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SERIES EDITOR’S INTRODUCTION

'T'he basics of modeling interaction effects in the regression analysis of
nonexperimental data are now widely understood. If the effect of X
on Y varies with the value of Z, then there is interaction. The appro-
priate model is not the usual Y = a + bX + cZ. Better, it should be
Y = a+bX+cZ+d(XZ). The inclusion of the multiplicative, or prod-
uct term, (XZ), registers the interaction effect through estimation of
the coefficient, d. Take a simple example, where ¥ = income in dol-
lars, X = education in years, and Z = gender (1 = male, 0 = female).
‘The interaction hypothesis is that the impact of education on income
depends on gender. The prediction equation simplifies for males to
Y = (a+c)+ (b+d)X and for females to Y = a + bX. If the coeffi-
cient, d, in the general equation tests positive and significant, then the
inference is that increases in education have a bigger income effect
for males than for females. In the parlance of Dr. Jaccard, the impact
of X, the focal independent variable, is moderated by the moderator
variable, Z.

The basics, as well as many subtleties, of interaction effects in mul-
tiple regression were explicated by Dr. Jaccard in his first series mono-
graph on the subject, appearing in 1990 (Jaccard, Turrisi, and Wan,
Interaction Effects in Multiple Regression, No. 72). That work helped
popularize their use. Since that monograph, he has explored inter-
action effects in LISREL and in factorial ANOVA (see, respectively,
Jaccard and Wan, LISREL Approaches to Interaction Effects in Multi-
ple Regression, No. 114; Jaccard, Interaction Effects in Factorial Anal-
ysis of Vuriance No. 118). The monograph at hand, with applications
(or the logistic regression case, clinches his title as the leading expert
on interaction cffects. This contribution is of theoretical and practical
importance. While logistic regression is much in vogue, precious little
is known about modeling interaction within that framework. In some
ways, the current level of understanding takes us back to the 1960s,
by shunning the construction of product terms on the right-hand side
of the equation. That state of affairs will be changed with this effort.




vi

At all points in the exposition, the emphasis is on interpretation.
He begins with a review of the usual meaning of logistic effects in
terms of probability, odds, and log odds. In logistic regression, like
ordinary regression, interactions are normally modeled by the cre-
ation of product terms. The first, and most simple, example is of a
two-way interaction between two qualitative independent variables.
A psychologist investigating teenage sexuality has a dichotomous Y
(1 = has engaged in sex, 0 = otherwise), with two predictors, gender
(G, where 1 = male, 0 = female) and employment status of mother
(two dummies F = full-time or not, P = part-time or not). In the
logistic regression, the dependent variable is the log odds of Y, the
independent variables are G, F, and P, and the product terms are
GF and GP. Say the hypothesis is that employment status moderates
the effect of gender. The logistic coefficient for GP (whose expo-
nent equals the odds ratio for gender for teens of part-time mothers
divided by the odds ratio for gender for teens of unemployed mothers)
is statistically significant, suggesting that there is an interaction. After
examining this two-way interaction, the author goes on to illustrate
a three-way interaction, where the dependent variable is return of
a mail survey, and predictors are three qualitative variables—money
reward, survey length, and topic importance—in a 2 x 2 x 2 factorial
design.

Subsequent chapters deal with coefficient interpretation in the
more complex cases of interactions between qualitative and quan-
titative predictors, between quantitative predictors, and between
different predictors when the dependent variable is multinomial. To
illustrate the last, Dr. Jaccard posits a child psychologist studying
three different attachment patterns to a caretaker, as a function of
home environment and maternal affect. These data were analyzed
with the multinomial logistic regression program of SPSS. As noted,
the necessary computer software for the analysis of interaction effects
in a logistic regression context is readily available. Thus, the real
obstacle to work here has been interpretation difficulties, which this
step-by-step guide aims to overcome.

—Michael S. Lewis-Beck
Series Editor

PREFACE

‘This monograph is an introduction to the analysis of interaction
cffects in logistic regression by means of product terms. The focus is
on the interpretation of the coefficients of interactive logistic models
for a wide range of scenarios encountered in the research litera-
ture. I assume that the reader is familiar with the basics of logistic
regression and the concept of hierarchical logistic regression. The
monograph is neither a technical nor an advanced exposition of this
(:()}rlplcx topic. My goal is to present a nontechnical, introductory
oricntation to the interpretation of logistic coefficients in simple
product term models when the product terms have been defined to
c_xplore certain forms of interaction. Although many books on logis-
tic regression discuss general strategies for testing interactions, few
!)rovide readers with the tools to interpret and understand the mean-
ing of coefficients in equations with product terms. This monograph
will lill this void. The monograph is oriented toward the applied
u-sg:n‘chcr with rudimentary background in multiple regression and
logistic regression. I have explicitly avoided complex formulas that
can be intimidating to the applied researcher. As an alternative, I
have provided the reader with simple (but cumbersome) computer-
lms.cd heuristics that permit the simple calculation of parameter
cstimates and estimated standard errors that will typically be of inter-
est. Rgsults of examples are reported to four decimals to minimize
rounding error, although same minor rounding inconsistencies still
manifest themselves on occasion.

I would like to acknowledge the useful comments of the reviewers
Alfred DeMaris from the Department of Sociology, Bowling GreeI;
Sl:nlc University, Bowling Green, OH 43403-0231, J acques Hagenaars
from the Faculty of Social and Behavioural Sciences, Tilburg Univer-
sity, NL-5000 LE Tilburg, The Netherlands, and Scott Menard from
the Institute of Behavioral Science, University of Colorado, Boulder,
€0 80309, Dimitri Liakhovitski, Paul Goren, Glenn Deane, Richard
Alba, and the continued support of the series editor, Michael Lewis-
Beck. I am grateful for the time and effort they put into this project.

vii
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INTERACTION EFFECTS IN
LOGISTIC REGRESSION

JAMES JACCARD
Department of Psychology, University at Albany, State University
of New York

1. INTRODUCTION

Intcraction effects are becoming more common in social science the-
ory and with their increasing popularity, there has been renewed
interest in developing analytic methods that can effectively character-
izc the nature of interactions in a given set of data. These methods
have included interaction analysis in traditional multiple regression
and analysis of variance as well as methods for analyzing interactions
in structural equation models (e.g., Jaccard, Turrisi, & Wan, 1990;
Jaccard & Wan, 1996, Jaccard, 1998). The present monograph focuses
on the analysis of interaction effects using product terms in logis-
tic regression. There are numerous excellent introductory treatments
ol logistic regression (Agresti, 1996; Allison, 1999b; Long, 1997;
Mcnard, 1995), and it is assumed that the reader is already familiar
with the fundamentals of this analytic technique. Although many texts
discuss the use of product terms to analyze interactions in logistic
regression in general terms, few probe the meaning of the coeffi-
cients associated with product terms and how the presence of product
tcrms alters the interpretation of other coefficients within the equa-
tion. This monograph is an introduction to interpretational issues in
the analysis of interaction effects in logistic regression. It is divided
into six chapters. The present chapter introduces the concept of odds,
presents the logistic regression model without interaction terms, dis-
cusses the meaning of coefficients within the model, elaborates the
cffects of selected transformations on the coefficients, and formally
dcfines an interaction effect in conceptual terms. Chapter 2 considers
the analysis of interactions when the predictor variables of interest
are categorical in nature. Chapter 3 considers the case where the
predictors are a mixture of categorical and quantitative/continuous
variables. Chapter 4 addresses the case where the predictors are ail
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quantitative/continuous. Chapter 5 extends the material of t¥1e pre-
vious chapters to the case of ordinal'regression. and multlnf)nnal
logistic regression. The final chapter focuses on miscellaneous issues
associated with effective interaction analysis.

Probabilities and Odds

Consider a dichotomous variable, Y, which is scored 1 if a per-
son says he or she will vote for a given piece of legisl'ation ar.xd 0
if the person says he or she will not. For a population of indi-
viduals, the mean of Y is denoted by w. This mean equals the
proportion of individuals who have a score of 1 (ie, Fhe pro-
portion of individuals who say they will vote for the legislation).
It also represents the probability that an individual from the popu-
lation will vote for the legislation [i.e., u = P(Y = 1)]'. If B= 0.67,
then the probability of a person voting for the legislation is 0.67 or,
stated another way, about two thirds of the population favor the
legislation. Aithough a probability is one useful statistic for charac-
terizing this scenario, an alternative approach uses the concept of
odds instead of probability. If P is the probability of an event (e.g.,
the probability that Y = 1), then the odds of that event are

Odds = P/(1 — P). [1]

In the above example, the odds of voting for the legi‘slati‘on are
0.67/0.33 = 2.0. The probability of voting for the legislation is ‘tw1ce
the size of the probability of not voting for the legislation. This is tl?e
essence of an odds. It compares two probabilities by forming the ratio
of the probabilities. If the probabilities are equal, the odds are 1.0.
As the probabilities diverge, the odds diverge from 1.00. Every prob-
ability has associated with it a unique value of odds. For example,
consider the following:

Probability  Associated Odds

0.25 0.33
0.33 0.50
0.50 1.00
0.67 2.00
0.75 3.00

3

An odds of 0.33 means that the probability of voting for the legisla-
tion is one third that of the probability of not voting for it. An odds
of 1.00 means that the probability of voting for the legislation is the
same as the probability of not voting for it. An odds of 3.00 means
that the probability of voting for the legislation is 3 times larger than
the probability of not voting for it. Many social scientists characterize
cvents using odds rather than probabilities. Note that for a dichoto-
mous variable with scores of 1 and 0, the odds of a score of 1 is
/(1 —p), because u is the probability of a score of 1. Just as a prob-
ability can be converted to an odds, so can an odds be converted to a
probability:

. odds
Probablhty = m [2]
Most researchers who use logistic regression rely on the concept
ol odds to impose theoretical meaning on the results of the analysis.
However, it is possible to make statements using probabilities by tak-
ing advantage of Equation 2. Complications arise when doing so, and
our focus in this monograph will be on the interpretation of results in
terms of odds.

The Logistic Regression Model

The logistic model is similar in form to the traditional linear regres-
sion model that is widely used in the social sciences in that it uses the
cquation form Y = a+ 8, Xy +8,X,+- - -+ B Xy. However, important
differences exist. These differences are best understood when both
models are described as special cases of the generalized linear model
(McCullagh & Nelder, 1989). The generalized linear model has three
components, a random component, a systematic component, and a
link component (Agresti, 1996). The random component refers to the
oulcome variable, Y, and the probability distribution that is associated
with it. In traditional regression analysis, Y is a continuous variable
and is assumed to be normally distributed. In classic logistic regres-
sion, Y is dichotomous in character and the underlying probability
distribution is binomial in form. The Systematic component refers to
the predictor variables and how they are combined for purposes of




building an explanatory model. In both traditional linear regression
and logistic regression, the systematic component has the form

a+ B X+ By Xy + -+ B Xy

where « is an intercept, the B are regression coefﬁciepts, and t}?e X
are the predictors. This expression is often called a lmea.r predictor.
Note that a given X can be a combination of 9§her predictors [e.}%.,
X; = (X1)(X3)] so that interactions and curvilinear e'ffects can be
accommodated in the model. The link component spec1ﬁes how the
mean of Y, p = E(Y), is related to the linear pre('hctor. ’_I‘he mean
can be modeled directly or, instead, some monotqnlf: function of the
mean can be modeled. A general expression of this is

g(p) =a+ B Xy + B Xo + -+ Br Xy 3]

where the function g(u) represents some function of .the mean. IF is
called the link function. When the mean is modeled dxr'ec‘tly, the link
function is said to be an identity, and interest is in spegfymg hqw the
mean of Y changes for different profiles of the predictor variables.
For example, how does the mean on Y change when X1 change§ by 1
unit and all other predictor variables are held constapt? This is Fhe
focus of traditional linear regression. By contrast, logistic regression
does not model the mean of Y directly. Rather it models the mean
as transformed by a logit link, which is defined as In(u/(1 — ). Note
that for a dichotomous Y variable with values of 1 and 0, th«°T model
focuses on how the natural log of the odds that ¥ = 1 varies as a
function of the linear predictor a + 81X+ B, X2+ + B Xy There
are many statistical advantages to modeling .the logit link rather than
the mean directly when Y is dichotomous in ngture. Most_ of these
derive from the fact that the underlying statistical theory is mathe-
matically tractable for the case of the logi.t link. In the re':mamd(;:r of
this monograph, we use the following terminology (Agresti, 19.9‘6). For
a dichotomous variable, Y, that is scored 1 and 0, the probz}blllty that
Y =1 is denoted as . The term logit(7) refers to the logit function
of this probability and equals the naturall log of 7r/(1—r). The rpodel
describing the relationship between logit(w) and a set of predictors
X is

logit(w) = a + By X1 + B Xy + -+ + BiX- [4]

Equation 4 describes the log odds that ¥ = 1 as a function of the
values of the predictors, X. The focus of this monograph is on speci-
fying meaningful interpretations of & and B in the context of applied
data analytic situations using logistic regression models that include
product terms to represent interaction effects. As noted, Equation 4
is similar to that of the traditional linear regression model. It should
not be surprising, then, that many of the same considerations that are
involved in effective interaction analysis in traditional ordinary least
squares regression are also relevant in logistic regression.

Categorical Predictors and Dummy Variables

Logistic regression analysis often includes categorical variables as
predictors, such as gender, ethnicity, and religious affiliation. Such
variables are represented in the equation using dummy variables.
A dummy variable is a variable that is created by the analyst to rep-
resent group membership on a variable. For example, in the case of
pender, we can create a dummy variable and assign a 1 to all males
and a 0 to all females. This method of scoring is called “durnmy cod-
ing” or “indicator coding” and involves assigning a 1 to all members
of one group and a 0 to everyone else. When a qualitative variable
has more than two levels, it is necessary to specify more than one
dummy variable to capture membership in the different groups. In
peneral, one needs m — 1 dummy variables, where m is the number
of levels of the variable. Suppose we had as a predictor variable a
person’s party affiliation that could take on three values, Democrat,
Republican, or Independent. In this case, we need 3 — 1 = 2 dummy
variables to represent party affiliation. For the first dummy variable,
D)), we assign all Democrats a 1 and everyone else a 0. For the sec-
ond dummy variable, Dy, we assign all Republicans a 1 and everyone
clse a 0. Although we could create a third dummy variable for Inde-
pendents and assign them a 1 and everyone else a 0, such a variable
1 completely redundant with the other two dummy variables. Once
we know whether someone is a Democrat or whether someone is a
Republican (by means of the first two dummy variables), we know
whether he or she is an Independent. The reasoning behind this is
more evident if one considers a dummy variable for gender. We cre-
ale a single dummy variable to discriminate the two groups whereby
males are assigned a score of 1 and females a score of 0. If we cre-
ale a sccond dummy variable that assigns a score of 1 to females and




a score of 0 to males, it is perfectly negatively correlated with the
first dummy variable and, hence, redundant. With dummy coding,
the group that does not receive a 1 on any of the dummy variables
is called the reference group for that variable. In the examples above,
the reference group for gender is females and for party affiliation the
reference group is Independents. The choice of which group is the
reference group is arbitrary from a statistical point of view.

There are different ways in which scores can be assigned to a
dummy variable. As noted, we used a method called “dummy” or
“indicator” scoring that relies on 1’s and 0’s. Hardy (1993) discusses
the logic of different coding schemes. We make use of dummy vari-
ables in later sections, and all of our statements about the interpreta-
tion of coefficients associated with dummy variables assume dummy
coding. For a discussion of interpretations under alternative coding
schemes, see Hosmer and Lemeshow (1989).

Predicted Values in Logistic Regression

Suppose a set of data are analyzed in which votes for or against a
piece of legislation are predicted from gender and a measure of ideol-
ogy that reflects general attitudes about conservatism-liberalism. The
ideology measure ranges from —3 to +3 with O representing a neutral
point, increasingly negative scores representing greater levels of con-
servatism, and increasingly positive scores representing greater levels
of liberalism. Gender is represented by a dummy variable, with males
scored 1 and females scored 0. The outcome measure is scored 1 if
the individual endorses the legislation and 0 if the individual opposes
it. Suppose that the analysis yielded the following logistic equation:

logit(7) = 1.555 + —1.712 gender + —0.513 ideology. [5]

We can calculate a predicted value of logit(#) for any given profile of
predictor variables by substituting the values for the predictors into
the equation. For example, the predicted log odds for males who have

ideology scores of 42 is
logit(w) = 1.555 + —1.712(1) + —0.513(2) = —1.183.

We can convert this log odds to an odds by taking the exponent of
this value, which yields exp(—1.183) = 0.306.! The predicted odds of

7

V()li{]g in favor of the legislation is low for people with this particular
prohle and revcfals that the probability of voting for the legislation
is about one third that of voting against it. What are the predicted

odds for males who have an ideology score of —2? By substitution
wc obtain ’

logit(m) = 1.555 4 ~1.712(1) + —0.513(~2) = 0.869,

m}d the exponent of 0.869 is 2.384. For males with ideology scores
of —2, the odds of voting in favor of the legislation is 2.384. Stated
another way, the probability of voting for the legislation is over twice
as large as the probability of voting against it.

Interpretation of Coefficients

The preceding material allows us to set the stage for the interpre-
lation of the coefficients in Equations 4 and 5. The intercept term, «
is the predicted log odds when all the predictor variables equal 0 isor’
females (who have a score of 0 on gender) with ideology scores .of 0
the predicted log odds of voting for the legislation is 1.555 and the,
odds of voting for the legislation is the exponent of this, 4.735. For
lemales with ideology scores of 0, it is almost 5 times mor;: likel); that
lh’cy will vote for the legislation than vote against it.

I'he meaning of the coefficient for a dummy variable, such as gen-
(.lcr, can be made explicit by calculating the predicted odds of voting
for the legislation for males and also for females at some arbitrarily
chosen value of ideology. For the sake of simplicity, we will set ideol-
ogy to a value of 0. The predicted log odds for males and females are

Males:  logit(7) = 1.555 + —1.712(1) + —0.513(0) = —0.157
lcmales: logit(7) = 1.555 + —1.712(0) 4+ —0.513(0) = 1.555,
which yields a predicted odds for males of e
- ) xp(—0.157) = 0.855 and
a predicted odds for females of exp(1.555) = 4.735. A %ormal way of

contrasting thgse two odds is to form an odds ratio in which the odds
for one group is divided by the odds for the other group,

odds for males _ 0.855
odds for females ~ 4.735

OR for gender = = 0.1805



where OR stands for “odds ratio.” If the two odds are identical, then
the odds ratio will equal 1.0. As the odds for one group deviate from
the odds for the other group, the odds ratio will deviate from 1.0.
In this case, the predicted odds for males are about one fifth the value
of the predicted odds for females (more technically, they are 0.1805
the value of the odds for females), suggesting that males are much
less likely to vote for the legislation than females. The value for this
odds ratio, 0.1805, would be obtained no matter what value we held
ideology constant at in the equation. To be sure, the value of th‘e
predicted odds for males and females would change if ideology is
held constant at a different value (e.g., +2), but the ratio of the odds
for males divided by females would not. It would always equal 0.1805.
This will not necessarily be true in models that include interaction
terms.

From Equation 5, the coefficient for gender was —1.712. If we
calculate the exponent of the coefficient, we obtain exp(—1.712) =
0.1805, which turns out to be the value of the odds ratio. For a dummy
variable with dummy coding, the exponent of the logistic coefficient will
equal an odds ratio in which the predicted odds for the group scored 1
on the dummy variable is divided by the predicted odds for the reference
group, holding constant all other predictor variables in the equation.

We can use the same logic to develop the meaning of the coef-
ficient for ideology. We hold gender constant at an arbitrary value
(say 0) and then calculate the predicted log odds and the odds of
voting in favor of the legislation at the different values of ideology:

Predicted  Predicted
Ideology Score  Log Odds Odds

+3 0.016 1.017
+2 0.529 1.697
+1 1.042 2.835

0 1.555 4.735
-1 2.068 7.909
-2 2.581 13.210
-3 3.094 22.065

Although it may not be apparent, there is a systematic trend in the
predicted odds. Every time ideology increases by 1 unit, the predicted
odds change by a multiplicative factor of 0.599. For example, when

the ideology score is —3, the predicted odds are 22.065. When the
ideology score increases by 1 unit to —2, the predicted odds become
(22.065)(0.599) = 13.210. When the ideology score is +1, the pre-
dicted odds are 2.835. When the ideology score increases by 1 unit
(o +2, the predicted odds become (2.835)(0.599) = 1.697. This trend
reveals itself no matter what value we hold gender constant at. Again,
the values of the predicted odds change when gender is held con-
stant at a different value, but the multiplicative factor is still 0.599.
‘This also will not necessarily be the case for models with interaction
clfects.

Examine the logistic coefficient for ideology in Equation 5. It equals

0.513. If we calculate the exponent of the coefficient, we obtain
exp(—0.513) = 0.599, the value of the multiplicative factor. For a
quantitative/continuous variable, the exponent of the logistic coefficient
cquals a multiplicative factor by which the predicted odds change given
a I unit increase in the predictor variable, holding constant all other
predictor variables in the equation. If the exponent of the coefficient
is equal to 1.0, then changes in the predictor have no effect on the
predicted odds. If the exponent of the coefficient is greater than 1.0,
then an increase in the predictor will yield an increase in the pre-
dicted odds. If the exponent of the coefficient is less than 1.0, then
an increase in the value of the predictor will yield a decrease in the
predicted odds.

The “multiplying factor” identified for continuous/quantitative pre-
dictors is referred to by some researchers as an odds ratio because it
is the result that one obtains when one divides the predicted odds at
one value of the predictor by the predicted odds at that same value
minus 1. The multiplying factor is indeed an odds ratio, but we will
refer to it for continuous variables as a “multiplying factor,” largely
for pedagogical reasons.

Probabilities, Odds, and Log Odds Revisited

As noted earlier, every probability has associated with it an odds
that can also be converted to log odds for analysis in logistic regres-
sion. Consider the following probabilities and their associated odds
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and log odds:
Probability Odds Log Odds

0.100 0.111 -2.197
0.200 0.250 ~1.386
0.300 0.428 —0.847
0.400 0.667 —0.405
0.500 1.000 0.000
0.600 1.500 0.405
0.700 2.333 0.847
0.800 4.000 1.386
0.900 9.000 2197

Probabilities range from 0 to 1.00, odds range from 0 to infinity,
and log odds range from minus infinity to plus infinity. Probabilities
less than 0.50 are associated with odds that are less than 1.0 and
log odds that are negative. Probabilities that are greater than 0.50
are associated with odds that are greater than 1.0 and log odds that
are positive. The fact that log odds are not bounded by 1 or 0 (as
is the case with probabilitics or odds) is a characteristic that makes
log odds more amenable to a satisfactory underlying statistical theory
in logistic regression. However, most social scientists find log odds
to be counterintuitive and difficult to interpret and prefer instead
to focus on odds. This gap typically has been bridged by applying
the general linear model to log odds (thereby allowing us to invoke
well-developed statistical theory that is tied to the well-known gen-
eral linear model) and then transforming the log-based parameters
to odds-based parameters by taking the antilogs of them. The effect
of such transformations is nontrivial. Whereas log odds-based coeffi-
cients for dummy variables reflect differences in predicted log odds
for two groups, the antilog transforms of the coefficients reflect the
ratios of the predicted odds. Whereas log odds-based coefficients for
continuous variables reflect how many log odds units the outcome
variable is predicted to change given a 1 unit change in a predictor,
the transformed coefficient reflects a multiplying constant by which
the predicted odds change given a 1 unit change in the predictor.
A focus on log odds is advantageous not only because of the ele-
gance of the underlying statistical theory but also because it permits
us to stay in the familiar terrain of the general linear model with
the traditional interpretation of slopes and intercepts. For interaction
models, it permits us to take the same general principles for analyzing
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inleractions in traditional regression analysis and apply them directly
10 log odds based models. However, the intuitive appeal of odds and
odds ratios results in the vast majority of social science research being
reported in these terms rather than that of log odds. The focus of this
monograph is on odds and odds ratios, accordingly.

‘Transformations of the Predictor Variables

It is possible to perform algebraic manipulations on the predictor
variables prior to performing a logistic analysis to force the coeffi-
cicnts to reflect parameters that are of theoretical interest. The utility
of doing so will be illustrated in later sections, but we establish the
basic logic here. Suppose that prior to conducting the logistic analy-
sis, we subtract a constant of 1 from the ideology scale. Whereas the
original scale ranged from —3 to +3, the new scale ranges from —4
lo 42, as each score is shifted down 1 unit. Here are the results for
the logistic equation using this transformed score:

logit(7) = 1.042 4+ —1.712 gender + —0.513 ideology,.

Note that the only parameter estimate affected by this transformation
is the intercept, with the other coefficients being identical to those
in the original analysis. The intercept is the predicted log odds when
gender is 0 and when the transformed ideology value is 0. But a 0
on the transformed ideology variable represents a +1 on the original
ideology variable. The intercept in this second analysis should equal
the predicted log odds for females who have an ideology score of

Il in the original analysis. This is indeed the case. In the original
cquation

logit(m) = 1.555 + —1.712(0) + —0.513(1) = 1.042,

which is the same as the intercept in the second analysis. Why would
one want to perform such transformations? Almost all computer pack-
ages report not only the parameter estimates for a logistic equation,
but also the estimated standard errors and confidence intervals for a
given parameter. Using transformations such as that above represents
a simple if cumbersome way for calculating the confidence intervals
for the odds for any given predictor profile. Simply transform each
predictor by adding or subtracting a constant so that a score of 0 on
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the transformed variable represents the predictor value on the orig-
inal scale that you are interested in. The exponent of the in.tercept
term from the equation using the transformed predictors will then
provide the predicted odds for- that particular profile and _the coqﬁ-
dence intervals for the predicted odds will be those associated vy1th
the exponent of the intercept term. In the absence of transformatlons
of this nature, the intercept term sometimes has limited interpreta-
tional value because it reflects the predicted log odds for the case
where values of 0 on the predictors are nonexistent or outside of Fhe
range of the values being studied. We make use of the transformation
strategy and variants of it in later chapters.

Definition of Interaction

There are many ways in which interaction effects have been concep-
tualized in the social sciences, but one of the most common framej-
works uses the concepts of dependent variables, independent vari-
ables, and moderator variables. A dependent variable is an outcome
variable that is thought to be determined or influenced by an inde-
pendent variable. The independent variable is a pr?sumed cause of
the dependent variable. An interaction effect is said to exist \‘Jvhen
the effect of an independent variable on a dependent variable differs
depending on the value of a third variable, commonly called a “mod-
erator variable.” For example, the effect of ideology on whether or
‘not someone votes for a piece of legislation may differ for male_s and
females. In this case, voting is the outcome or dependent variable,
ideology is the independent variable, and gender is the moderator
variable. As another example, the effect of social class on wpether
someone uses a health clinic may vary depending on ethnicity. In
this case, use of a health clinic is the outcome or dependent variable,
social class is the independent variable, and ethnicity is the moderator
variable. _

The “moderator approach” to interaction analysis requires tha't the
theorist specify a moderator variable and what we call a focal inde-
pendent variable, namely the independent variable whose effect on
or relationship to the dependent variable is said to be moderated by
the moderator variable. It is our experience that most formal research
questions naturally lend themselves to the specification of one of tche
predictors as having “moderator” status and that such a des%gnat{on
is a useful heuristic for thinking about interactions. The designation
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of a moderator variable on conceptual grounds is often straightfor-
ward. For example, suppose one wants to determine whether a clini-
cal treatment for depression is more effective for males than females.
It is evident in this case that gender is the moderator variable and
the presence versus absence of the treatment is the focal independent
variable. On the other hand, there are situations where one theorist’s
moderator variable might be another theorist’s focal independent vari-
able and vice versa. For example, a consumer psychologist who studies
product quality and product choice might be interested in the effect
of product quality on product purchase decisions and how this is mod-
crated by the pricing of products. In contrast, a marketing researcher
using the same experimental paradigms as the consumer psychologist
might be interested in the effect of product pricing on product pur-
chase decisions and how this is moderated by product quality. In both
cases, the designation of the moderator variable follows directly from
the theoretical orientation of the researcher. Neither specification is
better than the other and statistically the evalution of the presence of
an iteraction will not differ. The two designations simply represent
different perspectives on the same phenomena.

The above is a general characterization of the nature of an interac-
Lion effect. We provide more precise statistical definitions in ensuing
chapters. The moderator approach to interaction analysis is but
one way of thinking about interaction parameters. Social scien-
lists may choose to define interaction effects differently from this,
with some preferring strictly statistical definitions and others pre-
ferring definitions tied to both a statistical model and a research
design. Researchers also differ in how interactions are parameterized
(Jaccard, 1998). Our approach is to define an interaction in general
terms, using it to refer to cases where the relationship between two
variables varies as a function of a third (moderator) variable (in the
case of two-way interactions). Although we believe that this approach
has widespread applicability and typifies the vast majority of applica-
tions in the social sciences, it does have limitations. Sometimes the
assignment of one variable to moderator status and the other to focal
independent variable status may seem too arbitrary, with the inves-
ligator wishing to entertain both variables in the respective roles of
moderator variable and focal independent variable. There is nothing
lo prevent the researcher from characterizing the interaction from
both perspectives, should this be the case. As will be shown in later
chapters, the approach also tends to mask the fact that the same
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interaction parameter characterizes the effect of X on ¥ when. Z is
the moderator variable as well as the effect of Z on Y when X is the
moderator. Despite these pedagogical shortcomings, we believe that
most applied researchers (implicitly or explicitly) revert to a moder-
ator framework when characterizing an interaction effect, probably
because it is conceptually compelling to do so. o

The most common approach to modeling interactions in lqglstlc
regression is to use product terms. Consider the following (noninter-
active) model with two continuous predictors:

logit(7) = a + B X + B, Z.

To illustrate an interaction model, we conceptualize Z as the moder-
ator variable and contend that in addition to the above effects there
is an interaction effect such that the effect of X (the focal indepen-
dent variable) on the outcome variable differs depending on the value
of Z. One way of expressing this is to model B; (which reflects the
effect of X on the outcome variable) as a linear function of Z:

B =a + B3Z

According to this formulation, for every 1 unit that Z chagges, the
value of B, is predicted to change by B3 units. We now substitute the
above expression for B, in the original equation, yielding

logit(7) = a + (o + B3 Z)X + B, Z.
Multiplying this out yields
logit(7) = a+ o' X + B3 XZ + B, Z,

and after assigning new labels to the coefficients and rearranging
terms, we obtain an interaction model with a product term:

logit('ﬂ') E BlX + Bzz -+ B3XZ.

Other conceptual specifications of interaction model.s fead to the
same equation and other forms of interaction lead to chfferent equa-
tions. Our point here is merely to show that includmg a produ(;t
term in a model serves to introduce one type of interaction analysis
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(i.e., where the effect of the focal independent variable on the out-
come variable is said to be a linear function of the moderator variable)
and to draw attention to this frequently encountered equation. The
rcmainder of this monograph develops examples that illustrate how
to interpret the coefficients in such interactive logistic models. We do
not dwell on evaluating overall model fit nor do we analyze residuals
Lo ensure proper fitting models. This is not to say that such issues are
unimportant. They are critical. However, our intent is to help read-
crs make sense of the coefficients that result from interactive logistic
models, and this will be the primary focus of our discussion.

Iierarchically Well-Formulated Models

Kleinbaum (1992) notes that interaction analysis in logistic regres-
sion typically uses hierarchically well formulated models. A hierarchi-
cally well-formulated (HWF) model is one in which all lower order
components of the highest order interaction term are included in the
model. For example, if interest is in a two-way interaction between
X and Z, then a HWF model includes X, Z, and XZ as predictors.
If interest is in a three-way interaction between Q, X, and Z, then
a HWF model includes Q, X, Z, OX, QZ, XZ, and QXZ as pre-
dictors. For a qualitative predictor with dummy variables, D; and D,,
and a continuous predictor, Z, a HWF interaction model includes D,
D,, Z, Dy % Z, and D, x Z. Most (but not all) applications of interac-
tion analysis involve HWF models, and this is the assumed structure
in the present monograph.

Given a HWF model, the typical strategy used to evaluate inter-
actions is hierarchical analysis. Consider the three-way interaction
model for continuous predictors, O, X, and Z. The HWF model is

logit(m) = @+ B1Q + By X + B3 Z + B,OX
+Bs0Z + BeXZ + B,0XZ.

To test if the highest order interaction term, in this case QXZ, is

nontrivial, one compares the fit of a model that includes the term(s)
representing the interaction with a model that eliminates the term(s);
i.c., it compares the above equation with

logit(7m) = a + B1Q + B2 X + B3 Z + B4QX + BsQZ + Bs X Z.
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If the difference in model fits is nontrivial, then this suggests that

the interaction term is important and the equation is then inter-

preted using the methods discussed in later chapters. However, if
the difference in the model fits is trivial, then the conclusion is that
the interaction term is unnecessary and can be eliminated. For the
present example, the revised model would then contain multiple two-
way interactions. A two-way interaction term is evaluated by ensuring
that the underlying model is HWF with respect to the interaction term
of interest and then comparing model fit when the term is eliminated
as opposed to when it is present in the model. Nuances in evaluat-
ing multiple interactions of the same order (e.g., multiple two-way
interactions) are discussed in Chapter 5.

In the above example, the interaction between two variables was
represented by a single product term; ie., it was a single degree of
freedom interaction. In such cases, the statistical significance of the
interaction can be determined either by conducting a hierarchical test
of changes in x? values reflecting model fit or by examining the signif-
icance test of the logistic coefficient associated with the single product
term. If the logistic coefficient for the product term is not statistically
significant, then this implies that the interaction effect is not statisti-
cally significant. In traditional ordinary least squares regression, the
F test of the regression coefficient associated with a single degree
of freedom interaction always will be identical to the hierarchical F
test that compares the fit of models with and without the interac-
tion term. In logistic regression, this may not be the case because

investigators sometimes use one type of fit index for the hierarchical

test (e.g., differences in x? results based on likelihood ratio statis-
tics) and an alternative criterion at the level of the coefficients (eg.,a
Wald test). This represents an inconsistency in the investigator’s logic,
unless such a strategy is explicitly used to evaluate the robustness of
the effect across different fit indices.

Sometimes omnibus interaction effects cannot be captured in a
single product term, which is the case for interaction effects involv-
ing a qualitative variable with more than two levels. For example, the
interaction effect between a qualitative variable represented by two
dummy variables, D; and D,, and a continuous variable, Z, is cap-
tured by the presence of two product terms in a HWF model: D, Z
and D,Z. This is because one must multiply all the variables repre-
senting one variable by all the variables representing the other vaii-
able to examine the interaction effect between the two. In such cases,
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the test of the omnibus interaction must rely on the hierarchical pro-
cedure because it is possible for an omnibus effect to be statistically
significant but for the logistic coefficients associated with each prod- -
uct term to be statistically nonsignificant. The reason for this will be
apparent in later chapters.

This monograph focuses on the interpretation of logistic coeffi-
cicnts and their estimated standard errors as typically provided in
output from standard statistical software. Tests of statistical signifi-
cance and confidence intervals for the coefficients are based on the
classic Wald statistic, although readers are cautioned about the behav-
ior of this test in small samples (see Agresti, 1996, p. 89; Hosmer &
I.emeshow, 1989). Allison (1999b) discusses an alternative approach
lor generating significance tests and confidence intervals for coeffi-
cients in the traditional logistic model, called profile likelihood confi-
dence intervals.

Product Term Analysis Versus Separate Logistic Regressions

Suppose one wanted to compare the effects of a continuous vari-
able, X, on a dichotomous outcome variable, Y, for two different
proups, males and females. It is not uncommon for researchers to
do so by calculating separate logistic regression equations for males
and females and then examining whether the logistic coefficient for
X is “statistically significant” (i.e., has an associated p value less than
(0.05) in both analyses. If the coefficient is statistically significant in
one group but not in the other, then the conclusion is that X is
more important for the one group than for the other. This logic is
tlawed because the researcher never performs a formal statistical test
of the difference between the logistic coefficients for the two groups.
l'or example, it is entirely possible for the coefficient in one group to
have a p value of 0.051 associated with it and the coefficient for the
other group to have a p value of 0.049. Even though one is statistically
significant and the other is not, the coefficients are almost certain to
be comparable in magnitude with trivial differences between them.
Formal interaction analysis through product terms in a single equa-
tion is preferable because it provides a means of formally testing the
difference between logistic coefficients.
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2. INTERACTIONS BETWEEN QUALITATIVE
PREDICTORS

This chapter considers the case in which the interaction effect of
interest involves qualitative predictors. Such analyses require the
use of dummy variables. We consider first the case of a two-way
interaction and then the case of a three-way interaction. In the latter,
we illustrate the inclusion of a covariate other than those involved in
the interactive relationship.

Two-Way Interactions

A developmental psychologist was interested in studying sexual
activity in young adolescents. She identified a sample of 7th-grade
students and asked each adolescent whether or not he or she had
engaged in sexual intercourse. This dichotomous variable was the
outcome and was scored 1 if the adolescent had engaged in sex and 0
if he or she had not. The predictor variables were the gender of the
respondent, Dy, (scored 1 = male, 0 = female), and the employ-
ment status of the mother of the adolescent (full-time employed
versus part-time employed versus unemployed). Table 1 presents
the probabilities and the odds of engaging in sex for each cell of
the 2 x 3 factorial design. Because employment status has three
levels, it is represented using two dummy variables, Dgyy (scored
1 = full-time employed, 0 = everyone else) and Dpyy (scored 1 =
part-time employed, 0 = everyone else). Females are the reference
group for gender and unemployed is the reference group for employ-
ment status. To analyze the interaction between these variables, it is
necessary to create product terms in which all the dummy variables
for one of the variables are multiplied by all the dummy variables for
the other variable. This yields two product terms, Dy Dgu and Dy,
Dy, These product terms are then entered into the logistic equation
in conjunction with the other terms, Dy, Dgas and Dp,y.

As noted in Chapter 1, the omnibus interaction effect is tested
using hierarchical logistic regression in which one determines whether
the product terms significantly improve model fit over and above
the case where no product terms are included in the model. This
approach involves estimating a model x? for each of the following
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TABLE 1
Probabilities and Odds of Adolescent Engaging in Sex as a Function
of Gender and Employment Status of the Mother

Full-Time Part-Time
Employed Employed Unemployed
I’robabilities
Males 0.36 0.30 0.28
Females 0.32 0.13 0.26
Odds
Males 0.5625 0.4286 0.3889
Females 0.4706 0.1494 0.3514
two equations,
logit(7) = a + B Dy + B Dy + B3Dpart (6]
logit(7) = a + By Dy + By Dy + B3Dpart
+ BaD y Dyt + BsDpDpar (7]

and then subtracting the y? for the “no interaction” model (Equa-
tion 6) from the x? for the “interaction” model (Equation 7). The y?
for the no interaction model was 24.75 (df = 3) and for the interac-
fion model it was 34.19 (df = 5). The difference in the x? value is
34.19-24.75 = 9.44, which is distributed as a y? with degrees of free-
dom equal to the difference in their degrees of freedom, 5 — 3 = 2.
Consulting a table of critical x? values for @ = 0.05 and df = 2, the
x* difference is statistically significant, implying a significant omnibus
interaction effect. For more details of the logic of hierarchical testing
in logistic regression, see Menard (1995).

Also of interest to investigators are the contrasts that are reflected
in the coefficients of the interaction model. Table 2 presents the
logistic coefficients, the exponents of each coefficient, and the 95%
confidence intervals for the exponents. We focus first on the interpre-
tation of the coefficients for the nonproduct terms.

As discussed in Chapter 1, the exponent of the coefficient for gen-
der is an odds ratio that compares the odds of engaging in sex for the
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TABLE 2
Logistic Coefficients for Qualitative Predictors: Two-Way Interaction

Logistic Exponent of 95% Lower 95% Upper

Predictor Coefficient Coefficient Limit Limit p Value
Dy 0.1015 1.1068 0.7116 1.7215 0.652
Dy 0.2922 1.3394 0.8680 2.0666 0.187
Dy —0.8539 0.4257 0.2533 0.7155 0.001
Dy # Dgy 0.0769 1.0799 0.5894 1.9788 0.803
Dy * Dy 0.9511 2.5886 1.3174 5.0864 0.005
Intercept —1.0460 0.3514 0.2562 0.4819

group scored 1 on the dummy variable (males) with the odds of engag-
ing in sex for the reference group (females). A common mistake, how-
ever, is to interpret this coefficient as if it represents a nonconditioned
main effect of gender (e.g., the effect of gender collapsing across or
holding constant employment status). This is not the case. Because the
dummy variable is part of the product terms in the equation, the coef-
ficient is conditioned on the moderator variable being zero [see Jac-
card, Turrisi, & Wan (1990) for elaboration of this concept]. Given the
presence of the product terms, the exponent of the coefficient reflects
the predicted odds ratio comparing males to females for the case
in which the values on the other variable(s) involved in the product
terms equal zero (i.e., for the case in which Dgy = 0 and Dy, = 0).
Thus, the exponent of the coefficient for D, is the predicted odds
ratio for males to females but only for adolescents of unemployed
mothers (because adolescents of unemployed mothers have scores of
Dgy = 0 and Dy, = 0). In Table 1, note that the odds of engaging
in sex for male adolescents of unemployed mothers is 0.3889 and the
odds of engaging in sex for female adolescents of unemployed mothers
is 0.3514. The ratio of these two odds, 0.3889/0.3514 = 1.1068, is the
value of the exponent of the coefficient associated with gender. The
95% confidence interval for the exponent of the coefficient provides
an appreciation for sampling error for the odds ratio. From Table 2,
the 95% confidence interval was 0.7116 to 1.7215. Also, if the 95%
confidence interval does not contain the value of 1.0, then the coef-
ficient is said to be statistically significant (using an « level of 0.05)
in traditional null hypothesis testing frameworks. In our example, the
odds ratio does not differ significantly from 1.0 because the confidence
interval contains the value of 1.0. It is entirely plausible that the odds
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of engaging in sex for sons of unemployed mothers equals the odds
ol engaging in sex for daughters of unemployed mothers in the pop-
ulation and the differences we observe in the sample are merely the
result of sampling error.

A similar interpretation is imposed on the coefficients for Dpy,
and Dpg,. The exponent of the coefficient for Dy is 1.3394. This
reflects an odds ratio comparing the predicted odds of engaging in
sex by adolescents of full-time employed mothers to the predicted
odds of engaging in sex by adolescents of unemployed mothers when
gender = 0 (i.e., for females). From Table 1, the odds of engaging
in sex for female adolescents of full-time employed mothers is 0.4706
and the odds of engaging in sex for female adolescents of unemployed
mothers is 0.3514. The ratio of these two odds is 1.3394, which is the
cxponent of the coefficient for Dygy,;. The exponent of the coefficient:
for Dy, is 0.4257. This is an odds ratio comparing the predicted odds
of engaging in sex for adolescents of part-time employed mothers to
the predicted odds of engaging in sex for adolescents of unemployed
mothers, when gender = 0 (i.e., for females). From Table 1, the odds
of engaging in sex by female adolescents of part-time employed moth-
ers is 0.1494 and the odds of engaging in sex by female adolescents of
unemployed mothers is 0.3514. The ratio of these two odds is 0.4257,
which is the exponent of the coefficient for Dy, . For an interactive
logistic model with two qualitative predictors, X and Z, and the relevant
product terms for XZ (defined using dumnmy coding), the logistic coeffi-
cient for any dummy variable for X is conditioned to the reference group

for Z. The exponent of the logistic coefficient for any dummy variable for

X is the odds ratio that divides the predicted odds for the group scored
I on the dummy variable for X by the predicted odds for the reference
group on X, for the case where the dummy variables on Z equal zero.
Next, let us examine the product term coefficients. Each of these
coefficients represents a single degree of freedom interaction con-
trast. To conceptualize these contrasts, it is useful to specify the focal
independent variable and the moderator variable. Suppose the inves-
tigator decides to treat gender as the focal independent variable and
cmployment status of the mother as the moderator variable. Thus,
the investigator is interested in how gender differences in the odds
of engaging in sex differ as a function of the employment status of
the mother. It will facilitate our discussion if we calculate the odds
ratio comparing males to females for each level of the moderator
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variable. From Table 1, we have

OR for gender for full time mothers
odds for males 0.5625

= = =1.1953
odds for females  0.4706
OR for gender for part time mothers
_ odds for males _ 0.4286 — 28688
odds for females  0.1494
OR for gender for unemployed mothers
odds for males _ 0.3889 11068,

= 0dds for females ~ 0.3514

If there is no interaction effect, then all of the odds ratios should be
identical in value (except for sampling error). Different values for the
three odds ratios imply that the effect of gender varies, depending on
the employment status of the mother. Let us first compare the odds
ratio for adolescents of full-time mothers (1.1953) to the odds ratio
for adolescents of unemployed mothers (1.1068). We can form a ratio
of the two odds ratios by dividing the odds ratio for gender for ado-
lescents of full-time employed mothers by the odds ratio for gender
for adolescents of unemployed mothers: 1.1953/1.1068 = 1.0799. If
the two odds ratios are identical, then the ratio of the odds ratios
should equal 1.0. As the two odds ratios diverge in value, the ratio of
the odds ratios will diverge from 1.0. In this case, the odds ratio for
gender for adolescents of full-time employed mothers is 1.0799 times
larger than that for adolescents of unemployed mothers. Examine the
exponent of the coefficient for Dy Dy, in Table 2. Note that it equals
1.0799, the value of the ratio of the two odds ratios. The 95% con-
fidence interval for this exponent provides a sense of sampling error
for this interaction contrast, and the fact that the confidence interval
includes the value of 1.0 suggests that the difference in odds ratios
between the groups is not statistically significant. For an interactive
logistic model with two qualitative predictors, X and Z, and a prod-
uct term, XZ, let X be the focal independent variable and let Z be the
moderator variable. For the case of dummy coding, the exponent of the
logistic coefficient for a product term is a ratio of predicted odds ratios.
It focuses on the predicted odds for the group scored 1 on the dummy
variable for X divided by the predicted odds for the reference group on X
and divides this odds ratio when computed for the group scored 1 on the
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dummy variable for Z by the corresponding odds ratio for the reference
yroup on Z.

This logic also applies to the interpretation of the logistic coefficient
for Dy Dp,- In this case, the exponent of the coefficient reflects the
odds ratio for gender for adolescents of part-time mothers (2.8688)
divided by the odds ratio for gender for adolescents of unemployed
mothers (1.1068). This equals 2.8688/1.1068 = 2.5886, which is the
value of the exponent of the logistic coefficient for DyDp,y. This
contrast is statistically significant because the confidence interval does
not include the value of 1.0.

Suppose that one is also interested in comparing the gender based
odds ratio for adolescents of full-time employed mothers to that of
part-time employed mothers. This contrast is not in the equation, yet
it is also of theoretical interest. The easiest way to obtain the relevant
statistics for this contrast is to simply respecify the dummy variables
for the moderator variables by changing the group that is defined as
the reference group. Then rerun the logistic regression analysis and
cxamine the appropriate product term coefficient that corresponds
to the contrast of interest. For example, if we redefined the dummy
variables so that adolescents of part-time employed mothers is the
reference group rather than adolescents of unemployed mothers, the
resulting logistic equation will contain the contrast of interest. Note
that when the dummy variables are respecified, the product terms
also must be generated anew. The coefficients for the product terms
will change in value because they now reflect different interaction
contrasts. However, the omnibus hierarchical test of the interaction is
unaffected by such rescoring.

For the sake of completeness, a comment should be made about
the intercept term in the analysis. The exponent of the intercept term
is the predicted odds when all predictors equal zero. In the present
cxample, a zero on all predictors corresponds to the predictor profile
of females with unemployed mothers (because for this group Dy = 0,
Dy = 0, and Dp,,, = 0 and the two product terms also equal 0). The
cxponent of the intercept is thus the predicted odds for this group
(compare the value of the exponent of the intercept in Table 2 with
ihe value of the odds for this group in Table 1 to verify this). The con-
fidence interval for the exponent of the intercept provides information
about the amount of sampling error associated with the estimate.

In sum, when product terms are included in a logistic equation
with dummy variables, the coefficients for the “main effect” terms
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that are part of the product terms no longer represent main effects in
the traditional sense. Rather, their exponents represent an odds ratio
comparing the odds for the group scored 1 on the dummy variable
with the odds for the reference group when the moderator variable(s)
equal zero (i.e., for the moderator reference group). The exponent
of the coefficient for a product term represents the ratio of two odds
ratios.

The contrasts in Equation 7 were evaluated on a per contrast basis
without regard to inflated error rates across the multiple contrasts
that were performed. If there is concern about such error rates, one
can apply a modified Bonferroni procedure to control the experimen-
twise error rates. In addition, simultaneous confidence intervals can
be computed to evaluate the effects of sampling error in a multivari-
ate sense. For more discussion of this topic, see Jaccard (1998) and
Kirk (1995).

Three-Way Interactions

A researcher was interested in identifying factors that might
improve the return of mail surveys. He sent a self administered
survey to a sample of adults living in a community. Half of the indi-
viduals were provided a monetary incentive to return the survey ($10)
while the other half were not. For half of the sample, the survey was
relatively short, whereas for the other half of the sample the survey
was relatively long. Finally, for half of the sample, the topic was a
relatively important one whereas for the other half of the sample the
topic was mundane. These three factors, monetary incentive, length
of the survey, and importance of the topic, were varied in accord
with a 2 x 2 x 2 factorial design. To illustrate interpretational nuances
when a covariate is included in the analysis, we assume the researcher
had a measure of social class for each person who was sent a survey
that was obtained from occupational information published in city
directories. The social class measure ranged from 1 to 100 and the
sample in question had a mean of 55 on this variable. The outcome
measure was scored 1 if the respondent returned the survey and 0 if
he or she did not.

To analyze a three-way interaction, it is helpful to first specify a
focal independent variable and the moderator variables. However,
for three-way interactions we need to impose further distinctions on
the moderator variables because there are two of them. Suppose that
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the focal independent variable for this investigator was the mone-
tary incentive and he wanted to determine whether the effects of
the monetary incentive differed for mundane versus important topics.
IHe hypothesized that the monetary incentive would have a greater
c¢ffect when the survey was on a mundane topic than when it was
on an important topic. When the topic is important, he reasoned,
cveryone will have an incentive to return the survey because the topic
is compelling, so adding a monetary incentive on top of that will have
trivial effects. By contrast, when the topic is mundane, individuals
will be more likely to return the survey if they can benefit financially
from doing so. The researcher further hypothesized that the qualify-
ing nature of topic importance on the effects of monetary incentive
would depend on the length of the survey. When the survey is long,
people lose interest in completing it no matter how important the
topic is or whether an incentive is provided. In such conditions, there
will be no effect of a monetary incentive, and this will be true for
hoth mundane and important topics. However, when the survey is
short, the dynamics specified earlier will operate and there will be a
(wo-way interaction such that the monetary incentive has a greater
cffect for mundane topics than for important ones. Topic importance
is a first-order moderator variable because it is thought to directly mod-
crate the impact of monetary incentive on return rates. Length of the
survey is a second-order moderator variable because it moderates the
impact of the first-order moderator on the relationship between the
focal independent variable and the dependent variable. Again, it is
not necessary to conceptualize three-way interactions in these terms.
However, we have found this to be useful and have also found that
when investigators describe the results of three-way interactions, they
almost always adopt such an orientation to make sense of the complex
rclationships involved.

The researcher dummy coded each of the factors. For monetary
incentive, Dy, a 1 was assigned to respondents who received an
incentive and a 0 to respondents who did not. For topic importance,
1,, a 1 was assigned to respondents who received a survey on an
important topic and a 0 was assigned to respondents who received a
survey on a mundane topic. For survey length, Dy, a 1 was assigned
o respondents who received a long survey and a 0 was assigned
(o respondents who received a short survey. Product terms were
penerated for the two-way interactions by multiplying the dummy
variable for one factor by the dummy variable for the other factor.
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This yielded three pairs of product terms, Dy * D;, Dy % Dy, and
Dy x Dy. A three-way product term also was generated: Dy, * Dy
* Dy . To make the intercept term more meaningful, the covariate
social class, was transformed by subtracting the sample mean (55.0)’
from each of the raw scores on social class prior to running the
analysis. This transformation is called “mean centering”. It does not
affect any of the coefficients (or their estimated standard errors) for
j[he other terms in the analysis, but it does affect the value of the
intercept and the value of the predicted odds that we calculate later.
The practice of mean centering quantitative covariates is common.
Table 3 presents the resulting logistic regression equation for the
analysis. Because the three-way interaction has only a single degree
f)f .freedom, it is not necessary to perform a hierarchical test if one
is interested in evaluating the omnibus three-way interaction effect.
A statistically significant coefficient for the three-way interaction term
{mplies a statistically significant omnibus effect given that the omnibus
interaction has only a single degree of freedom. If an omnibus three-
way Interaction has more than a single degree of freedom, then a
hierarchical test is required to evaluate it. As in the previous section
our focus will be on the exponents of coefficients. ’
The best way to appreciate the three-way interaction is to use the
equation in Table 3 to calculate a predicted logit() for each cell of
the 2 x 2 x 2 factorial design and then to convert these log odds to

- TABLE 3
Logistic Coefficients for Qualitative Predictors: Three-Way
Interaction
. Logistic Exponent of  95% Lower  95% Upper

Predictor Coefficient Coefficient Limit Limit p Value
Dy 1.2905 3.6347 2.0141 6.5595 <0.001
D, 1.2658 3.5458 1.9668 6.3925 <0.001
Dy —0.1093 0.8965 0.4802 1.6736 0.732
Dy x D, -1.1939 0.3030 0.1336 0.6874 0.004
Dy x Dy —1.2033 0.3002 0.1269 0.7100 0.006
Dy x Dy, —1.1420 0.3192 0.1353 0.7530 0.009
Dy x Dy % Dy, 1.2187 3.3826 1.0227 11.1882 0.046
Class 0.0195 1.0197 1.008 1.0389 0.042
Intercept —0.9140 0.4009 0.2592 0.6195
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TABLE 4
Predicted Odds and Odds Ratios for 2 x 2 x 2 Factorial Design
Short Long
Mundane Important Mundane Important
$10 1.4572 1.5659 $10 0.3922 0.4550
$o 0.4009 1.4216 $0 0.3594 0.4068
1.4573/0.4009 1.5659/1.4216 0.3922/0.3594 0.4550/0.4068
= 3.6347 = 1.1015 = 1.0913 = 1.1185

1.1015/3.6347 = 0.3030 1.1185/1.0913 = 1.0249

1.0249/0.3030 = 3.3826

odds by calculating the exponent of each. In doing so, we set the value
of the covariate, social class, equal to an arbitrary value, in this case
(. Recall that this score corresponds to the sample mean on the orig-
inal social class measure. For the group that received no monetary
incentive (Dy = 0) for a mundane survey (Dy = 0) that was short
(D, = 0), a value of 0 is entered for every predictor variable and the
predicted log odds is —0.9140, which yields a predicted odds of 0.4009.
‘This process is repeated for each of the eight groups defined by the
factorial design and the predicted odds are tabled in the form of two
2 x 2 subtables in Table 4. When constructing such tables, it is helpful
if the rows of the 2x2 subtable are the focal independent variable, the
columns are the first-order moderator variable, and the variable that
“splits up” the various 2 x 2 subtables is the second order moderator
variable. Below each column of a 2 x2 table, we compute an odds ratio
that represents the predicted odds for the group scored 1 on the focal
independent variable divided by the predicted odds for the reference
group on the focal independent variable. Beneath each 2 x 2 sub-
table is the ratio of the odds ratio for the group scored 1 on the first
order moderator variable divided by the odds ratio for the reference
group on the first order moderator variable. These are the two-way
interaction contrasts as defined in the previous section. If there is no
three-way interaction effect, then the two-way interaction parameters
should all be equal in value (except for sampling error) across the
‘levels of the second order moderator variable. If they are different,
then this implies that the nature of the two-way interaction depends
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on the value of the second order moderator. We can directly contrast
the two two-way interaction parameters by taking the ratio of them.
If the two-way interaction parameters are identical in value, then this
ratio will equal 1.0. As the two-way interaction parameters diverge,
the ratio of the two-way interaction parameters will diverge from 1.0.
The bottom of Table 4 contains the ratio of the two-way interaction
parameters for the group scored 1 on the second-order moderator
divided by the two-way interaction parameter for the reference group
on the second order moderator variable. It equals 3.3826.

Examine the exponent of the coefficient for the three-way prod-
uct term in Table 3. Note that it equals 3.3826, the value of the ratio
we just computed. For an interactive logistic model with three quali-
tative predictors, X, Q, and Z, and the corresponding product terms
between them, let X be the focal independent variable, let Q be the
first order moderator variable, and let Z be the second-order modera-
tor variable. For the case of dummy coding, the exponent of the logistic
coefficient for a three-way product term is a ratio of two two-way inter-
action parameters. It focuses on the predicted odds for the group scored 1
on the dummy variable for X divided by the predicted odds for the ref-
erence group on X and divides this odds ratio for the group scored 1
on the dummy variable for Q by the corresponding odds ratio for the
reference group on Q. This two-way interaction parameter is subjected
fo the three-way interaction contrast by dividing the parameter for the
group scored 1 on Z by the parameter for the reference group on Z.
The 95% confidence interval for the exponent of this coefficient pro-
vides an appreciation for sampling error. If this interval contains the
value of 1.0, then the three-way interaction contrast associated with
the product term is not statistically significant.

The exponents of the coefficients for the two-way product terms
each refer to a 2 x 2 subtable within the larger factorial design. How-
ever, because each of these terms is involved in a higher-order product
term, they are conditioned on the second order moderator being zero.
For example, examine the exponent of the product term associated
with Dy * Dy in Table 3. This equals 0.3030 and reflects the two-way
interaction contrast between monetary incentive and topic importance
when Dy, = 0 (i.e., when the length is short). Verify this by examin-
ing the two-way interaction parameter for this contrast in Table 4.
For an interactive logistic model with three qualitative predictors, X, Q,
and Z, and the corresponding product terms between them, for the case
of dummy coding, the exponent of the logistic coefficient for a two-way
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product term, XZ, is the two-way interaction parameter for X and Z
when Q = 0.

Finally, the exponent of the coefficient for a “main effect” term
in the equation reflects an odds ratio dividing the predicted odds for
the group scored 1 on the dummy variable by the predicted odds for
the reference group. Because the term is involved in product terms
involving both moderator variables, it is conditioned on zero for both
moderators and therefore represents an odds ratio for the reference
group on both moderator variables. For example, the exponent of the
coefficient associated with Dy, is 3.6347, which is the odds ratio that
divides the predicted odds of returning a survey for individuals with
a monetary incentive by the predicted odds of returning a survey for
individuals with no such incentive for the case of a short survey on a
mundane topic. Verify this in Table 4. For an interactive logistic model
with three qualitative predictors, X, Q, and Z, and the corresponding
product terms between them, for the case of dummy coding the exponent
of the logistic coefficient for X is an odds ratio dividing the predicted
odds for the group scored 1 on X by the predicted odds for the reference
group on X considering only the reference groups on Q and Z.

If confidence intervals are desired for a contrast not contained in
the logistic equation, then the contrast can typically be isolated by
redefining the reference group on one or both of the moderator vari-
ables and then rerunning the logistic regression so that the contrast
is manifest in one of the coefficients in the equation.

The predicted odds in Table 4 were generated for the case where
the covariate (social class) equaled the value of its sample mean.
Although the value of the predicted odds would be different if they
were generated at a different value of social class, the relations among
them (i.e., the odds ratios, the ratios of the odds ratios, and the ratio
of the ratio of the odds ratio) will be identical to those in Table 4.
Interpretation of the exponent of the coefficient for the covariate
lollows standard protocol. In our example, the exponent for social
class was 1.0197 (95% confidence interval = 1.0008 to 1.0389). This
implies that for every 1 unit that social class increases, the predicted
odds of returning a survey changes by a multiplicative factor of 1.0197,
holding constant monetary incentive, topic importance, length of the
survey, and all of the two-way interactions and the three-way interac-
tion between these variables.

The above example considered the case in which the qualitative
predictors have two levels. When a given predictor has three or more



30

levels, then multiple dummy variables will be necessary to incorpo-
rate it into the analysis and multiple product terms will result. Each
product term corresponds to a single degree of freedom contrast of
either a conditioned main effect, a conditioned “two-way” interaction,
or a three-way interaction parameter. The rules for which contrast is
reflected by a product term coefficient follow directly from those rules
specified above.

3. INTERACTIONS BETWEEN QUALITATIVE AND
QUANTITATIVE/CONTINUOUS PREDICTORS

This chapter considers the case where the interaction effect of
interest involves a mixture of categorical and quantitative/continuous
predictors. The case of two-way interactions in which the qualita-
tive variable is conceptualized as the moderator variable and the
quantitative/continuous variable is the focal independent variable
is considered first. The role of the two predictors is then reversed.
Although the analyses use the identical logistic model and parameter
estimates, the interpretation that the researcher imposes on them
differs in terms of conceptual nuance. The chapter concludes by con-
sidering a three-way interaction involving two qualitative moderator
variables and a quantitative/continuous focal independent variable.

Two-Way Interactions With a Qualitative Moderator Variable

An investigator was interested in the relationship between years of
education and whether a community member would vote in a highly
politicized special election in the community. He hypothesized that
individuals with lower levels of education would be less likely to vote
than individuals with higher levels of education. He also was inter-
ested in whether this relationship was comparable across different
ethnic groups. The study that was conducted yielded information on
voting behavior and education for each of three ethnic groups, blacks,
Hispanics, and whites. In this case, whether someone voted is the
outcome variable, education is the focal independent variable, and
ethnicity is the moderator variable. Because ethnicity is a categorical
variable, it is represented by two dummy variables, Dy, and Digigpanic
with whites being treated as the reference group. Product terms are
generated between each of these dummy variables and education and
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a logistic regression is performed using Dyjaex,; Dispanics education,
Dyjacx * education and Dygpanic * education as predictors. Prior to
forming the product terms, the researcher transformed the quantita-
tive predictor. The modal number of years of education in the sample
was 10, and this value was also the approximate median and mean
amount of education. The investigator decided to subtract 10 from
the original variable of education so that the zero point on the scale
now corresponded to 10 years of education.

Table 5a presents the logistic coefficients, the exponents of the coef-
ficients, and the 95% confidence interval for the exponents of the
coefficients. The hierarchical test of the omnibus interaction effect
showed a statistically significant (p < 0.05) effect. Our focus is on
the interpretation of the coefficients in Table 5a. We consider only
the coefficients for education and the product terms and defer con-
sideration of the other coefficients to the next section, when the focal
independent variable and moderator variables are reversed.

The logistic coefficient associated with education is 0.4556 and the
exponent of the coefficient is 1.5772. Because education is part of the
product terms, the coefficient associated with it does not represent
a “main effect” but instead represents a conditional effect, ie., the
cffect of education when the values on the moderator variable are
rero. Thus, 1.5772 is the multiplicative factor by which the odds of
voting changes for a 1-unit increase in education for whites (the ref-
crence group on the moderator variable). The confidence intervals for
this parameter estimate provide a sense of sampling error (1.3003 to
1.9129). Because the confidence interval does not contain the value
of 1.0, it is statistically significant. Examination of the exponent of the
intercept reveals that the predicted odds of voting by whites with 10
years of education is 5.3026 (i.e., it is over 5 times more likely that
whites with 10 years of education will vote than not vote). These pre-
dicted odds change by a factor of 1.5772 for every additional year of
cducation. For example, the predicted odds of voting by whites with 11
years of education is (5.3026)(1.5772) = 8.3633 and for whites with 12
years of education it is (8.3633)(1.5772) = 13.1906. For an interactive
logistic model with a quantitative /continuous predictor, X, a qualitative
predictor, Z, and a product term, XZ, for the case of dummy coding
on Z, the exponent of the logistic coefficient for X is the multiplicative

factor by which the predicted odds change given a 1-unit increase in X
for the reference group on Z.
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TABLE 5
Logistic Coefficients for Qualitative and Quantitative Predictors:
Two-Way Interaction

Logistic  Exponent of 95% Lower 95% Upper

Predictor Coefficient  Coefficient Limit Limit p Value
a. Whites as Reference Group on Moderator Variable
Dyek —0.8564 0.4247 0.1705 1.0575 0.066
Dyispanic —1.2082 0.2987 0.1082 0.8248 0.020
Education 0.4556 15772 1.3003 1.9129 <0.001
Dy * education —0.1995 0.8191 0.6522 1.0288 0.086
Digigpanic * €ducation 0.4584 1.5815 1.0216 2.4482 0.040
Intercept 1.6682 5.3026 2.4598 11.4309
b. Hispanics as Reference Group on Moderator Variable
Dy 0.3518 1.4216 0.6217 3.2506 0.404
Dyire 1.2082 3.3475 1.2124 9.2426 0.020
Education 0.9140 2.4942 1.6853 3.6916 <0.001
Dy, * education -0.6579 0.5180 0.3436 0.7808 0.002
D, * education —0.4584 0.6323 0.4085 0.9789 0.040
Intercept 0.4600 1.5841 0.8151 3.0785
c. Blacks as Reference Group on Moderator Variable

Dyicpanic —0.3518 0.7034 0.3076 1.6085 0.404
D ite 0.8564 23548 0.9456 5.8638 0.066
Education 0.2561 1.2919 1.1443 1.4585 <0.001
Digispanic * education 0.6579 1.9307 1.2808 2.9103 0.002
D, * education 0.1995 1.2208 0.9720 1.5333 0.086
Intercept 0.8118 2.2520 1.3764 3.7104

As noted earlier, the investigator was interested in comparing the
impact of education on voting behavior for each of the three ethnic
groups. It will be instructive to derive the value of the multiplicative
factor for education for each of the three ethnic groups. Although this
can be accomplished through algebraic manipulation of the logistic
equation in Table 5a (as described in Chapter 5), a simple method for
obtaining the parameter estimate and the corresponding confidence
interval for a given group is to redefine the dummy variables for the
moderator variable so that a different group is the reference group.
After doing so, regenerate the product terms and rerun the logis-
tic analysis. In each case, the exponent of the logistic coefficient for
education will yield the multiplicative factor for the reference group
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on the moderator variable, whoever that reference group may be. This
strategy was employed in Table 5b using Hispanics as the reference
group for ethnicity and in Table 5c using blacks as the reference group
for ethnicity. From the three analyses in Table 5, we can character-
ize the multiplicative factor by which the predicted odds change for a
1-unit increase in education for each of the three ethnic groups:

Multiplicative  95% Lower  95% Upper

Factor Limit Limit
Blacks 1.2919 1.1443 1.4585
Hispanics 2.4942 1.6853 3.6916
Whites 1.5772 1.3003 1.9129

If education has the same effect for all three ethnic groups (i.e.,
if there is no interaction effect), then the multiplying factor should
be the same in all three groups (except for sampling error). We
can formally compare the multiplicative factor for blacks with that
for whites by taking the ratio of the two multiplicative factors,
1.2919/1.5772 = 0.8191. If the two multiplicative factors are equal,
this ratio will equal 1. As the two multiplicative factors diverge, the
value of this ratio will diverge from 1.0. In this case, the multiplica-
tive factor for blacks is about 80% the magnitude of that for whites.
Examine the exponent of the logistic coefficient for the product term
for Dy, * education in Table 5a. Note that it equals 0.8191, which
is the ratio of the two multiplicative factors. The 95% confidence
intervals (0.6522 to 1.0288) give a sense of the sampling error asso-
ciated with this ratio. Because the confidence interval contains the
value of 1.0, the differences in these multiplicative factors is deemed
to be statistically nonsignificant. For an interactive logistic model with
a quantitative [continuous predictor, X, a qualitative predictor, Z, and
a product term, XZ, for the case of dummy coding on Z, the expo-
nent of the logistic coefficient for XZ is the ratio of the multiplicative
Jactor by which the predicted odds change given a I-unit increase in X
for the group scored 1 on the dummy variable for Z divided by the
corresponding multiplicative factor for the reference group on Z. Any
given logistic analysis reported in Table Sa to 5c isolates two of the
three possible pairwise contrasts of multiplicative factors. The third
can be obtained by redefining the reference group on the modera-
tor variable and rerunning the analysis. Such rescoring affects the
values of the coefficients associated with the product terms because
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they define different contrasts, but it does not affect the results of
the hierarchical test of the omnibus interaction. Modified Bonferroni
tests or simultaneous confidence intervals can be calculated to con-
trol for the fact that multiple contrasts are being performed (Jaccard,
1998).

Two-Way Interactions With a Quantitative Moderator Variable

Suppose that instead of the previous conceptual framework, the
investigator was interested in comparing the voting behavior of the
three ethnic groups and how these ethnic differences varied as a
function of education. In this case, the outcome variable is voting
behavior, the focal independent variable is ethnicity, and the moder-
ator variable is education. This conceptual framework uses the same
logistic analyses reported in Table 5a through 5c, but focuses on dif-
ferent coefficients and imposes a different theoretical interpretation
on the coefficients. We now discuss the interpretation of the coeffi-
cients in Table 5 from this theoretical vantage point, focusing first on
the dummy variables for ethnicity.

To clarify the meaning of the coefficients for the ethnicity dummy
variables, we first specify the predicted odds of voting by blacks,
whites, and Hispanics when education is at 10 years. The predicted
odds for whites with 10 years of education is the exponent of the
intercept in Table 5a, the predicted odds for Hispanics with 10 years
of education is the exponent of the intercept in Table 5b, and the pre-
dicted odds for blacks with 10 years of education is the exponent of
the intercept in Table 5c (recall that the education predictor was “cen-
tered about the value of 10”; hence the intercept isolates the odds of
voting for the reference group when education is at 10 years):

Predicted Odds ~ 95% Lower  95% Upper

of Voting Limit Limit
Blacks 2.2520 1.3764 3.7104
Hispanics 1.5841 0.8151 3.0785
Whites 5.3026 2.4598 11.4309

To explore ethnic differences in the odds of voting when education is
at 10 years, we can compare the predicted odds for blacks with the
predicted odds for whites by forming an odds ratio between the two,

35

2.252/5.3026 = 0.4247. Examine the exponent of the logistic coeffi-
cient associated with Dy, in Table 5a. It equals 0.4247, the value of
this odds ratio. For an interactive logistic model with a qualitative predic-
tor, X, a quantitative [continuous predictor, Z, and a product term, XZ,
for the case of dummy coding of X, the exponent of the logistic coef-
ficient for a dummy variable of X is the ratio of the predicted odds
for the group scored 1 on the dummy variable divided by the predicted
odds for the reference group on X, conditioned on Z being equal to 0.
The confidence interval for the exponent of the coefficient (0.1705
to 1.0575) provides an appreciation for sampling error and the fact
that the interval contains the value of 1.0 means that the difference
in odds between the two groups is not statistically significant.

We can use Table 5a through 5c¢ to isolate the three pairwise odds
ratios comparing blacks to whites (Table 5a), Hispanics to whites
(Table 5a), and blacks to Hispanics (Table 5b) when education is at 10
years by examining the coefficients for appropriate dummy variables
in the different analyses. The three comparisons are summarized as
follows:

Predicted Odds Predicted Odds
for Group for Reference  Odds 95% Lower 95% Upper

Scored 1 Group Ratio Limit Limit
Blacks versus 2.2520 5.3026 0.4247  0.1705 1.0575
whites
Hispanics versus 1.5841 5.3026 0.2987  0.1082 0.8248
whites
Blacks versus 2.2520 1.5841 14216  0.6217 3.2506
Hispanics

If there is no interaction effect, then a given odds ratio should be of
the same value when education is at 10 years as when education is
equal to some other value, such as 11 years. For example, the odds
ratio comparing blacks to whites is 0.4247 for 10 years of education
and it should also be 0.4247 for 11 years of education. If this were
not the case, then the impact of ethnicity on voting depends upon the
level of education, which implies an interaction effect.

For expositional purposes, a second set of logistic analyses was per-
formed comparable to those in Table 5, but in which education was
transformed by subtracting 11 from the original education variable
rather than 10. This defines the zero point for education at 11 years
and permits us to reproduce the above table for the case where edu-
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cation is at 11 years rather than 10 years using the coefficients for the
dummy variables. Here are the results, after recalculating the product
(crms using the transformed education variable, tabled:

Predicted Odds Predicted Odds
Jor Group for Reference  Odds  95% Lower 95% Upper

Scored 1 Group Ratio Lirmit Limit
Blacks versus 2.9093 8.3637 03479  0.1199 1.0093
whites
Hispanics versus 3.9511 8.3637 04724  0.1448 1.5417
whites
Blacks versus 2.9093 3.9511 0.7363 0.2911 1.8628
Hispanics

Focus first on the black versus white odds ratio. When education was
at 10 years, the odds ratio was 0.4247. By contrast, when education is
at 11 years, the odds ratio is 0.3479. If we take the ratio of these two
results 0.3479/0.4247, we obtain 0.8191. When education increases
by 1 unit (i.e., 1 year), the odds ratio comparing blacks to whites
changes by a multiplicative factor of 0.8191. Now examine the expo-
nent of the coefficient for the product term for Dy, * education
in Table 5a. It equals 0.8191, which is the factor by which the odds
ratio changes given a 1-unit increase in the moderator variable, edu-
cation. If education changed from 11 years to 12 years, then the odds
ratio comparing blacks to whites would again change by this multi-
plicative factor: (0.3479)(0.8191) = 0.2850. For an interactive logistic
model with a qualitative predictor, X, a quantitative/continuous predic-
tor, Z, and a product term, XZ, for the case of dummy coding on X, the
exponent of the logistic coefficient for a product term indicates the multi-
Pplicative factor by which the odds ratio comparing the predicted odds for
the group scored 1 on X and the predicted odds for the reference group
on X changes given a 1-unit increase in Z. The confidence interval for
the exponent of a coefficient for a product term provides perspectives
on sampling error and if the interval contains the value of 1.0, then
the interaction contrast is statistically nonsignificant. In the present
case, the confidence interval for the interaction contrast focused on
blacks and whites contains the value of 1.0; hence the contrast is not
statistically significant.

The same logic applies to the interpretation of the other product
terms, In Table 5a, the exponent of the coefficient associated with
Drgigpanic * education is 1.5815. For every 1-unit increase in educa-
tion, the odds ratio comparing the predicted odds for Hispanics with
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the predicted odds for whites changes by a multiplicative factor of
1.5815. In Table 5b, the exponent of the coefficient associated with
Do * €ducation is 0.5180. For every 1-unit increase in education,
the odds ratio comparing the predicted odds for blacks with the pre-
dicted odds for Hispanics changes by a multiplicative factor of 0.5180.
The confidence interval does not contain the value of 1.0, indicating
that the result is statistically different.

Through the judicious use of transformations and choice of refer-
ence groups, it is possible to obtain parameter estimates and confi-
dence intervals for a wide range of odds, odds ratios, multiplicative
factors, ratios of odds ratios, and ratios of multiplicative factors. As
before, simple additive transformations alter coefficients because they
reflect different contrasts, but the ommibus hierarchical test of the
interaction is unaffected. Covariates can be added to an equation to
control for other variables and the same principles for interpreting
coefficients in the presence of covariates described earlier apply.

Three-Way Interactions

A study was conducted in which an investigator examined whether
parents attended a workshop offered at a local school on how to
improve parent-adolescent communication about drug use. A parent
in the sample was assigned a score of 1 if he or she attended the
workshop and a score of 0 if he or she did not. A pamphlet describ-
ing the workshop was sent to all parents of students in the school, and
they were invited to attend the workshop on a given evening of their
choice. Earlier in the school year, a measure of how concerned par-
ents were about their child using drugs was obtained. The measure
ranged from 1 to 25, with higher scores indicating greater levels of
concern. The investigator was interested in the relationship between
stated concern about drug use and attendance behavior. She hypoth-
esized that the effect of concern on attendance would be moderated
by the employment status of the parent. If the parent was full-time
employed, then it was hypothesized that concern for drug use would
have less of an effect on workshop attendance. The rationale for this
prediction was that full-time employed parents have more time con-
straints than non-full-time employed parents and even though they
may be concerned about drug use, their more hectic time schedules
make it more difficult for them to translate their concerns into behav-
ior. This variable, called Dgg, was scored 1 if the parent was full-time
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employed; otherwise it was scored 0. As part of the study, the inves-
tigator also manipulated the number of choices the individual had as
to the evening when he or she could attend the workshop. Half of
the parents were told that the workshop was on a single evening and
they were given no choice as to when to attend. The other half of
the parents were given three evenings to choose from to attend the
workshop. The investigator hypothesized that the moderating effects
of employment status would only operate in the “no choice” con-
dition as opposed to the “multiple choice” condition. The rationale
for the prediction was that the flexibility provided in the scheduling of
multiple workshops from which to choose would negate the constrain-
ing effects of employment status. The choice variable, called D¢, was
scored 1 if the parent was given multiple choices and 0 if the parent
was given no choices.

In this study, attendance at the workshop is the outcome vari-
able, parental concern for drug use is the focal independent variable,
employment status is the first-order moderator variable, and the num-
ber of workshop choices is the second order moderator variable. The
researcher decided to mean center the continuous predictor, concern
for drug use, to facilitate interpretation of the intercept term. The
transformed concern scores werc then used to form product terms
with Dgg and D¢. A measure of social class was included as a covari-
ate, and it also was mean centered.

It will be easier to convey the meaning of the product term coeffi-
cients if we first isolate the logistic coefficient for the focal indepen-
dent variable for each of the four groups. Although this can be done
algebraically from a single logistic analysis, it is simpler to isolate
these coefficients and their confidence intervals by calculating four
different logistic analyses, each time redefining the reference groups
on the two dummy variables so that cach of the four groups within
the 2 x 2 design takes a turn as the reference group across the two
dummy variables. This has been done in Table 6a through 6d. Using
the principles from previous sections, the logistic coefficient for con-
cern in any given analysis is conditioned on the moderators being
zero and reflects the impact of concein on attendance behavior when
Dgg = 0 and when D¢ = 0 (holding social class constant). It thus
focuses on the effect of concern for the reference groups on employ-
ment status and whether choices were given. The coefficients for the
four groups and the 95% confidence intervals for the exponents of
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the coefficients are:

. Exponent 95% 95%
Logistic of Lower  Upper
Coefficient  Coefficient  Limit Limit

Choice, full-time (Table 6a) 0.1831 1.2010 1.1351  1.2707
Choice, not full-time (Table 6b) 0.1242 1.1323 1.0754 11921
No Choice, full-time (Table 6c) 0.0721 1.0747 1.0141 1‘1390
No Choice, not full-time (Table 6d) 0.1520 1.1642 1.1058 1:2256

LeF us first obtain an index of the differential impact of concern for
full-time versus not full-time employed parents under the condition of

o TABLE 6
Logistic Coefficients for Qualitative and Quantitative Predictors:
Three-Way Interaction

_ Logistic  Exponent of 95% Lower 95% Upper
Predictor Coefficient  Coefficient Limit Limit p Value

a. Choice, Full-Time Group (D¢ is 1 = no choice, 0 = choice;
Dy is 1 = not full-time, 0 = full-time)

Dys 0.2491 1.2829 1.0280 1.6009 0.028
D¢ ~0.278 07567 0.5990 0.9560 0.019
Concern 01831 12010 1.1351 12707  <0.001
Social class 00516 10529 1.0133 1.0941 0.008
Dy * D¢ 01270 11354 0.8249 1.5630 0.436
Dy * concern ~0.0580 09428 0.8735 1.0175 0.130
D, * concern —0.1111  0.8949 0.8254 0.9702 0.007
Dy # D * concern 01389 1.1490 1.0306 1.2810 0.012
Intercept —0.9839 03739 0.3180 0.4395

b. Choice, Not Full-Time Group (D is 1 = no choice, 0 = choice;
Dygs is 1 = full-time, 0 = not full-time)

Dy —0.2491 0.7795 0.6246 0.9728 0.028
D¢ -0.1517 0.8592 0.6910 1.0684 0.172
Cogoern 0.1242 1.1323 1.0754 1.1921 <0.001
Social class 0.0516 1.0529 1.0133 1.0941 0.008
Dy * De —0.1270 0.8807 0.6398 1.2123 0.436
Dgg * concern 0.0589 1.0607 0.9828 1.1448 0.130
D¢ * concern 0.0278 1.0282 0.9560 1.1058 0.454
Dy * D¢ * concern  —0.1389 0.8703 0.7806 0.9703 0.012
Intercept —0.7348 0.4796 04123 0.5579
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TABLE 6 Continued

Logistic  Exponent of 95% Lower 95% Upper
Predictor Coefficient  Coefficient Limit Limit p Value

¢. No Choice, Full Time Group (D is 1 = choice, 0 = no choice;
Dy is 1'= not full-time, 0 = full time)

Dyg 0.3761 1.4566 1.1569 1.8340 0.001
D 0.2788 1.3215 1.0460 1.6695 0.019
Concern 0.0721 1.0747 1.0141 1.1390 0.015
Social class 0.0516 1.0529 1.0133 1.0941 0.008
Dyg * D¢ -0.1270 0.8807 0.6398 1.2123 0.436
Dy * concern 0.0799 1.0832 1.0024 1.1706 0.043
D¢ * concern 0.1111 1.1175 1.0307 1.2116 0.007
Dygs * D¢ » concern ~0.1389 0.8703 0.7806 0.9703 0.012
Intercept —1.2627 0.2829 0.2389 0.3350

d. No Choice, Not Full-Time Group (D¢ is 1 = choice, 0 = no choice;
Dy is 1 = full-time, 0 = not full-time)

Dgg —0.3761 0.6865 0.5453 0.8644 0.001
D 0.1517 1.1638 0.9360 1.4472 0.172
Concern 0.1520 1.1642 1.1058 1.2256 <0.001
Social class 0.0516 1.0529 1.0133 1.0941 0.008
Dgs * D¢ 0.1270 1.1354 0.8249 1.5630 0.436
Dy * concern —0.0799 0.9232 0.8543 0.9976 0.043
D¢ * concern —0.0278 0.9726 0.9043 1.0460 0.454
Dy * D¢ * concern 0.1389 1.1490 1.0306 1.2810 0.012
Intercept —0.8866 0.4121 0.3523 0.4819

having a choice of programs. The multiplying factor for concern for
full-time employed parents is 1.2010 and for not full-time employed
parents it is 1.1323. The ratio of these two multiplying factors is
1.2010/1.1323 = 1.0607. The greater the discrepancy between the
two multiplying factors, the more this ratio will depart from 1.0. This
ratio is essentially a two-way interaction contrast (between concern
and employment status) when the second-order moderator variable is
held constant at the value of “choice.”

We can calculate the same index for parents who were not given
a choice. The multiplying factor for concern for full-time employed
parents is 1.0747 and for not full-time employed parents it is 1.1642.
The ratio of these two multiplying factors is 1.0747/1.1642 = 0.9232.

We can now compare these two two-way interactions fo gain per-
spectives on the three-way interaction. Specifically we form a ratio
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of the two two-way ratios, 1.0607/0.9232 = 1.1490. If there is no
three-way interaction effect, then this index will equal 1.0 (except
for sampling error). We could use any of the tables to illustrate our
next point, but we will focus on Table 6d which scores D¢ as 1 =
“choice” and 0 = “no choice” and Dgg as 1 = “full-time” and 0 =
“not full-time.” Examine the exponent of the coefficient for the three-
way product term in Table 6d. Note that it equals 1.1490, the value of
the ratio of the ratio of muitiplying factors. For an interactive logistic
model with a quantitative/continuous predictor, X, two qualitative pre-
dictors, Q and Z, and the corresponding product terms between them,
let X be the focal independent variable, let Q be the first-order mod-
erator variable, and let Z be the second-order moderator variable. For
dummy coding on the qualitative predictors, the exponent of the logistic
coefficient for the “three-way” product term is a ratio of the ratio of mul-
tiplying factors for X. The ratio focuses on the multiplying factor for X
for the group scored 1 on the dummy variable for Q divided by the cor-
responding multiplying factor for the reference group on Q. This ratio for
the group scored 1 on the dummy variable for Z is divided by the cor-
responding ratio for the reference group on Z. The confidence intervals
for this coefficient provide a sense of sampling error for the three-way
interaction parameter estimate.

For the analysis in Table 6d, examine the exponent of the logistic
coefficient for the product term Dgg * concern. Note that it equals the
two-way interaction parameter that was calculated above for parents
who were the reference group on the second-order moderator vari-
able (0.9232), in this case, parents who were not given a choice. For
an interactive logistic model with a quantitative/continuous predictor,
X, two qualitative predictors Q and Z, and the corresponding product
terms between them, the exponent of the logistic coefficient for the X(Q
product term will equal the two-way interaction parameter for XQ when
Z = 0. The confidence intervals for this coefficient provide a sense of
sampling error for this two-way interaction parameter estimate.

Examination of Tables 6a through 6d shows that the values of the
coefficients for the product terms change as different reference groups
are defined because the reference group that is a part of the contrast
isolated by the product term is being changed. This also changes the
group that defines the conditional “zero” for the “main effect” terms.
However, the rules stated above dictate the interpretation of a given
coefficient, and the results of all the analyses are entirely consistent
with one another.
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4. INTERACTIONS BETWEEN
QUANTITATIVE/CONTINUOUS PREDICTORS

This chapter considers the case in which the interaction effect of
interest is located in the moderating effects of a quantitative/continu-
ous predictor on the effects of another quantitative/ continuous pre-
dictor. We consider first the case of two-way interactions and then the
case of three-way interactions.

Two-Way Interactions

An investigator studied factors having an impact on whether peo-
ple in a high-risk population voluntarily take a test for the acquired
immunodeficiency syndrome virus, human immuno deficiency virus
(HIV) when it is offered to them for free. The researcher measured
the individuals’ perceived risk of getting HIV and the perceived sever-
ity of how devastating the consequences would be if HIV were con-
tracted. Both constructs were measured on scales from 0 to 30 with
higher scores indicating greater perceived risk and greater perceived
severity, respectively. The researcher hypothesized that the impact of
perceived risk would be greater as the perceived severity of the con-
sequences of contracting the virus increased. In this case, test-taking
behavior is the outcome variable, perceived risk is the focal inde-
pendent variable, and perceived severity is the moderator variable.
A logistic regression analysis was performed on test-taking behavior
(1 = takes a test, 0 = does not take a test) using perceived risk, per-
ceived severity, and a product term that multiplies the two variables by
one another as predictor variables. Before conducting the analysis, the
investigator decided to mean center the two predictors. Perceived risk
had a mean of 14.792 and perceived severity had a mean of 13.108.
The value of 14.792 was subtracted from each perceived risk score
and the value of 13.108 was subtracted from each perceived sever-
ity score. A product term was then formed from these transformed
scores. Table 7a presents the results of the analysis.

The exponent of the intercept is the predicted odds of taking an
HIV test when both perceived risk and perceived severity equal their
sample mean. In this case, the predicted probability of taking an HIV
test is 1.2866 times larger than the predicted probability of not tak-
ing the test. The exponent of the coefficient for the focal independent
variable, perceived risk, is 1.2338. Because perceived risk is part of the

43

TABLE 7
Logistic Coefficients for Two Quantitative Predictoss:
Two-Way Interaction

Logistic  Exponent of 95% Lower 95% Upper

Predictor Coefficient  Coefficient Limit Limit p Value
(a) Analysis Using Mean Centered Predictors

Risk 0.2101 1.2338 1.1609 1.3114 <0.001

Severity 0.3592 1.4322 1.2709 1.6139 <0.001

Risk * Severity 0.0559 1.0575 1.0265 1.0894 <0.001

Intercept 0.2520 1.2866 1.0239 1.6166

(b) Analysis Using Mean Centered Perceived Risk and Perceived Severity
Centered at 14.108

Risk 0.2660 1.3047 1.2066 1.4108 <0.001
Severity 0.3592 1.4322 1.2709 1.6139 <0.001
Risk * Severity 0.0559 1.0575 1.0265 1.0894 <0.001
Intercept_ 0.6111 1.8425 1.3943 2.4347

product term, this is a conditioned coefficient, so it reflects the effect
of perceived risk when perceived severity equals zero (or in this case,
when perceived severity equals its sample mean). When perceived
severity is at its sample mean, a 1 unit increase in perceived risk results
in the predicted odds of taking an HIV test changing by a multiplica-
tive factor of 1.2338. For example, the predicted odds of taking an
HIV test when perceived risk and perceived severity equal their sam-
ple means is 1.2866 (the exponent of the intercept). If perceived risk
increases by 1 unit (from its mean of 14.792 to 15.792), then the pre-
dicted odds of taking an HIV test is (1.2866)(1.2338) = 1.5874 (hold-
ing perceived severity constant at the value of its sample mean). For
an interactive logistic model with two quantitative predictors, X and Z,
and a product term, XZ, the exponent of the logistic coefficient for X
equals a multiplicative factor by which the predicted odds change given
a I-unit increase in X when Z = Q.

To illustrate the meaning of the coefficient for the product term,
we redo the analysis but instead of subtracting a constant of 13.108
from perceived severity (its sample mean value), we subtract a value
of 14.108 (i.e., we make the zero point on perceived severity be
1 unit higher than in the previous analysis). Table 7b presents the
results of this analysis. The exponent of the logistic coefficient for
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perceived risk is now 1.3047. From the previous analysis, when per-
ceived severity equaled 13.108 the exponent of the coefficient was
1.2338. When perceived severity increases by 1 unit (to 14.108), the
exponent of the perceived risk coefficient is 1.3047. If we take the
ratio of these two results, we find that a 1 unit change in perceived
severity causes the impact of perceived risk (as indexed by its mul-
tiplicative factor) to increase by a factor of 1.3047/1.2338 = 1.0575.
Examine the exponent of the product term in Table 7a. It equals
1.0575. The exponent of this coefficient tells us by what factor the
multiplying factor of perceived risk changes given a 1 unit increase
in perceived severity. If we increased perceived severity by another
unit to 15.108, then the multiplying factor for perceived risk would be
(1.3047)(1.0575) = 1.3797. The confidence interval for the exponent
of the coefficient of the product term provides an appreciation for
sampling error and if the interval contains the value of 1.0, then the
interaction effect is not significant. For an interactive logistic model
with two quantitative /continuous predictors, X and Z, and a product
term, XZ, the exponent of the logistic coefficient for the product term is
the mudtiplicative factor by which the multiplicative factor of X changes
given a l-unit increase in Z. Note that the transformation we per-
formed does not affect the value of the product term coefficient; i.e.,
it is invariant across simple additive transformations.

Three-Way Interactions

A social worker conducted a study of suicide contemplation in
which the outcome variable was a self-report by a sample of patients
of whether he or she had contemplated suicide during the past
6 months (scored 1 = yes, 0 = no). The focal independent vari-
able was how much stress the individual had experienced during
the past 6 months, which was measured on a 40-point scale, with
higher scores indicating greater levels of stress felt. The investigator
hypothesized that higher levels of stress would be associated with a
higher likelihood of suicide contemplation. The effect of stress on
suicide contemplation was predicted to be moderated by the strength
of the individual’s social network. A weak support network, it was
hypothesized, would exacerbate the effects of stress on suicide con-
templation. A measure of lack of support was obtained using a social
support scale, with scores ranging from 0 to 40. Higher scores indi-
cated a weaker support network. Weakness of the support network is
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a first-order moderator variable. The researcher further hypothesized
that the effects of a weak support network would differ depending on
how depressed the individual was. The less depressed the individual,
the less that a weak support network would exacerbate the effects
of stress on suicide contemplation. Depression was measured on a
scale ranging from 0 to 50, with higher scores indicating greater lev-
els of depression. Depression is a second-order moderator variable
in the researcher’s conceptual framework. The researcher mean cen-
tered each of the predictors and then calculated all possible two-way
product terms and the three-way product term. Table 8 presents the
results of the logistic regression.

Based on the principles presented in the previous section, the
exponent of the coefficient for stress represents the multiplying fac-
tor by which the odds of suicide contemplation are predicted to
change given a l-unit increase in stress when social support and
depression equal zero (i.e., when social support and depression are
average, based on the mean centering). The multiplying factor is
1.1115 (95% confidence interval = 1.0911 to 1.1323). The exponent
of the coefficient for the stress = support term reflects the two-way
interaction contrast between stress and social support when depres-
sion equals zero (i.c., when depression is average). The exponent
of this coefficient was 1.0289 (95% confidence interval = 1.0241 to
1.0337). This is the factor by which the multiplying factor for stress
changes given a 1-unit increase in the measure of weakness of sup-
port when depression is average. For every 1 unit weaker that the

TABLE 8
Logistic Coefficients for Three Quantitative Predictors:
Three-Way Interaction

Logistic  Exponent of 95% Lower 95% Upper

Predictor Coefficient  Coefficient Limit Limit p Value
Stress 0.1057 1.1115 1.0911 1.1323 <0.001
Support 0.1046 1.1102 1.0891 1.1318 <0.001
Depression 0.1212 1.1288 1.1077 1.1504 <0.001
Stress * Support 0.0285 1.0289 1.0241 1.0337 <0.001
Stress * Depression —-0.0006 0.9994 0.9952 1.0037 0.786
Support * Depression 0.0010 1.0010 0.9966 1.0055 0.648
Three-way 0.0130 1.0131 1.0118 1.0144 <0.001
intercept —1.4765 0.2284 0.2099 0.2502
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support gets, the effect of stress on the odds of suicide contemplation
changes by a factor of 1.0289 (holding depression constant at its sam-
ple mean). Suppose we recalculate the exponent for the coefficient
of the stress * support product term for the case in which depression
is 1 unit above its sample mean rather than at its sample mean. This
can be accomplished by centering depression at 21 instead of at 20
(which was the value of the original sample mean), recalculating the
product terms, and rerunning the logistic analysis. The exponent of
the coefficient for the stress x support product term in this analysis is
1.0424. We can index the change in the two-way interaction param-
eter that occurred from the previous analysis by dividing the value
of the parameter in the first analysis by the value of the parame-
ter in the second analysis. This yields 1.0424/1.0289 = 1.0131. If the
two two-way interactions are identical in value, then this ratio will
equal 1.0. Examine the exponent of the coefficient for the three-way
product term in Table 8. It equals 1.0131, the value of the ratio of
the two two-way interaction parameters. For an interactive logistic
model with three quantitative/continuous predictors, X, O, and Z, and
the various product terms between them, let X be the focal indepen-
dent variable, let Q be the first-order moderator variable, and let Z be
the second-order moderator variable. The exponent of the logistic coeffi-
cient for the three-way product term is the multiplicative factor by which
the two-way interaction parameter for X and Q changes given a I-unit
increase in Z. If we rerun the logistic regression centering depres-
sion 2 units above its sample mean, then the coefficient for stress
support would be (1.0424)(1.0131) = 1.0561.

5. MULTICATEGORY MODELS

The examples considered thus far focus on the case of a dichotomous
outcome variable. Logit based models also have been developed for
the analysis of outcomes with more than two categories. This chap-
ter illustrates the interpretation of product terms for selected models
of this nature. As in previous chapters, we assume that the reader
is familiar with the fundamentals of multicategory logit models and
concentrate on the interpretation of coefficients rather than on the
evaluation of model fit.
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Ordinal Regression Models

Ordinal regression models focus on outcome variables that are ordi-
nal in character. Of the many types of models, one of the more
popular is adjacent category ordinal regression (Agresti, 1996). Con-
sider the case of an outcome variable with four ordered categories,
1 through 4, that is predicted from two continuous variables, X and
Z. It is possible to calculate three logistic regressions comparing adja-
cent categories on the outcome variable. A logistic regression can be
conducted focusing only on individuals with scores of 1 or 2 on the
outcome variable that predicts this newly defined dichotomous out-
come from X and Z. Similarly, an analysis can be performed focus-
ing only on individuals with scores of 2 or 3 on the outcome variable
and then again focusing only on individuals with scores of 3 and 4.
Essentially, a set of pairwise logistic regressions are conducted where
the defined pairs are based on adjacent categories of the outcome
variable. The parameter estimates for the three equations are derived
using a simultaneous solution (rather than a piecemeal one) and con-
straints are imposed on the coefficients (but not the intercepts) across
the three equations. Specifically, the constraint that the coefficients
for X must be equal across the three equations is imposed as is the
constraint that the coefficients for Z must be equal across the three
equations. This constrained model, which is more parsimonious then
the unconstrained model because there is a single coefficient value
for each predictor across the three equations, is commonly applied in
adjacent category logit models [although unconstrained models also
can be estimated as can models with constraints different from those
specified above; see Agresti (1996)]. A product term can be added
to the models to reflect an interaction between X and Z. The inter-
pretation of the constrained coefficients associated with X, Z, and
XZ follows the same basic principles as those discussed in this mono-
graph, because in the final analysis, the multiple equations represent
the analysis of log odds for adjacent categories using a logistic based
model.

We illustrate the approach for a five-point outcome variable in
which immigrants to the United States provide a self-rating of how
conservative or liberal they are, where 1 = very conservative, 2 =
somewhat conservative, 3 = moderate, 4 = somewhat liberal, and
5 = very liberal. The focal independent variable is the gender of the
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individual, scored as 1 = female and 0 = male. The investigator is
interested in whether the effect of gender on political ideology varies
as a function of the amount of time that the immigrant has lived
in the United States (measured in years but with fractions to reflect
the number of months and days lived in the United States as well).
Among nonimmigrants in the United States, women tend to be more
liberal than men. The researcher hypothesized that the political ide-
ology of new immigrants would be similar for men and women, but
with increased residency, the immigrants would become assimilated
to U.S. culture, resulting in the emergence of the traditional gender
difference. The analyst decided to treat the outcome variable as ordi-
nal in character, the focal independent variable (gender) as categor-
ical, and the moderator variable (length of residency) as continuous.
Length of residency was mean centered prior to analysis.

The data were analyzed using a computer program called Gold-
miner, which is available in SPSS. The intercept terms were allowed
to vary, but the coefficients for the three predictor variables (gen-
der, residency, and gender * residency) were constrained to be equal
across the four adjacent category logistic regressions. The analysis
was undertaken, comparing categories 2 to 1, categories 3 to 2, cat-
egories 4 to 3, and categories 5 to 4. The logistic coefficients for
gender, residency, and the product term were 0.44, 0.00, and —0.03.
The exponents of the coefficients were 1.55, 1.00, and 0.97, respec-
tively. The exponent of the coefficient for gender (1.55) reflects the
effect of gender on political ideology when the length of residency
is equal to its sample mean. In this case, the estimated odds that a
female’s ideology classification is in category j -1 instead of category
j are 1.55 times higher than the corresponding estimated odds for
males when residency is at the value of its sample mean. The expo-
nent of the product term indicates the multiplying factor by which
this odds ratio is predicted to change given a l-unit increase in the
residency variable. For each additional year of residency, the gender-
based odds ratio changes by a multiplying factor of 0.97 (using the
logic developed in Chapter 3 for the case of a qualitative focal inde-
pendent variable and a continuous moderator variable). The coef-
ficient for the product term was not statistically significant (p >
0.05) and the 95% confidence interval for the exponent of the coef-
ficient included the value of 1.0 (95% confidence interval = 0.91
to 1.02). The intercept for each of the four equations yielded by
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the analysis is the predicted odds of being in a given category rel-
ative to the category below it when ail predictors equal zero (ie.,
when gender and the mean centered years of residency both equal
Zer0).

Given a trivial and nonsignificant interaction effect, it makes sense
to reestimate the equation with the product term eliminated so that
one can examine the “main effects” of gender and years of residency
rather than the conditioned effects that emerge with the inclusion of
the product term. The analysis that omitted the product term yielded
a logistic coefficient for gender of 0.44 and a coefficient for years of
residence of —0.02. Only the coefficient for gender was statistically
significant (p < 0.05). The exponent of the coefficient for gender
was 1.54 and the 95% confidence interval was 1.38 to 1.74. Thus,
holding the number of years of residence constant, the predicted odds
that a female’s ideology classification is in category j + 1 instead of
category j is 1.54 times higher than the corresponding predicted odds
for males. For example, the predicted odds that a female is “very
liberal” instead of “somewhat liberal” is 1.54 times higher than the
corresponding predicted odds for males. Similarly, the predicted odds
that a female is “somewhat liberal” instead of “moderate” is 1.54
times higher than the corresponding predicted odds for males. As a
general rule for this type of model, for any two values, a and b, on
the outcome variable and where a > b, the predicted odds ratio that
an individual is in category a relative to category b will equal the
exponent of the coefficient for a given predictor variable raised to
the value of a — b. For example, the predicted odds ratio for gender
when category 5 (“very liberal”) is compared with category 1 (“very
conservative”) is 1.540-D = 5.7. The predicted odds that a female
identifies herself as “very liberal” as opposed to “very conservative”
is 5.7 times greater than the predicted odds that a male identifies
himself as “very liberal” as opposed to “very conservative.”

There are a variety of ordinal regression models, many of which
do not rely on logit functions. Model fit indices permit one to exam-
ine the plausibility of equation constraints as well as other model
assumptions. Such evaluation is crucial before the coefficients yielded
by the model are interpreted. For excellent discussions of a variety
of approaches to ordinal regression, see Agresti (1996), Long (1997),
and Magidson (1998).
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Multicategory Nominal Variables

When the outcome variable is categorical and has more than two
levels, analysis is often enacted in the context of the multinomial dis-
tribution. Consider the case where there are three categories on the
outcome variable (4, B, and C) and two continuous predictors, X
and Z. It is possible to conduct three “logistic regressions” based on
all possible pairs of categories defined by the outcome variable; i.e.,
we can predict A versus B from X and Z, A4 versus C from X and
Z, and B versus C from X and Z. When considered as a collective,
the three equations are not independent and one would expect cer-
tain regularities across the equations. For example, knowing how X
and Z affect the log odds of A4 versus B, as well as how X and Z
affect the log odds of A versus C, necessarily tells us information
about how X and Z affect the log odds of B versus C [see Long
(1997) for elaboration]. The multinomial model yields simultaneous
estimates for selected pairwise equations taking such dependencies
into account. The “pairs” of categories estimated in the multinomial
model can take many forms. The equations that result from most of
these models are similar to those reported in this monograph because
they characterize a binary outcome comparison in terms of log odds.
The same interpretational framework for coefficients presented in this
monograph can be applied to these models as well.?

A common multicategory model is called the baseline-category
model. Given k levels of an outcome variable, one of the levels is
declared by the researcher as the “baseline” or reference group. The
analysis involves the estimation of k — 1 equations where each equa-
tion represents a logistic model comparing each of the other levels
of the outcome variable with the reference group. For example, an
outcome variable might be the political party with which someone
affiliates, with four categories Democratic, Republican, Reform, and
Independent. The outcome is predicted from two variables, X and
Z. The baseline group might be defined by the researcher as the
Independents. Three equations (i.e., 4—1) are generated, one predict-
ing Democrats versus Independents from X and Z, one predicting
Republicans versus Independents from X and Z, and a third pre-
dicting Reformists versus Independents from X and Z. The solution
for the coefficients in the three equations is based on a simultaneous
algorithm. Unlike in ordinal regression, the focus is not restricted to
“adjacent categories,” and no constraints are imposed on the coeffi-
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cients across equations (although constraints can be introduced if it
is theoretically desirable to do so). The coefficients from the three
equations can then be used to derive the values of the coefficients
for equations comparing any two pairs of categories of the outcome
variable [e.g., Democrats versus Republicans; see Agresti (1996)].

To illustrate, a developmental psychologist studied three types of
attachment patterns that young children show with respect to their
caretaker. The first type was secure attachment in which the child
has a healthy, positive attachment to the caretaker. The second type
was clinging, in which the child clings excessively to the caretaker and
shows patterns of unhealthy dependency. The third type was avoid-
ance, in which the child maintains distance from the caretaker and
shows aloofness to him or her. The type of attachment pattern exhib-
ited by a child was predicted from two variables. The first was a
dichotomous variable that indicated whether the child’s physical envi-
ronment in the home is positive (scored 1) or negative (scored 0).
The second was a continuous measure of how affectionate the mother
is toward the child, with higher scores indicating greater degrees of
affection (on a 0 to 10 scale). The researcher hypothesized that higher
levels of affection would lead to higher odds of secure attachment rel-
ative to each of the other two forms of attachment and that higher
levels of affection would lead to higher odds of clinging as opposed
to avoidance. All of these effects would be exacerbated by a posi-
tive home environment compared with a negative home environment.
Thus, the home environment was thought to moderate the impact
of affection on the odds of exhibiting one form of attachment rela-
tive to another. The measure of affection was mean centered prior to
analysis.

The data were analyzed using the multinomial regression program
in SPSS, with secure attachment specified as the baseline group. The
analysis yielded two equations, one equation comparing secure attach-
ment to clinging and a second equation comparing secure attachment
to avoidance. Using formulas presented in Agresti (1996), it is possi-
ble to algebraically derive the coefficients for the comparison of cling-
ing versus avoidance from the above two equations. However, one
can also compute the coefficients for this comparison by changing
the baseline group and then rerunning the analysis on the computer.
The latter strategy has the advantage of yielding estimated standard
errors, significance tests, and confidence intervals for the predictors in
the clinging versus avoidance comparison. Table 9 presents the results
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TABLE 9
Logistic Coefficients for Multicategory Outcome Variables

Logistic  Exponent of 95% Lower 95% Upper

Predictor Coefficient Coefficient Limit Limit  p Value
Secure vs. Home (H) 1.378 3.966 2452 6.416  <0.001
avoidance Affection (A) 0.961 2.615 2.049 3336 <0.001
HxA 0.731 2.078 1.473 2932  <0.001

Intercept —1.012
Clinging vs. Home (H) 0.501 1.651 1.044 2.611 0.032
avoidance Affection (A) 0.549 1.731 1.361 2202 <0.001
Hx* A 0.363 1.438 1.058 1.953 0.020

Intercept —0.626
Secure vs. Home (H) 0.876 2.402 1.462 3.946 <0.001
clinging  Affection (A) 0.413 1.511 1.232 1852  <0.001
Hx A 0.368 1.445 1.091 1.915 0.010

Intercept —0.386

for the three equations. Each equation is interpreted using the same
framework presented in Chapter 3 for the case of a categorical mod-
erator variable and a continuous focal independent variable. For the
equation focused on secure attachment (scored 1) versus avoidance
(scored 0), the exponent of the coefficient for affection was 2.615. This
is the multiplying factor by which the odds of secure attachment (rel-
ative to avoidance) changes given a 1-unit change in affection when
the home environment is negative. If we reversed the dummy coding
for home environment so that 1 = negative and 0 = positive, recal-
culate the product term, and then rerun the analysis, we would find
that the exponent of the coefficient for affection is 5.434. This is the
multiplying factor by which the odds of secure attachment (relative to
avoidance) changes given a 1-unit change in affection when the home
environment is positive. The ratio of these two multiplying factors is
5.434/2.615 = 2.078, which is the value of the exponent for the prod-
uct term. Because the confidence interval for the product term does
not contain the value of 1.0, the discrepancy between the two mul-
tiplying factors for the positive versus negative home environment is
statistically significant. The data for this equation are consistent with
the researcher’s hypothesis. We leave it as an exercise for the reader
to interpret the remaining two equations in Table 9. For elaboration
of the analysis of multicategory outcome variables, see Long (1997).
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In sum, the logistic model is often used to analyze dichotomous out-
come variables, but it also forms the basis for the analysis of multicate-
gory outcome variables. This includes the analysis of ordinal outcomes
and multilevel qualitative outcomes. The basic concepts presented in
Chapters 1 through 4 can be readily extended to the interpretation of
product terms in such models.

6. ADDITIONAL CONSIDERATIONS

This chapter addresses selected issues in interaction analysis that com-
plement the material in previous chapters. We consider first tabular
and graphical methods that will assist in the presentation of interac-
tion effects. We then discuss how to calculate confidence intervals of
the exponents of coefficients if such intervals are not provided in com-
puter software and how to calculate the coefficient for a focal variable
at any value of a moderator variable from a single equation. We next
discuss limiting forms of traditional interaction analysis and methods
for expanding the type of interaction modeled. Finally, we consider
issues related to the partialling of component terms, the analysis of
multiple interactions, multicollinearity, theory trimming, confounded
configurations, and computer software.

Methods of Presenting Interaction Effects

Interaction effects often are difficult for readers of reports to con-
ceptualize. Explicit identification of the role of each variable as either
a focal independent variable or a moderator variable is helpful. The
coefficients of the logistic equation contain all of the core informa-
tion necessary to interpret interactions. However, it may be useful if
the coefficients are augmented with tables or graphs. The present sec-
tion discusses strategies for presenting the results of interactive logis-
tic models beyond mere presentation of the coefficients and/or their
exponents.

When the interaction of interest involves only qualitative variables,
then tables of the form of Table 4 make interpretation easier. The
predicted odds are presented within the cells of the table, with the
focal independent variable defining the rows and the moderator vari-
able defining the columns of the table. The odds ratio for the rel-
evant levels of the focal independent variable is presented beneath
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each column. If a three-way interaction is reported, the ratio of the
odds ratios can be reported beneath these entries, as in Table 4. If
the focal independent variable has more than two levels, then sub-
tables may be required to present all the single degree of freedom
interaction contrasts of interest. Table 10 presents an example for a
3 x 3 interaction that addresses all pairwise interaction contrasts at
each level of the moderator variable. In this table, ethnicity is the
focal independent variable and geographic location is the moderator
variable. Confidence intervals are omitted for the sake of simplic-
ity, but these normally would be presented in parentheses next to
each entry. Section b shows how the predicted odds ratio for any two
groups of the focal independent variable (ethnicity) changes as a func-
tion of the values of the moderator variable (geographic location).
For three-way interactions, columns of the moderator variables are
expanded to incorporate both moderators, as in Table 4. If a covari-
ate is included in the analysis, then the predicted odds in the tables
are calculated holding the covariate constant at a theoretically-mean-
ingful value (e.g., its sample mean).

For interactions between qualitative and quantitative/continuous
variables where the quantitative variable, X, is the focal independent
variable, it may be useful to supplement the numerical information
with a graph depicting the predicted log odds across the values of X
for each of the groups defined by the moderator variable. In practice,
one could plot either the predicted odds, the predicted log odds, or
the predicted probabilities and each would provide visual perspectives
on the dynamics that are operating. The most straightforward plots
are those using the predicted log odds because all of the functions
are linear in form and an interaction is characterized by nonparallel
lines (as in standard ordinary least squares regression and in analy-
sis of variance). However, such plots require that the reader have an
intuitive sense of the property of log odds, which comes with expe-
rience with these types of methods. Figure 1 plots the predicted log
odds for the three ethnic groups from the example in Chapter 2,
in which ethnicity was the moderator variable and years of educa-
tion was the focal independent variable. The nonparallel slopes are
indicative of the interaction and the degree of nonparallelness gives
some appreciation of the magnitude of the interaction.

In the case of a three-way interaction, one can employ the same
graphical device but with side-by-side plots in which separate graphs
are presented for each level of the second-order moderator variable.
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Figure 1. Example of a Plot for a Quantitative/Continuous Focal Independent
Variable and a Qualitative Moderator Variable: Two-Way Interaction

Figure 2 presents an example in which the predicted log odds of par-
ent attendance at a workshop on adolescent drug use is plotted as
a function of concern for drug use (the quantitative/continuous focal
independent variable), employment status (the first-order moderator
variable), and the number of choices of workshops made available to
the parent (the second-order moderator variable), holding social class
constant at its sample mean value.

For cases in which the qualitative variable is the focal independent
variable and the quantitative/continuous variable is the moderator
variable, a table having the format of Table 10 can be used to illus-
trate the interaction effect. Because the moderator variable has many
values, one typically chooses two or three illustrative values at which
to generate the predicted odds. For example, one might present
a table of predicted odds and odds ratios when the quantitative
moderator variable is equal to a “low” value (such as 1 standard
deviation below its mean), a “medium” value (such as at its mean),
and a “high” value (such as 1 standard deviation above its mean).
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Figure 2. Example of a Plot for a Quantitative/Continuous Focal Independent
Variable and a Qualitative Moderator Variable: Three-Way Interaction
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TABLE 10
Presentation of a 3 x 3 Interaction

Urban  Suburban =~ Rural

a. Predicted Odds

Black 2.00 3.00 4.00

Hispanic 4.00 3.00 2.00

White 6.00 6.00 6.00
b. Odds Ratios

Black/Hispanic 0.50 1.00 2.00

Black/White 0.33 0.50 0.67

Hispanic/White ~ 0.67 0.50 0.33

For interactions involving two quantitative/continuous variables,
one can adapt the above strategies to convey a sense of the interac-
tion. As noted earlier, one can supplement the numerical information
with plots of either the predicted log odds, predicted odds, or pre-
dicted probabilities of the outcome variable across the values of the
focal independent variable at each level of the moderator variable.
However, in this case, such a plot is not feasible because the mod-
erator variable has too many values. Instead, one can select two or
three illustrative values of the moderator variable and use these in
the plot. For example, one could select a low, medium, and high
score on the moderator variable to illustrate the curves. Figure 3
presents an example of such a plot for the predicted log odds of tak-
ing an HIV test as a function of the perceived risk of contracting
HIV (the focal independent variable) and the perceived severity of
the consequences of contracting HIV (the moderator variable). This
plot was generated by calculating the logistic equation for the sce-
nario where none of the variables were subjected to a transformation
(i.e., using the original raw scores). The resulting equation was then
used to generate predicted log odds across the risk variable where
a value for severity was substituted into the equation using either a
low, a medium, or a high score on severity. Three-way interactions
can be presented using this same strategy, but choosing two or three
values of theoretical interest on the second-order moderator variable
and then using side-by-side plots.

An alternative to these traditional plots is three-dimensional plots
of response surfaces. Such methods are discussed in Cook and
Weisberg (1995).
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Figure 3. Example of a Plot for a Two Quantitative/Continuous Predictors:
Two-Way Interaction

Calculating Confidence Intervals

Some computer packages provide estimated standard errors for the
logistic coefficients but do not provide the confidence intervals for
the exponents of the coefficients. These can be derived from the pro-
vided information (assuming that the sample size is sufficiently large
for asymptotic theory to hold). To calculate the confidence interval,
select a critical value from a standardized normal distribution. For
a 95% confidence interval, this is Z ;. = 1.96. Multiply this value
by the estimated standard error of the logistic coefficient in question.
Subtract this product from the logistic coefficient to obtain the lower
limit of the confidence interval for the coefficient and add this prod-
uct to the logistic coefficient to obtain the upper limit of the confi-
dence interval for the coefficient. Finally, calculate the exponents of
the lower and upper limits to obtain the confidence interval for the
exponent of the coefficient.
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Calculating Coefficients of Focal Independent Variables at
Different Moderator Values

In previous chapters, coefficients for the focal independent variable
were calculated at different values of the moderator variable by either
transforming the quantitative/continuous predictor or by redefining
the reference group of a qualitative predictor and then rerunning
the logistic analysis on the computer. This approach, though cum-
bersome, has the advantage of producing confidence intervals for all
of the parameters of interest. Such confidence intervals are not read-
ily calculated by hand [see Hosmer & Lemeshow (1989), for relevant
formulas). Occasions may arise where one wishes to calculate the coef-
ficients from the initial equation without generating confidence inter-
vals and without redoing the analyses with transformed variables. This
section describes how to do so.

Consider the case in which X is the focal independent variable and
Z is the moderator variable in the equation

logit() = a + X + B Z + B XZ. 8]

We want to determine the coefficient for X at some value of Z. We
first isolate all terms on the right-hand side of the equation that con-
tain X,

B1X + B3 XZ,
and then factor out the X,

X (B 1 + BZ’)Z )’
which yields the coefficient for X at any value of Z, namely,

B for X at Z = B, + B3Z. [9]

For example, in Equation 8, if g; = 1.2 and 83 = 0.05, then the
logistic coefficient for X when Z = 2 is 1.2 + (0.05)(2) = 1.30. Note
that when Z = 0, the value of the coefficient in Equation 9 is £,
which underscores the point that B, is conditioned on Z being 0. If

X and Z are dummy variables, the logic of Equation 9 holds but is
focused only on the relevant dummy variables. For example, suppose
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X has two dummy variables and Z has two dummy variables, yielding
the following:

logit(7) = a + B1Dx; + B2Dxz + BsDz1 + B4Dz2 + BsDx1D 71
+ BsDx1Dz2 + B1Dx2D 71 + BsDx2D 22
Suppose we want to isolate the odds ratio for the group scored 1 on
Dy versus the reference group on X for the case in which Dz =1

and D,, = 1. We first isolate only the terms and coefficients that
directly involve Dy,

B1Dxy + BsDx1Dz1 + BsDx1D 72,
and factor out Dy, to yield
Dy1(B1+ BsDz1 + BsDz2)
so that
B for Dy, at Dz and Dz, = By + BsDz; + BsDz».

For the case in which 8; = 0.2, B85 = 0.3, Bs = 0.4, and Dz, =1 and
D, = 1, the coefficient for Dy is [0.2 + (0.3)(1) + (0.4)(1)] = 0.9.

Equations for three-way interactions use the same logic. In the case
of three continuous predictors, X, Q, and Z, the traditional interac-

tion equation is

logit(7) = a + B1 X + B,Q + B3Z + B4 XQ
+BsXZ + BsQZ + B, X0Z.

The coefficient for X at a given combination of scores on Q and Z is
Bfor X at Qand Z = B, + B,O+ BsZ + B;0Z
and the coefficient for XQ at a given value of Z is

B for XQ at Z = B, + B,Z.
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The Bilinear Nature of Interactions for
Continuous/Quantitative Variables

When a quantitative/continuous variable is part of an interaction,
it is important to keep in mind that the use of product terms as
described in earlier chapters tests only for an interaction that has
a specific form, namely a bilinear interaction for the log odds. Other
forms of interaction may be operating and exploratory analyses should
routinely be performed to ensure that the correct type of interaction is
being modeled. As an example, consider Figure 4 which plots the log
odds of an outcome variable as a function of a quantitative/continuous
focal independent variable, X, for two groups. An interactive logistic
model assumes that for both groups, the log odds are a linear function
of X and the nature of the interaction is characterized by nonparallel
lines. However, this is not the case for these data. For one group, the

1.00
~e— Group 1

—a— Group 2
0.75

0.50
0.25

0.00

Log Odds

-0.25

-0.50

-0.75

-1.00

Figure 4. Plot of Log Odds as a Function of a Continuous Predictor for Two
Groups
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log odds are indeed a linear function of X, but for the other group
the log odds are a nonlinear function of X. In this case, the logis-
tic model with product terms as described in this monograph is not
appropriate because it represents a misspecified model.

In the case of two quantitative/continuous variables, the classic
product term approach reflects a narrowly defined but probably widely
applicable interaction form. As noted in Chapter 1, if X is the focal
independent variable and Z is the moderator variable, the product
term approach models the logistic coefficient for X as a linear func-
tion of Z. It is possible that the logistic coefficient of X changes
as a nonlinear function of Z and if this is the case, the traditional
product term approach represents a misspecified model. A crude but
sometimes informative way to explore this issue is to use a variant of
bandwidth regression (Hamilton, 1992). In this approach, the moder-
ator variable is grouped into 5 to 10 equal-sized, ordered categories.
The mean or median Z is calculated for each group and a logistic
analysis regressing the outcome onto X is performed separately on
each group. Examination of the logistic coefficients for X across the
5 to 10 groups should reveal a trend whereby the coefficient increases
or decreases as a roughly linear function of the mean or median of Z.
Stated another way, if one plots from such an analysis the logistic coef-
ficients against the mean (or median) Z values, a linear trend shonld
be evident. If this is not the case, then a more complex interaction
form may be needed.

Such complex interactions often can be modeled using product
terms in conjunction with polynomial terms. For an introduction to
polynomial analysis with interaction terms in multiple regression, see
Taccard, Turrisi, and Wan (1990). The steps for applying a model that
assemes the logistic coefficient for X is a quadratic function of Z,
where both X and Z are continuous, are as follows:

1. Identify the focal independent variable, X, and the moderator vari-
able, Z.

Make any desired transformations (¢.g., mean center) on X and Z.

. Calculate the square of the moderator variable, Z7.

. Calculate product terms between X and Z and X and VAR

. Fit the equation: logit(w) = @+ B, X + By Z + B Z* + B, XZ + Bs XZ7.

LA W

A hierarchical test for improvement in model fit by adding the X7?
term indicates if the quadratic interaction effect is nontrivial. The
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coefficient for X at a given value of Z is defined by 8, + 8,Z + BsZ>.
The coefficient 8, is the coefficient for X when Z = (0. One can trans-
form Z (in Step 2 above) so that a score of zero on the transformed
variable takes on a theoretically meaningful value to isolate the rele-
vant coefficient and confidence interval for the coefficient for X at a
given value of Z.

For the case involving a qualitative and continuous variable as
depicted in Figure 4, assume that Z is a dummy variable scored
with 1’s and 0’s to represent group membership. In this case, the log
odds as a function of the continuous focal independent variable, X,
is nonlinear for at least one of the groups. Fit the following model:
logit(m) = a + B X + BrZ + B3 X? + B4 XZ + BsX*Z. The effect
of X on logit(7) when Z = 0 is reflected by the quadratic model
o+ B1X + B3 X? within this equation. To find the effect of X when
Z =1, recode Z by reverse coding it, recalculate the product terms,
and rerun the computer program, again focusing on a + ;X + B; X2.

Partialling the Component Terms

It is sometimes stated that the product terms in logistic equations
represent interaction effects. By and of themselves, the product terms
reflect an amalgamation of main effects and interactions. In general,
it is only when the component parts of the product term are included
in the equation along with the product term that the orderly relation-
ships described in this monograph emerge (coupled with an uncon-
strained intercept term). It is possible to model interactions in ways
that lead one to exclude one or more of the component parts of the
product term, but this typically represents interactions of a different
form from those considered in this monograph.

Multiple Interaction Effects

Consider a case in which an investigator desires to model a dichoto-
mous outcome, Y, as a function of three continuous predictors, X,
0, and Z. The researcher does not expect a three-way interaction
between the predictors but wants to evaluate all possible two-way
interactions. There are multiple strategics that might be used. Some
analysts perform a “chunk” test in which the fit of a model with all
(two-way) interaction terms included is contrasted with the fit of a
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model with none of the interaction terms; i.e., the interactions are
tested as a chunk (Kleinbaum, 1992). If the difference in fit of the
two models is trivial, then this suggests that none of the interaction
terms are necessary and they are dropped from the model. If appli-
cation of the chunk test reveals a nontrivial difference in model fit,
then this suggests that at least one interaction term is important to
retain. At this point, a hierarchical backward elimination strategy is
used, comparing the fit of a model that includes all of the interaction
terms versus the fit of a model that drops a particular term(s) of inter-
est. For example, if one is interested in evaluating the X'Z interaction,
one would compare the fit of the model

logit() = a + B1Q + BoX + B3Z + By QX + BsQZ + BeXZ

with the fit of the model

logit(m) = a+ B1Q + B, X + B3Z + B,OX + BsOZ.

If the difference in fit between the models is trivial, then this suggests
that the XZ term can be eliminated. However, if the difference in the
fit of the model is nontrivial, then the term should be retained.

Some analysts systematically evaluate each interaction term in this
fashion. Other analysts choose one term to focus on first, and if that
term is eliminated, evaluate the remaining interaction terms with the
previously eliminated term(s) expunged from the model. For example,
if we tested XZ first for possible elimination and ultimately decided
to drop it from the model, then the evaluation of QZ would focus on
a backward elimination test where XZ was not present in the model;
i.e., we would evaluate

logit(m) = a+ B1Q + B X + B3 Z + B,QX + BsQZ

versus

logit(7) = a+ B1Q + B X + B3Z + B,QX.

The choice of which term to evaluate first for possible elimination is
sometimes based on theoretical criteria, on whichever term has the
largest p value associated with its logistic coefficient in the full equa-
tion, or on both.
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In multiple interaction scenarios, there are many model-fitting cri-
teria that can be invoked for the trimming of terms and controversy
exists about the advisability of each. Consideration of the relevant
issues is beyond the scope of this monograph. Interested readers
are referred to Bishop, Feinberg, and Holland (1975), Hosmer and
Lemeshow (1989), and Jaccard (1998) for a discussion of germane
issues. The reader should be forewarned that seeming “anomalies”
can occur as multiple interaction terms of the same order are con-
sidered. For example, the chunk test might indicate that at least one
of the product terms should be retained in the model, but the eval-
uation of each individual term may suggest that each term can be
eliminated from the model. Or, the results of the individual tests of
one term may suggest that the term be retained and that all oth-
ers be eliminated, but when the others are eliminated, the candidate
for retention becomes nonsignificant and of trivial predictive value.
How one deals with these scenarios depends on the theoretical ques-
tions being addressed, one’s overarching statistical framework (e.g.,
null hypothesis testing, magnitude estimation, or interval estimation),
and the patterning of the data. In most analytic situations, the choice
of terms to trim will be straightforward and noncontroversial, but this
is not always the case.

When two separate interaction terms are included in the logistic
equation (e.g., for three continuous predictors, Q, X and Z, and both
XZ and QZ are retained in the equation but no other interaction
terms are), then the coefficient for a given interaction term is inter-
preted as described in previous chapters, but with the proviso that
the other two-way interactions (as well as all other covariates) are
statistically held constant. The coefficient for any lower order term
is conditional to the other variables in all product terms that it is
involved with being zero.

Maulticollinearity

Some researchers are wary of interaction analysis with product
terms because the product term often is highly correlated with the
component parts used to define the product term. If XZ is highly
correlated with either X, Z, or both, the fear is that the evaluation of
the interaction effect will be undermined due to classic problems of
multicollinearity. This generally will not be the case unless the multi-
collinearity with the product term is so high (e.g., 0.98 or greater) that
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it disrupts the computer aigorithm designed to isolate the relevant
standard errors. A sense that collinearity with XZ is nonproblem-
atic is indicated by the fact that the wide range of transformations
for continuous predictors discussed in previous chapters will usually
alter the correlation between XZ and its component parts, but will
have no effcct on the value of the logistic coefficient for ihe prod-
uct term, its estimated standard error, or the critical ratio testing its
statistical significance. If collinearity was crucial, then the coefficient
and its estimated standard error would not remain invariant as the
correlation between XZ and its component parts changes. For a dis-
cussion of the rationale of this phenomenon, see Jaccard, Turrisi, and
Wan (1990). High coliinearity between X and Z (i.e., the component
parts), on the other hand, can lead to serious problems.

Model Selection and Trimming

In many applications in the social sciences, researchers have well-
defined hypotheses that dictate a statistical model for purposes of
testing those hypotheses. For example, one might posit an inter-
action between gender of an adolescent and employment status of
the mother of the adolescent and then test a model that explicitly
explores all aspects of this interacticn. In other situations, analysis
approach their research questions by exploring the utility of a set
of predictors with an eye toward specifying a parsimonious predic-
tion equation that adequately accounts for the outcome in question.
A common strategy is to include a set of predictors that are deemed
theoretically relevant and then to “trim” the model by eliminating
any predictors that are statistically nonsignificant or whose coeffi-
cients are so close to zero that they are deemed trivial in magnitude
and, hence, ignorable. Such trimming not only yields a more par-
simonious model but also increases the statistical power of the
analysis. Trimming variables, especially if they are part of a prod-
uct term, must be done with care because eliminating variables that
have nonzero coefficients can introduce bias into the model, thereby
undermining interpretation of the coefficients. Trimming several
variables, each of which might have near zero and nonsignificant
effects, can have the effect of introducing bias when the variables are
trimmed as a collective. Nonsignificant effects for a predictor may be
due to low power, with the result that an important {(but statistically
nonsignificant) variable is trimmed, yielding bias that is consequential
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rather than inconsequential. In general, trimming potentially theoret-
icaily meaningful variables is not advisable unless one is quite certain
that the coefficient for the variable is near zero, that the variable
is inconsequential, and that trimming will not introduce misspecifi-
cation error. The advantage of trimming is that one typically saves
a single degree of freedom and gains a more parsimonious model.
The disadvantage of trimming is that model misspecification can
result, thereby undermining interpretation of the coefficients within
the model. When sample sizes are laige, the trivial gain in power
by saving a few degrees of freedom does not outweigh the poten-
tially serious problems that can derive from model misspecification,
making trimming a practice that should be enacted with caution.

Transformations

Throughout this monograph, we relied on transformations of the
predictor variables to force the parameters of the logistic models to
take on meaningful values. Often, we analyzed the same equation but
under different transformations to assist us in extracting useful infor-
mation or vantage points on the data. These transformations, though
computationally inelegant, are useful because they yield estimated
standard errors and confidence intervals that would otherwise be cum-
bersome to calculate for the novice. These strategies can also be used
in traditional ordinary least squares regression as the general princi-
ples governing transformations developed herc apply in that case as
well. The approach can also be used to cffectively analyze four-way
and five-way interactions. One must simply keep in mind the condi-
tional nature of the coefficients and what values the transformations
target [see the rules governing such conditional relations described
in the appendix of Jaccard (1998)]. Care must be taken in the appli-
cation of the approach in the presence of missing data, because the
regularities may be altered if strategies other than listwise deletion or
value imputation are used.

Confounded Interactions

Interaction effects may be confounded with other types of effects
and care must be taken to ensure that the tested model is not misspec-
ified. For example, the data may be the result of a generating process
that results from a curvilinear relationship between logit (") and X,
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but when an interaction model is fit to the data using X and Z as
predictors, a significant interaction effect is observed. Some analysts
suggest testing for such curvilinear effects before pursuing interaction
analysis, if they make theoretical sense. Obviously, one must think
carefully about the possible models that can account for data and
then explore these models. One important form of confounding in
interaction analysis for logistic models has been identified by Allison
(1999b). The confounding involves residual variation (more specifi-
cally, unobserved heterogeneity) and can produce group differences
in logistic coefficients when no such differences are implied by the
underlying causal structure. Allison (1999b) explicates the nature of
the confound, strategies for testing its presence, and methods of anal-
ysis given violations of the assumption of residual homogeneity. The
pervasiveness of the confound in research applications is not known
and may or may not be problematic depending on a wide array of
considerations.

Computer Software

Interaction analyses described in this monograph are easily imple-
mented in computer programs by calculating the relevant product
terms and entering them directly into the logistic regression programs
with other relevant covariates or predictors. Some programs offer
shortcuts for the calculation of product terms. For example, S Plus
permits the user to specify an interaction between terms using sim-
ple point and click procedures and then the program generates the
relevant product terms internally. In the case of categorical predic-
tors, the relevant dummy variables are automatically generated and
product terms formed accordingly. In using such programs, one must
be careful to determine what type of dummy codes are generated by
the program (e.g., dummy coding or effect coding) and which group
is defined as the reference group. Also, with multicategory regression
models, one must be careful to ensure that the desired model is being
estimated because a wide variety of models exist and there is variabil-
ity with respect to the default model imposed. In addition, programs
differ in the default definition of the baseline group.
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NOTES

1. On a hand calculator, the key often labeled e* will calculate the exponent of the

value entered on the calculator. . .
2. There also are models that do not rely on the logit function.
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