaf length researcher went on to calculate the average leaf length for 
the sample of 100 leaves, obtaining a sample mean of 1.276 cm. However, we 
know that leaf length is a random variable. If, for example, instead of one 
of the leaves in his sample, he had plucked a different leaf, it would probably 
have had a different length. This, of course, is true for all of the leaves in 
his sample. The implication is that if he had taken a different sample of 
100 leaves his calculated average would have been different. This raises the 
obvious question: if his results vary according to the random choice of leaves 
in the sample, of what value are the results? Presumably he really hoped 
to say something about the average length of the population of leaves and 
not just of an arbitrarily chosen sample. How can the sample average, which 
varies from sample to sample, tell us anything about the average length of all 
the leaves on the bush? 

These questions find their answers in the discipline of statistics. Statistics 
enables us to take just a sample of values and from these deduce conclusions 
about the entire population; conclusions whose validity or accuracy we can 
assess. It tells us how the sample should be taken so that valid and accurate 
conclusions can be drawn. (For example, it would clearly be incorrect for the 
researcher to pick large leaves deliberately-the average of a sample of 100 
large leaves would produce an average larger than the average of the entire 
population of leaves. Somehow he should strive to produce a representative 
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sample, or at least a sample for which he can say how likely it is to be rep- 
resentative and how likely it is to be extreme.) Finally, (and perhaps most 
importantly) statistics shows us how to compute numerical measures of the 
reliability of our conclusions. 

Sometimes working with a sample is a necessity because it is impossible to 
take a census, that is, it is impossible to use the entire population. For 
example, this is clearly the case if the population is the population of humans 
on the earth. Indeed, in this example it is arguable that the population is not 
even well-defined since people are being born and others are dying even as 
you read this. In other cases, even if it is possible in principle to use the entire 
population, it may not be realistic to consider doing so. The savings in money 
or time arising from working with a relatively small sample as opposed to an 
entire population may make the difference between permitting a question to be 
answered and leaving it unanswered. Of course, the use of a sample can only 
be considered if we have some way of determining how accurately the sample 
results reflect population characteristics. In other words, the use of a sample 
can only be considered because of the existence of statistical techniques. 

Example 2.2 Social surveys 
A very important application of statistical sampling is in social investigation. 
In this area many different kinds of samples are drawn for many different 
purposes. They include surveys to explore the demographic characteristics of 
a set of people, that is, their social environment, economic functioning, health, 
opinions and activities. Many such surveys are conducted for governmental 
planning purposes. 

Market research is also an important user of social survey techniques. Here, 
a sample of people from the population being studied is questioned about 
their purchases in some sector. You can see here how important it is to draw 
the sample properly-to make sure that it is chosen from the population 
one wishes to draw conclusions about, and in such a way that it permits 
conclusions to be drawn. For example, in studying the relative consumption 
of different brands of chocolate bars we would not want to restrict ourselves 
to households with no children. Since children are major consumers, such a 
sampling strategy would grossly distort the results. Similarly, in conducting 
a public opinion poll on the desirability of restricting access by private cars 
to a town centre, it would be important that the opinions of all those likely 
to be affected were represented and that the relative numbers of those likely 
to be affected could be estimated. 

Other major types of sample-based social surveys are audience research, 
readership, family expenditure, nutrition, education, social mobility, leisure, 
and studies of criminal and deviant behaviour. 

A census is based on a complete enumeration of the entire population of 
interest and so no issues of inference from a sample to the population arise. 
Notice, however, that other statistical considerations will arise with census 
data. We shall still have to condense the data, summarize them, and find 
ways of displaying and representing them so that they are accessible and 
comprehensible. 
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Exercise 2.1 
A researcher studying reading habits stands outside a London railway station 
and approaches people at random as they leave the station. She asks them 
which newspapers they read. What are the inadequacies of this way of drawing 
the sample? What differences might you expect between samples drawn at 
9 am on a weekday and at 7 pm on a Saturday? 

The point being made in Exercise 2.1 is that in drawing a sample it is essential 
that it should represent the population being studied. In a study of road traffic 
accidents, you might decide to examine a sample of 50 accidents. However, 

unless you wanted only to make inferences about motorway accidents, these 
50 should not just be motorway accidents but should be drawn from the entire 
population of different types of road accident. 

2.1.2 Probability 

Example 2.3 Street lamp bulbs 
Suppose that a local council suspects that the latest consignment of sodium 
tubes for its street lamps is of poor quality, with an unacceptably large pro- 
portion of them being faulty and not working. To investigate this, a researcher 
examines a sample of bulbs from this consignment waiting in the warehouse. 

This example is fairly typical of a particular problem of quality control: the 
estimation of 'percentage defectives' in a batch of supplied items. In practice, 
quality procedures are much more rigidly prescribed than is suggested by the 
sequential testing approach described in what follows, both for the supplier 
and end-user. However, we shall be mainly concerned with the essential idea 
of testing a random sample from a population (the population being, in this 
case, the recent consignment of bulbs). 

The researcher enters the warehouse and randomly chooses bulbs. The first 
bulb works. Amongst the first ten bulbs he examines, he finds that only 
one does not work. Amongst the first fifty, nine do not work. Amongst the 
first 100, fifteen do not work. The researcher could go on, examining all the 
bulbs in the warehouse, and find the exact proportion of bulbs which do not 
work. Alternatively, he may use statistical arguments to support a claim that 
the proportion of faulty bulbs within a sample of a certain size provides a 
sufficiently accurate estimate of the overall proportion that is faulty. 

As the researcher increases his sample size he will observe an interesting 
phenomenon. For small samples, quite substantial deviations between the 
proportions of faulty bulbs for different sample sizes are observed. Suppose 
that the first two bulbs he examined were functioning, then he came across 
a faulty one so that the sequence of the observed proportions of defectives 
initially was 0/1,0/2 and 113. These may be regarded as successive estimates 
of the unknown overall proportion of defectives and the last of these three 
estimates is quite different from the first two. As the sample gets larger, 
however, the deviations between successive estimates tend to become smaller. 
Suppose for the 98th, 99th, and 100th bulbs that he tested the estimates 
were 14/98,15/99 and 15/100. These proportions are much closer to one 
another. The proportion of bulbs observed to be faulty seems to be settling 
down towards some constant value (about 0.15). H 

A 'random sample' here is strictly 
one where no item in the 
population is any more likely than 
any other to be incorporated into 
the sample. In this simplified 
description of events, bulbs less 
accessible than others are probably 
less likely to be sampled! Hence 
the need, in practice, for strict 
quality procedures. 
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We can simulate this phenomenon ourselves, that is, we can produce a sim- 
plified version or model of this situation which behaves in the same way. Later 
on you will be encouraged to perform such simulations using a computer, but 
for this first exploration the results will be more striking if we carry it out 
for some physical system. The simulation tools that we shall use are dice and 
coins. In many ways these provide ideal models because they strip away much 
of the complexity so that we can focus on the essentials. 

Exercise 2.2 
Using a die from a family board game, carry out a sequence of 30 rolls with a 
view to obtaining either a three or a six. Each time that a three-spot face or 
a six-spot face occurs record a 1, to represent success. Each time that some 
other face of the die occurs record a 0, to represent failure. In this way you 
will generate a sequence of Is and OS. At any stage you will not be able to 
predict whether the next number will be a 1 or a 0-so the next number is a 
random variable. 

By adding the I s  and OS as you go along you can calculate the total number 
of successes after each roll. At each roll you can also calculate the proportion 
of rolls so far that have produced a three- or six-spot face. Letting P denote 
this proportion, plot a graph of P, on the vertical axis, against the number 
of rolls, on the horizontal axis. Join together successive points to produce a 
jagged line running from left to right across the page. 

Your sequence in Exercise 2.2 might have begun 

0 0 1 1 0 0 0 0 0 0 1 1 ,  
which would give you a sequence of points to plot as shown in Table 2.2. 

Table 2.2 The first 12 rolls 

Not everybody has easy access to a 
six-sided die-some people will not 
possess a board game. You can get 
round the problem this way. 
Obtain a six-sided pencil or 
ball-point pen and identify 
particularly two sides of the six (to 
match the 'three' and the 'six' of 
the exercise). These could be the 
side impressed with the maker's 
name and the next side round; or, 
in the case of a ball-point'pen, the 
side with the maker's name and the 
side with the little hole in the 
casing. 

Roll number 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Observedresult 0 0 1 1 0 0 0 0 0 0 1 1 
Total so far 0 0 1 2 2 2 2 2 2 2  3 4 
Proportion (P) 011 012 113 214 215 216 217 218 219 2/10 3/11 4/12 

An example of the kind of graph you might have obtained is given in Figure 2.2. 
The thirty rolls which produced this graph gave the following results. 

0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0  

Roll 

Figure 2.2 Proportion P, thirty rolls of a die 
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The phenomenon described above is apparent in this graph. As the number 
of rolls increases, the sequence of estimates given by successive values of P 
becomes less variable. The sequence appears to be tending to a particular 
constant value, in this case about i. Did you notice something like this 
happening for your sequence of estimates? 

The sequence of rolls that resulted in the graph in Figure 2.2 was taken 
further-up to 500 rolls of the die. The points in Figure 2.3 show the pro- 
portions obtained. The phenomenon is even more marked here. 

Roll 

Figure 2.3 Proportion P, 500 rolls of a die 

Exercise 2.3 
Take a coin and carry out a sequence of 40 tosses, recording 1 for Heads and 
0 for Tails. Again, the outcome of each toss is a random variable. Plot the 
proportion of tosses producing Heads against the number of tosses. What do 
you observe about the proportion of Heads as the number of tosses increases? 

In Exercise 2.3, you might have observed behaviour similar to that of 
Exercise 2.2, but with the points defining the jagged line converging within a 
narrow region close to $ instead of $. However, what is readily apparent from 
as many as 500 repetitions of an experiment (Figure 2.3) will not necessarily 
be evident in as few as 30 repetitions (Figure 2.2) or even 40. 

The four examples described so far (leaf lengths, quality testing of street 
lamp bulbs, the die and coin experiments) have some common features. In 
each example a number of cases is observed in which recorded measurements 
on a random variable may differ from case to case. In the leaf measuring 
example, the length of the leaves differed. In the street lamp example, bulbs 
may or may not be faulty. In the die-rolling and coin-tossing examples, there 
were two possible outcomes and each repetition produced one of these. 

The leaf length example is different from the other three because, in this case, 
the measured random variable is continuous. For the moment, let us consider 
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only the other three. Each example consists of a sequence of observations 
on a binary random variable (two possible outcomes only). Using OS and Is 
to label the different outcomes in each case, the results for any one of the 
examples could be recorded as a sequence of OS and Is, such as 

The term Bernoulli  t r ial  is used to describe a single statistical experiment 
resulting in one of only two possible outcomes. Each of these examples there- 
fore consists of a sequence of Bernoulli trials. The outcome of each trial is 
uncertain (it was not possible to predict beforehand what it would be). We 
have also noticed, for the bulb, die and coin examples at least, a tendency for 
the observed proportions to settle down towards some constant value. 

The value towards which the proportion is tending as the number of trials 
increases is called the probability of the particular outcome of interest. 

In the introduction to this chapter it was remarked that probability models 
are used to represent the important aspects of random phenomena, and that 
it is often necessary in the construction of such models to make simplifying 
assumptions. This is true for the cases under discussion now. It is often 
assumed that a coin is fair-that there is no reason to suppose that Heads 
is more or less likely than Tails. So we might construct a probability model 
for the outcome of a coin-tossing experiment by starting with the assumption 
that the probability that Heads will appear is the same as the probability that 
Tails will appear-both being equal to exactly i. 
Similarly, for the die example, we might assume that each face has the same 
probability of appearing. That is, we might choose to model the outcomes of 
rolls of a real die by those of a perfect die in which the appearance of each 
face is equiprobable. If we do this, the probability that a particular one of 
the six faces appears is i, and so the probability that one of the two faces 
showing three or six spots will appear is exactly 2 ,  or i. 
Two other terms sometimes used in statistics are sample frequency, to 

describe the number of times an outcome occurs, and sample relative fre- 
quency, to describe the proportion of times an outcome occurs in a particular 
experiment. In a coin-tossing experiment in which a coin is tossed 100 times, 
coming up Heads 47 times, we would say that the sample frequency (or just 
'frequency') of Heads was 47 and the sample relative frequency of Heads was 

= 0.47. 

In the examples above, the modelling assumption is made that the probability 
that a three- or six-spot face will appear in a roll of a perfect die is i; and 
that the probability that Heads will appear in a toss of a perfect coin is i,. 
The bulb-testing example is different. We cannot deduce, from any kind of 
theoretical argument based on symmetry, a numerical value for the probability 
that a bulb will be faulty. This probability has to be estimated from data-in 
Example 2.3, this probability estimate was the sample relative frequency of 
failures, 0.15 (based on 15 observed failures in 100 trials). We might say, on 
the basis of this experiment, that we believe the proportion of faulty bulbs in 
the latest consignment to be about 0.15. 
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Exercise 2.4 
In an experiment to explore the issue of whether people are generally more 
helpful to females than to males, eight students approached people and asked 
if they could change a 5p coin. Altogether 100 people were approached by the 
male students and 105 by the female students. The results of the experiment 
are displayed in Table 2.3. 

Table 2.3 Helping behaviour 

Gender of student Help given Help not given 

Male 71 29 
Female 89 16 

(a) Use these data to estimate the probability that a male is given help under 

Sissons, M. (1981) Race, sex and 
helping behaviour. British Journal 
of Social Psychology, 20, 285-292. 

The sum of 5p may seem very 
small indeed to the modern reader, 
and prompt the question why 
change might be required for such 
a sum. At the time the experiment 

these circumstances. 

(b) What would you estimate this probability to be for a female? 

(c) Do the results of the experiment support the notion that people are more . 
helpful to females? 

was carried out, a local telephone 
call could be made from public 
telephone boxes for as little as 2p. 

In Exercise 2.4 you were asked to estimate two probabilities. A large part of 
this course is concerned with estimation-methods for obtaining estimates and 
assessing how reliable these estimates are. You were also asked to comment on 
the meaning of the results of the experiment. Later in the course (Chapter 8) 
you will see formal ways of doing this-so that you can actually quantify the 
extent to which experimental results support a research hypothesis. 

Now let us take a slightly more complicated example. In a Bernoulli trial 
there are only two possible outcomes: what if we were to consider, say, each 
of the six faces of a die as distinct possible outcomes? Suppose the die is 
rolled. What is the probability that the face with a single spot appears, what 
is the probability that the face with two spots appears and so on? 

We could carry out an experiment analogous to those above-rolling the die a 
large number of times and calculating the relative frequency with which each 
of the faces came up. This would enable us to directly estimate the probability 
that each face occurs. Alternatively, since there is no reason to suppose that 
any one of the six faces is favoured more than any of the others, we could argue 
that each face is equally likely to appear-that the probabilities are equal for 
each face. That is, our model would be that each face has a probability of i 
of appearing. This would mean that about i of the time we should expect 
the face with one spot to come up, about i of the time we should expect the 
face with two spots to come up and so on. As we rolled the die more and 
more times, so, under our model, we should expect the proportion of times 
each face appears to get closer and closer to 6. 

Example 2.4 A simulated die-rolling experiment 
Here is a simulation of an experiment based on the assumption of a perfect 
die. The simulation was achieved using a computer to mimic the rolls and also 
to record the outcomes. The die was rolled a large number of times, and the 
observed frequencies of Is, 2s, . . ., 6s (six possible outcomes) recorded after 
30, 300 and 3000 rolls. At each stage the sample relative frequency for each 
outcome was calculated. 

52 
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Table 2.4 Simulation results for a perfect die 

Outcome 1 2 3 4 5 6 

30 rolls Frequency 5 3 6 4 5 7 
Relative frequency 0.1667 0.1000 0.2000 0.1333 0.1667 0.2333 

300 rolls Frequency 55 54 56 52 46 3 7 
Relative frequency 0.1833 0.1800 0.1867 0.1733 0.1533 0.1233 

3000 rolls Frequency 506 508 497 525 467 497 
Relative frequency 0.1687 0.1693 0.1657 0.1750 0.1557 0.1657 

B 

It is apparent from the observed frequencies that the computer model is 
capable of reflecting the random variation inherent in the physical process. 
Although we might 'expect' 50 observations of each of the six equiprobable 
outcomes after 300 rolls of the die, we would nevertheless be somewhat sur- 
prised to  see exactly that: actually, there were only 37 6s. However, after a 
large number of rolls, the observed relative frequency for each of the possible 
outcomes seems to be showing a tendency to approach the theoretical value 
of A = 0.1667. This tendency is shown graphically in Figure 2.4, summarizing 
the-findings in Table 2.4. 

Relative frequency Relative frequency 

1 2 3 4 5 6  
Outcome 

Rela 

0.25 

0.20 

0.15 

o.ia 

0.05 

0 

re frequency 

1 2 3 4 5 6  
Outcome 

Figure 2.4 Relative frequencies from a simulation of a perfect die 
(a) 30 rolls (b) 300 rolls (c) 3000 rolls 

Assuming a perfect die and applying a symmetry argument, Figure 2.5 illus- 
trates the conclusions of a very extended experiment involving many rolls of 
the die. 

Relative freq~lency 

Outcome 

Figure 2.5 The perfect die 
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Put another way, the diagram in Figure 2.5 shows the theoretical probability 
distribution over the six possible outcomes (1,2, .  . . ,6)  for a die that is 
assumed to be perfect. 

It will be useful if at this stage some simple notation is introduced. In this 
course, the probability that a statistical experiment results in a particular 
outcome will be denoted P(.) .  For instance, the earlier statement that, in 
tossing a perfect coin, Heads and Tails are equally likely so each outcome has 
probability i, would be written 

The theoretical probability distribution for the perfect die may be written 

In particular, referring to the original experiment (Exercise 2.2), 

This concept of a probability distribution is a very important and fundamen- 
tal one in statistics. It tells us how likely it is that different outcomes (or, 
in general, events) will occur. For example, you will see later how the idea 

can be used to work out for a random sample how likely it is that a particu- 
lar average will occur. Conversely, we might express our confidence, given a 
sample average, that some particular underlying probability distribution might 
have generated the data. This serves as a test of our understanding of what 
is going on. If it is very unlikely that the data could have arisen from the 
model that we believed to be a realistic representation for the phenomenon, 
then maybe our beliefs need modification. 

The next three sections of this chapter explore the idea of a probability dis- 
tribution in more detail. 

2.2' Probability distributions and 
describing them 

In Section 2.1 the notation P ( . )  was introduced to stand for the probability 
of a particular outcome in a statistical experiment or, in general, for the 
probability of any event of interest. In the case of a perfect coin, for instance, 
a theoretical probability model for the two possible outcomes is given by 

but that model precludes the possibility of the coin landing on its edge. A 
different model, incorporating a third possible outcome, is provided by the 
probabilities 

P(Heads) = P(Tai1s) = 0.4995, P(Edge) = 0.001. 

This model suggests that, on average, a coin might land on its edge perhaps 
once in a thousand tosses. Presumably, engineering considerations could be 
brought to bear on the problem. Here in Figure 2.6 is a sketch of a coin of 
rather unusual shape. You can see that the coin is exceptionally thick. Were Figure 2.6 An unusual coin 
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this coin to be tossed, then its chances of landing on its edge would be high 
and the probability of coming down Heads or Tails correspondingly somewhat 
reduced. 

In the next subsection w4 shall explore ways of expressing such probability 
statements in mathematical language. We have already made a start on this: 
associated with any Bernoulli trial (just two outcomes) there has often been 
defined a corresponding random variable taking just two possible values, 0 
and 1. For instance, in a quality-testing context we might score 1 for a working 
item and 0 for an item that is defective in some way. A doctor completing 
a diagnostic check-list on a patient might assign the score 1 if a symptom is 
present and 0 if it is not. (It does not matter which way round the association 
is made, only that the two possible outcomes should be distinguished in this 
way.) 

2.2.1 Using mathematical language 
In the introduction to this chapter, it was said that in order to build a math- 
ematical model for a random variable, it is useful to match outcomes to num- 
bers. This kind of identification is naturally made if the random variable of 
interest is a count or a measurement and, in the case of a Bernoulli trial, as we 
have just discussed, we invent a correspondence between the trial outcomes 
and the numbers 0 and 1. 

The reason for making a point of this is that we can then use the idea of a 
mathematical function (or, simply, function). If you know anything at all 
about functions, you will remember that the essential feature is this: starting 
with a number, a function is a process that alters that number to produce a 
second (usually different) number. Here are some examples. 

Example 2.5 Mathematical functions 

(a) Most calculators include keys with labels such as &i (the square root 
function), l/x (the reciprocal function) and usually several others. If 
you key in a number to the calculator display and then press one of 
these 'function' keys, the calculator display alters. The display shows you 
'what has happened to' the number you started with, that is, the result 
of processing it according to the function key you used. In mathematical 
language, we might denote the process of finding the square root of a 

number by the function sqrt(.) and write 

Similarly, sqrt(81) = 9 and sqrt(3) = 1.732 050 808 (depending on how 
many digits your calculator is capable of displaying). 

(b) Depending on the function you choose, some starting numbers are allow- . 
able and others are not. If you try to evaluate the square root of the 
number -3 (a negative number), your calculator will respond in such a It is possible to define a counting 
way as to indicate that this was a meaningless question: negative numbers system in which square roots of 
do not possess square roots. negative numbers exist, but it is a 

system more elaborate than this 
(c) In most systems for raising revenues through taxation on income, there is course requires. 

a set threshold income below which an individual will pay no tax. Above 
that threshold, the difference between actual income and the set threshold 
is called taxable income. A fraction of this taxable income is paid to the 
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revenue collectors. In a country where the threshold is, say, £3000 and 
where the tax rate on taxable income is 25% (one-quarter), an individual 
earning £2800 will pay n o  tax. This may be expressed in mathematical 
language as 

Somebody earning £3800 is liable to pay one-quarter of the taxable in- 
come to the tax collectors: that is, 

tax(3800) = a(3800 - 3000) = 200, 

a tax bill of £200. The mathematical function tax(.) may be expressed 
as 

where the 'starting number' X is an individual's total income (in L). The 
function tax(.) gives the tax (in 2 )  that must be paid. The need for the 
curly bracket in the.definition of the function tax(.) is a consequence of the 
fact that there are two formulas for calculating individuals' tax liability, 
depending on whether o r  not their income exceeds the threshold. The 
function tax(.) is not defined for negative X (an income less than zero, 
which has no interpretation). 

The full mathematical description of a function is more complicated than 
is suggested by the foregoing, but we now know enough about functions to 
return to a probability context. The point about probability statements of 
the kind 

P ( H e a d s ) = i  or P(faulty)=0.15 

is that, whilst they are clear and unambiguous, the starting element for P( .)  
is not a number but an event. ('The result of the next toss of the coin will 
be Heads'; or 'the next bulb will be faulty'.) It follows that P( .)  is not a 
'function' in the sense that t he  notion of function has been described. On the 
other hand, the notation P ( . )  is a very useful general shorthand. 

Associating a particular outcome of a statistical experiment with a number 
enables us to express the probability distribution for the range of possible 
outcomes in terms of mathematical functions. If, in the usual way, we were 
to match the outcome Heads to the number 1 and the outcome Tails to the 
number 0, we could write 

p(x) = ;, X = 0,1, 

to suggest that the random variable X denoting the outcome of the experiment 
takes the value 0 or 1 with equal probability. The function p(.) possesses the 
properties of a mathematical function: starting with a number X (describing 
an event), the function produces a second number p(x) (the probability of 
that event). 

In such a case, the function p(x) is called the probability function for the 
random variable X, and the following probability statements are equivalent: Here the distinction between P(.) 

and p ( . )  is exemplified: P( . )  
describes the ~robabilitv of an 
event, while p( . )  is the 
corresponding methematical 
function. 
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However, only the third statement uses a mathematical function and this 
function now defines our probability model for the perfect coin. To a great 
extent these subtle distinctions are unimportant, but, in general, it would 
be more difficult to make progress with the idea of a probability model and 
(more importantly) with the applications of the model, if the notion of the 
probability function p ( . )  .was lacking. 

Notice the convention that an upper-case letter (e.g. X) is used for the label of 
the random variable under consideration, while the corresponding lower-case 
letter (X) is used as representative of the possible values it might take. 

In the case of the consignment of bulbs (Example 2.3), the proportion faulty 
was estimated to be 0.15 based on a sample of 100. A proposed probability 
model, scoring 1 for a faulty bulb and 0 for one that 'passed', could be ex- 
pressed as 

where the random variable X takes the value 0 or 1 as each bulb tested passes 
or fails the quality test. 

For the die-rolling experiment, there is already a natural correspondence be- 
tween the outcome of a roll ('the face that came up') and a number (1,2,3,4, 
5 or 6). So, if the random variable N denotes the outcome of a single roll of 
a fair die, we could write down the probability function for N as 

Notice again the convention that an upper-case letter is used for the random 
variable under consideration, while the corresponding lower-case letter is used 
to represent the possible values it might take. The list of possible values is 
called the range of the random variable. 

By convention, the notation lower-case p(.) is often used for the probability 
function, but other letters of the alphabet will also be used. The only let- 
ter you should avoid using to stand for anything other than the phrase 'the 
probability of' is P(.).  

There are two extensions of this idea of associating a particular outcome with 
a number. They occur where the random variable can, in principle, take an 
unlimited number of different values-not just two, or six, for example. 

First, the range of observations might be restricted to exact integer counts, 
but where there is no necessary maximum (as there is in the case of a score 
on a die). Some board games involving dice require that a 6 is rolled before 
a player can start. The number of rolls necessary to achieve a 6 is a random 
variable-it could happen first time or possibly not for several rolls-and in 
fact, theoretically, there is no assurance of success by any particular roll. The 
random variable describing the number of rolls necessary to start playing the 
game has an infinite range 1,2,3,4, .  . . . (Extremely high values are unlikely, 
but they are not impossible.) 

Compare this usage of the word 
'range' with its use in a sampling 
context: the range of a random 
sample is the difference between 
the maximum sample value 
obtained and the minimum value. 

Secondly, in the leaf length example (Example 2.1) it was mentioned that 
although observations were recorded to the nearest millimetre, it is not a law 
of nature that leaves only come in exact millimetre lengths-in fact, the range 
of observable leaf lengths constitutes a continuum between some minimum and 



Elements of Statistics 

maximum values. (In this case, observations a t  either extreme were seen to 
be less likely than intermediate values; when the time comes to formulate a 
continuous probability model for leaf length, this is the sort of feature that it 
must reflect.) 

We shall return to these points. First, let us consider another example in- 
volving die rolling-one where not all the outcomes have the same probability. 

Example 2.6 Crooked dice 
Certain crooked dice players use dice called Tops. These are dice for which Probability 
it is not the case that all six faces are marked with a different number of 
spots-some of the faces are duplicated on opposite sides of the die. Since 3 

the players cannot see round corners, no one player will recognize that the 
die is numbered incorrectly-unless he picks it up, of course, and the cheat 
makes sure this never happens by switching the Top in and out of the game as 
required. A particular kind of Top is like a normal die except that it has the 
two-spot face replaced by another five-spot face. This is called a Double-Five. 
Figure 2.7 shows the probability distribution for the face recorded when such 
a die is rolled. A five-spot face has twice as much chance of appearing as any 1 2 3  

of the other four possible faces-no roll of the die will result in the outcome 011trome 

2. Our probability model assumes that the die has been perfectly engineered. ~i~~~~ 2.7 The probability 
The probability function for W, the outcome observed when a Double-Five is distribution for a Double-Five 
rolled, may be written as follows. 

Now let us consider a case in which the random variable is continuous and can 
take any value from within a particular interval. We could use the histogram of 
the sample of leaf lengths in Figure 2.1 to provide estimates of the probabilities 
for the leaf population that the leaf lengths lie within certain intervals. For 
instance, 68% of our sample lies in the interval 0.8-2.0, and we might estimate 
the probability that a randomly plucked leaf would have length between 0.8 cm 
and 2.0cm to be 0.68. Similarly, we might estimate the probability that a 
randomly plucked leaf would have length less than 1 cm to be 0.25. 

Of course, had we used a different sample of size 100, we should not have ex- 
pected the histogram to have precisely the same shape as that in Figure 2.1-in 
just the same way, as we remarked at the time, that a different sample would 
be expected to give rise to a slightly different average. This would mean that 
our estimates of the probabilities would vary from sample to sample. However, 
if we used a larger sample size, say, samples of 1000 leaves, then we should 
expect the shapes of histograms from several such samples to be very similar. 
This is just a generalization of the fact, noted in Example 2.4, that the pro- 
portion of dice rolls producing different outcomes does not vary greatly from 
sample to sample if large samples are used. Figure 2.8 illustrates summary 
histograms for three different samples of leaf lengths. All the samples were of 
size 1000. 
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Frequency Frequency Frequency 

( a )  Leaf length (cm) (h )  Leaf length (cm) (c )  Leaf length (cm) 

Figure 2.8 Three different samples of 1000 leaves 

The three samples of leaf lengths were in fact generated by computer from one 
probability model, the details of which are not essential to make the point. 
(Notice that the model evidently permits extremely small leaves! Maybe the 
model needs refining.) The point is that the histograms are very similar to one 
another. Sample relative frequency estimates of the probability that a ran- 
domly selected leaf will be between 0.8 cm and 2.0 cm were obtained for each 
sample. They were E = 0.805 (sample (a)), 0.798 (sample (b)) and 0.801 
(sample (c)). This suggests that a large sample is not only very suggestive of 
the overall 'shape' of the variation that might be observed in measurements 
on a random variable, but provides good estimates of relevant probabilities. 
A large enough sample will result in a histogram which is effectively a smooth 
curve (see Figure 2.9), providing a very accurate picture of the population 
probability distribution. As in the cases of coins and dice, a mathematical 
expression of the curve-a function, in other words-could be used to provide 
a simplified model for the probability distribution of leaf lengths. 

0 0.5 1 .O 1.5 2.0 2.5 3.0 
Leaf length (cm) 

Figure 2.9 A histogram based on a very large sample 

We have now seen examples of two essentially different kinds of random vari- 
able. The first, illustrated by the coin, die and bulb examples, takes only in- 
teger values O,1,2,. . . and so on. The range might be finite, as for a Bernoulli 
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trial, where the range is (0, l), and as for the outcome of a single roll of a die 
(not a Double-Five), where the range is {l, 2,3 ,4 ,5 ,6) .  Or the range might 
be infinite ({l, 2 ,3 ,4 , .  . .)) as it is when listing the number of attempts that 
might be necessary to  join a board game. 

The second essentially different kind of random variable is illustrated by the 
leaf lengths example. Here, the observation is a measurement rather than a 
count-within certain limits, leaves can be any length. 

We have identified this distinction between discrete and continuous random 
variables already. The reason for again making the point is that mathemat- 
ical expressions of descriptive probability models for the two types of random 
variables are also themselves fundamentally different. 

The following exercise is about distinguishing between discrete and continuous 
random variables. 

Exercise 2.5 
Table 2.5 gives the numbers of yeast cells found in each of 400 very small 
squares on a microscope slide when a liquid was spread over it. The first 
row gives the number n of yeast cells observed in a square and the second 
row gives the number of squares containing n cells. (For instance, 213 of 
the 400 squares contained no yeast cells a t  all; no square contained more 
than 5 cells.) 

Table 2.5 Yeast cells on a microscope slide 

Cells in a square, n 0 1 2 3 4 5 
Frequency 213 128 37 18 3 1 

Evidently, the number of cells per square is a random variable taking (in 
this experiment) observed values between 0 and 5. Would you model this 
variation using a discrete or continuous probability model? 

Table 2.6 gives the lengths (in mm) of the jawbones of 23 kangaroos of 
the Macropus Giganteus species. 

Table 2.6 Jawbone lengths (mm) 

Would you choose to  model jawbone length as a discrete or continuous 
random variable? 

The following is a list of 20 operational lifetimes (in hours) for com- 
ponents. 

Table 2.7 Operational lifetimes (hours) 

'Student' (1906) On the error of 
counting with a haemocytometer. 
Biometrika, 5, 351-360. 'Student1 
was the pseudonym of William 
Sealy Gosset (1876-1937). Gosset 
pursued his research whilst working 
for the Guinness brewery company, 
which prohibited its employees 
from publishing their work-hence 
the need to write under a pen 
name. The probability distribution 
bearing the name 'Student' is a 
very important statistical model, 
which we shall meet in Chapter 7. 

Andrews, D.F. and Herzberg, A.M. 
(1985) Data. Springer Verlag, New 
York, p. 311. 

Angus, J.E. (1982) Goodness-of-fit 
tests for exponentiality based on a 
loss-of-memory type functional 
equation. J. Statistical Planning 
and Inference, 6, 241-251. 

What sort of model would you adopt for the variation in lifetimes? 
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Daily rainfall (in mm) was recorded over a 47-year period in Turramurra, 
Sydney, Australia. For each year, the wettest day was identified, that is, 
that having the greatest rainfall. Table 2.8 shows the rainfall recorded for 
the 47 annual maxima. 

Table 2.8 Annual maxima, daily rainfall (mm) 

What sort of random variable would you use to model the variation evi- 
dent here? 

Incidentally, the seventh observation of 3830 mm seems very exceptional, 
even in a location as wet as Turramurra would appear to be! In fact, it 
turns out that a fairly standard probability model fits these data quite well 
without ignoring that observation as an outlier, or assuming a misprint. 
Without local knowledge, it is difficult to say whether or not the units 
of measurement (mm) have been incorrectly recorded or whether perhaps 
there is confusion over reporting what was actually measured. However, 
the fact that something has gone wrong in the recording of these data is 
clear: weather records give the annual  average rainfall in Sydney as about 
47 inches or about 1200 mm! The Encyclopedia Br i tann ica  (15th edition, 
1985) reports that the heaviest daily rainfall then recorded anywhere in 
the world was 1870 mm at Cilaos, La Reunion in the Indian Ocean, during 
15-16 March 1952. 

This kind of situation where the data units are wrong, or omitted, or 
where it is not entirely clear what was being recorded, occasionally hap- 
pens in statistics. 

Data are given in Table 2.9 for library book usage. A sample of 122 books 
was selected and for each of them the number of times they had been 
borrowed in the preceding twelve months was counted. (For instance, of 
the 122 books sampled, 65 had been borrowed just once in the preceding 
year.) 

Table 2.9 Library book usage 

Loans per year 1 2 3 4 5 6 7 
Frequency 65 26 12 10 5 3 1 

The number of loans is a random variable. Is the random variable discrete 
or continuous? 

Here is a further example. 

Example 2.7 Memory recall times 

In a study of memory recall times, a series of stimulus words was shown to a 
subject on a computer screen. For each word, the subject was instructed to 
recall either a pleasant or an unpleasant memory associated with that word. 
Successful recall of a memory was indicated by the subject pressing a bar 

Rayner, J.C.W. and Best, D.J. 
(1989) Smooth tests of goodness of 
fit. Oxford University Press, p. 146. 

Burrell, Q.L. and Cane, V.R. 
(1982) The analysis of library data. 
J. Royal Statistical Society, 
Series A,  145, 439-471. The 
authors collected the data from 
several libraries. These data are 
from one of the sections of the 
Wishart Library in Cambridge. 

Dunn, G. and Master, D. (1982) 
Latency models: the statistical 
analysis of response times. 
Psychological Medicine, 12, 659-665. 
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on the computer keyboard. Table 2.10 shows the recall times (in seconds) 
for twenty pleasant and twenty unpleasant memories. The random variable 
'recall time' is an example of a continuous random variable-in principle, any 
value within a certain range could arise. 

Of key interest in this study was whether pleasant memories could be recalled 
more easily and quickly than unpleasant ones. Figure 2.10 shows a compara- 
tive boxplot for these two samples and we can see that although the smaller 
values of recall time for the unpleasant memories have values similar to the 
smaller values for the pleasant memories, the larger values tend to be substan- 
tially greater for the unpleasant memories. Both distributions are skewed. We 
shall explore more formal techniques for examining problems like this later in 
the course. 

pleasant, 

I I I I I I I I I I I 

1 2 3 4 5 6 7 8 9 10 1 1  
Time (seconds) 

Figure 2.10 Boxplot for memory recall times 

2.2.2 Modelling random variables 
In the rest of this chapter and in the two that follow, we are going to be 
mainly concerned with two activities. The first is constructing probability 
models for some simple random phenomena (such as we have already done for 
the outcome of rolls of fair and crooked dice). The second activity is using the 
models to calculate probabilities and discover other features of the random 
variables for which the models were constructed. (Later in the course we shall 
test the models against the original data in order to assess the quality of the 
-fit .) 

Denoting by X the score on a perfect die when it is rolled, we proposed on 
symmetry grounds (no outcome more likely than any other) the probability 
model 

If the model is a good one, then we can write down the probabilities of various 
events. For example, 

P ( 3  or 6) = p(3) + p(6) = = i; 
and 

P(an  even number) = P(2 or 4 or 6) = p(2) + p(4) + p(6) = = i. 
Obtaining an even number is just as likely as obtaining an odd number (as- 
suming the model to be a good one). The probability of scoring between 2 
and 5 inclusive (say) is 

Something rather different is going to be needed in the case of a probability 
model for a continuous random variable, such as that illustrated by the leaf 

- - 

Table 2.10 Memory 
recall times (seconds) 

Pleasant Unpleasant 
memory memory 
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lengths. Earlier on (Figure 2.9) you saw what might happen to a summary 
histogram as the sample size becomes large. Eventually the shape of the 
histogram becomes less jagged, suggesting that a smooth curve might provide 
an adequate model for the frequency distribution of the random variable (see 
Figure 2.11). 

Frequency 

600 -( 

Figure 2.11 A smooth curve fitted to a histogram 

The smooth curve could be described by a mathematical function-a formula, 
in other words. If the curve is scaled so that the total area under the curve is 
1, then, if we wish to know the probability that a randomly plucked leaf will 
be between 1.0 cm and 1.5 cm, we need simply to find the area beneath this 
curve between X = 1.0 and 1.5. This is shown in Figure 2.12. 

Figure 2.12 Leaf lengths, theoretical probability distribution 

The area of the shaded region is equal to the probability required. Such curves 
are called probability density functions. They provide the fundamental 
modelling apparatus for continuous random variables, just as probability func- 
tions (such as those represented in Figures 2.5 and 2.7) provide models for 

discrete random variables. 

The mathematical techniqwused to calculate the area under a given curve 
between a left-hand limit and a right-hand limit (see Figure 2.12) is called 
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integration. You might be familiar with this procedure. If you wished to 
(and were able to), you could use this approach on every occasion that you 
needed to calculate a probability for a continuous random variable. However, 
as the course progresses and as we explore many different data sets arising 
from many different random contexts, it will become apparent to you that 
only a relatively small number of basic density functions is necessary to  rep- 
resent adequately the different kinds of random variation most often observed. 
Further, for each of these basic models, the important mathematical results 
have already been worked out and are relatively well-known (amongst statis- 
ticians, a t  least). It is therefore not necessary to work out probabilities from 
scratch each time using integration: all that is required is to implement a 
known result in the particular context of interest or concern to  you. This is 
the approach that will be adopted in this course, though it will be convenient 
to  use the notation of integration, so that it is clear what area is being found 
between what limits under what curve. 

Here is an example. 

Example 2.8 Traffic data 
The data shown in Table 2.11 are the time intervals (in seconds) between the Data provided by 
first 51 consecutive vehicles passing a particular point on the Kwinana Freeway Professor Toby Lewis, Centre for 

in Perth, Western Australia, after 9.44 am on a particular day. A histogram Statistics, University of East 
Anglia. 

for these data is given in Figure 2.13. The data are recorded as integers, but a 
good theoretical model would be continuous. (The gaps between consecutive 
vehicles will, in reality, have lasted fractional seconds.) 

Table 2.11 Gaps in traffic, Kwinana Freeway (seconds) 

waiting time (seconds) 

Figure 2.13 Histogram of the Kwinana Freeway traffic data 

You can see from Figure 2.13 that the random variation exhibited by these 
waiting times has quite different characteristics to the variation in the leaf Time delays during which nothing 
lengths in Figure 2.1. While, for the leaves, intermediate lengths were the most happens are often called 'waiting . 
frequent, with shorter and longer measurements occurring less frequently, it times' in 

appears for these waiting times that shorter gaps occur rather more often 
than longer ones-the data are very skewed. Although times up to  16 seconds 
were recorded, almost three-quarters of the waiting times were of 5 seconds' 
duration, or less. 
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One possible model for the variation in the Kwinana Freeway waiting times is 
given by the triangular density shown in Figure 2.14. The density function 
depicted in Figure 2.14 is non-zero only for values along the horizontal axis 
between 0 seconds and 20 seconds. It is a rather arbitrary model, based on 
the fact that none of the observed waiting times exceeded 20 seconds. The 
graph's shape captures the essential skewness apparent from the data. More 
elaborate models are possible and perhaps even desirable, but this one at least 
allows us to make a start on the exercise of modelling. (For instance, the 
model says that gaps longer than 20 seconds between consecutive vehicles are 
impossible! No law of nature decrees that this should be so and, if observation 
was continued for a long enough period, it is virtually certain that such an 
extended gap would eventually be recorded. This is a limitation of the model, 
but we shall assume that such long gaps are so infrequent that this is not 
a serious limitation. We are merely learning early that statistical models 
purporting to represent the important aspects of observed variation may have 
inadequacies in other areas. In this case, one would need to construct a better 
model.) 

The total area under the density function has to equal 1: this is a property 
of all probability density functions. This constraint is sufficient to specify the 
triangular density function completely. Denoting by T the random variable 
which is the waiting time (in seconds) between consecutive vehicles, then the 
variation in T may be modelled by the density function 

Figure 2.14 A triangular 
probability density function 

You can confirm that the area 
under the probability density 
function is 1 by using the formula 
for the area of a triangle: 

X base X height = X 20 X = 1. 

This is the only mathematical function which has the triangular shape shown 
in Figure 2.14; the function is non-zero between t = 0 and t = 20, and the 
total area under the curve is 1. 

Now we can use the model rather than the data to estimate the proportion 0 5 10 15 20 1 

of waiting times that are, say, between 10 seconds and 15 seconds. This Figure 2.15 The probability 
particular proportion is given by the shaded area in Figure 2.15. This area P(10 5 T 5 15) 
could be found formally, using integration. It is given by 

l5 20 - t 
P(10 < T < 15) = f (t) dt = L. F d t  

and read as 'the integral of the function f ( t )  between t = 10 and t = 15'. 
Actually, as integrals go, this is not a particularly difficult one and if you 
know how to integrate you might want to try it. Alternatively, the area of the 
shaded region in Figure 2.15 may be calculated geometrically. It is 

area = (average height) X (width) 
= (long side + short side) X (width) 

= i (f (10) + f (15)) X (width) 

So the model says that less than 20% of traffic gaps will be between 10 seconds' 
and 15 seconds' duration. 
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Try the following exercise. (Use geometrical arguments.) 

Exercise 2.6 m 
(a) According to the model suggested in Example 2.8, what proportion of 

ODD. 

gaps exceeds 5 seconds? 

(b) According to the suggested model, can you find a formula for the prob- 
ability that a gap is not longer than t,  for some general value of t? 

In your solution to Exercise 2.6(b), you used geometrical arguments to find a 
formula for the probability P(T < t)  for the triangular density defined over 
the interval 0 5 t 5 20. A different approach is to use integration and say 

This would give you the same answer. However, most of the results we shall 
use in this course are standard and do not need to be worked out from first 
principles. If you cannot remember a particular formula, then all you need do 
is turn the pages to find it. 

This section finishes with a summary of the ideas introduced so far, thus 
identifying the important points. 

2.2.3 Properties of probability models 
We have briefly looked at two probability models for discrete random variables. 

The first was proposed in order to describe the variation that would be ob- 
served when a six-sided die is rolled. Under the assumption that the die is 
perfectly fair, the corresponding probability function is 

where the random variable X denotes the number of spots on the face that 
appears. 

The second probability model was used to describe'the variation in outcome 
when a Double-Five is rolled. Denoting the outcome of that experiment by 
the random variable Y, the corresponding probability function is 

and the range of Y is {l, 3,4,5,6). 

For continuous random variables, we needed a different mathematical en- 
tity, reflecting the fact that the range of observable values is continuous. We 
saw that in this case we can represent the variation that might be observed 
through a probability density function f (.), and calculate the probability that 
a particular value is observed between a lower limit xl and an upper limit x2 
as 
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where the expression on the right-hand side means the area under the curve 
f (X) between X = x1 and X = 22. In the traffic example (Example 2.8), we 
used the triangular density function 

as a continuous probability model for traffic waiting times (in seconds). 

Different models will be appropriate in different contexts: for example, data 
suggest that a model very different to the triangular density would be appro- 
priate to represent variation in leaf lengths, at least for one particular bush 
of one particular species. 

The expression 'probability density function' is often abbreviated to p.d.f. 
and we may summarize the situation so far as follows. 

Probabil i ty density function 

For a continuous random variable X ,  observed variation may be 
modelled through the probability density function (or simply the 
density function) f(x) .  This is often abbreviated to p.d.f. Then the 
probability that an observation on X lies between limits xl and 2 2  may 
be calculated as the area under the curve of f (x)  between X = xl and 
X = 22. This is written in mathematical notation as the integral 

The p.d.f. is defined for all values of X in the range of X .  

What we have so far loosely called the probability function p(x) describing 
the probability distribution of a discrete random variable X is sometimes 
called a probability mass function, which clearly distinguishes it from the 
probability density function f (X) for a continuous random variable. The term 
is often abbreviated to p.m.f. 

Probabil i ty mass function 

The probability function for a discrete random variable is usually called 
the probability mass function (6r simply the mass function) of the 
random variable. This is often abbreviated to p.m.f. For a discrete 
random variable X ,  the probability mass function gives the probability 
distribution of X:  

p(.) = P ( X  = X). 

The p.m.f. is defined for all values of X in the range of X .  

During this discussion of probability mass functions and probability density 
functions some important properties of probability models have been ident- 
ified. First, a probability (whether of taking a particular value, or of observing 
a value within a particular interval) is a number representing a long-term 
proportion for an event; and that event will either never happen, sometimes 
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happen, or always happen. Second, of all the possible outcomes (all the values 
of X in the range of X )  one will certainly happen. Thus we are led to these 
properties of probability functions. 

For a discrete random variable X with probability mass function p(x), 

0 l P(X) 5 1 

for all X in the range of X ,  and 

where the summation is over all X in the range of .X. 

For a continuous random variable Y with probability density function 
f (y), the p.d.f. cannot be negative, 

and 

where the integration is over the whole range of possible values of the 
random variable Y. (The total area under the curve f (y) over the entire 
range of Y is equal to 1.) 

Using the appropriate probability function, we can calculate the probability 
that a random variable will lie in any given interval by summing probabilities 
(or by integration in the continuous case). For the sort of standard prob- 
ability density function that will be considered in this course, it will not be 
necessary to go through the process of integration, since most results are 
well-documented. 

It is often useful to know the probability that the random variable will not 
exceed some specified value. Suppose, for example, that we wish to know the 
probability that a random variable X, which only takes non-negative values, 
will not exceed some specified value X. That is, we want to find the probability 
P ( X  5 X). 

If X is discrete, this probability may be obtained from the p.m.f. p(x) by sum- 

ming appropriate terms: so, for a random variable X with range O,1,2,. . . , 
this probability may be written 

On the other hand, if X is continuous, then we would have 
r x  

(the lower limit of the integral being, in general, the lowest observable value 
of X, not necessarily zero). 

In either case, the function F(x)  = P ( X  < X) is called the cumulative dis- 
tribution function of the random variable X .  
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The cumulative distribution function 
The cumulative distribution function F(x)  of a random variable X 
is the probability that X takes a value less than or equal to X: 

F (x )  = P ( X  2 X), 

where X is in the range of X. 

Often the abbreviation c.d.f. is used, or the simpler term distribution 
function. 

In the following example, the c.d.f. of a discrete random variable is obtained. 

Example 2.9 The c.d. f. for a fair die 
For a fair die, the probability mass function is given by 

P ( X = x ) = p ( x ) =  k, x = 1 , 2 , 3 , 4 , 5 , 6 ,  

and the cumulative distribution function is defined by F(x)  = P ( X  5 X). For 
instance, 

The p.m.f. p(x) and the c.d.f. F(x)  for the random variable X may con- 
veniently be set out in a table as shown in Table 2.12. . 
Exercise 2.7 
If the random variable Y taking values y = 1,3 ,4 ,5 ,6  is used to model the 
outcome of a roll of a perfectly engineered Double-Five, and if the c.d.f. of Y 
is written F(y), construct a table like Table 2.12 to represent the probability 
distribution of the random variable Y. 

Exercise 2.8 
You have already found in Exercise 2.6(b) the c.d.f. of T ,  the random variable 
describing the waiting time (in seconds) between consecutive vehicles using 
the Kwinana Freeway in Perth. It was 

Use the c.d.f. to  calculate the probabilities 

(a) P(T 5 10); 

(b) P(T > 5). 

(Again, you should notice that the supposition that these calculations are 
useful is based on the assumption that F ( t )  as given above provides a good 
model for the probability distribution of the time intervals between cars.) 

The notation p ( . )  is standard for 
probability mass functions; so is 
the notation f (.) for probability 
density functions. In either case, 
F ( . )  is standard notation for the 
cumulative distribution function. 

Table 2.12 The probability 
distribution for a fair die 
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The probability function for a random variable tells us all there is to know 
about the probability that a random variable will take particular values or 
fall in a particular interval of the range. If, for a given random variable, we 
knew this function, then life would be straightforward-questions about likely 
outcomes could be answered simply by reading off values from this function or 
by using appropriate formulas. Unfortunately, life is not so straightforward. 
In general, the probability function will not be known. This means that to 
make headway in answering questions about probabilities we shall have to 
estimate the function. Histograms and bar charts based on samples of data 
provide one general way of estimating probability functions. In some cases 
we may have more information on which to base our model for the process 
generating the values of the random variable. 

In the street lamp example (Example 2.3) there were only two possible out- 
comes (faulty or not faulty) so that the probability distribution had only two 
peaks (0.15 and 0.85). 

In the coin-tossing example (Exercise 2.3) which is very similar, we might 
go further and postulate that the coin is fair-it favours neither Heads nor 
Tails-so P(Heads) = ~ ( ~ a i l s ) .  Since, as we have seen, the sum of the prob- 
abilities of all possible outcomes is 1, i.e. ~ ( ~ e a d s )  + P(Tai1s) = 1, we must 
have P(Heads) = P(Tai1s) = $. This means that the two non-zero peaks of 
the corresponding probability distribution in the coin-tossing example must 
have equal heights. If we do not wish to make the assumption that the coin 
is fair, then the situation is, from a mathematical viewpoint, identical to the 
bulb-testing example. 

In both these cases we shall have to estimate the probabilities from a sample, 
that is, from the data. In other situations, such as the leaf length example 
(Example 2.1) or the blood plasma P endorphin concentration data from 
Chapter  1, Example 1.4, we might also have some reason (perhaps based 
on theory or on extensive experience with similar situations) for believing 
that the probability function will have a particular form. In the rest of this 
chapter, and in Chapters  3 and 4 ,  particular forms which occur frequently 
and have very widespread application are described. 

The probability models associated with the bulb-testing example, the coin- 
tossing example and the first die-rolling example (with two outcomes: 
either the three- or six-spot face, or one of the other four) all used Bernoulli 
trials: this illustrates an important feature of such situations. This is that 
the probability function in question will typically be a member of a family  of 
similar functions. In these three examples, each function consisted of just two 
peaks, but the heights of the peaks differed between the examples. We can 
index  the family by the heights of the peaks. In fact, in each case the height 

of only one of the peaks needs to be given since the other can be found by 
subtraction from 1. This indexing value is called a parameter of the distribu- 
tion. The value of the parameter tells us exactly which member of a family 
of distributions is being discussed. 
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2.3 The Bernoulli and binomial probability 
models 

2.3.1 The Bernoulli probability model 
In Section 2.2 we met three examples which had the same basic structure: 
the bulb-testing example, the coin-tossing example and the first die-rolling 
example (with only two possible outcomes). In each case we can define a 
random variable taking just the values 1 or 0. In fact, we have already done 
this: for the coin example the value 1 is taken if Heads appears and for the 
die example the value 1 is taken if a three- or a six-spot face appears. For the 
bulb-testing example, we defined the random variable as taking the value 1 if 
a bulb is faulty and 0 otherwise. 

The probability distributions associated with these examples thus all belong 
to the same family, in that they have the same basic form. However, they 
differ in a specific way-a way which is indexed,  that is, determined, by the 
value of a parameter .  This parameter happens to be the probability that the 
random variable will take the value 1. The other probability in each case-the 
probability that the random variable will take the value 0-can be obtained 
by subtraction from 1, since we know that p(0) + p(1) = 1. 

Thus, once we know that the probability distribution consists of just two 
non-zero peaks and the height of one of the peaks (the value of the indexing 
parameter), the probability mass function is completely known. Figure 2.16 
shows the three probability distributions for the three examples. 

(a) p = 0 . 1 5  (b) p'= $ (C) p = i 

Figure 2.16 Same family; different parameters 

Random variables such as those in these three examples, which can take only 
two possible values, are called Bernoulli  r andom variables (after James 
Bernoulli, 1654-1705). This matches our previous notation: each observation 
of such a random variable, taking one of the two possible outcomes, is termed 
a Bernoulli trial. Suppose we have a Bernoulli random variable X ,  which 
can take the values 0 or 1, and suppose P ( X  = 1) = p and P ( X  = 0) = 1 -p. 
Then this probability function, with two non-zero peaks, is said to be that of a 
Bernoulli distribution with parameter p. Thus the coin, die and bulb examples 
involve Bernoulli distributions with parameters $, and (we estimated) 0.15, 
respectively. 
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The Bernoulli distribution can be written simply as P(X = 1) = p, 
P ( X  = 0) = 1 - p; but, for reasons which will become apparent later, we 
normally write the probability mass function rather more mathematically as 

1-1 p(x) = pX(l  -p)  7 X = 0 , l .  

This means that for X = 0, 

1-0 - 1 - p(0) = P ( X  = 0) = pO(l - P) - P; 

and for X = 1, 
1-1 - p ( l ) = P ( X = l ) = p l ( l - p )  -P. 

The Bernoulli probability model 
The discrete random variable X with range {O,l) and probability mass 
function 

1-1 p(x) = p X ( l  -p)  , X = 0,1, 

is said to follow a Bernoulli distribution with parameter p, 

O < p < l .  

This is written X Bernoulli(p). 

The model may be applied to a Bernoulli trial where the probability of 
obtaining the outcome 1 is equal to p. 

The value of any non-negative 
number raised to the power 0 is 1. 

The symbol ' W '  is read 'is 
distributed as' (or, simply, 'is'). 

Example 2.10 Blood groups 
In a sample of people living in London who suffered from peptic ulcer, 911 Woolf, B. (1955) On estimating the 
had blood group 0 and 579 had blood group A. If we pick one of these people relation between blood group and 

at random then the probability is 911/(911+579) that this person will have disease. 'f Human 
Genetics, 19, 251-253. 

blood group 0. Within this sample, the random variable taking the value 1 if 
the person is group 0 and 0 if the person is group A thus follows a Bernoulli 
distribution with parameter p = 911/(911 + 579) = 0.61. W 

Example 2.11 Roulette wheels 
The number of compartments in which the ball may come to rest on roulette 
wheels differs on wheels in different parts of the world. In Monte Carlo the In Las Vegas there are 38 
wheels have 37 compartments. These compartments are numbered from 0 to compartments mmbered 

36. If we define a random variable X as taking the value 1 if the ball stops '1.. . 361 OO. 

in the '19' compartment and 0 otherwise, then, assuming the wheel is fair, 
this random variable follows a Bernoulli distribution with parameter &. The 
probability mass function is given by 

( X )  = ( A )  ( ) l -  X = 0.1. 

A different question is: at what number will the ball come to rest? As- 
suming the wheel is fair, this number is equally likely to be any in the range 
0,1,2, . . . ,36. The random variable N denoting this score has probability 
mass function 
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The physical situation is the same, but a different question has been asked 
and so a different model has been constructed to answer it. W 

Exercise 2.9 

In a study in the Norwegian county of Sogn and Fjordane of all 6503 women Keiding, N. (1991) Age-specific 
aged between 35 and 49, 591 of them were found to have passed menopause. imidence and prevalence: a 

statistical perspective. J. Royal 
(a) If we were to choose one of these women at random, what is the probability Statistical Society, Series A, 154, 

that she would have passed the menopause? 371-412. 

(b) Define a suitable random variable X to indicate whether a randomly 
chosen woman has passed the menopause, and write down its probability 
mass function. 

Exercise 2.10 

Telephone surveys are surveys conducted over the telephone. These are eas- 
ier and cheaper than sending out interviewers, but not all households have 
telephones so the coverage will be incomplete. In 1986, 78% of British house- 
holds had telephones. For a randomly chosen British household, write down 
the probability distribution of the random variable X which takes the value 
1 if the household does have a telephone and 0 if it does not. 

2.3.2 The binomial probability model 
Often situations are encountered in which there is not just a single Bernoulli 
trial, but a set of such trials. For example, in evaluating a new drug we would 
not wish to base conclusions on the reaction of a single patient. Instead, we 
would treat several patients and look at the proportion for whom the treat- 
ment was beneficial. (Then we might go on to compare this proportion with 
the proportion for whom the usual treatment was successful, to see whether or 
not the new treatment is better-there is more on this in later chapters.) We 
would be using 'the proportion successful' as an estimate of the probability 
that a randomly selected patient would respond favourably to the drug. Note 
that there is an implicit assumption in this, namely that the fact that one 
patient has responded favourably should not affect the probability that 
another will also respond favourably. If this assumption is true-that the 
outcome of one trial does not influence the probabilities of the 
outcomes of another trial-then the trials are said to be independent. The 
assumption that the trials are independent seems a natural one in the case of 
different patients responding to treatment, but independence is not always so 
obvious (nor can it always be assumed). 

If we let X take the value 1 when a trial is successful and 0 when it fails, 
then the total number successful in the sample of patients is the sum of the 
X values, and the proportion successful is the sum of the X values divided 
by the total number of patients. 
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Example 2.12 Headache relief 
In a small sample of eight patients, five responded successfully to a treatment 
to relieve headache (five scores of 1); the other three failed to respond (three 
scores of 0). The proportion of patients in the sample who showed a positive 
response is 

This number provides an estimate for the proportion of successful responses 
in the 'population' of headache sufferers given the treatment. 

There are many contexts, not just medical ones, that can be regarded, stat- 
istically speaking, as a collection of independent Bernoulli trials and where 
what is of interest is the total number of 1s (indicating, for example, positive 
responses, Heads, or Yeses). This number is a random variable. 

Exercise 2.1 1 
An experiment is performed consisting of a sequence of 15 independent 
Bernoulli trials. If a trial is successful (the interpretation of 'success' depends 
on the context) a score of 1 is recorded; otherwise, a score of 0 is recorded. 
The total 'score' for the experiment, Y, a random variable, is obtained by 
adding together all 15 Is and OS. 

What is the range of the random variable Y? 

The situation where what is of interest is the total number of successful trials 
in a set of independent Bernoulli trials is a very common one in statistics. 
The probability model for this random variable is one of the standard models 
that we shall be using in the course. Its definition follows. 

If a set of n independent Bernoulli trials each has identical probability 
of success, p, then the random variable Y, defined as the total number of 
successes over all the trials, is said to follow a binomial distribution 
with parameters n and p. This is written Y B(n,p) .  

Sometimes the expression 'Y is a binomial random variable' or 'Y is binomially 
distributed' or, simply, 'Y is binomial' is used. 

Before going on to examine properties of the binomial probability distribution, 
we shall first explore different situations where it might or might not provide 
an adequate model. 
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Example 2.13 Coin tossing 
Suppose a (fair) coin is tossed three times. Each time it may come up Heads or 
Tails, and each of these outcomes has probability i. It is reasonable to assume 
that the trials are independent-that the fact that it came up Heads (or Tails) 
the first time does not influence the chance of it doing so at the second (or any 
subsequent) trial. These three trials thus satisfy the conditions for the total 
number of Heads to follow a binomial distribution with parameters n = 3 and 
p = l. 

2 

This means that the probability distribution for the total number of Heads 
(either 0, 1, 2 or 3) is binomial B(3, 3). W 

Example 2.14 Political attitudes in one household 
In a survey of political attitude, we might ask all adults in a household how 
they intend to vote in a two-party system. There are two possible outcomes. 
Let us define, for each adult in the household, a random variable X, taking 
the value 1 if they say they intend to vote RED and 0 if they say BLUE. 

Then we could add up these random variables to produce a new one, Y, the 
total number of adults who say they intend to vote RED. However, the X 
scores would not be independent since adults within a household are likely to 
influence the way the others vote, so the random variable Y would not follow 
a binomial distribution. W 

Exercise 2.12 

Half of the married people in the United Kingdom are female and half male. 
Thus, if a married person is chosen at random, the probability of picking a 
female is i. If 100 married people are randomly picked, the distribution of the 
number of females will follow the binomial distribution B(100, i). However, 
suppose that 100 married people are picked by choosing 50 different people 
at random, along with their spouse. Does the number of females now follow 
a binomial distribution? 

Example 2.15 Visual perception 

In an experiment on visual perception, it was necessary to create a screen of Laner, S., Morris, P. and Oldfield, 
small squares ( h  inch by inch) and, at random, colour the squares black or (1957) A random pattern 
white. The size of the screen was 27 inches by 40 inches, so there were 155 520 Screen. Quarterly 

Experimental Psychology, 9, 
small squares to colour. A computer was used to make the decision according 105-108. 
to a very long sequence of Bernoulli trials with predetermined probabilities 

After this was done, and before performing the experiment, the screen was 
sampled to see whether the colouring algorithm had operated successfully. 

A total of 1000 larger squares (i inch by inch) each containing 16 of the 
small squares were randomly selected and the number of black small squares 
was counted in each case. The results should have been consistent with 1000 
observations from the binomial probability distribution B(16,0.29). The re- 
sults are shown in Table 2.13. 
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If the computer algorithm for the random colouring was correct, then-the data 
in Table 2.13 give us our first glimpse of a random sample from a binomial 
distribution. Figure 2.17 gives the corresponding bar chart for these data. 
You can see that the sample is unimodal and moderately skewed. 

Table 2.13 Counts on a 
random screen pattern 

Number of Frequency 
black squares 

Frequency 

Screen counts 

Figure 2.17 Counts on a random screen pattern 

The statistical procedures for testing the quality of the fit of a hypothesized 
probability model to a particular data set will be discussed in Chapter 9. 
Indeed, a t  this stage we have only discussed circumstances under which the 
binomial model might be assumed to hold, and the model itself has not yet 
been developed. That is, we have not yet discovered how to calculate the 
probability that a particular total will be obtained if-we observe data assumed 
to arise from a binomial distribution. 

To illustrate the calculations, let us use the following example. Suppose that 
we are interested in how likely people are to visit their doctor. We might be 
interested in this as members of a team reporting to a local health authority on 
the demand for health treatment. To investigate this, we could draw a random 
sample of people and ask each person if they have visited their doctor in the 
last year. We shall assume that whether or not one person has visited the 
doctor implies nothing about the probability that any other person will have 
visited the doctor-the observations are independent. Let us also suppose 
that, unknown to us, 1 in 3 people will answer Yes to the question, so the 
probability is !j that a randomly chosen person will answer Yes. 

We shall go through the calculation in two stages. First, suppose that three 
people are asked the question: have you visited your doctor in the past twelve 
months? The probability that the first answers Yes is 5 .  The probability that 
the second answers Yes is also 5 .  The probability that the third gives a No 
response is $. An assumption of the binomial model is that these responses 
are independent. What then is the overall probability that the question elicits 
the responses 

Yes Yes No 

in that order? The easiest way to think about this is to calculate the proportion 
of occasions in repeated samples that the first three responses would take 
precisely that form. Only in one-third of such samples would the first response 
be Yes; and only in one-third of those would the second also be Yes-so only 
in one-ninth of repeated samples would the first two responses be Yes: 

In reality, estimating this 
probability would be the purpose, 
or one of the purposes, of such an 
investigation. 

P(Yes Yes) = P(Yes) X P(Yes) = f X f = B. 
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Continuing the process, you can see that only in two-thirds of those samples 
would the third response be No: 

2 - 1  P(Yes Yes No) = P(Yes) X P(Yes) X P(No) = i X $ X - 3 - 2 7 '  We can apply the same sort of 
argument to any particular 

Now we move to the second stage of the calculation. In pursuing this survey, sequence. For example, the 
we are not actually interested in recording the order in which the responses   rob ability that the sequence 
occurred, only in counting the different responses. What, for instance, is the Yes Yes Yes 

after asking the question of five probability that amongst the first three people questioned, two say Yes and people is 
one says No? There are exactly three different ways this could happen and $ x ~ x ? x ' x ' = 4  
their probabilities are as follows. 3 3 3 3 243' 

P(Yes Yes No) = i X i X i = ;1Z? 
P(Yes No Yes) = $ X i X = 

1 - 2  P(No Yes Yes) = i X i X - 3 - 27 

If we now disregard the order of response, we find that the probability of 
achieving two Yes responses and one No after questioning these three people 
is 

P(Yes Yes No) + P(Yes No Yes) + P(No Yes Yes) 
- - 5 + & + & = 3 x & .  2 

Fortunately, it is not necessary to list all the possible sequences of responses 
in order to establish, say, the probability that in a sample of ten people ques- 
tioned seven responded Yes; or that more than twelve responded Yes in a 
sample of twenty. There is a formula that makes such efforts unnecessary. It 
states generally that the number of different ways of ordering X Yeses (and 
n - X Noes) in a sequence of n Yes-No responses is given by 

for X taking any value from 0 (all Noes) to n (all Yeses). 

The notation X! is a shorthand for the number 1 X 2 X 3 X . . . X X. You might 
also have seen the notation 

'The number X! is read 'X factorial'. The number (E) is read 'n C X'. 

So, for instance, the number of different ways of obtaining 7 Yeses (and 3 
Noes) in a sample of ten people questioned is 

7  3 
Each one of these 120 ways occurs with probability (i) ( g )  ; for instance, 

P(Yes Yes Yes No No Yes Yes Yes No Yes) 
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Overall, then, the probability of obtaining 7 Yes responses and 3 No responses 
in a sample of size ten is 

This is the probability that a binomial random variable with parameters 
n = 10 (the sample size) and p = (the probability of obtaining a Yes re- 

sponse) will take the value 7. That is, if Y - B (10, $), then 

or, more generally, if Y - B (10, i), then 

The number O! is defined to be 1. Setting y equal to 0 in this formula gives 

which is the probability that all ten responses are No. 

The binomial probability model may be summarized as follows. 

The binomial probability model 

The random variable X follows a binomial distribution with parameters 
n and p if it has probability mass function 

where 0 < p < 1, and 

This is written X - B(n,p)  and provides a probability model for the 
total number of successes in a sequence of n independent Bernoulli trials, 
in which the probability of success in a single trial is p. 

Exercise 2.13 m 

Suppose that a study is undertaken to compare the safety and efficacy of two H 
antidepressant drugs. Eighteen patients are each randomly allocated to one of 
three groups, six to a group. The first group is treated with Drug A and the 
second with Drug B. Patients in the third group are treated with a placebo (a 
substance which is inert as far as antidepressive effects go, but which is given 
to the patients in the same way as the treatments being studied, so that the 
analysis can be controlled for any natural remission). 

One of the problems associated with studies of this sort is that patients oc- 
casionally 'drop out': they cease treatment before the study is completed. 
This might be for reasons unrelated to their course of treatment, or because 

78 
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they suffer from side-effects, or it might be because they perceive no beneficial 
effect from their treatment. The phenomenon is consequently a complicating 
feature in a statistical analysis of the results of such studies. 

A previous study suggests that the proportion of patients in placebo groups 
who drop out might be about 14%. 

(a) Using this estimate for the value of the parameter p in a binomial model, 
calculate for the placebo group in the present study 
(i) the probability that all six patients drop out; 
(ii) the probability that none of the six drop out; 
(iii) the probability that exactly two drop out. 

(b) An assumption of the binomial model is that of 'independence from trial to 
trial'. Interpret this assumption in the context of the study, and comment 
on whether you believe that, in this case, it is a reasonable assumption. 

Example 2.16 Multiple choice examination scores 

One of the components of assessment of the statistics students at a certain 
British university is a multiple choice examination consisting of twenty ques- 
tions. . For each question the correct answer is one of five possible options. 
Students indicate the one of the five they believe to be correct. Sometimes 
some of the students give the impression that they have gone through the 
paper guessing answers at random. 

Since such a student guesses answers at random, an answer to any particular 
question is independent of an answer to any other question. Moreover, since 
there are five possible answers to each q6estion and since the selection is made 
at random, the probability of picking the correct one is $ for each question. 
Thus the answers of a student who guesses at random form a sequence of 
twenty independent Bernoulli trials, each with probability of success i ,  i.e. 
0.2. So the total number of correct answers given to the twenty questions is 
a random variable following a binomial distribution with parameters n = 20 
and p = 0.2. That is, letting the random variable T denote the total number 
of correct answers, T B(20,0.2). 

In such a situation we might like to know the proportion of students who 
would score more than the pass mark if they guessed in the way described 
above. For example, if the pass mark was 10, the probability that a student 
adopting a random guessing procedure such as that described above would 
score less than 10 (and so fail the examination) is given by 

Here, we have summed the probabilities of all the scores less than 10. 

Table 2.14 gives the probability mass function P ( T  = t)  = p(t) and the cumu- 
lative distribution function P ( T  5 t )  = F( t )  for the binomial random variable 
T B(20,0.2). For example, 

P ( T  = 3) 

Dunbar, G.C., Cohn, J.B., Fabre, 
L.F., Feighner, J.P., Fieve, R.R., 
Mendels, J. and Shrivastava, R.K. 
(1991) A comparison of paroxetine, 
imipramine and placebo in 
depressed outpatients. British 
Journal of Psychiatry, 159, 
394-398. 



Elements of Statistics 

The probabilities are given correct to four decimal places, but notice that, Table 2.14 The probability 
because of rounding effects, the numbers in the right-hand column are not all distribution of 2' B(20,0.2) 

exactly equal to the 'running sum' of the probabilities in the middle column. P(T = t )  P(T 5 t )  
For instance, the table gives 

0 

P(T = 0) = 0.0115, P ( T  = 1) = 0.0576; 

adding gives 

P ( T  = 0) + P ( T  = 1) = 0.0691; 

but 

P(T 5 1) = 0.0692 (to 4 decimal places). 

This kind of discrepancy occurs occasionally in probability calculations in- 
volving rounding and can be ignored. 

If the pass mark is set at 10, the probability that a student who randomly 
guesses his answers passes may be found as follows: 

P(T 2 10) = 1 - P ( T  5 9) = 1 - 0.9974 = 0.0026. 

In general, the c.d.f. of a binomial random variable Y B(n,p)  is given by 

Unfortunately, this does not have a convenient mathematical form that is 
quick and easy to evaluate. (If you are doing a statistical analysis using a stat- 
istical computer package, then the computer will probably do the calculations 
for you and produce a probability value directly. This is the easiest way of 
obtaining particular values of p(y) and F(y)  when Y is binomial. Otherwise, 
you can sum the individual probabilities using a calculator.) 

In Figure 2.18 are diagrams of four typical binomial probability distributions. 
They show 

(a) the number dropping out in the placebo group (Exercise 2.13): B(6,0.14), 

(b) the number of correct answers guessed (Example 2.16): B(20,0.2), 

(c) the number of faulty bulbs in a box of ten (Example 2.3): B(10,0.15), 

(d) the number of 5s in eight rolls of a Double-Five (Example 2.6): B (8, 4). 

Exercise 2.14 
(a) If V W B(8,0.3), find the probability P ( V  = 2). 1 
(b) If W N B(12,0.5), find the probability P ( W  = 8). 

(c) If X - B(6,0.8), find the probability P ( X  > 4). 

(d) If Y B (6, i), find the probability P ( Y  5 2). 

(e) If Z B (10, i), find the probability P ( Z  5 7). 
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(a) Number of dropoilt.~, g (h) Number of correct guesses, y 

0.35 0.30 
0.30 0.25 
0.25 

0.20 
0.20 

0.15 
0.15 

0.10 0.10 

0.05 0.05 
0 0 

0 1 2 3 4 5 6 7 8 9 1 0  0 1 2 3 4 5 6 7 8  
(C) Number of faillt,y hillhs, (d) Number of Ss, ?/ 

Figure 2.18 Typical members of the binomial family 

Exercise 2.15 
The science of genetics includes the study of hereditable physical features R 

m. 
such as eye and hair colour, bone structure, blood group or unusual skin 
conditions. The Augustinian monk Gregor Mendel (1822-1884) investigated, 
in some experiments on pea plants, what happened when plants with round 
yellow peas of a certain kind were crossed. The offspring were not all round 
and yellow-some were wrinkled and others green, according to the following 
combinations and in the proportions shown. (These proportions are based on 
theory. However, observed experimental frequencies were very close to the 
theoretical predictions.) 

P(round and yellow) = & 
P(round and green) = 

P(wrink1ed and yellow) = 

P(wrink1ed and green) = 

Round yellow peas are crossed and produce eight offspring peas. 

(a) What is the distribution of the number of wrinkled yellow peas amongst 
the offspring? 

(b) What is the probability that all eight offspring are wrinkled yellow peas? 

(c) What is the probability that there are no wrinkled green peas amongst 
the offspring? 

Calculation of binomial probabilities using the formula can involve a sur- 
prisingly large number of key strokes on your calculator. This is especially 
true when you are calculating more than one probability in order to calcu- 
late the probability that a particular random variable takes one of several 
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possible values. A set of statistical tables is another option, but these are 
not necessarily very easy to read and usually contain only a limited number 
of possibilities for the binomial parameter p. (For example, they may list 
binomial probabilities for n from 2 to 20 and for p from 0.1 to 0.9 by steps 
of 0.1 or possibly 0.05. It may be that the problem of interest to you has 
p equal to 0.37.) An option is to use a computer. 

Exercise 2.16 

Use your computer to calculate directly these probabilities. 

(a) P ( X  = 4) when X N B(10,0.3); 

(b) P ( X  = 6) when X N B(20,0.17); 

(C) P(X 5 8) when X N B(ll,O.33); 

(d) P(X 1 8) when X N B(20, i). 
Parts (e) and (f) illustrate two applications of the binomial distribution. 

(e) Which is more probable: to obtain at least one 6 in one roll of four dice, 
or at least one double-6 in twenty-four rolls of two dice? (This problem 
was discussed by Cardano (1501-1576) and arose again at the gambling 
table when, in 1654, de M&-& proposed it to Pascal.) 

( f )  On any given day of the year (365 days), past experience suggests that 
the probability of rain is about 0.3. What is the probability that in a 
whole year it rains a t  least 100 times? 

2.4 The normal distribution 

In this section we shall briefly consider a probability distribution that can 
provide a useful model for all sorts of widely disparate random phenomena. 
The model is continuous. First, let us look at some data sets. 

Below are presented the histograms for several data sets arising from a number 
of quite different sources. 

Example 2.17 Heights 

This data set from a study of osteoporosis gives the heights (in cm) of a sample Data provided by D.J. Hand, The 
of 351 elderly women randomly selected from the community. (For example, Open University. Osteo~orosis is a 

three women amongst the 351 were 145 cm tall-that is, between 144.5cm affecting the bones, and can 
cause a reduction in height. 

and 145.5 cm.) 

Table 2.15 Heights of 351 elderly women (cm) 

Height 142 143 144 145 146 147 148 149 150 151 152 153 154 
Frequency 1 0 0 3 1 4 2 1 6 6 12 17 11 

Height 155 156 157 158 159 160 161 162 163 164 165 166 
Frequency 21 20 20 31 17 21 20 18 30 17 18 11 

Height 167 168 169 170 171 172 173 174 175 176 177 178 
Frequency 7 6 8 11 3 0 3 1 0 1 1 2 

The histogram summarizing these data is shown in Figure 2.19. 
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Height (cm)  

Figure 2.19 Heights of 351 elderly women W 

Example 2.18 Nicotine levels 
This data  set lists measurements of blood plasma nicotine levels (in nanograms Data provided by D.J. Hand, 
per millilitre) for 55 smokers, in a study of cigarette smoking habits. The Open University. 

l ng - g 
Table 2.16 Blood plasma nicotine levels for 55 smokers (ng/ml) 

123 311 242 474 375 449 419 185 33 564 256 242 
312 179 456 232 389 429 309 269 274 274 157 348 
384 274 179 306 260 346 106 468 597 233 304 448 
182 527 155 347 74 471 260 213 346 304 256 233 
227 607 464 469 209 314 456 

The histogram summarizing these data is shown in Figure 2.20. 

Frequency 

Nicot,ine level (ng/ml)  

Figure 2.20 Blood plasma nicotine levels for 55 smokers 

Example 2.19 Chest measurements 
This data  set (see Table 2.17) gives the chest measurements (in inches) of Stigler, S.M. (1986) The History of 
5732 Scottish soldiers. Statistics-The Measurement of 

Uncertainty before 1900. Belknap 
These data have an  interesting history. The Belgian mathematician Adolphe Press of Harvard University Press, 
Quetelet (1796-1874) was interested in probability and social statistics, and, p. 208. 

amongst other things, in the fitting of statistical models to  data. The chest 
measurements data were extracted from the Edinburgh Medical and Surgical 
Journal (1817) and were first given erroneously. For instance, Quetelet's 

. . 
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summary found 5738 soldiers (not 5732); his total for the number of soldiers 
with chest measurements between 33i  inches and 34; inches was 18 (not 
19). Stigler writes: 'Although the errors have no important bearing on the 
explanation [of Quetelet's method for fitting a statistical model], they do 
exemplify Quetelet's tendency to calculate somewhat hastily, without checking 
his work'. 

The data are summarized in the histogram in Figure 2.21. 

<:hest, measi~rernant, (inches) 

Figure 2.21 Chest measurements of 5732 Scottish soldiers 

You can see that all the histograms in these examples have a very similar 
basic shape. If we discount random variation, it seems as if they each come 
from populations that have a single maximum value-there is just one hump. 
In other words, the distributions are unimodal. Furthermore, all of the his- 
tograms are roughly symmetrical. Of course, the data sets have different 
sample means and sample standard deviations-but this is to be expected 
since they measure different quantities on different scales. 

Notice that some of the diagrams are more jagged than others: the sample size 
is a very important consideration when assessing the reliability of a histogram 
as an indicator of shape. 

Here is another example. 

Example 2.20 Hepatitis 

Table 2.1 7 Chest 
measurements of 5732 
Scottish soldiers (inches) 

Measurement Frequency 

In the following data sets the same random variable is being measured, but Albert, A. and Harris, E.K. (1987) 
on two different sets of individuals. The variable is the logarithm of measures Mdtivariate interpretation of 

of ornithine carbonyltransferase (a liver enzyme) in patients suffering from l a b o r a t o ~  data. 
Marcel-Dekker, Inc., New York. 

two different forms of hepatitis. In Table 2.18, the 57 patients tested suffered 
from acute viral hepatitis; in Table 2.19, there were 40 patients sampled, suf- 
fering from aggressive chronic hepatitis. The investigators were interested in 
a comparison of the two groups of patient-specifically, whether or not it was 
possible to distinguish between the patient groups on the basis of measure- 
ments of the enzyme. 

Table 2.18 Enzyme measurements, acute viral hepatitis (log measure) 
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Table 2.19 Enzyme measurements, aggressive chronic hepatitis 
(log measure) 

3.01 2.99 2.60 2.47 3.04 1.92 2.17 2.33 2.07 2.30 2.56 2.11 
3.32 2.21 1.71 2.60 2.79 2.71 2.64 2.52 2.21 2.58 2.40 2.45 
3.18 2.84 2.84 2.31 2.71 2.47 2.72 3.71 2.73 3.69 3.40 2.77 
2.28 2.84 2.80 3.02 . 

Figure 2.22 shows the histograms for the two hepatitis data sets. 

Frequency Frequency 

Enzyme measurement. Enzyme measurement. 

(a)  (log measure) (h)  (log meamre) 

Figure 2.22 ( a )  Acute viral hepatitis (b) Aggressive chronic hepatitis 

Again, these two histograms show the same basic shape; and since they are 
measurements on the same variable, they can be compared directly. (See the 
comparative boxplot in Figure 2.23.) 

acute 
viral hepat,it,is 

0 0 
aggressive 
chronic hepatitis 

I I I I I I I I I I I 

1 .S  2 2.5 3 3.5 4 
Enzyme measurement (log meamre) 

Figure 2.23 Comparison of the two sets of liver enzyme measurements on 
hepatitis patients 

Figure 2.23 suggests very clearly that, while the two sample means are not 
very different from each other, the measurements on the liver enzyme are more 
variable for the group of patients suffering from aggressive chronic hepatitis 
than for those suffering from acute viral hepatitis. 

The similarity of all the histogram shapes that we have seen in this section sug- 
gests a family of probability distributions, all possessing the essential charac- 
teristic that they are symmetric about a central point at  which the distribution 
peaks. The only differences between members of the family are the location 
of that central point, and the dispersion, or degree of variability about it that 
is exhibited. 

We have come across the idea of a family of probability distributions already. 
The Bernoulli distribution can be used to model the outcome of a Bernoulli 
trial: this is a family of probability distributions indexed by the parameter p, 
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the probability of success. The binomial'family has two parameters: -n, the 
total number of trials, and p, the probability of success at any one trial. The 
context may differ (faulty light bulbs in a consignment, correct guesses in 
an examination), but the statistical circumstances are the same (count the 
successes in a sequence of independent trials) and the probability calculations 
involve the same kind of arithmetic procedures. 

Similar considerations apply to the examples in this section (except that the 
variation observed is continuous rather than discrete, as in the case of the 
Bernoulli and binomial distributions). The general shape illustrated in the 
preceding histograms arises frequently in practice. In fact, for reasons which 
are explained in Chapter 5, it is one of the most important distributions in 
statistics. It is called the normal distribution or Gaussian distribution. 

The normal probability density function may appear daunting at first: 

You can see that the density function depends on two constants p and a: 
these are the parameters of the normal family. A sketch of the normal p.d.f. 
is given in Figure 2.24. The normal family is symmetric about the parameter 
p and is such that observations less than about p - 3a or more than about 
p + 3a are rather unlikely. (Theoretically, the model permits any value of the 
random variable, negative or positive. It  may seem illogical then to apply 
it, say, to chest measurements or to the amount of an enzyme present in a 
biological sample. Remember, however, statistical models (like most math- 
ematical models) are not intended to be exact representations of the natural 
world, just suficiently good ones for conclusions drawn from the model to be 
sufficiently accurate.) 

We shall see that in attempting to apply the normal model to a particular 
random phenomenon, it makes sense to match the parameter p to the sample 
mean, and the parameter a to the sample standard deviation. Figure 2.25 
shows again the histogram of the 'heights' data from Table 2.15; superimposed 
on the histogram is a theoretical normal model with p set equal to 159.8 (the 
sample mean for the data) and a to 6.0 (the sample standard deviation). 

You do not need to remember this 
formula in order to make use of the 
normal mod,&l. 

The symbol p is a Greek letter 
pronounced 'mew'. The Greek 
letter U is pronounced 'sigma' (it is 
the lower-case version of the 
upper-case Greek letter C).  

Figure 2.24 The normal p.d.f. 

Height (cm) 

Figure 2.25 'Heights' data: trying a normal fit 
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The diagram suggests that the normal model provides a good 'fit' to the Freqllenry 
data-there will be much more to say about the quality of fit of a statistical 
model to data in the rest of the course. 

10 

Figure 2.26 repeats the histogram of blood plasma nicotine levels from 8 

Table 2.16; superimposed on the histogram is a normal curve, where p = 314.9 6 

(the sample mean for the data) and a = 131.2 (the sample standard deviation). 
The fit is not quite as good, since the data are perhaps slightly skewed but 
it may still be a usable model for practical purposes (which is what models 
are for). In Figure 2.27, the histogram for the Scottish chest measurements Nicotine level (ng/mI) 

data from Table 2.17 is reproduced; superimposed on the histogram is a fitted Figure 2.26 data: 
normal curve, with p set equal to 39.85 and a equal to 2.07. trying a normal fit 

Frequency 

Chest measurement (inches) 

Figure 2.27 'Chest measurements' data: trying a normal fit 

Here, the fit seems excellent, and a normal model with these parameters should 
provide a very good model for practical purposes. 

We shall return to the normal distribution in Chapter  5. The normal distri- 
bution is an example of a continuous distribution, like the triangular density 
function introduced in Section 2.2. At that stage, some rather drawn-out 
calculations were performed based on geometrical arguments. The point was 
made then that an easier approach is simply to use existing formulas and 

results. 

Now, with the word 'parameter' in our vocabulary, we can summarize all 
we need to know about this distribution. The triangular density that was 
adopted to model the Kwinana Freeway traffic data was characterized by the 
assumed maximum observable waiting time, t = 20 (measured in seconds). 
For the 'area under the curve' between t = 0 and t = 20 to be 1, it followed 
necessarily that the corresponding density was 

(though you were spared the details of the argument that leads to this result). 

This triangular density is just one of a whole family of triangular densities, 
whose indexing parameter can conveniently be taken to be the assumed maxi- 
mum observable waiting time (or length, or weight, or whatever quantity is 
appropriate to the random variable under consideration). 
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This motivates the following definition. 

The triangular probability model 
The continuous random variable T with range 0 5 t 5 8, and whose 
density possesses the characteristic skewed shape shown in Figure 2.28, 
is said to follow a triangular distribution with parameter 8, where 
8 > 0. This is written T Triangular(8). 

Figure 2.28 The density function f ( t )  when T Triangular(@) 

I The c.d.f. of T is given by 

The Greek letter B is pronounced 
'theta'. and is often used as the 
label for the indexing parameter of 
probability distributions. 

This is an example of 'a standard result': everything you need to know about 
the triangular probability model is summarized in the box. It is the last line 
that permits probability statements to be made. If the model is a good one, 
these statements will be a useful aid to understanding the random variation 
observed. 

Notice, incidentally, that the p.d.f. f (t) is not given in the description of the 
random variable T. This is because it is not needed in the calculation of 
probabilities (unless you want to go through the mathematical exercise of 
integration each time you need to find a probability). 

Now, if ever you decide that the triangular model with some given parameter 
provides an' adequate representation of random variation in some context, all 
you need to do in order to calculate probabilities is to use the given formula 
for the c.d.f. You might have to look it up, if you have forgotten it; or perhaps 
your computer knows about the triangular model, in which case you will not 
have to remember the formula at all. This approach is standard in this course. 
A typical scenario for the statistician might be as follows. 

A random context (such as coin tossing, bulb testing, measuring traffic waiting 
times) will be described, and observations on some associated random variable 
will be collected in order to obtain some idea of the inherent random variation. 
A probability model might then be deduced on mathematical grounds, as was 
done in the case of the binomial probability model, where the choice followed 
as a necessary consequence of the assumption that the Bernoulli trials were 
independent. In another case, the data might suggest a useful model (a normal 
model for heights, or a triangular model for the duration of gaps in traffic). 
In either case, the model might be found on further scrutiny to be faulty, in 
which case it needs further development. 
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Later in the course we shall return to the question of model fitting and model 
testing. In the final section of this chapter, no additional material is taught. 
You will be encouraged to try some further exercises consolidating the material 
of the chapter and to practise using your computer. 

2.5 Some further exercises 

As the course develops, you will be encouraged to make frequent use of your 
computer, pausing in your reading to examine some property of a data set, or 
to carry out a statistical test, the theory of which you have read about, but 
the practice of which would be tedious with pencil and paper. (Indeed, with 
some larger data sets it would be impossible to undertake a pencil analysis 
and to finish it within a reasonable time. With some others, it would be a 
possible but not an intelligent undertaking.) A sensible approach would be 
to perform some arithmetic calculations on your calculator, which may well 
include .simple or even some fairly advanced statistical functions, and to use 
your computer for the larger data sets. You were encouraged to use both 
approaches in the exercises at the end of Section 2.3. 

Exercise 2.17 
At the time of writing this section, one of the authors had a library of 5152 Data supplied by K.J. McConway, 
books-too many for his shelves-so many of them were stored in boxes. He The Open University. 
intended to move h&se andihoped that in his new house he would be able to 
have enough shelving for all his books. He considered that the books currently 
on his shelves poss&sed the same distribution of widths as his entire collection 
and so took a sample of 100 books from his shelves to estimate the shape of 
this distribution. The data are shown in Table 2.20. 

Table 2.20 Widths of 100 books (mm) 

(a) Plot a histogram of this sample, and calculate its mean and standard 
deviation. Using your calculated mean, obtain an estimate in metres of 
the total length of shelf space the author needed. 

(b) Comment on any similarities or differences between your sample his- 
togram and the bell-shaped distribution of S?ction 2.4. 

In Section 2.1 you conducted some simulations using a die and a coin. Simu- 
lation can be a very powerful tool to investigate natural phenomena and is 
normally done using a computer. For example, suppose we wish to explore 
the statistical properties of an engineering production line. We may believe 
that the objects produced each have a probability p of being faulty, and that 
whether or not an object is faulty is independent of whether any other object 
is faulty. We might be interested in how often all six objects in a group 
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of six will be in working order (perhaps the objects .are packed in boxes of 
six). We could try to explore this mathematically and indeed the problem 
is not very hard. Following the description (in Section 2.3) of the binomial 
distribution, we know that the proportion of boxes containing six working 
components out of six is (1 - p)6. Alternatively, since we have a well-defined 
mathematical model, we could program a computer to behave in the same 
way as we believe the production line behaves. We could get the computer 
to generate random OS and 1s so that a proportion p of them were 1s and 
the others OS, and interpret 1 as corresponding to a faulty product. Then we 
would look through the sequence of OS and 1s generated by the computer and 
grouped in sixes, and see how often a set of six is all OS. 

This is an example of simulation. It is a rather artificial example in that it is 
easy to work out the answer algebraically, as has been done. As the course 
progresses, we shall discover more realistic situations and reasons for using 
simulation approaches. To get used to the idea of generating data on your 
computer, try the following exercises. 

Exercise 2.18 
(a) Using the Bernoulli random number generator of your computer, gener- 

ate 10 values from a Bernoulli distribution with parameter p = 0.2, and 
calculate the total number of 1s amongst the 10 values. 

Now use the binomial random number generator to generate a single value 
from a binomial distribution B(10,0.2). 

What is the relationship between the populations from which these two 
numbers have come? 

(b) Again using the binomial random number generator, generate 10 values 
from a B(20,0.5) distribution, 100 values from the same B(20,0.5) distri- 
bution and then 500 values from the same B(20,0.5) distribution. 

In each of the three cases produce a bar chart of the samples. 

Comment on the differences between the three bar charts in terms of how 
jagged and irregular they are. 

(c) Using the binomial random number generator, generate 500 values from 
(i) a binomial distribution with parameters n = 10 and p = 0.1; 
(ii) a binomial distribution with parameters n = 10 and p = 0.3; 
(iii) a binomial distribution with parameters n = 10 and p = 0.5. 

In each case, produce a bar chart for the 500 values. 

How do you think the parameter p affects the shape of the binomial 
distribution? 

(d) Using the binomial random number generator, generate 500 values from 
(i) a binomial distribution with parameters n = 10 and p = 0.2; 
(ii) a binomial distribution with parameters n = 30 and p = 0.2; 
(iii) a binomial distribution with parameters n = 50 and p = 0.2. 

In each case produce a bar chart of the 500 values. 

What effect do you think the parameter n has on the shape of the binomial 
distribution? 



Chapter 2 Section 2.5 

The next exercise is about the simulation of an industrial process. 

Exercise 2.19 
Fuses for use in domestic electrical appliances are packaged in bags of eight 
for sale to customers. The probability that any fuse is defective is 0.012. 

A retailer buys a box of 100 of these bags direct from the manufacturer. Use 
your computer to 'open the bags' and count the number of defective fuses in 
each one. How many bags contained no defectives? How many contained just 
one? Complete a frequency table like the one in Table 2.21. 

Table 2.21 Defective fuses 

Number of Frequency 
defective fuses 

Total 100 

The next exercise is about generating the results from simulated rolls of a die. 

Exercise 2.20 
(a) Use your computer to roll a fair six-sided die 6 times; compare the 

sample relative frequencies for each of the six different outcomes with 
the theoretical probabilities. 

(b) Now use your computer to roll the die 600 times and repeat the calcu- 
lations. 

Exercise 2.21 

A researcher is exploring the theory that after early injury to the left half 
of the brain, the brain reorganizes itself to compensate for the loss. She 
hypothesizes that one manifestation of such reorganization would be that 
people who would otherwise have been right-handed would, after such damage 
and reorganization, become left-handed. To test this hypothesis she wishes 
to compare the proportion of left-handed people in the population of the 
United Kingdom with the proportion of left-handed people in a sample of 
brain-damaged people. 

She knows that in the United Kingdom population, around 10% of the people 
are left-handed. 

In a sample of 33 people who were brain-damaged at  birth, 8 were found to 
be left-handed. Eight out of 33 represents a proportion of about 24%. 

Data were provided by 
Dr S.L. Channon, Middlesex 
Hospital, University College 
London. 
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This suggests that there may be some basis for the researcher's theory. How- 
ever, we should explore the random variation that might be observed in 
samples from the wider population. If a count as high as 8 turns out to 
be not unusual, then, on the evidence of this experiment at least, there may 
be no foundation for her belief. 

Using the binomial random number generator on your computer, generate 100 
samples from a binomial distribution with parameters n = 33 and p = 0.1, i.e. 
10%, and see what fraction of these samples produce a count of 8 or more. 
This fraction gives you an indication of how often you might expect to obtain 
as many as 8 out of 33 left-handed people, if the proportion of left-handed 
people in the overall population from which the sample was drawn was only 
10%. If this fraction is very small then the researcher can feel confident that 
there is some substance to her hypothesis. If the fraction is large then such 
an outcome (at least 8 out of 33) could easily have arisen by chance. 

This is an example of a statistical hypothesis test; hypothesis testing is de- 
scribed more formally in depth later in the course. 

If your computer incorporates functions or procedures for the triangular 
density Triangular(B), you can use the following exercise to investigate the 
command syntax. Otherwise, use your calculator. 

Exercise 2.22 

(a) If the continuous random variable V follows a triangular distribution with 
parameter 60, i.e. V - Triangular(GO), find 

(i) P ( V I 2 0 ) ;  
(ii) P ( V  > 40); \ 
(iii) P(20 5 V 5 40). 

(h) The following table gives the waiting times, that is, the gap (to the nearest Cox, D.R. and Snell, E.J. (1981) 
half-hour) between consecuti've admissions at an intensive care unit. (The ,Applied Statist ics-Princ~ples and 

data are read across the rows.) Examples.  Chapman and Hall, 
London, D. 53. The data were 

Table 2.22 Waiting times between admissions (hours) 
collectedAby Dr A. Barr, Oxford 
Regional Hos~ital Board. 

(i) Obtain a histogram for these data. 

(ii) Comment on the feasibility of fitting a triangular model to these data, 
and decide on a sensible value for the indexing .parameter 8. 

(iii) Use your model to determine the long-term proportion of waiting 
times that would exceed 100 hours. Compare this with the corresponding 
estimate of that proportion, based on these data. 



Chapter 2 Section 2.5 

Summary 

1. A random variable taking integer values only is called discrete. The 
probability mass function of a random variable X 

for X = 0,1,2,. . . , (or some other subset of the integers) describes the 
probability distribution of X .  

2. The random variable X follows a Bernoulli distribution with parameter 
p if it has probability mass function 

1-1 
P(X) = pX( l  -P) , X = 071, 

where 0 < p < 1. 

This is written X Bernoulli(p). 

3. The random variable X follows a binomial distribution with parameters 
n and p if it has probability mass function 

where 0 < p < 1 and 

This is written X W B(n,p) ,  and provides a probability model for the 
total number of successes in a sequence of n independent Bernoulli trials. 

4. A random variable X is called continuous if it can take any real value be- 
tween some lower limit (a, say) and some upper limit (b). Its probability 
distribution is given in terms of the probability density function 

The cumulative distribution function of X is given by 

P(X 5 X)  = F(X) = lx f(w)dw, a < x < b, 

where the integral notation means the 'area under the curve f (W) between 
the limits W = a and W = X'. 

5. The continuous random variable W is said to follow a triangular distri- 
bution with parameter 0 if it has cumulative distribution function 

W 2  
F(w) = P ( W  < W) = 1 - (1 - -) , 0 < W < 8. 

0 

This is written W N Triangular(0). 
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Models for Data I1 

In this chapter, more models for random variation within a population are described 
and characteristics of the models are identified. In particular, the notions of popu- 
lation moments and population quantiles are introduced. 

In Chapter l ,  some straightforward ways of examining data were described. 
The methods were applied to  samples of data to shed light on particular ques- 
tions. The techniques introduced included a variety of graphical methods for 
picturing the data, and some numerical quantities for summarizing the data 
in different ways-such as the sample mean and sample standard deviation. 
Very often, however, the sample itself is not of any special interest. What 
we really want to do is make some statement about the entire population 
from which the sample is drawn. Much of statistics is concerned with making 
inferences from a sample to the population: how to estimate population par- 
ameters from samples, how to evaluate the confidence we should have in the 
results, how to design experiments or draw samples so that we can obtain the 
most accurate estimates, and so o n .  

In Chapter 2, probability models were introduced. In particular, probability 
distributions were introduced as models for random variation. Some sections 
of that chapter focused on general properties (such as probability mass func- 
tions, probability density functions and cumulative distribution functions), 
while others concentrated on specific models and their properties. The dis- 
tinction between discrete and continuous random variables was drawn. The 
ideas were illustrated by the Bernoulli and binomial distributions (both dis- 
crete), and the normal distribution (continuous). This chapter continues 
in the same vein: some sections introduce general properties of population 
models, while others deal with particular models. 

General properties are introduced i n  Sections 3.1, 3.2 and 3.5. In Section 3.1, 
population analogues of the sample mean and sample variance introduced in 
Chapter 1 are discussed. Chapter 1 also introduced sample quartiles and 
the sample median. There are again corresponding population measures and 
these are discussed in Section 3.5. Just as sample statistics can be used to 
describe aspects of the shape of t h e  distribution of values in the sample, so 
the corresponding population parameters describe features of the population 
models. 

Section 3.2 concerns a fundamental concept, introduced briefly in Chapter 2, 
namely the concept of independence. The idea of independence-that the 
outcome of one trial (measurement, score, observation, and so on) does not 
influence the outcome of another-is vitally important. A great many statisti- 
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cal techniques assume that observations are independent (for example, that 
the outcome of two tosses of a coin are independent, or that the responses of 
two patients in a test of a new medicine are independent). If this assumption 
turns out to be false then more sophisticated statistical techniques have to be 
devised. 

The two particular models developed in this chapter are the geometric distri- 
bution and the uni form distribution. The former is outlined in Section 3.3 and 
arises, like the binomial distribution, from a statistical experiment involving 
a sequence of independent trials each of which has a binary outcome (either 
success or failure). Here, however, interest focuses not on the total number of 
successes in a sequence of trials, but on the number of trials needed until the 
first success is obtained. 

The uniform distribution has already been used in Chapter 2,  page 6 2  as a 
model for the outcomes observed when a perfect die is rolled. In Section 3.4, 
the uniform distribution is discussed in more detail. 

3.1 Population means and variances 

In Chapter  l, we saw how certain important characteristics of samples of data 
can be encapsulated by various numerical summaries. Examples included the 
sample mean, the sample median and the sample standard deviation. If a 
bar chart or histogram, as appropriate, were used to represent the variation 
in the data, then these numerical summaries could be seen to be describing 
various aspects of the shape of the bar chart or histogram. For example, the 
sample mean and median tell us about the 'location' of the sample in certain 
senses; the 'spread' or 'dispersion' of the data can be measured by the sample 
standard deviation, or alternatively by the sample interquartile range; and 
the sample skewness measures asymmetry of the data. 

Given a sample of values, we know how to compute numerical descriptors such 

as those mentioned above: you had some practice at doing so in Chapter l .  
However, if we were to assume a probability model as adequate for the vari- 
ation within a population, how might we define and calculate similar numeri- 
cal summaries for the population such as the population m e a n  and population 
standard deviation? These are sometimes required for a statistical analysis. 

Here is an example of the sort of context within which we might need to 
perform a comparative test, and for which we therefore first need a model. 

Example 3.1 Origins of the Etruscan empire 
The origins of the ~ t r u s c i n  empire remain something of a mystery to anthro- The Etruscan urban civilization 
pologists. A particular question is whether Etruscans were native Italians reached its zenith in about the 

or immigrants from elsewhere. In an anthropometric study, observations on Sixth century BC. 

the maximum head breadth (measured in mm) were taken on 84 skulls of 
Etruscan males. These data were compared with the same skull dimensions for 
a sample of 70 modern Italian males. The data are summarized in Table 3.1. 
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Table 3.1 Maximum head breadth (mm) 

84 Etruscan skulls 

141 148 132 138 154 142 150 146 155 158 150 
140 147 148 144 150 149 145 149 158 143 141 
144 144 126 140 144 142 141 140 145 135 147 
146 141 136 140 146 142 137 148 154 137 139 
143 140 131 143 141 149 148 135 148 152 143 
144 141 143 147 146 150 132 142 142 143 153 
149 146 149 138 142 149 142 137 134 144 146 
147 140 142 140 137 152 145 

70 modern Italian skulls 

133 138 130 138 134 127 128 138 136 131 126 
120 124 132 132 125 139 127 133 136 121 131 
125 130 129 125 136 131 132 127 129 132 116 
134 125 128 139 132 130 132 128 139 135 133 
128 130 130 143 144 137 140 136 135 126 139 
131 133 138 133 137 140 130 137 134 130 148 
135 138 135 138 

The statistical procedures for such a comparison will be described in Chapter  8. 
(In fact, a simple comparative boxplot as shown in Figure 3.1 suggests marked 
differences between the Etruscan skulls and those of modern Italian males.) 

m . -71- m Etruscan males 

m T I -  m modern Italian males 

Barnicot, N.A. and Brothwell, D.R. 
(1959) The evaluation of metrical 
data in the comparison of ancient 
and modern bones. In 
Wolstenholme, G.E.W. and 
O'Connor, C.M. (eds) Medical 
Biology and Etruscan Origins. 
Little, Brown and Co., USA. 

Figure 3. 1 Comparative boxplot, two skull samples 

Histograms for the two skull samples are shown in Figure 3.2. These suggest 
that in either case a normal model as described in Chapter  i, Section 2.4, 
might be adequate for the purposes of a comparative test, but with different 
indexing parameters in the two cases. 

Frequency 

14 Frequency 

12 12 

10 10 

8 8 

6 6 

4 4 

2 2 

0 0 
110 120 130 140 150 160 170 110 120 130 140 150 160 170 

Maximum head breadth (mm) Maximum head breadth (mm) 
(a) (b) 

Figure 3.2 
Histograms, two skull samples: (a) 84 Etruscan males (b) 70 modern Italian males 
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The two usual sample summaries for location and dispersion are the sample 
mean and sample standard deviation. For these data, we have the following 
summary statistics: 

84 Etruscan skulls: T = 143.8, S, = 6.0; Notice the use of subscripts to 
70 Italian skulls: g = 132.4, S, = 5.7. distinguish between the two 

samples. 
These values suggest that the skulls of the modern Italian male are, on average, 
both narrower and slightly less variable than those of the ancient Etruscan. 
If the breadth of Etruscan skulls may be adequately modelled by a normally 
distributed random variable X and the breadth of modern Italian skulls by 
a normally distributed random variable Y, then differences in the indexing 
parameters should reflect the differences observed in the two samples. 

In this section, we shall be concerned chiefly with two of the main numerical 
summaries of population probability models, the population analogues of the 
sample mean and sample variance (or sample standard deviation). Other 
important concepts, such as the population median and other quantiles, will 
be discussed in Section 3.5. 

Let us begin with a look at how the notion of the sample mean can be devel- 
oped to help us define its population counterpart, the population mean. 

3.1.1 The population mean: discrete random 
variables 

Example 3.2 Rolls of a fair die 
The outcomes of 30 rolls of a fair die are given in Table 3.2. 

Table 3.2 30 rolls of a fair die 

One way of calculating the sample mean for the 30 rolls (if you had to do this 
by hand) is simply to obtain the sample total and divide by the sample size: 

Alternatively, one could start by summarizing the original data in the form 
of a frequency table. This is shown in Table 3.3. Table 3.3 Frequency table for . . 

the 30 rolls of the die 
There are five 1s (a total of 1 X 5 = 5), seven 2s (a total of 2 X 7 = 14), and 
so on. Then the sample mean could be computed as Outcome ( j )  1 2 3 4 5 6 

Frequency (fj) 5 7 6 4 5 3 

achieving the same result but by a different method. W 

This example shows that, given a sample of data from a discrete distribution, 
there are two equivalent ways of calculating the sample mean.If XI ,  x2, . . . , 2 3 0  
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denote the values in the sample in Example 3.2, in the first method we obtain 
the sample mean by adding all the values together and dividing by 30. In this 
case we are using the familiar definition of the sample mean, 

The idea behind the second approach is to count how many of each particular 
outcome there are in the sample in order to obtain a frequency table. If 
we denote the number of occurrences of outcome j in the sample by f j  (for 
instance, fi = 7, in Example 3.2), the contribution made to the total by each 
of the outcomes j is j X fj (for example, 2 X 7 = 14). Adding all these up and 
then dividing by n (the sample size, equal to 30 in Example 3.2), we obtain 
the sample mean in the form 

Here, the sum is over all possible outcomes j (1,2, .  . . ,6, for the die). The 
two formulas (3.1) and (3.2) for Z give the same answer. 

However, in Chapter 2, Subsection 2.1.2, you saw how a discrete probability 
p(j)  could be defined by taking the limiting value of the sample relative fre- 
quency of the observation j as the sample size n gets larger and larger. By 
writing 5 in the form (3.2), or perhaps even more clearly in the form 

the same idea can be employed here to produce a definition of the population 
mean, at least for a discrete random variable. By simply replacing the sample 
relative frequency f j / n  by its limiting value, the probability p(j) ,  we obtain 
the following definition. 

For a discrete random variable taking the value j with probability p(j) ,  
the population mean is given by 

j 

where the sum is over the set of possible observed values, that is, over 
the range of the random variable. 

Example 3.3 The average score when a fair die is rolled 
For a die that is assumed to be fair, each of the six possible outcomes 
j = 1 , 2 , .  . . , 6  occurs with probability p(j)  = i .  The mean outcome in a 
single roll of a fair die is therefore 

P = C j p ( j )  
j 

= (1 X i) + (2 X i) + (3 X i) + (4 X i) + (5 X i) + (6 X i) 
= i ( l + 2 + . . . + 6 ) = 3 . 5  . H 

We shall discuss the case of 
continuous distributions in 
Subsection 3.1.2. 

The lower-case Greek letter p is 
often used to denote a population 
mean. 
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Notice that it is not necessary for the mean of a random variable X to be in 
the range of X :  3.5 is not a possible outcome when a die is rolled. As another 
example, the 'average family size' in Britain is not an integer. 

Exercise 3.1 
In Chapter 2, you were also introduced to certain unfair dice called Tops and Table 3.4 A Double-Five 
you saw that, for a Double-Five, the probability distribution for the outcome j 1 3 4 5 6  
of a single roll is as given in Table 3.4. p ( j )  1 1 L 

6 3 6  ~-~ 

What is the mean of this distribution? How does it compare with the mean 
outcome for a fair die? 

One very important application of statistics is to epidemiology-the study of 
health and illness in human populations. Many different models have been 
developed for the transmission of infectious diseases, a few of them simple, but 
most of them rather complicated. In small communities (for instance, families 
and schools) one variable of interest is the total number of people who catch a 
disease, given that initially one member of the community becomes infected. 
In a family of 4, say, that number could be 1,2,3 or 4. This number is a 
random variable because epidemic dynamics are, to a great extent, a matter 
of chance-whether or not you catch your brother's cold, for instance, is not 
a predetermined event. 
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Exercise 3.2 
B 

One model for a certain disease within a particular family of 6 gave the prob- Table 3.5 A family of 6  
ability distribution for the number X ,  who eventually suffer from the disease, 1 2 3 4 5 6  
as shown in Table 3.5. 8 15 20 24 20 

P )  & S S S 56 
What is the mean of the distribution of X ?  

An alternative terminology for the mean of a random variable X is the ex- 
pected value of X or simply the expectation of X .  This is written E ( X )  
as an alternative to p. 

We can summarize the foregoing as follows. 

The mean of a discrete random variable 

For a discrete random variable X with probability mass function 

P ( X  = X) = p(x) 

over a specified range, the mean of X or the expected value of X or 
the expectation of X is given by 

where the sum is taken over the range of X 



Chapter 3 Section 3.1 

The notation p for the mean of a random variable X is sometimes modified to 
include the subscript X ,  that is, px.  This notation is particularly useful where 
a model involves more than one variable, as the means of different random 
variables cannot then be confused, However, in this course the subscript will 
not usually be included except where it is necessary to avoid ambiguity. 

Example 3.4 Using the E (.) notation 
If X denotes the score on a single roll of a fair die (Example 3.3), then the 
expected value of X is 

On the other hand, if the random variable Y denotes the score on a single roll 
of a Double-Five (Exercise 3.1), then the expected value of Y is 

For the family of 6 (Exercise 3.2), the expected number E ( Z )  of family mem- 
bers who eventually suffer from the disease is 

Occasionally, the phrase 'expected value' or 'expected number' is more natural 
than 'mean'. But notice that 'the value you would expect to get' is not usually 
a valid interpretation: you could not actually have 4.3 ill people in a family, 
because the number 4.3 is not an integer. H 

The examples above are for probability distributions where the probability 
mass function could be specified exactly. Earlier, the idea of indexing dis- 
tributions by means of some unspecified quantity or quantities called the 
parameter(s) of the model was introduced. It will be particularly useful if 
some simple link can be established between the indexing parameter(s) and 
some summary measure, such as the mean: this would aid the interpretation 
of model parameters. 

Let us take a look, then, at the first 'parametric family' of discrete distri- 
butions to which you were introduced in Chapter 2, Section 2.3. This was the 
Bernoulli family of models: each distribution in this family allows only the 
two possible outcomes 0 or 1, and the probability mass function of a Bernoulli 
distribution is p(1) = p, p(0) = 1 -p.  (Here, p is the indexing parameter.) 
The population mean of any Bernoulli distribution can therefore be found in 
terms of p. In fact, 

That is, the population mean of a Bernoulli distribution is the parameter p 
used to index this family of models. 

Exercise 3.3 
(a) What is the mean score resulting from a toss of a fair coin, if we score 1 

for Heads and 0 for Tails? 
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(b) Suppose that a random variable is defined to take the value 1 when a fair 
die shows a 3 or a 6, and 0 otherwise. What is the mean value for this 
Bernoulli distribution? 

The second discrete probability distribution introduced in Chapter 2 was the 
binomial distribution or family. If the random variable X has a binomial 
distribution B(n,p)  then the probability mass function of X is 

So, using the definition in (3.3), the mean of X (or the expected value of X) 
is given by the sum 

In fact, this calculation is not quite as unwieldy as it looks, and a small amount 
of algebraic manipulation would give us the answer we need. However, no 
algebra is necessary if we think about what the binomial random variable X 
represents. It is the number of successes in a series of n trials, where the 
probability of a successful outcome at each trial is p. So the problem posed is 
this: what is the expected number of successes in such a series of n trials? No 
formal mathematics is required to provide an answer to this question (though 
it could be used to provide a formal proof). If, for instance, 100 trials are 
performed and for each the probability of success is i, then the expected 
number of successes is 100 X = 25 and the expected number of failures is 
100 X = 75. In general, the mean of a binomial random variable X indexed 
by the two parameters n and p is given by the product 

E(X) = np. (3.5) 

Notice, as in the case of a fair die, that the mean may be some value not in 
the range of X (for instance, take n = 100 and p = $; the number np = 33; is 
not an integer). Nevertheless, the mean or expectation is a statement about 
the 'long-term' average number of successes in sequences of Bernoulli trials. 

Example 3.5 The mean of a binomial random variable: two methods of 
calculation 
If X is binomial B(4,0.4), then its probability mass function is given by 

The individual probabilities are as follows. 

The mean of X is then 
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This is much more easily obtained using (3.5): 

E ( X )  = n p  = 4 X 0.4 = 1.6. 

This may be shown graphically as in Figure 3.3. The point X = 1.6 (the mean 
of the distribution) is shown as an arrowhead on a sketch of the probability 
mass function of X .  

Figure 3.3 The mean of X when X B(4,0.4) 1 

Example 3.6 Spores of the fungus Sordaria 
The spores of the fungus Sordaria are produced i n  chains of eight. Any chain 
may break (at any of the seven joints) and the spores are thus projected in 
chainlets varying in length from one to eight. It t u rns  out that it is reasonable 
to model the breakages occurring at the joints as independent; and each joint 
has the same probability p of breaking. 

So, for instance, an original chain of eight might survive unbroken with prob- 
ability (1 - However, it might break at all seven joints, so that eight 
chainlets all of length one are projected. This occurs with probability p7. 
Chainlets of length one are called 'singletons'. 

The number of singletons, X ,  produced by a chain of eight spores is a ran- 
dom variable taking values O,1,2,. . . ,8. (Actually, a count of seven is not 
possible, for the eighth spore would itself necessarily be a singleton too.) The 
probability distribution of X is given in Table 3.6. (The distribution derives 
directly from a complete enumeration of possible cases; you should not bother 
to check these results.) 

In this case there is no particularly obvious way of deducing the average 
number of singletons produced, other than by applying the formula. This 
gives 

after considerable simplification. For instance, i f  p is 0.8 (the original chain 
is very fragile) the expected number of resulting singletons is 5.44. If p is 
as low as 0.1 (the original chain is robust) the expected number of resulting' 
singletons is only 0.26. 

The mean has the following 
physical interpretation (rather 
idealized): imagine lead weights of 
mass 0.1296, 0.3456, 0.3456, 0.1536 
and 0.0256 units placed a t  equal 
intervals on a thin dank  of zero 
mass. If it is represented by the 
horizontal axis in Figure 3.3, the 
plank will balance at the point ' 

indicated by the arrowhead-at a 
point just to the right of the 
midpoint between the two largest 
weights. 

The probability of a conjunction of 
independent events is found from 
the product of the probabilities of 
the component events. This result 
was used in our'derivation of the 
binomial probability distribution in 
Chapter 2, Subsection 2.3.2.- -- 

Table 3.6 The probability 
distribution of the number 
of singletons, X 

The simplification in the last line of 
the calculation of the mean E ( X )  
involved quite a lot of algebraic 
manipulation, which you should 
not attempt to verify! A computer 
running an algebra program was 
used for these calculations. 
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However, in this case there is no immediate interpretation of the mean in 
terms of the indexing parameter p. 

These arithmetic calculations are illustrated in Figure 3.4. Notice the 
interesting multimodal nature of the probability distribution of the number 
of singletons when p is 0.8. 

Number of singletons, X 
(4 

Number of singletons, X 
(b) 

Figure 3.4 The probability distribution of the number of singletons 
(a) for p  = 0.8; (b) for p  = 0.1. 

Exercise 3.4 
A chainlet of length four is called a 'quad'. The original chain will result in 
two quads being projected, for instance, only if the middle joint breaks and 
the other six do not: the probability of this is p(l - p ) 6 .  The probability 
distribution of the number of quads projected is given in Table 3.7. Again, 
do not worry about the algebraic details. 

Table 3.7 The probability distribution of the number of quads, Y 

Y  P ( Y )  

Find the expected value of Y when 

(a) p = 0.1; (b) p = 0.4; (c) p = 0.6; (d) p = 0.8. 

3.1.2 The population mean: continuous random 
variables 

The variation that might be observed in measurements on a discrete random 
variable is expressed through its probability mass function, and you have seen 
how to use the p.m.f. to calculate the mean or expected value of a discrete 
random variable. Similarly, variation observed in measurements on a continu- 
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ous random variable may be expressed by writing down a probability density 
function. If this density function is a good model then we should be able to 
use it not just for forecasts about the likelihood of different future measure- 
ments but, as in the case of discrete random variables, to provide information 
about the long-term average in repeated measurements. 

As in the case of the mean of a discrete random variable, the value of the 
expectation p = E ( X )  of a continuous random variable X has a physical 
interpretation. It is the point about which a physical model of the density 
would balance, if such a model were constructed (say, of tin plate). Here are 
some examples. 

Example 3.7 Means of continuous random variables 
In Chapter 2, Example 2.8, the triangular density Triangular(20) was used 
as a model for the waiting time (in seconds) between vehicles, for traffic 
using the Kwinana Freeway in Perth, Western Australia. The density is 
shown in Figure 3.5. Also shown is the point at which a tin triangle with 
these dimensions would balance. This point occurs one-third of the way 
along the base of the triangle, at the point t = 6:. This is the mean of 
the triangular distribution with parameter 20. 

Figure 3.5 The triangular density Triangular(20), showing the mean p = 6; 

The density of the random variable X N(p,  a2) is shown in Figure 3.6. 
(Observations on X much below p - 3a or much above p + 30 are possible, 
but unlikely.) The normal density is symmetric: if it were possible to 
construct a tin-plate model of the density, the model would balance at 
the point X = p. 

Figure 3.6 The p.d.f. of the normal distribution N(p, a2) 
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So, in fact, one of the two indexing parameters for the normal family 
is the mean of the distribution. Observations are no more likely to be 
above the central value p than below it. The long-term observed average 
is bound to be ,U itself. I 

In the following exercise you are asked to simulate random observations from 
the triangular family, and use your findings to suggest a general formula for 
the mean of the triangular distribution Triangular(0). 

Exercise 3.5 
(a) Generate a random sample of size 10 from the triangular distribution 

with parameter 0 = 20. List the elements of your sample and calculate 
the sample mean. 

(b) Find the mean of a random sample of size 1000 from the triangular dis- 
tribution with parameter 0 = 20. 

Repeat the sampling procedure a further nine times and list the ten sample 
means you obtained. (You should find that your list offers supporting 
evidence for the result stated in Example 3.7(a): that the mean of the 
triangular distribution Triangular(20) is 6g.) 

(c) Find the mean of random samples of size 1000 from triangular populations 
with parameters (i) 0 = 30; (ii) 0 = 300; (iii) 0 = 600. 

(d) Use your results in this exercise to hazard a guess at the mean of the 
continuous random variable T when T Triangular(@). 

Most probability density functions possess neither the symmetry of the normal 
density function nor the rather convenient geometrical form of the triangular 
density function. How, in general, is the mean of a continuous random variable 
calculated? 

The result (3.3) tells us that for a discrete random variable X with probability 
mass function ~ ( x ) ,  the mean of X is given by the formula 

where the summation is taken over the range of X. This represents an av- 
erage of the different values that X may take, according to their chance of 
occurrence. The definition of the mean of a continuous random variable is 
analogous to that of a discrete random variable. 

The mean of a continuous random variable 

For a continuous random variable X with probability density function 
f (X) over a specified range, the mean of X or the expected value of 
X is given by 

where the integral is taken over the range of X. 
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As you can see, the technique of integration is required for the calculation 
of the mean of a continuous random variable. If you are familiar with the If you are not familiar with the 
technique, you might like to  confirm for yourself some of the standard results technique of integration, this will 

that  follow now and in the rest of the course. However, these are standard "Ot interfere with 
understanding of the results. 

results and you would not be expected to obtain them from first principles. 

Example 3.8 The mean of the triangular distribution 
(a) You saw in Chapter 2, Subsection 2.2.2, that the p.d.f. of the continuous 

random variable T W Triangular(20) is given by 

Using (3.6), the mean of T is 

(b) In Exercise 3.5(d) you guessed the mean of the triangular distribution 
Triangular(0). Now your guess can be confirmed (or otherwise). The 
p.d.f. of the continuous random variable T Triangular(0) is given by 

So the mean of the distribution is given by 

The c.d.f. of T, 

was given in Chapter 2, 
Section 2.4. Just as a c.d.f. is 
obtained from a p.d.f. by 
integration, so a p.d.f. is obtained 
from a c.d.f. by the inverse 
operation, known as differentiation. 
If you are familiar with this 
technique, you can check that the 
triangular p.d.f. is as stated. 
However, it is used here only as a 
means to an end: to find the mean 
of the triangular distribution. 
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Example 3.9 The mean of the normal distribution 
Were you to calculate the mean of the normal distribution N(p ,  a2) directly 
from (3.6), 

you would find that the parameter a vanished and you were left with 
E ( X )  = p .  

Now try the following exercise. (Notice that the two results you need to 
answer the question are given to you: you do not need to obtain them from 
first principles.) 

Exercise 3.6 
For the triangular distribution with parameter 0, the c.d.f. is given by 

and the mean of the distribution is p = i0 .  

It is assumed in a traffic monitoring context that the triangular density pro- 
vides an adequate model for the waiting time between successive vehicles, but 
the value of the parameter 0 is unknown. (It could be one of the aims of a 
sampling experiment to estimate the value of 0: see Chapter 6 for more on 
the topic of estimation.) 

What proportion of waiting times is longer than average? 

3.1.3 The population variance 
In Subsection 3.1.2 the idea of a sample mean was extended to the mean of 
a theoretical model for the observed variation, which was denoted by p or 
E ( X )  (the expected value of X) .  Now we require a measure of dispersion for 
a population, analogous to the sample variance or sample standard deviation. 
The following example illustrates a typical context in which knowledge of a 
population variance is essential to answering a scientific question. 

Example 3.10 Measuring intelligence 
A psychologist assessing intellectual ability decides to use the revised Wechsler 
Adult Intelligence Scale-WAIS-R-to measure IQ. She finds that one subject 
has a score of 110. This is above the population mean of 100. But how far 
above the mean is it? Should she expect many people to score as high as this, 
or is the difference of 10 points a large difference? To answer this question 
she needs to know something about the spread or dispersion of IQ scores in 
the population, and she might, for example, choose to measure this spread 
using the population analogue of the sample standard deviation encountered 

in Chapter 1. I 
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As defined in Chapter l, the sample variance is given by 

s2 = - (xi -q2. 
n - l  

i= l 

This measure of dispersion gives the average squared deviation of each item in 
the sample from the sample mean, with the small distinction that the average 
is obtained through division by n - 1 rather than by n. The analogous measure 
for a probability model is the expected squared deviation of a random variable 
X from the mean of X .  This may be written using the 'expectation' notation 
E(.)  as 

So now we require not simply 'the expected value of X' ,  but 'the expected 
value of a function of X'. We need to calculate the value of that function 
(X - ,CL)' for each value of X in the range of X ,  and then average the squared 
deviations obtained over the probability distribution of X .  

Example 3.2 continued 
In Example 3.2 we looked at the results of 30 rolls of a fair die. The sample 
mean was found to be a: = 3.2. For this sample, the sum of squared deviations 
from the mean is given by 

This can more conveniently be written as 

and so the sample variance (dividing by n - 1 = 29) is 

However, a theoretical probability model for the outcome of rolls of a fair die 
l is provided by the random variable X with probability mass function 
i 

The mean of X is given by 

p = E ( X )  = ; ( 1 + 2 + 3 + 4 + 5 + 6 )  =3.5. 
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The expected value of (X - p)2 is found by averaging the values obtained for 
(X - p)2 over the probability distribution of X :  

So we see that our sample of 30 rolls was, on that occasion, a little less variable 
than theory would have suggested. 

For discrete probability distributions, then, the variance is given by (3.7). 

The variance of a discrete random variable 

For a discrete random variable X with probability mass function 

over a specified range, with mean p = E(X) ,  the variance of X is given 
by 

where the sum is taken over the range of X .  

The standard deviation of X is given by the square root of the variance: 

It is a common statistical 
convention to denote the variance 
of a random variable by oz. The 
alternative notation V ( X )  will also 
often be used. 

For instance, the standard deviation in the outcome of rolls of a fair die is 
m = 1.71. 

Exercise 3.7 
What is the variance of the outcome of throwing a Double-Five? How does 
this compare with the variance for a fair die? 

We can work out the variance of any Bernoulli distribution with parameter p. 
Recall that the possible outcomes are just 0 and 1; so, from the definition, 
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Since p(0) = 1 -p,  p(1) = p and, from (3.4), the mean is p, it follows that 

a2 = ( - ~ ) ~ ( 1  -p )  + (1 - p)2p 

= ~ ( 1 -  P)(P+ 1 -P) 

= P( l  -P). 

Calculation of the variance of the binomial distribution B(n,p) will be post- 
poned to Chapter 4, Section 4.3. 

We can move from the case of discrete distributions to that of continuous 
distributions just as we did for means. In short, we replace the p.m.f. by a 
p.d.f., and the sum by an integral. 

The variance of a continuous random variable 

For a continuous random variable X with probability density function 
f (X) over a specified range and with mean p = E(X) ,  the variance of 
X is given by 

a2 = V(X) = E [(X - p)'] = (X - ' ~ ) ~ f  (X) dx, 
X 

where the integral is taken over the range of X .  

The formula for the variance of a random variable will shortly be rewritten in a 
way that leads to some easement of the algebra. However, for common models 
it is not usually necessary to go through the algebra at all-the results are 
standard and well-known. At this stage, it is useful to notice that regardless 
of whether the random variable X is discrete or continuous, its variance can 
be written as 

The normal probability distribution is discussed in more detail in Chapter 5. 
However, just as the parameter p indexing the normal distribution is the 
mean of the normal distribution, so the second parameter a2 indexing the 
normal distribution is the variance of the distribution (and a is its standard 
deviation). 

Now recall the question posed in Example 3.10: is a score of 110 on an IQ test, 
where the population average score is 100, unusually high? If the underlying 
probability distribution of WAIS-R scores were known, this question could be 
answered. 

In fact, the IQ scale is designed to take account of the variability in responses 
from within the population in such a way that the resulting scores are normally 
distributed with mean p = 100 and standard deviation a = 15 (variance 225). 
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We can plot the corresponding normal density and identify the location of the 
particular score of interest, 110. This is shown in Figure 3.7. 

Figure 3.7 An observed score of 110 when X N(100,225) 

The observed score is higher than average; nevertheless it looks as though a 
considerable minority of the population (the proportion represented by the 
shaded area in the diagram) would score as well or better. You will see 
in Chapter 5 how to compute this proportion. It is given by the following 
integral: 

In practice, evaluation of the integral is unnecessary since, for the normal 
distribution, such probabilities can be obtained using tables or a computer 
package. This is discussed further in Chapter 5. (The area of the shaded 
region in Figure 3.7 is 0.252: more than a quarter of the population would 
score 110 or more on the WAIS-R intelligence test.) 

3.2 Independence of random variables 

In Chapter 2, Subsection 2.3.1, the Bernoulli distribution was introduced as a 
model for a particular class of random variable. In Chapter 2, Subsection 2.3.2, 
we proceeded to the binomial distribution which is a model for an extended 
class of random variable obtained by adding together a number of'separate 
Bernoulli random variables. However, the components of the sum all had to 
involve the same value of the parameter p, and also the different Bernoulli 
random variables had to be independent. In such a case, the components 
of the sum are described as independent identically distributed (i.i.d.) 
random variables. This notion of independence recurs through so much of 
statistics that the whole of this fairly short section will be devoted to it. The 
idea is a particularly important one for Chapters 6 and 11. 

If the random variable X represents the number showing on a rolled red die, 
and Y represents the number showing on a rolled white die, the value X taken 
by X has no bearing on the value y taken by Y, and vice versa. Likewise, 
knowledge of the number of newspapers sold in a particular newsagent's shop 
in Wrexham one morning will not tell us much about the number of babies 
born in a maternity hospital in Luton that day, and vice versa. 
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However, Seal 11964) describes an experiment in which frogs' skull lengths X Seal, H.L. (1964) Multivariate 
and skull breadths Y were measured. One might reasonably expect a large Statistical Analysis for Biologists. 

reading on one variable to indicate a similarly large reading on the other, Methuen, London, p. lo6. 

though there will still be random variation evident in both variables. A sample 
of paired measurements will yield information on the nature and degree of the 
association between the two variables. 

There is a clear distinction between the first two of these three situations and 
the third. In the first two, the random variables have no bearing on each other; 
conversely, in the frogs' skulls example, they are, in some way, related to one 
another. The distinction is to do with the degree of dependence between them. 
In this section, we are concerned with random variables of the former type 
that do not have any effect on each other. Dependent random variables, like 
skull length and skull breadth, will be dealt with in later chapters (particularly 
in Chapter 11). 

A particular property of independent random variables was used in the deri- 
vation of the binomial probability distribution in Chapter 2, Section 2.3. 
There, each component in a sequence of Bernoulli trials is assumed to be 
independent of every other component. We used the result that the prob- 
ability of obtaining a particular sequence of responses is found by multiplying 
together the individual probabilities for each response. Thus, for instance, if 
p is the probability of a Yes response, then 

P(Yes Yes No) = P(Yes)P(Yes)P(No) = p2(1 - p) 

and 

P(No No No) = (1 -p)3. 

If the assumption of independence breaks down, then this approach fails too. 
In an extreme case, the second and third respondents might simply repeat the 
previous response, so that 

P(Yes Yes Yes) = p 

P(No No No) = 1 -p ,  

and these are the only two possible sequences of responses. Here, the degree 
of dependence between the responses is very high. 

The idea that the probability of a conjunction of independent events is found 
by multiplying together the individual probabilities for each component event 
may be extended naturally to independent random variables in the following 
way. 

Independence of random variables 

If X and Y are discrete random variables that are independent, then 
the probability that X takes the value X and Y takes the value y, simul- 
taneously, is given by , 

P ( X  = x , Y  = y) = P ( X  = x)P(Y = y), (3.10) 

for all X in the range of X and all y in the range of Y. 

The comma on the left-hand side of 
the expression may be read as 
'and'. 
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Example 3.1 1 Scores on two different dice 
If X is the score when a fair die is rolled and Y the score when a Double- 
Five is rolled, and you throw one after the other, the outcomes are clearly 
independent (for by what mechanical influence could the scores be related?). 
The probability of scoring two 5s is 

Example 3.12 Leaves of Indian creeper plants 
The leaves of Indian creeper plants Pharbitis nil  can be variegated or unvari- 
egated and, at the same time, faded or unfaded. Are the two characteristics Bailey, N.T.J. (1961) Mathematical 
independent? In one experiment, plants of a particular type were crossed. Theory of Genetic Linkage. 

They were such that the offspring plants would have leaves that were vari- Press, Oxford, p. 41. 

egated with probability (and unvariegated with probability i); and also the The seeds of Pharbitis nil may be 

leaves would be faded with probability f (and unfaded with probability f ). If roasted and used as a purgative. 
the theory of independence is correct, then one would expect to observe un- 
variegated unfaded leaves in X = of the offspring plants, unvariegated 
faded leaves in X = & of them, and so on. 

As it turned out, of 290 offspring plants observed, 187 had unvariegated un- 
faded leaves, 35 had unvariegated faded leaves, 37 had variegated unfaded 
leaves and 31 had variegated faded leaves. 

The observed sample relative frequencies occurred in the ratios 

These differ somewhat from the forecast proportions of 

In fact, even allowing for random variation in the observed experimental re- 
sults, the theory of independence is resoundingly rejected on the basis of the We shall explore how to test this 
results. sort of theory in Chapter 9. 

When discussing two or more random variables some reduction in notation 
can be usefully achieved by using the notation p(x) for a probability mass 
function, and distinguishing between p.m.f.s by including the names of the 
random variables as subscripts. Thus we write 

In the same way, we write 

P ( X  = X, y = Y) = PX,Y(X, Y).  

The function pxty(x, y) is called the joint probability mass function for 
the random variables X and Y. Then condition (3.10) for independence be- 
tween random variables X and Y can be rewritten as 

for all X in the range of X and all y in the range of Y. 
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Exercise 3.8 
The entries in Table 3.8 are values of the joint probability mass function Table 3.8 A joint p.m.f. 
pX,y(x, y) of random variables X and Y. The random variable X takes the 
values 0, 1 and 2, and Y takes the values -1 or 1. The columns of the table 
correspond to the random variable X with p.m.f. px(0) = 0.4, px(1) = 0.4 
and px(2) = 0.2. The rows are associated with the random variable Y with 
p.m.f. py(- l)  = 0.3 and py ( l )  = 0.7. Notice that the separate probabilities 
for X are found by adding within columns, and the separate probabilities for 
Y by adding within rows. 

Are X and Y independent random variables? 

The analogue for continuous random variables of the joint probability mass The subject of dependent random 
function for discrete random variables is the joint probability density func- variables is discussed in detail in 
tiog. A direct analogue of (3.11) for continuous random variables involves the Chapter 

p.d.f.s fx(x) and fy(y) of two random variables X and Y and their joint p.d.f. 
fX,y(x, y). However, the idea of independence is more easily interpreted if it 
is expressed in terms of probabilities of events. For example, the following re- 
sult involves the tail probabilities P ( X  < X),  P ( Y  < y) and P ( X  < X, Y < y), 
the probability of the conjunction of two events. 

If X and Y are continuous random variables that are independent, then 

1 for all s in the range of X and all y in the range of Y. 

It also follows from independence that, for example, 

P ( X  > X, Y > y) = P ( X  > x)P(Y > y). 

That concludes our preliminary discussion of independence, though it is a 
topic to which we shall return as the course develops. You should be aware 
that sometimes in statistical experimentation an assumption of independence 
is wrongly made when, in fact, there is a subtle dependence between responses, 
and so the conclusions of the experiment are, or may be, flawed. It is one of 
the roles of the statistician to exhibit these dependencies, where they occur, 
and control for them. 

3.3 The geometric probability model 

In Chapter 2, Subsection 2.1.2, you learned about the Bernoulli trial, a stat- 
istical experiment where exactly one of only two possible outcomes occurs. 
The main features of the model were described in Chapter 2 and are as follows. 
The outcomes are usually something like Success-Failure, Yes-No, On-Off, 
Male-Female. In order to standardize the associated Bernoulli distribution 
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so that it becomes a useful statistical model with wide application, it is usual 
to identify one of the outcon~es with the number 1 and the other with the 
number 0. Then, for example, a sequence of twenty engineering trials run on 
identical pieces of equipment as part of a quality control exercise, resulting in 
the outcomes Pass, Pass, Fail,. . . , Fail, Fail could be written more easily as 

In this case the number 1 was used as a label to indicate that a piece of 
equipment had passed the quality test. The numbers could easily have been 
arranged the other way round: a score of 1 for a piece of defective equipment. 

The Bcrnoulli distribution has associated with it a single parameter, the num- 
ber p. This number is a probability (so 0 < p < 1): it represents the prob- 
ability that any single trial results in the outcome 1. 

In this section we shall consider two particular examples based on the Bernoulli 
model. 

Example 3.13 The sex of consecutive children 
The pattern of boys and girls in a family is one that has received a lot of 
scientific attention, both biological and statistical, for nearly three centuries. 
In 1710 the philosopher John Arbuthnot, having examined parish records and 
noted that for 82 consecutive years more boys than girls had been christened 
aud (reasonably) deducing that for 82 years more boys than girls had been 
born, proposed that sex determination was not a simple matter of chance, 
akin to the result of the toss of a fair coin. (Actually, he proposed a degree 
of divine intervention: that while the coin was in mid-air, God temporar- 
ily suspended the laws of chance.) The philosopher and probabilist Nicholas 
Bernoulli (1687 1759) had also noted the imbalance in the sexes, and com- 
mented that sex determination was like rolling a 35-sided die, with 18 faces 
marked 'boy1 and 17 'girl'. 

The biologists, statisticians, genealogists, philosophers, social scientists and 
demographers who have all at one time or another made their various inves- 
tigations in this area, would have found their research greatly hampered had 
they not developed various models (and an easy notation) for the ideas and 
theories involved. The easiest model is to assume independence from child to 
child, write 1 for a son and 0 for a daughter, use Rcrnoulli's estimate for the 
probability of a boy of p = 18/35 = 0.514 and write 

where X is the random variable denoting the sex of a child. 

Actually, nearly all the very considerable Inass of data collected on the sex 
of children in families suggests that the Bernoulli model would be a very bad 
model to adopt, for at least two reasons. First, one theory suggests that the 
'boy' probability p, even if it averages 0.514 over a very large population, is 
probably not the same from family to family, with some couples seeming to 
have a preponderance for boys, and others for girls, greater than would be 
suggested simply by sampling variation on the binomial distribution. Second, 
and even more tantalizingly, some statistical analyses seem to show that the 
independence assumption of the Bernoulli model breaks down: that is, that 
Nature has a kind of memory, and the sex of a previous child affects to some 
degree the probability distribution for the sex of a subsequent child. Never- 
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theless, for the rest of this chapter, we shall assume that a Bernoulli model 
does provide, for our purposes, an adequate fit to the observed numbers of 
the sexes in families. 

Statistical model testing is one very important way of testing biological and 
other scientific theories: if what actually happens is wildly different from 
what one might reasonably expect to happen if the scientific theory were 
true, then that scientific theory probably does not hold. It is the application 
of the science of statistics that helps one decide how different 'different' can 
reasonably be if due to chance alone. These tests are called tests of 'goodness 
of fit' and are dealt with in Chapter 9. 

Example 3.14 Silicon chips 
The manufacture of silicon chips is an extremely sensitive operation, requiring 
engineering accuracies many orders of magnitude greater than those required 
in most other manufacturing contexts, and a working environment that is 
clinically 'clean'. (At the time of writing, only the production of compact 
discs requires higher standards.) In the early days of chip technology, most 
chips were 'defective'-they did not work properly (or often, they did not work 
at all). Either they were dirty (a mote 0.5 microns across can cause havoc on 1 micron = 1 0 - ~ r n  

a circuit board where the tracks carrying current are only 0.3 microns across); 
or not all the connections were correctly made. At all the stages of slicing, 
lapping, etching, cleaning and polishing involved in the manufacture of a chip, 
defective units are identified and removed. Even so, possibly as many as one 
chip in twenty is faulty. 

During the manufacturing process, there are probably 'runs of rough', inter- 
vals during which nothing seems to go very well and the product defective 
rate is rather high. These periods will alternate with intervals where things 
go rather better than average. However, we shall assume for the rest of this 
chapter that chip quality can be regarded as invariant and independent from 
chip to chip, unrealistic though this might seem. E 

We have just seen that the Bernoulli model does not fit exactly in either 
Example 3.13 or Example 3.14, and yet we are going to go on and apply it 
in what follows! This is the way things often are in statistics (and in science, 
in general): these models are merely supposed to be adequate reflections of 
reality, not perfect ones. For many purposes, the Bernoulli model is adequate 
for both these situations. 

3.3.1 The geometric distribution 
After studying Chapter 2, you can answer the following types of questions. 
The following questions relate to Example 3.13. In families of five children, 
what proportion of families have all boys (take p equal to 0.514)? What is All these questions may be 
the probability that in a family of four children, all the children will be girls? answered by reference to the 

In what proportion of families of three children do the boys outnumber the "ppropriate distribution' 

girls? The next question relates to Example 3.14. If silicon chips are boxed 
in sealed batches of one hundred, what is the probability that a purchaser of 
a box will find he has bought more than ten defectives? 

But now consider the following extensions to these problems. 
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Example 3.13 continued 
One of the factors complicating the development of a satisfactory statistical 
model for family size and structure is that parents often impose their own 
'stopping rules' for family limitation, depending on the number or distribution 
of boys and girls obtained so far. For instance, among completed two-child 
families in a recent issue of Who's Who in America there was a striking excess 
of boy-girl and girl-boy sets, more than would be suggested by a simple bi- 
nomial model: parents (apparently) prefer to contrive their families to include 
at least one of each sex. Family limitation rules may be more extreme than 
this: for instance, 'keep going until the first son is born, then stop'. Under 
this rule, completed families (M for a son, F for a daughter) would show the 
structure M, FM, FFM, FFFM, . . . . The number of children in a completed 
family of this type is evidently a random variable: what is its probability 
distribution? 4 

Example 3.14 continued 
A quality inspector at a silicon chip factory introduces a new quality test. 
At random times he will sample completed chips from the assembly line. He 
makes a note of the number of chips sampled up to and including the first 
defective he finds. If this number reaches or exceeds some predetermined 
tolerance limit, then he will assume that factory procedures are running ef- 
ficiently. Otherwise (defectives are occurring too frequently) the production 
process is stopped for assessment and readjustment. H 

You will have noticed that in both these examples the same type of random 
variable is being counted: essentially, the number of trials from the start of 
a sequence to the first success. Notice that the trial at which that success In this context, success denotes the 
occurs is included in the count. identification of a defective chip. 

The assumptions of a sequence of Bernoulli trials are that the outcomes of 
successive trials are independent, and that the probability of success remains 
the same from trial to trial. If these twin assumptions hold, and if the number 
of trials to the first success is denoted by N ,  then we can say 

N = 1 if the first trial is a success, 

N = 2 if the first trial is a failure, the second a success, 

N = 3 if the first two trials are failures, the third a success, 

and so on. 

Exercise 3.9 
Evidently, the number N is a random variable: it is impossible at the start 
of the sequence to forecast with certainty the number of the trial at which 
success will first occur. Assume independence and that the probability of 
success at any trial is p, 0 < p < 1, in the following. 

(a) Write down the probability P ( N  = 1). 

(b) Write down the probability P ( N  = 2). 

(c) Write down the probability P ( N  = 3). 

118 



Chapter 3 Section 3.3 

(d) Using your answers to parts (a), (b) and (c), try to find a general formula 
for the probability P ( N  = n). 

(e) State the range of possible values for the random variable N .  

The results of Exercise 3.9 lead to the following definition. Like the Bernoulli, 
the binomial and the normal distributions, the probability model whose defi- 
nition follows is one of the 'standard' probability models. It is the third to be The first two are the Bernoulli 

associated with the fundamental notion of a Bernoulli trial. probability distribution and the 
binomial probability distribution. 

I The geometric distribution I 
If in a sequence of independent trials the probability of success is con- 
stant from trial to trial and equal to p, 0 < p < 1, then the number of 
trials up to and including the first success is a random variable N ,  with 
probability function given by 

P ( N = n ) = p ~ ( n ) = ~ " - ' ~ ,  n = 1 , 2  , . . . ,  (3.13) 

The reason for the name 'geometric' is that the sequence of probabilities 
P ( N  = l), P ( N  = 2), . . . , form a geometric progression: each term is a con- 
stant multiple (in this case, q) of the preceding term. That multiple is less 
than 1 (since it is a probability), so successive terms of the probability func- 
tion of N become smaller and smaller. This is illustrated in Figure 3.8. In (a), 
the parameter p is equal to 0.8-that is quite high: you would not have to 
wait long for the first successful trial. In (b),  the parameter p is much lower, 
with the probability of success equal to only 0.3. In this case, you could find 
you have to wait for quite a time for the first success to occur. 

where q = 1 - p. 

The random variable N is said to follow a geometric distribution 
with parameter p and this is writteri N G(p). 

Figure 3.8 (a) N -- G(0.8) (b) N G(0.3) , 

It is very common in the context of 
Bernoulli trials to write the 
probability of failure as 9, where 
g =  1-p.  

Notice that whatever the value of p, the most likely value of N is 1. 
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Example 3.15 Family size with a stopping rule 
One of the difficulties in the collection and analysis of data on family struc- 
tures is in the definition of a 'completed' family. Parents do not always 
know whether or not more children will appear. Table 3.9 contains simu- 
lated data on family size (the number of children) for 1000 completed families 
under a hypothetical rule of 'stop after the first son', where p is taken to 
be 18/35 (Bernoulli's estimate for the probability of a boy). The table gives 
the observed frequency for each family size. Also shown are the theoretical 
frequencies, obtained by multiplying the probabilities pN(n) by 1000. For 
instance, the probability that a family is of size 3 is 

and multiplying this by 1000 gives the theoretical frequency for families of 
size 3 in a sample of 1000. 

Table 3.9 Simulated family size with a stopping rule 

Family structure Family size Observed frequency Theoretical frequency 
(simulated) 

M 1 508 
FM 2 255 
FFM 3 138 
FFFM 4 53 
FFFFM 5 24 
FFFFFM 6 12 
FFFFFFM 7 4 
FFFFFFFM 8 3 
FFFFFFFFM 9 3 

2 l 0  0 

In this case the geometric 'fit' to the simulated data seems quite good; but 
this does not prove anything, since the data were generated in the first place 
from a precisely stated geometric model. 

The next example is necessarily sparse, but gives data on birth order taken 
from an investigation reported in 1963. 

Example 3.16 Salt Lake City data 
Details were obtained on the sequence of the sexes of children in 116458 
families recorded in the archives of the Genealogical Society of the Church 
of Jesus Christ of Latter Day Saints at Salt Lake City, Utah. The records 
were examined to find the stage at which the first daughter was born in 7745 
families where there was at least one daughter. The data are summarized in James, W.H. (1987) The human 
Table 3.10. sex ratio. Part I: A review of the 

literature. Human Biology, 59, 

Table 3.10 First daughter 721-752. 

First daughter Family structure Family size Frequency 
First born F 1 3684 
Secondborn MF 2 1964 
Thirdborn MMF 3 1011 
Fourthborn MMMF 4 549 
Later than fourth 25 537 
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Here, the data are really too sparse to provide evidence for or against a geo- 
metric model; but it is worth noting that successive frequencies are in the 
ratio 

1964 - 0 53 1011 - 0 51 549 - 
368;i - ' 7 1964 1011 - 0'54; 

all approximately one-half. The frequencies themselves form a geometric pro- 
gression (roughly speaking). H 

The geometric probability function pN(n) = qn-lp is a much simpler for- 
mula than, for instance, the binomial probability function, and nobody would 
bother to publish tables listing the value of p ~ ( n )  for different values of n 
and p. The exercise that follows is quite straightforward: it only requires a 
few key-presses on your calculator. 

Exercise 3.10 
Suppose that Nicholas Bernoulli was right, and his hypothesis that the 
sex of children may be modelled as independent rolls of a 35-sided die, 
with 18 faces marked 'boy' and the other 17 marked 'girl', was a correct 
one. Under a stopping rule 'stop after the first son', what proportion of 
completed families comprise at least four children? 

Suppose that the proportion of defective chips leaving a chip factory's 
assembly line is only 0.012: manufacturing standards are quite high. A 
quality inspector collects daily a random sample. He examines sampled 
chips in the order in which they came off the assembly line until he finds 
one that is defective. He decides that he will halt production if fewer than 
six chips need examining. What proportion of his daily visits result in a 
halt in production? 

As we have seen, there is no convenient formula for the sum 

when X is binomial B(n,p);  so its calculation could be very time-consuming 
(and error-prone). If these probabilities exist in printed form, the problem re- 
duces to one of using the tables correctly; alternatively, they may be obtained 
more or less directly from your computer. 

In the case of the geometric random variable N ,  it is possible to deduce a 
formula for the probability P ( N  < n) by writing down successive individual 
probabilities and then finding their sum. Actually, it is rather easier to return 
to the original context where the model arose and argue straight from there. 
An argument 'from first principles' goes as follows. 

Remember that we are interested in counting the number of trials necessary to 
record the first success. If we are rather unlucky, the sequence could go on for 
a long time. If we start with 7 failures in the first 7 trials, for instance, then 
we know that N has to be at least 8 (that is, more than 7). The probability 
of recording 7 failures in 7 trials is q7, so P ( N  > 7) = q7. If after 20 trials we 
have recorded 20 failures, then we know that N has to be more than 20. The 
probability of recording 20 failures in 20 trials is q20, so P ( N  > 20) = qZ0. In 
general, the probability of recording n failures in n trials is qn, so 

P ( N  > n) = qn. 
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It follows that the cumulative distribution function FN(n)  for the geometric 
random variable N is given by 

FN(n)  = P ( N  5 n) = 1 - P ( N  > n) = 1-qn ,  (3.14) 

where n = 1,2 ,3 , .  . . . 

. The argument that led to (3.14), the statement of the c.d.f. of the random 
variable N ,  is quite watertight; but you might like to see the following math- 
ematical check. The distribution function FN(n) can be obtained directly 
from the probability function pN(n) by summing probabilities: 

The terms in this series form a geometric progression (sometimes abbreviated 
to g . ~ . ) .  Perhaps you already know a formula for the sum of the first n terms 
in a geometric progression. If not, we.can proceed in this case as follows. . a + ax  + ax2 + . . . + axn-l 

Multiplying both sides of (3.15) by q, we obtain 1 - xn 
-a- , where X f 1. 

1 - 2  

Subtracting (3.16) from (3.15), we obtain (since most terms vanish) the ident- 
ity 

( 1  - q ) P ( N  5 n)  = p - qnp. 
So replacing (1 - q) by p and dividing by p, we have 

P ( N < n ) = l - q n ,  n = 1 , 2 , 3  , . . . .  (3.17) 

This is the answer that was obtained in (3.14) by a more direct argument. 

Exercise 3.11 
The proportion of defective products in a battery factory is 0.02. A quality 
control inspector tests batteries drawn at random from the assembly line. 
What is the probability that he will have to examine more than 20 to obtain 
a faulty one? What is the probability that he will have to examine at least 
50? 

3.3.2 The mean and variance of the geometric 
distribution 

As with all models for random variables, two useful measures exist: one to 
give an idea of what value to expect, and the other to suggest how far away 
actual values might be from that expected value. These are the mean and 
standard deviation of the probability distribution. 
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Exercise 3.12 
Without doing any arithmetic, try to answer the following questions. (Just 
jot down your first reaction.) 

(a) The probability that a fair coin shows Heads when it is tossed is i. How 
many times, on average, do you think a coin would need to be tossed to 
come up Heads? 

(b) The probability that a Double-Five comes up showing 5 when it is rolled 
is = i. On average, how many times do you think a Double-Five would 
need to be rolled to show a 5? 

(c) One car in six on British roads is white. If you stand by the side of the 
road and start counting, how many cars, on average, do you think you 
would have to count to record your first white one? 

(d) The probability that a car starts first time in the morning is p, where 
0 < p < 1. Assuming that attempts to start it can be modelled as a 
sequence of Bernoulli trials, guess in terms of p the average number of 
attempts necessary to get it going each morning. (The assumption that 
a Bernoulli model will be a useful one is probably not reasonable in this 
case: most cars just need 'encouraging'. If it does not start first time, 
then it will almost certainly start at the second or third; and if not then, 
then not at all.) 

What did you write down in Exercise 3.12(d)? Intuitively, you might feel that 
the mean of the geometric distribution with parameter p is the reciprocal of 
p, l l p .  In this case your intuition is not misplaced. A proof of this result is 
as follows. 

The mean of a geometric random variable N with parameter p is given by 

This series for E ( N )  is not itself a geometric progression, since terms are 
not obtained from the preceding term by multiplying by a constant factor- 
the coefficients 1 ,2 ,3 , .  . . are complicating features. However, proceeding as 
before, let us try multiplying both sides by q. This gives 

= lqp + 2q2p + 3q3p + 4q4p + . . . . 
If we now subtract this expression from (3.18), on the left-hand side we have 
E ( N )  - qE(N) = pE(N);  while on the right-hand side, terms almost vanish 
as they did before, but not quite. We are left with 

and the series on the right-hand side we know sums to 1: it is just a list of all Or use the result: for 1x1 < 1, 
the terms of the geometric probability mass function, so it must sum to 1. a + a x  + ax2 + ax3 + . . . 
Hence we have pE(N)  = 1. 

Dividing by p gives the final result: 

1 
E ( N )  = -. (3.19) 

P 

The less likely an event is, the 
longer one should expect to wait 
for it to happen. 



Elements of Statistics 

For a probability distribution as slcewed (i.e. as asymmetric-see Figure 3.8) 
as the geometric distribution, knowledge of the value of the standard deviation 
is not as useful as it is in the case of the normal distribution, where (as you 
will see in Chapter 5)  all probability statements may be made in terms of 
the number of standard deviations an observation is from its expected value. 
However, the following result will be useful for future work: we shall see in 
Chapter 5 that knowledge of the variance of a random variable can be put 
to other uses. This result for the variance of the geometric random variable 
N  N G(p) is included without proof: 

So the standard deviation of N is S D ( N )  = &/p. 

The next exercise summarizes the work of this section. 

Exercise 3.13 
In some board games, progress round the board is dictated by the score from 
a roll of a six-sided die. In some games, you cannot start playing until you 
have obtained your first six (and then you move accordingly). If you score 
some other number, you have to wait until your next turn and then make 
another attempt. 

(a) What is the probability that you can start playing with your first roll of 
the die? 

(b) What is the probability that you can start playing only at your second 
roll? At your third? 

(c) What is the probability that you will need at least six rolls to get started? 

(d) Find the expected number of rolls required to get you started, and calcu- 
late the standard deviation. 

3.4 Two models for uniformity 

3.4.1 The discrete uniform probability distribution 
In Chapter 2, page 54 we considered the theoretical 'perfect die', which when 
rolled would land displaying any one of its six faces with equal probability. 
At any given roll of the die, the outcome is a random variable-one cannot 
forecast precisely what will happen. The probability mass function for the 
random variable (X ,  say) is given by 

p ( x ) = &  x = 1 , 2  , . . . ,  6. 

This is an example of a random variable following a discrete uniform distri- 
bution. The list of possible values that X can take (the range of X )  is given 
as a set of integers with stated lower and upper limits; and no possible value 
is more probable than any other possible value. 
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Example 3.17 Digit frequencies 
Most computers include a 'random number generator' designed to print out 
in no predictable order but with equal likelihood the digits O,1,2,. . . ,9 for as 
long as the user requires. (Many printed books of statistical tables contain 
at least a page of such random digits. A list of random digits is given in 
Table Al.) The way the computer generates successive digits is to follow 
some complicated rule involving earlier digits (and possibly the date or time 
as well, if the computer has an intehal clock). So what is printed out is not 
random (in the sense that if you knew the rule you could predict the sequence 
exactly), but merely indistinguishable from random, or at  least similar in 
certain key respects to the output of a random device such as a ten-sided die. 

In an experiment using four different computer programs, the following digit 
frequencies in sequences of 1000 digits were observed. 

Table 3. l l Digit frequencies (four programs) 

Digit 0 1 2 3 4 5 6 7 8 9  

SC v.1.09 92 107 85 85 109 95 104 95 113 115 
GW-Basicv.3.23 85 110 91 95 106 110 92 106 101 104 
Spida v.5.50 110 94 86 97 101 94 113 133 84 88 
Minitab v.7.20 112 93 96 87 108 84 103 120 111 86 

The four bar charts in Figure 3.9 show the sample relative frequencies for 
each of the ten digits and for the four programs. The sample relative fre- 
quencies may be compared with the theoretical proportions: in each case. 
There is some evidence of variability, as one must expect. However, none of 
the four programs manifests serious departures from the theoretical uniform 
distribution. 

Data provided by F. Daly, The 
Open University. The Minitab data 
were supplied by K.J. McConway, 
The Open University. 

Relative frequency 

Generated digits 

OSC v.l .09 

GW-Basic v.3.23 

Spida v.5.50 

Minitab v.7.20 

Figure 3.9 Random number generation: relative frequencies for four computer 
programs 

A different, faulty, program gave the frequencies listed in Table 3.12. 

Table 3.12 Digit frequencies (a faulty program) 

Digit 0 1 2 3 4 5 6 7 8 9  
Frequency 100 100 100 100 100 100 100 100 100 100 
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So this program resulted in sample relative frequencies of exactly = 
for each of the ten digits O,1,2,. . . ,9 .  The uniform 'fit' is perfect! 

This example demonstrates that there is more to the generation of random 
digits than that each should occur with equal likelihood. The faulty program 
was generating the sequence 

and so gave a perfectly uniform distribution of digits. So a 'good' uniform fit 
does not imply that the random number generator is satisfactory. A 'bad' fit 
on the other hand might suggest that the generator is unsatisfactory. H 

Example 3.18 Month of death of royal descendants 
The data in Table 3.13 give the month of death (January = 1, February = 2, 
. . . , December = 12) for 82 descendants of Queen Victoria who died of natural 
causes. 

Table 3.1 3 Month of death, royal descendants 

Month 1 2 3  4 5 6 7 8 9 1 0 1 1 1 2  
Frequency 13 4  7  10 8  4  5  3  4  9  7 8  

A straight test of uniformity here would not reflect the fact that, leap year or 
not, February is a short month; but at a first glance the data certainly seem 
to suggest that the summer months (6, 7, 8, 9) are less likely to include a 
death than winter months. H 

(A formal test of uniformity for the data in Table 3.13 should really reflect 
the fact that the months of January and December are adjacent. The data 
would be represented not as a bar chart or histogram in the usual sense (see 
Figure 3.10(a)) but as a circular histogram (see Figure 3.10(b)). Several tests 
for circular uniformity have been developed, but they will not be explored in 
this course.) 

Frequency 

Figure 3.1 0 Representations of the death data 

A definition of the discrete uniform distribution is as follows. Notice the 
phrase 'a definition' rather than 'the definition'. Here, the stated range of the 
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discrete random variable X is 1,2, . . . , n. Elsewhere, you might see an alterna- 
tive definition where the list of possible values includes zero: 0,1,2, .  . . ,m, 
say. The essential feature is that each of the possible values occurs with equal 
probability. 

The discrete uniform distribution 

The random variable X is said to follow a discrete uniform distribu- 
tion if it has probability mass function 

Again, there is a whole family of discrete uniform probability distributions: 
the indexing parameter in this case is n ,  the maximum attainable value. 

The c.d.f. of X is found from 

- - - x = 1 , 2  ,..., n. 
n 1  

That is, 

The mean of the random variable X following a discrete uniform distribution 
with parameter n is given by 

1 
= - ( i n ( n  + 1)) 

n 
= i ( n  + 1) 

(which is, as you might expect, the middle of the range of X) .  

The variance of X is given by 

Here, the result 
1 + 2 + . . . + n =  ;n(nt-1) 

is used. You can see this by writing 
S =  1 + 2 + . . . + n ;  

then write the right-hand side last 
to first, as 

S = n + ( n -  1 ) + . . . + 1  . 
Now sum each side of the two 
expressions, term by term. This 
gives 

2s  = (n + 1) + (n + 1) 
+.. .+(  n +  1) 

= n(n + 1). 

This result is obtained by a straightforward but time-consuming application Dividing by 2 gives 

of the variance formula, and you need not bother with the details. S  = i n ( n  + 1). 
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Exercise 3.14 
Generate 1200 rolls of a fair six-sided die. 

(a) Obtain a frequency table for your data. 

(b) Plot a bar chart of your data. 

(c) Evaluate the sample mean and sample standard deviation, and compare 
these two statistics with the corresponding population moments. 

Essentially, that is all that needs to be said about the discrete uniform distri- 
bution. There is a continuous analogue that we shall now examine. 

3.4.2 The continuous uniform probability distribution 
Here are some simple examples of situations for which a useful statistical 
model has not yet been developed. 

Example 3.19 Admissions to an intensive care unit 
In Chapter 2, Table 2.22, data were given on the waiting time (in hours) 
between the first 41 admissions to an intensive care unit. The full data set 
lists 254 admissions over a period of about 13 months. Information is given 
on the date and time of day of admission. It would be interesting, and helpful 
to planners, to explore whether admissions were more frequent at some times 
of day than others, or whether any time of admission is as likely as any other. 
The times of admission over two-hour intervals are summarized in Table 3.14. 

Actually, the data are sufficiently sparse over the early hours 4 am-l0 am (and 
dense over the early evening period 4 pm-6 pm) to provide strong statistical 
evidence that frequency of admission does depend on the time of day. We 
shall look in Chapter 9 at statistical procedures enabling this sort of evidence 
to be examined. The important point is that an essential requirement for such 
procedures is the formulation of a model to describe (possibly rather badly) 
the variation observed. H 

Example 3.20 Faulty cable 

Faults in underground television cable cause degradation, or even complete 
loss, of the signal. When this happens, the cable needs to be repaired. In the 
absence of any indication of where the fault might be, the repair company 
has to search the cable until the fault is located-this is just as likely to be 
near the end, near the beginning or in the middle of the cable. The distance 
searched to locate the fault is a random variable, and a factor in the cost of 
the repair. W 

Example 3.21 Green-haired Martians 
Suppose you were required to guess the unknown proportion p of inhabitants 
of Mars with green hair (assuming you knew that they had hair). One way 
of expressing your (assumed) total ignorance on this matter might be to say 
'p = i', on the principle that as far as you are concerned a Martian's hair is 
as likely as not to be green. 

The word 'moment' is often used as 
a technical description of 
expectations of a random variable. 
For a positive integer r ,  
E(Xr)  is called the rth raw 
moment of X; E((X - is 
called the rth central moment of 
X, where p = E(X). In this course 
we shall occasionally loosely refer 
to 'the first two moments of X', to 
mean the mean and variance (or 
possibly the mean and standard 
deviation) of X. 

Cox, D.R. and Snell, E.J. (1981) 
Applied Statistics-Principles and 
Examples.  Chapman and Hall, 
London, p. 53. The data were 
collected by Dr. A. Barr, Oxford 
Regional Hospital Board. 

Table 3.14 Time of day of 
254 admissions to an 
intensive care unit 

Time interval Frequency 

midnight-2 am 14 
2 am-4 am 17 
4 am-6 am 5 
6 am-8 am 8 
8 am-l0 am 5 
10 am-midday 25 
midday-2 pm 3 1 
2 pm-4 pm 30 
4 pm-6 pm 36 
6 pm-8 pm 29 
8 pm-l0 pm 3 1 
10 pm-midnight 23 
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Another way to express your ignorance is to say that the proportion p could 
be anywhere between 0 and 1, and that you have no evidence that any value 
is any more likely than any other. Then you express your guess in terms of a 
probability distribution, rather than giving any particular value. 

Example 3.21, though somewhat contrived, actually raises some very im- 
portant questions. Much of the science of statistics that we shall be exploring 
in this course is directed at the problem of 'estimation': making a guess, and 
preferably a good one, a t  the value of some model parameter. This parameter 
is a constant; the problem is that we do not know its value. 

An entirely different approach is to express your uncertainty about the value 
of such descriptive parameters by giving them a probability distribution which 
says 'this value is credible but unlikely, this value is (to me) the most credible, 
this one is not at all plausible, . . . ' and so on. The data you collect then allow 
you to modify or update this probability distribution. The whole question of 
this kind of inference, called Bayesian inference, is a very interesting one, 
but unfortunately it is beyond the scope of this course. 

The central idea in these examples has been that of 'no preferred value'. The 
probability model that permits left- and right-hand bounds to be stated, and 
that carries the sense that between those bounds there is no preferred value, 
is known as the continuous uniform distribution. Since there is no preferred 
value in the range of a continuous uniform random variable X ,  the height of 
the p.d.f. of X on a sketch must be constant over the range. For instance, 
suppose that X can take values between a and b (a  < b); then a sketch of its 
p.d.f. will look like that in Figure 3.11. 

Figure 3.1 1 No preferred value between a and b 

The p.d.f. is of the form f (x)  = h, for a 5 X 5 b. Since the total area under 
the p.d.f. must be 1, the area of the rectangle in Figure 3.11 must be 1, so 
(b - a)h = 1. It follows that h = l / (b - a) .  Hence the following definition can 
be made. 

T h e  continuous uniform distr ibut ion 

The continuous random variable X ,  equally likely to take any value 
between two stated bounds a and b (a  < b), is said to be uniformly 
d is t r ibu ted  over t h e  interval a 5 X 5 b and has probability density 
function 

1 
f (X) = G> a < x < b .  

This is written X U(a, b). 
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A sketch of the density is shown in Figure 3.12. 

0 a b X 

Figure 3.12 The uniform density, U ( a ,  b )  

In Figure 3.12 it is assumed that the bounds a and b are both positive. This 
is not a necessary condition. Depending on the situation being modelled, one 
bound or both bounds could be negative. The only constraint is that a should 
be less than b. 

Example 3.19 continued 
In this example, one possibility (in the absence of data) is that times of 
admission might be independent of the time of day. A model for the time 
T of admission reflecting this suggestion is T U(O,24) (using the 24-hour 
clock). Once suggested, a model can be examined for the adequacy of its fit 
to a data set. (In this case, a uniform model provides a very bad fit.) 

Example 3.21 continued 
In this case the unknown proportion p of green-haired Martians is given a 
uniform probability distribution with a = 0 and b = 1. U 

Exercise 3.15 
Use a sketch of the p.d.f. of X to find the following for the uniform random 
variable X U(a, b): 

(a) the mean (use a symmetry argument); 

(b) the cumulative distribution function. 

The mean of the uniform distribution U(a, b) is given by 

(in other words, the midpoint of the range) and the cumulative distribution 
function is given by 

X - a  
F ( x )  = - a l x l b .  

b - a '  

Calculation of the variance involves an exercise in integration. It is given by 

Notice that the value of the variance depends only on the difference ( b  - a)  
and not on the actual values of a and b. 
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3.4.3 The standard continuous uniform distribution 
One special case of the uniform distribution is the member of the family that 
starts at 0 and ends at 1; this has applications to Bayesian inference and to 
simulation (amongst others). 

The probability density function for the uniform distribution on (0 , l )  is given 
(setting a = 0, b = 1 in (3.23)) by 

The uniform distribution U(0 , l )  is known as the standard uniform distri- 
bution. Its graph is shown in Figure 3.13. 

Figure 3 .1  3 The uniform density, U(0 , l )  

The cumulative distribution function for the standard uniform distribution is 
particularly easy to find: the probability P ( X  5 X)  turns out to be X itself. 
Formally, 

However a geometrical argument like that used in Exercise 3.15(b) is easier! 

The mean of the standard continuous uniform random variable X is 

E ( X )  = p = $.  

Exercise 3.16 m 

Write down the variance of the standard uniform random variable X - U(0, l), H 
and hence calculate its standard deviation. 

This section ends with one final example. 

Example 3.22 Traffic wardens 
Many parking zones in city centres have notices that read: Waiting limited to 
60 minutes. Return prohibited within 1 hour. One way that traffic wardens 
keep track of which cars are parked where, and when, is to note the position 
of the valve dust-cap on one (or, in some cases, all) of the four wheels. A 
typical record is shown in Figure 3.14. 

A motorist accused of overstaying in a parking zone, claimed that he had been 
away and returned only after a proper interval as the law required. Counsel Figure 3.14 Record of dust-cap 
for the authority taking him to court produced evidence that, if this was so, positions 
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then the rather unlikely event had occurred that all four valve dust-caps had 
ended up in identical locations about the wheel (at least, to within recording 
variation) as they had been earlier. Expert statistical advisors suggested that 
after a car journey of anything more than a negligible distance, even given the 
four starting orientations, there would at the end of the journey be no orien- 
tation for the dust-caps more likely than any other. It may also be assumed 
that even after a short journey, and given the four starting orientations, the 
final orientations of the four dust-caps are independent. (In cornering, the 
wheels travel different distances; differential axles preventing skidding.) As- 
suming that the four dust-cap positions had been recorded to an accuracy 
no greater than one twelfth of a turn (like hours on a clock-face-accuracy 
rather greater than this is not difficult to attain) then the motorist's version 
of events meant that an event with probability (1112)~ = 0.000048 had oc- 
curred. The magistrates found these odds (more than 20 000 to 1 against) less 
than credible. 

3.5 Population quan tiles 

In Sections 3.3 and 3.4, three particular probability models have been de- 
scribed: the geometric distribution, and both discrete and continuous uni- 
form distributions. To finish the chapter, let us, in this section, consider a 
topic generally applicable to any probability distribution. As in Section 3.1, 
where the population analogues of the sample mean, variance and standard 
deviation were described, here we shall consider the population analogues of 
some more quantities you met in Chapter 1, specifically the sample median 
and sample quartiles (and the sample interquartile range). More generally, 
it will prove to be useful to introduce a new idea-which covers population 
medians and quartiles-namely that of population quantiles. 'Quantiles' and 'quartiles' are two 

separate words with closely related 
This is another instance where it is best to treat discrete and continuous but distinct meanings. 
situations separately. It is slightly more straightforward to deal with the 
continuous case, so that is where we shall start. 

3.5.1 Quantiles for continuous probability 
distributions 

The median 
In Chapter 1, the sample median was introduced as the middle value of a set 
of values (where we had to be careful about what to do with samples of even 
size). The middle value, by definition, splits the data into two portions either 
side of it, with equal numbers of data points in each. The idea is to split 
the data so that one half has values smaller than the sample median and the 
other half has values greater than it (although for samples of odd size this is 
not exact, since we 'lose' the median value itself so that the subsets are of size 
(n - 1)/2 rather than n/2). 

In the modelling context, there is a natural analogue of this notion of splitting 
the data in half: we should like to define our population median m, say, 
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to split the distribution into two halves in the sense that, if the randon1 
variable concerned is denoted by X and its median by m, P ( X  5 m) = and 
P(X 2 m) = i. In terms of the c.d.f., this may be written F ( m )  = l - 
F(m)  = i. 

For a continuous random variable, the population median is the value 
X which is the solution to the equation 

F(%) = i; 
this solution is denoted X = m. 

Often the qualifying adjective 
'population' is dropped, and we 
shall speak simply of the median of 
a random variable. 

Example 3.23 Salary distributions 

Distributions of salaries are typically skewed to the right (positively skewed) 
since relatively few people earn large salaries. As a consequence, the median 
is in many ways a better summary statistic for salary surveys than the mean. 
The median tells us the midpoint of the salary distribution within a popu- 
lation, in the sense that half of the people earn less and half earn more. 

Exercise 3.17 
(a) In a simulation experiment, a computer is programmed to generate pseudo- B 

random numbers from the continuous uniform distribution on U ( a ,  b ) .  
What is the median of this distribution? 

(b) Theory suggests that a particular random variable X has p.d.f. 

(i) Sketch the density function of X. 
(ii) The mean of X is p = $. Show this on your sketch of the density 
of X .  

(iii) The c.d.f. of X is given by 

Calculate the median m of the random variable X and show m on your 
sketch. 

Quartiles 
The general idea in the definition of sample quartiles in Chapter 1, Section 1.3 
was to choose values which split the data into proportions of one-quarter and 
three-quarters. There are, of course, two ways to do the latter, and conse- 
quently there are two quartiles: a lower quartile designed to have (approxi- 
mately) a quarter of the data with values smaller than it and three-quarters 
with larger values, and an upper quartile for which three-quarters of the 
data have values below it and a quarter above it. Their difference gives 
the sample interquartile range. To define population quartiles for continu- 
ous distributions, 'proportions' are replaced by 'probabilities', as follows. For 
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example, to obtain the lower population quartile, denoted by q ~ ,  the defining 
requirement is that P(X I q L )  = a. 

,, For a continuous random variable, the lower quartile is the value X 
which is the solution to the equation 

1 F($) = 3 ;  

the solution is denoted X = q ~ .  

Similarly, the upper quartile is the value X which is the solution to 
the equation 

F(x)  = 2, 

and this solution is denoted X = qu. 

The interquartile range is q~ - q ~ .  

Just as the sample interquartile range is a measure of the spread of samples, so 
the population interquartile range, like the standard deviation, is a measure 
of the dispersion of population models. 

Example 3.24 Childhood growth 
In studies of growth of children, it is often of interest to show the position 
of a particular child relative to the overall distribution of heights of children 
of that age. The upper and lower quartiles for the distribution of heights at 
each age provide useful information. The lower quartile is the height such that 
25% of children of that age are shorter; and the upper quartile is the height 
such that 75% are shorter (only 25% are taller). The median is, of course, the 
height such that 50% are shorter and 50% are taller. 

The interquartile range of the heights of the children for any particular age 
covers the range of values taken by the 'middle 50%' of children of that age. 
It is the difference between the heights of the tallest and shortest children left 
after excluding the shortest 25% and the tallest 25%. H 

Exercise 3.18 
Find the interquartile range for the distribution with p.d.f. 

f (x)  = 3x2, 0 < X < 1. 

Quan tiles 
There is a simple pattern to the definitions of continuous population medians 
and quartiles that we have given above. -Each is defined as a point X,  say, such 
that F ( z )  eqials $ or or 2. The idea can be generalized to cover population 
quantiles as follows. 
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For a continuous random variable with c.d.f. F( . ) ,  the a-quantile is' the 
value X which is the solution to the equation 

F(%) = a, 0 < a < 1; 

this value is denoted g,. 

So, in particular, the median is m = q0.5, the lower quartile is q~ = q0.25 
and the upper quartile is qu = q0.75. The terms percentile and percentage 
point are synonymous with 'quantile', and are often used when a is expressed 
as a percentage. Some other special cases of quantiles also have more special- 
ized names. For example, if a is an integer multiple of 0.1, the corresponding 
quantiles are sometimes called deciles. There is good reason for generalizing 
to population a-quantiles and that is because some values of a other than 2 ,  

and 2 will be made much use of as the course develops. From Chapter 4 
onwards, you will often find that interest centres on the 'extremes' of distri- 
butions, and that quantiles associated with values of a like 0.9, 0.95, 0.99 and, 
at the other extreme, 0.1, 0.05, and so on, may be important. 

A diagram should help clarify the idea of a population quantile. Figure 3.15 
shows a graph of a typical continuous c.d.f. F(z) .  For a given value a ,  say, 
on the horizontal axis, you could evaluate (or read off the graph) the corre- 
sponding point F(a)  (a probability, 0 < F(a )  < 1) on the vertical axis. 

0 a X 

Figure 3.15 Calculating F ( a )  for a given a 

In Figure 3.16 the starting point is a number a (0 < a < 1) on the vertical 
axis. The corresponding point on the horixontal axis is the Q-quantile of X,  
the value q, . 

Figure 3.1 6 Calculating g ,  for a given a 

(Expressed mathematically, the a-quantile is given by q, = F-'(a), where 
F-'(.) is the inverse function of F(.).)  
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3.5.2 Quantiles for discrete probability distributions 
Quantiles for continuous distributions have been defined readily and unam- 
biguously. The equation F(x)  = a is solved for X. In all of our examples, and 
in all the cases you will encounter in this course, this equation has a unique 
solution. 

Unfortunately, when quantiles for discrete distributions are considered, this 
simplicity and lack of ambiguity disappears. Quantiles for discrete distri- 
butions are not as important as those for continuous ones, so in this course 
we shall not dwell on them, but shall simply illustrate some of the problems 
and how they might be overcome. 

Let us begin with the example of the uniform distribution on the integers 
1 ,2 , .  . . ,6: the model adopted for the score X when a fair die is rolled. The 
c.d.f. of X is given by F(x)  = 216, tabulated in Table 3.15. Table 3.1 5 A fair die 

Using the above method for finding the median of X ,  we need to solve the X 1 2 3 4 5 6  

equation F(m)  = $ for m. This yields m = 3. F(x) 5 f 1 

If the median is regarded as an indication of the 'centre' of the distribution 
then this is unsatisfactory. If we reversed the distribution, starting at the 
score of 6, and applied the same process to find the median, then we would 
obtain a value of 4. Given the symmetry of the distribution, this is not very 
appealing. An attractive property of a symmetric distribution would be that 
it has the same 'centre' from whichever end you look at it! 

An extra problem is illustrated by the probability mass function of a ran- 
dom variable Y which is uniform on the integers 1 ,2 , .  . . ,5. The tabulated Table 3.16 
cumulative distribution function is given in Table 3.16. 

U 1 2 3 4 5  

Again, to find the median we need to solve the equation F(Y)  = i. Unfor- %(Y) 2 1 
tunately, this equation is not satisfied for any y = 1,2 , .  . . ,5 .  At the very 
least this requires the definition of the median to be modified. One modifi- 
cation is to redefine the population median as the minimum value m such that 
F (m)  > $. Here, this would yield the solution m = 3, which is at least in the 
middle of the range. 

Similar problems arise with other quantiles. The definition we shall use in 
this course follows. 

For a discrete random variable X with c.d.f. F(x) ,  the a-quantile g, 
is defined to be the minimum value of X in the range of X satisfying 

F(x)  > a. 

Example 3.25 Quartiles of the binomial distribution 

If X is binomial B(6,0.6), then X has the probability mass function p(x) and 
cumulative distribution function F(x)  given in Table 3.17. 

Table 3.1 7 

X O 1 2 3 4 5 6 
p ( x )  0.004 096 0.036 864 0.138 240 0.276 480 0.311 040 0.186 624 0.046 656 

F ( x )  0.004 096 0.040 960 0.179 200 0.455 680 0.766 720 0.953 344 1 
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To find the median of X we need to find the minimum value of X such that 
F (x )  2 0.5. Since F(3) = 0.455 680 (less than 0.5) and F(4)  = 0.766 720 
(greater than 0.5), X = 4 is the least value satisfying F (x )  2 0.5. Hence 
the median m is 4. Similarly, since F(2) < 0.25 < F(3), the lower quartile of 
X is q~ = 3. Finally, since F(3) < 0.75 < F(4), the upper quartile of X is 
qu = 4. Notice that in this example the median and the upper quartile are 
the same. M 

Exercise 3.19 
(a) Find the median of the binomial distribution B(10,0.5). 

(b) Find the median of the binomial distribution B(17,0.7). 

(c) Find the upper quartile of the binomial distribution B(2,0.5). 

(d) Find the interquartile range of the binomial distribution B(19,0.25). 

(e) Find the 0.85-quantile of the binomial distribution B(15,0.4). 

3.5.3 Population modes 
For discrete probability models, the mode, if there is just one, is the value 
that has the highest probability of occurring (much as the sample mode is the 
value that occurs the highest proportion of times in a sample). For continuous 
population models, interest simply shifts to maxima: the maximum, if there 
is only one, of the p.d.f. rather than the p.m.f. Also-and this notion is 
especially useful for continuous distributions-distributions can have one or 
more maxima and thus may be multimodal. You need not take away much 
more from this short subsection than the idea that it makes sense to talk 
of, for example, bimodal probability distributions. An example of a bimodal 
probability density function is shown in Figure 3.17. 

X 

Figure 3.17 A bimodal density function 

The Old Faithful geyser at Yellowstone National Park, Wyoming, USA, was Azzalini, A. and Bowman, A.W. 
observed from 1-15 August 1985. During that time, data were collected on (1990) A look at some data on the 
the duration of eruptions and the waiting time between the starts of successive Old geyser. 

Statistics, 39, 357-366. eruptions. There are 299 waiting times (in minutes), and these are listed in 
Table 3.18. 



Elements of Statistics 

Table 3.18 Waiting times (minutes) between eruptions, Old Faithful geyser 

80 71 57 80 75 77 60 86 77 56 81 50 89 54 90 73 60 83 
65 82 84 54 85 58 79 57 88 68 76 78 74 85 75 65 76 58 
91 50 87 48 93 54 86 53 78 52 83 60 87 49 80 60 92 43 
89 60 84 69 74 71 108 50 77 57 80 61 82 48 81 73 62 79 
54 80 73 81 62 81 71 79 81 74 59 81 66 87 53 80 50 87 
51 82 58 81 49 92 50 88 62 93 56 89 51 79 58 82 52 88 
52 78 69 75 77 53 80 55 87 53 85 61 93 54 76 80 81 59 
86 78 71 77 76 94 75 50 83 82 72 77 75 65 79 72 78 77 
79 75 78 64 80 49 88 54 85 51 96 50 80 78 81 72 75 78 
87 69 55 83 49 82 57 84 57 84 73 78 57 79 57 90 62 87 
78 52 98 48 78 79 65 84 50 83 60 80 50 88 50 84 74 76 
65 89 49 88 51 78 85 65 75 77 69 92 68 87 61 81 55 93 
53, 84 70 73 93 50 87 77 74 72 82 74 80 49 91 53 86 49 
79 89 87 76 59 80 89 45 93 72 71 54 79 74 65 78 57 87 
72 84 47 84 57 87 68 86 75 73 53 82 93 77 54 96 48 89 
63 84 76 62 83 50 85 78 78 81 78 76 74 81 66 84 48 93 
47 87 51 78 54 87 52 85 58 88 79 

Figure 3.18 shows a histogram of the geyser waiting time data. Notice that These data were referred to in 
there are two very pronounced modes. Chapter 1, Figure 1.19. 

Frequency 

Time (minutes) 

Figure 3.18 Waiting times between eruptions, Old Faithful geyser 

The histogram suggests that a good model for the variation in waiting times 
should also be bimodal. This is important: the bimodality may indicate that 
waiting times are essentially of two characters. 'Short' waiting times last a 
little under an hour (with some variation); 'long' waiting times last around 
75-80 minutes (with some variation). Research can then begin into the causes 
of the interesting phenomenon observed. 

Summary 

1. The mean and variance of a discrete integer-valued random variable X ,  
with probability mass function p(x),  are given by 

where the summations are taken over all X in the range of X .  
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2. The mean and variance of a continuous random variable X ,  with prob- 
ability density function f ( X ) ,  are given by 

where the integrations extend over the range of X .  

3. Two discrete random variables X and Y are said to be independent if 
and only if 

P ( X  = x , Y  = y) = P ( X  = x ) P ( Y  = y), 

for all X in the range of X and all y in the range of Y. 

Two continuous random variables X and Y are said to be independent 
if, for example, 

P ( X  5 X, Y 5 Y) = P ( X  1 x)P(Y 5 Y ) ,  

for all X in the range of X and all y in the range of Y. 

4. In a sequence of independent Bernoulli trials indexed by the parameter 
p, 0 < p < 1, the number N of trials from success to next success is 
a random variable following a geometric distribution with parameter p, 
written N G(p). 

The random variable N has probability function 

pN(n)=qn-'p, n = 1 , 2 , 3  , . . . ,  
where q = 1 - p. 

The cumulative distribution function is 

F ~ ( n ) = l - q ~ ,  n = 1 , 2 , 3  ,.... ' 

The first two moments of N are E ( N )  = l l p  and V(N) = q/p2 

5. The random variable X following a discrete uniform probability distri- 
bution with parameter n has probability mass function 

n + l  n2 - 1 
The mean is - 

2 
and the variance is - 

12 ' 

6. When a continuous random variable X is constrained to take values be- 
tween stated limits a and b (a  < b), but within those bounds no value of 
X is any more likely than any other, then the random variable X is said 
to follow a continuous uniform distribution on the interval a 5 X 5 b, 
with probability density function 

This is written X U(a ,  b ) .  
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( b  - a)2 
The mean of X is and the variance of X is - 

2 12 ' 

7. If X is uniformly distributed on the interval 0 5 X 5 1, then this is writ- 
ten X - U(0,l)  and X is said to follow the standard uniform distribution. 

The random variable X has probability density function 

f ( x ) = l ,  0 5 x 5 1 .  

The cumulative distribution function is 

F ( x )  = X, 0 1 X 1. 

8. The a-quantile of a continuous random variable X with cumulative dis- 
tribution function F (x )  is defined to be the solution of the equation 

written X = q,. In particular, the first (lower) population quartile qr;, 
the median m and the third (upper) quartile qv are, respectively, the 
quantiles q0.25, 90.50 and q0.75. 

9. The a-quantile for a discrete integer-valued random variable X with 
cumulative distribution function F (x )  is defined to be the minimum value 
of X in the range of X such that F(x)  2 a .  
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Models for Data 111 

This is the last of the three chapters concerned with fundamental probability models; 
two new models for variation are described. The notion of 'a random sample' is 
discussed in some detail: the point is made that in repeated experiments the sample 
mean, which is an important summary statistic, is itself a random variable. 

This chapter continues the development of fundamental probability models for 
variation, and our discussion of the properties of those models. Following the 
pattern developed in Chapters 2 and 3, the chapter deals both with specific 
models for variation and the more general properties of such models. 

Two new probability models are developed in this chapter. In Chapter 2 
the notion of a Bernoulli trial was introduced, and a probability model for 
the number of successful trials in a set or sequence of trials was developed. 
This model was the binomial probability distribution, which applies where 
the results of different trials may be assumed to be independent and where 
the probability of success is assumed to remain the same from trial to trial. 
In Section 4.1, we study the sort of experiment where the number of trials 
involved could be very large indeed, but the chance of 'success' in any one 
trial is very small; the random variable of interest is still the total count of 
successes. But in this case, one where 'something rather unlikely to happen 
has many opportunities to do so', the actual count distribution, which you 
know to be binomial, turns out to have a very useful approximate form which 
is a discrete probability model of considerable usefulness in its own right. The 
result is known as Poisson's approximation for the occurrence of rare events, 
and the ensuing model is the Poisson distribution. The Poisson model is explored in 

depth in Chapter 12. 
The topic of Section 4.4, the exponential distribution, is a continuous prob- 
ability model of wide application. The situation modelled is this. Some events 
happen every now and then, but they are not precisely forecastable. Some of 
the nastier ones are floods, domestic accidents, lightning strikes, air crashes 
and earthquakes; a less unpleasant example might be an unexpected cheque 
in the post. If the average rate at which such haphazard events occur is 
more or less constant (data suggest that major earthquakes world-wide, for 
instance, occur roughly once every 14 months or so-not that this helps you 
forecast the next one) then it turns out that something can be said about the 
probability distribution of the time lag, or 'waiting time', between consecutive 
occurrences. 

It was noted in Chapter 2 that it is in the nature of a random sample that if 
you draw on two different occasions a random sample of the same size from the 
same population, then you (probably) get different individual sample obser- 
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vations and therefore (probably) different sample means and variances. And 
yet, on both occasions, the sample was drawn to obtain information about 
precisely the same population. So, in repeated experiments, the sample mean 
is itself a random variable. In this chapter we shall investigate simple proper- 
ties of the sample mean. For instance, we followed in Chapter 2 a botanical Example 2.1 
experiment in which a researcher drew at  random a sample of 100 leaves from 
an ornamental bush, and measured their lengths. In the sample the leaves 
ranged in length from 0.3cm to 2.7cm; the sample mean was 1.276cm. A 
different experiment would almost certainly have led to different results, and 
yet the sample mean clearly provides some sort of assessment, an estimate, of 
the average length of all the leaves on the bush. This was one of the aims of 
the experiment. Our first look at properties of the sample mean will give us 
an idea of the accuracy (in other words, the usefulness) of this estimate. 

There are occasional computer exercises dispersed throughout this chapter; 
Section 4.5 is entirely devoted to exercises in which nothing new is introduced, 
but where some ideas of the preceding sections are revisited. As far as the sort 
of material studied in this course is concerned, the computer has four main 
uses. You have by now seen examples of some of these: (i) as a very fast calcu- 
lator; (ii) for the speedy and efficient analysis of statistical data; (iii) using its 
graphics capabilities to produce enlightening diagrammatic representations of 
data. The fourth role of a computer is as a simulator. There are many uses 
for computer simulation. In one application, the computer mimics the draw- 
ing of a random sample from some specified probability distribution. This 
is particularly useful for comparing statistical models with one another and 
with real data. You saw some examples of this in Chapter 2, and the idea is 
continued in this chapter. 

4.1 Rare events 

This section introduces a probability distribution that is one of the most Figure 4.1 Simkon Denis Poisson 
useful for the statistical modeller. It is called the Poisson distribution after F,, ,,,, the history of the 
the Frenchman Simhon Denis Poisson (1781-1840) who, in 1837, introduced Poisson distribution, and much else 
it in a scientific text on the subiect of iurv verdicts in criminal trials. In besides, see Stigler, S. M. (1986) " " 

the early nineteenth century in France a twelve-person jury could return a The ofStatistics-~he 
Measurement of Uncertainty before 'guilty' verdict by a majority of seven to five. Poisson's work followed that of lYOO, published by the Belkllap 

Condorcet and Laplace in regarding individual jurors' decisions as the results press ,f ~~~~~~d university press. 
of tosses of a weighted coin. These researchers were concerned with the effects 
of jury size and the definition of 'majority' on the chance of reaching a correct 
verdict. 

The Poisson distribution is introduced here as a convenient approximation 
to the binomial probability distribution, one which provides good accuracy 
under certain circumstances. 

4.1.1 Two examples 
We shall start by looking at two different situations where the Bernoulli trial, 
or a sequence of trials, might be a useful statistical model, answering some 
questions using the distributions and techniques available to us so far. 

cn2383
New Stamp
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A Bernoulli process is the name given to a sequence of Bernoulli trials 
in which 

(a) trials are independent; 

(b) the probability of success is the same from trial to trial. 

For a Bernoulli process the idea of trials occurring in order, one after the other, 
is crucial. Departures from the modelling assumptions of the Bernoulli process 
include cases where the result of one trial might influence the probabilities of 
the results of later trials. In Chapter 12 we shall consider some statistical 
tests for examining this kind of dependence. 

Example 4.1 Cycle usage 
At the time of writing, people tend to commute from their homes to their 
places of work either by car or by public transport (buses, underground trains 
and railway trains); some work within walking distance from home; and some, 
if the distance is not too great, cycle. One particular disadvantage of cycling 
(and one probably sufficient to put many commuters off the whole idea of 
cycling to work) is the possibility of arriving utterly drenched, having been 
caught in a downpour. This is indubitably a very unpleasant experience; but 
actually its frequency has been estimated at  only 15 times a year 'for a regular Ballantine, R. (1975) Richard's 
cyclist'. Bicycle Book. Pan, Great Britain. 

It  is not entirely clear from the reference to it quite how this value has been 
calculated; if we wish to use it for forecasting the likelihood of such an eventu- 
ality, then we need to make some further assumptions. Suppose a cyclist uses 
her bicycle regularly for travelling to and from work and, occasionally, for 
shopping and social visits. Her own assessment of cycle usage (which is rather 
rough) works out at 50 journeys a month of a non-negligible distance. This 
gives (at twelve months a year) an estimated proportion of rides on which a 
downpour occurs of 

600 journeys a year, during 15 of 
which it rains. 

Unpleasant and complicating to one's existence as the experience is, it there- 
fore occurs (on average) only once in 40 rides. If we assume that these 
events occur independently of previous experiences and with constant prob- 
ability, then it follows that the Bernoulli process, a sequence of independent 
Bernoulli trials, could be a useful model (with a trial corresponding to a single 
journey, and a success-a score of l-to getting caught in a downpour during 
that journey). Then the number of times per month that this occurs has a 
binomial distribution B(50,1/40). (The mean of this distribution, np = 1.25, It was stated without proof in 
is equal to 15/12, the average number of soakings per month calculated from Chapter 3, page 102 that the mean 

Richard's figure.) of the binomial distribution B(n, p) 
is the product np. 

(The Bernoulli process is not as good a statistical model as one might develop. 
A better model would probably include some sort of mechanism that allows 
the parameter p to vary with the time of the year, and perhaps even permits 
some sort of dependence from trial to trial, so that if you got wet cycling 
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to work then you are rather more likely than otherwise to get wet cycling 
home as well since it is a wet day. However, it is as good a model for the 
phenomenon as we are at the moment in a position to construct.) 

Exercise 4.1 m 
Assuming the cyclist's own estimate of '50 journeys a month' is accurate, what 
over the next month is the probability 

(a) that she never gets wet; 

(b) that she gets wet twice; 

(c) that she gets wet at least four times? 

The cyclist's guess at  a monthly average of 50 rides was just that-a guess. 
Suppose that a better estimate would have been 60 rides a month. In this 
case, using the given average 15 times per year, the estimated probability of 

a downpour during a single ride would be 
15 15 1 - - - 

p = 1 2 - 6 0  G. 
Then the assumed probability distribution for the number of drenchings per 
month is B(60,1/48) (which has mean 1.25, as before). 

Exercise 4.2 
The table following (Table 4.1) is half completed: it gives certain probabilities H 

DOD. 

for the binomial distribution B(50,1/40). From it, you could read off all your 
answers to Exercise 4.1. Complete the table by computing the corresponding 
probabilities for the binomial distribution B(60,1/48). 

Table 4.1 Probabilities, monthly downpours while cycling 

You will have noticed from Exercise 4.2 that the probabilities calculated for 
the cyclist but based on the higher estimate for cycle usage are not very 
different from those calculated for Exercise 4.1. To two decimal places, these 
values are identical. 

Example 4.2 Typographical errors 
One of the necessary stages in getting a book published is the careful and at- 
tentive checking of the proofs, the first version of the printed pages. 
Usually there are typographical errors, such as tihs, that need identifying and 
correcting. With a good publisher and printer such errors, even in the first 
proofs, are fairly rare. Experience with one publisher of children's books (for 
scientific texts the problem is a little more complicated) suggests an average 
of 3.6 errors per page at proof stage. 
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The number of words per page is, of course, not constant from page to page; 
if it was (and equal to 320, say, taking an estimate from a random children's 
paperback), then the estimated probability that a word'was mistyped would 
be 

or a little over 1%; and assuming independence from word to word, the num- 
ber of errors per page would follow a binomial distribution with parameters 
n = 320, p = 0.01125. 

We shall perform explicitly the binomial calculations involved in finding the 
first few terms in the probability distribution of the number X of errors per 
page of proofs, based on a page length of 320 words. For instance, 

px(0) = (1 - 0 . 0 1 1 2 5 ) ~ ~ ~  = 0.98875~~' = 0.0268; 

and 

px(1) = 320(0.01125)(0.98875)~~~ = 0.0975. 

For the next term, the binomial formula gives 

If you try to find this value using the factorial'notation, writing 

you will probably find that your calculator fails: most calculators cannot cope 
with the number 320!. However, that number can be rewritten 

so the probability becomes 

Of course, there may be other 
errors besides mistyped words. 
This is a simplified description of 
the problem. 

These calculations are included 
only to demonstrate what is 
actually happening. You should 
find that your computer will give 
explicit binomial calculations 
without baulking at n = 320 

- - 

(though there probably is some 
Further terms in the sequence of binomial probabilities can be calculated of upper limit to what it will 
similarly: do). You can certainly use your 

computer to complete Exercise 4.3. 
320 319 318(0.01125)3(0.98875)317 = 0.2134. p x ( 3 ) =  1 x 2 x 3  

Actually, the page counts are a little variable: turning to a different page, 
the estimate of the word count per page would almost certainly have been 
different-360, perhaps. 

Exercise 4.3 

(a) Write down the probability distribution of X ,  the number of errors per 
page, based on an estimate of 360 words per page and an average of 3.6 
errors per page. 

(b) Calculate the probabilities px(0), p x  ( l ) ,  px(2), px (3) in this case, find 
the probability that there are more than three errors on a page, and 
comment on any differences in the results obtained between your model 
and the earlier binomial B(320,0.01125) 'guess'. 



Elements of Statistics 

In all these calculations, the binomial distribution has been used and the prob- 
ability p has been 'rather small'. In Example 4.1, the results also suggested 
that for values of n not too different from one another, and with a correspond- 
ing estimate for the parameter p of 

15 p=--- - 
1.25 

1 2 x n  n ' 
probability calculations for the binomial distribution B(n, 1.25/n) did not dif- 
fer significantly. (However, note that whatever the value of n, the mean of the 
distribution remains unaltered at p = np = 1.25.) Similarly, in Example 4.2, 
the actual value of n, at least in the two particular cases examined, was 
not too critical to the computed probabilities for the binomial distribution 
B(n, 3.6/n) (with constant mean 3.6). 

Now the question arises: can we satisfactorily model the number of monthly 
soakings for the cyclist, or the number of errors per page of proofs, using 
a random variable whose distribution depends only on a single parameter, 
the expected number? In general, can we approximate the two-parameter 
binomial distribution B(n, p ln )  by a probability distribution indexed by a 
single parameter p? 

The answer is that we can, provided p = p/n is small (which, in both these 
examples, it was). 

4.1.2 The Poisson distribution 
In both the examples considered so far, the binomial parameter p has been 
small (and n fairly large): an event which itself is rather unlikely to happen 
(small p) has had a lot of opportunities (large n)  to do so. Overall, the 
expected number of total occurrences (p = np) has been non-negligible. It  
seems, at least in the case of the few test calculations that we have done, 
that the actual values of n and p are not critical to the values of the binomial 
probabilities, provided the product np remains the same. 

Let us now examine this apparent result. For the binomial distribution B(n,p)  
or, equivalently, B(n, pin), the probability px(0) is given by 

n 
px(0) = (1 -p)" = (l - X )  . 

The approximate value of this expression when n is known to be large is e-1. 

So, for n reasonably large, the approximation for B(n, p ln )  is 

You may have seen from your calculations in the preceding exercises that the 
computation of binomial probabilities can, without the use of a computer, 
become quite awkward; and time-consuming, for there are many duplicated 
key-presses. For the simpler calculation of successive terms in the binomial 
distribution one useful method called recursive is to obtain each subsequent 
term from the previous term by using the relation 

The meaning of the word 'small' 
will shortly be made more precise. 

You might have forgotten the 
result that for large n, 

it is one of the standard results 
from analysis involving the 
exponential function. The number 
e is approximately 2.718 281 8. . . . 
Setting X equal to -p,  the 
particular result given here follows. 
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Rewriting p as p/n and q as (n - p)/n, this gives the recursion 
p n - X  

p x ( x +  1) = - X - X PX(X). 
x + l  n - p  

We have already established in (4.1) an approximation to the binomial prob- 
ability px(0) when the parameter n is large. In the recursion (4.2), when n 
is large, the second multiplying factor (n - x)/(n - p) is approximately equal 
to one; so we can generate successive terms in the approximating probability 
distribution by applying the recursive formula 

Exercise 4.4 
Use the recursive scheme defined by (4.3) to write down formulas for the 
probabilities 

( a ) p x ( l ) ,  (b) P x P ) ,  (c) Px(3). 

Then 

(d) find a general expression for px (X). 

The definition of the Poisson distribution is as follows. 

The random variable X follows a Poisson distribution with par- 
ameter p if it has probability mass function 

It is easy to check that the function px(x)  is indeed a probability function- 
that is, that the terms sum to one. This vital property has not been lost in 
the derivation of the function from the binomial probability function. From 
the polynomial expansion 

e-ppx 
PX(X) = - , x = 0 , 1 , 2  ,.... (4.4) 

X! 

This is written X N Poisson(p). 

the property follows immediately: 

The term X! in the'denominator 
denotes the product 
1 X 2 X . . . X X. The number O! is 
set equal to 1 by definition. 

This is the Taylor series expansion 
for ep. In some texts it is 
introduced as the definition of the 
exponential function. 
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Notice that this is a one-parameter distribution: as will be confirmed later, 
the parameter p is (as we might expect) the mean of the Poisson probability 
distribution. The way it was obtained demonstrates the (equivalent) approxi- 
mations 

The symbol 'z' is read as 'has 
approximately the same 
distribution as'. 

You will recall that this sort of conclusion was precisely the one we sought: 
we wanted to answer the question 'can we approximate the two-parameter 
binomial distribution B(n, p ln )  by a probability distribution indexed by a 
single parameter p?' 

Shortly, a rough rule will be given for values of the binomial parameters n 
and p when the Poisson distribution is a useful approximation to the binomial 
distribution. First, here are a couple of numerical examples. 

Example 4.1 continued 

Table 4.2 shows the probabilities calculated for the cycling example. 

The Poisson approximation gives the following probability distribution of the 
number of soakings per month: 

and so on. 

Table 4.2 Probabilities, monthly downpours while cycling 

In each case, the value of P ( X  2 4) in the table was obtained by subtraction. 
(You would obtain from your computer or from tables that P ( X  2 4) when 
X B(60,1/48) is 0.0366, to 4 decimal places. This would give 

(to 4 decimal ~ laces) ,  when these probabilities should sum to one. This is the 
sort of rounding error that does not matter.) H 
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X! term in the denominator; so we obtain the result 

Taking a factor p and the term e-p outside the summation gives 

Hence we have the required result: 

E ( X )  = p. 

Calculation of the variance of a Poisson random variable is not quite so 
straightforward. You need not bother with the details of this mathematical 
exercise: the variance of X is given by 

V(X) = p. (4.6) 

So a Poisson random variable has variance equal to its mean p. 

If the random variable X follows a Poisson distribution with parameter 
p, then X has mean and variance 

E ( X )  = p, V(X) = p. 

The idea of testing the adequacy of the fit of a proposed probability model 
to a set of data is one that has been mentioned several times already. One 
possible test of a proposed Poisson model against a given data set involves 
calculating the ratio of the sample variance to the sample mean and seeing 
how far this ratio deviates from 1. This test is not covered formally in this 
course, but you will see at the end of this section a data set where the sample 
variance and sample mean are informally compared. 

4.1.4 Calculating Poisson probabilities 
Calculation of Poisson probabilities can be a time-consuming and error-prone 
process even with a calculator. Printed tables of Poisson probabilities are 
available, at least for selected values of p. As in the binomial case, there is 
no convenient formula for the Poisson cumulative distribution function 

X! = X X (X - l)! 

Here, we are again making use of 
the Taylor series expansion for e". 

the terms simply do not add conveniently to a closed formula. It is necessary, 
without a computer, to refer to tables or else explicitly to add successive terms 
of the probability mass function. 
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4.1.5 Applications of the Poisson approximation 
We have discussed a number of different situations in which an appropriate 
statistical model is a binomial probability distribution having a small value for 
the probability p. In such cases the Poisson distribution with matched mean 
turns out to be a reasonable approximation to the binomial model. There 
are many other practical situations in which such a model would apply, and 
hence for which the Poisson distribution could also reasonably be used. Here 
are a few more examples. 

Example 4.3 Birthdays 
Suppose we have a group of 100 people. Let X be the random variable de- 
noting the number of people in the group whose birthday falls on Christmas 
Day. Then p = 11365 (making the assumption that births are distributed Actually, the proportion of births 
equally over the year and ignoring Leap Day), n = 100, and so the value of on Christmas Day is well under 
p is 1001365 = 0.274. The probability, say, that precisely one person in the it is a period, and 

group has a Christmas birthday is (exact binomial calculation) fewer births than usual are 
induced. The birth rate falls on 
Sundays, too. 

or (Poisson approximation) 

0.274e-O.~~~ = 0.208. 

The two probabilities are very close. 

Example 4.4 Defective items 
Suppose that in a process manufacturing identical items there is a small prob- 
ability p that any item is defective. Making the rather unrealistic assumption 
of independence from item to item, then the number of defective items in a 
large batch can be represented approximately by a random variable following 
a Poisson distribution with the appropriate mean. H 

Example 4.5 Colour blindness 
The probability that a man's sight is colour-deficient is about 0.06, and the There are various forms of 
corresponding figure for women is 0.004. Hence, in a large group of either colour-deficienc~. This example 

men or women, the number with colour-deficient sight can be represented as with just One of them. The 
value p = 0.06 in this example 

a Poisson variable. H exceeds the 0.05 threshold given in - 
our 'rule'-no model will constitute 

Example 4.6 Thunderstorms 
a perfect representation, and with 
this in mind. the Poisson model 

Thunderstorms are not common events, even in Britain. There is perhaps be applied. 

some seasonal variation in their frequency, but over the course of a year one 
might reasonably regard each day as a single 'trial' where something not very 
likely might nevertheless happen. H 

Examples 4.3-4.6 are all situations where the Poisson approximation to the 
binomial model was fairly straightforward to identify. There are many other 
situations where the derivation is less obvious: we shall now briefly explore 
one of them. 
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Example 4.7 Calls at a switchboard 
The number of calls received at a telephone switchboard in a fixed time interval 
of duration t, say, is a realization of some random variable X whose expected 
value will be proportional to t: call that mean At. The constant X is the The letter X is the Greek 
average rate at which calls come in to the switchboard. To develop a model lower-case letter 'lambda'. 
for this situation, let us imagine the time interval t to be split up into a large 

I number n of very small time intervals of length t ln .  Then suppose that the 
probability that a call is received in one small time interval is p. Provided 
that the rate of incoming calls remains roughly constant over time, then p 
may also be assumed to remain constant over the time interval t and to be 
equal to Xtln. Provided n is large enough, so that the intervals t l n  are small 
enough, the probability that more than one call is received in any interval may 
be regarded as negligible. We can, therefore, think of the random process as a 
sequence of n independent Bernoulli trials. The total number of calls received 
will follow a binomial distribution with parameters n and p, where p = Xtln, 
B(n, Xtln). Thus the actual number of calls received in the time interval t 
may be assumed to follow a Poisson distribution (with mean At). 

In this example we have constructed a notional sequence of many trials only 
later to ignore them. The probability distribution of the number of calls 
received depends only on the time for which they are counted and the average 
rate at which they are arriving: that is, only on the expected number of 
arrivals. This is a very simple and intuitive result, to which we shall return 
in Section 4.4. 

Most of our examples have involved processes in one dimension. There are 
many other practical applications where the Poisson distribution provides 
a good model: the number of trees in regions of a two-dimensional wood, 
the number of raisins in slices of cake; the number of live viruses in doses 

of vaccine. In all cases we have made the assumption that items such as 
bacteria, raisins, thunderstorms and typographical errors act independently: 
they have no preferred time of occurrence or preferred location, and they 
do not associate. If these assumptions do not hold, then the Poisson model 
will not be suitable. For instance, think about the distribution of individual 
caterpillars on cabbage plants in a field. They have hatched out from eggs 
that have been laid in large clusters, so the caterpillars will tend to cluster 
themselves. In this situation, the Poisson model would break down: the 
numbers of caterpillars counted on plants would have an observed distribution 
noticeably different from that suggested by a Poisson model. 

The following exercise summarizes the work of this section. 

Exercise 4.6 
Resistors are very cheap electrical items, and they are easy to make. Assuming 
they work, they may be assumed to be indestructible. A small proportion 
(approximately 1 in 20) will not work when they leave the factory. This is 
a tolerable risk accepted by purchasers: these resistors are not quality tested 
before being packaged, for to do so would add considerably to their cost. 

(a) The resistors are boxed in packages of 50. State an 'exact' model for the 
number of defective resistors in a box, mentioning any assumptions you 
make and calculate the probabilities that there are 0, 1, 2, 3, 4 or more 
than 4 defectives in a box. 
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(b) Find an approximating distribution for the number of defectives in a box 
and calculate the same probabilities as you found in (a). 

(c) Comment on any differences between your answers in (a) and (b). 

This section ends with a final example where the Poisson model was useful. 

Example 4.8 Particle counting 

In 1910 the scientists Rutherford and Geiger reported an experiment in which 
they counted the number of alpha particles emitted from a radioactive source 
during intervals of 73 seconds' duration, for 2612 different intervals. The 
numbers of particles emitted and the frequencies with which the different 
counts occurred, are shown in the first two columns of Table 4.4. 

The last column of the table, labelled 'Fit', was obtained as follows. There 
were 10 126 particles counted altogether, implying an average of 3.877 per 
7i-second interval. The third column gives the expected frequencies when a 
Poisson(3.877) model is 'fitted' to the data. You need not bother at this stage 
with the details of the fitting procedure: the whole question of 'goodness of 
fit' of a proposed statistical model to a set of data is examined in Chapter 9. 

For the moment, just observe that the Poisson fit to these particular data 
is very good. Like telephone calls at  a switchboard, the physical nature of 
radioactive particle emission means that such emissions occur entirely at ran- 
dom, independently of one another, but at a rate which remains virtually 
constant with passing time. 

Notice that the sum of the fitted frequencies is 2611 and not 2612: this is 
the sort of small rounding error which sometimes creeps in with the fitting 
procedure. It does not matter. 

Incidentally, for this data set the sample variance is 3.696, close to the observed 
sample mean. Remember the property of a Poisson variate, that its mean is 
equal to its variance. 

4.2 Drawing random samples 

In Chapter 2, Section 2.1 following the description of the botanical experiment 
in which 100 leaves were collected from an ornamental bush and measured, 
the text continued thus: '. . . if he [the botanist] had taken a different sample 
of 100 leaves his calculated average would have been different. This raises the 
obvious question: if his results vary according to the random choice of leaves 
in the sample, of what value are the results? Presumably he really hoped 
to say something about the average length of the population of leaves, and 
not just of an arbitrarily chosen sample. How can the sample average, which 
varies from sample to sample, tell us anything about the average length of all 
the leaves on the bush?' 

Rutherford, E. and Geiger, H. 
(1910) The probability variations 
in the distribution of alpha 
particles. Philosophical Magazine, 
Sixth Series, 20, 698-704. 

Table 4.4 Emissions of 
alpha particles 

Count Frequency Fit 

0 57 54 
1 203 210 
2 383 407 
3 525 525 
4 532 509 
5 408 395 
6 273 255 
7 139 141 
8 49 68 
9 27 30 

10 10 11 
11 4 4 
12 2 1 

> 12 0 1 

Here is another situation where the same 'obvious question' is implied. 
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Example 4.9 A nutritional study 
A nutritionist studying the effect of different proportions of protein in the diets 
of chicks, randomly allocated the chicks to one of four groups and recorded 
their weights (in grams) after three weeks' growth. The data are given in 
Table 4.5. Each of the four groups received a different diet. 

Table 4.5 Weights of chicks after three weeks' growth (g) 

10% protein 20% protein 40% protein 
Normal diet replacement replacement replacement 

Let us focus on only those chicks receiving the normal diet. If xi is the weight 
of the ith chick then the total weight of the 16 chicks in the group is 

and the mean weight of the 16 chicks in the group is 

With a different allocation of chicks to groups (possibly with different numbers 
of chicks allocated to the groups), or in a repeated experiment, these results 
would almost certainly have been different. Each of the recorded weights 
X I ,  22,. . . l xl6, is in fact a single observation on the random variable X ,  where 
X is 'the weight in grams of a randomly selected chick given a normal diet, 
measured after three weeks' growth'. The observed sample total W is merely 
a single observation on the random variable 

the sum of sixteen independent observations on the random variable X .  
Finally, the observed sample mean 5 is merely a single observation on the 
random variable 
- 
X =  X l + X 2 + ' ' . + X 1 6  

16 

Crowder, M.J. and Hand, D.J. 
(1990) Analysis of repeated 
measures. Chapman and Hall, 
London, p. 75. 

Presumably the nutritionist really wanted to make a meaningful comparison 
between the effects of the four diets; and in order to do that, it was necessary 
to be able to say something about the effect of a normal diet before-making 
the comparison. Again, the question suggests itself: if a different allocation 
had produced different results, as it probably would, what is the worth of the 
experiment? H 
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A different but related question attaching to the whole notion of random 
sampling is this: if, instead of sampling 100 leaves, the botanist had sampled 
only ten and used just these ten in the calculation of the sample mean, would 
his results have been any less useful? The experiment is certainly a simpler 
one-at any rate, it involves less expenditure of effort. And if the nutritionist 
simply wanted to compare four diets, why not just choose four chicks (rather 

than the 45 in the experiment), allocate to each a diet at random, and then 
compare their weights after three weeks? 

We shall now explore the useful consequences of taking large samples in a 
statistical experiment. 

There are two stages in the calculation of a sample mean (once the sample has 
been collected and the attribute of interest has been measured). These are 
(i) adding the observations together to obtain the sample total, and (ii) div- 
iding the sample total by the sample size in order to obtain the sample mean. 
We shall deal with each of these in turn. 

In general, if XI ,  Xz, . . . , X n  are random variables with means pl,  p2 , .  . . , pn ,  
respectively, then their sum X1 + X2 + . . . + Xn is also a random variable. 
This random variable has a probability distribution (which could be quite 
difficult to work out, depending on the distributions of the components Xi); 
however, its mean is very easy to work out. The expected value of the sum 
is, quite simply, the sum of the expected values of the components. 

In the particular case of a random sample the components Xi are independent 
and they are identically distributed (being observations on the same attribute 
of interest) and therefore, in particular, their means are equal. If we write 
pi = p for all i, then we have the particular result that, for a random sample, 
the sample total has mean 

If Xi, i = 1 ,2 , .  . . , n,  are random variables with respective means 
E(&) = pi, then the mean of their sum X1 + X2 + . . . + X, is given by 

E(X~+X~+...+X~)=E(X~)+E(X~)+...+E(X~) 
= p 1 + p 2 + . . . + p n .  (4.7) 

(Remember that in any experiment, the observed sample total is merely a 
single observation on a random variable.) 

This result is stated without proof. 

Next, the sample total is divided by the sample size in order to obtain the 
sample mean, X (also a random variable). The sample mean has expected 
value 

E (X) = E ( X l + X 2 ; . . . + x n  ) = ; E ( X ~ + X ~ + . . . + X , ) .  1 

Here, we have used the intuitive result that for a random variable X with 
constant multiplier a ,  the expected value of the random variable a X  is 
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It  is possible to prove this result formally, and this is done in the next section, 
but you might care to reflect as follows. If the random variable X denotes 
people's height, measured in feet, then the random variable Y = 12X denotes 
the same thing, measured in inches. Within a population, the mean height in 
inches, py,  will be twelve times px, the mean height in feet. 

Now things become very easy indeed: we have just established that for a 
random sample the sample total has expected value np. It follows that the 
sample mean has expected value 

This is a very reassuring result! Having complained that the sample mean is 
a random variable and questioned the worth of its calculation, we have shown 
nevertheless that its expected value is the population mean, p, itself. This 
confirms our intuitive view that the sample mean is at least in some sense a 
good indicator or predictor (or, simply, a good estimator) for the unknown 
population mean. 

However, notice that the result (4.8) does not depend on the value of n ,  the 
sample size. In a sample of size 2, the sample mean has expected value 

and the same applies to a sample of size 100. One intuitively feels that a 
larger sample is 'more accurate' and, in that sense, that its results are 'more 
useful'. However, the result (4.8) is not concerned with accuracy, and does 
not imply or even suggest this. 

In fact, one's intuition that inferences from larger samples are 'more accurate' 
is correct, provided a proper interpretation is given to the meaning of the 
word 'accurate'. The key lies in the precision of the sample mean-to put it 
another way, its variance. 

Here is a further general result that will be necessary. It  has been remarked 
that a sum of random variables is itself a random variable, and at (4.7) we 
found its mean. Provided one further assumption is made, it is very easy to 
write down an expression for the variance of the sum. 

Notice the essential further constraint that the components of the sum should 
be independent. In the case of a random sample this constraint is always 
assumed to hold, and result (4.9) follows. (In more complicated statistical 
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If Xi, i = 1,2 , .  . . , n are independent random variables with respective 
variances V(Xi) = U:, then the variance of their sum X1 + X2 + . . + X, 
is given by 

This result is stated without proof. 
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experiments where individual observations cannot be assumed to be indepen- 
dent of one another, a result corresponding to (4.9) can be obtained for the 
variance of the sum without great difficulty.) 

In the particular case of a random sample, not only are the components in- 
dependent but they are identically distributed as well, so it follows that their 
variances are equal. If we write a: = a2 for all i, then it follows for a random 
sample that the sample total has variance 

V(X1 + X2 + . . + X,) = a2 + a2 + . . . + a2 = nCr2 

Upon division of the sample total by n, there is a powerful copsequence that 
confirms our intuition that 'larger samples are better', and quantifies the 
improvement. 

The sample mean has variance 

Here, we have used the result that if X is a random variable and a is a positive 
constant, then the variance of the random variable a X  is 

V(aX) = a 2 v ( x ) .  

The result is not entirely obvious: you might find it easier to use the result 
that if X is a random variable and a is a positive constant, then the standard 
deviation of the random variable aX is SD(aX) = aSD(X). These results 
can be proved formally without much difficulty, and are further discussed in 
Section 4.3. 

Note that in this result (4.10) the sample size n does feature: the larger the 
sample size, the smaller the variance of the sample mean. The sense in which 
a sample mean obtained from a large sample is a 'more accurate' estimator 
of the unknown population mean p than the sample mean obtained from a 
smaller sample is that it is less likely to be very far away from its expected 
value-which is, in both cases, the unknown population mean p. 

These two important results can be summarized as follows. 

If X is a random variable with mean p and variance a2, and if XI,  X2, . . . , 
X, constitutes a random sample from the distribution of X, then the 
first two moments of the sample mean 7 are 
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You will notice that nothing has been said about the probability distribution 
of X at  this stage, and the main implication behind these results is that large 
samples are better than smaller ones. In general, exact results are rather 
difficult to  obtain and to apply. However, we shall see in Chapter 5 that it is 
quite straightforward to obtain an approximate result for the distribution of 
the sample mean. Using this result approximate probability statements can 
be made, about the accuracy of as an estimator of p, about conditions 
placed on the minimum sample size necessary to achieve a required precision, 
and so on. 

Exercise 4.7 
This exercise is a computer simulation exercise designed to illustrate the re- 
sults of this subsection. 

(a) use your computer to obtain a random sample of size five from the Poisson 
distribution with mean 8. List the elements of the sample, and find their 
mean. 

(b) Now obtain 100 samples of size five from the Poisson distribution with 
mean 8. In each case, calculate the sample mean, and store the 100 sample 
means in a data vector. 

(c) Plot a histogram of the data vector of part (b), and find its mean and 
variance. 

(d) Now repeat parts (b) and (c) but with samples of size fifty rather than 
five, and comment on any differences observed in the data vector of means. 

In Section 4.3 we shall look more closely at  some general results for random 
variables. 

4.3 Moments of linear functions 

A rather general (and not always easy) problem in statistics is illustrated in 
the following example. 

Example 4.70 Estimating height 
A theodolite is an instrument used by surveyors for measuring angles, and to 
calculate the heights of tall structures. For instance, in Figure 4.2, the height 
of the wall (labelled y) is unknown. The theodolite stands a known distance d 
from the wall on a tripod of known height t. The operator directs the viewing 
lens of the theodolite at  the top of the wall, and records the angle X. 

In terms of the measured angle X,  a simple trigonometric argument gives the 
unknown height of the wall as 

Figure 4.2 Estimating the 
height of a wall 

In practice, the recorded angle X is an observation on a random variable X: 
if the experiment were to be repeated, possibly using different operators, one 
would expect small differences in the recorded angle. This would necessarily 
imply corresponding differences in the calculated value of y, which should 
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therefore similarly be regarded as due to random variation. In fact, any 
single calculated value of y is an observation on a random variable Y. The 
relationship between the random variables X and Y is given by the identity 

In general, any function of a random variable is itself a random variable. This 
example illustrates a more general problem. Suppose that a random variable 
X has a probability distribution that is known: what, then, can be said about 
the probability distribution of an associated random variable Y defined in 
terms of X through the equation 

where h(.) is a known function? 

In principle this question can always be answered, and there are some standard 
results when X is known to follow some standard distribution and where the 
form of the function h(.) is particularly simple. We shall meet some of these 
standard results as the course progresses. 

However, in this section we will restrict ourselves to a more specific question: 
given that the random variable X has mean p and variance a', what can be 
said about the mean and variance of the associated random variable Y defined 
in terms of X through the linear function 

where a and b are constants? 

As you can see, this is a much reduced problem. We have already addressed 
some related questions. Here are some examples where the problem might 
arise. 

Example 4.1 1 Chest measurements 

Based on a very large sample of data (see Chapter 2 ,  Table 2.17), an adequate 
probability model for the distribution of chest circumferences (in inches) 
amongst Scottish soldiery of the last century may be assumed to be given 
by the normal distribution with mean p = 40 and standard deviation a = 2. 
It is required to make a comparison with present-day European equivalents, 
and for this it is required to work in centimetres. There are 2.54cm to the 
inch: the question arises 'if the random variable X has mean 40 and stan- 
dard deviation 2, what are the mean and standard deviation of the associated 
random variable 

representing a linear function of X with a = 2.54 and b = O?' H 

Example 4.12 Water temperature 
One of the factors in the spread of malaria is the density of the spreading agent 
(the Anopheles mosquito) in the population. An environmental feature that 
in turn affects this density is the water temperature where the mosquito larvae 
breed. This will be subject to variation. Suppose that the water temperature 
is measured in OC (degrees Celsius). If measured in OF (degrees Fahrenheit) 
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instead, there will still be evidence of variation: the equation that gives the 
temperature Y ("F) in terms of X ("C) is 

Y = 1.8X + 32. 

This represents a linear conversion with a = 1.8 and b = 32. H 

Example 4.13 Body weight 
The conversion factor between pounds (lb) and kilograms (kg) is given approxi- 
mately by l lb = 0.455 kg. Americans tend to express body weight measure- 
ments in pounds, Europeans (though not usually the inhabitants of Great 
Britain) in kilograms. For a comparison of the variability in body weight 
for two cultures, it would be necessary to make a transformation of the style 
Y = 0.455X. H 

Let us now establish the first two moments (i.e. the mean and variance) of 
the random variable Y = a X  + b. A formula for the expected value E[h(X)] 
of a function h(.) of a random variable X is easy to write down. For instance, 
in the discrete case, this is 

where the random variable X has probability mass function p(x) and where 
the summation is taken over the range of X .  In the continuous case, 

where the random variable X has probability density function f (X) and where 
the integral is taken over the range of X .  So, in the particular case that h(X) 
takes the form a X  + b, we have (in the discrete case) 

E ( a X  + b) = C x ( a x  + b)p(x) 

= Cx axp(x> + Cx bp(x) 

= a Cx XP(X) + b C, P(X) 

= aE(X)  + b. 

The last line follows because Ex xp(x) is, by definition, the mean of X ,  and 
because Ex p(x) is necessarily 1. Similar manipulations show that in the case 
that X is continuous, then the same formula applies: 

Exercise 4.8 

(a) In Example 4.11 a random variable X with mean 40 was suggested as a 
model for the distribution of chest circumferences (measured in inches) 
amongst Scottish soldiers (based on historical data). What would be the 
mean circumference if the units of measurement were centimetres? 

This is one of the standard 
properties of a probability mass 
function. 

Earlier, we used the result 
E ( a X )  = a E ( X ) .  

(b) Suppose that in Example 4.12 the variation in water temperature was 
modelled by a probability distribution with mean 26 V. Find the mean 
temperature in degrees Fahrenheit. 
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In order to work out the variance of the random variable a X  + b, we shall 
start by writing Y = aX + b. The variance of Y is, by definition, 

V ( Y )  = E [ ( Y  - E(Y))'] 

and the expected value of Y is E ( Y )  = a E ( X )  + b from (4.11). So it follows 
that 

V ( Y )  = E [ ( a X  + b - ( a E ( X )  + b))'] 

= E [ ( a X  + b - a E ( X )  - b)'] 

= E [ ( a X  - ~ E ( x ) ) ~ ]  

= E [ a 2 ( x  - E(x)) ']  (4.12) 

In (4.12) the expression ( X  - E ( X ) ) '  is a random variable; a2 is a constant 
and can be taken outside the brackets. Thus 

V ( Y )  = a 2 E [ ( x  - E ( x ) ) ~ ]  = a 2 v ( x ) .  

But Y is just the random variable aX + b, so we have obtained the result 

It follows from (4.13) (taking square roots of both sides) that 

S D ( a X  + b) = da2V(X) = la lSD(X) .  (4.14) 

Notice that the constant b does not feature on the right-hand side of (4.13) 
or (4.14). The modulus sign in (4.14) is important since the constant a could 
be negative, but a standard deviation is always positive. 

Example 4.14 Sections of a chemical reactor 
Variation in the section temperature across the 1250 sections of a chemical 
reactor may be assumed to be adequately modelled by a normal distribution 
with mean 452 OC and standard deviation 22 deg C. 

From properties of the normal distribution we know that nearly all the recorded 
temperatures across the 1250 sections will lie within the range p - 30. to 
p + 30, or 386 "C to 518 OC. Converting from "C to OF leads to a new random 
variable with mean 

and standard deviation 

As it happens, this new random variable is also normally distributed: none of 
the preceding results imply this, but it is true nevertheless. You can probably 
appreciate that altering the scale of measurement will not alter the essential 
characteristics of the temperature variation: the probability density function 
reaches a peak at the mean temperature, tailing off symmetrically either side 
of the mean. 

See formula (3.9) in Chapter 3. 

Earlier, we used the result 
V ( a X )  = a 2 v ( x ) .  

These are fictitious data based on a 
real investigation. See Cox, D.R. 
and Snell, E.J. (1981) Applied 
Statistics. Chapman and Hall, 
London, p. 68. 
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Again, nearly all the temperatures across the sections of the reactor will lie 
within the range p - 3 ' ~  to p + 30: measured in "F the lower extreme is 

and the upper extreme is 

These could have been obtained in a different way by converting 386 "C and 
518 "C (the two likely temperature extremes) to "F. 

Exercise 4.9 
In the early years of this century, statisticians were very concerned simply 
with the counting and measurement of random variables, and the recording 
of those measurements. Anything amenable to measurement and where there 
was evidence of variation was fair game. Some examples from issues of the 
journal Biometrika, from 1901 to 1902, include the number of sense organs of 
Aurelia Aurita; the number of ridges and furrows in the shells of different 
species of mollusc; the correlation between the number of stamens and the 
number of pistils in Ficaria ranunculoides during the flowering season; the 
dimensions of Hyalopterus trirhodus (aphids); the dimensions of the human 
skull; the dimensions of the egg of CUCUZUS Canorus (the cuckoo); the lengths 
of criminals' left middle fingers (and other dimensions); the number of sepals in 
Anemone nemorosa; the dimensions of the human hand; coat-colour in horses; 
the epidemiology of smallpox. A very large sample was used in assessing the 
variation in the lengths of criminals' left middle fingers: the variation may be 
very adequately modelled by a random variable X with mean 11.55cm and Macdonell, W.R. (1902) On 
standard deviation 0.55 cm. criminal anthropometry and the 

identification of criminals. 
It is required for a comparison with Imperial measurements to make a trans- Biometrika, 1, 177-227. 
formation to inches. At l in = 2.54cm, what is the mean and standard devi- 
ation in the new scale? 

These results for moments of a linear function of a random variable X may 
be summarized as follows. 

If X is a random variable with mean px and standard deviation 'JX, 

and if the random variable Y is defined by 

Y = a X + b ,  

where a and b are constants, then Y has moments 

This section ends with a result which provides a very useful alternative formula 
for the variance of a random variable X. 
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First, we shall need the incidental result that if h l (X)  and h2(X) are two 
functions of a random variable X ,  then the expected value of their sum is 
equal to the sum of their expected values: 

This is easy to check. In the case that X is discrete, for instance, having 
probability mass function p(%), then 

Similar manipulations will confirm (4.15) when X is a continuous random 
variable. 

The formula we have been using so far for the variance of a random variable 
X with expected value p is 

Expanding the square on the right-hand side gives 

The expression X 2  - 2pX + p2 can be written in the form hl(X) + h2(X) 
in more than one way, but the most useful way is to set hl(X) = x2 and 
h2(X) = (-2pX + p2). Then it follows that 

Furthermore, we can apply our formula for the mean of a linear function of 
X ,  E ( a X  + b) = aE(X)  + b,  to  the last term above. Setting a = -2p and 
b = p2 we finally obtain the result 

This formulation is sometimes easier to implement than the formula for the 
variance that we have used up to now. 
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Example 4.15 A perfect die 
In Chapter 3 ,  page 110 you saw that the random variable X with probability 
mass function 

(used as a probability model for the outcome of throws of a perfectly engin- 
eered die) has mean 

and variance 

Using the alternative formula (4.16) for the variance we first need the value 
of E(X2) :  this is 

Then 

2 V(X) = E ( X  ) - p2 = F - ( 3 . ~ ) ~  = - = E = 2.92 

as before. 

Exercise 4.10 
In Chapter 3 Exercise 3.7, you showed that the variance in the outcome of 1 
rolls of a Double-Five was 1616 = 2.7. (The.mean outcome is 4.) Confirm 
this result for the variance using the formula (4.16). 

It was earlier remarked that, in general, exact distributional results for random 
samples are rather difficult to obtain. There are some exceptions to this rule, 
four of which we shall now briefly explore. 

A Sums of Bernoulli random variables 

Suppose that the random variables XI, X2, . . . , X, are each individually dis- 

tributed as Bernoulli random variables with the same value of the parameter 
p. That is, each Xi takes the value 1 with probability p and 0 with probability 
q = 1 - p.. Suppose that, as well as being identically distributed, the Xis are 
independent. Then in Chapter 2,  Section 2.3, we defined the distribution of 
the sum Y = XI + X2 + . . . + X, to be binomial with parameters n and p, 
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and went on to look at some of the properties of this distribution. In this 
case the distribution of the sum is not too difficult: it is given by the binomial 
probability mass function 

The intuitive result was also stated without proof in Chapter 3, page 102, 
that the mean of the binomial distribution B(n,  p) is the product np. We did 
not discuss its variance. However, we also found that if X follows a Bernoulli 
distribution with parameter p, then X has mean and variance 

E ( X )  = P, V(X) = Pq. The mean of a Bernoulli 
distribution was found on page 101 

It  follows directly from the results (4.7) and (4.9) of this chapter that and the variance on page 111. 

thus confirming one result and stating a second for the first time. 

If the random variable Y has a binomial distribution B(n,p) ,  then 

E ( Y ) = n p ,  V(Y)=npq.  (4.17) 

Exercise 4.1 1 

You saw in Chapter 3, Example 3.5, that if X is binomial B(4,0.4) then the 
individual probabilities for X are as follows. 

X 0 1 2 3 4 

p(x) 0.1296 0.3456 0.3456 0.1536 0.0256 

Use the formulas at  (4.17) to write down the mean and variance of X and 
confirm your result for the variance of X using the result 

V(X) = E(x2) - (E(x))~ 

obtained at (4.16). 

B Sums of Poisson random variables 

If Xi, i = 1,2, .  . . , n,  are independent Poisson variates with respective 
means pi, then their sum Y = X1 + X2 + . . . + X, is also a Poisson 
variate, with mean p1 + p2 + . e + p,: that is, 

Y Poisson(pl + p2 + . . . f pn). (4.18) 

This result is stated without proof. 

Notice that, given the distributions of the independent components Xi, you 
could have written down the mean and the variance of Y immediately using 
results (4.7) and (4.9). What is not obvious is that the distribution of the 
sum Y = XI + X2 + . . + Xn is also Poisson. 



Elements of Statistics 

(Incidentally, notice that the result is quite general: there is no requirement 
here, as there is in the case of a random sample, that the Xis should be 
identically distributed, only that they should be independent.) 

Example 4.5 continued 

In the example on colour blindness (Example 4.5) we saw that for one form 
of colour-deficiency the proportion of male sufferers is about 0.06 and for 
females it is about 0.004. Although the proportion 0.06 is a little high for 
our Poisson 'rule of thumb' to hold-the threshold mentioned was p 5 0.05- 
in a large population the approximation will not be too bad. Suppose that 
in an assembly of 300 people there are 220 men and 80 women. Then the 
number of men with colour-deficient sight is approximately Poisson with mean 
220 X 0.06 or 13.2; the number of women with colour-deficient sight is approxi- 
mately Poisson with mean 80 X 0.004 or 0.32. The total number of colour- 
deficient people is, by (4.18), approximately Poisson with mean 13.2 + 0.32 or 
13.52. 

Example 4.16 Two species of ant 
Two species of ant, Messor Wasmanni and Cataglyphis bicolor inhabit north- Harkness, R.D. and Isham, V. 
ern Greece. In any given region, it might be assumed initially that the number (1983) A bivariate spatial point 
of Messor nests follows a Poisson distribution with mean p1 proportional to pattern of ants' 

Statistics, 32, 293-303. the area of the region under consideration and to the underlying density of 
Messor nests, and that the number of Cataglyphis nests follows a Poisson 
distribution with mean p2. In different regions the number of ants' nests will 
vary according to a Poisson distribution with mean p1 + p 2  

There follow two further results that are stated here without proof and further 
comment. They will be referred to in Chapter 5 which discusses the normal 
distribution. 

C A linear function of a normal random variable 

If the random variable X is normally distributed with mean p and vari- 
ance a2, then the random variable a X  + b is normally distributed with 
mean a p  + b and variance a2a2: 

a X  + b N(ap  + b, a2a2). (4.19) 

Again, you could have deduced the mean and the variance of the random 
variable a X  + b from previous results. What is new (although this result was 
referred to in Example 4.14) is the fact that a X  + b is normally distributed. 
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D Sums of normal. random variables 

If Xi, i = 1,2 , .  . . , n, are independent normally distributed random 
variables with respective means and variances pi and a:, then their 
sum Y = XI + Xz + . . + X, is also normally distributed, with mean 
p1 + p2 + . . . + p, and variance U: + U; + . . . + U:: that is, 

Y N(pl  + p2 + .. .  + p,,o; +U; + . . a  +g:). (4.20) 

It  follows, incidentally, from the results (4.19) and (4.20) that if a random 
sample of size n is taken from a normal population with mean p and variance 
uZ, then the sample mean 7 is normal ly  distributed with mean p and variance 
02/n: 

The exponential distribution 

One of the properties of the Bernoulli process is that the probability of a 
'success' at any trial remains the same and equal to the probability of success 
at all preceding trials, whatever the history of the process up to that trial. So, 
even a long run of failures (of 0s) does not make the probability of a success (a 
1) at the next trial any more likely. There is no question of 'luck being bound 
to change'. Similarly, a long run of 1s (a  'run of good luck') does not alter the 
probability of a 1 at  subsequent trials. The incidence of 1s may be regarded in 
a very special sense as 'quite random', in that knowledge of the whole history 
of the process so far, the outcome of all the trials, does not alter its future 
development, or the probability laws describing its future development. A 
statistical experimenter about to embark on trial number 1001 is not helped 
at all in his assessment of what might or might not happen at  the trial by 
knowing what has happened at any or all of the preceding thousand trials. 
This property is known as the 'memoryless' property of the Bernoulli process. 

In this section we shall meet for the first time (but not examine in great 
detail) a process rather similar to the Bernoulli process, one which develops, 
however, in continuous time rather than as a sequence of OS and Is  at  discrete 
trials. What happens is that with passing time some particular event of 
interest (which for ease we shall call A) occurs .once, and then again, and 
then again, and then again, . . . , and so on. But it does so after intervals (or 
'waiting times') that are random in the same sense: knowing how many times 
A has occurred so far, or how long it is since A last occurred, is of no use or 
assistance in forecasting the'next, or future, occurrences of A. These waiting 
times correspond roughly to sequences, or runs, of OS in a realization of a 
Bernoulli process; when A happens it is rather as though a 1 was recorded. 
But the waiting times are not integers, and successive occurrences of A are 
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not restricted to discrete opportunities. A more detailed description will be 
given in Chapter 12, where several random processes similar to the Bernoulli 
process are described. 

Here, however, are some examples of the sort of phenomenon to be modelled. 

Example 4.17 Random events occurring in continuous time 
Even in a machine shop where a regular maintenance programme is carried 
out, occasional machine breakdowns are an inevitable hazard. However, 
their occurrence is not forecastable. Sometimes the repair staff are over- 
worked, and sometimes there is nothing for them to do. All that is known 
from repair records is that the breakdowns occur at an average rate of 
three times a week. 

Extreme wind conditions sufficient to ground aircraft are recorded at a 
small airport on the south coast of England roughly twice a year, but 
their time of occurrence does not seem to be linked to the time of the 
year or indeed to anything else. They are always a total surprise. 

It is very annoying to break a fingernail. Unfortunately, it happens in a 
split second and there is nothing one can do about it. Some people are 
forever breaking nails; others hardly ever do. 

Small clicks and buzzes occur sometimes when one is listening to FM 
broadcasts, but there is nothing one can do about them. They are quite 
irregular and do not seem traceable to any particular cause. 

Police monitoring a stretch of motorway have breakdowns reported to 
them. There are many more during the day than there are at night, 
and noticeably more on Friday and Sunday evenings than on Saturday 
evenings, but over continuous periods of not too long duration the average 
rate may be regarded as invariant. However, there never seems to be any 
pattern to the times at which the reported breakdowns occur. 

Arrivals at  a hospital casuaIty ward occur without warning, but at average 
rates which (depending broadly on the time of day and the day of the 
week) are reasonably stable. 

Some events, of course, can be forecast with more or less accuracy in the way 
those in Example 4.17 could not. Here are some examples of forecastable 
recurrent events. 

Example 4.18 Recurrent events showing a non-random pattern 
(a) An owner of a battery-operated wristwatch has noticed for the past six 

years that batteries advertised to last one year have, to within a fortnight 
or so, lasted a year. 

(b) It is in the interest of manufacturers of car tyres to build into their tyres a 
lifetime with as small a variability as possible (and not too high a mean). 
It is possible to forecast with some accuracy when a particular set of tyres 
will have to be replaced. 

(c) Patients at  a dental surgery arrive by appointment and are seen roughly 
at the time stated on their appointment card. (The only conlplication per- 
turbing the appointn~ents system is the occasional unforeseeable emerg- 
ency arrival!) 
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4.4.1 Random events occurring in continuous time 
The discrete-time Bernoulli process is based on the assumption that an event 
either occurs, or does not occur, at each of a clearly defined sequence of 
opportunities (called trials). Typical realizations of the Bernoulli process 
might look like something as shown in Table 4.6. In each case, only the first 
25 trials in any realization have been monitored. 

Table 4.6 The first 25 trials in three realizations of a Bernoulli process 

(i) 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0  ... 
(ii) 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0  ... 
( i i i ) 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0  ... 

In each of these three examples, the parameter p (the underlying proportion 
of Is) happened to be equal to 0.3. We saw in Chapter 3, Section 3.3 that the 
number of trials N up to and including the first success in a Bernoulli process 
has a geometric distribution with parameter p (mean l lp) .  Here, observed 
values of N are (i) 2, (ii) 4 and (iii) 2. In fact, by the 'memoryless' property 
of the Bernoulli process, the number of trials from one success to the next 
also has a geometric distribution with parameter p. In the realizations above 
there are actually several independent values of N observed. They are: (i) 2, 
6, 1, 2, 1,.4, 4, 2, l-and then a final observation on N where all we know is 
that it must be at least 3; (ii) 4, 3, 1, 1, 6, 2, 1, 3, 1; (iii) 2, 2, 1, 2, 5, 5, 1, 2. 

Events also occur in a random haphazard kind of a way in continuous time 
-but then there is no notion of a 'trial' or 'opportunity' at which the event 
of interest might, or might not, occur. A probability model different from 
the Bernoulli process, one not involving the 'trial' construction, needs to be 
developed to represent this sort of idea. As well as some of those listed in 
Example 4.17, examples of random unforecastable events occurring in continu- 
ous time include floods, air crashes, earthquakes and other disasters: the point 
is that by their nature these incidents do not occur according to any sort of 
schedule. Here, for instance, are some data on serious earthquakes world-wide 
(see Table 4.7). The table gives the time in days between successive record- Adapted from: The Open 
ings. An earthquake is included if its magnitude was at  least 7.5 on the Richter University (1981) S237 The Earth: 
scale, or if over 1000 people were killed. Recording starts on 16 December 1902 Stmcture~ and 

Evolution, Milton Keynes, The (4500 killed in Turkestan) and ends on 4 March 1977 (2000 killed in Vrancea, Open University Press. 
Romania). There were 63 earthquakes recorded altogether-Table 4.7 shows 
the 62 'waiting times' between consecutive earthquakes. The numbers should 
be read across the rows. 

Table 4 . 7  Time intervals between major earthquakes (days) 

These data can be represented more comprehensibly in a histogram, as shown 
in Figure 4.3. 
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Figure 4.3 Time intervals between major earthquakes (days) 

There are no instances of two (or more) earthquakes occurring on the same 
day, though such a coincidence is not impossible. It might be reasonable at 
least as a first approximation, therefore, to call any single day an opportunity 
or trial during which an earthquake might or might not happen. If so, then 
we can use properties of the geometric model to infer properties of earthquake 
times: the estimated mean time between earthquakes is The whole idea of using data for 

840 + 157 + . . . + 220 27 107 
estimating parameters for 

- - = 437 days. statistical models is examined in 
62 62 Chapters 6 and 7. It is one of the 

The estimated probability of a major earthquake occurring somewhere in, the 
world on any one day (tomorrow, say) is 62127107 = 0.0023, and the estimated 

probability (say) of a lull exceeding five years (allowing one leap year-1826 
days altogether) is, using the c.d.f. of the geometric distribution, 

or about 1 in 65. Here, there actually was a lull of 1901 days between the 
fourteenth and fifteenth serious quakes recorded (one on 3 October 1915 in 
Nevada, California; and the other in Kansu Shansi in China on 16 December 
1920): that is, 1 in 62! This probability is not very great: but then we are 
looking at the possibility of a lull exceeding 1826 days when the mean lull is 
only about 437 days: that is, a lull roughly four times longer than average. 

Exercise 4.12 m 

What would the geometric model give for the probability of a time lag between B 
earthquakes exceeding four years? How many cases are there of such a lull 
being recorded? 

What we require to model the waiting times between unforecastable events 
where there is no natural underlying notion of a trial, is a continuous-time 
analogue of the geometric distribution. The histogram in Figure 4.3 suggests 
that a suitable probability model will be one with a highly skewed density 
function, starting high at 0 and tailing off with longer waiting times (rather as 

1 70 
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the geometric mass function does). Many density functions could be contrived 
to possess that general shape: the triangular density is skewed and could 
provide a useful approximate model. But we also need a further property 
of the model-one that mimics the 'memoryless' property of the Bernoulli 
process. It turns out that only one family of density functions satisfies this 
requirement: it may be parameterized in terms of the average waiting time p 
between events as follows. 

A model for the waiting time T between consecutive events occurring 
haphazardly in time is given by the probability distribution with density 
function 

1 
f (t) = -e-t'p, t 2 0, (4.22) 

P 

where p = E(T) is the mean waiting time between events. 

Now, if E (T)  is the average waiting time between occurrences of the recurrent 
event A, then the reciprocal of E(T)  is the average rate at  which A occurs. 
Writing this rate as X,  the probability density function of T can be rewritten 

f (t) = ~ e - ' ~ ,  t > 0. 

Thus we are led to the following definition for the probability distribution of 
the random variable T ,  the waiting time between recurrent random events 
occurring at average rate X in continuous time. 

The random variable T is said to follow an exponential distribution 
with parameter X if it has probability density function 

f ( t )=XePxt ,  t > 0 .  (4.23) 

This is written T M(X). 

It is important to note that by convention the exponential family is indexed 
by the parameter X = 1/p ,  rather than by the mean p.  The probability 
density function of the random variable T is sketched in Figure 4.4. Notice its 
similarity to the shape of the probability function for the discrete geometric 
random variable N. Both probability distributions are highly skewed. 

The cumulative distribution function of the random variable T is given by 

Just as in cases where the Bernoulli process is likely to be a useful model the 
indexing parameter p is usually deducible from the description (or estimable 

Figure 4.4 The probability 
density function f (t) = XePxt, 
t > o  

It would be convenient to have 
parameterized the exponential 
distribution in terms of its mean p 
rather than in terms of the 
reciprocal of the mean, X = l/p. 
But this would have been to flout 
convention! The label M ( . )  comes 
from the queuing literature and 
follows the work of the great 
Russian mathematician Andrei 
Andreevich Markov (1856-1922). 
The study of Markov chains- 
linked sequences of random 
variables-is a large branch of 
probability theory. Markov's book, 
The Calculus of Probabilities 
(1913), is a seminal text. Most of it 
is rather theoretical, but the last 
chapters are devoted to the 
applications of probability theory 
to insurance problems. 
Result (4.24) is standard and well 
known. It follows from a 
straightforward exercise in 
integration, but you need not worry 
if this technique is unknown to you. 
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from data!), so the mean waiting time 1 / A ,  or its reciprocal the 'rate' A, 
indexes the continuous-time analogue, and may often be estimated from data. 

Exercise 4.13 
Assume that earthquakes occur world-wide at random but at an estimated 
average rate of once every 437 days. Assuming a continuous-time model for 
the phenomenon, find 

(a) the probability that no earthquake is experienced world-wide during the 
first three years of the third millenium (that is, during the years 2000-2002 
inclusive. The year 2000 will be a leap year); 

(b) the median time between successive earthquakes (that is, the solution X 

of the equation F(x)  = i); 
(c) the proportion of waiting times longer than expected (that is, the pro- 

portion of waiting times that exceed 437 days). 

You saw from your answer to Exercise 4.13(b) that the median of the ex- 
ponential distribution is very much less than the mean. Figure 4.4 is repro- 
duced here as Figure 4.5 with A set equal to 11437: it shows the median and 
mean waiting time between earthquakes, and the probability you calculated 
in Exercise 4.13(c). 

Figure 4.5 A probability model for the waiting time between earthquakes (days) 

The consequences of the pronounced skewness of the exponential distribution 
are very apparent. Notice that Figure 4.5 is a representation of a probability 
model for earthquake waiting times (quite a good one); it is different from 
the histogram in Figure 4.3, which is a summary of waiting time data. When 
events occur haphazardly 'at random in continuous time' in such a way that 
they are completely unforecastable, then the model we have just described, a 
sort of limiting case of the Bernoulli process, is often used. This model is called 
the Poisson process. In Chapter 12 this whole mathematical construction is 
investigated further. All that follows now is a stated result that will explain 
the name. 

4.4.2 Counting the events 
If events occur at random in continuous time with an average waiting time 
between consecutive events equal to p = 1 / X ,  then the average number of 
events in a time interval of duration t will be At. (This makes sense. If 
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the number X is the average rate of occurrence of events, then the expected 
number in a time interval of duration t is At.) However, the number of events 
to occur in such a fixed time interval is a random variable: for instance, for 
the earthquake data in Table 4.6, it turns out that during the decade from 
1 January 1911 to 31 December 1920 there were five earthquakes world-wide; 
during the next decade there were eight earthquakes; and there were seven 
during the ten years after that. The numbers 5, 8 and 7 are independent 
observations on some random variable whose probability distribution is for 
the moment unknown-but it has mean (allowing two leap years in a decade) 

62 

Xt = (- 27 101 
X (3652 days) = 8.35. 

In fact, the distribution of the number of events in a time interval of dur- 
ation t is Poisson(Xt): roughly, the argument for this result is based on the 
construction of 'notional trials' that was used in Example 4.7. 

The Poisson process 
For recurrent events occurring at random at average rate X in such a 
way that their occurrence may be modelled as a Poisson process, the 
number of events to occur during a time interval of duration t is a ran- 
dom variable X ,  where X - Poisson(Xt); the waiting time T between 
consecutive events follows an exponential distribution T - M(X). 

Exercise 4.14 
Assuming tha t  in a typical decade the expected number of earthquakes world- 1 
wide is 8.35, find the probability that there will be 
(a) exactly two earthquakes; 
(b) at least four earthquakes. 

4.4.3 Moments and other properties 
It has been stated that the mean of the exponential random variable T - M(X) 
is 1 / X ;  confirmation of this, and calculation of the standard deviation of the 
exponential waiting time is a straightforward exercise in integration. Moments 
of the exponential distribution are given by 

Exercise 4.15 
Express the median waiting time between consecutive events in a Poisson H 
process as a fraction of the mean waiting time. 

The general result that the median of the exponential distribution is less than 

70% of the mean confirms the extreme skewness of the distribution, implied 
by the sketch of its density function in Figure 4.4. 

173 
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4.4.4 Simulation of waiting times 
It is possible to use a computer to generate a list of typical observations 
from the exponential distribution M(X). This is a particularly useful activity: 
suppose you were to generate, say, ten independent observations from M(;)- 
that is to say, ten observations from an exponential distribution with mean 2. 
Here (in Table 4.8) is a set typical of what you might have obtained. 

This list of numbers could easily be regarded as merely 'a random sample' 
of size ten from this particular distribution. However, if you string together 
a sequence of exponential waiting times, then you obtain a single simulated 
realization of a Poisson process. For instance, suppose you were told that flood 
tides occur in a particular Scottish harbour port in a way that is impossible 
to forecast, but at  an average rate of one flood tide every two years. Then 
a typical sequence of ten flood tides could be simulated by adding together 
in sequence the ten waiting times listed in Table 4.8. The times at which 
the simulated flood tides occur would then be as listed in Table 4.9 (times 
measured in years). 

So in this simulation it took over fifteen years for ten flood tides to have been 
recorded: a little less than the twenty years expected. (There were four very 
short intervals between floods: 0.07 years is less than a month.) The incidence 
of flooding can be represented against time as shown in Figure 4.6. 

Ten flood tides, time in years 

Figure 4.6 Simulated sequence of ten flood tides, times in years 

The simulation could be made more elaborate if we knew the probability 
distribution of flood tide levels. As it happens we do not, but suppose that the 
simulation showed that the sixth and seventh flood incidents were particularly 
serious, the tenth less so. Then we might end up with something like the 
diagram in Figure 4.7. 

0 2 4 6 8 10 12 14 16 

Ten flood tides, showing flood levels attained, time in years 

Figure 4 .7  Flood tides, showing flood levels attained 

The topic of simulation will be examined briefly in Section 4.5. Exercise 4.16 
which follows is about the simulation of earthquakes. 

Table 4.8 Ten observations 
from M ( + )  

Table 4.9 Simulated times of 
ten flood tides (years) 

Waiting time Time of flood tide 
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Exercise 4.16 
(a) Assuming the mean time between earthquakes to be 437 days as suggested 

by the data in Table 4.6, use your computer to simulate the times of 
earthquakes world-wide over a twenty-year period. (Ignore leap years: 
assume 365 days a year.) List the times of occurrence in a table, and on 
a diagram represent the incidence of earthquakes against time. 

(b) How many earthquakes were there in your simulation? How many should 
you have expected? What is the median number of earthquakes to occur 
world-wide in a twenty-year period? 

Here is a final exercise covering the main points of the section. 

Exercise 4.17 
Here, our aim is to develop an adequate model for the following data set. 
The data in Table 4.10 give the time intervals (in seconds) between successive 
pulses along a nerve fibre. They are extracted from a large data set in which 
there were 800 pulses recorded, so there were 799 waiting times between pulses. Cox, D.R. and Lewis, P.A.W. 
The data in Table 4.10 are the first 200 waiting times. (1966) The Statistical Analysis of 

Series o f  Events. Chapman and 

Table 4.10 Waiting times between pulses (seconds) 

0.21 0.03 0.05 0.11 0.59 0.06 0.18 0.55 0.37 
0.14 0.19 0.02 0.14 0.09 0.05 0.15 0.23 0.15 
0.24 0.16 0.06 0.11 0.15 0.09 0.03 0.21 0.02 
0.24 0.29 0.16 0.07 0.07 0.04 0.02 0.15 0.12 
0.15 0.33 0.06 0.51 0.11 0.28 0.36 0.14 0.55 
0.04 0.01 0.94 0.73 0.05 0.07 0.11 0.38 0.21 
0.38 0.38 0.01 0.06 0.13 0.06 0.01 0.16 0.05 
0.16 0.06 0.06 0.06 0.06 0.11 0.44 0.05 0.09 
0.27 0.50 0.25 0.25 0.08 0.01 0.70 0.04 0.08 
0.38 0.08 0.32 0.39 0.58 0.56 0.74 0.15 0.07 
0.25 0.01 0.17 0.64 0.61 0.15 0.26 0.03 0.05 
0.07 0.10 0.09 0.02 0.30 0.07 0.12 0.01 0.16 
0.49 0.07 0.11 0.35 1.21 0.17 0.01 0.35 0.45 
0.93 0.04 0.96 0.14 1.38 0.15 0.01 0.05 0.23 
0.05 0.05 0.29 0.01 0.74 0.30 0.09 0.02 0.19 
0.01 0.51 0.12 0.12 0.43 0.32 0.09 0.20 0.03 
0.13 0.15 0.05 0.08 0.04 0.09 0.10 0.10 0.26 
0.68 0.15 0.01 0.27 0.05 0.03 0.40 0.04 0.21 
0.24 0.08 0.23 0.10 0.19 0.20 0.26 0.06 0.40 
0.15 1.10 0.16 0.78 0.04 0.27 0.35 0.71 0.15 

Plot a histogram of these data and comment on the shape of your diagram. 

Compare 

(i) the sample mean with the sample median; 

(ii) the sample mean with the sample standard deviation. 

Find the lower and upper quartiles for the exponential distribution (ex- 
pressed in terms of the mean) and compare these with the sample upper 
and lower quartiles for these data. 

Count the number of pulses to have occurred during the first quarter- 
minute of observation. (Assume the first pulse to have occurred at  time 
zero when the clock was started, so that the first pulse recorded occurred 

Hall, ~ o i d o n ,  p. 252. - ~ a t a  
provided by Dr. P. Fatt and 
Professor B. Katz, F.R.S., 
University College London. 
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at  time 0.21, the second at time 0.21 + 0.03 = 0.24, and so on.) How 
many occurred during the second quarter-minute? 

Your answers to parts (a) to (c) may have enabled you to formulate a model 
for the incidence of pulses along a nerve fibre. 

(e) Assuming your model to be correct, from what probability distribution 
are the counts you wrote down in part (d) observations? 

Here is a final example, one where the model assumptions broke down. 

Example 4.19 Admissions to an intensive care unit 
Data were collected on the arrival times of patients at an intensive care unit- 
the aim was to identify any systematic variations in arrival rate, in particu- 
lar, any that might be useful in planning future management of the unit. Cox, D.R. and Snell, E.J. (1981) 
Table 4.11 gives some of these data. It might initially be supposed that ad- Chapman and 

Hall, London, p. 53. Data collected missions occur in the 'random haphazard' way suggested in the earthquake by Dr. A, Barr, Oxford Regiollal 
example. In fact, there are noticeable variations in the data that cannot be ~ ~ ~ ~ i t ~ l  
ascribed simply to chance variation on the exponential distribution. These 
are due to variations in the underlying rate of admission both with the time 
of day and with the day of the week. (The original data give the day and time 
of admission. Differences have been taken to give the inter-admission waiting 
times, to the nearest half-hour. The time of observation was from 4 February 
1963 to 9 May 1963.) 

Table 4 . 1 1  Admissions to an intensive care unit (hours) 

On simulation 

The main activity of this section will be getting your computer to generate 
large samples of observations from different probability distributions, so that 
the sample may be regarded as a genuine data  set drawn from a population 
where the specified probability distribution holds. Computers can simulate 
the drawing of a random sample and perform the subsequent statistical analy- 
sis of that sample very speedily. You have already seen something of this 
in Chapter  2 and at  the end of Section 4.2 of this chapter. For instance, 
one way of investigating the sampling properties of the binomial probability 
distribution B(10, i) is to toss ten coins (once) recording, say, 

Heads Heads Tails Heads Tails Tails Tails Tails Heads Tails 

(thus recording 4 heads altogether) and then repeat the whole experiment 
another few hundred times. This would be a very time-consuming activity. 
It  would be easier and much more convenient to get the computer to toss the 
coin-or, rather, get it to generate several hundred observations from B(10, i) 

1 76 
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and then list the results-or, perhaps just as usefully, plot them as a bar chart. 
Here are the results from 1000 tosses of ten coins. Frequency 

Table 4.12 Ten coins tossed 1000 times by computer: counting the Heads 

Heads 0 1 2  3 4 5 6 7 8 9 1 0  
Frequency 0 14 49 130 194 255 188 121 41 8 0 

These observations may be plotted on a bar chart as shown in Figure 4.8. 
This sample of size 1000 seems to be fairly representative of the population 
from which it is drawn: the symmetric shape of the probability distribution 
B(10, i) is evident in the shape of the sample bar chart. 

Number of Heads 
The exercise is called simulation, or computer  simulation. Essentially you 
can make the computer simulate either realizations of a random process like Figure 4.8 1000 observations 
a Bernoulli process (for example, a coin-tossing experiment, sexes of children from B(10, $) 
in a family, sequences of births and deaths in an evolving population, passes 
and failures in a quality test) or a random sample, a list of independent obser- 
vations on some stated random variable. In the exercises that follow, we shall 
concentrate mainly on the idea of a random sample. But computer simulation 
can be used to give an insight into the most complex of random systems, like 
arrivals and departures at an airport (in theory scheduled, but in practice 
susceptible to chance perturbations from an infinite array of accidental occur- 
rences), the production line in a factory, or the progress of an epidemic in a 
school, a country or world-wide. 

4.5.1 The uses of simulation 
The idea of any simulation of a random process (or sample) that you gen- 
erate yourself is that it should accurately mimic the probability structure of 
that process without involving you in what could otherwise be the expensive 
deployment of experimental equipment; or so that it can save you the time 
and trouble of observing and recording every detail in a genuine realization 
of such a process. 

It is often the case with a random process that has a simple structure that the 
answer to every conceivable question about what might or might not happen 
(and with what probability) in a realization of that process can be deduced 
directly from theoretical paperwork (that is, from going through an exercise 
in algebra, or arithmetic). For instance, in a Poisson process model, you know 
the probability distribution of the waiting time between occurrences of the 
event A; you know the probability distribution of the number of occurrences 
of A in a time interval of given duration. There are, however, four things 
that a simulation exercise can help you with. These are listed in no particular 
order of importance. 

(a) Simulation will give you some generalized feeling about what realizations 
of the random process (or samples from the probability distribution) 
might actually look like. This is useful not only so that you can recognize 
when other realizations or samples are of that pattern, but also so that 
you can more readily recognize when some other realization or sample 
does not fall into that pattern. In such circumstances you could there- 
fore deduce that the underlying probability law is not the one you first 
thought it was. In Table 4.13 and summarized in Figure 4.9, there is listed 
a sequence of four different random samples obtained from the binomial 
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probability distribution B(10, !j); each sample is of size 100. Did you re- 
alize how 'bumpy' a summary bar chart (or histogram) could sometimes 
be? The point is that a sample of size 100 is really not very large: you 
need one perhaps ten times the size for some reasonable approximation 
to the underlying probability distribution to become evident. 

Table 4.19 Ten coins tossed 100 times by computer: four samples 

(a) 0 0 4 14 17 27 23 9 5 1 0 
( b )  0 1 4 8 19 27 23 14 4 0 0 
(c) 0 1 7 8 17 26 19 14 6 1 1 
(d) 0 0 6 20 16 18 20 11 7 2 0 

Frequency 

301 

(4 Observation (b) Observation 

Frequency Frequency 

(c) Observation (d Observation 

Figure 4.9 Four samples of size 100 from B(10 ,  3) 

(b) A simulation can be used to check the conclusions of your own analysis. 
You might have identified some random variable of interest contained in a 
random process you are investigating, or perhaps some sampling proper- 
ties. In deriving the probability distribution of that random variable, or 
perhaps in identifying some feature of a random sample, you might have 
made a mistake. Any error would be evident after one or perhaps several 
simulations of the process, and you can check your work. Alternatively, 
your conclusions will be confirmed. 

(c) Sometimes it is very difficult to obtain the probability distribution of 
some random variable because the mathematics is too hard. Then you 
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can use simulation to obtain an approximation to it. This will often in- 
volve up to several thousands of simulations in order to get a respectable 
estimate of the proportion of occasions on which a particular random 
variable equals or exceeds a particular value, but you will have a usable 
result. For instance, the 1000 observations in Table 4.12 result in a table 
of relative frequencies approximating the actual binomial probability dis- 
tribution B(10, i). The estimated and exact probabilities are shown in 
Table 4.14-also shown are the rather less accurate estimated probabilities 
in Table 4.13(b). (The estimates obtained from, say, Table 4.13(d) would 
have been even worse!) 

Table 4 .14  Estimated and exact probabilities, B(10 ,  i) 

Table4.13(b) 0.00 0.01 0.04 0.08 0.19 0.27 0.23 0.14 0.04 0.00 0.00 
Table 4.12 0.000 0.014 0.049 0.130 0.194 0.255 0.188 0.121 0.041 0.008 0.000 
Exactcalculation 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001 

Quite often it is only after noting its occurrence in several simulations 
that some previously unsuspected feature of the random sample, or the 
random process, will become evident. You can then return to pencil and 
paper and examine the feature. For instance, the way in which a disease 
spreads through small closed communities like schools, or through larger 
communities like towns, or countries or, for that matter, continents, is 
of great interest to the authorities concerned. Evidently, the element 
of chance plays a considerable role. However, the mathematics of even 
quite simple epidemic models which incorporate a chance element turns 
out to be very intractable. A common procedure then is to look only 
at the 'average' or 'expected' development of an epidemic. Then certain 
thresholds can be identified, either side of which the epidemic behaves 
quite differently. It  either 'takes off', with the disease afflicting nearly 
everybody, or it fades away, affecting almost nobody. These thresholds 
depend on things like the virulence of the disease, the size of the com- 
munity in which it first appears, and the contact opportunities between 
members of the community. The algebra of this 'expected' development 
can be done on paper. Random models have to be investigated on a 
computer: and when they are, behaviour of the epidemic either side of the 
threshold values turns out occasionally (by chance!) to be rather different, 
and to look rather more like what actually happens in the world. 

the end of the course, some of these uses of simulation will have become 
more apparent to you. In the exercises that follow, we will concentrate on 
some simple properties of a random sample from a probability distribution. 

4.5.2 Generating random samples 
There are no published lists of Poisson random numbers-you would need 
different lists for different values of the parameter p. One way of simulating 
independent observations on a Poisson random variable (that is, of generating 
a Poisson random sample) is to invert the distribution function appropriately. 
A second way is to get the computer to generate a Poisson random sample, 
for you. You did this in Exercise 4.7. Actually, the computer's simulation 
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procedures are of course based on a mathematical analysis of the Poisson 
probability distribution. The computer is not a magic black box-but it does 
insulate you, the user, from any requirement to understand the mathematical 
analysis involved. Here is a further exercise in generating Poisson counts. 

Exercise 4.18 
The aim here is to compare a random sample of observations with the theor- 
etical frequencies for the Poisson distribution. 

(a) Generate 20 observations from the Poisson distribution Poisson(3.2) and 
then tally the data. Repeat the exercise for 50 observations and then 100 
observations. 

(b) Now generate 1000 observations from the Poisson distribution Poisson(3.2), 
obtain sample relative frequencies, and compare these with the probability 
mass function for a Poisson random variable with mean 3.2. 

The next exercise demonstrates an example of using a computer in a case 
where the mathematics would be very difficult indeed. We have seen that 
in the human population the proportion of males with a particular form 
of colour-deficient sight is approximately 0.06, while the corresponding pro- 
portion for females is approximately 0.004. In a population of nl males and 
n2 females the number of males with colour-deficient sight is a random vari- 
able X1 following a binomial distribution (X1 N B(nl ,  0.06)) and the number 
of affected females is X2, where X2 N B(n2, 0.004). Their sum XI + X2 has 
a complicated distribution that is difficult to write down (and you are not 
expected to be able to do so). However, using Poisson's approximation for 
rare events, we can say 

XI x Poisson(0.06nl), X2 Poisson(0.004n2), 

and so the sum Xi + X2 is approximately Poisson with mean 0.06nl + 0.004n2. 
The true binomial model is made more complicated still if the number of males 
and females is permitted to vary. 

Exercise 4.19 
Suppose that in an assembly of 100 persons the number of males X is 
a random variable B(100,0.5). Simulate the number of males in the as- 
sembly and hence deduce the number of females. 

Say there are X males. Using an exact binomial model (rather than the 
Poisson approximation) with p = 0.06 sinlulate the number of colour- 
deficient males (yl) and similarly the number of colour-deficient females 
(y2) present. 

Their sum W = yl + yz is an observation on a random variable W, the 
total number of colour-deficient people in an assembly of 100. Find W in 
this case. 

The distribution of W is unknown, a rather complex conjunction of binomial 
variates. 
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(d) On intuitive grounds alone (that is, without stopping to think too hard!) 
can you say anything about the expected value of W? 

(e) Obtain 1000 independent observations wl, w2, . . . , wlooo on the random 
variable W and store them in a data vector. Calculate the sample mean 
and variance of this random sample. 

Exercise 4.20 
The times of occurrence of random unforecastable events such as car accidents 
or floods may be modelled by assuming that the waiting times between con- 
secutive occurrences come from an exponential distribution with some given 
mean: that is, that such events occur as a Poisson process. Adding successive 
waiting times gives the times at which such accidents might typically occur. 

(a) Suppose that motor accident claims of a particular kind arrive at  an 
underwriter's office in a way which is not forecastable, but at an average 
rate of twelve claims a week. (Assume for the sake of this exercise that the 
office is open for business 24 hours a day, seven days a week.) Calculate the 
mean time (in hours) between the arrival of successive claims. Simulate 
the times of arrival of the next 20 claims to arrive after midnight one 
Sunday night. 

(b) Simulate ten weeks of claims. How many claims arrived in the first week? 
The second week? . . . The tenth week? These ten counts are observations 
on what random variable? 

Summary 

The discrete random variable X is said to follow a Poisson distribution 
with parameter p if 

and this is written X N Poisson(p). The moments'of X are E(X)  = p 
and V(X) = p. 

The distribution of X when X B(n,p) can be well approximated by 
the Poisson distribution with parameter p = np, when the parameter p 
is small (say, less than about 0.05). This may be written 

Notice that the means of both probability distributions are matched. 

If X is a random variable with mean p and variance a2 then for constants 
a and b 

E ( a X  + b) = a p  + b, 

V(aX + b) = a202, 

and the standard deviation of (aX + b) is given by 

SD(aX + b) = la(a. 
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If X i ,  i = 1 , 2 , .  . . , n, are random variables with mean pi and sum 
S = X 1 +  ...+ X,, then 

E ( S ) = p , + p 2 + . . . + p n = C p I  

If Xi, i = 1 , 2 , .  . . , n, are independent random variables with variance a: 
and sum S = X1 + X2 + . . . + X,, then 

V ( S )  = a; + a; + . . . + a: = C a:. 

In particular, if a random sample of size n is taken from a population 
with mean p and variance u2, and if the sample mean is written F,  then 

The sum S of n independent Poisson variates respectively with mean 
pi has a Poisson distribution with mean E pi: i.e. S Poisson(C pi) .  
The sum S of n independent normal variates respectively with mean pi 
and variance a: has a normal distribution with mean C pi and variance 
C U:: i.e. S N ( E  pi, C a:). 

Recurrent events occurring at a constant average rate X but otherwise 'at 
random' in continuous time may be modelled as occurring according to a 
Poisson process. The waiting time T between consecutive events follows 
an exponential distribution with parameter X :  this is written T M ( X ) .  
The random variable T has probability density function 

f ( t )  = ~ e - ' ~ ,  t  2 0, 

and cumulative distribution function 

The mean of T is E(T)  = l/)\ and the variance of T is V ( T )  = 1/X2.  (It 
follows from this that for an exponentially distributed random variable T, 
S D ( T )  = E ( T ) . )  The distribution of T is highly skewed-for instance, 
the median of T is only 0.7 times its mean. 

Observations on M ( X )  may be simulated by reference to 'exponential 
random numbers'. By successively adding together exponential waiting 
times, the times of occurrence of a recurrent event A in a Poisson process 
can be simulated. 

In a Poisson process, the number of times the recurrent event A occurs 
during a time interval of duration t has a Poisson distribution with mean 
At, where X is the average rate of occurrence of A. 
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The normal distribution 

This chapter deals in detail with one of the most versatile models for variation, the 
normal distribution or 'bell-shaped' curve. You will learn how to use printed tables 
to calculate normal probabilities. The normal curve also provides a useful approxi- 
mation to other probability distributions: this is one of the consequences of the central 
limit theorem. 

In Chapter 2, Section 2.4 you were introduced to an important continuous 
distribution called the normal distribution. It was noted that many real data 
sets can reasonably be treated as though they were a random sample from the 
normal distribution and it was remarked that the normal distribution turns 
out to play a central role in statistical theory as well as in practice. This 
entire chapter is devoted to the study of the normal distribution. 

The chapter begins with a review of all that has been said so far about the 
normal distribution. The main point to bear in mind is that in many cases a 
probability model for random variation follows necessarily as a mathematical 
consequence of certain assumptions: for instance, many random processes can 
be modelled as sets or sequences of Bernoulli trials, the distribution theory 
following from the twin assumptions that the trials are independent and that 
the probability of success from trial to trial remains constant. Quite often, 
however, data arise from a situation for which no model has been proposed: 
nevertheless, even when the data sets arise from entirely different sampling 
contexts, they often seem to acquire a characteristic peaked and symmetric 
shape that is essentially the same. This shape may often be adequately rep- 
resented through a normal model. The review is followed by an account of 
the genesis of the normal distribution. 

In Section 5.2, you will discover how to calculate normal probabilities. As 
for any other continuous probability distribution, probabilities are found by 
calculating areas under the curve of the probability density function. But for 
the normal distribution, this is not quite straightforward, because applying 
the technique of integration does not in this case lead to a formula that is 
easy to write down. So, in practice, probabilities are found by referring to 
printed tables, or by using a computer. 

The remaining sections of the chapter deal with one of the fundamental the- 
orems in statistics and with some of the consequences of it. It is called the 
central limit theorem. This is a theorem due to Pierre Simon Laplace (1749- 
1827) that was read before the Academy of Sciences in Paris on 9 April 1810. 
The theorem is a major mathematical statement: however, we shall be con- 
cerned not with the details of its proof, but with its application to statistical 
problems. 
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5.1 Some history 

5.1.1 Review 
The review begins with a set of data collected a long time ago. During the 
mapping of the state of Massachusetts in America, one hundred readings were 
taken on the error involved when measuring angles. The error was measured 
in minutes (a  minute is 1/60 of a degree). The data are shown in Table 5.1. 

Table 5.1 Errors in angular measurements 

Error (in minutes) 

Between +6 and +5 
Between +5 and +4 
Between +4 and +3 
Between +3 and +2 
Between +2 and +l 
Between +l and 0 
Between 0 and -1 
Between -1 and -2 
Between -2 and -3 
Between -3 and -4 

Frequency 

1 
2 
2 
3 

13 
26 
26 
17 
8 
2 

A histogram of this sample is given in Figure 5.1. This graphical represen- 
tation shows clearly the main characteristics of the data: the histogram is 
unimodal (it possesses just one mode) and it is roughly symmetric about that 
mode. 

Another histogram, which corresponds to a different data set, is shown in 
Figure 5.2. You have seen these data before. 

United States Coast Survey Report 
(1854). The error was calculated 
by subtracting each measurement 
from 'the most probable' value. 

Frequency 

10 

-4.0 -2.0 0.0 2.0 4.0 6.0 
Error (minutes) 

Figure 5.1 Errors in angular 
measurements (minutes) 

This is a graphical representation of the sample of Scottish soldiers' chest Frequency 
measurements that you met in Chapter 2, Section 2.4. This histogram is also 
unimodal and roughly symmetric. The common characteristics of the shape 
of both the histograms in Figures 5.1 and 5.2 are shared with the normal 
distribution whose p.d.f. is illustrated in Figure 5.3. 800 

34 36 38 40 42 44 46 48 
Chest (inches) 

Figure 5.2 Chest measurements 
of Scottish soldiers (inches) 

Figure 5.9 The normal p.d.f. For clarity, the vertical axis has 
been omitted in this graph of the 
normal density function. 

What is it about Figures 5.1, 5.2 and 5.3  that makes them appear similar? 
Well, each diagram starts at  a low level on the left-hand side, rises steadily 
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until reaching a maximum in the centre and then decreases, at  the same rate 
that it increased, to a low value towards the right-hand side. The diagrams 
are unimodal and symmetric about their modes (although this symmetry is 
only approximate for the two data sets). A single descriptive word often 
used to describe the shape of the normal p.d.f., and likewise histograms of 
data sets that might be adequately modelled by the normal distribution, is 
'bell-shaped'. 

Note that there is more than one normal distribution. No single distribution 
could possibly describe both the data of Figure 5.1, which have their mode 
around zero and which vary from about -4 minutes of arc to over 5 minutes, 
and those of Figure 5.2, whose mode is at about 40inches and which range 
from approximately 33inches to 48inches. In the real world there are many 
instances of random variation following this kind of pattern: the mode and the 
range of observed values will alter from random variable to random variable, 
but the characteristic bell shape of the data will be apparent. 

The four probability density functions shown in Figure 5.4 all correspond to 
different normal distributions. 

Figure 5.4 Four normal densities 

What has been described is another family of probability models, just like 
the binomial family (with two parameters, n and p) and the Poisson family 
(with one parameter, the mean p). The normal family has two parameters, 
one specifying location (the centre of the distribution) and one describing the 
degree of dispersion. In Chapter 2 the location parameter was denoted by p 
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and the dispersion parameter was denoted by a; in fact, the parameter p is 
the mean of the normal distribution and a is its standard deviation. 

This information may be summarized as follows. The probability density 
function for the normal family of random variables is also given. 

The normal probability density function 

If the continuous random variable X is normally distributed with mean 
p and standard deviation a (variance a') then this may be written 

X N(P, 0'); 

the probability density function of X is given by 

The shape of the density function of X is often called 'bell-shaped'. The 
p.d.f. of X is positive for all values of X; however, observations more 
than about three standard deviations away from the mean are rather 
unlikely. The total area under the curve is 1. 

1 1 2-11 
f(z) = ~ e x p  [-i (a)2] , -W < X < W. (5.1) 

A sketch of the p.d.f. of X is as follows. 

There are very few random variables for which possible observations include 
all negative and positive numbers. But for the normal distribution, extreme 
values may be regarded as occurring with negligible probability. One should 
not say 'the variation in Scottish chest measurements is normally distributed 
with mean 40 inches and standard deviation about 2 inches' (the implication 
being that negative observations are possible); rather, say 'the variation in 
Scottish chest measurements may be adequately modelled by a normal distri- 
bution with mean 40 inches and standard deviation 2 inches'. 

In the rest of this chapter we shall see many more applications in the real 
world where different members of the normal family provide good models of 
variation. But first, we shall explore some of the history of the development 
of the normal distribution. 

186 

As remarked already, you do not 
need to remember this formula in 
order to calculate normal 
probabilities. 
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Exercise 5.1 
Without attempting geometrical calculations, suggest values for the par- 
ameters p and U for each of the normal probability densities that are shown 
in Figure 5.4. 

An early history 
Although the terminology was not standardized until after 1900, the normal 
distribution itself was certainly known before then (under a variety of dif- 
ferent names). The following is a brief account of the history of the normal 
distribution before the twentieth century. 

Credit for the very first appearance of the normal p.d.f. goes to Abraham 
de Moivre (1667-1754), a Protestant Frenchman who emigrated to London 
in 1688 to avoid religious persecution and lived there for the rest of his life, 
becoming an eminent mathematician. Prompted by a desire to compute the 
probabilities of winning in various games of chance, de Moivre obtained what 
is now recognized as the normal p.d.f., an approximation to a binomial prob- 
ability function (these were early days in the history of the binomial distri- 
bution). The pamphlet that contains this work was published in 1733. In 
those days, the binomial distribution was known as a discrete probability 
distribution in the way we think of discrete distributions today, but it is not 
generally claimed that de Moivre thought of his normal approximation as 
defining a continuous probability distribution, although he did note that it 
defined 'a curve'. 

Then, around the end of the first decade of the nineteenth century, two 
famous figures in the history of science published derivations of the normal 
distribution. The first, in 1809, was the German Carl Friedrich Gauss (1777- (a) 
1855); the second, in 1810, was the Frenchman Pierre Simon Laplace (1749- 
1827). Gauss was a famous astronomer and mathematician. The range of 
his influence, particularly in mathematical physics, has been enormous: he 
made strides in celestial mechanics, geometry and geodesy, number theory, 
optics, electromagnetism, real and complex analysis, theoretical physics and 
astronomy as well as in statistics. Motivated by problems of measurement 
in astronomy, Gauss had for a long time recognized the usefulness of the 
'principle of least squares', an idea still very frequently used and which you 
will meet in Chapter 10. Allied to this, Gauss had great faith in the use of 
the mean as the fundamental summary measure of a collection of numbers. 
Moreover, he wanted to assert that the most probable value of an unknown 
quantity is the mean of its observed values (that is, in current terminology, 
that the mean equals the mode). Gauss then, quite rightly, obtained the nor- 
mal distribution as a probability distribution that would yield these desirable 
properties: the normal distribution is relevant to the least squares method of 
estimation and its mode and its mean are one and the same. Having said that, 
Gauss's argument, or his claims for the consequences of his argument, now 
look distinctly shaky. He took use of the mean as axiomatic, arguing for its 
appropriateness in all circumstances, saw that the normal distribution gave 

(b) 

the answer he wanted and consequently inferred that the normal distribution ~i~~~ 5.5 (a) G~~~~ and 
should also be the fundamental probability model for variation. (b) Laplace 
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The Marquis de Laplace, as he eventually became, lived one of the most 
influential and successful careers in science. He made major contributions to 
mathematics and theoretical astronomy as well as to probability and statistics. 
Laplace must also have been an astute political mover, maintaining a high 
profile in scientific matters throughout turbulent times in France; he was even 
Napoleon Bonaparte's Minister of the Interior, if only for six weeks! Laplace's 
major contribution to the history of the normal distribution was a first version 
of the central limit theorem, a very important idea that you will learn about in 
Section 5.3. (Laplace's work is actually a major generalization of de Moivre's.) 
It is the central limit theorem that is largely responsible for the widespread use 
of the normal distribution in statistics. Laplace, working without knowledge 
of Gauss's interest in the same subject, presented his theorem early in 1810 
as an elegant result in mathematical analysis, but with no hint of the normal 
curve as a p.d.f. and therefore as a model for random variation. Soon after, 
Laplace encountered Gauss's work and the enormity of his own achievement 
hit him. Laplace brought out a sequel to his mathematical memoir in which 
he showed how the central limit theorem gave a rationale for the choice of the 
normal curve as a probability distribution, and consequently how the entire 
development of the principle of least squares fell into place, as Gauss had 
shown. 

This synthesis between the work of Gauss and Laplace provided the basis for 
all the further interest in and development of statistical methods based on 
the normal distribution over the ensuing years. Two contemporary deriva- 
tions of the normal distribution by an Irish-American, Robert Adrain (1775- 
1843), working in terms of measurement errors, remained in obscurity. It is 
interesting to note that of all these names in the early history of the normal 
distribution, it is that of Gauss that is still often appended to the distribution 
today when, as is often done, the normal distribution is referred to as the 
Gaussian distribution. 

The motivating problems behind all this and other early work in Stigler, S.M. (1986) The History of 
mathematical probability were summarized recently by S.M. Stigler thus: Statistics-The Measurement of 

'The problems considered were in a loose sense motivated by other prob- Uncertainty before "OO.  The 
Belknap Press of Harvard 

lems, problems in the social sciences, annuities, insurance, meteorology, and University Press, 
medicine; but the paradigm for the mathematical development of the field 
was the analysis of games of chance'. However, 'Why men of broad vision 
and wide interests chose such a narrow focus as the dicing table and why the 
concepts that were developed there were applied to astronomy before they 
were returned to the fields that originally motivated them, are both interest- 
ing questions . . . '. Unfortunately, it would be getting too far away from our 
main focus to discuss them further here. 

Such was the progress of the normal distribution in the mid-nineteenth cen- 
tury. The normal distribution was not merely accepted, it was widely advo- 
cated as the one and only 'law of error'; as, essentially, the only continuous 
probability distribution that occurred in the world! Much effort, from many 
people, went into obtaining 'proofs' of the normal law. The idea was to 
construct a set of assumptions and then to prove that the only continuous 
distribution satisfying these assumptions was the normal distribution. While 
some, no doubt, were simply wrong, many of these mathematical derivations 
were perfectly good characterizations of the normal distribution. That is, the 
normal distribution followed uniquely from the assumptions. The difficulty lay 
in the claims for the assumptions themselves. 'Proofs' and arguments about 

1 88 
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proofs, or at least the assumptions on which they were based, abounded, but 
it is now known that, as the normal distribution is not universally applicable, 
all this effort was destined to prove fruitless. 

This acceptance of the normal distribution is especially remarkable in light of 
the fact that other continuous distributions were known at the time. A good 
example is due to Sim6on Denis Poisson (1781-1840) who, as early as 1824, Poisson's work on the binomial 
researched the continuous distribution with p.d.f. distribution and the eponymous 

approximating distribution was 
1 

-00 < X < 00, 
described in Chapter 4. 

f (X) = ,,.(l + x Z )  ' 

which has very different properties from the normal distribution. An amusing 
aside is that this distribution now bears the name of Augustin Louis Cauchy 
(1789-1857) who worked on it twenty years or so later than Poisson did while, 
on the other hand, Poisson's contribution to the distribution that does bear 
his name is rather more tenuous compared with those of other researchers 
(including de Moivre) of earlier times. 

What of the role of data in all this? For the most part, arguments were solely 
mathematical or philosophical, idealized discussions concerning the state of 
nature. On occasions when data sets were produced, they were ones that 
tended to support the case for the normal model. Two such samples were il- 
lustrated at  the beginning of this section. The data on chest measurements of 
Scottish soldiers were taken from the Edinburgh Medical and Surgical Journal 
of 1817. They are of particular interest because they (or a version of them) 
were analysed by the Belgian astronomer, meteorologist, sociologist and statis- 
tician, Lambert Adolphe Jacques Quetelet (1796-1874) in 1846. Quetelet was 
a particularly firm believer in, and advocate of, the universal applicability of 
the normal distribution, and such data sets that do take an approximately 
normal shape did nothing to challenge that view. Quetelet was also a major 
figure in first applying theoretical developments to data in the social sciences. 
The angular data in Table 5.1 are quoted in an 1884 textbook entitled 'A Text- 
Book on the Method of Least Squares' by Mansfield Merriman, an American 
author. Again, the book is firmly rooted in the universal appropriateness of 
the normal distribution. 

In a paper written in 1873, the American C.S. Peirce presented analyses 
of 24 separate tables each containing some 500 experimental observations. 
Peirce drew smooth densities which, in rather arguable ways, were derived 
from these data and from which he seemed to infer that his results con- 
firmed (yet again) the practical validity of the normal law. An extensive 
reanalysis of Peirce's data in 1929 (by E.B. Wilson and M.M. Hilferty) found 
every one of these sets of data to be incompatible with the normal model 
in one way or another! These contradictory opinions based on the same ob- 
servations are presented here more as an interesting anecdote rather than 
because they actually had any great influence on the history of the normal 
distribution, but they do nicely reflect the way thinking changed in the late 
nineteenth century. Peirce's (and Merriman's) contributions were amongst 
the last from the school of thought that the normal model was the only 
model necessary to express random variation. By about 1900, so much evi- 
dence of non-normal variation had accumulated that the need for alterna- 
tives to complement the normal distribution was well appreciated (and by 
1929, there would not have been any great consternation at Wilson's and 
Hilferty's findings). Prime movers in the change of emphasis away from normal 



models for continuous data were a number of Englishmen including Sir Francis 
Galton (1822-1911), FYancis Ysidro Edgeworth (1845-1926) and Karl Pearson 
(1857-1936). 

But to continue this history of the normal distribution through the t ima  of 
these important figures and beyond would be to become embroiled in the 
whole fascinating history of the subject of statistics as it is understood today, 
so we s h d  cease our exploration at thii point. 

There is, however, one interesting gadget to do with the n o d  distribution 
developed during the late nineteenth century, It was called the quincunx, 
and was an invention of Francis Gdton in 1873 or thereabouts. Figure 5.6 
shows a contemporary sketch of Gdton's original quincunx; Figure 5.7 is a 
schematic diagram of the quincunx which more clearly aids the description of 
its operation. The mathematical sections of g o d  modern science museums 
often have a working replica of this device, which forms a fascinating exhibit. 
What does the quincunx do and how does it work? The idea is to obtain 
in dynamic fashion a physical representation of a binomial distribution. The 
word 'quincunx' actually means an arrangement of five objects in a square 

or rectangle with one at each corner and one in the middle; the spots on 
the '5'  face of a die form a good exaniple. Galton's quincunx was made 
up of lots of these quincunxes. It consists of a glas5enclosed board with 
several rows of equalky spaced pins. Each row of pins is arranged so that 
each pin in one m is directly beneath the midpoint of the gap between 
two adjacent pins in the MW above; thus each pin is the centre of a quin- 
cunx. Metal shot is poured through a funnel directed at the pin in the top 
row. Each ball of shot can fall left or right of that pin with probability 4. 

Figure 6.6 Galton's quincunx Figurn 5.7 Diagram of the quincunx 
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The same holds for all successive lower pins that the shot hits. Finally, at the 
bottom, there is a set of vertical columns into which the shot falls, and a kind 
of histogram or bar chart is formed. 

The picture so obtained is roughly that of a unimodal symmetric distribution. 
In fact, the theoretical distribution corresponding to the histogram formed by 
the shot is the binomial distribution with parameters p = i and n equal to the 
number of rows of pins, which is 19 in Galton's original device. However, a 
histogram from the binomial distribution B(19, i) looks very much the same 
as a histogram from a normal distribution, so the quincunx also serves as 
a method of demonstrating normal data. More precisely, the relationship 
between the binomial distribution B(19, i) and the normal distribution is 
a consequence of the central limit theorem. Therefore, Laplace would have 
understood the reason for us to be equally happy with the quincunx as a 
device for illustrating the binomial distribution or as a device for illustrating 
the normal distribution; by the end of this chapter, you will understand why. 

5.2 The standard normal distribution 

In each of the following examples, a normal distribution has been proposed 
as an adequate model for the variation observed in the measured attribute. 

Example 5.1 Chest measurements 
After extensive sampling, it was decided to adopt a normal model for the chest 
measurement in a large population of adult males. Measured in inches, the 
model parameters were (for the mean) p = 40 and (for the standard deviation) 
a = 2. 

34 40 43 46 X 
A sketch of this normal density is shown in Figure 5.8. The area under 
the curve, shown shaded in the diagram, gives (according to the model) the A of the 
proportion of adult males in the population whose chest measurements are 43 normal density f wh&re 
inches or more. X N(40,4) 

The chest measurement of 43 inches is greater than the average measurement Again, in this diagram the vertical 
within the population, but it is not very extreme, coming well within 'plus or axis has been omitted. 
minus 3 standard deviations'. 

The shaded area is given by the integral 

(writing X N(p,u2)  with p = 40 and a = 2, and using (5.1)). But it is 
much easier to think of the problem in terms of 'standard deviations away 
from the mean'. The number 43 is one and  a half standard deviations above 
the mean measurement, 40. Our problem is to establish what proportion of 
the population would be at  least as extreme as this. 
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Example 5.2 IQ measurements 
There are many different ways of assessing an individual's 'intelligence' (and 
no single view on exactly what it is that is being assessed, or how best to make 
the assessment). One test is designed so that in the general population the 
variability in the scores attained should be normally distributed with mean 
100 and standard deviation 15. Denoting this score by the random variable 
W, then the statistical model is W W N(100,225). 

A sketch of the p.d.f. of this normal distribution is given in Figure 5.9. The 55 80 100 120 145 tu 

shaded area in the diagram gives the proportion of individuals who (according ~i~~~~ 5. g A sketch of the 
to the model) would score between 80 and 120 on the test. The area may be normal density f (W),  where 
expressed formally as an integral W N(100,225) 

but again it is easier to think in terms of a standard measure: how far away 
from the mean are these two scores? At 20 below the mean, the score of 80 
is 8 = $ = 1.33 standard deviations below the mean, and the score of 120 is 
1.33 standard deviations above the mean. Our problem reduces to this: what 
proportion of the population would score within 1.33 standard deviations of 
the mean (either side)? H 

Example 5.3 Osteoporosis 
In Chapter 2, Example 2.17 observations were presented on the height of 351 
elderly women, taken as part of a study of the bone disease osteoporosis. 
A histogram of the data suggests that a normal distribution might provide 
an adequate model for the variation in height of elderly women within the 
general population. Suppose that the parameters'of the proposed model are 
p = 160, a = 6 (measured in cm; the model may be written H N N(160,36) 
where H represents the variation in height, in cm, of elderly women within 
the population). According to this model, the proportion of women over 
180 cm tall is rather small. The number 180 is (180 - 160)/6 = 3.33 standard 
deviations above the mean: our problem is to calculate the small area shown 
in Figure 5.10 or, equivalently, to calculate the integral 

5.2.1 The standard normal distribution 
In all the foregoing examples, problems about proportions have been expressed 
in terms of integrals of different normal densities. You have seen that a 
sketch of the model is a useful aid in clarifying the problem that has been 
posed. Finally, and almost incidentally, critical values have been standardized 
in terms of deviations from the mean, measured in multiples of the standard 
deviation. 

Figure 5.10 A normal model for 
the variation in height of elderly 
women 

In this diagram the vertical scale 
has been slightly distorted so that 
the shaded area is evident: in a 
diagram drawn to scale it would 
not show up at all. 

Is this standardization a useful procedure, or are the original units of measure- 
ment essential to  the calculation of proportions (that is, probabilities)? 
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The answer to this question is that it is useful: any normal random variable 
X with mean p and standard deviation a (so that X W N(p,  a2))  may be re- 
expressed in terms of a standardized normal random variable, usually denoted 
Z,  which has mean 0 and standard deviation 1. Then any probability for 
observations on X may be calculated in terms of observations on the random 
variable Z. This result can be proved mathematically; but in this course we 
shall only be concerned with applying the result. First, the random variable 
Z will be explicitly defined. 

The s t anda rd  normal  distr ibut ion 

The random variable Z following a normal distribution with mean 0 and 
standard deviation 1 is said to follow the s t anda rd  normal  distri- 
but ion,  written Z N(0 , l ) .  The p.d.f. of Z is given by 

Notice the use of the reserved letter Z for this particular random variable, 
and of the letter 4 for the probability density function of 2. This follows the 4 is the Greek lower-case letter phi, 
common conventions that you might see elsewhere. and is pronounced 'fyel. 

The graph of the p.d.f. of Z is shown in Figure 5.11. Again, the p.d.f. of Z 
is positive for any value of z ,  but observations much less than -3 or greater 
than +3 are unlikely. Integrating this density function gives normal prob- 
abilities. (Notice the Greek upper-case letter phi in the following definition. A It is conve&ionally used to denote the c.d.f. of 2 . )  

The c.d.f. of the standard normal variate Z is given by 

It  gives the 'area under the curve', shaded in the following diagram of 
the density of Z (see Figure 5.12). 

Figure 5.12 The c.d.f. of Z,  @(z) = S_"- 4(x) dx 

Where in other parts of the course the integral notation has been used to 
describe the area under the curve defined by a probability density function, 
an explicit formula for the integral has been given, and that formula is used as 

Figure 5.11 The p.d.f. of 
z - N(O,  11, 4(z) = &e-az2 
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the starting point in future calculations. In this respect, the normal density 
is unusual. No explicit formula for @(z) exists, though it is possible to obtain 
an expression for @(t) in the form of an infinite series of powers of z. So, 
instead, values of @(z) are obtained from tables or calculated on a computer. 

Exercise 5.2 
On four rough sketches of the p.d.f. of the standard normal distribution copied 
from Figure 5.11, shade in the areas corresponding to the following standard 
normal probabilities. 

( 4  P ( Z  I 2) 

(b) P ( Z  > 1) 

(C) P(-l < z 1 1) 

( 4  P ( Z  I -2) 

Before we look at tables which will allow us to attach numerical values to 
probabilities like those in Exercise 5.2, and before any of the other import- 
ant properties of the standard normal distribution are discussed, let us pause 
to establish the essential relationship between the standard normal distri- 
bution and other normal distributions. It is this relationship that allows us to 
calculate probabilities associated with (for example) Victorian soldiers' chest 
measurements or mapmakers' measurement errors, or any other situation for 
which the normal distribution provides an adequate model. 

Once again, let X follow a normal distribution with arbitrary mean p and 
variance a2 ,  X - N(p,u2),  and write Z for the standard normal variate, 
Z - N(0,l) .  These two random variables are related as follows. 

If X - N(p,  a2))  then the random variable 

Conversely, if Z - N(0, l ) ,  then the random variable 

X = a Z  + p N(p, a2). 

The great value of this result is that we can afford to do most of our thinking 
about normal probabilities in terms of the easier standard normal distribution 
and then adjust results appropriately, using these simple relationships between 
X and Z ,  to answer questions about any given general normal random vari- 
able. 

Figure 5.13 gives a graphical representation of the idea of standardization. 
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P - 3 0  p - 2 0  p - a  p p + 2 u  p + 3 a  X 

Figure 5 .13  Standardization portrayed graphically 

We can now formalize the procedures of Examples 5.1 to 5.3. 

Example 5.1 continued 
Our model for chest measurements (in inches) in a population of adult males is 
normal with mean 40 and standard' deviation 2: this was written as 
X N(40,4). We can rewrite the required probability P ( X  > 43) as 

This is illustrated in Figure 5.14, which may be compared directly with 
Figure 5.8. H 

Example 5.2 continued 
In this case the random variable of interest is the intelligence score W, where 
W N N(100,225), and we require the probability P(80 5 W 5 120). This 
may be found by rewriting it as follows: 

= P(-1.33 5 Z 5 1.33). 

This probability is illustrated by the shaded region in Figure 5.15 (and see 
also Figure 5.9). 

The shaded area gives the 
probability 

P ( X Z p + 2 u ) = P ( Z > 2 ) .  

1.5 z -1.33 1.33 2 

Figure 5.14 The probability P ( Z  > 1.5) Figure 5.15 The probability P ( - 1 . 3 3  5 Z 5 1.33) 
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Example 5.3 continued 
In Example 5.3 a normal model H N(160,36) was proposed for the height 
distribution of elderly women (measured in cm). We wanted to find the 
proportion of this population who are over 180cm tall. This probability 
P ( H  > 180) can be rewritten 

and is represented by the shaded area in Figure 5.16. The diagram may be 
compared with that in Figure 5.10. 

As in Figure 5.10, the vertical scale 
in this diagram has been slightly 
distorted. 

Figure 5.16 The probability P (Z  > 3.33) 

Exercise 5.3 
(a) Measurements were taken on the level of ornithine carbonyltransferase See Chapter 2, Table 2.18. 

(a liver enzyme) present in individuals suffering from acute viral hepatitis. 
After a suitable transformation, the corresponding random variable may 
be assumed to be adequately modelled by a normal distribution with 
mean 2.60 and standard deviation 0.33. Show on a sketch of the standard 
normal density the proportion of individuals with this condition, whose 
measured enzyme level exceeds 3.00. 

(b) For individuals suffering from aggressive chronic hepatitis, measurements See Chapter 2, Table 2.19. 
on the same enzyme are normally distributed with mean 2.65 and stan- 
dard deviation 0.44. Show on a sketch of the standard normal density the 
proportion of individuals suffering from aggressive chronic hepatitis with 
an enzyme level below 1.50. 

(c) At a ball-bearing production site, a sample of 10 ball-bearings was taken 
from the production line and their diameters measured (in mm). The 
recorded measurements were 

(i) Find the mean diameter Z and the standard deviation S for the sample. 

(ii) Assuming that a normal model is adequate for the variation in 
measured diameters, and using Z as an estimate for the normal parameter 
p and S as an estimate for a, show on a sketch of the standard normal den- 
sity the proportion of the production output whose diameter is between 
0.8 mm and 1.2 mm. 
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The foregoing approach may be summarized simply as follows. 

Calculating normal probabilities 
If the random variable X follows a normal distribution with mean p and 
variance 02, written X -- N ( p ,  a2), then the probability P ( X  5 X)  may 
be written 

1 where @ ( S )  is the c.d.f. of the standard normal distribution. 

5.2.2 Tables of the standard normal distribution 
We are not yet able to assign numerical values to the probabilities so far 
represented only as shaded areas under the curve given by the standard normal 
density function. What is the probability that an IQ score is more than 115? 
What proportion of Victorian Scottish soldiers had chests measuring 38 inches 
or less? What is the probability that measurement errors inherent in the 
process leading to Merriman's data would be less than 2 minutes of arc in 
absolute value? 

The answer to all such questions is found by reference to sets of printed tables, 
or from a computer. In this subsection you will see how to use the table of 
standard normal probabilities, Table A2. 

You have already seen that any probability statement about the random vari- 
able X (when X is N ( p ,  a2))  can be re-expressed as a probability statement 
about Z (the standard normal variate). So only one page of tables is required: 
we do not need reams of paper to print probabilities for other members of the 
normal family. To keep things simple, therefore, we shall begin by finding 
probabilities for values observed on 2, and only later make the simple exten- 
sion to answering questions about more general normally distributed random 
variables useful in modelling the real world. The statistics table entitled 
'Probabilities for the standard normal distribution' gives the left-hand tail 
probability 

for values of z from 0 to 4 by steps of 0.01, printed accurate to 4 decimal places. 
(Other versions of this table might print the probability P ( Z  > z) for a range 
of values of z; or the probability P (0  < Z 5 z ) ;  or even P(-z 5 Z 5 z)! 
There are so many variations on possible questions that might be asked, that 
no one formulation is more convenient than any other.) 

Values of x are read off down the leftmost column and across the top row (the 
top row gives the second decimal place). Thus the probability P(Z 5 1.58), 
for example, may be found by reading across the row for z = 1.5 until the 
column headed 8 is found. 

Then the entry in the body of the table in the same row and column gives the 
probability required: in this case, it is 0.9429. (So, only about 6% of a normal 
population measure in excess of 1.58 standard deviations above the mean.) 
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As a second example, we can find the probability P ( Z  5 3.00) so frequently 
mentioned. In the row labelled 3.0 and the column headed 0, the entry in 
the table is 0.9987, and this is the probability required. It follows that only 
a proportion 0.0013, about one-tenth of one per cent, will measure in excess 
of 3 standard deviations above the mean, in a normal population. These 
probabilities can be illustrated on sketches of the standard normal density, as 
shown in Figure 5.17. 

Figure 5.1 7 (a) P(Z 5 1.58) (b) P(Z _< 3.00) 

Exercise 5.4 
Use the table to find the following probabilities. 

(a) P ( Z  5 1.00) 

(b) P(Z 5 1.96) 
(C) P ( Z  5 2.25) 

Illustrate these probabilities in sketches of the standard normal density. 

Of course, required probabilities will not necessarily always be of the form 
P(Z 5 z ) .  For instance, we might need to find probabilities such as 

In such cases it often helps to draw a rough sketch of what is required and 
include on the sketch information obtained from tables. The symmetry of the 
normal distribution will often prove useful; as will the fact that the total area / '2 E* under the standard normal curve is 1. To find P ( Z  2 1.50), for example, we 
would start with a sketch of the standard normal density, showing the area 1.50 2 

required, as in Figure 5.18. Figure 5.18 

From the tables, we find that the probability P ( Z  5 1.50) is 0.9332. By 
subtraction from 1, it follows that the probability required, the area of the 
shaded region, is 1 - 0.9332 = 0.0668. This is illustrated in Figure 5.19. 

Figure 5.19 P(Z 2 1.50) 
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Example 5.4 Calculating normal probabilities after standardization 
According to the particular design of IQ tests which results in scores that 
are normally distributed with mean 100 and standard deviation 15, what 
proportion of the population tested will record scores of 120 or more? 

The question may be expressed in terms of a normally distributed random 
variable X N(100,225) as 'find the probability P ( X  2 120)'. This is found 
by standardizing X ,  thus transforming the problem into finding a probability 
involving Z: 

This is found from the tables to be 1 - a(1.33) = 1 - 0.9082 = 0.0918. Not 
quite 10% of the population will score 120 or more on tests to this design. 

This sort of example demonstrates the importance of the standard deviation 
in quantifying 'high' scores. Similarly, less than 2.5% of the population will 
score 130 or more: 

Exercise 5.8 
A reasonable model for the nineteenth century Scottish soldiers' chest measure- 
ments is to take X N N(40'4) (measurements in inches). What proportion of 
that population would have had chest measurements between 37inches and 
42 inches inclusive? 

At this point you might wonder precisely how the actual data-the 5732 
Scottish soldiers' chest measurements--enter the calculation. They figure 
implicitly in the first sentence of the exercise: a reasonable model for the 
distribution of the data is N(40,4). That the normal distribution provides a 
reasonable model for the general shape can be seen by looking at the histogram 
in Figure 5.2. That 40 is a reasonable value to take for p and 4 for c2 can be 
seen from calculations based on the data-which we shall explore further in 
Chapter  6. Once the data have been used to formulate a reasonable model, 
then future calculations can be based on that model. 

Exercise 5.9 
A good model for the angular measurement errors (minutes of arc) mentioned IIJ] 
in Section 5.1 is that they be normally distributed with mean 0 and variance 
2.75. What is the probability that such an error is positive but less than 2? 
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Exercise 5.10 
Blood plasma nicotine levels in smokers (see Chapter 2, Table 2.16) can be 
modelled as T N(315, 1312 = 17 161). (The units are nanograms per milli- 
litre, ng/ml.) 

(a) Make a sketch of this distribution marking in p + ka for k = -3, -2, -1, 
0, 1, 2, 3. 

(b) What proportion of smokers has nicotine levels lower than 300? Sketch 
the corresponding area on your graph. 

(c) What proportion of smokers has nicotine levels between 300 and 500? 

(d) If 20 other smokers are to be tested, what is the probability that at most 
one has a nicotine level higher than 500? 

Here the adequacy of a normal 
model becomes questionable. 
Notice that a nicotine level of zero 
is only 3151131 = 2.40 standard 
deviations below the mean. A 
normal model would thus permit a 
proportion of @(-2.40) = 0.008 
negative recordings, though 
negative recordings are not 
realizable in practice. 

5.2.3 Quantiles 
So far questions of this general form have been addressed: if the distribution of 
the random variable X W N(p,  a2) is assumed to be an adequate model for the 
variability observed in some measurable phenomenon, with what probability 
P(x l  j X j x2) will some future observation lie within stated limits? Given 
the boundaries illustrated in Figure 5.21, we have used the tables to calculate 
the shaded area representing the probability P(xl 5 X 5 22). 

Conversely, given a probability a we might wish to find X such that 
P ( X  5 X) = cr. For instance, assuming a good model of IQ scores to be 
N(100,225), what score is attained by only the top 2.5% of the population? 
This problem is illustrated in Figure 5.22. Quantiles were defined in Chap- 
ter 3, Section 3.5. For a continuous random variable X with c.d.f. F(x) ,  the 
a-quantile is the value X which is the solution to the equation F($) = a, where 
0 < a < 1. This solution is denoted q,. 

You may remember these special cases: the lower quartile, 40.25 or q ~ ;  the 
median, q0 .~  or m; and the upper quartile, 40.75 or qw These are shown in 
Figure 5.23 for the standard normal distribution. 

The median of Z is clearly 0: this follows from the symmetry of the normal 
distribution. From the tables, the closest we can get to qu'is to observe that 

so (splitting the difference) perhaps qv -- 0.675 or thereabouts. It would be 
convenient to have available a separate table of standard normal quantiles, 
and this is provided in Table A3. The table gives values of q, to 3 decimal 
places for various values of a from 0.5 to 0.999. 

So, for instance, the upper quartile of Z is qv = 0.674; the 97.5% point of Z 
is q0.975 = 1.96. If X W N(p,n2),  then it follows from the relationship 

that the 97.5% point of X is 1.960 + p. So the unknown IQ score illustrated 
in Figure 5.22 is 

Figure 5.21 The probability 
P(x1 I X I xz) 

60 80 100 1 2 0 x  140 
IQ scores 

Figure 5.22 The 97.5% point of 
N(100,225) (X, unknown) 

Figure 5.23 q ~ ,  m, qu for 
z N(0,l) 
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The symmetry of the normal distribution may also be used to find quantiles 
lower than the median. For instance, the 30% point of Z is 

90.3 = -90.7 = -0.524. 

Exercise 5.11 
Find 90.2, 90.4, 90.6, 90.8 for the distribution of IQ test scores, assuming the 
normal distribution N(100,225) to be an adequate model, and illustrate these 
quantiles in a sketch of the distribution of scores. 

There now follows a further exercise summarizing the whole of this section 
so far. Take this opportunity to investigate the facilities available on your 
computer to answer this sort of question. 

While the tables often provide the quickest and easiest way of obtaining nor- 
mal probabilities to answer isolated questions, in other circumstances it is 
more convenient to use a computer, and computer algorithms have been de- 
veloped for this purpose. In general, too, computers work to a precision much 
greater than 4 decimal places, and more reliance can be placed on results 
which, without a computer, involve addition and subtraction of several prob- 
abilities read from the tables. 

Exercise 5.12 
The answers given to the various questions in this exercise are all based on 
computer calculations. There may be some inconsistencies between these 
answers and those you would obtain if you were using the tables, with all the 
implied possibilities of rounding error. However, these inconsistencies should 
never be very considerable. 

The random variable Z has a standard normal distribution N(0 , l ) .  Use 
your computer to find the following. 

(i) P ( Z  2 1.7) 
(ii) P ( Z  2 -1.8) 

(iii) P(-1.8 5 Z 5 2.5) 
(iv) P(1.5 5 Z 5 2.8) 

(v) qo.10,  the 10% point of the distribution of Z 
(vi) 90.95, the 95% point of the distribution of Z 
(vii) 90,975, the 97.5% point of the distribution of Z 
(viii) 90.99, the 99% point of the distribution of Z 

Let X be a randomly chosen individual's score on an IQ test. By the 
design of the test, it is believed that X N N(100,225). 
(i) What is the probability that X is greater than 125? 
(ii) What is the probability P(80 5 X 5 go)? 
(iii) What is the median of the distribution of IQ scores? 

(iv) What IQ score is such that only 10% of the population have that 
score or higher? 
(v) What is the 0.1-quantile of the IQ distribution? 
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(c) Suppose the heights (in cm) of elderly females follows a normal distribu- 
tion with mean 160 and standard deviation 6. 

(i) What proportion of such females are taller than 166 cm? 

(ii) What is the 0.85-quantile of the distribution of females' heights? 

(iii) What is the interquartile range of the distribution? (The population 
interquartile range is the difference between the quartiles.) 

(iv) What is the probability that a randomly chosen female has height 
between 145 and 157 cm? 

(d) Nicotine levels in smokers are modelled by a random variable T with a 
normal distribution N(315,17 161). 
(i) What is the probability that T is more than 450? 

(ii) What is the 0.95-quantile of the nicotine level distribution? 

(iii) What is the probability P(150 < T < 400)? 

(iv) What is the probability P(IT - 3151 L: loo)? 

(v) What nicotine level is such that 20% of smokers have a higher level? 

(vi) What range of levels is covered by the central 92% of the smoking 
population? 

(vii) What is the probability that a smoker's nicotine level is between 
215 and 300 or between 350 and 400? 

5.2.4 Other properties of the normal distribution 
In Chapter 4 you looked at  some properties of sums and multiples of random 
variables. In particular, if the random variables X I , .  . . ,X, are independent 
with mean pi and variance U:, then their sum C Xi has mean and variance 

You learned the particular result that sums of independent Poisson variates 
also follow a Poisson distribution. 

A corresponding result holds for sums of independent normal random vari- 
ables: they follow a normal distribution. 

Example 5.5 Bags of sugar In fact, items marked with the e 

If Xi are independent normally distributed random variables with mean 
pi and variance a:, i = 1,2 , .  . . , n, then their sum C Xi is also normally 
distributed, with mean C pi and variance C U:: 

C xi N ( C  pi, C 0:). 

Suppose that the normal distribution provides an adequate model for the next to their weight do 
weigh 2 kg (or whatever) on 

weight X of sugar in paper bags of sugar labelled as containing 2 kg. There is average, and that is all that a 
some variability, and to avoid penalties the manufacturers overload the bags manufacturer might be required to 
slightly. Measured in grams, suppose X N(2003,l). demonstrate. 

This result is stated without proof. 
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It follows that the probability that a bag is underweight is given by 

So about one bag in a thousand- is underweight. 

A cook requiring 6 kg of sugar to make marmalade purchases three of the 
bags. The total amount of sugar purchased is the sum 

Assuming independence between the weights of the three bags, their expected 
total weight is 

and the variance in the total weight is 

V(S) = a: + 0; + a: 
= 3; 

that is, S W N(6009, 3). The standard deviation in the total weight is 
SD(S)  = = 1.732 gm. 

The probability that altogether the cook has too little sugar for the purpose 
(less than 6 kg) is given by 

P(S < 6000) 

This probability is negligible. (Your computer, if you are using one, will give 
you the result 1.02 X 10-?, about one in ten million!) 

You also saw in Chapter 4 that if the random variable X has mean p and 

variance a2, then for constants a and b, the random variable aX + b has mean 
and variance 

E (aX + b)  = a p  + b, V(aX + b)  = a2u2. 

This holds whatever the distribution of X .  However, if X is normally dis- 
tributed, the additional result holds that a X  + b is also normally distributed. 

If X is normally distributed with mean p and variance u2, written 
X N(p, a'), and if a and b are constants, then 

aX + b N N(ap  + b, a2u2). 
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5.3 The central limit theorem 

In the preceding sections of this chapter and at  the first mention of the normal 
distribution in Chapter 2, it has been stressed that the distribution has an 
important role in statistics as a good approximate model for the variability 
inherent in measured quantities in all kinds of different contexts. 

This section is about one of the fundamental results of statistical theory: it 
describes particular circumstances where the normal distribution arises not in 
the real world (chest measurements, enzyme levels, intelligence scores), but at 
the statistician's desk. The result is stated as a theorem, the central limit 
theorem. It is a theoretical result, and one whose proof involves some deep 
mathematical analysis: we shall be concerned, however, only with its conse- 
quences, which are to ease the procedures involved when seeking to deduce 
characteristics of a population from characteristics of a sample drawn from 
that population. 

5.3.1 Characteristics of large samples 
The central limit theorem is about the distributions of sample means and 
sample totals. You met these sample quantities in Chapter 1. Suppose we 
have a random sample of size n from a population. The data items in the 
sample may be listed 

The sample total is simply the sum of all the items in the data set: 

The sample mean  is what is commonly called the 'average', the sample total 
divided by the sample size: 

Notice that in both these labels, tn and ?Fn, the subscript n has been included. 
This makes explicit the size of the sample from which these statistics have been 
calculated. 

We know that in repeated sampling experiments from the same population 
and with the same sample size, we would expect to observe variability in the 
individual data items and also in the summary statistics, the sample total and 
the sample mean. In any single experiment therefore, the sample total tn is 
just one observation on a random variable Tn; and the sample mean ?i& is just 
one observation on a random variable X,. 
You saw in Chapter 4 , that notwithstanding this variability in the summary 
statistics, they are useful consequences of the experiment. In particular, as- 
suming the population mean p and the population variance a2 to be unknown, 
the following important result for the distribution of the mean of samples of 
size n was obtained: 
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That is, if a sample of size n is collected from a large population, and if that Chapter 4 ,  page 157 

sample is averaged to obtain the sample mean, then the number obtained, En, 
should constitute a reasonable estimate for the unknown population mean p. 
Moreover, the larger the sample drawn, the more reliance can be placed on 
the number obtained, since the larger the value of n, the less deviance that 
should be observed in E, from its expected value p. 

Exercise 5.13 
Obtain a sample of size 5 from a Poisson distribution with mean 8, and 
calculate the sample mean F5. Next, obtain 100 observations on the 
random variable X5.  How many of the 100 observations (all 'estimating 
the number 8') are between 6 and 10? 
Now obtain a sample of size 20 from a Poisson distribution with mean 8 
and calculate the sample mean ?Cz0. Obtain 100 observations altogether 
on r z o .  How many of these are between 6 and 10? How many are between 
7 and 9? 
Now obtain a sample of size 80 from a Poisson distribution with mean 8, 
and calculate the sample mean so. Obtain 100 observations on KO, and 
calculate the number of them that are between 7 and 9. 
Summarize in non-technical language any conclusions you feel able to 
draw from the experiments of parts (a) to (c). 

Exercise 5.14 
Investigate the sampling properties of means of samples of size 5, 20, 80 from 
the exponential distribution with mean 8. 

In Exercise 5.13, and Exercise 5.14 if you tried it, the same phenomenon 
should have been evident: that is, variation in the sample mean is reduced as 
the sample size increases. 

But all this is a consequence of a result that you already know, and have known 
for some time-the point was made in Chapter 4 that increasing the sample 
size increases the usefulness of ?C as an estimate for the population mean p. 
However, knowledge of the mean (E(X,) = p) and variance (V@,) = a2/n)  
of the sample mean does not permit us to make probability statements about 
likely values of the sample mean, because we still do not know the shape of 
its probability distribution. 

Exercise 5.15 
f (X) (a) The exponential distribution is very skewed with a long right tail. 

Figure 5.24 is a sketch of the density for an exponentially distributed 1.0- 
random variable with mean 1. 

(i) Generate 100 observations on the random variable 572 from this dis- 
tribution; obtain a histogram of these observations. 

(ii) Now generate 100 observations on the random variable X30 from this 
distribution. Obtain a histogram of these observations. 

I I I I I 

(iii) Comment on any evident differences in the shape of the two his- 0 1 2 3 4 5 1  

tograms. Figure 5.24 f (X) = e-" , X 2 0  
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(b) The continuous uniform distribution is flat. The density of the uniform 
f(x) 

distribution U(O,2) (with mean 1) is shown in Figure 5.25. 

(i) Generate 100 observations on the random variable X2 from this dis- 
tribution and obtain a histogram of these observations. . 

(ii) Now generate 100 observations on X30, and obtain a histogram of 
the observations. $1 
(iii) Are there differences in the shape of the two histograms? 

4 

0 1 2 X 

Figure 5.25 The uniform 
distribution U(0,2) 

5.3.2 Statement of the theorem 
The point illustrated by the solution to Exercise 5.15 is that even for highly 
non-normal populations, repeated experiments to obtain the sample mean 
result in observations that peak at the population mean p, with frequencies 
tailing off roughly symmetrically above and below the population mean. This 
is a third phenomenon to add to the two results noted already, giving the 
following three properties of the sample mean. 

(a) In a random sample from a population with unknown mean p, 
the sample mean is a good indicator of the unknown number p 

WXn) = p). 
(b) The larger the sample, the more reliance can be placed on the sample 

mean as an estimator for the unknown number p ( ~ ( x )  = a2/n) .  

(c) Notwithstanding any asymmetry in the parent population, and for 
samples of sufficient size, the sample mean in repeated experiments 
overestimates or underestimates the population mean p with roughly 
equal probability. Specifically, the distribution of the sample mean 
is approximately 'bell-shaped'. 

It is also of interest that this bell-shaped effect happens not just with highly 
asymmetric parent populations, but also when the parent population is dis- 
crete-Figure 5.26 shows the histogram that resulted when 1000 observations 
were taken on X30 from a Poisson distribution with mean 2. 

Figure 5.26 1000 observations on X 3 0  from Poisson(2) 
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Again, the 'bell-shaped' nature of the distribution of the sample mean is 
apparent in this case. 

Putting these three results together leads us to a statement of the central 
limit theorem. 

The central limit theorem 
If XI ,  X2, . . . , Xn are n independent and identically distributed random 
observations from a population with mean p and finite variance a2, then 
for large n the distribution of their mean is approximately normal 
with mean p and variance a2/n:  this is written 

The symbol 'x' is read 'has 
approximately the same 
distribution as'. 

The theorem is an asymptotic result-that is, the approximation improves 
as the sample size increases. The quality of the approximation depends on 
a number of things including the nature of the population from which the 
n observations are drawn, and one cannot easily formulate a rule such as 
'the approximation is good for n at least 30'. There are cases where the 
approximation is good for n as small as 3; and cases where it is not so good 
even for very large n.  However, certain 'rules of thumb' can be developed for 
the common applications of this theorem, as you will see. One thing that is 
certain is that in any sampling context the approximation will get better as 
the sample size increases. 

5.3.3 A corollary to the theorem 
We have concentrated so far on the distribution of the mean of a sample of 
independent identically distributed random variables: this has evident appli- 
cations to estimation, as we have seen. 

As well as the mean X,, we might also be interested in the total Tn of n 
independent identically distributed random variables. This has mean and 
variance given by 

E(Tn) = np, V(Tn) = na2. 

A corollary to the central limit theorem states that for large n the distribution 
of the sample total Tn is approximately normal, with mean n p  and variance 
ng2 : 

Example 5.6 A traffic census 

In a traffic census, vehicles are passing an observer in such a way that the 
waiting time between successive vehicles may be adequately modelled by an 
exponential distribution with mean 15 seconds. As it passes, certain details of 
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each vehicle are recorded on a sheet of paper; each sheet has room to record 
the details of twenty vehicles. 

What, approximately, is the probability that it takes less than six minutes to 
fill one of the sheets? 

If the waiting time T measured in seconds has mean 15, then we know from 
properties of the exponential distribution that it has standard deviation 15 
and variance 225. The time taken to fill a sheet is the sum 

of twenty such waiting times. Assuming the times to be independent, then 

and 

Also, by the central limit theorem, W is approximately normally distributed: 

We need to find the probability that the total time W is less than six minutes: 
that is, less than 360 seconds, seconds being our unit of measurement. This 
is given by 

From the tables, this probability is 0.8133. (Using a computer directly without 
introducing incidental approximations yields the answer 0.8145.) 

Exercise 5.16 
A dentist keeps track, over a very long period, of the time T it takes her to 
attend to individual patients at her surgery. She is able to assess the average 
duration of a patient's visit, and the variability in duration, as follows: 

p = 20 minutes, a = 15 minutes. 

(In reality, she arrives at these estimates through the sample mean and sample 
standard deviation of her data collection; but these will suffice as parameter 
estimates.) 

A histogram of her data proves to be extremely jagged, suggestive of none of 
the families of distributions with which she is familiar. (Although the data 
set is large, it is not sufficiently large to result in a smooth and informative 
histogram.) 

Her work starts at 9.00 each morning. One day there are 12 patients waiting 
in the waiting room: her surgery is scheduled to end at noon. 

What (approximately) is the probability that she will be able to attend to all 
12 patients within the three hours? 

See (4.25). 
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Exercise 5.17 
Rather than keep an accurate record of individual transactions, the holder of a 
bank account only records individual deposits into and withdrawals from her 
account to the nearest pound. Assuming that the error in individual records 
may be modelled as a continuous uniform random variable U(-:, i), what is 
the probability that at the end of a year in which there were 400 transactions, 
her estimate of her bank balance is less than ten pounds in error? 

(Remember, if the random variable W is U(a, b), then W has variance 
(b - a)'.) 

5.4 Normal approximations to continuous 
distributions 

The probability density function of the normal distribution is a symmetric 
bell-shaped curve: many other random variables which are not exactly nor- 
mally distributed nonetheless have density functions of a qualitatively similar 
form. So, when, as so often, it is difficult to determine a precise model, using 
a normal distribution as an approximation and basing our efforts on that is 
an appealing approach. 

In many cases, the central limit theorem is the explanation for the apparently 
normal nature of a distribution: the random variables we are interested in 
are really made up of sums or averages of other independent identically dis- 
tributed random variables, and so the central limit theorem applies to explain 
the resulting approximate normal distribution. More than that, the central 
limit theorem tells us the appropriate mean and variance of the approximate 
normal distribution in terms of the mean and variance of the underlying ran- 
dom variables. So probabilities may be calculated approximately by using the 
appropriate normal distribution. In Exercises 5.16 and 5.17, you have already 
done this when given examples of underlying distributions and questions ex- 
plicitly framed in terms of sums of the associated random variables. But we 
can also use normal approximations in cases where we know the exact distri- 
bution, but where it is not easy to work with the exact result. Examples of 
this include the binomial distribution-recall from Chapter 2, Section 2.3 that 
binomial random variables are sums of independent identically distributed 
Bernoulli random variables-and the Poisson distribution (sums of indepen- 
dent Poisson variates are again Poisson variates). Normal approximations to 
the binomial and Poisson distributions are considered further in Section 5.5. 

How large a sample is needed for the central limit theorem to apply? The 
central limit theorem is a limiting result that, we have seen, we can use as 
an approximate result for finite sample size: when is that approximation 
good? Unfortunately, there is no neat single answer to these questions. It all 
depends on the particular underlying distribution we are concerned with; for 
the binomial distribution a 'rule of thumb' that has been established over long 
experience will be given, to provide a reasonable guide. For some distributions, 
approximate normality can hold for surprisingly small n-like 5 or 10 -wen  
when the underlying distribution is very non-normal. 
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This section deals only with normal approximations to continuous distri- 
butions. Normal approximations to discrete distributions will be considered 
in Section 5.5. 

In Exercise 5.13 you used a computer to mimic the repeated drawing of 
samples from a Poisson distribution; the results of that sampling experiment 
were illustrated using histograms, and that was your first intimation of the 
consequences of the central limit theorem. In Exercise 5.14, if you had the 
time to try it, you would have seen the phenomenon repeated for a continuous 
model, the highly skewed exponential distribution. 

In this section we will also look at the densities of means and sums of con- 
tinuous variables, rather than at histograms, their jagged sampling analogues. 
That is to say, we shall be considering the exact form of the distribution 
obtained when continuous random variables are added together. 

Now, so far, the only exact result we have used is that the sum of normal 
random variables is itself normally distributed (remember Example 5.5 where 
weights of bags of sugar were added together). Even that result was merely 
stated, and not proved. Otherwise, we have used approximate results based 
on the central limit theorem. The problem is that, in general, the exact 
distribution of a sum of continuous random variables is rather difficult to 
obtain. For the three examples that follow, you are not expected to appreciate 
all the theoretical detail underlying the results-indeed, not much detail is 
given. Just try to understand the main message behind the examples. This 
section is entirely illustrative. 

Example 5.7 Summing exponential random variables 
The exponential random variable X M ( l )  has mean 1 and variance 1; its 
probability density function is given by 

The density, sketched in Figure 5.24, illustrates the highly skewed nature of 
the distribution. 

The mean of samples of size 2 from this distribution, 
- 
X2 = $(X1 + X2), 

has mean 1 and variance $. The p.d.f. of X2 is not something you need to The variance is a2/n, where a2 = 1 

know, and far less be able to obtain; but the shape of the density of X2 is and = 2. 

given in Figure 5.27. 

1.0 2.0 3.0 f2 

Figure 5.27 The density of z2 when X M(1) 
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Already you can see the reduction in the skewness of the density-although 
far from being symmetric, there is a very apparent peak, and the density tails 
off either side of this peak. 

Figure 5.28 shows the density of Tl0, the mean of samples of size 10 from the 
exponential distribution with mean 1. This random variable has mean 1 and 
variance h. 

Figure 5.28 The density of when X W M(1) 

The dashed curve shown in Figure 5.28 is that of the normal density with 
mean 1 and variance h. You can see that the two curves are very similar. 
For modelling purposes, one might as well use the approximating and tractable 
normal curve-the exact distribution of Xlo is not at  all simple. 

Example 5.8 Summing uniform random variables 
The uniform random variable X -- U(0,l)  has the density shown in Figure 5.29. 
The density is flat; the random variable X has a minimum observable value 
at 0 and a maximum at  1. 

The mean of a sample of size 2, X2 = (X1 + XZ), again has a range extending 
from 0 to 1. The p.d.f. of X2 is symmetric; but now there is a clear mode at  
the midpoint of the range, Fz = i. This is shown in Figure 5.30. 

In fact when X is exponential, the 
distribution of the mean of a 
random sample from the 
distribution of X is known to 
belong to the gamma family of 
distributions. Some computer 
programs for statistics can supply 
exact probabilities for this family, 
eliminating the need for 
approximate normal probabilities. 

0 1 X 0 1.0 Z2 

Figure 5.29 The density of X, X W U ( 0 , l )  Figure 5.30 The density of z, X N U ( 0 , l )  
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The mean of a sample of size 3, x3 = ;(X1 + Xz + X3), again has a density 
defined only over the range from 0 to 1; the mean of X3 is i; the variance of - 
X3 is &/3 = h. Its p.d.f. is drawn in Figure 5.31; the superimposed dotted 
line is the p.d.f. of the normal distribution with mean 4 and variance &. You 
can see that the approximation is already extremely good. 

When X is U(0, l), V(X) = &. 

Figure 5.31 The density of X3 when X U(0,l) 

Example 5.9 Summing beta random variables 
The random variable X whose p.d.f. is given by 

is a member of the beta family. (You do not need to know any general 
properties of the beta family of probability distributions.) It has a highly 
skewed U-shaped distribution defined over the range (0, l ) ,  as you can see 
from Figure 5.32. It is not at all easy to obtain the algebraic form of the 
density of the random variable = ;(X1 + X2), let alone of means of larger 
samples. Instead, the histograms for 1000 observations on each of the random - - 
variables X 2 ,  XI0, XZ0 are shown in Figure 5.33. 

Figure 5.32 f (X) = 
X - 1  - ~ ) - ~ ' / 2 ,  0 < X < 1 
In this diagram the scales have 
been slightly distorted to 
exaggerate the main features of the 
U-shaped density. 

Frequency Frequency Frequency 

Figure 5.33 (a) 1000 observations on (b) 1000 observations on X 1 0  ( c )  1000 observations on W 

The three histograms are suggestive of the shape of the theoretical density 
functions for z 2 ,  XI0 and X20. YOU can see that even for samples of size 
10 some characteristics of the normal distribution are beginning to become 
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apparent and the distribution of the sample mean for samples of size 20 would 
appear to be quite usefully approximated by a normal distribution. 

The purpose of this section has been to provide graphical support for the 
statement of the central limit theorem. Irrespective of the shape of the dis- 
tribution of the random variable X (even when it is flat, or U-shaped) the 
distribution of the random variable 

the mean of random samples of size n,  has shown to some extent the charac- 
teristics of the normal distribution: that is, the distribution of Xn is unimodal 
and approximately symmetric. 

5.5 The normal approximation to discrete 
distributions 

It has been stressed that the central limit theorem applies equally to con- 
tinuous and discrete underlying distributions. However, in the discrete case, 
it is possible to improve the normal approximation to probabilities further by 
using a simple device called a continuity correction. This is developed in the 
context of the binomial distribution, but the idea is applicable to any discrete 
underlying distribution, including the Poisson distribution. 

5.5.1 The normal approximation to the binomial 
distribution 

The binomial distribution, B(n,p), with parameters n and p is a discrete 
distribution with probability mass function 

where q = 1 - p. 

You have seen that the random variable X B(n,p) can be thought of as the 
sum of n independent Bernoulli variates each with parameter p. (A Bernoulli 
random variable takes the value 1 with probability p and the value 0 with prob- 
ability g.) So, we can apply the central limit theorem to X and hence obtain 
a normal approximation to the binomial distribution, and this will prove es- 
pecially useful for calculating probabilities because normal probabilities avoid 
the difficult sums that make up binomial tail probabilities. Now, p, the mean 
of the Bernoulli distribution is p and c2, its variance, is pq. So, the ap- 
proximating normal distribution for X (a sum of n independent identically 
distributed Bernoulli variates) has mean n p  = np and variance nu2 = npq. 
Notice that, as you should have expected, these are also the mean and variance 
of the exact binomial distribution B(n,p) ,  so we approximate the binomial 
distribution by a normal distribution with the same mean and variance. 

Example 5.10 Comparing the distributions ~ ( 1 6 ,  i) and N(8,4) 

As an example of this approximation let us take n = 16, p = $. Then 
np = 8 and npq = 4. Graphs of the binomial probability mass function and 
the approximating normal p.d.f. are shown superimposed in Figure 5.34. 

214 
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Figure 5.34 The distributions B (16, i) and N(8,4) compared 

Apart from the obvious differences between a discrete and a continuous dis- 
tribution, these graphs are really very similar. But what should be our ap- 
proach if we wish to use the normal approximation to estimate the probability 
P ( X  5 6), say? In general, we have seen that when approximating the distri- 
bution of X (with mean p and standard deviation a)  by a normal distribution 
with the same mean and standard deviation, we have used the approximation 

where a(.) is the c.d.f. of the standard normal variate 2. In this case, X is 
binomial with mean np = 8 and variance npq = 4: so we set p equal to 8 and 
a equal to 4 = 2. Here, in Table 5.2, are the corresponding binomial and 
normal c.d.f.s. 

You can see that calculated values for the two c.d.f.s are quite close but that, 
a t  these particular values of X, the c.d.f. of the normal variate is always smaller 
than that of the binomial. You can see from Figure 5.35 some indication of 
why this is happening. This figure shows superimposed on the same diagram 
the distribution of the binomial random variable X - B(16,:) and the ap- 
proximating normal random variable Y N ( 8 , 4 ) .  The shaded area gives the 
exact binomial probability required, P(X 5 6), and the hatched area gives 
the normal probability P ( Y  5 6 ) .  

Probability 

Table 5.2 Binomial and normal 
c.d.f.s 

2 - 8  
X Binomial - 

c.d.f. 2 
0 0.0000 -4 0.0000 

. . . 

0  1  2  3  4  5 6  7 8 9 1 ' 0 1 1 1 2 1 3 1 4 1 5 1 6  z 

Figure 5.35 The probabilities P(X 5 6) and P(Y 5 6) compared 
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The diagram suggests that a more accurate estimate of the binomial prob- 
ability P ( X  5 6) would be obtained from the normal approximation 
P ( Y  5 6;). This comparison is shown in Figure 5.36. 

Probability 

0.20 4 

0.15 

0.10 

Figwe 5.36 The probabilities P(X ( 6) and P(Y ( 6;) compared 

The normal approximation gives 

and this is indeed very close to the exact value of the binomial probability, 
0.2272. 

We may also need to use the normal distribution to approximate values of the 
binomial probability mass function: then the same approach is adopted, as 
shown in the following example. 

Example 5.1 1 Approximating a binomial probability 
Suppose we wish to approximate the binomial probability mass function when 
X = 6. We know that P ( X  = 6) = P ( X  < 6) - P ( X  < 5) and that this can 
be approximated by 

= 0.1210. 

Again, this is reasonably close to the true value of 0.1222. W 

What has been done in this example is to approximate the binomial prob- 
ability function px(6) by the probability that the corresponding continuous 
random variable lies in the interval from 5$ to 6$, as shown in Figure 5.37. 6.0 

That is, the area of the bar centred on 6 is abproxLated by the hatched area; Figure b.37 The normal 
you can see that a good approximation ensues. The approach that has been approximation to the binomial 
used is an intuitively sensible way to behave, and it is found in general to give probability p x ( 6 )  
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extremely satisfactory approximations for quite moderately sized n. This ad- 
justment for discrete distributions to the normal approximation is often called 
the continuity correction. 

1 The continuity correction 

When approximating the c.d.f. of an integer-valued discrete random vari- 
able X using the central limit theorem, write 

P ( X I X ) N P ( Y < Z + ; ) ,  (5.7) 

where Y is normally distributed with the same mean and variance as X :  
that is, Y N N ( p X ,  c:). 

In the case where X is a binomial random variable with mean np and variance 
npq, the expression (5.7) becomes 

Exercise 5.18 
If X B(16, $) use the normal distribution to approximate the probability 
P(12 < X < 15). Compare your answer with the true value of the probability. 

So far we have looked at approximations to the binomial distribution when 
p = i and found them to be reasonably good. We should expect the approxi- 
mation to work best in this case because when p = $ the probability mass 
function of the binomial distribution is symmetric like the normal p.d.f. This 
is, of course, precisely what was driving Galton's exhibition of approximate 
normality using the quincunx, as was described in Section 5.1. However, the 
approximation is also useful when p is not equal to i. Here is a diagram of the 
B(20,0.3) probability mass function and the approximating N(6,4.2) p.d.f. 
to help convince you of this. 

Probability 

Figure 5.38 The probability distributions B(20,0.3) and N(6,4.2) compared 
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Example 5.12 An asymmetric binomial distribution 
Suppose the random variable X has a binomial distribution B(20,0.3). Then 
the mean of X is p = np = 6, and its variance is a2 = npq = 4.2. Then, for 
example, 

while (writing Y N N(6,4.2) and employing a continuity correction) 

= P ( Z  5 -0.24) 

and from the tables this is 0.4052. Similarly, 

P ( X  = 4) = 0.1304. 

This probability may be approximated by 

~ ( 3 ;  5 Y 54 ; )  

shown in the hatched area in Figure 5.39. From the tables this probability is 
0.2327 - 0.1112 = 0.1215. The normal approximation to the exact binomial 
probability required is not as good in this example as it was in Example 5.11, 
but you can see that any differences are not serious. 

Probability 

Figure 5.39 

Exercise 5.19 
Suppose that the binomial random variable X has parameters n = 25, p = 9 .  
(a) Use your computer to obtain the following probabilities to 6 decimal 

places. 

(i) P ( X  = 5) 

(ii) P ( X  = 6) 

(iii) P ( X  = 7) 

(iv) P ( X  = 8) 
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Write down the probability P(6 5 X 5 8). 

Give the parameters of the normal approximation to this binomial distri- 
bution indicated by the central limit theorem. 

Use the normal approximation to find the following probabilities, by 
rewriting these probabilities in terms of the normal random variable Y 
approximating the distribution of X. 
(i) P ( X  = 6) 

(ii) P ( X  = 7) 

(iii) P(X = 8) 

(iv) P(6  5 X 5 8) 

You have seen that the central limit theorem provides us with a very useful 
approximation to the binomial distribution provided n is fairly large; it is also 
important that the binomial distribution is not too far from being symmetric. 
Asymmetry is most evident when p is close to either 0 or 1. Here is a rough 
rule for deciding when it may be appropriate to use a normal approximation 
for a binomial distribution. 

The c.d.f. of the normal distribution with a continuity correction pro- 
vides a usable approximation to the c.d.f. of the binomial distribution 
B(n,p) when both np > 5 and nq 2 5, where q = 1 - p .  

This rule is of course fairly arbitrary and whether or not it works depends on 
how close an approximation is required, but it provides a reasonable basis for 
deciding when the approximation may be used. 

5.5.2 Normal approximations to other discrete 
distributions 

This chapter ends by looking at two more discrete distributions, one already 
familiar to you, and their normal approximations. The method used is the 
same as for the binomial distribution; the c.d.f. of our discrete random variable 
is approximated by that of a continuous random variable with a normal distri- 
bution, by invoking the central limit theorem, and a continuity correction is 
included to improve the approximation to calculated probabilities. 

The familiar case is the Poisson distribution. It was mentioned in Chap- 
ter 4, Section 4.3 that if XI ,  X2 , .  . . , X,, are independent Poisson variates 
with means all equal to p, then their total also follows a Poisson distribution: 

So, if we wish to approximate by a normal distribution a Poisson distribution 
with large mean p ,  then we may think of the Poisson distribution as arising 
as a sum of a large number n of independent Poisson variates, each with mean 
p ln .  By the central limit theorem, their sum will be approximately normally 
distributed. 

219 
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In other words, the central limit theorem tells us that a Poisson distribution 
with mean p may be approximated by a normal distribution with the same 
mean and variance. In this case, these are both equal to p. 

For instance, if X is Poisson(l6), then we might try the approximation 

P ( x < x ) ~ ~ P ( Y < x + ; ) ,  

where Y N(l6,16), and 

P ( X = X ) ~ ~ P ( X - ; < Y < X + ; ) .  

Values based on this last approximation are given in Table 5.3. 

Although the approximating probabilities are not very close, they are always 
within about 0.006 of the true probability, and so usually would be sufficiently 
accurate. 

Exercise 5.20 
If the random variable X has a Poisson distribution with mean 40, use your 
computer to find as accurately as you can the probability P(30 5 X 5 45) 
and then find an approximation to this probability using the central limit 
theorem. 

The point at which the normal approximation N(,LL, ,LL) to the Poisson distri- 
bution Poisson(p) becomes a useful approximation depends essentially on the 
purpose to which the resulting calculations will be put; but a rough rule which 
many practitioners use is that p should be at least 30. As p becomes larger 
than 30 the approximation gets better and better. 

The next example is about sums of discrete uniform distributions, a context 
that so far we have not considered. 

Example 5.13 Rolling three dice 
Finally, let us try rolling some dice! The probability distribution of the total 
score when three fair dice are rolled is actually quite difficult to find: it is the 
sum of three independent identically distributed discrete uniform scores on 
1 ,2 ,3 , .  . . ,6 .  Let us try using the central limit theorem to obtain an approxi- 
mation to the probability that the total score exceeds 15. 

We know that if X is uniformly distributed on the integers 1,2, .  . . , n,  then 

Setting n equal to 6 gives 

The sum S = XI + X2 + X3 of three independent scores has mean 3p = 10.5 
and variance 3a2 = 8.75. Then the probability required (that the total score 
S exceeds 15) may be approximated by writing 

Table 5.3 Exact and 
approximate Poisson probabilities 

X D X  (X) A~~roximation 

These results were stated in 
Chapter 3. 
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where Y N(10.5,8.75). This is 

In fact, the distribution of S is given in the following table. 

Table 5.4 The distribution of the total score S, when three dice are rolled 
S 1 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

The probability that the total score on a throw of three dice exceeds 15 is 
therefore 

L+L+L-&L- 
216 216 216 - 216 - 0'0463; 

and so the normal approximation to this probability is not bad. H 

Summary 

1. Many manifestations of variability in the real world may be adequately 
modelled by the two-parameter normal distribution N(p ,  u2) with mean 
p and variance u2 (standard deviation a) .  

2. The p.d.f. of the normal random variable X N(p,  a') is given by 

The p.d.f. of the standard normal random variable Z W N ( 0 , l )  is given 
by 

1 -p 
$ ( z )  = ~e , -m < z < m. 

The c.d.f. of Z is given by 

3. In the usual way, probabilities are found by integrating under the nor- 
mal curve, but this approach does not yield a closed formula. Instead, 
reference is made to tables of standard normal probabilities and the 
relationship between X W N(p,  a2) and the standard normal variable 
Z N(0,l): 

and so 

4. Standard normal quantiles are defined by 

qa = P(Z 5 a). 



Elements of Statistics 

To find the quantiles of X N N(p,  u2) it is necessary to use the relation 

5. If the random variables Xi, i = 1, .  . . , n, are independent normally dis- 
tributed random variables with mean pi and variance U:, then their sum 
is also normally distributed: 

X ~ + x z + . . . + x n ~ N ( C p ~ ) C a ? ) ;  

also, if X is normally distributed with mean p and variance u2, then for 
constants a and b, 

6. The central limit theorem states that if XI ,  X2,. . . , X, are independent 
identically distributed random variables with mean p and variance a2, 
then their mean X, has an approximate normal distribution 

Equivalently, their sum T, has an approximate normal distribution 

T, = XI  + X2 + . . - + X, % N(np,  nu2). The symbol 'E'  is read 'has 
approximately the same 

7. By the central limit theorem, if X is binomial B(n,p), then the distri- distribution 
bution of X may be approximated by a normal model with corresponding 
mean p = np and corresponding variance u2 = npq, where q = 1 -p. The 
approximation will be useful if both np and nq are at least 5. 

8. By the central limit theorem, if X is Poisson(p), then the distribution of 
X may be approximated by a normal model with mean p and variance p. 
The approximation will be useful if p is at  least 30. 

9. When approximating the distribution of a discrete integer-valued random 
variable X with mean p and variance u2 by a normally distributed random 
variable Y W N(p,  U'), it is appropriate to use a continuity correction: 

and 
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Point estimation 

This chapter deals with one of the central problems of statistics, that of using a 
sample of data to estimate the parameters for a hypothesized population model from 
which the data are assumed to arise. There are many approaches to estimation, 
and several of these are mentioned; but one method has very wide acceptance, the 
method of maximum likelihood. 

So far in the course, a major distinction has been drawn between sample quan- 
tities on the one hand-values calculated from data, such as the sample mean 
and the sample standard deviation-and corresponding population quantities 
on the other. The latter arise when a statistical model is assumed to be an ad- 
equate representation of the underlying variation in the population. Usually 
the model family is specified (binomial, Poisson, normal, . . . ) but the index- 
ing parameters (the binomial probability p, the Poisson mean p, the normal 
variance u2, . . . ) might be unknown-indeed, they usually will be unknown. 
Often one of the main reasons for collecting data is to estimate, from a sample, 
the value of the model parameter or parameters. 

Here are two examples. 

Example 6.1 Counts of females in queues 
In a paper about graphical methods for testing model quality, an experiment Jinkinson, R.A. and Slater, M. 
is described to count the number of females in each of 100 queues, all of length (1981) Critical discussion of a 
ten, at a London underground train station. graphical method for identifying 

discrete distributions. The 
The number of females in each queue could theoretically take any value be- Statistician, 30, 239-248. 
tween 0 and 10 inclusive (though, in fact, no queue from the 100 observed 
was constituted entirely of females). Table 6.1 shows the frequencies for the 
different counts. 

Table 6.1 Numbers of females in 100 queues of 
length ten 

Count 0 1 2  3 4 5 6 7 8 9 1 0  
Frequency 1 3 4 23 25 19 18 5 1 1 0 

A possible model for the observed variation is that the probability distribution 
of the number of females in a queue is binomial B(lO,p), where the par- 
ameter p (not known) is the underlying proportion of female passengers using 
the London underground transport system during the time of the experiment. 
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The parameter p may be estimated from this sample in an intuitive way by Parameter estimates are not always 
calculatinn 'obvious' or 'intuitive', as we shall 

see. Then you have to use 
total number of females mathematics as a guide; otherwise, 

total number of passengers mathematics can be used to 
confirm your intuition. 

- 1 ~ 0 + 3 ~  1 + 4 ~ 2 + . . . + 1 ~ 9 + 0 ~  10 - - -- 435 - 0.435, 
10 X 100 1000 

or just under i. 
In this case, as it happens, the binomial model fits the data very well; but it 
could have turned out that the binomial model provided a less than adequate 
representation of the situation. One of the assumptions underlying the model 
is that of independence. In this case that means that the gender of any person 
in a queue does not affect, and is not affected by, the gender of others. If, for 
instance, there had been too many Male-Female couples standing together, 
then the observed frequency of 4s, 5s and 6s in the counts would have been 
too high. H 

Example 6.2 Counts of the leech Helobdella 
An experiment is described in Jeffers (1978) in which 103 water samples were Jeffers, J.N.R. (1978) An 
collected and the number of specimens of the leech Helobdella contained in introduction to systems analysis 

each sample was counted. More than half of the samples collected (58 of with ecological 
Edward Arnold, London. them) were free of this contamination, but all the other samples contained at 

least one leech-three contained five or more. Table 6.2 gives the frequencies 
of the different counts for the 103 samples. 

Table 6.2 Counts of the leech Helobdella in 103 
water samples 

Count 0 1 2 3 4 5 6 7 8 2 9  
Freauencv 58 25 13 2 2 1 1 0 1 0 

One model that might be thought to be at least reasonable for the observed 
variation in the counts is that they follow a Poisson distribution. The Poisson 
distribution is indexed by one parameter, its mean p. You saw in Chapter 4 ,  
Section 4.2 that the sample mean has some 'good' properties as an estimator 
for a population mean p. (For instance, it has expectation p: this was shown 
in (4.8) in Chapter 4.) In this case, the sample mean is 

This constitutes an estimate, based on this sample, for the unknown Poisson 
mean p. 

(In fact, it turns out that the observed variation here is not very well ex- 
pressed by a Poisson model. The reason is that the leeches tend to cluster 
together within the water mass from which they were drawn: that is, they 
are not independently located. Model testing is examined in Chapter 9 of the 
course.) H 

There are many questions that might be asked about model parameters, and 
in this course Chapters 6 to 8 are devoted to answering such questions. One 
question is of the general form: is it reasonable to believe that the value of a 
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particular parameter is . . . ? (zero, or one-half, or positive, or whatever). Ap- 
propriate sampling procedures, followed by an analysis of the data collected, 
permit informative tests of such hypotheses. For example, is it reasonable to 
believe the proposition that at least half the passengers using London under- 
ground trains are female, given this moderate evidence to the contrary? The 

subject of hypothesis testing is examined in Chapter 8. 

Another, related, matter of interest is this: on the basis of these data, and 
assuming an underlying model for the variation observed, what single value, 
or what range of values, is plausible for the indexing parameter? 

Here, there are two questions posed. The first asks for the single best guess, 
or estimate, of the value of the parameter. To find this, we shall apply an 
estimating formula, or estimator, to the data available. This is a question 
about point estimation and it is the subject of the present chapter. The 
second question asks for a range of credible values for an unknown model 
parameter, based on a sample of data. Such a range is called a confidence 
interval: the idea of interval estimation is discussed in Chapter 7. 

In Sections 6.1 and 6.2 we look at  a number of different situations in which 
data have been collected on a random variable, and where there is a clear 
problem of parameter estimation. A number of possible approaches to the 
problem is described (there are many others). 

Often, a somewhat involved mathematical procedure leads to an estimator 
which after all is the obvious common-sense estimator to choose, though this 
is not always the case. In Section 6.3 we explore one particular approach 
which has common acceptance, leading to estimators with good properties, 
and that does not usually conflict badly with the dictates of common sense. 
This is known as the method of maximum likelihood. 

In Section 6.4 we examine a number of particular examples. As well as re- 
visiting earlier examples, we briefly explore estimation problems where one 
method or another fails (for whatever reason) but where the method of maxi- 
mum likelihood proves to be useful and informative. (Nevertheless, similar 
examples could be found to embarrass almost any estimating procedure, in- 
cluding maximum likelihood.) Most of the exercises in this section require the 
use of a computer for the numerical procedures involved. 

Section 6.5 is very reliant on computer simulation. A new continuous prob- 
ability distribution, the chi-squared distribution, is introduced. The distri- 
bution is relevant to the problem of estimating the variance of a normal dis- 
tribution. 

6.1 Principles of point estimation 

Point estimation is the process of using the data available to estimate the 
unknown value of a parameter, when some representative statistical model has 
been proposed for the variation observed in some chance phenomenon. The 
point estimate obtained from the data will be a single number. Here are some 

examples. All the examples illustrate important features of point estimation. 
These essential features are summarized after Example 6.5 and restated at 
the end of the section. 
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Example 6.2 continued 
The Helobdella experiment resulted in a data list comprising 103 observations 
on a discrete random variable (58 OS, 25 Is, and so on). For the purposes of 
drawing useful inferences from the experiment, these data were assumed to be 
i ndependen t  observations on the same random variable, a Poisson variate with 
unknown mean p. One obvious estimate for the parameter p is the sample 
mean 

- 0 ~ 5 8 + 1  ~ 2 5 + 2  X 1 3 + . . . + 8 ~  1 84 
X = - 

103 
- 0.816. 

5 8 + 2 5 + 1 3 + . . . + 1  
In this case our data set comprised a particular collection of 103 independent 
observations XI ,  X2,  . . . , XlO3 on the random variable X Poisson(p); our 
estimate of p was the corresponding particular observation on the sample 
mean, the random variable 
- X1 + X2 + ' ' ' + X103 
X(1) = 103 

Suppose a similar study was carried out under similar circumstances, but on 
that occasion only 48 water samples were collected; as before, the number of 
leeches in each sample was counted. Assuming the same Poisson model, then 
the new estimate of the unknown parameter p would be 

- x l + ~ 2 + " ' + ~ 4 , 8  
X(2) = 48 

This is an observation on the random variable 
- Xl-kX2-k  " '+X48.  
X(2) = 48 

Exercise 6.1 
The first experiment (the one actually carried out) resulted in an estimate for 
p of ?F(1) = 0.816, an observation on the random variable The second 
(notional) experiment resulted in an estimate ?F(2) which was an observation 
on the random variable W(2). 

Write down in terms of the unknown parameter p the mean and variance of 
the random variable X(1) and of the random variable X(2). 

In this example we had a procedure or estimating formula which may be 
expressed thus: collect a total of n water samples and count the number 
of leeches XI, X 2 , .  . . , Xn in each sample; find the total number of leeches 
X I  + Xz + . . . + X n  and divide this number by n to obtain the average number 
of leeches in a sample of water. In other words, the random variable 
- 
X =  

X l + X 2 + . . . + X ,  
n 

is the estimating formula for p. It is called an estimator for p. With different 
data sets, different values of the estimator will be obtained (for example, 
841103 or perhaps 30148). These are estimates for p. 

Exam~le 6.3 Alveolar-bronchiolar adenomas in mice 
Tamura, R.N. and Young, S.S. 
(1987) A stabilized moment 
&tim&or for the beta-binomial 

In a research experiment into the incidence of alveolar-bronchiolar adenomas distribution. Biometrics, 43, 
in mice, several groups of mice were examined. One of the groups contained 54 813-824. An adenoma is a benign 
mice: after examination, six of the 54 mice were found to have adenomas. tumour originating in a gland. 
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Assuming independence from subject to subject, the experiment consists of 
observing an outcome r on a binomial random variable R 7 B(n,p) .  In this 
case the number observed was r = 6 and the sample size was n = 54; the 
obvious estimate of the proportion p is $ = i, or about 11%. 

A different experiment might have involved a different number, n, of subjects; 
assuming the experimental design to be the same, and making the same as- 
sumptions, then the number of affected mice is a binomial random variable 
R N B(n,p), and the experiment will result in the estimate r l n .  Here, our 

procedure or estimating formula is: observe the value of the random variable 
R and divide this observed value by n. So R l n  is the estimating formula, 
or estimator, for p. In different experiments, different values of the estimator 
will be obtained. These are estimates r l /n l ,  r2 /n2 , .  . . . 

Indeed, the experiment involved altogether 23 groups of mice. Examination of 
the other 22 groups resulted in several different estimates for the proportion 
of affected mice in the wider population, from as low as 5 through 6 to 
estimates as high as $ = i .  H 

Example 6.4 Sand flies 

An experiment was performed in which sand flies were caught in two different Christiensen, H.A., Herrer, A. and 
light traps; then the numbers of male and female flies were counted in each Telford, S R .  (1972) Enzootic 
trap. cutaneous leishmaniasis in Eastern 

Panama. 11: Entomological 
The first trap was set three feet above the ground: when the traps were lifted investigations. Annals of Tropical 
it contained 173 male sand flies and 150 females-an observed proportion of Medicine and 66, 

1731323 males, or about 54% (just over one-half). The second trap was set 55-66. 

35 feet above the ground: on inspection it was found to contain 125 males and 
73 females. 

Thus we have twd rather different estimates of the proportion of male sand 
flies in the population: whether or not the difference is a 'real' difference (fewer 
females venturing far above the ground) or due simply to random variation 
is the sort of question that is the subject of Chapter 8. At first sight, we 
have here one estimate r l /n l  = 1731323 = 0.54 for the proportion p1 of males 
in the sand flies to be found 3feet above ground level, and another estimate 
r2/na = 1251198 = 0.63 for the proportion p2 of males in the sand fly popu- 
lation at 35 feet above ground. H 

Example 6.5 Epileptic seizures 
A number of patients with intractable epilepsy controlled by anticonvulsant Albert, (1991) A two-state 
drugs was observed for times between three months and five years, and in- mixture for a time 

series of epileptic seizure counts. formation about the number of daily seizures suffered by each patient was Biometrics, 47, 1371-1381. 
recorded. One of the patients was observed for 422 consecutive days. Table 6.3 
gives the frequencies for the daily seizure counts. 

Table 6.3 Counts of epileptic seizures, 
daily over 422 days 

Count 0 1 2  3 4 5 6  
Frequency 263 90 32 23 9 3 2 
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Assuming a Poisson model for the variation in the daily counts, a reasonable 
estimator for the indexing parameter (the mean p) is given by the sample 
mean X .  In this case, for this particular data set, the corresponding estimate 

The preceding examples illustrate the following essential features of a point 
estimation problem: 

(a) some data-if we have no data then we cannot make an estimate; 

(b) a probability model for the way the data were generated-in the above The probability model adopted . ,  - 

examples, X Poisson(p) or R B(n,p); may or may not be quite adequate 
to explain the variation observed: 

(c) the model involves a parameter whose value is unknown-this is the value but this is a problem of of 
we wish to estimate; 

- 
fit, not primarily one of estimation, 

(d) an estimating formula or estimator for the parameter, irrespective of any and it is addressed later in the 
course. 

particular data values obtained, depending only on the model; 

(e) the value of the estimator given by the data, that is, the estimate for the 
parameter. 

Notation 

It is useful to introduce some notation here. In statistical work, it is often 
convenient to denote an estimate of a parameter by adding a circumflex or 
'hat' symbol thus: we might write that the water experiment resulted in 
the estimated mean incidence of leeches E = 0.816. Similarly, the estimated 
proportion of males in the sand fly population at  35feet above ground level 
was j& = 0.63. Most statisticians (in speaking, or reading to themselves) 
conventionally use the phrase ' p  hat' or 'p hat' for simplicity. 

The same notation is also used for an estimator-the estimator of p in It would be unwieldy to develop a 
the above examples is j? = Rln ;  similarly, the estimator of p is c = X = separate notation t; distinguish 

(X1 + X2 + . . . + X,)/n. Notice the essential difference here. The estimate estimates and you 
find in practice that there is little 

p̂  is a number obtained from data while the estimator p̂  is a random variable scope for confusion, 
expressing an estimating formula. The estimate jZ = ?f is a number obtained 
from a data sample by adding together all the items in the sample and div- 
iding by the sample size. The estimator jZ = X is a random variable. As a 
random variable, an estimator will itself follow some probability distribution, 
and this is called the sampling distribution of the estimator. 

By looking in particular at  summary measures of the sampling distribution 
of an estimator, particularly its mean and variance, we can get a good idea 
of how well the estimator in question can be expected to perform (that is, 
how 'accurate', or inaccurate, the estimates obtained from data might turn 
out to be). For instance, it would be useful if the estimator turns out to have 
expected value equal to the parameter we are interested in estimating. (In the 
case of a Poisson mean, for instance, we have used the fact that E(X) = p as 
the basis for our notion of a 'good' estimator. Also, if the random variable R 
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has a binomial distribution B(n,p), then E(R) = np and so E(R/n) = p.) It 
will be useful too if the estimator has a small variance: then we can expect 
estimates resulting from statistical experiments to be close to the parameter 
we are trying to estimate. In any given estimation problem, there is not always 
one clear estimator to use: there may be several possible formulas that could 
be applied. The question that naturally arises is: which formula -is likely to 
lead to 'better' estimates? The next example illustrates this. 

Example 6.6 Divorces in England and Wales, 1975- 1980 

The next data set is about the annual numbers of divorces in England and 

Wales for the six years between 1975 and 1980. The data are listed in 
Table 6.4. They appear to show some sort of linear upward trend, though 
there is not an exactly constant increase (and perhaps one would be rather 
surprised if there was). The aim of this example is to demonstrate that there 
are at least three sensible estimates that could be proposed for the underlying 
trend. The idea of estimating slopes through scattered data points is one that 
will be discussed in detail in Chapter 10. All you need to do for the moment is 
appreciate that in any context there may be more than one way of obtaining 
from data a 'sensible7 estimate for an unknown parameter, and that there are 
simple methods for choosing from these estimates one that might be better 
than the others. 

Table 6.4 Annual numbers of divorces in England and Wales, 1975-1980 

Year 1975 1976 1977 1978 1979 1980 
Number of divorces (thousands) 120.5 126.7 129.1 143.7 138.7 148.3 

Let us denote the number of divorces (thousands) in any particular year by y, 
and the year, reckoned from 1900 for convenience, by X. We can then plot the 
data as six points (xi, yi) (i = 1,2, . . . ,6) on a scatter diagram as in Figure 6.1; 
so, for example, xl  = 75, yl = 120.5; 2 6  = 80, y~ = 148.3. The six points are 
labelled PI, P2, P3, P4, P5, P6 going from left to right, i.e. Pl is (XI ,  yl), and 
SO on. 

Divorces (thousands) 

100 1 I I l l l 

75 76 77 78 79 80 

Year 

Data from Marriage and Divorce 
Statistics, Office of Population 
Censuses and Surveys, HMSO. For 
the purposes of this example, it is 
important that the data exhibit 
some sort of trend. More recent 
data than these (1985-1990) do 
not: there appears to be a levelling 
off. 

Figure 6.1 Divorces in England and Wales, 1975-1980 (thousands) 
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The pattern of the six points appears roughly linear, with positive slope; in 
other words, there appears to have been, over the six years covered by the 
data, an underlying upwards trend in the annual number of divorces. Our 
assumption will be that there is a trend line which truly underlies the six 
points; it has a slope P, say, which can be interpreted as the annual r te of 
increase of divorces. The number /3 is a parameter whose value we d not 
know; but we wish to estimate it. 

3 
In previous examples there was a unique 'obvious' way of estimating p, namely 

= X, and of estimating p, namely p^= Rln. Here, this is not the case; one 
can think of several apparently sensible ways of estimating 0. Three estimators 
of /3 we might consider are: 

(1) 3, = the slope of the line joining the first and last points PI and P6; 

(2) B2 = the slope of the line joining the midpoint of PIP2 to the midpoint 
of P5 P 6  ; 

(3) = the slope of the line joining the 'centre of gravity' of the first three The technical term for 'centre of 
points PI ,  P2, P3 to  the centre of gravity of the last three points Pq, P5, gravity' is centroid. The centroid of 

PS. the points PI, Pz, P3 has 
coordinates $(PI + P2 + P3). 

Other estimators are possible (you can probably think of some) and different 
ones are, in fact, usually preferred; but these three will suffice to make the 
important points. The three lines with slopes P,, and 3, are shown in 

A - -  

Figure 6.2; these are labelled 11, 12, 13. 

Divorces (thousands) - 

100 f I 4 1 1 , 
75 76 77 78 79 80 

Year 

Figwe 6.2 Divorces in England and Wales, 1975-1980: trend lines 

With this data set, these three estimating procedures give the following three 
estimates (each to one decimal place): 
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Which one of these three estimates should we use? Is one of them better than 
the others? For that matter, what does 'better' mean? The word 'better' 
does not refer to a specific value, like 5.6 or 5.0, but to the est imat ing formula 
which produces such a value. So we shall need to compare the properties of 
the various estimators: that is, we shall need to compare the properties of the 
sampling distributions of the estimators. 

In order to make these comparisons we must first decide on a sensible prob- 
ability model for the data: in other words, we must decide where randomness 
enters the situation, and how to model that randomness. 

This is not quite obvious: there are certainly deviations in the data to be 
observed from a straight line, so the observed points (xi, yi) must be scattered 
above and below the trend line, wherever it may be. On the other hand, there 
is no real sense in which the data observed constitute part of a statistical 
experiment, an experiment that could be repeated on a similar occasion when 
different results would be recorded. There was only one year 1975, and during 
that year there were 120.5 thousands of divorces in England and Wales; and 
in a sense that is all that need, or can, be said. 

Nevertheless, it is very common that deviations about a perceived trend are 
observed, and equally common to model those deviations as though they were 
evidence of random variation. This is what we shall do here. 

We are assuming that there is an underlying linear trend in the number of 
divorces y year by year (that is, with increasing X). In other words, our 
assumption is that the underlying trend may be modelled as a straight line 
with equation 

where the parameter p is the slope we are trying to estimate. 

Now, take any particular year, x l  = 75, say. The observed number of divorces 
(in thousands) is yl = 120.5. On the other hand, the trend model, if it was 
accurate, predicts a total of a + pxl = a + 75P thousands of divorces in 1975. 
The difference 

between the observed value and that predicted by the model is a single ob- 
servation on a random variable W, say. The scatter of the observed points 
Pi = (xi, yi) above and below the trend line is measured by the fluctuations 
or deviations 

these six observations on the random variable W are illustrated in Figure 6.3. 
(For the purposes of illustration, a choice was made in this diagram for sensible 
values of a and P-but you need to realize that no calculations have in fact 
yet been performed.) 
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Divorces (thousands) 

100 1 I I I I 

75 76 77 78 79 80 

Year 

Figure 6.3 Six observations on the random variable W 

We shall assume that the observations wl, w2,. . . , w6 may be treated as 
though they were independent observations on the same random variable W ;  
further, that the random variable W has mean 0 (observations occur above 
and below the trend line model); finally, that the random variable W has 
non-zero variance a2 (the problem is that there is evidence of deviation from 
the trend line). 

So our model for the data set in Table 6.4 is 

There are three parameters for the model, a, P and a2, the values of which 
are all unknown. 

Now, having constructed this model for the data, we can discuss relevant 
aspects of the sampling distributions of each of p,, p, and &, treating the 
estimate 

say, exactly as though it was an observation on the random variable (the 
estimator) , 

A 

We can work out the mean and the variance of the estimator ,B1: this will give 
us some idea of its usefulness as an estimator for the trend slope p (the only 
one of the three unknown model parameters in which, for the present, we are 

interested). To do this, we need first to find out the mean and variance of the 
random variable Y ,  = a + ,Bxi + Wi. B 

Exercise 6.2 

Remembering that a, ,l3 and xi are just constants, and that Wi has mean 0 
and variance o2 for all i = 1 , 2 , .  . . ,6 ,  calculate the mean and variance of the 
random variable Y,. 

Notice that here is a good example 
of the sittation where we use the 
notation p, to refer not just to the 
estimate of p,, a number 
calculated from data, but also to 
the estimating formula, which we 
call the estimator. 
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Example 6.6 continued 
From the solution to Exercise 6.2, we have the results 

E@) = a + Pxi, V(K) = g2. (6.1) 

The expected value of the estimator p, is given by 

(Here, the result that has been used is that for any random variable N and 
for any constant c, the expectation E(cN) is equal to cE(N)) .  Using (6.1) Chapter 4, (4.11). 
this reduces to 

In other words, the expected value of the estimator p, is simply the unknown 
parameter p. This is encouraging, for our purpose in constructing the esti- 

A 

mator p,, was to provide a useful estimate of p. D 

Exercise 6.3 
(a) Write down the estimators p2 and p3 in terms of Yl, Y2,. . . , Y6 and 

xl,X2,.. . ,x6. 

Hint  Look at how their numerical values, the estimates and p3, were 
obtained. 

A A 

(b) Find the expected values of the estimators P2 and P3. 

So all of the three suggested estimators, p,, p2 and p,, have the desirable 
property that they have expectation P. Each of the estimators is said to be 
unbiased for P. 

A 

An estimator 6 for an unknown model parameter 6 is said to be un- 
biased for 8 (or, simply, unbiased) if it has expectation 

E(@ = 6. 

Example 6.6 continued 
There is therefore, so far, nothing to choose between the three estimators pl, 
3, and p3, and in that sense there is no clue which is the 'better' estimator, 
and therefore no indication about how much reliance could be placed on the 
three estimates 

A A A 

PI = 5:6, P, = 5.0, p, = 6.0 

for the slope of the underlying trend line. 
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What about the variances of the three estimators? As they all have the same 
mean, it seems particularly sensible to choose as the best of these estimators 
the one with the least amount of variability about that mean, as measured by 
the variance. In Chapter 4, you were shown how to calculate the variance of 
a constant multiple of a sum of independent random variables: if Yl and Y2 
are independent, then 

V(c(Y1 + Y2)) = c"(~1 + Y2) = c2(V(Y1) + V(Y2)). 

Since the random variables Wl, W2, . . . , W6 are independent by assumption, 
it follows that the random variables Yl, Y2,. . . , Y6 which just add constants 
(albeit unknown ones) to these random variables must be independent as well. 
Therefore, we can apply the variance formula to work out the variances of the 
estimators. Here is the first one: 

Using the particular values for x l  and 2 6  given in Table 6.4, we have the final 
result 

Exercise 6.4 
Find in terms of a2 the variances and for the other two estimators H 
of slope that have been suggested. 

Notice that here we have used the 
result 

V(-Yl) = ( - 1 ) ~ v ( ~ 1 )  = V(Y1). 

Example 6.6 continued 
From the solution to Exercise 6.4, it follows that the variances of the three 
estimators are ordered from least to greatest as 

so by this reckoning the estimator p2, having the smallest variance, is the best 

of the three estimators of p. I 
h, 

Let us briefly summarize the main points made so far. 
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In a scenario involving point estimation we have 

data; 

a model for the data; 

an unknown parameter (or more than one) in the model, which we 
wish to estimate; 

irrespective of the particular values in our data set, an estimating 
formula or estimator; 

an estimate of the parameter; this will be different for different data 
sets: thus, an estimator is a random variable, an estimate is just a 
number; 

the sampling distribution of the estimator which will tell us how 
useful our estimator, and hence our estimate, is. 

Moreover, we can say what the word 'useful' means here. It is useful if an 
estimator is unbiased and it is also useful if it has a small variance. 

6.2 Methods of estimation 

Where do we get our estimators from? In all the preceding examples, we have 
simply used a bit of common sense. But in Example 6.6, we devised three 
different estimators for the model parameter P; without much difficulty, others 
could have been invented. When estimating the binomial parameter p, the 
estimator p̂  = R l n  is a very natural one to use, but what about the estimator 
(R + l ) / (n + 2), for instance, which possesses some attractive properties? Or 
(R + !j)/(n + l ) ?  

Given several competing estimators for some parameter, it has been indicated 
that we might be able to choose between them on the basis of properties of 
their respective sampling distributions. But we may well be able to continue 
inventing estimators ad injinitum. Or, in more complicated modelling situ- 
ations than these basic ones, we might be lost for ideas for obtaining any 
reasonable estimators at all. What is needed is a more systematic method 
for deriving sensible estimators in the first place. Just as an estimate is the 
numerical value resulting from applying an estimator to a particular set of 
data, so it would be helpful if an estimator were to be the result of applying 
some general estimation technique to the problem at  hand. 

Once again, however, there is no single estimation technique which is uni- 
versally 'best', or even always appropriate! What follows in this section are 
very brief outlines of two of the more popular estimation techniques-there 
are many others-after which we shall concentrate on just one for the rest 
of the chapter. This third technique is known as the method of maximum 
likelihood, an approach to the problem which has many useful properties. 

One quite desirable property of 
both these rival estimators for the 
binomial parameter p is that if in a 
sequence of n Bernoulli trials the 
number of successes observed is 
either r = 0 or r = n, it does not 
follow that the estimate p  ̂ is 
respectively 0 or 1, suggesting in a 
rather absolute way 'impossibility' 
or 'certainty'. 

While it might be discouraging that there are several different estimation tech- 
niques that could be applied in any given sampling context, however, it often 
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turns out that many estimation techniques, relying on different principles, re- 
sult in exactly the same estimating formula for an unknown parameter. This 
is an encouraging finding. 

For simplicity, we shall let 8, say, be the single parameter of interest here. 

6.2.1 The method of least squares 
Suppose XI ,  X 2 , .  . . , X, is our random sample, and that the parameter 8 we 
wish to estimate is the mean of the distribution from which the random sample 
was drawn. 

Now, each Xi should, loosely speaking, be 'somewhere near' 8 (although there 
must be some variability about 8: quite how much there is depends on the 
amount of dispersion in the population). Then each difference Xi - 8 should 
be 'fairly small'. A reasonable estimate of 8 might then be chosen to try to 
make all the differences as small as possible simultaneously or, at least, to 
make the sum of the squares of all these differences, 

as small as we can. Squaring the differences makes them all positive so that 
(possibly large) positive and negative differences do not cancel each other out. 

The approach exemplified here, minimizing sums of squared differences be- 
tween observed data and what might have been expected, is known as the 
principle of least squares. An alternative approach might be to choose In Chapter 10, this principle is 
our estimate of 8 to minimize the sum of the absolute differences, adopted when fitting straight lines 

to data, just as we tried to do in 

In general this approach leads to intractable algebra, and of the two, the least 
squares approach is not only easier, but results in estimators whose general 
properties are more easily discerned. 

For arithmetic ease, the data in the next example are artificial. 

Example 6.7 An artificial data set-the method of least squares 
Suppose that observations XI = 3, 22 = 4, x3 = 8 were collected in a random 
sample of size 3 from a population with unknown mean, 8. The observed sum 
of squared differences is given by 
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This expression is a function of 0, and takes different values as 0 takes different 
values as shown in the following table: we want to identify the value of 0 for 
which this sum of squares is minimized. 

From this table, it looks as though the sum of squares is high for low values of 
0 around 0, 1 and 2, attains a minimum at  or around 0 = 5, and then climbs 
again. This makes sense: based on observations x l  = 3, 2 2  = 4 and x3 = 8, a 
guess at an underlying mean of, say, 0 = 1 is not a very sensible guess, nor is 
a guess of 0 = 8. 

You can see from the graph of the function 89 - 300 + 302 in Figure 6.4 that 
a minimum is indeed attained at the point 0 = 5. You may also have ob- 
served already that in this case the sample mean is f = 5, the 'common sense' 
estimate, based on this sample, of the unknown population mean. 

Figure 6.4 Graph of the function 89 - 300 + 38' 

In fact, for a general random sample of size n from a population with unknown 
mean 0, the expression for the sum of squared differences may be written 

This is a quadratic function of 0: the expression is minimized at  the point 

the sample mean. 

That is, the sample mean fT of a random sample XI ,  X2,  . . . , Xn from a popu- 
lation with unknown mean 0 is the least squares estimator 2 of 0. From the 
sampling properties of X, conclusions may be drawn about the usefulness of - 
X as an estimator of 0. In this case, applying a formal principle has resulted 
in the same estimator as that suggested by common sense. H 

This result may be obtained either 
by completing the square or by 
applying the calculus technique of 
differentiation. You need not worry 
about the algebraic details here. 
You will see in Sections 6.3 and 6.4 
that there are 'standard estimators7 
for common models which do not 
need to be derived from first 
principles every time they are used. 

Let us now move on to a.discussion of a second approach to estimation, the 
method of moments. 

237 
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6.2.2 The method of moments 
The method of moments is a very intuitive approach to the problem of 
parameter estimation: the argument is as follows. 

On the one hand, we have seen defined in the course summary population 
moments as expressions of the variability in a population; on the other hand, 
for random samples drawn from such populations, we have calculated sample 
moments to summarize the data. Population moments involve unknown par- 
ameters; sample moments are numbers. The method of moments matches 
analogous moments to obtain estimates for the unknown parameters. 

For instance, in a sample from the normal distribution N(p, u2) with unknown 
mean and variance, this approach would involve matching the unknown par- 
ameters p and a2 precisely to their sample analogues : and s2; so the par- 
ameter estimates are 

-2 2 F = : ,  U = S .  

Alternatively, for the geometric distribution with unknown parameter p, we 
know that the distribution mean is p = l l p .  Matching the first population 
moment with the first sample moment to obtain an estimator for p, we would 
have 5 = l/p ;̂ so 

The method of moments raises a number of questions, of which perhaps the 
most immediate is: ,which moment do we match? For instance, the variance 
of the geometric distribution is (1 - p)/p2; matching the population variance 
with the sample variance, we would obtain 

which may be written as a quadratic equation for +p  ̂ as 

this has solution 

g' JW- 1 
2s2 

This is also a moment estimator for p, but for any particular random sample 
it will not usually be equal to our first guess, p^= 11:. Which estimator may 
be better to use depends on a comparison of their sampling distributions, 
properties of which are not necessarily obvious. 

For the Poisson distribution with parameter p,  both the population mean and 
the population variance are equal to p-should we use the sample mean or 
the sample variance s2 as an estimator 6 for p? 

Answers to these questions can always be obtained by reference to the sam- 
pling distribution of the proposed estimator. In general, a rule which works 
well in practice is: use as many sample moments as there are parameters re- 
quiring estimation, starting with the sample mean (first), the sample variance 
(second) and the sample skewness (third), and so on. (In fact, in this course 
we shall not be dealing with three-parameter distributions, and so we shall 
never need to use the sample skewness in a point estimation problem.) 

See (3.19) in Chapter 3. 

Similkly, a population median is 
not strictly a 'moment' in the sense 
that the word has been used in this 
course-it is a quantile-but it 
conveys a useful numerical 
summary measure of a probability 
distribution. The median of the 
normal distribution is also 
p-would the median of a normal 
sample be a 'better' estimator for p 
than the sample mean? 



Chapter 6 Section 6.2 

Exercise 6.5 
Using this rule, write down moment estimators for 

the Poisson parameter p, given a random sample X1, X2 , .  . . , X n  from a 
Poisson distribution; 

the geometric parameter p, given a random sample XI ,  X2, . . . , Xn from 
a geometric distribution; 

the normal parameters p and a2, given a random sample XI ,  X2, . . . , X, 
from a normal distribution with unknown mean and variance; 

the exponential parameter X, given a random sample XI ,  X 2 , .  . . , X, from 
an exponential distribution; 

the binomial parameter p, given a random sample X1, X2,  . . . , X, from a 
binomial distribution B(m,p).  (Notice the binomial parameter m here; 
the number n refers to the sample size. Assume m is known.) 

Of course, practical estimates corresponding to these estimators but based 
on data samples, will not usually be equal to the population parameter they 
purport to estimate. For instance, here is a random sample of size 8 generated 
by computer from a Poisson distribution with mean 3: 

The moment estimate for the Poisson mean p is the sample mean E: 

A second random sample of the same size from the same distribution resulted 
in the estimate 

The first overestimates the true (though usually unknown) population par- 
ameter; the second underestimates it. However, we do know that for any 
random sample of size n drawn from a population with mean p and standard 
deviation a, the sample mean has mean and standard deviation given by 

E ( X ) = ~ ,  S D ( X ) = ~ .  

So, samples of size 8 drawn from a Poisson distribution with mean 3 (and, 
therefore, variance 3) have mean and standard deviation 

and the variation observed is not very surprising. 

In the geometric case (Exercise 6.5(b)) you obtained the parameter estimator 

and for the exponential case (Exercise 6.5(d)) the parameter estimator was 
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Each estimator is the reciprocal of the sample mean. Now, we know for 
samples from a population with mean p that the sample mean. X is un- 
biased for p : E(X) = p. Unfortunately, it does not follow from this that See Chapter 4 ,  (4.8). 
the reciprocal of the sample mean has expectation l/p-if this were true, we 
would have the useful and desirable result in the geometric case that E@) 
was 1/p = l / ( l /p)  = p. In fact, the estimator p̂  = 1/X is not unbiased for The exact value of E ( 9  turns out 
p: the expectation E(p^) is only approximately equal to p; however, for large to be very complicated indeed; it 

samples the approximation is good. would not be useful to write it 
down here. 

Similarly, for a random sample of size n from a population where the variation 
is assumed to follow an exponential distribution, it can be shown that the 

A 

moment estimator X = 1/X for X has expectation 

which is not equal to X: the estimator is biased. For large samples (that is, 
large n) the bias becomes negligible, but for small samples it is considerable. 
For example, for samples XI ,  X2 of size 2 from an exponential distribution, 
the moment estimator of X is 

- 1 A = = =  
X X l + X 2 '  

The estimator has expectation 

in this case the bias is very considerable since has expectation twice the 
value of the ,parameter for which it is the estimating formula. 

Exercise 6.6 
(a) Use a computer to simulate 1000 random samples of size 2 from an expo- 

nential distribution with parameter X = 5 (that is, with mean + = 0.2), 
and hence obtain 1000 independent estimates of the (usually unknown) 
parameter X. 

(b) What is the mean of your 1000 estimates? 

Exercise 6.7 
What would be the moment estimator jl for p from a random sample 
XI, X2, . . . , Xn from an exponential distribution with unknown mean p: 
that is, with p.d.f. 

What is the expected value of jl? 

Use a computer to simulate 1000 random samples of size 2 from an expo- 
nential distribution with mean p = 0.2, and hence obtain 1000 indepen- 
dent estimates of the (usually unknown) mean p. 

What is the mean of the 1000 estimates? 
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The following two exercises summarize the work of this section. You will find 
that apart from keying in the individual data points to your calculator, or 
to your computer, very little extra work is required to obtain the estimates 
requested. 

Exercise 6.8 
The ecologist E.C. Pielou was interested in the pattern of healthy and diseased 
trees-the disease that was the subject of her research was 'Armillaria root 
rot'-in a plantation of Douglas firs. Several thin lines of trees through the 
plantation (called 'transects') were examined. The lengths of unbroken runs 
of healthy and diseased trees were recorded. The observations made on a total 
of 109 runs of diseased trees are given in Table 6.5. 

Table 6.5 Run lengths of diseased 
trees in an infected plantation 

Run length 1 2 3 4 5 6  
Number of runs 71 28 5 2 2 1 

Pielou proposed that the geometric distribution might be a good model for 
these data, and showed that this was so. The geometric distribution has 
probability mass function 

where the parameter p is, in this context, unknown. (Here, p is the proportion 
of healthy trees in the plantation.) Figure 6.5(a) shows a bar chart of the data 
in Table 6.5. Figure 6.5(b) gives a sketch of the probability mass function of a 
particular choice of geometric distribution (that is, one with a particular choice 
of p) to confirm that a geometric fit is a reasonable modelling assumption. 

Frequency 

75 -1 

Pielou, E.C. (1963) Runs of 
healthy and diseased trees in 
transects through an infected 
forest. Biometrics, 19, 603-614. 

Figure 6.5 (a) (b) 

Using these data obtain a moment estimate p  ̂ for the geometric parameter p. 
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Exercise 6.9 
Chapter 4, Table 4.7 lists the 62 time intervals (in days) between successive 
earthquakes world-wide. There is a histogram of the data in Figure 4.3 and in 
Figure 4.5 the results of fitting an exponential model to the data are shown. 
(The exponential fit looks very good.) 

A 

(a) Using the data obtain a moment estimate X for the exponential parameter 
X, and quantify any bias there may be in the estimate. What are the units 
of the estimate X? 

(b) Using the data obtain a moment estimate c for the underlying exponential 
mean p, and say whether or not the corresponding estimator is biased. 
What are the units of the estimate c? 

As you can see, the method of moments has many attractive properties as a 
principle on which to base an approach'to estimation. It  is an intuitive and 
straightforward approach to follow. However, there are some occasions (that 
is, particular sampling contexts) where the method fails and others where it 
cannot be applied at  all. 

6.3 The method of maximum likelihood 

The following data set illustrates a situation that would not occur very often 
in practice: the data are artificial and are designed to illustrate a point. 

Example 6.8 An artificial data set-the method of moments 
Three observations were collected on a continuous uniform random variable 
X U(O,8), where the parameter 6 is unknown-the aim of the sample was 
to estimate 6. The data recorded were 

XI = 3.2, x2 = 2.9, x3 = 13.1. 

The sample mean is 2 = i(3.2 + 2.9 + 13.1) = 6.4. The mean of the uniform 
distribution U(0,O) is i8.  Matching the two to obtain a moment estimate for 
6 gives 

- A 

X = 16 
2 

The trouble with this estimate is that it is so obviously wrong-a probability 
model defined to take values only over the range [O, 12.81 would not permit an 
observation as high as 13.1, and yet that was the third value obtained in the 
sample. W 

Example 6.9 Vehicle occupancy 
In this course we shall consider quite a number of statistical models for vari- 
ation: new models are being developed all the time as researchers attempt to 
refine the quality of the fit of models to data. One context where modelling 
is very important for forecasting purposes is in traffic research: data are col- 
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lected on traffic flow (private and public transport, and freight volumes) and 
vehicle occupancy, amongst other things. Tripathi and Gupta (1985) were Tripathi, R.C. and Gupta, R.C. 
interested in fitting a  articular two-~arameter model to data on the numbers (1985) A generalization of the - 
of passengers (including the driver) in private cars. The model they attempted distribution. 

Communications in Statistics 
to fit is a discrete probability distribution defined over the positive integers and Methods), 14, 
1 ,2 , .  . . . (It is a versatile model, fitting even very skewed data moderately 1779-1799. The log-series 
well.) The data Tripathi and Gupta had to work on is given in Table 6.6. It  distribution is quite a sophisticated 
gives the numbers of occupants of 1469 cars (including the driver). discrete probability distribution, 

and details of it (or of 

Table 6.6 Counts of occupants of 1469 private cars 

Count 1 2 3 4 5 2 6  
Frequencv 902 403 106 38 16 4 

generalizations of it) are not 
included here. 

The problem here is that the data are censored: for whatever reason, the 
actual number of occupants of any of the cars that contained six persons or 
more was not precisely recorded: all that is known is that in the sample there 
were four vehicles as full as that (or fuller). 

A consequence of this is that the method of moments cannot be applied to 
estimate the two parameters of the log-series distribution, for the sample mean 
and the sample standard deviation are unknown. 

Example 6.10 Soil organisms 
This is a second example of the same phenomenon: censored data. An area of Jones, P.C.T., Mollison, J.E. and 
soil was divided into 240 regions of equal area (called 'quadrats') and in each Quenouille, M.H. (1948) A 

quadrat the number of colonies of bacteria found was counted. The data are technique for the quantitative 

given in Table 6.7. estimation of soil micro-organisms. 
J. Gen. Microbiology, 2, 54-69. 

Table 6.7 Colonies of bacteria in 240 quadrats 

Count 0 1 2 3 4 5 2 6  
Frequency 11 37 64 55 37 24 12 

Again, for whatever reason, precise records for those quadrats supporting 
more than five colonies were not kept. It is not possible to calculate sample 
moments for this data set. 

In cases where a statistical method fails, it does not necessarily follow that the For the two examples cited of 
method is 'wrong1-we have seen in Section 6.2 that the method of moments ~ermmd data, it ~ o u l d  not be very 
can provide extremely useful estimators for population parameters with very to obtain very good 

estimates of the sample moments, 
good properties. It is simply that the method is not entirely reliable. In other and these could be used in the 
cases, there may be insufficient information to apply it. In fact, it can be estimation procedure for the model 
shown in the case of uniform parameter estimation described in Example 6.8 parameters. 
that the alternative estimator 

(where the random variable X,, is the largest observation in a sample of 
size n) has good variance properties and is unbiased for 0. Furthermore, it is 
an estimator that will not lead to a logical contradiction! Indeed, it makes 
rather good sense: it says 'take the largest observation, and add a bit'. 
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Exercise 6.10 
For the data in Example 6.8, write down the estimate for the unknown 
uniform parameter 8, based on this alternative estimator. 

The point here is that it is possible in the context of any estimation procedure 
to invent sampling scenarios that result in estimates which are nonsensical, 
or which do not permit the estimation procedure to be followed. There is 
one method, the method of maximum likelihood, which has pleasing intuitive 
properties (like the method of moments) but which is also applicable in many 
sampling contexts. 

6.3.1 Discrete probability models 
For ease, let us consider in general a case where data are collected on a discrete 
random variable X .  Suppose that the variation in observations on X is to 
be modelled by a probability distribution indexed by a single unknown par- 
ameter, 8. The random variable X therefore has a probability mass function 
which may be written 

Notice that here it is emphasized that there is a parameter 8 involved in the 
probability mass function, by explicitly including it in the expression p(x; 6 )  
on the right-hand side. 

Suppose that, for the purposes of estimating the value of 8, a random sample 
of size n is collected. 

The probability that X1 takes the value XI ,  say, is p(x1; 8); the probability 
that X2 equals x2 is p(x2; 8); and so on. The random variables X1 and X2 
are independent (by implication of the phrase 'random sample') so it follows 
that the probability that X1 = xl and X2 = 2 2  is 

Indeed, the whole sample arises as a realization of the collection of n mutually 
independent random variables XI ,  X2,  . . . , X,, and hence the probability of 
obtaining the observed collection X I ,  x2,. . . , X, of sample values is 

Now this expression tells us the probability that our actual sample arose, given 
the true, but unknown, value of 8. As we do not know 8, we cannot be sure 
what the true value of (6.2) is. What we can try to do, however, is to work 
out the probability given by (6.2) for various guessed values of 8, and see what 
it turns out to be. Taking this to the limit of considering all possible values 
of 8, we can think of (6.2) as a function of 8. What this function tells us is 
how likely we are to obtain our particular sample for each particular value of 
8. So, it seems reasonable to estimate 8 to be the value that gives maximum 
probability to the sample that actually arose: that is, we should choose to 
maximize (6.2). 

The product (6.2) is called the likelihood of 8 for the sample XI,  22 , .  . . ,X, 
--or, usually, simply the likelihood of 8. An approach that asks 'What value 
of 6 maximizes the chance of observing the random sample that was, in fact, 

244 
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obtained?' is intuitively a very appealing one. This approach is known as the 
method of maximum likelihood. 

The method of maximum likelihood 

If several independent observations X1, X2 , .  . . , X n  are collected on the 
discrete random variable X with probability mass function 

PX(X) = p(x; 81, 

then the product 

p(Xi ,Xz, .  . . ,Xn;e)  = P ( X I ; ~ )  X p(X2;o) X . . . X P(-L;~) 
is known as the likelihood of 8 for the random sample XI, Xa ,  . . . , 
X,. 

The value 5 of 8 at which the likelihood is maximized is known as the 
maximum likelihood estimator for 8. 

The estimator 5 is itself a random variable and has a sampling distribution: 
the mean and variance of this distribution yield useful information about the 
precision of the estimating procedure. 

Here is an example. 

Example 6.11 Estimating the parameter of a geometric distribution 
For ease, let us consider the very small artificial data set first introduced in 
Example 6.7. Here, there were three observations xl = 3, x2 = 4 and 2 3  = 8. 
Let us suppose that these are observations from a geometric distribution 
with unknown parameter 8. The moment estimator for the geometric par- For consistency with the current 

A 

ameter 8 is 8 = 1/X, so for these data the corresponding moment estimate is we 
A refer to the parameter indexing the e = i/a: = 11.5 = 0.2. geometric distribution as 0 
The probability mass function for the geometric distribution (using the more (conventionallyi we refer to 

it as p). 
developed notation) is 

It follows that the likelihood for this particular random sample of size 3 is 
given by 

We now have, for the particular sample observed, a function of the unknown 
parameter 8. For different values of 8, the function will itself take differ- 
ent values: what we need to find is the value of 6 at which the function is 
maximized. 



Elements of Statistics 

We could start by drawing up a table of values as we did when estimating the 
mean of the sample using the method of least squares (see Example 6.7). In 
this case, we would obtain the following. 

These calculations suggest that the likelihood is maximized somewhere be- 
tween 0 = 0 and 0 = 0.4-possibly at 0 = 0.2 itself. A graph of the likelihood 
is shown in Figure 6.6. As you can see from the graph, the likelihood is maxi- o 0.5 1.0 (3 

mized at  the value 0 = 0.2. In this case, the maximum likelihood estimate of Figure 6.6 The likelihood 
6' is the same as the moment estimate. 1 (1 - 8)1283, for o 5 e _< 1 

A note about finding maximum likelihood estimators 

In order to obtain from first principles estimating formulas (that is, esti- 
mators) for model parameters using the method of maximum likelihood, it is 
(generally speaking) essential to have a working knowledge of the algebraic 
technique of differentiation. 

For instance, suppose a random sample XI ,  x2,. . . ,X, of size n was collected 
from a Poisson population with unknown mean 0. Then the likelihood of 0 
for the sample is given by 

- (e-0 X e-6' X . . . X e-O) X (0"' X Ox2 X . . X OXn) 
- 

x1!x2!. . . X,! 

= constant X eneOCxi. 

In this case the constant term does not involve the parameter 0, and so the 
value of 0 that maximizes the likelihood is simply the value of 0 that maximizes 
the expression 

Here, the algebra of differentiation can be employed to deduce that the maxi- 
A 

mum likelihood estimate 0 of 0, for a Poisson sample XI, 22,. . . , X, is, in fact, 
the sample mean 

In general, this is an observation on a random variable: the maximum likeli- 
hood estimator of a Poisson mean, based on a random sample XI ,  X2, . . . , X,, 
is the sample mean X. 
(So, in this case, the maximum likelihood estimator is the same as the mini- 
mum least squares estimator and the moment estimator, and they all appeal 
to common sense.) 
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However, when obtaining maximum likelihood estimates (that is, numbers 
based on a sample of data, as in Example 6.11) differentiation is not required, 
for there is an armoury of numerical, computational or graphical approaches 
available. In this course, maximum likelihood estimators for the parameters 
of the more common probability models will be stated as standard results 
(although you should understand the principle underlying the way in which 
they are obtained) and it will be assumed in the data-oriented exercises in the 
rest of the chapter that you have software capable of the numerical procedures 
necessary to obtain maximum likelihood estimates. 

Here is another example. 

Example 6.3 continued 
In the example abou,t adenomas in mice, there was one group of 54 mice, six 
of which had adenomas. Assuming an underlying proportion 8 (unknown) of 
afflicted mice in the wider population, and independence within the group, 
the probability of this event is 

This is the likelihood of 8 for the data observed; and it is maximized at 
A 

8 = 6 = 1 .  . 
54 9 

The following example is of a rather different type from the previous two, in 
that the probability model being applied (and which is indexed by a single 
unknown parameter) is not one of the standard families. However, the prin- 
ciple is exactly the same: we seek to find the value of the parameter that 
maximizes the likelihood for the sample that was actually observed. 

Example 6.12 The leaves of Indian creeper plants 
In Chapter S, Example 3.12 a genetics experiment was referred to in which 
the leaf characteristics of Indian creeper plants Pharbitis nil were observed. 
Altogether four different combinations of leaf-type were possible. According 
to one theory, the different combinations should have been observed according 
to the relative frequencies 

9 3 3 . l .  
~ : i i ? : i i ? . l 6 '  

in one experiment the observed frequencies were 

and on the basis of these data that theory was rejected. In Chapter 9 you will read about a 
procedure for comparing observed 

An alternative theory allows for the phenomenon known as genetic linkage frequencies with those expected if 
and assumes that the observations might have arisen from a probability dis- some theory were true. 
tribution indexed by a parameter 8 as-follows: 

So for the Indian .creeper data we know that leaf characteristics assigned a 
probability of & + 8 were observed 187 times; characteristics assigned a prob- 
ability of & - 8 were observed a total of 35 + 37 = 72 times; and character- 
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istics assigned a probability of h + 0 were observed 31 times. The likelihood 
of 0 for the sample observed is therefore given by writing down the probability 
of this conjunction of events: it is 

Again, if you are familiar with the technique of differentiation you will be 
able to locate the value 5 of 0 at which the likelihood is maximized. Without 
it, graphical or other computational methods can be implemented-it turns 
out that the likelihood is maximized at 0 = 0.0584. So the new estimated 
probabilities for the four leaf characteristics, on the basis of this experiment, 
are 

You can see that this model would appear to provide a much better fit to the 
observed data. H 

So far the three estimation procedures we have explored necessarily involve 
some quite high-level algebraic (or, a t  the very least, numerical) skills. Most of 
the time, however, the resulting estimators have an intuitive basis supported 
by common sense. 

In Section 6.4 you will be encouraged to explore the facilities available on 
your computer for the calculation of maximum likelihood estimates when you 
do not always have an estimating formula. Table 6.8 shows a list of standard 
results for maximum likelihood estimators for the parameters of the more 
well-known discrete probability models. ~ h e s e  estimators assume a random 
sample XI, X2, . . . ,X, with sample mean X (and, for the uniform distri- 

bution, sample maximum X,,,). 

Table 6.8 Standard results for discrete probability models: 
maximum likelihood estimators 

Probability distribution Estimator Properties 
h - Poisson(p) p = X E(;) = P 

Bernoulli(p) p^= X = P 

B(m, P) p  ̂= X/m = P 
G(P) p^= l /X p  ̂ is biased 
Uniform(l,2,. . . , m) G = Xmax is biased 

In both cases where the estimator is biased (p^ for the geometric distribution 
G(p) ,  and 6 for the uniform model) the exact value of the mean of the esti- 
mator is known; but it would not be particularly useful or helpful to write it 
down. 

The table raises the following question: if different estimating procedures re- 
sult in the same estimator, and if the estimator is (by and large) the common- 
sense estimator that one might have guessed without any supporting theory 
at all, what is the point of a formal theoretical development? 

The answer is that maximum likelihood estimators (as distinct from other es- 
timators based on different procedures) have particular statistical properties. 
If these estimators happen to be the same as those obtained by other means 
(such as the method of moments; or just guessing) then so much the better. 
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But it is only for maximum likelihood estimators that these properties have 
a sound theoretical basis. A statement of these important properties follows 
(their derivation is not important here). 

6.3.2 Properties of maximum likelihood estimators 
With one exception (the estimator of the normal variance, which you found 
in Exercise 6.5 and to which we shall turn again at the start of Section 6.5), 
every estimator obtained in Exercise 6.5 by the method of moments is the 
same as that which would have been obtained using the method of maximum 
likelihood. Statistical theory (quite difficult theory, mathematically, and we 
shall not go into the details of it) tells us that maximum likelihood estimators 
possess 'good' properties, including the following. 

(a) Maximum likelihood estimators are often unbiased (i.e. E(@ = 0); if not, 
then they are asymptotically unbiased. That is, 

E($) + 6 as n + m ,  Read the symbol '4' as 'tends to'. 

where n is the sample size. From this we may deduce that maximum 
likelihood estimators are approximately unbiased for large sample sizes. 

(b) Maximum likelihood estimators are consistent. Roughly speaking (things 
get rather technical here) this means that their variance V@) tends to 0 
with increasing sample size: 

So maximum likelihood estimators (that is, estimators obtained by applying 
the method of maximum likelihood) possess the sort of useful properties we 
identified in Section 6.1: for instance, if they are not unbiased for B, (and they 
often are) then for large samples they are at least approximately unbiased. 

(It is possible to state useful conclusions not just about the mean and vari- 
ance of maximum likelihood estimators, but their sampling distribution as 
well. Maximum likelihood estimators are asymptotically normally distributed. 
A reasonable assumption is that, for large samples, they are approximately 
normally distributed. However, this kind of result requires a certain amount 
of supporting theory before it can be confidently applied, and it will not be 
pursued further in this course.) 

6.4 More about maximum likelihood 
estimation 

For a large part of this section, you will be encouraged to obtain maximum 
likelihood estimates for particular sampling scenarios using your computer. 
However, we have so far restricted attention to discrete probability models; 
before embarking on the exercises, first it is necessary to develop the maximum 
likelihood approach for continuous random variables. 
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6.4.1 Continuous probability models 
In the following example the Pareto probability model is introduced. 

Example 6.13 Annual wages (USA) 
The data in Table 6.9 give the annual wages (in multiples of 100 US dollars) of Dyer, D. (1981) Structural 
a random sample of 30 production line workers in a large American industrial probability bounds for the strong 

firm. Pareto law. Canadian Journal of 
Statistics, 9, p. 71. 

Table 6.9 Annual wages (hundreds of US dollars) 

Frequency 

108 105 158 104 119 111 101 157 112 115 6 
5 
4 A histogram of these data is shown in Figure 6.7. A fairly standard probability 

model for variation in income is the Pareto probability distribution. This 
is a two-parameter continuous probability distribution with probability den- 1 

sity function given by o 
100 110 120 130 140 150 160 

Annual wage 

Fioure 6.7 Annual wage data 
where the two parameters are 0 > 1 and K > 0. The parameter K represents . (hindreds of US dollars)- 
some minimum value that the random variable X can take, and in any given 
context the value of K is usually known (hence the range X 2 K). The par- 
ameter 8 is not usually known, and needs to be estimated from a sample of 
data. The densities shown in Figure 6.8 all have K set equal to 1, and show 
Pareto densities for 0 = 2 , 3  and 10. Notice that the smaller the value of 8, 
the more dispersed the distribution. 

Figure 6.8 Three different Pareto densities 

The cumulative distribution function for the Pareto random variable is ob- 
tained using integration: 

It  is represented by the area of the shaded region shown in Figure 6.9. The 
mean of the Pareto distribution is given by 

This description may be summarized as follows. 

Figure 6.9 The probability 
1 - ( K ~ X ) '  

Again, if you are unfamiliar with 
integration, do not worry: these 
results for F(. )  and p are standard, 
and will not generally require 
proof. 
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The Pareto distribution 

The continuous random variable X with probability density function 

where 8 > 1 and K > 0, is said to follow a Pareto distribution with 
parameters K and 8; this may be written 

The c.d.f. of X is given by 

and the mean of X is 

An appropriate model for the variation in the US annual wage data is the However, notice the peak in the 
Pareto probability distribution Pareto(100,O) where K = 100 (i.e. US$10 000) histogram for values above 150. We 
is an assumed minimum annual wage. That leaves 8 as the single parameter return to this data set in 

Chapter 9. 
requiring estimation. H 

Exercise 6.1 1 m 

(a) Write down the mean of the Pareto probability distribution with par- 
ameters K = 100, 8 unknown. 

(b) Use the method of moments and the data of Table 6.9 to estimate the 
parameter 8 for an assumed Pareto model. 

You should have found for the Pareto model that a moment estimator for the 
parameter 8 when K is known is 

What can we say about properties of this estimator? Since these depend - - 
on the sampling distribution of the random variable 5 = X / ( X  - K), the 
answer is 'rather little'. At a glance, it is not even obvious whether or not the 
estimator is unbiased. 

One possible option is to perform a simulation exercise: use the computer to 
generate a very large number of random samples from known Pareto densities, 
and try to deduce what we can from the observed sampling variation in 5. 
An alternative is to obtain the maximum likelihood estimator of 8. We know 
that this estimator is unbiased, or approximately unbiased for large samples, 
and that it is consistent. If it turns out to be the same as our moment 
estimator, then we can deduce those properties for the moment estimator 
too. 
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We have not so far tried to determine the likelihood of the unknown parameter 
0 for a random sample xl,  22,. . . ,X, from a continuous distribution. In the 
discrete case we were able to say 

= P(XI ; ~ ) P ( x z ;  8) . . . ~ ( x n ;  8) Remember the notation p(x ;  8) for 
the probability mass function, 

and work from there. which emphasizes that it also 
features the unknown parameter 8. From a simple limiting argument, it turns out that the likelihood of an un- 

known parameter 8 for a random sample x l ,  x2, . . . , X, from a continuous 
distribution may be written as the product 

where the function f(.) is the probability density function of the random 
variable X ,  and the notation again expresses the dependence of the p.d.f. on 
the parameter 8. The method of maximum likelihood involves finding the 
value of 8 that maximizes this product. 

Example 6.14 Estimating the exponential parameter 
For a random sample xl ,  x2, . . . , X, from an exponential distribution with 
unknown parameter 8, the corresponding probability density function is 

f (X; 8) = ~ e - ~ " ,  X > 0, 

and so the likelihood of 8 for the sample is 

Viewed as a function of 8, the likelihood attains a maximum at  the value The point 8 at which the likelihood 

n 1 attains its maximum may be found 
0 = -  - - - using differentiation. It is not 

E x i  5' important that you should be able 

A to confirm this result yourself. 
In other words, the maximum likelihood estimator 13 of the exponential par- 
ameter 8 based on a random sample, is the reciprocal of the sample mean: 

This is the same as the moment estimator. H 

Example 6.13 continued 
For a random sample XI, x2, . . . , X, from a Pareto distribution, the likelihood 
of 8 is given by 



Chapter 6 Section 6.4 

This is maximized at  the point 

n 
8 =  The point B at which the likelihood c := 1 log (xi / K )  ' attains its maximum may be found 

using differentiation. 
So the maximum likelihood estimator of 6 for a random sample of size n from 
a Pareto(K, 6 )  distribution, assuming K is known, is 

This is quite different from the moment estimator 
- 

A X 
BMM = =-- 

X - K  

Notice the convenient use of 
subscripts to distinguish the two 

h 

estimators: 0h .1~  for the m_aximum 
likelihood estimator, and O M M  for 
that obtained using the method of 
moments. 

that we found earlier. 

So unfortunately, in this case, we are no nearer deducing sampling properties 
of the moment estimator. However, with a computer, the maximum likelihood 
estimate of 8  in any given sampling context is not more difficult to obtain 
than the moment estimator, and is the one to use in order to find numerical 
estimates, since its properties are known. 

Exercise 6.12 
Compare the moment estimate gMM and the maximum likelihood estimate 
A 

~ M L  for the US annual wage data in Table 6.9. 

Standard results for continuous probability models 

Table 6.10 lists some standard results for maximum likelihood estimators of 
the parameters of the more common continuous probability models. 

Table 6.10 Standard results for continuous probability 
models: maximum likelihood estimators 

Probability distribution Estimator Properties 
A A 

M(X) X = 1/X X is biased 
N(P, u2) 

h - 
p = X 

A 

E ( 2  = P 
Uniform(0,B) 0 = X,,, g is biased 

A n A 

Pareto(K, B) 8 = B is biased 
C log(Xi /K) 

It is possible to prove that for the 
Pareto distribution the maximum 
likelihood estimator is biased: in 
fact, ~(11;) = 110. 

6.4.2 Computer exercises 
Generally speaking, in a problem involving maximum likelihood estimation, 
you should use standard results whenever they can be applied. Otherwise, you 
will need to explore the facilities available on your computer. Many statisti- 
cal packages include as standard functions probability mass functions, density 
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functions and cumulative distribution functions. To identify maximum likeli- 
hood estimates, you might need to use your machine's plotting facilities; but 
it may be equipped with procedures for identifying maximum and minimum 
points on curves. Finally, a small amount of programming might be necessary. 

All the exercises are about finding estimates (numbers based on samples of 
data) rather than deriving estimators (formulas), which requires different skills 
not developed in this course. 

The first exercise is about estimating the underlying proportion in a sampled 
population, which possesses some attribute of interest. 

Exercise 6.13 
It is algebraically quite involved to prove that in independent experiments to 
estimate the binomial parameter p, where the j th  experiment resulted in r j  
successes from mj trials ( j  = 1,2, . . . , n), the maximum likelihood estimate of 
p is given by 

but this intuitive result (where p is estimated by the total number of successes 
divided by the total number of trials performed) is true and you can take it 
on trust. 

(a) For the 23 different groups of mice referred to in Example 6.3, the results 
for all the groups were as follows. 

Use these data to calculate a maximum likelihood estimate for the under- 
lying proportion of mice afflicted with alveolar-bronchiolar adenomas. - 

(b) In a famous experiment (though it took place a long time ago) the number The data are cited in'Haldane, 
of normal Drosophila melanogaster and the number of vestigial Drosophila JJ3.S. (1955) 7% rapid calculation 
rnelanogaster were counted in each of eleven bottles. The numbers (nor- of x2 a test Of homogeneity from 

a 2 X n table. Biometrika, 42, mal : vestigial) observed were as follows. 519-520. 

Use these data to estimate the proportion of normal Drosophila in the 
population from which the bottles were drawn. 

Exercise 6.14 is about the results of a genetics experiment. 

Exercise 6.14 

In 1918, T. Bregger crossed a pure-breeding variety of maize, having coloured 
starchy seeds, with another, having colourless waxy seeds. All the resulting 
first-generation seeds were coloured and starchy. Plants grown from these 
seeds were crossed with colourless waxy pure-breeders. The resulting seeds 
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were counted. There were 147 coloured starchy seeds (CS), 65 coloured waxy 
seeds (CW), 58 colourless starchy seeds (NS) and 133 colourless waxy seeds 
(NW). According to genetic theory, the seeds should have been produced in 
the ratios 

CS : CW : NS : NW = $(l - r) : i r :  i r  : $(l - r) ,  

where the number r is called the recombinant fraction. 

Find the maximum likelihood estimate F for these data. 

Exercises 6.15 and 6.16 are about censored data. 

Exercise 6.15 
Although there are probability models available that would provide a better fit 
to the vehicle occupancy data of Example 6.9 than the geometric distribution, 
the geometric model is not altogether valueless. Find the maximum likelihood 
estimate p̂  for p, assuming a geometric fit. 

Hint If X is G(p), then 

Exercise 6.16 
Assume that the Poisson distribution provides a useful model for the soil or- 
ganism data of Example 6.10 (that is, that the Poisson distribution provides a 
good model'for the variation observed in the numbers of colonies per quadrat). 
Obtain the maximum likelihood estimate of the Poisson parameter p. 

Note Remember that for the Poisson distribution there is no convenient 
formula for the tail probability P ( X  2 X). You will only be able to answer 
this question if you are very competent at algebra, or if your computer knows 
about Poisson tail probabilities. 

Exercises 6.17 and 6.18 only require you to use the tables of standard results 
for maximum likelihood estimators, Tables 6.8 and 6.10. 

Exercise 6.17 
In Chapter 4, Table 4.10 data are given for 200 waiting times between con- 
secutive nerve pulses. Use these data to estimate the pulse rate (per second). 

Exercise 6.18 

Bregger, T. (1918) Linkage in 
maize: the C-aleurone factor and 
wax endosperm. American 
Naturalist, 52, 57-61. 

Assuming a normal model for the variation in height, obtain a maximum 
likelihood estimate for the mean height of the population of women from 
which the sample in Chapter 2, Table 2.15 was drawn. 
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Since discovering in Exercise 6.5(c) the moment estimator for the variance 
parameter a2 of a normal distribution, nothing niore has been said about 
this. The moment estimator is 

1 s2 = - C(xi - XI2, Recall that we write the estimator 
n-l as S', using an upper-case S,  to 

based on a random sample XI ,  X2, . . . , X, from a normal distribution with emphasize that the estimator is a 
unknown mean p and unknown variance a2. random variable. 

(A certain amount of statistical theory exists about how to estimate the par- 
ameter a2 when the value of p is known. However, the sampling context in 
which one normal parameter is known but the other is not is very rare, and in 
this course only the case where neither parameter is known will be described.) 

So far, nothing has been said about the sampling distribution of the estimator 
S2.  We do not even know whether the estimator is unbiased, and we know 
nothing of its sampling variation. Nor do we know the maximum likelihood 
estimator of the variance of a normal distribution. 

6.5 Estimating a normal variance 

The main points of this section are illustrated using computer simulation, 
so you should try to find the time to do the exercises as you work through 
it. First, we shall investigate the properties of the sample variance S2 for 
samples from a normal population. Then a new continuous distribution is 
introduced and explored. This probability distribution enables us to complete 
our description of the sampling distribution of S2.  

6.5.1 The sample variance for a normal distribution 
This subsection begins with a statement of the maximum likelihood estimator 
for the normal variance. This result may be deduced algebraically, but here 
it is presented without proof. 

The maximum likelihood estimator for the normal variance a2, based on a 
random sample XI, X2, . . . , X,, is given by 

You can see that there is a small difference here between the maximum likeli- 
hood estimator ii2 and the moment estimator S2.  (In fact, for large samples, 
there is very little to choose between the two estimators.) Each estimator has 
different properties (and hence the provision on many statistical calculators of 
two different buttons for calculating the sample standard deviation according 
to two different definitions). The main distinction, as we shall see, is 'that 
the moment estimator S2 is unbiased for the normal variance; the maximum 
likelihood estimator possesses a small amount of bias. In some elementary 
approaches to statistics, the estimator S2 is not mentioned at all. 

The exercises in this section generally require the use of a computer. 
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Exercise 6.19 
(a) Obtain 3 observations X I ,  x2,x3 on the random variable X N(100,25), 

and calculate the sample variance s2. 

Your computed value of s2 in part (a) might or might not have provided a 
useful estimate for the normal variance, known in this case to be 25. On 
the basis of one observation, it is not very sensible to try to comment on the 
usefulness of S2 as an estimator of u2. 

(b) Now obtain 100 random samples all of size three from the normal dis- 
tribution N(100,25), and for each of the samples calculate the sample 
variance s2. This means that you now have 100 observations on the ran- 
dom variable S2 .  

(i) Calculate the mean of your sample of 100. 

(ii) Plot a histogram of your sample of 100. 

(iii) Find the variance of your sample. 

You should have found in your experiment in Exercise 6.19 that the distri- 
bution of the estimator S2 is highly skewed and that there was considerable 
variation in the different values of s2 yielded by your different samples. Never- 
theless, the mean of your sample of 100 should not have been too far from 25, 
the value of u2 for which S2 is our suggested estimator. 

It would be interesting to see whether larger samples lead to a more accurate 
estimation procedure. Try the next exercise. 

Exercise 6.20 
Obtain 100 random samples of size 10 from the normal distribution N(100,25), 
and for each of the samples calculate the sample variance s2. This means that 
you now have 100 observations on the random variable S2.  

(a) Calculate the mean of your sample of 100. 

(b) Plot a histogram of your sample of 100. 

(c) Calculate the variance of your sample of 100. 

In Exercise 6.20 you should have noticed that in a vef-y important sense S2 
has become a better estimator as a consequence of increasing from three to 
ten the size of the sample drawn. For the estimator has become considerably 
less dispersed around the central value of about 25. 

Did you also notice from your histogram that the distribution of S2 appears 
to be very much less skewed than it was before? 

It appears as though the sample variance S2 as an estimator of the normal 
variance u2 possesses two useful properties. First, the estimator may be un- 
biased; and second, it has a variance that is reduced if larger samples are 
collected. In fact, this is true: the estimator is unbiased and consistent. One 
can go further and state the distribution of the sample variance S2, from 
which it is possible to quantify its usefulness as an estimator for u2. 
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Before doing so, it is necessary to introduce another continuous probability 
distribution, the chi-squared distribution. Its properties will now be ex- The word chi is pronounced 'kye', 
plored. referring to a Greek letter to be 

introduced shortly. 

6.5.2 The chi-squared distribution 
Next, we investigate what happens when observations on the standard normal 
random variable Z are squared, and added. 

Exercise 6.21 
If Z is N(0, l), use your computer to obtain the probabilities 

(i) P ( - l  5 Z 5 l); 

(ii) P(-JZ 5 Z 5 JZ); 
(iii) P(-& 5 Z 5 a); 
(iv) P(-2 5 Z 5 2). 

Now define the random variable 

W = z 2 .  

That is, to obtain an observation on the random variable W, first obtain 
an observation on 2,- and then square it. Since it is the result of a squaring 
operation, W ,cannot be negative, whatever the sign of Z. Use your 
answers to part (a) to write down the probabilities 

(i) P ( W  5 1); 
(ii) P ( W  5 2); 

(iii) P ( W  5 3); 

(iv) P ( W  5 4). 

Now use your computer to obtain 1000 independent observations on Z,  
and then square them, so that you have 1000 independent observations 
on W. Find the proportion of 

(i) observations less than 1; 

(ii) observations less than 2;- 

(iii) observations less than 3; 

(iv) observations less than 4. 

Obtain a histogram of your sample of observations. 

The random variable W has mean and variance 

E(W)  = pw, V(W) = &. 
The values of these two moments are at this stage unknown, although 
they could be deduced algebraically. Instead, use your sample of 1000 
observations on W to obtain moment estimates for pw and U&. 

Your solution to parts (c), (d) and (e) of Exercise 6.21 will have been different 
to that obtained in the printed solutions, because your computer will have 
drawn a different random sample of observations on Z initially. ~owever ,  you 
should have noticed that your histogram is very skewed; and you may have 
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obtained summary sample moments d not too far from 1, and sh not too 
far from 2. As you saw, when the exercise was run to obtain a solution for 
printing, the summary statistics 

W = Fw = 1.032, S& = 2.203 

were obtained. 

Actually, the theoretical mean pw is quite easy to obtain. We know W is 
defined to be Z2,  SO 

pw = E(W)  = E(Z2)  . 

Since, by definition, V(Z) = ~ ( 2 ' )  - (E(Z))', it follows that 

pw = V(Z) + (~ (2 ) ) '  = U; + p;. 
But Z is N(0, l), so pz = 0 and a% = 1; therefore 

It  is not quite so easy to obtain the variance ak of W and you are spared the 
details. In fact, 

Exercise 6.22 
Write down the mean and variance of the random ,variable 

w=z;+z;+-+z;, 
where Zi, i = 1 , 2 , .  . . , r ,  are independent observations on the standard normal 
variate Z.  

By the theory of sums of independent random variables, the random variable 
W = 2; + 2; + . . . + 2; has mean r and variance 2r. 

The chi-squared distribution 

The continuous random variable W given by 

obtained as the sum of r independent squared observations on the stan- 
dard normal variate Z,  is said to follow a chi-squared distribution with 
parameter r, written 

S W N X2(r) .  

The mean of W is pw = r and the variance of W is g& = 2r; and W is 
strictly positive. For historical reasons, the parameter r is usually given 
the label 'degrees of freedom'. So W is said to follow a chi-squared 
distribution with r degrees of freedom. 

You will notice that the p.d.f. of the random variable W N X2(r) has not been 
given; this is because it is not, for present purposes, very useful. For instance, 

The Greek letter X is pronounced 
'kye'. 
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the density does not integrate tidily to give a very convenient formula for cal- 
culating probabilities of the form Fw(w) = P ( W  5 W).  These probabilities 
generally have to be deduced from tables, or need to be computed. (The 
same was true for tail probabilities for the standard normal variate 2.) In 
Figure 6.10 examples of chi-squared densities are shown for several degrees 

of freedom. Notice that for small values of the parameter the distribution is 
very skewed; for larger values the distribution looks quite different, appear- 
ing almost bell-shaped. This makes sense: for large values of r ,  W may be 
regarded as the sum of a large number of independent identically distributed 
random variables, and so the central limit theorem is playing its part in the 
shape of the distribution of the sum. 

0 5 '  10 15 W 

Figure 6.10 Chi-squared densities 

0 5 8 10 15 W 
Most statistical computer programs contain the appropriate commands to 
calculate chi-squared probabilities. For instance, if W N x2(5), then the area Figure 6.1 1 P(W 2 8) when 
of the region shown in Figure 6.11 gives t p  probability W x2(5) 

Exercise 6.23 - 
Use your computer to calculate the following probabilities. 

(a) P ( W  2 4.8) when W N x2(6) 

(b) P ( W  2 12.5) when W N x2(8) 

(c) P ( W  5 10.0) when W N x2(19) 

(d) P ( W  2 30.0) when W x2(19) f(u1)  

0.10 0 . 1 5 h  , m 

Similarly, you should be able to obtain quantiles for chi-squared densities 0.05 
4 1 

from your computer. For instance, if W N x2(5) then W has lower and upper 
quartiles, and median given by o 2.67 6.63 15 W 

4.35 
90.25 = 2.67, q0.50 = 4.35, 90.75 = 6.63. 

Figure 6.1 B Quartiles of the 
These points are shown in Figure 6.12. X2 (5) distribution 
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Exercise 6.24 
Use your computer to calculate the following quantiles. 

(a) 90.2 when W X'@) 

(b) 90.95 when W W ~ ' ( 8 )  

(C) 90.1 when W x2(19) 

(d) 90.5 when W ~ ' ( 1 9 )  

(e) 90.99 when W x2(19) 

Illustrate your findings in (c) to (e) in a sketch. 

You saw in Chapter 5 that when calculating tail probabilities for a normal 
random variable with mean p and variance u2, it is possible to standardize the 
problem and obtain an answer by reference to tables of the standard normal 
distribution function a(.). For chi-squared variates it is not possible to do 
this, for there is no simple relationship between X2(n), say, and x2(1). You 
saw in Figure 6.10 that different chi-squared densities possess quite different 
shapes. 

Many pages of tables would therefore be needed to print values of the dis- 
tribution function Fw(w) for different values of W and for different degrees 
of freedom! In general, the need for them is not sufficient to warrant the 
publishing effort. 

However, it is quite easy to print selected quantiles of the chi-squared distri- 
bution, and this is done in Table A6. Different rows of the table correspond 
to different values of the degrees of freedom, r; different columns correspond 
to different probabilities, a; the entry'in the body of the table gives the 
a-quantile, q,, for X2( r ) .  

Exercise 6.25 
Use the printed table to write down the following quantiles. 

(a) 90.05 when W ~ ' ( 2 3 )  

(b) 90.10 when W x2(9) 

(c) 90.50 when W W x2 (12) 

(d) 90.90 when W W ~ ' ( 1 7 )  

(e) 90.95 when W W x2(1) 

That concludes our theoretical introduction to the chi-squared distribution. 
We now return to the estimator S2 of a normal variance u2, where the reason 
for its introduction is finally explained. The result given in Exercise 6.26 for 
the sampling distribution of S2 is not proved, but it is one with which you 
should become familiar. 
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Exercise 6.26 
Using only the information that the sample variance S2 in samples of size n 
from a normal distribution with variance u2, has the sampling distribution 

establish the two results 

2~~ 
E ( s ~ )  = c2, v(s2) = - 

n - l '  

These results will be useful in the next chapter. There, we will look at a 
procedure that enables us to produce not just a point estimate for an unknown 
parameter based on a random sample, but a 'plausible range' of values for it. 
The main results for the sample variance S2 from a normal distribution are 
summarized in the following box. 

The sample variance S2 obtained for a random sample of size n from 
a normal distribution with unknown mean p and unknown variance u2 
has mean 

E (s2) = u2 

and variance 

The distribution of S2 is given by 

Summary 

1. There are many ways of obtaining estimating formulas (that is, esti- 
mators) for unknown model parameters; when these formulas are applied 
in a data context, the resulting number provides an estimate for the 
unknown parameter. The quality of different estimates can be assessed by 
discovering properties of the sampling distribution of the corresponding 
estimator. 

2. Not all estimating procedures are applicable in all data contexts, and 
not all estimating procedures are guaranteed always to give sensible esti- 
mates. Most require numerical or algebraic computations of a high order. 
Two of the most important methods are the method of moments and the 
method of maximum likelihood. In a given context the two methods 
often lead to the same estimator (though not always); maximum likeli- 
hood estimators are known to possess useful properties. 
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3, If X is a discrete random variable with probability mass function p(x; O),  
where 0 is an unknown parameter, then the likelihood of 0 for the random 
sample XI ,  X2, . . . , X, is given by the product 

If X is a continuous random variable with probability density function 
f (X; 6), where 6 is an unknown parameter, then the likelihood of 6 for 
the random sample X1, X2,  . . . , X, is given by the product 

4. A maximum likelihood estimate 5 of 6 may be obtained in either case by 
finding the value of 6 which maximizes the likelihood of 6. This estimate 
will be an observation on the corresponding estimator, a random variable. 
Maximum likelihood estimators possess two useful properties. 

(i) The maximum likelihood estimator 5 for 6 is asymptotically un- 
biased: 

E(@ 4 6 as n 4 m, 

where n is the sample size. 

(ii) The maximum likelihood estimator for 6 is consistent: 

V($) 4 O as n + m. 

5. The continuous random variable W = 2; + 2; + . . . + Z:, the sum of 
r independent squared observations on the standard normal variate 2, 
is said to follow a chi-squared distribution with r degrees of freedom. 
The random variable W has mean r and variance 2r; the distribution is 
written W - X2(r). 

6. The moment estimator S2 for the variance u2 of a normal distribution, 
based on a sample of size n, is unbiased with variance 2u4/(n - 1). The 
sampling distribution of the estimator S2 is given by 

7. The maximum likelihood estimator ii2 for the variance of a normal dis- 
tribution based on a sample of size n is given by 
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Estimation with confidence 

In this chapter the idea of using samples of data to provide estimates for unknown 
model parameter values is further developed. However, instead of stating a single 
number (a point estimate), the aim is to provide a range of plausible values for the 
parameters. 

In this chapter the ideas of estimation which were introduced and described in 
Chapter 6 are extended. In Chapter 6, Example 6.2 an experiment in which 
103 samples of water were collected from the same source was described. The 
number of specimens of the leech Helobdella in each sample was counted. A 
Poisson model was suggested for the variation observed in the counts. The 
data collected during the experiment yielded an estimate (the sample mean) 
Z = jZ = 0.816 for the Poisson parameter p, that is, for the underlying average 
number of leeches per water sample. 

It was pointed out that had a second experiment been performed using the 
same water source, then the numbers of leeches collected would probably 
have been different, and the sample mean used to estimate the underlying 
mean p would probably have been different. It has already been remarked 
several times that in a random sample the observed sample mean Z is just one 
observation on a random variable F. Quite conceivably, in this experiment, 
- 
X might have been as low as 0.7 or even lower; it might have been as high as 
1, or perhaps 2, or 3. In the initial experiment (the one actually performed), 
there were a lot of OS observed (samples containing no leeches at  all), quite a 
few 1s and 2s, and just a few 3s and 4s. None of the 103 samples contained 
more than eight leeches. It would therefore be very surprising to find that the 
underlying mean incidence of leeches was as high as 6, say, and it is almost 
incredible (though, of course, it is not impossible) that the underlying mean 
could be as high as 8, or higher still. 

This chapter is about using the results of statistical experiments to obtain 
some idea of a plausible range of values for some unknown population charac- 
teristic (maybe an average, or a rate, or a proportion). Assuming a reasonable 
statistical model, this characteristic will always be expressible in terms of the 
parameters of the model. The minimum and maximum values of this range 
are called confidence limits, and the range of plausible or 'believable' values 
is called a confidence interval. 

Section 7.1 of the chapter deals with the situation where only a single obser- 
vation has been collected in order to shed light on the area of investigation: 
our random sample is of size one. You will see how confidence intervals for the 
indexing parameters of some of the standard probability models with which 
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you are already familiar are calculated. You already know from Chapter 4 See (4.10). 
how important it is in a sampling context, generally speaking, to collect as 
much data as possible, and in this chapter the influence of sample size on 
the usefulness of the conclusions drawn will become very apparent. However, 
circumstances do occur where a sample is necessarily small, and this approach 
(drawing a sample of size one) provides an easy introduction to the topic. 

In Section 7.2 you will see the consequences of increasing the sample size. 
It is very useful to be able to say with some high degree of confidence that 
the value of some unknown parameter is between certain limits. It is more 
useful still if those limits are not very far apart. Specifically, the confidence 
limits obtained through a sampling experiment have a tendency to move closer 
and closer together as the sample size increases: the resulting confidence 
interval becomes narrower and more 'precise'. All the calculations in this 
section require a computer. (The problem is simple enough to state, but the 
arithmetic involved in calculating confidence limits can become surprisingly 
difficult .) 

In Sections 7.1 and 7.2 we look at confidence intervals for descriptive par- 
ameters such as a Poisson mean p, a Bernoulli probability p, an exponen- 
tial mean, and so on. Sections 7.3 and 7.4 are based on normal theory. In 
Section 7.3, it is assumed that interest centres around a population where 
the variation observed may be adequately modelled by a normal distribution. 
We have seen many contexts where this is a reasonable assumption. Methods 
for obtaining confidence intervals for the two parameters of the normal dis- 
tribution, the mean p and the standard deviation a, are developed. You will 
see that in order to write down confidence limits for p it becomes necess- 
ary to make use of a statistical distribution introduced for the first time in 
this chapter. This is Student's t-distribution, named after W. S. Gosset who See Chapter 2, p. 60. 
published under the pseudonym 'Student' at the turn of the century. In this 
case the calculations are fairly simple and only require reference to statistical 
tables and a calculator. 

In Section 7.4, it is assumed that samples are large enough for the central limit 
theorem to be used. This is very commonly the case in practice, and again cal- 
culations are based on the normal distribution. Even when (as in Section 7.2) 
the underlying model is Poisson or binomial, for instance, approximate confi- 
dence limits can be calculated using normal tables and a calculator. 

In the first four sections of the chapter, it is always assumed that an adequate 
underlying statistical model (normal, Poisson, binomial, and so on) for the 
variation observed in a particular context has been identified. Section 7.5 
discusses what to do when all you have is a long list of numbers, and not the 
remotest idea about what might constitute a good model for the underlying 
variation in the population from which they have been drawn. You will see 
that, provided your sample is large enough, normal distribution theory can 
be used to find approximate confidence limits for the underlying population 
mean. 



Chapter 7 Section 7.1 

7.1 Samples of size one 

It is not at all common for statistical inferences to be based on just one 
datum (the singular form of data, 'the thing given'). More often some sort 
of replication in a statistical experiment is possible, at  not too great a cost, 
and with a consequent enhancement in the precision of the conclusions that 
may be drawn. However, it will be useful to begin this description of what is 
involved in setting up a confidence interval by taking a moderately simplified 
approach in which only one observation has been taken on the random variable 
of interest. 

I 

7.1.1 Some examples 

Example 7.1 Accident counts 
In an investigation into accident proneness in children, numbers of injuries 
were counted for 621 children over the eight-year period between the ages of 4 
and 11. The early history of each child (aged 4 to 7) was compared with their 
later history (aged 8 to 11). One child experienced a total of 3 injuries between 
the ages of 4 and 7. (We shall return to the full data set in Section 7.4.) 

For our purposes a Poisson model may be assumed to describe adequately 
the variation in the number of accidents experienced by children over a four- 
year period (though, actually, it was an aim of the research exercise to show 
that a more elaborate model is required in this context). Then the num- 
ber 3 represents a single observation on the random variable N ,  say, where 
N N Poisson(p). The sample mean = 3 is a maximum likelihood estimate 
of p. 

This is useful information yielded by the investigation, and this single data 
point tells us something about the underlying childhood accident rate. It 
suggests that accidents happen (p  > 0), but not every day, or even every 
month-perhaps an average of once a year. It  would be useful to go further 

and state, with some confidence, a range of credible values for p. Can we 
devise a procedure that enables us to make a confidence statement along 
the lines: with 90% confidence, and on the basis of this observation, the value 
of p lies between 1.5 and 4.8? (Or whatever the confidence limits might turn 
out to be.) 

Example 7.2 Coal-mining disasters 
Data were collected on the time intervals in days between disasters in coal 
mines in Britain from 15 March 1851 to 22 March 1962 inclusive. In this 
context, an industrial accident is called a 'disaster' if ten or more men were 
killed. There were altogether 191 such accidents. The data set is a famous 
one, attracting much interest from analysts, not least because the original 
published set contained several errors. This kind of delving and reanalysis is 
a common feature of statistical activity. 

The first accident to occur after 15 March 1851 took place on 19 August that 
year. If data collection had ceased at that point, then the single observation 
of 157 days would have been collected on a random variable T which may, for 
our purposes, be supposed to follow an exponential distribution with unknown 

Mellinger, C.D., Gaffey, W.R., 
Sylwester, D.L. and Manheimer, 
D.I. (1965) A mathematical model 
with applications to a study of 
accident repeatedness among 
children. J. American Statistical 
Association, 60, 1046-1059. In the 
context of this investigation, an 
'accident' was one requiring 
professional medical attention. 

Jarrett, R.G. (1979) A note on the 
intervals between coal-mining 
disasters. Biometrika, 66, 191-193. 
The original data are to be found 
in Maguire, B.A., Pearson, E.S. 
and Wynn, A.H.A. (1952) The 
time intervals between industrial 
accidents. Biometrika, 39, 168-80. 
The errors are corrected and the 
information is substantially 
updated in the 1979 paper. We 
shall return to the full data set in 
Section 7.4. 
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mean p. This number provides an estimate of the mean time interval (in 
days) between consecutive accidents. Can the number also (and, arguably, 
more usefully) be used to furnish a confidence interval for the average time 
between consecutive accidents? 

Example 7.3 Absenteeism 
The absences of each of 113 students from a lecture course were recorded over Ishii, G. and Hayakawa, R. (1960) 
the 24 lectures for which the course ran. There were eleven lectures during 0" the compound binomial " 
the first term and thirteen in the second. Assuming a binomial model for distribution. Institute 'f 

Statistical Mathematics, Tokyo, 12, 
the number of missed lectures in each term, an estimate for the binomial 6Q-sn v- v-. 

parameter p (the proportion of lectures missed overall) is provided by the 
information that during the first term (l1 lectures) one student missed four 
of them. The estimate of p is p  ̂= 4/11 = 0.364. This offers a guide to the 
underlying value of p, a measure of students' propensity to miss a lecture. 
Can the information be developed to provide confidence limits for p? 

An analysis of the extended data set shows that not every student has the same 
probability for missing a lecture-some students are simply more committed 
than others-and a binomial model does not provide a good fit. Permitting the 
absence probability to vary from student to student according to some other 
statistical distribution could lead to a more realistic, and a better, model. The 
authors of the paper in which these data were published discuss at some length 
the fitting of such different models. At the moment, however, the binomial 
model is as refined a model as we have available to us. For many purposes, it 
is quite adequate. 

Example 7.4 Diseased trees 
In Chapter 6, Table 6.5 data are given on the lengths of runs of diseased trees Pielou, E.C. (1963) Runs of 
in an infected plantation of Douglas firs. The disease was Armillaria root healthy and diseased trees in 

rot, and interest is centred on assessing how infectious the disease was. The transects through an infected 
forest. Biometrics, 19, 603-614. geometric distribution turns out to be a good model for the variation in run A run of infected trees is a line of 

length. There was one run of 4 infected trees. What can this tell us about trees with the disease, bounded at 
the indexing parameter p for the geometric distribution in this context? each end by a healthy tree. 

The maximum likelihood estimate of p, based on this single observation, is 
p^= 11% = 114 = 0.25. I t  would be useful to develop this into a confidence 
statement such as: a 95% confidence interval for p, based on the single obser- 
vation 4, is given by the confidence limits p = 0.1 to p = 0.5 (or whatever the 
limits might be). 

These four examples all have three features in common. The first is data 
(3 injuries; 157 days; 4 out of 11; 4 trees). The second is that, in every 
case, some sort of probability model has been suggested (Poisson, exponential, 
binomial, geometric). The third feature is that in each case, too, a descriptive 
model parameter has been identified and related to the data. Let us now 
pursue the first of these examples further. 
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Example 7.1 continued 
In Example 7.1, a single observation of 3 was recorded on a random variable 
assumed to follow a Poisson distribution with unknown mean p. Although 
the data set is extremely small, it provides an estimate for p: it is the sample 
mean, 3. The purpose of this chapter is to answer two questions. The first 
is: how large could p actually be before an observation as low as 3 starts to 
seem unlikely? This upper limit for p is called an upper confidence limit 
for p. The second question is similar: how small could p actually be before an 
observation as high as 3 starts to seem unlikely? The answer to this question 
provides a lower confidence limit for p. The range of values spanned by 
the lower and upper confidence limits is called a confidence interval for p. 

To proceed further, we need to decide what in this context is meant by the 
word 'unlikely'. For instance, suppose the underlying rate for accidents in 
early childhood (that is, over the four years from age 4 to age 7) was, in 
fact, p = 5. (This is higher than 3, but scarcely renders the observation 3 
an incredible one.) In fact, the probability of recording a value as low as 
that observed (i.e. 3 or lower) is given by the probability P ( X  < 3) where 
X Poisson(5). This probability is 

which is not particularly small. Extending this argument, if p were actually 
as high as 8, then the probability of observing a count of 3 or lower would be 

This is much smaller: there is a probability of only 4% of observing a value 
as low as 3. If the childhood accident rate p were actually as high as 12, then 
the probability of a child suffering fewer than four accidents would turn out 
to be just 0.002, which is very small indeed. Inverting that last remark, the 
observation X = 3 suggests that to put the underlying childhood accident rate 
as high as 12 would be seriously to overestimate it. Of course, it is perfectly possible 

that the value of p is really as high 
What about low values of p? In this case we need to assess the value of p at as 12, and an event with a very 
which an observation as high as 3 (i.e. 3 or higher) starts to look implausible. small probability has happened. 
If we try setting p equal to 1, say, then This possibility must never be 

forgotten when constructing 
P ( X  2 3) = 1 - P ( X  < 2) confidence intervals. 
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This is beginning to look a little unlikely. If we try setting p equal to 0.5, 
then 

P ( X  2 3) = 1 - P ( X  2 2 )  

= l - ( P ( X = 0 ) + P ( X = l ) + P ( X = 2 ) )  

This is even less likely: a value for p as low as 0.5 is beginning to look 
implausible, based on the single observation X = 3. H 

What we have done here is to propose a particular value for p and then to 
assess, conditional on that value, the chances of observing a count as extreme 
as the one that actually occurred. If the chances are small, making that 
observation an unlikely one under the proposed conditions, then we have low 
confidence in the original proposed value for p. A statement about random 
variables and probability is interpreted in terms of parameters and confidence. 

It is a very common practice to express confidence statements in terms of 

percentages, as in: a 95% confidence interval for p,  based on the observation 
a: = 3, is the interval from . . . to . . . . There is nothing special about the 
confidence level of 95%, and you will often see levels of 90% and 99% 
mentioned. What this means is that an event that might have occurred with 
probability 0.95 is thought to be 'reasonable', whereas something occurring 
with probability merely 0.05 will (for the purposes of confident estimation) 
be considered 'unlikely'. 

Now, an event might be considered unlikely because the observed count X is 
surprisingly high, or because it is surprisingly low. Let us make these events 
'equally' surprising. This suggests that we reserve X 0.05 = 0.025 or 2.5% 
for probability statements about high values of X,  and 2.5% for probability 
statements about low values of X. A 95% confidence interval can be obtained 
in this case by first solving for p the equation 

(giving the upper confidence limit); and second, solving for p the equation 

giving the lower confidence limit. 

The phrase 'solving an equation for p' means rewriting the equation with p 
as the subject. In other words, the equation has to be rearranged so that 
p is set equal to an expression that just involves numbers. It is not poss- 
ible to do this with either (7.1) or (7.2), and other numerical methods need 
to be followed. As you will discover later in Section 7.2, the first equation See Exercise 7.8(a)(ii). 
has solution p = 8.8, while the second equation has solution p = 0.62. We 
can complete our calculations with a confidence statement for the unknown 
Poisson mean p, as follows, demonstrating a common notation for lower and 
upper confidence limits, and the notation that will be used in this course. 

270 
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A 95% confidence interval for the Poisson mean p, based on the single obser- 
vation 3, is 

The confidence interval may be written 

(p-, p+) = (O.62,8.8). 

You may have observed that the confidence interval is very wide, with the 
upper confidence limit nearly fifteen times the lower confidence limit! This 
is an unavoidable consequence of the sparsity of the data. We shall see that 
larger samples typically reduce the width of confidence intervals very usefully. 

The approach may be summarized as follows. A single observation X is col- 
lected on the random variable X ,  where X follows a specified probability 
model with unknown parameter 8. Then a 95% confidence interval for 8 is 
provided by solving separately for 8 the equations 

P ( X  5 X) = 0.025 and P ( X  2 X) = 0.025. 

It has already been remarked that there is nothing special about the confidence 
level of 95%, although it is a common one to choose. Depending on the purpose 
for which confidence statements are formulated, selected levels might be as 
low as 90% or as high as 99% or 99.9%. It is common to write the level 
generally as 100(1- a )%,  and to solve for 0 the two equations 

P ( X  5 X) = +a and P ( X  2 X) = $a .  

In general, the arithmetic of such computations is difficult, and numerical 
techniques beyond the scope of this course have to be adopted. Alternatively, 
many statistical computer packages make such techniques unnecessary, re- 
turning confidence limits at the press of a key. The exercises of Section 7.2 
assume that you have access to such a computer package. 

Confidence intervals 

Suppose that a single observation X is collected on a random variable X ,  
following a specified probability distribution with unknown parameter 
8. Then a confidence interval (Q-, 8+) for 0 with level 100(1 - a ) %  is 
provided by separately solving for 8 the two equations 

P ( X  L ' X )  = ;a and P ( X  2 X) = ;a. 

In some cases the arithmetic is straightforward, as in the following example. 

Example 7.2 continued 
In the example on coal-mining disasters, the single number 157 (days) was 
obtained as an observation on an exponentially distributed random variable 
T with mean p. Suppose that what is now required is a 90% confidence 
interval for p, based on the single observation t = 157. The procedure is as 
follows. 

Here, both the upper and lower 
confidence limits have been given 
to two significant figures (rather 
than, say, two decimal places). 

There are other ways of setting up 
the two equations. One is to write 
them in the form 

P(X 5 X) = pa and P(X > X) = q a ,  

where p + q = 1, and choose p 
and q to minimize the difference 
(0+ - 0-) or the ratio (O+/O-). In 
this course we shall adopt the 
convention of setting p = q = i. 

The required confidence level is 100(1 - a ) %  = go%, so +a = 0.05. For an 
exponentially distributed random variable T with mean p, the c.d.f. is given 
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by 

P ( T  5 t )  = 1 - e-tlp, t 2 0. 

The equation P(T 5 t )  = 0.05, which yields an upper confidence level for p 
in the exponential case, may be solved as follows. 

gives 

e-tlp = 0.95 

p+ = 3060 days. 1 Here, the upper confidence limit 
has been given to three significant 
figures. 

Exercise 7.1 
Calculate the corresponding lower confidence Limit p- for p, the average num- H 
ber of days between disasters, assuming an exponential model and based on 
the single observation 157 days. Write out explicitly a confidence statement 

about the value of p. 

Notice that in Exercise 7.1 it is again evident that calculation of confidence 
limits requires three things: data, a model and a statement of the parameter 
of interest. 

Another feature you might have noticed is the extreme width of the confidence 
interval that results! (This was true for the Poisson mean as well.) The time 
interval observed was about five months; the confidence limits for the mean 
time between disasters are from 'rather less than two months' to  'more than 
eight years'. This confidence interval is not very informative, due partly to 
the highly skewed shape of the exponential distribution, but, again, mainly 
to the dearth of data. 

Here is another example where the arithmetic is straightforward. 

Example 7.5 A crooked die 
A gambler, who believes that a die has been loaded in such a way that rolling a 
6 is less likely than it ought to be (i.e. p < 1/6), discovers in a single experiment 
that it takes 13 rolls to obtain a 6. If the die is fair, then the number of 
throws necessary to achieve the first 6 is a random variable N following a 
geometric distribution with parameter p = 116. The expected value of N is 
pN = l l p  = 6. Certainly, an observation as high as 13 suggests that p is 
smaller than 116; indeed, the maximum likelihood estimate of p is 
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But it is quite possible for an observation as high as 13 to be observed even 
if the die is fair. Here, in Table 7.1 are some simulated observations on the Table 7.1 20 simulated 
random variable N G(p), where p = 116. observations on N G ( p ) ,  

p = 116 
In none of these twenty simulations was a count as high as 13 observed; but 11 12 
there were two 11s and one 12. For a random variable N following a geometric 9 2 11 6 2 7 1 1 1 4 
distribution with parameter p, the c.d.f. of N is given by 

P ( N < n ) = l - ( 1 - p ) " ,  n = 1 , 2 , 3  , . . . .  See (3.17) in Chapter 3. 

If p = 116, an observation as extreme as 13 (i.e. 13 or more) has probability 

P ( N  > 13) = 1 - P ( N  5 12) 

= l -  (l-  (l - i)12) 

= (!)l2 

= 0.112, 

so an observation as large as 13 is not extraordinary. What we could do to 
try to clarify matters for the gambler is to calculate confidence limits for p 
based on the single datum 13. Let us set the confidence level required at 95%. 
Then 100(1 - a ) %  = 95% so $a = 0.025. First, we solve for p the equation 

The solution is 

(Notice that in this case, solving the equation P ( N  5 n) = ;a has yielded a 
lower confidence limit for the parameter: for here, it is low values of p that 
render low values of N unlikely.) H 

Exercise 7.2 111 
Assuming a geometric model, find the corresponding upper confidence Limit H 
p+ for p, and complete your confidence statement for p, based on the shgle 
observation n = 13. 

Exercise 7.3 
Find a 90% confidence interval for p, and compare it with your 95% confidence 
interval. 

So the 95% confidence interval for p, based on these data and assuming an 
underlying geometric model, is given by 

(p- ,p+) = (0.002,0.265), 

and the 90% confidence interval is 

(p-, p+) = (0.004,0.221). 

Notice particularly that the number p = 116 = 0.167 is included both in the 
90% and 95% confidence intervals, which are extremely wide: the case for 
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'collecting more data' is seriously pressing. There seems no particular reason 
to suppose that the die is unfairly loaded away from 6s, even though the 
experiment in Example 7.5 took 13 rolls of the die to achieve a 6. The idea of 
performing statistical experiments to explore propositions is a very important 
one, and one that is pursued in Chapter 8. 

Exercise 7.4 

In Example 7.4, one run of diseased trees was of length 4. Assuming a geo- H 
metric model for the distribution of run length, use this observation to con- 
struct a 99% confidence interval for the mean length p of runs of diseased 
trees. 

Note Here, you can establish confidence limits for p and then simply make 
use of the relationship for a geometric random variable that p = l / p  to rewrite 
the upper and lower confidence limits. Or you could reparameterize the geo- 
metric distribution in terms of p rather than p by saying 

and then work directly in terms of the parameter p. 

Example 7.3 continued 
The only one of the four examples with which this section was introduced 
and which has not yet been followed through is Example 7.3, in which 4 
absences were observed in a total of 11 lectures. The maximum likelihood 
(and common-sense) estimate for p, the underlying probability of absence, 
is p̂  = 4/11 = 0.364. Again, it would be useful to develop this estimate 
into a confidence interval for p. Assuming independence from lecture to lec- 
ture (which is probably rather a strong assumption in this context) then we 
have a single observation X = 4 on a binomially distributed random variable 
X B(l1,p). We need therefore to solve the two equations 

P ( X < 4 ) = $ a  and P ( X > 4 ) = $ a  

for p. The first reduces to 

The algebra here is not at all convenient (as it has been in the case of expo- 
nential and geometric probability calculations). The equation reduces to 

which is not soluble by usual methods. Actually, the 90% upper confidence 
limit ( $ a  = 0.05) is given by p+ = 0.6502. This kind of calculation can be 
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executed with a single command if you have a computer with the appropriate 
software installed. The .second equation P ( X  2 4) = +a reduces to 

This equation has the solution (when ;a = 0.05) p- = 0.1351. So we might 
conclude: a 90% confidence interval for p, based on observing 4 successes in 11 
trials and assuming independence from trial to trial, is given by 
(p-,p+) = (0.1351,0.6502). W 

7.1.2 Interpreting a confidence interval 
You have seen that a requirement to construct a confidence interval for an 
unknown parameter 8 is the collection of data. In different random samples, 
the data will vary. It follows (rather as in the case of point estimation) that 
the resulting confidence limits 8- and 8+ are themselves random variables. 
The resulting confidence interval (8-, 8+) is called a random interval. What 
are its relevant properties? 

This question will be explored in one very simple case. The principle is the 
same in other sampling contexts, but the algebra can become rather involved. 

Suppose that a single observation X has been collected from a population 
assumed to follow an exponential distribution with mean p. The 2.5% point 
of this distribution is the solution q0.025 of the equation 1 - e - 4 1 ~  = 0.025, or 
q0.025 = -plog(0.975) = 0.025~.  Similarly, the 97.5% point is 90.975 = 3 . 6 9 ~  
So we can write 

Then the double inequality on the left-hand side can be rewritten with p as 
the subject: 

This is a statement about the random interval 0.27X to 39.5X: it is a very 
wide interval, stretching from about one-quarter of the single observed data 
point to forty times it. The point is that with probability 0.95, the random 
interval contains the unknown number p. 

That is to say: if the statistical experiment were repeated many times, and if 
the random interval 

(p-, p,) = (0.27X, 39.5X) 

were computed each time, then approximately 95% of these intervals would 
contain the unknown number p. It is a common error to complete the stat- 
istical investigation with a 'confidence' statement such as: with probability 
0.95, the value of p is between p- and p+. But the number p is not a random 

variable. It is important to remember that a confidence statement follows 
from a probability statement about a random interval, which might, or might 
not, contain the constant p. 
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7.1.3 Some further exercises 

Exercise 7.5 
In Chapter 2 ,  Example 2.8, a triangular model T N Triangular(20) was R 
suggested for the waiting time (in seconds) between consecutive vehicles using 
a particular grade of road. 

(a) Find in terms of cw and t a defining formula for the 100(1- a)% confidence 
interval for the parameter 0 of a triangular density, based on the single 
observation t. 

(b) Use your formula to give a 95% confidence interval for the parameter 0 of 
a triangular distribution, based on the single observation t = 5. 

Exercise 7.6 
Firefly racing dinghies carry sail numbers consisting of a capital letter F H 
followed by one or more digits. The dinghies are numbered consecutively as 
they are manufactured, starting at F1. 

The total number of Firefly dinghies manufactured is not known. However, 
one dinghy has been sighted. It bore the sail number F3433. On the basis of 
this one observation, and stating your model for the population from which 
this one observation was drawn, calculate a 90% confidence interval for the 
total number of Firefly dinghies manufactured to date. 

7.2 Small samples 

In Section 7.1 only very small data sets (samples of size one) were considered. 
In all cases where you had to calculate a confidence interval for some un- 
known model parameter, one recurring feature was the extreme width of the 

intervals found. In this section and in Section 7.4 you will see the beneficial 
consequences of using larger samples. 

As in Section 7.1, the derivation of a confidence interval for a population 
characteristic requires data, and specification of a model for the inherent vari- 
ation. The characteristic of interest will be expressible in terms of the model 
parameter. 

In most of the cases that we shall look at in this section, the underlying stat- 
istical theory is based on the sample total; for the sort of models used in this 
course much is known about the distribution of sums of random variables. In 
Section 7.4 the samples will be assumed to be sufficiently large for the central 
limit theorem to be implemented: the sample total may be assumed to be 
approximately normally distributed. However, in this section, the samples are 
small and the exact distribution of the sample total is used. Brief explanations 
are given of the principles on which interval estimation in this section is based, 
but the details are attended to by the computer. 

However, the sample total is not always the appropriate statistic to use, and 
at the end of this section you will see an example where this is the case. 

You have already seen that even when the sample properties are well known 
and easy to write down, the arithmetic involved in calculating confidence 
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limits is not necessarily straightforward. We have so far been unable directly 
to deduce confidence limits for a binomial probability p or a Poisson mean p, 
for instance, although you have seen examples of them. 

The exercises in this section require the use of a computer to cope with the 
arithmetic. The problems are stated: you need to explore and use the facilities 
of your computer in order to solve them. 

7.2.1 Confidence intervals for the Bernoulli 
parameter 

A researcher interested in the proportion p of members of a population who 
possess a particular attribute is not likely to base an assessment of the value 
of p on a single observation X ,  taking the value 0 (attribute not possessed) or 
1 (attribute possessed). It is more likely that a larger sample XI ,  Xz, . . . , X n  
(n  > 1) will be collected. Assuming independence between sample responses, 
then the sample total XI + X2 + . . . + X, follows a binomial distribution 
B(n,p) and an estimate of p is provided by the sample mean 

We have already seen in, principle how to extract a 100(1 - a)% confidence 
interval for p, based on a statistical experiment in which X successes were 
observed in a total of n trials. 

Exercise 7.7 
Use your computer to calculate confidence intervals for the Bernoulli par- 
ameter p in each of the following situations. 

(a) A total of 4 successes is observed in 11 trials (so p̂  = 4/11 = 0.364). Find 
(i) a 90% confidence interval for p and (ii) a 95% confidence interval for 
p based on these data. 

(b) In a similar follow-up experiment, the sample size is doubled to 22; and, 
as it happens, a total of 8 successes is observed. So p^= 0.364 as before. 
Find (i) a 90% confidence interval for p and (ii) a 95% confidence interval 
for p based on these data. Can you explain why using a larger sample 
provides narrower confidence intervals? 

(c) Find a 99% confidence interval for a Bernoulli parameter p based on 
observing 4 successes in 5 trials. 

(d) Simulation Use your computer tp generate 10 observations on the bi- See the solution to this exercise for 
nomial distribution B(20,0.3). (You will obtain a sequence of success a note about confidence intervals 

counts-3 out of 20, 8 out of 20, 2 out of 20, . . . , and so on.) For each of when the probability 
distribution is discrete. 

these 10 experimental results, calculate the corresponding 90% confidence 
interval for p. How many of your intervals contain the value 0.3? How 
many would you have expected to contain the value 0.3? 

7.2.2 Confidence intervals for a Poisson mean 
You have seen the sort of calculation involved in obtaining confidence limits 
for a Poisson parameter p when a single data point is available. What 
happens, when more than one data point is sampled', is quite straightfor- 
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ward: the calculations are almost the same. If n independent observations 
XI ,  X2 , .  . . , Xn are taken from a Poisson distribution with mean p, then 
their sum T = X1 + X:! + . . . + X, follows a Poisson distribution with mean 
/LT = np. A confidence interval is found for pT based on the single obser- 
vation t. Then the confidence limits for p~ can be converted to confidence 
limits for p simply by dividing by n, the sample size. 

Exercise 7.8 
Use your computer to calculate confidence intervals for the Poisson parameter 
p in each of the following situations. 

(a) A child is observed for one year, during which period he suffers 3 minor 
accidents. Use this information to calculate (i) a 90% confidence interval 
and (ii) a 95% confidence interval for the underlying annual accident rate 
for boys of his age. 

(b) Seven boys, all of the same age, are observed for a year. They suffer 
4, 4, 3, 0, 5, 3, 2 minor accidents respectively. Usethis information (i) to 
estimate the underlying annual accident rate p for boys of their age and 
(ii) to calculate 90% and 95% confidence intervals for p. 

(c) Six girls, all of the same age, are observed for a year. Between them they 
suffer a total of 20 minor accidents. Use this information (i) to estimate 
the underlying annual accident rate p for girls of their age and (ii) to 
calculate 90% and 95% confidence intervals for p. 

Notice that in part (b) of this exercise all the information was given; in part 
(c) only summary data were provided. 

7.2.3 Confidence intervals for an exponential mean 
If n independent observations are taken from an exponential distribution with 
mean p, then their sum follows a probability distribution which is a member 
of the two-parameter gamma family. In this case the values of the two 

parameters are n and p, but the details are, in this context, unimportant. 
Enough is known about relevant properties of the gamma distribution to en- 
able computer routines to be written for the evaluation of confidence limits 
for exponential parameters based on more than one observation. 

Exercise 7.9 
(a) The data in Chapter 4, Table 4.7 give 62 time intervals in days between 

consecutive serious earthquakes world-wide. Use these data to construct 
a 90% confidence interval for the mean time interval between earthquakes, 
stating any probability model you assume. 

(b) The data listed in Chapter 2, Table 2.11 are the time intervals (in seconds) 
between successive vehicles using the Kwinana Freeway one morning in 
Perth, Western Australia. 

(i) Use these data to estimate the rate (vehicles per minute) at which ve- 
hicles pass the observation point. (ii) Calculate a 90% confidence interval 
for the rate. 
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The last part of this exercise involves a computer simulation. 

(c) Generate 20 observations from the exponential distribution M(1), and use 
your data to estimate the (usually unknown) population mean; then use 
the data to calculate a 90% confidence interval for the population mean. 
Repeat the process 10 times. In each case, examine whether the resulting 
confidence interval contains the number 1. 

7.2.4 Confidence intervals for a geometric parameter 
If n independent observations are taken from a geometric distribution with 
parameter p, then their sum follows a probability distribution which is a 
member of the two-parameter negative binomial family. The values of 
the two parameters are n and p, but again the details in this context are 
unimportant. Enough is known about relevant properties of the negative 
binomial distribution to enable the development of computer routines for the 
evaluation of confidence limits for geometric parameters based on more than 
one observation. 

Exercise 7.10 
In this exercise you will need to use your computer to count the number of 
rolls N necessary to achieve a 6, when a loaded die with P(6) = 1/10 is rolled. 

(a) Obtain 10 observations on N ,  and use these observations to obtain a 
90% confidence interval for the (usually unknown) probability p = P(6). 
Does your interval contain the value p = 1/10? Does it contain the value 
p = 1/6? 

(b) Now obtain 100 observations on N, and use them to obtain a 90% confi- 
dence interval for p. How does the width of this interval compare with the 
width of the interval you obtained in part (a)? Does your new interval 
contain the value p = 1/10? Does it contain the value p = 1/6? 

7.2.5 Postscript 
So far in this section we have seen the useful consequences of drawing a larger 
sample of data in order to calculate confidence intervals for unknown model 
parameters: the larger the sample, the narrower (that is, the more precise) 
the resulting interval tends to be. 

Your computer will have (or should have) insulated you from the algebraic 
detail of the computations involved, but for all four of the standard cases 
considered so far, inference was based on the sample total. We have not 
considered samples from the triangular or Pareto distributions, or from the 
uniform distribution, all of which you have met in the course so far. It is 
sometimes far from easy to obtain the distribution of the sum XI + X 2  + 

. + X, of a random sample from some stated distribution. In such a case 
the only thing to do (if you cannot calculate exact results numerically) is 
to make sure that the sample drawn is so large that the sample total may 
be assumed to be approximately normally distributed (by the central limit 
theorem). We shall look at this in Section 7.4. 
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To round off this section, we shall look at  a situation where the sample total 
is not an appropriate statistic to use when calculating a confidence interval, 
but where an exact computation is nevertheless possible. 

The uniform distribution is rather unusual. Recall the Firefly example in 
Exercise,7.6. If, say, five Firefly dinghies had been sighted (rather than just 
one), then would that have helped us further? Suppose the numbers sighted 
had been F3433 (as before) and then F1326, F378, F1826, F1314. It might 
seem as though the numbers 1326, 378, 1826, and 1314 really provide no 
further information at all about the total number of Firefly dinghies manu- 
factured altogether: that number is evidently at least 3433, as was apparent 
from the first sighting. In fact, a useful inference can be based not on the 
sample total but on the sample maximum. The maximum X,,, of a random 
sample of size n from a discrete uniform distribution U(1,2,.  . . ,8) has c.d.f. 

The corresponding 100(1 - a ) %  confidence interval for 8 based on n obser- 
vations with maximum value X is found by solving the two equations 

and 

So, for instance, the 90% confidence interval for 8 based on the five obser- 
vations with maximum 3433 is found by solving the two equations 

which has solution 6+ = 3433/0.05~/~ = 6250; and 

with solution 8- = 3432/0.95ll5 = 3467. The corresponding confidence inter- 
val for 8 is given by (g_, g+) = (3467,6250). If you compare this with your 
result in Exercise 716 you can see that, again, a larger sample has resulted in 
a more useful confidence interval (because it is narrower). 

7.3 Confidence intervals for the 
parameters of a normal distribution 

In the previous sections, we did not consider the fundamental problem of con- 
structing confidence intervals for the two parameters of's normal population, 
based on a random sample drawn from that population.' This should now be 
quite straightforward: all that is required is to write down probability state- 
ments about statistics derived from the random sample (such as the sample 
mean and sample standard deviation) and invert those statements so that the 
unknown parameters p and a become the subjects of confidence statements. 
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7.3.1 Confidence intervals for the normal mean 
Here is a typical example of the sort of statistical experiment which arises, 
where a normal model may reasonably be assumed, but where nothing is 
known either about the indexing mean p or about the standard deviation a. 

Example 7.6 A mechanical kitchen timer 
A kitchen timer is a small alarm clock that, by turning a dial, can be set to 
ring after any length of time between one minute and an hour. It is useful 
as a reminder to somebody working in a kitchen that some critical stage has 
been reached. The usefulness of such timers is not restricted to the kitchen, 
of course. 

An enthusiastic cook was interested in the accuracy of his own kitchen timer, 
and on ten different occasions set it to ring after a five-minute delay (300 Data provided by B.J.R. Bailey, 
seconds). The ten different time intervals recorded on a stop-watch are shown University of Southampton. 

in Table 7.2. Table 7.1 Ten time delavs 
Assuming that the stop-watch itself was an accurate measuring instrument, (seconds) 

then the only variability from the 300 seconds' delay intended in the times 293.7 296.2 296.4 294.0 297.3 
recorded is due to difficulties in actually setting the time (that is, positioning 293.7 294.3 291.3 295.1 296.1 
the dial) and to mechanical malfunction in the operation of the timer. As- 
suming a normal model N(p ,  a2) for the variation in the actual times recorded 
when a time of five minutes is set, then the data yield the paranleter estimates 

That is, an estimate of the normal mean p is the sample mean p = 55 = 294.81 
seconds (about 4m 55s-five seconds short of the five-minute interval set); an 
estimate of the normal standard deviation a is the sample standard deviation 
s = d m  = 1.77 seconds. W 

Can we say more about the average time delay other than that it seems to be 
about 4m 55s? Perhaps an actual mean of five minutes (the delay intended) 
is plausible . . .but ,  given these data, how confident could one be in putting 
this proposition forward? 

If is the mean of a random sample of size n from a normal distribution 
with mean p and standard deviation a ,  then the distribution of is given by 

on standardizing, this is equivalent to 

This result enables us to write down probability statements of the general 
form 
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Based on what we know about normal probabilities, we might write, say, 

This follows since 95% of observations on a normal population are within 
1.96 standard deviations of the mean. If the population mean p was the only 
unknown quantity in this probability statement we could rewrite the double 
inequality with p as the subject, as follows: 

Thuswe obtain a random interval, centred on the sample mean X, which with 
probability 0.95 contains the unknown population mean p. So, apparently, a 
95% confidence interval for p based on a sample X I ,  $2,. . . ,X, with sample 
mean ?F, is given by 

This result is useful if the normal standard deviation is known. Usually, 
however, in any context where the mean is unknown then the standard devi- 
ation will be unknown as well. So this approach cannot be used for making 
inferences about the unknown parameter p, because of the presence of the 
unknown term a .  What is to be done? The obvious solution is to replace U 

by its estimator S ,  the sample standard deviation. Remember that S is the 
square root of the sample variance 

2 1  S =- C(xi - X)2 
n - l .  

%=l 

and E(S2) = a2, so the substitution seems quite sensible. 

Let us now define a new random variable T (as at (7.3)) by 

In this expression the right-hand side has the property that the unknown pa- 
rameter U does not feature. We can then go on to make probability statements 
of the kind 

(exactly as before), but first we have to find the appropriate values of t .  That 
is, before we can use the random variable T to make inferences about p, we 
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need to know its properties, and in particular its probability distribution. 
Since we have obtained T from Z by replacing a constant, a, by a random 
variable, S, you will not be surprised to be told that T is not normally dis- 
tributed. 

In fact there is not just one distribution for T, but a whole family of distri- 
butions, one for each value of the sample size n ,  (n  = 2,3, .  . .). 

The distribution is often known as Student 's t-distribution since it was 'Student' (1908) The probable 
first derived, in 1908, by W.S. Gosset who wrote under the pseudonym of error of a m a n .  Biometrika, 6 ,  

'Student'. The family is indexed by means of a parameter called the degrees See a'so p. 60. 

of freedom (just as in the case of a variate-see Chapter 6 ) .  Thus we write 
T - t(v) to denote that the random variable T has a t-distribution with v 
degrees of freedom. 

Like the standard normal variate Z each member of this family of distri- 
butions, for v = 1,2,3, .  . . , is symmetric about 0: the numerator of T, the 
difference X - p,  is as likely to be negative as it is to be positive. But in view 
of its dependence on two sample statistics (the sample standard deviation S 
as well as the sample mean y )  the random variable T is, in a sense, more 
variable than Z,  and its probability density function has 'longer tails' than 
that of 2. All this is clearly seen in Figure 7.1 which shows the probability 
density function of Z together with those of t ( l ) ,  t(3) and t(7)-that is, the 
t-distributions with 1, 3 and 7 degrees of freedom. 

Figure 7.1 The densities of t(l),  t(3), t(7) and Z N(0,l) 

The larger the value of v, the closer is the distribution of t(v) to a standard 
normal distribution. This is illustrated in the comparative sketches of the 
corresponding probability density functions in Figure 7.1. This makes sense: 
for a large sample size, S should be an accurate estimator for a, and the 
distribution of the random variable T will be close to the distribution of the 
standard normal variate Z. 

In order to make inferences about the unknown parameter p using Student's 
t-distribution, it is necessary to obtain critical values from statistical tables. 

A table of critical values of t(v) for different values of v is given as Table A5 
in the Appendix. As in the case of the normal distribution, a sketch always 
helps. Here, in Figure 7.2, are some examples showing different critical values 
for Student's t-distribution, for different degrees of freedom v. You should 
check that you can find these critical values using the table. 
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Figure 7.2 Critical values of t (u) 

For example, in Figure 7.2(a), the size of the right-hand shaded area is 
;(l - 0.95) = 0.025: the corresponding critical value is the 97.5% point (q0.975) 
of t(9). Looking along the ninth row of the table (corresponding to v = 9) 
and under the column corresponding to the probability P(T 5 t)  = 0.975, the 
value of t is 2.262. 

You should check.that you can use the table to answer the questions in the 
exercise that follows, and confirm your findings by typing the appropriate 
command at your computer. 

Exercise 7.1 1 
(a) If v = 29, determine t such that P(T < t )  = 0.95. 

(b) If v = 30, determine t such that P(T 2 t )  = 0.05. 

(c) If v = 5, determine t such that P ( T  5 t )  = 0.01. 

(d) If v = 9, determine t such that P(IT1 5 t)  = 0.95. 

You have just used tables of the t-distribution and your'computer to determine 
the value of stated percentage points; that is, the value of the critical point t 
which (for given values of v apd a )  will probability statements of the 
form 
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where T - t(v). NOW, suppose in a sampling context that X is the mean of 
a random sample from a normal distribution with mean p ,  and that S is the 
sample standard deviation. In this context, the random variable T defined at 
(7.4) has Student's t-distribution with degrees of freedom v = n - 1. 

In a random sample of size n from a normal distribution with mean p, 
the random variable 

(where W is the sample mean and S is the sample standard deviation) 
follows Student 's  t-distribution (or simply a t-distribution) with 
n - 1 degrees of freedom. This is written 

An important consequence of this result is that it is possible to make prob- 
ability statements of the form 

where t is the 100(1 - +a)% point of t (n - 1). This probability statement 
may be rewritten 

which is a probability statement about a random interval, centred on the 
sample mean X, which with probability 1 - a contains the unknown popu- 
lation mean p. The corresponding confidence interval for p, based on a ran- 
dom sample XI ,  2 2 , .  . . , X,, is 

Here, f is the sample mean, s is the sample standard deviation, n is the sample 
size and t is a critical value obtained from tables of Student's t-distribution 
(or from your computer). 

Example 7.6 continued 

This result is stated without proof. 

If it is assumed that the time until the kitchen timer alarm bell sounds is 
normally distributed, but with unknown mean and variance, then we are 
now in a position to construct a confidence interval for the unknown mean 
waiting time p. We know that the sample statistics are F = 294.81 and 
s = d m  = 1.77. For a 90% confidence interval, say, with v = n - 1 = 9 
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degrees of freedom, the critical t-value is 1.833 (using +a! = 0.05). Hence the 
confidence interval we obtain for p ,  based on these data, is 

Notice that the number 300 (seconds, a five-minute delay) is not contained 
within this confidence interval! (Also, the confidence interval is usefully nar- 
row.) So there is some statistical evidence here that the timer is consistently 
going off early. We shall return to this very important point in Chapter 8. 

Exercise 7.12 
In 1928 the London and North-Eastern Railway ran the locomotive Lemberg 
with an experimental boiler pressure of 2201b, in five trial runs. Several 
random variables were measured, one being the coal consumption, in pounds 
per draw-bar horse-power hour; the resulting observations were 

Regarding these data as a random sample from a normal distribution, con- 
struct a 95% confidence interval for the population mean p (that is, the mean 
coal consumption at a boiler pressure of 220 lb). 

Exercise 7.13 
The following data (see Table 7.3) are from 'Student's' 1908 paper. Several 
illustrative data sets were used in the paper; this one is taken from a table by 
A.R. Cushny and A.R. Peebles in the Journal of Physiology (1904) showing 
the effects of the optical isomers of hyoscyamine hydrobromide in producing 
sleep. 

The sleep of ten patients was measured without hypnotic and after treatment 
(a) with D-hyoscyamine hydrobromide and (b) with L-hyoscyamine hydro- 
bromide. The average number of hours' sleep gained by the use of the drug 
was tabulated. Here, D- denotes dextro and L- denotes laevo, a classification 
system for stereoisomers. 

The table is not exactly as printed in Biometrika. It  is a pity that in this 
fundamental paper there should have been a typographical error: this has 
been corrected in Table 7.3 (and it was.not difficult to isolate). A minus sign 
indicates a net sleep loss. 

For the purposes of this exercise, only consider the ten numbers in the column 

headed L-D. This summarizes any differences between the two treatments. 
(Looking at  the values it seems as though treatment with L-hyoscyamine hy- 
drobromide was consistently the more effective.) 

Table 7.3 Sleep gain after 
drug treatment 

Patient D L L - D  

1 +0.7 +1.9 +1.2 
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(a) Calculate the sample mean and the sample standard deviation s for 
these data, and hence construct a 95% confidence interval for the unknown 
mean difference p, assuming the differences to be normally distributed. 

(b) Say whether the number 0 is contained in the confidence interval you 
found in part (a). Can you deduce anything from your study? 

In general, for larger samples, the calculation of the statistics : and s may be 
inconvenient. Not only can a computer perform this arithmetic task, but it 
can then go on to 'look up critical percentage points' against the appropriate 
t-distribution and hence calculate confidence intervals. You do not have to do 
anything at all, other than key in the appropriate command. Your computer 
probably carries out this exercise quite easily. 

Exercise 7.14 
Confirm your answers to Exercises 7.12 and 7.13 by obtaining the confidence 
intervals sought directly from your computer. 

7.3.2 Confidence intervals for the normal variance 
The normal distribution is indexed by two parameters: the second is its vari- 
ance, denoted a'. In contexts where this quantity is unknown, it may often be 
useful to draw a random sample of observations in order to obtain a confidence 
interval. Let us start with an example. 

Example 7.7 Breaking strengths 
In the production of synthetic fibres, it is important that the fibres produced 
are consistent in quality. One aspect of this is that the tensile strength of the 
fibres should not vary too much. A sample of eight pieces of fibre produced 
by a new process is taken, and the tensile strength (in kg) of each fibre was 
tested. The sample mean was = 150.72 kg and the sample variance was 
s2 = 37.75 kg2. A confidence interval for the variance is required. 

Assuming a normal model, we might wish to find, say, a 90% confidence in- 
terval for the population variance 02. The theoretical distribution underlying 
statistical inferences about a normal variance is the X2-distribution, which 
as you saw in Chapter 6 is actually a whole family of distributions whose 
indexing parameter (the degrees of freedom) is, in this particular context, de- 
pendent upon the sample size. Here, again, is the sampling distribution of 
the variance of normal random samples of size n, when the parent population 
is N(p,  c2):  

(7.5) This result was first used in 
Exercise 6.26. 
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In Figure 7.3 you can see how the chi-squared density changes shape with 
increasing degrees of freedom. 

0 5 10 15 20 

Figure 7.3 The density of x2(v), U = 2,3,10 

For small values of the parameter v the X2 density is very highly skewed; for 
increasing values of the parameter the distribution becomes less skewed. 

Corresponding critical points for the chi-squared distribution can be obtained See also Exercises 6.23 and 6.24. 
by reference to statistical tables (or by keying in the appropriate command on 
your computer). For instance, the 5% point of x2(4) is 0.711; the 97.5% point 
is 11.143. This information is shown graphically in Figure 7.4. You should 
check that you can obtain these values from statistical tables, and from your 
computer. 

Figure 7.4 Critical points of x2(4) 

A confidence interval for an unknown variance c2 based on a random sample 
XI, 2 2 ,  . . . ,X, from a normal distribution may be found as follows. As usual, 
we begin with a probability statement based on the distribution of the esti- 
mator (in this case, S2). Using (7.5) we can write 

where C L  = q l ,  is the 'left-hand' critical point of the X2(n - l) distribution; 
and cu = ql - ;a  is the 'right-hand' critical point. 
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The double inequality on the left-hand side of (7.6) can be written with the 
variance a2 as the subject: 

This is a probability statement about a random interval which, with prob- 
ability 1 - a, will contain the unknown variance a2. The corresponding con- 
fidence interval for u2, based on a random sample with standard deviation s ,  
is given by 

((n ;:)S' (n - l )s2 
(a5,u:) = , 

CL 

Example 7.8 Finding a confidence interval for a normal variance 
For inferences from normal samples of size 10, say, we would refer to tables 
of the X2(9) distribution: the 5% point, for example, is 3.325, the 95% point 
is 16.919. Different samples of size 10 from N ( P ,  u2) will give rise to different 
observations on the sample variance S2-it is a random variable-and we can 
write down the probability statement 

The corresponding 90% confidence interval for a2 is 

2 2 ( (n  ;;)s~, (n - l )s2 
(a- ,a+) = 

c L 

Notice that in the whole of this example, knowledge of the sample mean is 
unnecessary. H 

Example' 7.6 continued 
For the kitchen timer data, we have (n - l )s2 = 9 X 3.1232 = 28.109; it follows 
that a 90% confidence interval for u2, using CL = 3.325, cu = 16.919, is given 
by 

(This may be compared with the point estimate s2 = 3.12.) H 

Exercise 7.15 
For the breaking strength data of Example 7.7, find (a) a 90% confidence 1 
interval and (b) a 95% confidence interval for a2.  
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7.3.3 Confidence intervals for the normal standard 
deviation 

Returning once more to the probability statement (7.7), 

and then taking square roots, we obtain 

It follows that a 100(1 - a)% confidence interval for a, based on a random 
sample with standard deviation S, is given by 

(a-, a+) = (.,/F, S,/?) . 

In other words, the confidence limits for a are just the square roots of the 
respective confidence limits for a2 .  

Exercise 7.16 
For the breaking strength data of Example 7.7, (a) estimate o; and (b) find a R 

mw 
90% confidence interval for U. (Use your answers from Exercise 7.15.) 

7.4 Larger samples 

We have seen that confidence intervals for the parameters of a normal distri- 
bution have been fairly easy to develop by following these rules: 

(i) write down a probability statement about a sample statistic whose distri- 
bution involves the parameter for which the confidence interval is required; 

(ii) turn this probability statement into a statement about a random interval 
which might or might not contain the unknown parameter; 

(iii) collect a random sample; 

(iv) calculate numerical values for the extremes of the random interval; 

(v) call your single observation on that random interval a confidence interval. 

In this section we return to non-normal models such as the exponential and 
Bernoulli distributions, and develop techniques for finding confidence intervals 
for unknown parameters with the assumption that the random samples we 
have drawn, in order to perform such inferences, are large enough for the 
central limit theorem to apply. (Where this assumption cannot be made, we 
need to use the exact methods as discussed in Section 7.2.) 

Essentially, the idea is this: if XI ,  X 2 , .  . . , X n  are observations on a random 
variable X ,  then the central limit theorem says that 

n 

E X i  = X l  + X 2  + X 3  + . . . + X ,  = ~(n ,u , , nu$) ,  
i=l 

where the moments px and 0% are respectively the mean and variance of 
the random variable X. That is, the sample total is approximately normally 
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distributed. The moments pX and 0% will usually feature the unknown par- 
ameter (or parameters, if there is more than one) that we wish to estimate. 
So this result can be used to write down approximate probability statements 
about the sample total which can be turned into confidence statements about 
the unknown parameters in the usual way. 

7.4.1 The exponential model 
One of the simplest applications of this idea is to data for which an exponential 
distribution is assumed to provide an adequate model. 

Example 7.9 Coal-mining disasters 
Here is the full data set from the investigation of Example 7.2. Table 7.4 gives 
the times (in days) between consecutive disasters in coal mines in Britain 
between 15 March 1851 and 22 March 1962. (The data are to be read across 
rows.) This time interval covers 40550 days. There were 191 explosions 
altogether, including one on each of the first and last days of the investigation. 
So the data involve 190 numbers whose sum is 40 549. The 0 occurs because 
there were two disasters on 6 December 1875. 

Table 7.4 Times (in days) between disasters 
157 123 2 124 12 4 10 216 80 12 
33 66 232 826 40 12 29 190 97 65 

186 23 92 197 431 16 154 95 25 19 
78 202 36 110 276 16 88 225 53 17 

538 187 34 101 41 139 42 1 250 80 
3 324 56 31 96 70 41 93 24 91 

143 16 27 144 45 6 208 29 112 43 
193 134 420 95 125 34 127 218 2 0 
378 36 15 31 215 11 137 4 15 72 
96 124 50 120 203 176 55 93 59 315 
59 61 1 13 189 345 20 81 286 114 

108 188 233 28 22 61 78 99 326 275 
54 217 113 32 388 151 361 312 354 307 

275 78 17 1205 644 467 871 48 123 456 
498 49 131 182 255 194 224 566 462 228 
806 517 1643 54 326 1312 348 745 217 120 
275 20 66 292 4 368 307 336 19 329 
330 312 536 145 75 364 37 19 156 47 
129 1630 29 217 7 18 1358 2366 952 632 

Suppose that these data represent a random sample from an exponential distri- 
bution and that we are interested in the mean time interval between disasters. 
So in this example we have data, a specified model, and we have isolated a 
parameter of interest. 

Suppose we denote the exponential mean by p. Then denoting by Xi the ith 
element of the sample, we have px = p, 0% = p2, and it follows that The variance of an exponential 

distribution is equal to the square 
of its mean: see (4.25). 

Applying the central limit theorem, 

E $3 N(0, l). 
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Notice the 'z' symbol: the normal distribution is only an approximate model 
for the sample total when the sample size is large, and we must remember this 
when making confidence statements. There is no point in giving confidence 
limits to six significant figures. 

Now let us proceed as before to try to find a 95% confidence interval for the 
exponential mean in the case of the coal-mining data. Notice that the only 
sample statistic in the expression at (7.9) is the sample mean X; it is not 
necessary to calculate the sample standard deviation. Using (7.9), we can 
write the probability statement 

This is a statement about the random variable X. We render it into a state- 
ment about a random interval by rearranging the double inequality so that p 
is the subject. By rewriting the inequality in this way, we obtain 

This says that the random interval defined by transforming the sample mean 
in the manner described will, with high probability, contain the unknown 
population mean p: it provides a 95% confidence interval for p. 

For the coal-mining disaster data, the inean of the n = 190 waiting times is 
5 = 213.416 (days). Based on these data, the corresponding observation on 
the random interval defined at (7.10) is 

Since for exponential random samples the maximum likelihood estimate P of p 
is the sample mean E, the preceding discussion can be summarized as follows. 

Approximate large-sample confidence interval for an exponen- 
tial mean 

An approximate 100(1 - a ) %  confidence interval for the mean p of an 
exponential random variable, based on a random sample XI ,  22,. . . ,X,, 

is given by 

where z is the 100(1 - ;a)% point of the standard normal distribution 

and 6 = T is the maximum likelihood estimate of p. 
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Notice that the fact that these are approximate limits is demonstrated by 
the presence of the term, 1 - z/+, which if the sample is too small or if 
the confidence level sought is too high, will be negative. This does not make 
sense. 

Exercise 7.17 
Use the earthquake data of Chapter 4 ,  Table 4.7 to establish a 95% confidence 
interval for the mean time between serious earthquakes world-wide. State any 
modelling assumptions you make. (Use your answers to Exercise 7.9.) 

Exercise 7.18 
(a) Establish a 90% confidence interval for the mean traffic rate (vehicles per 

minute) for the ~ w i n a n a  Freeway, based on the traffic data of Table 2.11, 
stating any assumptions you make during the calculation. 

(b) Comment on any differences between the confidence interval you have 
found in part (a) and the one you calculated in Exercise 7.9. 

A confidence interval which is wide is less useful than one which is narrow. 
Large samples give narrower and hence more useful confidence limits than 
small samples. It  is possible to use the general expression for the confidence 
limits to determine how large the sample should be before the experiment is 
performed. This is demonstrated in the following example. 

Example 7.10 Determination of the sample size 
Suppose that a sample of observations from an exponential distribution is 
required to produce a 90% confidence interval for the mean, with both upper 
and lower confidence limits within 5% of the estimated mean. This implies 
that both the following inequalities must hold: 

A 

> 0.95p and < 1.05g, 
ltzlfi - l-z/fi - 

where z = 1.645. The first inequality gives d n  2 192, or n 2 976.9; the second 
inequality gives Jn 2 212, or n 2 1193.4. So a sample size of at least 1194 
(say 1200, perhaps) will ensure a sufficiently narrow confidence interval at the 
specified 90% level. 

Exercise 7.19 
A sample of observations from an exponential distribution is required. It must 1 
be sufficiently large to ensure that a 95% confidence interval for the mean has 
upper and lower confidence limits both within 3% of the estimated mean. 
What minimum sample size will achieve this? 

7.4.2 The Poisson model 
Assume that we have a random sample of size n from a Poisson distribution 
with unknown mean p. Then, by the central limit theorem, the sample total 



Elements of Statistics 

C&, X, is approximately normally distributed with mean n p  and variance 
np. For instance, we can make the probability statement 

In order to calculate a confidence interval for p, we need to solve the double 
inequality inside P(.) and make p the subject, To generalize what follows 
to confidence levels other than 90%, we shall first replace the number 1.645 
by z. Then, squaring both sides, we obtain (after a little algebra) the following 
quadratic inequality in p: 

The inequality is satisfied for p lying between the two solutions of the quadratic, 
which are 

This is a very complicated expression that could nevertheless be used to de- 
fine upper and lower confidence limits for p. However, it is based on an 
approximation (that induced by applying the central limit theorem and using 
approximate normal theory) and, in the interests of simplifying things a little, 
a second approximation is now introduced which should not seriously perturb 
matters further. In the numerator of the expression above, terms involving n 
will dominate, since n is assumed to be large. Including only these dominant 
terms, the two solutions are approximately 

Of course, in the Poisson case, the sample mean is simply the maximum 
likelihood estimator p. So, writing these solutions in their most general form, 
we have the following result. 

Approximate large-sample confidence interval for a Poisson 
mean 
If a random sample XI, 2 2 ,  . . . , X, is obtained from a population where 
the Poisson distribution is assumed to provide an adequate model for 
variation, then an approximate 100(1 - a)% confidence interval for the 
population mean p is given by 

where c is equal to T ,  the sample mean, and a is the 100(1- $a)% point 
of the standard normal distribution. 

For a Poisson distribution, the 
variance is equal to the mean. See 
Chapter 4, Subsection 4.1.3. 

The notation 'f' is a convenient 
abbreviation for the lower and 
upper confidence limits. For 
example, (a f b) means 
(a - b,a+ b ) .  
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Exercise 7.20 
The full childhood accident data initially described in Example 7.1 are given p 
in Table 7.5. 

Table 7.5 621 childhood accident counts, aged 4 to 7 
and 8 to 11 

0 
1 

Injuries 2 
aged 8 3 
to 11 4 

5 
6 

Injuries aged 4 to 7 
0 1 2 3 4 5 6 7  

101 76 35 15 7 3 3 0 240 
67 61 32 14 12 4 1 1 192 
24 36 22 15 6 1 2 1 107 
10 19 10 5 2 4 0 2 52 
1 7 3 4 2 0 0 0  17 
2 1 4  2 0 0 0 0  9 
1 1 1 1  0 0 0 0  4 

206 201 107 56 29 12 6 4 621 

The columns give injury counts between the ages of 4 and 7; the rows give the 
counts between the ages of 8 and 11. For instance, by reference to the column 
labelled '2' and the row labelled 'l', you can see that 32 of the '621 children 
sampled experienced two accidents between the ages of 4 and 7, followed by 
just one accident between the ages of 8 and 11. 

Summing across diagonals gives the frequencies for the total number of acci- 
dents sustained over the complete eight-year period. For example, the total 
number of children who had two accidents is 24 + 61 + 35 = 120. The data 
are summarized in Table 7.6. 

Table 7.6 621 childhood accident counts, 
aged 4 to 11 

0 1 2 3 4 5 6 7 8 9 1 0  
101 143 120 93 63 49 23 13 12 2 2 

Use the data in Table 7.6 to calculate a 95% confidence interval for the average 
number of accidents sustained by children between the ages of 4 and 11. State 
,any modelling assumptions you make. 

A reasonable rule of thumb for applying the central limit theorem to Poisson 
data in order to  calculate approximate confidence intervals for the mean p, is 
that the sample total should be at  least 30. (So, in this case, notice that you 
need not worry about the sample size.) 

7.4.3 The geometric model 
Approximate confidence intervals' for the parameter p of a geometric distri- 
bution, and for the mean p = l l p ,  are given overleaf. 

You are spared the details of the algebra here. The result is important. Notice 
that the confidence limits for the mean p in this case are not the reciprocals 
of those for the parameter p. This is because the limits were obtained in each 
case through an approximation, and what gets 'cut' differs in the two cases. 

295 
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Approximate large-sample confidence intervals for the par- 
ameter of a geometric distribution 

An approximate 100(1 - a)% confidence interval for the parameter p 
of a geometric distribution, based on a random sample X I ,  22,. . . ,X, is 
given by 

where p̂  = 1 / ~  is the reciprocal of the sample mean and z is the 
100(1 - $a)% point of the standard normal distribution. Equivalently, 
an approximate 100(1- a)% confidence interval for the population mean 
p is given by 

where j2 is the sample mean F. 

Exercise 7.21 111 

Chapter 6, Table 6.5 gives the lengths of runs of Douglas firs infected with H Armillaria root rot. Use the data to find a 99% confidence interval for the 
mean length of a run, and state any modelling assumptions you make. 

7.4.4 The Bernoulli model 
Approximate confidence intervals for the Bernoulli parameter, the probability p, 
may be obtained as follows. 

Approximate large-sample confidence interval for the Bernoulli 
probability p 

An approximate 100(1- a)% confidence interval for the Bernoulli prob- 
ability p, based on observing X successes in a sequence of n independent 
Bernoulli trials, is given by 

where p^ = x l n  is the maximum likelihood estimate of p, and where z is 
the 100(1 - ;a)% point of the standard normal distribution. 

Example 7.1 1 Smokers Wessely, S., Nickson, J. and 

Of a random sample of 7383 adults aged 18 and over chosen from the electoral B. (lgg0) Symptoms Of low 
blood pressure: a population study. 

register in England, Wales and Scotland in part of a study into low blood British Medical Journal, 
pressure, a proportion of 32.8% were found to be smokers. 362-365. 
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The reference does not give the actual number of smokers in the sample of 
7383. From other information supplied, it is possible only to deduce that 
the number is between 2419 and 2421. But the number is not necessary 
to calculate the confidence interval. Based on these data, a 95% confidence 
interval for the unknown proportion p of smokers in the population is 

Notice that in the Bernoulli case the width of the confidence interval is 
2z Jm. Now, it is fairly easy to see that for O 5 p̂  5 1 the maxi- 
mum value that the product 31 - p̂ ) can take is $, so the maximum possible 
width of the confidence interval is z / l / n .  If, a 98% confidence interval for 
p (so z = 2.326) not wider than 0.05 is required, then in the worst case the 
sample size will have to be at least 2165. 

Figure 7.5 gives the graph of the 
function $(l - 3 for 0 5 p^< 1. 
The graph is symmetric about 
p^= $,  where it attains its 
maximum value of i X i = $. 

0 0.5 

Figure 7.5 The graph of $(l - 3 ,  0 5 p̂  5 1 

As long as the number of 1s (Yeses) and the number of 0s (Noes) in your 
sample are both more than about five or six, then approximate confidence 
intervals calculated after applying the central limit theorem and using normal 
critical values should be reasonably accurate. 

Exercise 7.22 
An experiment was undertaken to examine the association between eye and 
hair colour in samples of Scottish school children. 

(a) Of 5387 children sampled in Caithness, 286 had hair classified as 'red'. 
Use these data to establish a 90% confidence interval for the proportion 
of Scottish children who have red hair. State any modelling and sampling 
assumptions you make. 

(b) Of 5789 fair-haired children sampled in Aberdeen, 1368 had blue eyes. 
Use this information to determine a 95% confidence G t e r v a l - f o e  pro- 
portion of fair-haired Scottish children who have blue eyes. State any 
assumptions you make. 

These are the famous 'Scottish 
school children' data of the 1940s. 
See Fisher, R.A. (1940) The 
precision of discriminant functions. 
Annals of Eugenics, 10, 422-429. 
See also Maung, K. (1941) 
Measurement of association in a 
contingency table with special 
reference to the pigmentation of 
hair and eye colour of Scottish 
school children. Annals of 
Eugenics, 11, 189-205. 



Elements of Statistics 

7.5 Inference without a model 

In all the cases we have met so far some sort of model for the variation 
observed has been postulated. This raises the question of how to begin a 
statistical analysis when no model for the data seems apparent either from 
physical considerations or from some underlying structure in the 'shape' of 
the data. 

What should your approach be if you are simply presented with a large mass 
of data, with the request (i) to estimate the mean p of the population from 
which the data were drawn, and (ii) to construct confidence intervals for the 
population mean? 

In this section we shall only be concerned with confidence intervals for the 
population mean, and not with other population characteristics. 

Probably the first thing you need to assume is that the data do indeed consti- 
tute a random sample from the population. (This does not necessarily hold, 
however, and you should not take this assumption lightly.) 

Next, it is probably reasonable to suppose that the best estimate for the 
unknown population mean p is the sample mean F. (This will not necessarily 
be the maximum likelihood estimate for p; but the sample mean F will be 
unbiased for p.) 

Then, if the sample size n is reasonably large, the central limit theorem can 
be applied, and you can assume that the sample mean X is approximately 

normally distributed. That is, 

where a2 is the unknown variance in the population. From this there follows 
the approximate probability statement 

where z is the 100(1 - ;a)% point of the standard normal distribution. This 
can be rewritten in terms of a probability statement about a random interval: 

The standard deviation a is of course unknown. If it was known that the 
underlying variation in the population was normal, then you would substitute 
the sample standard deviation s for a, and the  appropriate critical t-value 
for z .  Here, the obvious thing to do first is to replace the unknown standard 
deviation a by its estimate S. (There are arguments that a might just as well 
be replaced by the maximum likelihood estimate 3 with the n-divisor as by 
S ;  but these are not necessarily very good arguments.) 

There is, however, no good reason for replacing z in (7.11) by a critical 
t-value, even if the sample size is not great: the development of Student's 
t-distribution was as an accurate mathematical 'formula' for making prob- 
ability statements about the distribution of the sample mean when the 
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parent population is known to be normal, which is not the case here. So, in 
the end, what happens is quite simple: we just substitute s for a and leave z 
as it is. This leads to the following rule. 

I 

For a random sample X I ,  xz, . . . , X, drawn from a population where no 
distributional assumptions can be made, an approximate 100(1 - a ) %  
confidence interval for the population mean p is given by 

where n is the sample size, is the sample mean, s is the sample stan- 
dard deviation and z is the 100(1- ;a)% point of the standard normal 
distribution. 

Exercise 7.23 
Chapter 2, Table 2.9 gives data on library book usage: the number of times 
that each of 122 books was borrowed during the course of a year was counted. 

Without making any distributional assumptions about a statistical model for 
the variation in the number of annual withdrawals, use the data in Table 2.9 
to calculate a 90% confidence interval for the mean number of loans in a year. 

Exercise 7.24 
An experiment was conducted into the effects of environmental pollutants 
upon animals. For 65 Anacapa pelican eggs, the concentration, in parts 
per million of PCB (polychlorinated biphenyl, an industrial pollutant), was 
measured, along with the thickness of the shell in millimetres. 

The data are summarized in Table 7.7 

Table 7.7 PCB concentration (ppm) and eggshell thickness (mm) 
for 65 pelican eggs 

ppm mm ppm mm ppm mm ppm mm 

452 0.14 184 0.19 115 0.20 315 0.20 
139 0.21 177 0.22 214 0.22 356 0.22 
166 0.23 246 0.23 177 0.23 289 0.23 
175 0.24 296 0.25 205 0.25 324 0.26 
260 0.26 , 188 0.26 208 0.26 109 0.27 
204 0.28 89 0.28 320 0.28 265 0.29 
138 0.29 198 0.29 191 0.29 193 0.29 
316 0.29 122 0.30 305 0.30 203 0.30 
396 0.30 250 0.30 230 0.30 214 0.30 
46 0.31 256 0.31 204 0.32 150 0.34 

218 0.34 261 0.34 143 0.35 229 0.35 
173 0.36 132 0.36 175 0.36 236 0.37 
220 0.37 212 0.37 119 0.39 144 0.39 
147 0.39 171 0.40 216 0.41 232 0.41 
216 0.42 164 0.42 185 0.42 87 0.44 
216 0.46 199 0.46 236 0.47 237 0.49 
206 0.49 

Risebrough, R.W. (1972) Effects of 
environmental pollutants upon 
animals other than man. In 
Proceedings of the 6th Berkeley 
Symposium on Mathematics and 
Statistics, VI. University of 
California Press, 443-463. 
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We shall discover methods for exploring the association between shell thick- 
ness (or thinness) and degree of contamination later in the course. For the 
moment, use the data on shell thickness to determine a 95% confidence inter- 
val for the mean thickness of Anacapa pelican eggs. 

Summary 

If a single observation X is taken on a random variable X with a stated 
probability distribution indexed by a parameter 0 whose value is un- 
known, then a 100(1- a ) %  confidence interval (Q-, 0+) may be found by 
solving separately for 0 the two equations 

P ( X  5 X) = $a and P ( X  2 X )  = + a .  

The two solutions 0- and 0+ are called respectively the lower and upper 
confidence limits for the parameter 0. 

The interpretation of a confidence interval is as follows: in independent 
repeated experiments each resulting in the statement of a 100(1 - a ) %  
confidence interval for an unknown parameter 0, the expected proportion 
of intervals that actually contain the number 0 is 1 - a. 

For small samples from populations where the standard models are as- 
sumed, exact confidence limits may be calculated by reference to a stat- 
istical computer package; occasionally exact arithmetic computations are 
possible. 

For a random sample XI ,  X2, . . . , X, of size n from the normal distri- 
bution with unknown mean p and unknown standard deviation a, the 
sampling distributions of the sample mean and the sample variance 
S2 are as follows. 

The random variable 
- 
X - P  T = -  
S/+ 

is said to follow Student's t-distribution with n - 1 degrees of freedom. 
This is written T t(n - 1). Also, 

These distributions may be used to calculate confidence intervals for the 
parameters p and a2 (or B). 
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5. For larger samples from standard distributions, the central limit the- 
orem may be applied to construct approximate confidence intervals for 
unknown parameters. (Occasionally, further approximations are also in- 
troduced.) 

An approximate large-sample confidence interval for an exponential 
mean p is 

An approximate large-sample confidence interval for a Poisson mean p is 

An approximate large-sample confidence interval for the parameter p in 
a geometric distribution is given by 

An approximate large-sample confidence interval for the mean p of a 
geometric distribution is given by 

An approximate large-sample confidence interval for the Bernoulli prob- 
ability p is given by 

6. An approximate 100(1 - a)% confidence interval for the mean p of a 
population where no distributional assumptions have been made may be 
obtained by using 

where n is the sample size, 5 is the sample mean, s is the sample stan- 
dard deviation and z is the 100(1- ;a)% point of the standard normal 
distribution; the sample taken is assumed to be sufficiently large that the 
central limit theorem may be applied. 
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Testing hypotheses 

This chapter is about using statistics to test the validity of claims, propositions or hy- 
potheses. There are several ways of doing this, and the area is one which continues 
to excite some controversy among philosophers of statistics. Essentially, however, 
most approaches to testing reduce to the same question: does the sample we have 
collected support the claim made about characteristics of the population, or is there 
evidence that the claim may be false? 

In Chapters 6 and 7 samples of data were collected in order to explore proper- 
ties of the population from which those samples were drawn. Point and inter- 
val estimates were made for population parameters. The point has repeatedly 
been made that statistics derived from a random sample (for example, the 
sample mean and variance, and estimators generally) are themselves random 
variables. In this respect, point estimates only 'suggest' corresponding values 
for an unknown parameter. Arguably more usefully, confidence intervals de- 
rived from data can be used to suggest a range of plausible values for the 
parameter. In this context, the variation is evident in the upper and lower 
confidence limits, which are themselves random variables. 

This chapter completes the investigation by providing you with methods for 
investigating claims. Examples of the sorts of claims advanced that are 
amenable to statistical examination include the following. 

Eight out of ten dogs prefer Pupkins to any other dog food. 

Women enjoy watching soccer as much as men do. 

Drug A is better at bringing pain relief than drug B is. 

Before considering how such a claim might be tested, it is important to be 
absolutely clear about what it means, for only then can a suitable testing 
procedure be devised. 

Let us consider the first claim, possibly advanced by the manufacturer of the 
dog food in the course of an advertising campaign: 'Eight out of ten dogs 
prefer Pupkins to any other dog food.' This is not too problematical: it 
appears to mean that in the relevant population of dogs (perhaps all those in 
Britain), 80% of dogs presented with a choice of all available dog foods would 
select Pupkins; the other 20% would make a selection from the remainder. 

One way to test this would be to take a sample of dogs from the population of 

dogs in Britain, offer them the full array of available foods, and keep a record 
of which of them preferred Pupkins to all others. (There are some problems 

At the time of writing, there is no 
dog food on the market called 
Pupkins, and no allusion to any 
other trade name is intended here. 
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of definition here: does the phrase 'any other dog food' mean 'any other dog 
food you can buy in the shops' or could it mean 'anything at  all one might 
reasonably offer a dog to eat'? This second interpretation, if it is not too 
extreme an interpretation, raises real problems for the designer of the testing 
strategy.) 

This could be an expensive test in the cost of materials, and not necessarily an 
easy one to apply: it is not entirely clear how you persuade a dog to abstain 
from eating for as long as necessary for it to be made aware of the choice 
available. Maybe some alternative design, in which different dogs are offered 
a limited choice in different combinations, but where relevant conclusions 
about preferences could still be drawn, could be contrived: it is this sort of 
problem that it is one of the tasks of a statistician to address. 

Notice that there is implicit in the claim the idea that 'at least 80% of dogs 
prefer Pupkins'. One would not enter into dispute with the manufacturer 
if the evidence suggested that, say, 85% or 90% of dogs preferred Pupkins. 
(One might advise a manufacturer in these circumstances that their claim 
was, if anything, rather modest.) One would contest the claim only if there 
was evidence that their claim was inflated, and that in fact the underlying 
proportion was less than 80%. This is an example of what is known as a 
one-sided test. 

If in a small sample of 20 dogs, only 15 dogs showed the claimed preference 
for Pupkins, an observed sample proportion of 75%, only an unreasonable 
person would challenge the claim of an underlying 80%, for there is the usual 
perturbing feature of random variation to understand and make allowance 
for. Perhaps only if as few as 11 or 12 dogs, say, demonstrated the claimed 
preference (only just over half of the sample) would one seriously begin to 
doubt the manufacturer's figure. Or perhaps fewer still, if one wanted really 
strong evidence against it. (You might usefully pause for a moment here, 
and ask yourself at  what point you would start to entertain doubts about 
the claimed preference level.) What constitutes sufficient evidence to reject a 
claim or hypothesis, or at least to cast doubt upon it, is what this chapter is 
all about. 

The second claim was 'Women enjoy watching soccer as much as men do.' 
Again, it is useful to spend a short time being specific about what this means. 
It could refer to a kind of measure of enjoyment to be taken on people indulging 
in various activities (eating, watching television, listening to music, doing 
housework, and so on). Perhaps the statement means that in the population 
of women, the distribution of this measure for watching soccer is the same as 
the distribution of the measure among men. In principle this claim could be 
tested, though it begs the question of how the measurement might be taken. 

Alternatively, the intention behind the claim could be that in the population 
of those who enjoy watching soccer, the number of women is not substantially 
different from the number of men. This is a more easily comprehended notion, 
probably a reasonable interpretation of what was intended, and certainly one 
that is more easily tested. One might sample the spectators at one or more 
soccer matches, and count the men and women sampled; then devise some 
procedure for assessing whether or not the proportion of women is substan- 
tially different from $-that is, whether the sampled proportion is very much 
less than or very much greater than $. In either case, the claim would 



be rejected in the face of evidence to the contrary. This is an example of a 
two-sided test. 

(But it is still not entirely obvious that we have selected quite the right test 
procedure here. Is !j the appropriate fraction to test? Were 'men' and 'women' 
intended to include boys and girls? Some of them enjoy watching soccer. Did 
the word 'watching' mean 'at a football ground' or was the intention to cover 
television broadcasts of games? Finally, was the real intention behind the 
claim that 'women enjoy watching soccer at least as much as men do (contrary 
to what you might think)'? In which case the appropriate test would be one- 
sided.) 

As regards the final example, 'Drug A is better at bringing pain relief than 
drug B is', similar questions are raised. What does the word 'better' mean in 
this context? Faster? More efficacious at relieving intense pain? Or merely 
more cost-effective? Once that is clarified, a test procedure may then be 
designed. Here, it is worth noting that no numbers are included in the claim 
(like the explicit 80% in the first example). We are not (for the purposes of 
exploring the hypothesis) concerned with the absolute performance of drug A 
or of drug B, but with the difference in their performance. Notice, incidentally, 
the claim that drug A is better than drug B, not merely different from drug B: 
an appropriate hypothesis test in this case will be one-sided. 

Usually matters do not require this sort of microscopic and pedantic interpret- 
ation, but it is important to be very clear about what is being claimed, and 
what is being tested, and how. The British physicist, mathematician, biol- Fisher himself claims not to have 
ogist and geneticist, Ronald Aylmer Fisher (1890-1962) of whom more later, been a mathematician, though 

and whose contributions to the discipline of statistics are immense, viewed biographers 'lassify him as 
one! 

hypothesis testing as an art, not reducible to a procedural task list. He wrote: 
'Constructive imagination, together with much knowledge based on experience Fisher, R.A. (1939) On "Student". 
of data of the same kind, must be exercised before deciding on what hypoth- Annals of Eugenics, 9, 1-9. 

eses are worth testing, and in what respects. Only when this fundamental 
thinking has been accomplished can the problem be given a mathematical 
form.' 

In Section 8.1, a straightforward approach to testing is taken as follows. First, 
the claim is reinterpreted as a statement about the value of some unknown 
population parameter. Then a random sample is taken from the population 
in such a way that light is shed on the value of the parameter: in particular, 
so that a confidence interval can be developed for it. This means that we 
will need a probability model for the variation observed. If the confidence 
interval contains the hypothesized parameter value, then the conclusion is 
reached that the sample provides no evidence to dismiss the claim. However, 
if the interval does not contain the hypothesized value, then the conclusion is 
reached that there is evidence to doubt the claim. 

In this way, a decision rule has been developed for deciding whether or not 
to reject a hypothesis. Notice that the decision rule will depend on the level 
of confidence adopted. ,As a method for illustrating the approach, tests will 
be described in this section for hypotheses about the value of a Bernoulli 
parameter p and for a Poisson mean p. 
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Notice, incidentally, the wording used here: whatever the results .of the test, 
there is no implication that the clairn is accepted as 'true'. There is a principle 
of falsifiability rather than verifiability in operation here. A hypothesis is 
either rejected in the light of the evidence, or not rejected (because there is 
insufficient evidence to reject it). In other words, statistics may be used not 
to prove the truth of something, merely to provide more or less evidence for 
its falsity. 

In Section 8.2, an approach called fixed-level testing is taken. The approach 
is similar to, but not quite the same as, the approach outlined in Section 8.1. 
Tests for the value of a normal mean p are described, and in particular you 
will learn about Student's t-test for dzerences. This latter test is appropriate 
where the same individual has had two measurements taken under different 
circumstances (for example, pulse rate before and after light exercise, or re- 

' action times one hour after ingesting alcohol and after a day's abstinence) 
and the main question is whether perceived average differences are 'real', or 
merely manifestations of random variation. 

In Section 8.3, an approach called significance testing is described; this is the 
approach that is followed in the rest of the chapter. The main feature of a 
significance test is that rather than provide a decision rule for the rejection of 
a hypothesis (though it can be used to provide a decision in a very straightfor- 
ward way), it provides an assessment of the extent to which the data support 
the null hypothesis. Again, a number of specific tests appropriate to particu- 
lar circumstances are described. Some of the tests involve rather awkward 
arithmetic calculations, the details of which you are spared, but as in other 
parts of the course it is assumed that you have access to statistical software 
which would enable you to perform these tests yourself. For larger samples, 
the central limit theorem applies and approximate normal distribution theory 
can be used. 

In practice the three approaches involve some assumptions and procedures 
that are common to all: the differences reside mainly in the form of words in 
which the conclusions of tests are stated. In most usual situations, the results 
of a significance test can always be called upon to provide a decision, while 
the first two approaches do not allow the casual assessment of data that a 
significance test permits. 

In all of these first three sections, we shall be dealing with one-sample tests. 

These are tests where a random sample has been drawn from a single popu- 
lation in order to test some claim about the characteristics of that population. 
This provides an easy context in which to introduce the testing approaches. 

However, it is more commonly the case in practice that what is being tested 
is a claim that two populations are similar in some respect. To proceed with 
such a test, samples are drawn from both populations and any differences 
between the two samples are scrutinized for their importance. Are they 'real' 
differences, or merely evidence of random variation? These questions are 
addressed in Sections 8.4 and 8.5. In Section 8.4 we shall study the two- 
sample t-test, one of the most important comparative tests available to the 
statistician. In Section 8.5 some exact tests for small samples are described- 
again, the arithmetic can become very awkward, and it is assumed that you 
have a computer available to you when you need to perform these tests. 

In fact, in stating the conclusion of 
a test one might speak loosely of 
'acceptance' of the null hypothesis, 
or of the null hypothesis being 
'true', if for no other reason than 
that the language is sometimes less 
awkward. But you should be aware 
of the problems involved in 
attempting to use statistics to 
'prove' something. 
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8.1 An approach using confidence 
intervals 

8.1.1 Exact tests 
In this approach, direct use is made of confidence intervals developed accord- 
ing to the methods of Chapter 7. The aim of this approach is to determine 
from data whether or not a hypothesized parameter value is plausible, by list- 
ing those values that do seem plausible and seeing whether the hypothesized 
value features on the list. This approach can be illustrated most easily by 
means of an example. 

Example 8.1 Testing a hypothesis about a proportion 
This example is about testing the random generator within a computer pro- 
gram. As you saw in Chapter 3, Example 3.17, where a faulty program gen- 
erated a perfectly regular sequence of the ten digits O,1,2,. . . , 9  

there is more to a strict test in this context than a simplistic assessment of More sophisticated tests for 
digit frequencies; but, for the moment, let us keep things simple. sequences are developed in 

Chapter 12. 
The problem in this case is to use a computer to simulate successive rolls of 
a perfect die, and to count the proportion of 6s. If the observed proportion 
is sufficiently close to $, then the program will be deemed satisfactory. If not 
(i.e. too many 6s, or too few), then the program will be called unsatisfactory 
and some alternative way found to simulate the rolls of the die. 

The results of 100 rolls are shown in Table 8.1. In what is intended to be a se- 
quence of Bernoulli trials (or, strictly speaking, since the computer algorithm 
is really rather complicated, in what is intended to be indistinguishable from 
a sequence of Bernoulli trials) a 0 indicates that a 1 ,2 ,3 ,4  or 5 was rolled; a 
1 indicates a 6. 

Table 8.1 Throwing a 6: computer simulation 

In this example there were ten 6s thrown in a total of 100 rolls of the sup- 
posedly fair die, rather fewer than expected. The question arises: does this 
experiment provide any substantial evidence that the die is biased (that is, 
that the program generating the throws is flawed)? 

An exact 90% confidence interval for p, the underlying proportion of 6s, is 
provided by the methods of Chapter 7; assuming a binomial model B(100,p) 
for the number of 6s to occur in 100 rolls of the die, it is 

A confidence interval can be used to provide a decision rule for a test of 
a hypothesis about the value of a model parameter. The most noticeable 
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feature of this confidence interval is that it does not contain the theoretical 
(or assumed) underlying value p = i = 0.1667. The conclusions of this simple 
test may be stated as follows. 

In a test of the hypothesis that p = i ,  there was evidence at  the 10% level of 
significance to reject the hypothesis in favour of the alternative that p # i; 
in fact, having performed the test, there is some indication from the results 
of the test that p < i. W 

There are a number of features of the testing procedure to notice here. Most 
obviously, the raw material for the statistical testing of a hypothesis is the 
same as that for the construction of a confidence interval: we require data; 
we need an underlying probability model; and we need to have identified a 
model parameter relevant to the question we are interested in answering. 

What has altered is the form of the final statement: rather than listing a range 
of credible values for an unknown parameter, at some level of confidence, a 
statement is made about whether or not a hypothesis about a particular 
parameter value is tenable, at some assigned level of significance. Notice 
that in this example the significance level has been expressed as a percentage, 
and is equal to 100 minus the confidence level used to perform the test. (This 
is just the way the conventional language has developed.) 

Example 8.1 continued 
An exact 95% confidence interval for the binomial parameter p, based on a 
count of 10 successes in 100 trials, is 

In this case the hypothesized value p = i is contained in the confidence in- 
terval: in other words, at  this level of confidence, and based on these data, 
it seems a plausible value. The conclusions of the corresponding test may be 
stated as follows. 

In a test of the hypothesis that p = i,, there was insufficient evidence at the 
0.05 level of significance to reject the hypothesis in favour of the alternative Here the significance level has been 
t h a t p # i .  expressed as a number (0.05) 

between 0 and 1, rather than as a 
percentage (5%). Either 
formulation is common. 

It is worth noticing that in our statement of the hypothesis p = i, and in 
the context of the problem, there has been the implication that either a 
sample proportion too high (suggesting p > k) or a sample proportion too 
low (suggesting p < i) would both offer evidence to reject the hypothesis. In 
the jargon, we have performed a two-sided t e s t  (sometimes called a two- 
tailed test) .  In other contexts, the implication will be that only extreme 
values in one direction would offer serious evidence against a proposition. 
The dog food example illustrates this: to refute the manufacturer's claim 
that the preference rate was 80%, only evidence suggesting it was lower than 
this would normally be of interest. But, in general, you need to have a very 
clear understanding of what is being suggested, that is, of the implications of 
a hypothesis, when you are setting up an appropriate test. 

308 
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The approach may be summarized as follows. Characteristics of a population 
may be expressed in terms of a parameter 8  in such a way that the hypothesis As in Chapters 6 and 7, the 
under test takes the form 8  = 80, where 80 is some specified value. This is convention of using 0 as the symbol 

called the null hypothesis and is written for a general parameter is adopted 
here. 

The alternative hypothesis id that the claim is false: this is written 

H 1 : 8 # B o .  In other testing scenarios, the 
alternative hypothesis might be 

We then collect data on an appropriate random variable where the variation H, : 0 > 0, H~ : 0 < eo. We shall 
observed may be expressed through a probability model indexed by 8. Using look at one-sided tests involving 
the data, we construct a 100(1 - a)% confidence interval for 8  in the form hypotheses like these later. 

Our decision rule for rejecting the null hypothesis H. depends on whether 
the hypothesized value 00 of 0  is, or is not, contained in this list of plausible 
values. 

Use this approach when attempting the following exercise. Be explicit in your 
statement of the null hypothesis Ho, of the alternative hypothesis HI and 
of the underlying probability model on which your confidence interval, and 
therefore your decision rule, is based. 

Exercise 8.1 
A different computer, and a different statistical package, was used to generate 
the results of a sequence of Bernoulli trials, where the intention was that the 
probability of success at any trial should be p = g. The results of a sequence 
of 25 trials are shown in Table 8.2. 

Table 8.2 Computer simulation: p = 

0 0 0 1 0 0 1 0 0 1 0 1 0  
1 0 1 1 0 0 1 1 0 0 0 1  

Ignoring the fact that a simple test of the observed sample proportion against 
the hypothesized value p = does not itself constitute a test that the results 
were generated independently, perform a test as follows. 

(a) Find a 95% confidence interval for p based on the observed sequence of 
trials. 

(b) Hence perform a test at significance level 0.05 of the hypothesis that 
the underlying proportion of successes is p = g,  against the alternative 
hypothesis that the underlying proportion is different from g. 

(c) In a similar way, perform a test at significance level 0.01. 

Example 8.2 illustrates testing a statement about a Poisson mean. 
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Example 8.2 Cycle usage 
In Chapter 4, Example 4.1 it was stated that on average, a typical cyclist 
will get caught in the rain on about 15 occasions a year. A cyclist interested 
in checking this claim kept a diary for a year of meteorological occurrences 
(among other things) during cycle rides. During the year she got wet 8 times. 
Is there sufficient evidence here to challenge the claim? 

Before we can proceed to answer this question, several matters need to be 
clarified. First, we require a probability model on which to base a hypoth- 
esis test. (We have the data; but so far, no explicit statement of two other 
requirements for a test-a model and a parameter.) Previously, a Poisson 
model for the incidence of rain has been assumed: let us continue with this 
assumption. Second, we need to state a parameter whose value is the subject 
of the test. In this case an obvious choice is the Poisson mean p. Third, we 
need to be clear whether this is a two-sided test. There is no indication that 
before the data were collected, the experimenter suspected Richard's estimate 
of 15 occasions a year to be an overestimate-this is only apparent after the 
data were collected. So it is reasonable to suppose that the claim under test 
is the claim H. : p = 15; the alternative hypothesis is HI  : p # 15. 

Finally, there is one rather subtle matter to be sorted out. Richard's estimate 
of 15 times a year was for a 'typical' cyclist. It may be that the person 
performing the test (that is, the person who kept the diary yielding the data) 
is atypical in some way: perhaps she never goes out if the weather forecaster 
mentions the word 'rain', or perhaps she goes out only on Sundays, or perhaps 
she is a city delivery courier whose job consists largely of riding around on a 
bicycle. Any one of these considerations dooms the test of Richard's claim. 
Let us assume (the whole matter is rather imprecise) that the test is a fair 
one. 

No significance level has been specified for the test. An exact 90% confidence 
interval for a Poisson mean p, based on the single observation 8, is given by 

(p-, p+) = (3.98,14.43). 

This confidence interval does not contain the hypothesized value p = 15 and 
your conclusion should therefore be as follows. 

Based on the single observation 8, and assuming a Poisson model for the 
variation in the incidence of wet journeys for a typical cyclist, the null hy- 
pothesis H. : p = 15 is rejected at the 10% level of significance (or at level of 
significance 0.10), in favour of the alternative hypothesis that p is somewhat 
different from this, HI : p # 15. (In fact, there is some evidence from the data 
that the hypothesized value is an overestimate.) 

But notice how close things are: the value p = 15 is only just outside the 90% 
confidence interval obtained from the data. A 95% interval for the Poisson 

mean p is furnished by 

(p-, p+) = (3.45,15.76), 

and this wider confidence interval does contain the hypothesized value. In 
this case one would reach the following conclusion. 

Ballantine, R. (1975) Richard's 
Bicycle Book. Pan, Great Britain. 

If the Poisson mean p is the 
obvious choice of parameter to test, 
nevertheless it is not the only 
choice. Another interpretation, for 
example, is that the median 
number of occasions when it rains 
is 15. 

See Chapter 7, Subsection 7.2 .2 .  

Based on the single observation 8 per year and assuming a Poisson model, 
there is insufficient evidence at the 5% level of significance to reject the hy- 
pothesis that the annual average is 15. 
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Notice that the sparsity of data has resulted in very wide confidence inter- 
vals: two years' data, or more, would provide a much more informative test. 
Perhaps the observation 8 is unusually low, and the mean really is about 15; 
perhaps Richard's figure really does overestimate things, and the observation 
8 is much more representative of what one might expect. I 

The next exercise asks you to test a hypothesis about traffic rate, based on 
the Kwinana Freeway traffic data in Chapter 2, Table 2.11. The wording of 
the exercise is very explicit about the probability model you should assume 
for the observed variation in the waiting times. Again, be clear about the 
parameter you are testing and write down explicit statements of the null and 
alternative hypotheses. 

Exercise 8.2 
The Kwinana Freeway data list the waiting times (in seconds) between suc- 
cessive vehicles in free-flowing traffic. Assuming an exponential model for the 
variation in waiting times, test the hypothesis that the mean traffic flow rate 
is 10 vehicles per minute. Perform the test at levels of significance 0.10, 0.05 
and 0.01. 

In all the examples of tests used in this section, the hypothesis under test has 
taken the form H0 : 0 = 60, where 60 is some specified value (e.g. p = 15 or 
p = i). The alternative hypothesis has been the converse of this, that is, of 
the form HI : Q # OO. In other words, all the tests that have been performed 
have been two-sided. 

There is a very simple reason for this: in the whole of Chapter 7, only two- 
sided confidence intervals of the form (&, 0+) were constructed. So-called 
'one-sided' confidence intervals of the form 

or perhaps (-m, Q+) or (0-, 1) are an almost immediate extension, and may 
be used to test one-sided hypotheses. In Section 8.2 a testing approach is 
introduced that will permit one-sided tests (as well as two-sided tests) to be 
performed in a very direct and evident way. 

8.1.2 Large-sample tests 
Just as in the case of constructing confidence intervals from large collections 
of data (see Chapter 7, Section 7.4), the central limit theorem can be cited in 
order that tests may be based on normal distribution theory. (If nothing else, 
this reduces your reliance on computer software.) 

A normal approximation to a confidence interval is used in Example 8.3. 

One-sided confidence intervals 
include one limit drawn from data; 
the other limit follows from 
consideration of the nature of the 
parameter. For instance, any 
probability is at least 0, and at 
most 1; a Poisson mean cannot be 
negative. This course does not deal 
explicitly with one-sided confidence 
intervals. 
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Example 8.3 Yeast cells on a microscope slide 
Some of 'Student's' original experiments involved counting the numbers of 
yeast cells found on a microscope slide. The results of one experiment are 
given in Chapter 2, Table 2.5. This table gives the numbers of yeast cells 
observed in each of 400 small squares on a slide. The number varies between 
0 and 5. It is required to use these data to test the null hypothesis 

that the mean number of cells per slide is 0.6, against the alternative hypoth- 
esis 

Suppose that a Poisson model is assumed for the variation in counts. So for 
the purposes of our test we have identified an appropriate probability model 
with an indexing parameter directly relevant to the hypothesis of interest; 
also, we have data. The observed sample mean is 

No significance level has been stipulated for the test: let us use a = 0.05. Use of the symbol cu in a testing 
Then an approximate 95% confidence interval for the unknown Poisson mean context matches its use in the 

p is given by specification of confidence levels. 
See Chapter 7, Section 7.4 for the 
derivation of large-sample 
confidence intervals. 

This confidence interval does not contain the hypothesized mean p,, = 0.6, 
and so the null hypothesis is rejected in favour of the alternative hypothesis 
at level of significance 0.05. 

In the following exercise, you should use the appropriate large-sample confi- 
dence interval to perform your test (that is, a confidence interval based on the 
normal distribution). 

Exercise 8.3 
This exercise is based on data published by Gregor Mendel, an early explorer R 
of the science of genetics. Several of his experiments reduce to counting the 
number of successes in a sequence of Bernoulli trials in order to test a hypoth- 
esis about the value of the Bernoulli parameter p, the underlying probability 

of success. 

In this exercise, you are invited to follow Mendel's footsteps in an analysis of 
his experimental data. 

(a) Test the null hypothesis H. : p  = $ against the alternative HI : p  # $, 
based on an obserdd 787 successes in 1064 trials. (These are the results 
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of Mendel's seventh experiment in what became known as the 'first series'. 
In this case he was counting the number of yellow peas in a collection of 
first-generation pea plants. The 'failures' were green peas.) Use a 10% 
significance level for your test. 

(b) Test the null hypothesis H,-, : p = given 60 successes in 100 trials (fifth 
experiment, second series). Perform your test at  level of significance 0.05. 

(In 1936, R.A. Fisher concluded on the basis of tests that Mendel had falsified 
his data. The results Mendel quoted from his own experiments seemed 'too 
good to be true' in that they varied too little from the results that would have 
been expected, if Mendel's genetic theories had been correct. In experiments 
like this, Fisher argued that random variation would make it unlikely that the 
estimate p̂  of p would turn out to be as close to the hypothesized value of p 
as Mendel had reported. 

Fisher's conclusion was refuted in 1984 and in subsequent papers by the re- 
searcher, Ira Pilgrim, and the case has been much discussed in the literature. 
Altogether 14 of Mendel's experiments have been analysed, seven from each 
of the first and second series. In 1985, Monaghan and Corcos wrote of the 
controversy: 'There seems to be no satisfactory solution to this problem at 
present, at least not in the statistics'. Pilgrim's 1986 paper ends with the 
words 'I can conclude from the above that there is no reason whatever to 
question Mendel's honesty'.) 

In Section 8.2 an alternative approach to testing is described. In this approach, 
it is not the hypothesized parameter value that comes under direct scrutiny: 
instead, the data are examined to see whether they are consistent with the 
hypothesis or whether they depart from what might have been expected and 
in a manner forecast by the alternative hypothesis. 

8.2 Fixed-le vel testing 

Although there is no particularly compelling reason for this, you have seen 
that it is very common to utter confidence statements at predetermined levels 
of 90%, 95% and 99%. Similarly, it is very common to perform tests of 
hypotheses at predetermined significance levels. This is what is meant by a 
fixed-level test. It is common to choose levels such as 10%, 5% and 1%. In 
this section an interpretation of a significance level as a probability is provided. 
Also, you will see how to perform one-sided tests. 

The aim of this approach is, as before, to develop a decision rule for rejection of 
a null hypothesis in favour of a stated alternative, at some predetermined level 
of significance. It will become obvious to you that the method of hypothesis 
testing advanced in this section can be applied in any context where a clear 
probability model has been specified. It is therefore not the intention here to 
offer examples and illustrations of all possible contexts, but only of a small 
selection of typical testing scenarios, so that the procedure is clear (even if 
the method is not exemplified in every possible case you might come across). 

Fisher, R.A. (1936) Has Mendel's 
work been rediscovered? Annals of 
Science, 1, -115-137. 

Pilgrim, I. (1984) The too-good-to- 
be-true paradox and Gregor 
Mendel. J. Heredity, 75, 501-502. 

Monaghan, F. and Corcos, A. 
(1985) Chi-square and Mendel's 
experiments: where's the bias? 
J. Heredity, 76, 307-309 and 
Pilgrim, I. (1986) A solution t o  the 
too-good-to-be-true paradox and 
Gregor Mendel. J. Heredity, 77, 
218-220. 
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8.2.1 Performing a fixed-level test 
We have seen that in order to perform a hypothesis test, the first requirement 
is for a clear statement of what that hypothesis is: this is usually expressed 
in terms of the parameter of a probability model. This implies, just as for the 
construction of confidence intervals, that we need to have decided on a usable 
probability model; that this model should be indexed by a parameter which 
really does encapsulate the intention behind the statement of the hypothesis; 
and, of course, we need data on which to base our test. 

Further, we need to decide on an alternative hypothesis which will indicate 
the sort of departure from expectation that would be of interest-that is, we 
need to determine whether our test is to be one-sided or two-sided. 

It will be useful if at this stage a little more terminology is introduced. You 
have seen that the hypothesis to be tested is usually called the nu11 hypothesis, 
and the symbol H. is used to denote the null hypothesis. The hypothesis to 
be regarded as an alternative to this is called the alternative hypothesis and is 
denoted by the symbol H I .  In general, the choice of the alternative hypothesis 
depends on our purpose in performing the hypothesis test, and should reflect 
this purpose. 

Their general statement might take the form 

Possible variations on this (depending on the intention behind the claim under 
investigation) are 

Of course, these are only helpful statements if the role of the parameter O0 
is clear: this means that data relevant to the hypothesis under test need to 
be collected, and a random variable indicative for the test needs to have been 
identified. The statistic used to test a hypothesis (often the sample mean or 
the sample total; possibly the sample maximum, the sample median or some 
other quantity calculated from the data) is called the test statistic. The 
distribution of the test statistic if the null hypothesis H. were true is called 
the distribution of the test statistic under the null hypothesis or, 
more conveniently, the null distribution of the test statistic. 

8.2.2 Testing a hypothesis about a normal mean 
As before, let us begin with an example. This will serve to illustrate the main 
features of a fixed-level test. 

Example 8.4 Pretzels 
This is an example about a claim made on packaged goods about what the 
package contains-a common situation. A company producing snack foods 
used a machine to package pretzels in bags with a labelled weight of 454 grams. 
Every so often, the product was monitored by taking a selection of bags from 

314 
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the production line and weighing them. In one experiment 50 bags were 
weighed. The results of the experiment are shown in Table 8.3. 

Table 8.3 . Weights of 50 bags of pretzels (grams) 

464 450 450 456 452 433 446 446 450 447 
442 438 452 447 460 450 453 456 446 ,433 
448 450 439 452 459 454 456 454 452 449 

The purpose in collecting these data is to determine whether the machine is 
'working correctly'. That phrase itself is open to more than one interpretation 
(for example, is the machine sealing the bags of pretzels adequately?) but let 
us take it to mean that the average weight of bags produced on the line is 
indeed 454grams. In other words, we wish to test the null hypothesis 

'Working incorrectly' could mean simply that the bags are either underweight 
or overweight; and that is what we shall take it to  mean here. But it is 
worth remarking that the consequences of selling underweight bags (possible 
legal action under the trade laws) are quite different from the consequences of 
selling overweight bags (additional manufacturing costs and reduced profits), 
and it may be that the original purpose of the test was to explore only whether 
one of these was occurring. That would imply a one-sided test; however, we 
have decided to set up a two-sided test and therefore write the alternative 
hypothesis as 

HI : p # 454. 

Our next requirement is to set up a test statistic and the corresponding null 
distribution. We shall need a probability model for the variation observed. 
Figure 8.1 shows a histogram of the data. 

Frequency 

1 0 4  

430 440 450 460 

\.Veight (g) 

Figure 8.1 Weights of 50 bags of pretzels (grams) 

Weiss, N.A. and Hassett, M.J. 
(1991) Introductory Statistics, 3rd 
edition, Addison-Wesley, 
Massachusetts. 

The sample size of 50 is not very large, and this is reflected in the relative 
jaggedness of the histogram in the figure; but it does seem that a normal Another good reason for choosing a 
model might be adequate for our purposes. This achieved, we need to identify normal model here is that no better 

a test statistic, based on the sample, whose distribution involves the unknown One SpringS very to mind. 

parameter p, but no others. 
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This sort of problem is familiar from Chapter 7. Denoting by X the actual 
weights of bags of pretzels, we adopt the model 

to reflect the variation in weights. For samples of size 50 from this distri- 
bution, either the sample total or the sample mean has a reasonably simple 
distribution, involving the unknown parameter p: 

50 

~ x i ~ N ( 5 0 p , 5 0 $ )  and X N N  
i=l 

Unfortunately, both these statistics also have distributions that involve the 
parameter a2, a nuisance parameter in that it is unknown and anyway ir- 
relevant to the matter in which we are most interested.. However, we know one 
other useful test statistic for samples from a normal population, whose distri- 
bution involves the population mean p but not the population variance u2. 

We know that for a sample from a normal distribution with unknown mean p 
and unknown variance u2, the distribution of the sample mean X is usefully 
given in terms of Student's t-distribution as 

(8.1) See Chapter 7, page 285. 

where n is the sample size and S is the sample standard deviation. 

If we use this as our test statistic, then the null distribution of T (that is, the 
distribution of T if the null distribution H. : p = 454 were true) for samples 
of size 50 is given by 

You can see from the form of the test statistic T in (8.2) that if the observed 
sample mean z is less than 454 then the corresponding observed value t of 
the test statistic T will be negative; if the observed sample mean 3 is greater 
than 454 then the observed value of T will be positive. 

The idea of fixed-level testing is to see whether or not the observed value t 
of T is consistent with this null distribution. We wish to determine a precise 
rule for whether we reject the null hypothesis in favour of the alternative or 
whether, in fact, we accept the null hypothesis. 

4 
4 8 ~ 4  

.We achieve this by determining in advance what values of T we would regard - 1.677 l 677 

as extreme. This is fairly straightforward: we have already referred to tables Figure 8.2 and for 
of Student's t-distribution to determine quantiles for the t-distribution. t (49)  

Let us suppose a test is to be performed at the 10% level of significance. Then 
our procedure is to identify the 5% quantile q0.05 for t(49) and also the 95% 
quantile q0.95. Here, qo.05 = -1.677 and q0.95 = 1.677 (by reference to tables 
or a computer and using the symmetry of the t-distribution). These values are 
shown in Figure 8.2. Our decision rule for the test is: if the observed value t 
of the test statistic T is so small (i.e. less than -1.677) or so large (i.e. greater 
than 1.677) that a significant departure from expectation is indicated, then 
we will reject the null hypothesis in favour of the alternative hypothesis HI 
at level 0.10: for there is evidence inconsistent with Ho. The shaded region in 
Figure 8.3 illustrates this decision criterion: it is called the rejection region. 

These quantiles were obtained from 
a computer and not from Table A5, 
which contains no row 
corresponding to 49 degrees of 
freedom for the t-distribution. 
However extensive your tables are, 
they cannot cover every 
eventuality. 
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Figure 8.3 The observed value t = -2.34 of the test statistic T 

At the penultimate stage in the test, we need to calculate the test statistic for 
the observed sample. For the pretzels data in Table 8.3, we have the summary 
statistics 

and, therefore, the corresponding value of t is 

Thus, in this example, the observed value of the test statistic lies in the 
rejection region (see Figure 8.3). Finally, we need to state the conclusions 
of the test. 

Based on the sample collected, there is evidence at the 10% level of significance 
that the mean weight of bags of pretzels from the production line is not equal Sometimes the phrase 'the 
to the hypothesized value of 454 grams. (In fact, the data suggest that the underlying mean is signif icantly 

d i e r e n t  from the hypothesized 
mean', is used. bags are underweight.) W 

The strategy for a fixed-level test may be summarized as follows. 

Fixed-level testing 
In a fixed-level test: 

1 determine the null hypothesis H. and the alternative hypothesis HI 
appropriately (for a one- or two-sided test); 

2 decide what data to collect that will be informative for the test; 

3 determine a suitable test statistic and the null distribution of the test 
statistic (that is, the distribution of the test statistic when H0 is true); 

4 use the stated level of the test and the form of HI  to determine the 
rejection region for the test; for this, you will need to calculate quantiles 
of the null distribution; 

5 collect your data and evaluate the observed value of the test statistic 
for the sample; 

6 by determining whether or not the observed value of the test statistic 
lies in the rejection region, decide whether or not to reject the null 
hypothesis in favour of the alternative; 

7 state your conclusions clearly. 
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In many testing contexts, the appropriate test statistic to use is usually the 
sample mean or the sample total. Often the null distribution is tractable (that 
is, reasonably easy to work with) and well-known (for example, the sum of 
independent observations on a Poisson variate itself has a Poisson distribution; 
in samples drawn from a normal population the sample mean is itself normally 
distributed). However, there is more to it than this: in any testing situation 
where data have been collected, all sorts of features of the sample could be 
used to test the null hypothesis, such as 

the sample mean; 
the sample total; 
the sample median; 
the sample maximum; 

to name just a few. All of these may be useful indicators of the truth or 
otherwise of a hypothesis, but some are more useful-leading to more power- 
ful tests-than others. In a technical sense, one test of a particular set of 
hypotheses is more powerful than another if it leads to a higher probability of 
rejecting the null hypothesis when the null hypothesis is false. Identification 
of powerful tests involves subtle (and often mathematically quite difficult) 
considerations-we shall not enter into them, but at the end of Section 8.3 
some famous names from the fundamental development of tests for hypotheses 
are mentioned. 

The test used in Example 8.4 for the mean of a normal distribution is called 
the t-test or Student's t-test (though, actually, R.A. Fisher had a lot to 
do with its development). This is one of the most commonly used tests in 
statistics, for as we have seen the normal distribution is a useful model for 
variation with many different applications. 

Exercise 8.4 
Most individuals, if required to draw a rectangle (for example, when compos- R 
ing a picture) would produce something not too 'square' and not too 'oblong'. 
A typical rectangle is shown in Figure 8.4. 

Figure 8.4 A typical rectangle 

The Greeks called a rectangle 'golden' if the ratio of its width to'its length was 
i(fi - 1) = 0.618. The Shoshoni Indians used beaded rectangles to decorate 
their leather goods. The data in Table 8.4 are the width-to-length ratios for DuBois, C. (1960) Lowie's Selected 
twenty rectangles, analysed as part of a study in experimental aesthetics. Papers in Anthropology, University 

of California Press, pp. 137-142. 
Table 8.4 Width-to-length ratios, Shoshoni rectangles 

0.693 0.662 0.690 0.606 0.570 0.749 0.672 0.628 0.609 0.844 
0.654 0.615 0.668 0.601 0.576 0.670 0.606 0.611 0.553 0.933 
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Assuming a normal model for the variation in observed ratios, test the null 
hypothesis 

H. : p = 0.618 

against the alternative hypothesis 

HI : p # 0.618 

at  the 5% level of significance. 

In Example 8.4 and in Exercise 8.4, the aim was to test for a particular speci- 
fied mean p .  There is one important further application of the t-test where 
the data take the form of differences, and the aim is to test the hypothesis 

H o : p = O  

that the mean difference is zero. 

8.2.3 Student's t-test for zero mean difference 
In Example 8.4 a test gas  performed of the hypothesis H. : p = 454 assuming 
a normal model with unknown variance, and involving a test statistic following 
Student's t-distribution. This is an important test with many applications. 

One particular application is where the observations are the differences in 
matched pairs of observations. An example of this was given in Chapter 7, 
Table 7.3, where Student's data on the effects of two different hypnotics on 
sleep duration are listed. 

The aim of the test was to determine whether there was a significant differ- 
ence in sleep gain between the hypnotics L-hyoscyamine hydrobromide and 
D-hyoscyamine hydrobromide. An interesting preliminary test, however, is 
whether the hypnotics themselves have an effect. 

The sleep gain (measured in hours) for the ten individuals who were prescribed 
L-hyoscyamine hydrobromide are reproduced here in Table 8.5. 

These data are individual dzfferences between the length of time asleep af- 
ter taking L-hyoscyamine hydrobromide and the length of time asleep after 
taking no drug. The differences are all positive except the fifth, and this 
remark alone suggests that the hypnotic L-hyoscyamine hydrobromide is ef- 
fective at  prolonging sleep. However, a formal test of the hypothesis that the 
prescription in fact makes no difference to the duration of sleep might take 
the form 

H 0 : p = O ,  

where the parameter p is the mean underlying sleep gain. For a test of this 
hypothesis, it is necessary to provide a model for the variability in observed 
gain. This data set is very small and a histogram is not likely to display much 
in the way of persuasive evidence for or against a normal model; however, we 
do require a continuous model for variation that will permit negative as well 
as positive observations, and in this regard the normal model is essentially 
the only one available to us. 

Again, the obvious test statistic to use in this context is based around the 
sample mean D, but we need to take account \of the fact that the variance a2 

Table 8.5 Sleep gain (hours) 

Patient Gain 

Here, the random variable has been 
written D to represent the 
'difference'. There is the small 
possibility of confusion with the 
effects of D-hyoscyamine 
hydrobromide, and the variable 
could have been written X or even 
G (for 'gain'); but the notation D 
is fairly standard and for that 
reason has been adopted here. 
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in sleep gain under the hypnotic is unknown. Assuming that the observed dif- 
ferences di, i = 1,2, .  . . ,10, are independent observations on a normal random 
variable 

then under the null hypothesis H. : p = 0, the sample mean D has a 
t-distribution 

In this case it will be interesting to pursue a one-sided test to reflect one's 
suspicion (or even one's aim in administering the dose) that the hypnotic is an 
effective prolonger of sleep. Let us therefore write the alternative hypothesis 
as 

The null distribution of the test statistic is given at (8.3). This may be used 
to define the rejection region for the test. Now, the implication of the way the 
test has been designed is that the null hypothesis will be rejected in favour 
of the alternative hypothesis if there is sufficient evidence of positive gain; 
that is, if the test statistic (notice the numerator D) is sufficiently large-and 
positive. We shall need to compare the observed value of the test statistic 
with the appropriate quantile of the t-distribution with n - 1 = 9 degrees of 
freedom, i.e. t(9). For a test at level, say, 0.10, and assuming the one-sided 
alternative hypothesis HI  : p > 0, the relevant quantile is 

This is shown in Figure 8.5; the shaded area gives the rejection region for the 
test. 

Figure 8.5 The rejection region for a one-sided test at level 0.10 

Now we proceed to calculation of the observed value of the test statistic. In 
this case the sample standard deviation of the observed gains is s = 2.00 and 
the sample size is n = 10. The sample mean is = 2.33. The observed value 
of the test statistic is therefore 

You can see that the observed value of the test statistic t = 3.68 is well inside 
the rejection region: the effect of the hypnotic L-hyoscyamine hydrobromide 
is a very pronounced one-this confirms formally our earlier observation that 
an effect is probable since all the differences bar one are positive. 
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Exercise 8.5 
Use the data from Chapter 7, Table 7.3 in a one-sided test at  level (105 of H 

DDD. 

the hypothesis that the hypnotic D-hyoscyamine hydrobromide has no effect, 
against the alternative hypothesis that it leads to a net sleep gain. Start with 
an explicit statement of the hypotheses H. and HI, and follow the pattern of 
~ x a m ~ l e  8.4 as you go through the various stages of the test. 

Exercise 8.6 relates to the results of one of Darwin's experiments. 

Exercise 8.6 
Darwin measured differences in height for 15 pairs of plants of the species Zea The data are quoted in Fisher, 
mays. (Each plant had parents grown from the same seed-one plant in each R.A. (1942) The Design of 
pair was the progeny of a cross-fertilization, the other of a self-fertilization. Experiments, 3rd 'liver 

and Boyd, London, p. 27. 
Darwin's measurements were the differences in height between cross-fertilized 
and self-fertilized progeny.) The data are given in Table 8.6. The units of 
measurement are eighths of an inch. Table 8.6 Differences in 

(a) Supposing that the observed differences di, i = 1,2 ,3 , .  . . ,15, are inde- 
pendent observations on a normally distributed random variable D with 
mean p and variance c', state appropriate null and alternative hypotheses 
for a two-sided test of the hypothesis that there is no difference between 
the heights of progeny of cross-fertilized and self-fertilized plants, and 
state the null distribution of an appropriate test statistic. 

(b) Obtain the form of the rejection region for the test you defined in part (a), 
assuming a 10% significance level. 

(c) Calculate the value of the test statistic for this data set, and state the 
conclusions of your test. 

8.2.4 Fixed-level testing for discrete distributions 

plant height ( $  inch) 

Pair Difference 

For discrete distributions the fixed-level testing approach is almost identi- 
cal, although there may be minor difficulties in determining the rejection 

region. This is merely because, as you saw in Chapter 3, Section 3.5, it is not 
a straightforward matter to identify quantiles of discrete distributions. An 
example will illustrate the problem. 

Example 8.5 Anopheles farauti mosquitoes 
Researchers needed to evaluate the effectiveness of an insecticide (dieldrin) The results of one such experiment 
in killing Anopheles farauti mosquitoes. The theory was that resistance to are reported by Osborn, J.F. 
dieldrin was due to a single dominant gene, and that in an appropriately (1979) Statistical Exercises in 

Medical Research, Blackwell, 
selected sample of the mosquitoes, there should be 50% susceptibility to the Oxford. In a sample of 465 
insecticide. To test this hypothesis mosquitoes, 264 died. 

Ho:p= l 2 

against the alternative hypothesis 

it was decided to test the insecticide on a small sample of 30 mosquitoes at 
level of significance a = 0.05. The number of mosquitoes R for which the 
insecticide proved lethal would be counted. 
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Under the null hypothesis the test statistic R has a binomial distribution 
B (30, i). Figure 8.6 shows the null distribution of R. 

Probability 

Lethal count 

Figure 8.6 The null distribution R B (30, 3) 
The rejection region will include very low or very high observed values of R, 

indicating respectively a lethal count lower or higher than expected. Suppose 
that the intended size of the rejection region is 0.05. Therefore it is required 
to find the value of r satisfying the probability statement 

P ( R  5 r )  = P ( R  2 30 - r )  = 0.025. (8.4) 

Now, some useful probabilities for the binomial distribution ~ ( 3 0 ,  $) are 

P ( R  5 9 )  = P ( R  2 21) = 0.0214; 

P ( R  5 10) = P ( R  2 20) = 0.0494. 

One of these is just below the required value 0.025; the other is somewhat 
above it. (So, no value of r exactly satisfies the requirement given at (8.4).) 

The closest one can get to the required significance level is to define the 
rejection region as shown in either one of the two diagrams in Figure 8.7. In 
one case the significance level is under 0.05 (since 2 X 0.0214 = 0.0428); in the 
second case it substantially exceeds 0.05 ( 2  X 0.0494 E 0.1). 

Probability 

Lethal count 

Probability 

Lethal count 
(b) 

Figure 8.7 Possible rejection regions of approximate size 0.05 

322 
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In this case a decision to reject the null hypothesis if the observed value r of 
R is less than 10 (r 5 9) or greater than 20 (r 2 21) gives a significance level 
of about 4%, close to the 5% intended. 

This sort of problem will also arise with one-sided tests: it is a consequence 
of the nature of the probability mass function for a discrete random variable. 
However, it is not a problem you should become too concerned about: the 
fixed-level approach to testing has the remarkable and essentially unreasonable 
preoccupation with 'tidy' significance levels like 10%, 5% and 1%. If it turns 
out to be necessary to fix the level at  12% or 4% or 0.08% then (as long 
as there is a clear statement of what has occurred) the test simply proceeds 
according to the approximate level set. 

Exercise 8.7 
Determine a rejection region for a two-sided test of the null hypothesis 
H. : p = 3.0 for a Poisson mean, so that the level of the test is as close as 
possible to a = 0.10. Assume 
(a) a sample of size 1; 

(b) a sample of size 5; 
(c) a sample of size 10 

is drawn, and in each case be clear about your test statistic and its distribution 
under the null hypothesis. 

8.2.5 A few comments 
Interpreting the significance level 

You have seen that the rejection region for a fixed-level hypothesis test is 
defined by identifying those values of the test statistic that under the null 
hypothesis would be most extreme (according to whether the test was two- 
sided or one-sided). It constitutes a summary of those results that would 
appear to be so inconsistent with the null hypothesis that it is rejected. But, 
of course, from the very definition of the rejection region, you can see that it 
is calculated from the null distribution which assumes the null hypothesis H. 
to be true; so what we have is 

The significance level = a: = P(rejecting H. when No is true). 

The act of rejecting H. when H. is true is called a T y p e  I er ror ,  and it is 
conventional to take acceptable values for its probability as l%, 5%) or 10%, 
and not usually more. A Type I error is an error which, in the nature of 
things, the designer of the test will not know has been committed: but notice 
that its probability is entirely within the designer's control. 

The power of a test 

Of course, there is another sort of error, and this is where the designer of the Notice the use of the word 'accepts' 
test accepts the null hypothesis H. even though it is false. This is an equally here, rather than 'fails to reject'. It 

unfortunate outcome of the testing scenario: it is called a T y p e  I1 error .  S1mply makes for less awkward 
language. 

Moreover, having fixed the level of the test and therefore having defined the 

323 
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rejection region, it is one over which the user has no direct control. Indeed, 
the smaller the rejection region, the less scope there is for a Type I error, but 
the greater the likelihood that a Type I1 error could be made. 

What most aptly measures the usefulness of a hypothesis test is the probability 

P(rejecting H. when H. is false). 

This is simply one minus the probability of a Type I1 error (in other words, 
the probability of avoiding that error) and it is called the power of the test. 
Earlier on it was mentioned that in order to make a test as powerful as possible 
it was important to select an appropriate and informative test statistic. The 
mathematics of power, or its arithmetic at  least, can become rather involved 
and, without some idea of the manner in which departures from H. might be 
manifested, it is difficult to make useful remarks about it. 

However, as we have repeatedly discovered in other analytic pursuits, one 
way of improving the power of a test and simultaneously constraining the 
probability of a Type I error (that is, keeping down the significance level) is 
to increase the sample size. 

Composite hypotheses 

The statement of the null hypothesis in the form 

is not always easy or natural. Sometimes one's intentions would be better 
expressed by proposing a list or range of values for a parameter. The dog 
food example at  the beginning of this chapter is a good illustration of this: if 
it appeared that more than the claimed 80% of dogs preferred Pupkins to any 
other dog food, one would not wish to dispute the manufacturer's claim which, 
in its essentials, states simply that a lot of dogs like Pupkins. An alternative 
statement of null and alternative hypotheses which more accurately reflects 
the true state of affairs under test is 

A hypothesis of the form 8 = 80, isolating a particular value in the set of 
possible parameter values, is called a simple hypothesis. A hypothesis of 
the form 8 # 80 or 8 < 80 or 8 > 80 is called a composite hypothesis. Here, 
a list or range of parameter values is hypothesized. 

A typical representation of composite null and alternative hypotheses could 
therefore be stated as follows: 

Again, the theoretical consequences of a composite null hypothesis for the 
power of a test, the identification of a suitable test statistic and even the 
meaning of the phrase 'null distribution' are not immediately obvious, and 
mathematically things are far from simple. 

However, it turns out in practice that the probability of making a Type I 
error is at  its greatest when the actual value of 8 is at  the boundary between 
H. and HI (that is, when 8 is equal to 80, in the example quoted). If a test 
is designed according to this worst-case scenario, then it cannot be criticized 
on the grounds that it appears a better test than it is. If it makes sense to 
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write a null hypothesis H. as a composite hypothesis, then this should be 
done: calculations for the rejection region should be based as before on a null 
distribution whose parameter is located at  the boundary between H. and HI.  

8.3 Significance testing 

In this section we shall look at a third approach to the problem of testing a 
claim: it is called significance test ing and it has become a common method 
for assessing a hypothesis. This section starts with a brief explanation of the 
approach, and a description of what the technique involves; but shortly we 
shall pause for a while and discuss why there should be so many approaches 
to what seems a straightforward problem to describe. 

Both the approaches described so far have involved the setting up of a null 
distribution, the probability distribution of an appropriate test statistic if the 
null hypothesis H. were true. For example, in testing a hypothesized Bernoulli 
probability 0 (Ho : 0 = 00) we might set up a sequence of n Bernoulli trials 
and count the total number r of successes. The test statistic is the random 
variable R; the null distribution of R is 

In the confidence level approach based on the techniques of Chapter 7, we 
use the observed value r of R to construct a 100(1- a )% confidence interval 
for 0; then, depending on whether or not that interval (g_, 0+) contains the 
hypothesized value 00, we either reject the null hypothesis H0 : B = 00 (or 
not) at significance level a (or 100a%) in favour of the alternative hypothesis 
H1:B#Bo. 

In a fixed-level test, we identify lower and upper quantiles q,/z and q l - a / z  of 
the null distribution B(n,  00); then, depending on whether or not the observed 
value r of R is in the defined rejection region, the null hypothesis is or is not 
rejected at  significance level a. 

You should notice that each of these two tests permits a decision rule for the 
user of the test to follow. 

Although in some respects the two approaches are quite different, you should 
also note that for a given significance level a and assuming that the same data 
are used in both cases, either strategy will always lead to the same decision 
being taken in respect of a particular hypothesis under test. This is an easy 
finding to illustrate, though slightly less easy to prove-and in the case of 
discrete data, one needs to be clear about the value of a-and we shall not 

spend more time on this. However, it is an important equivalence of which 
you should be aware. 

The third approach that is described in this course also requires statement 
of a null hypothesis and calculation of a test statistic, and the collection of 
data in order to test that hypothesis. What happens next is what makes this 
approach different from the first two. The test results not in a stated decision 
(for example, 'reject Ho') but in a number called the significance prob- 
ability, denoted SP. Broadly speaking, this number describes the extent to 
which the data support the null hypothesis: if the statistical experiment were 
to be repeated on many subsequent occasions (collect some data and evaluate 

The test might be one-sided, in 
which case the rejection region will 
be determined by either the lower 
quantile g, or the upper quantile 
ql-, of the null distribution, 
depending on the direction of the 
test. In the case of a discrete null 
distribution, the significance level 
a may .be only approximately 
attained. 
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the test statistic), and if the null hypothesis were true, the SP represents 
the proportion of future experiments that would offer less support for the 
null hypothesis than the experiment that was, in fact, performed. The higher 
the significance probability, therefore, the more the data support the null 
hypothesis. Subsection 8.3.1 shows an example of the test in practice. 

8.3.1 Performing a significance test: testing a 
Bernoulli probability 

Many examples in genetics involve testing the value of a Bernoulli probability 
p, for it is a field where there is much interest in the fraction of a population 
displaying a particular attribute. Often sample sizes are relatively small, and 
exact distribution theory is appropriate. 

Example 8.6 The colour of seed cotyledons in the edible pea 
Mendel observed that seed cotyledons in the edible pea may be either yellow 
or green and that the peas themselves appear either yellow or green. (These 
were the subject of his second experiment in the first series: he observed 
6022 yellow peas and 2001 green peas in a harvest of 8023 peas bred in particu- 
lar circumstances, offering support for his theory that on genetic principles 
the proportion of yellow peas under such circumstances should be a.) 

In a smaller experiment, 12 yellow peas were found in a harvest of 20 peas. 
It was required to use these data in a significance test of the hypothesis 

The obvious test statistic to use in this context is the number of yellow peas 

(N, say), which in repeated experiments of the same size would follow a 
binomial distribution N B(20,p). Under the hypothesis H. : p  = i, the null 
distribution of N is binomial ~ ( 2 0 ,  a ) .  The number observed was n = 12. 

A diagram of the null distribution is shown in Figure 8.8; the shaded regions 
in the diagram show the possible counts which are themselves no more likely 
than the count observed (that is, all those observations on the random variable 
N such that pN(n) 5 pi(12).  

Probability 

Number of yellow peas 

Figure 8.8 The null distribution ~ ( 2 0 ,  2) and counts no more likely than that 
observed, n = 12 

Perhaps a phrase more 
wieldy-though less precise-than 
that used is to refer to those counts 
'at least as extreme as' the 
observed count. 
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Not shown on the diagram but given in Table 8.7 are the corresponding prob- 
abilities (to four decimal places) for the binomial distribution B (20, $) ; you 
can see from the table that all the counts n = 0,1 ,2 , .  . . ,l1 and n = 19,20 
are less likely than the observed count n = 12, which is also included in the 
shaded region. This table was used in order to draw the diagram in Figure 8.8. 

The significance probability for the test is given by the sum of the two shaded 
tail areas, and is (again, accurate to four decimal places) 

Of these extremes, small values of n (including the observed value n = 12) 
would suggest that the underlying value of p is in fact less than the hypoth- 
esized :; those at  the other extreme of the null distribution would suggest that 
the underlying value of p exceeds i. It is common to conclude a significance 
test with a statement such as 

SP(obtained direction) -= 0.1018 

SP(opposite direction) = 0.0243 

and an interpretation of the significance probability. In this case there is little 
evidence that the underlying value of p is different from the hypothesized 

3 value p = 4. 

This completes the significance test. 

The procedure for a significance test may be summarized as follows. 

Significance testing 

In a significance test: 

1 determine the null hypothesis Ho; 

2 decide what data to collect that will be informative for the test; 

3 determine a suitable test statistic and the null distribution of the test 
statistic (that is, the distribution of the test statistic when H. is true); 

4 collect your data and evaluate the observed value of the test statistic 
for the sample; 

5 identify all other values of the test statistic that under the null hy- 
pothesis are no more likely than the value that was observed; 

6 these 'extreme values' will usually fall into two classes, each suggest- 
ing some departure from the null hypothesis. The class containing the 
observed experimental outcome contributes to the SP in the obtained 

direction (that is, suggestive of one type of departure from the null 
hypothesis). The other class contributes to the SP in the opposite di- 
rection; 

7 interpret the SP. 

Figure 8.9 illustrates these 'extreme values'. 

Table 8.7 The binomial 
probability distributionB (20, $) 

When the null distribution of the 
test statistic is multimodal, the 
approach described here falters at 
Step 6, because there may be more 
than two groups of 'unlikely' 
values. There is still no universal 
agreement about the 'best' 
approach to test a hypothesis (see 
Subsection 8.3.4); this approach 
will usually be adequate for our 
purposes. 
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Probability 

1 ( S P  (obtained direction)) 

Ol,ser\.atiotls o n  the test stat.istic. 

Figure 8.9 Evaluating a significance probability 

Notice that there is no requirement to conclude a significance test with a 
decision on whether or not to reject the null hypothesis. This would only make 
sense if some alternative hypothesis had been identified. The significance 
probability is a measure of the extent to which the data support the null 
hypothesis, and the test ends here. However, it is easy to extend the test 
to incorporate a decision rule based on whether the SP exceeds or does not 
exceed some predetermined value. The 'obtained direction' offers a clue to an 
appropriate alternative. 

Exercise 8.8 
The coat colour of grey rabbits depends on genetic characteristics inherited 
from generation to generation. There are five possible colour combinations: 
normal grey, chinchilla (a kind of silver grey), light grey, Himalayan (white 

with black extremities) and albino. In one large population under study, 
genetic theory forecast that different coloured grey rabbits should occur in 
the respective relative frequencies 

3 . 1 . 1 . 2 1 . 1  
4 ' 16 ' 8 ' 400 ' 100' 

An efficient test of the theory would involve matching the observed frequencies 
of all colour combinations in a large sample with the expected frequencies if 
the theory were a valid one (and this topic is covered in Chapter 9). In one 
test a small random sample of 18 adult rabbits from the population was taken, 
and the number of light grey rabbits was counted. 

(a) What is the probability distribution of the number of light grey rabbits in 
the sample, on the assumption that the forecast frequencies are correct? 

(b) In fact there were four light-greys. What is the evidence that the theory 
is faulty? 

8.3.2 Testing a Poisson mean 
When testing hypotheses about the value of a Poisson mean, the same sort 
of distributional considerations apply here as became evident in Chapter 7 
when calculating confidence intervals for a Poisson mean. If in testing the 
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null hypothesis H. : p  = pO a sample of size n is collected, then the null 
distribution of the sample total T is Poisson with mean npo The significance 
probability SP can be calculated as though the observed sample total t was 
a single observation on the random variable T N Poisson(npo). 

Example 8.7 Breakdowns 
In large organizations, central facilities such as printers and photocopiers are 
often conveniently located in order to provide access to large numbers of 
personnel. The breakdown incidence is usually monitored and some sort of 
record is kept of machines' reliability. One printer had an average breakdown 
rate of 3 times a week. It was made less accessible by being moved up one 
floor in the building in which it was located. Over the next six weeks the 
numbers of breakdowns recorded weekly were 3,4,2,1,1,2. 

We want to perform a significance test of the hypothesis that the breakdown 
rate has remained unchanged. 

Assuming a Poisson model for the number of breakdowns per week, and 
writing 

and using as our test statistic the total number T of breakdowns over the six- 
week period after the move, then the null distribution of the random variable 
T is T Poisson(l8). The observed value t of T is 

For the Poisson distribution with mean 18, key parts of the probability mass 
function are as follows. 

The calculated SP is 

SP(obtained direction) = P ( T  5 13) = 0.143 

SP(opposite direction) = P ( T  2 23) = 0.145 

SP(tota1) = 0.288. 

Again, the SP is not remarkably small. In particular, there is scant evi- 
dence that the move has reduced the breakdown rate, as might have been 
intended. 

You can see that the procedure can become quite intricate, for it involves 
scanning the Poisson probability distribution to identify those counts less 
likely than the count observed. Although this is an easy task to describe, it 
can take a little time. Explore the facilities available on your computer in 

attempting Exercise 8.9. 

You will need your computer to 
calculate these probabilities. 

You should be aware that some 
statisticians, and some statistical 
software, calculate the S P  for an 
exact test such as this in a slightly 
different way: the difference lies in 
the way that the S P  in the 
opposite direction is dealt with. 
The difference hardly ever has 
practical importance. 
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Exercise 8.9 
A total of 33 insect traps were set out across sand dunes and the numbers of 
different insects caught in a fixed time were counted. Table 8.8 gives the num- 
ber of traps containing various numbers of insects of the taxa Staphylinoidea. Gilchrist, W. (1984) Statistical 

Modelling, Wiley, Chichester, 
Table 8.8 Staphylinoidea in 33 traps p. 132. The original purpose of the 

experiment was to test the quality 
Count 0 1 2 3 4 5 6 2 7  of the fit of a Poisson model to the 
Frequency 10 9 5 5 1 2 1 0 data: in this exercise, the Poisson 

model is assumed to be adequate. 
Assuming a Poisson model for the variation in the counts of trapped insects, 
perform a significance test of the hypothesis H. : p = 1, and state your con- 
clusions. How different from 1 is the sample mean catch? 

8.3.3 Large-sample approximations 
For significance tests on the Bernoulli parameter p, the Poisson mean p and 
the exponential mean p, the central limit theorem can be applied if the sample 
size is large, and approximate normal distribution theory may be used. 

Significance tests for the Bernoulli parameter 

In a significance test of the null hypothesis H. : p  = p0 for a Bernoulli par- 
ameter p, suppose that n trials are performed and the number of successes, 
X ,  is counted. The exact null distribution of X is binomial B(n,po): A 
significance test of H. may be based on the approximating normal distribution 

where qo = 1 - po, for n 'large enough7 (say, so that npo > 5 and nqo > 5). 

Significance tests for the Poisson mean 
In a significance test of the null hypothesis No : p = p. for a Poisson mean, 
suppose that a sample of size n is collected. The null distribution of T, the 
sample total, is Poisson(np,). A significance test of H. may be based on the 
approximating normal distribution 

T = N(np0, W,) 

as long as npo is greater than about 30. 

Significance tests for the exponential mean 

In a significance test of the null hypothesis H. : p = p. for an exponential 
mean, the sample collected is of size n. The null distribution of T, the sample 
total, is a member of the gamma family: the gamma distribution is not par- 
ticularly tractable. As long as the sample size is large enough (say, more 
than about 30), a significance test of H. may be based on the approximating 
normal distribution 

T = ~ ( n p o ,  4) . 



Chapter 8 Section 8.3 

8.3.4 Neyman, Pearson and Fisher 
The twentieth century has been enlivened by a number of philosophical dis- 
putes among statistical practitioners. One of the more hotly argued is that 
between R.A. Fisher and the duo made up of Egon Pearson (1895-1980) and 
Jerzy Neyman (1894-1981). 

Fisher has already been mentioned during the course of this chapter. At the 
age of 22 on graduation from Cambridge University, Fisher worked for three 
years as a statistician in London and then until 1919 as a schoolteacher (and 
not a good one, according to contemporary sources). From 1919 until 1933 he 
worked at Rothamsted Experimental Station, the agricultural research estab- 
lishment near Harpenden in Hertfordshire, England; in 1925 he published the 
famous text entitled Statistical Methods for Research Workers. After leaving 
Rothamsted he was Professor of Eugenics at University College London un- 
til 1943, after which he was appointed Professor of Genetics at Cambridge. 
His papers on theoretical statistics form the foundation of much of modern 
statistics. Many of his methods are used world-wide to this day, including the 
analysis of variance that will be mentioned briefly in Subsection 8.4.2. 

Egon Pearson was the son of Karl Pearson (1857-1937), arguably the founder 
of modern statistics. Egon worked in the Department of Applied Statistics 
at University College London (headed by his father) from 1921. In 1933, on 
Karl's retirement, he took over the chair of the department, which he headed 
until his own retirement in 1960. During the key period of the dispute between 
Fisher and Neyman and Pearson, their departments occupied different floors 
of the same building at University College. 

Jerzy Neyman was born in Bendery near the border between Russia and 
Romania. He was educated at the University of Kharkov in the Ukraine and 
lectured there until going to live in Poland in 1921. He was a lecturer at the 
University of Warsaw when in 1925 he visited London and met Egon Pearson. 
The pair, much of an age, struck up an immediate and close personal and 
professional relationship. 

In 1933 Neyman and Pearson published a paper 'On the Problem of the Most 
Efficient Tests of Statistical Hypotheses' in the Philosophical l?ransactions of 
The Royal Society, Series A, 231, 289-337. Theirs is basically the fixed-level 
approach of Section 8.2. Essentially their work was generated by concern 
that there should be some criterion other than intuition to provide a guide to 
what test statistic to utilize in performing a hypothesis test, and this in turn 
implied the strict requirement for an alternative hypothesis. 

In many cases, a statistical test is used more or less to assess the data, and 
not (necessarily) to reach any firm conclusion. This is the idea behind a 
significance test, and seems to have been the attitude of Fisher, who was 
thinking of research situations and not of cases where the background of the 
problem requires a clear decision. Fisher's approach corresponds in most 
respects to the approach described in this section; however, he would not 
have agreed with everything you have read here. 

Fisher's approach requires three components: a null distribution for the test 
statistic, an ordering of all possible observations of the test statistic according 
to their degree of support for the null hypothesis and, finally, a measure of 
deviation from the null hypothesis as the chance that anything even more 
extreme was observed. 

Figure 8.10 R.A. Fisher 

Figure 8.11 Egon Pearson 

Figure 8.12 Jerzy Neyman 
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Within repeated experiments, the idea of outcomes more discordant with a 
null hypothesis than others is fairly clear. However, with different experiments 
or when using different test statistics, it is not at all clear whether a signifi- 
cance probability as an absolute measure of accord, one that can be compared 
across experiments, is a useful notion. This is an important criticism of the 
approach. 

The approach of Neyman and Pearson offers an alternative, but some key con- 
cepts were always rejected by Fisher. Amon$ other things, he considered the 
use of a pre-specified alternative hypothesis to be inappropriate for scientific 
invastigations. He maintained that the fixed-level approach was that of mere 
mathematicians, without experience in the natural sciences. As well as subtle 
and irreconcilable philosophical and theoretical incompatibilities between the 
two approaches, there is no doubt that the controversy was fuelled by personal 
antipathies as well. Peters (1987) writes: 'Fisher was a fighter rather than a 

arit able academic. ' 
interesting postscript to all this, described by the statistician 

Florence David, who visited University College as a tutor: 'Most of the time I 
was babysitting for Neyman, explaining to the students what the hell he was 
up to .  . . I saw the lot of them. Went flyfishing with Gosset. A nice man. Went 
to Fisher's seminars with Cochran and that gang. Endured Karl Pearson. 
Spent three years with Neyman. . . . They were all jealous of one another, 
afraid someone would get ahead. Gosset didn't have a jealous bone in his 
body.' Gosset's modesty and diffidence were renowned. In a letter to Fisher 
he spoke of his diaculties with calculating the tables of quantiles for his 
t-distribution. He (Gosset) had left an updated version of the table with Karl 
Pearson, editor of the journal Biometrika, in which an earlier version had 
been published: '. . . when I came back on my way to Dublin I found that 
he [Pearson] agreed with me and that the new table was wrong. On further 
investigation both tables were found to be perfectly rotten. All 0.1 and 0.2 
wrong in the fourth place, mostly it is true by 0.0001 only . . . The fact is 
that I was even more ignorant when I made the first table than I am now . . . 
Anyhow the old man is just about fed up with me as a computer and wouldn't 
even let me correct my own table. I don't blame him either. . . . Whether he 
will have anything to do with our table I don't know . . . It has been rather 
a miserable fortnight finding out what an ass I made of myself and from the 
point of view of the new table, wholly wasted. However, I begin work again 
tomorrow.' 

Peters, W.S. (1987) Counting for 
Something-Statistical Principles 
and Personalities, Springer-Verlag, 
New York. 

Reid, C. (1982) Neyman from Life, 
Springer-Verlag, New York, 
page 53. 

Fisher Box, J. (1981) Gosset, 
Fisher and the t-distribution. 
American Statistician, 35, 61-66. 
Joan Fisher Box is one of 
R.A. Fisher's daughters. In 1978 
she published a biography of her 
distinguished father, entitled 
R.A. Fisher: The Life of a 
Scientist. John Wiley & Sons, New 
York. 

8.4 Comparing the means of two normal 
populations 

Up to now we have considered tests of hypotheses that a model parameter 
takes a specified value. Such hypotheses are not uncommon in genetics and 
in manufacturing contexts, and in quality control. However, a more common 
testing situation is where independent samples are drawn from two different 
populations in order to test some hypothesis about differences in population 
characteristics for some measured attribute. This section and Section 8.5 are Figure 8.19 W.S. Gosset 
devoted to this topic. ('Student') 
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There have been many examples of this sort of sampling context in the course. 
In Chapter 1, Example 1.3, the birth weights (see Table 1.4) in kilograms of 
50 infants displaying the symptoms of severe idiopathic respiratory distress 
syndrome were listed. In more than half the cases, the child unfortunately 
died. It  seems possible that there were significant differences in birth weight 
between those children who died and those who survived. If this is so, then 
birth weight could be used as an indicator for children needing very special 
care and attention. A formal test might suggest confirmation of this apparent 
difference, in which case preparations to offer that care and attention could 
be made. 

In Chapter 2, Example 2.7, it seems possible (again, without performing any 
sort of formal test) that, given some appropriate stimulus, unpleasant mem- 
ories (see Figure 2.10) are more difficult to recall than pleasant ones-or, 
a t  least, their retrieval seems to take longer. To psychologists interested in 
memory retention and retrieval, this finding (if it is true) is a significant one. 

Example 2.20 was about measurements on a liver enzyme (ornithine carbonyl- 
transferase) for two different sets of individuals, 57 patients suffering from 
acute viral hepatitis and 40 from aggressive chronic hepatitis. Again, there 
seem to be differences (see Figure 2.23). The purpose of the investigation was 
to determine whether it was possible to distinguish between patient groups 
on the basis of this measurement: this would be a very useful discriminant 
aid. A formal test will help to decide whether such an approach is feasible. 

In Exercise 2.4 an experiment to do with gender differences was described, 
and the question was raised whether the observed proportion of 71 out of 
100 was significantly different from the observed proportion of 89 out of 105. 
Again, a formal test can help here. 

The most general question that could be asked is this: is the pattern of 
variation in the measured attribute the same in one population as it is in the 
other? In other words (denoting the respective distribution functions PI(.) 
and F2(.)), we might suggest the hypothesis 

H. : Fl (X) = F2(x) for all X. 

However, it may be that our main interest resides in the average measure for 
the two populations and therefore in testing the hypotheses (writing p, and 
p, for the two population means and ml and m2 for the population medians) 

H0 :p1  = P2, 

or perhaps 

H. : m1 =IQ.  

Other tests may be designed to compare other population moments or other 
population quantiles. In this section a test for comparing the meals of two 
normal populations is described. 

8.4.1 The two-sample t-test 
The two-sample t-test is one of the most useful tests available to you. Under 
certain assumptions, it permits a test of the null hypothesis 

H0 : P1 = P2 

for the means p1 and p2 of two distinct populations. 
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These assumptions are that the variation in the first population may be mod- 
elled adequately by a normal distribution with mean p1 and variance a2 ,  and 
that the variation in the second population may be modelled by a normal 
distribution with mean p2 and variance a2.  That is, 

The assumption of normality is one that, as you have seen, is often well 
approximated in practice for many different measured attributes in many 
different contexts-in any case, it is an assumption that is easy to check in More formal tests for normality are 
an informal way using a histogram. described in Chapter 9. 

However, notice the second assumption that the variance in both populations 
is the same. It will almost invariably be the case that the sample variances S: 

and S; for the two samples will differ, and thus the question is raised of how 
pronounced this difference might be before it suggests that the assumption 
of equal variances a: = a: is a faulty assumption. To put it another way, it 
appears that a t-test for the equality of two normal means ought itself always 
to be prefaced by a formal test for the equality of the two variances! 

This is an approach that is sometimes followed. In this course we will always 
informally check the variances before embarking on a t-test. However (de- 
pending on the sample size) if one sample variance is larger than the other by 
a factor of less than about 3, it will be assumed that the assumption of equal 
variances for the t-test is not adrift. Current practice suggests that a 

factor rather higher than this is not 
So, assuming that the twin assumptions of normality and equal variances are badly damaging to the conclusions 
satisfied, the two-sample t-test proceeds as follows. of the t-test, particularly when the 

two sample sizes are not too 
Having decided on a background probability model, the next thing to de- different. 
termine is a test statistic relevant to the null hypothesis H. : p1 = p2. The 
respective estimators for the two population means are the sample means X1 
and K: a useful statistic indicative of the difference p1 - p2 is surely the 
difference between the sample means, y1 - X2.  In fact, this difference is 
not only useful, but powerful in a technical sense: it can be shown that this 
is the best statistic to choose when the assumptions of normality and equal 
variances are satisfied. 

Denoting by nl  and n2 the two sample sizes, then (as a consequence of normal 
distribution theory) we have the results 

(8.5) See (4.8) and (4.10). 

Assuming the two samples to be independent of one another, then it follows 
from this that the difference X1 - F2 has a normal distribution 

- 
X I - ~ ? ~ N N  (8.6) See (4.9). 

Now we need to eliminate the nuisance parameter a2 from our test. Lacking 
information about the value of the common variance a2, what happened pre- 
viously in this sort of situation was that the parameter a2 was replaced by 
its estimator. Since both the first sample variance S: and the second sample 
variance S: are candidates, the question is: which estimator do we use? Is 
there some combination of them that would be a better estimator than either 
alone? 
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We already know (see Chapter 6, Exercise 6.26) that the sample variance from 
a normal random sample has first two moments 

Both estimators are unbiased for a2; of the two, the better one would be the 
one with the smaller variance, that is, the one based on the larger sample. 
But it would make sense, intuitively, to use information from both samples, 
and it turns out that an unbiased estimator for the unknown parameter a2 
with the smallest possible variance is the estimator The estimator S: is unbiased for 

u2, and has variance 

and this is the estimator we shall use. Because it involves a combination of 
the two estimators S; and S: it is called the pooled estimator for the 
common variance. It follows from (8.6) (not quite directly, but the details 
are not important) that the quantity 

has a t-distribution with n l  + n2 - 2 degrees of freedom. Under the null 
hypothesis H. : p, = p, the difference p1 - p2 in the numerator vanishes; an 
appropriate test statistic for the null hypothesis that two normal populations 
have the same mean has the null distribution 

This may be used as the basis for a significance test. (Of course, it may 
also be used to develop confidence intervals for the difference between two 
population means or as the basis for a fixed-level test. It is not the intention 
of this chapter to take every possible approach to every exploration of a null 
hypothesis.) 

Example 8.8 Infants with SlRDS 
In Chapter l, Example 1.3 a sample was described of infants all displaying 
severe idiopathic respiratory distress syndrome: the infants had been weighed 
at birth and their birth weights (in kg) recorded. It was also noted that 
27 infants died (while 23 survived). A preliminary comparative boxplot (see 
Figure 1.23) suggests that there may be a significant difference in birth weights 
between those who survived and those who did not. 
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It is possible to explore this suggestion using the two-sample t-test. Neither 
sample is very large, but neither appears very skewed, and in both cases a 
histogram (see Figure 8.14) suggests that a normal model for the variation 
observed might be adequate. 

I:rrcl~~rnc.y Frequency 

l 'L 3 4 1 2 3 4 

Birth weight (kg) Birth weight (kg) 
(4 (b) 

Figure 8.14 Histograms for (a) 27 infants who died, and (b) 23 infants who 
survived 

1 

Before formally embarking on the test, we ought to check the sample variances. 
Let us take as the first sample the birth weights of the 27 children who died, 
and as the sekond the birth weights of the 23 who survived. Then 

(to three decimal places). Without any formal criteria on which to base 
an assessment, it is difficult to say whether or not these estimates suggest 
different underlying variances; in fact, the larger of the two sample variances 
is less than twice the smaller; according to the rough guide that a ratio of up 
to about 3 is acceptable, this suggests that it is reasonable to embark on the 
t-test. 

We also'require the summary statistics 

and it follows from this and (8.7) that the pooled estimate for the unknown 
variance a2 is 

Finally, using (8.8), the observed value t of the test statistic T is 

In these calculations, intermediate 
and final results are all shown 
accurate to three decimal places. 
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This needs to be compared against Student's t-distribution with 
27 + 23 - 2 = 48 degrees of freedom, that is, t(48). Figure 8.15 illustrates 
the corresponding significance probabilities (obtained from a computer) which 
may be stated as 

SP(obtained direction) = 0.0003 

SP(opposite direction) = 0.0003 

SP(tota1) = 0.0006. 

Figure 8.15 Calculating a SP 

In fact, in this context, there already was the suspicion that the birth weights 
of the children who died were significantly lower than those of the children 
who survived. In a test of the null hypothesis of zero difference against a 
one-sided alternative, the obtained SP is 0.0003. This is very low; there is 
considerable evidence to reject the null hypothesis of zero difference in favour 
of the suggested alternative. 

Example 8.9 Memories 
In Chapter 2, Table 2.10 there are listed memory recall times (in seconds) for 
twenty pleasant memories and twenty unpleasant memories. A comparative 
boxplot was drawn to summarize the data in Figure 2.10. The data are very 
skewed. If the two sample variances are calculated they are found to be 

The ratio of larger to smaller is about 5. The opportunity to use a two- 
sample t-test seems doomed on both counts: neither population looks remotely 
normal, and the variances do not look similar. 

Exercise 8.10 
In Chapter 3, Example 3.1 data were considered on the maximum breadths 
(in mm) of 84 Etruscan skulls and 70 modern Italian skulls (see Table 3.1). 
The question of interest was whether there was a significant difference between 
the two distributions. If this may be reinterpreted as a difference between the 
mean maximum breadths for the two populations, then perhaps the two- 
sample t-test may be advanced to provide an answer. 

(a) A comparative boxplot for the two samples is shown in Figure 3.1. His- 
tograms for both data sets are drawn in Figure 3.2. Use these graphical 
representations of the data to comment on the assumption of normality 
underlying the two-sample t-test. 
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(b) Calculate the two sample variances and comment informally on the as- 
sumption of a common variance. 

(c) If you consider it appropriate to do so, carry out a t-test of the null 
hypothesis that there is no difference between the mean maximum head 
breadth for Etruscans and for modern Italian males, against a two-sided 
alternative. Give your answer as a significance probability, and comment 
on your findings. 

Here is a further exercise. 

Exercise 8.1 1 
The effect on the total lifespan of rats was studied of a restricted diet versus an 
ad libitum diet (that is, free eating). Research indicates that diet restriction 
might affect longevity. Treatments were begun after an initial weaning period 
on 106 rats given a restricted diet, and 89 rats permitted to eat whenever 
they wished to do so. Lifespan is measured in days. The data are shown in 
Table 8.9. 

Table 8.9 Lifespans of rats (days) Berger, R.L., Boos, D.D. and 
Guess, F.M. (1988) Tests and 

106 rats given the restricted diet confidence sets for comparing two 
105 193 211 236 302 363 389 390 391 403 mean residual life functions. 
530 604 605 630 716 718 727 731 749 769 Biometrics, 44, 103-115. 

89 rats given the ad libitum diet 

Take the opportunity to explore the facilities of your computer in testing 
whether there are differences in the mean lifespan for the two dietary regimes. 

8.4.2 Postscript: comparing more than two means 
Frequently in statistics there are three populations or more from which samples 
have been drawn. Then the question arises of how to make comparisons be- 
tween the samples, and how to draw valid conclusions about differences (if 

338 



Chapter 8 Section 8.5 

any) between the populations. In Chapter l, Table 1.16 gives the amounts of 
nitrogen-bound bovine serum albumen (BSA) used to treat three groups of 
diabetic mice. A comparative boxplot provides an informal test for differences 
between the three groups; but how do we conduct a formal test? 

In Chapter 4 a nutritional study was described (Example 4.9) in which 
45 chicks were randomly allocated to four groups given different diets; af- 
ter three weeks the chicks were weighed in order to assess the different effects 
(if any) of the diets. The data are given in Table 4.5. It would be inter- 
esting to know how to analyse these data in order to exhibit any significant 
differences between the groups. 

Here is another example. 

Example 8.10 Silver content of Byzantine coins 
The silver content (% Ag) of a number of Byzantine coins discovered in Cyprus 
was determined. Nine of the coins came from the first coinage of the reign 
of King Manuel I, Comnenus (1143-80); there were seven from the second 
coinage minted several years later and four from the third coinage (later still); 
another seven were from the fourth coinage. The question is: were there 
differences in the silver content of coins minted early and late in Manuel's 
reign? The data are given in Table 8.10. 

What is of most interest here is whether there is any significant difference 
in the silver content of the coins with passing time. (There is a suspicion 
that the content was steadily reduced: this could be tested according to some 
appropriate one-sided test.) W 

It is important to remember that in this context one should not run indi- 
vidual t-tests on each of all the possible pairs of groups selected from a data 
collection-the tests would not be independent. The appropriate methodol- 
ogy to adopt is called analysis of variance. This is a technique invented by 
R.A. Fisher. The technique is mentioned again, briefly, in Chapter 14. 

8.5 Other comparisons 

8.5.1 Comparing two binomial probabilities 
One testing context that arises frequently in practice is where the proportion of 
individuals possessing an attribute is observed in samples from two different 
populations. In most cases the two observed proportions will be different. 
Assuming the underlying proportion in the first population to be p1 and in 
the second to be pg, then the hypothesis to be tested is 

Notice here that what is not under test is the actual value of the underlying 
proportion in either population: only that the proportion is the same in both 
populations. This fact is important later. 

Suppose the sample drawn from the first population is of size n l  and the 
sample drawn from the second population is of size n2. In each case the 

Hendy, M.F. and Charles, J.A. 
(1970) The production techniques, 
silver content and circulation 
history of the twelfth-century 
Byzantine Trachy. Archaeometry, 
12, 13-21. 

Table 8.10 Silver content 
(94 Ag) of coins 
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number in the sample possessing the attribute of interest is a random variable; 
assuming independence within each sample, then (denoting the numbers in 
respective samples possessing the attribute by R1 and R2) 

R l ~ B ( n l , p l )  and & ~ B ( n 2 , ~ 2 ) .  

Under the null hypothesis H. : p1 = p2, the null distributions of R1 and R2 
become 

where the parameter p is unknown and irrelevant to the hypothesis that is 
being tested: in that sense it is a nuisance parameter. While it is there, it 
perturbs any further analysis based on the observed fractions r l /nl  and r2/n2. 

There is a test which resolves this difficulty by so composing the random 
variables R1 and R2 and the numbers n l  and n2 that the parameter p vanishes 
in the algebra. It is known as Fisher's exact test for the equality of two 
proportions. The details of its development are somewhat complicated, and There is more on Fisher's exact 
in any case the resulting arithmetic (the enumeration of possible cases and the test in Chapter 11. 

assessment of which of them are more or less 'extreme' than that observed) is 
very drawn out-you really only need to know that the test exists and what 
it is called. 

Many statistics software packages include routines for running Fisher's exact 
test, and it is assumed that you have access to such a package. 

Example 8.11 The sand fly data 
In Chapter 6, Example 6.4, data were given on the proportions of male sand 
flies to be found in traps at two different altitudes. At low altitude there 
were 173 males observed in a total of 323 flies caught in a trap, an observed 
proportion of 53.6% males; at higher altitude there were 125 males observed 
in a total of 198 flies caught: 63.1%. This second proportion is higher: is it 
'significantly' higher? 

This can be set up as a significance test. It is very important to realize that 
the required inputs for Fisher's exact test are the four numbers r l  , nl ,  r2 and 
n2 rather than simply the two observed proportions r l /nl  and r2/n2. Fisher's 
test gives the significance probabilities for these data: 

SP(obtained direction) = 0.020 

SP(opposite direction) = 0.016 

SP(tota1) = 0.036. 

In this context the SP in the obtained direction consists of all those 'extreme' 
events tending to support the finding that the second proportion is higher 
than the first. It may be that the researcher had a suspicion that in high- 
flying sand flies there is a higher proportion of males than in those flying at 
low altitude: the SP for such a one-sided test is 0.020. This is very small: 
there is considerable evidence that the suspicion is an accurate one. H 

Exercise 8.12 
(a) In Chapter 2, Exercise 2.4 an experiment designed to test people's will- 

ingness to help others was described. The question was whether the sex 
of the person requiring help was an important feature. In the experiment 
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described, 71 male students out of 100 requiring help were given it; 89 
female students out of 105 were helped. Use Fisher's exact test to explore 
any differences between the two proportions 71/100 and 891105. 

(b) When people suffer brain damage (for instance, following major accidents 
or other traumas), it is important to make an assessment of the degree of 
mental facility that remains. Many tests have been devised for this. One 
test involves the completion of logical syllogisms. Here are two examples. 

All dogs are animals. 

All animals are black. 

All dogs are black. 

All women are humans. 

No humans have wines. 

No women have wings. 

In one test an individual who had suffered brain damage to some degree 
was able to provide an accurate conclusion in 8 out of 20 cases. A second 
person classified as 'normal' (that is, who was not known to have suffered 
any damage to the brain) provided 11 correct conclusions to 20 sets of 
premisses. Use Fisher's exact test to quantify any differences in levels of 
attainment. (Provide a clear statement of the hypothesis you are testing.) 

8.5.2 Comparing two Poisson means 
In this case we shall assume that the null hypothesis under test is given by 

and that the variation in both populations is adequately modelled by a Poisson 
distribution. In this case too, it is necessary to find a method to eliminate 
a nuisance parameter. Suppose that in order to test the null hypothesis 
H. the data take the following form. A random sample of n l  observations 
X1, X2 , .  . . ,Xnl  is drawn from the first population; each Xi is Poisson(pl) 
and therefore the sample total is Poisson(nlpl): 

Similarly, if the second sample (that is, a sample drawn from a second popu- 
lation) consists of n2 observations each independently following a Poisson 
distribution with mean p2, then the distribution of the sample total T2 is 
Poisson(n2p2): 

Under the null hypothesis H. : p1 = p2 the two sample totals are independent 
with Poisson distributions 

Notice that the sentences that 
constitute a syllogism do not 
themselves have to be true: the 
conclusion merely has to follow 
from the premisses as a valid 
argument. 

Data were provided by 
Dr S.L. Channon, Middlesex 
Hospital, University College 
London. 

Again, the unspecified parameter p (the common mean) is a nuisance par- 
ameter: it is unknown and irrelevant to the null hypothesis; but without 
some further algebra it is undeniably there. A test for the equality of two 
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Poisson means takes advantage of certain convenient properties of the Poisson 
distribution to produce a test statistic appropriate for testing Ho. 

The algebra is somewhat involved, and a detailed development of the test 
would inevitably include some new notation; however, you are spared these 
details. Briefly, the idea is as follows. Suppose you knew neither Tl nor Tz, 
but you did know their total was equal to t, say. Then Tl could be any of 
0 ,1 ,2 , .  . . , t .  Moreover, the larger the sample size n l  relative to nz, the larger 
the expected value of Tl relative to T2. Under the null hypothesis H. : p, = p,, 
the null distribution of Tl conditional on knowing the total Tl + T2 = t, turns 
out to be binomial. We denote this by TT: 

T T - B  t,- ( n l y n z ) .  

The test is based on this conditional distribution. Here is an example where 
the test is applied. 

Example 8.12 Comparing accident rates 
A local authority wished to investigate the consequences for the traffic accident 
rate of painting designs on traffic roundabouts which, it was hoped, would 
attract the attention of drivers as they approached, rendering them more 
aware of the imminent hazard. For three months before experimenting at a 
particular roundabout known to be an accident black spot, a record was kept 
of all minor incidents. Monthly counts were 3, 1 and 1. Then the roundabout 
was painted with chevrons in a high-intensity yellow shade. For the next 
four months, the accident counts were 1, 0, 2 and 0 respectively. These data 
were to be used to investigate whether the mean monthly accident rate had 
changed-in particular, whether it had decreased. 

In the absence of indications to the contrary, a Poisson model may be used 
for the variation in monthly accident counts. Then the hypothesis under 
test is H. : p, = pz, where p1 is the mean monthly accident rate before the 
roundabout was painted, and pZ is the mean monthly rate after the painting 
was carried out. In the notation already developed, 

n l = 3 ,  n z = 4 ,  t = 3 + 1 + 1 + 1 + 0 + 2 + 0 = 8 ;  

and the observed value of TT is t; = 3 + 1 + 1 = 5. 

The hypotheAis test reduces to considering the observation t: = 5 on the bi- 
nomial random variable TT - B(t ,nl /(nl  + n ~ ) ) ,  that is, TT - ~ ( 8 ,  $). The 
probability distribution of TT is given in Table 8.11. 

Table 8.1 1 The probability distribution of T; 

t 7 0 1 2 3 4 5 6 7 8 
p(tr) 0.011 0.068 0.179 0.269 0.252 0.151 0.057 0.012 0.001 

From this, the SP is given by 

SP(obtained direction) = P(T: 2 5) 

= 0.151 + 0.057 + 0.012 + 0.001 

= 0.221. 

Those of you who are familiar with 
the standard notation for 
conditional probabilities will 
recognize that the notation used 
here is slightly non-standard. All 
that is required is to emphasize 
that the random variable T;, 
constrained to be between 0 and t, 
is binomial (not Poisson, like Tl). 
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Since there was particular interest in whether the accident rate has decreased, 
this is all that needs to be calculated. The SP in the obtained direction 
(suggestive of a decrease) is relatively high: in fact, there is little evidence to 
suppose that the underlying mean accident rate has changed. 

Now try Exercise 8.13. 

Exercise 8.13 
Sahai and Misra (1992) describe an experiment in which a biologist 
counted diatoms in water from two different sources. (A diatom is a 
member of a class of microscopic algae with flinty shells in two halves.) 

In a basic preliminary experiment, 3 diatoms were found in a small amount 
of water from one source and 6 in an identical amount of water from a 
second source. Assuming a Poisson model for the variation in counts, 
explore whether there is a difference in the underlying mean density of 
diatoms in the two water sources. 

Snedecor and Cochran (1989) describe an experiment in which poppy 
plants were counted in regions of equal area where two different plant 
treatments had been used. Four regions received Treatment 1, eight re- 
ceived Treatment 2. The plant counts are given in Table 8.12. 

Table 8.12 Counts of poppy plants 

Treatment l 77 61 157 52 
Treatment 2 17 31 87 16 18 26 77 20 

In this case one scarcely needs statistics to deduce that a difference in 
means exists between the two treatments. However, use the test procedure 
to explore whether there is a significant difference in means and, if you 
think it appropriate, incorporate a normal approximation in your analysis. 

Summary 

In this chapter three methods have been described for testing hypotheses. The 
three approaches have certain features in common: the first two, if applied to 
the same set of data, would yield the same conclusion. The third approach 
permits a quantitative assessment of the extent to which a set of data supports 
a hypothesis. 

1. A simple approach to testing the null hypothesis H. : 8 = go against the 
two-sided alternative hypothesis HI : 8 # B. is to use data to obtain a 
confidence interval (g_, 9+) for 8. For a test at level a, a 100(1 - a ) %  
confidence interval should be used. Depending on whether or not the 
interval (8- ,8+) contains the hypothesized value 00, the null hypothesis 
is 'accepted', or rejected in favour of the alternative. 

Sahai, H. and Misra, S.C. (1992) 
Comparing means of two Poisson 
distributions. Math. Scientist, 17, 
60-67. 

Snedecor, G.W. and Cochran, 
W.G. (1989) Statistical Methods, 
9th edition, Iowa State University 
Press. 
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A second approach is called fixed-level testing. A test statistic, whose 
distribution under the null hypothesis is known, is calculated for a set 
of data. If its value falls in the tails of the null distribution (or in one 
of the tails of the null distribution, in a one-sided test) then it is said 
to have fallen in the rejection region and the null hypothesis is rejected. 
The size of the rejection region is determined by the predetermined level 
a at which the test is performed. The strategy for fixed-level testing is 
summarized in the box on page 317. 

When sampling from a discrete population, the required level of the test 
may be only approximately attained. This is because it is not always 
possible to obtain exact quantiles for discrete distributions. 

For tests about a normal mean, Student's t-distribution is required. In 
particular, the data may take the form of differences. A test of the null 
hypothesis H. : p = 0 is commonly known as Student's t-test for zero 
mean difference. 

The conclusions of a hypothesis test may be in error. The act of rejecting 
H. when H. is true is called a Type I error, and has probability a. 
Alternatively, the null hypothesis might be 'accepted' when it is false, 
and this is called a Type I1 error. The probability of avoiding a Type I1 
error (that is, the probability of rejecting H. when H. is false) is called 
the power of the test. The mathematics of power are rather complicated: 
they depend among other things on the selection of the test statistic and 
on the size of the sample taken. 

The third approach to hypothesis testing described in this chapter is 
called significance testing. It requires statement of a null hypothesis 
and of a statistic to be used for testing that hypothesis, but not, strictly, 
statement of an alternative hypothesis. The approach results in a number 
called the significance probability (SP)  which quantifies the extent to 
which the data support the null hypothesis. The approach is summarized 
in the box on page 327. 

Usually the SP comprises two components-that in the obtained direc- 
tion, and that in the opposite direction. These may be used as part of a 
decision procedure to reject the null hypothesis in favour of stated one- 
or two-sided alternatives. 

A test known as Student's two-sample t-test may be used to compare 
the means of two populations. The assumptions of the test are that the 
variation in either population may be modelled by a normal distribution 
with the same variance in each population. The test includes calculation 
of the pooled estimator for this common variance 

S; = 
(nl - 1)s; + (722 - 1)s: 

n l  + nz - 2 l 
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and of the value of the test statistic t with distribution 

under the null hypothesis, H0 : 1-11 = p2. 

9. There are very many other occasions where it may be necessary to com- 
pare two populations. In this course two such further comparisons are 
described. The first is Fisher's exact test for the. equality of two pro- 
portions. The test is algebraically and arithmetically not quite straight- 
forward, and it is assumed that you would have access to the appropriate 
computer software were you to use the test. 

10. A test for the comparison of two Poisson means which reduces to assessing 
the value of a conditional test statistic against a binomial distribution is 
described. 



Chapter 9 

Examining the assumptions 

In this chapter two methods are described for examining the quality of the fit of a 
hypothesized probability model to a set of data. The validity of some test procedures 
may depend on the model being a good one, and if it seems evident that this may 
not be the case, some approaches are suggested for further exploration of the data. 

By now you have met many of the most fundamental ideas of statistics. You 
have seen that variability in a population can be represented by probability 
models. With the aid of a few common-sense assumptions, you are able to 
produce probability distributions for both discrete and continuous random 
variables. In Chapters 6 to 8 you used those modelling distributions to pro- 
vide methods of using data to answer important, practical questions. 

You began by using the data to provide numerical estimates of unknown model 
parameters and, in Chapter 6, you met the powerful and logical method of 
maximum likelihood. This method relies upon the chosen probability model 
being plausibly correct, so you need to be fairly sure that your modelling is 
good. The same is true when it comes to calculating confidence intervals. 
You will recall, from Chapter 7, that it is vital to know the underlying distri- 
bution in order to perform the calculations. Chapter 8 dealt with the testing 
of hypotheses and, once again, in order to be able to calculate significance 
probabilities, it was necessary to assume an underlying probability model. Of 
course, the central limit theorem can sometimes be applied: for large enough 
sample sizes, the normal distribution can be used and you can proceed without 
having to specify the actual population distribution; but the majority of data 

sets you have met so far have not usually been all that large. 

Clearly, the time has come to examine and test the plausibility of the models 
we use. Now that we have seen the methods in action, we can re-examine these 
models and ask ourselves what could possibly go wrong. We shall attempt to 
answer five main questions, and we shall also see how these questions lead to 
good practical procedures by revisiting some previous analyses. 

Are the distributional assumptions plausible? 

This is the obvious question, yet it is far from easy to answer. Up to now you 
have looked at histograms of the data and, because they have shown the right 
sort of shape, it has been assumed that all is well. This is, at best, an imprecise 
procedure, and we need more accurate ways of checking the usefulness-the 
'fit'-of a model. Ideally we need a quick, graphical method of checking which 
can be done easily on a computer, and which is fairly precise. The method 
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needs to be able to show discrepancy between the data and a proposed model 
in such a way that we can identify the causes and be guided to the appropriate 
action. 

Can we quantify any discrepancy between the data and the 
model? 

We need a formal method for numerically quantifying discrepancy between 
the data and the model. This would give us the ability to test the hypothesis 
that a proposed model is adequate. 

If the distributional assumptions are not plausible, what can we 
do? 

We could 'modify the model': this is the first possibility that comes to mind. 
Alternatively, we might try to fit a model to transformed data-either we shall 
be able to find a mathematical transformation of the data and the transformed 
data can be modelled well, or no such useful transformation can be found. In 
the former case, you will see in this chapter how to decide which transform- 
ation to use. 

Is a modelling distribution necessary for answering the 
questions we are asking of the data? 

You have already seen how the central limit theorem can be used with large 
sample sizes to side-step the issue of requiring a suitable model for the vari- 
ation in the population. We shall see that, when the sample sizes are small 
and all else fails, we can proceed by adopting a distribution-free approach to 
estimation and hypothesis testing. 

Are the data typical or do they contain some 'unlucky' values? 

There is always a possibility that a data value in your sample is far from 
being typical: the very clever child, the person who lives to be 110, the multi- 
millionaire, the athlete with the very low heart rate, the 335-day pregnancy. 
One of these atypical values, in a small sample, can have a disproportionately 
large effect upon a statistical investigation. How can such aberrations be 
detected and how should you allow for them in your calculations? Can you 
use a method which is not sensitive to such aberrations? 

In this chapter the emphasis is on making sure that the methods you have 
practised and used are valid for the data in question, and on what steps to take 
when the assumptions you need do not appear to be justified. Occasionally, 
new data sets will be explored; but we shall also look again at many of those 
we have already met. Let us begin by questioning some of the assumptions of 
normality made in Chapter 8. 
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9.1 . Are the distributional assumptions 
plausible ? 

Let us reconsider two data sets in which an assumption of normality would 
be a necessary first stage for answering the question posed., 

The first data set comprises 20 width-to-length ratios for beaded rectangles 
used by the Shoshoni American Indians in decorating their leather goods. 
The question of interest was whether these ratios approximated to the 'golden 
ratio' of the Greeks, ;(A - 1) or about 0.618. In order to answer this ques- 
tion, a one-sample t-test was performed. This test requires an assumption 
of normality. How can you check the validity of this assumption? With a 
data set as small as this, you cannot sensibly use a histogram to support the 
assumption because there are insufficient data points to suggest any structure 
in the variation observed. 

A data set was also described in which the silver content of coins from four 
mintings of the twelfth-century Byzantine Trachy was measured. The question 
was: did the silver content alter with successive mintings? You were advised 
that separate comparisons of different mintings using two-sample t-tests would 
not yield independent results: however, a single comparison of, say, the fourth 
minting with the first would be a valid statistical procedure; and the single 
two-sample t-test would also require an assumption of normality. The data 
are reproduced in Table 9.1. 

Table 9.1 Silver content of coins: first and fourth cbinage (% Ag) 

Firstcoinage 5.9 6.8 6.4 7.0 6.6 7.7 7.2 6.9 6.2 
Fourthcoinage 5.3 5.6 5.5 5.1 6.2 5.8 5.8 

With a data set as small as this, it is difficult to see how the assumption 
of normality might be tested: again, there are insufficient data points for a 
histogram to yield a useful message. What is needed is a graphical method 
for checking distributional assumptions about the data which can be used for 
small data sets. In this section an exploratory method known as probability 
plotting is introduced. This is excellent for performing a quick check and is 
also ideally suited to computer analyses. 

9.1. I Probability plotting for normal distributions 
The idea behind probability plotting is a simple one. Suppose that you have 
n observations yl,  92,. . . , yn, and that you wish to know whether they may 
plausibly have arisen from a normal distribution. First, re-arrange them into 
ascending order. Denote the ith ordered observation by y(i), so that 

Next, plot the ordered data points y(i) against the corresponding standard 
normal quantiles xi given by solving the equation 

See Chapter 8, Table 8.4 

See- Exercise 8.4 

See Chapter 8, Table 8.10 

The two-sample t-test also requires 
that the two populations from 
which the samples are drawn have 
equal variances. In this case the, 
ratio of the larger sample variance 
to the smaller is about 2.25 (less 
than 3), so there is little evidence 
to refute this assumption. 

The process of re-arranging data 
points into ascending order was 
introduced in Chapter 1 as the first 
stage in calculating sample 
quartiles. The reason for denoting 
the data points yi (rather than, 
say, xi) will become apparent when 
the probability plot is constructed. 

for all i = 1,2 , .  . . , n, where @ ( S )  is the c.d.f. of the standard normal distri- 
bution. If the data are normal,, then the n points (xi, y(i)) should lie on a 
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straight line. Of course, the inherent random variation means that a perfect 
straight line will not generally be produced, but if what you see approximates 
to a straight line, then the data may plausibly be assumed to have arisen from 
a normal distribution. 

The values xi, i = 1,2 , .  . . , n, which are the solutions to the family of equations 
(9.1) are known as normal scores, and most statistical computer packages 
will produce a vector of normal scores corresponding to an input data vector, 
easing the task of producing the resulting plot. 

Here is an example where probability plotting is used to test an assumption 
of normality. 

Example 9.1 A normal probability plot for silver content 
Let us construct a normal probability plot for the first coinage in Table 9.1. As 
the sample size is n = 9, we determine the points xi for which @(xi) = i/10. 
For instance, xg = 40.50 = 0 is the median, the 50% point of the standard nor- 
mal distribution; x7 = 40.70 = 0.524 is the 70% point of the standard normal 
distribution. These points are listed in Table 9.2. The points y(i) are the nine 
data points, listed in ascending order. 

Table 9.2 Silver content: first coinage (% Ag) 

i y(i) i/10 xi 

Now y(i) is plotted against xi, for i = 1,2 , .  . . ,9. 

Y(%) ( 

- 2 - 1 0 1 2 +, 

Figure 9.1 Silver content against normal scores, y(i) against X, 

In some texts the ~hrase 'normal 
score' refers not to the solution of 
the equation @(xi) = i/(n + l), but 
to the expected value xi of the ith 
data point in a random sample of 
size n from the standard normal 
distribution, arranged in ascending 
order. Differences between the two 
definitions are in this context 
negligible. 

Notice that the lower half of the 
normal scores are the same as the 
upper half of the normal scores 
apart from the sign, with 0 for the 
middle value since n is odd. 

In this diagram no complicated 
arithmetic has been used to draw a 
straight line through the nine 
points. The line drawn simply 
looks 'reasonable'. 

You can see that a straight line provides a reasonable fit to the points (xi, y(i)), 
and that there is no obvious curve which would fit better. We can conclude 
that the normal distribution provides a reasonable model for the variation 
observed. 
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Incidentally, the intercept of the fitted straight line (that is, the value of y 
when X = 0 )  provides an estimate of p, the mean silver content, and the slope 
provides an estimate of a, its standard deviation. In this context we are 
not particularly interested in these estimates: we merely wish to check our 
assumption of normality for a subsequent t-test. In any case, it is not clear 
what criteria might be applied to construct the 'best' straight line through 
the data points, and therefore it is not clear how 'best' estimates might be 
achieved. But the notion of using probability plotting as a method of par- 
ameter estimation is a potentially useful one. 

Here is a second example. 

Example 9.2 A normal probability plot for the Shoshoni data 
A probability plot for the Shoshoni rectangles data in Chapter 8, Table 8.4 is 
shown in Figure 9.2. It does not suggest an acceptable straight line through 
the points (xi, y(i)), and we should be much less sanguine about employing a 
t-test. This calls into question our conclusions following the t-test that was in 
fact performed in Exercise 8.4. We shall return to these data in Section 9.4 
where we shall see how the problem of non-normality is tackled. See Exercise 9.14. 

The data for the probability plot in 
Figure 9.2 are given in Table 9.3. 
For example, x7 is the solution of 
the equation 

Table 9.3 Normal scores for 
the Shoshoni rectangles data 

Figure 9.2 Width-to-length ratios of Shoshoni rectangles against normal 8 0.611 8121 -0.303 

scores H 9 0.615 9/21 -0.180 
10 0.628 10121 -0.060 
11 0.654 l l j 2 1  0.060 

The usefulness of the method just described is that it is ideal for performing 12 0.662 12/21 0.180 
a quick check for normality when you are using a computer. Most statistical l3 0.668 l3l2l 0.303 

14 0 670 14/21 0.431 packages either provide normal scores for any data vector or have a direct 15 0:672 15/21 0.566 
normal probability plotting routine. Thus any data vector can be checked for 16 0 690 16/21 0.712 
normality with a few keystrokes. There are computer exercises later in the 17 0.693 17/21 0.876 
section. First of all you should make sure you thoroughly understand the idea 18 0.749 18j21 1.068 
by constructing normal probability plots the long way, using your tables. 19 0.844 19/21 1.309 

20 0.933 20121 1.668 

Exercise 9.1 
Construct a normal probability plot for the fourth coinage data in Table 9.1. 
Are you satisfied that the normality assumption is a reasonable one? 
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Exercise 9.2 
Table 9.4 gives the cornea1 thicknesses (in microns) of 8 people, each of whom 
had one eye affected by glaucoma. 

Table 9.4 Cornea1 thickness in patients with glaucoma (microns) 

Patient 1 2 3 4 5 6 7 8  
Glaucomatous eye 488 478 480 426 440 410 458 460 
Normal eye 484 478 492 444 436 398 464 476 

A t-test for zero mean difference relies on the assumption that the variation 
in observed differences may be modelled by a normal distribution. Construct 
a normal probability plot for the differences. Is the normality assumption 
reasonable? 

9.1.2 Probability plotting for other continuous 
distributions 

Probability plotting has a wider application than checking whether a normal 
distribution provides a satisfactory probability model. It can also be used 
to investigate the quality of the fit of other continuous models to data by 
proceeding in a similar way. 

Suppose, for example, that independent observations yl, yz, . . . , y, are be- 
lieved to arise from a population where an exponential distribution might 
provide a useful model for variation. In this context, the 'standard' expo- 

nential distribution is that having mean 1, with c.d.f. F ( x )  = 1 - e-", X > 0. 
The solution of the equation 

xi = - log (n::; z, 

for all i = 1 ,2 , .  . . , n. If an exponential model is appropriate, the points 
(xi, y(i)) will lie approximately on a straight line: in this case the straight 
line must pass through the origin and has slope p, the population mean. 
Thus the parameter p may again be estimated from the plot, provided you 
are not too rigorous over what constitutes a 'good' estimate. 

Here is an example where the quality of the fit of an exponential model for 
waiting times is explored. 

Example 9.3 Memory recall times 
A data set on memory recall times (in seconds) of pleasant and unpleasant 
memories was described in Chapter 2 (see Table 2.10). Boxplots of the recall 
times for each kind of memory were skewed (see Figure 2.10). Could the 
data be modelled by separate exponential distributions? Figure 9.3 shows an 
exponential probability plot for the recall times of pleasant memories. Also 
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shown in the figure is a straight line through the origin, where an attempt has 
been made to fit the line to the points. You can see that these data are not The data for the exponential 
well modelled by an exponential distribution. probability plot in Figure 9.3 are 

given in Table 9.5. For example, 

Probability plotting is a useful technique for checking the fit of many continu- 20 6.17 3.045 

ous models. However, you need to bear in mind that not all distributions will 

Y(i) 

produce a straight line directly: an example is the Pareto distribution. As 
you saw in Chapter 6, Section 6.4, its c.d.f. is given by 

X13 = - log 

The parameter K (usually known) provides a lower limit on the range of 
the random variable W; the parameter I3 is usually unknown. We saw in 
Chapter 6 how to derive estimates for I3 from data, assuming a Pareto model 
to be appropriate. Unfortunately there is no 'standard' Pareto distribution 
free of the parameter 0. (The reasons for this are rather complicated, and 
you need not concern yourself with them.) However, it turns out that the 
transformed variable 

7.5 - 
= - log = 0.965. 

5.0 - 
Table 9.5 Exponential scores 
for pleasant memories 

i Y(i) Xi 
2.5 - 

1 1.07 0.049 
2 1.17 0.100 
3 1.22 0.154 
4 1.42 0.211 

I 

0 1 2 3 4 zi 5 1.63 0.272 
6 1.98 0.336 

Figure 9.3 Recall times of pleasant memories against exponential scores 7 2.12 0.405 
8 2.32 0.480 
9 2.56 0.560 

10 2.70 0.647 
11 2.93 0.742 

Exercise 9.3 12 2.97 0.847 

Construct an exponefitial probability plot for the recall times of unpleasant 13 3.03 0.965 
14 3.15 1.099 

memories. Is an exponential distribution a reasonable model here? 15 3.22 1.253 

16 3.42 1.435 
17 4.63 1.658 
18 4.70 1.946 
19 5.55 2.351 

has an exponential distribution with parameter I3 (i.e. mean 118). Plotting 
the transformed data points y(i) against exponential scores will itself consti- 
tute a graphical test of the assumption that the original data arise from a 
Pareto distribution. (Also, if the assumption seems a reasonable one, the fit- 
ted line will have slope approximately equal to the reciprocal of the unknown 
parameter 8.) 
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Figure 9.4 shows a probability plot of the data on annual wages in the USA The data for the plot shown in 
(see Table 6.9 in Chapter 6 ) .  Figure 9.4 are given in Table 9.6. 

The original data values are 
denoted WI, wz,. . . , wso. The 

You can see from the plot that a straight line would fit reasonably well, except 
where recorded wages are high. So the Pareto model does not adequately 
represent the variation inherent in the high-income levels. (This feature of 
the data was also apparent from the histogram in Figure 6.7.) 

Y(i) 

Exercises 9.4 to 9.6 allow you to explore the facilities for probability plotting 
available on your computer. 

transformed variable is denoted by 

Exercise 9.4 
In order to compare skull dimensions, observations on the maximum head 

breadth (measured in mm) were taken on the skulls of 84 Etruscan males 
and those of 70  modern Italian males. The data are given in Chapter 9, 
Table 3.1. A comparative boxplot is given in Figure 3.1 (suggesting significant 
differences) and in Exercise 8.10 of Chapter 8 a formal t-test was undertaken. 
This test assumes normal variation in both populations (see the histograms in 
Figure 3.2). Use the technique of probability plotting to explore the validity 
of these assumptions. 

0.5 - yi = log(wi/100). The points 
xi = - log((31 - i ) / 3 1 )  are 

8 8 exponential scores. 
0.4 - 

Table 9.6 US wage data 

0.3 - i W(i) Y(i)  Xi  

1 101 0.010 0.033 
0.2 - 2 103 0.030 0.067 

3 103 0.030 0.102 
4 104 0.039 0.138 

0.1 - 5 104 0.039 0.176 
6 105 0.049 0.215 
7 107 0.068 0.256 

I I 

0 1 2 3 4 xi 8 107 0.068 0.298 
9 108 0.077 0.343 

Exercise 9.5 
(a) Data are given in Chapter 4, Table 4.7 on the waiting time (in days) be- 

tween successive serious earthquakes world-wide. A modelling assumption 
was made that the variation in these data may be plausibly represented 
by an exponential distribution. Use an appropriate probability plot to 
explore this assumption. 

(b) Investigate whether the coal-mining disaster data of Chapter 7 , ' ~ab le  7.4, 
may be plausibly modelled by an exponential distribution. (This model 
was assumed, for instance, in the calculation of confidence intervals.) 



Chapter 9 Section 9.2 

Exercise 9.6 
Use your computer to simulate 30 observations on the Pareto distribution with 
parameters K = 8, 8 = 4. Assuming K is known, use an appropriate prob- 
ability plotting technique to assess the usefulness of your computer's Pareto 
simulation routine. 

9.2 Can we quantify discrepancy between 
the data and the model? 

The method of probability plotting is a useful technique for exploring whether 
or not a particular probability model fits observed data, but it has certain 
disadvantages. If the points on a plot all lie on a straight line, then the model , 

fits the data very well; but random variability in the data makes this an 
unlikely eventuality. Even if the model fits well, the points will not lie exactly 
on the line. How far from the line can they be before'you should conclude 
that the model does not fit? 

Probability plotting is an exploratory technique used more as a general indi- 
cation of the quality of the fit of a hypothesized model to a set of data. It has 
the virtues of speed and convenience, but it does not provide the answer to 
inferential questions about the quality of the fit of the model to the data. 

In this section, a hypothesis test is introduced that can be used with discrete 
data to decide how reasonable it is to assume that a particular probability 
model fits a particular data set. It provides a test of the null hypothesis that 
that particular model did indeed generate the data. The method is, therefore, 
an inferential rather than an exploratory one. You will also see that the 
method may be adapted to make inferences about continuous distributions. 

9.2.1 Goodness-of-fit of discrete distributions 
The method is demonstrated through an example. 

\ 
Example 9.4 Testing a Poisson fit 

In Chapter 4, Table 4.4, data on the emissions of a-particles were presented 
and the observation was made that the Poisson distribution provided a very 
good fit. 

There were 2612 equal time intervals during which emissions occurred: 57 of 
them contained zero emissions, 203 contained one emission, and so on. The 
expected frequencies may be calculated by assuming a Poisson distribution 
with mean 3.877 so that the expected number of intervals containing i emis- 
sions, Ei, is calculated from 

For example, the expected frequency for two emissions is 
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In Table 4.4 the expected frequencies (in the column headed 'Fit') were given 
to the nearest whole number. In Table 9.7 the expected frequencies are listed 
to two decimal places. 

Table 9.7 Emissions of a-particles: observed and 
expected frequencies, assuming a Poisson model 

Count Observed frequency Expected frequency 

One need only compare the second and third columns (that is, the observed 
and expected frequencies) to see that the fit looks very good: but can we judge 
how good? Obviously, if the differences between the observed frequencies and 
expected frequencies are large, then the Poisson model is not a good one, and 
we should use those differences in a way which allows an overall assessment. 
Let us call the observed frequencies Oi and the expected frequencies Ei, so 
that each difference can be written in the form (Oi - Ei). These differences 
are included in Table 9.8. 

Table 9.8 Differences between observed 
and expected frequencies 

Count Oi Ei (Oi - Ei) 

Since we are not interested in whether the differences are positive or negative 
but only in their magnitudes, it makes sense to use squared differences in An alternative approach is to use 
an overall assessment of the quality of fit. However, even though the model the modulus of the differences, 

looks quite good and most of the differences are small, one or two of them I o i  - E i l ;  however, using the 
squared differences (Oi - ~ i ) ~  leads 

will turn out to be inordinately large when squared. For example, a difference to a more tractable test statistic. 
of 2.90 in an expected frequency of 54.10 (Count = 0) is virtually the same 
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percentage difference as the difference of -23.61 in an expected frequency of 
406.61 (Count = 2), and yet once the differences are squared, one is much 
larger than the other, misrepresenting the discrepancy between the data and 
the model. 

The solution to this problem is to scale the squared differences by dividing by 
the expected frequency. But why does dividing by Ei give the right scaling? 
Why not E: or some other function of Ei? Alas, there is no easy intuitive 
explanation of why we must divide by Ei, but there are sound mathematical 
reasons. It is possible to show that this particular choice of scaling results 
in a test statistic with a familiar distribution; but it requires some careful 
mathematics, and we need not go into the details. 

Thus we use the scaled squared differences (Oi - Ei)2/Ei, and add them 
together to give the sum 

as an overall measure of the fit of the model. This is the statistic used in the 
chi-squared goodness-of-fit test devised in 1900 by Karl Pearson. The The influence of Karl Pearson on 
test is based upon the approximate distribution of this statistic, which is that the development of the science of 
of a chi-squared random variable, and may be described generally as follows. has been 

mentioned in Chapter 8. 

The chi-squared goodness-of-fit test 
Suppose that in a random sample of size n,  each of the observations 
can be classified into one of k distinct classes or categories and that 
the number of observations out of a total of n falling into category i 
is denoted by Oi. Corresponding to a statistical hypothesis, a model 
is set up which defines the respective probabilities B1, 82,. . . ,Bk of an 
observation falling into one of the k categories. The expected number of 
observations falling into category i is therefore Ei = nBi and, for large 
n,  the distribution of the quantity 

providing a measure of the quality of the fit of the model to the data, 
is approximately that of a chi-squared random variable with (k - 1) 
degrees of freedom. This is written 

It may be that the fitted model includes a parameter or parameters 
whose values are estimated from the original data. If setting up the 
statistical model requires using the data to estimate p parameters, then 

Here, n = 2612. 

Here, k = 14. 

In this case, we have probabilities 
& ,&, .  . . ,812,813 with 

3.g77ie-3.877 
ei = 

i! 
for i = 0,1,. . . ,12 ,  and 

e13 = P ( X  > 12) 

when X Poisson(3.877). 

In this case the data were used to 
estimate the Poisson mean 
p :  = C, where 2 is the sample 
mean. So, here, p = l. 
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This result is presented without proof, and you should merely observe that it 
is a consequence of the central limit theorem. This does pose the problem of 
the adequacy of the approximation and here is a simple rule of thumb for you 
to follow. 

The chi-squared approximation is adequate if no expected frequency is 
less than 5; otherwise it may not be good enough. 

There is a simple remedy when categories have expected frequencies less 
than 5-just pool two or more categories to make one larger category. Look 
at Table 9.8 again. You can see that the last three categories have expected 
frequencies below 5, so they are pooled to produce the categories given in 
Table 9.9. 

Table 9.9 Emissions of @-particles: calculating the value of 

Count Oi Ei (Oi  - E i )  (Oi  - ~ i ) ' / E i  

0 57 54.10 2.90 0.155 
1 203 209.75 -6.75 0.217 
2 383 406.61 -23.61 1.371 
3 525 525.47 -0.47 0.000 
4 532 509.31 22.69 1.011 
5 408 394.92 13.08 0.433 
6 273 255.19 17.81 1.243 
7 139 141.34 -2.34 0.039 
8 49 68.50 -19.50 5.551' 
9 27 29.51 -2.51 0.213 

10 10 11.44 -1.44 0.181 
> 10 6 5.86 0.14 0.003 

There are now 12 categories, and the value of the chi-squared test statistic is 

One parameter has been estimated, namely the mean p of the Poisson djstri- 
bution, so p = 1, and the chi-squared distribution against which the statistic 
is to be tested has (12 - 1 - 1) = 10 degrees of freedom. 

Remember that the test statistic measures the extent to which observed 
frequencies differ from those expected under the hypothesized model: the 
higher the value of x2 ,  the greater the discrepancy between the data and the 
model. Thus only high values of x2 contribute to the significance probability. 

The upper tail area of x2(10) cut off at 10.4 is 0.41 (that is, the SP of the 
test is 0.41), and thus we have no evidence in favour of rejecting the null 
hypothesis that the data may be fitted by a Poisson distribution. 

Here is a second illustration of the method. 

Here, the last three expected 
frequencies (4.03, 1.30 and 0.53) in 
Table 9.8 are all less than 5. 

It is possible to argue that low 
values of suggest a fit so good 
that the data are suspect, showing 
less variation than might be 
ex~ected. This is the sort of 
approach taken when scrutinizing 
data that are thought to be 'too 
good to be true', as in Chapter 8, 
Exercise 8.3. 
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Example 9.5 Testing a binomial fit 
Chapter 2 ,  Example 2.15 introduced data from an experiment on visual per- 
ception which was argued to be a result of a sequence of Bernoulli trials 
each with probability of success equal t o  0.29. Table 9.10 gives observed and 
expected frequencies calculated from the hypothesized binomial probability 
distribution B(16,0.29),  with sample size n = 1000. For instance, 

Table 9.10 Counts on a random E2 = 100002 

screen pattern = 1000 ( ) (0.29)' (0.71)'~ 

Count Oi Ei  = 83.48. 

0 2 4.17 
1 28 27.25 
2 93 83.48 
3 159 159.13 
4 184 211.23 
5 195 207.07 
6 171 155.06 
7 92 90.48 
8 45 41.58 
9 24 15.09 

10 6 4.32 
11 1 0.96 
12 0 0.16 
13 0 0.02 
14 0 0.00 
15 0 0.00 
16 0 0.00 

The first two and the last seven expected frequencies need to be pooled to 
give categories containing not less than 5; this is done in Table 9.11. Then 
there are 10 categories with 

Table 9.1 1 Counts on a random screen pattern: 
calculating the value of 

Count Oi Ei (Oi  - E i )  (Oi  - ~ i ) ' / ~ i  

No parameter has been estimated (the hypothesized binomial model was fully 
specified, including the value p = 0.29) so that the chi-squared distribution 
against which X 2  is tested has (10 - 1 )  = 9 degrees of freedom and the SP 
of the test is therefore 0.163. We therefore conclude that there is little evi- 
dence to reject the null hypothesis that the observations are from a binomial 
distribution B(16,0.29).  
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Exercise 9.7 
A genetics experiment was described in Chapter S, Example 3.12, in which 
the leaves of Indian creeper plants Pharbitis nil were characterized by type. 
Of 290 offspring plants observed, four types of leaf occurred with frequencies 
187: 35: 37: 31. 

(a) According to one simplistic theory, the four types should have occurred 
in the ratios 

9 . & . & . L  - 
1 6 '  1 6 '  1 6 '  16'  

Use a chi-squared test of goodness-of-fit to show that the data offer con- 
siderable evidence that the theory is unfounded. 

(b) In Chapter G, Example 6.12, a more developed theory allowing for genetic 
linkage is proposed: in this case, after estimation of one parameter, the 
hypothesized proportions are 0.6209 : 0.1291 : 0.1291 : 0.1209 respectively. 
Test this model against the data, using an appropriate goodness-of-fit 
test. 

Exercise 9.8 
In Chapter G, Exercise 6.8, Pielou's data on Armillaria root rot in a plantation 
of Douglas firs were quoted. Several transects through the plantation were 
exanlined and the lengths of runs of healthy and diseased trees were recorded. 

Chapter G ,  Figure 6.5(a) showed a bar chart of the data together with a geo- 
metric probability distribution with estimated parameter p = 109/166 = 0.657 
in order to persuade you that Pielou's assumption of a geometric modelling 
distribution was not unreasonable. Confirm this model by carrying out a 
chi-squared test of goodness-of-fit. 

9.2.2 Goodness-of-fit for continuous models 
Up to now, only discrete distributions and other models where the categories 
are clear-cut, have been tested for goodness-of-fit. With discrete data, it is 
easy to define the outcomes and to count their frequencies of occurrence, Oi. 
The only complication arises when expected frequencies turn out to be less 
than 5, and when this occurs we pool frequencies in order to cope. 

When data arise from continuous distributions it is necessary, in order to per- 
form the chi-squared test of goodness-of-fit, to classify the data into different 
groups, and to count the observed frequencies in each group. As you saw when 
drawing different histograms of the same data set in Chapter 1 (Figures 1.10 
and 1.11), the group classifications are within your control. So to use the 
chi-squared test, a decision has to be made about where to draw the group 
borderlines. 

An example will make this clear. 
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Example 9.6 Testing a normal fit 
Enzyme measurements for 57 patients suffering from acute viral hepatitis are 
recorded in Chapter 2, Table 2.18. A histogram of these data is given in 
Figure 2.22(a). It  was suggested that a normal model might be adequate 
for the variation in the data. In order to perform a chi-squared test for 
a hypothesized normal model, it is necessary first to group the data into 
categories. Suppose the data are grouped as in Table 9.12. 

The data are now in a form we can use for a chi-squared test of goodness-of-fit, 
but we shall need to calculate the expected frequencies for each of the thirteen 
groups identified in Table 9.12. The first step, therefore, is to find estimates 
of the two parameters of the normal distribution, namely the mean, p ,  and 
the standard deviation, a. In fact, you have already seen how to estimate the 
mean and variance of a normal distribution in Chapter 6, where you obtained 
- 
X = C xi/n and s2 = C ( x i  - ~ ) ~ / ( n  - 1) as respective estimates. For the 
data in Table 9.12, the estimates are Z = 2.587 and s2 = 0.107. Next, we use 
these estimates to calculate probabilities and, in turn, expected frequencies. 

There were 57 patients: so, for example, the expected frequency for the second 
group is 57P(1.6 5 X < 1.8) where X N(2.587,0.107). The probabilities 
may be calculated directly on your computer or obtained from tables of the 
normal distribution. In the latter case you need to establish the normal 
z-value corresponding to the group boundaries. For example, for the boundary 
1.6, the corresponding a-value is 

For the boundary 1.8, the z-value is 

1.8 - T 1.8 - 2.587 - - m = -2.406. 
S 

Now, 

so the expected frequency in the group from 1.6 to 1 
(to two decimal places). 

Expected frequencies are now incorporated in Table 9.13. 

Table 9.14 is the result of pooling groups with expected frequencies less than 
5 and performing the chi-squared calculations. 

Table 9.14 Grouped enzyme measurements 

Grouping Oi Ei Oi - Ei (Oi - Ei)2/Ei 

Now, as usual, we compute the X2 test statistic: this is 

In Table 9.12 data points on 
boundaries have been allocated to 
the higher of the two possible 
groups. 

Table 9.12 Grouped enzyme 
measurements 

Grouping Frequency 

< 1.6 0 
1.6-1.8 1 
1.8-2.0 2 
2.0-2.2 3 
2.2-2.4 8 
2.4-2.6 18 
2.6-2.8 11 
2.8-3.0 9 
3.0-3.2 3 
3.2-3.4 , l  
3.4-3.6 0 
3.6-3.8 1 
> 3.8 0 

In fact, the maximum likelihood 
estimate for a normal variance. 
based on a random sample 
X I ,  2 2 ,  . . . , xn, is C ( x i  - ~ ) ~ / n .  In 
what follows the unbiased estimate 
s2 = C ( x i  - ?) ' / (n  - 1) for r2 is 
used. 

Table 9.13 Grouped enzyme 
measurements 

Grouping Oi Ei 
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There are six categories; but two parameters have been estimated from the 
data, so we test the observed value of X2 against x2(6 - 2 - l), that is, against 
x2(3). The SP is 0.48 and there is no reason to disbelieve the assumption of 
normality made earlier. W 

Exercise 9.9 
In Chapter 2, Example 2.18, a supposed normal data set was presented com- 
prising blood plasma nicotine levels for 55 smokers. 

Classify the data into groups with borderlines 150, 250, 350, 450, and carry 
out a chi-squared test of goodness-of-fit for a normal distribution. 

Exercise 9.10 
Chapter 2, Table 2.8 lists annual maxima for daily rainfall over a period of 47 
years. 

Classify the data into groups with borderlines 600,1000,1400,1800,2200, and 
carry out a chi-squared test of goodness-of-fit for a normal distribution. 

9.3 If the distributional assumptions are 
not plausible, what can we do? 

In Sections 9.1 and 9.2 you have seen how the goodness-of-fit of a pro- 
posed probability model may be assessed and how doubts can arise about 
the suitability of models which, at first, seem plausible. In Example 9.3 and 
Exercise 9.3, for example, you saw that the memory recall times which ap- 
peared first in Chapter 2 were not well-fitted by an exponential distribution. 
Perhaps a normal modelling distribution would be better. Figure 9.5 gives a 
normal probability plot for the recall times for pleasant memories. 

Figure 9.5 Recall times for pleasant memories against normal scores 

You can see from the figure that the fit is moderately good; however, should 
you try it for yourself, you will find that the normal probability plot for 
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unpleasant memories is rather worse. We therefore have a problem, because 
we would like to perform a test of the hypothesis that the mean recall times 
for pleasant memories and unpleasant memories are no different; but how 
can this be done without a plausible modelling distribution for memory recall 
times? 

Table 9.4 lists data relating to people with one glaucomatous eye. The problem 
was to determine whether the mean cornea1 thickness of unaffected eyes is the 
same as that of glaucomatous eyes. A possible approach is to perform a one- 
sample t-test for zero difference on the individual differences, but this test 
assumes a normal model for the differences: in Exercise 9.2 you constructed 
a probability plot that cast doubt upon the assumption. The t-test concludes 
that there is no significant difference (SP = 0.33), but now that you have seen 
a normal probability plot for these data, would you trust this result? 

In this section you will see that all may not b e  lost and that, even when 
initial distributional assumptions appear to be unjustified, it is often possible 
to transform the data to a form which allows suitable modelling. 

Transformations 
Four histograms of data sets each comprising 300 data points are shown in 
Figure 9.6. 

Frequency Frequency 

0.5 
Measurement 

Frequency Frequency 

0.5 
Measurement 

0.5 1 0 
Measurement (4 

0.5 
Measurement 

Figure 9.6 Four histograms 
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Histogram (a) looks as if the data could be normally distributed, but (b), 
(c) and (d) are progressively more skewed and appear to be anything but 
normal. Their appearances are confirmed by the respective measures of skew- 
ness, which are -0.02, 0.89, 2.62 and 17.21. It may surprise you to learn that 
all four histograms actually come from the same normally distributed data 
set! Histogram (a) was produced by generating a normal sample of size 300 
on a computer. You can also obtain each data point used for histogram (a) 
by taking the square root of each of the data points in histogram (b), or by 
taking one plus half the logarithm of the data points in histogram (c), or by 
taking the reciprocal of 263 times those in histogram (d). You can do this 
because the data for (b), (c) and (d) were generated from the data for (a) in 
the first place, and the transformations suggested are the inverses of the ones 
used for generating (b), (c) and (d). 

Since the data in histogram (a) are plausibly normally distributed, there 
should be nothing wrong in using them to carry out a t-test. For example, you 
could test the null hypothesis that the mean of the population from which they 
were drawn is 0.5. However, it would not be legitimate to carry out t-tests 
on the data in (b), (c) or (d) because the variation is far from normal. Now, 
suppose that data resembling those in (b), (c) or (d) were to arise in practice. 
It would clearly be in order to transform them with an appropriate transform- 
ation and then to carry out t-tests based on the assumption of normality. If 
the data looked like those in histogram (b), then the correct procedure would 
be to take square roots. Taking the logarithm would be appropriate for (c) 
and taking a reciprocal transformation would cater for (d). 

The main aim in transforming a set of data X I ,  2 2 , .  . . ,X, to a different set 
yl, yz, . . . , yn by means of a mathematical transformation is usually to render 
the transformed data more plausibly normal. Possibilities include yi = X: or 
yi = l /x i  or yi = log(xi): the list is endless. Under different circumstances 
some transformations will be better or worse than others at finally achieving 
a satisfactorily 'bell-shaped' look to the data. (Clearly, some transformations 
will be inappropriate under some circumstances-one cannot, for instance, 
take the square root or the logarithm of a negative number.) Quite a lot is 
known about the general consequences of data transformations of the form 
yi = (a + xi)P for different values of a and P, and when the original data 
(that is, the xis) possess certain kinds of structure. 

Above all, one needs to be sure that the question posed of the original data 
can be answered, or approximately answered, following a data transformation. 

Sometimes experimentalists object to such data transformations: their argu- 
ment is that transformations distort the data and that such massaging is an 
unjustifiable 'fiddle'. A counter-argument to this is that the mechanism which 
produced the data has inadvertently distorted them in the first place, so that 
a statistical transformation is merely restoring them to their proper form. 
Another objection which is frequently heard is that in a given context the re- 
quired statistical approach should be decided on theoretical grounds without 
even looking at the data, let alone being influenced by them, or altering them. 
Such a view was popular some years ago, but it is now regarded as discredited 
by modern statisticians. There is nothing against the idea of looking at the 
shape of your data while choosing a statistical technique. 

Some general indications of an approach can be made: if the original data are 
positive and highly skewed with many relatively small values and fewer higher 
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values (with possibly some very high values indeed) then data transformations 
of the form 

'/2 113 yi = 6 = xi , yi = xi , yi = l0g(xi) 

will all tend to have a greater reducing effect on higher X-values than on 
lower values: the overall effect will be to reduce the skewness in the data, 
possibly quite substantially, and potentially very usefully, if the transformed 
data values become more symmetric. (But notice that the log transformation 
would have a very considerable stretching effect on values of X between 0 and 
1.) The ladder of powers lists transformations of the form 

The transformation X' leaves the value of X as it is. Provided X > 1, powers 
above 1 on the ladder expand the high values relative to the low values, and 
powers below 1 have the reverse effect. The further up or down the ladder 
from X', the greater the effect. Notice where the transformation log X (not, 
in fact, a power transformation) is located on the ladder. 

Examples 9.7 and 9.8 which follow show that it is useful to transform data 
prior to analysis. The area is a difficult one, requiring experience and inspi- 
ration; just read the examples for what you can get out of them, and do not 
worry too much about the arithmetic detail. 

9.3.2 Making use of transformations 
The area of selecting suitable data transformations is one in which the com- 
puter is an invaluable tool. You can move along the ladder of powers trying 
different transformations until sample skewness is either largely removed or 
at least reduced as much as possible. Of course, you should keep the trans- 
formations as simple as possible and use only powers such as -1 or i: you 
should not attempt to interpolate by investigating such powers as, say, 0.41. 
By keeping things simple you are roughly satisfying the assumptions while 
retaining a straightforward interpretation, and that is what you should aim 
for. In the case of a single sample, a normal probability plot can then be used 
as a check and, if it shows a passable straight line, a test may be carried out 
with confidence in the statistical technique chosen. 

When testing two samples, the data are transformed, the respective trans- 
formed means are subtracted from each group and the residuals thus obtained 
are checked with a probability plot. Let us try a couple of examples, to en- 
able you to become familiar with the method before you try some exercises 
for yourself. Example 9.7 is an example with paired data. 

Example 9.7 Error gravity scores 

Table 9.15 gives error gravity scores for a sample of native teachers of English 
and a sample of Greek teachers of English for each of 32 English sentences 
analysed by students. 

Table 9.15 Error gravity scores of English and Greek teachers 
Sentence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
English 22 16 42 25 31 36 29 24 29 18 23 22 31 21 27 32 
Greek 36 9 29 35 34 23 25 31 35 21 33 13 22 29 25 25 
Sentence 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
English 23 18 30 31 20 21 29 22 26 20 29 18 23 25 27 11 
Greek 39 19 28 41 25 17 26 37 34 28 33 24 37 33 39 20 

Woods, A., Fletcher, P. and 
Hughes, A. (1986) Statistics in 
language studies, Cambridge 
University Press, p. 201. An 
error gravity score quantifies the 
seriousness of an error as 
perceived by a teacher-here, 
teachers of English judged written 
material. 
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In order to test the hypothesis that the mean scores given by English and 
Greek teachers are the same, the scores for each of the sentences are differenced 
and the differences obtained are tested for a mean of zero. Assuming that the 
differences are normally distributed, a t-test would be appropriate here. The 
sample skewness for the 32 differences is 0.405, which is rather high. 

Using a power transformation to reduce skewness needs care here because 
some of the data points are negative. Since the minimum difference is -16, 

we first add 16 to each of them so that all differences are now non-negative. 
If we use a transformation X@, testing for a mean difference of 0 is now the 
same as testing the transformed data for a mean of 16P. We are trying to Strictly, some bias is introduced 
remove positive skewness, so let us try a power of p = 112. Our transformed here: even if the mean difference is 

variable is now (Difference + 16)'l2, and has sample skewness -0.420. 0, the mean of the transformed 
variable (Difference + 16)O is not 

Obviously we have gone too far, so we could try using a power of P = 314. quite 16~. Despite this bias, the 
This final transformation yields a variable which is (Difference + 1 6 ) ~ / ~ :  the procedure is a One. 

sample skewness is 0.094. 

We now test the transformed data for a mean of 1 6 ~ 1 ~  (that is, a mean of 8) 
and obtain a SP of 0.014. The SP obtained by testing the untransformed 
data for a mean of zero is 0.035. The transformed data now need to be checked 
for normality. Normal probability plots for both the untransformed and the 
transformed data are shown in Figure 9.7. 

Figure 9.7 Normal probability plots for (a) untransformed and (b) transformed 
error gravity scores 

The difference is very slight here. The plot for the untransformed data, 
Figure 9.7(a), does show a slight curvature, but this is acceptable. Figure 9.7(b) 
shows straightening of the curvature and an improvement in the fit. After 
transformation we can happily reject the null hypothesis of no difference with 
a SP of 0.014. W 

Example 9.8 Ontario Protestant mothers 
In Chapter 1 you saw some data on family sizes of Ontario Protestant mothers. See Table 1.15. 
One group comprised mothers with six years of formal education or less, the 
other was for mothers who had been educated for seven years or more. These 

366 
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data were, in fact, part of a larger data set. The mothers in question were mar- 
ried at  age 15-19, whereas the complete data set also includes those mothers 
married at  age 20-24. The data for the mothers married at  age 20-24 are 
given in Table 9.16. 

Table 9.16 Sizes of Protestant families in Ontario-mothers aged 20-24 

Mothers educated for 6 years or less 
Family size 0 1 2 3 4 5 6 7 8 9 10 
Frequency 2 3 2 11 9 1 9 2 2 0 2 

Mothers educated for 7 years or more 
Family size 0 1 2 3 4 5 6 7 8 9 - 10 11 12 
Frequency 8 17 21 26 17 13 7 6 1 3 1 0 1 

For these two data sets, the sample skewnesses are 0.434 and 0.967 
respectively. 

There are no negative data points. A little trial and error shows that the 
transformation y = x3I4 works well, producing a slight negative skewness in 
one group and a positive skewness in the other: the values are -0.076 and 
0.389 respectively. 

This transformation is probably as good as any on these data, so now a t-test 
of the hypothesis that there is no difference between the mean family size for 
either of the two groups can be performed. A t-statistic of 2.218 is obtained 
which, on 162 degrees of freedom, yields a SP of 0.028. This suggests a 
significant difference between the two groups. 

How tenable is the assumption that the transformed data are plausibly nor- 
mal? This can be checked by obtaining residuals and plotting them against 
normal scores. For the first group the mean, in this case 2.886, is subtracted 
from the transformed data. The mean of the second group, 2.382, is also 
subtracted from the transformed data, and the two sets of residuals thus ob- 
tained are pooled together into one batch. The combined residuals for the 
two groups are then plotted against normal scores in the usual way to obtain 
the probability plot shown in Figure 9.8. 

- 3 -2 - 1 0 1 2 3 
Normal scores 

Figure 9.8 Normal probability plot of residuals 
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With so many points on it, the graph is a little blurred, but it does show 
an acceptable straight line and therefore we can be confident about rejecting 
the null hypothesis that there' is no difference between the groups: in fact, 
the data suggest that mothers with more years' education tend to have fewer 
children. W 

Exercise 9.11 
In Chapter l you were presented with a data set on birth weights of 50 children 
suffering from severe idiopathic respiratory distress syndrome (see Chapter l ,  

Table 1.4). 

Decide whether a test of equal mean birth weights for the two groups should 
first involve a transformation of the data. If you decide to transform them, 
find a suitable transformation. 

Exercise 9.12 
Using your conclusions from Exercise 9.11, carry out a test of the null hypoth- 
esis that the mean birth weights of the two groups of children are the same. 
Check the validity of your assumptions. 

Exercise 9.13 
In Example 9.8 you looked at data on family sizes of mothers married when 
aged 20-24. These data were part of a data set which also includes family 
sizes of mothers married when aged 15-19. This latter group appeared in 
Chapter 1, Table 1.15. 

Repeat the analysis of Example 9.8 for the 15-19 age group and discuss the 
validity of the assumptions you make. 

9.4 Is a modelling distribution necessary 
for answering the questions we are 
asking of the data? 

The normal probability plot you produced for Exercise 9.13 may have left you 
in some doubt about the validity of assuming normality even for the trans- 
formed data. While the idea of transforming the data to plausible normality 
is an attractive one, it is clear that many data sets are not amenable to this 
technique. If application of the ladder of powers does not produce a satisfac- 
tory model, we shall be compelled to fall back upon a technique which does 
not require a model. In other words, we need a technique which we can use 
when all else fails. 
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9.4.1 Early ideas-the sign test 
Distribution-free statistical tests can be traced back at least as far as 1710, 
when John Arbuthnot produced the first recorded instance of such a tech- Arbuthnot, J. (1710) An Argument 
nique. The fundamental principle behind his test is simple. For the 82-year for Divine Providence, taken from 

period from 1629 to 1710 (inclusive) he observed from City of London records the 'Onstant observ'd in 
the Births of both Sexes. 

that the annual number of births of boys always exceeded the annual num- Philosophical nansactions, 27, 
ber of births of girls. If he were to believe births of either sex to be equally 186-190. ArbuthnotTs researches 

82 
likely, the probability of such an outcome would be (i) , which is a very tiny  ere described in Chapter 3,  hen 

probability indeed. He therefore refused to believe it (in statistical parlance a for the 
distribution of the sexes in families 

he rejected the null hypothesis of boys and girls being equally likely) and was Presumably the 
concluded that the probability of a boy was greater than that of a girl. He data for 1710 did not cover the 
further concluded that the observation constituted clear evidence for divine whole year. 
providence since, with wars and diseases resulting in a higher death-rate for 
males, God had compensated by arranging for more males to be produced, 
and hence arranged 'for every woman her proper husband'. 

Notice that Arbuthnot's test makes no assumptions about the distribution 
of births for either sex. Nowadays his test is called the sign test, under 
which name it appears in most elementary statistics textbooks. In spite of 
its frequent appearance in texts, it is hardly ever used in practice. The prin- 
ciple remains the same as Arbuthnot's; if you have paired data, calculate the 
differences and count the number of + signs obtained. If the distribution of 
differences is symmetric about zero, you can expect roughly as many + signs 
as - signs and you can obtain a significance probability by using a binomial 
distribution ~ ( n ,  i) (where n is the sample size). Arbuthnot subtracted the 
number of girls recorded from the number of boys for each of 82 years and 
obtained 82 + signs. 

-Example 9.9 Cornea1 thickness-the sign test 

In Exercise 9.2 you constructed a normal probability plot for the data on 
corneal thickness in patients with glaucoma. These are paired data so you 
calculated the differences between pairs, thereby creating a single sample of 
differences. The null hypothesis that there is no difference between the corneal 
thickness of a glaucomatous eye and a normal eye can be explored by testing 
the individual differences for a mean of zero using a t-test. On page 363 
the remark was made that this analysis is suspect in the light of the normal 
probability plot of the data. 

In the sign test, zeros are ignored. Looking at the differences listed in 
Table S9.1, there are three + signs and four - signs or, to put it another 
way, three + signs out of seven. Assuming equal prbbability for individual + There is a similar approach to the 
and - signs, the probability of observing up to 3 + signs out of 7 is sign test in which zeros are 

incorporated into the analysis. 

the total SP for the test is 1, and we can conclude that there is no evidence 
of a difference in typical corneal thickness. 

The sign test has a degree of historical interest, but it is rarely used in practice. 
The reason for this is that it throws away too much valuable information and, 
as a result, is not very powerful: it is prone to failing to reject a null hypothesis 
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in all but the most obvious cases. The information thrown away is information 
on the size of the difference. Among the differences for glaucomatous patients, 
patient 4 with a difference of -18 microns is given exactly the same importance 
as patient 1 with a difference of 4 microns. This seems unsatisfactory, and it 
fell to Frank Wilcoxon in 1945 to propose a method of testing which takes the Wilcoxon, F. (1945) Individual 
size of the differences into account. comparisons by ranking methods. 

Biometrics Bulletin, 1, 80-83. 

9.4.2 The Wilcoxon signed rank test 
Wilcoxon's idea was to replace individual differences by ranks. These are 
allocated to the absolute values of the differences, the smallest being given 
a rank of 1, the next smallest a rank of 2, and so on. The differences then 
have their signs restored to them and the ranks are added up separately for 
each of the positive sign and negative sign groups. If the total for one group 
is very small (which means that the total for the other group must be very 
large since they add up to a fixed total), the null hypothesis that there is no 
difference will be rejected. A simple example should make this method clear. 

Example 9.10 Corneal thickness-the Wilcoxon signed rank test 

We shall use the paired data on cornea1 thickness in patients with glaucoma 
from Example 9.9. Table 9.17 separates the differences from their associated 
signs. 

Table 9.17 Corneal thickness in patients with glaucoma 

Patient 1 2 3 4 5 6 7 8 
Glaucomatous eye 488 478 480 426 440 410 458 460 
Normal eye 484 478 492 444 436 398 464 476 
Sign of difference + - - +  + - - 
IDifferenceI 4 0 12 18 4 12 6 16 
Rank 1; 4; 7 1; 4; 3 6 

There are two important things to notice in Table 9.17. The first is that the 
difference of zero for patient 2 has not been included in the reckoning; it is 
ignored and the sample size is regarded as being 7, not 8. The second is that 
where two differences have the same absolute value, an average rank is given. 
In the table, the two lowest absolute values are tied on 4. Since the two lowest 
ranks are equal to 1 and 2, each is allocated rank $(l + 2) = l$. The same 
has happened where two absolute differences are tied on 12. They have ranks 
4 and 5, so each is given a rank of i ( 4  + 5) = 4 i .  Now we reintroduce the 
signs. The sum of the positive ranks is 

W+ = 1; + 1; + 41. - 71. 
2 - 2 '  

the sum of the negative ranks is 

The sum W+ + W- is always equal to 1 + 2 + . . . + n = ;n(n + l ) ,  where n is 
the sample size. (Here, W+ +W- = 28; the sample size is n = 7.) The test 
statistic for the Wilcoxon signed rank test is W+: under the null hypothesis 
of zero difference, values of W+ that are extremely small or extremely large 
will lead to rejection of the null hypothesis. The null distribution of the test 
statistic W+ is rather .complicated, relying upon a complete enumeration of 
cases: to obtain the SP for a Wilcoxon signed rank test, reference is usually 

In some approaches, the test 
statistic is taken to be the 
minimum of W+ and W-, that is, 
min(w+, W-). This has some 
advantages, but information is lost 
about the precise nature of the 
differences that make up the 
sample. 
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made to a computer. In this case, with n = 7 and W+ = 7;, the test results 
are 

SP(obtained direction) = SP(opposite direction) = 0.172; 

SP(tota1) = 0.344. 

There appears to be no significant difference in cornea1 thickness. 

As for the sign test, there is an alternative procedure in which zeros are 
incorporated into the analysis. After all, they offer contributory evidence 
for a hypothesis of mean zero difference. Except for very small samples, 
the alternative approach does not usually lead to substantially different con- 
clusions. Here, incorporating the zero in Table 9.17, the signed rank test leads 
to a total SP of 0.391. 

The procedure for conducting the Wilcoxon signed rank test for zero difference 
is summarized as follows. 

The Wilcoxon signed rank test for zero difference 
1. Obtain a data vector dl, d2 , .  . . , d, of differences with OS deleted. 

2. Without regard to sign, order the differences from least to greatest, 
and allocate rank i to  the ith absolute difference. In the event of 
ties, allocate the average rank to the tied absolute differences. 

3. Now reintroduce the signs of the differences. Denote by W+ the sum 
of the positive ranks. This is the Wilcoxon signed rank test statistic. 

4.' Obtain the SP for your test (usually by reference to a computer 
running appropriate software). 

5. State your conclusions. 

The null distribution of W+ is 
symmetric. 

Now try the following exercise. 

Exercise 9.14 
Doubt has already been cast on the assumption of normality for the Shoshoni 
rectangles data (see Figure 9.2). A test for the Greek standard which does 
not make this assumption might be more appropriate. The data are given in 
Chapter 8, Table 8.4. 

(a) Obtain a table of differences by subtracting the Greek standard from each 
of the ratios in Table 8.4 and allocate signed ranks to each difference. 

(b) Use the signed ranks to calculate a value of the Wilcoxon signed rank 
test statistic W+ and use it to test the null hypothesis that the Shoshoni 
rectangles conform to the Greek standard. 

(c) Compare your result with that obtained under normal assumptions. 

In fact, there is a sense in which the central limit theorem operates with the 
Wilcoxon signed rank statistic. For a sample of size n, it can be shown that 
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under the null hypothesis of zero difference, 

n(n + l )  and V(W+) = n(n + 1)(2n + 1) 
E(W+) = 24 1 

and it can further be shown that 

has a distribution which is approximately standard normal. The approxi- 
mation is quite good, but should not be used for sample sizes that are very 
small. 

Example 9.11 Cornea1 thickness - normal approximation for the Wilcoxon 
signed rank test 
In Example 9.10 we looked at differences in cornea1 thickness of eyes of patients 
with one normal and one glaucomatous eye. There were seven such differences 
(excluding one with zero difference), so that 

In this case the sum of positive ranks is W+ = 7; so the corresponding ob- 
served value of Z is 

the nuniber z = -1.099 is at  the 13.6% point of the standard normal distri- 
bution. We then have 

SP(obtained direction) = SP(opposite direction) = 0.136; 

SP(tota1) = 0.272. 

Here, the sample size is only 7; the approximate SP is noticeably different 
from that given in Example 9.10. 

Exercise 9.15 
Use the value of the Wilcoxon signed rank statistic obtained in Exercise 9.14 
and a normal approximation to test the null hypothesis that the Shoshoni rec- 
tangles conform to the Greek standard. Compare your SP with that obtained 
in Exercise 9.14. 

9.4.3 The Mann- Whitney- Wilcoxon test 
The idea of using ranks instead of the data values is a logical and appealing 
one. Furthermore, it has an obvious extension to testing two groups of data 
when a two-sample t-test may not be applicable because of lack of normality. 
The test itself was first proposed by H.B. Mann and D.R. Whitney in 1947, Mann, H.B. and Whitney, D.R. 
and modified by Wilcoxon; it turns out to be very nearly as powerful as the (1947) On a test of whether one of 
two-sample t-test. Strictly speaking, a test based on ranks does not test the random is 

stochastically larger than the 
same null hypothesis as the t-test, which tests for equal means. However, it other. Annals ofMathematical 
is nevertheless a test of equality of locations of the two groups and using it statistics, 18, 50-60. 
as an alternative to the two-sample t-test is an approximation often made 
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in practice. It may not be theoretically valid to regard the Mann-Whitney- 
Wilcoxon test as equivalent to a t-test, but using it is a valid alternative as a 
test of location. 

Suppose we have two independent samples, A and B: the Mann-Whitney- 
Wilcoxon test may be used to test the hypothesis that the samples arise from 
the same population. The procedure is as follows. 

Calculating the Mann-Whitney-Wilcoxon test statistic 

- 

Pool the two samples and then sort the combined data into ascending 
order (but do not lose sight of which data value belongs to which 
sample). 

Allocate a rank to each data value, the smallest being given rank 1. 
As usual, if two or more data values are equal, allocate the average 
of the ranks to each. 

Add up the ranks for each sample, writing 

UA = the sum of the ranks for sample A 

u g  = the sum of the ranks for sample B 

Notice that if sample A is of size n ~ ,  and if sample B is of size n g ,  
then the sum of UA and U g  is 

U A + U B = ~ + ~ + " ' + ( ~ A + ~ B )  

= ;(nA + ng)(nA + n g  + l), 

providing a useful check on your arithmetic. 

The Mann-Whitney-Wilcoxon test statistic is UA: very small or 
very large observed values imply rejection of the null hypothesis, 
suggesting respectively that A-values are 'too frequently' smaller 
than or larger than B-values. 

The observed value UA of UA may then be compared with the null distribution 
of UA to yield a SP for the test. Again, the null distribution of UA is compli- 
cated: its derivation relies on combinatorial arguments, and this calculation 
would normally require the use of a computer program. 

Alternatively, the null distribution of UA may be approximated by a normal 
distribution: 

The normal approximation is valid 
as long as the number of tied 

1 valuesU(that is, values that are the 
same) in the pooled data set is not 

Thus approximation can be used for quite modest values of nA and n g ;  say, too great. 
each of size 8 or more. 

Example 9.12 Doparnine activity 
In a study into the causes of schizophrenia, 25 hospitalized schizophrenic 
patients were treated with antipsychotic medication, and after a period of 
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time were classified as psychotic or non-psychotic by hospital staff. Samples 
of cerebro-spinal fluid were taken from each patient and assayed for dopamine 
b-hydroxylase enzyme activity. The data are given in Table 9.18: the units Sternberg, D.E., Van Kammen, 
are nmol/(ml)(hr)/mg of protein. D.P. and Bunney, W.E. (1982) 

Schizouhrenia: douamine 

Table 9.18 Dopamine b-hydroxylase activity (nmol/(ml)(hr)/mg) 
(A) Judged non-psychotic 
0.0104 0.0105 0.0112 0.0116 0.0130 0.0145 0.0154 0.0156 
0.0170 0.0180 0.0200 0.0200 0.0210 0.0230 0.0252 

(B) Judged psychotic 
0.0150 0.0204 0.0208 0.0222 0.0226 0.0245 0.0270 0.0275 
0.0306 0.0320 

The data may be pooled and ranked as shown in Table 9.19. 

Table 9.19 Pooled and ranked data 

0.0104 0.0105 0.0112 0.0116 0.0130 0.0145 0.0150 
Sample A A A A A A B 
Rank 1 2 3 4 5 6 7 

0.0154 0.0156 0.0170 0.0180 0.0200 0.0200 0.0204 
Sample A A A A A A B 
Rank 8 9 10 11 12; 12; 14 

0.0208 0.0210 0.0222 0.0226 0.0230 0.0245 0.0252 
Sample B A B B A B A 
Rank 15 16 17 18 19 20 2 1 

0.0270 0.0275 0.0306 0.0320 
Sample B B B B 
Rank 22 23 24 25 

The sample sizes are n A  = 15  and n B  = 10; so n A  + n g  = 25. Totalling the 
ranks gives 

their sum is 140 + 185 = 325. Also, 

(a useful check on your progress so far, if you are not using a computer). 

The expected value of UA under the null hypothesis that the two samples are 
from identical populations is 

The observed value UA = 140 is substantially smaller than this, but is it sig- 
nificantly smaller? When there are ties in the data (as there are here) the null 
distribution of.UA will be asymmetric; and for small samples, the distribution 
can be fiercely multimodal. Computation, and interpretation, of significance 
probabilities in such a context becomes quite difficult. Exact computation 
(feasible only with the aid of a machine) gives 

b-hydroxylase activity and 
treatment response. Science, 216, 
1423-1425. 
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Alternatively, the variance of UA under the null hypothesis is 

n ~ n ~ ( n ~  + n ~  + 1) - 15 X 10 X 26 - 
12 

= 325. 
12 

The observed value U A  has a corresponding z-value 

so the SP based on an appropriate normal distribution is given by 

Clearly the dopamine activity for the two groups is very different. 

Now try the following exercise. 

Exercise 9.16 
In Section 9.3 you saw how poor was the fit of a normal distribution to the 
data on recall of pleasant and unpleasant memories. Carry out a distribution- 
free test of the null hypothesis that there is no difference in recall time be- 
tween pleasant and unpleasant memories. The data are given in Chapter 2, 
Table 2.10. 

In this section you have seen that, by the simple expedient of replacing data 
values by ranks, it is possible to carry out tests of statistical hypotheses with- 
out making distributional assumptions. 

9.5 Are the data typical or do they contain 
some 'unlucky' values? 

From the moment that boxplots were introduced in Chapter 1 as a graphical 
representation of variability in a set of data, you have been aware of the notion 
of statistical outliers. Similarly, in probability plots, occasionally there may be 
evidence of an unusual outlying point, or set of points, suggesting that apart 
from a few exceptional observations, the hypothesized model is adequate to 

describe the variability observed. Of course, outliers are more disconcerting 
if they are found in very small data sets. 

The study of outliers and how to treat them is somewhat complex: it is only 
possible to give a little general guidance in this course. Broadly\ speaking, 
their treatment can be separated into two basic approaches which depend 
upon how many outliers appear in the data and how far you are prepared 
to go in believing that you have been unlucky enough to obtain a few atypi- 
cal values-rather than believing that the distributional assumptions are not 
viable. 
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9.5.1 Data containing very few apparent outliers 
Up to now, it has usually been suggested that in a data set where relatively 
few data points appear to be atypical, then it would be wise to exclude them 
from any statistical analysis. (The alternative is to include them, and ac- 
cept that possibly they might have very considerable influence on the general 
conclusions.) 

Example 9.13 
In Example 9.8 we looked at the numbers of children born to mothers married 
at age 20-24, and found a transformation y = z3l4, after which we treated 
the data as normal and carried out a t-test. It is instructive to look at a 
comparative boxplot of the transformed data. 

less formal education 

0 - 0 0 0 more formal education 

Figure 9.9 Comparative boxplot of transformed data 

There is a case for regarding all of the transformed data values outside the 
range of the whiskers as possible outliers. If they are omitted, and a two- 

sample t-test is carried out on the remaining data values, a t-statistic of 2.643 
is may on 145 degrees of freedom is obtained with a total SP of 0.009. Th' 

be contrasted with the result, obtained in Example 9.8, of 2.218 on 162 de- 
grees of freedom for a total SP of 0.028. Regarding the values within the 
range of the whiskers as somehow more 'typical' produces a more 'convincing' 
conclusion. 

9.5.2 Data containing too many apparent outliers 
Are the outliers in Figure 9.9 really outliers, or should we adopt a modelling 
distribution with fat tails and a high probability of values far from the mean? 
How many data values is it reasonable to treat as outliers? The previous 
example must be pushing the limits; out of a total of 164 data points, we have 
assumed no fewer than 17 to be outliers. 

There is no hard and fast rule which decides how much the data may be 
trimmed while assumptions of normality are retained. In practice, it is best 
to remove no more than one or two values and, if in doubt, to keep all the 
values and to revert to a distribution-free method. Using ranks instead of 
data values loses information about how far apart the values actually are but, 
on the other hand, it removes sensitivity to abnormally large or abnormally 
small values. If decisions about which method to use seem unduly vague, you 
should remember that there is no definitively right or wrong way of performing 
any kind of statistical analysis. All you can do is use your common sense to 
the best of your ability. 

But throwing away 17 outliers is a 
rather drastic step and you would 
need to be very sure of your 
ground. Merely 'lying outside the 
whiskers' is hardly a sufficient 
reason for trimming the data. You 
should certainly suspect such data 
points, and look at them more 
closely. Perhaps there is additional 
evidence that they are non-typical: 
for example, they might have an 
unusual medical history. 
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Exercise 9.17 
The following data are a set of radio-carbon age detkminations, in years, from 
the Lake Lamoka site: eight samples were used. Long, A. and Rippeteau, B. (1974) 

Testing contemporaneity and 
Table 9.20 Radio-carbon dating averaging radio-carbon dates. 

American Antiquity, 39, 205-215. 
Sample Radio-carbon age 
number determination 

Use the data to provide an estimate of the true age of the site. 

Summary 

1. When sample sizes are small, the technique of probability plotting can 
be used to test informally the hypothesis that a set of data yl,  y2,. . . , y, 
arises from some stated family of probability distributions. To test for 
normality, the points ~ ( ~ 1 ,  y ( ~ ) ,  . . . , y(,) in ascending order are plotted 
against the points X I ,  x2,. . . ,X,, where 

i 
@(xi) = - i =  1 , 2 , . . . , n .  

n + l '  

If a straight line fits the scatter plot of points, then the normal model 
is plausible. The parameters p and (T can be roughly estimated by the 
intercept and slope of the line respectively. 

2. To test a hypothesized exponential model, the points Y ( ~ ) ,  ~ ( ~ 1 , .  . . , y(,) 
are plotted against the points 

xi = - log (n::~i), i = 1 , 2  , . . ,  n. 

If the exponential model is plausible a straight line through the origin, 
with slope equal to the mean of the exponential distribution, will fit the 
scatter plot of points. 

3. Tests for other probability models may require a transformation of the 
data before the idea of probability plotting can be applied. 
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The chi-squared test for goodness of fit relies on a comparison of fre- 
quencies observed and frequencies expected under a hypothesized model. 
The test statistic is 

where the data are allocated to k categories in such a way that the 
expected frequencies in each category are at least 5. Under the null 
hypothesis that the data arise from the hypothesized model, the test 
statistic follows a chi-squared distribution with k - p  - l degrees of 
freedom, where p  is the number of parameters that required estimation in 
order to calculate the expected frequencies. The SP of the chi-squared 
test is given by the upper tail probability of x2(k - p  - 1) for values 
exceeding x2.  

Sometimes if data are heavily skewed a transformation that reduces the 
skewness will also render the data more 'bell-shaped' and in that sense 
more plausibly normal. Experimentation with the ladder of powers (in- 
cluding the log transformation) often leads to a helpful power transform- 
ation. 

A test for zero difference analogous to Student's t-test for zero mean 
difference, but not requiring the assumption of normality, is provided 
by the Wilcoxon signed rank test. Significance probabilities for the test 
statistic W+ (the sum of positive ranks when any zeros in the data are 
deleted and the data are ranked) may be calculated exactly if appropriate 
software is available, or approximately using the result 

W+ X iv (n(n4+ l ) ,  n(n + l)(2n 24 t 1)) , 

where n is the sample size. 

The Mann-Whitney-Wilcoxon test may be used to test the hypothesis 
that two samples of data (A and B) arise from the same population, 
where no normality assumptions are made. Significance probabilities for 
the test statistic UA (the sum of the A-ranks after pooling of the data) 
may be calculated exactly (using a computer), or approximately using 

where n~ and nB are the respective sample sizes. 



Chapter 10 
Explanatory relations 

In this chapter observations are collected on a random variable whose mean al- 
ters with changing circumstances (for instance, with passing time). Techniques are 
developed in an attempt to model this dependence and to make predictions. 

So far in this course models for variation have been developed that are suf- 
ficient for the entire population under study. For instance, in Chapter 2, 
Example 2.17, data were collected on the heights of elderly women: a sample 
of size 351 from the community was used. The data collection formed part 
of a study into the disease osteoporosis, and in this context the population of 
elderly women was the only one of interest. There was evident variation in 
the sample (see Figure 2.19) and it was suggested that a normal distribution 
with appropriately fitted parameters p and a might be adequate to model the 
variation in the population. We did not seek to model the heights of females 
in general (because in this context the variation in height of teenage girls, for 
instance, was of no interest). But in the population in general, we know that 
height depends on age at least up to about 15 or 16 years old. Clothing manu- 
facturers, for instance, would need to be aware of-the extent of this variation, 
and how it depended on age. Figure 10.1 illustrates the variation in height 
of schoolboys aged between 6 and 10 years old, taken from an early study 
in America. For each of the five age groups, a histogram for the variation This early study explored the 
in heights was drawn. Then each histogram was composed into the single relationship between the age and 

diagram in the way shown. heights of 24 500 Boston 
schoolboys, conducted for the 

I leigl~t ( i t~chc~s)  Massachusetts Board of Health in 
1877 by H.P. Bowditch. The figure 
is adapted from Peters, W.S. 
(1987) Counting for 
Something-Statistical Principles 
and Personalities. Springer-Verlag, 
New York, p. 90. 

.'K 1 
(i 7 8 >J 10 

Age (pears) 

Figure 10.1 The variation in height (in inches) for boys aged 6 to 10 
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It is clear that the distribution in heights alters with the increasing age of 
the boys. In fact, the figure suggests very clearly for each age group that a 
normal distribution would provide a very adequate model for the variation in 
heights; that the mean increases roughly linearly with age (at least between 
the ages 6 and 10; the trend would not continue into middle age, of course); 
it also seems that the variance in height does not alter much with age, if at 
all. So, perhaps a model where the parameter p altered linearly with age but 
where a did not alter at all, would provide a very good model for the variation 
in height of this developing population. 

This kind of dependence is the subject of the present chapter. Here are two 
more examples. 

Example 10.1 Finger-tapping 
An experiment was carried out to investigate the effect of the stimulant caf- 
feine on performance on a simple physical task. Thirty male college students 
were trained in finger-tapping. They were then randomly divided up into 
three groups of 10, and the students in each group received different doses of 
caffeine (0, 100 and 200mg). Two hours after treatment, each subject was 
required to do finger-tapping, and the number of taps achieved per minute 
was recorded. The question of interest was: does caffeine affect performance 
on this task? 

The recorded figures are given for each of the 30 subjects in Table 10.1. 
Table 10.1 Finger-tapping data 

Caffeine dose (mg) Finger-taps per minute 

0 242 245 244 248 247 248 242 244 246 242 
100 248 246 245 247 248 250 247 246 243 244 
200 246 248 250 252 248 250 246 248 245 250 

There are not enough data here to construct meaningful or informative his- 
tograms for each of the three dose levels. The appropriate graphical rep- 
resentation to use is the scatter plot, where the caffeine dose is measured 

along the horizontal axis, and recorded finger-taps per minute are measured 
up the vertical axis. The result recorded for each of the 30 subjects corre- 
sponds to a single point on the scatter plot. A scatter plot for these data is 
given in Figure 10.2. 

\ 

Tapping frequency (per minute) 

240 
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Caffei~le dose ( 1 1 1 ~ )  

Draper, N.R. and Smith, H. (1981) 
Applied regression analysis, 2nd 
edn. John Wiley and Sons, New 
York, p. 425. Finger-tapping is a 
fairly standard psychological task 
performed by subjects to assess 
alertness through manual (or, 
strictly, digital) dexterity. Of 
course, a more informative 
experiment might have been to 
collect 'Before' and 'After' tapping 
frequency data for each of the 
30 subjects, and then to explore 
the difference achieved for each 
subject, and how that difference 
related to the caffeine dose. 
However, we must deduce what we 
can from the data supplied. 

In Figure 10.2, coincident points 
are shown slightly displaced for 
clarity. 

Figure 10.2 Tapping frequency against caffeine dose 



In this example, it is not possible to deduce very much about the shape of 
the variation in tapping frequencies at  each dose level, but the range is easy 
to determine (a range of about 8 beats per minute, from somewhere in the 
mid-240s to somewhere in the mid-250s). More significantly, there is some 
evidence of a possible upwards trend from the graph in Figure 10.2-that is, 
there is some evidence that increasing the caffeine dose leads to an increase 
in tapping frequency. The questions that might be asked are: is there a 
genuine underlying trend or is its manifestation here merely an accident of 
the data? If the trend is there, how can we model it? How can we account for 
the variation between responses at  the same dose level? One might then use 
the model to predict finger-tapping frequencies at higher (or just different) 
dose levels. Without more knowledge of the effect of caffeine on the human 
physiology, one should be wary of extending the trend and predicting finger- 
tapping performance at very much higher doses than 200mg. . 
This is a typical problem in the statistical exercise known as regression. 
Regression analysis involves the development and use of statistical techniques 
designed to reflect the way in which variation in an observed random variable 
changes with changing circumstances. 

Example 10.2 Forbes' data 
In the 1840s and 1850s the Scottish physicist James Forbes was interested in 
developing a method for estimating altitude on a hillside from measurement 
of the boiling point of water there. The temperature at which water boils 
is affected by atmospheric pressure, which in turn is affected by altitude. 
Forbes concluded that it would be possible for climbers to estimate their height 
from the temperature at which water boiled. Carrying altimeters (that is, 
barometers) up and down hills is a tricky business: boiling5 pan of water and 
measuring the temperature at which boiling point occurs is less troublesome. 

It would be useful to have data available for the way boiling point varies 
with altitude: in fact, the data in Table 10.2 give the boiling point (OF) and 
atmospheric pressure (inches Hg-that is, inches of mercury) at 17 locations 
in the Alps and in Scotland. 

Boiling point ( O F )  

."" , 
20 25 S0 

Atmospheric pressure (inches Hg) 

Figure 10.3 Forbes' data: boiling point of water against atmospheric pressure 

Forbes, J.D. (1857) Further 
experiments and remarks on the 
measurement of heights by the 
boiling point of water. 
iPransactions of the Royal Society 
of Edinburgh, 21, 135-143. 

Table 10.2 Forbes' data 
Boiling point Pressure 

("-F) (inches Hg) 
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It is the different atmospheric pressure prevailing at each location that 'causes' 
differences in the observed boiling point of water. You may know that the 
higher the altitude, then the lower the pressure, and the lower the boiling 
point of water. In Figure 10.3 pressure is measured along the horizontal axis, 
and temperature is measured up the vertical axis. There is a very strong 
suggestion of a straight-line relationship between the boiling point of water 
and atmospheric pressure. It is a feature of science that many relationships 
can be formulated (sometimes approximately) in very simple terms, in which 
case they are sometimes called natural laws or laws of nature--or just laws. 
For example, Hooke's Law states that the extension produced in a spring is 
proportional to the external force applied to the spring. In fact, most such 
'laws' merely articulate experimental results perceived to be true under certain 
circumstances. W 

However, one should not jump too rapidly to easy and convenient conclusions. 
Often, it is found that a list of data pairs appears to suggest a linear law 
(a straight-line relationship) over the range investigated, but when further 
measurements are taken beyond that domain, it becomes clear that a non- 
linear law may be required overall. The case of atmospheric pressure and 
altitude provides an example of this. The scatter plot in Figure 10.4 shows Figures 10.4 and 10.5 are from 
atmospheric pressure (as a percentage of pressure at sea level) plotted against The Open University (1992) 

altitude (in metres, at various points on the earth's surface). You c a i  see that An Introduction to 
Calculus, Unit 7, Numbers from 

pressure decreases with increasing altitude, and that the relationship appears Nature, Milton Keynes, The Open 
to be linear, at least over the range explored, which was from sea level up to university. 
1000 m. 

Atmospheric pressure (% of sea-level value) 

80 1 I I I I I 

0 200 400 600 800 1000 
Altitude ( m )  

Figure 10.4 Pressure at different altitudes up to 1000 metres 

If, however, you were to explore what happens when further measurements are 
taken outside this range, you would find that a linear relationship no longer 
holds, as the plot of measured values of atmospheric pressure at  altitudes 
up to 30000 metres shows in Figure 10.5. In other words, we need a more 
sophisticated mathematical model than a simple straight-line regression model 
to represent the dependence. 

You should be aware that 
statisticians often fit a straight line 
to data, even when the limitations 
of the model are recognized and 
when there are reasons to know 
that something more elaborate is 
really appropriate. Those of you 
who know something about Taylor 
series expansions will understand 
that some very complicated curves 
can be approximated, and often 
quite well, by straight lines, over 
limited domains. 



At~nospheric pressure (% of sea-level value) 

Altitude (m)  

Figure 10.5 Pressure a t  different altitudes up to  30000 metres 

In order to plot a scatter diagram for this sort of 'paired' data, we need to 
establish a criterion for which of the two measured variables to plot along the 
horizontal axis, and which variable to plot up the vertical axis. 

Often, the data list will have arisen as the result of an experiment specifically 
designed to investigate the effect that changes in one variable have on the 
other. For example, the effect on the extended length of a stretched rubber 
band when different masses are suspended from it; or the change in recorded 
atmospheric pressure following a change in altitude; or how the time taken 
for a planet to orbit the Sun depends on its distance from the Sun. 

In yet another context, researchers might be interested in the way car engine 
size affects urban fuel consumption, or in how driving the same car at different 
speeds alters its fuel consumption. 

In all these cases one would naturally speak of changes in one variable having 
an effect on, or causing differences in, the resulting measurements of another. 
For example, 'driving this car at  a constant speed of 70 m.p.h. leads to fuel con- 
sumption rates roughly double those when the same car is driven at 40 m.p.h.'; 
or 'climbing from sea level to a height of 1OOOmetres caused a drop of about 
ten per cent in recorded atmospheric pressure'. It would not be at all natural 
or even sensible to speak of reduced fuel consumption 'causing' a change in 
speed; or of altered atmospheric pressure 'affecting' a climber's height; or of 
one car engine being larger than another 'because' it uses more fuel. 

The case is not always clear-cut: but usually there is a sense in which control- 
lable or intentional differences in one variable (often the basis of the design of 
the experiment) lead to changes in another. 

The first variable is called the explanatory variable and is conventionally 
plotted horizontally, the second is called the response variable and is plotted 
vertically. 

One can think of a scatter diagram as displaying some sort of functional 
relationship between the response and explanatory variables (without drawing 
too strong an analogy because of the variability involved). It is our aim in 
this chapter to discover something about the function which best expresses 
that relationship. 

There are many different terms for 
the two variables. Others include 
the independent variable and the 
dependent variable. The 
explanatory variable may also be 
called the predictor variable or the 
regressor. 
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' 10.1 Some examples and a brief history 

There are many contexts in which regression data arise, and in this section 
several examples are given. In each case, questions posed are those relating to 
what the data can tell us about the regression relationship that exists between 
the response and the explanatory variables. 

10.1. I Some examples 
Example 10.3 revisits a data set from earlier in the course. 

Example 10.3 Divorce data 
In Chapter 6, Table 6.4, data are given on the annual numbers of divorces 
recorded in England and Wales between the years 1975 and 1980. The data 
suggest a roughly linear upward trend, but of course there is some scatter 
about the trend due to random variation. 

While it would not be entirely sensible to speak of the passage of time as 
'causing' an increase in divorce, the problem here can be posed as one in 
regression, because the divorce rate seems to vary with time, and in a way 
that is interesting enough to be worth investigating. 

When these data were introduced in Chapter 6, a straight line model of the 
form 

was suggested, where xi, i = 1,2, .  . . ,6, denotes the year (reckoned from 1900 
for convenience), denotes the annual number of divorces (in thousands) 
and where Wi is a random term to account for the scatter. The underlying 
straight-line trend is given by the term cr +/?xi; and in Figure 10.6 three trend Figure 10.6 is a copy of Figure 6.2 

A A A 

lines 11, l2 and c, with slopes ,&, g2 and ,B3 respectively, are suggested. in Chapter 6, included here for 
convenience. 

Divorces (thousands) 

100 1 I I , I I 

75 76 77 78 79 80 
Year 

Figure 10.6 Divorces in England and Wales, 1975-1980: trend lines 

An essential fact to remember is that the estimator of the slope is a random 
variable. Each of the three lines shown in Figure 10.6 is an estimate of the 

384 
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true underlying trend line, resulting from applying three different estimating 
formulas to the collected data. The question was: which of the three lines in 
Figure 10.6 was in some sense the best expression for the underlying increase 
in the divorce rate? To answer this question, the accuracy of the estimator for 
the slope of each line was assessed. It  was established that in fact all three lines 
had expected slope /Sand in that sense, there is nothing to choose between 

A 

them. However, the slope estimator that had the smallest variance was P2, The slope of the line 11 was written 
and in that sense the second of the three lines, G, is the best expression of p,, and so on. We found 
the underlying trend. V@,) = 0.0800a2, 

The line could be used, for instance, to forecast future divorce rites on the V(%) = 0 . ~ ~ ~ ~ ~ ~ 7  

assumption that the upward trend would continue into the 1980s. In fact, that V(&) = 0.0741a2. 

would have been a false assumption, for it turns out that while the number 
of divorces continued its annual rise, there was a noticeable reduction in the 
rate of increase. Extrapolation can be dangerous! I 

Example 10.4 describes the results of an investigation into the strength of 
wooden beams. 

Example 10.4 The strength of beams 
The data set lists the results of an investigation into specific gravity and Draper, N.R. and Stoneman, D.M. 
moisture as predictors of the strength of timber beams. Ten beams were used (1966) Testing for inclusion of 

in the experiment. The data are given in Table 10.3. The response variable in linear regression by a 
randomization technique. 

(strength) is given with the two explanatory variables (specific gravity and Technometrics, 695-699. 
moisture content). 

Table 10.3 The strength of 
A plot of strength against specific gravity (see Figure 10.7(a)) strongly suggests beams 
some sort of linear relationship between response and explanatory variable- Strength Specific Moisture 
though possibly there is an outlier at (0.499,11.14). On the other hand, the gravity content 
scatter plot of strength against moisture content (see Figure 10.7(b)), while 11.14 0.499 11.1 

Figure 10.7 (a) Strength against specific gravity (b) Strength against moisture 
content 

suggestive of a downward trend, is not so convincing. 12.74 0.558 8.9 
13.13 0.604 8.8 

Strength Strength 11.51 0.441 8.9 

It  need not necessarily be the case that the suggestion of a functional relation- 
ship is as strong as that suggested by Figure 10.7(a). We shall see examples 
where there is rather little evidence of it, but where regression analysis has 
nevertheless been usefully employed. 

12.38 0.550 8.8 
12.60 0.528 9.9 
11.13 0.418 10.7 
11.70 0.480 10.5 
11.02 0.406 10.5 . 11,.42 0.467 10.7 

. . . . . 
I I I 
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13 - 

12 - 

11 
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(a) Specific gravity (b) Moisture content 
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Example 10.5 extends Forbes' researches over a wider range of investigation. 
Forbes considered variation in boiling point of water for atmospheric pressures 
ranging from about 21 to 30 inches Hg. In this example we explore the results 
of experiments taken over the range from 15 inches Hg to about 30 inches Hg. 

Example 10.5 Hooker's data 
As well as his own results Forbes quotes Dr Joseph Hooker's researches into 
the relationship between altitude and the boiling point of water. The data in 
Table 10.4 are the results of 31 measurements taken in the Himalayas. 

A scatter plot for these data is shown in Figure 10.8. Again, there is the 
strong suggestion of a linear relationship between the response variable and 
the explanatory variable-that is, of some physical 'law' connecting the two, 
which may usefully be expressed as a linear law. Just as for the divorce data, 
a reasonable model might again be written in the form 

at least for values of X between about 15 and about 30. We have not explored 
the usefulness of the model outside this range. It is interesting that Hooker 
was apparently able to measure atmospheric pressure to an accuracy of three 
decimal places (whereas Forbes' data are given to two decimal places). 

Boiling point ( O F )  

l 

15 20 25 30 
Atmospheric pressure (inches Hg) 

Figure 10.8 Hooker's data: boiling point of water against atmospheric pressure 

As a comparison of the two sets of results, it would be interesting to fit 
straight lines to each set, and then to compare the two lines. You could 
explore this informally, fitting straight lines by eye to each data set. However, 

in Section 10.2 we shall establish criteria for assessing the best line through 
scattered data. If the results (that is, the best lines) turn out to be different for 
the two sets of data, it will be necessary (but also interesting) to speculate on 
whether that difference is a real difference, or just a manifestation of random 
variation, and if so, on the causes of the difference. 

Example 10.6 is about comparing distances between two points as suggested 
by a map, and as the corresponding road distances turn out to be in practice. 

Table 10.4 Hooker's data 

Boiling point Pressure 
(W (inches Hg) 
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Example 10.6 Map (straight-line) and road distances compared 
Maps can sometimes be deceiving in the impression they give of distances 
between two locations. The data in Table 10.5 give the map distance in miles 
(that is, the straight-line distance) and the distance by road between twenty Gilchrist, W. (1984) Statistical 
different pairs of locations in Sheffield, England. The data raise the questions: modell% John Wiley and Sons, 

what is the relationship between the two variables? How well can the road Chichester, p. 5 .  

distance be predicted from the map distance? 

Table 10.5 Map distances and actual road 
distances in Sheffield, England 

Road distance (miles) Straight-line distance (miles) 

In every case the road distance exceeds the map distance. One might have 
expected this: roads tend to have bends, adding to the distance between 
two points. A scatter plot of road distance against map distance is given in 
Figure 10.9. Again, the plot suggests a roughly linear relationship between the 
two measures. (That is, the plot suggests that some sort of linear relationship 
between the two measures might provide an adequate model.) 

Road distance (miles) 

10 20 
Map distance (miles) 

Figure 10.9 Road distance against-map distance between pairs of locations in 
Sheffield (miles) 
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Can you see that here the appropriate model might be a little different to that 
considered in previous examples? If the map distance between two points is 

zero (that is, if the two points are the same) then the road distance will also 
be zero. The straight line fitted to the data should go through the origin. Our 
model relating Y,  (road distances) to xi (map distances) might now reasonably 
be expressed in the form 

Y, = yxi + Wi, The letter y is the Greek lower-case 
letter gamma. It is useful to 

where the parameter y represents the factor by which map distances need to distinguish in this way between the 
be multiplied to give an estimate of the actual road distance (which may or slopes of the two straight line 
may not b e  a useful estimate). Again, the random term Wi aLcounts for  the models Y, = a + Pxi Twi and 
scatter identified in the data. 4 Y, = y x i +  wi. 

In Example 10.7 there is very little pattern to be identified in the scatter of 
data points. 

Example 10.7 Examination scores 
It is not alwavs the case that there is a clear relations hi^ between two vari- 
ables: sometimes a scatter plot suggests that there is no relationship at all, Basak, I., Balch, W.R. and 

despite what one might have suspected, or expected. Table 10.6 gives exam- P. (lgg2) Skewness: 
asymptotic critical values for a test 

ination scores (out of 75) for 134 candidates, and the number of seconds that related to Pearson's measure. J. 
each candidate needed to complete the paper. Applied Statistics, 19, 479-487. 

Table 10.6 

Score 49 
Time 2860 
Score 44 
Time 1714 
Score 41 
Time 1677 
Score 58 
Time 1785 
Score 51 
Time 2235 
Score 35 
Time 1637 
Score 48 
Time 2467 
Score 45 
Time 1683 
Score 47 
Time 1594 ' 
Score 49 
Time 1773 

Scores (out of 75) and duration (seconds) 

49 70 55 52 55 61 65 57 
2063 2013 2000 1420 1934 1519 2735 2329 

53 49 52 53 36 61 68 67 
1741 1968 1721 2120 1435 1909 1707 1431 

40 42 40 51 53 62 61 49 
1945 1754 1200 1307 1895 1798 1375 2665 

62 28 72 37 67 51 55 68 
1068 1411 1162 1646 1489 1769 1550 1313 

51 60 64 66 52 45 48 51 
1993 1613 1532 2339 2109 1649 2238 1733 

64 62 51 52 44 64 65 56 
1779 1069 1929 2605 1491 1321 1326 1797 

56 47 68 58 59 45 3 1 / 4 7  
1265 3813 1216 1167 1767 1683 1648 1144 

63 66 44 57 56 56 54 61 
1654 2725 1992 1332 1840 1704 1510 3000 

66 61 58 45 55 54 54 54 
1215 1418 1828 2305 1902 2013 2026 1875 

49 51 42 61 69 42 53 
1656 2320 1908 1853 1302 2161 1715 

A scatter plot of these data is given in Figure 10.10. You can see that there is 
simply a cloud of points, with no particular functional relationship (linear or 
otherwise) suggested between the variables. In other words, it does not look 
as though the time it takes a candidate to complete the examination provides 
any good prediction for what the candidate's score might be. 

388 
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Often, an apparent functional relationship between explanatory variable and 
response variable prompts one to speculate about its cause. Here, one might 
usefully speculate about the causes for the lack of any identifiable link between 
examination time and score. These data make it all the more interesting 
that, in some tests for assessing intelligence, the time taken for candidates to 
complete the paper, as well as their score on the paper, is used to provide an 
overall assessment. 

25 

Example 10.8 demonstrates that a functional relationship identified between 
explanatory variable and response variable is not necessarily a linear one. 

.. . 

Example 10.8 d'Arcy Thompson's duckweed data 
In his book On Growth and Form dlArcy Thompson recounts an experiment 
into the growth of duckweed. Growth was monitored by counting duckweed 
fronds at weekly intervals for eight weeks, starting one week after the intro- 
duction of a single duckweed plantlet into a growth medium (in this case, pure 
water). The data are given in Table 10.7. 

900 1200 1500 1800 2100 2400 2700 3000 3300 3600 
Time (seconds) 

Figure 10.10 Examination scores against duration 

Table 10.7 Duckweed growth, monitored weekly 

Week 1 2 3  4 5 6 7 8 
Fronds 30 52 77 135 211 326 550 1052 

It is known that initially (week 0) there were 20 fronds on the plantlet that 
was placed in the water. A scatter plot of these data is given in Figure 10.11. 
You can see the very strong suggestion of a functional relationship between 
duckweed growth and passing time: but the relationship is not a linear one, 
and it would not be useful in this case to go through the procedures for fitting 
a straight line. 

There are two possible approaches in a case such as this. The first is to try to 
fit a curve to the data, rather than a straight line. What is needed is some sort 
of power or exponential law to model the growth observed. Here, an obvious 
candidate might be a formula expressing exponential growth, say, 

dlArcy Thompson refers to work 
summarized in Bottomley, W.B. 
(1914) Some accessory factors in 
plant growth and nutrition. 
Proceedings of the Royal Society, 
Series B, 88, 237-247. Two growth 
media are compared in Bottomley's 
paper: pure water (the data given 
here), and water to which a small 
amount of peat fertilizer 
('auxitone') was added. The fronds 
were counted using an instrument 
known as an auxiometer. 
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where time X is measured in weeks. Here, the model parameter requiring 
estimation is X. The random term Wi accounts for any scatter. 

Fronds 

1000 - 

0 

Figure 10.11 

. * *  
I I I I I l l 

1 2 3 4  5 6 7  8 
Time (weeks) 

Duckweed growth 

Alternatively, it might be possible to transform the frond count in some way 
that the resulting variable (maybe log(fronds)) varies approximately linearly 
with time. We shall briefly explore regression models where the relationship 
is not linear in Section 10.5. 

Here is a further example in which, once again, a clear pattern is evident 
relating response and explanatory variables, but the relationship is not linear. 

Example 10.9 Paper strength data 
The tensile strength (p.s.i.) of Kraft paper was measured against the percent- 
age of hardwood in the batch of pulp from which the paper was produced. 
There were 19 observations recorded. The data are given in Table 10.8. 

If tensile strength is plotted against hardwood content as in Figure 10.12, you 
can see once more a very evident functional relationship, but it is not a linear 
one. 

5 10 15 
Pulp hardwood content (%) 

Figure 10.12 Paper strength against pulp hardwood content 

We might wish to constrain any 
fitted curve to go through the point 
(0,20). 

Table 10.8 Paper strength 
against hardwood content 

Strength Hardwood content 
(p.s.i) (%) 

6.3 1.0 
11.1 1.5 
20.0 2.0 
24.0 3.0 
26.1 4.0 
30.0 4.5 
33.8 5.0 
34.0 5.5 
38.1 6.0 
39.9 6.5 
42.0 7.0 
46.1 8.0 
53.1 9.0 
52.0 10.0 
52.5 11.0 
48.0 12.0 
42.8 13.0 
27.8 14.0 
21.9 15.0 

Joglekar, G., Schuenemeyer, J.H. 
and LaRiccia, V. (1989) Lack-of-fit 
testing when replicates are not 
available. American Statistician, 
43, 135-143. The word 'Kraft' 
actually refers to a method of 
paper production. The paper is of 
a thick brown type used for 
wrapping. 
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I t  appears (from this experiment, anyway), t ha t  Kraft paper is a t  its strongest 
for some intermediate level of pulp hardwood content (about 10%). I t  would 
be the  task of a statistician, given the  data ,  t o  provide as good a n  estimate 
as possible of the  optimal hardwood content. 

In  Example 10.10, there is a clear downward trend. Wha t  is unusual in this 
case is t ha t  t he  scatter increases with increasing X. This, if it is a genuine 
increase, conflicts with the  regression model 

K = a + + z i + W i ,  

where, a s  we shall see, it is a model assumption tha t  Wi has mean 0 and  
constant variance a2. 

Example 10.10 Temperature differences on the Earth's surface 
T h e  da ta  listed in Table 10.9 give the  normal average January minimum tem- 
perature (OF) with latitude (W) and  longitude (W) for 56 cities in the  United 
States. (Average minimum temperature for January is found by adding 
together the  daily minimum temperatures and  dividing by 31. For this table 
the  January average minima for the  years 1931 t o  1960 were averaged over 
the  30 years.) 

Table 10.9 Temperature (OF) against latitude (ON) and longitude (W) 
City Temperature Latitude Longitude 

Mobile, AL 
Montgomery, AL 
Phoenix, AZ 
Little Rock, AR 
Los Angeles, CA 
San Francisco, CA 
Denver, CO 
New Haven, CT 
Wilmington, DE 
Washington, DC 
Jacksonville, FL 
Key West, FL 
Miami, FL 
Atlanta, GA 
Boise, ID 
Chicago, IL 
Indianapolis, IN 
Des Moines, IA 
Wichita, KS 
Louisville, KY 
New Orleans, LA 
Portland, ME 
Baltimore, MD 
Boston, MA 
Detroit, M1 
Minneapolis, MN 
St Louis, MO 
Helena, MT 

The word 'optimal' used here 
suggests that strength is the only 
consideration for the ideal pulp 
hardwood content. There may in 
fact be other constraints, such as 
production costs. 

Peixoto, J.L. (1990) A property of 
well-formulated polynomial 
regression models. American 
Statistician, 44, 26-30. The 
authors report a study in which a 
linear relationship is assumed 
between temperature and latitude; 
then, after adjusting for latitude, a 
cubic polynomial in longitude 
accurately predicts temperature. 
This is an example of multiple 
regression-more than one 
explanatory variable-and you 
need not worry about the details. 

City Temperature Latitude Longitude 

(W (W) ("W) 
Omaha, NB 13 41.9 96.1 
Concord, NH 11 43.5 71.9 
Atlantic City, NJ 27 39.8 75.3 
Albuquerque, NM 24 35.1 106.7 
Albany, NY 14 42.6 73.7 
New York, NY 27 40.8 74.6 
Charlotte, NC 34 35.9 81.5 
Raleigh, NC 3 1 36.4 78.9 
Bismarck, ND 0 47.1 101.0 
Cincinnati, OH 26 39.2 85.0 
Cleveland, OH 2 1 42.3 82.5 
Oklahoma City, OK 28 35.9 97.5 
Portland, OR 33 45.6 123.2 
Harrisburg, PA 24 40.9 77.8 
Philadelphia, PA 24 40.9 75.5 
Charleston, SC 38 33.3 80.8 
Nashville, TN 3 1 36.7 87.6 
Amarillo, TX 24 35.6 101.9 
Galveston, TX 49 29.4 95.5 
Houston, TX 44 30.1 95.9 
Salt Lake City, UT 18 41.1 112.3 
Burlington, VT 7 45.0 73.9 
Norfolk, VA 32 37.0 76.6 
Seattle, WA 33 48.1 122.5 
Spokane, WA 19 48.1 117.9 
Madison, W1 9 43.4 90.2 
Milwaukee, W1 13 43.3 88.1 
Cheyenne, WY 14 41.2 104.9 
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If you were to plot temperature against latitude you would observe a rather 
interesting phenomenon. (There is really little to be seen from a plot of 
temperature against longitude.) 

Temperature ( O F )  Temperature ( O F )  

0 1 a 
I l I 0 1  1 I I l I I 

20 30 40 50 70 80 90 100 110 120 130 
(a) Latitude ( O N )  (b) Longitude (W) 

Figure 10.13 (a) Temperature against latitude (b) Temperature against 
longitude 

It is evident from Figure 10.13(a) that while a straight line might be ad- 
equately fitted to these data the assumption of constant variance in the error 
term appears to be broken. A transformation of the data that reduced the 
scatter in the temperature for the higher (more northerly) latitudes might be 
worth considering. W 

Before moving on to Section 10.2, let us briefly trace some of the history of 
the important subject of regression. 

10.1.2 A brief history of regression 
Linear regression is currently one of the most used and useful statistical tools. 
But a little over a hundred years ago, the term and its essential ideas were 
unknown. It was thanks to the work of Sir Francis Galton in the 1880s that 
regression became recognized, first as a statistical phenomenon, and then 
as a tool of great potential. The details of how the concept of regression 
evolved in Galton's work are fascinating (but intricate): it is worthwhile to 
put regression in its historical context, and to outline the kind of practical 
problems and mysteries that led to its development. 

An experiment in 1875 on sweet peas led Galton a long way towards the 
idea of regression. The experiment, conducted by Galton himself with the 
help of some friends, yielded the weights of the seeds of the progeny of seven 
groups of sweet peas, the groups themselves classified according to increasing 
parental seed weight. In the framework of this chapter, Galton wished to 
regress offspring seed weight (the response variable, Y) on parental seed weight 
(the explanatory variable, X). What Galton observed-without the aid of 
scatter plots, incidentally-was that the variation in offspring seed weights Figure 10.14 Sir Francis Galton 
was much the same, irrespective of their classification. (1822-1911) 
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What had concerned Galton was whether or not heavy parental seeds led 
to heavier offspring seeds (a major question of heredity); what he found was 
that to some extent there was a parental weight effect, but smaller than might 
have been expected. Offspring of parents with heavy seeds had seeds heavier 
than usual, but the difference was not as marked for the offspring as for the 
parents. Similarly, offspring of parents with light seeds had seeds lighter than 
usual, but the differences were not so marked. Galton initially called this 
phenomenon reversion; he wrote that the seeds' mean weight 'reverted, or 
regressed, toward mediocrity'. 

In the 1880s' Galton continued his development of regression ideas in the 
context of heredity by changing attention to human populations. His analysis 
of the sweet pea data in 1877 had left several questions unanswered; many 
of these problems were solved in 1885 by an analysis of data on the heights 
of human parents and their offspring, which again exhibited the phenomenon 
of regression. The key probability model in this analysis was the bivariate 
normal distribution which you will meet briefly in Section 11.5 of Chapter 11. 

In 1889 Galton published Natural Inheritance, a seminal text which stimu- 
lated a great deal of subsequent research. In the introduction to the book, 
Galton wrote of regression: 'I have a great subject to write upon. It is full 
of interest of its own. It familiarizes us with the measurement of variability, 
and with curious laws of chance that apply to a vast diversity of social sub- 
jects.' In modern terms, Galton's work was just a start: the development 
of the techniques of regression analysis was continued by (amongst others) 
Francis Ysidro Edgeworth (1845-1926)' W.F.E. Weldon (1860-1906) and Karl 
Pearson (1857-1936). It is still an important area for research. 

In Section 10.2 we turn our attention to the problem of fitting the regression 
model suggested by the data. 

10.2 Fitting the chosen regression model 

In most of the examples in Section 10.1, a scatter plot of the response variable 
against an explanatory variable suggests at  least the possibility of some kind 
of functional relationship between the two variables. (The exception is the 
examination score data of Example 10.7, where there seems to be no clear cor- 
respondence between a candidate's score and the length of time taken by the 
candidate to complete the paper.) Sometimes the relationship appears to be 
linear; on other occasions there is an evident curve underlying the disposition 
of points in the scatter plot. 

Whatever the underlying relationship may or may not be, evident in all the 
plots has been the scatter induced by random variation. In order to make 
some kind of estimate of the underlying functional relationship b'etween the 
response variable and the explanatory variable, this random scatter will need 
to be explicit in our probability model. 

Writing the response variable Y (upper case to indicate that it is a random 
variable) and the explanatory variable X,  then the most general regression 
model can be written 
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where h(.)  represents some function (perhaps polynomial or exponential or 
trigonometric). Our aim is to identify, within such a family of functions, the 
function that best fits the scattered points (xi, yi). In this course, attention, is 
restricted to straight-line functions. However, the need for a more developed 
modelling approach than this is evident, and in Section 10.5 other approaches In fact, it is possible (and not very 
are explored. difficult), given the full list of 

points (xi, W) ,  to construct a 

Fitting the least squares straight line through 
~ . -  ,. 

formula for the curve that will pass 
through all the points, so that all 

the origin 
- 

the wis are zero. However, the 
resulting formula will contain as 

In Example 10.6 actual road distances between locations in Sheffield were many terms as there are fitted 

compared with direct distances taken from a map. It was decided to fit the points, and in this regard not 
be a particularly useful or helpful 

model representation. 

Y,=yxi+W;,  i = 1 , 2  , . . . ,  20 

(a straight line passing through the origin) to the data. 

It is one of the assumptions of the regression model that the random terms Wi 
are independent, with mean 0 and constant variance u2: these terms explain 
the scatter around the underlying regression line y = yx that is evident from 
the scatter plot. The observed differences 

wi = yi - yxi, 2 = 1 ,2 , .  . . ,20, 

which are independent observations on the random variable W, are shown in 
Figure 10.15. These differences are called residuals; they represent the devi- 
ations between observed data and a fitted model. Notice that in Figure 10.15 
the line y = yx has been drawn for illustrative purposes only: we do not yet 
know the value of the slope, y, that corresponds to the best straight line 
through the data. 

Road distance (miles) 

I l 

0 10 ;O 30 
Map distance (miles) 

Figure 10.15 Residuals wi = yi - yxi 

The residuals are positive for all the observations yi above the fitted line 
(mi = yi - yxi > 0) and negative for observations below the fitted line. It is 
useful to remember the relationship 

RESIDUAL = DATA - FIT 

in all modelling exercises: it is the essential statement of departures from the 
model evident in the data. 
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The line drawn in Figure 10.15 seems to provide a good fit to the data-it was 
deliberately designed to look reasonable: how do we determine the equation 
of the line which in some sense is better than any other? 

The answer to this question is found in the principle of least squares. The 
residuals wi are a quantitative measure of the quality of the fit of the line 
to the data at  the point xi. If the absolute value of wi is small then, at  the 
point xi at  least, the line 'fits the data' well. Large negative residuals are as 
indicative of a poor fit as large positive residuals. An overall measure of the 
quality (actually, of the 'badness') of the fit is encapsulated by the number 

i=l i=l 

that is, by the sum of squared residuals or, as it is usually known, the residual 
sum of squares. There is one unknown quantity in (10.1): it is the slope y. 
The value of y that minimizes the residual sum of squares is called the least 
squares estimator of the slope of the regression line, and is written 7. 
This we shall take as our criterion for the best line through the data. 

There are several ways to find the value 5 of y that will achieve this minimum. 
If you know about the technique of differentiation, then you will know that 
this can be used in a very straightforward way to locate minimum points. 
Alternatively, the expression (10.1) can be written as a quadratic expression 
in y as follows. 

This expression can be rewritten 

and in (10.2) only the term 

involves y. The residual sum of squares is minimized when this term is zero, 
that is, when 

this value is written 5. 
Thus according to the least squares criterion, this is the slope of the best 
straight line (through the origin) through the scattered points. The equation 
of the line can be written 

Notice that here the limits i = 1 
and i = n have been dropped from 
the summation symbols. For the 
rest of this chapter, and where the 
limits are obvious as they are here, 
they will not usually be included, 
in the interests of clear 
presentation. 

The algebraic technique of 
'completing the square' was used 
in (10.2). You do not need to 
understand the techniques or to 
follow all the details of this 
derivation of the estimator T. 
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Example 10.6 continued 
In the case of the Sheffield map data, 

and 

c xf = 9.5' + 9.8' + . . . + 28.0' 

= 90.25 + 96.04 + . . . + 784.00 

= 6226.38. 

So the least squares estimate of the slope y is 

So the fitted straight line through the scattered data points has equation 

or, perhaps more intelligibly, 

Road distance = 1.289 X Map distance. 

The fitted straight line is shown in Figure 10.16. You can see that the fit is 
really quite good; the residuals are not large. 

Road distance (miles) 

40 - Road distance 
= 1.289 X Map distance 

30 - 

20 - 

10 - 

I I I 

0 10 20 30 
Map distance (miles) 

Figure 10.16 Straight-line fit superimposed on the Sheffield scatter plot 

It is useful to denote the fitted value of y corresponding to the,value xi by 6. 
Here, ŷ i = ?xi. In fact, the residual sum of squares, the quantity we wished 
to minimize, is given by 
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This result will be useful later. Do not worry about the algebraic details 
which lead to the final expression for the residual sum of squares C(y i  - g)'. 
They are included purely for illustrative purposes. There are many different 
ways that this could be written down. The easiest and most common way 
of calculating the residual sum of squares is as part of a regression analysis 
pursued on a computer. This kind of dense arithmetic calculation is nowadays 
very rarely performed by hand! 

You can estimate the corresponding road distance yo for any particular map 
distance xo by finding 

For instance, the predicted road distance for a map distance of s o  = 18 miles 
is 

yo = TxO = 1.289 X 18 = 23.2 miles. 

Notice that the map distance xo = 18 is well within the range covered by the 
original data set (which had map distances from about 5 miles to about 30 
miles). Also, it must not be forgotten that the experiment covers the corre- 
spondence between map and road distances within the city of Sheffield, and 
would not extend as a useful estimator of the distance between Sheffield and 
Birmingham (map distance 67 miles; according to one of the road associations 
the shortest practicable road distance is 77 miles). There is no particular 
reason why this estimated model should be useful within, say, Milton Keynes, 
where local topography is quite different to that to be found in Sheffield. 

However, even for the particular journey identified in Sheffield, it is not at  all 
likely that the road distance yo will turn out to be exactly 23.2 miles-this 
is just what the model predicts. The doubt surrounding the actual distance 
yo can be quantified, and we shall see in Section 10.4 principles for the con- 
struction of a prediction interval for a response, given a particular value for 
the explanatory variable. 

Try the following exercise which is about estimating the size of a popu- 
lation. Incidentally, the exercise has been set up as a calculator exercise 
in order to encourage you to practise keying in paired data in the form 
(XI ,  yl), ( 2 2 ,  y2), . . . , (X,, y,) to your calculator, and to become familiar with 
the key routines necessary to access such quantities as C X! and C xiyi. Most 
machines, particularly if they supply the standard statistical measures such 
as sample mean and sample standard deviation, will do this. However, in gen- 
eral, particularly for data sets containing as many as 25 data pairs or more, 
a computer is usually used for the least squares analysis. 

Exercise 10.1 
p 

In a botanical experiment a researcher wanted to estimate the number of indi- Pielou, E.C. (1974) Population and 
viduals of a particular species of beetle (Diaperus maculatus) within fruiting community Ecolog~-Princi~les 
bodies (brackets) of the birch bracket fungus Polyporus betulinus. (This is a and and Breach, 

New York, pp. 117-121. 
shelf fungus that grows on the trunks of dead birch trees.) When the brackets 
are stored in the laboratory, the beetle larvae within them mature over several 
weeks-the adults then emerge and can be removed and counted. 

A sample of 25 brackets was collected. Their weights (in grams) and the num- 
ber of beetles they were shown eventually to contain are given in Table 10.10. 
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Table 10.10 Number of beetles against weight of 
bracket (grams) 

Number of beetles Weight of birch bracket (grams) 

(a) The research problem of interest is to investigate whether the number of 
beetles a shelf fungus contains might reasonably 'be predicted from the 
weight of the fungus. With this in mind, sketch a scatter plot of these 
data. 

(b) Comment on the usefulness of fitting a straight line through the origin to 
these data, obtain the least squares estimate of the slope of the line, and 
include the least squares line on your plot. 

(c) Predict the number of beetles that would eventually emerge from a fungus 
found to weigh 240g at collection. 

(d) Calculate the residual sum of squares x ( y i  - for these data. 

The work of this subsection may be summarized as follows. 

The least squares straight line through the origin 

If a scatter plot of data points (xi, yi),i = 1,2 , .  . . , n ,  suggests that a 
regression model of the form 

y i = y x i + W i ,  i = l , 2  ,..., n, 

might be an appropriate model, where the random terms Wi are inde- 
pendent with mean 0 and variance a2, then the least squares estimate 
of the regression slope y is given by 
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There is very much more that might be said here: for instance, it might be 
useful for future work first to use the data points (xi, yi) to estimate the second 
of the two model parameters, u2. Secondly, the estimate y = E xiyil E X: 

is just one observation on the random variable y = E xi&/ X?. We have 
not formally determined that is unbiased for y (in fact, it is, and this is not 
difficult to show, as we shall see in Subsection 10.3.1). Thirdly, it would be 
very useful to assess the quality of the fit of the model to the data, and obtain 
some quantitative assessment on whether or not the straight-line fit is useful. 
Finally, in other contexts, the fitted straight line might be constrained not 
through the origin, but through some other identifiable point (xo, yo) known 
to the researcher to be a keypoint. 

Some of this sort of detail is covered in Subsection 10.2.2, where the most 
general unconstrained straight line is fitted to a set of data pairs (xi, yi). For 
this course, it is sufficient that you understand the principles on which the 
straight line through the origin was obtained, and that you recognize some of 
the features of the model. 

10.2.2 Fitting the unconstrained least squares 
straight line 

We saw, in Figures 10.1, 10.2, 10.3, 10.6, 10.7(a) and 10.8, cases where it 
seemed a straight-line model would fit the scattered data points (xi, yi) mod- 
erately well (in some cases, very well). An important point to realize is that 
it is not necessary to formulate any reason why this should be so, based on 
any knowledge of principles governing the relationship between explanatory 
and response variables. For the statistical model 

& = a + P x i + W i ,  i = l , 2  ,..., n,  

the observed residuals may be written 

wi=yi - (cr+Pxi) ,  i = 1 , 2  , . . . ,  n. 

The residuals for Forbes' temperature data are shown in Figure 10.17. (Here, 
again, the fitted line has no optimal properties, for we do not know at this 
stage what the best estimates of cr and ,B are. The line was fitted by eye.) 

Boiling point ( O F )  

190 
20 25 30 

Atmospheric pressure (inches Hg) 

Figure 10.17 The residuals for Forbes' data 
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In this case the residual sum of squares is given by 

and our aim in fitting the best straight line through the data points is to 
contrive the line to minimize the residual sum of squares. (You should always 
remember that this is not the only criterion to yield a useful fitted line- 
you saw this in Figure 10.6-but it is one of the most practicable. We shall 
see in Subsection 10.3.2 that least squares estimators can possess optimal 
properties.) 

It is possible to rewrite (10.5): first, as a quadratic expression in a; secondly, 
as a quadratic expression in P; and finally to identify the minimum points of 
each quadratic. This is not a difficult exercise (you saw the same idea used 
when fitting the least squares straight line constrained through the origin) 
although it is not a particularly elegant one, for the algebra gets quite untidy. 
Alternatively, the technique of partial differentiation will yield the required 
values G of a and p of p where (10.5) is minimized. 

However, the results are quite standard, and for present purposes it will be 
sufficient simply to write the estimates down. The least squares estimate of 
the slope ,L? of the straight line through the points (XI ,  yl), (x2, y2), . . . , (X,, y,) 
is given by 

(10.6) Again, for simplicity, the limits 
i = 1 and i = n on the summation 
symbols have not been included 

A similar expression can be written down for G, the least squares estimate of here. 
a,  the constant term in the regression line. However, it is easier to use the 
value of p so that G can be written 

Then, using (10.6) and (10.7), the equation of the least squares regression line 
through the data points (xl,  yl), (x2, y2), . . . , (X,, y,) can be written 

Incidentally, notice that the equation of the line can also be written 

One reason for writing the least squares regression line in the form (10.9) is 
that it exhibits an easily-stated property of the line: it is the line with slope 
p, passing through the point (F, g),  the centroid of the data. 

Example 10.2 continued 
For Forbes' data of Example 10.2 the summary statistics are 

n = 17, C xi = 426, C yi = 3450.2, 

C X: = 10 820.9966, C xiyi = 86 735.495. 
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So the slope estimate is given by 

and 

So the fitted line has equation 

y = 155.3 + 1.92. Notice that at this point the 
number of decimal places has been 

More clearly, the regression relationship between explanatory variable and reduced: the idea of a 'model' is to 
response can be written be helpful, not to provide six-figure 

predictions. 

Boiling point = 155.3 + 1.90 X Atmospheric pressure, 

where temperature is measured in "F and pressure in inches Hg. The least 
squares line through Forbes' data is shown in Figure 10.18. 

Boiling point (OF) 

l90 1 I 

20 25 30 
Atmospheric pressure (inches Hg) 

Figure 10.18 Forbes' data with the fitted least squares line 

This line could be used for prediction, and that is a common purpose of 
regression analysis. But remember that Forbes' results formed just part of a 
series of experiments to predict altitude from the temperature of boiling water, 
rather than the temperature of boiling water from atmospheric pressure! W 
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These results may be summarized as follows. 

The least squares regression line through scattered data 

If a scatter plot of data points (xi, yi), i = 1,2, . . . , n,  suggests that a 
regression model of the form 

Y,=a+,L?xi+Wi, i = l , 2  ,.,.., n,  

might be an appropriate statistical model, where the random terms Wi 
have mean 0 and variance a2, then the least squares estimate of the 
slope of the regression line is 

and the least squares estimate of the constant term a is given by 
A 

&=g-@c. 

The line passes through the centroid of the data, the point ( F ,  g): it is 
sometimes convenient to write the equation of the line as 

A 

y - g =  p(x -3). This is also a useful formulation for 
remembering the equation of the 
fitted line. 

Let us return to the divorce data in Chapter 6 and consider this fourth option 
for a fitted line (c, say) through the data. 

Example 10.3 continued 

We already have three suggested straight-line trend models for the divorce 
data in Chapter 6 summarized in Figure 10.6. Now we have a fourth model: 
that is, the least squares regression line. This has slope 

and constant term 
A A 

& = g - = i(807 - ,L? X 465) = -285.33. 

So the fitted line has equation 

y = -285.33 + 5.42s. 

Alternatively, the regression relationship between explanatory variable (pass- 
ing time, in this case) and response variable can be written 

Annual divorces = -285.33 + 5.42 X Year, 

where divorces are counted in thousands, and the year is reckoned from 
1900. 

Is the fourth slope estimate better than any of the preceding three? To answer 
this question we need to look at the estimating formula (in other words, the 
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estimator) from which the estimates were obtained. Sampling properties of 
the estimators G and ^p are addressed in Section 10.3. 

After fitting the regression line, the residual sum of squares is 

The result given at (10.10) is an important one because of its use in assessing 
the model, calculating confidence intervals and testing hypotheses. We shall 
see examples of this in Section 10.3. There now follow several exercises. You 
are encouraged to use both your calculator and computer (as directed) when 
answering the questions in Exercises 10.2 to 10.7. Many calculators will pro- 
vide the regression estimators immediately (after keying in the data points) 
without the need for intermediate calculations of summary statistics such as 
C xi, C xi yi, and so on. 

Exercise 10.2 
The scatter plot in Figure 10.7(a) (see Example 10.4) suggests that a straight 
line model might be useful to express the relationship between the strength 
of wooden beams and their specific gravity. Find the equation of the least 
squares regression line for these data. 

Exercise 10.3 
Find the least squares regression line for the data on the finger-tapping fre- 
quencies in Example 10.2. 

Exercise 10.3 raises two interesting points. The first is that Figure 10.2 makes 
explicit the variation in tapping frequency at each dose level, and it would 
be useful to obtain an estimate of this variation. So far, we do not have 
the necessary methods for this. Secondly, it is possible that the trend line 
perceived in Figure 10.2 is of no significance, and that ingestion of caffeine 
has, in fact, no effect on finger-tapping performance. This proposition could 
be explored with a formal test of the hypothesis 

H o : P = O .  

But in order to test this hypothesis, we need a statistical model for the vari- 
ation in the slope estimator 3. This problem is addressed in Subsection 10.3.2. 

Try Exercise 10.4 using your computer. 

Exercise 10.4 
Forbes' data giving the boiling point of water (OF) at different atmospheric 
pressures (inches Hg) are given in Table 10.2. Hooker's da.ta are listed in 
Table 10.4. Respective scatter plots are given in Figures 10.3 and 10.8. In 
both cases a straight line is a reasonable regression model to attempt to fit. 

(a) Obtain least squares estimates G and p for the parameters a and P when 
the model Y ,  = a + Pxi + Wi is fitted to Forbesl data. 

(b) Obtain least squares estimates for a and P for Hooker's data. 

Again, there are many ways in 
which this sum can be written. 
This is the most convenient for 
computational purposes. The most 
convenient computational method 
of all (in this context) is to use 
regression software. However, note 
particularly that you can get 

C(yi  - 1~)' and C ( x i  - z ) ~  very 
easily from a calculator by thinking 
of the yis and xis as random 
samples: the sums are each (n  - 1) 
times the sample variance. 

You know the answers to part (a) 
from the work on page 401: the 
purpose of this exercise is to check 
that you can use your computer. 
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The question was posed earlier: do the data collected by Forbes and Hooker 
provide significantly different fitted lines expressing the relationship between 
boiling point and atmospheric pressure? It is possible to formally compare 
two regression slopes and, indeed, two regression lines, in order to provide an 
answer to this question and others like it. However, the details are somewhat 
intricate and beyond the scope of this course. What one can do in a case such 
as this is to plot the two sets of data, and the two fitted lines, on the same 
axes. This is shown in Figure 10.19. 

Boiling point (OF) 

15 20 25 30 
Atmospheric pressure (inches Hg) 

Boiling point (OF) 

Figure 10.19 Forbes' data ( 0 )  and Hooker's data (0) 

Can you see the suggestion of a curve now? (Or, perhaps, the drawn lines are 
merely deceiving the eye and there is no real curve there . . . .) In fact, under I / 
ideal conditions (but, almost certainly, not those to be foudd on mountain 
sides in Scotland, the Aips and the Himalayas) the effect of changing atmos- I/ 

0.2 30 
pheric pressure on the boiling point of water can be carefully monitored, and Atmospheric pressure (inches Hg) 
is illustrated in Figure 10.20 (which is not drawn to scale). 

Figure 10.20 The effect of 
Statistical researches do not always answer questions, or only answer ques- ,rying atmospheric pressure on 
tions: often they generate further questions and different avenues of research. the boiling point of water 

Apart from the labour of keying in the data, you should find Exercises 10.5 
to 10.7 very straightforward, assuming you have access to the appropriate 
software. 

Exercise 10.5 
In 1975, the British government set up a Resources Allocation Working Party 
to 'review the arrangement for distributing National Health Service capital 
and revenue'. It was decided to base regional resource allocation on death rate 

U 

within regions, (or, more precisely, on a 'standardized mortality rate'). But rates are a measure of 

NHS resources need to reflect regional variations in 'chronic sickness' long- sickness. You do not need to 
understand the technical details of 

standing health problems that require medical treatment. The question then, the calculation of mortality and 
which was a controversial one at the time, is: are death rates a good predictor morbidity rates to answer the 
of sickness rates? The data shown in Table 10.11 address this question: they questions posed in this exercise. 
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show standardized mortality rates per 10 000 and standardized morbidity rates 
1000 for ten regions of England and Wales, for the period 1972-1973. 

Table 10.11 Standardized mortality and morbidity rates, 1972-73 

Region Mortality rate (per 10000) Morbidity rate (per 1000) Forster, J. (1977) Mortality, 
morbidity and resource allocation. 

North 132.7 228.2 The Lancet, 1, 997-998. See also 
Yorkshire 126.8 235.2 

132.8 218.6 
Marsh, C. (1988) Exploring 

North West Data-An introduction to  data 
East Midlands 119.2 222.0 

210.5 
analysis for social scientists. Polity 

West Midlands 124.8 
205.0 

Press, Cambridge. 
East Anglia 108.2 
Greater London 116.3 202.6 
South East 109.5 , 189.6 
South West 112.2 186.6 
Wales 128.6 249.9 

Bearing in mind the research question of interest, plot the data points on 
an appropriate scatter plot. 

Commenting on the appropriateness of a straight line model, calculate 
the least squares estimates for o and P based on these data. 

Exercise 10.6 
The following data list fuel consumption (in miles per gallon) against kerb These data were extracted from the 
weight (in kg) for a sample of 42 British diesel motor cars. February 1992 edition of Diesel 

Car published by Merricks 
Table 10.12 Weights and mileage per gallon for British diesel cars Publishing Ltd. 

Kerb weight (kg) 1090 1300 720 1035 990 1380 870 1040 1130 
Milespergallon 48.3 40.5 60.9 49.1 48.4 41.9 51.0 46.1 48.9 

Kerb weight(kg) 875 1010 1085 1120 1120 1325 1130 1320 1370 
Milespergallon 54.6 52.9 52.9 43.7 43.7 35.6 41.5 38.9 38.2 

Kerb weight (kg) 880 950 1080 1080 1080 1430 1007 1040 1095 
Miles per gallon 57.8 48.2 47.0 45.6 36.8 41.9 46.1 46.3 51.4 

Kerb weight (kg) 1145 1160 1470 950 1015 1105 1175 1040 855 
Miles per gallon 48.8 47.6 42.7 42.3 41.9 49.1 46.7 56.1 54.6 

Kerb weight (kg) 1005 961 1353 985 1190 1436 
Milesperqallon 49.0 47.9 41.7 47.4 53.3 .36.5 

It  is required to use these data to explore the relationship between kerb weight 
and fuel consumption. 

(a) Plot the data on an appropriate scatter plot, explaining how you decided 
to label the axes. 

(b) Commenting informally on the quality of the fit, estimate model par- 
ameters for a straight line fit to the data. 

Notice that for these data, the fitted linear relationship (were it to be extra- 
polated to the right) suggests that eventually cars which are very heavy indeed 
will return zero or negative fuel consumption figures. This anomaly would 

matter more if such heavy cars (about 3000 kg, or 3 tons) were common; but 
they are not. (Some heads of state, for instance, like to use armour-plated 
vehicles which are rather heavy. This data set is a good example of the 
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dangers of over-interpretation of the regression model: one needs to be wary 
of extrapolating the line too far from the domain of the experiment.) 

Exercise 10.7 
Crickets make their chirping sound by sliding one wing cover back and forth 
over the other, very rapidly. Naturalists have long recognized a linear re- 
lationship between frequency of chirping and temperature, and interest centres 
on seeing if one can measure temperature approximately by calibrating the 
chirping of crickets. The precise nature of the relationship varies from species 
to species. Table 10.13 lists 15 frequency-temperature observations for the 
striped ground cricket, Nemobius fasciatus fasciatus. 

Table 10.13 Temperature and chirping frequency 

Chirpspersecond 20.0 16.0 19.8 18.4 17.1 15.5 14.7 17.1 
Temperature("l?) 88.6 71.6 93.3 84.3 80.6 75.2 69.7 82.0 

Chirpspersecond 15.4 16.2 15.0 17.2 16.0 17.0 14.4 
Temperature("l?) 69.4 83.3 79.6 82.6 80.6 83.5 76.3 

This is an interesting research question because without too much thought 
one might have supposed the obvious way to treat these data is to take chirp- 
ing frequency as the response variable, and temperature as the explanatory 
variable. In fact, the problem is posed the other way round, as a prediction 
problem for temperature, given chirping frequency. Plot the data accordingly, 
find the equation of the least squares straight line fit to the data and estimate 
the temperature based on a chirping frequency of 18 chirps per second. (This 
question anticipates the material of Section 10.4, which is all about predic- 
tion.) 

We now turn our attention to an assessment of the accuracy and precision (in 
other words, of the usefulness) of the regression estimators. 

10.3 Sampling properties of the model 

In this section, sampling properties of the estimators are explored and sum- 
marized. Once these are known (or assumed) then they can be used for the 
construction of confidence intervals and for hypothesis testing. It is not the 
intention in this section to provide an exhaustive list of results, or to offer 
illustrations of every sort of question that might be put to a statistician by 
a researcher in a regression context. However, some results are useful and 
important, and these are stated (usually without proof); and some questions 
are interesting and occur very commonly in this context. These are dealt with 
in the following subsections. 

10.3.1 Sampling distributions of the estimators 

Pierce, G.W. (1949) The Songs of 
Insects. Harvard University Press, 
USA. 

So far we have assumed that the random terms Wi, responsible for the scatter 
usually evident in regression problems, are independent of one another with 
mean 0 and constant variance a2. 
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The straight line through the origin 

The least squares estimator of the slope of the best straight line through the 
origin is 

Then, it follows that 

so the estimator T for the slope of the constrained line is unbiased. In fact, 
the variance of the estimator is 

This has useful consequences. One of the aims of the design of any statistical 
experiment must be to improve, where you can, the precision of the results. In 
this case we see that the slope estimator is unbiased regardless of the details 
of the experimental design. However, notice that the variance is reduced not 
only if further observations are taken, but also if the values taken on the 
explanatory variable are further away from the origin. This makes sense- 
you know that the line must go through the origin: if measurements are taken 
close to the origin, small errors will have a large effect on the slope of the 
fitted line. Further away from the origin, even quite large errors will not have 
much effect on the fit of the line. 

Now suppose that the random terms are normally distributed. Then the 
distribution of the estimator 7 is also normal. 

The distribution of the slope estimator 
If the random terms Wi in the model 

are assumed to be independent and normally distributed with mean 0 
and variance a2, then the distribution of the slope estimator is normal: 

Remember, the xis are not random 
variables. 

The limits i = 1 and i = n have 
again been omitted here, in the 
interests of clarity. 

These results are useful when you 
can control the explanatory 
variable. For instance, the designer 
of a controlled trial for a new 
pain-killer can alter the dose and 
observe the different responses. 
The social scientist interested in 
changing divorce rates with time 
cannot strictly control the 
calendar. 

Of course, this is not always a useful result for inferential purposes because 
the value of the parameter a2 is not usually known. In this case the parameter 
is replaced by its estimator S2, where Notice the numerator in the 

2 C(yi - Q 2  
estimator of a': it is the familiar 

S = residual sum of squares, after 
n - l  fitting the least squares line. 
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This estimator is unbiased for a2:  the maximum likelihood estimator for a2 
has denominator n.  AS usual in this course (when estimating variance) we 
use the unbiased estimator. The probability distribution of S2 is given by 

These results are stated without proof. The parameter a2 is a nuisance par- 
ameter: generally, its value is not known. Finally (and this is an important 
result describing the sampling distribution of the least squares estimator T 
but not involving a'): (10.11) and (10.12) together yield the distribution of 
the estimator T.  It is given by 

Example 10.11 illustrates one application of this result. 

Example 10.11 A confidence interval for the slope 
For the Sheffield map and road distance data, the least squares estimator for 
the slope y was 5 = 1.289. The estimate of the underlying variance a2 is 

s2 = C ( Y ~  - G)' 
n - l  ' 

where the numerator, the residual sum of squares, is given by 

So s2 = 107.30/19 = 5.647. It follows from (10.13) that a 90% confidence 
interval for y is given by 

using the fact that the 95% quantile for t(19) is given by q = 90.95 = 1.729. 

The unconstrained straight line 

In this case, assuming only that the random terms Wi are independent, with 
mean 0 and variance a2, it can be shown that 

a2 
E(S)=cr ,  V(S)=- ;  (10.14) 

n 

and 

See (10.4). 
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The calculations involved in (10.14) and (10.15) are not entirely straight- 
forward. It is important to note that both estimators are unbiased, and to 
recognize the useful consequences of a large sample of data (large n). Also, 
in this case, the variance in the slope estimator is reduced if the X-values are 
widely dispersed. (If you imagine that the numbers XI, x2,. . . ,X,  constitute 
a random sample, then the number C ( x i  - is proportional to the sample 
variance.) 

Now, it is also true that the estimator 

Notice the denominator (n - 2) in 
the two-parameter case. 

is unbiased for a2. If, in addition, it is assumed that the random terms W; 
are normally distributed, then 

,(10.16) These results are stated without 
proof. 

Eliminating the nuisance parameter a2 in the usual way, then the distribution 
of the slope estimator a is given by 

We shall see in Subsection 10.3.3 the useful consequences of this result: it can 
be used for calculating confidence intervals for p and for testing hypotheses 
about 0. 

Example 10.3 continued 
In Example 10.3 the least squares estimator p for the slope of the underlying 
trend was introduced, and we speculated whether or not this estimator was 
better than some or any of the preceding three slope estimators. They are all See pages 230 and 385. 
unbiased. In fact, from (10.15), the least squares estimator has variance 

This is smaller than any of the variances of the three alternative estimators. 
In other words, this es t imat ing  procedure possesses better properties than the 
other three. This does not offer a guarantee that the slope estimate 5.42 (p4, 
say) is any more accurate than any of the other three estimates 

A A 

(& = 5.6, ,B2 = 5.0, P, = 6.0). 

10.3.2 Maximum likelihood estimation 
This brief subsection contains an argument that you should try to follow. The 
conclusions are important: it illuminates the optimal properties of the least 

A 

squares estimators G and p. 
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The estimators 3 and p have been obtained through minimizing the sum of 
squared residuals. The principle of least squares is a very reasonable criterion 
(though, as was pointed out in the context of the data set on divorces, not 
the only reasonable one). 

when the assumption of normality is made for the random error terms Wi, 
i = 1,2, .  . . , n ,  then 

equivalently, since Y ,  = a + Pxi + Wi, 

Maximizing the likelihood of a and ,B for the random sample yl, 92,. . . , yn 
amounts to locating the maximum of the product 

This in turn reduces to locating the minimum of the 

f (yi) is the p.d.f. of K when 
Y,  N ( a  + ,Ox,, a2). 

sum 

or, simply, locating the minimum of the sum 

This is precisely the least squares criterion: it follows that under the assump- 
tion of normality, the least squares estimators 8 and 3 of a and P are also the 
maximum likelihood estimators (and so possess all the optimal properties of 
maximum likelihood estimators). 

10.3.3 Is the slope of the regression line O? 
We are now in a position to answer the question posed more than once before: 
is the slope O? 

We know that the sampling distribution of 3 is given by (10.17). This can 
be used to provide a confidence interval for p (which may or may not contain 
the value 0, and in that way constitutes a test of the hypothesis H. : P = 0); 
alternatively, we can obtain a SP for the null hypothesis H. : ,B = 0. 

See Exercise 10.3. 

Example 10.1 continued 
For the finger-tapping example the least squares regression line is given by 

y = 244.75 + O.O175x, 

or 

Tapping frequency = 244.75 + 0.0175 X Caffeine dose, 

where taps are counted per minute, and the caffeine dose is measured in mg. 
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The question was: does caffeine have any effect on tapping frequency? To 
answer this question, one approach is to test the hypothesis 

Hn:D=O. Of course. we can test anv other - ,  

value Do for using (10.17). It is 
Certainly the estimated value p = 0.0175 seems quite a small number in ab- very common to test the value 
solute terms, but it needs to be assessed in the context of the overall variation. 0 = 0. because of its particular 
For this example the residual sum of squares is given by interpretation. 

c ( y i  - = 134.25, You can use (10.10) here, or, more 
easily, a computer with regression 

and so our estimate of u2 is given by s2 = 134.25128 = 4.795. Under the null software. 
hypothesis H0 : P = 0 we need to compare the value 

against t(n - 2), that is, t(28). This gives us the results 

SP(obtained direction) = SP(opposite direction) = 0.00065; 

SP(tota1) = 0.0013. 

This SP is extremely small: the null hypothesis of zero effect is rejected. H 

Now try the following exercises. 

Exercise 10.8 
The examination scores data in Table 10.6 suggest that the amount of time 
a candidate takes to complete the paper is of no value as an indicator of the 
final score. Pose this formally as a hypothesis in a regression context, and 
test the hypothesis. 

Exercise 10.9 
The data in Table 10.14 give the average level of aflatoxin (parts per billion) 
and the percentage of non-contaminated peanuts in 34 batches of peanuts in Draper, N.R. and Smith, H. (1981) 
a sample of 120 pounds. Applied regression analysis, 2nd 

edn. John Wiley and Sons, New Table 10.14 Percentage of non-contaminated against aflatoxin York, p. 63. 
Percentage not Aflatoxin Percentage not Aflatoxin 
contaminated (parts per billion) contaminated (parts per billion) 

99.971 3.0 99.788 71.1 
99.942 18.8 99.956 12.3 
99.863 46.8 99.858 25.8 
99.979 4.7 99.821 71.3 
99.932 18.9 99.972 12.5 
99.811 46.8 99.987 30.6 
99.982 8.3 99.830 83.2 
99.908 21.7 99.889 12.6 
99.877 58.1 99.958 36.2 
99.971 9.3 99.718 83.6 
99.970 21.9 99.961 15.9 
99.798 62.3 99.909 39.8 
99.957 9.9 99.642 99.5 
99.985 22.8 99.982 16.7 
99.855 70.6 99.859 44.3 
99.961 11.0 99.658 111.2 
99.933 24.2 99.975 18.8 

41 1 
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The aim is to investigate the relationship between the two variables, and to 
predict the percentage of non-contaminated peanuts from toxin levels. 

(a) Plot a scatter diagram showing the percentage of peanuts not contami- 
nated against aflatoxin level. 

(b) Find the least squares regression line through the data points, commenting 
on the appropriateness of your model. 

(c) Test the proposition that aflatoxin level is not a useful indicator of the 
percentage of non-contaminated peanuts in a batch. 

10.4 The prediction problem 

A major use of regression is to predict future values of the response variable 
given new values of the explanatory variable. Suppose xo is the value of the 
explanatory variable associated with an individual whose response Yo is not 
known. Then the obvious predictor of Yo is 

A 

CO = 6 + +xo. 
Example 10.12 The consequences of higher doses of caffeine 
According to the model fitted to the finger-tapping data in Exercise 10.3, the 
predicted finger-tapping frequency for a dose of 400 mg of caffeine is 

8 + 3x0 = 244.75 + 0.0175 X 400 = 251.75 taps per minute. 

It is possible but unlikely that this exact frequency will be attained. Even if 
the trend continues in the way suggested by the data in Table 10.1 (and it 
is possible that larger doses of caffeine will have quite different effects) the 
estimate takes no account of the variation in tapping frequency at a given 
dose (which, as we know, is considerable). 

In general, any such prediction will be wrong! After all, in this case, we have 
merely identified the point on the fitted line at the value xo = 400, shown in 
Figure 10.21. And we should not really expect responses to fall exactly on 
that line. 

Tapping frequency (per minute) 

240 ' I 

0 100 200 300 400 
Caffeine dose (mg) 

Figure 10.21 Estimating tapping frequency attained after a dose of 400 mg of 
caffeine 
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In evaluating the usefulness of predictions based on regression analyses, it is 
important to recognize that there are two sources of error in a prediction. 
First, we know (for this has been our model all along) that for a given value 
xo of the explanatory variable, the response is a random variable 

YO = a + P x o  + WO 

with mean a + Pxo and variance u2. Our prediction G + ~ X O  estimates the 
mean of the distribution of Yo. This estimate will itself be subject to error, 
for the numbers a and p are unknown and have been estimated by G and p. 
Second, the prediction takes no account of the error term WO. 

10.4.1 A confidence interval for the mean 
Assuming only that Wi, i = 1,2, . . . , n, are independent with mean 0 and 
variance u2, then the random variable 

G + Bxo 

has mean 

and variance 

(xo - q2 
V(G + 3x0) = + L) 2. In this result, the quantity 

C ( x i - z ) 2  n - x l + x ~ +  . . .+  X, 

X = 
The algebra is a little awkward here, because the estimators G and p are not n 

is the mean of the original list of 
independent; this result is included without proof. X-values, not including the value 
If it is further assumed that the random terms Wi are normally distributed, xO. 

then it turns out (eliminating the nuisance parameter a in the usual way) that 

where S2 = C(y i  - Cil2/(n - 2) is, as usual, the unbiased estimator for a2. 

The result (10.18) can be used to provide a confidence interval for the expected 
value a + Pxo of Yo. 

Example 10.12 continued 
For the finger-tapping data the estimated mean tapping frequency in response 
to a dose of xo = 400mg of caffeine is 251.75 taps per minute. We know that 

Also, we have found 
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To find a 90% confidence interval for the mean tapping frequency for a dose 
of 400mg, we require the 95% quantile of t(28): this is 90.95 = 1.701. So a 
90% confidence interval is given by 

The notation 'f' is a convenient 
abbreviation for the lower and 
upper confidence limits. For 
example, (a f b )  means 
(a - b,a + b ) .  

Notice that this is not a confidence interval for the finger-tapping frequency 
that the next student given a dose of 400mg of caffeine might attain: it is 
simply a confidence interval for the unknown parameter a + 400P. W 

Now try Exercise 10.10. 

Exercise 10.10 I 

Table 10.15 gives the measures of resistance to breathing, to be regressed B 
mm 

against the heights of a sample of 24 children suffering from cystic fibrosis. 

Table 10.15 Breathing resistance and height (cm) for 24 children 
suffering from cystic fibrosis 

Resistance 13.8 8.2 9.0 12.5 21.1 6.8 17.0 11.0 8.2 
Height 89 93 92 101 95 89 97 97 111 

Resistance 12.7 8.5 10.0 11.6 9.5 15.0 13.5 11.0 11.0 
Height 102 103 108 103 105 109 93 98 103 

Resistance 8.8 9.5 9.2 15.0 7.0 6.3 
Height 108 106 109 111 111 116 

Find a 95% confidence interval for the mean breathing resistance for sufferers 
who are 100 cm tall. 

10.4.2 A prediction interval for the response 
It  is possible to develop a prediction interval for Yo. This is similar to 
finding a confidence interval for an unknown parameter (but, of course, Yo is 
a random variable, not an unknown constant). 

Writing 

F o - -  - a + 3 x o + ~ ~ ,  

it follows that, 

E ( ~ o )  = E(2  t 3x0 t W,) 
= E(8)  + E(&o) + E(Wo) 

= a + P x o + O  
= a +oxo.  

Cogswell, J.J. (1973) Forced 
oscillation technique for 
determination of resistance to 
breathing in children. Archives of 
Diseases in Children, 48, 259-266. 
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Also, 

where the two bracketed terms are independent. Since V(Wo) = a2, this 
expression reduces to 

The distribution theory here is again slightly awkward. A prediction interval 
for an observation on a random variable is not the same as a confidence 
interval for a parameter: however, each is calculated in a similar way. A 
'guess' is made; allowing for uncertainty, lower and upper limits are calculated, 
bracketing the guess. A 100(1 - a)% prediction interval for Yo is given by 

where s is the unbiased estimate for a, and q is the 100(1 - a/2)% quantile 
of t(n - 2). 

The result looks worse than it is: the following example shows how a prediction 
interval is obtained. The work involved is scarcely more than that involved 
in finding a confidence interval. 

Example 10.12 continued 
A 90% prediction interval for the finger-tapping frequency attained by an 
individual after a 400mg dose of caffeine (assuming the extrapolation to be 
reasonable, which on physiological grounds it might not be) is 

which is a very much wider interval than the confidence interval for the mean 
response. The reason is that it is the prediction interval for the response of an 
individual, and has to allow for the variation between individuals at all dose 
levels. W 

Exercises 10.11 to 10.13 are on this topic. The calculations can get rather 
involved: you are recommended to use your computer here. 

Exercise 10.1 1 
Cogswell also gave data on resistance to breathing regressed against height for 
a further sample of 42 children suffering from asthma. These data are given 
in Table 10.16. 
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Table 10.16 Breathing resistance and height (cm) for asthmatic 
children 

Resistance 
Height 

Resistance 
Height 

Resistance 
Height 

Resistance 
Height 

Resistance 
Height 

Obtain a 95% prediction interval for the breathing resistance of a child 100 cm 
tall. 

Exercise 10.12 
Prediction of temperature from cricket chirping rate was a prime motivation 
for collecting the data given in Table 10.13. Find a 99% prediction interval 
for the temperature when the cricket chirping level is 18. 

Exercise 10.13 
Find a 95% prediction interval for the fuel consumption of a diesel car weighing 
1080 kg (see Table 10.12). 

10.5 The assumptions of the regression 
model 

In this final section we shall consider some of the assumptions of the regression 
model, and what could go wrong. Competence at  this kind of data exploration 
comes with practice and experience. You should read the commentaries and 
understand the motivation behind them, but do not worry if at this stage the 
approach adopted is not always entirely obvious. 

The first assumption made is that the random error term Wi in the model 

has constant variance a'. We saw in Figure 10.13(a) a case where this as- 
sumption was clearly broken: the scatter away from an apparent trend line 
was becoming more pronounced with increasing X. 

One way of dealing with this is to assume that the model is 

say, where Woi has mean 0 (as before) and variance a2xf (that is, standard 
deviation axi, proportional to xi: Dividing through by xi gives the model 
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Can you see that this is simply a linear regression model with new explanatory 
variable l/xi and new response variable x/xi? The constant term in the new 
model is P; the slope is a; and the random term Woi/xi has mean 0 and 
constant variance a2, as required. After making this transformation, you 
can regress the response variable x / x i  against the explanatory variable l/xi, 
estimating parameters in the usual way. 

Sometimes there is a very obvious but non-linear shape to the data (as with the 
duckweed data of Example 10.8 and the paper strength data of Example 10.9). 
For example, one might fit to the paper data the model 

choosing the parameters a, P and y to minimize the sum of squared residuals 

This approach extends to higher powers of xi. Other regression functions 
might be appropriate: you need to be rather careful that the assumption of 
constant variance holds, here. For instance, variation in the duckweed counts 
is likely to increase as fast as the counts themselves, with passing time. A 
model of the form 

where Wi has mean 0 and constant variance a2, is probably not a useful 
one, since the assumptions are so badly broken. On the other hand, if you 
transform the duckweed count by taking logarithms, you obtain a scatter 
diagram suggestive of a linear fit, and the assumption of constant variance 
is probably a much more reasonable one. The new scatter plot is shown in 
Figure 10.22. 

log (fronds) 

1 

I 
I I I l l I I I 

0 1 2 3 4 5 6 7 8 
Time (weeks) 

Figure 10.22 Duckweed data transformed: log(fronds) against time (weeks) 

Example 10.13 is another example in which various transformations were use- 
ful: however, they were performed not on the response variable but on the 
explanatory variable. 

Most approaches in an assessment 
of the model assumptions are not 
as mathematical as this! But it is a 
very neat transformation of the 
model. 

The approach is called polynomial 
regression. 

See Example 10.8. 

Remember, there were 20 
duckweed fronds at week zero, and 
the experiment continued for 
eight weeks. 
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Example 10.13 Tearing factor for paper 
The data given in Table 10.17 come from an experiment in which five different 
manufacturing pressures were each applied to four different sheets of paper, in 
order to investigate the effect of pressure on the 'tearing factor' of the paper. 

A scatter plot for these data is given in Figure 10.23. 

Tearing fact01 

Pressure 

Figure 10.23 Tearing factor versus pressure 

It does not seem unreasonable to fit a straight line to the raw data in this 
example. Nevertheless, there does appear to be some evidence of curvature. 
A good place to start on the ladder of powers is with the logarithmic trans- 
formation. 

The next powers either way on the ladder of powers also give reasonable, 
but not quite so good, roughly linear scatter plots (see Figure 10.24). More 
to the point, an additional factor that makes the logarithmic transformation 
seem appropriate in this particular case is that the original X-values appear to 
have been chosen by the experimenter to be equally spaced on a logarithmic 
scale in Figure 10.24; thus it seems that the experimenter expected to use 
the explanatory variable log(pressure) on the basis, one imagines, of previous 
experience and knowledge. 

Tearing factor Tearing factor 

The data are reported in Williams, 
E.J. (1959) Regression Analysis. 
John Wiley and Sons, New York. 

Table 10.1 7 Tearing factor data 

Pressure Tearing factors 

Tearing factor 

3.56 3.90 4.25 4.60 4.94 5.92 7.04 8.37 9.95 11.83 

log( l'ressure) (b) diGG& (C) 

Figure 10.24 Tearing factor versus (a) log(Pressure) (b) .\/Pressure ( c )  l / J G  

You can see from this example that there are no fixed 'rules' about appropriate 
transformations to use. 
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What makes this examp16 artificial is that we are being forced to act as though 
we had not been consulted about the design of the experiment: ideally, in prac- 
tice the statistician would have been involved from the beginning, and would 
know the designer's intentions. The logarithmic scale is suggested because 
each of the numbers 49.5, 70.0, 99.0 and 140.0 is very close to fi times the 
previous number. H 

The problem of outliers is an important one in regression analysis, as in any 
other statistical analysis of data. We saw in Figure 10.7(a) the suggestion of 
a possible outlier. The difficulty here is that in a regression problem a single 
point that seems far away from some others may not be aberrant, but in fact 
it may be a very useful and informative point. We saw, for instance, in the 
case of a straight line constrained through the origin, that it is very useful 
to select values xi of the response variable as far from the origin as possible. 
Then the point is not an outlier but an infEuentia1 point. Roughly, an outlier is a point 'far 

away' in the y-direction, while an 
Example 10.14 shows that checking for outliers is not always clear cut. influential point is 'far away' in the 

X-direction. 
Example 10.14 Lung cancer and smoking 
As part of the developments in the 1950s that established the link between Doll, R. (1955) Etiology of lung 
cigarette smoking and lung cancer, Richard Doll published data from 11 west- cmcer. h h ~ n c e s  in Ghncer 

ern countries relating to the male death rate from lung cancer in 1950 and per Research, 3. 

capita consumption of cigarettes in 1930. The data are given in Table 10.18. 

A scatter plot (showing the least squares regression line, and with country 
labels attached) is given in Figure 10.25. 

Cancer death rate 

*Great Britain 

United States 

- 
Norway 

0 1 I I I I I I 

200 400 600 800 1000 1200 1400 
Cigarette consumption 

Figure 10.25 Scatter plot of lung cancer death rate against cigarette 
consumption 

In Figure 10.25, the US seems a definite outlier from the linear trend and 
possibly Great Britain is aberrant. Are both the US and Britain out of step 
with the rest of the data? The problem is that the point corresponding to the 
US has exerted a big downward tension on the fitted regression line, making 
it rather shallow, and dragging it well away from the point corresponding to 
Britain (and so making that point look like an outlying point). If the point 
for the US is ignored in fitting the line, a noticeable change occurs, as you 
can see from Figure 10.26. It appears that Great Britain is not out of step at 
all with the other nine countries. 

Table 10.1 8 Lung cancer death 
rates and cigarette consumption 

Country Cigarettes Cancer 
death 
rate 

Iceland 220 58 
Norway 250 90 
Sweden 310 115 
Canada 510 150 
Denmark 380 165 
Australia 455 170 
United States 1280 190 
Holland 460 245 
Switzerland 530 250 
Finland 1115 350 
Great Britain 1145 465 
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Cancer death rate 

Great Britain 

Figure 10.26 Scatter plot with the US point removed 

0 

Regression diagnostics is a huge field of study, and there is no limit to 
the ways in which one might adapt the models, or tweak and transform the 
data. We have already performed some informal regression diagnostics: we 
have always done the sensible thing and looked at scatter plots of the data 
first, rather than blindly 'applying the technique' which may in some cases be 
entirely inappropriate. 

Iceland 

I I I I I I 

One final and very important additional diagnostic is the use of a residual Remember, 
plot. This is a way of graphically exploring the residuals wi = yi - Gi after RESIDUAL = DATA - FIT. 
the fitting has taken place. 

200 400 600 800 1000 1200 1400 

Cigarette consumption 

Discrepancies from the model are not always as easy to spot from the basic 
scatter plot as from residual plots. Any distinct relationship in the data tends 
to obscure patterns in the remaining variation about that relationship. A way 
around this is to subtract the fitted relationship from the data and concentrate 
on the residuals 

If all of our modelling assumptions are correct, each wi will be an observation 
from a normal distribution with mean zero and an unknown but constant 
variance. 

The residual plot is the scatter plot of residuals wi against the xi. The Sometimes residuals are plotted 
residuals have a mean of zero, and the residual plot should show the residuals against the fitted values: that is to 
fluctuating about zero in a random, unpatterned fashion. We look for a pat- a xatter plot of wi against pi 

is scrutinized. tern in the residual plot as evidence that an assumption may be violated. The 
residual plot has a variety of rather small advantages over the scatter plot of 
responses against the explanatory variable. 

Figure 10.27 illustrates four typical residual plots. Figure 10.27(a) is a residual 
plot with no apparent pattern of any kind in the residuals: this is the type 
of plot that accords with our assumptions. Figure 10.27(b) shows a definite 
pattern. As we move from left to right, from smaller to larger xs, the re- 
sidual~ are first negative, then positive, then negative again. Such a residual 
plot is (usually) associated with an explanatory relation that is other than 
linear (5 = f (xi) + Wi for some function f (.) other than a straight line): the Possibly f (.) is quadratic in this 
straight-line model has systematically over-estimated the level of the response case. 
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in some regions and under-estimated it in others. In Figure 10.27(c) the 
pattern of residuals is indicative of a variance a2 that is not constant. As the 
explanatory variable gets larger, so too does the variability of the residuals 
(and hence of the responses). Figure 10.27(d) shows a residual plot which is 
similar to that in Figure 10.27(a) in most respects except for a single obser- 
vation which produces a residual considerably larger in magnitude than any of 
the others. The plotted point may correspond to an outlier, an observation so 
disparate in size as to suggest that it was not generated by the same process 
as were the other data points. 

Residuals Residuals 

Figure 10.27 Residual patterns: (a) unpatterned (assumptions tenable) 
(b) a systematic discrepancy (c) variance not constant (d) an outlier 

Residuals Residuals 

Finally, the assumption of a normal distribution for the ws can be checked 
through a standard graphical check for normality using the residuals. Given 
the ideas in Chapter 9, Section 9.1, a natural approach is to construct prob- 

ability plots for the residuals. 

(c) 

In this subsection we have seen some of the informal checks and considerations 
that occur in a regression analysis. In this chapter we have scratched the 
surface of an important and potentially very informative technique, one of 
the most important available to you. As well as being aware of the technical 
aspects of a regression analysis, you should also have observed the essential 
requirement to begin your analysis with a graphical representation of the data, 
to see what messages are evident from that. 

. . . . . . . 
0 .  

0 . .  . . . . . . . 
(d) 

Summary 

. 
. *. * .  e * .  

0 .  . . . . . .  . - 
. S  

1. When the distribution of a random variable Y depends on the value 
taken by some associated variable X, then this can be represented by a 
regression model, with X the explanatory variable, and Y the response 
variable. Less generally, the mean of Y might alter with X. 
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2. A common regression model takes the form 

Y ,  =-/xi+ wi, 
where the random terms Wi are independent with mean 0 and constant 
variance u2; then 

E(Y,) = yxi, V ( x )  = a2. 

3. The parameter y may be estimated through the principle of least squares, 
by minimizing the sum of squared residuals 

then the appropriate estimator is 

the estimator y is unbiased and V(?) = u2/ C X?. Also 

is an unbiased estimator for u2. 

4. If it is also assumed that the random terms Wi are normally distributed, 
then 

and, in particular, 

5. The most common straight-line model for regression is given by 

y i = a + p x i + w i ,  

where the random terms Wi are independent with mean 0 and constant 
variance a2 ; then 

E(Y,) = a + pxi, V(Y,) = a2. 

6. The parameters a and have least squares estimators obtained by mini- 
mizing the sum of squared residuals 

These estimators are 

The least squares regression line 
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passes through the centroid of the data, the point (F, g ) .  Both estimators 
are unbiased; also 

An unbiased estimator for a2 is given by 

a useful way of calculating the sum of squared residuals C ( y i  - 5)' for 
a particular data set is by writing 

7. If the random terms Wi are normally distributed then the least squares 
estimators 6 and 3 are also the maximum likelihood estimators for a and 
P;  the slope estimator p has distribution 

A 100(1- a ) %  confidence interval for the mean response at xo, a + Pxo, 
is given by 

where q is the 100(1 - a / 2 ) %  quantile of t(n - 2 ) .  A 100(1 - a ) %  pre- 
diction interval for the response of an individual at xo is given by 

where q is the 100(1- a / 2 ) %  quantile of t(n - 2 ) .  
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Related variables 

So far in the course, just one attribute (age, temperature, weight, and so on) has 
normally been measured on a random sample from some population. In this chap- 
ter we explore situations where more than one attribute is measured, and interest 
centres on how the attributes vary together (for example, height and weight). We 
learn how to quantify any perceived association between variables, and how to test 
a hypothesis that there is, in fact, no association between them. A new probability 
model, the bivariate normal distribution, is introduced. 

Like the previous chapter, Chapter 11 is concerned with ideas and tech- 
niques for data consisting of pairs of variables; that is, with data in the form 
(X1, Yl), (X2, Y2), . . . , (Xn, Yn). Chapter 10 concentrated on regression analy- 
sis, and a key idea there was that one of the variables involved was treated 
as the explanatory variable, and the other as the response variable. In this 
chapter, the two variables are not distinguished in that way. We shall not be 
concerned with trying to explain how measurements on the variable Y change 
in response to changes in the variable X ,  but instead we shall treat the two 
variables on an equal footing. 

For instance, Figure 11.1 is a scatter plot of data on the heights (in cm) and 
weights (in kg) of 30 eleven-year-old girls. Rather than asking questions about 
how a girl's weight depends on her height, in this chapter we shall ask how 
the weights and heights of girls vary together. What do we mean when we say 
that the two variables, height and weight, are related? How can we measure 
how closely related they are? 

In situations of this sort, it is often useful to treat each pair of observations 
on the two random variables as one observation on a kind of two-dimensional 
random variable-a bivariate random variable. The resulting data are often 
called bivariate data. Section 11.1 describes in more detail what is meant by 

bivariate data, as well as exploring the idea of what it means for two variables 
to be related. Section 11.2 develops ways of attaching a numerical measure to 
the strength of the relationship between two random variables, and for using 
such a measure in a hypothesis test of whether the variables really are related 
at all. Sections 11.3 and 11.4 are concerned with data on pairs of variables, 
each of which is discrete and can take only a small number of values. An 
example to which we shall return comes from a study of risk factors for heart 
disease. A number of individuals were given a score on a four-point scale to 
indicate the amount that they snored at  night. The second variable involved 
took only two values; it was a Yes-No measure of whether each individual had 
heart disease. The question of interest was whether heart disease and snoring 
frequency are related. Such data are very often presented in a table called a 

Data provided by A.T. Graham, 
The Open University. 
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Figure 11.1 Scatter plot of the 
heights and weights of 30 
eleven-year-old girls in a Bradford 
school 
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contingency table. Methods for testing for relationships between variables of 
this sort are rather different from those covered in Section 11.2 for continuous 
data and other forms of discrete data; one of the tests turns out to be a form 
of the chi-squared goodness-of-fit test that you met in Chapter 9. Finally, 
Section 11.5 returns to continuous data and presents a probability model for 
bivariate data-the bivariate n o m a l  distribution. 

11.1 Bivariate data 

11.1.1 Scatter plots and relationships 
Let us begin with some examples of bivariate data. 

Example 11.1 Systolic and diastolic blood pressures 
The data in Table 11.1 come from a study of the effect of a drug, captopril, on 
blood pressure in human patients who had moderate essential hypertension 
(moderately raised blood pressure). The pressure of the blood inside the 
body varies as the heart beats, and a blood pressure measurement generally 
produces two values: the systolic pressure, which is the maximum pressure as 
the heart contracts, and the diastolic pressure, which is the minimum pressure. 
The data in Table 11.1 are readings taken on the fifteen patients before they 
were given the drug, captopril. 

Table 11.1 Blood pressure measurements for 15 patients 
before treatment with captopril (mm Hg) 

Patient Systolic blood Diastolic blood 
number pressure (mm Hg) pressure (mm Hg) 

1 210 130 
2 169 122 
3 187 124 
4 160 104 
5 167 112 
6 176 101 
7 185 121 
8 206 124 
9 173 115 

10 146 102 
11 174 98 
12 201 119 
13 198 106 
14 148 107 
15 154 100 

In Figure 11.2 the data are plotted on a scatter plot. The question of inter- 
est is: how do these two measurements vary together in patients with this 
condition? From the scatter plot, it appears that there is something of a 
tendency for patients who have high systolic blood pressures to have high 
diastolic pressures as well. The pattern of points on the scatter-plot slopes 
upwards from left to right, as it did in several of the scatter plots you met 
in Chapter 10. In fact, it would be possible to  analyse the data using the 
regression methods discussed in Chapter 10. But there is a problem here. 

MacGregor, G.A., Markandu, N.D., 
Roulston, J.E. and Jones, J.C. 
(1979) Essential hypertension: 
effect of an oral inhibitor of 
angiotensin-converting enzyme. 
British Medical Journal, 2, 
1106-1109. 

Diastolic blood pressure (mm Hg) 

Systolic blood pressure (mm Hg) 

Figure 11.1 Systolic and 
diastolic blood pressures for 15 
patients 
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Which of the two variables would you choose to be the explanatory variable, 
and which the response variable? There seems to be no clear answer. We 
are neither investigating how diastolic blood pressure changes in response to 
changes in systolic blood pressure, nor the other way round. In Figure 11.2, 
systolic pressure is plotted on the horizontal axis, but in the context of this in- 
vestigation this was an arbitrary choice. It would have been perfectly feasible 
to plot the data the other way round. We cannot use the regression methods 
of Chapter  10, because those methods do not treat the two variables on an 
equal footing. 

The data in Example 11.1 provide evidence that, for people with moderate 
essential hypertension at least, people with relatively high systolic blood press- 
ure tend to have relatively high diastolic pressure as well. People with low 
systolic pressure tend to have low diastolic pressure. And, importantly, these 
statements work the other way round too. People with high diastolic press- 
ure tend to have high systolic pressure. Another way to think of this is as 
follows. Suppose you choose at random a patient with moderate essential hy- 
pertension. On the basis of the data in Table 11.1, you could say something 
about what his or her diastolic blood pressure might be. Without performing 
any calculations, you would probably find it surprising if their diastolic blood 
pressure fell a long way outside the range from about 95 to about 130 mm Hg. 

However, suppose you were now told that this person's systolic blood pressure 
was 200mm Hg. On the range of values of systolic pressure represented in 
Figure 11.2, this is a high value. One might expect, then, that this person's 
diastolic pressure would be relatively high too. You might think it quite 
unlikely, for instance, to find that their diastolic pressure was as low as 100. 
In other words, knowing their systolic pressure has provided information about 
their diastolic pressure. Similarly, knowing their diastolic pressure would tell 
you something about their systolic pressure, if you did not know it already. 

In intuitive terms, this is what it means for two random variables to be related. 
Knowing the value of one of the variables tells you something about the value 
of the other variable. 

When two variables are related, it is often possible to describe in simple 
terms the manner of the relationship. In Example 11.1, one might say that 
the variables are positively related, because the two variables tend to be both 
high at the same time or both low at the same time. The pattern of points 
on the scatter plot slopes upwards from left to right. 

Example 11.2 Socio-economic data on US states 
Figure 11.3 shows a scatter plot of data on 47 states of the USA, taken from 
a study of crime rates and their determinants. The variable on the horizontal 
axis is a measure of the educational level of residents of each state: it is 
the mean number of years' schooling of the population aged 25 and over. 
The variable on the vertical axis is a measure of the inequality of income 
distribution in the state: it is the percentage of families who earned below 
one-half of the overall median income. 

Again, the aim here is not to describe or investigate how one of the variables 
changes in response to changes in the other. It is to describe how the variables 
vary together, or in other words how they are related. The variables clearly 

We are not doing regression 
analysis here; but if we were, the 
regression line would have a 
positive slope. 

Vandaele, W. (1978) Participation 
in illegitimate activities: Erlich 
revisited. In Blumstein, A., 
Cohen, J. and Nagin, D., (eds) 
Deterrence and incapacitation: 
estimating the effects of criminal 
sanctions on  crime rates. National 
Academy of Sciences, Washington, 
DC, pp. 270-335. The data relate 
to the calendar year 1960. 
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Income inequality (%) 

Educational level (years) 

Figure 11.3 Educational level and income inequality 

are related. States with relatively high average educational level tend to 
have relatively low income inequality, on the measure used here; and states 
with low educational level have high income inequality. Therefore, knowing 
something about the educational level of a state tells you something about 
its income inequality, and vice versa. The relationship is different from that 
in Example 11.1 though. In Example 11.1, a high value of one variable was 
associated with a high value of the other and a low value of one variable was 
associated with a low value of the other. In this example the association works 
the other way round: low values of one variable go with high values of the 
other. The pattern of points on the scatter plot slopes downwards from left 
to right. Figure 11.3 shows a negative relationship between the variables. H 

Variables can be related in other ways. Figure 11.4 is a scatter plot of two 
economic variables, the percentage of the UK workforce that is unemployed 
and the percentage change in wage rates, for the years 1861 to 1913. 

Annual change in wage rates (%) 

-4 f I I I 1 I I I I l I I 
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Unemployment (%) 

Phillips, A.W. (1958) The 
relationship between 
unemployment and the rate of 
change of money wage rates in the 
United Kingdom, 1861-1957. 
Econornica, 25, 283-299. 

Figure 11.4 Change in wage rate (%) against unemployment (%) 
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Here, the two variables are negatively related because there is a tendency for 
high values of one of them to go with low values of the other. The pattern of 
points on the scatter plot slopes downwards from left to right. The difference 
between this scatter plot and Figure 11.3 is that, in Figure 11.3, the points 
slope downwards in a more or less linear (straight-line) way, but in Figure 11.4 
the points show a clearly curved pattern. However, they are still negatively 
related. 

Figure 11.5 shows a rather different pattern. 

Fire service expenditure ( 2  per person) 

The Open University (1983) 
MDST242 Statistics in Society. 
Unit A3: Relationships, Milton 
Keynes, The Open University. 

Amount of land (hectares per person) 

 re 11.5 Population density and fire service expenditure 

Here, each data point corresponds to a non-metropolitan county of England. 
The two variables are the density of population (hectares per person) and the 
expenditure (in 2 )  per head of population on the fire service. The scatter 
plot shows a fairly clear pattern, but it suggests a curve. Counties with low 
population density and high population density both spend relatively large 
amounts on the fire service, while points with medium population density 
spend relatively small amounts. Therefore, knowing the population density of 
a county tells you something about its expenditure on the fire service and vice 
versa. The two variables are related, but in this case it is not very appropriate 
to describe the relationship either as positive or as negative. 

Exercise 1 1.1 
For each of the scatter plots in Figure 11.6, state whether the variables in- 
volved are related, and if they are, say whether the relationship is positive, 
negative or neither of these. 

An important feature of all the examples we have looked at  so far is that 
in each case both the variables involved are, or can be thought of as, ran- 
dom variables. Bivariate data are data giving values of pairs of random ~ i $ u r e  11.6 Three scatter plots 
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variables-hence the name. There is a contrast here with the data used in 
regression. In many regression situations, the explanatory variable is not ran- 
dom, though the response variable is. You may recall the data in Section 10.1 
on duckweed. There, the explanatory variable is the week number and there 
is nothing random about that. The response, the number of duckweed fronds, 
is a random variable. Since only one of the variables is random, it would 
be inappropriate to ask the question: how do week number and number of 
duckweed fronds vary together? In this section and Section 11.2, all the data 
that we shall look at are bivariate data. 

Depending on the question of 
interest, it may well be appropriate 
to use regression methods on 
bivariate data as well as on data 
where one of the variables is not 
random. 

See Example 10.8. 

It is possible to be more formal (though for much of this chapter we shall not 
need to be) about the idea of a relationship in bivariate data. Denote by X 
and Y the two random variables involved. In Example 11.1, X could be a 
randomly chosen patient's systolic blood pressure and Y would be his or her 
diastolic blood pressure. Then it would be possible to describe what is known 
about the value of a randomly chosen patient's diastolic blood pressure by 
giving the probability distribution of Y. If you knew this, you could find, for 
instance, P ( Y  = 110), the probability that a randomly chosen patient has a 
diastolic blood pressure of 110mm Hg. Now, suppose you find out that this 
patient has a systolic blood pressure of 200 mm Hg. Because the two variables 
X and Y are related, P ( Y  = 110) will no longer give an appropriate value for 
the probability that the patient's diastolic pressure is 110 mm Hg. We shall 
denote the probability that a patient's diastolic pressure Y is 110 when we 
know that the patient's systolic pressure X is 200 by 

which is read as 'the probability that Y = 110 given that X = 200', or 'the 
probability that Y = 110 conditional o n  X = 200'. An expression such as 
P ( Y  = llOlX = 200) is called a conditional probability. (By contrast, the 
ordinary sort of probability without a I sign in it is sometimes termed an 
unconditional probability.) Since X and Y are related, it is the case that 
the conditional probability that Y = 110 given X = 200 is different from the 

unconditional probability that Y = 110; that is, 

In general, if X and Y are any two random variables, we define 

P ( Y  = ylX = X) 

to be the probability that the random variable Y takes the value y when it is 
known that the random variable X takes the value X. 

The random variables X and Y are not  related if knowing the value of X tells 
you nothing about the value of Y. That is, X and Y are not related if, for all 
values of X and y, 

P ( Y  = ylX = X) = P ( Y  = y). 

The random variables X and Y are related if, for at least some of the possible 
values of X and y, 

P ( Y  = y l X = x )  # P ( Y  = y), (11.1) 

A convenient model for variation in 
blood pressure would be 
continuous, in which case the 
probability P(Y = 110) might 
strictly be written 
P(109.5 5 Y < 110.5). But in this 
case a strict insistence on notation 
would obscure the simple nature of 
the message. 

The conditional probability 
P(Y = ylX = X) is read as 'the 
probability that Y = y given that 
X = X', or 'the probability that 
Y = y conditional on X = X'. 

that is, if knowing the value of X can tell you something about the distribution 
of Y that you did not already know. 
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Exercise 1 1.2 
(a) Suppose that X and Y are two random variables which take values on 

the integers O,1,2,. . ., and so on. It is known that P ( Y  = 10) = 0.3, and 
P ( Y  = lOlX = 4) = 0.4. Are the random variables X and Y related? 

(b) Suppose that W and Z are two more random variables taking values on 
the integers O,1,2, . . . . It is known that P ( Z  = 5) = 0.4, and also that 
P ( Z  = 51 W = 4) = 0.4. Are the random variables W and Z related? 

This probability definition. of what it means for two random variables to be 
related may seem a little unsatisfactory to you for two reasons. First, nothing 
has been said about how the conditional probabilities that have been defined 
can be estimated from data. If we do not know what the value of the prob- 
ability P ( Y  = llOlX = 200) actually is, how do we decide whether or not 
it is different from P ( Y  = 110), in order to conclude whether Y and X are 
related? In order to estimate these probabilities, usually we must use a prob- 
ability model for the random variables involved. One way to model bivariate 
data is discussed in Section 11.5 and further discussion will be deferred un- 
til then. Furthermore, methods of testing whether two random variables are 
related generally do not involve calculating probabilities of this sort directly. 

Second, it has been emphasized that the idea of related variables involved 
treating the two variables on an equal footing; but here we looked at the 
conditional probability P ( Y  = ylX = X),  and this expression treats X and Y 
differently. In fact, we could just as well have defined X and Y to be related 
if 

P ( X  = xlY = y) # P ( X  = X), (11.2) 

for some values of X and y. It can be shown that the definitions given by 
(11.1) and (11.2) always agree. 

You might suspect that this idea of a relationship between two random vari- 
ables has something to do with the idea of independence of random variables 
that you met first in Chapter  3. You would be right. It can be shown that See, say, Exercise 3.8. 

two random variables are related in the sense we have just discussed if they 
are not independent in the sense defined in Chapter  3. If two variables are 
independent, they are not related. 

Section 11.2 of this chapter is concerned with ways of measuring how strong a 
relationship is in data of the sort we have been looking at. But Sections 11.3 
and 11.4 are concerned with relationships between variables of a rather dif- 
ferent sort, and we now turn briefly to introduce this kind of data. 

1 1.1.2 Relationships in discrete data 
Again let us start with an example. 

Example 11.3 Snoring frequency and heart disease 
The data in Table 11.2 come from a study which investigated whether snoring Norton, P.G. and Dunn, E.V. 
was related to various diseases. A large number of individuals were surveyed (1985) Snoring as a risk factor for 

and classified according to the amount they snored, on the basis of reports disease: an epidemio'ogical survey. 
British Medical Journal, 291, 

from their spouses. A four-fold classification of the amount they snored was 630-632. 
used. In addition, the researchers recorded whether or not each person had 
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certain diseases. These particular data relate to the presence or absence of 
heart disease. The table gives counts of the number of people who fell into 
various categories. The top left-hand number shows, for instance, that 24 
out of the 2484 people involved were non-snorers who had heart disease. The 
numbers in the right-hand column are the row totals and show, for instance, 
that 2374 of the 2484 people involved did not have heart disease. The bottom 
row gives the column totals: for instance, 213 people snored nearly every 
night. 

Table l l .2 Snoring frequency and heart disease 

Heart Non- Occasional Snore nearly Snore every Total 
disease snorers snorers every night night 

Yes 24 35 2 1 30 110 
No 1355 603 192 224 2374 
Total 1379 638 213 254 2484 

Though these data look very different in form from those we have looked at 
so far, they are similar in several respects. Each individual surveyed provided 
an observation on two discrete random variables. The first, X, can take two 
values: Yes or No, depending on whether the individual has heart disease. The 
second, Y, can take four values: Non-snorer, Occasional snorer, Snore nearly 
every night and Snore every night, depending on how often he or she snores. 
Thus the data set consists of 2484 values of the pair of random variables X 
and Y. In 24 of the pairs, X takes the value Yes and Y takes the value 
Non-snorer. In 192 of them, X takes the value No and Y takes the value 
Snore nearly every night. Thus these are bivariate data. We can therefore ask 
the question: are X and Y independent? Formal methods for answering this 
question are developed in Section 11.4; but Exercise 11.3 will give an informal 
answer. 1 

Exercise 1 1.3 
(a) On the basis of the data in Table 11.2, what would you estimate to be the 

(unconditional) probability that the random variable X takes the value 
Yes? 

(b) What would you estimate to be the conditional probability that X takes 
the value Yes given that Y takes the value Snore every night? 

Hint This is a probability conditional on Y taking the value Snore every 
night, so it is only the people who snore every night who provide direct 
information about it. 

Do you think X and Y are related? 

This does not entirely answer the question of whether X and Y are related: 
we have not take? into account the possibility that the result is a 'fluke' 
resulting from sampling variability. But this example shows that the notions 
of bivariate data, and of related random variables, crop up in discrete data of 
this kind as well as in data of the sort that can be plotted in scatter plots. 

Up until now in the course, it has 
always been insisted that random 
variables should be real-valued 
(that is, their values should be 
numbers, and not words like 
'never', 'occasional', 'often', 
'always'). In the case of Bernoulli 
trials, we have been careful to 
identify with one outcome the 
number 1, and with the other the 
number 0. This identification is 
essential when calculating means 
and variances, and the strict 
definition of a random variable 
requires that it should be 
real-valued. Here, however, it 
would be merely cumbersome to 
attach numbers (0, 1, 2, 3, say) to 
outcomes and since no modelling is 
taking place here, let us not bother 
to do so. Data of this kind are 
often called categorical data. 

This point will be discussed in 
Section 11.4. 

We shall now look at  formal ways of measuring the strength of a relationship 
between variables. 
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11.2 Measures of association 

This section will develop ways of measuring the strength of a relationship 
between two random variables, or the strength of the association or cor- 
relation between them as it is sometimes termed. The methods apply to 
continuous bivariate data, and can also be applied to discrete bivariate data 
of certain kinds, as long as it makes sense to plot the data on a scatter plot. 

1 1.2.1 The Pearson correlation coefficient 
In Section 11.1, you saw that bivariate data on two random variables might 
indicate that the two variables are related. Variables can be related positively 
or negatively (or in some other way); and in some cases the relationship 
can be reasonably represented by a straight line, whereas in others it cannot. 
There are other aspects to relationships between variables. Compare the three 
scatter plots in Figure 11.7, which again give data for 47 US states in 1959-60. 

Labour force participation rate for 
Police expenditure ($ per head), 1960 Wealth, median value per family ($) urban males aged 14-24 (%) 

Police expenditure ($ per head), 1959 Police expenditure ($ per head), 1960 

Figure 11.7 (a) Police expenditure, different years (b) Police expenditure and 
community wealth (c) Police expenditure and labour force participation 

In each case, the two variables involved are positively related; knowing the 
value of one of them tells. you something about the value of the other. But 
in Figure 11.7(a), knowing one of the police expenditure figures would tell 
you very accurately what the other would be. The points are not scattered 
very far from a straight line. By contrast, in Figure 11.7(c), knowing the 
police expenditure tells you very little about the labour force participation 
rate. The data are very scattered. Therefore, in Figure 11.7(a) we say that 
the two variables are strongly associated; in Figure 11.7(c) they are weakly 
associated; and Figure 11.7(b) comes somewhere between in terms of strength 
of association. 

It is useful to have a summary measure of the strength of association between 
two random variables. Several such measures exist; one of the oldest, but 
still the most commonly used, is the Pearson correlation coefficient. As 
you will see later in this section, there are other correlation coefficients, but 
the Pearson coefficient is the most used, and it is what statisticians usually 
mean when they refer to a correlation coefficient without saying which one. 
This measure was developed by Sir Francis Galton (1822-1911), about whom 

Police expenditure ($ per head), 1960 

Vandaele, W. (1978) Participation 
in illegitimate activities: Erlich 
revisited. In Blumstein, A., 
Cohen, J. and Nagin, D., (eds) 
Deterrence and incapacitation: 
estimating the effects of criminal 
sanctions o n  crime rates. National 
Academy of Sciences, Washington, 
DC, pp. 270-335. 

This is also known, sometimes, as 
the Pearson product-moment 
correlation coefficient. Often the 
word 'coefficient' is omitted, and 
we speak simply of the 'Pearson 
correlation'. 
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you read in Chapter 10, and (principally) Karl Pearson (1857-1937), who 
held the first post of Professor of Statistics in Britain (at University College 
London). Karl Pearson was the father of Egon Pearson, whom you read about 
in connection with hypothesis testing in Chapter 8. 

The Pearson correlation coefficient is a quantity which we shall denote by r. 
It takes values between -1 and +l. The sign of r indicates whether the 
relationship between the two variables involved is positive or negative. The 
absolute value of r, ignoring the sign, gives a measure of the strength of 
association between the variables. The further r is from zero, the stronger 
the relationship. The Pearson correlation coefficient taker; the value +l only 
if the plotted bivariate data show an exact straight-line relationship with a 
positive slope, and -1 if the data show an exact straight line with negative 
slope. Data where the two variables are unrelated have a correlation coefficient 
of 0. Some examples of scatter plots are given in Figure 11.8 (the data are 
artificial for the purposes of illustration). The three data sets depicted in 
Figure 11.7, for example, have the following Pearson correlation coefficients: 
(a) r = 0.994, (b)'r = 0.787 and (c) r = 0.121. All are positive, reflecting the 
fact that in each case the two variables involved are positively related; and 
the stronger the relationship, the larger the value of the correlation coefficient. 
You should note that higher values of r do not imply anything at all about 
the slope of the straight-line fit: they say something about the quality of the 
fit. 

Exercise 1 1.4 
Based on what you have seen about values of r in different data contexts, 
what do you guess the value of the Pearson correlation coefficient might be 
for the data in Figure 11.3? 

The Pearson product-moment correlation coefficient 
The formula for calculating the Pearson correlation coefficient r from 
bivariate data (XI, yl), (x2, y2), . . . , (X,, y,), where the means of the 
X-values and the y-values are and and their standard deviations 
are s x  and sy,  is as follows. 

1 " 
(1123) 

n-l 

1 
" 

- - T)(Y~ - V) 
- n - 1 

i=1 - (11.4) 
Sx SY 

- n z x i ~ i  - Czi C y i  (11.5) 
d ( n C x ;  - ( C ~ i ) ~ > ( n x Y ;  - ( C Y ~ ) ~ )  

Of the three equivalent versions, (11.5) is the most convenient, and least prone 
to rounding error, if you need to calculate r using a calculator. The first 

Karl Pearson (1857-1937) 

Figure 11.8 (a) r = l  
( b ) r = - 1  ( c ) r = O  
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formulation (11.3) gives the clearest idea of how the definition actually works. 
Consider the expression (xi - :)Isx. It is positive for values of xi above their 
mean, and negative for values below the mean. Suppose the random variables 
X and Y are positively related. Then they both tend to be relatively large at  
the same time, and relatively small at the same time. Thus xi and yi are likely 
to be both above their mean or both below their mean for any i. If both are 
above their mean, then the two terms in brackets in (11.3) will be positive for 
that value of i, and their product will be positive, so that this data point will 
contribute a positive value to the sum in (11.3). If both xi and yi are below 
their means, the two terms in brackets in (11.3) will be negative, so again their 
product is positive, and the data point will again contribute a positive value 
to the sum. Since X and Y are positively related, there will be fewer data 
points where one of the variables is below its mean while the other is above. 
These points contribute a negative value to the sum in (11.3). Therefore, if 
X and Y are positively related, the sum in (11.3) will be positive and thus r 
will be positive. If X and Y are negatively related, then negative terms will 
dominate in the sum in (11.3) and r will turn out to be negative. The n - 1 
divisor in (11.3) is there for much the same reasons as the n - 1 divisor in 
the definition of the sample variance. Expressions like (xi - :)Isx in (11.3) 
include the sample standard deviation because r is intended to measure the 
strength of association without regard to the scales of measurement of the two 
variables. Thus the value of the correlation coefficient for height and weight of 
adults, for example, should take the same value whether weight is measured 
in grams or kilograms or pounds. Changing the weights from kilograms to 
grams will multiply both the numerator and the denominator of (xi - T)/sx 
by 1000, so the overall value of this expression will not change, and hence the 
value of r will not change. 

Generally, one would use computer software to calculate correlation coef- 
ficients. However, to examine how the formulas work, let us calculate a couple 
of examples by hand. The easiest version of the formula for r to use for hand 
calculation is that given in (11.5). 

Example 1 1.1 continued 
For the data on blood pressure in Table 11.1, the necessary summary calcu- 
lations are as follows (denoting systolic pressure by X and diastolic pressure 
by Y). 

- .  
n = 15 

Formula (11.3) also shows why this 
is called the product-moment 
correlation coefficient. The 
expression in the numerator looks 
like that for the sample variance, 
one of the sample moments, but it 
involves the product of X and Y 
values. 
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Then, using (11.5), 

This result matches what was said in Section 11.1: these two variables are 
positively related. The value of the correlation coefficient is not particularly 
close to either 0 or 1, implying that the strength of association between these 
two variables is moderate. This matches the impression given by the scatter 
plot in Figure 11.2, where there is a moderate degree of scatter. 

Exercke 1 1.5 
The data in Table 11.3 were obtained in a study of a new method of measuring 
body composition. They give the age and body fat percentage for 14 women. 

Table 11 .3  Body fat 
percentage and age for 14 
women 

Age (years) Body fat (%) 

Mazess, R.B., Peppler, W.W. and 
Gibbons, M. (1984) Total body 
composition by dual-photon 
( l S 3 ~ d )  absorptiornetry. American 
Journal of Clinical Nutrition, 40, 
834-839. 

Investigate how age and body fat percentage are related by (aj drawing a If you denote age by X and body 
scatter plot; (b) calculating the Pearson correlation coefficient. fat percentage by Y your solutions 

will match those at the back of the 
book. 

In Exercise 11.6 you should use your computer for the calculations. 

Exercise 11.6 
(a) The data in Table 11.4 are those for the heights and weights of 30 Bradford 

school children, illustrated in Figure 11.1. 

Calculate the Pearson correlation coefficient for these data. Does the value 
of the coefficient match the impression of the strength of association given 
by the scatter plot? 
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Table 11.4 Heights and weights of 30 eleven-year-old 
schoolgirls from Heaton Middle School, Bradford 

Height (cm) Weight (kg) Height (cm) Weight (kg) 

135 26 133 31 
146 33 149 34 
153 55 141 32 
154 50 164 47 
139 32 146 37 
131 25 149 46 

(b) An official investigation into differences in mortality between different 
occupational groups in England and Wales presented the data given in 
Table 11.5. They relate to  male deaths in 1970-72. For each of 25 'oc- 
cupational orders' (groups of occupations), the data  give the 'smoking 
ratio', a measure of the number of cigarettes smoked on average by men 
in that group, and the lung cancer standardized mortality ratio (SMR), 
a measure of the death rate from lung cancer for men in the group. Both 
of these ratios are adjusted to  allow for differences in the pattern of age 
of members of the groups, and for both, a value of 100 indicates that 
smoking or mortality is a t  the average level for England and Wales in 
1970-72. 

Table 11.5 Smoking ratio and SMR by occupation order 

Occupation order Smoking ratio Lung cancer SMR 

Farmers, foresters, fishermen 
Miners and quarrymen 
Gas, coke and chemical makers 
Glass and ceramics makers 
Furnace, forge, foundry, rolling mill workers 
Electrical and electronic workers 
Engineering and allied trades not included elsewhere 
Woodworkers 
Leather workers 
Textile workers 
Clothing workers 
Food, drink and tobacco workers , 
Paper and printing workers 
Makers of other products 
Construction workers 
Painters and decorators 
Drivers of stationary engines, cranes, etc 
Labourers not included elsewhere 
Transport and communications workers 
Warehousemen, storekeepers, packers, bottlers 
Clerical workers 
Sales workers 
Service, sport and recreation workers 
Administrators and managers 
Professional, technical workers, artists 

(Extracted from the Office of Population Censuses and Surveys (1978) Occupational mortality: the 
Registrar General's decennial supplement for England and Wales, 1970-72, Series DS, No. 1, 
London: HMSO, p. 149.) 
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Draw a scatter plot of these data, calculate the Pearson correlation be- 
tween the two variables, and comment on the strength of association be- 
tween the two variables. 

The conclusions from Exercise 11.6 can be used to illustrate a very important 
point about correlation. In both parts, you found a reasonably strong positive 
association between the variables. In part (b), this means that occupational 
groups where men smoke a lot also experience, on average, high mortality 
from lung cancer. An obvious explanation for this is that smoking causes 
lung cancer. But you should note that the data in Table 11.5 do not prove 
this causation. They merely show that high values of the two variables tend 
to go together, without saying anything about why. The data support the 
hypothesis that smoking causes lung cancer; but, because the analysis treated 
the variables on an equal footing, they support equally well the hypothesis 
that lung cancer causes smoking. In part (a) of Exercise 11.6, you found that 
tall girls tend to be relatively heavy. Again, this correlation does not establish 
a causal explanation, either that being tall causes girls to be heavy or that 
being heavy causes girls to be tall. A more reasonable explanation is that as 
a girl grows, this causes increases in both her weight and her height. 

In summary, to say that there is a correlation or association between two 
variables X and Y is merely to say that the values of the two variables vary 
'together' in some way. There can be many different explanations of why they 
vary together, including the following. 

a Changes in X cause changes in Y. 
a Changes in Y cause changes in X. 
a Changes in some third variable, 2, independently cause changes in X 

and Y. 

a The observed relationship between X and Y is just a coincidence, 
with no causal explanation at all. 

Statisticians sometimes quote examples of pairs of variables which are corre- 
lated without there being a direct causal explanation for the relationship. For 
instance, there is a high positive correlation between the level of teachers' pay 
in the USA and the level of alcoholism; yet the alcoholism is not caused, to any 
great extent, by teachers who drink. In parts of Europe there is a high positive 
correlation between the number of nesting storks and the human birth rate; 
yet storks do not bring babies. Since the existence of a pattern on a scatter 
plot, or the value of a correlation coefficient, cannot establish which of these 
explanations is valid, statisticians have a slogan which you should remember. 

Correlation is not causation. 

Causation is established by other (generally non-statistical) routes; typically 
the aim is to carry out a study in such a way that the causal explanation in 
which one is interested, is the only plausible explanation for the results. 

One should not forget the 
possibility of a relationship 
between SMR and occupation, 
without regard to smoking habits. 

The 'storks' data are given in 
Kronmal, R.A. (1993) Spurious 
correlation and the fallacy of the 
ratio standard revisited. J. Royal 
Statistical Society, Series A, 156, 
379-392. 

Statisticians can be rather reticent 
about telling you what causation 
is! 



Chapter 1 1  Section 11.2 

1 1.2.2 Care with correlation 
In Section 11.1 you saw that there could be many different types of patterns 
in scatter plots. The Pearson correlation coefficient reduces any scatter plot 
to a single number. Clearly a lot of information can get lost in this process. 
Therefore it is hardly ever adequate simply to look at the value of the corre- 
lation coefficient in investigating the relationship between two variables. Some 
of the problems that arise were demonstrated very convincingly by the statis- 
tician Frank Anscombe, who invented one of the most famous sets of artificial 
data in statistics. It consists of four different sets of bivariate data: scatter 
plots of these data are given in Figure 11.9. 

Anscombe, F.J. (1973) Graphs in 
statistical analysis. American 
Statistician, 27, 17-21. The 
regression lines for the regression of 
Y on X are also the same for each 
of the scatter plots. 

Figure 11.9 Anscornbe's data sets 

In each case the Pearson correlation coefficient takes the same value: 
r = 0.816. In Figure 11.9(a) this is probably a reasonable summary of the 
data; the two variables look reasonably strongly associated. However, the 
other three data sets tell a different story. In Figure 11.9(b) the variables 
look extremely strongly related, but it is not a straight-line relationship. For 
the Pearson coefficient, a 'perfect' correlation of 1 (or -1) is only found in 
a straight-line relationship. Therefore the Pearson correlation coefficient is 
an inadequate summary of this particular data set. The same is true for 
Figure 11.9(c), for a different reason. This time the data do lie, exactly, on 
a straight line--except for one outlying point. This outlier brings the cor- 
relation coefficient down; if it were omitted the Pearson correlation would 
be 1. In Figure 11.9(d) there is again a point that is a long way from all the 
others, but if this point were omitted, there would effectively be no correlation 
between the variables at all. 
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The message from Anscombe's examples is that you should always study the 
data before trying to interpret the value of a correlation coefficient. In fact, 
it is almost always best to look at a scatter plot before calculating the corre- 
lation coefficient; the scatter plot may indicate that calculating the correlation 
coefficient is not a sensible thing to do, or that some other analysis should be 
followed as well. 

The Pearson correlation coefficient is most useful when the data form a more or Data that display an oval pattern 
less oval pattern on the scatter plot, as in Figure 11.9(a). It is less appropriate of this sort are often well modelled 
when the data show a curvilinear relationship. When there are points that the bivariate 

distribution, which is described in 
are a long way from the rest of the data, as in Figures 11.9(c) and 11.9(d), Section 11.5. 
it is often useful to calculate the correlation coefficient after omitting them 
from the data set. 

Exercise 1 1.7 
In Chapter 7, Table 7.7, you met a data set giving the concentration of the 
pollutant PCB in parts per million, and the shell thickness in millimetres, of 
65 Anacapa pelican eggs. 

Produce a scatter plot of these data. Briefly describe the relationship 
between the variables. Are there any points which seem to be a long way 
from the general run of the data? 

Calculate the Pearson correlation coefficient for these data (using the data 
for all 65 eggs). 

Omit any data points which you think are a long way from the others. 
Recalculate the Pearson correlation coefficient. How would you describe 
the relationship between the variables in the light of this investigation? 

One possibility for using the Pearson correlation coefficient with data whose 
scatter plot does not show a straightforward oval pattern is to transform the 
data in an appropriate manner in order to standardize the pattern. This 
method can sometimes be used to deal with data showing a curvilinear rela- 
tionship (though other means of dealing with such data are discussed later in 
this section). It has other applications too, as Exercise 11.8 will indicate. 

Exercise 1 1.8 
In Chapter l, Table 1.7, data are listed on the brain weight and body weight of 
28 kinds of animal. You saw in Chapter 1 that there were problems merely in 
producing a sensible plot of the data unless they were transformed first. The 
transformation suggested was a logarithmic transformation of both variables. 
Calculate the Pearson correlation coefficient for the untransformed data and 
for the transformed data. 

The Pearson correlation for the untransformed data in Table 1.7 is so close to 
zero that it gives the impression that the variables are not related at all. The 
Pearson correlation for the transformed data (which, you might recall from 
Chapter 1, show a much more evenly-spread oval pattern on their scatter 
plot-see Figure 1.15) indicates that there is, in fact, a reasonably strong 
positive association between the variables. 
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The idea of transforming the data before calculating the Pearson correlation is 
a useful one, but it does depend on whether or not an appropriate transform- 
ation can be found. We now turn to another measure of correlation which does 
not depend for its usefulness on the scatter plot displaying an oval pattern. 

1 1.2.3 The Spearman rank correlation coefficient 
There exist several correlation coefficients which can meaningfully be applied 
in a wider range of situations than can the Pearson coefficient. The first 
of these to be developed was published in 1904 by the British psychologist 
Charles Spearman (1863-1945). Spearman was one of many psychologists 
who, by adapting and extending existing statistical methods to make them 
more suitable for analysing psychological data, and by developing entirely new 
statistical approaches, have made important advances in statistical science. 
Spearman had the powerful but simple idea of replacing the original data by 
their ranks, and measuring the strength of association of two variables by 
calculating the Pearson correlation coefficient with the ranks. 

Let us see how this is done using a data set we have already met. 

Example 11.4 Body fat percentage and age 
In Exercise 11.5 you calculated the Pearson correlation coefficient for a data 
set on body fat percentage and age. The first step in calculating the Spearman 
correlation coefficient for these data is to find the ranks of the data on each 
of the variables separately. Thus, for instance, the lowest age in the data 
set is 23 years; this is given rank 1. The lowest body fat percentage is 25.2; 
this is also given rank 1. The highest age is 61 years, and since there are 14 
ages in the data set, this gets rank 14; and so on. Where two data values for 
one of the variables are tied, they are given averaged ranks (as was done in 
Chapter 9). The resulting ranks are shown along with the original data in 
Table 11.6. 

The remaining calculations for the correlation use just the ranks and ignore 
the original data. It is fairly evident from the table, and even more obvious 
from a scatter plot of the ranks (see Figure 11.10) that the ranks of these two 
variables are positively related. That is to say, low ranks go together, and 
high ranks go together. This is scarcely surprising; we already saw that the 
two variables are positively related, which means that low values go together 
and high values go together. 

Calculating the Pearson correlation coefficient of the ranks in the usual way, 
we obtain the value 0.590. That is, the Spearman rank correlation coef- 
ficient for these data is 0.590. This value is not very different from the Pearson 
correlation of 0.507 for this data set, and the scatter plot of the ranks looks 
similar to the scatter plot of the original data. Thus the Spearman approach 
has not, in this case, told us anything we did not already know. But that 
is because these data are suitable for analysis using the Pearson correlation 
coefficient. The advantage of the Spearman rank correlation coefficient is that 
it can be used in other situations too. 

The Spearman rank correlation coefficient is denoted rs (S stands for Spear- 
man). To calculate the Spearman rank correlation coefficient for a set of 
bivariate data, proceed as follows. 

Charles Spearman (1863-1945) 

Spearman, C. (1904) The proof 
and measurement of association 
between two things. American 
Journal of Psychology, 15, 72-101. 

Ranks are used in the Wilcoxon 
signed ranks test and the 
Mann-Whitney-Wilcoxon test of 
Chapter 9. 

Table 11.6 Body fat percentage 
and age for 14 women, with ranks 

Age Rank Body fat Rank 
(years) (%l 

Rank of body fat (X) 

Rank of age (years) 

Figure 11.10 Ranked percentage 
body fat against ranked age 

cn2383
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Calculation of the Spearman rank correlation coefficient 

(i) Calculate the ranks for each of the variables separately (using aver- 
aged ranks for tied values); 

(ii) find rs by calculating the Pearson correlation coefficient for the 
ranks. 

Since the Spearman rank correlation coefficient is calculated using the same 
formula as that for the Pearson correlation coefficient, it also takes values 
between -1 and +l, with values near 0 denoting a low degree of association 
and values near -1 or +l denoting strong association. However, the Spearman 
rank correlation coefficient uses a more general definition of strong association. 
Suppose a data set has a Spearman rank correlation coefficient of +l. Then 
the Pearson correlation coefficient for the ranks is +l, which means that the 
ranks have an exact linear (straight-line) positive relationship. The only way 
this can happen is when the ranks for the two variables are exactly the same: 
that is, the data point which has rank 1 on variable X also has rank 1 on 
variable Y, the data point which has rank 2 on variable X also has rank 2 
on variable Y, and so on. This means that the original data points come 
in exactly the same order whether they are sorted 'in order according to the 

values of the variable X or the values of the variable Y. This can happen 
if the original variables have an exact positive linear relationship, but it can 
also happen if they have an exact curvilinear positive relationship, as shown 
in Figure 11.11, as long as the curve involved moves consistently upwards. 
Such a relationship is known as a monotonic increasing relationship. 

Figure 11.11 (a) TS = l, T = l (b) TS = l, T # 1 

Similarly, a data set has a Spearman rank correlation coefficient of -1 if the 
two variables have a monotonic decreasing relationship (see Figure 11.12). 

Many textbooks give a simpler 
formula for TS which looks 
somewhat different from the 
Pearson formula. This formula can, 
however, be shown to be equivalent 
to the Pearson formula for data 
where there are no ties. If there are 
more than one or two ties, the 
simplified formula does not hold, 
anyway. Since you will generally be 
performing the calculations with 
your statistical software, and since 
all statistical packages can 
calculate the Pearson correlation 
coefficient, you are spared the 
details of the special Spearman 
formula. 
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Summarizing, the Pearson correlation coefficient is a measure of strength of 
linear (that is, straight-line) association, while the Spearman rank correlation 
coefficient is a measure of monotonic (that is, always moving in a consistent 
direction) association. 

Another advantage of the Spearman rank correlation coefficient is that it re- 
quires only the ranks of the data: in some cases, only the ranks may be 
available. In other cases, it might happen that the ranks are more reliable 
than the original data. When the data on animal body and brain weights 
were introduced in Chapter l, various questions were raised about their ac- See Table 1.7. 
curacy. The data involve measurements for extinct animals like dinosaurs, 
whose body and brain weights must have been inferred from fossils, so that 
they are unlikely to be accurate. However, it seems more likely that the data 
for these animals at least come in the correct rank order. 

Exercise 1 1.9 
(a) Calculate the value of rs for the data on body and brain weights. What 

do you conclude? 

(b) What is the value of the Spearman rank correlation coefficient for the log- 
transformed data? (You should be able to answer this without actually 
doing any calculations. Think about what the logarithmic transformation 
does to the ordering of the data.) 

We have seen that the Spearman rank correlation coefficient has several advan- 
tages over the Pearson correlation coefficient. You might even be wondering 
why anyone bothers with the Pearson correlation coefficient. In fact, there are 
several reasons. First, in some circumstances, what is required is specifically 
a measure of the strength of linear association, and the Spearman rank cor- 
relation coefficient cannot give this. Second, there are a number of important 
more advanced statistical techniques which build on and use the idea of the 
Pearson correlation coefficient. Third, very often the aim of calculating a cor- 
relation coefficient from a sample is to make inferences about the association 
between the two variables concerned in the population from which the sample 
was drawn. We shall see some ways of doing this in Subsection 11.2.4. If, 
in fact, the relationship between the variables is linear, the Pearson corre- 
lation often provides more powerful inferences than does the Spearman rank 
correlation coefficient. 

There are other measures of 
correlation which are beyond the 
scope of this course. In particular, 
the Kendall rank correlation 
coefficient measures monotonic 
association in rather the same way 
as does the Spearman rank 
correlation coefficient. 

1 1.2.4 Testing correlations 
So far, in this section, we have largely ignored the fact that most of our 
data arise as samples from some larger population. Usually the question of 
interest is not what the strength of association between two variables is in 
the sample, but what the strength of association is in the population. Just The population analogue of the 
as there is a correspondence between the sample mean and the population Pearson correlation pe efficient is 

mean, and between the sample standard deviation and the population stan- again in Section 

dard deviation, so there are population analogues of both the Pearson and 
the Spearman correlation coefficients, and methods exist for estimating these 
population analogues (in fact, just as we have been doing) and for testing 
hypotheses about them. 
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In this course, we shall confine ourselves to using the sample correlation co- 
efficients for testing the null hypothesis that, in the population, there is no 
association at  all. That is, we shall look at  methods for investigating whether 
or not the two variables involved are really related. Let us begin with an 
example. 

Example 1 1.1 continued 
The data on blood pressures can be thought of as a random sample from 
the population of all potential patients with moderate essential hypertension. 
Can we be confident that there is really a relationship between systolic and 
diastolic blood pressure in this population? Let us test the null hypothesis 
that there is no such relationship, against the two-sided alternative that there 
is a relationship (positive or negative). 

It seems appropriate to use the value of the (sample) correlation coefficient 
as a test statistic. Intuitively, the further the value of r is from zero, the 
more evidence we have that the two variables really are related. Under the 
null hypothesis of no association, we would expect r to be fairly close to 
zero. In fact, for samples of the size we have here (sample size 15) the null 
distribution of R is as shown in Figure 11.13. It  is symmetrical about r = 0. 
Figure 11.13 also shows the observed value, r = 0.665, and gives the tail area 
above 0.665. Since this is a two-sided test, we are interested in both tails. 
From Figure 11.13, it is obvious that our observed value of r = 0.665 is well 
out into the upper tail of the distribution. In fact, 

SP(obtained direction) = SP(opposite direction) = 0.0034, 

so there is fairly strong evidence that there really is correlation in the popu- 
lation. 

This hypothesis test is based on the assumption that the data involved come 
from a particular distribution called the bivariate normal distribution, which 
is discussed in Section 11.5. If the null hypothesis of no association is true, 
this amounts to assuming that the two variables involved have independent 
normal distributions. More generally, if the data do not show a more or 
less oval pattern of points on a scatter plot, the test might possibly give 
misleading conclusions; but you have already seen that using the Pearson 
correlation coefficient can give strange answers if the scatter plot shows a 
strange pattern. 

It is just as straightforward to test the null hypothesis of no association against 
a one-sided alternative, that there is a positive relationship between the two 
variables in the population (or that there is a negative relationship in the 
population). In terms of the null distribution in Figure 11.13, this amounts to 
finding the significance probability from one tail of the distribution rather than 
from both. Explore the facilities available on your computer in attempting 
Exercise 11.10. 

-1 0 

Figure 11.13 The distribution of 
R for samples of size 15, when 
there is no underlying correlation 

We shall see shortly how to 
calculate these significance 
probabilities. 
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Exercise 1 1.10 

Use the data on age and body fat percentage to test the hypothesis that there See Table 11.6. 
is no relationship between these two variables in the population, against the 
one-sided alternative that the two variables have a positive relationship. 

In both Chapter 8 and Chapter 9, we have had recourse to computer software 
when the appropriate significance tests have been too complicated or merely 
too time-consuming to pursue otherwise. In fact, use of the Pearson corre- 
lation coefficient to test the hypothesis of no association in a population is 
not at all complicated. It  can be shown that when there is no association, the 
sampling distribution of the Pearson correlation coefficient R is most easily 
given in the form 

and (11.6) suggests a convenient test statistic. For the blood pressure data 
(n  = IS), we have 

and this is at the 99.66% point of t(13): hence the obtained SP  of 0.0034. 
For the data in Exercise 11.10, your computer should have provided you with 
the obtained SP  of 0.0323. In fact, for these data, r = 0.506 589 with n = 14, 
so we should test 

against t(12). This is the 96.77% quantile of t(12), giving the same obtained 
SP of 0.0323. 

Example 1 1.5 Testing correlations 
For the data on 65 Anacapa pelican eggs discussed in Exercise 11.7, the value 
of the Pearson correlation coefficient I- is -0.253. We can test the null hypoth- - - 
esis of no association between PCB concentration and shell thickness, against - 
a two-sided alternative, by calculating the test statistic r and com- 

paring it against a t-distribution with 65 - 2 = 63 degrees of freedom. The 
value of this quantity is 

By looking this value up in statistical tables, or by using a computer, we find 
that the total SP  is 0.042. There is some evidence of a relationship between 
the two variables, but the evidence is not strong. 
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The testing procedure for the null hypothesis of no relationship in the popu- 
lation, using the Spearman rank correlation coefficient as the test statistic, 
works in precisely the same way, except that one looks up the .SP using a 
different computer command. For the data on body fat percentage, we saw 
earlier that rs = 0.590 (with n = 14). In a test of the null hypothesis of no as-. 
sociation against the one-sided alternative that there is a positive association, 
the obtained SP  is 0.0144. This test provides reasonably strong evidence of 
a positive association between age and body fat percentage in women. 

Unlike the null distribution of the Pearson correlation coefficient R given by 
(11.6), the null distribution of the Spearman rank correlation coefficient Rs 
is, in fact, extremely complicated, though it is achieved by the rather simple 
idea of assuming that all possible alignments of the two sets of scores are 
equally likely. The computations are certainly best left to a computer. For 
large samples, the null distribution of Rs is given by the approximation 

i 

Notice that the form of (11.7) is exactly that of (11.6) for the Pearson corre- 
lation coefficient. 

Exercise 11.11 

(a) It  was stated earlier that the test for no association using the Pearson 
correlation coefficient was based on the assumption that the data involved 
followed a bivariate normal distribution; or in other words that they lay 
in an oval pattern on the scatter plot. When we looked at the Anacapa 
pelican eggs data earlier, we saw that there was some doubt about whether 
this was the case, and we reanalysed the data omitting one of the eggs 
which had a very thin shell. We found that r = -0.157 (with, now, 
n = 64). Using this data set with one egg omitted, test the hypothesis 
that there is no association between PCB concentration and thickness of 
shell against a two-sided alternative. What do you conclude? 

(b) For the data set on body and brain weights of animals, we found that 
rs = 0.716 (with n = 28). Use the large-sample approximation (even 
though the sample size is hardly large enough) for the distribution of Rs 
to test the hypothesis that there is no association between body weight 
and brain weight in animals, against the one-sided alternative that the 
two variables are positively related. 

In Section 11.5 we shall return to these sorts of data, where some theoretical 
issues will be discussed. Meanwhile, in Sections 11.3 and 11.4, we turn to 
data in the form of contingency tables. 
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1 1.3 Exact tests for association in 2 X 2 
contingency tables 

Our attention now turns to relationships between random variables which 
take only a small number of discrete values--data of the sort that can be 
represented in contingency tables of the type you met in Example 11.3. In 
Section 11.2, we looked at measures of association for 'scatter plot' data, and 
then we considered methods of testing the null hypothesis of no association, 
using the measures of association (correlation coefficients) as test statistics. 
Similar concepts apply to contingency table data. 

You saw in Example 11.3 that it makes sense to look for relationships or 
associations between the variables. There exist many different measures of 
association for data in contingency tables; most of these measures share some 
of the properties of correlation coefficients. However, in much analysis of 
contingency data, the emphasis is on testing for the presence of association 
rather than on measuring the size of the association, and the common tests 
of association for contingency table data do not use the common measures of 
association as test statistics. Therefore, in this section and the next we shall 
discuss only tests of association. 

First, what is a contingency table? It is a table of counts showing the fre- 
quencies with which random variables take various values in a sample. The Such square or rectangular tables 
term 'contingency table' is most commonly used when the table records the are often called cross-tabulations. 
values of two (or more) variables at  the same time, usually (if there are two 
variables) with one variable corresponding to the rows of a square or rectangu- 
lar table, and the other variable corresponding to the columns. The 'boxes' 
in the table, at the intersection of rows and columns, into which counts can 
fall, are usually called cells. In Table 11.2 the rows corresponded to the pres- 
ence or absence of heart disease (2 rows) and the columns to the degree of 
snoring (4 columns). There were 2 X 4 = 8 cells in the table, which also gave 
information on marginal totals. 

It  is important to remember that contingency tables are tables of counts; if 
a table consists of percentages or proportions calculated from counts, then 
strictly speaking it is not a contingency table and it cannot be analysed by 
the methods covered here (unless it can be reverted to a table of counts). 

In Example 11.3, the contingency table had two rows and four columns. The 
simplest two-way contingency tables have just two rows and two columns, 
and in this section we shall consider exact tests for these 2 X 2 tables. An In this context, an exact test is one 
approximate test that can be applied to larger tables as well as 2 X 2 tables where the SP  can be calculated 

is dealt with in Section 11.4. exactly, rather than using some 
approximation. 

In a 2 X 2 contingency table, the two variables involved can each take only two 
values. In testing for association, as usual, the aim is to investigate whether 
knowing the value of one, of the variables tells us anything about the value of 
the other. Let us see how this can be done in an example. 

Example 1 1.6 Educational level and criminal convictions 
A study was carried out on factors related to a criminal conviction after indi- 
viduals had been treated for drug abuse. Sixty people who had participated in 
a drug rehabilitation scheme were categorized according to years of education 
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(15 years or less, and more than 15 years) and to whether or not they were 
convicted for a criminal offence after treatment. The results of the study are 
given in Table 11.7. 

Table 11.7 Educational level and criminal 
convictions 

Education Convicted Row totals 
Yes No 

15 years or less 16 20 36 
More than 15 years 6 18 24 
Column totals 22 38 60 

It was hypothesized that those with less formal education would be more 
likely to face a subsequent conviction. On the face of it, the data seem to 
support the hypothesis. Among those less well educated, 16/36 or about 44% 
were convicted of a criminal offence, while among those with more education 
the proportion was only 6/24 or 25%. If these data represent the general 
state of affairs, then knowing an individual's educational history will tell you 
how likely it is that this person (having graduated from a drug rehabilitation 
programme) will face a subsequent criminal conviction. The two random 
variables, amount of education and conviction, are related (and not, therefore, 
independent). 

However, this table includes only 60 graduates of the scheme, which is a small 
sample from the potential population. It might well be that this small sample 
does not truly represent the situation in the population. We could find out 
by testing the null hypothesis that there is no relationship between the two 
variables. An appropriate alternative hypothesis is one-sided, because the 
researchers' theory is that more education reduces an individual's likelihood 
to reoffend (or, at any rate, their likelihood to be convicted). 

You do not have to learn a new test procedure to test these hypotheses. 
In Subsection 8.5.1 you met Fisher's exact test, which was used to test for 
differences between two binomial proportions. Here, Fisher's exact test turns 
out to be the appropriate test too. With the data in Table 11.7, Fisher's exact 
test gives an obtained SP of 0.104. There is, in fact, only very weak evidence 
from these data that the two variables really are related in the population. W 

It  is worth exploring briefly one aspect of how this test works. When you carry 
out Fisher's exact test using your computer, it may well give SP values for 
both one-sided and two-sided tests; and you may have noticed in your work 
in Chapter 8 that these values are not related in the simple kind of way that 
the one- and two-sided SP values are for, say, a t-test. The reason is that the 
distribution of the test statistic is not symmetric. In fact, the test statistic 
for Fisher's exact test is simply the count in one of the cells of the table, say 
the count in the upper left cell. The distribution of this count under the null 
hypothesis is found under the assumption that the marginal totals, the totals 
of the counts in each row and column given in the margins of the main table 
in Table 11.7, remain fixed. Under this assumption, considering the data in 
Table 11.7, the value in the top left-hand cell could be as low as 0, if none 
of those with more education were convicted. (It could not be larger than 22 
since the total of the first column is fixed at 22 and the other count in that 
column could not be negative.) 

448 

Wilson, S. and Mandelbrote, B. 
(1978) Drug rehabilitation and 
criminality. British Journal of 
Criminology, 18, 381-386. 

Again, the random variables here 
could (and, strictly, should) be 
given numerical values: say, 0 and 
1. But this would be to complicate 
matters quite unnecessarily. 
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Thus the null distribution of the test statistic is concentrated on the values 0, 
1, 2, . . . , 22, and this distribution is shown in Figure 11.14. 

I ( SP (obtained direction) = 0.104 ) 

Figure 11.14 

The obtained SP for our observed value in the top left-hand cell, 16, is found 
by adding together the probabilities for 16, 17, . . . , 22: from Figure 11.14 
the SP is 0.104. To calculate the total SP, we should add to 0.104 the prob- 
abilities in the left tail of the null distribution that are less than the probability 
for 16. Thus we must include the probabilities for 0, 1, . . . , 10. Because the 
distribution in Figure 11.14 is not symmetric, the total SP is equal to 0.174. 

In Exercise 11.12, the data are again presented as a 2 X 2 contingency table 
(with marginal totals included). 

Exercise 1 1.12 
Table 11.8 gives data from a study of 65 patients who had received sodium 
aurothiomalate (SA) as a treatment for rheumatoid arthritis. Of these patients, 
37 had shown evidence of a toxic effect of the drug. The patients were also 
classified according to whether or not they had impaired sulphoxidation ca- 
pacity; the researchers thought this might be linked to toxicity in some way. 
Use Fisher's exact test to test the null hypothesis that these two variables are 
not associated (against a two-sided alternative). What do you conclude? If 
you conclude that the variables are related, briefly describe the way in which 
they are related. 

Table 11 .B Impaired sulphoxidation 
capacity and evidence of toxicity 

Impaired Toxicity Row totals 
sulphoxidation Yes No 

Yes 30 9 39 
No 7 19 26 
Column totals 37 28 65 

We concluded in Exercise 11 .l2 that patients with impaired sulphoxidation are 
more likely to exhibit a toxic reaction to the drug. It  is important to remember 
that, in contingency tables just as in other kinds of data, 'correlation does not 
imply causation' so we cannot conclude on the basis of these data alone that 
the impaired sulphoxidation causes the toxic reaction, or vice versa. 

Ayes, R., Mitchell, S.C., Waring, 
R.H. et al. (1987) Sodium 
aurothiomalate toxicity and 
sulphoxidation capacity in 
rheumatoid arthritis patients. 
British Journal of Rheumatology, 
26, 197-201. 
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Incidentally, it is worth examining briefly how Fisher's exact test can be used 
for two apparently completely different purposes: testing for association in 
a 2 X 2 contingency table and testing for differences between binomial pro- 
portions. In Exercise 8.12 you used Fisher's exact test to analyse data from an 
experiment where 100 male students and 105 female students asked for help; 
71 of the males and 89 of the females were helped. The question of interest 
there was whether or not the proportions of males and females helped were 
the same. 

To see how these data relate to contingency tables, look at Table 11.9 where 
they have been written out as a contingency table. 

Table 11.9 Helping behaviour 

Sex Helped Row totals 
Yes No 

Male 71 29 100 
Female 89 16 105 
Column totals 160 45 205 

This contingency table looks very like Tables 11.7 and 11.8. It  does differ 
in one key respect, though. In Table 11.7, for instance, the researcher chose 
60 people from the drug rehabilitation programme, and then classified them 
in two ways, by educational history and subsequent conviction record. If 
the researcher had chosen a different sample, the numbers in each cell of the 
table might have been different. In other words, the researcher did not fix 
either the row totals or the column totals in advance; they are all random 
variables that were observed during the study. Only the overall total of 60 
people was fixed in advance. However, Table 11.9 is different. There, the 
row totals were fixed in advance, because the data come from an experiment 
where the researcher chose to observe exactly 100 occasions involving males 
and 105 involving females. The column totals are not fixed in advance, but are 
random variables depending on how many people happened to help overall. 
The data appear to have the same form in Tables 11.7 and 11.9; but the 
random variables involved are different. Table 11.9 does not show bivariate 
data because two random variables were not recorded on each occasion when 
help might have been offered. Two pieces of information were recorded, the 
sex of the person involved and whether or not help was offered; but the sex 
was not a random variable. 

However, Fisher argued that his exact testing procedure applied in both of 
these different situations. You will recall that the null distribution of the test 
statistic was calculated on the basis that both sets of marginal totals (row and 
column totals) remained fixed. Without going into all the details, according 
to Fisher, the procedure could be applied where none of the marginal totals 
were fixed (testing for association, as in Table 11.7) or where one set was fixed 
and the other was not (testing for difference in proportions, as in Table 11.9). 
Most statisticians nowadays agree with Fisher about the applicability of his 
test. 

Table 11.9 can be compared with 
Table 2.3 of Chapter 2. 
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11.4 The chi-squared test for contingency 
tables 

Fisher's exact test requires a computer for all but the smallest data sets, and 
the computations involved may be too much even for some statistical software 
if the data set is too large. It is therefore useful to have another method of 
testing for association. The method you will learn about is an application of 
the chi-squared goodness-of-fit test that was discussed in Chapter 9. There, 
you saw that the distribution of the test statistic was approximately chi- 
squared, but the approximation is good provided the data set is not too small. 
The same applies in relation to contingency tables. 

There is no simple analogue of Fisher's exact test for contingency tables that 
have more than two rows and more than two columns, and exact tests for such 
tables are not always straightforward (though they can be carried out with 
some statistical software). The chi-squared test, however, applies just as well 
to larger contingency tables as to 2 X 2 tables. It is worth learning about the 
chi-squared test for 2 X 2 tables, before extending the test to larger tables. 

1 1.4.1 The chi-squared test in 2 X 2 contingency 
tables 

Let us begin with an example that shows how a chi-squared test for association 
can be carried out in a 2 X 2 table. 

Example 11.7 Rheumatoid arthritis treatment 
Table 11.8 presented some data on reactions to a treatment for rheumatoid 
arthritis. How can these data be analysed using a chi-squared goodness- 
of-fit test? In Table 11.8 we have counts of observed frequencies in four cells 
(together with a number of totals). If we can construct a table of four expected 
ji-equencies, we can calculate the chi-squared goodness-of-fit test statistic in 
exactly the same way as in Section 9.2. 

The null hypothesis we are testing here states that the two variables in- 
volved, toxicity and impaired sulphoxidation, are not related. The expected 

frequencies should be calculated on the basis that the null hypothesis is true. 
If it is true, then knowing whether a patient has impaired sulphoxidation 
will tell us nothing about the toxic effect in a patient. Altogether, according 
to Table 11.8, 37 patients out of 65 showed toxic effect. That is, a propor- 
tion of 37/65 of the patients suffered toxic effects. If the null hypothesis 
were true, we would expect that, of the 39 patients in all who had impaired 
sulphoxidation, a proportion of 37/65 of them would show toxic effect. (If 
the proportion differed much from 37/65, then knowing that a person had 
impaired sulphoxidation would tell you something about the toxic effect in 
that patient; but under the null hypothesis we have assumed this does not 
happen.) Therefore, the expected number of patients who showed toxic effect 
would be (39 X 37)/65 or 22.2. Out of the 26 patients who did not have im- 
paired sulphoxidation the expected proportion that shows toxic effect would 
also be 37/65, and the expected number of patients would be (26 X 37)/65 or 
14.8. 
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These expected frequencies are shown in Table 11.10, together with the re- 
maining two expected frequencies. Note that each expected frequency is found 
by multiplying the row total for its row by the column total for its column, 
and then dividing by the overall total, 65. 

Table 1 1 . 1 0  Expected values for the rheumatoid arthritis data 

Impaired Toxicity Row totals 
sul~hoxidation Yes No 

Yes (39 X 37)/65 = 22.2 (39 X 28)/65 = 16.8 39 

No (26 X 37)/65 = 14.8 (26 X 28)/65 = 11.2 26 
Column totals 37 28 65 

The first point to note about this table is that the expected frequencies sum 
to the same row and column totals as the observed frequencies did. The 
second point is that the expected values, calculated on the basis that the two 
variables were independent, differ considerably from the observed counts. The 
differences between observed and expected values are tabulated in Table 11.11. 

Table 11 .11  (0 - E) values for the rheumatoid 
arthritis data 

Impaired Toxicity 
sul~hoxidation Yes No 

Yes 30 - 22.2 = 7.8 9 - 1 6 3  = - 7 3  
NO 7 - 14.8 = -7.8 19 - 11.2 = 7.8 

Here, it is interesting to note that the row and column sums of the (Observed - 
Expected) differences are all zero (because the row and column sums were the 
same for the observed and expected frequencies). As a consequence, the values 
in Table 11.11 are all the same, apart from the signs. It  is now straightforward 
to complete the calculation of the chi-squared test statistic. It is defined as 

where the summation is over all the cells (four of them, here). Thus the value 
of the chi-squared test statistic is 

To complete the test, we need to know how many .degrees of freedom are 
appropriate for the chi-squared distribution involved. The answer is one. This 
is indicated by the fact that (apart from the signs) there is only one value in 
the table of differences between observed and expected values. To be more 
formal, there are four cells, and we have estimated two parameters from the 
data, namely the proportion of individuals who have impaired sulphoxidation 
and the proportion of individuals who show toxic effect, so the number of 
degrees of freedom is 4 - 1 - 2 = 1. Using a computer, the SP for an observed 
value of 15.905 against X2(1) is 0.000 067. There is extremely strong evidence 
that these two variables are associated, just as you found using Fisher's exact 
test in Exercise 11.12. H 
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In general, the chi-squared goodness-of-fit test can be applied to test for as- 
sociation in a 2 X 2 contingency table as follows. 

Testing for association in a 2 X 2 contingency table 

1 Calculate a table of expected frequencies by multiplying the corre- 
sponding row and column totals together, and then dividing by the 
overall total. 

2 Calculate the chi-squared test statistic using the formula 

where the summation is over the four cells in the table. 

3 Under the null hypothesis of no association, the test statistic has 
an approximate chi-squared distribution with 1 degree of freedom. 
Calculate the SP for the test and interpret your answer. 

As with the chi-squared tests in Section 9.2, the question of the adequacy 
of the approximation in Step 3 arises. The same simple rule applies: the 
approximation is adequate if no expected frequency is less than 5, otherwise 
it may not be good enough. 

In practice, most statistical computer packages will carry out this test. 

Note that this test, as it is presented here, is essentially two-sided; because the 
differences between observed and expected frequencies are squared in calcu- 
lating the test statistic, their signs are ignored, and the test treats departures 
from the null hypothesis in either direction on the same footing. It is possible 
to complicate the testing procedure somewhat to give a one-sided test; we 
shall not do this here. 

If any expected frequency is less 
than 5, then the only option is an 
exact test, for the idea of 'pooling' 
cells in a 2 X 2 contingency table is 
not a meaningful one. 

Exercise 1 1.13 
A study was carried out in which 671 tiger beetles were classified in two 
ways, according to their colour pattern (bright red or not bright red) and the 
season in which they were found (spring or summer). The data are given in 
Table 11.12. Use your computer to carry out a chi-squared test for association 
between the two variables involved, and report your conclusions. 

Table 11.13 Colour pattern and seasonal incidence of 
tiger beetles 

Season Colour pattern Row totals 
Bright red Not bright red 

Sokal, R.R. and Rohlf, F.J. (1981) 
Biometry, 2nd edition, 
W.H. Freeman, New York, p. 745. 

Spring 302 202 504 
Summer 72 95 167 
Column totals 374 297 671 
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11.4.2 The chi-squared test in larger contingency 
tables 

In Example 11.3 you met a contingency table which appeared (merely from a 
consideration of the frequencies reported) to indicate an association between 
snoring frequency and heart disease. How can we test whether these two 
variables really are associated in the population from which the sample was 
drawn? The examples we have analysed so far all had two rows and two 
columns, but the table in Example 11.3 had four columns. One answer is 
to use the chi-squared goodness-of-fit test again. The procedure given in 
Subsection 11.4.1 applies in exactly the same way to tables larger than 2 X 2, 
except that the number of degrees of freedom for the chi-squared distribution 
is different. For contingency tables in general, it is conventional to denote the 
number of rows by r, and the number of columns by c. The procedure is as 
follows. 

Testing for association in a r X c contingency table 
Calculate a table of expected frequencies by multiplying the corre- 
sponding row and column totals together, and then dividing by the 
overall total. 

Calculate the chi-squared test statistic using the formula 

where the summation is over the r c  cells in the table. 

Under the null hypothesis of no association, the test statistic has an 
approximate chi-squared distribution with (r - l ) (c  - 1) degrees of 
freedom. Calculate the SP for the test and interpret your answer. 

There are (r - l ) (c  - 1) degrees of 
freedom because, given the 
marginal totals, only ( r  - l ) (c  - 1) 
cells are freely assignable. 

As in previous situations, the adequacy of the approximation may not be good 
enough if any of the expected frequencies is less than 5. 

Example 11.3 continued 
We shall use the chi-squared test to test for association between snoring fre- 
quency and heart disease in the data from Table 11.2. The data (observed 
frequencies) were as follows. 

Heart disease Non-snorers Occasional Snore nearly Snore every Total 
snorers every night night 

Yes 24 35 2 1 30 110 

No 1355 603 192 224 2374 

Total 1379 638 213 254 2484 
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The expected frequencies can be calculated as follows. 

Heart disease Non-snorers Occasional Snore nearly Snore every Total 
snorers every night night 

Yes 110 X 1379 110 X 638 110 X 213 
2484 2484 2484 

Total 1379 638 213 

The differences Oi - Ei are as follows. 

Heart disease Non-snorers Occasional Snore nearly Snore every Total 
, snorers every night night 

Yes -37.067 6.747 11.568 18.752 0 
NO 37.067 -6.747 -11.568 -18.752 0 
Total 0 ,  0 0 0 0 

Comparing the observed and expected frequencies, far more of the frequent 
snorers seem to have heart disease than would be expected under the null 
hypothesis of no association. 

The value of the chi-squared test statistic is found from 

There are two rows and four columns in the contingency table so the number 
of degrees of freedom is (2 - 1)(4 - 1) = 3. Comparing the value of our test 
statistic against a chi-squared distribution with 3 degrees of freedom, the SP 
is very close to zero. There is very strong evidence of an association between The SP is about 1 X 10-15. 
snoring and heart disease, though because 'correlation is not causation' we 
cannot conclude that snoring causes heart disease, or that heart disease causes 
snoring. H 

Now try the following exercise. 

Exercise 1 1.14 

(a) Table 11.13 gives data on the number of failures of piston-rings in each of Davies, O.L. and Goldsmith, P.L. 
three legs in each of four steam-driven compressors located in the same (eds) (1972) Statistical Methods in 
building. The compressors have identical design and are oriented in the Research and Production, 4th edn. 

Oliver and Boyd, UK, p. 324. 
same way. One question of interest is whether there is an association 
between the leg in which a failure occurs and the compressor in which it 
occurs, or whether the pattern of the location of failures is the same for 
different compressors. Use a chi-squared test to investigate whether such 
an association exists, and report your conclusions. 



Elements of Statistics 

Table 11.13. Piston-ring failures 

Compressor Leg Row totals 
North Centre South 

1 17 17 12 46 
2 11 9 13 33 
3 11 8 19 38 
4 14 7 28 49 
Column totals 53 41 72 166 

(b) Some individuals are carriers of the bacterium Streptococcus pyogenes. Krzanowski, W. (1988) Principles 
To investigate whether there is a relationship between carrier status and of multivariate analysis. 
tonsil size in schoolchildren, 1398 children were examined and classified Oxford University Oxford, 

p. 269. 
according to their carrier status and tonsil size. The data appear in 
Table 11.14. Is there an association between tonsil size and carrier status? 
Investigate using a chi-squared test, and report your conclusions. 

Table 1 1 .  14 Tonsil size in schoolchildren 

Tonsil size Carrier status Row totals 
Carrier Non-carrier 

Normal 19 497 516 
Large 29 560 589 
Very large 24 269 293 
Column totals 72 1326 1398 

The chi-squared test for contingency tables is a very useful method of analysis. 

Indeed, it is more widely applicable than you have yet seen. You will recall 
that, in 2 X 2 tables, Fisher's exact test could be used to compare proportions 
as well as to test for association. The same is true of the chi-squared test. In a 
2 X 2 table, it can be used to compare proportions in much the same way that 
Fisher's test can be used. In tables with two rows and more than two columns 
where the column totals are fixed in advance, it can also be used to provide 
an overall test of the null hypothesis that several binomial proportions are all 
equal. In larger tables where one set of marginal totals (row or column totals) 
are fixed in advance, the chi-squared procedure can be used to test various 
different hypotheses. 

However, these further uses of the chi-squared test are beyond the scope of 
this course. To complete our study of related variables, we now turn to a 
probability model for continuous bivariate data. 

1 1.5 The bivariate normal distribution 

In earlier parts of the course, when dealing with univariate data (the kind 
where only one random variable at  a time is involved), it was often useful 
(and sometimes necessary) to define a probability model for the data. Often, 
hypothesis tests were performed or confidence intervals were calculated on the 
basis that the data involved came from a particular probability distribution, 
such as a normal distribution or a Poisson distribution. The same is true 
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of bivariate data. It  was mentioned in Section 11.2 that the test for associ- 
ation using the Pearson correlation coefficient as the test statistic involved 
an assumption that the data came from a particular probability model, the 
bivariate normal distribution. (None of the other techniques in this chapter 
involves the use of an explicit probability model.) The aim of this section 
is to show you some of the properties of the bivariate normal distribution, 
which is the most important probability model for continuous bivariate data, 
and hence to give you a flavour of what is involved in probability models for 
bivariate data. 

The bivariate normal distribution is a model for a pair of random variables X 
and Y. The model defines in all respects how X and Y vary together. This 
involves defining the distributions of X and Y taken on their own, and you 
will not be surprised to learn that both these distributions are normal. But 
there is more to the bivariate normal distribution than that. It  has to account 
for correlation between X and Y. This is done by defining a bivariate version 
of the normal probability density function. 

Think of how the idea of a univariate probability density function was arrived 
at earlier in the course. We started with histograms, where the height of each 
bar in the histogram above the axis represented the frequency with which a 
particular range of values occurred. Many histograms had approximately the 
'bell' shape characteristic of the probability density function of the normal 
distribution: hence its usefulness as a probability model. 

To define a bivariate probability density function, we need to be able to rep- 
resent how common are different pairs (X, y) of values of the two random 
variables involved. That is, the probability density function needs to be de- 
fined over an area of a plane, rather than simply on a line. Imagine taking a 
scatter plot, dividing the area up into squares, and setting up a bar on each 
of the squares whose height is proportional to the frequency of data in that 
square. The resulting object (Figure 11.15) is a bivariate version of the his- 
togram, and in the same way that the smooth curve of the (univariate) normal 
probability density function looks like a smoothed and idealized histogram, so 
the bivariate normal probability density function is a smooth surface which 
is a smoothed and idealized version of a bivariate 'histogram' like that in 
Figure 11.15. 

Figure 1 l .  15 A bivariate 'histogram' 

Two examples of bivariate normal probability density functions are shown in 
Figure 11.16. The 'contour' lines join up points of equal height, just as with 
contour lines on an ordinary map. In the first distribution (Figure 11.16(a)), 
the correlation between the two variables is zero. The 'hill' is circular in cross 
section. If a small sample were drawn from a population which was modelled 
by this distribution, a scatter plot of the sample would look like that shown 
in Figure 11.17; the variables are not related. In the second distribution 
(Figure 11.16(b)), the Pearson correlation coefficient for the two variables is 
high; it is 0.9. The 'hill' is a narrow ridge. 
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Figure 11.16 (a) Zero correlation (b) High positive correlation 

Figure 11.1 7 A scatter plot of observations drawn from a bivariate normal 
distribution with zero correlation 

Exercise 1 1.15 
Imagine that a small sample is drawn from a population following the second 
distribution (that with high positive correlation). Draw a rough sketch of 
what a scatter plot of this sample would look like. 

A bivariate normal distribution for bivariate random variables X and Y is There is a formal definition for the 
characterized bv five ~arameters: the means of X and Y and their variances. correlation between random 

which are denoted by px, py ,  o$ and 0% respectively, and the (Pearson) the idea of 
expectation, just as there is a correlation between X and Y, which is denoted by p. We write formal definition involving 

(X,Y) N(Px#Y,&&P). expectations for the mean and variance of a random variable. You 
A bivariate normal distribution has several interesting properties, and these need not worrv about the details. 
are as follows. The correlatio; is denoted by p, the 

Greek letter rho, pronounced 'roe'. 

The bivariate normal distribution 
If the random variables X and Y have a bivariate normal distribution 

(x,Y) N ( P X , P Y , & , ~ , P )  
then 
1 the distribution of X is normal with mean px and variance a$, 

X N N(pX,  o$), and the distribution of Y is normal with mean py 
and variance 0% ; 

2 the conditional distribution of X ,  given Y = y, is normal 

(and similarly for the conditional distribution of Y, given X = X). 
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The unconditional distributions for X and Y are often referred to as the 
marginal distributions of X and Y, because they correspond to the marginal 
totals in a contingency table (which give total frequencies for each of the 
variables). 

The following example gives some idea of a context where the bivariate normal 
model might be applied. 

Example 11.8 Heights and weights of schoolgirls in Bradford 
For the sample of 30 schoolchildren whose heights and weights were plotted 
in Figure 11.1 and listed in Table 11.4, summary sample statistics (denot- 
ing height by X and weight by Y and using the Pearson product-moment 
correlation coefficient) are 

Suppose that it is decided to model the variation in heights and weights of 
eleven-year-old schoolgirls in the population by a bivariate normal distribution 
with parameters px = 145, py = 36 ,aa  = 58, a$ = 60, p = 0.75. That is, 

(X,  Y) - N(145,36,58,60,0.75). 

Then, for instance, the proportion of eleven-year-old schoolgirls in the popu- 
lation who are more than 140 cm tall is given by 

the proportion of schoolgirls whose weight is below 30 kg is given by 

Considering only those schoolgirls 150cm tall (this is taller than average: 
X = 150 while px = 145) the weight distribution has mean 

= 36 + 3.8 

= 39.8 kg, 

which is also heavier than average. 

To find, say, the proportion of eleven-year-old schoolgirls who are at  the same 
time taller than 150cm and heavier than 40kg requires calculation of the 
probability 

here, the only feasible approach is to use a computer programmed to return 
bivariate normal probabilities. The answer is 0.181. 1 

As you can appreciate, to calculate all but very simple probabilities from a 
bivariate normal distribution requires the use of a computer, or at the very 
least a set of statistical tables, a calculator and plenty of time. Your statistical 
software may do these calculations for you. 

459 
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In this section we have been able to give only a flavour of the bivariate normal 
distribution. There are similar analogues of the normal distribution in more 
than two dimensions-the multivariate normal distribution-but that is well 
beyond the scope of this course. 

Summary 

1. Two random variables X and Y are said to be associated (or not inde- 
pendent) if 

for some X and y, where the probability on the left-hand side is called 
a conditional probability, and is read 'the probability that X = X given 
that Y = y' or 'the probability that X = X conditional on Y = y'. 

2. A measure of linear association between two variables X and Y is given 
by the Pearson product-moment correlation coefficient r for the sample 
(x~ ' ,YI) ,  ( 2 2 ,  YZ), .  .. (xn, ~ n ) ,  where 

3. A measure of monotonic association between two variables X and Y is 
given by the Spearman rank correlation coefficient rs  for the sample 
(21, yl), (x2, yz), . . . , (X,, yn): here, the observations in each sample are 
replaced by their ranks (averaged, if necessary) and the Pearson corre- 
lation is calculated for the ranked data. 

4. Correlation is not causation. 

5. The null hypothesis that the underlying Pearson correlation is zero may 
be tested using 

6. When data are arranged as counts in a 2 X 2 contingency table, an exact 
test for no association may be provided by posing the problem as a test 
for equality of two proportions, and using Fisher's test. 

7. When data are arranged as counts in a r X c contingency table, an ap- 
proximate test for no association is provided by the test statistic 

where the sum is taken over all rc cells of the table, and the expected 
frequency Ei is given by 

E ,  - row total X column total 
2 - overall total 

The approximation is adequate as long as every Ei is at least 5. 
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8. A probability model for bivariate data is given by the bivariate normal 
distribution 

where the correlation p is a measure of linear association between the 
two variables. The marginal distributions of X and Y are given by 

and the conditional distribution of X, given Y = y, is also normal: 

Similarly, the conditional distribution of Y, given X = X, is normal. 

The bivariate probability 

P ( X  < x , y  SY) 
(and variations on it) cannot be calculated as a combination of univariate 
normal probabilies, and requires the use of a computer. 
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Random processes 

This chapter is devoted to the idea of a random process and to models for random 
processes. The problems of estimating model parameters and of testing the ad- 
equacy of the fit of a hypothesized model to a set of data are addressed. As well 
as revisiting the familiar Bernoulli and Poisson processes, a model known as the 
Markov chain is introduced. 

In this chapter, attention is turned to the study of random processes. This is a 
wide area of study, with many applications. We shall discuss again the familiar 
Bernoulli and Poisson processes, considering different situations where they 
provide good models for variation and other situations where they do not. 
Only one new model, the Marlcov chain, is introduced in any detail in this 
chapter (Sections 12.2 and 12.3). This is a refinement of the Bernoulli process. 
In Section 12.4 we revisit the Poisson process. 

However, in order for you to achieve some appreciation of the wide appli- 
cation of the theory and practice of random processes, Section 12.1 is devoted 
to examples of different contexts. Here, questions are posed about random 
situations where some sort of random process model is an essential first step 
to achieving an answer. You are not expected to do any more in this section 
than read the examples and try to understand the important features of them. 
First, let us consider what is meant by the term 'random process'. 

In Chapter 2, you rolled a die many times, recording a 1 if you obtained See Exercise 2.2. 
either a 3 or a 6 (a success) and 0 otherwise. You kept a tally of the running 
total of successes with each roll, and you will have ended up with a table 
similar to that shown in Table 2.3. Denoting by the random variable X, the 
number of successes achieved in n rolls, you then calculated the proportion 
of successes X,/n and plotted that proportion against n, finishing with a 
diagram something like that shown in Figure 2.2. For ease, that diagram is 
repeated here in Figure 12.1. 

The reason for beginning this chapter with a reminder of past activities is that 
it acts as a first illustration of a random process. The sequence of random 
variables 

{Xn;n = 1,2 ,3  ,... }, 
or the sequence plotted in Figure 12.1, 

{X,/n;n = l, 2,3, .  . .), 
are both examples of random processes. You can think of a random process 

You now know that the 
distribution of the random variable 
X, is binomial B(n, i). 

evolving in time: repeated observations are taken on some associated random 
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variable, and this list of measurements constitutes what is known as a re- 
alization (that is, a particular case) of the random process. Notice that the 
order of observations is preserved and is usually important. In this example, 
the realization shows early fluctuations that are wide; but after a while, the 
process settles down (cf. Figure 2.3 which showed the first 500 observations on 
the random variable X,/n). It  is often the case that the long-term behaviour 
of a random process {X,) is of particular concern. 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

Here is another example. 

, I 

Example 12.1 More traffic data 
The data in Table 12.1 were collected by Professor Toby Lewis as an illus- Data provided by Professor 
tration of a random process which might possibly be modelled as a Poisson T. Lewis, Centre for Statistics, 

process. They show the 40 time intervals (in seconds) between 41 vehicles University of East *%lia. 

travelling northwards along the M1 motorway in England past a fixed point 
near Junction 13 in Bedfordshire on Saturday 23 March 1985. Observation 
commenced shortly after 10.30 pm. Table 12.1 Waiting times 

0 5 10 15 20 25 30 n 

Figure 1 2. 1 Successive calculations of X,/n 

between passing traffic (seconds) 
One way of viewing the data is shown in Figure 12.2. This shows the passing 
vehicles as 41 blobs on a time axis, assuming the first vehicle passed the l2 l9 34 

observer at  time 0. You have seen this type of diagram already. 1 4  8 7  1 2 1  6 1 1  
8 2 8  6 4  5 1 1 8  9 
5 1 2 1 1  1 5  3 1 4  

l 

0 100 200 300 5 3 4 5  1 3 1 6  2 
Time (seconds) 

Figure 12.2 Traffic incidence, M1 motorway, late evening 

A different representation is to denote by the random variable X(t) the num- 
ber of vehicles (after the one that initiated the sequence) to have passed the 
observer by time t. Thus, for instance, 

X(10) = 0, X(20) = 3, X(30) = 4, . . . . 

A graph of X( t )  against t is shown in Figure 12.3. It  shows a realization of 
the random process 

{X(t); t L 0) 
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and could be used in a test of the hypothesis that events (vehicles passing a 
fixed point) occur as a Poisson process in time. 

0 100 200 300 t 

Figure 12.3 A realization of the random process { X ( t ) ;  t >_ 0) 

Again, the notion of ordering is important. Here, the random process is an 
integer-valued continuous-time process. Notice that there is no suggestion 
in this case that the random variable X ( t )  settles down to some constant 
value. W 

In this chapter we shall consider three different models for random processes. 
You are already familiar with two of them: the Bernoulli and the Poisson 
processes. The third model is a refinement of the Bernoulli process, which is 
useful in some contexts when the Bernoulli process proves to be an inadequate 
model. We shall consider the problem of parameter estimation given data 
arising from realizations of random processes, and we shall see how the quality 
of the fit of a hypothesized model to data is tested. 

These models are discussed in Sections 12.2 to 12.4, and variations of the 
models are briefly examined in Section 12.5. There are no exercises in Sections 
12.1 or 12.5. 

12.1 Examples of random processes 

So far in the course we have seen examples of many kinds of data set. The 
first is the random sample. Examples of this include leaf lengths (Table 2.1), 
heights (Table 2.15), skull measurements (Table 3.3), waiting times (Tables 4.7 
and 4.10), leech counts (Table 6.2) and wages (Table 6.9). In Chapter 10 we 
looked at regression data such as height against age (Figure 10.1), boiling 
point of water against atmospheric pressure (Tables 10.2 and 10.4) and paper 
strength against hardwood content (Table 10.8). In Chapter 11 we explored 
bivariate data such as systolic and diastolic blood pressure measurements 
(Table 11. l ) ,  snoring frequency and heart disease (Table 11.2), and height 

and weight (Table 11.4). 
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In many cases we have done more than simply scan the data: we have hypoth- 
esized models for the data and tested hypotheses about model parameters. For 
instance, we know how to test that a regression slope is zero; or that there is 
zero correlation between two responses measured on the same subject. 

We have also looked at data in the context of the Poisson process. For the 
earthquake data (Table 4.7) we decided (Figure S9.6) that the waiting times 
between successive serious earthquakes world-wide could reasonably be mod- 
elled by an exponential distribution. In this case, therefore, the Poisson pro- 
cess should provide an adequate model for the sequence of earthquakes, at  
least over the years that the data collection extended. For the coal mine dis- 
aster data in Table 7.4 there was a distinct curve to the associated exponential 
probability plot (Figure 9.6). Thus it would not be reasonable to model the 
sequence of disasters as a Poisson process. (Nevertheless, the probability plot 
suggests some sort of systematic variation in the waiting times between disas- 
ters, and therefore the random process could surely be satisfactorily modelled 
without too much difficulty.) For the data on eruptions of the Old Faithful 
geyser (Table 3.18) we saw in Figure 3.18 that the inter-event times were not 
exponential: there were two pronounced modes. So the sequence of eruptions 
could not sensibly be modelled as a Poisson process. 

Here are more examples. 

Example 12.2 Times of system failures 
The data in Table 12.2 give the cumulative times of failure, measured in Musa, J.D., Iannino, A. and 
CPUseconds and starting at time 0, of a command and control software sys- Okumoto, K. (1978) Software 

tem. reliability: measurement ,  
prediction, application. 

Table 12.2 Cumulative times of failure (CPU seconds) McGraw-Hill Book Co., New York, 

3 33 146 227 342 351 353 444 556 p. 305. 

571 709 759 836 860 968 1056 1726 1846 
1872 1986 2311 2366 2608 2676 3098 3278 3288 
4434 5034 5049 5085 5089' 5089 5097 5324 5389 
5565 5623 6080 6380 6477 6740 7192 7447 7644 
7837. 7843 7922 8738 10089 10237 10258 10491 10625 

10982 11175 11411 11442 11811 12559 12559 12791 13121 
13486 14708 15251 15261 15277 15806 16185 16229 16358 
17168 17458 17758 18287 18568 18728 19556 20567 21012 
21308. 23063 24127 25910 26770 27753 28460 28493 29361 
30085 32408 35338 36799 37642 37654 37915 39715 40580 
42015 42045 42188 42296 42296 45406 46653 47596 48296 
49171 49416 50145 52042 52489 52875 53321 53443 54433 
55381 56463 56485 56560 57042 62551 62651 62661 63732 
64103 64893 71043 74364 75409 76057 81542 82702 84566 
88682 

Here, the random process {T,; n = 1,2,3, . . .) gives the time of the nth failure. 
If the system failures occur at  random, then the sequence of failures will occur 
as a Poisson process in time. In this case, the times between failures will 
constitute independent observations from an exponential distribution. An 
exponential probability plot of the time differences (3,30,113,81,. . . ,4116) is 
shown in Figure 12.4. 

You can see from the figure that an exponential model does not provide 
a good fit to the variation in the times between failures. In fact, a more 
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Figure 12.4 Exponential probability plot for times between failures 

extended analysis of the data reveals that the failures are becoming less fre- 
quent with passing time. The system evidently becomes less prone to failure 
as it ages. 

In Example 12.2 the system was monitored continuously so that the time 
of occurrence of each failure was recorded accurately. Sometimes it is not 
practicable to arrange continuous observation, and system monitoring is in- 
termittent. An example of this is given in Example 12.3. 

Example 12.3 Counts of system failures 
The data in Table 12.3 relate to a DEC-20 com~uter  which was in use at the The Open University (1987) M345 
Open University during the 1980s. They give the number of times that the stat&cal Methods, unit 11, 

computer broke down in each of 128 consecutive weeks of operation,' starting Computing ''I1 
Keynes, The Open University, 

in late 1983. For these purposes, a breakdown was defined to have occurred p. 16. 
if the computer stopped running, or if it was turned off to deal with a fault. 
Routine maintenance was not counted as a breakdown. So Table 12.3 shows 
a realization of the random process {X,; n = 1,2 , .  . . ,1281, an integer-valued 
random process developing in discrete time where X, denotes the number of 
failures during the nth week. 

Table 12.3 Counts of failures (per week) 

Again, if breakdowns occur at random in time, then these counts may be re- 
garded as independent observations from a Poisson distribution with constant 
mean. In fact, this is not borne out by the data (a chi-squared test of goodness- 
of-fit against the Poisson model with estimated mean 4.02 gives a SP which is 
essentially zero). The question therefore is: how might the incidence of break- 
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downs be modelled instead? (You can see occasional peaks of activity-weeks 
where there were many failures-occurring within the data.) 

In the next example, this idea is explored further. The data are reported in a 
paper about a statistical technique called bump-hunting, the identification 
of peaks of activity. 

Example 12.4 Scattering activity 
A total of 25 752 scattering events called scintillations was counted from a 
particle-scattering experiment over 172 bins each of width 10 MeV. There are 
peaks of activity called bumps and it is of interest to identify where these 
bumps occur. 

Table 12.4 Scattering reactions in 172 consecutive bins 

5 11 17 21 15 17 23 25 30 22 36 29 33 
43 54 55 59 44 58 66 59 55 67 75 82 98 
94 85 92 102 113 122 153 155 193 197 207 258 305 

332 318 378 457 540 592 646 773 787 783 695 774 759 
692 559 557 499 431 421 353 315 343 306 262 265 254 
225 246 225 196 150 118 114 99 121 106 112 122 120 
126 126 141 122 122 115 119 166 135 154 120 162 156 
175 193 162 178 201 214 230 216 229 214 197 170 181 
183 144 114 120 132 109 108 97 102 89 71 92 58 
65 55 53 40 42 46 47 37 49 38 29 34 42 
45 42 40 59 42 35 41 35 48 41 47 49 37 
40 33 33 37 29 26 38 22 27 27 13 18 25 
24 21 16 24 14 23 21 17 17 21 10 14 18 
16 21 6 

Just glancing at the numbers, the peaks of activity do not seem consist- 
ent with independent observations from a Poisson distribution. The data in 
Table 12.4 become more informative if portrayed graphically, and this is done 
in Figure 12.5. The number of scattering reactions X, is plotted against bin 
number n. 

Bin number. n 

Figure 12.5 Scattering reactions in consecutive bins of constant width 

Good, I.J. and Gaskins, R.A. 
(1980) Density estimation and 
bump-hunting by the penalized 
likelihood method exemplified by 
scattering and meteorite data. 
J. American Statistical 
Association, 75, 42-56. 
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The figure suggests that there are two main peaks of activity. (There are 
more than 30 smaller local peaks which do not appear to be significant, and 
are merely evidence of random variation in the data.) H 

Another example where mean incidence is not constant with passing time is 
provided by the road casualty data in Example 12.5. It is common to model 
this sort of unforeseen accident as a Poisson process in time, but, as the data 
show, the rate is in fact highly time-dependent. 

Example 12.5 Counts of road casualties 

Table 12.5 gives the number of casualties in Great Britain due to road acci- 
dents on Fridays in 1986, for each hour of the day from midnight to midnight. 

A plot of these data (frequency of casualties against the midpoint of the 
associated time interval) is given in Figure 12.6. 

Casualties 

Time of day 

Figure 12.6 Hourly casualties on Fridays 

There are two clear peaks of activity (one in the afternoon, particularly be- 
tween 4 p.m. and 5 p.m., and another just before midnight). Possibly there 
is a peak in the early morning between 8 a.m. and 9a.m. A formal analysis 
of these data would require some sort of probability model (not a Poisson 
process, which would provide a very bad fit) for the incidence of casualties 
over time. H 

There is a random process called the simple birth process used to model 
the size of growing populations. One of the assumptions of the model is that 
the birth rate remains constant with passing time; one of its consequences 
is that (apart from random variation) the size of the population increases 
exponentially, without limit. For most populations, therefore, this would be a 
useful model only in the earliest stages of population development: usually the 
birth rate would tail off as resources become more scarce and the population 
attains some kind of steady state. 

One context where the simple birth process might provide a useful model is 
the duckweed data in Chapter 10, Table 10.7 and Figure 10.11. The question 
is: is the birth rate constant or are there signs of it tailing off with passing 

Department of Transport (1987) 
Road accidents in Great Britain 
1986: the casualty report. H M S O ,  
London. Table 28. 

Table 12.5 Road casualties 
on Fridays 

Time of day Casualties 
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time? In the case of these data, we saw in Figure 10.22 that a logarithmic 
plot of population size against time was very suggestive of a straight line. At 
least over the first eight weeks of the development of the duckweed colony, 
there appears to be no reduction in the birth rate. 

Similarly, some populations only degrade, and there are many variations on 
the random process known under the general term of death process. 

Example 12.6 Green sunfish 
A study was undertaken to investigate the resistance of green sunfish Lepomis 
cyanellus to various levels of thermal pollution. Warming of water occurs, 
for instance, at  the seaside outflows of power stations: it is very important to 
discover the consequences of this for the local environment. Twenty fish were 
introduced into water heated at 39 .7T and the numbers of survivors were 
recorded at pre-specified regular intervals. This followed a five-day acclimat- 
ization at 35 'C. The data are given in Table 12.6. In fact, the experiment was 
repeated a number of times with water at different temperatures. The sort of 
question that might be asked is: how does mean survival time depend on water 
temperature? In order to answer this question, some sort of probability model 
for the declining population needs to be developed. Here, the random process 
{X,; n = 0,5,10, . . .) gives the numbers of survivors counted at five-second 
intervals. H 

Example 12.7 gives details of some very old data indeed! They come from 
Daniel Defoe's Journal of the Plague Year published in 1722, describing the 
outbreak of the bubonic plague in Lopdon in 1665. 

Example 12.7 The Great Plague 
Defoe used published bills of mortality as indicators of the progress of the 
epidemic. Up to the outbreak of the disease, the usual number of burials in 
London each week varied from about 240 to 300; at  the end of 1664 and into 
1665 it was noticed that the numbers were climbing into the 300s and during 
the week 17-24 January there were 474 burials. Defoe wrote: 'This last bill 
was really frightful, being a higher number than had been known to have been 
buried in one week since the preceding visitation [of the plague] of 1656.' The 
data in Table 12.7 give the weekly deaths from all diseases, as well as from 
the plague, during nine weeks from late summer into autumn 1665. 

Table 12.7 Deaths in London, late 1665 

Week Of all diseases Of the plague 

Aug 8-Aug 15 
Aug 15-Aug 22 
Aug 22-Aug 29 
Aug 29-Sep 5 
Sep 5-Sep 12 
Sep 12-Sep 19 
Sep 19-Sep 26 
Sep 26-0ct 3 
Oct 3-0ct 10 

The question arises: is there a peak of activity before which the epidemic may 
still be said to be taking off, and after which it may be said to be fading out? 

Matis, J.H. and Wehrly, T.E. 
(1979) Stochastic models of 
compartmental systems. 
Biometrics, 35, 199-220. 

Table 12.6 Survival times 
of green sunfish (seconds) 

Time (seconds) Survivors 
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In order for the timing of such a peak to be identified, a model for deaths 
due to the disease would need to be formulated. The diagram in Figure 12.7 
informally identifies the peak for deaths due to the plague. However, there 
is a small diminution at  Week 5, making conclusions not quite obvious. (For 
instance, it is possible that had the data been recorded midweek-to-midweek 
rather than weekend-to-weekend, then the numbers might tell a somewhat 
different story.) 

The example is interesting because, at  the time of writing, much current effort 
is devoted to Aids research, including the construction of useful models for 
the spread of the associated virus within and between communities. Different 
diseases require fundamentally different models to represent the different ways 
in which they may be spread. W 

Deaths 

I 
I I I I I I I I  

0 1 2 3 4 5 6 7 8 9  
Week 

Figure l d. 7 Weekly deaths due 
to the bubonic plague, London, 
1665 

For most populations, allowance has to be made in the model to reflect 
fluctuations in the population size due to births and deaths. Such models 
are called birth-and-death processes. Such a population is described in 
Example 12.8. 

Example 12.8 Whooping cranes 
The whooping crane (Grus americana) is a rare migratory bird which breeds in Miller, R.S., Botkin, D.B. and 
the north of Canada and winters in Texas. The data in Table 12.8 give annual Mendelssohn, R. (1974) The 
counts of the number of whooping cranes arriving in Texas each autumn crane population of 

between 1938 and 1972. North America. Biological 
Conservation, 6, 106-111. 

A plot of the fluctuating crane population {X(t); t = 1938,1939, . . . ,1972) Table id. 8 Annual counts of the 
against time is given in Figure 12.8. whooping crane, 1938-1972 

Whooping cranes 

Figure 12.8 Annual counts of the whooping crane, 1938-1972 

You can see from the plot that there is strong evidence of an increasing trend 
in the crane population. The data may be used to estimate the birth and 
death rates for a. birth-and-death model, which may then be tested against 
the data. (Alternatively, perhaps, some sort of regression model might be 
attempted.) W 
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There is one rather surprising application of the birth-and-death model: that 
is, to queueing. This is a phenomenon that has achieved an enormous amount 
of attention in the statistical literature. The approach is to think of arrivals 
as 'births' and departures as 'deaths' in an evolving population (which may 
consist of customers in a bank or at a shop, for instance). 

Example 12.9 A queue 
One evening in 1994, vehicles were observed arriving at and leaving a petrol 
station in north-west Milton Keynes, England. The station could accommo- 
date a maximum of twelve cars, and at each service point a variety of fuels 
was available (leaded and unleaded petrol, and diesel fuel). When observation 
began there were three cars at the station. In Table 12.9 the symbol A denotes 
an arrival (a vehicle crossed the station entrance) and D denotes a departure 
(a  vehicle crossed the exit line). Observation ceased after 30 minutes. 

The sequence of arrivals and departures is illustrated in Figure 12.9, where 
the random variable X( t )  (the number of vehicles in the station at time t )  is 
plotted against passing time. The random process {X(t); t 2 0) is an integer- 
valued continuous-time random process. 

t (minutes) 

Figure 12.9 Customers at a service station 

The study of queues is still an important research area. Even simple models 
representing only the most obvious of queue dynamics can become math- 
ematically very awkward; and some situations require complicated models. 
Elements of a queueing model include the probability distribution of the times 

between successive arrivals at the service facility, and the probability distri- 
bution of the time spent by customers at  the facility. More sophisticated 
models include, for instance, the possibility of 'baulking': potential customers 
are discouraged at  the sight of a long queue and do not join it. W 

Data provided by F. Daly, The 
Open University. 

Table 12.9 The number of cars 
at a petrol station 

Time Type Number 

Om 00s 
2m 20s 
4m 02s 
4m 44s 
6m 42s 
7m 42s 
8m 15s 

10m 55s 
l lm 11s 
14m 40s 
15m 18s 
16m 22s 
16m 51s 
19m 18s 
20m 36s 
20m 40s 
21m 20s 
22m 23s 
22m 44s 
24m 32s 
28m 17s 

In Example 12.7 the data consisted of deaths due to the plague. It might 
have been interesting but not practicable to know the numbers of individuals 
afflicted with the disease at  any one time. In modern times, this is very 
important-for instance, one needs to be able to forecast health demands and 
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resources. The study of epidemic models is a very important part of the 
theory of random processes. The next example deals with a much smaller 
population. 

Example 12.10 A smallpox epidemic 
The data in Table 12.10 are from a smallpox outbreak in the community of 
Abakaliki in south-eastern Nigeria. There were 30 cases in a population of 
120 individuals at  risk. The data give the 29 inter-infection times (in days). 
A zero corresponds to cases appearing on the same day. Notice the long pause 
between the first and second reported cases. 

A plot showing the progress of the disease is given in Figure 12.10. 

Cases 

Figure It. l0 New cases of smallpox 

30 - 

20 - 

10 - 

Here, the numbers are very much smaller than they were for the plague data 
in Example 12.7. One feature that is common to many sorts of epidemic is 
that they start off slowly (there are many susceptible individuals, but rather 
few carriers of the disease) and end slowly (when there are many infected 
persons, but few survivors are available to catch the disease); the epidemic 
activity peaks when there are relatively large numbers of both infectives and 
susceptibles. If this is so, then the model must reflect this feature. Of course, 
different models will be required for different diseases, because different dis- 
eases often have different transmission mechanisms. 

I ! I I 

Regular observations are often taken on some measure (such as unemploy- 
ment, interest rates, prices) in order to identify trends or cycles. The tech- 
niques of time series analysis are frequently applied to such data. 

0 20 40 60 80 

Time (days) 

Example 12.11 Sales of jeans 
Data were collected on monthly sales of jeans as part of an exercise in fore- 
casting future sales. From the data, is there evidence of trend (a steady 
increase or decrease in demand) or of seasonal variation (sales varying with 

Becker, N.G. (1983) Analysis of 
data from a single epidemic. 
Australian Jopmal of Statistics, 
25, 191-197. 

Table 12.10 Waiting times 
between 30 cases of smallpox 
(days) 

Here 'infectives' are those who have 
and who are capable of spreading 
the disease, and 'susceptibles' are 
those who have not yet contracted 
the disease. 

Conrad, S. (1989) Assignments in 
Applied Statistics. John Wiley and 
Sons, Chichester, p. 78. 
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the time of year)? If trend or seasonal variation is identified and removed, 
how might the remaining variation be modelled? 

Table 12.11 Monthly sales of jeans in the UK, 1980-1985 (thousands) 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

These data may be summarized in a time series diagram, as shown in Figure 12.11. 

Monthly sales (thousands) 

0 
1980 1981 1982 1983 1984 1985 

Year 

Figure 12.11 Monthly sales of jeans in the UK, 1980-1985 (thousands) 

Here, a satisfactory model might be achieved simply by superimposing random 
normal variation N(0, a2) on trend and seasonal components (if any). Then 
the trend component, the seasonal component and the value of the parameter 
a would need to be estimated from the data. 

Meteorology is another common context for time series data. 

Example 12.12 Monthly temperatures 
Average air temperatures were recorded every month for twenty years at  Anderson, 0.D. (1976) T i m e  series 

Nottingham Castle, England. This example is similar to Example 12.11; but and forecasting: the 
Boz-Jenkins approach. the time series diagram in Figure 12.12 exhibits only seasonal variation and Butterworths, London and Boston, 

no trend. (One might be worried if in fact there was any trend evident!) p. 166. 
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Table 12.12 Average monthly temperatures at  Nottingham Castle, 
England, 1920-1939 (OF) 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1920 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 
1921 44.2 39.8 45.1 47.0 54.1 58.7 66.3 59.9 57.0 54.2 39.7 42.8 
1922 37.5 38.7 39.5 42.1 55.7 57.8 56.8 54.3 54.3 47.1 41.8 41.7 
1923 41.8 40.1 42.9 45.8 49.2 52.7 64.2 59.6 54.4 49.2 36.3 37.6 
1924 39.3 37.5 38.3 45.5 53.2 57.7 60.8 58.2 56.4 49.8 44.4 43.6 
1925 40.0 40.5 40.8 45.1 53.8 59.4 63.5 61.0 53.0 50.0 38.1 36.3 
1926 39.2 43.4 43.4 48.9 50.6 56.8 62.5 62.0 57.5 46.7 41.6 39.8 
1927 39.4 38.5 45.3 47.1 51.7 55.0 60.4 60.5 54.7 50.3 42.3 35.2 
1928 40.8 41.1 42.8 47.3 50.9 56.4 62.2 60.5 55.4 50.2 43.0 37.3 
1929 34.8 31.3 41.0 43.9 53.1 56.9 62.5 60.3 59.8 49.2 42.9 41.9 
1930 41.6 37.1 41.2 46.9 51.2 60.4 60.1 61.6 57.0 50.9 43.0 38.8 
1931 37.1 38.4 38.4 46.5 53.5 58.4 60.6 58.2 53.8 46.6 45.5 40.6 
1932 42.4 38.4 40.3 44.6 50.9 57.0 62.1 63.5 56.3 47.3 43.6 41.8 
1933 36.2 39.3 44.5 48.7 54.2 60.8 65.5 64.9 60.1 50.2 42.1 35.8 
1934 39.4 38.2 40.4 46.9 53.4 59.6 66.5 60.4 59.2 51.2 42.8 45.8 
1935 40.0 42.6 43.5 47.1 50.0 60.5 64.6 64.0 56.8 48.6 44.2 36.4 
1936 37.3 35.0 44.0 43.9 52.7 58.6 60.0 61.1 58.1 49.6 41.6 41.3 
1937 40.8 41.0 38.4 47.4 54.1 58.6 61.4 61.8 56.3 50.9 41.4 37.1 
1938 42.1 41.2 47.3 46.6 52.4 59.0 59.6 60.4 57.0 50.7 47.8 39.2 
1939 39.4 40.9 42.4 47.8 52.4 58.0 60.7 61.8 58.2 46.7 46.6 37.8 

The time series diagram in Figure 12.12 shows the seasonal variation quite 
clearly. 

Average monthly temperatures ( O F )  

70 i 

30 1 I I I I 

1920 1925 1930 1935 1940 

Year 

Figure 12.12 Average monthly temperatures at Nottingham Castle, England, 
1920-1939 (OF) 

Here, it is possible that superimposing random normal variation on seasonal 
components would not be enough. There is likely to be substantial correlation 
between measurements taken in successive months, and a good model ought 
to reflect this. 
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Example 12.13 is an example where one might look for trend as well as seasonal 
features in the data. 

Example 12.13 Death statistics, lung diseases 

The data in Table 12.13 list monthly deaths, for both sexes, from bronchitis, Diggle, P.J. (1990) Time series: a 
emphysema and asthma in the United Kingdom between 1974 and 1979. The biostatistical introduction. Oxford 
sorts of research questions that might be posed are: what can be said about the University Press, Oxford. 
way the numbers of deaths depend upon the time of year (seasonal variation)? 
What changes are evident, if any, between 1974 and 1979 (trend)? 

Table 12.13 Monthly deaths from lung diseases in the UK, 1974-1979 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

The diagram in Figure 12.13 exhibits some seasonal variation but there is little 
evidence of substantial differences between the start and end of the series. 
In order to formally test hypotheses of no change, it would be necessary to 
formulate a mathematical model for the way in which the data are generated. 

Deaths from lung diseases 

O 1974 1975 1976 1977 1978 1979 

Year 

Figure 12.13 Monthly deaths from lung diseases in the UK, 1974-1979 

Interestingly, most months show a decrease in the counts from 1974 to 1979. 
However, February shows a considerable rise. Without a model, it is not easy 

to determine whether or not these differences are significant. I 

Often time series exhibit cycles that are longer than a year, and for which 
there is not always a clear reason. A famous set of data is the so-called 'lynx 
data', much explored by statisticians. The data are listed in Table 12.14. 
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Example 12.14 The lynx data 
The data in Table 12.14 were taken from the records of the Hudson's Bay Elton, C. and Nicholson, M. (1942) 
Company. They give the annual number of Canadian lynx trapped in the The ten-~ear cycle in n ~ ~ ~ b e r s  of 
Mackenzie River district of north-west Canada between 1821 and 1934. the lynx in Canada. J. Animal 

Ecology, 11, 215-244. 
Table 12.14 Lynx trappings, 1821-1934 

269 321 585 871 1475 2821 3928 5943 4950 2577 
523 98 184 279 409 2285 2685 3409 1824 409 
151 45 68 213 546 1033 2129 2536 957 361 
377 225 360 731 1638 2725 2871 2119 684 299 
236 245 552 1623 3311 6721 4254 687 255 473 
358 784 1594 1676 2251 1426 756 299 201 229 
469 736 2042 2811 4431 2511 389 73 39 49 
59 188 377 1292 4031 3495 587 105 153 387 

758 1307 3465 6991 6313 3794 1836 345 382 808 
1388 2713 3800 3091 2985 3790 374 81 80 108 
229 399 1132 2432 3574 2935 1537 529 485 662 

1000 1590 2657 3396 

The counts are shown in Figure 12.14. 

Lynx trappings 

Year 

Figure 12.14 Lynx trappings, 1821-1934 

There is evidence of a ten-year cycle in the population counts. Can you see 
any indications of a 40-year cycle? If the data set were more extended, this 
could be explored. 

Recently researchers have started exploring meteorological data for evidence 
of long-term climatic changes. The data in Table 1.12 on annual snowfall 
in Buffalo, NY (USA) are an example. The 30-year period of the data in 
Example 12.15 is relatively brief for such purposes. 
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Example 12.15 March rainfall 
These are data on 30 successive values of March precipitation (in inches) 
for Minneapolis St Paul. Again, to determine whether there are significant 
changes with time, one approach would be to formulate a model consistent 
with there being no fundamental change, and test its fit to the data. 

Table 12.1 5 March precipitation (inches) 

Hinkley, D. (1977) On quick choice 
of power transformation. Applied 
Statistics, 26, 67-69. 

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20 
3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81 
2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05 

The data are shown in Figure 12.15. 

March precipitation (inches) 
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Figure 12.15 March precipitation, Minneapolis St Paul (inches) 

Over this 30-year period there is little evidence of change in rainfall pat- 
terns. I 

Finally, collections of two-dimensional data are often of interest. 

Example 12.16 Presence-absence data 
The data illustrated in Figure 12.16 show the presence or absence of the plant 
Carex arenaria over a spatial region divided into a 24 X 24 square lattice. The 
data may be examined for evidence of clustering or competition between the 
plants. The plants appear to be less densely populated at the lower left of 
the region than elsewhere; however, for a formal test of the nature of plant 
coverage, a model would have to be constructed. I 

In this section a large number of different data sets have been introduced and 
some modelling approaches have been indicated: unfortunately, it would take 
another book as long as this one to describe the models and their uses in any 
detail! For the rest of this chapter, we shall look again at  the Bernoulli and 
Poisson processes, and a new model, the Markov chain, will be introduced. 
The Markov chain is useful under some circumstances for modelling sequences 
of successes and failures, where the Bernoulli process provides an inadequate 
model. 

Strauss, D. (1992) The many faces 
of logistic regression. American 
Statistician, 46, 321-327. 

Figure 12.16 
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12.2 The Bernoulli process as an 
inadequate model 

The Bernoulli process was defined in Chapter 4. For ease, the definition is See page 143. 
repeated here. 

The Bernoulli process 
A Bernoulli process is the name given to a sequence of Bernou1li trials 
in which 

(a) trials are independent; 

(b) the probability of success is the same from trial to trial. 

Notice the notion of ordering here: it is crucial to the development of the 
ideas to follow that trials take place sequentially one after the other. Here, in 
Example 12.17, are two typical realizations of a Bernoulli process. 

Example 12.17 Two realizations of a Bernoulli process 
Each realization consists of 40 trials. 

1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0  

Each realization is the result of a computer simulation. In both cases the 
indexing parameter p for the Bernoulli process (the probability of obtaining 
a 1) was set equal to 0.7. W 

The Bernoulli process is an integer-valued random process evolving in dis- 
crete time. It provides a useful model for many practical contexts. However, 
there are several ways in which a random process, consisting of a sequence of 
Bernoulli trials (that is, a sequence of trials in each of which the result might 
be success or failure), does not constitute a Bernoulli process. For instance, 
the probability of success might alter from trial to trial. A situation where 
this is the case is described in Example 12.18. 

Example 12.18 The collector's problem 
Packets of breakfast cereals sometimes contain free toys, as part of an ad- 
vertising promotion designed to appeal primarily to children. Often the toys 
form part of a family, or collection. The desire on the part of the children to 
complete the collection encourages purchases of the cereal. 

Every time a new packet of cereal is purchased, the toy that it contains will 
be either new to the consumer's collection, or a duplicate. If each purchase of 
a new box of cereal is considered as the next in a sequence of trials, then the 
acquisition of a new toy may be counted as a success, while the acquisition of 
a duplicate is a failure. Thus each successive purchase may be regarded as a 
Bernoulli trial. 
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However, at the beginning of the promotion, the first purchase is bound to 
produce a new toy, for it will be the first of the collection: so, at  trial number 1, 
the Bernoulli parameter p is equal to 1. If the number of toys in a completed 
collection is (say) 8, then at  this stage the collector still lacks 7 toys. Assuming 
that no toy is any more likely to occur than any other in any given packet 
of cereal, then the probability of success at  trial number 2 is p = (and the 

probability of failure is q = i, corresponding to the case where the second 
cereal packet contains the same toy as the first). The success probability 
p = g will remain constant at all subsequent trials until a new toy is added to 
the collection; then there will be 6 toys missing, and the probability of success 
at  subsequent trials changes again, from to p = = $. 
The process continues (assuming the promotion continues long enough) until 
the one remaining toy of the 8 is acquired (with probability p = at each 
trial). Here are two realizations of the collection process. Each trial represents 
a purchase; a 1 indicates the acquisition of a new toy to the collection, a 0 
indicates a duplicate. Necessarily, the process begins with a 1. 

The assumption that no toy is any 
more likely to occur than any other 
requires that there should be no 
geographical bias-that the local 
shop does not have an unusually 
high incidence of toys of one 
type-and that no toy is 
deliberately produced in small 
numbers in order to make it a 
rarity. 

Actually, each of these realizations is somewhat atypical. In the first case the 
final toy in the collection was obtained immediately after the seventh, though 
in general it is likely that several duplicates would be obtained at  this point. In 
the second case the collection was completed remarkably quickly, with seven 
toys of the collection acquired within the first eight purchases. In the first 
case it was necessary to make sixteen purchases to complete the collection; 
in the second case, twelve purchases were necessary. It  can be shown that 
the expected number of purchases is 21.7. In the context of cereal purchase, The derivation of this result is 
this is a very large number! In practice, if the collection is sufficiently desir- slightly involved. 
able, children usually increase the rate of new acquisitions by swapping their 
duplicates with those of others, and add to their collection in that way. D 

Another example where trials remain independent but where the probability 
of success alters is where the value of p depends on the number of the trial. 

Example 12.19 Rainy days 
In Chapter 4, Example 4.1, where the incidence of rainy days was discussed, 
the remark was made that a Bernoulli process was possibly not a very good 
model for rain day to day, and that '. . . a better model would probably include 
some sort of mechanism that allows the parameter p to vary with the time of 
the year'. (That is, that the value of p, the probability of rain on any given 
day in the year, should vary as n, the number of the day, varies from 1 to 
365.) It  would not be entirely straightforward to express the dependence of p 
on n in mathematical terms, but the principle is clear. D 

In fact, rainfall and its incidence day to day has been studied probabilistically 
in some detail, as we shall see in Example 12.20. 

There is one very common model for dependence from trial to trial, and that 
is where the probability of success at any trial depends on what occurred at  

the trial immediately preceding it, Here are two examples where this sort of 
model has proved useful in practice. 

480 
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Example 12.20 The Tel Aviv rainfall study 
An alternative rainfall model to that described in Example 12.19 is one where 
the probability of rain on any given day depends on what occurred the day 
before. An extensive study was carried out on the weather in Tel Aviv and Gabriel, K.R. and Neumann, J. 
the following conclusions were reached. (1962) A Markov chain model for 

daily rainfall occurrence at Tel 
Successive days were classified as wet (outcome 1, a success) or dry (outcome Aviv. Quarterly Journal of the 
0, a failure), according to some definition. After analysing weather patterns Royal Meteorological Society, 88, 

over many days it was concluded that the probability of a day being wet, given 
that the previous day was wet, is 0.662; in contrast to this, the probability of 
a day being wet, given that the preceding day was dry, is only 0.250. 

(It follows that the probability that a day is dry, given that the preceding day 
was dry, is l - 0.250 = 0.750; and the probability that a day is dry, given the 
preceding day was wet, is l - 0.662 = 0.338.) 

We shall need a, small amount of mathematical notation at this point. Denot- 
ing by the random variable X j  the weather outcome on day j ,  the findings of 
the study may be written formally as 

P(Xj+l  = 1IXj = 1) = 0.662; P(Xj+l = 1IXj = 0) = 0.250. (12.1) Remember the vertical slash 
notation ' 1 '  from Chapter 11: .it is 

These probabilities are called transition probabilities. Notice that they read taiven that1. 
are quite different: the weather of the day before has a substantial effect on 
the chances of rain on the following day. There is, or appears to be, a very 
strong association between the weather on consecutive days. For a Bernoulli 
process, these probabilities would be the same, equal to the parameter p-for 
in a Bernoulli process, success at any trial is independent of the history of the 
process. 

The random process {Xj, j = 1,2 ,3 , .  . .) gives the sequence of wet and dry 
days in Tel Aviv. Any actual day-to-day data records are realizations of that 
random process. W 

Starting with a dry day on Day 1 (so X1 = 0) here is a sample realization of 
40 days' weather in Tel Aviv, using the probabilities given in Example 12.20. 
The realization was generated using a computer. 

You can probably appreciate that, if you did not know, it is not entirely 
easy to judge whether or not this sequence of trial results was generated as a 
Bernoulli process. In Section 12.3 we shall see some sample realizations which 
clearly break the assumptions of the Bernoulli process, and learn how to test 
the adequacy of the Bernoulli model for a given realization. 

Example 12.21 provides a second context where this kind of dependence proves 
a more useful model than a simple Bernoulli process. 

Example 12.21   he sex of ,children in a family 
In Chapter 3, Example 3.13 a Bernoulli process was suggested as a useful 
model for the sequence of boys and girls in a family, and the value p = 0.514 
was put forward for the probability of a boy. However, it was almost immedi- 
ately remarked that '. . . nearly all the very considerable mass of data collected 
on the sex of children in families suggests that the Bernoulli model would be 
a very bad model to adopt . . . some statistical analyses seem to show that the 



Elements of Statistics 

independence assumption of the Bernoulli model breaks down: that is, that 
Nature has a kind of memory, and the sex of a previous child affects to some 
degree the probability distribution for the sex of a subsequent child.' 

One model has been developed in which transition probabilities are given for Edwards, A.W.F. (1960) The 
boy-boy and girl-boy sequences. The estimated probabilities (writing 1 for a meaning of binomial distribution. 

boy and 0 for a girl) are (for one large data set) Nature, 186, 1074. For the 
numbers, see Daly, F. (1990) The 

P(Xj+l  = lIXj = 1) = 0.4993; P(Xj+l  = llxj = 0) = 0.5433. (12.3) probability of a boy: sharpening 
the binomial. Mathematical 

These probabilities are quite close; their relative values are very interesting. Scientist, 114-123. 
A preceding girl makes a boy more likely, and vice versa. If Nature has a 
memory, then it can be said to operate to this effect: in the interests of 
achieving a balance, Nature tries to avoid long runs of either boys or girls. 

In that respect, Example 12.21 is different from Example 12.20: there, wet 
weather leads to more wet weather, and dry weather leads to more dry 
weather. W 

This section ends with two brief exercises. 

Exercise 12.1 
For each of the following contexts, say whether you think a Bernoulli process 
might provide an adequate model: 

(a) the order of males and females in a queue; 

(b) the sequence of warm and cool days at  one location; 

(c) a gambler's luck (whether he wins or loses) at successive card games. 

You have already seen at (12.2) a typical realization of Tel Aviv weather day to 
day. Exercise 12.2 involves computer simulation. You will need to understand 
how your computer can be made to mimic the outcome of a sequence of 
Bernoulli trials with altering probabilities. 

Exercise 12.2 
Assuming in both cases that the corresponding model is an adequate represen- 
tation for the underlying probability mechanisms, use the transition prob- 
abilities given in Example 12.20 and Example 12.21 to simulate 

(a) a week's weather in Tel Aviv, assuming the first day was wet; 

(b) the sequence of boys and girls in a family of four children, assuming the 
oldest child was a girl. 

Development of this model is continued in Section 12.3, where methods are 
explored for parameter estimation, and for testing the adequacy (or otherwise) 
of the fit of a Bernoulli model to data. 
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12.3 Markov chains 

12.3.1 Definitions 
The probability model for a sequence of Bernoulli trials in which the suc- 
cess probability at any one trial depends on the outcome of the immediately 
preceding trial is called a Marlcov chain. 

Markov chains 
A Markov chain is a random process 

{Xn; n = l, 2 , 3 , .  . .} 

where 

(a) the random variables X, are integer-valued (0 or 1); 

(b) the transition probabilities defining the process are given by 

P(Xj+l  = OIXj = 0) = 1 - a, P(Xj+l = lIXj = 0) = a, 

P(Xj+l  = OlXj = 1) = p, P(Xj+l = qxj = 1) = 1 -p; 
(C) P(X1 = 1) = p1. 

The transition probabilities may be conveniently written in the form of 
a square array as 

where M is called the transition matrix. 

Notice the labelling of the rows of M; it is helpful to be reminded of which 
probabilities correspond to which of the two outcomes, 0 and 1. A more 
extended notation is sometimes used: M can be written 

with the row labels indicating the 'current' state Xj and the column labels the 
'next' state Xj+l, respectively. In this course we shall use the less elaborate 
representation, that is, 

Over a long period of observation, any realization of a Markov chain will 
exhibit a number of OS and 1s. It is possible to show that in the long term, 
and with the transition probabilities given, the average proportions of OS and 
1s in a long realization will be 

Markov chains are named after the 
prominent Russian mathematician 
A.A. Markov (1856-1922). The 
term Markov chain actually covers 
rather a wide class of models, but 
the terminology will suffice for the 
process described here. In general, 
more than two states (0 and 1) are 
possible; and what has been called 
a Markov chain here is more 
precisely known as a 'two-state 
Markov chain'. 

We need to know the value of X1 
before we can use the transition 
probabilities to 'drive' the rest of 
the process. 

This particular identification of the 
transition probabilities may appear 
to be a little eccentric to you, but 
it turns out to be convenient. 

respectively. This result is not complicated to show, but it is notationally 
awkward, and you need not worry about the details. A 'typical' realization 
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of a Markov chain may therefore be achieved by taking the starting success 
probability for XI ,  pl ,  as 

It is useful to give a name to such chains: they are called stationary. 

A Markov chain {X,, n = 1,2,3, . . .) with transition probability matrix 

and where the probability distribution of X1 is given by 

is said to be stationary. 

Example 12.20 continued 
For the Tel Aviv rainfall study, the transition matrix M  is written 

(where 0 indicates a dry day, 1 a wet day). In this sort of situation you might 
find it clearer to write 

Dry 0.750 0.250 
M =  [ 

Wet 0.338 0.662 1 ' 
Based on these transition probabilities, the underlying proportion of wet days 
in Tel Aviv is given (using (12.4)) by 

You could simulate a typical week's weather in Tel Aviv by taking your first 
day's weather from the Bernoulli distribution X1 Bernoulli(0.425) and simu- 
lating the next six days' weather using M .  

Exercise 12.3 
(a) Write down the transition matrix M  for sequences of girls and boys in a 

family using the figures given at  (12.3) in Example 12.21, 'and estimate 
the underlying proportion of boys. 

(b) Simulate a typical family of five children. 

Finally, you should note that a Bernoulli process is a special case of a station- 
ary Markov chain, with transition matrix 

M =  [ q  p ] .  
1 9 P  

So the two rows of transition probabilities are the same. 
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12.3.2 Estimating transition probabilities 
A question that now arises is: how do we estimate the transition matrix 
M from a given realization (assuming a Markov chain provides an adequate 
model)? 

Assume that the given realization includes the outcomes of a total of n  + 1 
trials; this is for ease because then there are n  transitions. We need to count 
the frequency of each of the four possible types of transition: two types denote 
no change, 00 and 11, and two types denote a switch, 01 and 10. 

Let us denote by no0 the number of 00 transitions in the sequence, by no1 the 
number of 01 transitions, by nlo the number of 10 transitions and by rill the 
number of 11 transitions. (Then you will find that 

-a useful check on your tally.) If you write these totals in matrix form as 

and then write in the row totals 

(simply to aid your arithmetic) then the estimate of the transition matrix 
M is given by 

(12.5) It turns out that the elements of G 
are the maximum likelihood . 
estimates of the transition 
probabilities. 

The original data source shows that the Tel Aviv data included altogether In fact, the data collection was not 
2438 days (so there were 2437 transitions), with the matrix of transition fre- suite as simple as is suggested here, 
quencies given by but the principles of the estimation 

procedure should be clear. 

and so 

-- 0 1049/1399 35011399 
M =  1 [ 35111038 68711038 ] = 0 1 [0.750 0.338 0.2501 0.662 . ' 

these estimates are the transition probabilities that have been used in all our 
work. H 

Example 12.22 Counting the transitions 
For the sequence of simulated Tel Aviv weather described at (12.2) and re- 
peated here, 

the matrix of transition frequencies is given by 

0 noo no0 + no1 - 0 16 6 22 
N = l  [nlo n l o + n l , - 1  [ 6  11] 17' 
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(Notice that noo + no1 + n10 + rill = 16 + 6 + 6 + 11 = 39, one less than the 
number of trials.) The corresponding estimated transition matrix M^ is given 
by 

You can compare this estimate with the matrix of transition probabilities used 
to drive the simulation, given by the probabilities at  (12.1): 

The estimate is quite good. 

The following exercise is about estimating transition probabilities. 

Exercise 12.4 

For the following realizations of Markov chains, find the matrix of transition H 
A 

frequencies N ,  and hence calculate an estimate M of the transition matrix M. 

(a) 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0  

(b) 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 ~ 1 1 1 0 1 0 0 0 0 0 0 1 0 0  

(c) 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0  

(d) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1  

(e) 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0  

(f) 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1  

Give your estimated probabilities to three decimal places in each case. 

In fact, realizations (a) and (b) in Exercise 12.4 are those of a Bernoulli process 
with parameter p = 0.45--equivalently, of a Markov chain with transition 
matrix 

Realizations (c) and (d) were each driven by the transition matrix 

Here, a 0 is very likely to be followed by another 0, and a 1 is likely to be 
followed by another 1. As you can see, the sample realizations exhibit long 
runs of 0s and Is. \ \  

Finally, realizations (e) and (f) were generated by the transition matrix 
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Here, a 0 is just more likely than not to be followed by a 1, and a 1 is very 
likely to be followed by a 0. Both sample realizations exhibit very short runs 
of OS and Is: there is a lot of switching. 

The estimates found in Exercise 12.4 show some variation, as might be ex- 
pected, but in general they are reasonably close. 

12.3.3 The runs test 
We have identified two major types of alternative to the Bernoulli process. 
One corresponds to realizations exhibiting a relatively small number of long 
runs of 1s and OS; and the other to realizations exhibiting a large number of 
short runs. A run is an unbroken sequence of identical outcomes. The length 
of a run can be just 1. 

It seems intuitively reasonable that a test for the quality of the fit of a 
Bernoulli model to a set of trials data could therefore be developed using 
the observed number of runs in the data as a test statistic. An exact test 
based on the observed number of runs is known as the runs test. 

Example 12.23 Counting runs 
The number of runs in the realization given in Exercise 12.4(d), for instance, 
may be found as follows. Simply draw lines under consecutive sequences of 0s 
and 1s and count the total number of lines. 

Figure 11.1 7 Counting runs 

Here, there are 8 runs. Notice that in this case the matrix of transition counts 
is given by 

L 2 

an alternative way to tally the number of runs is to observe that it is equal 
to the number of 01 switches plus the number of 10 switches plus 1: that is 
(denoting the number of runs by r),  

In this case, 

Next, we shall need to determine whether the observed number of runs is 
significantly greater or less than the number that might have been expected 
under a Bernoulli model. U 

In'Exercise 12.5 you should check that your results confirm the' formula at 
(12.6). 
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and variance 

V(R) = 
2n0nl(2nonl - no - nl)  

2 
(no + n l )  (no + nl  - 1) 

using (12.7). The corresponding z-score is 

to be compared against the standard normal distribution N(0 , l ) .  You can 
see that the SP is quite negligible, and there is a strong suggestion ( r  much 
smaller than expected) that the realization exhibits long runs of dry days, and 
long runs of wet days, which is inconsistent with a Bernoulli model. W 

The normal approximation to the null distribution of R is useful as long as 
no and nl  are each about 20 or more. 

Exercise 12.7 
In a small study of the dynamics of aggression in young children, the following 
binary sequence of length 24 was observed. 

The binary scores were derived from other aggression scores by coding 1 for 
high aggression, and 0 otherwise. 

(a) Obtain the matrix N of transition frequencies for these data, and hence 
A 

obtain an estimate M for the transition matrix M. 

(b) Find the number of runs in the data. 

(c) Perform an exact test of the hypothesis that the scores could reasonably be 
regarded as resulting from a Bernoulli process, and state your conclusions. 

(d) Notwithstanding the dearth of data, test the same hypothesis using an 
asymptotic test based on the normal distribution, and state your con- 
clusions. 

In Section 12.4 we revisit the Poisson process as a model for random events 
occurring in continuous time. 

12.4 The Poisson process 

Siegel, S. and Castellan, N.J. 
(1988) Nonparametric Statistics for 
the Behavioral Sciences, 2nd edn. 
McGraw-Hill Book Co., New York, 
p. 61. 

The runs test may not be quite 
appropriate here because of the 
precise method adopted for the 
coding, but this complication may 
be ignored. 

Earlier in the course, we met several examples of realizations of random pro- 
cesses that may be reasonably supposed to be well modelled by a Poisson 
process. These include the earthquake data of Table 4.7 (inter-event times), 
the nerve impulse data of Table 4.10 (inter-event times) and the coal mine 
disaster data of Table 7.4 (inter-event times-in fact, these do not follow an 
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exponential distribution). The data of Table 4.4 constitute radiation counts 
over 7;-second intervals. The Poisson distribution provides a good fit. (See 
Chapter 9, Example 9.4.) 

In Tables 12.2 and 12.3 data are given on computer breakdowns, again exhibit- 
ing incidentally the two forms in which such data may arise: as inter-event 
waiting times, or as counts. 

Here is another example of Poisson counts. 

Example 12.24 The Prussian horse-kick data 
This data set is one of the most well-known data collections. The data are 
known as Bortkewitsch's horse-kick data, after their collector. The data in 
Table 12.16 summarize the numbers of Prussian Militarpersonen killed by the 
kicks of a horse for each of 14 corps in each of 20 successive years 1875-1894. 
You can read down the columns to find the annual deaths in each of the 14 
corps; sum across the rows for the annual death toll overall. 

Table 12.16 The Prussian horse-kick data 

Year G 1 2 3 4 5 6 7 8 9 10 11 14 15 Total 

Total 16 16 12 12 8 11 17 12 7 13 15 25 24 8 196 

Most often these appear as summary data. Table 12.17 shows the 196 deaths 
to have occurred during 280 corps-years. Here, the agreement with the Poisson 
distribution is moderately good. 

Table 12.17 Frequency of deaths per year, 14 corps 

Deaths 0 1 2 3 4 > 4  
Frequency 144 91 32 11 2 0 

Ladislaus von Bortkewitsch 
(1868-1931) was born in St 
Petersburg. After studying in 
Russia he travelled to Germany, 
where later he received a Ph. D. 
from the University of Gottingen, 
The horse-kick data appear in a 
monograph of 1898 entitled Das 
Gesetz der lcleinen Zahlen-that is, 
The Law of Small Numbers. The 
data are discussed in detail in 
Preece, D.A., Ross, G.J.S. and 
Kirby, S.P.J. (1988) Bortkewitsch's 
horse-kicks and the generalised 
linear model. The Statistician, 37, 
313-318. 

Bortkewitsch had noted that four of the corps (G, l, 6 and 11) were atypical. The labelling of the corps is not 
If these columns are deleted, the remaining 122 deaths over 200 corps-years sequential. 
are summarized as shown in Table 12.18. Here, the Poisson agreement is very 
good indeed. 



Chapter 12 Section 12.4 

Table 12.18 Frequency of deaths per year, 10 corps 

Deaths 0 1 2 3 4 > 4  

It is common to model the occurrence of such random haphazard accidents as 
deaths due to horse-kicks, as a Poisson process in time. Apart from the four 
corps which (for whatever reason) are atypical, this model seems to be a very 
useful one here. 

12.4.1 Properties of the Poisson process 
We first met the Poisson process in Chapter 4, Section 4.4. Events occur at 
random in continuous time, as portrayed in Figure 12.18. 

I I 1 1 - 1 -  I l l - 1 - 1  I 1 1 - 1  

0 2 4 6 8 10 12 14 16 
Time 

Figure 12.18 Events occurring as a Poisson process in time 

This is a continuous-time process rather than a discrete-time process. Denot- 
ing by X( t )  the total number of events to have occurred in any time interval 
of duration t,  then the random variable X( t )  has a Poisson distribution with 
parameter At, where X > 0 is the average rate of events. 

The time T between events has an exponential distribution with mean 
,U = 1/X: this is written T M(X). These characteristics may be summarized 
as follows.' 

The Poisson process 

For recurrent events occurring as a Poisson process in time at average 
rate X,  the number of events X( t )  occurring in time intervals of duration t 
follows a Poisson distribution with mean At: that is, X(t) N Poisson(At). 
The waiting times between consecutive events are independent observa- 
tions on an exponential random variable T M(X). 

Several examples of events that might reasonably be modelled as a Poisson 
process are listed in Chapter 4, Example 4.17. 

12.4.2 Testing the adequacy of the fit of a Poisson 
process 

By comparison, if X, denotes the 
total number of successes in a 
sequence of n trials in a Bernoulli 
process, then the distribution of 
the random variable X, is binomial 
B(n,p). The distribution of the 
number of trials between 
consecutive successes in a Bernoulli 
process is geometric with 
parameter p. 

Estimation procedures depend on the form in which the data arise. They 
may arise as a consequence of continuous observation, in which case they will 
consist of inter-event waiting times. Commonly, observation will be regular 
but intermittent: then the data will consist of counts of events over equal time 
intervals. 
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You are already very familiar with the estimation of parameters for exponen- 
tial and Poisson models. 

Example 12.25 Estimating the rate of earthquakes 
For the earthquake data in Table 4.7 each time interval ti, i = 1,2 , .  . . ,62 may 
be regarded under the Poisson process model as a data value independently 
chosen from the exponential distribution with parameter X. The mean of such 
an exponential distribution is 1 / X  (see (4.25)). So, it seems quite reasonable 
that a point estimate of X should be l/?, where t = 437 days is the sample 
mean waiting time between serious earthquakes. The maximum likelihood 
estimate of X (the earthquake rate) is 11437 = 0.0023 major earthquakes per 
day. 

A 95% confidence interval for the mean 1 / X  (again, assuming an exponential These confidence intervals are 
model) is given by (346,570) days. The corresponding confidence interval for exact. Using the methods in 

the earthquake rate is (0.0018,0.0029) earthquakes per day. Chapter 7, you could also obtain 
approximate confidence intervals 
based on the normal distribution. 

A Poisson process also forms a good probability model for certain types of 
traffic process. Suppose an observer is situated at a particular point at  the 
side of a road and records the time intervals between vehicles passing that 
spot. A Poisson process will be a reasonable model for such data if the traffic 
is free-flowing. That is, each vehicle which travels along the road does so at  
essentially the speed its driver wishes to maintain, with no hindrance from 
other traffic. In saying this, many traffic situations are ruled out. For example, 
any road in which traffic is packed densely enough so that traffic queues form 
is not allowed: an adequate model for such a 'heavy-traffic' process would 
have to make provision for the occurrence of clusters of vehicles close together. 
Likewise, a main street with many intersections controlled by traffic lights also 
makes for traffic clumping. On the other hand, a convoy of, say, army trucks 
travelling long-distance may move in regular spacing, each keeping more or 
less the same distance from each other. Situations where free-flowing traffic 
can be assumed therefore reduce either to rather a quiet road where only 
occasional vehicles pass (singly) along, or, perhaps more usefully, to multi- 
lane roads such as motorways, which, when not overfull, allow vehicles to 
progress largely unimpeded by others. 

Example 12.26 Yet more traffic data 
The data in Table 12.19 are thought to correspond to free-flowing traffic. They Data provided by Dr J.D. Griffiths 
consist of 50 vehicle inter-arrival times for vehicles passing an observation of the University of Wales Institute 
point on Burgess Road, Southampton, England, on 24 June 1981. of Science and Technology. 

Table 12.19 Inter-arrival times (seconds) 

The passage times are illustrated in Figure 12.19. 
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Passage times (seconds) 

Figure 12.19 Vehicle arrival data 

As we shall see, the data here can be modelled usefully by an exponential 
distribution. W 

Sometimes data come in the form of counts: for example, Rutherford and 
Geiger's radiation data in Table 4.4. If the counts arise as events in a Poisson 
process, these data will follow a Poisson distribution. We have seen that the 
Poisson model provides a good fit. On the other hand, it was remarked that 
for Table 12.3 in Example 12.3, the Poisson distribution did not provide a 
good fit to the system breakdown data summarized there. 

You could confirm this lack of fit using a chi-squared test, which is an asymp- 
totic test. In this section an exact test is described for testing the quality of 
the fit of a Poisson process model. The test assumes that the times of occur- 
rence of the events are known-in other words, the test assumes continuous 
observation. 

Now, if events occur according to a Poisson process, then over the whole 
interval of observation, there should be no identifiable peak of activity where 
there is an unusually high incidence of events. (Of course, there will be random 
variation exhibited in the sample realization.) Similarly, there should be no 
identifiable intervals over which the incidence of events is unusually sparse. 

Denoting by (0, T) the period of observation, and by The letter T is the lower-case Greek 
letter tau, pronounced 'tor'. 

0 < tl < t2 < .. .  < tn < T 
Notice that the times 

the times of occurrence of the n events observed, then it turns out that the ti, i = 1 ,2 , .  . . , n, are the actual 
fractions times of occurrence of events, not 

waiting times between events. 
t l t 2  t n 

W ( 1 )  = 7, W ( 2 )  = -, . . . , = - 
7 T 

may be regarded as a random sample from the standard uniform distribution 
U(0, l), if the underlying process generating the events may be modelled as a 
Poisson process. This is the only continuous distribution consistent with the 
idea of 'no preferred time of occurrence', 

A test for whether a list of times of occurrence may be regarded as aris- 
ing from a Poisson process therefore reduces to testing whether a list of n 
numbers all between 0 and 1 may be regarded as a random sample from the 
standard uniform distribution U(0, l) .  One of the advantages of this test is 
that no problems of parameter estimation are raised. The test is called the 
Kolmogorov test. In general, it may be used to test data against any hy- 
pothesized continuous distribution. (For example, there is a version of the 
Kolmogorov test appropriate for testing normality.) We shall only use it as a 
test of uniformity. 

The test consists of comparing the uniform cumulative distribution function 

with the sample distribution function, or empirical distribution function ob- 
tained from the data, defined as follows. 
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The empirical distribution function 
For any random sample w1, ~ 2 , .  . . ,W, from a continuous distribution 
with unknown c.d.f. F(w), an estimate $(W) of F(w) called the ern- 
pirical distribution function may be obtained as follows. 

Arrange the sample in ascending order 

W(1) 5 W(2) 5 . . . 5 W(,). 

Then the graph of $(W) is constructed as follows: 
A 

for all 0 < W < ~ ( 1 1 ,  F(w) = 0; 
A 

for all w ( ~ )  < W < ~ ( 2 1 ,  F(w) = 1/71.; 
A 

for all W(Z) < W < w ( ~ ) ,  F(w) = 2/72; 

and so on; finally 
A 

for all w(,-~) < W < W(,), F(w) = (n - l ) /n;  
A 

for all W(,) < W < 1, F(w) = 1. 

At the 'jump points' w ( ~ ) ,  w(z), . . . ,W(,), the flat components of the 

graph of $(W) are joined by vertical components to form a Lstaircase'. 

The Kolmogorov test consists of superimposing on the graph of the empirical 
distribution function the cumulative distribution function of the hypothesized 
model F(w) (which, in this case, is F(w) = W), and comparing the two. 

Example 12.27 illustrates the technique. The small data set used is artificial, 
in the interests of simplicity. 

Example 12.27 The empirical distribution function 
Observation is maintained on an evolving system between times 0 and r = 8. 
Over that period of time, five events are observed, occurring at times 0.56, 
2.40, 4.08, 4.32, and 7.60. Figure 12.20 shows the occurrence of events over 
time. 

I - I - I- - I I 

0 2 4 6 8 

Time 

Figure 12.20 Five points, possibly occurring as a Poisson process in time 

In the nature of things, the times of occurrence are already ordered. If the 
events occur according to a Poisson process, then the ordered fractions 
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' may be regarded as a random sample from the standard uniform distribution 
U(0,l).  The empirical distribution function is drawn from 0 to 1 with jumps 
of size l l n  = 0.2 occurring at the points 0.07, 0.30, 0.51, 0.54, 0.95. This is 
shown in Figure 12.21. 

Figure 12.21 The empirical distribution function 

Now the graph of the c.d.f. F(w) = W of the standard uniform distribution 
U(0 , l )  is superimposed on the figure. This is shown in Figure 12.22. 

Figure 12.22 The empirical distribution function and the hypothesized 
distribution function 

You can see in this case that there are some substantial discrepancies be- 
tween the empirical distribution function F^(w) obtained for our data set and 
the theoretical model F(w) = W. Are these differences statistically signifi- 
cant? W 

If the hypothesis of uniformity holds, the two distribution functions will not 
be too different. They are equal at  the point (0,O) and at the point (1, l ) .  Our 
measure of difference between them, the Kolmogorov test statistic, is defined 
to be the m a x i m u m  vertical distance between the two, 

A 

D = max [?(W) - F(w)I = max IF(w) - W(. (12.8) The distance D is sometimes 
o<w<l O<w<l known as the Kolmogorov distance. 

This will always occur at  one of the jump points. In Figure 12.22 the maxi- 
mum difference between the two distribution functions occurs at the point 
W = 0.54, and the size of the difference is 0.8 - 0.54 = 0.26. This is shown in 
Figure 12.23. 

Figure 12.23 The Kolmogorov distance D: here, d = 0.26 
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So, for Example 12.27, the value of the Kolmogorov test statistic is d = 0.26, 
based on a sample of size n = 5. This seems quite large, but to explore whether 
it is significant (that is, whether the hypothesis of a Poisson process should 
be rejected) the null distribution of the test statistic D is required. This 
is extremely complicated, and it is usual at this point to employ statistical 
software. In fact, the associated SP here is 0.812, which is very high, reflecting 
the small size of the data set. There is no reason here to reject the hypothesis 
that the data arise from a Poisson process. 

Like the test statistic in a test of goodness-of-fit, large values of the 
Kolmogorov test statistic D lead to rejection of the hypothesized model; small 
values of D suggest that the fit is good, and that the model is adequate. 

Example 12.1 continued 
In this example, no value is given for T. Observation ceased exactly with the 
passage of the last of the 40 cars in Table 12.1: this vehicle passed the observer 
after T = 12 + 2 + 6 + . . . + 16 + 2 = 312 seconds. The first 39 passage times 
yield observations 

and so on. The Kolmogorov test statistic takes the value d = 0.138 with 
n = 39. The corresponding SP is 0.412. The exponential fit seems ad- 
equate. . 
Exercise 12.8 
(a) Use the Kolmogorov test against the null hypothesis of a Poisson process 

for the traffic data of Example 12.26 (Table 12.19). Interpret your con- 
clusion. (Note here, again, that observation ceased only with the passage 
of the 50th vehicle.) 

(b) Table 12.20 gives the dates (in the form of months after the start of 1851) Solow, A.F. (1991) Exploratory 
of the major explosive volcanic eruptions in the northern hemisphere after analysis of ~ccurrence of explosive 
1851. The last recorded eruption (corresponding to tS6 = 1591 in the volcanism. J. American 

Association, 86, 49-54. table) occurred in July 1983. In fact, observation was continued until the 
start of 1985 (so T = 1608). 

Table 12.20 Times of major volcanic eruptions (months) 

Use these data to explore whether volcanic eruptions may be assumed 
to occur as a Poisson process (at least over the period of time that the 
phenomenon was researched). 
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12.5 Variations 

This chapter concludes with some examples of chance situations where models 
other than those described so far would be most appropriate. The literature 
on the subject of model construction and testing for random processes is vast, 
and all we can do in an introductory text such as this is hope to obtain some 
notion of the wide area of application. 

Example 12.28 Poisson processes with varying rate 
A time-dependent Poisson process is a Poisson process in which the av- 
erage rate of occurrence of events alters with passing time. This might be 
appropriate, for example, in a learning situation where the events recorded ~ ( t )  
are errors-these will become less frequent as time passes. One example where 
such a model might be appropriate is where the times of system failures were 
recorded (see Table 12.2). There the remark was made that '. . . an exponen- 
tial model does not provide a good fit to the variation in the times between 
failures . . . the failures are becoming less frequent with passing time.' o t  

A sketch of a failure rate X( t )  with approximately the right properties is shown Figure 12.24 A decreasing 
in Figure 12.24. In this case the failure rate is always decreasing, but never failure rate 
attains zero. In fact, the rate may be represented by the function 

where a > 0 and p > 0. Once a functional form for X(t) has been decided 
(linear, quadratic, trigonometric or, as in this case, exponential decay) then 
the parameters of the model may be estimated using maximum likelihood. If X ( t )  

the model provides a good fit, then it can be used to forecast future failure 
events. For instance, the number of failures to occur during some future 
interval tl  < t < tn  follows a Poisson distribution whose mean is given by the 
integral 

t  l t2 t  1: A(t) dtl  Figure  12.25 The expected 
number of failures in the time 

shown in Figure 12.25. The selection of an appropriate functional form for interval (tl ,  tz) 
X(t) is not always straightforward; but the ideas of parameter estimation 
and model testing are not different from those with which you are already 
familiar. 

Example 12.29 is based on the Bernoulli process. 

Example 12.29 Identifying a change in the indexing parameter 

Researchers involved in a grassland experiment were interested in the presence 
or absence of plants in a protected habitat, year after year. For any given 
species, they recorded 1 if its presence was observed, 0 otherwise. This was 
repeated each year and so the data took the form of a sequence of 0s and 
Is, possibly consistent with an underlying Bernoulli process, or a Markov 
chain (or neither of these). The researchers were particularly interested in 
one species. It  certainly appeared that the plant was an intermittent visitor. 

A complication was that the plant was easy to mistake: it could be missed 
(score 0) when it was present; and it could be 'seen' (score 1) when in fact it 
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was not present-other plants looked very similar to it. So the data were not 
entirely reliable. 

It became known that in reality this particular plant was present in the habitat 
every year until, one year, it disappeared completely. The problem was to use 
the sequence of recorded 0s and 1s to estimate when this had happened. 

Again, this is a problem involving quite a subtle estimation procedure (not 
just of the change point, but also of the probabilities of error-recording a 
0 when the plant was present and 1 when it was not). It  is important to 
have in mind a useful underlying model, and to be aware of the year-to-year 
dependencies that need to be built in to it. 

A similar but unrelated problem faced researchers studying different plants. 
The annual visits made by these plants to the habitat were known to be 
intermittent, but it was also known that after a while there was a possibility 
of extinction. The problem was to determine from a sequence of recent OS what 
probability to attach to the possibility that extinction had taken place. Here, 
there were no problems of identification. Possibly the year-by-year presence 
or absence could be reasonably modelled as a Markov chain, for at  least as 
long as the plant survived. 

Example 12.38 Competing species 
Birth-and-death models were briefly explored in Section 12.1. Biologists and 
ecologists often have to consider populations of two or more species living 
together and interacting. Sometimes these interactions are co-operative, and 
sometimes they are antagonistic (though not necessarily detrimental to the 
future existence of a species). Sometimes such communities are stable, with all 
species coexisting in a moderately happy association, and sometimes they are 
not--one species or another eventually disappears because it is not possible 
indefinitely to sustain life in the presence of another. The literature on the 
topic is vast, with much work for instance on predator-prey models and host- 
parasite models. 

One important application is to human conflict, and there are some fascinating 
models to explore. 

Example 12.31 Epidemic models 

There are many variations on models for the spread of disease within com- 
munities. It  is not just a matter of different parameters being required to 
reflect differences in virulence, the duration of symptoms, the length of the 
infectious period, and so on: different diseases are spread in entirely different 
ways, and the models are fundamentally different. 

Populations consist of three types of individual: susceptibles (those who have 
not yet contracted the disease), infectives (those who have, and who are 
capable of spreading it) and the rest, who have recovered from the disease. 
Perhaps this third group are immune, or temporarily immune, to further at- 
tacks; or, as with some diseases, there is no difference between somebody who 
has recovered from the disease and somebody who is susceptible to it. This 
is, or appears to be, the case with the common cold. 

Often a model developed in one context can be used in another, quite dif- 
ferent application. Some epidemic models are appropriate to studies of the 
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diffusion of information, where 'susceptibles' are those ignorant of certain in- 
formation, 'infectives' are those who have it, and are passing it on to others, 
while others have known it but are no longer interested in passing it on. One 
interesting recent variation includes a model on drug addiction, incorporating Billard, L. and Dayananda, P.W.A. 
susceptibles, addicts and dealers. W (1988) A drug addiction model. 

J. Applied Probability, 25, 649-662. 

Summary 

1. A sequence of Bernoulli trials in which trials are independent and the 
probability of success is the same from trial to trial is known as a Bernoulli 
process. 

2. A Markov chain is a random process {X,; n = 1,2, .  . .) taking values 0 
or 1, in which X1 Bernoulli(pl) and thereafter transition probabilities 
are given by the transition matrix 

3. In the long term, the proportions of 0s and 1s in a realization of a Markov 
chain are given by 

respectively. 

A Markov chain in which p1 = a/(a + 4) is called stationary. A Bernoulli 
process is a special case of a stationary Markov chain. 

4. In any realization of a Markov chain the transition frequencies may be 
summarized through the matrix N where 

then the estimate of the transition matrix M is given by 

5. The number of runs r in a realization of a Markov chain is given by 

The observed value r of R may be used to test the hypothesis that a 
given realization is generated by a Bernoulli process. The test is exact; 
an approximate test is based on the asymptotic normality of R where 

2non1 E(R)  = --- + l ,  V(R)=  2nonl(2nonl - no - n l ) .  
no + n l  (no + (no + n l  - 1) ' 

here, no is the number of 0s in the sample realization and n l  is the 
number of 1s. 
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6. In a Poisson process the distribution of X(t),  the number of events in 
time intervals of duration t,  is Poisson(Xt), where X is the average rate at 
which events occur. The waiting time between consecutive events follows 
an exponential distribution M(X). 

7. In order to test whether events occurring at times 

0 < t l  < t2 < ... < tn < 7 

may be assumed to have been generated according to a Poisson process, 
the Kolmogorov test may be applied. This tests whether the observations 

may be assumed to have arisen from a standard uniform distribution. 

The Kolmogorov test statistic is the 'Kolmogorov distance' 

D = max ]@(W) - W [ .  
O<w<l 

The Kolmogorov test is an exact test. 
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A Look Back 

In this chapter, some of the methods and techniques studied in the course are 
reviewed through case studies. It is not an exhaustive review, but an attempt has 
been made to refer at least to the most important aspects of the 'statistical approach: 
You should note particularly that no single approach is necessarily appropriate to data 
exploration, and that we may need to draw on more than one technique to reach a 
real understanding of the story behind a data set. So the studies do not constitute 
a chronological review of the course. 

The aim of this chapter is to revise some of the more important material which 
has appeared in the course. However, rather than simply giving a condensed 
presentation of the earlier material, this revision is approached by way of a 
series of brief case studies. These are real questions which require the use of 
statistics to address them. A wide range of material is covered here, not just 
in the statistical techniques used but also in the nature of the examples. 

In addition to providing a revision of the underlying statistical ideas, these 
case studies should serve both to integrate the techniques and to demonstrate 
that data do not always arrive in an ideal manner. A statistical analysis is 
more than a simple application of a single technique and sometimes there may 
be problems of missing or generally messy data. 

Obviously there is not enough space in a single chapter to illustrate everything 
that has been covered in the preceding twelve, but we can hope to revisit 
the most important material in a way which gives a perspective on how a 
range of ideas and methods form a coherent structure for tackling statistical 
problems. As you read through the chapter, you will find that each case study 
is subjected to an ordered, methodical approach which you can acquire and 
employ for yourself. 

As a general rule, the same procedures are adopted when addressing real 
problems. 

1 Identify the question or questions that need to be answered. Generally 
this will be fairly clear from the start, but this is not always true. Try to 
pose the question in statistical terms. 

2 Try to find a helpful picture of the data which, indeed, may even answer 
one or all of the questions, in which case you may not need to proceed 
any further. At all events, a picture should give some indication of an 
answer and should alert you to any complications which may be lying in 
wait. 
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3 Ask some fundamental questions about the data. Are the data plausibly 
symmetric? Are the data plausibly normal? Is there a linear relationship 
between any variables involved? If not, might a transformation help and, 
if so, which transformation is adequate for the task? Are there any poss- 
ible outliers? Taking these things into account, which method should you 
try first? 

4 Consider your likely method, or methods. Be aware of the assumptions 
involved and check them out. It will sometimes be necessary to try a 
method and then check out its validity afterwards. You may find, for 
instance, that you have to carry out your check by looking at residuals. 

5 Ask yourself if you are satisfied that your method is justified. If not, try 
to modify it. For example, you might try to carry out a test based upon 
an assumption of normality. A preliminary check might indicate that the 
data are not plausibly normal because of an outlier, so you remove it and 
try again. Maybe the data are very skewed. Perhaps you decide that a 
normality assumption is not tenable, even after transformation or outlier 
stripping, so you elect for a non-parametric test. 

6 Give a careful statement of your conclusions with a brief discussion of 
their relevance. 

Data analysis depends, to a large extent, on a methodical approach along the 
lines indicated above. 

Of course, there is more to statistics than merely analysing data. Data ac- 
quisition and collection are no less important and, in practice, it is vital to 
design a statistical experiment with the proposed techniques of analysis in 
mind. But this chapter is not about such considerations, important though 
they are. It is about analysing raw data using the methods which appear in 
the earlier chapters. 

The course began with a discussion of the usefulness of a graphical approach 
to data exploration, and in the succeeding chapters you have seen literally 
hundreds of diagrams intended to aid insight. Often these have been used to 
support a more technical analysis; but it remains true that a diagram often 
tells you all you need to know about the structure underlying a list of numbers. 
And there will be some occasions where there is no obvious analytic procedure 
to follow, but where a diagram can at least be employed to provide a partial 
answer to a question, or the suggestion of an answer. 

13.1 Exploiting statistical graphics 

13.1.1 A question of authorship 
Much statistical work has been done on the question of authorship and, indeed, 
some people are almost obsessive about it. Were all of the epistles written 
by St Paul himself? Did Shakespeare really write all of the plays attributed 
to him, or might Marlowe have a valid claim? The answers are often of vital 
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importance to scholars and may well have important financial consequences. 
In this section, we shall look at a controversy of great concern to political 
historians of the USA; namely, who wrote the Federalkt papers of 1788? 

In an attempt to persuade the citizens of New York to ratify the Constitution 
of the United States, the Federalist papers were published anonymously by 
Alexander Hamilton, John Jay and James Madison. Seventylseven papers 
appeared as letters in New York newspapers under the pseudonym 'Publius'. 
With eight more essays, they appeared as a book in 1788. Whilst authorship 
of The Federalist was common knowledge, no assignment of specific papers 
to individual authors occurred until 1807, three years after Hamilton's death. 
In 1818, Madison made a listing of authors, one of a variety of such lists. 
There is general agreement on the authorship of 70 of the papers-5 by Jay, 
14 by Madison and 51 by Hamilton-but 15 remain unattributed, 12 being in 
dispute between Hamilton and Madison and 3 being joint works to a disputed 
extent. 

The dispute seems to have arisen as a result of political embarrassment. 
Within a few years of writing, Madison and Hamilton had become bitter 
political enemies who sometimes contradicted their own writings, and hence 
neither was in any hurry to lay claim to certain tracts. 

Unfortunately, the political content of the disputed papers, while it may give 
some indication, does not definitively resolve the problem. Both Madison and 
Hamilton were writing in favour of ratification, and both experienced eventual 
changes in political orientation. Neither does literary style help to provide an 
answer, since both adopted flowery, oratorical prose. 

A statistical approach to this problem might well start with looking at some 
aspect of technical style, such as the distribution of sentence lengths. Cer- 
tainly sentence length is often a characteristic of an author, but it will not dis- 
tinguish reliably between authors writing in similar literary styles. Faced with 
this difficulty, the historian Douglas Adair opted for the frequency of occur- 
rence of specific words. He detected a difference in choice between the words 
whilst and while. In the fourteen essays known to be written by Madison, 
while never occurs whereas whilst occurs in eight of them. So far, so good, 
but this is not helpful for the disputed papers since whilst or while occurs in 
less than half of them. In any case, how can we be sure that Madison would 
never use while here, when other of his writings have twice included the word? 

But the idea of looking at  keywords is a good one, provided we take common 
words and look at  their relative frequency of use. Both authors would use most 
common words at the same rate, but some words may help if we can choose 
the right ones. Even then we need to be careful. For example, Madison uses 
war more often than Hamilton, but this could be explained by a division of 
labour giving him more opportunity to use it, rather than a basic predilection 
for the word. The answer is to restrict the analysis to non-contextual words 
such as of, to, on, the, and, from, and so on. While these are words we all 
use, it may turn out that rates of use differ from author to author. Table 13.1 
below shows the rates for bg, from and to. 
You can see that low rates for by suggest the author Hamilton, whereas high 
rates for from indicate Madison (but there is a great deal of overlap). It would 
be very difficult to distinguish between authors through their use of the word 
to. 
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Table 1 3 . 1  Frequency distribution of rate per 1000 words in 48 Hamilton 
papers (H) and 50 Madison papers (M) for by, from and to 

b y  from to 
Rate H M Rate H M Rate H M 

Total 48 50 48 50 48 50 

This is a problem in discrimination. Table 13.1 is based on a substantial 
amount of data, and could be used as the basis for probability models rep- 
resenting the variation in freguency of use of common words. The material 
whose authorship is disputed may be tested against these models. 

One useful, if informal, approach is provided through the use of histograms. 
Figure 13.1 is a histogram showing the frequency of use of the word to in the 
twelve disputed papers. 

Frequency 

0 23 26 2b 32 35 38 41 

Use of the word to (rate per 1000 words) 

Figure 1 3 . 1  Histogram showing use of the word to in the disputed papers 

Exercise 13.1 
Use Table 13.1 to plot histograms of the frequency of the word to as used by 
Hamilton and Madison. If the disputed papers were known to be by the same 
author, which of the two might your histograms suggest? 

As with all statistical investigations, what matters is the accumulation of 
evidence and the composite picture thus obtained. F. Mosteller and D.L. 
Wallace discuss this problem and give a wide variety of alternative analyses in 
their book Applied Bayesian and Classical Inference: the case of the Federalist 
papers (Springer, 1984). In one of these they chose a large number of non- 
contextual words and their rate of use per 1000 words is given in Table 13.2. 

The words are grouped according to the degree of contextuality assessed by 
Mosteller and Wallace. You can see from the table that the word upon stands 
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out as a very powerful discriminator. Hamilton uses on and u p o n  equally, but 
Madison almost invariably uses on. 

Table 13.2 Rate of use per 1000 words for non-contextual words 

Word Rate per 1000 words Word Rate per 1000 words 
Hamilton Madison Hamilton Madison 

Group A Group D 
upon 3.24 0.23 commonly 0.17 0.05 

consequently 0.10 0.42 
Group B considerable(1y) 0.37 0.17 
also 0.32 0.67 according 0.17 0.54 
a n  5.95 4.58 apt 0.27 0.08 
by 7.32 11.43 
of  64.51 57.89 Group E 
o n  3.38 7.75 direction 0.17 0.08 
there 3.20 1.33 innovat ion(s)  0.06 0.15 
this 7.77 6.00 language 0.08 0.18 
t o  40.79 35.21 vigor ( o u s )  0.18 0.08 

kind 0.69 0.17 
Group C mat ter ( s )  0.36 0.09 
although 0.06 0.17 particularly 0.15 0.37 
both 0.52 1.04 probability 0.27 0.09 
enough 0.25 0.10 work(s )  0.13 0.27 
while 0.21 0.07 
whilst 0.08 0.42 
always 0.58 0.20 
though 0.91 0.51 

In Table 13.3, the frequency distribution of use of the word u p o n  shows that we 
can be fairly sure that Madison wrote at  least eleven of the disputed papers. In 
fact, the one disputed paper containing u p o n  is strongly classified as Madison's 
by other words. This analysis strongly supplements the independent opinion 
of historians, based on the known political beliefs of the protagonists. 

Table 13.3 Frequency distribution of rate per 1000 words for upon 

Rate per 1000 words Hamilton Madison Disputed 
0 41 11 

0-0.4 2 
0.4-0.8 4 
0.8-1.2 2 1 1 
1.2-1.6 3 2 
1.6-2.0 6 

2-3 11 
3-4 11 
4-5 10 
5-6 3 
6-7 1 
7-8 1 

Totals 48 50 12 

This result is interesting in that it has been reached without the use of a 
formal statistical test. We have simply looked for eye-catching patterns in the 
data. In Table 13.3 it was not even necessary to draw histograms. 

Of course, graphics can be used to good effect in regression analysis (scatter 

plots), hypothesis testing (comparative boxplots, for example), model fitting 
(histograms and probability plots) and on many other occasions. Let us move 
on to a review of some useful probability models. 
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Model fitting and testing 

13.2.1 Some modelling history 
Around the turn of the century, the whole notion of probability modelling 
was a cause of some concern to many of the more prominent statisticians. In 
particular, there was a lively and well-documented correspondence between 
W.F.R. Weldon (1860-1906), Francis Galton (1822-1911), F.Y. Edgeworth 
(1845-1926) and Karl Pearson (1857-1936) in which they tackled the problem 
of whether or not a theoretical binomial model could be said to provide an 
acceptable fit to observed frequencies in a dice-throwing experiment. 

Weldon to Galton, 4 February 1894 

. . . I have collected 26,306 tosses of groups of 12 dice, for use at the Royal 
Institution. In each group the event recorded is the number of dice with 
5 or 6 points, so that the chance of success with each die is . . . 

A certain set of 7,000 tosses, forming part of the result, was made for me 
by a clerk in the office of University College, whose accuracy in work of 
another kind I have had occasion to test by asking him to copy 24,000 
numbers of 3 figures each, with excellent results. 

A day or so ago, Pearson wanted some records of the kind in a hurry, in 
order to illustrate a lecture . . . I gave him the 7,000 separately from the 
rest, and on examination he rejects them, because he thinks the deviation 
from the theoretically most probable result is so great as to make the 
record intrinsically incredible. 

You will see how serious a matter this is . 

Last night I saw Greenhill, whose experience in target practice at  Woolwich 
makes him know this kind of thing statistically as well as -mathemat- 
ically-he is of the opinion that the record is perfectly credible, and that 
I have no shadow of reason to disregard it. 

Today I am sending it to  you and Edgeworth. 

Let us look at Weldon's data and carry out a preliminary analysis of the 
quality of fit provided by the binomial distribution B(12, $) using the methods 
you learned in Chapter 9. Table 13.4 gives the observed counts. 

The chi-squared goodness-of-fit test for comparing observed frequencies with 
those expected under a hypothesized model is appropriate here. For instance, 
the expected frequency of 0s is 

to one decimal place: this compares with the observed frequency of 45. 

There is an account of the 
correspondence in Pearson, E.S. 
(1965) Some incidents in the early 
history of biometry and statistics, 
1890-94. Biometrika, 52, 3-18. 

In fact, there were 7006 tosses. 

That is, Pearson rejected the data 
because they appeared to show 
variation not consistent with the 
binomial model. 

Table 13.4 Weldon's data on 
7006 tosses of 12 dice 

Number of Observed 
5s or 6s frequency 

Total 7006 

Weldon's data are summarized 
with an up-to-date commentary in 
Kemp, A.W. and Kemp, C.D. 
(1991) Weldon's dice data revisited. 
American Statistician, 45, 216-222. 
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Exercise 13.2 
Complete a table of expected frequencies assuming a binomial model ~ ( 1 2 ,  i) 
and, pooling cells if necessary, calculate, the value of the chi-squared test 
statistic 

(Oi - Ei)2 

and the corresponding significance probability for the test. Assess Pearson's 
claim that a binomial model is inadequate in the light of your results. 

Testing = 15.78 against the ~ ' ( 9 )  distribution we find a SP of 0.072 and 
Weldon's data do not seem as surprising as Pearson thought. 

Referring to the rows labelled 4 and 5 in Table 13.4, Edgeworth replied to 
Weldon on the subject of the comparatively large differences between observed 
and expected frequencies. 

Edgeworth to Weldon, 7 February 1894 

The tests which I have applied to the cases with four and five dice do not 
yield a result which excites much suspicion. I shall be curious to know 
your final decision. 

Edgeworth also wrote to Pearson explaining his experimental results 
(9 February 1894) and received an immediate reply which began as follows. 

My Dear Edgeworth, 
Probabilities are very slippery things and I may well be wrong . . . 

Pearson's x2-test was devised in 1900, some five years later. As we have seen, a 
X2-test based on 9 degrees of freedom does not indicate a discrepancy between 
the observed frequencies and the B(12, i) distribution, but the position of 
the two large differences next to each other should, perhaps, give cause for 
concern. 

You may remember that Weldon's original letter mentioned 26306 throws 
altogether and, perhaps, the subsample of 7006 observations is not large 
enough to detect a small discrepancy from a binomial model with p = i. 
Table 13.5 gives the data and an analysis for the full sample. 

Table 13.5 Weldon's data on 26 306 tosses of 12 dice Notice the small discrepancy in the 

Number of Observed Expected (Oi - ~ i ) ~  
5s or 6s frequency frequency Oi - Ei 

Ei 

sum of the expected frequencies, 
Ei = 26 306.02. This sort of 

small rounding error is not 

0 185 202.75 -17.75 1.55 important. 

Total 26 306 26 306.02 -0.02 35.50 
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Testing X2 = 35.50 against the x2(10) distribution gives a SP  of 0.0001. On 
this basis you would reject the hypothesis that the data are plausibly from 
a binomial distribution B(12, $). It seems that Pearson was right in his 
suspicions about these data, even if his reasons were wrong. 

What is particularly noticeable is the nature of the deviations Oi - Ei: the 
signs are all negative for low counts of 5s and 6s, and positive for high counts. 
The dice appear to be loaded in favour of landing with 5s and 6s facing 
uppermost. 

It seems hard to believe that the modelling assumptions which lead to a 
binomial model could be wrong, but you would not be entirely surprised if 
the assumption of the dice having equiprobable outcomes was found wanting; 
after all, we have all heard of loaded dice and, even though Weldon's dice are 
supposed to be fair, their manufacture cannot absolutely guarantee perfect 
symmetry of form. It is interesting to use the data to estimate the binomial 
parameter and use the estimate to recalculate the expected values. 

The parameter turns out to be estimated by p̂  = 0.3377. This does not 
look very different from p = $ but, using expected values calculated for 
B(12,0.3377), the value X2 = 8.18 is obtained. Since we have estimated a 
parameter and used that estimate in calculating the expected values, we must 
deduct an extra degree of freedom. The SP  for the test is 0.516 and we have Try checking 
no reason to doubt that the data are binomial. It appears that at  least one yourself. 
of the dice was indeed not symmetric. 

This is an important result in that it demonstrates the feasibility of detecting 
small effects given a large enough sample size. It is amazing that the value 
of X2 should change so much when the binomial parameter p has changed by 
only 0.0044. 

Let us leave the concluding remarks on probability modelling to Weldon. In 
the following extract, he is referring to data on measurement of crabs' shells. 

Weldon to Galton, 6 March 1895 

. . . I am horribly afraid of pure mathematicians with no experimental 
training. 

Consider Pearson. He speaks of the curve of frontal breadths, tabulated in 

the report, as being a disgraceful approximation to a normal curve. I point 
out to him that I know of a few great causes (breakage and regeneration) 
which will account for these few abnormal observations . . . He takes the 
view that the curve of frequency representing'the observations must be 
treated as a purely geometrical figure, all the properties of which are of 
equal importance . . . 
For this reason, he has fitted a 'skew' curve to my 'frontal breadths'. 
This skew curve fits the dozen observations at the two ends better than 
a normal curve, it fits the rest of the curve, including more than 90% of 
the observations, worse . . . 

Greenhill, to whom I took my troubles, laughs at the whole thing. You 
know that his chief business is to teach the properties of probability sur- 
faces to artillery officers . . . 

these calculations for 

The Herring, which makes a skew curve, are very heterogeneous. The 
mean value of the length from snout to anus, on 717 males, was widely 
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different from that given by 990 males-the extra 270 being obtained by 
opening another of the cases of herrings. I have not the figures at  hand, 
because I sent them to Pearson, as a basis for his curve; but he says 
that 'the material is homogeneous, with skew variation about the mean'. 
I don't believe it! 

It would have been easy for Pearson and Weldon, a mathematician and a 
zoologist, to drift apart, but they remained firm friends and, six years later, 
they were planning the first issue of Biometrika, now established as one of the 
foremost statistical journals. 

Another useful discrete probability model is the Poisson distribution. This 
has a particular application to the occurrence of events with passing time, 
and whether or not they occur 'at random'. 

13.2.2 The American National Hockey League 
It seems likely that in many sports the number of goals scored by one team 
against another in each game could be modelled by a Poisson distribution. 
This model was suggested for goals scored in the American National Hockey 
League. We can begin to test this hypothesis by studying the data reproduced 
from Mullet's paper in Table 13.6. This shows the frequency of games in which 
the indicated number of home goals were scored by Boston in its matches 
during the 1973-1974 season. 

To test the hypothesis that these data could have arisen from a Poisson dis- 
tribution we need to do two things. First, we need to fit such a distribution to 
the data. Second, we need to see how closely this theoretical distribution fits 
the data. We know that the Poisson distribution has only a single parameter, 
and from Chapter 6 we know that the maximum likelihood estimate of this 
parameter is given by the sample mean (see Table 6.8). 

However, in this case it is not possible to deduce the sample mean from 
Table 13.6 because of the censoring of the data. The maximum likelihood 
estimate c of the Poisson mean p, based on these data, requires direct calcu- 
lation. 

Exercise 13.3 
(a) Write down the likelihood of p for the sample, and, using your computer, 

show that the corresponding maximum likelihood estimate @ of p is 

(b) Hence construct a table of observed and expected frequencies for the num- 
ber of goals scored, and use the chi-squared test for goodness-of-fit to test 
the hypothesis that the Poisson distribution provides a suitable model, 
and interpret your findings. 

Weldon's arithmetic would seem to 
be adrift here. 

Mullet, G.M. (1977) Simeon 
Poisson and the National Hockey 
League. American Statistician, 31, 
8-12. 

Table 19.6 Boston's home goals 
in the American National Hockey 
League,1973-1974 season 

Number of goals Frequency 

Our third model for variation is the uniform distribution. 



Elements of Statistics 

13.2.3 Deaths in the USA 
Much of the time goodness-of-fit is assessed from a picture and, for continuous 
distributions, we have used probability plots to good effect (see Chapter 9). 
We have also used histograms to look at  the general shape of the data, but 
we have treated them with a certain degree of caution and only used them as 
rough, general guides, for the sorts of reasons described in Chapter 1. 

The data in Table 13.7 give the monthly deaths in the USA during 1966. The 
question of interest is whether or not the death rate is affected by the time of 
year. This question may be put in statistical terms by suggesting, as a null 
hypothesis, that deaths occur uniformly over the year and therefore testing 
the goodness-of-fit of a uniform distribution to these data. A preliminary look 
at a histogram of the data gives the impression that a uniform distribution is 
plausible: this is shown in Figure 13.2. 

Deaths (thousands) 

Table 13.7 Monthly 
deaths in USA in 1966 

Month 
January 
February 
March 
April 
May 
June 
July 

Deaths 
166 761 
151 296 
164 804 
l58 973 
156 455 
149 251 
159 924 

0;tober 154 777 
November 150 678 
December 163 882 

Monthly deaths in the USA, 1966 

Figure 13.2 Histogram of deaths in the USA 

However, the frequencies are of the order of 150 000 and, perhaps, one might 
expect the uniform fit to  look almost exact with such large numbers. A chi- 
squared test indicates otherwise. 

Table 13.8 Monthly deaths in the USA in 1966, 
showing expected frequencies 

Month Deaths (Observed) Deaths (Expected) 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

The chi-squared statistic is calculated from 

The expected frequencies reflect 
the fact that there are 31 days in 
January, 28 in February, and so on. 
(1966 was not a leap year.) 
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There are 11 degrees of freedom and the SP is therefore 0, which constitutes It is very informative in this case 
overwhelming evidence for rejection of the null hypothesis that the data are to consider the differences Oi - Ei: 

fitted by a uniform distribution or, more precisely, that deaths are distributed these are positive for winter months 
and negative for summer months. 

uniformly over the year. It  appears that time of year does affect the death 
rate. 

It is not really surprising that the evidence for rejection is so strong. We are 
dealing with a very large sample indeed and intuition dictates that the larger 
the sample we have, the more powerful the test. Remember that power is 
defined as the probability of correctly rejecting the null hypothesis. Therefore, 
the larger the sample, the more likely we are to reject when we should reject. 
The histogram in Figure 13.2 has proved to be deceptive. 

13.3 Comparing t WO populations 

It is probably fair to say that one of the most important activities in statistics 
is to provide an answer to the question: is there a difference? In general, 
the question may be posed in one of two main contexts. In the first case, 
a sample is taken from a population and some attribute is measured. Then 
some treatment is administered to members of the sample, at the end of which The word 'treatment' may have a 
the at  tribute is measured a second time. Interest centres on what difference, very broad interpretation, 

if any, the treatment has made to the measured attribute. depending on the context. 

Possible approaches here include a t-test (which makes certain assumptions 
about the form of the data) or a non-parametric test such as Wilcoxon's signed 
rank test (which does not). 

13.3.1 Pneumonia risk in smokers 
As we shall see, the data in Table 13.9 are rather unusual. They are measure- 
ments of the carbon monoxide (CO) transfer factor levels in seven smokers 
with chickenpox who were admitted to a hospital, and which were recorded 
with a view to determining their risk of contracting pneumonia. The measure- 
ments were taken when the patients entered the hospital and were repeated 
one week later. 

Table 13.9 CO transfer factor 
levels in smokers with chickenpox 

Patient On entry One week later 
1 40 73 
2 50 52 
3 56 80 
4 58 85 
5 60 64 
6 62 63 
7 66 60 

Ellis, M.E., Neal, K.R. and Webb, 
A.K. (1987) Is smoking a risk 
factor for pneumonia in patients 
with chickenpox? British Medical 
Journal, 294, 1002. On admission, 
patients were treated with 
intravenous acyclovir at 10 mg/kg, 
eight-hourly for five days. It is not 
recorded whether they were 
required to abstain from smoking. 

On the face of it, this seems to be a simple data set. We are interested in 
the difference between the carbon monoxide transfer levels at entry and those 
after one week. Measurements have been repeated on the same patients, and 
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the correct procedure is the t-test for zero difference, provided we can assume 
that the pairwise differences between the samples are normally distributed. 
We simply perform a one-sample test that the mean is zero on the differences 
between measurements for each individual. 

Exercise 13.4 
(a) Obtain the value of the test statistic t in a t-test for zero mean difference 

on the data of Table 13.9. 

(b) Find the SP for your test, stating whether your test is one-sided or two- 
sided. Interpret your findings. 

We have found little evidence to reject the null hypothesis of no difference 
between CO transfer factor at  entry and that after one week. But look again 
at  the data. Six out of the seven differences are positive, so the result comes 
as something of a surprise. With so few data points we cannot usefully draw 
a histogram, but we can look at boxplots. 

On entry 

One week later 

CO transfer factor levels 

Figure 13.3 Comparative boxplots for CO transfer factors 

Figure 13.3 also shows a marked difference in the boxplots, suggesting a sig- 
nificant difference between the CO transfer factor measurements. 

In fact, the explanation of this evident contradiction is simple-we have not 
checked the data for normality! 

~xercise ' 13.5 
Check the data for normality by carrying out a normal probability plot for the 
differences in CO transfer factors. Is the assumption of normality plausible? 

Clearly, the t-test was not soundly based, and its conclusions are doubtful. A 
test for zero difference which does not involve any distributional assumptions 
is the Wilcoxon signed rank test. 

Exercise 13.6 
Use Wilcoxon's signed rank test to investigate the hypothesis that there is no 
difference between CO transfer factors in smokers after a five-day acyclovir 
treatment. 

Student's t-test for zero mean 
difference is described in Chapter 8. 
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13.3.2 Viral lesions on tobacco leaves 
Bearing in mind that we should always check our test assumptions, let us con- 
sider the following problem. Two virus preparations were soaked into cheese- 
cloth and each was rubbed onto different halves of a tobacco leaf. Numbers 
of local lesions appearing on each half were counted for eight leaves and these 
are shown in Table 13.10. Lesions appear as small, dark rings. Do the two 
treatments produce different effects? 

Table 13.10 Viral lesions on tobacco leaves 

Leaf Preparation 1 Preparation 2 

Youden, W.J. and Beale, H.P. 
(1934) Contributions (Boyce 
Thompson Institute), 6, p. 437. 

A t-test for zero mean difference results in a t-value of 2.625 and, tested against 
t(7), gives a two-sided SP  of 0.034. However, we know better than to apply 
such a procedure blindly, so we should look first at a normal probability plot 
for the differences. 

Exercise 13.7 
(a) Check the data for normality by carrying out a normal probability plot 

for the differences. Is the assumption of normality plausible? If not, how 
do you suggest we should proceed? 

(b) Proceed with a test for zero difference after implementing your suggestion. 

Now this is an interesting result in that removal of the outlier, a point which, 
if included, is sufficiently extreme to pull the sample mean further away from 
zero, has reduced the SP. Intuitively this is not what we might have expected, 
but a moment's thought reveals why. The outlier does not simply influence the 
sample mean. It  also has a considerable influence upon the sample standard 
deviation, which is used in calculating the t-statistic. In this particular case, 
the effect of removing the outlier is to reduce the estimated standard deviation 
sufficiently to increase the value of the t-statistic, and thereby reduce the SP. 

In both these examples, the data were paired. In other situations, we may 
not wish to compare 'Before - After' differences but simply to decide whether 
two samples-assumed to be independent and not necessarily of the same 
size-may be regarded as arising from the same population. 

In such a case, one might consider a two-sample t-test, which makes certain as- 
sumptions about the form of the data, or possibly a Mann-Whitney-Wilcoxon 
test, which is less restrictive. (And one should not forget the usefulness of a 
simple graphical representation such as a comparative boxplot.) 
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13.3.3 Survival prognosis for patients with acute 
myocardial infarction 

Table 13.11 gives clinical data on twenty patients who were still alive a month 
after suffering a myocardial infarct (heart attack) and twelve who died within 
a month. For each patient serum urea (in grams per litre) was measured on 
admission to hospital and on Day 6 after admission. The questions of interest, 
and the reason the data were collected, were: is there, on average, a difference 
between the two groups on Day 0 and is there a difference on Day 6? If so, 
can this information be used in a predictive way, to predict the likely outcome 
after one month? 

Now let us examine the first question. One way we might seek to explore 
whether the groups differ on these two variables is to compare the groups' 
means. We learned, in Chapter 8, that a two sample t-test could be used for 
this purpose-provided certain assumptions were justified. These assumptions 
were that the samples were independent, the underlying populations were 
normal, and that the variances of the two populations were equal. We could 
accept some departure from the latter two assumptions, provided it was not 
too severe. 

The first of these assumptions-the independence between the samples of 
surviving and non-surviving patients-seems reasonable, so we shall accept 
that. As to the second and third assumptions, we can obtain some insight 
into them from the data themselves. 

We can explore informally the assumption of normality using histograms. 
Figure 13.4 shows histograms of the urea measurements on Day 0 and Day 6 
for each group separately. 

The first two of these histograms do not show any striking departure from nor- 
mality-at least, bearing in mind the limitations of relatively small samples, 
there is no clear skewness or asymmetry. 

For the non-survivors, the outlying data points in Figures 13.4(c) and 13.4(d) 
correspond to patient 5 (a reading of 1.04 g/l a t  Day 0 and 0.68 g/l a t  Day 6) 
and to patient 12 (0.42 g/l a t  Day 0 and 1.94 g/l a t  Day 6). Patient 5 was 
the only one whose serum urea measurement dropped from an exceptionally 
high reading on admission; patient 12 recorded an exceptionally high reading 
at Day 6. 

Such isolated data points substantially different from the others are outliers, 
and need to be examined carefully. We need to consider whether they might 
have arisen due to a malfunction of the measuring instrument or perhaps 
a data recording or transcription error. If we do suspect such a situation 
then it obviously makes sense to analyse the data with these points removed. 

Even if we do not suspect such a situation, we can analyse the data without 
the offending points (as was suggested in Chapter 9)  on the grounds that the 
estimates of the average for the two groups are then more robust. That is, they 
are less susceptible to random variation and so are more reliable. Yet other 
alternatives are to transform the data in some way or adopt a distribution-free 
procedure. 

Albert, A. and Harris, E.K. (1987) 
Multiyariate Interpretation of 
Clinical Laboratory Data. Marcel 
Dekker, New York, pp. 165-168. 

Table 13 .11  Serum urea (g/l) 
measurement on 32 patients with 
myocardial infarction 

Group 1 Group 2 
Survivors Non-survivors 

Day 0 Day 6 Day 0 Day 6 

In this case let us omit the readings for the two exceptional non-surviving 
patients from any subsequent analysis. However, it is important to remember 
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Frequency Frequency 

(a )  Serum urea (g/l, survivors, Day 0) (b) Serum urea (g/l, survivors, Day 6.) 

Frequency 

( C )  Serum urea (g/l, non-survivors, Day 0 )  

Frequency 

7 - 
6 - 
5 - 
4 - 
3 - 

(d) Serum urea (g/l, non-survivors, Day 6) 

Figure 13.4 (a) Survivors at Day 0 (b) Survivors at Day 6 ( c )  Non-survivors at 
Day 0 (d) Non-survivors at Day 6 

that each patient recorded exceptionally high serum urea levels at  some stage 
following their heart attack, and that this points to a contra-indication for 
survival. 

Exercise 13.8 
(a) Use a two-sample t-test to compare the two group means at  admission, 

omitting patients 5 and 12 from the group of non-survivors. 

(b) Similarly, explore whether there is any significant difference between the 
underlying serum urea levels for surviving and non-surviving patients at 
Day 6. 

So we have evidence that by the sixth day after admission there is a significant 
difference in serum urea levels between those patients who will survive to one 
month and those patients who will not. 

515 
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The second question asked if it was possible to use this information to predict 
whether a patient was likely to survive. The non-survivors have the higher 
mean and, given that the distributions are roughly symmetric with equal 
variances (with outliers omitted), this will imply that the higher scores tend 
to belong to the non-survivors and the lower ones to the survivors. This 
is illustrated in Figure 13.5, which shows boxplots of the scores of the two 
groups. - Survivors 

Serum urea (g/l) 

Figure 13.5 Boxplots of survivors and non-survivors on Day 6, outliers omitted 

One might attempt to answer this question by choosing some threshold (say, 
about 0.60) and classifying a patient with serum urea concentrations below 
this threshold on Day 6 as 'likely to survive' and a patient with a concentration 
above this threshold as 'not likely to survive'. Of course, one would not get 
the classification correct all of the time, but it would be a start. (This idea is 
taken further in Chapter  14, where the technique of discr iminan t  analysis is 
outlined.) 

13.3.4 Diet supplements in rats 
In this example straightforward comparisons of two independent groups, of 
the type illustrated in Subsection 13.3.3 and described in Chapter  8, are used 
to answer a more subtle question. The data are presented in Table 13.12. 
They show body weights in grams of rats on two diets, measured on four 
occasions: on starting the special diets, one week after starting, two weeks 
after starting and three weeks after starting the diets. There were eight rats 
in the first group and four rats in the second. The question the researchers 
were interested in was: are the rates of increase of weight the same on the 
two diets? 

Table 13.12 Body weights (grams) of rats on two diets measured at 
weekly intervals 

Group 1 Group 2 
Start l week 2 weeks 3 weeks Start l week 2 weeks 3 weeks 
266 265 272 278 504 507 518 525 
244 238 247 245 530 543 544 559 
267 264 268 269 544 553 555 548 
272 274 273 275 542 550 553 569 
273 276 278 280 
278 284 279 281 
271 282 281 284 
267 273 274 278 

This differs from the preceding example in a number of ways. Previously we 
had just two observations on each patient, and interest lay in each of these 

Crowder, M.J. and Hand, D.J. 
(1990) Analysis of repeated 
measures. Chapman and Hall, 
London, p. 19. 
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observations separately. Now we have four observations on each rat and, more 
importantly, we are not interested in each of them separately but in all four 
together: somehow we want to study the rate of growth. 

Fortunately, for an individual rat we know how to do this. For an individual 
rat the slope of the regression line of weight on time will tell us just this-the Regression was introduced in 
rate of increase in weight as time changes, for that rat. We could calculate Chapter 10. 

slope estimates for each rat in this way to yield, for each rat, a rate of growth. 
In effect we would have reduced each rat's four measurements to a single 
number, summarizing just that aspect of the data in which we are interested. 
Then we could compare the two groups using these numbers. That would 
certainly answer the question: do the average growth rates differ between the 
two groups? 

Exercise 13.9 
Use your computer to obtain slope estimates for each of the eight rats in 
Group 1 and for each of the four rats in Group 2. Calculate the mean and 
standard deviation of the growth rates in each group. Can you reach any 
conclusions at  this stage? 

Again we could consider a t-test for equal slopes in the two groups. A two- 
sample t-test gives a test statistic of -3.122 and a total SP of 0.011. This Try checking these calculations for 
is highly significant. But the large difference in size between the standard yourself. 
deviations might make one uneasy about trusting the conclusions of this test. 
In addition to this, with such a small sample size we would not be able to 
detect departures from normality very well, so this assumption would be very 
much on trust. 

Alternatively, we could adopt a distribution-free method, as outlined in 
Chapter 9. 

Exercise 13.10 
Perform a Mann-Whitney-Wilcoxon test on the growth rates in Table S13.5. 
Can you now conclude that the growth rates differ? 

There is one other feature of the data that you might have noticed here: the 
rats in the second group were initially much heavier than those in the first 
group (about twice the weight). The discrepancy at the end of the exper- 
iment is similarly marked. An alternative regression model would assume that 
weight increase with time was multiplicative rather than additive. Straight 
lines fitted to the logarithms of the weights regressed against time have slopes 

for the eight rats in the first group, and 

for the four rats in the second group. The sample variances for the two groups 
are very similar; the total SP for a two-sided two-sample t-test of equal slope 
is 0.27. There is no evidence of a difference in growth rate between the two Again, you should check these 
groups, using this multiplicative model. calculations if you have the time. 

517 



Elements of Statistics 

13.3.5 Expressed emotion 
The expressed emotion index is a measure of the emotional climate of families 
with mentally ill members. Studies suggest that patients living with relatives 
scoring low on the expressed emotion index are less likely to relapse than those 
living with relatives who score high. 

In a study of the relationship between expressed emotion and schizophrenia in 
Spain 60 patients were followed up for two years after a psychiatric evaluation. 
One patient dropped out of the study after twelve months, leaving only 59. 
Dropouts are a common problem with medical research where, as in this 
example, measurements take place over an extended time period. In this 
case we shall simply ignore the dropout-so that any inferences we make are 
strictly only valid for patients who do not drop out before a two-year period 
has elapsed. (An alternative approach, when treatments are being compared, 
is to regard the dropouts as treatment failures and include them as such in 
the analysis.) 

At the initial evaluation the families of the patients were scored on an ex- 
pressed emotion scale. Table 13.13 shows the number of patients who relapsed 
during the two-year follow-up period for the low and high expressed emotion 
families. 

The research question of interest here is whether the proportions relapsing in 
the two groups are the same. Clearly they are not exactly the same. The 
proportion in the low expressed emotion group is 17/31 = 0.548 while that in 
the high expressed emotion group is 16/28 = 0.571. Certainly, as the theory 
predicted, the proportion in the low expressed emotion families is lower than 
that in the high expressed emotion families, but these proportions are fairly 
close: could the difference have arisen by chance? 

You saw, in Chapter 8, how such a question could be answered. A suitable 
test is Fisher's exact test. This takes the marginals of the table as given (the 
row and column totals) and works out how many possible tables with these 
marginals would lead to a difference in proportions more extreme than that 
actually observed. The calculations for this test are fairly onerous, and use of 
a computer is really the only viable option. 

Exercise 13.1 1 
Use a computer to test the hypothesis that the proportion of relapses in a low 
expressed emotion group is lower than the proportion of relapses in a high 
expressed emotion group, using the data of Table 13.13. 

In the case of the above table, the computer gives a total SP of 1 for the 
test of the hypothesis that there is no difference between the proportions in 
the populations from which the samples were taken (a two-sided test). It  also 
gives an obtained SP of 0.534 for the (one-sided) test of the hypothesis that 

the low expressed emotion families have a smaller proportion than the high 
expressed emotion families (instead of merely a different proportion). This 
tells us that there is a very high probability of obtaining a table as or more 
extreme than the above, if the null hypothesis of identical proportions in the 
two populations (high and low expressed emotion) is true. In terms of the 

Montero, I., Gomez-Beneyto, M., 
Ruiz, I., Puche, E. and Adam, A. 
(1992) The influence of family 
expressed emotion on the course of 
schizophrenia in a sample of 
Spanish patients. British Journal 
of Psychiatry, 161, 217-222. 

Table 13.13 Cross-classification 
of high and low expressed emotion 
by whether the patient did or did 
not relapse 

Expressed emotion 
Low High 

Relapse 17 16 
No relapse 14 12 
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research question, we have no reason to suppose that patients belonging to 
families with high or low expressed emotion differ in the probability that they 
will relapse. 

This subsection brings us rather naturally to the topic of contingency tables, 
a way of setting out bivariate data, and also to tests of association. 

Contingency tables 

Questions involving the relationships between variables are very common. 
They include such questions as 'Does this cause that?' 'Are these properties 
related?' 'Does the relationship between these change according to the level 
of some third variable?' and so on. The course has focused on relationships 
between two variables since this is the most important special case, and occurs 
very commonly. (Chapter 14 briefly discusses some of the extensions which 
are possible when more than two variables are involved.) 

As far as two variables are concerned, correlation and regression methods 
have been described for answering questions about the relationship between 
variables which are measured on a numerical scale, and contingency table 
and chi-squared techniques are appropriate for answering questions about the 
relationships between variables which have categorical scores. In this section 
the chi-squared test is revised. 

13.4.1 Hospital treatments 
The data reproduced in Table 13.14 show the results of a surgical procedure 
designed to improve the functioning of certain joints which have become im- 
paired by disease. For each of five hospitals, counts are given of the numbers 
of patients who fall into each of three post-operative categories: no improve- 
ment, partial functional restoration and complete functional restoration. The 
question we would like to answer is: are the response patterns of the hos- 
pitals different? So, for example, does one hospital produce more complete 
functional restorations than the others? 

Table 13.14 Results of surgical procedure classified by hospital 

Hospital 
A B C D E  

No improvement 13 5 8 21 43 
Partial functional restoration 18 10 36 56 29 
Complete functional restoration 16 16 35 51 10 

Total 47 31 79 128 82 

Now, clearly, from looking at the table we can see that hospital D does pro- 
duce more complete restorations than do the other hospitals. But this simple 
number does not take into account the overall number of patients seen by that 
hospital. Indeed, the last row of the table shows that the sample of patients 
seen by this hospital is greater than the sample seen in any of the other hospi- 
tals. Somehow we must make an allowance for this in comparing the patterns 
of results across the hospitals. 

Box, G.E.P., Hunter, W.G. and 
Hunter, J.S. (1978) Statistics for 
Experiments. John Wiley and 
Sons, New York. 

Box, Hunter and Hunter take pains 
to point out that these categories 
were carefully defined in terms of 
measurable phenomena. 
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Moreover, we are just dealing with samples here. In fact, we would like our 
conclusions to be more general than that-we really want to make an inference 
to the likely outcome on future patients, not simply produce a summary of 
the results observed in the particular sample taken. To put it another way, 
one with which you should be completely familiar by now, we want to see if 

there are differences in the underlying population from which our sample of 
results was drawn. And we do this by assuming that the distributions across 
the hospitals are the same and exploring, under this assumption, how often 
one would obtain data as extreme as that observed. 

One approach might be to convert the numbers to proportions. Dividing 
each number in a column by the column total, we can show, for each hospital, 
what proportion of patients had no improvement, what proportion had partial 
functional restoration, and so on. 

The results of these calculations are shown in Table 13.15. 

Table 13.15 Results of surgical procedure classified by hospital, 
converted into column percentages 

Hospital 
A B C D E  

No improvement 27.7 16.1 10.1 16.4 52.4 
Partial functional restoration 38.3 32.3 45.6 43.8 35.4 
Complete functional restoration 34.0 51.6 44.3 39.8 12.2 

From this we can see that the previous exceptionally large number of patients 
with complete functional restoration in hospital D is, in fact, mainly a function 
of the large sample size assessed for this hospital: hospitals B and C both have 
a greater proportion of patients classed into this category in our sample. 

But we are still only talking about a sample. Do our sample results reflect 
real underlying differences in proportions? 

In Chapter  11 we saw how this question could be addressed using a chi-squared 
t e s t  for independence. This tests the null hypothesis that the distributions 
down the columns are the same for all columns. (This is equivalent to the 
null hypothesis that the distributions across the rows are the same for each 
row, and also to the null hypothesis that the row and column classifications 
are independent-hence the name of the test.) That is, beginning with this 
null hypothesis as a basic assumption, the expected number in each cell of 
the table is calculated. The chi-squared test statistic is then calculated-this 
is a measure of the difference between the observed numbers in the cells and 
the expected numbers. Its size tells us how large the difference is, and its 
distribution under the assumption of independence can be calculated. By 
comparing the observed value of this test statistic with this distribution we 
can see how unlikely such a value would be, if the null hypothesis were true. 

Exercise 13.12 
Under the null hypothesis of independence, calculate expected values for each 
of the cells in Table 13.14. Use these to calculate a value of the chi-squared 
test statistic and hence obtain a significance probability for the test. Interpret 

your findings. 
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In fact, as it happens, hospital E is different from the other hospitals. It  
is a 'referral' hospital. Given this piece of extra information, we might ask 
whether the difference in outcome distributions that we have observed can, at 
least in part, be attributed to the difference between the referral hospital 
and the others-the difference between hospital E and the others. Some 
suggestion that this might be the case is afforded by Figure 13.6. This shows 
the proportions listed in Table 13.15, displayed in a more convenient way. 

Percentage 

0 1 I I 

No improvement Partial functional Complete functional 
restoratio~i restoration 

Figure 13.6 Proportions in each hospital showing each outcome 

It certainly does look as if hospital E differs from the others, but again we 
have to ask whether the difference reflects a real underlying difference or if it 
could just be due to sampling variation. 

The question we are now considering still involves the three outcome categories 
that we had before, but now it involves just two hospital categories, referral 
and non-referral. This means that we are interested in the condensed table 
shown in Table 13.16. 

Table 13.16 Table showing referral and non-referral results 

Referral Non-referral 
hospital (E) hospitals (A, B, C, D) 

No improvement 43 47 
Partial functional restoration 29 120 
Complete functional restoration 10 118 

Tot a1 82 285 

A chi-squared test on this table yields a test statistic value of X 2  = 49.8 and 
relating this to a chi-squared distribution with (3 - 1)(2 - 1) = 2 degrees of 
freedom again shows a very low significance probability (SP = 1.5 X 10-l'). 
So it does seem that hospital E differs from the others. 

Box, Hunter and Hunter also conducted a test on the four non-referral hospi- 
tals, to see if any difference between them is statistically significant. It turns 
out not to be, with a chi-squared test statistic value of X 2  = 8.3 and, from the 
chi-squared distribution with 6 degrees of freedom, a SP equal to 0.22. 
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Thus the highly significant difference between the outcome profiles of the 
hospitals seems to be largely attributable to the difference between the referral 
and non-referral hospitals. 

13.4.2 The Framingham Heart Study 
The Framingham Longitudinal Study of Coronary Heart Disease was an im- 
portant investigation into the factors causing heart disease. Among the vari- 
ables measured were blood pressure and serum cholesterol. One question of 
interest is whether these are related. Reproduced below, in Table 13.17, is 
the distribution of these variables for 1237 subjects without heart disease. Fienberg, S.E. (1979) The  analysis 

of cross-classified categorical data. 
Table 13.1 7 Cross-classification of systolic blood pressure MIT Press, USA. 

by serum cholesterol for those subjects without heart disease 

Serum cholesterol Systolic blood pressure (mm/Hg) 
(mg/ 100cc) < 127 127-146 147-166 > 166 

< 200 117 121 47 22 
200-219 85 98 43 20 
220-259 119 209 68 43 
> 259 67 99 46 33 

Now this example is rather different from that in Section 13.4.1. Both vari- 
ables here are numerical, but they have been grouped into categories. If they 
had not been grouped and the original raw scores for each subject were avail- 
able, then we could plot a scatter diagram and judge by eye whether the 
variables were related. We could also calculate a correlation coefficient. (In- 
deed, we could obtain a rough correlation coefficient from the data we have 
by assigning some numerical value to each of the levels of the two categorized 
variables.) 

However, the correlation coefficient is only a measure of linear relationship be- 
tween two variables. That might be useful in particular circumstances-and, 
in particular, it might be useful in the present case if we merely wanted to 
know if blood pressure and serum cholesterol increased or decreased together 
in the population. On the other hand, we might be interested in the more 
general question of whether there was any relationship between the variables, 
not simply a linear one. The chi-squared test addresses just that-it seeks 
departures from independence, without restricting them to be linear. 

Also in this example, it is not so clear which set of profiles are the relevant ones. 
In Section 13.4.1 it was obvious that we wanted to compare column profiles. 
But here the real question is rather one of whether or not the variables are 
independent. 

Exercise 13.13 
Under the null hypothesis of independence calculate a value of the chi-squared 
test statistic for the data in Table 13.17 and hence obtain a SP for the test. 
Interpret your results. 
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Correlation 

13.5.1 The dopamine hypothesis of schizophrenia 
Signals in the brain are carried between cells by chemicals called neurotrans- 
mitters. These leave one cell and arrive at the receptors of another. In recent 
years the dopamine hypothesis of schizophrenia has postulated that in those 
individuals with this condition there will be an increase of a certain type of 
receptors called D2 dopamine receptors. This hypothesis is based on results 
of post mortem and in vitro studies. However, in vivo studies using positron 
emission tomography and single photon emission tomography do not report 
density increases of these receptors. Martinot and colleagues focused their 
research on the hypothesis of a link between the density of striatal D2 recep- 
tors and certain clinical dimensions of schizophrenia. To determine the former 
they injected a radioactive isotope into the patients and measured the ratio of 
striatum to cerebellum radioactivity concentration two hours after injection 
(this is called the S:C ratio). One measure of the latter that they used was 
psychomotor expressiveness which is derived as a weighted combination of the 
responses to a number of indicators: this is called PEF. 

Table 13.18 shows the results of these measurements taken on ten schizophrenic 
patients (seven men and three women) who formed a very homogeneous group 
of young, drug-free patients with a short course of illness. One reason for 
choosing such a homogeneous sample was that the investigators were restricted 
to a small sample: keeping them homogeneous eliminated superfluous vari- 
ation, so making estimates more accurate. Of course, on the other hand, it 
makes inferences to other types of people (older patients, those taking medi- 
cation, those with a long course of illness) more problematical. - In  an ideal 
world we would have a large sample randomly selected from the entire popu- 
lation of schizophrenic patients, but this is impracticable for several reasons, 
including that of cost. 

The question of interest is whether there is a relationship between the two 
scores. A plot of the data is given in Figure 13.7. There certainly seems to 

PEF 

50 - 

40- 

30 - 

20 - 

4.0 
S:C ratio 

Martinot, J.L., Paillere-Martinot, 
M.L., Loc'h, C., Lecrubier, Y., 
Dao-Castellana, H., Aubin, F., 
Allilaire, JP . ,  Mazoyer, B., 
Maziere, B. and Syrota, A. (1994) 
Central D2 receptors and negative 
symptoms of schizophrenia. British 
Journal of Psychiatrg, 164, 27-34. 

In fact, the PEF was the first 
factor which resulted when a 
'principal components' analysis was 
performed. This is an advanced 
statistical technique which is 
outlined in Chapter 14. 

Table 13.18 PEF 
and S:C measurements 
for 10 patients 

PEF S:C 
48 3.32 
42 3.74 
44 3.70 
35 3.43 
36 3.65 
28 4.50 
30 3.85 
13 4.15 
22 5.06 
24 4.27 

Figure 13.7 A plot of psychomotor expressiveness factor (PEF) against S:C 
ratio for the sample of ten schizophrenic patients 
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be a relationship, but how strong is it and could the apparent relationship have 
arisen by chance (by an accident of the way the sample of patients was drawn) 
from a population in which there is, in fact, no such relationship overall? 

This sort of question was raised in Chapter 11, where the ideas of correlation 
were introduced. There the Pearson correlation coefficient was described as 
a measure of the strength of a straight-line relationship between two sets of 
scores. Its value for the data given in Table 13.18 is -0.72. The negative sign 
indicates that increasing S:C ratio is associated with decreasing PEF score 
(and vice versa). The absolute size (0.72) means that the relationship appears 
to be reasonably strong. (Whether or not a particular size of a correlation 
coefficient is regarded as 'large' depends very much on the field of application. 
In areas such as psychology and sociology, where there are typically large 
variances in measured values, a coefficient of 0.72 may be quite respectable. 
In contrast, in areas such as physics and engineering, where the variances may 
be small, 0.72 might be regarded as a sign of a very weak relationship. It very 
much depends on the question and the type of data involved.) 

Now let us consider the second question. Could a correlation coefficient of 
-0.72 have arisen easily by chance sampling from a population in which there 
is no overall relationship? 

Exercise 13.14 
For the data in Table 13.18 with Pearson correlation -0.72, test the hypothesis 
that the underlying correlation is zero, and state the conclusions to be drawn 
from your test. 

It seems unlikely that we would have obtained such'a strong relationship in 
our sample if the population had no relationship. 

13.5.2 Finger ridges of identical twins 
The data in Table 13.19 are counts of the numbers of finger ridges of individ- 
uals for twelve pairs of identical twins. 

Numbers of finger ridges are evidently similar within the pairs, but vary con- 
siderably between different sets of twins. The interest lies in estimating the 
correlation between identical twins. A scatter plot is given in Figure 13.8. 
Notice, incidentally, that two of the points on the plot are superimposed at  
(114,113). 

The relationship looks very strong: we can proceed with calculating the 
sample correlation coefficient. 

Exercise 13.15 
Calculate the sample correlation coefficient for the data in Table 13.19. Is 
there high correlation between finger ridge counts for identical twins? 

(Incidentally, it is not clear in Table 13.19 by what means 'Twin 1' is dis- 
tinguished from 'Twin 2', but different definitions could lead to slightly differ- 
ent estimated correlations.) 

Newman, H.H., Freeman, F.N. and 
Holzinger, K.J. (1937) Twins. 
University of Chicago Press, 
Chicago. 

Table 13.19 Numbers of 
finger ridges of identical twins 

Pair number Twin l Twin 2 
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Twin 2 

-- 8 

40 80 120 

Twin 1 

Figure 13.8 Scatter plot of finger ridge counts of identical twins 

13.6 Regression analysis 

Regression analysis seeks to explain, or at  least to model, the way in which 
the distribution of a random variable Y alters with changing circumstances 
(such as passing time). 

13.6.1 Wind speed and athletes' times 
This study was designed to investigate the effect, if any, of a following wind 
on sprinters' running times in athletic events. It is generally accepted that 
a following wind aids sprinters and horizontal jumpers such as long jumpers Hitchcock, S. (1993) Does wind 

and hurdlers: times and distances are not counted for record purposes if the 'peed affect times? Dack Stats, 
31, 19-26. 

following wind speed exceeds 2.0 metres per second. 

The wind speed and race time were recorded for the 21 races for the British Table 13.20 Wind speed and 
110m hurdler Colin Jackson in 1990. These data are listed in Table 13.20. race time, 110111 hrdles  

A negative wind speed indicates a head wind. A scatter plot of the data is Wind 'peed (m/s) Time 

given in Figure 13.9. Here, wind speed is treated as the explanatory variable -2.9 13.53 

and race time as the response. -2.0 13.63 
-1.6 13.39 

Time (seconds) 

13.0 1 I I I r 3 I 

- 3 - 2 - 1 0 1 2 3 

Wind speed (metres per second) 

2.9 13.12 
Figure 13.9 Colin Jackson's performances in 1990 



Elements of Statistics 

There is, evident in Figure 13.9, a tendency for faster times to be associated 
with stronger following winds, although there is considerable scatter. 

Exercise 13.16 
Fit a least squares straight line to the data of Figure 13.9, and comment on 
the usefulness of the fitted model for predicting future race times, given wind 
speed and direction. 

The fitted model suggests that in 1990 Jackson would have run 13.32 seconds 
on average in windless conditions. For every metre per second following wind, 
he ran on average 0.085 seconds faster. 

The estimated slope p = -0.085 seems very small in absolute terms. To test 
the hypothesis that wind speed has no effect on athletes' times (or, a t  least, 
on Jackson's times) one can set up a one-sided hypothesis test as follows. 

Exercise 13.1 7 
Calculate the obtained SP for the hypothesis that there is no wind speed 
effect, using the data provided, and interpret your findings. 

13.6.2 Using X-rays to kill bacteria-Part I 
The 'single hit' hypothesis of X-ray action under constant radiation fields 
states that bacteria have a single vital centre and that this has to be hit by an 
X-ray in order to kill or inactivate the bacterium. To explore this, the data in 
Table 13.21 were collected. These show estimates of the numbers of bacteria 
which survive 200 kilovolt doses of X-radiation over various periods ranging 
from 6 minutes to 90 minutes. If the theory is correct, then the relationship 
between the time of exposure, t, and the number of bacteria surviving, nt, 
should have the form 

where no and ,B are parameters describing the hypothesized relationship. The 
number no is the number of bacteria at the start of the experiment (as can 
be seen by setting t = 0 in the model) and < 0 is the rate of destruction of 
the bacteria. 

A plot of nt against t is shown in Figure 13.10. This has the sort of shape 
one would expect if the model at (13.1) were true-the value of nt decays as t 
increases. And, of course, as we expect from real phenomena, the relationship 
is not perfect. There is some variation about the postulated model, perhaps 
due to measurement error or random fluctuation. 

Chatterjee, S. and Price, B. (1977) 
Regression analysis by example, 1st 
edn. John Wiley and sons, New 
York, p. 32. 

Table 13.21 Number of 
surviving bacteria after exposure 
to X-rays for the indicated time 

Time Estimated 
(minutes) number surviving 

6 35 500 
12 21 100 
18 19 700 
24 16 600 
30 14 200 
36 10 600 
42 10 400 
48 6 000 
54 5 600 
60 3 800 
66 3 600 
72 3 200 
78 2 100 
84 1900 
90 1500 
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Survivors (thousands) 

Time of exposure (minutes) 

Figure 13 .10  Estimated number of bacteria surviving plotted against time of 
exposure to X-rays 

We want to go further than simply say 'it has the sort of shape we would 
expect'. We would like to fit our model to these data. The difficulty is that 
the model is not a simple linear model-it is not a straight line of the kind 
we have learned how to fit. We can try to transform the model so that it 
becomes a straight line and then fit a straight line to similarly transformed 
data. 

Transforming the model at  (13.1) by taking logarithms yields 

log(nt) = log(n0) + Pt t 2 0 (13.2) 

which has exactly the linear form we want. Now we can easily fit a straight 
line to these data and obtain estimates of the regression slope, P, and the 
intercept term, log(no), and hence no. 

A plot of the time of exposure against the logarithm of the number of surviving 
bacteria produces Figure 13.11. As can be seen, this is indeed much better 
modelled by a straight line-so it seems that the hypothesis, the theory that 
the relationship between nt and t has the form (13.1), may well be a good 
model for the data. 

Time of exposure (minutes) 

Figure 13.11 Log(number of bacteria surviving) plotted against time of 
exDosure to X-ravs 
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Exercise 13.18 
Find the equation of the least squares regression line of log(nt) against t ,  and 
estimate the number of bacteria at time 0. 

Finally, just to check the fit of the model, Figure 13.12 shows the residuals 
from the fit. There seems to be no obvious pattern here-the model seems to 
provide a good fit. 

Residuals 

0 30 60 90 

Time of exposure (minutes) 

Figure 13.12 Residuals resulting from fitting a straight line to the data in 
Figure 13.11 

13.6.3 Using X-rays to kill bacteria-Part I1 
A similar data set was analysed by Efron and Tibshirani (1993), and this 
is reproduced in Table 13.22. Here fourteen plates containing bacteria were 
exposed to differing doses of radiation and the proportions of bacteria which 
survived were measured. 

The investigator, however, was uncertain about the measurement for plate 13 
-indeed, its score seems higher than one might expect by looking at  neigh- 
bouring values. Following the same reasoning as in the previous study it was 
hypothesized that the logarithm of the number surviving might be linearly 
related to the dose. (In fact, Efron and Tibshirani also considered the possi- 
bility of a quadratic model-that log(proportion surviving) might decrease 
in a way related to the square of the dose. However, for our discussion we 
shall limit ourselves to a simple linear fit.) A plot of log(proportion surviving) 
against dose is shown in Figure 13.13. 

It is quite apparent from Figure 13.13 that the result for plate 13 is indeed 
anomalous. Efron and Tibshirani comment about this scatter plot: 'Statis- 
ticians get nervous when they see one data'point, especially a suspect one, 
dominating the answer to an important question.' Outlying points like this 
deserve careful study. The basic question is whether it is different for artefac- 
tual reasons, not related to the system being studied (for example, it could 
be different because of instrument malfunction or misread laboratory notes), 
or whether it represents a rare aspect of the system, so that only occasional 

Efron, B. and Tibshirani, R.J. 
(1993) A n  introduction to  the 
bootstrap. Chapman and Hall, 
London, p. 116. 

Table 13.22 Radiation 
dose and proportion of 
bacteria surviving 

Plate Dose Proportion 
surviving 
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log(proportion surviving) 

O i  
The outlying point on the 
right-hand side arises from plate 
13, supporting the investigator's 

I t suspicidns regarding the 
a measurement for this plate. 

, , :  0 1.1752.35 4.7 7.05 9.4 8 1 14.1 : ,  
-10 

Dose 

Figure 13.13 Log(proportion surviving) plotted against dose 

points would show such extreme, but perfectly valid values. It is always worth 
going back to the original data source to see if the question can be resolved. 

In this case, given the investigators' suspicions about point 13, let us drop 
it from the analysis and model only the remaining data points. Doing this 
yields a best-fitting straight line with intercept 0.015 and slope -0.779. That A line constrained through the 
is, the fitted model is origin (corresponding to no = 1) 

has slope -0.777 and equation 
log(nd) = 0.015 - 0.779d, log(nd) = -0.777d. 

where d is the dose and nd is the proportion surviving at  dose d. Translating 
this back into the original units gives 

nd = 1 . 0 1 5 e - ~ . ~ ~ ~ ~ .  

Conclusion 

In the introduction, the aim of this chapter was stated as being to revise some 
of the material which has appeared in the course so far. Instead of giving 
a condensed presentation of the earlier material, we have reviewed various 
methods and techniques by way of case studies. 

Throughout the data have been approached methodically by means of a se- 
quence of procedures which have not always been spelled out but which have 
been there nevertheless. Briefly these are as follows. 

1 Identify the question or questions that need to be answered, and express 
it in statistical terms. 

2 Try to find a helpful picture for the data. 

3 Ask some fundamental questions about the data and the way they seem 
to be distributed. 

4 Be aware of the assumptions involved in any method you decide might be 
appropriate, and check them. 

5 Ask yourself if you are satisfied that your method is justified and, if not, 
try to modify it. 

6 Give a careful statement of your conclusions. 
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A Look Forward 

In this final chapter of the course, we look forward to some further applications of 
statistics, involving more advanced methods and techniques. For instance, we have 
already seen how to compare two independent samples, and test the hypothesis 
that they are drawn from populations with equal means: the technique known as 
analysis of variance allows us to compare more than two samples. We have seen 
how to represent two-variable problems through scatter diagrams, and have learned 
about regression analysis and correlation: multivariate problems involving several 
variables are less easy to represent graphically and to summarize coherently, and 
techniques useful here include cluster analysis, principal components analysis and 
multiple regression. 

The aim in this course has been to provide a solid grounding in the funda- 
mentals of statistics. There have been introduced such important notions as 
probability distributions as models of variation, model parameters and how 
to estimate them, statistical tests, correlation and regression, and many other 
basic statistical concepts. An attempt has been made to do this in a relaxed 
style, showing some of the historical context of the subject and throughout 
emphasizing its applicability by using real data which arise from real ques- 
tions. Statistics is, above all else, about solving problems-it is also, however, 
a vast subject, and even in a book of this size we are not able to study it in 
depth. Moreover it is an immensely powerful subject in terms of the range 
and type of problems to which it can be applied. It is therefore appropriate to 
conclude the book with a chapter illustrating some more advanced techniques 
and the sorts of problems they can be used to solve. 

Clearly in doing this, given the space available to us, we cannot go into too 
much technical detail. Therefore, what has been attempted in the sections 
which follow is to convey the flavour of the techniques, showing some of the 
questions they can be used to address, and how they can answer those ques- 
tions, without labouring the theory. These descriptions are not intended to 
be sufficient to enable you to undertake such analyses without further instruc- 
tion, but simply to convey the sorts of things that are now possible. In keeping 
with the overall philosophy of the course, the techniques are applied to real 
data sets and address real questions. And in this chapter, above all, the role 
of the computer is essential for the arithmetic involved. Section 14.1 looks at 
analysis of variance. This is a technique which compares several groups of 
scores simultaneously. At its most elementary level it can address questions 
such as: are there any differences between the means of the populations from 
which these samples are drawn? At a more sophisticated level it can tell us 
whether one variable influences the relationships between others. 
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Section 14.2 considers the class of techniques termed cluster analysis. Such 
methods are used to see if the data fall into natural groups of objects. This 
can be useful for scientific purposes-are there different 'kinds' of objects 
represented by the data? Or it can be useful for administrative purposes--do 
natural groups exist such that they should be treated differently? 

Section 14.3 illustrates principal components analysis. Often objects being 
analysed have many measurements taken on them and it is useful to see if the 
natural variability between the objects can be summarized in a more efficient 
manner. This might be as a precursor to further analysis, or it might simply 
'be as an end in itself, permitting, for example, a more comprehensible display 
of the data. 

Section 14.4 gives an example of discriminant analysis. This is one of a 
class of methods for characterizing the differences between groups. There are 
two broad reasons for wishing to do this. One reason is simply a desire to 
understand the differences between groups, such as: in what ways do they 
differ? What are the most important differences? The other reason is to 
enable one to easily assign new objects to the appropriate group. 

Section 14.5 demonstrates the ideas of log-linear models. In Chapter 11 it was 
shown how two categorical variables could be examined. Log-linear models 
extend this to the case of more than two categorical variables, permitting 
different models to be fitted and explored. 

Section 14.6 extends the ideas of simple regression, introduced in Chapter 10, 
to the case of multiple regression. This involves several explanatory variables 
instead of just the one introduced earlier. The extension turns out to have 
some interesting and unexpected properties not possessed by the single ex- 
planatory variable case. 

The chapter ends with some concluding remarks about the course. 

14.1 Analysis of variance 

In Chapter 8 the two-sample t-test was used to compare the means of two 
different groups of scores and we saw, for example, how this approach could 
be used to compare treatments to see which was more effective. The t-test can 
be generalized to permit comparisons between more than two groups. This 
generalization is called analysis of variance. 

In Chapter 8, Table 8.10, data were given on the silver content (% Ag) of 
coins taken from four different mintings during the reign of King Manuel I 
(1143-1180). There were nine coins from the first minting, seven from the 
second, four from the third and seven from the fourth. The data are repeated 
in Table 14.1. 

What is of interest here is whether there is any significant difference in the 
mean silver content of the coins between different mintings. The four sample 
means are 

Table 14.1 Silver 
content (% Ag) of coins 

6.9 In a hypothesis test for equality of two means, the variation in the two sample 
6.2 

means is measured by calculating their difference Z1 - Z2. When more than 
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two populations are involved, we-cannot measure the variation in the sample 
mean by simply calculating a difference. Instead we take a weighted average 
of their squared deviations from the overall mean ?i? of all the sample data. In 
this case we have F = 6.563 and our measure of variation in the sample means 
is given by 

You can see the reason for the term 'analysis of variance' in a comparison 
of means. The statistics involved are variances (squared differences) rather 
than simple differences between means. The assumptions of an analysis of 
variance are: first, that the samples taken from the populations under study 
are independent of one another; second, that the populations are normally 
distributed; and third, that the variances of the populations are equal. The 
samples are clearly independent, since the mintings are different. The sparsity 
of the data make any assumption of normality difficult to confirm: in fact, we 
saw in Chapter 9, Section 9.1, that normal probability plots suggest that this 
is a reasonable assumption, at least for the first and fourth mintings. The 
four sample variances are 

and here the variation in the second coinage is substantially greater than 
that in any of the  other three. However, the sample sizes are very small, 
and we have seen that when this is the case, large differences in the sample 
variances may not be too damaging to the conclusions of a test. An estimate 
of the common variance in the four populations is given by the pooled sample 
variance 

The form of this expression for the 
pooled sample variance is identical 
to (8.7) forthe two-sample case. 

The test for equal population means consists of comparing the estimated vari- 
ance in the means (in this case, 12.58) with the pooled sample variance (0.48). 
The ratio of the two estimates is 26.3, suggesting a variation in the sample 
means very much greater than would have been expected if the population 
means were equal. The distribution of this ratio under the null hypothesis 
of equal population means (and when the assumptions of independence, nor- 
mality and equal variances are satisfied) follows a well-known form called the 
F-distribution. Significance probabilities are easily calculated and here, in 
fact, the SP of the test is just 1.3 X 1 0 - ~ .  There is very considerable evidence 
from the analysis that the population means differ, that is, that the silver 
content alters significantly from coinage to coinage. 
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The test just performed is called a one-way analysis of variance because 
each data item was classified in one way, according to the population (minting) 
from which it was drawn. Here four samples were compared, but the analysis 
extends in an obvious way to more than four samples (and, in fact, a one-way 
analysis of variance on just two samples reduces exactly to the two-sample 
t-test with which you are familiar, because of mathematical relations existing 
between the t-distribution and the F-distribution). 

A non-parametric version of the test, useful when the assumption of normality 
is very questionable, is the Kruskal-Wallis one-way analysis of variance 
in which the samples are pooled and ranked, and the ranks within each sample 
are then compared. This is a test for equal population medians (and again 
assumes equal variance within the populations). 

Naturally, when there is evidence that the means of the populations are dif- 
ferent, one would wish then to go further and identify which were 'signifi- 
cantly' higher than which others. To deal with this, some sort of multiple 
comparisons procedure is appropriate. (Such procedures are not always 
straightforward.) 

The generalization of a t-test to an analysis of variance has other advantages 
too: in particular, we can explore the effect of multiple factors. For instance, 
in a two-way analysis of variance each data item is classified in two ways. 

Suppose, for example, that we were interested in comparing six different pre- 
pared treatments for a particular illness. In a one-way analysis of variance we 
would allocate patients to six different groups, administer a different treat- 
ment to each group and explore whether there were differences in the mean 
response. However, suppose that, in addition to being interested in any differ- 
ences between the six treatments, we were also concerned about their effects 
on two groups of patients: those who had the disease moderately and those 
who had the disease severely. We might suspect, for example, that the treat- 
ment effects differed between the two groups of patients. Perhaps it turns out 
that all treatments were more effective on the severely ill, or perhaps, more 
complicatedly, that some treatments were more effective on one patient group 
and some more effective on the other. We now have two factors which we 
would like to study: treatment and disease severity. 

We could undertake a number of separate studies, some comparing the effects 
of single treatments on the two severity groups (each of these would just use 
a t-test since there are only two groups) and one comparing the six treatment 
groups. However, this would involve many tests, and would in any case not 
lead to a neat answer to questions about whether the pattern of responses 
to the six treatments differed between the two severity groups. To answer 
such questions we need a more global approach: we need to look at the cross- 
classification of severity by treatments. Each patient will fall into only one 
group according to the treatment they have received and the severity of their 
illness. 

Table 14.2 shows data from an investigation into the effectiveness of differ- 
ent kinds of psychological treatment on the sensitivity of headache sufferers 
to noise. There are two groups of 22 subjects each: those suffering from a 
migraine headache (coded 1 in the table) and those suffering from a tension 
headache (coded 2). 

A cross-classification is where each 
data item is classified into a 
category according to two or more 
factors. 

A more detailed description is 
given in Hand, D.J. and 
Taylor, C.C. (1987) Multiuariate 
analysis of variance and repeated 
measures. Chapman and Hall, 
London, p. 157. 
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Half of each of the two headache groups were then randomly selected to receive 
a treatment (coded 1 in the table). The other half (coded 2) did not receive 
any treatment and acted as a control group,  so that the effectiveness of the 
treatment could be assessed. This means that we have a cross-classification 
involving two factors, headache type and treatment/control, each at two levels. 
There are thus four cells in the cross-classification. 

Table 14.1 Relaxation training and effect of noise on headaches 

Headache Treatment Score Headache Treatment Score 
type group type group 

Each subject then listened to a tone which gradually increased in volume. The 
level of volume at which the subject found the tone unpleasant was recorded, 
and these are the scores given in the table. 

Table 14.3 shows the mean scores in each of the four groups. 

Table 14.3 Mean scores for the 
headache treatment data 

Headache type 

Migraine Tension 

Treatment group 4.688 4.111 
Control group 2.192 2.518 

Again, for legitimate application of an analysis of variance, it is necessary to 
make certain assumptions about the data. For example, it is assumed that 
the data in each group arise from a normal distribution and that the variances 
in the groups are equal. With only eleven cases in each group the histograms 
or boxplots will not give very reliable indications of shapes of distributions 
or sizes of standard deviations but nevertheless the boxplots in Figure 14.1 
suggest that there is some skewness. 
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Headache type 1, treatment group 1 

Headache type 1, treatment group 2 

Headache type 2, treatment group 1 

Headache type 2, treatment group 2 

l I 

0 5 10 15 20 
Score 

Figure 14.1 Boxplots of scores for the four groups 

To reduce the skewness, logarithms of the data were taken before proceeding Log transforms were in this case 
further. Figure 14.2 shows that skewness is improved after this and in fact taken to base 10. The effect of the 

a formal statistical hypothesis test showed no significant differences between extreme 15.20 and 
11.50 on the skewness within 

the standard deviations-the differences observed could easily have arisen by groups is substantially reduced by 
chance even if the four populations in question had equal standard deviations. taking logarithms. Even after this 

The means of the transformed data are shown in Table 14.4. 

Table 14.4 Mean scores for the 

transformed headache treatment data 

Headache type 
Migraine Tension 

Treatment group 0.540 0.537 
Control group 0.124 0.356 

transformation, the outlier in the 
second treatment group remains. 
However, complications of a 
different kind ensue if the numbers 
of subjects in each group are not 
the same; and therefore this 
response is retained in the analysis. 

Obviously these means differ. The question is: do the differences reflect real 
differences between populations of people with the two kinds of headaches and 
given the two kinds of treatments? Or is it just a matter of chance that we 
happened to draw 44 people for whom the means differed in this way-and 
could they easily have been drawn from populations with identical means? 

izrY . Headache type 1, treatment group 2 

Headache type 2, treatment group 1 

Headache type 1, treatment group 1 E :*--X2 
S-%- 

€E+ Headache type 2, treatment group 2 

y 

I 1 I I I I I 

-1 -0.5 0 0.5 1 1.5 2 
Transformed score 

Figure 14.2 Boxplots of transformed scores for the four groups 

These questions are rather general. More specifically, we want to know if there 
are real differences between treatments and also if there are real differences 
between headache types. As was noted above, we might also be interested in 
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whether or not the pattern of responses to the treatments varies from headache 
type to headache type. 

Let us first look at headache type. In fact, although there are only 11 subjects 
(patients) in each of the four groups, in each headache type there are 22 
subjects. This shows an important advantage of using the cross-classification, 
rather than conducting separate analyses for treatment and headache type. If 
we performed separate analyses with 22 subjects in each group, we would need 
a total of 22 X 2 = 44 subjects for each of the two separate analyses-that is, 
88 subjects in all. The cross-classification gives us 22 subjects in each group 
but with a total of only 44 subjects. For half the cost we have achieved the 
same power in our statistical analysis. 

How should we proceed from here? Without going into technical details, we 
follow exactly the same sort of generalization as outlined for the one-way 
analysis of variance. That is, we calculate a measure of the variation between 
the means of the two headache types and compare this with the variation 
within groups., To do this, the 'within-group' variation is calculated as the 
common variance of all four of the groups in the cross-classification. 

Again, the hypothesis being tested is whether the 'between-groups' variation 
could easily have arisen by chance from populations showing the internal 
variation in the data. 

For the headache types the variance ratio resulting from this calculation has 
value 1.401. By reference to the F-distribution with appropriate degrees of 
freedom, the corresponding SP  is found to be 0.244. This is quite a large 
probability, and is certainly not enough for us to reject the null hypothesis of 
equal mean scores with any degree of confidence. Our conclusion is thus that 
we have no evidence to suppose that there is a difference between headache 
types. 

We can now do an analogous analysis for the two treatments. The results give 
a variance ratio of 9.49. This is substantially larger than that for headache 
type and, in fact, referring it to the F-distribution shows that the SP  is 
0.004. This is highly significant: it is very unlikely that a difference between 
treatment and control groups as large as this could have arisen by chance if 
the measurements were taken from normal populations with identical means. 

Informally, our overall conclusion is thus that there is no difference in mean 
responses between the two headache types, but there is a difference in the 
mean responses to the two 'treatments' (treatment versus control). Also, 
looking at the table of means in Table 14.3, we see that the mean scores 
are large for the treatment group. This means that subjects in the treatment 
group could take a louder tone without finding it unpleasant: there is evidence 
that the treatment is effective. 

A more extended analysis also showed that there is no interaction: that is, 
there is no difference between the ways the two treatments work on the two 
headache types. 

So, analysis of variance may be regarded as a generalization of the t-test. It 
extends to multiple (rather than merely two) groups. It permits the effects 
of different factors to be disentangled. It allows one to test for interaction 
effects, and it provides a more powerful analysis than would be possible if the 
factors were analysed separately. 
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Remember, the tests are based on a comparison of variances-hence the name 
'analysis of variance'. Note, however, that the analysis is used to test the 
possibility that the groups have different means. 

14.2 Cluster analysis 

Analysis of variance is used for answering questions about the differences 
between groups of subjects. The group categories are defined before the data 
are collected and each subject falls into just one of the categories. A common 
use is as a hypothesis testing technique, in the sense that one knows beforehand 
the questions or hypotheses one wants to investigate. For example, in the 
preceding section we wanted to know if there was a difference between the 
two types of headaches, if there was a difference between the two types of 
treatments, and also, if the response to the treatments depended on the type 
of headache (that is, if there was an interaction). 

In contrast, cluster analysis is an exploratory technique. Cluster analysis 
seeks to identify natural groupings or clusterings in a collection of subjects. 
'Subject' here may refer to almost anything, for instance 

0 people, measured on certain physiological characteristics: the aim may be 
to see if there are different physical types; 

0 people, measured on behavioural characteristics: to see if there are charac- 

teristic patterns of behaviour; 
0 manufactured products, with records taken of how demand for each prod- 

uct varies over the course of a year: the aim could be to see if such products 
fall into natural groups in terms of the patterns of demand for, them; 

0 retail outlets of a large supermarket, with interest focusing on the charac- 
teristics of the local environment: perhaps to see if the stores fall into 
natural groups of distinct types; 

0 rock samples, with measurements taken of hardness, texture, colour, fran- 
gibility, and so on: the objective may be to see if there are natural group- 
ings; 

0 insects of some kind, with measurements taken of caudal width, antenna 
length, and so on: perhaps to find out whether in fact there is more than 
one species of insect represented in the sample. 

The list of possibilities is endless and, while each of the above apply to very 
different questions, they all have a similar structure. In each of them a number 
of measurements is taken on a sample of subjects and interest lies in whether 
or not, on the basis of these measurements, the subjects fall into natural 
groups. 

The basic approach to answering such questions is straightforward and is as 
follows. First, a measure of similarity between cases is defined using the 
measured variables. Then cases which are very similar are regarded as being 
in the same group or cluster, and those which are very dissimilar are regarded 
as being in different clusters. 

This outline begs a number of questions such as: how should we measure 
'similarity'? How similar is 'very' similar? These and other questions can be 
answered in a number of ways, but in this short outline, just two approaches 



Chapter 14 Section 14.2 

will be described. Although many applications of cluster analysis involve large 
data sets, here an example with only 22 subjects is considered. 

Table 14.5 shows data on 22 medical vractices in the United Kingdom. The Dunn, G. (1986) Patterns of 
second column in the table (headed 'practice size') gives the nu ibe r  of pa- psychiatric diagnosis in general 

tients registered with the practice over the six years of the study. The other practice: the Second National 
Morbidity Survey. Psychological 

columns give numbers of patients who had experienced one or more episodes Medicine, 16, 573-581. 
of a particular psychiatric disorder. The thirteen disorders are listed at  the 
bottom of the table. 

Table 14.5 Distribution of the thirteen most common psychiatric disorders 
in the UK across 22 medical practices 

Practice Practice Disorder type 
size 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  

1 2519 221 68 83 108 70 36 58 1 17 20 7 7 6 
2 1504 281 184 11 3 69 17 0 2 9 1 1 7 0 
3 2161 234 206 112 55 108 63 3 28 18 2 5 3 3 
4 4187 478 608 40 402 156 108 1 1 64 25 12 11 9 
5 1480 76 251 173 159 23 37 4 30 14 1 9 6 3 . 
6 2125 386 142 9 16 113 90 0 0 10 7 15 11 4 
7 6514 1122 742 197 435 81 172 330 193 66 33 22 16 21 
8 1820 208 398 45 14 13 35 5 1 3 4 10 12 9 
9 2671 409 282 512 168 119 45 252 225 41 27 39 5 17 

10 4220 314 429 105 53 65 37 20 1 29 28 23 14 11 
11 2377 72 148 425 120 56 116 3 0 17 6 6 5 2 
12 5009 566 305 123 174 71 99 5 16 28 15 13 9 7 
13 2037 241 207 4 4 37 29 0 1 11 0 3 0 0 
14 1759 390 277 56 68 160 45 17 15 26 32 23 3 2 
15 1767 248 178 61 89 122 70 13 11 16 19 5 6 3 
16 3443 218 185 317 198 164 75 45 89 26 21 13 22 27 
17 2200 212 210 115 104 64 70 85 7 11 12 15 5 1 
18 2639 280 155 286 180 53 74 36 4 27 9 16 4 12 
19 1897 288 224 132 153 79 51 14 15 7 9 9 3 5 
20 2278 331 251 170 439 76 84 9 24 20 8 5 5 7 
2 1 2242 254 303 177 152 148 138 21 53 16 15 16 9 5 
22 2497 330 290 186 215 119 121 21 7 16 26 13 13 9 

1 = anxiety neurosis, 2 = depressive neurosis, 3 = unclassified symptoms, 4 = physical 
disorders of presumably psychogenic origin, 5 = insomnia, 6 = tension headache, 
7 = affective psychosis, 8 = neurasthenia, 9 = enuresis, 10 = phobic neurosis, 
11 = hysterical neurosis, 12 = schizophrenia, 13 = alcoholism and drug dependence 

A number of questions immediately arise with these data. For example, how 
reliable are the data? How clear are the distinctions between the various 
diagnoses? To answer such questions it would be necessary to explore the way 
in which the data were collected, and this would be an important part of the 

statistical investigation: statistical techniques, no matter how sophisticated 
and subtle, cannot be expected to salvage a poorly designed experiment or 
inadequately collected data. Here, however, space limitations mean that we 
are forced to move on, assuming that the data are adequately reliable. 

One question of interest here is whether or not the practices fall into different 
types. That is, whether there are categories of practice, in terms of the 
patterns of psychiatric disorders presented by the catchment population. This 
is precisely the sort of question that cluster analysis has been developed to 
answer. 
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The first thing we might do is adopt some kind of standardization to allow 
for the fact that the sizes of the practices range from 1480 to 6514 people. It  
is pattern of responses, not absolute numbers, that we are interested in. In 
Table 14.6, therefore, the numbers of patients with each disorder have been 
divided by the total practice size to yield proportions (thousandths). Note 
that these proportions do not add up to 1 since in each practice there are 
people who suffered from none of the disorders and also people who suffered 
from more than one disorder. 

Table 14.6 Proportions of patients within each practice suffering from a 
particular disorder (thousandths) 

Practice Disorder type 
1 2  3  4 5 6 7 8 9 1 0 1 1 1 2 1 3  

Our aim now is to study the patterns of the practices to see if they fall into 
natural groupings of similar patterns. 

First, as already noted, we have to decide what we mean by 'similar'. That is, 
we have to define a distance measure between patterns. A common distance 
measure is 'Euclidean distance'. This is just a generalization of the distance 
concept which we use in everyday life and is defined, in our situation, as 
follows. Suppose that we have two practices. If the first of these has pro- 
portion x1 suffering from disorder 1, proportion x2 from disorder 2, and so 
on, we can write the pattern for this case as (XI ,  x2,x3,. . . , x13). Similarly, 
if we suppose that the second case has pattern (yl, y2, y3,. . . , 'gl3), then it 
follows that the Euclidean distance between the practices may be defined as 

J(x1 - ~ 1 ) ~  + (22 - ~ 2 ) ~  + ' + (213 - 913)'. 

To take an example, consider the first two practices. Their patterns are 

and 

(187,122,7,2,46,11,0,1,6, l, l ,  5 , O )  
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respectively. The distance between the two practices is thus 

again measured in thousandths. The more alike the patterns are, then the 
smaller the distance between the corresponding practices will be; while the 
more unlike the patterns are, the larger it will be. 

The geometric interpretation of this measure is that it gives the distance 
between a pair of points in 13-dimensional space. Some approaches to cluster 
analysis use the squared distance, and that is the approach adopted in what 
follows. This distance measure can be used to form an array showing the 
squared distances between each pair of medical practices, as in Table 14.7. 

Table 14.7 Squared distances between each pair of medical practices (x104) 

From this table we can identify which are the two most similar patterns, in 
the squared distance sense. For instance, the most similar practices according 
to Table 14.7 are practices 19 and 22 (with a computed distance of 10); the 
next most similar are practices 21 and 22; the two least similar practices are 
numbers 11 and 14, with a distance of 732 between them. 

One class of cluster analysis techniques identifies the two most similar patterns 

in this way and replaces them by their mean pattern. To do this the mean for 
each of the variables is calculated separately, so that a new pattern of thirteen 
scores results. For instance, practices 19 and 22 can be merged together, the 
resulting single notional practice being given a pattern 

So, starting with 22 'clusters' each of size 1, the next stage yields 20 clusters 
of size 1 and one cluster of size 2. 
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Again the smallest distance is identified and again the closest practices are 
merged, to be replaced by their mean. This process continues until only a 
single cluster remains. By halting the process at some intermediate point a 
collection of clusters is produced, each containing practices that are considered 
'close' to one another. 

Techniques of this kind are called hierarchical for the reason that they hier- 
archically agglomerate subjects into clusters. 

An alternative class of techniques is called non-hierarchical. Such methods 
begin with some initial partition of the cases into clusters and then seek 
to reallocate the cases to optimize some measure of cluster 'quality'. For 
example, a good clustering could be defined as one for which the average 
distance between practices in each cluster is small. (Obviously we need to 
fix the number of clusters beforehand-or else we could make this average 
distance zero by taking as many clusters as there are patterns!) 

The k-means method of cluster analysis, uses a measure of this sort. It 
seeks the partition such that each practice is assigned to the cluster which 
has the closest mean pattern. The method works as follows. 

We shall begin by supposing we want to partition our 22 practices into two 
clusters. That is, we want to see if the practices can be naturally partitioned 
into two groups of practices such that those within a group are similar and 
those in different groups are not similar. To initialize the process take the first 
two practices and regard them as cluster centres. Now sequentially assign each 
of the other .20 cases to that cluster which has the nearer centre. Each time 
an assignment is made replace the cluster centre by the mean pattern of all 
practices now in the cluster. This mean pattern becomes the new cluster 
centre and the next calculation is based on seeing which of the centres is the 

closer. 

Once this has been done we have a partition into two clusters. However, the 
cluster centres will have moved around during the process because, each time 
a new practice was added, the cluster mean (its 'centre') was recalculated. 
This means that although practices were originally assigned to the cluster 
which had the nearer centre, they may not now be in the cluster which has 
the nearer centre. 

To resolve this, the process is repeated, taking each practice in turn and 
assigning it to the cluster which has the nearer mean pattern. Again, after 
each such assignment, the cluster mean patterns are recalculated. (Note that 
this will only be necessary when a practice moves clusters. If it stays where 
it is-because it was already in the closer cluster-then no recalculation is 
necessary.) 

This process is repeated, each time calculating the mean patterns and reallo- 
cating the practices, until no new reallocation of practices is required. 

To follow the process by hand with thirteen variables and 22 cases would be 
quite unrealistic: so we use a computer. This is a good example of the impact 
that the computer has on statistics. Techniques like cluster analysis were 
impracticable before the advent of fast computing power. As a consequence 
the nature of statistics, the way that it is used, and the sorts of questions that 
can be addressed have changed dramatically. 
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A k-means cluster analysis on the 22 medical practices, with k = 2 (that is, 
seeking two clusters) yields 

cluster 1: containing practices 5, 9, 11, 18, 16; 

cluster 2: containing the remaining practices. 

A k-means cluster analysis on the 22 medical practices, with k = 3 (that is, 
seeking three clusters) yields 

cluster 1: containing practices 5, 9, 11, 18, 16; 

cluster 2: containing practice 20 only; 

cluster 3: containing the remaining practices. 

Since there are three cluster centres in this analysis, and since three points 
define a plane, we can plot a scatter diagram of the practices in the plane 
defined by the cluster centres. This is shown in Figure 14.3. Cluster 2, 
consisting of practice 20 alone, is clearly very different from the other practices 
and our analysis has correctly identified this. The practices in cluster 3 form 
a fairly well-defined group of practices, and this is separate from the practices 
constituting cluster 1. This projection of the points onto the plane defined 
by the cluster centres shows that our analysis has been quite effective. What 
is also particularly clear is that it would have been virtually impossible to 
discern this sort of structure from Table 14.5. 

cluster 2 '1 9 
,C 1 cluster 3 

Figure 14.3 Projection of 22 points onto a plane 

Even this example, though too large to be conducted by hand, is small in 
terms of the size of data sets on which cluster analysis is often carried out. A 
recent paper describes the use of cluster analysis to obtain classifications of Jolliffe, I.T., Jones, B. and 
the 108 English personal social services authorities using data from the 1979 Morgan, B.J.T. (1986) Comparison 

National Housing and Dwelling Survey. Twenty variables were used in the of the 
personal social services authorities. 

analysis. Other quite different examples of the application of cluster analysis J,Royal Statistical Society, Series 
are its use in classifying astronomical objects. A, 149, 253-270. 
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14.3 Principal components analysis 

Cluster analysis is a multivariate technique-so-called because it involves mul- 
tiple variables. One hopes, through using it, to  be. able to make some state- 
ment about natural groupings which may occur in the objects being analysed. 

This section introduces another multivariate technique. Here, however, in 
contrast, interest is focused on the variables themselves and on the relation- 
ships between them. The technique, principal components  analysis, can 
be used in a variety of ways. 

For example, it can be used to see whether most of the variation between 
objects, even though they may be measured on many variables, can be at- 
tributed to just a few basic types of difference between them. Jolicoeur and 
Mosimann (1960) measured the lengths, widths, and heights of the carapaces Jolicoeur, P. and Mosimann, J.E. 
of 24 female turtles to see whether differences could be explained simply in (1960) Size and shape variation in 
terms of some overall 'size' factor, or if differences in shape beyond this were the painted Growth, 24, 

also apparent. In statistical terms one will be seeking functions of the mea- 339-354. 

sured variables which show most variation between subjects. The aim might 
be simpler than in this example: one might merely wish to summarize a set 
of measures in the most effective way. One could, for example, take their 
mean, or perhaps some weighted mean. Principal components analysis can be 
thought of as reducing the measurements on each object to a single weighted 
average in such a way that these weighted averages preserve as much of the 
difference between the objects as possible. In effect this replaces the measured 
variables by a single variable, preserving as much as possible of the structure 
of the sample. 

The data used to illustrate the technique is a famous data set described by Jeffers, J.N.R. (1967) Two case 
Jeffers (1967). Nineteen measurements were taken on each of 40 winged aphids s t~di&s in the of 

( A l a t e  adelges).  The data are shown in Table 14.8. principal component analysis. 
Applied Statistics, 16, 225-236. 

One way of thinking about principal components analysis is to view it as 
working in stages. Consider the measurements XI ,  2 2 , .  . . , 219  on the first 
aphid, namely 

We can use this to form a weighted sum of this aphid's scores which we shall 
call y: 

with a set of weights wl to w19. In effect this combines the aphid's scores into 
a single number. For any given set of weights we can do this with all of the 
40 aphids, so producing 40 numbers yl,  y2,. . . , y40. 

Now, different sets of weights will produce different sets of 40 y-scores. These 
different sets will carry information about different aspects of the underlying 
nineteen measurements. For example, weights where wl = 1 and all the rest 
are 0 will simply produce a set of 40 y-scores equal to the measurements on 
the first variable $1, and so will carry information about just that variable. 
Weights where wl = = $ and all the rest are 0 will produce a set of 40 
y-scores which are the averages of the first two measurements for each insect, 
producing information about just these two variables.' 
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Table 14.8 The aphid data (all lengths in hundredths of mm) 

Aphid Variable 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 = body length, 2 = body width, 3 = forewing length, 4 = hind-wing length, 
5 = number of spiracles, 6 = length antenna I, 7 = length antenna 11, 8 = length antenna 111, 
9 = length antenna IV, 10 = length antenna V, 11 = number of antenna1 spines, 12 = length of tarsus, 

13 = length of tibia, 14 = length of femur, 15 = rostrum length, 16 = ovipositor length, 
17 = number of ovipositor spines, 18 = anal fold (present/absent), 19 = number of hind-wing hooks 



Elements of Statistics 

To address our question-about whether the pattern of differences between 
the aphids can be described in simpler terms than by using all nineteen vari- 
ables-we shall examine the set of weights that produce the 40 y-scores which 
have the most variability between them. So, for example, a set of weights for 
which the aphids had almost identical y-scores would tell us little about the 
variability between them, but a set on which they differed substantially would 
tell us a lot. Such a set of weights would tell us about a key aspect of the 
pattern of differences between the aphids. 

What we are seeking is that particular set of weights which produces the 
maximum variability between the 40 y-scores. In order to make progress in 
this direction we need to clarify what we mean by 'maximum variability'. 
We shall use a measure that is now familiar, namely the variance of the 40 
numbers. So we seek the set of weights which produces the maximum variance 
in the scores yl, y2, . . . , ~ 4 0 .  

The set of weights wl, ~ 2 , .  . . , w19 which achieve maximum variability in the Here, there is a small problem that 
y-scores is called the first principal component of the data. The corre- YOU might have noticed: the 

sponding y-score for each aphid is called its score on the first principal variance in the can be 
made arbitrarily large simply by 

component. making the weights arbitrarily 

It is possible to show that principal components can be calculated from large. The way to overcome this is 
to constrain the weights in some 

the sample correlations calculated for each pair from the nineteen variables ,ay, and for technical reasons the 
measured. The calculations are rather intricate, and would sensibly involve a constraint takes the form 

2 computer. W: +W: + . . . + w19 = 1. 

It turns out that for the given 40 aphids, the single y-score that separates 
them most successfully is given by 

All the X-variables (except, perhaps, x18) provide some measure of the size 
of an aphid. This y-score may therefore be regarded as an overall measure of 
size for each of the 40 aphids. For instance, the size of the first aphid is given 
according to this definition by 

the first aphid is in this sense a little larger than the second, whose size is 
given by 

If all 40 y-scores are calculated, then the aphids can be ordered according to 
this single measurement. 

This way of combining the nineteen measurements to produce a single mea- 
surement of size has other applications: for instance, a question that some- 
times arises is how to combine students' scores on several different examin- 

You can check that 
0 .253~  + 0 .260~  + + 0 .205~  = 1. 
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ations into a single overall score. One way is to find the first principal com- 
ponent. Then the students could be ordered from 'best' to 'worst' according 
to their score on the first principal component, as 

Score = 0.51 X Mechanics 

+ 0.37 X Vectors 

+ 0.35 X Algebra 

+ 0.45 X Analysis 

+ 0.53 X Statistics 

(say). But it is important to note that the one criterion on which the weights 
are calculated is that they should maximize the variation in the students' 
overall scores and make the differences between students as evident as pos- 
sible: the weights do not necessarily reflect any perceived differences in the 
importance of the subjects examined. This must always be remembered when 
calculating principal components. 

A further stage involves calculating the second principal component. This 
involves finding the weights vl, vz, . . . , v19 such that the variance of the 40 
scores calculated using these weights is, in the same way as before, a maxi- 
mum, subject to the constraint v: + v; + . . . + v:g = 1. However, so that the 
previous calculation is not merely reproduced, we also require the weights 
vl, v2,. . . , v19 to satisfy the additional constraint that the 40 scores along the 
second principal component should be uncorrelated with the first set of 40 
scores. The exercise can be repeated to find the third and fourth, and further 
principal components: there are as many principal components as there are 
variables (in this case, 19). 

It can be shown that the sum of the variances in the principal components 
is equal to the sum of the variances in the original variables. This means 
that our exercise of calculating principal components has partitioned the total 
variance in a particularly useful way. Since each principal component will 
have progressively less variance, the first few components show the weighted 
sums which are most important as they explain more of the data than the 
later components. In the case of the aphids, for instance, the first principal 
component yielding an overall measure of size for each aphid accounts for 
72% of the total variation in the data. The first three components account 
for nearly 90% of the total variation. This means that the characteristics of 
each aphid can usefully be summarized in terms of just three variables rather 
than the original 19. Admittedly, variables such as 

0.253 X Body length + 0.260 X Body width + . . . 
+ 0.205 X Number of hind-wing hooks 

or (the second principal component) 

0.001 X Body length - 0.055 X Body width + . . . 
- 0.336 X Number of hind-wing hooks 

do not always have a very obvious interpretation (particularly where there are 

minus signs) but remember, the aim of a principal components analysis is to 
explain as much variation as possible. 
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Sometimes the patterns of weights resulting from a principal components 
analysis turn out to have a useful interpretation. Huba et a1 (1981) were Huba, G.J., Wingard, J.A. and 
interested in patterns of consumption of both legal and illegal psychoactive Bentler, P.M. (1981) A comparison 
substances. They collected data on 1634 school students in Los Angeles show- latent 

ing, for each of the psychoactive substances models for adolescent drug use. 
Journal of Personality and Social 

cigarettes Psychology, 40, 180-193. 

0 beer 

wine 

0 spirits 

0 cocaine 

0 tranquillizers 

0 drug store medications used to get high 

0 heroin and other opiates 

0 marijuana 

0 hashish 

0 inhalents (glue, gasoline, etc.) 

0 hallucinogenics (LSD, mescaline, etc.) 

a score of 1 (never tried), 2 (tried only once), 3 (tried a few times), 4 (tried 
many times), 5 (tried regularly). These scores for each of the thirteen psycho- 
active substances are the thirteen variables which were analysed. 

The correlations between the thirteen scores, calculated from the 1634 sub- 
jects, are shown in Table 14.9. 

Table 14.9 The correlations arising from an analysis of use of psychoactive substances by school students 

cigs beer wine spirits cocaine tranq drug heroin mari hash glue hallu amph 
cigs 1 
beer .447 1 
wine .422 .619 1 

spirits .435 ,604 .583 1 
cocaine . l14 .068 .053 . l15 1 
tranq .203 .l46 .l39 .258 .349 1 
drug .091 . l03  . l10 . l22 .209 .221 1 
heroin .082 .063 .066 .097 .321 ,355 .201 1 
mari .513 .445 .365 .482 . l86 .315 . l50 . l54  1 
hash .304 .318 .240 .368 .303 .377 . l63 .219 .534 1 
glue .245 .203 . l83  .255 .272 .323 .310 .288 .301 .302 1 
hallu . l01 .088 .074 . l39 .279 .367 .232 .320 .204 .368 .340 1 
amph .245 . l99 . l84 .293 .278 .545 .232 .314 .394 .467 .392 .511 1 

The correlations show us several things. First, all the correlations are posi- 
tive-increased consumption of any one of the substances is associated with 
increased rather than decreased consumption of all of the others. However, 
none of the correlations is very large, so that there is not a strong depen- 
dence between any pair of substances. Also, some of the correlations are 
small-some pairs have only a very weak relationship. 
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For these data the first principal component is given by 

0.278 X cigarettes + 0.286 X beer + 0.265 X wine + 0.318 X spirits 

+ 0.208 X cocaine + 0.293 X tranquillizers + 0.176 X drug 

+ 0.202 X heroin + 0.339 X marijuana + 0.329 X hashish 

+ 0.276 X glue + 0.248 X hallucinogenics + 0.329 X amphetamines. 

This component can be regarded as a measure of overall psychoactive sub- 
stance usage. It  says that the greatest single factor distinguishing the students 
(that is, maximizing the variation between them) is the overall extent to which 
they use the substances in question. 

The second principal component is perhaps more interesting. This turns out 
to be 

0.280 X cigarettes + 0.396 X beer + 0.392 X wine + 0.325 X spirits 

- 0.288 X cocaine - 0.259 X tranquillizers - 0.189 X drug 

- 0.315 X heroin + 0.163 X marijuana - 0.050 X hashish 

- 0.169 X glue - 0.329 X hallucinogenics - 0.232 X amphetamines. 

Some of the weights are positive and others negative. In fact, if you study 
this second component carefully you will see that with the single exception 
of marijuana, all the legal drugs have positive weights and all the illegal ones 
have negative weights. What this means is that, having controlled for overall 
level of substance usage, the greatest source of difference between the students 
lies in their use of illegal versus legal substances. This is certainly a useful step 
towards explaining the differences between students' patterns of consumption 
in simpler terms than merely using all thirteen variables. 

14.4 Discriminant analysis 

Cluster analysis, described in Section 14.2, seeks to identify natural groupings 
within a set of objects using measurements made on those objects. In con- 
trast, discriminant analysis begins with a set of objects with known group 
memberships and seeks to formulate some rule, in terms of measurements on 
the objects, so that future objects can be accurately allocated to groups. The 
objects may be of virtually any kind. They could be sick people, and perhaps 
the aim is to classify them to a disease class. Here, the rule may be based 
on whether or not certain symptoms are present and the values of a num- 
ber of measures such as temperature, biochemical indicators, and so on. The 
objects could be spoken words, with the aim being automatic recognition by 
machine. Here, the rule will be based on the intensities of different frequencies 
at different times. The objects could be waveforms, such as those output by an 
electroencephalograph machine, where the aim is to detect anomalous shapes. 
Or the objects could be rocks, and the aim may be to identify the type of a 
new specimen. 

The list is endless. Applications which have been made include disease prog- 

nosis for patients with barbiturate intoxication; diagnosis of non-toxic goitre; 
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diagnosis of keratoconjunctivitis sicca; screening for osteoporosis; prognosis in Keratoconjunctivitis sicca is the 
advanced breast cancer; applications in physical anthropology; machine recog- inflammation of the conjunctiva 
nition of hand-printed numerals; classification of archaeological specimens; and associated with lacrimal 

deficiency. 
comparing methods of preparing fish; quality rating in sheep; palaeontology. 

From a discriminant analysis perspective, all such problems have a similar 
structure. There are two or more classes of objects. There are samples of 
objects from each class. For each object there is a set of measurements. The 
aim is to use the objects to formulate a rule such that a new object, for 
which the class is unknown, can be classified using only the values of the 
measurements on that object. 

Just as there are many methods of cluster analysis, so there are many methods 
of discriminant analysis. The particular approach adopted in this section is 
classical linear discriminant analysis, one of the oldest methods, having been 
originally described by Sir Ronald Fisher in 1936. In this method one seeks a 
simple weighted sum of the measurements such that the groups are maximally 
separated on this sum. That is, we find a set of weights so that we can com- 
pute a single score for each object, much as is done in principal components 
analysis, but now rather than trying to maximize the variance of this score, we 
try to maximize the 'difference' between the groups of scores. More precisely, 
we shall choose the set of weights which maximizes the difference between the 
mean scores of the groups, relative to the standard deviation of scores within 
the groups. Once a suitable set of weights has been found, a new object can 
be classified simply by calculating its weighted sum and seeing which of the 
group mean scores it is closest to. (When we have just two groups, this re- 
duces to defining a single threshold on the scores and classifying a new object 
according to whether its score is above or below the threshold.) 

The method is illustrated here by applying it to data arising from a prob- 
lem of identifying the population from which three historical kangaroo skull 
specimens arose. Measurements have been taken on the three skulls and 
corresponding measurements have been taken on samples from two modern 
kangaroo populations. The true population is known for each modern speci- 
men. Our aim is to use the modern data to formulate a classification rule 
which will allow us to classify the three historical specimens. 

For each of 25 male skull specimens from species M. giganteus (group 1) and 

for each of 21 male skull specimens from species M.f. melanops (group 2), 
eight measurements have been taken: basilar length, occipitonasal length, 
nasal length, nasal width, zygomatic width, crest width, mandible depth, and 
ascending ramus height. These values are shown in Table 14.10. 

The first point to notice is that on each of the variables measured separately 
the two groups have considerable overlap. This is shown in the boxplots in 
Figure 14.4. 

This means that none of the variables alone would not be very effective as a 
discriminant function: on no one of the variables could one place a threshold 
value such that cases with greater scores were predominantly of one class 
while cases with lower scores were predominantly of the other class. This, in 
fact, demonstrates the power of multivariate techniques such as discriminant 
analysis. The,variables individually are not very useful at separating the 
classes. But what about taking them in combination? Taken together, as a 
multivariate set, perhaps the variables can separate the classes quite well. 
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Table 14.10 The kangaroo data 

Group XI 2 2  23 X4 X5 X6 5 7  xs 

Andrews, D.F. and Herzberg, A.M. 
(1985) Data. Springer-Verlag, 
New York. 

The first column gives the species 
group, M. giganteus (1) or M. f. 
melanops (2). The other eight 
columns are the measured 
variables: XI = basilar length, 
2 2  = occipitonasal length, 
5 3  = nasal length, 
5 4  = nasal width, 
25 = zygomatic width, 
56 = crest width, 
x 7  = mandible depth, 
xs = ascending ramus height. All 

1765 1781 766 261 978 38 211 775 measurements are in tenths of mm. 

So, we begin in a way rather similar to principal components analysis. Sup- 
pose we choose a set of weights, wi, and calculate weighted sums of the 
measurements for each subject. For example, for the first kangaroo skull, 
with measurements (1312,1445, . . . ,591) we calculate 

Here sl represents the score for this skull, using these weights. Doing this 
for all 46 skulls gives us 46 scores, divided into two groups. Using these 
we can easily calculate the means of the two sets of scores and their stan- 
dard deviations. (In fact, without going into details, we shall assume that the 

551 
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group 1 

group 2 

(a) Basilar length ( A  mm) 

group 1 

group 2 

(b) Occipitonasal length (& mm) 

group 1 

group 2 

(c) Nasal length (h  mm) 

group 1 

group 2 

(d) Nasal width (& mm) 

Figure 14.4 Boxplots of the  eight variables, kangaroo d a t a  

standard deviations are the same in the two populations and estimate this 
common value-the strategy is exactly the same as that for the two sample t- 
test described in Chapter 8. Indeed, these means and the standard deviation 
allows us to calculate the 'distance' between the means of the two groups, 
taking into account their standard deviation-a straightforward t-value.) 

Now, in principle we can do this for a whole range of sets of weights and 
choose that which leads to the greatest distance between the groups. In 
fact, however, with a little algebra, it is easy to find the particular set of 
weights which maximizes this distance without searching through such sets. 
In practice, of course, it is easier still, because a computer program will do 
the task for us. 

552 
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group 1 

group 2 

(e) Zygomatic width ( h  mm) 

0 100 

( f )  Crest width ( h  mm) 

l group 2 

(g) Mandible depth (h mm) 

group 1 

group 2 

(h) Ascending ramus height (h  mm) 

Using such a discriminant analysis program, the weighted sum of the measure- 
ments which produces a set of scores such that the means of the two groups 
are best separated is given by the set of weights 

Boxplots of the scores of the cases in the two separate groups, calculated using 
these weights, are shown in Figure 14.5. 

group 1 

group 2 

In this case there is no requirement 
for the squared weights W: to sum 
to one. 

I I I I I 

-8 -6 -4 -2 0 

Weighted score 

Figure 14.5 Boxplots of the data, using the weighted store s 
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It is clear that far superior separation has in fact been achieved by using the 
variables together. Moreover, from Figure 14.5 we can also see that if we were 
to adopt a threshold of about -3.5 and classify all cases which had weighted 
sums above this as belonging to the M. giganteus species and all with weighted 
sums below this as belonging to the M.f. melanops species, then we would do 
reasonably well. We would not always classify cases correctly, but we would 
get most of them right. 

We can now classify the three historical cases using this classification rule. 
Unfortunately, several of the measurements are missing for the historical skulls 
(missing data is common with real data sets) so the overall means of these 
variables have been substituted for the missing values. The vectors of measure- 
ments for the three historical cases, once the means have been substituted for 
the missing values, are shown in Table 14.11. Also shown in this table, in the 
far right column, are the S-scores for these cases calculated as weighted sums 
of the original X-measurements, using the weights derived above. 

Table 14.11 The original measured values and their final weighted 
sum, s 

Specimen X I  22 2 3  5 4  2 5  26 x7 28 S 

Comparing the weighted sums with the threshold of -3.5, we see that speci- 
mens A and C are above the threshold and specimen B is below it. We thus 
classify A and C as M. giganteus and B as M.f. melanops. 

In conclusion, by using all of the variables together we have managed to 
produce a classification rule which is superior to that which would be obtained 
by using the variables separately. Discriminant analysis, like cluster analysis 
and principal components analysis, is an example of a multivariate technique. 
Also like them, it is an example of a technique which relies heavily on computer 
power to make it practically feasible. 

14.5 L og-linear modelling 

In many problems data arise as counts of the frequencies with which cer- 
tain categories of response occur. For example, individuals could be classi- 
fied by sex (Male-Female), by response to a treatment (Healed-Healing-No 
change), by age (Young-Middle-aged-Old); a comparison between two stimuli 
may be scored on a five-point scale (Strongly prefer A-Slightly prefer A-No 
preference-Slightly prefer B-Strongly prefer B); the severity of a disease could 
be scored on a four-point scale (None-Mild-Moderate-Severe); and so on. In 
each of these examples the data will be the number of subjects who fall into 
each of the response categories. 

Often interest focuses not on the scores on a single variable, but on the re- 
lationship between two variables. Techniques for the exploration of two-way 
tables called contingency tables were described in Chapter 11. 

In this section, however, our main objective is to extend the problem to a third 
dimension, and explore the relationship between three categorical variables. 

554 
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The data used to illustrate the approach are shown in Table 14.12. These 
arose in a study of the social origins of depression and, in particular, on the 
role of 'life events' in causing depression. Life events are major occurrences 
in one's life which, it is hypothesized, may serve to cause depression, perhaps 
when they occur with certain 'vulnerability factors'. Examples of such life 
events are bereavement, moving house, and changing jobs. Details of the scientific background 

are given in Brown, G.W. and 
The data set shows a three-way cross-classification of a sample of women Harris, T. (1978) Social origins 
from Camberwell in South East London. Whether or not they developed de- depression. Tavistock, London. 
pression is cross-classified by whether or not they had experienced a life event. 

.The table is then split according to whether or not they had an intimate 
supportive relationship. We shall be interested in whether or not the re- 
lationship between life events and depression is influenced by the presence of 
a supportive relationship. 

Table 14.12 Cross-classification of 
depression by life event by intimacy 

Lack of intimacy 
Yes No 

Life event Life event 
Yes No Yes No 

Depression 24 2 9 2 
No depression 52 60 79 191 

We could collapse the three-way table and look at two-dimensional marginal 
cross-classifications. This is achieved simply by ignoring the third variable, Table 14-19 Cross-classification 

so that the counts at  each of its levels are added. Table 14.13 shows such a depression by life event 

table for the cross-classification of depression by life event. Life event 
Yes No 

The number 33 in the top left corner has been obtained by adding the num- 
Depression bers 24 and 9 in Table 14.12-collapsing across levels of 'lack of intimacy'. 33 4 
No depression 131 251 

This new table would allow us to look at  the relationship between depression 
and life events, simply adopting the technique of Chapter  11. However, this 
would ignore the possible effects of other factors. In particular, it would not 
distinguish between those women with a supportive relationship and those 
without. It could be the case that the relationship between depression and 
life events is quite different in the two categories of the third variable. Some- 
how we need to analyse the three-dimensional table in its entirety. 

A great deal of statistics hinges around the notion of linear models. These 
are mathematical models in which the effects of different factors and the 
interactions between them are additive. For example, such a model involving 
two factors could be expressed as the sum of effects due to each of the factors 
separately. And, if it was thought that there was an interaction effect, then a 
model could be built which had an 'interaction term' added in. 

Linear models have appealing properties-for a start, they are mathematically 
very tractable. Without going into details, it turns out to be possible to 
construct a linear model in the present context to predict the logari thm of the 
probability that an object will fall into any particular cell in the three-way 
table. Thus the model allows us to calculate the expected frequencies in each 
cell of the table under the assumption that the model is correct. Then these 
predicted values are compared with those observed. The difference between 



Elements of Statistics 

the fitted model and the data is given in this context by the deviance 

where Oi refers to the frequencies observed in the cells, Ei to the frequencies 
expected, and where the summation is taken over all the cells. The deviance 
has asymptotically a chi-squared distribution. 

To test the hypothesis that the existence of a supportive relationship has no 
effect on the degree of association between the other variables, a model would 
be constructed including terms for the effects of life events, the existence of a 
supportive relationship, and depression; terms for the interaction of pairs of 
variables (the three so-called 'two-way' interaction terms); but no term for the For instance, existence of an 
effect of the existence of a supportive relationship on the degree of association interaction between life events and 
between the two other variables (no three-way interaction: that is, the degree depression mean that the 

chance of depression could depend 
of association between depression and life events does not depend on whether on whether some life event had 
there is a supportive relationship.) been experienced. 

Log-linear models almost always require a computer to calculate the expected 
frequencies, since they rely on an iterative fitting process. The model fitted 
in this case gave a deviance of 0.4814: there are 8 cells in the table and 
our model involves 7 parameters (an overall mean, one for each of the three 
factors, and one for each of the three two-way interactions). Thus we need to 
compare 0.4814 with the chi-squared distribution with 1 degree of freedom. 
The corresponding SP is 0.488. Thus we have no reason to suppose that the 
three-way interaction is necessary to explain the data we have observed: we 
have no reason to suppose that the relationship between depression and life 
events is mediated by the presence of a supportive relationship. 

14.6 Multiple regression analysis 

Earlier in the course, in Chapter 10, you met simple linear regression analysis. 
This was a technique for constructing models to relate two variables together, 
with one of the variables being an 'explanatory' variable and the other a 
'response' variable. Such models can be used in a number of ways. They can, 
for example, allow one to predict the change that one might expect in the 
response variable if a change is made in the explanatory variable. 

In this section the simple regression model is extended to the case when there 
are several explanatory variables: to the case of multiple regression. 

The data we shall use to illustrate the ideas is a subset of data which first 
appeared in 1932 and have since been reanalysed many times. Woods, H., Steiner, H.H. and 

Starke, H.R. (1932) Effects of 
When cement sets, heat is generated and the aim of this study was to see how composition of portland cement on 
the amount of heat is influenced by the composition of the cement. Thus, heat evolved during hardening. 
the response variable was the heat evolved, measured in calories per gram of Industrial and Engineering 

cement. The explanatory variables, summarizing the composition, are per- 24, 1207-1212. 

centages of the cement by weight of three constituents: tricalcium-aluminate, 
tricalcium-silicate, and tetracalcium-alumino-ferrite. The data are shown in 
Table 14.14. Each row of this table shows the values of the explanatory vari- 
ables (xl,  2 2 ,  x3) and the corresponding response (y) for a cement sample. 
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Table 14.14 Heat evolved during 
cement hardening (calories per gram) 

In simple linear regression a model is constructed in which the expected value 
of the response variable is predicted from the sum of a constant term (which 
may be constrained to be zero) and some multiple of the value taken by the 
explanatory variable. This multiple is the slope of the regression line. It can 
be interpreted as showing the effect that a unit change in the value of the 
explanatory variable has on the response variable. 

Similarly, in multiple regression, a model is constructed in which the expected 
value of the response variable is predicted from the sum of a constant term 
and multiples of the explanatory variables. Each explanatory variable will 
have its own multiple and these are called regression coefficients. 

Although superficially straightforward, multiple regression in fact involves a 
number of subtleties. One of the chief difficulties is the question of how to in- 
terpret the regression coefficients. The regression coefficient of an explanatory 

- variable in a multiple regression is not simply the effect that a unit change 
in that variable will have on the response. This would be the regression co- 
efficient one would get from a simple linear regression involving just that one 
explanatory variable by itself-in other words, the slope of the regression line. 
Instead, the regression coefficient in a multiple regression is the effect that a 
unit change in this explanatory variable will produce assuming all the other 
explanatory variables are held constant. Put another way, it is the change one 
can uniquely attribute to the explanatory variable in question. 

Notice that it will not always make sense to ask about the effect of some vari- 
able holding all others constant. In our numerical example, for instance, if we 
had measures of the percentages of all the constituents comprising the cement 
then the question would not be meaningful, since these would necessarily add 
up to 100-it would not be possible to change one without changing some 
others. Fortunately, such complications do not arise in the problem 
and it does make sense to ask about the change in the response variable which 
would follow from changing each constituent without changing the others. 

Our objective in the present situation is to try to build a model which allows 
us to relate the response variable, heat evolved, to the explanatory variables, 
the concentrations of the constituents. Such a model would, for example, 
allow us to predict the heat evolved based on the known concentrations of the 
constituents for a new cement sample. 



Elements of Statistics 

The approach follows the same lines as in simple regression. There, the fitted 
regression line was chosen to minimize the sum of squared deviations between 
the predictions from the regression model and the observed values of the 
response variable. Exactly the same is done here, except that we have several 
regression coefficients to estimate. 

Here, again our computer does the calculations for us. Measures of deviation 
other than a sum of squares could be used, but this is historically the most 
important and certainly by far the most widely used measure. One reason for 
this is its mathematical tractability. However, now that powerful computers 
are readily available, other measures are becoming increasingly popular. This 
is not the place for a comparative discussion of such measures, but it is worth 
noting that different measures have different properties-some, for example, 
are more resistant than others to outliers in the data-so that an informed 
choice can lead to better results. 

Minimizing the sum of squared deviations 

over the 13 data points gives the fitted regression surface 

fji = + &xl  + p2x2 + p3z3 = 48.19 + 1 . 7 0 ~ ~  + 0 . 6 6 ~ ~  + 0 . 2 5 ~ ~  

or 

Heat evolved = 48.19 + 1.70 X (% TA) + 0.66 X (% TS) + 0.25 X (% TAF) 

where the response is measured in calories per gram of cement. 

From this it can be seen that tricalcium-aluminate is the most important of 
the constituents, in the sense that a 1% change in its concentration causes a 
1.70 calories per gram change in the heat emitted while, for example, a 1% 
change in the concentration of tetracalcium-alumino-ferrite only results in a 
0.25 calories per gram change in the heat emitted. Notice that we are only 
able to make this kind of statement about the relative importance of the ex- 
planatory variables because they are commensurate-they are measured in the 
same units (percentage points). If, in contrast, we had a regression model with 
one explanatory variable measured in inches and another in pounds weight, 
such a comparative statement would not be possible. By changing the units 
one could change the apparent importance of each variable. 

In Chapter 10 you learned how to test the hypothesis H. : P = 0 that the 
slope of a regression line is 0 (that is to say, that changes in the value of the 
explanatory variable have no effect on the response). Here, significance tests 
for each of the regression coefficients give rise to very small significance prob- 
abilities (you are spared the details) except in the case where the hypothesis 
H0 : P3 = 0 is tested: the SP is about 0.21. This suggests that tetracalcium- 
alumino-ferrite may be irrelevant to the amount of heat emitted. 

Now, recall that the coefficients in a multiple regression model show the effect 
of each explanatory variable in a model in which the others are held constant. 
If a different model were to be fitted, say, one in which one of the explanatory 
variables was dropped, then perhaps different coefficients would be obtained 
for those remaining. After all, in this model with one less explanatory variable, 
one less variable would be held constant. 
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The relevance of this for our example is that the third explanatory variable, 
tetracalcium-alumino-ferrite, seemed not to have any effect on the response 
variable. Thus, it seems a little pointless including it in the model. We could 
fit a model involving just the other two explanatory variables. 

If this is done the fitted regression surface becomes 

Heat evolved = 52.58 + 1.47 X (% TA) + 0.66 X (% TS) 

In this revised model all of the regression coefficients are significant; and it 
can be shown too that the sampling variance attaching to two of the three 
estimated coefficients (p,, and ,Bl) has been reduced. In general, by fitting the 
most parsimonious model, one obtains less variable estimates of regression 
coefficients. 

We have now achieved what we set out to do. We have constructed a model 
which allows us to predict the amount of heat evolved when cement sets. 
Moreover, as an additional bonus, we can judge the relative importance of the 
individual predictor variables. 

In this particular example, dropping one of the explanatory variables had 
relatively little effect on the regression coefficients of the others. That of 
tricalcium-aluminate changed from 1.70 to 1.47 and that of tricalcium-silicate 
was unaltered. But, in fact, the changes can be dramatic-even being so 
much as to reverse the sign of a coefficient. The fundamental point is that in 
multiple regression each coefficient needs to be interpreted as the effect on the 
response of a unit change in its corresponding explanatory variable when the 
other explanatory variables which have been fitted are held constant. This 
will depend on what other variables have been fitted. 

14.7 And beyond 

The preceding six sections illustrate six statistical tools which are more ad- 
vanced than those you have studied elsewhere in this course. The idea of 
these sections was to demonstrate the sorts of problems that could be tackled 
by more sophisticated methods, rather than to enable you to undertake such 
analyses without further instruction. But, of course, the six chosen illus- 
trations do not go anywhere near covering the complete range of techniques 
available to a statistician. 

However, perhaps the most important classes of topics not mentioned in the 
course are those of experimental design and survey design. All of the 
course, with the exception of just one or two passing references, has been con- 
cerned with how to analyse data once it has been collected: how to use it to 
address the question or questions of interest. In discussing methods of analy- 
sis, attention was drawn to any assumptions those methods may have made. 
For example, in discussing the two-sample t-test, it was stressed, amongst 
other things, that the samples had to be independently chosen from the two 
groups. In order for the test to be valid, the data had to be chosen such 
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that this assumption was satisfied. But apart from such references, there has 
been no discussion of the best way to collect the data. The subdisciplines 
of statistics called experimental design and survey design deal with just such 
issues. They tell us the most efficient ways to collect data to answer the re- 
search questions posed, and the ways to collect data to yield the most accurate 
results. 

A hint at the sort of ideas involved occurred in Section 14.1, when an analysis 
of variance arising from the cross-classification of two factors was discussed. 
You will recall that the data used in the example allowed us to compare the 
two headache types using 22 subjects in each of the two headache groups and 
also allowed us to compare the two treatment groups using 22 subjects in each 
group, but with a total of only 44 subjects, and not the 88 this would seem to 
imply. By controlling how the data were collected we increased the accuracy 
of the analysis without increasing the cost-without requiring larger samples 
to be collected. 

In general, such tools allow great savings in resources and great increases in 
accuracy, and represent one of the really great contributions of statistics to 
scientific rksearch. 

Design represents a whole subdiscipline of statistics that we have not had 
space to discuss. But there are also other areas which are arguably just 
as important. For example, the course is based largely on current statistical 
practice and describes the ideas and methods underlying almost all major stat- 
istical computer packages which are currently commercially available. These, 
in turn, are based on a particular interpretation of probability (the frequentist 
interpretation)-a particular view of what the notion of probability means. 
But there are other views. 

Of these the most important is undoubtedly the subjective view, leading to 
a school of statistics called the Bayesian school. In brief, this school as- 
serts that probability has no objective meaning in the real world, but simply 
represents the degree of belief of the researcher that something is true. Data 
are collected and analysed and this leads to a modification of the researcher's 
beliefs in ways described by appropriate statistical techniques. One of the 
problems with applying such methods until recently has been the mathemat- 
ical intractability of the analyses. Particular forms, often unrealistic, for the 
probability distributions involved had to be assumed in order that the analysis 
could be carried out. In recent years, however, developments have been made 
such that these problems no longer apply. More realistic distributional forms 
can be adopted and the power of the computer means that we can sidestep ana- 
lytic mathematical solutions. It is certainly the case that Bayesian methods 
are growing in popularity and, when Bayesian software becomes readily avail- 
able, they may well compete with traditional methods. 

14.8 Conclusion 

In the preceding sections a number of advanced statistical techniques have 
been presented for probing data and answering questions. Inevitably the 
constraints of trying to cover several such techniques in a short space mean 
that the impression may have been given that such techniques are isolated, 



Chapter 14 Section 14.8 

bearing little relationship to one another. This is, in fact, not the case, and 
there are many relationships between the methods. Thus, for example, both 
analysis of variance and regression analysis are particular types of a more 
general statistical approach using a structure called a linear model, referred 
to in Section 14.5. This in turn is a particular form of a yet more abstract 
structure called a generalized linear model (of which the log-linear model is 
another special case). Indeed, there is an even broader generalization-to the 
class of additive models. 

It is a simplifying and often misleading misconception to suppose that stat- 
istics is a collection of disconnected recipes, one to be selected and plugged in 
when a research question presents itself. In fact, the subject is more a language 
than a vocabulary, with a rich network of interconnections permitting the 
delicate probing of data. 

The authors have been at pains to point out the central role that computers 
play in modern statistics. Computers mean that older statistical techniques 
can be performed more rapidly; they make feasible methods that had already 
been invented but were too time-consuming to carry out in practice; they have 
permitted the development of entirely new methods; and they have increased 
the size of problems that can be tackled, both in terms of the number of 
variables and the number of cases. It is in no way an exaggeration to say that 
the computer is the essential tool of modern statistics. 

If the past three decades have seen dramatic changes, partly as a result of 
increasing computational power, there is no reason to suppose this will slow 
down or stop. Modern statistics has become a very exciting science, with an 
extraordinary range of tools and methods for probing and seeking structure in 
data, and for answering questions about the world around us. And the future 
promises to be even more exciting. 



Solutions to the Exercises 

Chapter 1 

Solution 1.1 
(a) Your computer may be programmed to allocate borderline cases to the 

next group down, or the next group up; and it may or may not manage 
to follow this rule consistently, depending on its handling of the numbers 
involved. Following a rule which says 'move borderline cases to the next 
group up', these are the five classifications. 

(i) 1.0-1.2 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2.0 2.0-2.2 2.2-2.4 
6 6 4 8 4 3 4 

2.4-2.6 2.6-2.8 2.8-3.0 3.0-3.2 3.2-3.4 3.4-3.6 3.6-3.8 
6 3 2 2 0 1 1 

(ii) 1.0-1.3 1.3-1.6 1.6-1.9 1.9-2.2 2.2-2.5 
10 6 10 5 6 

2.5-2.8 2.8-3.1 3.1-3.4 3.4-3.7 
7 3 1 2 

(iii) 0.8-1.1 1.1-1.4 1.4-1.7 1.7-2.0 2.0-2.3 
2 10 6 10 7 

2.3-2.6 2.6-2.9 2.9-3.2 3.2-3.5 3.5-3.8 
6 4 3 1 1 

(iv) 0.85-1.15 1.15-1.45 1.45-1.75 1.75-2.05 2.05-2.35 
4 9 8 9 5 

2.35-2.65 2.65-2.95 2.95-3.25 3.25-3.55 3.55-3.85 
7 3 3 1 1 

(V) 0.9-1.2 1.2-1.5 1.5-1.8 1.8-2.1 2.1-2.4 
6 7 11 7 4 

2.4-2.7 2.7-3.0 3.0-3.3 3.3-3.6 3.6-3.9 
7 4 2 1 1 

(b) Computer graphics: the diagrams are shown in Figures 1.9 to 1.11. 

Solution 1.2 
(a) Computer graphics: see Figure 1.12. 

(b) Computer graphics: see Figure 1.13. 

If your computer gives graphics that are text-character based (otherwise 
known as low-resolution graphics) then the scatter plots you obtain will not 
be as precise as those appearing in the text and the fitted line will not be 
displayed. However, the main message of the data should still be apparent. 
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Solution 1.3 
(a) In order of decreasing brain weight to body weight ratio, the species are 

as follows. 

Species Body weight Brain weight Ratio 

Rhesus Monkey 
Mole 
Human 
Mouse 
Potar Monkey 
Chimpanzee 
Hamster 
Cat 
Rat 
Mountain Beaver 
Guinea Pig 
Rabbit 
Goat 
Grey Wolf 
Sheep 
Donkey 
Gorilla 
Asian Elephant 
Kangaroo 
Jaguar 
Giraffe 
Horse 
Pig 
Cow 
African Elephant 
Triceratops 
Diplodocus 
Brachiosaurus 

(b) (i) Computer graphics: see Figure 1.14. 

(ii) Computer graphics: see Figure 1.15. 

Solution 1.4 
There were 23 children who survived the condition. Their birth weights are 
1.130, 1.410, 1.575, 1.680, 1.715, 1.720, 1.760, 1.930, 2.015, 2.040, 2.090, 2.200, 
2.400, 2.550, 2.570, 2.600, 2.700, 2.830, 2.950, 3.005, 3.160, 3.400, 3.640. The 
median birth weight for these children is 2.200 kg (the 12th value in the sorted 
list). 

There were 27 children who died. The sorted birth weights are 1.030, 1.050, 
1.100, 1.175, 1.185, 1.225, 1.230, 1.262, 1.295, 1.300, 1.310, 1.500, 1.550, 1.600, 
1.720, 1.750, 1.770, 1.820, 1.890, 1.940, 2.200, 2.270, 2.275, 2.440, 2.500, 2.560, 
2.730. The middle value is the 14th (thirteen either side) so the median birth 
weight for these children who died is 1.600 kg. 
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Solution 1.5 
The ordered differences are 3.8, 10.3, 11.8, 12.9, 17.5, 20.5, 20.6, 24.4, 25.3, 
28.4, 30.6. The median difference is 20.5. 

Solution 1.6 
Once the data are entered, most computers will return the sample median at 
a single command. It  is 79.7 inches. 

Solution 1.7 
(a) The mean birth weight of the 23 infants who survived SIRDS is 

- 1.130 + 1.575 + . . . + 3.005 53.070 
x s  = -- - = 2.307 kg; 

23 23 
the mean birth weight of the 27 infants who died is 

- 1.050 + 1.175 + . . + 2.730 45.680 
X D  = - - - = 1.692 kg. 

27 27 
The mean birth weight of the entire sample is 

Solution 1.8 
The mean 'After - Before' difference in ~ab le ' l . 11  is 

- 25.3 + 20.5 + . . . + 28.4 206.1 
X = - - - = 18.74 pmol/l. 

11 11 

Solution 1.9 
The mean snowfall over the 63 years was 80.3 inches. 

Solution 1.10 
(a) The lower quartile birth weight for the 27 children who died is given by 

4 ~  = x(+(n+l)) = x(7) = 1.230kg; 

the upper quartile birth weight is 

= x(;( ,+~)) = ~ ( 2 1 )  = 2.200kg. 

(b) For these silica data, the sample size is n = 22. The lower quartile is 

qL = x(;(n+l)) = X ( ? )  = x(5;) 

which is three-quarters of the way between x ( ~ )  = 26.39 and X ( G )  = 27.08. 
This is 

say, 26.9. The sample median is 

Notice the subscripts S, D and T 
used in this solution to label and 
distinguish the three sample 
means. It was not strictly 
necessary to do this here, since we 
will not be referring to these 
numbers again in this exercise, but 
it is a convenient labelling system 
when a statistical analysis becomes 
more complicated. 

m = x  (5(n+l))  1 = = x ( ~ l $ ) ,  

which is midway between x ( l l )  = 28.69 and = 29.36. This is 29.025; 
say, 29.0. 
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The upper quartile is 

Qa = X($(,+,)) = X(?)  = x(17a),  

one-quarter of the way between ~ ( 1 7 )  = 33.28 and x(18) = 33.40. This is 

qv = 33.28 + i(33.40 - 33.28) = i(33.28) + a(33.40) = 33.31; 

say, 33.3. 

Solution 1.1 1 
For the snowfall data the lower and upper quartiles are q~ = 63.6 inches 
and qu = 98.3 inches respectively. The interquartile range is qu - q~ = 34.7 
inches. 

Solution 1.12 
Answering these questions might involve delving around for the instruction 
manual that came with your calculator! The important thing is not to use the 
formula-let your calculator do all the arithmetic. All you should need to do 
is key in the original data and then press the correct button. (There might be 
a choice, one of which is when the divisor in the 'standard deviation' formula 
is n, the other is when the divisor is n - 1. Remember, in this course we use 
the second formula.) 
(a) You should have obtained s = 8.33, to two decimal places. 

(b) The standard deviation for the silica data is s = 4.29. 

(c) For the collapsed runners' ,L? endorphin concentrations, s = 98.0. 

Solution 1.13 
(a) The standard deviation s is 0.66 kg. 

(b) The standard deviation s is 23.7ikhes. 

Solution 1.14 
Summary measures for this data set are 

x ( ~ )  = 23, q~ = 34, m = 45, q~ = 62, = 83. 

The sample median is m = 45; the sample mean is 31 = 48.4; the sample 
standard deviation is 18.1. The range is 83 - 23 = 60; the interquartile range 
is 62 - 34 = 28. 

Solution 1.15 
The first group contains 19 completed families. Some summary statistics are 

m = 10, Z = 8.2, s = 5.2, interquartile range = 10. 

For the second group of 35 completed families, summary statistics are 

m = 4, = 4.8, s = 4.0, interquartile range = 4. 

The differences are very noticeable between the two groups. Mothers educated 
for the longer time period would appear to have smaller families. In each case 
the mean and median are of comparable size. For the smaller group, the 
interquartile range is much greater than the standard deviation. If the three 
or four very large families are removed from the second data set, the differences 
become even more pronounced. 
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Solution 1.16 
(a) The five-figure summary for the silica data is given by 

A convenient scale sufficient to cover the extent of the data is from 20 to 
40. The i.q.r. is 33.31 - 26.91 = 6.40. Then 

and this exceeds the sample maximum, so the upper adjacent value is the 
sample maximum itself, 34.82. Also 

This value is less than the sample minimurn, so the lower adjacent value 
is the sample minimum itself. For these data there are no extreme values. 
The boxplot is shown in Figure S1 . l .  

Percentage silica 

Figure S1.1 

(b) For the snowfall data the lower adjacent value is 39.8; the minimum is 
25.0. The upper adjacent value is equal to the maximum, 126.4. The 
boxplot is shown in Figure S1.2. 

Annual snowfall (inches) 

Figure S1.2 

Solution 1.1 7 
The sample skewness for the first group of mothers is -0.29. 

Solution 1.18 
(a) The five-figure summaries for the three groups are 

normal: (14, 92, 124.5, 274.75, 655) 
alloxan-diabetic: (13, 70.25,139.5, 276, 499) 
insulin-treated: (18, 44, 82, 133, 465). 

The normal group has one very high recording at 655; the next highest is 
455, which is more consistent with the other two groups. 

(b) The mean and standard deviation for each group are 

normal: 2 = 186.1, S = 158.8 
alloxan-diabetic: 2 = 181.8, s = 144.8 
insulin-treated: 2 = 112.9, s = 105.8.. 

The mean reading in the third group seems noticeably less than that for 
the first two groups, and has a reduced standard deviation. 
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(c) The sample skewness for each group is 

normal: 1.47 
alloxan-diabetic: 1.01 
insulin-treated: 2.07. 

All the samples are positively skewed: the third group has one substantial 
outlier at 465. Eliminating that outlier reduces the skewness to 1.02. 

(d) The comparative boxplot in Figure S1.3 does not suggest any particular 
difference between the groups. The first two groups are substantially 
skewed with some evidence of extreme observations to the right; apart 
from three very extreme observations contributing to a high skewness, 
observations in the third group are more tightly clustered around the 
mean. 

Normal 

Alloxan-diabetic 

Insulin-treated 

I I I I 

0 100 200 300 400 500 600 700 

BSA Nitrogen-bound 

Figure S1.3 

Of course, a computer makes detailed exploration of data sets relatively 
easy, quick and rewarding. You might find it interesting to pursue the 
story the data have to tell after, say, removing the extreme observations 
from each group. 

Chapter 2 

Solution 2.1 
In this kind of study it is essential to  state beforehand the population of 
interest. If this consists of rail travellers and workers then the location of 
the survey may be reasonable. If, on the other hand, the researcher wishes 
to draw some conclusions about the reading habits of the entire population 
of Great Britain then this sampling strategy omits, or under-represents, car 
users and people who never, or rarely, visit London. 

A sample drawn at 9 am on a weekday will consist very largely of commuters 
to work, and if the researcher is interested primarily in their reading habits 
then the strategy will be a very useful one. On a Saturday evening there will 
possibly be some overrepresentation of those with the inclination, and the 
means, to enjoy an evening out. 

Solution 2.2 
This is a practical simulation. It is discussed in the text following the exercise. 

568 



Solutions to Exercises 

Solution 2.3 
A typical sequence of 40 coin tosses, and the resulting calculations and graph, 
follow. 

Table S2.1 The results of 40 tosses of a coin 

Toss number 1 2 3 4 5 6 7 8 9 1 0  
Observed result 1 1 1 0 0 0 0 0 0 1 
Total so far 1 2 3 3 3 3 3 3 3 4  
Proportion(P) 1.00 1.00 1.00 0.75 0.60 0.50 0.43 0.38 0.33 0.40 

Toss number 11 12 13 14 15 16 17 18 19 20 
Observedresult 0 1 0 1 1 0 1 0 1 1 
Total so far 4 5 5 6 7 7 8 8 9 1 0  
Proportion(P) 0.36 0.42 0.38 0.43 0.47 0.44 0.47 0.44 0.47 0.50 

Toss number 21 22 23 24 25 26 27 28 29 30 
Observedresult 0 0 1 1 1 0 1 1 1 1 
Total so far 10 10 11 12 13 13 14 15 16 17 
Proportion(P) 0.48 0.45 0.48 0.50 0.52 0.50 0.52 0.54 0.55 0.57 

Toss number 31 32 33 34 35 36 37 38 39 40 
Observedresult 1 1 1 1 0 0 1 0 0 1 
Total so far 18 19 20 21 21 21 22 22 22 23 
Proportion(P) 0.58 0.59 0.61 0.62 0.60 0.58 0.59 0.58 0.56 0.58 

The graph of successive values of P plotted against the number of tosses is 
shown in Figure S2.1. 

I I I 

0 5 10 15 20 25 30 35 40 
Toss 

Figure S2.1 Proportion P, 40 tosses of a coin 

The same phenomenon is evident here as was seen in Figures 2.2 and 2.3. In 
this case P seems to be tending to a value close to i. Did your experiment 
lead to similar results? 

Solution 2.4 
(a) The estimate of the probability that a male will be given help is 
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(b) The estimate for a female is 89/(89 + 16) = 0.85. 

(c) Since the number 0.85 is greater than the number 0.71, the experiment has 
provided some evidence to support the hypothesis that people are more 
helpful to females than to males. However, two questions arise. First, 
is the difference between the observed proportions sufficiently large to 
indicate a genuine difference in helping behaviour, or could it have arisen 
simply as a consequence of experimental variation when in fact there is no 
underlying difference in people's willingness to help others, whether male 
or female? Second, is the design of the experiment adequate to furnish an 
answer to the research question? There may have been differences (other 
than gender differences) between the eight students that have influenced 
people's responses. One matter not addressed in this exercise, but surely 
relevant to the investigation, is the gender of those approached. 

Solution 2.5 
A count of yeast cells in each square is bound to result in an integer 
observation: you could not have 2.2 or 3.4 cells. The random variable is 
discrete. 

The data have evidently been recorded to the nearest 0.1 mm, but the 
actual lengths of kangaroo jawbones are not restricted in this way-within 
a reasonable range, any length is possible. The random variable is con- 
tinuous. 

The lifetimes have been measured to the nearest integer and recorded as 
such. However, lifetime is a continuous random variable: components (in 
general, anyway) would not fail only 'on the hour'. A useful model would 
be a continuous model. 

Rainfall is a continuous random variable. 

The number of loans is an integer-the random variable measured here is 
discrete. 

(Data might also be available on the times for which books are borrowed 
before they are returned. Again, this would probably be measured as 
integer numbers of days, even though a book could be returned at any 
time during a working day.) 

Solution 2.6 
(a) Following the same approach as that adopted in Example 2.8, we can show 

on a diagram the shaded region corresponding to the required proportion 
(or probability) P(T > 5). The area of the shaded triangle is given by 10 

X (base) X (height) 
20 - 5 

= i x ( 2 0 - 5 ) x  f ( 5 ) = i x 1 5 x P  
200 

= 0.5625. 

So, according to the model, rather more than half such gaps will exceed O 5 10 15 20 t 
5 seconds. Actually the data suggest that only one-quarter might be so Figure ~ 2 . 2  ~h~ probability 
long: our model is showing signs that it could be improved! P(T > 5) 

(b) This part of the question asks for a general formula for the probability 
P ( T  5 t) .  The corresponding shaded region is shown in Figure S2.3. The 
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area of the shaded region is given by f ( t )  I 
(average height) X (width) 

1 - 
10 

= i (long side + short side) X (width) = $ (f (0) + f (t)) X (t - 0) 

=$(!!&?+E) ~ t =  (40 - t ) t  -- p 40t - t2 o t 20 t 
200 400 400 ' 

Figure S2.3 The probability 
This formula can now be used for all probability calculations based on P(T 5 t )  
this model. 

Solution 2.7 
The probability mass function for the score on a Double-Five has already been 
established (see page 66). Summing consecutive terms gives Table S2.2. 

Table S 2 2  The probability 
distribution for a Double-Five 

Solution 2.8 
(a) Using the c.d.f. 

it follows that 

(b) The proportion of waiting times exceeding 5 seconds is given by 
1- (the proportion of waiting times that are 5 seconds or less): 

(see Solution 2.6(a)). 

Solution 2.9 
The probability that a woman randomly selected from the population of 
6503 has passed the menopause is 

Let the random variable X take the value 1 if a woman has passed the 
menopause and 0 otherwise. The random variable X is Bernoulli(O.O91), 
SO 

(It is very important to remember to specify the range of the random 
variable.) 
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Solution 2.10 
This is a Bernoulli trial with 

That is, X Bernoulli(0.78). 

The probability mass function of X is 

Solution 2.1 1 
It is possible that the experiment will result in a sequence of 15 failures. Each 
of these scores 0. Then the random variable Y (the total number of successes) 
takes the value 

At the other extreme, the experiment might result in a sequence of 15 suc- 
cesses. Then 

Any sequence of failures and successes (0s and 1s) between these two extremes 
is possible, with y taking values 1 ,2 , .  . . ,14. The range of the random variable 
Y is therefore 

Of course, it is unnecessary to be quite so formal. Your answer might have 
been a one-line statement of the range, which is all that is required. 

Solution 2.12 
Obviously the 100 people chosen have not been chosen independently: if one 
chosen person is female it very strongly influences the probability that the 
spouse will be male! Indeed, you can see that the distribution of the number 
of females is not binomial by considering the expected frequency distribution. 
If it was binomial there would be a non-zero probability of obtaining 0 females, 
1 female and so on, up to 100 females. However, in this case you are certain to 
get exactly 50 females and 50 males. The probability that any other number 
will occur is zero. 

Solution 2.13 
(a) (i) The number dropping out in the placebo group is binomial B(6,0.14). 

The probability that all six drop out is 

(ii) The probability that none of the six drop out is 

(iii) The probability that exactly two drop out is 
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(b) The assumption of independence reduces, in this case, to saying that 
whether a patient drops out of the placebo group is unaffected by what 
happens to other patients in the group. Sometimes patients are unaware 
of others' progress in this sort of trial; but otherwise, it is at least possible 
that a large drop in numbers would discourage others from continuing in 
the study. Similarly, even in the absence of obvious beneficial effects, 
patients might offer mutual encouragement to persevere. In such circum- 
stances the independence assumption breaks down. 

Solution 2.14 

(a) P (V  = 2) = (i) (0.3)'(1 - 0.3)~-' 

(b) P ( W  = 8) = ( ) (0.5)'(1 - 0.5)~'-g 

(d) P ( Y  < 2) = P ( Y  = 0) + P ( Y  = 1) + P ( Y  = 2) 

(e) Writing 

involves calculating eight probabilities and adding them together. It is 
easier to say 

= - [ ( Y )  (a)":))'+ (S) (1)' (:) + (3 (:)l0 (c),"] 
(Actually, it is even easier to use your computer for binomial probability 
calculations.) 

Solution 2.15 
(a) The distribution of wrinkled yellow peas amongst a 'family' of eight is 

B(8, $1. 
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(b) The probability that all eight are wrinkled and yellow is 

(c) The distribution of wrinkled green peas amongst eight offspring is bi- 
nomial ~ ( 8 ,  k). The probability that there are no wrinkled green peas 
is 

Solution 2.16 
You should find that your computer gives you the following answers. (These 
answers are accurate to six 'decimal places.) 

(a) 0.200121 (b) 0.068892 (c) 0.998736 (d) 0.338529 

(e) If four dice are rolled simultaneously, then the number of 6s to appear is 

a binomial random variable M N B(4, i). The probability of getting at 
least one 6 is 

1 - I  If two dice are rolled, the probability of getting a double-6 is X - 6 - 36' 
The number of double-6s in twenty-four such rolls is a binomial random 
variable N N ~ ( 2 4 ,  k). The probability of getting at  least one double-6 
is 

So it is the first event of the two that is the more probable. 

(f) If X is B(365,0.3) then 

(This would be very time-consuming to calculate other than with a com- 
puter.) In answering this question the assumption has been made that 
rain occurs independently from day to day; this is a rather questionable 
assumption. 

Solution 2.17 
(a) A histogram of the data looks like the following. The sample mean and 

standard deviation are: Frequency 

35 
X = 18.11 mm, s = 8.602 mm. 30 

25 The average book width appears to be about 18.11 mm, so for 5152 books 20 
the required shelving would be 5152 X 18.11 mm = 93.3 m. 15 

10 (b) This is a somewhat subjective judgement, since no formal tests have been 
developed for a 'bell-shaped' appearance, or lack of it. The histogram 
suggests the data are rather skewed. It is worth observing that the width l0 l5 20 25 30 35 40 45 

of the widest book in the sample is about 3.5 standard deviations above 
Width (mm) 

the mean; the narrowest book measures only 1.5 standard deviations be- Figure 52.4 widths ,,f 100 
low the mean. books 
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Solution 2.18 
(a) You might have obtained a sequence of OS and 1s as follows. 

0 0 1 1 0 0 0 0 0 0  

The number of 1s in the ten trials is 2. A single observation from 
B(10,0.2) was then obtained: it was 3. The sum of ten independent 
Bernoulli random variables Bernoulli(0.2) is binomial B(10,0.2). The two 
observations, 2 and 3, are independent observations, each from B(10,0.2). 

(b) Figure S2.5 shows three bar charts similar to those you might have ob- 
tained. 

Frequency 

100 j 

Figure S2.5 (a) 10 values from B(20,0.5) (b) 100 values from B(20,0.5) ( c )  500 
values from B(20,0.5) 

Notice that, as the sample size increases, the bar charts for the observed 

frequencies become less jagged. Even in the case of a sample of size 100, 
however, the bar chart can be very irregular: this is bimodal. When the 
sample is of size 500, the observed frequencies are very suggestive of the 
underlying probability distribution, whose probability mass function is 
shown in Figure S2.6. 

Figure S 2 6  The binomial probability distribution B(20,0.5) 
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(c) Here are three typical bar charts. 

Frequency Frequency Frequency 

200 140 140 

l60 
120. 120 

100 100 
120 80 80 

80 60 60 
40 40 

40 
20 20 

0 1 2 3 4 5 6 7 8 9 1 0  0 1 2 3 4 5 6 7 8 9 1 0  
0 

0 1 2 3 4 5 6 7 8 9 1 0  
( i )  ( i i )  ( i i i )  

Figure S2.7 (i) 500 values from B(10,O.l) (ii) 500 values from B(10,0.3) (iii) 500 values from B(10,0.5) 

You can see that the value of the parameter p affects the skewed nature 
of the sample data. 

(d) The following diagrams show three summaries of the data. 

Frequency 

l60 4 
Frequency 
l00 1 

140 
120 

100 

80 
60 

40 

20 

0 1 2 3 4 5 6 7 8 9  
G )  

5 10 15 20 25 30 
( i i )  

Frequency 
80 

70 

60 

50 

40 

30 

20 
10 

0 
0 5 10 15 20 25 30 35 40 45 50 

( i i i )  

Figure S2.8 (i) 500 values from B(10,0.2) (ii) 500 values from B(30,0.2) 
(iii) 500 values from B(50,0.2) 

Even for a value as low as 0.2 for the parameter p, you should have 
observed from your data, rather as is evident here, that as the parameter n 
increases the sample histograms become less skewed. This will be further 
discussed in Chapter 5. 
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Solution 2.19 
Out of interest, this experiment was repeated three times, thus obtaining the 
frequencies in Table S2.3. 

Table S1.3 'Opening the 
bag' three times 

Number of Frequency 
defective fuses 

You can see that there is some variation in the results here. 

Solution 2.20 
In 6 rolls of the die, the following results were obtained. 

Table 51.4 Rolling a die 6 times 

Roll number 1 2 3 4 5 6  
Frequency 0 0 1 1  1 3  

Relative frequency 0 0 3 
You can see that the sample, relative frequencies are widely disparate 
and do not always constitute very good estimates of the theoretical prob- 
abilities: in all cases, these are = 0.1667. 

In 600 rolls, the following frequencies were obtained. 

Table S1.5 Rolling a die 600 times 

Roll number 1 2 3 4 5 6 
Frequency 80 95 101 111 97 116 
Relative frequency 0.1333 0.1583 0.1683 0.1850 0.1617 0.1933 

Even in a sample as large as 600, probability estimates can be quite wrong 
in the second decimal place! But these are generally more consistent and 

closer to the theoretical values than is the case with the sample of just 6 Table 32.6 Left-handedness in 
rolls. 100 groups of 33 individuals 

Number of Frequency 
S O / U ~ ~ O ~  2-27 left-handed people 

One hundred observations on the binomial distribution B(33,O.l) were gen- 0 4 
erated. Three observations were 8 or more, giving an estimated probability of 1 9 

0.03 that a sample as extreme as that reported could occur. For interest, the 2 20 

number of left-handed people in each of a 100 groups of 33 individuals was 3 26 
4 23 

counted. The frequencies were as listed in Table S2.6. 5 12 

Actually, if X is binomial B(33,0.1), then 6 3 
7 0 

P ( X  2 8) = 0.014. 8 2 
9 1 

This makes it seem very unlikely that the circumstance observed could have 
arisen by mere chance. 
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Solution 2.22 
(a) If the random variable V follows a triangular distribution with parameter 

60, then the c.d.f. of V is given by 

- 
Then (either directly from your computer, or by using this formula together 3 7  

with your calculator) the following values will be obtained. 
2 2 

(i) P ( V  5 20) = F(20) = 1 - (1 - g)  = l - ($) = = 0.556 
2 2 

(ii) P ( V  > 40) = 1 - F(40) = (1 - g) = (i) = $ = 0.111 0 20 40 60 v 

(iii) The probability P(20 5 V 5 40) is equal to the area of the shaded ~ i ~ ~ ~ ~  ~ 2 . g  The probability 
region in Figure S2.9. It  is given by P(20 5 V 5 40) 

(using your answers to parts (i) and (ii)). 

(b) (i) A histogram of these data is shown in Figure S2.10. 

(ii) The data are skewed, with long waiting times apparently less likely 
than shorter waiting times. The sample is very small, but in the absence of 
more elaborate models to consider, the triangular model is a reasonable Freq~~ency 

first attempt. The longest waiting time observed in the sample is 171 12 
hours. Any number higher than this would be a reasonable guess at the 10 
model parameter-say, 172 or 180 or even 200, without going too high 8 

(300, perhaps). Try 180. 6 

(iii) With 6 set equal to 180, and denoting by W the waiting time (in 4 
2 

hours), then 
0 20 40 60 80 100120140 160180 

Time (hours) 

In the sample of 40 there are 5 waiting times longer than 100 hours ~ i ~ ~ ~ ~  ~ 2 . 1 0  waiting times 
(102,116.5,122,144,171), so the sample-based estimate for the proportion between admissions 
of waiting times exceeding 100 hours is & = 0.125. 

Chapter 3 

Solution 3.1 
The mean score on a Double-Five is given by 

Hence an effect of replacing the 2-face of a fair die by a second 5 is to increase 
the mean from its value of 3.5 (see Example 3.3) to 4. 

Solution 3.2 
From the given probability distribution of X,  the mean number of members 
of the family to catch the disease is 
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Solution 3.3 
(a) For a fair coin, P(Heads) = p(1) = $. So p = $ and the mean of the 

Bernoulli random variable is p, i.e. $. 
(b) As in Chapter 2, Exercise 2.2, p(1) = P ( 3  or 6)= 4. Thus p = p = 4. 

Solution 3.4 
The expected value of Y is given by 

(a) When p = 0.1, 

(b) When p = 0.4, 

(c) When p = 0.6, 

(d) When p = 0.8, 

You can see that when the chain is very fragile or very robust, the expected 
number of quads is low; only for intermediate p is the expected number of 
quads more than about 0.2. 

Solution 3.5 
(a) In one experiment the results in Table S3.1 were obtained. The sample Table S3.1 

mean is 5.63. 9.72 3.37 12.99 6.92 1.35 
(b) The mean of the first sample drawn in an experiment was 6.861. Together 2.38 2.08 8.75 7.79 0.95 

with nine other samples, the complete list of sample means is shown in 
Table S3.2. Table S3.2 

(c) In one experiment the following results were obtained: (i) 9.974; (ii) 97.26; 6.861 6.468 6.532 6.713 6.667 
(iii) 198.5. 6.628 6.744 6.586 6.808 6.671 

(d) These findings suggest that the mean of the Triangular(9) distribution is 
p. 

Solution 3.6 

Using the information given, the probability required is 

So in any -collection of traffic waiting times (assuming the triangular model 
to be an adequate representation of the variation in waiting times) we might 
expect just under half the waiting times to be longer than average. Notice 
that this result holds irrespective of the actual value of the parameter 8. 
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Solution 3.7 
The probability distribution for the Double-Five outcome is shown in Table 3.4. 

The population mean is 4 (see solution to Exercise 3.1). 

The calculation of the variance is as follows. 

The variance of the score on a fair die is 2:92. So, while the mean score on a 
Double-Five is greater than that on a fair die, the variance of the Double-Five 
outcome is smaller. This is not unreasonable since, by replacing the 2 by 
another 5, one can intuitively expect a little more 'consistency', that is, less 
variability, in the outcomes. 

Solution 3.8 
To check for independence, we shall work out px,y(x, y) assuming indepen- 
dence, and compare the outcome with Table 3.8. For instance, px,y (0, - 1) 
would be the product px(0)py(-l) = 0.4 x.0.3 = 0.12, pr,y(2, -1) would be 

the product px(2)py (-l) = 0.2 X 0.3 = 0.06, and so on. In this way, we 
produce Table S3.3 of the joint p.m.f. of X and Y under independence. 

Table S3.3 The joint p.m.f. of X and Y under independence 

X 0 1 2 
y = -l 0.4 X 0.3 = 0.12 0.4 X 0.3 = 0.12 0.2 X 0.3 = 0.06 
y = 1 0.4 X 0.7 = 0.28 0.4 X 0.7 = 0.28 0.2 X 0.7 = 0.14 

These values are shown more clearly in Table S3.4. Table 53.4 

These values are not the same as those in Table 3.8. For instance, under 
independence we would require px,y ( l ,  1) to equal 0.28, whereas px,y ( l ,  1) is 
0.30. Hence X and Y are not independent. 

Solution 3.9 
The random variable N takes the value 1 if the first trial results in a 
'success': P ( N  = 1) = p. 

Success occurs for the first time only at the second trial if initially there 
is a failure, followed immediately by a success: P ( N  = 2) = qp. 

Here, there are two failures followed by a success: P ( N  = 3) = q2p. 

A clear pattern is emerging. The random variable N takes the value n 
only if (n - 1) failures are followed at  the nth trial by a success: 

P ( N  = n) = qn-'p. 

The range of possible values N can take is 1 ,2 ,3 , .  . . , the set of positive 
integers (which you might also know as the set of natural numbers). 
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Solution 3.10 
(a) The proportion of families comprising at  least 4 children is found from 

P ( N  2 4) = 1 - P ( N  5 3). 

l - P ( N  5 3 )  = 1 - ( ~ ( 1 )  + ~ ( 2 ) + ~ ( 3 ) )  = l -  (p+qp+q2p)  
= 1 - (0.514)(1 + 0.486 + 0.486~) = 1 - (0.514)(1.722) 

= 1 - 0.885 = 0.115. 

(b) Denoting by 'success' the identification of a defective chip, p = 0.012. 
The size of the inspector's sample of chips is a random variable N where 
N G(0.012). Then 

so about 6% of daily visits involve a halt in production. 

Solution 3.1 1 
In this case, the random variable N follows a geometric distribution with 
parameter p = 0.02. So 

P ( N  > 20) = q20 = (0.98)~' = 0.668. 

The probability that the inspector will have to examine at  least 50 chips is 

P ( N  2 50) = P ( N  > 49) = q49 = (0.98)~' = 0.372. 

Notice that it is much easier to use the formula P ( N  > n) = qn to calculate 
tail probabilities for the geometric distribution than to add successive terms 
of the probability function as in Solution 3.10. 

Solution 3.12 
(a) 2 seems intuitively correct. 

(b) If the probability of throwing a 5 is i, this suggests that the average 
number of throws necessary to achieve a 5 will be 3. 

(C) 6. 
(d) By the same argument, guess p = l lp .  

Solution 3.13 
The number N of rolls necessary to start playing is a geometric random vari- 

able with parameter p = 116. 

(a) P ( N  = 1) = p  = 116 = 0.167. 

(b) P ( N  = 2) = qp = 5/36 = 0.139; P ( N  = 3) = q2p = 251216 = 0.116. 

(c) The probability that at least six rolls will be necessary to get started is 
given by P ( N  >_ 6) = P ( N  > 5) = q5 = 312517776 = 0.402. 

(d) The expected number of rolls for a geometric random variable is l/p; 
which is 6 in this case. The standard deviation is &/p = 6 m  = 5.48. 
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Solution 3.14 
Your results should not be too different from the following, which were ob- 
tained on a computer. 
(a) A frequency table for the 1200 rolls summarizes the data as follows. 

Outcome 1 2 3 4 5 6 
Frequency 195 202 227 208 181 187 

(b) The corresponding bar chart is shown in Figure S3.1. The bar chart shows 
some departures from the theoretical expected frequencies (200 in each of 
the six cases): these departures may be ascribed to random variation. 

Frequency 

250 -( 

Outcome 

Figure 53.1 Bar chart for 1200 rolls of the die 

(c) The computer gave 

F = 3.45, s2 = 2.798 08, 
so S = 1.67. 

This may be compared with the theoretical sample moments for a discrete 
uniform distribution: 

2 p = l ( n  + 1) = i ( 6  + 1) = 3.5, a = I (n2 2 12 - 1) = k ( 3 6  - 1) = 2.917, 
so a = 1.71. 

The sample gave results that were on average slightly lower than the 
theoretical scores, and that are slightly less dispersed. These differences 
are scarcely perceptible and can be ascribed to random variation. 

Solution 3.15 
A sketch of the p.d.f. of X when X N U(a, b) is shown in Figure S3.2. 

Figure S3.2 The p.d.f, of X, X N U ( a ,  b )  

(a) By symmetry, the mean of X is p = $(a + b) .  
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(b) The probability P(X 5 X) is equal to the area of the shaded rectangle in 

. So the c.d.f. of X is given by the diagram. This is (X - a) X - 
b - a  

X - a  
F(x)  = - , a s x s b .  

b - a  

Solution 3.16 
The formula for the variance of a continuous uniform random variable U(a, b) 
is 

(b - a)' 
g2 = - 

12 ' 

For the standard continuous uniform distribution U(0, l ) ,  a = 0 and b = 1, SO 

the variance is 

and the standard deviation is 

Solution 3.17 
(a) From Solution 3.16, the c.d.f. of the U(a, b) distribution is 

X - a  
F($) = - a s x s b .  

b - a '  

To solve F (m)  = $, we need to solve the equation 
3 -1 A 

m - a  1 - 
b - a  2 

or 
b - a  m - a = - .  

2 
This gives 

a + b  o 0.25 0.50 0.75 1.00 X m = -  
2 '  Figure 53.3 f (X) = 3x2, 

and is the median of the U(a, b) distribution. You might recall that this 0 5 X 5 1 
is also the value of the mean of the U(a, b) distribution, and follows im- 
mediately from a symmetry argument. 

f (X) 

(b) (i) The density function f (X) = 3x2, 0 5 X 5 1, is shown in Figure S3.3. 3- 

(ii) The mean and median are shown in Figure S3.4. 

(iii) From F(x) = x3, it follows that the median is the solution of the 
2 - 

equation 

x3 = I 1 - 
2 '  

This is 
0 0.25 0.50 0.75 1.00 z 

m = = 0.794. 
Figure 53.4 The mean and 

The mean p = 0.75 and the median m = 0.794 are shown in Figure S3.4. median of X 
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Solution 3.18 
(a) The c.d.f. of this distribution is 

To obtain the interquartile range, we need both q~ and q ~ .  To obtain q ~ ,  
we solve 

and obtain 

q~ = ( $ ) ' l 3  = 0.630. 

Likewise, 

F(9v) = 9; = ;, 
hence 

qu = ( $ ) ' l 3  = 0.909. 

So, the interquartile range is 

Solution 3.19 
(a) For the binomial distribution B(10,0.5), F(4) = 0.3770, F(5) = 0.6230, 

so the median is 5. 

(b) For the binoniial distribution B(17,0.7), F(11) = 0.4032, F(12) = 0.6113, 
so the median is 12. 

(c) For the binomial distribution B(2,0.5), F(1) = 0.75, therefore the upper 
quartile is 1. (So is the median!) 

(d) For the binomial distribution B(19,0.25), F(5) = 0.6678, F(6) = 0.8251, 

so 90.75 = 6.  
Since F(2) = 0.1113 and F(3) = 0.2631, 40.25 = 3. 

Hence the interquartile range is q0.75 - 90.25 = 6 - 3 = 3. 

(e) For the binomial distribution B(15,0.4), F(7)  = 0.7869, F(8)  = 0.9050, 
so ~ 0 . ~ 5  = 8. 

Chapter 4 

Solution 4.1 
(a) If X B(50,1/40), then P ( X  = 0) = (39/40)50 = (0.975)~' = 0.2820. 

(b) The probability that the cyclist gets wet twice is 

(c) Values of ~ ( x )  for X = 0, 1, 2, 3, are p(0) = 0.2820, p(1) = 0.3615, 
p(2) = 0.2271, p(3) = 0.0932; so the probability that she gets wet at least 
four times is 

1 - (p(0) + p(1) + p(2) + p(3)) = 1 - (0.2820 + 0.3615 + 0.2271 + 0.0932) 

= 1 - 0.9638 = 0.0362. 
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Solution 4.2 
When X B(60,1/48), P ( X  = 0) = (47148)" = 0.2827. Rounding to, say, 
(0.979)~' = 0.28 would induce rather serious rounding errors. Continuing in 
this way, obtain the table of probabilities as follows. 

The last value was obtained by subtraction. In fact, if you use a computer you 
would find that the probability P ( X  > 4) when X is B(60,1/48) is 0.0366, to 
4 decimal places. 

Solution 4.3 
(a) In this case X B(360,0.01). 

(b) Including also the probabilities calculated in the text for B(320,0.01125), 
the results are as listed in the table below. 

B(320,0.01125) 0.0268 0.0975 0.1769 0.2134 0.4854 
B(360,0.01) 0.0268 0.0976 0.1769 0.2133 0.4854 

In this case the results are close, identical to three decimal places. (Again, 
the last column was found by subtraction. To 4 decimal places, when 
X N B(320,0.01125), the probability P(X 2 4) is 0.4855.) 

Solution 4.4 
Using the given recursion, 

P px (l) = ipx (0) = !e-p = pe-p, 

P 
2 

p x  (2) = p x  (l) = ;Pe-@ = $-e -p ,  

P 2 3 
px(3) = -px(2) = 1." ",-p = - 

3 3 2! ;! e-@, 

where the notation k! means the number 1 X 2 X . . . X k. 

There is an evident pattern developing here: a general formula for the 
probability p x  (X) is 

px(z) = E e - p .  
X! 

Solution 4.5 
The completed table is as follows. 

(Probabilities in the last column are found by subtraction: to 4 decimal places, 
the probability P(X 2 4) when X is Poisson(3.6) is 0.4848.) 
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Solution 4.6 
(a) The exact 'probability distribution for the number of defectives in a box 

is B(50,0.05) which (unless you have access to very extensive tables!) 
will need calculation on a machine as follows (i.e. recursively, retaining 
displayed values on the machine): 

and, by subtraction, 

(b) The approximating probability distribution is Poisson(2.5). The prob- 
abilities are shown for comparison in the following table. 

(c) The probabilities are 'similar', but are not really very close--certainly, 
not as close as in some previous exercises and examples. The parameter 
p = 0.05 is at the limit of our 'rule' for when the approximation will be 
useful (and, in some previous examples, n has been counted in hundreds, 
not in tens). 

Solution 4.7 
(a) You should have observed something like the following. The computer 

gave the random sample 

The sample mean is 

9 + 7 + 6 + 8 + 6  36 - -  - = 7.2, 
5 5 

resulting in an estimate of 7.2 for the population mean p (usually un- 
known, but in this case known to be equal to 8). 

(b) From 100 repetitions of this experiment, the observed sample means 
ranged from as low as 4.9 to as high as 11.6, with frequencies as follows. 
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(c) A histogram of the distribution of sample means is shown in Figure S4.2. 
The data vector had mean 7.96 and variance 1.9. 

(d) Repeating the experiment for samples of size 50 gave the following results. 
Observed sample means ranged from 6.90 to 9.46, with frequencies 

and corresponding histogram as shown in Figure S4.1. The data vector 
had mean 7.9824 and variance 0.2. What has happened is that the sample 
means based on samples of size 50 (rather than 5) are much more con- 
tracted about the value p = 8. A single experiment based on a sample of 
size 50 is likely to give an estimate of p that is closer to 8 than it would 
have been in the case of an experiment based on a sample of size 5. 

Frequency 

0 5 10 15 

Mean 

Figure 54 .1  

0 5 10 15 
Mean 

Figure 54.2 

Solution 4.8 
(a) If X (chest circumference measured in inches) has mean 40, then the 

random variable Y = 2.54X (chest circumference measured in cm) has 
mean 

E(Y) = E(2.54X) = 2.54E(X) = 2.54 X 40 = 101.6. (Here, the formula 
E(aX + b) = a E ( X )  + b is used, 

(b) If X (water temperature measured in degrees Celsius) has mean 26, then with a = 2.54 and b = 0.) 
the random variable Y = 1.8X + 32 (water temperature measured in T) 
has mean 

E(Y)  = E(1.8X + 32) = 1.8E(X) + 32 = 1.8 X 26 + 32 = 78.8. 

Solution 4.9 
If X (finger length in cm) has mean 11.55 and standard deviation 0.55, and if 
the random variable finger length (measured in inches) is denoted by Y, then 

Y = X/2,54, hence 
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Solution 4.10 
The probability distribution for the outcome of throws of a Double-Five is as 
follows. 

X 1 3 4 5 6  
1 p(.) g 

The expected value of X 2  is given by 

~ ( X ~ ) = 1 ~ ~ i + 3 ~ ~ i + 4 ~ x i + 5 ~ x ~ + 6 ~ x ~  6 

1 = l x E + 9 x i + 1 6 x i + 2 5 x $ + 3 6 x '  6 

9 16 25 36 = ; + g + T + T + F  
- 112 - 

6 '  

and so from the formula (4.16) the variance of X is given by 

as before. 

Solution 4.1 1 
If X is binomial with parameters n = 4, p = 0.4 then according to (4.17) the 
mean of X is 

E ( X )  = n p  = 4 X 0.4 = 1.6 

and the variance of X is 

V(X)  = npq = 4 X 0.4 X 0.6 = 0.96. 

From the individual probabilities for X ,  it follows that 

E ( x ~ )  = o2 X 0.1296 + l2 X 0.3456 + . . + 42 X 0.0256 

= 0 + 0.3456 + 1.3824 + 1.3824 + 0.4096 = 3.52, 

and so 
V(X) = E(X2)  - (,%!(X))' = 3.52 - 1.6' = 3.52 - 2.56 = 0.96, 

confirming the result obtained previously. 

Solution 4.12 
A time interval of four years includes one leap year-1461 days altogether. 
The probability of a lull exceeding 1461 days is 

so, in a list of 62 waiting times one might expect about two of them to exceed 
1461 days. In this case there were exactly two such lulls, one of which lasted 
1617 days, and the other, already identified, was of 1901 days' duration. 
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Solution 4.13 
Set the parameter X equal to 11437. 

(a) A time interval of three years including one leap year will last 1096 days 
altogether. The probability that no earthquake occurs during this interval 
is 

p ( ~  > t )  = e - x t  = e-1096/437 - e-2.508 - - 0.0814. 

(b) The equation F ( x )  = $ may be written 

e -x /437  - 1 
- 2 '  

or 

X = -437 log $ = 437 log 2 = 303 days. 

(c) The proportion of waiting times lasting longer than expected is 

P(T > 4373 = e-437/437 - - e-l  - - 0.368; 

thus just over one-third of waiting times are longer than average! 

Solution 4.14 
If X N Poisson(8.35) then p(0) = 0.0002, p(1) = 0.0020, p(2) = 0.0082 and 
p(3) = 0.0229. So, 

(a) the probability of exactly two earthquakes is 0.0082; 

(b) the probability that there will be at least four earthquakes is 

Solution 4.15 
S The general median waiting time is the solution of the equation 

F(x) = 1 - = I. 
2 '  

- log 3 - log 2 
X = -  - - 

X X 
= p, X log 2 = 0.6931pT, 

where p, is the mean waiting time. So for an exponential random variable 
the median is approximately 70% of the mean. 

Solution 4.16 
(a) You will probably- have got something not too different to this. The 

simulation 'can be shown on a table as follows. There are 7300 days in 

twenty years, so the simulation has to be extended up to or beyond 7300 
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days. When we start, we do not know how many random numbers that 
will take, so we just have to keep going. Waiting times are drawn from 
the exponential distribution with mean 437. 

The 16th earthquake happened just after the twenty years time limit. A 
diagram of the incidence of earthquakes with passing time is shown in 
Figure S4.3. 

- -  - -  
I - 7  - I- -1- - 1  

0 2000 4000 6000 8000 
Sixteen earthquakes, time in days 

Figure S4.3 Incidence of earthquakes (simulated) 

(b) There are 15 earthquakes counted in the simulation. The expected num- 
ber was 

1 
At  = ( ) x (7300 days) = 16.7. 

437 days 

The number of earthquakes is an observation on a Poisson random variable 
with mean 16.7. The median of the Poisson(l6.7) distribution is 17. (For, 
if X Poisson(l6.7), then F(16) = P(X 5 16) = 0.4969, while F(17) = 
0.5929.) 

Earthquake Waiting Cumulative 
time time 

and so the lower quartile is the solution of the equation Figure S4.4 

Solution 4.17 Frequency 

F(z) = l - e - ' / ~  = 0.25. 
That is, 

(a) A histogram of the data is given in Figure S4.4. The data are very skewed - 
and suggest that an exponential model might be plausible. 70 - 

(b) (i) The sample mean is 0.224 and the sample median is 0.15. So the 60 - 
sample median is about 67% of the sample mean, mimicking correspond- 50 - 

SO 

x/p = - log 0.75; 

Similarly, 

ing properties of the exponential distribution (69%). 40 - 

(ii) The sample standard deviation is 0.235 which is close to the sample 30 - -:- 
I ? mean. (For the exponential distribution, the mean and standard deviation 20 - - - .t 

are equal.) 

(c) The c.d.f. of the exponential distribution is given by 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

F(x) = 1 - edxt  = 1 - e- t lp  , t > o  Observation 

- 

For these data, the sample lower quartile is 0.06, which is 0.27 times 
the sample mean, and the sample upper quartile is 0.29, which is 1.29 
times the sample mean. The similarity to corresponding properties of 
exponential distribution is fairly marked. 

- 
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(d) During the first quarter-minute there were 81 pulses; during the second 
there were 53. 

(e) It looks as though it might be reasonable to model the incidence of nerve 
pulses as a Poisson process, with mean waiting time between pulses esti- 
mated by the sample mean 

= 0.2244 seconds. 

Then the pulse rate X may be estimated by 
1 
.=. = 4.456 per second. 
t 

Over quarter-minute (15-second) intervals the expected number of pulses 
is 

(4.456 per second) X (15 seconds) = 66.8, 

and so our two observations 81 and 53 are observations on the Poisson 
distribution with mean 66.8. 

Solution 4.18 
(a) Your simulation may have given something like the following. Twenty 

observations from the Poisson distribution Poisson(3.2) were 

4 6 2 3 3 2 8 1 3 4  
0 4 4 4 6 3 4 3 7 2  

with frequencies as follows. 

Count Frequency 
0 1 
1 1 
2 3 
3 5 
4 6 
5 0 
6 2 
7 1 
8 1 

and for a random sample of size 100 the frequencies are as follows. 

Count Frequency 
0 6 
1 13 
2 26 
3 16 
4 19 
5 13 
6 4 
7 1 
8 2 

For a random sample of size 50 a typical frequency table is given by 

Count Frequency 
0 3 
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(b) For a sample of size 1000 the sample relative frequencies were as shown 
below. These may be compared with the probability mass function 

Count Frequency Relative frequency Probability 
0 3 1 0.031 0.0408 

(Notice the small rounding error in the assessment of the probabilities in 
the fourth column. They add to 1.0001.) 

Solution 4.19 
One simulation gave X = 59 for the number of males, and therefore (by 
subtraction) 41 females. 
The number of colour-deficient males present is therefore a random ob- 
servation from B(59,0.06): this simulation gave yl = 3. The number of, 
colour-deficient females is a random observation from B(4l,O.OO4). This 
simulation gave y2 = 0. 
The resulting observation on the random variable W is 

w = y l + y 2 = 3 + 0 = 3 .  

The expected number of males is 50, equal to the expected number of 
females. Intuitively, the expected number of colour-deficient males is 
50 X 0.06 = 3; the expected number of colour-deficient females is 
50 X 0.004 = 0.2. The expected number of colour-deficient people is 
3 + 0.2 = 3.2. This result is, as it happens, correct, though quite dif- 
ficult to confirm formally: no attempt will be made to do so here. 
Repeating the exercise gave a data vector of 1000 observations on W with 

the following frequencies. 

Count Frequency 

0 30 
1 137 
2 186 
3 243 
4 182 
5 115 
6 63 
7 28 
8 12 
9 3 

10 0 
11 0 
12 1 

This data set has mean F = 3.25 and standard deviation s = 1.758. 
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Solution 4.20 
(a) If the mean arrival rate is X = 12 claims per week this is equivalent to 

claims per hour. So the mean waiting time between claim arrivals is 14 
hours. By adding together 20 successive observations from the exponential 
distribution with mean 14, the twenty arrival times may be simulated. 
You might have got something like the following. 

Claim Waiting Arrival Approximation 
number time time 

1 4.0 4.0 4am, Mon 
2 13.2 17.2 5pm, Mon 
3 3.3 20.5 9pm, Mon 
4 44.3 64.8 5pm, Wed 
5 17.3 82.1 loam, Thu 
6 6.0 88.1 4pm, Thu 
7 4.7 92.8 9pm, Thu 
8 4.0 96.8 1 am, Fri 
9 3.2 100.0 4am, F'ri 

10 11.7 111.7 4pm, Fri 
11 25.5 137.2 5pm, Sat 
12 33.3 170.5 3am, Mon 
13 1.3 171.8 4am, Mon 
14 0.5 172.3 4am, Mon 
15 4.9 177.2 9am, Mon 
16 2.7 179.9 12 noon, Mon 
17 5.5 185.4 5pm, Mon 
18 3.7 189.1 9pm, Mon 
19 30.7 219.8 4am, Wed 
20 3.6 223.4 7am, Wed 

(b) Ten weeks of simulated claims gave 8 claims in the first week, 18 in the 
second and 14 in the third. You should have observed a continuing se- 
quence with similar numbers. These are all observations on a Poisson 
random variable with mean 14. 

Chapter 5 

Solution 5.1 
In Figure 5.4(a), p = 100; it looks as though p + 3a is about 150; so a is 
about 17. In Figure 5.4(b), p = 100 and p + 3a is about 115: therefore, the 
standard deviation a looks to be about 5. In Figure 5.4(c), p = 72 and a is a 
little more than 1; and in Figure 5.4(d), p = 1.00 and a is about 0.05.. 



2 z 1 z 

Figure S5.1 Figure S5.2 

-1 1 z -2 

Figure S5.3 ~ i ~ u r e '  S5.4 

Solution 5.3 
(a) Writing X N(2.60, 0.332), where X is the enzyme level present in in- 

dividuals suffering from acute viral hepatitis, the proportion of sufferers 
- - 

whose measured enzyme level exceeds 3.00 is given by 

(writing z = (X - p)/a).  This probability reduces to 

and is represented by the shaded area in Figure S5.5. Figure S5.5 

(b) Writing Y N(2.65,0.44'), where Y is the enzyme level in individuals 
suffering from aggressive chronic hepatitis, the proportion required is 
given by the probability 

this (quite small) proportion is given by the shaded area in Figure S5.6. Figure S5.6 
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(c) The sample mean and sample standard deviation are 
- 
X = 1.194 and s = 0.290. 

The lower extreme (0.8 mm) may be written in standardized form as 

X - p - 0.8 - 1.194 z = -  - = -1.36; 
U 0.290 

and the upper extreme (1.2 mm) as 

X - p - 1.2 - 1.194 z = - -  = 0.02. 
U 0.290 

The proportion of ball-bearings whose diameter is between 0.8mm and 
1.2mm can be shown on a sketch of the standard normal density as in 
Figure S5.7. 

Solution 5.4 
(a) The probability P ( Z  5 1.00) is to be found in the row for z  = 1.0 and in 

the column headed 0: this gives P (Z  < 1.00) = 0.8413. This is shown in 
Figure S5.8. 

(b) The probability P ( Z  5 1.96) is given in the row for z = 1.9 and in the 
column headed 6: P ( Z  5 1.96) = 0.9750. This is illustrated in Figure S5.9. 

(c) The probability P ( Z  5 2.25) is to be found in the row for z  = 2.2 and in 
the column headed 5: that is, P ( Z  5 2.25) = 0.9878. This probability is 
given by the shaded area in Figure S5.10. 

1 z 1.96 z 

Figure S5.8 Figure S5.9 

Solution 5.5 
(a) First, sketch the standard normal density, showing the critical points 

z  = -1.33 and z  = 2.50. From the tables, P ( Z  < 2.50) = 0.9938 and 
so P ( Z  > 2.50) = 0.0062; by symmetry, P ( Z  5 -1.33) = P ( Z  2 1.33) = 
1 - 0.9082 = 0.0918. By subtraction, the probability required is 

(b) From the tables, P ( Z  2 3.00) = 1 - 0.9987 = 0.0013. By symmetry, 

-1.36 0.02 z 

Figure S5.7 

2.25 z 

Figure S5.10 

-1.33 2.50 z 

Figure 55.1 1 

Figure S5.12 



Elements of Statistics 

(c) First, sketch the standard normal density, showing the critical points 
z = 0.50 and z = 1.50. The probability P (Z  5 0.50) is 0.6915; the prob- 
ability P ( Z  5 1.50) is 0.9332. By subtraction, therefore, the probability 
required is 

P(0.50 < Z 5 1.50) = 0.9332 - 0.6915 = 0.2417. 

Solution 5.6 
0.50 1.50 

(a) The probability P(IZ1 5 1.62) is given by the shaded area in Figure S5.14. 
z 

From the tables, P ( Z  L 1.62) = 1 - P ( Z  5 1.62) = 1 - 0.9474 = 0.0526, Figure S5.13 

so the probability required is 

(b) The probability P(IZ1 L 2.45) is given by the sum of the two shaded 
areas in Figure S5.15. From the tables, P ( Z  L 2.45) = 1 - P ( Z  5 2.45) = 
1 - 0.9929 = 0.0071, so the total probability is 2 X 0.0071 = 0.0142. 

Figure S5.14 Figure S5.15 

Solution 5.7 
(a) The proportion within one standard deviation of the mean is given by 

P(IZI 5 l ) ,  shown in Figure S5.16. Since 

P ( Z  > 1) = 1 - P ( Z  5 1) = 1 - 0.8413 = 0.1587, 

the answer required is 1 - 0.1587 - 0.1587 = 0.6826: that is, nearly 70% 
of a normal population are within one standard deviation of the mean. 

(b) Here we require the probability P(IZI > 2). Since 

P ( Z  > 2) = 1 - P ( Z  5 2) = 1 - 0.9772 = 0.0228, 
-1 1 Z 

this is 2 X 0.0228 = 0.0456. Figure 55.16 

-2 

Figure S5.17 

Less than 5% of a normal population are more than two standard devi- 
ations away from the mean. 
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Solution 5.8 
We are told that X N N(40,4) (p  = 40, a2 = 4; so a = 2). The probability 
required is 

(37 1 
42 - 40 

P(37 5 X < 42) = P --- = P(-1.50 5 Z 5 1.00) 
2 

shown in Figure S5.18. The probability required is 

P(-1.50 < Z 5 1.00) = 0.7745. 
-1.50 1.00 

Figure S5.18 
Solution 5.9 
Writing A N(O,2.75), the probability required is P (0  < A < 2). 

Subtracting the mean p and dividing by the standard deviation a, using p = 0 
and a = m, this may be rewritten in terms of Z as 

From the tables, (P(1.21) = 0.8869, so the probability required is 

0.8869 - 0.5 = 0.3869. 

Solution 5.10 
(a) If T is N(315,17161) then a sketch of the distribution of T is given in 

Figure S5.19. 

(b) Standardizing gives 

P ( T  < 300) = P ( Z < 3001;1315) = P ( Z  < -0.11) = 0.4562. 

This is shown in Figure S5.20. 

-78 53 184 315 446 577 708 t -0.11 

Figure S5.19 Figure S5.20 

300 - 315 
(C) P(300 5 T < 500) = P 

< 2 < 500 - 315 ( 131 - 131 
= P(-0.11 < Z 5 1.41). 

This is shown in Figure S5.21.The area of the shaded region is 0.4645. 

(d) First, we need 

P ( T  > 500) = P ( Z  > 1.41) = l - 0.9207 = 0.0793. 

The number of smokers with a nicotine level higher than 500 in a sample -0.'11 1.41 z 

of 20 smokers has a binomial distribution B(20,0.0793). The probability Figure S5.21 
that at most one has a nicotine level higher than 500 is 

p0 + pl = (0 .9207)~~  + 20(0.9207)~~(0.0793) = 0.1916 + 0.3300 = 0.52. 
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Solution 5.1 1 
By symmetry, 90.2 = -40.8 = -0.842 for the standard normal distribution, 
and 40.4 = -90.6 = -0.253. Assuming IQ scores to be normally distributed 
with mean 100 and standard deviation 15, then 

90.2 = 100 - 0.842 X 15 = 87.4 
qo.4 = 100 - 0.253 X 15 = 96.2 
90.6 = 100 + 0.253 X 15 = 103.8 

90.8 = 100 + 0.842 X 15 = 112.6 

and these quantiles are illustrated in Figure S5.22. 

87.4 96.2 103.8 112.6 

IQ scores 

Figure S5.22 

Solution 5.12 
(a) Most statistical computer programs should be able to furnish standard 

normal probabilities and quantiles. The answers might be different in the 
fourth decimal place to those furnished by the tables when other than 
simple calculations are made. 
(i) 0.0446 (ii) 0.9641 (iii) 0.9579 (iv) 0.0643 

(v) 90.10 = -qo.go = -1.2816 (vi) 90.95 = 1.6449 

(vii) 90.975 = 1.9600 (viii) 90.99 = 2.3263 

(b) The distribution of X is normal N(100,225). Most computers should re- 
turn non-standard normal probabilities routinely, taking the distribution 
parameters as function arguments, and insulating users from the require- 

ments to re-present problems in terms of the standard normal distribution. 

(i) 0.0478 (ii) 0.1613 (iii) 100 (iv) 119.2 (v) 80.8 

(C) (i) 0.1587 (ii) 166.22cm 

(iii) The first quartile is q~ = 155.95; the third quartile is q~ = 164.05; 
the interquartile range is given by the difference qv - q~ = 8.1 cm. 

(iv) 0.3023 
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(d) (i) 0.1514 (ii) 530.48 (iii) 0.6379 

(iv) This question asks 'What proportion of smokers have nicotine levels 
within 100 units of the mean of 315?'. Formally, 

which is 0.5548. 

(vi) The range of levels is that covered by the interval (q0.04, allow- 
ing 4% either side. This is (85.7,544.3). 

(vii) 

P(215 < T < 300) + P(350 < T < 400) 

= 0.231 794 + 0.136 451 = 0.3682. 

Solution 5.13 
Your solution might have gone something like the following. 

(a) The first sample of size 5 from Poisson(8) consisted of the list 6, 7, 3, 
8, 4. This data set has mean F5 = i ( 6  + 7 + 3 + 8 + 4) = 5.6. When a 
vector of 100 observations on was obtained, the observed frequencies 
of different observations were as follows. 

[5,6) 4 
P 1  7) 25 
[7,8) 27 
[8,9) 28 
[g, 10) 10 
[ l O ,  11) 6 

So there were 90 observed in [6,10). 

(b) The 100 observations on Xzo were distributed as follows. (Your results 
will be somewhat different.) 

So all the observations but one were in [6,10), and 85 of the 100 were in 
[7, 9). 

(c) All the 100 observations were in [7,9). 

(d) The larger the sample size, the less widely scattered around the population 
mean p = 8 the observed sample means were. In non-technical language, 
'larger samples resulted in sample means that were more precise estimates 
of the population mean'. 
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Solution 5.14 
The exponential distribution is very skewed, and you might have expected 
more scatter in the observations. This was apparent in the distributions of 
the sample means. For samples of size 5 the following, observations were 
obtained on X5. (Remember, x5 estimates the population mean, p = 8.) 

The largest observation was F5 = 21.42. Nevertheless, it is interesting to 
observe that the distribution of observations on X5 peaks not at the origin 
but somewhere between 5 and 10. 

For samples of size 20 the following distribution of observations on KO was 
obtained. 

[4,6) 9 
37 

[8,10) 39 
[ l O ,  12) 12 
[12,14) 3 

These observations are peaked around the point 8. 

Finally, for samples of size 80 the following observations on XgO were obtained. 

Solution 5.15 
(a) (i) The following typical 100 observations on resulted in a histogram 

almost as skewed as the distribution of X itself. 

Frequency 

Frequency 

Figure S5.23 

10 

(ii) .The histogram for 100 observations on X30 is given in Figure S5.24. 

2: (iii) The histogram of part (ii) is evidently more symmetric than that 0 
0.4 0.6 0.8 1.0 1.2 1.4 ?Fso of part (i), and it appears that a normal density might provide a usable . . 

approximation to the distribution of X30. Figure S5.24 
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(b) (i) The simulation of 100 observations on X2 resulted in a histogram that 
was roughly triangular over [O, 21, and very different to that obtained at 
part (a) (i). 

Frequency 

0 0.2 0.4 0.6 0.8 1.0 ?Ez 

Figure S5.25 

(ii) For means of samples of size 30, the following histogram was obtained. 

Frequency 

0 0.2 0.4 0.6 0.8 1.0 530 

Figure 55.26 

(iii) The differences between the histograms of parts (b)(i) and (b)(ii) are 
not so apparent. The distribution in both cases peaks at 1 and is roughly 
symmetric. However, notice that for samples of size 30 there is much less 
variation in the distribution of the sample mean. 

Solution 5.16 
It does not matter that there is no proposed model for the duration of individ- 
ual patients' visits: the numbers p = 20 minutes and U = 15 minutes provide 
sufficient information. By the central limit theorem, the total time T required 
of the dentist by the 12 patients is approximately normally distributed with 
mean 

12 X 20 = 240 

and variance 

12 X 1 5 ~  = 2700. 

The probability that T will be less than 3 hours (that is, 180 minutes) is 

or 1 - 0.8749 = 0.1251 from the tables. So she will only be free at  12 with 
probability about i. 
(If you used a computer for the normal probability without the intermediate 
calculation Z = -1.15, you would have obtained the solution 0.1241.) 



Elements of Statistics 

Solution 5.17 
If the error in any individual transaction is written W, then W U(-;, ;). 
The mean of W is E(W) = 0, by symmetry, and the variance of W is 

2 V(W) = L ( L  - ( -L))  = L 
12 2 2 12' 

The accumulated error in 400 transactions is given by the sum 

S =  wl + w2 + " ' +  w400. 
By the central limit theorem, S has mean 

p = 400 X 0 = 0, 

and variance 

and is approximately normally distributed. 

The probability that after 400 transactions her estimate of her bank balance 
- 

is less than ten pounds in error is 

This probability is given by the shaded area in Figure S5.27 

-1.73 1.73 z 

Figure S5.27 

Since P ( Z  > 1.73) = 1 - 0.9582 = 0.0418, the probability required is 

1 - 2 X 0.0418 = 0.9164 

(or rather more than 90%). 

Solution 5.18 
The probability 

P(12 5 X 5 15) 

can be approximated by the probability 

P(11; 1 Y 5 1 5 9 ,  

where Y N N(8,4); this is the same as 

and (from the tables) this is 0.9999 - 0.9599 = 0.0400. The actual binomial 
probability is 0.0384. 
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Solution 5.19 
(a) (i) 0.164538 (ii) 0.182820 (iii) 0.165408 (iv) 0.124056 

(b) 0.472 284 

(c) Since n p  = F = 6.25, npq = 2 = 4.6875, then p = 6.25, a2 = 4.6875. 

(d) (i) P ( X  = 6) p P (5; 5 Y 5 6;) = 0.181446. This may be compared 
with the binomial probability 0.182 820. 

(ii) P ( X  = 7) - P (6; 5 Y 5 7;) = 0.172 185. This may be compared 
with the exact binomial probability, which is 0.165 408. 

(iii) P ( X  = 8) 21 P (7; 5 Y 5 8;) = 0.132 503. The exact binomial prob- 
ability is 0.124 056. 

(iv) P(6  5 X 5 8) E P (5; 5 Y 5 8:) = 0.486 134. The corresponding 
binomial probability is 0.472 284. 

Solution 5.20 
A computer gives the probability P(30 5 X 5 45) when X Poisson(40) as 
0.766 421. The central limit theorem permits the approximation 

P(30 5 X 5 45) = P (29; 5 Y 5 45;) 

where Y is normal with mean p = 40 and variance a2 = 40. The right-hand 
side is given by 

= P(-1.66 5 Z 5 0.87) = 0.8078 - (1 - 0.9515) = 0.7593 

from the tables. Directly from a computer, we would obtain 0.759 310. This 
approximation is reasonable. 

Chapter 6 

Solution 6.1 

For any random sample taken from a population with mean p and variance u2, 
the sample mean X has mean and variance 

where n is the sample size. When the population is Poisson, the variance a2 
is equal to the mean p, so 

The random variable X(1) was based on samples of size 103, the random 
variable X(2) on samples of size 48. So 

but 

The larger the sample taken, the smaller the variance in the sample mean. 
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Solution 6.2 
The mean of the random variable Y, is given by 

which is of the form E(constant + Wi), since a, ,h' and xi are all constants. 
This is therefore 

E(K) = (I! + Pxi + E(Wi), 

and from our assumption that Wi has mean 0 it follows that 

for all i = 1 ,2 , .  . . ,6. 

Similarly, the variance of Yi is given by 

V(Y,) = V(constant + Wi) = V(Wi) = a2, 

for all i = 1,2, . . . ,6. 

Solution 6.3 
(a) The midpoint of the coordinates (XI,  Yl) and ( 2 2 ,  Y2) is the point (;(XI + 22), i(Y1 + Y2)). 

The midpoint of the coordinates (25, Yg ) and ($6, Y6) is the point ( i (x5 + 26), i(Y5 + ~ 6 ) ) .  

The slope of the line joining the two midpoints is 

The centre of gravity of the points (XI,  Yl), (22, Y2) and (23, Y3) is ( i ( x l  + 2 2  + x3), i(Yl + Y2 + ~ 3 ) ) .  

The centre of gravity of the points ( 2 4 ,  Y4), (25, Y5) and (x6, Ys) is ( i (x4  + 2 5  + x6), i(y4 + Y5 + Y6)). 

The slope of the line joining the two centres of gravity is 

(b) Consequently 

and ~ ( 5 ~ )  reduces to ,B in a similar way. 
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Solution 6.4 
The variance of the second estimator 3, is given by 

The variance of p3 is 

Solution 6.5 
(a) There is one unknown parameter here, p, which is also the mean of the 

Poisson distribution. Matching sample and population moments gives the 
estimate ji = F; the corresponding estimator for p is ji = X .  

(b) In this case the population mean is l lp .  Matching moments gives - 
X = 116 so p^= 1/X. 

(c) Here, there are two unknown parameters, so we shall need to use two 
sample moments. These are X, the sample mean, and S2, the sample 
variance. Notice the use of the upper-case letter S, implying that like 
the sample mean, the sample variance is a random variable. Matching 
moments gives j2 = X, ii2 = S2.  

(d) The mean of the exponential distribution is 1/X: matching moments gives 
- 
X = 11s; so X = 1/X. 

(e) There is one unknown parameter here. Matching the sample mean to the 
binomial mean gives X = mp? so 

A X X l + X 2 + " ' + X n  p = - - =  
m mn 

(This was the 'intuitive' estimate p^of p  that was used in Example 6.1.) 
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Solution 6.6 
(a) You might have obtained something like this: the 1000 samples of size 2 

may be represented as a rectangular array 
- - 

0.156 0.093 
0.183 0.203 
0.066 0.168 

0.679 0.218 - 
with sample means 

- - 
0.124 
0.193 
0.117 

0.449 - - 
Taking reciprocals gives 

- - 
8.05 
5.19 
8.56 

2.23 - - 
which is a data vector of 1000 different independent estimates of X. 

(b) The mean of this data vector is 9.20, close to twice the true value of X. 

(For interest, the experiment was repeated four more times, resulting in four 
further estimates 11.4, 11.1, 11.8 and 9.6.) 

Solution 6.7 
(a) The method of moments says, simply, that C = I?. 
(b) For any random sample, the sample mean I? has expectation p ,  the popu- 

lation mean, so in this case 

E(C) = E ( X )  = p; 

it follows that is unbiased for p. 

(c) Using the same set of 1000 random samples of size 2 as was used in 
Solution 6.6, our data vector of 1000 different independent estimates of p 
is 

- - 
0.124 
0.193 
0.117 

0.449 - - 
(d) This data vector has mean 0.202, close to the true value p = 0.2. 

(For interest, the experiment was repeated four more times, resulting in esti- 
mates 0.202 (again), 0.196, 0.195 and 0.201.) 
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Solution 6.8 
The average run length is the sample mean 

assuming a geometric model with mean l /p,  the moment estimate of p is 

Solution 6.9 
The mean of these data is i = 437.21, and so the moment estimator for 
the exponential parameter X is 

The units of are 'earthquakes per day'. We know that the moment 
estimator is biased: 

However, in this case n = 62. The moment estimator may be expected 
to overestimate the true value of X by a factor 1 + 1/61 = 1.016, which is 
very small. 

The moment estimate of p is j2 = i = 437.21; the estimator j2 is unbiased. 
The units of j2 are 'days between earthquakes'. 

Solution 6.10 
In this case n = 3 and X,,, = 13.1, so 

A 

e = (l + A )  = i(13.1) = 17.5. 

Solution 6.1 1 
The mean of the Pareto(100,e) probability distribution is 

iooe p = -  e -  1' 

The method of moments says that the moment estimator of 0 for a sample 
from the Pareto distribution where K = 100 may be found using 

thus, finally, 

In this case the sample total is xi = 3624 and so the sample mean is 
: = 3624130 = 120.8. The moment estimate of 0 is 
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Solution 6.12 
The maximum likelihood estimate of 9 is (after a .  little calculation) 
A A 

O M L  = 5.59; this is to be compared with the moment estimate 9~~ = 5.81 
obtained in the previous exercise. Numerically there is little to choose be- 
tween either estimate. We know that maximum likelihood estimators possess 

A 

good properties. (However, O M M  was in this case a great deal easier to obtain, 
and to calculate.) 

Solution 6.13 
The total number of mice tested is 12 + 20 + . . . + 20 = 505; the total 
number afflicted is 0 + 0 + . . + 4 = 43. The maximum likelihood estimate 
of p is p^= 431505 = 0.085. 

The total number of normal Drosophila is 419; the total number of ves- 
tigial Drosophila is 68. The maximum likelihood estimate of the pro- 
portion normal is given by 

Solution 6.14 
The likelihood for the sample observed is 

($( l  - 7-1)'" (9)" (;(l - r))lS3 

147+133 (ir)65+58 280 
= ( & ( l  - r)) 

123 (1 - r)280r123 
( ( l - r )  (:r) = 2403 

This expression is maximized where (1 - r)280r123 is maximized. This occurs 
at 3 = 0.3052. 

You might have found this using numerical procedures or-perhaps not quite 
so precisely-by scanning a graph of the function (1 - r)280r123. Differen- 
tiation gives the exact fractional answer, 3 = 1231403. 

Solution 6.15 
The likelihood of p for the sample of 1469 cars is given by 

902 403 106 38 1 6 p  
P, P, P, p4 p5 ( X  2 6)41 

where p j  = P ( X  = j )  = (1 - p)j-lp, j = 1,2, .  . . . This is 

P902((l - ((1 - P ) ~ P ) ~ O ~  ((1 - P ) ~ P ) ~ ~  ((l - ((l - P ) ~ ) ~  
- - p1465(1 - P)'''. 

This is maximized at p^= 146512278 = 0.6431. (The exact fraction 146512278 
was found using differentiation-numerical and graphical techniques should 
provide an answer close to 0.6431.) 

Notice that for these data the sample mean is at  least 228211469 = 1.553 
(that is, the sample mean if all four of the fullest cars only contained six 
passengers); so the maximum likelihood estimate for p is going to be just 
under 146912282 = 0.6437, as indeed it is. This small calculation is a useful 
check on your answer. Notice that the censoring has not in fact influenced 
the calculation unduly. 
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Solution 6.16 
For these data (and assuming a Poisson model) the likelihood is given by 

where p j  is the probability P ( X  = j) when X is Poisson(p), and where Pj 
is the probability P ( X  > j ) .  The likelihood is maximized at c = 2.819. 
(Again, the sample mean assuming at  most 6 colonies per quadrat would be 
6701240 = 2.792. The estimate is not very different for the censored data.) 

Solution 6.17 
The average time between pulses is given by the sample mean 1 = 0.2244. 
The units are hundredths of a second. Consequently, the maximum likelihood 
estimate of the pulse rate (per second) is 100/0.2244 = 446. 

Solution 6.18 
All that is required here is the sample mean = = 159.8 (measurements 
in cm). 

Solution 6.19 
(a) In one simulation the observations 

XI = 96.59, x2 = 99.87, x3 = 107.15 

were obtained, having sample variance s2 = 29.2, which is fairly close to 
25. However, this sequence was immediately followed by the sample 

XI = 100.82, x2 = 99.30, x3 = 100.91, 

having sample variance s2 = 0.82, which is very far from 25! 

(b) Your collected samples may have looked something like 

I 106.01 95.45 96.58 

with sample variances 

(i) The mean of this vector of sample variances is 24.95 which is very close 
to 25; but you can see from the four elements listed that the variation 
is very considerable. The highest sample variance recorded in the 100 
samples was 133.05; the lowest was 0.397. 
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(ii) The variation in the sample variances is evident from a frequency 
table, and from the histogram shown in Figure S6.1. 

Frequency 

Observation Frequency 
0-20 48 

20-40 32 
40-60 15 
60-80 1 
80-100 2 

100-120 1 
120-140 1 

(iii) The variance in the recorded sample variances is 524.3! 
0 20 40 60 80 100 120 140 

Observation 

Your results will probably have shown similarly gross variation in the observed Figure S6.1 
sample variances. 

Solution 6.20 

(a) The mean of the 100 observed sample variances, based on samples of size 
10 was, in one particular experiment, 24.22. 

Frequency 
(b) The results are summarized below. A histogram is given in Figure S6.2. 

Observation Frequency 
0-10 10 

10-20 27 
20-30 36 
30-40 15 
40-50 10 
50-60 2 

The distribution is very much less dispersed. 
0 10 20 30 40 50 60 

Observation 

(c) The variance in the sample variances is now only 128. (The maximum Figure 276.2 
observation was 55.6, the minimum was 3.49.) 

Solution 6.21 

(a) (i) P( - l  < Z 5 1) = 0.6827. (ii) P(-fi 5 Z 5 a) = 0.8427. 

(iii) P(-d < Z < a) = 0.9167. (iv) P(-2 < Z 5 2) = 0.9545. 

(b) (i) P ( W  < 1) = p ( Z 2  5 1) (by definition) 

= P(-l < Z 5 1) = 0.6827. 

(ii) P ( W  < 2) = P(-& < Z 5 fi) = 0.8427. 

(iii) P ( W  5 3) = 0.9167. 

(iv) P ( W  1 4) = 0.9545. 

(c) In one particular run, the following results were obtained: 

(i) proportion less than 1 = 677/1000 = 0.677; 

(ii) proportion less than 2 = 831/1000 = 0.831; 

(iii) proportion less than 3 = 908/1000 = 0.908; 

(iv) proportion less than 4 = 955/1000 = 0.955. 
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(d) The corresponding histogram is shown in Figure S6.3. Notice that this 
histogram is exceedingly skewed. 

(e) From this simulation, an estimate of pw is 
- 
W = 1.032, 

and an estimate for ab is 

s k  = 2.203. 

(For interest, the experiment was repeated a further four times. Estimates of 
pw and a& were 

l.OO9,2.287; O.975,2.033; 1.001,1.782; 1.044,1.982.) 

Solution 6.22 
If Z2 has mean 1 and variance 2, then the sum of r independent observations 
on Z2, 

will have mean and variance 

Solution 6.23 
(a) 0.5697 (b) 0.1303 (c) 0.0471 (d) 0.0518 

Solution 6.24 
(a) 4.594 (b) 15.507 (c) 11.651 (d) 18.338 (e) 36.191 

The last three results are summarized in Figure S6.4. 

0 11.651 18.338 

Figure S6.4 

Solution 6.25 
You should have obtained the following quantiles from the table. 

(a) 13.091 (b) 4.168 (c) 11.340 (d) 24.769 (e) 3.841 

Proportion 

Observation 
Figure S6.3 
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Solution 6.26 
Writing 

it follows that 

Also, 

2 g2 S =- 
n - l  

W 

n2 
E ( s ~ )  = E (a W )  = - E(W) = -(n c2 - 1 )  = g2; 

n - l  n - l  n - l  

and 
04 g4 2 0 ~  v(s2) = v(*w) = - V ( W )  = - 2 ( n  - 1)  = - 

n - l  (n  - (n  - 1j2 n - l '  

Chapter 7 

Solution 7.1 
The lower confidence limit for p is found by solving the equation 

P ( T  2 t )  = e-t'p = 0.05 

t - 157 - - = 52.4 days 
p = - log 0.05 2.996 

(to 3 significant figures). The confidence statement may be expressed thus: 
' A  90% confidence interval for the mean number of days between disasters, 
assuming an exponential model and based on the single observation 157 days, 
is from p- = 52.4 days to p+ = 3060 days.' 

Solution 7.2 
To obtain the upper confidence limit p+ for p in this case, it is necessary to 
solve the equation 

P ( N  2 13) = 0.025 

or 

( 1  - p)12 = 0.025. 

This has solution 

p+ = l - 0 . 0 2 5 ~ 1 ~ ~  = 1 - 0.735 = 0.265. 

Consequently, a 95% confidence interval for p, assuming a geometric model 
and based on the single observation 13, is given by 

(p- ,p+)  = (0.002,0.265). 
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Notice that the confidence interval contains the maximum likelihood estimate 
p^= 0.077. The approach has usefully provided a range of plausible values 
for p. 

Solution 7.3 
To obtain a 90% confidence interval for p, it is necessary to solve the two 
equations 

P ( N  I 13) = 0.05 and P ( N  2 13) = 0.05. 

The first may be written 

and has solution 

p- = 1 - ( l  - 0.05)'/13 = 1 - 0.996 = 0.004. 

The second may be written 

( 1  - p)12 = 0.05 

and has solution 

p+ = 1 - 0.05'/12 = 1 - 0.779 = 0.221. 

Thus a 90% confidence interval for p is given by 

(p- ,p+)  = (O.OO4,O.221). 

This interval is narrower than the 95% confidence interval (0.002, 0.265) and 
in this sense is more useful; but less confidence may be attached to it. The 
only way t ~ r e d u c e  the width of a confidence interval while maintaining a high 
confidence level is to increase the sample size. 

Solution 7.4 

The confidence level required is 99%, so ;a = 0.005. Writing 

we need to solve, in this case, the equation 

for p. From 

it follows that 

and this is the upper confidence limit p+. Similarly, writing 
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we need to solve, in this case, the equation 

This has solution 

So a 99% confidence interval for the average length of runs of diseased trees, 
based on the observation 4 and assuming a geometric model, is given by 

(p-, p,) = (1.206,798.5). 

Notice the width of this confidence interval, and particularly the extent of 
the upper confidence limit! This is due to the inherent skewed nature of the 
geometric distribution, but also to the dearth of data. The only way to reduce 
the width of the confidence interval is to collect more data. 

Solution 7.5 

If T has a triangular density with parameter 0 ( T  Triangular(0)) then the 
c.d.f. of T is given by 

(a) Writing 

it follows that 

1 ( l-  ;)2 = l -  p 

so, finally, 

This is the upper confidence limit 8+: it is high values of 8 that render 
low values of t unlikely. 

The lower confidence limit 8- is found by solving the equation 

for 8; writing 

it follows that , 
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So a 100(1- a )% confidence interval for the triangular parameter 8, based 
on a single observation t, is given by 

(b) For instance, if t = 5, then a 95% confidence interval ( + a  = 0.025) is given 
by 

Again, the confidence interval is extremely wide. But it makes sense: the 
parameter 9 specifies the right-hand edge of the range of T. If the value 
t = 5 has been observed, the value of 0 must be at least 5. 

Solution 7.6 
First, a model is required. Assuming the unknown number of Firefly dinghies 
manufactured to date to be equal to 6 then, in the absence of any information 
to the contrary, we could assume that any one of the dinghies is as likely to 
have been observed as any other. That is, denoting by X the sail number 
observed, the random variable X has a discrete uniform distribution 

Then X has c.d.f. 
X 

P ( X < x ) = - ,  x = l , 2 , 3  ,..., 0. e 
The confidence level required is 90%: so +a = 0.05. Writing 

we obtain the upper confidence limit 8+ = 343310.05 = 68 660. 

Now, the probability P ( X  > 3433) is given by 

and so the lower confidence limit 8- for 8 is given by the solution of the 
equation 

this solution is 

The unknown number 0 is indubitably an integer. Erring a little on the safe 
side, we can conclude from the one sighting made (3433) that a 90% confidence 
interval for the number 8 of Firefly dinghies manufactured to date is given by 

Again, the interval is so wide as to be of questionable use. We shall see in 
Subsection 7.2.5 the very useful consequences of taking a larger sample. 
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Solution 7.7 
(i) A 90% confidence interval for p, based on observing 4 successes in 11 
trials, is given by 

(ii) The corresponding 95% confidence interval is 

Confidence intervals based on observing 8 successes in 22 trials are 

In both cases, the larger sample size has led to narrower confidence in- 
tervals. The reason is the increase in information. Just as larger samples 
lead to reduced variation in parameter estimates, so they permit narrower 
(more precise) confidence intervals. 

A 99% confidence interval for p based on observing 4 successes in 5 trials 
is given by 

In one experiment (your results might have been similar) the sequence of 

10 observations on B(20,0.3) is 

The corresponding confidence limits for p are 

(p-, p+) = (0.0026,0.2161); 
(p-, p+) = (0.2587,0.6531); 
(p-, p+) = (0.2171,0.6064); 
(p- ,p+) = (0.1773,0.5580); 
(p-, p+) = (0.0422,0.3437); 
(p-, p+) = (0.2587,0.6531); 
(p- ,p+) = (0.1396,0.5078); 
(p-, p+) = (0.0714,0.4010); 
(p- ,p+) = (0.2171,0.6064); 
(p-,p+) = (0.1041,0.4556). 

Of these ten intervals, only the first one does not contain the known 
value of p, 0.3. Remember the interpretation of a confidence interval-in 
repeated experiments, a proportion 100(1 - a)% of confidence intervals 
obtained may be expected to contain the (usually) unknown value of the 
parameter. 

Here, the confidence 1evel.set was 90%; and, as it happened, exactly nine 
out of the ten calculated intervals contained the known parameter value 
p = 0.3-just as expected. What happened in your experiment? 

The observation '1 success in 20 trials' is so low, that it reduces our 
confidence that the underlying success probability is, or could be, as high 
as 0.3. 

(Incidentally, an observed success count as high as 10 in 20 would have 
resulted in the confidence interval 

For discrete random variables, the 
calculations underlying the 
construction of confidence intervals 
conceal an interesting feature, 
exemplified here. Only the 
confidence intervals for 
X = 3,4, . . . ,9  contain the value 
0.3: other values of s are 'too low' 
or 'too high'. If X is binomial 
B(20,0.3), then 
P(3 5 X 5 9) = 0.9166 > 0.90. 
That is, an average of about 92% 
(more than 90%) of confidence 
intervals generated in this way will 
contain the (usually unknown) 
parameter value. The procedure is 
'conservative'. 

which does not contain the value p = 0.3, either.) 
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Solution 7.8 
(a) (i) A 90% confidence interval for a Poisson mean p, based on the single 

observation 3, is given by 

(p-, p+) = (0.8177,7.754). 

(ii) The corresponding 95% confidence interval is 

(p-, p+) = (0.6187,8.767). 

(b) (i) An estimate of the mean underlying accident rate p is given by the 
sample mean 

- 4 + 4 + 3 + 0 + 5 + 3 + 2  21 p = X = - 
7 

= = 3.0. 
7 

So the estimate of p is the same as it was in part (a), but this time it is 
based on seven observations rather than on one. 

(ii) Confidence inte'rvals for p based on these data are given by 

90%: (p-, p+) = (2.010,4.320); 
95%: (p-, p+) = (l.857,4.586). 

Notice that the increased information has resulted in narrower confidence 
intervals. 

(c) (i) The estimated mean annual accident rate for girls of this age is 

(ii) In this case we are only told the sample total t = 20; but we know that 
the random variable T, on which t is a single observation, is Poisson(6p). 
All that is required is that we obtain confidence limits for the mean of T, 
and then divide these limits by 6. This approach gives 

90%: (p-, p+) = (2.209,4.844); 
95%: (p-, p+) = (2.036,5.148). 

Solution 7.9 
(a) The mean of the 62 time intervals is 437.21 days, about 14 months. As- 

suming that times between earthquakes are exponentially distributed, a 

90% confidence interval for the mean time interval between serious earth- 
quakes world-wide is given by 

(p-, p+) = (359.06,546.06), 

or from about twelve months to eighteen months. 

(b) (i) The mean waiting time between vehicles is 

A 212 p = - - 4  
50 

- .24 seconds, 

so the estimated tr&c rate is - 1 
X = - = 0.2358 vehicles per second = 14.15 vehicles per minute. 

P 

(ii) A 90% confidence interval for the mean traffic rate is given by 

(X-, X+) = (11.03,17.60). 
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(c) When this experiment was tried the ten resulting confidence intervals were 
as follows. (The sample mean is also shown in brackets.) 

0.7821 (1.090) 1.645 
0.9361 (1.305) 1.969 
0.7864 (1.096) 1.654 
0.7149 (0.997) 1.504 
0.6848 (0.955) 1.440 
0.8603 (1.199) 1.810 
0.7142 (0.996) 1.502 
0.8163 (1.138) 1.717 
0.7145 (0.996) 1.503 
0.6423 (0.895) 1.351 

Interestingly, an eleventh experiment gave 

which does not contain the number 1.0, but the sample had extraordi- 
narily low numbers in it. They were 

Note that only two of these numbers exceed the mean, 1. 

A twelfth experiment gave 

which also does not contain the number 1; in this case the numbers 
sampled from M ( l )  were unusually high. 

Solution 7.10 
(a) One simulation gave the following ten observations on N. 

The corresponding 90% confidence interval for p based on these data is 

(p-, p+) = (O.O712,O.l951). 

The width of the confidence interval is 0.1951 - 0.0712 = 0.124. It  con- 
tains both the values p = 1/10 and p = 116. 

(b) For interest, this part of the exercise was performed three times. The 
corresponding confidence intervals were 

(O.O89O,O.l217), width = 0.033; 

(O.O825,0.1130), width = 0.030; 

(0.0940,0.1284), width = 0.034. 

In all three cases the confidence interval contained the value p = 1/10 
and not the value p = 116, providing quite strong evidence that the die 
is loaded (as we know; but you can imagine that there are circumstances 
where one might not know this, but merely suspect it). 
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(The experiment was repeated on the computer a further 997 times, mak- 
ing a total of 1000 experiments altogether. The number 1/10 was included 
in the resulting confidence intervals 892 times, roughly as expected-90% 
of 1000 is 900. The number 116 was not included in any of the intervals.) 

Solution 7.1 1 
Either from tables or your computer, you should find (a) t = 1.699; 
(b) t = 1.697; (C) t = -3.365; (d) t = 2.262. 

Solution 7.12 
For the five data points the sample mean and sample standard deviation are 
?E = 3.118 and s = 0.155. For a confidence level of 95%, the corresponding 
critical t-value is obtained from the t-distribution t ( 4 ) :  it is the 97.5% point 
of t(4), q0.975 = 2.776. This is shown in Figure S7.1. A 95% confidence interval 
for p,  the mean coal consumption in pounds per draw-bar horse-power hour, 
is given by 

Solution 7.13 
(a) For the data 

1.2 2.4 1.3 1.3 0 1.0 1.8 0.8 4.6 1.4 

the sample mean is ?F = 1.58 and the sample standard deviation is 
s = 1.23. A 95% confidence interval is required for the mean difference p 
between the two treatments. Reference to tables of t(9) gives the critical 
value t = 2.262. Thus the corresponding confidence interval is 

= (1.58 - 0.88,1.58 + 0.88) = (0.70,2.46). 

(b) Since the number 0 (indicating no difference between the two treatments) 
is not included in this confidence interval, there is considerable evidence 
that the treatment L-hyoscyamine hydrobromide is a more effective hyp- 
notic than the alternative. 

Solution 7.14 
This is a 'self-help' exercise included to encourage you to use your computer. 

Figure S7.1 Critical values from 
t(4) 
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Solution 7.15 
In this case the sample size was n = 8; the sample variance was s2 = 37.75. 

(a) For a 90% confidence interval we will require the 5% and the 95% points of 
X2(7). These are CL = 2.167 and cu = 14.067 respectively. Consequently, 
a 90% confidence interval for the population variance u2, based on the 
data provided, is 

(b) For a 95% confidence interval we need 

The interval is 

2 7 X 37.75 7 X 37.75 (a-, a:) = 
16.013 ' 1.69 

= (16.50,156.4). 

Solution 7.16 
An estimate for a is given by the sample standard deviation 

S = = 6.1. 

We found in Solution 7.15(a) that a 90% confidence interval for the popu- 
lation variance a2 is given by (18.79, 121.9). Taking square roots, the 
corresponding 90% confidence interval for the population standard devi- 
ation a is given by 

(a-, a+ )  = (4.3,ll.O). 

Solution 7.17 
For the earthquake data, the mean time between quakes is given by 
E = ?f = 437.21 days. There were 62 waiting times recorded; to establish 
a 95% confidence interval for the mean time between serious earthquakes 
world-wide, it is necessary to use the fact that the 97.5% point of the stan- 
dard normal distribution is z = 1.96. The confidence interval required is 

This is an interval of between about twelve and nineteen months. Here, it 
is assumed that the sum of 62 exponential waiting times is approximately 
normally distributed. 

Solution 7.18 
(a) For the Kwinana traffic data the mean waiting time between vehicles was 

c = 4.24 seconds (corresponding to a traffic rate of = 14.15 vehicles 
per minute); the sample size was n = 50. Assuming the sample total to 
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be approximately normally distributed, a 90% confidence interval for the 
mean waiting time (taking z = 1.645) is given by 

By taking reciprocals, confidence limits for the mean traffic rate are 
X- = 1 / p +  = 0.18 vehicles per second, or 10.9 vehicles per minute; and 
X+ = 1 / p -  = 0.29 vehicles per second, or 17.4 vehicles per minute. 

(b) The confidence interval in the solution to Exercise 7.9 was 

(X-,  X+) = (11.03,17.60). 

The differences, which are very slight, are due to the approximation in- 
duced by assuming a normal distribution for the sample total. 

Solution 7.19 
The stated constraints imply that the following inequalities must hold: 

F >0.97F and 
l + z / f i  - 

F < 1.03F 
l - z / f i  - 

where z = 1.96.. The first inequality gives 

> 0.97, 
l + z / f i  - 

This gives 

z 0.03 < -  f i  - 0.97' 

that is, n 2 4016.2. The second inequality gives 

This gives 

1032 103 X 1.96 
f i 2 ,  - 3 ' 

that is, n 2 4528.4. For both inequalities to hold, the sample size must be 
4529 or more. This is an extremely large sample! 
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Solution 7.20 
The sample mean is 

An approximate 95% confidence interval for the underlying mean accident 
rate over the whole of the eight-year period (assuming a Poisson model) is 

(P-,P+I = (p- z$,p+ zE) 

Solution 7.21 
There were 109 runs observed. The mean length of a run was 

p = 1661109 = 1.523. 

For a 99% confidence interval the 99.5% point of Z is required. This is 
z = 2.576. The resulting approximate 99% confidence interval for the mean 
length of runs of diseased trees is 

Here, it is assumed that the sum of 109 geometric run lengths is approximately 
normally distributed. 

Solution 7.22 
(a) In this case, the estimate of p is p^= 28615387 = 0.0531. An approxi- 

mate 90% confidence interval for the underlying proportion of red-haired 
children in Scotland is 
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-- 

Here (as well as the usual assumption of normality) it has been assumed 
that the school children of Caithness are typical of all those in Scotland, 
which may not necessarily be the case. 

(b) Here, the estimated proportion of fair-haired children who are blue-eyed 
is p̂  = 136815789 = 0.236 31. An approximate 95% confidence interval for 
this proportion is 

Again, it has been assumed here that Aberdeen school children are rep- 
resentative of all school children in Scotland. 

Solution 7.23 
For these data the sample mean is F = 1.992 and the sample standard devi- 
ation is S = 1.394. A 90% confidence interval for the average number of books 
borrowed in a year is given by 

Solution 7.24 
For these data thesample mean is = 0.3163 and the sample standard devi- 
ation is S = 0.0805. Making no assumptions at all about the distribution of 
eggshell thicknesses for Anacapa pelicans, a 95% confidence interval for the 
mean thickness is given by 
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Chapter 8 

Solution 8.1 
For this test the null hypothesis is 

2 H o : p =  %; 

the alternative hypothesis is 

H l : p #  $. 
An appropriate model for the number of 1s in a sequence of 25 trials is binomial 
B(25,p). In this experiment the number of 1s observed is 10. 

(a) A 95% confidence interval for p, based on observing 10 successes in 25 
trials is given by 

(p-,p+) = (0.2113,0.6133). 

(b) The hypothesized value p0 = $ = 0.6667 is not contained in this confi- 
dence interval. The conclusions of the test may be stated as follows. 

On the basis of these data, there is evidence at the significance level 0.05 
to reject the null hypothesis p = $ in favour of the alternative hypothesis 
that p differs from $. (In fact, there is evidence from the sample that 

P < $.) 
(c) A 99% confidence interval for p is given by 

(p- ,p+) = (0.1679,0.6702). 

The interval contains the hypothesized value p0 = $: at the 1% level of 
significance there is no evidence, from these data, to reject the hypothesis. 

Solution 8.2 

The Kwinana Freeway data consist of 50 observations on times assumed to 
be exponentially distributed. The mean waiting time p is unknown. The hy- 
pothesis that the mean traffic flow rate is 10 vehicles per minute is equivalent 
to hypothesizing a mean waiting time of minute, or 6 seconds: 

An appropriate alternative hypothesis is furnished by 

H l : p # 6 .  

Confidence intervals at levels 90%, 95% and 99% for p, based on the data, are 

90% : (3.41,5.44); 
95% : (3.27,5.71); 
99% : (3.02,6.30). 

Only the last of these contains the hypothesized value p. = 6. One may 
conclude the test as follows. Based on these data, the hypothesis that the 
mean traffic flow rate is 10 vehicles per minute is rejected at  the 5% level of 
significance; at the 1% level the evidence is insufficient to reject the hypothesis. 

There are two additional points to notice here. The first is that no mention is 
made of the conclusion of the test at the 10% significance level: this is because 
rejection at 5% implies rejection at 10%. Second, at some significance level 
between 1% and 5% it is clear that the hypothesized value p. will itself be 
at the, very boundary of the decision rule. This idea will be explored in 
Section 8.3. 



Solutions to Exercises 

Solution 8.3 
Large-sample confidence intervals for the Bernoulli parameter p, based on 
approximate normal distribution theory, are of the form 

(a) In this case n = 1064 and p^= 787/1064 = 0.740. A specified 10% signifi- 
cance level for the test implies a 90% confidence level; this in turn implies 
z = 40.95 = 1.645, the 95% quantile of the standard normal distribution. 
The confidence interval required is given by 

The confidence interval contains the hypothesized value p0 = 0.75. Thus, 
at the 10% level of significance, these data offer no evidence to reject the 
hypothesis that the proportion of yellow peas is equal to $. 

(b) Here, n = 100 and p^= % = 0.6. A 95% confidence interval for p is given 
by 

The hypothesized value p0 = = 0.667 is contained in the interval: on 
the basis of these data, there is no evidence at this level to reject H o .  

Solution 8.4 
The observed mean ratio is 

The sample standard deviation is s = 0.0925. Consequently, the observed 
value t of the test statistic T under the null hypothesis is 

- 
T - p 0.6605 - 0.618 t= - -  = 2.055. 
s / f i  - 0 . 0 9 2 5 / m  

To work out the rejection region for the test, we need the 2.5% and 97.5% 
quantiles for t(19). These are 

q o . 0 ~ ~  = -2.093, 90.975 2.093. 

The rejection region is shown in Figure S8.1, together with the observed value 

AS you can see, the observed value t = 2.055 is very close to the boundary of Figure S8.1 

the rejection region (suggesting Shoshoni rectangles are somewhat 'square'); 
but strictly according to the predetermined significance level, there is insuf- 
ficient evidence, on the basis of these data, to reject the null hypothesis that 
p = 0.618. 
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Solution 8.5 
The null hypothesis here is 

and, as for L-hyoscyamine hydrobromide, the alternative hypothesis is 

Assuming a .  normal model for the variation in sleep gain after a dose of 
D-hyoscyamine hydrobromide, then under the null hypothesis 

To determine the rejection region at level 0.05, the critical quantile is 
90.95 = 1.833. The observed value t of the test statistic T is 

which is less than 40.95 = 1.833, and therefore falls outside the rejection region. 
On the basis of these data, and at this level, there is no reason to suspect 
that the hypnotic D-hyoscyamine hydrobromide has any measurable effect in 
prolonging sleep. 

Solution 8.6 
The null and alternative hypotheses are 

where p is the mean difference between the heights of a pair of cross- You will notice here the very 
fertilized and self-fertilized plants whose parents were grown from the precise s t&x~nt  of the meaning of 

same seed. An appropriate test statistic is the parameter p. Sometimes it is 

- important to be pedantic in this 
D way. T = -  

S/+ 

with null distribution t ( n  - 1). 

The test is two-sided at 10%: the rejection region is defined by the bound- 
ary points 

the 5% and 95% quantiles of t(14). If the observed value t of T is less 
than -1.761 or more than 1.761, the null hypothesis will be rejected in 
favour of the alternative. 

For this data set 

This exceeds ~ 0 . 9 5  = 1.761, so the hypothesis of zero difference is rejected 
in favour of the alternative hypothesis that there is a difference in the 
mean height of cross-fertilized and self-fertilized plants. (In fact, on the 
basis of the data, it appears that cross-fertilized plants are taller than 
self-fertilized plants.) 
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Solution 8.7 
Assume in this case that the test statistic is X P o i s s ~ n ( ~ ) .  Under the 
null hypothesis, the distribution of X is Poisson(3.0). We require to find 
values x1 and x2 such that, as closely as can be attained, 

P ( X  5 xl)  0.05, P ( X  > 22) 21 0.05. 

This is shown in Figure S8.2. 

Probability 

0.251 

The probability distribution of X, X Poisson (3.0) 

Figure S8.2 Identifying the rejection region 

In this case 

P ( X  5 0) = 0.0498 and P ( X  2 7) = 0.0335 

so the rejection region for the test, based on the single observation X, is 

x = O o r x > 7 .  

Otherwise the hypothesis H. : p = 3 is not rejected. The actual level of 
this test is 0.0498 + 0.0335 = 0.0833. 

A sensible test statistic is the sample total V = X1 + X2 + . + X5, which 
under the null hypothesis has a Poisson distribution with mean 15. In 
this case 

P ( V  5 8) = 0.0374 and P (V > 22) = 0.0531 

and the null hypothesis will not be rejected if the sample total is between 
9 and 21 inclusive. The level of the test is 0.0374 + 0.0531 = 0.0905. 

For a sample of size 10 the sample total W = X1 + X2 + . + X10 has 
the null distribution Poisson(30). Useful quantiles are given by 

P ( W  < 21) = 0.0544 and P ( W  > 40) = 0.0463, 

and so the rejection region for the test based on the sample total W is 

W 5 21 or W > 40. 

The level of the test is 0.0544 + 0.0463 = 0.1007. 
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Solution 8.8 
(a) The forecast relative frequency of light-greys is $: if this is true, the 

distribution of the number of light-greys in samples of size 18 is binomial 
N - B (18, i) . 

(b) The probability of observing four light-greys is 

The diagram shows all the values in the range of the null distribution 
B(18, i) that are as extreme as that observed. 

Probability 

0.30 

0.20 

0.10 

0.00 

Figure S8.3 

r SP ( o ~ ~ o s i t e  direction) = 0.090 J 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Number of light grey rabbits 

Counts as extreme as 4 from ~ ( 1 8 ,  i) 

The SP may be calculated as follows. 

SP(obtained direction) = P ( N  2 4) = 0.180 

SP(opposite direction) = P(N = 0) = 0.090 

This completes the assessment of the null hypothesis in the light of the 
sample. There is no substantial evidence that the null hypothesis is flawed: 
were it true, more than a quarter of future samples would, in fact, offer 
less support for it than did the sample collected. 

Solution 8.9 
If the number of insects~caught in a trap is denoted by N - Poisson(p), then 
the total number caught in 33 traps is 

T = NI + Nz + . . f N33 N Poisson(33p). 

Under the null hypothesis H. : p = 1, the distribution of T is Poisson(33). 

In fact, the total number of insects counted was 

t = 0 x 1 0 + 1 x 9 + 2 x 5 + 3 x 5 + 4 x 1 + 5 x 2 + 6 x 1  

= 0 + 9 + 1 0 + 1 5 + 4 + 1 0 + 6 = 5 4 .  
I 

Counts more extreme than t = 54 are shown in Figure S8.4. 

628 



Solutions to Exercises 

SP (opposite direction) 
= 0.000163 

SP (obtained direction) 
= 0.000487 

The probability distribution of T, T Poisson (33) 

Figure 58.4 Counts more extreme than t = 54 when T Poisson(33) 

The significance probabilities for the test are given by 

SP(obtained direction) = P ( T  2 54) = 0.000 487 
SP(opposite direction) = P(T 5 14) = 0.000 163 

SP(tota1) = 0.000 487 + 0.000 163 = 0.000 650. 

These significance probabilities are extremely small, offering strong evidence 
that the hypothesis p = 1 is false. The value obtained suggests that in fact p 
is rather greater than 1. 

The observed sample mean catch is 54/33 = 1.64, which does not at first 
glance appear to be so very different from the hypothesized value. Evidently 
the difference is very considerable. 

Solution 8.10 
(a) Neither the boxplots nor the histograms suggest that either sample is 

skewed, or that the variances are substantially different. The histograms 
suggest that a normal model would be an extremely useful representation 
of the variability in the measurements. 

(b) For the Etruscan skulls, 

S: = 35.65; 

for the modern Italian skulls, 

S; = 33.06. 

These are remarkably close: there is no question of having to forgo the 
test on the grounds that the test assumptions are not satisfied. 

(c) Further summary statistics are 

The pooled estimate of the variance g2 is given by 
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The observed value of the test statistic T is 
- 143.77 - 132.44 

t = = = 11.92. 

- + -  m - + -  
"h 732 84 70 

The test statistic needs to be assessed against Student's t-distribution 
with nl + n2 - 2 = 84 + 70 - 2 = 152 degrees of freedom. The shape 
of t(152) is not markedly different from the standard normal density. 
Without recourse to tables, or to a computer, the total SP for this test 
is very close to 0: differences in the mean maximum skull breadth for 
Etruscans and the modern Italian male are very marked indeed. 

Solution 8.1 1 
It  may be that at a single command your computer permits a comparison 
of the two diets returning, for instance, the value of the test statistic t and 
associated SP. The details are as follows (so you can check your program!). 
For those rats given the restricted diet, 

and for those rats given the ad libitum diet, 

Then the pooled estimate of a2 is given by 

This estimate of a2 is rather different to either of S: or S;; and, in fact, the 
ratio of the sample variances is given by 

which exceeds 3, and so suggests that the assumption of equal variances under- 
lying the two-sample t-test is untenable. This suggestion may be confirmed 
formally using an appropriate test: in fact, there turns out to be considerable 
evidence that the variances are different. 

Both samples are also considerably skewed. The software on your computer 
may blindly perform a two-sample t-test if you ask it to do so, with or without 
a warning message that the assumptions of the test may be seriously adrift. 
If so, then the resulting value of the test statistic T is 

Against the null distribution t(193) (or, essentially, against the normal distri- 
bution N(0 , l ) )  the SP is negligible. Assuming the t-test to  be viable, there is 
very considerable evidence that the mean lifelengths under the different diet 
regimes are different (and that, in fact, a restricted diet leads to increased 
longevity). 

The question of whether the t-test is a valid procedure in this case is a real one, 
and also a worrying one: however, lacking any other procedure for comparing 
two means, the t-test has provided some 'feel' for the extent to which the 
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data indicate a difference between the two diet regimes. Other tests for a 
comparison of two means, with less restrictive assumptions, are available in 
the statistical literature. 

Solution 8.12 
(a) The data = r l /nl  = 71/100 = 0.71 and = r2/n2 = 89/105 = 0.85 

suggest that females are more likely to be successful in a request for help. 
Fisher's exact test applied to the data r l  = 71, n l  = 100,r2 = 89, 
n2 = 105, yields the results 

SP(obtained direction) = 0.013 
SP(opposite direction) = 0.006 
SP(tota1) = 0.019. 

The total SP is less than 2%; in a directed test of the hypothesis 
H. : p1 = p2 against the alternative HI : p1 < p2 the SP is 1.3%. There is 
strong evidence of a difference in proportions, and that females are more 
likely to be given help when it is requested. 

(b) In this case the proportions to be compared are = r1/nl = 8/20 = 0.40 
and p̂ z = r2/n2 = 11/20 = 0.55. A reasonable null hypothesis might be 

H0 : p1 = P2. 

No particular suggestion has been offered that certain types of brain dam- 
age might reduce a person's facility in handling syllogisms: we might write 

H1 : P1 # P2. 

However, the data suggest the possibility that p1 is less than p2. In fact, 
Fisher's test gives 

SP(obtained direction) = 0.264 
SP(opposite direction) = 0.264 
SP(tota1) = 0.527. 

There is no serious evidence (whatever alternative hypothesis one might 
care to suggest) on the basis of these data that the individuals tested 
showed a significantly different capability. 

Solution 8.13 
(a) In this case the data available to test the null hypothesis H. : p1 = p2 

(assuming a Poisson model) are 

and consequently the aim is to test the observed value t; = 3 against the 
binomial distribution B(t,nl/(nl + n2)) or ~ ( 9 ,  i). By the symmetry of 
the binomial distribution 

SP(obtained direction) = SP(opposite direction) 

= p(3) + p(2) + p(1) + p(0) = 0.254 

and so 

SP(tota1) = 2 X 0.254 = 0.508. 

The SPs  in either direction are not small: there is no strong evidence to 
reject the hypothesis that the two underlying mean densities are equal. 
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(b) In this case 

In fact cl (the estimate of the mean plant density under Treatment 1) is 
347/4=86.75; and c2 is 292/8=36.50. There seems to be a considerable 
difference here. Formally, we need to test the observed value tr = 347 
against the binomial distribution B (639, $) . The null distribution peaks 
at the mean (i X 639 = 213) and so fairly evidently 

SP(obtained direction) = P(T: 2 347) E 0; 

this was calculated using a computer. 

Working out the SP in the opposite direction strictly involves a scan of 
the binomial distribution B (639, i) to ascertain those values in the range 
occurring with probability less than p(347). 

A normal approximation has T; 21 N(213,142) (for the binomial mean is 
np = 639 X = 213; the variance is npq = 639 X $ X = 142). The SP 
in the obtained direction is again 

using a continuity correction this is approximately 

by the symmetry of the normal distribution the SP in the opposite di- 
rection is the same as the SP in the obtained direction. There is very 
considerable evidence that the mean plant densities under the two treat- 
ments differ and, in fact, that Treatment 1 leads to a higher density than 
Treatment 2. 

Solution 9.1 
Since n = 7, we determine the points for which @(xi) = i / 8 .  

A probability plot for the points y(i) ,against xi is given in Figure S9.1. 
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Figure S9.1 Silver content against normal scores (fourth coinage) 

A straight line fits the points quite closely and we can conclude that the 
normal distribution provides an adequate model for the variation in the data. 

Solution 9.2 
The differences (in microns) are given in Table S9.1. 

Table S9.1 Corneal thickness in patients with glaucoma (microns) 

Patient 1 2 3 4 5 6 7 8  
Glaucomatous eye 488 478 480 426 440 410 458 460 
Normal eye 484 478 492 444 436 398 464 476 
Difference 4 0 -12 -18 4 12 -6 -16 

Since n = 8, we determine the points for which @(xi) = 219. The points y(i) 
and xi are shown in the table in the margin. The points (xi, y(i)) are shown 
plotted in Figure S9.2. 

i yci, i / 9  xi 

Figure 5'9.2 Corneal thickness differences against normal scores 

The points do not appear to lie on a straight line and the evidence in favour 
of a normal modelling distribution for the differences in cornea1 thickness is 
not strong. However, there is no systematic pattern to the points. 
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Solution 9.3 
Since n = 20, we plot y(i) against xi = - log((21 - i)/21). Normally you would need a 

calculator for the logarithms, but 
in this case the xis are the same as 
they are in Table 9.5. 

The exponential probability plot (y(i) against xi) is given in Figure S9.3. 

Remember that for an exponential 
probability plot, the fitted straight 
line must pass through the origin. 

0 1 2 3 4 
Exponential scores 

Figure S9.3 Unpleasant memory recall times against exponential scores 

The points do not lie on a straight line and the evidence does not support an 
exponential modelling distribution for the variation in recall times. 

Solution 9.4 
The normal probability plot, together with a fitted straight line, for the data 
on the 84 Etruscan skulls is shown in Figure S9.4. 

Etruscan skulls (mm) 

Normal scores 

Figure S9.4 Normal probability plot, Etruscan skulls 

634 
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The fit appears to be very good, supporting an earlier assertion that the 
variation in the data may plausibly be modelled by a normal distribution. 
Notice also that the fitted line has intercept at about 144 (?EE = 143.8) and 
slope about 6 (SE = 5.97). 

The corresponding plot for the 70 modern Italian skulls is given in Figure S9.5. 
Again, a straight line appears to fit the points very well (though there is a 
departure from the fitted line at both extremes-small skulls are surprisingly 
small and large skulls are surprisingly large). The fitted line in the diagram 
has intercept at about 132 (?EI = 132.4) and slope again about 6 ( s ~  = 5.75). 

Modern Italian skulls (mm) 

110 1 I I I I I I 

- 3 - 2 -1 0 1 2 3 
Normal scores 

Figure S9.5 Normal probability plot, modern Italian skulls 

Solution 9.5 
(a) The exponential probability plot for the 62 waiting times between earth- 

quakes, together with a fitted straight line through the origin, is given in 
Figure S9.6. The fit looks very good. (The slope of the line appears to 
be about 450: the sample mean for the data set is 437.) 

Time interval (days) 

0 1 2 3 4 
Exponential scorks 

Figure S9.6 Exponential probability plot, waiting times between earthquakes 

(b) In this case (see Figure S9.7) there is a clear departure from linearity, 
suggesting that the variation in the waiting times between successive coal- 
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mining disasters is other than exponential. Nevertheless, the plot does 
suggest some sort of systematic variation in these data. 

Waiting time (days) 

0 1 2 3 4 5 
Exponential scores 

Figure S9.7 Exponential probability plot, waiting time between coal-mining disasters 

Solution 9.6 
Your computer may have provided you with 30 observations4rom the Pareto(8,4) 
distribution similar to those shown in Table S9.2. Table S9.3 Exponential 

Table S9.2 Thirty observations from Pareto(8,4) scores for Pareto data 
8.18 10.91 8.73 8.17 12.90 8.88 10.31 8.19 9.59 13.73 2 ~ ( i )  ~ ( i )  xi 

11.68 8.52 13.14 10.10 8.44 10.72 8.18 8.12 8.33 9.20 
8.78 10.41 11.49 9.54 12.55 12.28 17.26 9.07 8.05 9.99 1 8.05 0.006 0.033 

2 8.12 0.015 0.067 
Writing W Pareto (8, g), then the random variable Y = log(W/8) has an 3 8.17 0.021 0.102 
exponential distribution. The ordered sample y(l), yp) ,  . . . , Y(30) and the as- 0.022 0.138 

sociated exponential scores XI ,  22,. . . , 530  are shown in Table S9.3. 
5 8.18 0.022 0.176 
6 8.19 0.023 0.215 

The plot of the points yi against xi, together with a fitted straight line through 7 8.33 0.040 0.256 
the origin, is given in Figure S9.8. 8 8.44 0.054 0.298 

9 8.52 0.063 0.343 

0 

Figure S9.8 

10 8.73 0.087 0.389 
11 8.78 0.093 0.438 
12 8.88 0.104 0.490 : 

13 9.07 0.126 0.544 
14 9.20 0.140 0.601 
15 9.54 0.176 0.661 
16 9.59 0.181 0.726 
17 9.99 0.222 0.795 
18 10.10 0,233 0.869 
19 10.31 0.254 0.949 
20 10.41 0.263 1.036 
21 10.72 0.293 1.131 
22 10.91 0.310 1.237 
23 11.49 0.362 1.355 
24 11.68 0.378 1.488 
25 12.28 0.429 1.642 
26 12.55 0.450 1.825 
27 12.90 0.478 2.048 
28 13.14 0.496 2.335 

I l I 
1 2 3 Xi 29 13.73 0.540 2.741 

30 17.26 0.769 3.434 
Probability plot, simulated Pareto data 
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If the maximum point of the 30 is ignored, there is a pronounced curve to 
the probability plot, suggesting in this case some systematic error with the 
Pareto generator. 

Did your plot provide a more convincing straight line? 

Solution 9.7 
(a) There are four categories with expected frequencies 

where 

A table for calculating the chi-squared test statistic is given in Table S9.4. 

Table 59.4 Pharbitis nil, simple theory 

i Oi Ei (Oi - Ei) (Oi - Ei)'/Ei 

1 187 163.125 23.875 3.49 
2 35 54.375 -19.375 6.90 
3 37 54.375 -17.375 5.55 
4 31 18.125 12.875 9.15 

The chi-squared value for the test is 

Measured against x2(3) (k = 4; no model parameters were estimated from 
the data), this gives a SP  of about 0.000 015. This is exceptionally small: 
there is very considerable evidence that the simple theory is flawed. 

(b) Allowing for genetic linkage, then the expected frequencies are consider- 
ably changed, as shown in Table S9.5. For instance, 

El = no1 = 290 X 0.6209 = 180.061. 
Table S9.5 Pharbitis nil, genetic linkage 

i Oi Ei (Oi - Ei) (Oi - ~ i ) ' / ~ i  

The chi-squared value for this test is 

Measured against x2(2) (k = 4; one model parameter was estimated from 
the data so p = l ) ,  this gives a SP  of 0.63. There is no evidence to reject 
the genetic linkage. 
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Solution 9.8 
Pielou assumed a geometric modelling distribution with parameter p = 0.657 
for the following data; expected frequencies obtained by multiplying the hy- 
pothesized probability mass function by 109 are included in Table S9.6. For 
instance, E4 = 10904 = 109(0.343)3(0.657) = 2.89. 

Run lengths of diseased trees in an infected plantation 

Run length 1 2 3 4 5 6 > 6  
Observed number of runs 7 1  28 5 2 2 1 0 
Estimated number of runs 71.61 24.56 8.43 2.89 0.99 0.34 0.18 

Pooling runs of length 3 or more and performing the chi-squared test calcu- In fact, pooling runs of length 4 or 
lation gives Table G . 6 .  

Table S9.6 Diseased trees: testing a geometric fit 

Run length Oi Ei  Oi  - Ei (Oi  - ~ i ) ' / E i  

1 71 71.61 -0.61 0.005 

The test statistic is 

One parameter (p = 0.657) was estimated from these data, so the chi-squared 
null distribution has ( 3  - 1 - 1 )  = 1 degree of freedom for a SP of 0.29. 
The geometric distribution is not rejected as a model and this confirms that 
Pielou's assumptions were not unreasonable. 

Solution 9.9 
The suggested grouping gives the following observed frequencies. 

Level < 150 150 - 250 250 - 350 350 - 450 2 450 
Observed frequency 4 14 19 7 11 

Working to full computer accuracy, the expected frequencies and chi-squared 
test calculations are as shown in Table S9.7, using a: = 314.91 and s = 131.16. 

Table 59.7 

Oi Ei (Oi  - E i )  (Oi  - Ei) ' /E i  

4 5.74 -1.74 0.53 
14 11.33 2.67 0.63 
19 16.23 2.77 0.47 
7 13.37 -6.37 3.03 

11 8.33 2.67 0.86 

The value of the test statistic is 

more gives an kqected frequency 
of 2.89 + 0.99 + 0.34 + 0.18 = 4.40 
which is less than 5; but the 
conclusions of the chi-squared test 
would not be seriously adrift. 

Two parameters were estimated from these data, so the chi-squared distri- 
bution has (5 - 2 - 1 )  = 2 degrees of freedom for a SP of 0.061. There is 
some evidence for rejection of the null hypothesis that the data are fitted by 
a normal distribution. 
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Solution 9.10 
The details of observed and expected frequencies, and of the chi-squared test 
calculations are given in Table S9.8, using = 1369.1 and S = 693.7. 

Table S9.8 Chi-squared calculations, rainfall data 

Rainfall Oi Ei. (Oi - Ei) (Oi - E i ) 2 / ~ i  

The value of the chi-squared test statistic is 

Two parameters were estimated from these data, so the chi-squared distri- 
bution has (6 - 2 - 1) = 3 degrees of freedom for a SP of 0.09. There is 
insufficient evidence for rejection of the null hypothesis that the data are fit- 
ted by a normal distribution, although the fit is not good and one should have 
reservations about it. 

Solution 9.1 1 
The sample skewness of birth weights for the group of children who survived 
is 0.229; and that for the group of children who died is 0.491. 

The skewness of the group of children who died is rather higher than one would 
like and it is worth trying to transform the data. One possible transformation 
is to take logarithms: this reduces the sample skewnesses to -0.291 and 0.177 
respectively. 

It is worth noticing that this transformation not only gives skewnesses for 
the two groups that are similar in size and opposite in sign but also gives 
approximately equal variances to the two groups. 

Solution 9.12 
A two-sample t-test for equal means may now be carried out. This gives a 
t-statistic of -3.67 on 48 degrees of freedom, with a total SP equal to 0.0006. 
It  may be concluded that there is a significant difference, provided the re- 
sidual~ are plausibly normal. Subtract 0.482 from the transformed data of the 
first group (that is, those who died) and subtract 0.795 from the transformed 
data of the second group (survivors); pool the data and construct a normal 
probability plot. This is shown in Figure S9.9. 

It is possible to fit an acceptable straight line and there is strong evidence for 
rejection of the null hypothesis that there is no difference between the groups. 
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Residuals 
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Normal scores 

Figure S9.9 Residuals against normal scores 

Solution 9.13 
The analysis is very similar to that in Example 9.8. It  turns out that the 
same transformation works well. 

As before, we can carry out a two-sample t-test for equal means. This gives a 
t-statistic of 2.46 on 52 degrees of freedom, which has a SP equal to 0.017. It 
may be concluded that there is evidence of a significant difference, provided 
the residuals are plausibly normal. Subtract 4.565 from the transformed data 
of the group with less formal education and subtract 3.029 from the trans- 
formed data of the group with more formal education, pool the data and 
construct a normal probability plot. This is shown in Figure S9.10. 

Residuals 

L.. 

. 
-5 1 1 I 1 I I I 

-3 -2 -1 0 1 2 3 
Normal scores 

Figure S9.10 Residuals against normal scores 

This does not suggest a good straight line, although it may be just about 
acceptable. This casts doubt on our assumption of normality. 
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Solution 9.14 
Subtracting 0.618 from each entry in Table 8.4 and allocating signed ranks 
produces the following table. 

Difference 0.075 0.044 0.072 -0.012 -0.048 0.131 0.054 0.010 -0.009 0.226 
Sign + + + - - + + + - + 
Rank 17 10 16 5; 11 18 14 4 3 19 

Difference 0.036 -0.003 0.050 -0.017 -0.042 0.052 -0.012 -0.007 -0.065 0.315 
Sign + - + - - + - - - + 
Rank 8 1 12 7 9 13 5 i  2 15 20 

There are no OS and there are only two tied differences. 

The sums of the ranks are 151 for the positive differences and 59 for the 
negative differences, thus the Wilcoxon signed rank statistic is 151. This 
gives 

SP(obtained direction) = SP(opposite direction) = 0.044; 

There is some evidence for rejection of the null hypothesis of zero differ- 
ence; in other words, there is some evidence that the rectangles do not 
conform to the Greek standard. 

A t-test for zero difference gives a total SP of 0.054, which may be inter- 
preted as giving some evidence, although not strong evidence, for rejection 
of the hypothesis. There must be doubt about such a result because of 
the lack of normality of the data. 

Solution 9.15 
The sample size is 20, so that 

Therefore, we have 

which is the 0.957 quantile of the standard normal distribution. The SP 
is therefore 0.086, which is very close to that given by the exact test in 
Exercise 9.14. 
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Solution 9.16 
The ranks are as follows. 

Pleasant memory Rank Unpleasant memory Rank 

1.07 1 1.45 5 
1.17 2 1.67 7 
1.22 3 1.90 8 
1.42 4 2.02 10 
1.63 6 2.32 12 
1.98 9 2.35 14 
2.12 11 2.43 15 
2.32 12 i 2.47 16 
2.56 17 2.57 18 
2.70 19 3.33 25 
2.93 20 3.87 27 
2.97 21 4.33 28 
3.03 22 5.35 31 
3.15 23 5.72 33 
3.22 24 6.48 35 
3.42 26 6.90 36 
4.63 29 8.68 37 
4.70 30 9.47 38 
5.55 32 10.00 39 
6.17 34 10.93 40 

Labelling the pleasant memory recall times as group A, U A  = 345;. An exact 
test gives 

Alternatively, using a normal approximation, 

giving 

Normal tables give a total S F  of 0.081 for the two-sided test. Therefore, the 
conclusion is that the evidence for rejection of the null hypothesis, namely 
that memory recall times are different for pleasant and unpleasant memories, 
is not very strong. 

Solution 9.17 
The data are rather interesting. A naive estimate of the age of the site is 
the sample mean, 2622 years. However, Figure S9.11 shows (a) a boxplot for 
these data; (b) a normal probability plot; and (c) a normal probability plot 
with the single high outlier (3433 years) removed. 

A straight line fits the seven points in Figure S9.11(c) very well. A good 
estimate of the age of the site would seem to be provided by the mean of 
the trimmed sample, 2506 years, nearly 1000 years less than the untrimmed 
estimate. 
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Radio-carbon age determination (years) 
(a) 

Radio-carbon age (years) Radio-carbon age (years) 

3200 

2800 
2400 

2000 
-2 -1 0 1 2 -2 -1 0 1 2 

(b) Normal scores 
(c) 

Normal scores 

Figure 59.11 (a) Boxplot (b) Normal probability plot (c) Trimmed normal 
probability plot 

Chapter 10 

Solution 10.1 
(a) The problem has been set up as a prediction problem, with bracket weight 

the explanatory variable (X) and beetle count the response variable (y). A 
scatter plot of beetle count against bracket weight is given in Figure S1O.l. 

Beetle count Figure S 10.1 also shows the fittec 
straight line found in part (b). 

100 200 300 
Bracket weight (g) 

Figure S1O.l Beetle count against bracket weight 
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(b) From the scatter plot in part (a), it appears that a straight line through 
the origin would provide a useful regression model for these data: 

Using 

and 

the least squares estimate for the slope y is given by 

(c) For a fungus weighing 240g, the predicted beetle count is 

240;5 = 240 X 0.276 = 66.3 beetles; 

say, 66 beetles. 

(d) There are two useful representations for the residual sum of squares 
(see (10.4)). In either case we need the result C y; = 68918. Either 

say 

Notice that the rounding error induced by using at the calculator keypad 
(0.276 instead of 0.276 064 266) has been considerable. 

A properly programmed computer will give you all these answers, including 
the scatter plot., from a few keyboard commands. 

Solution 10.2 
The summary statistics in this case (writing X for specific gravity and y for 
strength) are 

so the slope estimate is 
- 10 X 59.211 61 - 4.951 X 118.77 
P = l0 X 2.488 995 - 4.9512 

= 10.8220, 

and the estimate of the constant term is 

You will probably be able to obtain 
these sums directly from your 
calculator after keying in the data, 
without having to record subtotals. 
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So the fitted model is 

y = 6.52 + 1 0 . 8 2 ~  

or 

Strength = 6.52 + 10.82 X Specific gravity. 

Solution 10.3 
For the finger-tapping data (tapping frequency y against caffeine dose X),  the 
summary statistics are 

so the slope estimate is 

and the constant term is estimated by 

So the fitted model is 

y = 244.75 + 0.0175~ 

or 

Tapping frequency = 244.75 + 0.0175 X Caffeine dose. 

Solution 10.4 
(a) With the relevant data keyed in (or the appropriate data file accessed), 

most statistical software would provide the equation of the fitted straight 
line at  a single command. For Forbes' data, the estimators are G = 155.30 
and ^p = 1.90, so the equation of the fitted line is given by 

Boiling point = 155.30 + 1.90 X Atmospheric pressure, 

where temperature is measured in OF and atmospheric pressure in 
inches Hg. 

(b) For Hooker's data, G = 146.67, p = 2.25; the fitted line has equation 

Boiling point = 146.67 + 2.25 X Atmospheric pressure. 
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Solution 10.5 
(a) The problem here was to predict morbidity rates from mortality rates, 

so in the following scatter diagram (see Figure S10.2) morbidity rates (y) 
are plotted against mortality rates (X). 

Morbidity rate (per 10 000) 

100 110 120 130 140 
Mortality rate (per 1000) 

Figure SlO.2 Morbidity rates against mortality rates 

(b) The points are suggestive of a useful straight line fit. From 3 = 16.5478 
and p = 1.6371 it follows that the least squares regression line equation 
is given by 

Morbidity rate (per 1000) = 16.55 + 1.64 X Mortality rate (per 10 000). 

Solution 10.6 
(a) A heavy car uses a lot of fuel because it is heavy: it is possible that under 

unusual circumstances one might wish to predict kerb weight from fuel 
consumption figures, but in general the problem would be to estimate 
fuel consumption, given the size of the car. Therefore plot consumption 
(miles per gallon, y) against kerb weight (kilograms, X). The appropriate 
scatter diagram is shown in Figure S10.3. 

Fuel consumption (miles per gallon) 
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Kerb weight (kg) 

Figure S10.3 Consumption against kerb weight 
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(b) There is a lot of scatter: there is less evidence of an underlying 'formula' 
relating fuel consumption to kerb weight than there is in some other con- 
texts. However, there is a pronounced downward trend. The least squares 
regression line has equation 

Fuel consumption = 73.48 - 0.024 X Kerb weight, 

where fuel consumption is measured in miles per gallon, and kerb weight 
in kilograms. 

Solution 10.7 
A plot of temperature against chirping frequency for these data is given in 
Figure S10.4. 

Temperature (OF) 

a 
'a* 
a 
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Figure S10.4 Temperature against chirping frequency 

The least squares fitted line through the scattered points has equation 

Temperature = 25.23 + 3.29 X Chirping frequency, 

where temperature is measured in "F and chirps are counted every second. If 
$0 = 18chirps per second, the corresponding estimate of temperature, yo, is 
given by 

90 = 25.23 + 3.2920 = 25.23 + 3.29 X 18 = 84.5 OF. 

Solution 10.8 
Taking examination score as the response variable (Y) and time taken as the 
explanatory variable (X) ,  then we fit the model 

x = a + P x i + W i ,  i = 1 , 2  ,..., 134, 

where the random terms Wi are independent and normally distributed random 
variables with mean 0 and variance a2. The proposition that X is valueless as 
a predictor for Y is covered by the hypothesis 

Ho: ,6=0.  
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For these data, 

B = 56.7333, p = -0.0012, 

and the residual sum of squares is 

So our estimator of variance is given by 

The observed value of the test statistic 

is at the 26% quantile of t(132). So we have 

SP(obtained direction) = SP(opposite direction) = 0.26; 

SP(tota1) = 0.52. 

The total SP is not small: the hypothesis that ,B = 0 is not rejected. This con- 
firms our suspicion that examination time is not a good predictor for eventual 
score. 

Solution 10.9 
(a) A scatter diagram for percentage of non-contaminated peanuts against 

aflatoxin level is given in Figure S10.5. 

Percentage 

99.7 

99.6 

, ; * * ,  

0 40 80 120 
Aflatoxin (parts per billion) 

Figure S10.5 Percentage of non-contaminated against aflatoxin level 

(b) The least squares regression line has equation 

Percentage non-contaminated = 100.002 - 0.003 X Aflatoxin level 

and the scatter plot suggests that a straight line would be a good fit to 
the data. 
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However, on the grounds of these results, and on the basis of what we 
know of the problem-that zero aflatoxin level would indicate 100% non- 
contamination-a better model would be to fit the constrained line 

Percentage non-contaminated = 100 - y X Aflatoxin level, 

or, equivalently 

y = 100 - yx. 

This model has one parameter: the equivalent hypothesis under test is 
H o : y = O .  

(c) Proceeding, however, with the two-parameter model, the residual sum of 
squares is 

Our estimate of variance is 

and our test statistic is 

The SP is negligible. Despite the slope estimate being a small number in 
absolute terms, it represents a significant downward trend (as indicated 
by the scatter plot in part (a)). 

Solution 10.10 
In this context, breathing resistance is the response variable (y) and height 
is the explanatory variable (X). A scatter plot of the data (see Figure S10.6) 
was not asked for in this question, but it is always a useful first step. (Some 
would say it is an essential first step of a regression analysis.) 

Breathing resistance 
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Figure S1 0.6 Breathing resistance against height 



Elements of Statistics 

The fitted line through the scattered points has equation 

and so the predicted breathing resistance for a child xo = 100 cm tall is 11.346. 
From the data given in Table 10.15, the sample size is n = 24, the sample mean 
is ?f = 102.042, C ( x i  - F ) ~  = 1352.96 and 

So our estimate of a2 is 

The 97.5% quantile of t (22)  is 2.074, and consequently the 95% confidence 
interval for the mean breathing resistance for children 100 cm tall, based on 
these data, is 

The units of measurement are those for breathing resistance, not stated in the 
original table. 

Solution 10.1 1 
The important measures obtained from the data in Table 10.16 are 

Also, the 97.5% quantile of t (40)  is 2.021. 

The predicted mean when xo is 100 is 

3 + pxo = 27.516 - 0.136 06 X 100 = 13.91, 

and the 95% prediction interval for this particular child's breathing resistance 
is given by 

Using a computer package, 
intermediate results are not really 
necessary: the residual sum of 
squares is a standard summary 
statistic in the context of 
regre#sion. 

If all your calculations are done on 
a computer, these intermediate 
results are unnecessary. 

The prediction interval is extremely wide: the reason for this is that there is 
a great deal of scatter in the data. 
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Solution 10.12 
From the data given in Table 10.13 

n = 15, 5 = 16.653, x(zi - 5)2 = 40.557, C = 25.2323, Some of these were calculated in 
A 

Exercise 10.7, though not to as 
,l? = 3.2911, C ( y i  - a)2 = 190.547, s2 = 14.6575. many places of decimals. 

Also, the 99.5% quantile of t(13) is 3.012. The predicted mean is 

The 99% prediction interval is 

Solution 10.13 
From the data given in Table 10.12, 

n = 42, 5 = 1104.69, x ( x i  - = 1229650.98, 3 = 73.480, Some of these were calculated in 
Exercise 10.6, though less precisely. 

3 = -0.0242, E ( y i  - g ) 2  = 689.33, s2 = 17.2333. 

The 97.5% quantile of t(40) is 2.021. The predicted mean consumption is 

The 95% prediction interval is 

Chapter 11 

Solution 1 1.1 
In scatter plot (a) the variables are negatively related. 

In scatter plot (b) the variables are positively related. 

In scatter plot (c) the variables do not appear to be related at  all. Knowing 
the value of one of them tells you nothing about the value of the other. 

Solution 1 1.2 
(a) The random variables X and Y are related, because the conditional prob- 

ability that Y = 10 given X = 4 is not the same as the unconditional 
probability that Y = 10. 

(b) In this case it is not possible to say whether W and Z are related. The 
question does not give enough information. Knowing that W = 4 tells us 
nothing new about the probability that Z took the value 5. However, we 
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do not know what would happen if we knew, say, that W took the value 
6. Would that change the probability distribution of Z? If knowing the 
values of W does not change the probability distribution of Z ,  then W 
and Z are not related, but otherwise they are related. 

Solution 1 1.3 
(a) Altogether, out of 2484 people, 110 provided a value of Yes for the random 

variable X .  Thus an estimate for the probability P ( X  = Yes) is 11012484 
or 0.044. 

(b) There are 254 people in Table 11.2 for whom the value of the random 
variable Y is Snore every night. Of these, 30 provided a value of Yes 
for X (heart disease). Thus an estimate for the conditional probability 
P ( X  = Yes(Y = Snore every night) is 301254 or 0.118. This is getting 
on for three times the unconditional probability that X = Yes. That is, 
knowing that someone snores every night tells you something about how 
likely it is that they have heart disease: snorers are more likely to have 
it. (Note that this does not tell you that snoring causes heart disease, or 
for that matter that heart disease causes snoring. More on this point is 
discussed in Section 11.3.) 

This could be put more formally, if you prefer. Unless for some reason 
these estimates are very inaccurate, it appears that 

P ( X  = YeslY = Snore every night) # P ( X  = Yes); 

therefore, using (11.1), X and Y are related. 

Solution 1 1.5 

Solution 1 1.4 ~ o d y  fat (%) 

(a) The scatter plot is as shown in Figure S1l.l .  This clearly shows that the Age (years) 

two variables are positively related, though the association between them Figure ~ 1 1 . 1  B ~ , - J ~  fat 
is not particularly strong. percentage against age 

(b) For these data, 

Your answer may be as follows. The relationship is negative, therefore the 
40 - 

Pearson correlation r will be negative, and the amount of scatter in the data 
in Figure 11.3 is not too different from that in Figure 11.7(b). The value of r 
for Figure 11.7(b) is 0.787, so the value of r for Figure 11.3 might be around 

30 - 
-0.7 or -0.8. Perhaps a guess of anything between -0.6 and -0.9 would be 
reasonable. In fact, the value of r for Figure 11.3 is -0.767. 

So using (11.5), 

. . 8 . . 
* .  

This value indicates a moderate positive association between the two vari- 
ables. 
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S O / U ~ ~ O ~  1 1.6 Lung cancer SMR 

The correlation is 0.743. This matches the impression given by the scatter 
plot of a reasonably strong positive relationship between the variables. 

If you want to check your computer output, the exact value of r using 
(11.5) is 

T = 
37 880 

d 2  600 135 980 ' 

The scatter plot for these data is as shown in Figure S11.2. This shows a 
reasonably strong positive association between the variables. The Pearson 
correlation coefficient is 0.716, which gives the same impression of the 
strength of the relationship. The exact value of r is 

T = 
193 000 

d72  610 213 900' 

Solution 1 1.7 
(a) The scatter plot is as shown in Figure S11.3. 

Shell thickness (mm) 

PCB concentration (ppm) 

160 - 

120 - 

80 - 

40 

Figure S11.3 Shell thickness against PCB concentration 

. . . . . . .  
0 .  .. . 

.* . . . * .  . . 
I I I I 

There seems to be a rather .weak negative relationship between the two 
variables; the more the PCB, the thinner the shell. But remember that 
we cannot conclude from these data that the PCB causes the shells to 
become thin. (However, there is evidence from other sources that this 
causal explanation is true.) 

60 80 100 120 140 

Smoking ratio 

Figure S1 1 .d Lung cancer SMR 
against smoking ratio 

Several points appear to be some distance from the main pattern; but 
the most obvious is the point at the bottom right. It is the thinnest shell 
with the highest concentration of PCB. 

(b) The Pearson correlation coefficient for the full data set is -0.253. This is 
in line with the interpretation (a weak negative relationship) in part (a). 

(c) Omitting the most extreme point at  the bottom right from the calculation, 
the Pearson correlation becomes -0.157. This value is considerably nearer 
0 than the correlation coefficient for the full data set. This indicates that 
much of the impression that these two variables are negatively correlated 
stems from this single egg, which seems to be rather atypical. 
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Solution 11.8 
The Pearson correlation coefficient for the untransformed data is -0.005. For 
the log transformed data, it is 0.779. 

Solution 11.9 
(a) For these data, r s  = 0.716. This fairly large value corresponds to the 

fairly strong linear association seen in the scatter plot of the data after 
they had been transformed. 

(b) The Spearman rank correlation coefficient would be the same as for the 
original data, which is 0.716. This is because the logarithmic transform- 
ation does not change the order in which the data come; consequently, 
the ranks of the log-transformed data are the same as the ranks of the 
original data. (If you do not believe this, check it!) 

Solution 1 1.10 

The computed SP  is 

SP(obtained direction) = 0.0323; 

so there is moderate evidence of a positive relationship bktween these two 
variables in the population. 

Solution 11.11 

In this case you should calculate r and compare it against a 

t-distribution with 64 - 2 = 62 degrees of freedom. The value of this 
quantity is 

Hence the total SP is 0.214. There is no evidence of a relationship between 
the variables. Our previous impression, that the apparent relationship 
between the variables depends on the single extreme egg, is confirmed. 

The calculations are much the same as for part (a). You need to calculate 
the test statistic and compare it against a t-distribution on 28 - 2 = 26 
degrees of freedom. The value of this quantity is 

It is not really necessary to turn on your computer or open your statistical 
tables to see that the obtained SP is approximately zero. There is very 
strong evidence that the two variables are related. 

Solution 11.12 
Using Fisher's exact test, SP = 0.0001. There is very strong evidence that 
the two variables are related. It is clear from the original table that the 
relationship works in such a way that patients with impaired sulphoxidation 
are more likely to exhibit a toxic reaction to the drug. 
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Solution 1 1.13 
The expected frequencies are as follows. 

Season Colour pattern Row totals 
Bright red Not bright red 

- 

Spring 280.918 223.082 504 
Summer 93.082 73.918 167 
Column totals 374 297 671 

In all four cells, the absolute difference between observed and expected fre- 
quencies is 21.082. This gives 

21.082' 21.082' 21.082' 21.082' 
X 2  = - +- +- +P- - 14.36 

280.918 223.082 93.082 73.918 
and the SP is 0.000 15. There is strong evidence of association between season 
and colour pattern. Comparing the expected and observed frequencies, we see 
that there are more bright red beetles in spring and fewer in summer than is 
expected under the null hypothesis of no association. 

Solution 1 1.14 
(a) Looking at the observed and expected frequencies, Compressor 1 seems 

to fail relatively frequently in the centre leg and relatively rarely in the 
south leg, while Compressor 4 fails relatively rarely in the centre leg and 
relatively frequently in the south leg. However, the value of the chi- 
squared test statistic is 11.72, and since there are 4 rows and 3 columns, 
the number of degrees of freedom is (4 - 1)(3 - 1) = 6. The significance 
probability is SP = 0.068. There is only very weak evidence of association 
between the two variables: the data are consistent with the null hypothesis 
that the pattern of location of failures is the same in all four compressors. 

(b) The value of the chi-squared test statistic is 7.885. The number of de- 
grees of freedom is (3 - 1)(2 - l) = 2, and the significance probability 
is SP = 0.019. There is fairly strong evidence of a relationship between 

+ tonsil size and carrier status. Comparing the observed and expected fre- 
quencies, it appears that carriers are less likely than non-carriers to have 
normal tonsil size, and carriers are more likely than non-carriers to have 
very large tonsils. In short, on average, carriers have larger tonsils than 
do non-carriers. 

Solution 1 1.15 
Your scatter plot should look like the scatter plot in Figure S11.4. 

Figure S1 1.4 
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Chapter 12 

Solution 12.1 
(a) The adequacy of the Bernoulli model would rather depend on what ser- 

vice was being provided. For instance, queues at a bank or a post office 
might consist largely of individuals who have arrived at the service point 
independently of one another, and alone. On the other hand, queues at a 
cinema box office will often include male-female pairs, implying a strong 
dependence between consecutive individuals. 

(b) Rather as for sequences of wet and dry days, it is likely that there will 
be some noticeable association between the characteristics of consecutive 
days, and a Bernoulli model would not be appropriate. 

(c) Some card-players strenuously maintain a belief in runs of luck (good 
and bad) and if the phenomenon exists, then the Bernoulli process will 
not be an appropriate model here. For games involving some skill, it is 
probable that players perform better on some occasions than on others, 
over relatively long periods. For games involving chance alone there may 

be some association (the order of cards dealt) but it would be difficult to 
demonstrate and very hard to quantify. 

Solution 12.2 
(a) Using the probabilities at (12. l ) ,  three different weekly weather sequences 

(starting with a wet day) were simulated. They were as follows. 

1 1 0 0 0 0 0  

1 0 0 1 1 0 0  

1 0 0 0 0 0 0  

You should have generated a sequence similar to these. 

(b) Four different families of size 4 were generated (starting with a girl). They 
were as follows. 

0 1 0  1 

0 1 1 1  

0 1 0 1  

0 1 1 1  

Again, you should have generated a similar sequence. 

Solution 12.3 
(a) Using (12.3), the transition matrix M is given by 

and the overall probability of a boy is given by 
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(b) Three typical families of 5 children were generated. They were 

Solution 12.4 
(a) The matrix of transition frequencies is 

the corresponding matrix of estimated transition probabilities is 

Solution 12.5 
For Exercise 12.4(c) the matrix of transition frequencies is 

the number of runs is 

For Exercise 12.4(e) the matrix of transition frequencies is 

0 9 14 23. 
N = 1 [ 1 5  1 1 1 6 '  

the number of runs is 

Solution 12.6 
(a) The total SP  is 0.421; there is no evidence to reject a Bernoulli model 

here. 

(b) The total SP  is 0.853; there is no evidence to reject a Bernoulli model 
here. 

(c) The total SP  is 1.4 X 10-~, which is very small indeed. The Bernoulli 
model is firmly rejected. (In fact, the realization shows a very small 
number of long runs.) 
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(d) The total SP is 0.004; the realization shows a small number of long runs 
inconsistent with a Bernoulli model. 

(e) The SP  is very small (0.001); but here there are many short runs incon- 
sistent with a Bernoulli model. 

(f) The total SP  is 0.016; there is evidence to reject the Bernoulli model in 
the light of many short runs. 

Solution 12.7 
(a) The matrix of transition frequencies is 

the corresponding matrix of estimated transition probabilities is 

(b) The number of runs in the data is 

(c) The total SP  against a hypothesized Bernoulli model is SP  = 0.301. 
There is no evidence to reject a Bernoulli model for the sequence of OS 
and 1s here. 

(d) In this case, no = nl = 12 and so from (12.7) 

The corresponding z-score is 

the corresponding SP  is 2 X a(-1.252) = 0.211. The number of runs is 
not noticeably extreme (high or low). Again, there is no evidence to reject 
the Bernoulli model here. 

Solution 12.8 
(a) The accumulated times are given in Table S12.1. 

Table 512.1 
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Observation ceased with the passing of the 50th vehicle at time T = 349.8. 
This leaves 49 vehicle observations: 

the observed value of the Kolmogorov test statistic D is d = 0.090 with 
n = 49. The corresponding SP  exceeds 0.2. We can conclude that the 
Poisson process is a reasonable model for the traffic flow along Burgess 
Road during the observation period. 

Here r is known to be 1608; we therefore have 56 observations 

the observed value of D is d = 0.159 with n = 56. The corresponding 
SP  is between 0.1 and 0.2: there is some small evidence that volcano 
eruptions are not well fitted by a Poisson process. 

Chapter 13 

Solution 13.1 
Use of the word to provides possibly the most difficult discriminant of the 
three: by would have been easier! But we are obliged to use the data available, 
not the data we wish had been available. Histograms showing Hamilton's and 
Madison's use of the word to are given in Figure S13.1. 

Frequency Frequency 

Use of the  word t o  (rate per 1000 words, Hamilton) Use of the  word to  (rate per 1000 words, Madison) 

(a) (b) 

Figure S13.1 Distribution of rates of occurrence of to in (a) 48 Hamilton papers and (b) 50 Madison papers 

If we were sure that all twelve disputed papers were by the same author, 
then by comparison with Figure 13.1, the histograms might possibly suggest 
Madison as the author. 
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Solution 13.2 
The completed table of observed and expected frequencies, showing the chi- 
squared calculations, is given in Table S13.1. The last four cells were pooled 
to ensure that all expected frequencies were at least 5. 

Table S1 3.1 Weldon's data: chi-squared calculations 

Number of 
5s or 6s 

Observed 
frequency 

Expected 
frequency 

54.0 
324.0 
891.0 

1484.9 
1670.6 
1336.4 
779.6 
334.1 
104.4 
23.2 ) 

(Oi - Ei)2 
Ei 

1.50 
0.03 
0.03 
0.07 
5.94 
3.42 
0.07 
3.24 
0.55 

Total 7006 7006 0 15.78 

The observed chi-squared value 

is compared against the distribution with 10 - 1 = 9 degrees of freedom. 
(There are ten cells; the binomial model B(12, $) was specified completely, 
with no parameters requiring estimation.) The corresponding SP is 0.072. 
There is some evidence of a poor binomial fit, but the evidence is not over- 
whelming-Pearson's objections seem somewhat exaggerated. 

Solution 13.3 
(a) The likelihood of p for the data, writing 

is given by 

(P(@ P) +PO; X (P(% 4)' X ( ~ ( 3 ;  pH5 X ( ~ ( 4 ;  

x(p(5; p)YO X (P(% X ( ~ ( 7 ;  P))' X (P(% X ( ~ ( 9 ;  

X (P(10; ~ ) ) l  

where P(10; p) = P ( X  2 10). This is maximized at  p = g = 4.9621. 

(b) The table of observed and expected frequencies, showing the chi-squared 
calculations, is given in Table S13.2. 

The observed value of the test statistic = 3.51 compared against X 2  (4) 
(six cells, one parameter estimated from the data) gives a SP of 0.476. 
There is no evidence to reject the hypothesis of a Poisson model for the 
goal frequency. It  is reasonable to suppose that the incidence of goals 
occurs at random during the course of play. 
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Table S1 9.2 

Number of Observed Expected (Oi - Ei)2 
goals frequency frequency Oi - Ei 

E* 

Total 39 39 0 3.51 

Solution 13.4 
(a) The seven differences are 

with mean = 12.143 and standard deviation S = 15.378. The corre- 
sponding value of test statistic t in a test of zero mean difference is 

- 
d t = -  

s/Jii = 2.089. 

(b) The t-distribution against which the test statistic is compared has 6 de- 
grees of freedom, and P(T6 > 2.089) = 0.041. 

No indication has been given whether there should be an expected in- 
crease or decrease in the CO transfer factors. For a two-sided test, the 
corresponding SP is 0.082. This provides little evidence that there is any 
significant difference between CO transfer factors in smokers at entry and 
one week later. 

Solution 13.5 
The normal probability plot is shown in Figure S13.2. 

Differences 

Normal scores 

Figure  S19.2 Normal probability plot for the differences between CO transfer 
factors 
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The plot shows that the data are split into two smaller groups-a group of four 
where there is little change in the transfer factor and a group of three where 
the change is comparatively large. It is clear that the normality assumption 
is not tenable. 

Solution 13.6 
Wilcoxon's signed rank test involves ranking the absolute differences, as shown 
below. 

Table 513.3 Ranked differences 

Patient Entry One week Difference Rank 

The sum over the positive ranks is 24 and the sum over the negative ranks 
is 4. The observed value of the test statistic is W+ = 24. Using a computer, 
the total SP is 0.109, and there is no reason to reject the null hypothesis of 
no difference between the CO transfer factors. 

Using a normal approximation, the corresponding z-score is 

and since P ( Z  > z )  = 0.0455, the total SP is 0.091. 

Solution 13.7 
(a) The normal probability plot for the differences is shown in Figure S13.3. 

Differences 

0 
Normal scores 

Figure S1 3.3 Normal probability plot 

Clearly there is an outlier and this is confirmed in Table S13.4, which 
shows the differences. Leaf 1 is atypical. 
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Table S13.4 Viral lesions on tobacco leaves 

Leaf Preparation l Preparation 2 Difference 

1 31 18 13 
2 20 17 3 
3 18 14 4 
4 17 11 6 
5 9 .  10 - 1 
6 8 7 1 
7 10 5 5 
8 7 6 1 

However, the other seven points appear to lie on a straight line and re- 
moval of the outlier should leave data which are plausibly normal. 

(b) A t-test on the seven points gives a t-value of 2.875 which, tested against 
t(6), results in a total SP of 0.028. There is evidence for rejecting the 
null hypothesis, and for concluding that the two preparations have a sig- 
nificantly different effect. (The experimental results suggest that the first 
preparation leads to a substantially higher average number of lesions.) 

Solution 13.8 
(a) First, let us consider the two groups at Day 0. Sample statistics are 

Notice that the sample variances are very close, well within a factor of 3 of 
one another. There is no evidence that the assumption of equal variances 
for the two populations is broken. The pooled sample variance is given 
by 

and the value of the test statistic t for a test of equal population means 
is 

Compared against Student's t-distribution with nl + n2 - 2 = 28 degrees 
of freedom, this gives a total SP of 2 X 0.129 = 0.258. 

There is no evidence that there is any difference between the mean urea 
levels at  admission for the two groups of patients. 

(b) For the two groups at Day 6, the analysis proceeds as.follows. Sample 
statistics are 

Again, the sample variances do not suggest any significant difference be- 
tween the two population variances. 
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The pooled sample variance is 

and the value of the test statistic t is 

s'\inl+& 
Compared against t(28), this gives a total SP of 2 X 0.0065 = 0.013. 

In this case, there is substantial evidence that by Day 6 after admission 
there is a significant difference between mean serum urea levels for the 
surviving and non-surviving patients. 

Solution 13.9 
The regression coefficients, computed separately for each rat, appear in 
Table S13.5. In fact, the difference between the groups is striking-the second 
group have the larger growth rates. On the other hand, there are only four 
values in the second group, and one of these is similar in size to the values 
from the first group. So, with such small sample sizes, could these results 
have arisen easily by chance? 

Table S13.5 Regression slopes for each rat separately 

Groupl: 4.3 1.2 1.0 0.8 2.3 0.4 3.8 3.4 
Group 2: 7.4 8.8 1.4 8.4 

The means for the first and second groups are respectively 2.15 and 6.50 and 
their respective standard deviations are 1.514 and 3.451. At first glance there 

seems to be a difference, but we should not jump to conclusions at this stage. 

Solution 13.10 

GroupA: 4.3 1.2 1.0 0.8 2.3 0.4 3.8 3.4 
Rank 9 4 3 2 6 1 8 7  

In this solution the groups have 
Group B: 7.4 8.8 1.4 8.4 been relabelled A and B to achieve 
Rank 10 12 5 11 a convenient notation, consistent 

with previous work. 
The value of the Mann-Whitney-Wilcoxon test statistic is U* = 40 with a 
computed total SP of 0.048. There is some evidence that the rates of growth 
in the two groups differ. 

(The normal approximation gives 

with a total SP of 0.042.) 

Solution 13.1 1 
The result of performing Fisher's exact test on the two sample proportions 
17/31 and 16/28 is 

SP(obtained direction) = 0.534 

using a one-tailed test. For a two-sided test exploring merely whether there is 
a significant difference, the total SP is 1. There is no evidence for a difference 
in either direction. 



Solutions to Exercises 

Solution 13.12 
The expected values for each cell are shown in brackets. For instance, the 
expected value in the top left-hand cell is found from 

Hospital Total 
A B C D E 

- 

No improvement 13 5 8 2 1 43 90 
(11.5) (7.6) (19.4) (31.4) (20.1) . , . . . . . . . . 

Partial 18 10 36 56 29 149 
(19.1) (12.6) (32.1) (52.0) (33.3) 

Com~lete 16 16 35 51 10 128 

Total 47 3 1 79 128 82 367 

The chi-squared test statistic is calculated from 

summed over all 15 cells. For the chi-squared test of independence, we need 
the number of degrees of freedom for the null distribution. This parameter is 
calculated as ( r  - l ) (c  - l ) ,  where r is the number of rows in the table and c 
the number of columns. In our case these are 3 and 5 respectively, so that the 
distribution we need is the chi-squared distribution with (3 - 1)(5 - 1) = 8 
degrees of freedom. 

The probability of obtaining a value as high as 56.7 from a chi-squared distri- 
bution with 8 degrees of freedom is very low indeed, about 2 X 10-'. So we 
conclude from this test that there are real differences between the distributions 
of outcomes across the hospitals. 

Solution 13.13 
The chi-squared test statistic is 20.85, and relating this to a chi-squared distri- 
bution with (4 - 1)(4 - 1) = 9 degrees of freedom gives a SP equal to 0.013. 
There is thus a low probability that such a distribution would be obtained by 
chance if the two variables really were independent. We conclude that serum 
cholesterol level and systolic blood pressure are associated. 

Solution 13.14 
Depending on your software, you might be able to calculate directly that 

for a bivariate sample of size 10 with an underlying correlation of zero, the 
probability of obtaining a sample correlation of r = -0.72 or less is 

and so the total SP for the test is 2 X 0.0098 = 0.02. 

This offers considerable evidence that there is an underlying association be- 
tween PEF and the S:C ratio; in fact, there is evidence that there is a negative 
association between the two measures. 
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(Alternatively, use the fact that 

and compare 

t = 1 - r2 = -0.72dT 1 - (-0.72)' = -2.910 

against t(8). Again, the SP for the test is given by 2 X 0.0098 = 0.02.) 

Solution 13.15 
The cordat ion coefficient is given by r = 0.971. This is a high value and we 
see that the number of finger ridges in identical twins are highly correlated. 
The SP for a test that the underlying correlation is zero is given by 1.5 X 10-7: 
this is very low! 

Solution 13.16 
Writing X for the explanatory variable (wind speed) and y for the response 
(race time), summary statistics are 

and the estimated slope is 

Also, 

Consequently, the fitted regression model is 

Race time = 13.32 - 0.085 X Wind speed, 

where race time is measured in seconds and wind speed in metres per second. 
This reflects the fact, suggested in the scatter plot of the data, that stronger 
following winds tend to lead to reduced race times. However, the model should 
not be extrapolated too far. For instance, the current world record for l lOm 
Hurdles (men) is 12.91s (held by Jackson). The model suggests that with 
wind speeds much above 4.9 m/s, he would routinely race inside world record 
times! In fact, some hurdlers are hampered by severe following winds: it 
gets them too close to the next hurdle to jump, and therefore destroys their 
rhythm. 
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Solution 13.17 
The sampling distribution of the estimator, assuming the scatter to be nor- 
mally distributed about the model y = a + Px, is given by 

Under the null hypothesis H. : P = 0, the value of the test statistic is 

P 
S/ JW 

A c ( y i  - g)' 0.4665 
where P = -0.085, s 2  = - - 

19 
= 0.024 55, 

n - 2  

and C ( x i  - :I2 = 44.058095. SO 

The obtained SP for the test is P(TI9 5 -3.584) = 0.001. There is very 
considerable evidence from these data to reject the hypothesis that, in fact, 
p = 0, and so wind speed effect is significant. 

Solution 13.18 
Writing y = log(nt), X = t, then the regression line of y on X has slope 

and intercept 

6 = 10.578. 

The fitted model is therefore 
A 

y = 6 + PX = 10.578 - 0.03642 

or, taking exponentials, 

nt = e 10.578-0.0364t - - 39 270e-0.0364t 

The estimated value of no is 39 270 (or, say, 40 000). 
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Table A 1 Random digits 

This table was calculated using SC - Statistical Calculator v.321.10, 1994 
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Table A2 Probabilities for the standard normal distribution @ ( z )  = P(Z 5 z )  

This table was calculated using SC - Statistical Calculator v.321.10, 1994 
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Table A3  Standard normal quantiles 

This table was calculated using SC - Statistical Calculator v.321.10, 1994 
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I ,  

Table A4 Standard norm/al random numbers - Z W N(0 , l )  

This table was calculated using SC - Statistical Calculator v.321.10, 1994 
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Calculator v.321.10, 1994 

Table 

df 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

100 

This 

A 5  Gquantiles 

0.90 0.95 0.975 0.99 0.995 0.999 

3.078 6.314 12.71 31.82 63.66 318.3 
1.886 2.920 4.303 6.965 9.925 22.33 
1.638 2.353 3.182 4.541 5.841 10.21 
1.533 2.132 2.776 3.747 4.604 7.173 
1.476 2.015 2.571 3.365 4.032 5.893 
1.440 1.943 2.447 3.143 3.707 5.208 
1.415 1.895 2.365 2.998 3.499 4.785 
1.397 1.860 2.306 2.896 3.355 4.501 
1.383 1.833 2.262 2.821 3.250 4.297 
1.372 1.812 2.228 2.764 3.169 4.144 
1.363 ' 1.796 2.201 2.718 3.106 4.025 
1.356 1.782 2.179 2.681 3.055 3.930 
1.350 1.771 2.160 2.650 3.012 3.852 
1.345 1.761 2.145 2.624 2.977 3.787 
1.341 1.753 2.131 2.602 2.947 3.733 
1.337 1.746 2.120 2.583 2.921 3.686 
1.333 1.740 2.110 2.567 2.898 3.646 
1.330 1.734 2.101 2.552 2.878 3.610 
1.328 1.729 2.093 2.539 2.861 3.579 
1.325 1.725 2.086 2.528 2.845 3.552 
1.323 1.721 2.080 2.518 2.831 3.527 
1.321 1.717 2.074 2.508 2.819 3.505 
1.319 1.714 2.069 2.500 2.807 3.485 
1.318 1.711 2.064 2.492 2.797 3.467 
1.316 1.708 2.060 2.485 2.787 3.450 
1.315 1.706 2.056 2.479 2.779 3.435 
1.314 1.703 2.052 2.473 2.771 3.421 
1.313 1.701 2.048 2.467 2.763 3.408 
1.311 1.699 2.045 2.462 2.756 3.396 
1.310 1.697 2.042 2.457 2.750 3.385 
1.309 1.696 2.040 2.453 2.744 3.375 
1.309 1.694 2.037 2.449 2.738 3.365 
1.308 1.692 2.035 2.445 2.733 3.356 
1.307 1.691 2.032 2.441 2.728 3.348 
1.306 1.690 2.030 2.438 2.724 3.340 
1.306 1.688 2.028 2.434 2.719 3.333 
1.305 1.687 2.026 2.431 2.715 3.326 
1.304 1.686 2.024 2.429 2.712 3.319 
1.304 1.685 2.023 2.426 2.708 3.313 
1.303 1.684 2.021 2.423 2.704 3.307 
1.3bl 1.679 2.014 2.412 2.690 3.281 
1.299 1.676 2.009 2.403 2.678 3.261 
1.297 1.673 2.004 2.396 2.668 3.245 
1.296 1.671 2.000 2.390 2.660 3.232 
1.295 1.669 1.997 2.385 2.654 3.220 
1.294 1.667 1.994 2.381 2.648 3.211 
1.293 1.665 1.992 2.377 2.643 3.202 
1.292 1.664 1.990 2.374 2.639 3.195 
1.292 1.663 1.988 2.371 2.635 3.189 
1.291 1.662 1.987 2.368 2.632 3.183 
1.290 1.660 1.984 2.364 2.626 3.174 

table was calculated using SC - Statistical 



Elements of Statistics 

Table A6 X 2  quantiles 

This table was calculated using SC - Statistical Calculator v.321.10, 1994 
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alcohol consumption and death rate 6 

annual snowfall in Buffalo 22 
annual wages (USA) 250 
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aphid data 545 
asthma 416 

bacteria after exposure to X-rays 526 
bags of pretzels 315 
bat-to-prey detection distances 30 
beetles 398 
beta endorphin concentration 5 
birth weights 4 
blood groups 72 
blood pressure measurements 426 
body and brain weights 6 
body fat percentage and age 436 
Boston's home goals 509 
British diesel cars 405 

cement hardening 557 
chest measurements 24, 84, 184 
childhood accident counts 295 
CO transfer factor levels 511 
coal-mining disasters 291 
counts of poppy plants 343 
counts of system failures 467 
counts of the leech Helobdella 224 
cystic fibrosis 414 

diabetic mice 35 
differences in plant height 321 
digit frequencies 125 
divorces in England and Wales 229 
dopamine activity 374 
Dow Jones industrial averages 7 
Down's syndrome 39 
duckweed 389 

earthquakes 169 
educational level and criminal convic- 

tions 448 
effect of noise on headaches 535 
emissions of alpha particles 153 
epileptic seizures 227 
errors in angular measurements 184 
examination scores 388 

family size 30, 367 
females in queues 223 

finger ridges of identical twins 524 
finger-tapping 380 
first daughter 120 

Forbes' data 381 

Great Plague 470 
green sunfish 470 

heights 82 
heights and weights of schoolgirls 437 
helping behaviour 52, 450 
hepatitis 84, 85 
Hooker's data 386 

jawbone lengths 60 

kangaroo data 551 
kitchen clock times 281 

leaf lengths 43 
leaves of Indian creeper plants 114 
library books 61 
lifespans of rats 338 
lung cancer and smoking 419 
lung diseases 476 
lynx data 477 

March rainfall 478 
memory recall times 62 
month of death of royal descendants 

126 
monthly deaths in USA 510 
monthly temperatures 475 
mortality and morbidity rates 405 

nicotine levels 83 

Old Faithful geyser 24, 36, 138 
operational lifetimes 60 
opinion polls 3 

paper strength 390 
peanuts 411 
PEF and S:C measurements 523 
pelican eggs 299 
piston-ring failures 456 
Prussian horse-kick data 490 
psychiatric disorders 540 
psychoactive substances 549 

queue lengths 472 

radio-carbon age determination 377 
rainfall 61 
random screen patterns 76 
rats on two diets 516 
results of surgical procedure 519 
road casualties 469 
road distances 387 

sales of jeans 474 
scattering activity 468 
schoolboys' heights 379 
serum urea 514 
Shoshoni rectangles 318 
silica content of chondrite meteors 27 
silver content (% Ag) 339, 532 
skulls 97 
sleep gain after drug treatment 286 
smallpox 473 
smoking ratio and SMR 437 
snoring frequency and heart disease 

432 
soil organisms 243 
Staphylinoidea in 33 traps 330 
strength of beams 385 
sulphoxidation capacity and evidence of 

toxicity 449 

tattoos 8 
temperature and chirping frequency 

406 
temperature differences 391 
throwing a 6: computer simulation 307 
times of system failures 466 
tonsil size in schoolchildren 456 
traffic 64, 464, 492 

USA workforce 3 

vehicle occupancy 243 
viral lesions on tobacco leaves 513 
volcanic eruptions 496 

waiting times between pulses 175 
weights of chicks 154 
Weldon's dice data 506 
Weldon's dice data on 26 306 tosses of 12 

dice 507 
whooping cranes 471 
widths of books 89 
wind speed and race time 525 

yeast cells 60 
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absenteeism 268 
accident counts 267 
adenomas in mice 226, 247 
admissions at  an intensive care unit 

128, 176 
annual wages (USA) 250 
Anopheles farauti mosquitoes 321 
approximating a binomial probability 

216 
asymmetric binomial distribution 218 

bags of pretzels 314 
bags of sugar 203 
binomial quartiles 136 
birthdays 151 
blood groups 72 
body and brain weights 6 
body fat percentage and age 441 
body weight 160 
breakdowns 329 
breaking strengths 287 

calls a t  a switchboard 152 
chest measurements 83, 159, 191, 195 
cirrhosis and alcoholism 5 
coal-mining disasters 267, 291 
coin tossing 75 
collector's problem 479 
colour blindness 151, 166 
comparing accident rates 342 
counts of system failures 467 
counts of the leech Helobdella 224, 226 
crooked dice 58, 272 
cycle usage 143, 148, 310 

defective items 151 
determination of the sample size 293 
die-rolling experiment (simulation) 52 
diet supplement in rats 516 
digit frequencies 125 
diseased trees 268 
divorces in England and Wales 229, 

384 
dopamine activity 373 
dopamine hypothesis of schizophrenia 

523 
Down's syndrome 39 
duckweed 389 

educational level and criminal convic- 
tions 447 

empirical distribution function 494 
epileptic seizures 227 

error gravity scores 365 
estimating height 158 
examination scores 388 
exponential probability plot 352 
expressed emotion 518 

fair die 98 
family size with a stopping rule 120 
faulty cable 128 
females in queues 223 
finger ridges of identical twins 524 
finger-tapping 380 
Forbes' data 381 .- 
Framingham Heirt Study 522 

Great Plague 470 
green sunfish 470 
green-haired Martians 128 

headache relief 74 
heights 82, 192, 196 
hepatitis 84 
Hooker's data 386 
hospital treatments 519 

infants with SIRDS 4, 335 
IQ measurements 192, 195 

kitchen clock times 281 

leaf lengths 43 
leaves of Indian creeper plants 114, 247 
lung cancer and smoking 419 
lung diseases 476 
lynx data 477 

Mann-Whitney-Wilcoxon test 373 
March rainfall 478 
mathematical function 55 
mean of a binomial random variable 

102 
measuring intelligence 108 
memory recall times 61, 337 
method of moments 242 
month of death of royal descendants 

126 
monthly temperatures 474 
multiple choice examination scores 79 

nicotine levels 83 
normal mean 108 
normal probabilities 200 
normal probability plot 350, 351 

nutritional study 154 

Old Faithful geyser 36 
opinion polls 3 
origins of the Etruscan empire 96 
osteoporosis 82, 192, 196 

paper strength 390 
particle counting 153 
perfect die 164 
pneumonia risk in smokers 511 
political attitudes 75 
presence-absence data 478 
Prussian horse-kick data 490 

question of authorship 502 
queue lengths 472 

rainy days 480 
random events occurring in continuous 

time 168 
recurrent events showing a non-random 

pattern 168 
road casualties 469 
road distances 387 
roulette wheels 72 
runners 4 

sales of jeans 473 
Salt Lake City data 120 
sand flies 227 
scattering activity 468 
Scottish soldiers 83 
sections of a chemical reactor 161 
seed cotyledons 326 
sex of consecutive children 116, 481 
sign test 369 
silicon chips 117 
silver content of Byzantine coins 339 
smallpox 473 
smokers 296 
snoring frequency and heart disease 

431 
social surveys 47 
socio-economic data 427 
soil organisms 243 
spores of the fungus Sordaria 103 
stock-market averages 7 
street lamp bulbs 48 
strength of beams 385 
surgical removal of tattoos 7 
systolic and diastolic blood pressures 

426 
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Tel Aviv rainfall study 481 
temperature differences 391 
testing a Bernoulli parameter p 
testing a binomial fit 359 
testing a normal fit 361 
testing a Poisson fit 355 
testing for zero correlation 445 
three dice 220 
thunderstorms 151 
times of system failures 466 
traffic 64, 464, 492 

traffic census 208 
traffic wardens 131 

307 triangular mean 107 
two dice 114 
two species ,of ant 166 
typographical errors 144 

USA workforce 3 
using X-rays to kill bacteria 

vehicle occupancy 242 

viral lesions on tobacco leaves 513 
visual perception 75 

. . 
water temperature 159 
Weldon's dice data 506 
whooping cranes 471 
Wilcoxon signed rank test 370, 372 

526, 528 wind speed and race time 525 

yeast cells 312 
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absenteeism 268 
accident counts 267 
adenomas in mice 226, 247 
admissions at an intensive care unit 92, 

128, 176 
Adrain, Robert 188 
alcohol consumption and death rate 6 
alternative hypothesis 309, 314 
analysis of variance 339, 532 

Kruskal-Wallis 534 
one-way 534 
two-way 534 

annual snowfall in Buffalo 22 
annual wages (USA) 250 
Anopheles farauti mosquitoes 321 
Anscombe's data 439 
Anscombe, Frank J. 439 
aphid data 545 
approximating a binomial probability 

216 
Arbuthnot, John 116, 369 
asthma 416 
asymmetric binomial distribution 218 

bacteria after exposure to X-rays 526 
bags of pretzels 314 
bags of sugar 203 
bar chart 11 
bat-to-prey detection distances 30 

' Bayesian inference 129 
beetles 398 
Bernoulli distribution 72 

approximate confidence limits 
296 

confidence limits 277 
sums of Bernoulli random variables 

164 
Bernoulli, James 71 
Bernoulli, Nicholas ' 116 
Bernoulli process 143, 169, 479, 484 
Bernoulli trial 51, 479 
beta endorphin concentration 5 
bimodal 24 
binomial distribution 74 

approximate confidence limits 
296 

comparing two proportions 339 
confidence limits 277 
cumulative distribution function 

80 
mean 165 
normal approximation 217 
Poisson approximation 148 

probability mass function 78 
sums of Bernoulli random variables 

164 
variance 165 

birth process 469 
birth weights 4 
birthdays 151 
bivariate data 425 
bivariate normal distribution 426, 457 
bivariate random variable 425 
blood groups 72 
blood pressure measurements 426 
body and brain weights 6 
body fat percentage and age 436, 441 
body weight 160 
Boston's home goals 509 
boxplot 31 

comparative 33 
breakdowns 329 
breaking strengths 287 
British diesel cars 405 
bump-hunting 468 

calls at a switchboard 152 
categorical data 432 
Cauchy, Augustin Louis 189 
Cauchy distribution 189 

probability density function 189 
cement hardening 557 
census 47 
central limit theorem 208 

continuity correction 217 
normal approximation to the bino- 

mial distribution 217 
normal approximation to the 

Poisson distribution 220 
centroid 400 
chest measurements 24, 83, 159, 184, 

v 191, 195 
chi-squared distribution 259 

mean 259 
variance 259 

chi-squared test 
for goodness-of-fit 357 
for independence 520 

childhood accident counts 295 
cirrhosis and alcoholism 5 
cluster analysis 539 

k-means method 543 
CO transfer factor levels 511 
coal-mining disasters 267, 291 
coin tossing 75 
collector's problem 479 

colour blindness 151, 166 
comparative boxplot 33 
comparing accident rates 342 
comparing. two binomial proportions 

339 
composite hypothesis 324 
conditional probability 430 
confidence limits 269 

without a model 299 

contingency tables 447 
continuity correction 217 
continuous uniform distribution 129 

cumulative distribution function 
130 

mean 130 
probability density function 129 
variance 130 ' 

control group 535 
correlation 433, 523 

Pearson coefficient 433 
Spearman coefficient 441 
testing for zero correlation 444 

correlation and causation 438 
counts of poppy plants 343 
counts of system failures 467 
counts of the leech Helobdella 224, 226 
crooked dice 58, 272 
cumulative distribution function 69 
cycle usage 143, 148, 310 
cystic fibrosis 414 

data 1 
data transformation 17, 40, 363, 440 
de Moivre, Abraham 187 
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dependent variable 383 
determination of the sample size 293 
diabetic mice 35 
die-rolling experiment (simulation) 52 
diet supplement in rats 516 
differences in plant height 321 
digit frequencies 125 
discrete uniform distribution 127 

confidence limits 280 
cumulative distribution function 

' 127 
mean 127 
probability mass function 127 
variance 127 

discriminant analysis 549 
discrimination 504 
diseased trees 268 
distribution function 69 
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384 

dopamine activity 373 
dopamine hypothesis of schizophrenia 

523 
Dow Jones industrial averages 7 
Down's syndrome 39 
duckweed 389 

earthquakes 169 
Edgeworth, Francis Ysidro 190, 393 
educational level and criminal convic- 

tions 447 
effect of noise on headaches 535 
emissions of alpha particles 153 
empirical distribution function 494 
epidemic models 473 
epileptic seizures 227 
error gravity scores 365 
errors in angular measurements 184 
estimate 226 
estimating height 158 
estimation 

method of maximum likelihood 
245 

method of moments 238 
principle of least squares 236 

estimator 226 , 
sampling distribution 228 

explanatory variable 383 
exploratory data analysis 36 
exponential distribution 171 

approximate confidence limits 
292 

confidence limits 278 
cumulative distribution function 

171 
mean 173 
median 173 
parameter estimation 240 
probability density function 171 
probability plotting 352 
variance 173 

exponential probability plot 352 
expressed emotion 518 

F-distribution 533 
fair die 98 
family size 30, 367 
family size with a stopping rule 120 
faulty cable 128 
females in queues 223 
finger ridges of identical twins 524 
finger-tapping 380 
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Forbes' data 381 
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frequency table 12 

function 
mathematical 55 
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Gaussian distribution 86, 188 
geometric distribution 119 
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296 
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chi-squared test 357 
probability plotting 349 
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Great Plague 470 
green sunfish 470 
green-haired Martians 128 
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hat symbol 228 
headache relief 74 
heights 82, 192, 196 
heights and weights of schoolgirls 437 
helping behaviour 52, 450 A 

hepatitis 84, 85 
histogram 13 
Hooker's data 386 
hospital treatments 519 
hypothesis 308 

independence 113, 431 
independent variable 383 
infants with SIRDS 4, 335 
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IQ measurements 192, 195 

jawbone lengths 60 
joint probability density function 115 
joint probability mass function 114 

kangaroo data 551 
kitchen clock times 281 
Kolmogorov distance 495 
Kolmogorov test 493 
Kruskal-Wallis one-way analysis of vari- 

ance 534 
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Laplace, Pierre Simon 183, 187 
leaf lengths 43 
least squares 

confidence limits for the slope 
408 

regression line 402 
regression line through the origin 

395 
prediction interval 414 

testing the slope 410 
leaves of Indian creeper plants 114, 247 
level of significance 308 
library books 61 
lifespans of rats 338 
likelihood 245, 252 
linear function of a random variable 

moments 162 
normal 166, 204 

linear models 556 
lower adjacent value 32 
lower confidence limit 269 
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lung cancer and smoking 419 
lung diseases 476 
lynx data 477 

Mann-Whitney-Wilcoxon test 373, 
517 

March rainfall 478 
Markov chain 483 
Markov, A.A. 483 
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maximum likelihood estimators 

continuous distributions 253 
discrete distributions 248 
properties 249 
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measuring intelligence 108 
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Mendel, Gregor 81, 312, 326 
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monthly deaths in USA 510 
monthly temperatures 474, 475 
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probability plotting 349 
quincunx 190 
standard normal distribution 193 
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167, 203 
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null distribution 314 
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250 
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results of surgical procedure 519 
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