
Introduction to
Numerical

40

Analysis
Arnold Neumaier

CAMBRI DGE

Introduction to Numerical Analysis

Numerical analysis is an increasingly important link between pure mathemat-
ics and its application in science and technology. This textbook provides an
introduction to the justification and development of constructive methods that
provide sufficiently accurate approximations to the solution of numerical prob-
lems, and the analysis of the influence that errors in data, finite-precision cal-
culations, and approximation formulas have on results, problem formulation,
and the choice of method. It also serves as an introduction to scientific pro-
gramming in MATLAB, including many simple and difficult, theoretical and
computational exercises.

A unique feature of this book is the consequent development of interval
analysis as a tool for rigorous computation and computer-assisted proofs, along
with the traditional material.

Arnold Neumaier is a Professor of Computational Mathematics at the University
of Wien. He has written two books and published numerous articles on the
subjects of combinatorics, interval analysis, optimization, and statistics. He
has held teaching positions at the University of Freiburg, Germany, and the
University of Wisconsin, Madison, and he has worked on the technical staff at
AT&T Bell Laboratories. In addition, Professor Neumaier maintains extensive
Web pages on public domain software for numerical analysis, optimization, and
statistics.

Introduction to
Numerical Analysis

ARNOLD NEUMAIER
University of Wien

AMBRIDGE
UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, VIC 3166, Australia

Ruiz de Alarcbn 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2001

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times Roman 10/13 pt. System 16TEX 2E [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Neumaier, A.

Introduction to numerical analysis / Arnold Neumaier.

P. cm.

Includes bibliographical references and index.

ISBN 0-521-33323-7 - ISBN 0-521-33610-4 (pb.)

1. Numerical analysis. I. Title.

QA297.N48 2001

519.4 - dc2l 00-066713

ISBN 0 521 33323 7 hardback
ISBN 0 521 33610 4 paperback

Contents

Preface page vii

1. The Numerical Evaluation of Expressions 1

1.1 Arithmetic Expressions and Automatic Differentiation 2

1.2 Numbers, Operations, and Elementary Functions 14

1.3 Numerical Stability 23

1.4 Error Propagation and Condition 33

1.5 Interval Arithmetic 38

1.6 Exercises 53

2. Linear Systems of Equations 61

2.1 Gaussian Elimination 63

2.2 Variations on a Theme 73

2.3 Rounding Errors, Equilibration, and Pivot Search 82

2.4 Vector and Matrix Norms 94
2.5 Condition Numbers and Data Perturbations 99
2.6 Iterative Refinement 106

2.7 Error Bounds for Solutions of Linear Systems 112

2.8 Exercises 119

3. Interpolation and Numerical Differentiation 130

3.1 Interpolation by Polynomials 131

3.2 Extrapolation and Numerical Differentiation 145

3.3 Cubic Splines 153

3.4 Approximation by Splines 165

3.5 Radial Basis Functions 170

3.6 Exercises 182

4. Numerical Integration 179
4.1 The Accuracy of Quadrature Formulas 179

v

vi Contents

4.2 Gaussian Quadrature Formulas 187

4.3 The Trapezoidal Rule 196

4.4 Adaptive Integration 203

4.5 Solving Ordinary Differential Equations 210

4.6 Step Size and Order Control 219

4.7 Exercises 225

5. Univariate Nonlinear Equations 233

5.1 The Secant Method 234

5.2 Bisection Methods 241

5.3 Spectral Bisection Methods for Eigenvalues 250

5.4 Convergence Order 256

5.5 Error Analysis 265

5.6 Complex Zeros 273

5.7 Methods Using Derivative Information 281

5.8 Exercises 293

6. Systems of Nonlinear Equations 301

6.1 Preliminaries 302

6.2 Newton's Method and Its Variants 311

6.3 Error Analysis 322

6.4 Further Techniques for Nonlinear Systems 329

6.5 Exercises 340

References 345

Index 351

Preface

They.. explained it so that the people could understand it.
Good News Bible, Nehemiah 8:8

Since the introduction of the computer, numerical analysis has developed into an

increasingly important connecting link between pure mathematics and its appli-
cation in science and technology. Its independence as a mathematical discipline
depends, above all, on two things: the justification and development of construc-
tive methods that provide sufficiently accurate approximations to the solution
of problems, and the analysis of the influence that errors in data, finite-precision
calculations, and approximation formulas have on results, problem formulation,
and the choice of method. This book provides an introduction to these themes.

A novel feature of this book is the consequent development of interval anal-
ysis as a tool for rigorous computation and computer-assisted proofs. Apart
from this, most of the material treated can be found in typical textbooks on
numerical analysis; but even then, proofs may be shorter than and the perspec-
tive may be different from those elsewhere. Some of the material on nonlinear
equations presented here previously appeared only in specialized books or in
journal articles.

Readers are expected to have a background knowledge of matrix algebra and
calculus of several real variables, and to know just enough about topological
concepts to understand that sequences in a compact subset in R' have a con-
vergent subsequence. In a few places, elements of complex analysis are used.

The book is based on course lectures in numerical analysis that the author
gave repeatedly at the University of Freiburg (Germany) and the University
of Vienna (Austria). Many simple and difficult theoretical and computational
exercises help the reader gain experience and deepen the understanding of the
techniques presented. The material is a little more than can be covered in a
European winter term, but it should be easy to make suitable selections.

vii

viii Preface

The presentation is in a rigorous mathematical style. However, the theoreti-
cal results are usually motivated and discussed in a more leisurely manner so
that many proofs can be omitted without impairing the understanding of the
algorithms. Notation is almost standard, with a bias towards MATLAB (see
also the index). The abbreviation "iff" frequently stands for "if and only if."

The first chapter introduces elementary features of numerical computation:
floating point numbers, rounding errors, stability and condition, elements of
programming (in MATLAB), automatic differentiation, and interval arithmetic.
Chapter 2 is a thorough treatment of Gaussian elimination, including its variants
such as the Cholesky factorization. Chapters 3 through 5 provide the tools for
studying univariate functions - interpolation (with polynomials, cubic splines,
and radial basis functions), integration (Gaussian formulas, Romberg and adap-
tive integration, and an introduction to multistep formulas for ordinary differ-
ential equations), and zero finding (traditional and less traditional methods
ensuring global and fast local convergence, complex zeros, and spectral bisec-
tion for definite eigenvalue problems). Finally, Chapter 6 discusses Newton's
method and its many variants for systems of nonlinear equations, concentrating
on methods for which global convergence can be proved.

In a second course, I usually cover numerical data analysis (least squares and
orthogonal factorization, the singular value decomposition and regularization,
and the fast Fourier transform), unconstrained optimization, the eigenvalue
problem, and differential equations. Therefore, this book contains no (or only
a rudimentary) treatment of these topics; it is planned that they will be covered
in a companion volume.

I want to thank Doris Norbert, Andreas Schiffer, and Wolfgang Enger for their
help in preparing the German lecture notes; Michael Wolfe and Baker Kearfott
for their English translation, out of which the present text grew; Carl de Boor,
Baker Kearfott, Weldon Lodwick, Gunter Mayer, Jiri Rohn, and Siegfried Rump

for their comments on various versions of the manuscript; and Stefan Dallwig
and Waltraud Huyer for computing the tables and figures and proofreading. I
also want to thank God for giving me love and power to understand and use the
mathematical concepts on which His creation is based, and for the discipline
and perseverance to write this book.

I hope that working through the material presented here gives my readers
insight and understanding, encourages them to become more deeply interested
in the joys and frustrations of numerical computations, and helps them apply
mathematics more efficiently and more reliably to practical problems.

Vienna, January 2001
Arnold Neumaier

1

The Numerical Evaluation of Expressions

In this chapter, we introduce the reader on a very elementary level to some basic
considerations in numerical analysis. We look at the evaluation of arithmetic
expressions and their derivatives, and show some simple ways to save on the
number of operations and storage locations needed to do computations.

We demonstrate how finite precision arithmetic differs from computation
with ideal real numbers, and give some ideas about how to recognize pitfalls in
numerical computations and how to avoid the associated numerical instability.
We look at the influence of data errors on the results of a computation, and
how to quantify this influence using the concept of a condition number. Finally
we show how, using interval arithmetic, it is possible to obtain mathematically
correct results and error estimates although computations are done with limited
precision only.

We present some simple algorithms in a pseudo-MATLAB® formulation very

close to the numerical MATrix LABoratory language MATLAB (and some -
those printed in typewriter font - in true MATLAB) to facilitate getting
used to this excellent platform for experimenting with numerical algorithms.
MATLAB is very easy to learn once you get the idea of it, and the online help
is usually sufficient to expand your knowledge. We explain many MATLAB
conventions on their first use (see also the index); for unexplained MATLAB
features you may try the online help facility. Type help at the MATLAB prompt
to find a list of available directories with MATLAB functions; add the directory
name after help to get information about the available functions, or type the
function name (without the ending m) after help to get information about the
use of a particular function. This should give enough information, in most cases.
Apart from that, you may refer to the MATLAB manuals (for example, [58,59]).
If you need more help, see, for example, Hanselman and Littlefield [38] for a
comprehensive introduction.

1

2 The Numerical Evaluation of Expressions

For those who cannot afford MATLAB, there are public domain variants that
can be downloaded from the internet, SCILAB [87] and OCTAVE [74]. (The
syntax and the capabilities are slightly different, so the MATLAB explanations
given here may not be fully compatible.)

1.1 Arithmetic Expressions and Automatic Differentiation

Mathematical formulas occur in many fields of interest in mathematics and its
applications (e.g., statistics, banking, astronomy).

1.1.1 Examples.

(i) The absolute value Ix + iy I of the complex number x + iy is given by

Ix + iyI = x2 + y2.

(ii) A capital sum Ko invested at p% per annum for n years accumulates to a
sum K given by

K = Ko(1 + p/100)".

(iii) The altitude h of a star with spherical coordinates (f, S, t) is given by

h = aresin(sin * sin S + cos f cos S cost).

(iv) The solutions x1, x2 of the quadratic equation

axe+bx+c=0

are given by

-b± b2-4ac
x1,2 =

2a

(v) The standard deviation o, of a sequence of real numbers x1, ... , xn is given
by

Q= xi
1 T

n i-1:n n i=1:n)

2

N

n
x 2

n \ .,

2

1:n i=1:n
N

1.1 Arithmetic Expressions and Automatic Differentiation 3

Here we use the MATLAB notation 1: n for a list of consecutive integers
from 1 to n.

(vi) The area 0 under the normal distribution curve e-`2/2/ 2n between
t = -x and t = x is given by

0 = 1 -e-t2'2 dt.
I x27r x

With the exception of the last formula, which contains an integral, only ele-
mentary arithmetic operations and elementary functions occur in the examples.
Such formulas are called arithmetic expressions. Arithmetic expressions may
be defined recursively with the aid of variables x i , ... , x , the binary operations
+ (addition), - (subtraction), * (multiplication), / (division)," (exponentiation),
forming the set

0 = {+, -, *, /, },

and with certain unary elementary functions in the set

J = {+, -, sin, cos, exp, log, sqrt, abs,...

The set of elementary functions are not specified precisely here, and should be
regarded as consisting of the set of unary continuous functions that are defined
on the computer used.

1.1.2 Definition. The set A = A(xl, ...,
x x is defined by the rules

(131)]l8 c A,
(E2) xi E A (i = 1, ... , n),
(E3)g,hEA, oE0=(goh)EA,
(E4) g E A, IpE J =Ip(g) E A,
(E5) A(xi, ... , is the smallest set that satisfies (E1)-(E4). (This rule ex-

cludes objects not created by the rules (El)-(E4).)

Unnecessary parentheses may be deleted in accordance with standard rules.

1.1.3 Example. The solution

-b + b2 - 4ac
2a

of a quadratic equation is an arithmetic expression in a, b, and c because we

4 The Numerical Evaluation of Expressions

can write it as follows:

(-b + sgrt(b"2 - 4 * a * c))/(2 * a) E A(a, b, c).

Evaluation of an arithmetic expression means replacing the variables with num-
bers. This is possible on any machine for which the operations in 0 and the
elementary functions in J are realized.

Differentiation of Expressions

For many numerical problems it is useful and sometimes absolutely essential
to know how to calculate the value of the derivative of a function f at given
points. If no routine for the calculation of f'(x) is available then one can
determine approximations for f'(x) by means of numerical differentiation (see
Section 3.2). However, because of the higher accuracy attainable, it is usually
better to derive a routine for calculating f(x) from the routine for calculating
f (x). If, in particular, f is given by an arithmetic expression, then an arithmetic
expression for f'(x) can be obtained by analytic (symbolic) differentiation
using the rules of calculus. We describe several useful variants of this process,
confining ourselves here to the case of a single variable x; the case of several
variables is treated in Section 6.1. We shall see that, for all applications in
which a closed formula for the derivative of f is not needed but one must
be able to evaluate f'(x) at arbitrary points, a recursive form of generating
this value simultaneously with the value of f (x) is the most useful way to
proceed.

(a) The Construction of a Closed Expression for f'

This is the traditional way in which the formula for the derivative is calculated
by hand and the expression that is obtained is then programmed as a function
subroutine. However, several disadvantages outweigh the advantage of having
a closed expression.

(i) Algebraic errors can occur in the calculation and simplification of formulas
for derivatives by hand; this is particularly likely when long and complicated
formulas for the derivative result. Therefore, a correctness test is necessary;
this can be implemented, for example, as a comparison with a sequence of
values obtained by numerical differentiation (cf. Exercise 8).

(ii) Often, especially when both f (x) and f'(x) must be calculated, certain
subexpressions appear several times, and their recalculation adds needlessly

1.1 Arithmetic Expressions and Automatic Differentiation 5

to the running time of the program. Thus, in the example

f (x) = eX/(1 + sinx),

=
ex(1 +sinx) - ex cosx

f (x) (I +sinx)2
= ex(1 + sinx - cosx)/(1 + sinx)2

the expression 1 + sin x occurs three times.

The susceptibility to error is considerably reduced if one automates the cal-
culation and simplification of closed formulas for derivatives using symbolic
algebra (i.e., the processing of syntactically organized strings of symbols).
Examples of high-quality packages that accomplish this are MAPLE and
MATHEMATICA.

(b) The Construction of a Recursive Program for f and f

In order to avoid the repeated calculation of subexpressions, it is advantageous
to give up the closed form and calculate repeatedly occurring subexpressions
using auxiliary variables. In the preceding example, one obtains the program
segment

f, = expx;

f2 = I + sinx;

f = fl/f2;
f' = f, * (f2 - cosx)/f22;

in which one can represent the last expression for f more briefly in the form
f = f * (f2 - cosx)/f2 or f = f * (1 - cosx/f2). One can even arrange to
have this transformation done automatically by programs for symbolic manipu-
lation and dispense with closed intermediate expressions. Thus, in decomposing
the expression for f recursively into its constituent parts, a sequence of assign-
ments of the form

f=-g, f=goh, f=w(g)

is obtained. One can differentiate this sequence of equations, taking into account
the fact that the subexpressions f, g, and h are themselves functions of x and
bearing in mind that a constant has the derivative 0 and that the variable x has
the derivative 1. In addition, the well-known rules for differentiation (Table 1.1)

6 The Numerical Evaluation of Expressions

Table 1.1. Differentiation rules for expressions f

f f'

gfh 91 h'
g*h g'*h+g*h'
g1 h (g' - f * h')/ h (see main text)
g"2 2*g*g'
g"h f * (h' * log(g) + h * g'l g)
fg ±g1

sqrt(g) g'/(2 * f) if g > 0
exp(g) f *g'
log(g) g'/g
abs(g) sign(g) * g'
O(g) T'(g) * g'

are used. The unusual form of the quotient rule results from

f = glh = f = (g'h - gh')/h2
= (g' - (gl h)h')lh
= (g' - f h')l h

and is advantageous for machine calculation, saving two multiplications. In the
preceding example, one obtains

f, = expx;

f2 = sinx;

f3=I+ f2;
f = fl /f3;

fl = fl ;
f2 = COS x;

A = f2;

P _ (fl - f * f3)/f3;

and from this, by means of a little simplification and substitution,

f, = expx;

f3 = 1 +sinx;

f = fl 1h;

P = (f1 - f * COSX)/f3;

with the same computational cost as the old, intuitively derived recursion.

1.1 Arithmetic Expressions and Automatic Differentiation 7

(c) Computing with Differential Numbers

The compilers of all programming languages can do a syntax analysis of arbi-
trary expressions, but usually the result of the analysis is not accessible to the
programs. However, in programming languages that provide user-definable data
types, operators, and functions for objects of these types, the compiler's syntax
analysis can be utilized. This possibility exists, for example, in the program-
ming languages MATLAB 5, FORTRAN 90, ADA, C++, and in the PASCAL
extension PASCAL-XSC, and leads to automatic differentiation methods.

In order to understand how this can be done, we observe that Table 1.1 con-
structs, for each operation o E 0, from two pairs of numerical values (g, g') and
(h, h'), a third value, namely (f, f'). We may regard this pair simply as the result
of the operation (g, g') o(h, h'). Similarly, one finds in Table 1.1 for each elemen-
tary function cp E J a new pair (f, f') from the pair (g, g'), and we regard this as
a definition of the value cp((g, g')). The analogy with complex numbers is obvi-
ous and motivates our definition of differential numbers as pairs of real numbers.

Formally, a differential number is a pair (f, f) of real numbers. We use the
generic form df to denote such a differential number, and regard similarly the
variables h and h' as the components of the differential number dh, so that
dh = (h, h'), and so on. We now define, in correspondence with Table 1.1,
operations and elementary functions for differential numbers.

dg f dh := (g f h, g' ± h');

dg*dh:=(g*h,g'*h+g*h');
dg/dh (f, (g' - f * h')/ h) with f = g/h (if h:0);

dg"n(k*g,n*k*g') with k=g"(n-1) (if1<nER);
(f, n * f * g'/g) with f = g"'n (if 1 > n E]I8, g > 0);

dg"dh (f, f * (h' * k + h * g'/g))

with k = log(g), f = exp(h * k) (if g > 0);

±dg (±g, ±g');
sqrt(dg) (f, g'/(2 * f)) with f = sqrt(g) (if g > 0);

exp(dg) (f, f * g') with f = exp(g);

log(dg) (log(g), g'/g) (if g > 0);

abs(dg) (abs(g), sign(g) * g') (if g # 0);

co(dg) (co(g), co'(g) * g')
for other op e J for which (p(g), y9'(g) exists.

The next result follows directly from the definitions.

8 The Numerical Evaluation of Expressions

1.1.4 Proposition. Let q, r be real functions of one variable, differentiable at
xo E R, and let

dq = (q(xo), q'(xo)), dr = (r(xo), r'(xo)).

(i) If dq o dr is defined (for o E 0), then the function p given by

p(x) := q(x) o r(x)

is defined and differentiable at xo, and

(p(xo), p'(xo)) = dq o dr.

(ii) If cp(dq) is defined (for cp E J), then the function p given by

p(x) co(q(x))

is defined and differentiable at xo, and

(p(xo), p'(xo)) = p(dq)

The reader interested in algebra easily verifies that the set of differential numbers

with the operations +, -, * forms a commutative and associative ring with null
element 0 = (0, 0) and identity element 1 = (1, 0). The ring has zero divisors;
for example, (0, 1) * (0, 1) = (0, 0) = 0. The differential numbers of the form
(a, 0) form a subring that is isomorphic to the ring of real numbers.

We may call differential numbers of the form (a, 0) constants and identify
them with the real numbers a. For operations with constants, the formulas
simplify

dg ± a = (g ± a, g'), a ± dh = (a ± h, h'),
dg*a=(g*a,g'*a), a*dh=(a*h,a*h'),

dgla = (g/a, gala), a/dh = (f, -f * h'l h), with f = a/h.

The arithmetic for differential numbers can be programmed without any diffi-
culty in any of the programming languages mentioned previously. With their
help, we can compute the values f (xo) and f'(xo) for any arithmetic expression
f and at any point xo. Indeed, we need only initialize the independent variable
as the differential number dx = (xo, 1) and substitute this into f.

1.1.5 Theorem. Let f be an arithmetic expression in the variable x, and let the
differential number f (dx) that results from inserting dx = (xo, 1) into f be
defined. Then f is defined and is differentiable at xo, and

(,f (xo), .f '(xo)) = .f (dx).

1.I Arithmetic Expressions and Automatic Differentiation 9

Proof.' Recursive application of Proposition 1.1.4.

The conclusion is that, using differential numbers, one can calculate the
derivative of any arithmetic expression, at any admissible point, without know-
ing an expression for f'!

1.1.6 Example. Suppose we want to find the value and the derivative of

f(x) - (x - 1)(x + 3)
x+2

at the point xo = 3. The classical method (a) starts from an explicit formula for
the derivative; for example,

f'(x) =
x2+4x+7

(x + 2)2

and finds by substitution that

f (3) = 5 = 2.4, f'(3) = 25 = 1.12.

Substituting the differential number dx = (3, 1) into the expression for f gives

(f (3), f'(3)) = f (dx) =
((3, 1) - 1) * ((3, 1) + 3)

(3, 1)+2
(2, 1) * (6, 1) (12,8)

(5, 1) (5, 1)

_ (2.4, (8 - 2.4 * 1)/5) = (2.4, 1.12),

without knowing an expression for f'. In the same way, substituting dx = (3, 1)
into the equivalent expression

3

x + 2'

we obtain, in spite of completely different intermediate results, the same final
result

(f (3) f'(3)) = f (dx) = (3 1) - 3

' (3,1)+2

= (3, 1) - (3'
0)

= (3, 1) - (0.6, (0 - 0.6 * 1)/5)
(5, 1)

= (3, 1) - (0.6, -0.12) = (2.4, 1.12).

10 The Numerical Evaluation of Expressions

Finally, we note that differential numbers can be generalized without difficulty
to compute derivatives of higher order. For the computation of (x) ,...,. ,

f (n) (x) from an expression f containing N operations or functions, the number
of operations and function calls needed grows like a small multiple of n2N.

The formalism handles differentiation with respect to any parameter. There-
fore, it is also possible to compute the partial derivatives 8f (x)/8xk of a function

that is given by an expression f (x) in several variables. Of course, one need
not redo the function value part of the calculation when calculating the par-
tial derivatives. In addition to this "forward" mode of automatic differentiation,
there is also a "reverse" or "backward" mode that may further increase the
efficiency of calculating partial derivatives (see Section 6.1).

A MATLAB implementation of automatic differentiation is available in the
INTLAB toolbox by Rump [85]. An in-depth discussion of all aspects of auto-
matic differentiation and its applications is given in Griewank and Corliss [33]
and Griewank [32].

The Horner Scheme

A polynomial of degree at most n is a function of the form

f (x) = aoxn + alxn-1 + + an_ix + an (1.1)

with given coefficients ao, ... , an. In order to evaluate (1.1) for a given value
of x, one does not proceed naively by forming each power x2, x3, ... , xn, but
one uses the following scheme. We define

fi := aox` + alxi-1 + ... + ai (i = 0, 1, ..., n).

Obviously, f, = f (x). The advantage of fi lies in its recursive definition

fo = ao,

.fi=fi-lx+ai (i=1,...,n),
f (x) = fn

This is the Homer scheme for calculating the value of a polynomial. A sim-
ple count shows that only 2n operations are needed, whereas evaluating (1.1)
directly requires at least 3n - 1 operations.

The derivative of a polynomial can be formed recursively by differentiation
of the recursion:

.fo = 0,

' = ' 1 x + _ 1 1 (i = 1, ... , n),

f'(x) = .f'.

1.1 Arithmetic Expressions and Automatic Differentiation 11

This is the Homer scheme for calculating the first derivative of a polynomial.
Analogous results hold for the higher derivatives (see Exercise 4).

In MATLAB notation, we get f = f (x) and g = f'(x) as follows:

1.1.7 Algorithm: Horner Scheme

computes f=f(x) and g=f'(x) for

% f(x)=a(1)*x"n+a(2)*x"(n-1)+...+a(n)*x+a(n+1)

f=a(1); g=O;
for i=1:n,

g=g*x+f;
f=f*x+a(i+1);

end;

Note the shift in the index numbering, needed because in MATLAB the vector
indices start with index 1, in contrast to C, in which vector indices start with 0,
and to FORTRAN, which allows the user to specify the starting index.

The reader unfamiliar with programming should also note that a statement
such as g = g * x + f is not an equation in the mathematical sense, but an
assignment. In the right side, g refers to the contents of the associated storage
location before evaluation of the right side; after its evaluation, the contents of
g are replaced by the result of the calculation. Thus, the same variable takes
different values at different times, and this allows to make most efficient use
of the capacity of the computer, saving storage and index calculations. Note
also that the update of f must come after the update of g because the formula
for updating g requires the old value of f, which would be no longer available
after the update of f .

1.1.8 Example. We evaluate the polynomial f (x) = (1 - x)6 at 101 equidis-
tant points in the range 0.995 < x < 1.005 by calculating (1 - x)6 directly and
by using the Homer scheme for the equivalent expanded polynomial expression
1 - 6x + 15x2 - 20x3 + 15x4 - 6x5 +x6. The results are shown in Figure 1.1.
The effect of (simulated) machine precision on the evaluation of the polynomial
p(x) = I - 6x + 15x2 - 20x3 + 15x4 - 6x5 + x6 without using the Homer
scheme is demonstrated in Figure 1.2.

In MATLAB, the figure can be drawn easily with the following commands.
(Text is handled as an array of characters, and concatenated by placing the
pieces, separated by blanks or commas, within square brackets. num2str trans-
forms a number into a string denoting that number, in some standard format.
The number of rows or columns of a matrix can be found with size. The period

12 The Numerical Evaluation of Expressions

x1015

Figure 1.1. Two ways of evaluating f (x) = (1 - x)6.

before an operation denotes componentwise operations. The % sign indicates
that the remainder of the line is a comment and does not affect the computations.

The actual plot is produced by plot, and saved as a postscript file using print.)

1.1.9 Algorithm: Draw Figure 1.1

x=(9950:10050)/10000;

disp(['number of evaluation points: ',num2str(size(x,2))]);

y=(1-x)."6;

a compact way of writing the Horner scheme:

z=((((((x-6).*x+15).*x-20).*x+15).*x-6).*x+1);

plot(x,[y;z]); % display graph on screen

print -deps horner.ps % save figure in file horner.ps

The figures illustrate a typical problem in numerical analysis. The simple
expression (1 - x)6 produces the expected curve. However, for the expanded
expression, monotonicity of f is destroyed through effects of finite precision
arithmetic, and instead of a single minimum of zero at x = 1, we obtain more

l e-05

0

(a)

111,11

1 1.05

l e-05

0

0.85 0.9 0.95 1.05

1.1

1.1

1 e-05

0 0

1.15 0.85 0.9 0.95 1 1.05 1.1 1.15

1.15

1 e-05

0

(b)

0.85 0.9 0.95 1 1.05 1.1 1.15

Figure 1.2. p(x) = 1 - 6x + 15x2 - 20x3 + 15x4 - 6x5 + x6 evaluated in arithmetic with (a) 7, (b) 8,
(c) 9, and (d) 16 decimal figures.

14 The Numerical Evaluation of Expressions

than 30 changes of sign in its neighborhood. This shows that we must look more

closely at the evaluations of arithmetic expressions on a computer and with the
rounding errors that create the observed inaccuracies.

1.2 Numbers, Operations, and Elementary Functions

Machine numbers of the following types (where each x denotes a digit) can be
read and printed by any computer:

integer ±xxxx
real ±xx.xxx10 ± xxx
real ±xxxx.xx

(base 10 integer)
(base 10 floating point number)
(base 10 fixed point number)

Integer numbers consist of a sign and a finite sequence of digits, and base 10
real floating point numbers consist of a sign, digits before the decimal point, a
decimal point, digits after the decimal point, and an exponent with a sign. In
order to avoid subscripts, computers usually print the letter d or e in place of
the basis 10. The actual number of digits depends on the particular computer.
Fixed point numbers have no exponent part.

Many programming languages also provide complex numbers, consisting of
a floating point real part and an imaginary part. In the MATLAB environment,
there is no distinction among integers, reals, and complex numbers. The ap-
propriate internal representation is determined automatically; however, double
precision calculation (see later this section) is used throughout.

In the following, we look in more detail at real floating point numbers.

Floating Point Numbers

For base 10 floating point numbers, the decimal point can be in any position
whatever, and as input, this is always allowed. For the output, two standard forms
are customary, in which, for nonzero numbers, the decimal point is placed either

(i) before the first nonzero digit: ±.xxxio ± xxx, or
(ii) after the first nonzero digit: ±x.xx10 ± xxx.

In (i), the x, immediately to the right of the decimal point represents a nonzero
decimal digit. In (ii), the x immediately to the left of the decimal point represents

a nonzero decimal digit. In the following, we use the normalization (i). The
sequence of digits before the exponent part is referred to as the mantissa of the
number.

Internally, floating point numbers often have a different base B in which,
typically, B E 12, 8, 16, ... , 231, ... }. A huge base such as B = 231 or any other

1.2 Numbers, Operations, and Elementary Functions 15

large number is used, for example, in the multi-precision arithmetic package of
BRENT available through the electronic repository of mathematical software
NETLIB [67]. (This valuable repository contains much other useful numerical
software, too, and should be explored by the serious student.)

1.2.1 Example. The general (normalized) internal floating point number for-
mat has the form

±.XXXXXXXXXXX B fxxxxxxxxxxxxxxx

Mantissa of
length L

Base Exponent E [-E, F]

where L is the mantissa length, B the base, and [-E, F] the exponent range of
the number format used. The arithmetic of personal computers (and of many
workstations) conforms to the so-called IEEE floating point standard [45] for
binary arithmetic (base B = 2).

Here the single precision format (also referred to as real or real*4) uses
32 bits per number: 24 for the mantissa and 8 for the exponent. Because the
sign of the mantissa takes 1 bit, the mantissa length is L = 23, and the ex-
ponents lie between E = -126 and F = 127. (The exponents -127 and 128
are reserved for floating point exceptions such as improper numbers like ±oo
and NaN; the latter ("not a number") signifies results of nonsensical calcula-
tions such as 0/0.) The single precision format allows one to represent num-
bers of absolute value between approximately 10-38 and 1038, with an ac-
curacy of about seven decimals. (There are also some even tinier numbers
with less accuracy that cannot be normalized with the given exponent range.
Such numbers are called denormalized. In particular, zero is a denormalized
number.)

The double precision format (also referred to as double or real*8) uses
64 bits per number: 53 for the mantissa and 11 for the exponent. Because
the sign of the mantissa takes 1 bit, the mantissa length is L = 52, and the
exponents lie between E = -1022 and F = 1023. The double precision for-
mat allows one to represent numbers of absolute value between approximately
10-308 and 10308, with an accuracy of about 16 decimals. (Again, there are also
denormalized numbers.)

MATLAB works generally with double precision numbers. In particular, the
selective use of double precision in predominantly single precision calculations
cannot be illustrated with MATLAB, and we comment on such problems using
FORTRAN language.

16 The Numerical Evaluation of Expressions

Ignoring the sign for a moment, we consider machine numbers of the form
.xl ... xLBe with mantissa length L, base B, digits x1, ... , xL and exponent
e E Z. By definition, such a number is assigned the value

xiBe-i =
x1

Be-1 + x2Be-2 + ... +xLBe-L
i=1:L

= Be-L(x1BL-1 +x2BL-2 + ... + XL)

that is, the number is essentially the value of a polynomial at the point B.
Therefore, the Homer scheme is a suitable method for converting from decimal
numbers to base B numbers and conversely.

Rounding

It is obvious that between any two distinct machine numbers there are many
real numbers that cannot be represented. In these cases, rounding must be used;
that is, a "nearby" machine number must be found. Two rounding modes are
most prevailing: optimal rounding and rounding by chopping.

(i) Optimal Rounding. In the case of optimal rounding, the closest machine
number is chosen. Ties can be broken arbitrarily, but in case of ties, the
closest number with XL even is most suitable on statistical grounds. (Indeed,
in a long summation, one expects the last digit to have random parity; hence
the errors tend to balance out.)

(ii) Rounding by Chopping. In the case of rounding by chopping, the digits
after the Lth place are omitted. This kind of rounding is easier to realize
than optimal rounding, but it is slightly less accurate.

We call a rounding correct if no machine number lies between a number x
and its rounded value x. Both optimal rounding and rounding by chopping are
correct roundings. For example, rounding with B = 10, L = 3 gives

Optimal Chopping
xl = .123456105 xl = .123105 xl = .123105
X2 = .567890105 x2 = .5681o5 z2 = .567105

X3 = .123500105 x3 = .124105 x3 = .123105

X4 = .234500105 x4 = .234105 x4 = .2341o5

As measures of accuracy we use the absolute error Ix - z 1 and the relative error
Ix - xI/IxI of an approximation i for x. For general floating point numbers of
highly varying magnitude, the relative error is the more important measure.

1.2 Numbers, Operations, and Elementary Functions 17

1.2.2 Proposition. Under the hypothesis of an unrestricted exponent set, a cor-
rectly rounded value X of x in R\10) satisfies

<s:=B'-c

(xI -

and an optimally rounded value X of x in R\{0} satisfies

x - x1
lxI - 2

Thus, the relative error of the rounded value is bounded by a small machine
dependent number E.

The number e is referred to as the machine precision of the computer. In
MATLAB, the machine precision is available in the variable eps (unless eps
is overwritten by something else).

Proof. We give the proof for the case of correct rounding; the case of optimal
rounding is similar and left as Exercise 6. Suppose, without loss of generality,
that x > 0 (the case x < 0 is analogous), where x is a real number that has, in
general, an infinite base B representation. Suppose, without loss of generality,
that

Be-' < x < Be

and

x = .xix2 ... xLxL+1 ... Be,

with xl O. Set

x' :_ .xix2 ... xLBe.

Then X E [x', x' + Be-L] because the rounding is correct, and X < x <.i +
Be-L. So

Ix - XI < Be-L = Be-'B'-L < jxjB'-L,

and the assertion follows.

This proposition is a basis for all rigorous error analysis of numerical meth-
ods; see in particular Higham [44] and Stummel and Hainer [92]. In this book,

18 The Numerical Evaluation of Expressions

we usually keep such analyses on a more heuristic level (which is enough to ex-

pose the pitfalls in most numerical calculations); a fully quantitative treatment
is only given for Gaussian elimination (see Section 2.1).

Overflow and Underflow

The preceding result is valid only for an unrestricted set of exponents. In prac-
tice, however, the exponent range is finite, and there are problems when IxI is
too large or too small to be representable by a normalized number within the
exponent range. In this case, we speak of overflow or underflow, respectively.

The behavior resulting from overflow depends on the programming language
and its implementation. Often, it results in an appropriate error message; alter-
natively, it may result in an improper number ±oo. (Some old compilers even
set the result to zero, without warning!)

In case of underflow, numbers that are too small are either rounded to denor-
malized numbers (gradual underflow) or replaced by zero; this is, in general,
reasonable, but leads to much larger relative errors, and occasionally can there-
fore be dangerous.

Overflow and underflow can usually be avoided by suitable scaling of the
problem; hence we assume in later discussions that the exponent range is un-
restricted and Proposition 1.2.2 is generally valid.

Operations and Elementary Functions

After the consideration of the representation of numbers on a computer, we
look at the machine results of binary operations and elementary functions.

For correctly rounded results of the binary operations o E 0, we have

Ixoy - xoyl
< E,

Ixoy)

where x o y represents the computed value of x o y and E is the machine
precision. In the following, the validity of this property are assumed for
o E {-{-, -, *, /} (but not for the power); it is satisfied by most modern com-
puters as long as neither overflow nor underflow occur. For example, the IEEE
floating point standard requires the results of these operations (and the square
root) to be even optimally rounded.

The power x"y = xy (except for the square, y = 2) is usually slightly less
accurate because it is computed as a composite expression. For small integers
y, xy is computed by repeated multiplication, and otherwise from exp(y log x).
For theoretical analysis, we suppose that the relative error of the power is

1.2 Numbers, Operations, and Elementary Functions 19

bounded by Cs for a constant not much larger than 1; this holds in practice
except for extreme values of the operands.

For the calculation of the elementary functions cp E J, one must use approx-
imative methods. For a thorough treatment of the approximations of standard
functions, see Hart [41]. We treat only two typical examples here, namely the
square root and the exponential function.

The following three steps are usually employed for the realization of the
elementary function p(x) on a computer: (i) Argument reduction to a number
x0 in a standard range, followed by (ii) approximation of p(xo), and (iii) a
subsequent result adaptation.

The argument reduction (i) serves mainly to reduce the amount of work
needed in the approximation step (ii), and the result adaptation (iii) corrects the
result of (ii) to account for the argument reduction. To demonstrate the ideas,
we look in more detail at the computation of the square root and the exponential
function.

Suppose we want to compute fx- = sgrt(x) with x = m Be, where m E
[1/B, 1[is the mantissa, B is the base, and e is the exponent of x.

Argument Reduction and Result Adaptation for lx-

We may express fx- in the form

with x0 = m, s = e/2 if e is even, and x0 = m/B, s = (e + 1)/2 if e is odd.
This is the argument reduction. Because x0 E [B-2, 1], it is sufficient to de-
termine the value of the square root in the interval [B-2, 1] to obtain a result
which may then be adapted to give the required value by multiplying the
result xo E [B-', 1] (the mantissa) by Bs.

Approximation of lx-

(a) The simplest but inefficient possibility is the expansion in a power series
about 1. The radius of convergence of the series

1 1 2 1 3 5 4=1-2z-8z
16z 128z

..

is 1. The series converges sufficiently rapidly only for x ti 1 (z 0), but
converges very slowly for x0 = 0.01 (z = 0.99), say (an essential value
when B = 10), and is therefore useless for practical purposes. The cause of
the slow convergence is the vertical tangent to the graph of x 1 /2 at x = 0.

20 The Numerical Evaluation of Expressions

(b) Another typical way to approximate function values is offered by an iterative

method. Here, iteration of the same process over and over again successively

improves an approximation until a desired accuracy is reached.
In order to find w = 17 for a given value of x > 0, let wo be an initial

estimate of w; for example, we may take wo = 1 when x E [B-2, 1]). Note
that w2 = x and so w = x/w. To find a suitable iteration formula, we
define wo := x/wo. If wo = wo, then we are finished (w = wo); otherwise,
we have iuo = w2/wo = w(w/wo) < w (or > w) if wo > w or wo < w,
respectively. This suggests that the arithmetic mean w1 = (wo + iv-o)12
might be a suitable new estimate for w. Repeating the process leads to the
following iterative method, already known to Babylonian mathematicians.

1.2.3 Proposition. Let x > 0. For arbitrary wo > 0, define

w; := x/wi (i > 0), (2.1)

wi+1 (wi + wi)/2 (i > 0). (2.2)

If wo = IT, then

wi=wi= (i>0);

otherwise,

fV 1 < 1U2 < < wi < 1/X < wi < < w2 < w l .

The absolute error Si := wi - fx- satisfies

Si+i = Ei /2wi (i > 0),

and the relative error Ei := (wi - fx-)/../ satisfies

ei+i = e? /2(1 + Ei) (i > 0). (2.3)

Here we use the convention that a product has higher priority than division
if it is written by juxtaposition, and lower priority if it is written with explicit
multiplication sign. Thus,

x2 x2
x2/2y =

2y
, but x2/2 y =

2
Y.

Proof. With w :_ ,/x, we have (for all i > 0)

wi =8i+w=(1+Ei)w,

1.2 Numbers, Operations, and Elementary Functions 21

hence

5;+1 = w;+1 - w = (w1 + x/wi)/2 - w

=(w?+x-2ww;)/2wi
_ {(S; + w)2 + w2 - 2w(S; + w)}/2w;

=812w;>0

and

E;+i = S;+i/w =
62i

/2ww; = E3/2(1 +E;).

If now wo 0 fx-, then So = wo - w 7` 0 and 8;+1 > 0. So,

0 < S;+i = S?/2w; < S;/2 < S; (i > 0)

whence < w;+t < w; and w; < w;+j < 17 (i > 0). This proves the
proposition.

1.2.4 Example. The iteration of Proposition 1.2.3 was executed on a pocket
calculator with B = 10 and L = 12 for x = 0.01, starting with wo := 1.
The results displayed in Table 1.2 were obtained. One observes a rapid in-
crease in the number of correct digits as predicted by (2.3). This is so-called
quadratic convergence, and the iteration is in fact a special case of Newton's
method (cf. Chapter 5).

For B = 10, xo E [0.01, 1] is a consequence of argument reduction.
Clearly, x0 = 0.01 is the most unfavorable case; hence seven iterations (i.e.,
21 operations) always suffice to calculate accurate to twelve decimal

Table 1.2. Calculation of 0.01

i Wi

0 1

1 0.505.. .
2 0.2624.. .
3 0.1502...
4 0.1084...

5 0.1003...

6 0.1000005...

7 0.1

22 The Numerical Evaluation of Expressions

digits. The argument reduction is important because for very large or very
small x0, the convergence is initially rather slow (for large E; we have
e;+l ti Ej/2).

(c) Another frequent approximation method uses rational functions. Assuming
a rational approximation of of the form

w*(x) = t2x + t1 +
to

x + SO

optimal coefficients for the interval [0.01, 1] can be determined so that

sup I'/_X_ - w*(x)I
XE[O.01,1]

is minimal. The values of the coefficients (from the approximation
SQRT0231 of Hart [41]) are

t2 = 0.588 122 9,

t1 = 0.467 975 327 625,

to = -0.040 916 239 167 4,

so = 0.099 999 8.

For every xo E [0.01, 1], the relative error of w* is less than 0.02 (see Hart
[41], p. 94). (For other functions or higher accuracy, one would use more
complicated rational functions in the form of so-called continued fractions.)
With three additional iterations as under (b) with initial value w*, we obtain a

relative error of 10-15, requiring a total of fourteen operations only. In binary
arithmetic, even fewer operations suffice because the argument reduction
reduces the interval in which a good approximation is needed to [0.25, 1].

As our second example, we consider the computation of eX = exp(x) with
x = mBe, where m E [1/B, 1] is the mantissa, B is the base, and e is the
exponent of x.

Argument Reduction and Result Adaptation for exp(x)

We can write exp(x) = exp(xo) BS with s = [x/ log B + 1/21 and xo = x -
s log B. This gives an integral exponents and a reduced argument xo with Ixo
1 log B. The constant log B must be stored in higher precision so that the result
adaptation does not cause undue rounding errors.

1.3 Numerical Stability 23

Approximation of exp(x)

As for the square root, there are various possibilities for the approximation. Be-
cause the power series for the exponential function converges very rapidly, only
the power series approximation is considered. We may write the partial sum as

p(x) = xk/k!
k=O:n

= 1+ 111+211+1 ...+ nx 1 i+n)...))) (2.4)

and have the approximation

xn+l

ex = p(x) + e(n + 1)!

where 1i4 I < Ix I. Thus the error satisfies

IexO - p(xo) I <
IXOIn+1 eIXOI < (log(B)/2)n+i for Ixol < log(B)/2,
(n + 1)! (n + 1)!

and an optimal value of n corresponding to a given accuracy can be determined;
for example, for B = 10, n = 16, the absolute error is <10-13

1.3 Numerical Stability

As a result of the finite number of digits used by the computer, numbers are
stored inexactly and operations are carried out inexactly. The relative error is
negligibly small for a single operation, but not necessarily for a sequence of two
or more operations. For the example of the evaluation of the polynomial p (x) =
(1 - x)6 in the neighborhood of x = 1, Section 1.1 shows the different results
obtained if the polynomial is evaluated (a) by using the formula (1 - x)6 or (b)
by using the equivalent formula 1 - 6x + 15x2 - 20x3 + 15x4 - 6x5 + x6. In
what follows, behavior such as (a) is called numerically more stable and behav-
ior such as (b) is called numerically more unstable. These are qualitative notions
that are not defined exactly. Numerical instability means that the error in the
result is considerably greater than one would expect from small errors in the
input. This expected error is quantified exactly through the notion of condition
in Section 1.4. The most frequent causes of instability are illustrated by means
of examples.

In the following, we always distinguish between accuracy, which is related to
the number of correct digits in some approximate quantity, and precision, which
is defined as the accuracy with which single operations with (or storage of)
exact numbers are performed. Thus we may speak of single or double precision

24 The Numerical Evaluation of Expressions

numbers or calculations; however, this says nothing at all about the quality
of the numbers involved in relation to their intended meaning. Estimating the
accuracy of the latter is the subject of an error analysis that should accompany
any extended calculation, at least in a qualitative way.

Because in what follows inexact numbers occur frequently, we introduce
the notation N for approximately equal to. We shall also write x >> y (x << y)
when x, y are positive and x/y is much greater than I (and, respectively, much
smaller than 1). These are qualitative notions only; it must be decided from the
context or application what "approximately" or "much" means quantitatively.

1.3.1 Example. All of the following examples were computed on a pocket cal-
culator with B = 10 and L = 12. (Calculators with different rounding charac-
teristics probably give similar but not identical results.)

(i) f (x) :_ (x + 1/3) - (x - 1/3).

1 0.666 666 666.. .
103 0.666 666 663.. .
106 0.666663 ...
109 0.663...

1010 0.33...
1011 0

Because f (x) = 2/3 for all x, there is an increasing loss of accuracy for
increasing x.

(ii) f (x) := ((3 + x2/3) - (3 - x2/3))/x2.

x F(X)(x)

10-1 0.666 666 667.. .
10-2 0.666 666 7 ...
10-3 0.66667 ...
10-4 0.667...

10-5 0.675.. .
10-6 0

Because f (x) = 2/3 for all x 0, there is an increasing loss of accuracy
for decreasing x.

1.3 Numerical Stability 25

There are two reasons for the increasing loss of accuracy in (i) and (ii):
1. There is a large difference in order of magnitude between the numbers to

be added or subtracted, respectively (e.g.,1 O10+1 /3). If x = m 10e, X =
m10 e, with IxI > ix1, and k := e - e - 1, then X is too small to have
any influence on the first k places of the sum or difference of x and z,
respectively. Thus, information on x is in the less significant digits of
the intermediate results only, and the last k places of x are completely
lost in the rounding process.

2. The subtraction of numbers of almost equal size leads to the cancella-
tion of leading digits and promotes the wrong low-order digits in the
intermediate results to a much more significant position. This leads to
a drastic magnification of the relative error.
In case (i), the result of the subtraction already has order unity, so
that relative errors and absolute errors have the same magnitude. In
case (ii), the result of the subtraction has small absolute (but large
relative) error, and the division by the small number x2 leads to a result
with large absolute error.

(iii) f (x) := sine x/(1 - cost x).

0.010 1.0007 ...
0.0010 1.0879 ...
0.00050 1.2692 ...
0.0004° 2.3166 ...
0.0003° ERROR

Because f (x) = 1 for all x not a multiple of jr , there is a drastic decrease in
accuracy for decreasing x due to division by the small number 1 - cos2 x,
and ultimately an error occurs due to division by a computed zero.

(iv) f (x) := sin x f 1 - sin2 x.

x F(X) tan x

89.9° 572.9588 ... 572.9572 ...
89.95° 1145.87... 1145.91...
89.99° 5735.39 5729.57...

The correct digits are underlined. We have f (x) = tan x for all x, and

26 The Numerical Evaluation of Expressions

here the loss of accuracy is due to the fact that f (x) has a pole at x = 90°,
together with the cancellation in the denominator.

(v) f (x) := ex2/3 - 1. For comparison, we give together with f (x) also the
result of the first two terms of the power series expansion of f (x).

x F(X)(x) x2/3 +x4/18 f (x), correctly rounded

0.1
0.01
0.001
0.0001

3.338
3.333
3.333
3.330

89510
38810
30010
00010

- 3
- 5
- 7
- 9

3.338
3.333
3.333
3.333

888
388
333
333

88910
88910
88910
33910

- 3
- 5
- 7
- 9

3.338
3.333
3.333
3.333

895
388
333
333

066
889
888
338

8810

5110

8910

8910

- 3
- 5
- 7
- 9

Although the absolute errors of f (x) appear acceptable, the relative errors
grow as x approaches zero (cancellation!). However, the truncated power
series gives results with increasing relative accuracy.

(vi) The formula

n

(x(x,)2
2

i-1:n n

gives the standard deviation of a sequence of data xl, ... , xn in a way as
implemented in many pocket calculators. (The alternative formula men-
tioned in Example 1.1.1 is much more stable but does not allow the input of
many data with little storage!) For xi := x where x is a constant, a,, = 0, but
on the pocket calculator, the corresponding keys yield the results shown
in Table 1.3. The zero in the table arises because the calculator checks
whether the computed argument of the square root is negative (which can-
not happen in exact arithmetic) and, if so, sets or, equal to zero, but if the
argument is positive, the positive result is purely due to round off.

Table 1.3. Standard deviation of xi := x where x is a constant

x olo d20

100/3
1000/29 4 0

We conclude from the examples that the quality of a computed function
value depends strongly on the expression used. To prevent, if possible, the
magnification of old errors, one should avoid the following:

1.3 Numerical Stability 27

cancellation; that is, subtraction of numbers of almost equal size that leads
to a loss of leading digits and thereby to magnification of the relative error;
division by a very small number leading to magnification of the absolute
error;
multiplication by a number of very large magnitude, leading to magnification
of the absolute error.

In the formulation and analysis of algorithms, one must look out for these
problems to see whether one can avoid them by a suitable reformulation. In
general, one can say that caution is appropriate in any computation in which
some intermediate result has a much larger or smaller magnitude than a final
result. Then a more detailed investigation must reveal whether this really leads to
numerical instability, or whether the further course of the computation reduces
the effect to a harmless level.

Note that, in the case of cancellation, the difference is usually calculated
without error; the instability comes from the magnification of old errors. This
is shown in the following example.

1.3.2 Example. Subtraction of two numbers with B = 10 and with L = 7 and
L = 6, respectively:

(i) L = 7

1st number: 0.2789014103
2nd number: 0.2788876103
Difference: 0.0000138103 No rounding error
Normalized: 0.138000010 - 1

(ii) L = 6

Optimally rounded Relative error

1st number: 0.278901103 <210 - 6
2nd number: 0.278888103 <21o - 6
Difference: 0.000013103 No rounding error
Normalized: 0.13000010 - 1 >510 - 2

Although there is no rounding error in the subtraction, the relative error in the
final result is about 25,000 times bigger than both the initial errors.

28 The Numerical Evaluation of Expressions

1.3.3 Example. In spite of division by a small number, the following formulas
are stable:

(i) f (x)
I sin x/x if x = 0

0
is stable for x -- 0:

x f(x)

0.1 0.998 3
0.01 0.999983 ...
0.001 0.999 999 83 ...
0.0001 0.999 999 998.. .
0.00001 1

The reason for the stable behavior is that in both numerator and denominator

only one operation (in our usage of the term) is performed; stability follows
from the form of the relative error that is more or less independent of the way
in which the elementary functions are implemented. The same behavior is
visible in the next case.

(ii) f (x) :_
1 ifx=1
(x-1)/lnx ifx#1 is stable for x ti 1:

1.001 1.00049 ...
1.0001 1.000049 ...
1.00001 1.000005 ...
1.000 000 001 1.000 000 001

Stabilizing Unstable Expressions

There is no general theory for stabilizing unstable expressions, but some useful
recipes can be gleaned from the following examples.

(i) In the equality

x+1-1/X- =
1

the left side is unstable and the right side is stable for x >> 1.

1.3 Numerical Stability 29

(ii) In the equalities

sing x 2 X
1- cos x=

1+ cos x
2 sm

2,

the left side is unstable and both of the right sides are stable for x ti 0.
In both cases, the difference of two functions is rearranged so that there

is a difference in the numerator that can be simplified analytically. This
difference is thus evaluated without rounding error. For example,

(x+l)-x = 1

x+1+,fX- x+l+X
(iii) The expression ex -1 is unstable for x 0. We substitute y := eX, whence

ex - 1 = y - 1, which is still unstable.
For x 0 0,

1eX-1=(y-1)x/x=
In x;

Y

see Example 1.3.3(ii). Therefore we can obtain a stable expression as
follows:

x ify = 1,
eX-1=

x if y

where y = ex.
(iv) The expression ex - 1 -'x is unstable for x N 0. Using the power series

expansion

00ex = L, xklki
kk=OO

we obtain

eX-1-x ifIxI>c,ex -1-x= 2 3X

IT + 6 + otherwise

in which a suitable threshold c is determined by means of an error estimate:
We expect the first formula to have an error of s = B'-c, and the second,
truncated after the terms shown, to have an error of x4/24 < c4/24;
hence, the natural threshold in this case is c = ,Y2-4, which makes the
worst case absolute error minimal (tee), and gives a worst case relative
error of zzs/(c2/2).

30 The Numerical Evaluation of Expressions

Finally, we consider the stabilization of two widely used unstable formulas.

The Solution of a Quadratic Equation

The quadratic equation

axe+bx+c=0 (a:A0)

has the two solutions

-bf b2-4ac
x1,2 = 2a

If b2 >> 4ac, then this expression is unstable when the sign before the square
root is the same as the sign of b (the expression obtained by choosing the other
sign before the square root is stable).

On multiplying both the numerator and the denominator by the algebraic
conjugate -bj b2 - 4ac, the numerator simplifies to b2 - (b2 -4ac) = 4ac,
leading to the alternative formula

2c
x1,2 =

-b b2 - 4ac

Now the hitherto unstable solution has become stable, but the hitherto stable
solution has become unstable. Therefore, it is sensible to use a combination of
both. For real b, the rule

q := -(b + sign(b) b2 - 4ac)/2,

x1 := q/a, x2 := c/q

calculates both solutions by evaluating a stable expression. The computational
cost remains the same. (For complex b this formula does not work, because
sign(b) = b/fib(0 ±1; cf. Exercise 12.)

Mean Value and Standard Deviation

The mean value s, and the standard deviation a,, of x1, ... , x,, are usually
defined by

Sn = 1 xi,

i=1:n

or, sometimes,

Qn =ytn/(n-1)

1.3 Numerical Stability 31

with

to = E (xi - Sn)2,

i=l:n

cf. Example 1.1.1. This formula for the standard deviation is impractical because
all the xi must be stored. This can be avoided by a transformation to a recursive
form in which each xi is needed only until xi+1 is read.

to Xi - 2Sn L xi + Sn T. 1
i=l:n i=1:n i=1:n

2Sn nSn+Sn . n = EX? -nSn,

cf. Example 1.3.1(vi). These are the formulas for calculating the standard devi-
ation stated in most statistics books. Their advantage is that t,, can be computed
recursively without storing the xi, and their greater disadvantage lies in their
instability due to cancellation, because (for data with small variance) x7 and
nsn have several common leading digits.

The transformation into a stable expression is inspired by the observation
that the numbers s, and t, are expected to change very little due to the addition
of new data values xi; therefore, we consider the differences sn - sn_1 and
to - tn_1. We have

(n - 1)Sn_I + Xn
Sn - Sn_1 = - 3n_1

n
Xn - Sn_I Sn

n n

where Sn := Xn - Sn_1, and

to - tn_l = (x_ns)_2)
Xn - (n - 1)Sn_1

i=1:n i=1:n-I

= Xn - nSn + (n - 1)sn_1

\
2 Sn/2 2_ On + Sn-1) - n (sn_i + n + (n - 1)sn-I

S2
= Sn + 2SnSn_I 2Sn_ISn - n

n

= Sn (Sn - Sn

= Sn((Xn - Sn-i) - (Sn - Sn-I))
n

= Sn (Xn - Sn)

32 The Numerical Evaluation of Expressions

From these results, we obtain a new recursion for the calculation of s and t,,:

sl = xI, ti = 0,

and for i > 2

8i = xi - si_i,

si = s;_I +8i/i,

ti = ti_ I + 8i (xi - SO.

The differences xi - si _ 1 and xi - si, which have still to be calculated, are now
harmless: the cancellation can bring about no great magnification of relative
errors because the difference (x, - si) is multiplied by a small number 8i and
is then added to the (as a sum of many small positive terms generally larger)
number t,_1.

The new recursion can be programmed with very little auxiliary storage, and
in an interactive mode there is no need for storage of old values of xi, as the
following MATLAB program shows.

1.3.4 Algorithm: Stable Mean and Standard Deviation

i=1; s=input('first number?>');

t=0;

x=input('next number? (press return for end of list)>');

while "isempty(x),

i=i+1;

delta=x-s;

s=s+delta/i;

t=t+delta*(x-s);

x=input('next number? (press return for end of list)>');

end;

disp(['mean: ',num2str(s)]);

sigmal=sqrt(t/i);sigma2=sqrt(t/(i-1));

disp('standard deviation');

disp([' of sample: ',num2str(sigmal)]);

disp([' estimate of distribution: ',num2str(sigma2)]);

(& and I code the logical "not," "and," and "or." The code also gives an
example of how MATLAB allows one to read and print numbers and text.)

1.4 Error Propagation and Condition 33

1.4 Error Propagation and Condition

In virtually all numerical calculations many small errors are made. Hence, one
is interested in how these errors influence further calculations. As already seen,
the final error depends strongly on the formulas that are used. Among other
things, especially for unstable methods, this is because of the finite number of
digits used by the computer.

However, in many calculations, already the input data are known only ap-
proximately; for example, when they are determined by measurement. Then
even an exact calculation gives an inaccurate answer, and in some cases, as in
the following example, the relative error grows strongly even when exact arith-
metic is used, and hence independently of the method that is used to calculate
the result.

1.4.1 Example. Let

f(x) := 1

1-x

If x := 0.999, then f (x) = 1000. An analytical error analysis shows that for
z = 0.999 + s, with s small,

1000
f (x)

_
1 - 1000E

= 1000(1 + 1038 + 10682 + ..).

Hence, for the relative errors of z and f (x) we have

Ix -XI

IxI

and

1.0018

If(x) - f(x)I
= 103E + 10682 + ...,

If(x)I

respectively; that is, independently of the method of calculating f, the relative
error is magnified by a large factor (here about 1000).

One calls such problems ill-conditioned. (Again, this is only a qualitative
notion without very precise meaning.) For an ill-conditioned problem with in-
exact initial data, all numerical methods must give rise to large relative errors.
A quantitative measure for the condition of differentiable expressions is the
condition number ic, the (asymptotic) magnification factor of the relative error.
For a concise discussion of the asymptotic behavior of quantities, it is useful

34 The Numerical Evaluation of Expressions

to recall the Landau symbols o and O. In order to characterize the asymp-
totic behavior of the functions f and g in the neighborhood of r* E R U {oo}
(a value usually apparent from the context), one writes

f (r) = o(g(r)) when
f

0 as r -> r*,

and

f (r) = 0(g(r)) when g(r) remains bounded as r r*.

In particular,

f (r) = o(g(r)), g(r) bounded = lim f (r) = 0,
r-*r*

and

f (r) = 0(g(r)), lim g(r) = 0 = lim f (r) = 0.
r-*r* r_r*

(One reads the symbols as "small oh of" and "big oh of," respectively.)
Now let x be an approximation to x with relative error e = (x - x)/x, so

that z = (1 + e)x. We expand f (x) in a Taylor series about x, to obtain

f(X)= f(x+ex)
= f (x) + exf'(x) + 0(82)

= P x) 1 + xf (x)
e + O(e2)) .f(x)

We therefore have for the relative error of f,

If(x)-f(x)I -
If W1

xf'(x)
IEI + O(E2)f (x)

= KIEI + 0(82),

with the (relative) condition number

x f' (x)

K f(x)
(4.1)

Assuming exact calculation, we can therefore predict approximately the relative
error of f at the point x by calculating K. Neglecting terms of higher order,

1.4 Error Propagation and Condition 35

we have

If(x) - P'01 Ix -XI
If(x)l lxI

1.4.2 Examples.

(i) In the previous example f (x) = 1/(I -x),we have at x = .999, the values
f (X) 103 and f'(x) ti 106; hence, K .999 * 106/1000 ti 103 predicts
the inflation factor correctly.

(ii) The function defined by f (x) := x5 - 2x3 has the derivative f'(x) _
5x4 -6x2. Suppose that lx -21 < r := 10-3, so that the relative error of z is
r/2. We estimate the error I f (z) - f (2) I by means of the condition number:
For x = 2,

K - -7,

whence

f
I f (if (2i (2) l ti Z r = 0.0035,

and I f (z) - f (2)1 0.00351f (2)1 = 0.056.

In a qualitative condition analysis, one speaks of error damping or of error
magnification, depending on whether the condition number satisfies K < 1 or
K > 1. Ill-conditioned problems are characterized by having very large condition
numbers, K >> 1.

From (4.1), it is easy to see when the evaluation of a function of a single
variable is ill conditioned. We distinguish several cases.

CASE 1: If f (x*) = 0 and f'(x*) :0 (these conditions characterize a simple
zero x*), then K approaches infinity as x -+ x*; that is, f is ill condi-
tioned in the neighborhood of a simple zero x* 0.

CASE 2: If there is a positive integer m such that

f (x) = (x - x*)rg(x) with g(x*) 0, (4.2)

we say that x* is a zero of f of order m because the factor in front
of g(x) can be viewed as the limiting, confluent case x, x* of a
product of m distinct linear factors (x - xi); if (4.2) holds with a
negative integer m = -s < 0, then x* is referred to as a pole off of

36 The Numerical Evaluation of Expressions

orders. In both cases,

f'(x) = m(x - x*)`"-'g(x) + (x - x*)mg'(x),

so that

K =
xf`(x)
f (x)

=IxI m g'(x)
x - x* g(x)

x - x* I-I
+o(l).

x

Therefore, as x -a x*,

K -+
00 if x* # 0,

Iml ifx*=0.

For m = 1, this agrees with what we obtained in Case 1. In general, we
see that in the neighborhood of zeros or poles x* 0, the condition
number is large and is nearly inversely proportional to the relative
distance of x from x*. (This explains the bad behavior near the multiple
zero in Example 1.1.8.) However, if the zero or pole is at x* = 0, the
condition number is approximately equal to the order of the pole or
zero, so that f is well conditioned near such zeros and poles.

CASE 3: If f'(x) becomes infinite for x* -+ 0 then f is ill-conditioned at x*.
For example, the function defined for x > 1 by f (x) = 1 + x --I
has the condition number

K =
x

2(x-I+ / -1)
andK -)- ooasx -* 1.

We now demonstrate with an example the important fact that con-
dition and stability are completely different notions.

1.4.3 Example. Let f (x) be defined by

f (x) := x-' - 1- x-' + 1 (0 < x < 1).

(i) Numerical stability: For x ti 0, we have x-I - 1 ti x-I + 1; hence, there
is cancellation and the expression is unstable; however, the expression is
stable for x 1.

1.4 Error Propagation and Condition 37

(ii) Condition: We have

f'(x) =
-x-2 -x-2

2 x-1 - 1 2 x-1 + 1
_ x-1-1- x-1+1

2x2 x-1 - 1 x-1 + 1

and therefore, for the condition number K,

Ix - f'(x)
K =

P x)
1

2,/l - x2

Thus, for x = 0, K ti 1 so that f is well conditioned. However, for
x -* 1, we have K -p oo so that f is ill-conditioned. So, the formula for
f (x) is unstable but well-conditioned for x 0, whereas it is stable but ill
conditioned for x ti 1.

We see from this that the two ideas have nothing to do with each other: the
condition of a problem makes a statement about the magnification of initial
errors through exact calculation, whereas the stability of a formula refers to
the influence of rounding errors due to inexact calculation because of finite
precision arithmetic.

It is not difficult to derive a formula similar to (4.1) for the condition number
of the evaluation of an expression f in several variables x1, ... , xn. Let zi =
xi (1 + e,) and IEi I < E (i = 1, ..., n). Then one obtains the multidimensional
Taylor series

f(x1...... n)= f(x1,...,xn)+ f(x1,...,xn)xiEi+O(E2).
axii=l:n

We make use of the derivative

f'(x) = (_-_f(x) , . .. ,
8xn

f (x)) ,
ax1

to obtain the relative error

If(x1,...,xn)-f(i,Xn)I < i-1:n l az;f(x1,...,xn)Ilxil

If(x1, ... , xn)1 If(x1, ... , xn)1
IEI + O(EZ)

= 1x1 . If'(x)I IEI + O(E2),
If(x)I

38 The Numerical Evaluation of Expressions

where the multiplication dot denotes the scalar product of two vectors. The
resulting error propagation formula for functions of several variables is

If(x)-f(x)1 < K max Ixi - xiI
1f(x)1 I<i<n IxiI

with the (relative) condition number

If WIK_ -Ixl

If(x)1

looking just as in the one-dimensional case. Again, one expects bad condition
only near zeros of f or near singularities of f.

In the preceding discussion, the higher-order terms in e were neglected in the
calculation of the condition number K. This means that the error magnification
ratio is given closely by the condition number only when the input error e
is sufficiently small. Often, however, it is difficult to tell whether a specified
accuracy in the inputs is small enough. Using an additional tool discussed in
the next section, it is possible to determine rigorous bounds for the propagation
error for a given bound on the input error.

1.5 Interval Arithmetic

Interval arithmetic is a kind of automatic, rigorous error analysis. It serves
as an essential tool for mathematically rigorous computer-assisted proofs that
involve finite precision calculations. The most conspicuous application is the
recent solution by Hales [37] of Kepler's more than 300 year old conjecture
that the face-centered cubic lattice is the densest packing of equal spheres
in Euclidean three-dimensional space. For other highlights (which require, of
course, additional machinery from the applications in question), see Eckmann,
Koch, and Wittwer [23], Hass, Hutchings, and Schlafli [42], Mischaikow and
Mrozek [62], and Neumaier and Rage [73]. Many algorithms of computational
geometry depend on the correct evaluation of the sign of certain numbers for
correct performance, and if these are tiny, the correct sign depends on rigorous
error estimates (see, e.g., Mehlhorn and Naher [61]).

Independent of rounding issues, interval arithmetic is an important tool in
global optimization because of its ability to provide global information over
wide intervals, such as bounds on ranges or derivatives, or Lipschitz constants
(see Hansen [39] and Kearfott [49]).

The propagation of errors is accounted for in interval arithmetic by taking
as given not a particular inexact number, but an interval of machine numbers

1.5 Interval Arithmetic 39

that contains this number, and critical computations are performed with inter-
vals instead of approximate numbers. The operations of interval arithmetic are
defined in such a way that the resulting interval always contains the true result
that would be obtained by using exact inputs and exact calculations; by careful
rounding, this property is assured, even when all calculations are done with
finite precision only.

In the context of interval calculations, it is more natural to express errors as
absolute errors, and we replace a number X, which has an absolute error <r,
with the interval [x - r, z + r]. In the following, M is the space of real numbers
or a space of real vectors or matrices, with component-wise inequalities.

1.5.1 Definition. The symbol

x:= [x,x] :={XEMlx <X <I}

denotes a (closed and bounded) interval in M with lower bound x E M and
upper bound z E M, x < x, and

IIM:={[,x11x,IEM,x<z}

denotes the set of intervals over M (of interval vectors if M is a space of vectors,

of interval matrices if M is a space of matrices). The midpoint of x,

1mid x:=z:=2L+x)

and the radius of x,

1
rad x :=

2
(z - x) > 0,

allow one to convert the interval representation of an inaccurate number to the
absolute error representation,

IExblx - xl<radx.

Intervals with zero radius (called point intervals) contain a single point only,
and we always use the identification

[x, x] = x

of point intervals with the element of M they contain.

lxl := sup{lxllx E x} = sup{x, -x}

40 The Numerical Evaluation of Expressions

defines the absolute value of x. For a bounded subset S of M,

OS := [inf S, sup S]

is called the interval hull of S; for example, 0{1, 2) = 0{2, 1) _ [1, 2]. We
also define the relation

x<y:bx<y
on IIM, and other relations are defined in a similar way.

1.5.2 Remarks.

(i) For X E IIIR, IxI = max{z, -x}. However, the maximum may be undefined
in the componentwise order of R", and, for interval vectors, the supremum
takes the componentwise maximum. (MATLAB, however, uses max for the
componentwise maximum.)

(ii) The relation < is not an order relation on IIM because reflexivity fails.

We now extend the definition of operations and elementary functions to
intervals over M = R. For o c 0, we define

xoy:=Q{ioy Ix Ex,y Ey},

and for cp E J, we define

(p(X) := 0((p(X) I X E X}

when the right side is defined; that is, excluding cases such as [1, 2]/[0, 1]
or [-1, 1]. (There are extensions of interval arithmetic that even give val-
ues to such expressions; we do not discuss these here.) Thus, in both cases,
the result of the operation is the tightest interval that contains all possible
results with inaccurate operands selected from the corresponding interval
operands.

1.5.3 Theorem.

(i) For all intervals,

-x = [-.x, -x].

(ii) For o E "}, if x o y is defined for all z E X, y E y, we have

xoy=0{xoy,xoy,XOy,xoy}.

1.5 Interval Arithmetic 41

In particular,

x+y=0{x+y,+y},
x-y=0{x-y,-y}.

(iii) For monotone rp E J,

pO(x) = U{w(x), wP(x)}.

Proof. The proof follows immediately from the monotonicity of o and cp.

For nonmonotone elementary functions and for powers with even integral expo-
nents, one must also look at the values of the local extrema within the interval;
thus, for example,

[x2,X2] ifx> 0,

x2 = [x2, x2] if x < 0,

[0, max{x2, X2}] if O E X.

Note that the standard functions have well-known extrema, only finitely many
in each interval, so that all operations and elementary functions can be calcu-
lated for intervals in finitely many steps. Thus we can get an enclosure valid
simultaneously for all selections of inaccurate values from the intervals.

1.5.4 Remarks.

(i) Intervals are just a new type of numbers similar to complex numbers (but
with different properties). However, it is often convenient to think of an
interval as a single inaccurately known real number known to lie within
that interval. In this context, it is useful to write narrow intervals in an
abbreviated form, in which lower and upper bounds are written over each
other and identical figures are given only once. For example,

17.4sssas = [17.458548, 17.463751].

(ii) Let f (x) := x - x. Then for x = [1, 2], f (x) = [-1, 1], and for x :=
[1 - r, 1 + r], f (x) = [-2r, 2r]. Interval arithmetic has no memory;
it does not "notice" that in x - x the same inaccurately known number
occurs twice, and thus calculates the result as if coming from two different
inaccurately known numbers both lying in x.

42 The Numerical Evaluation of Expressions

(iii) Many rules for calculating with real numbers are no longer valid for inter-
vals. As we have seen, we usually have

x-x,-f0,

and another example is

a(b + c) ab + ac,

except in special cases. So one must be careful in theoretical arguments
involving interval arithmetic.

Basic books on interval arithmetic and associated algorithms are those by
Moore [63] (introductory), Alefeld and Herzberger [4] (intermediate), and
Neumaier [70] (advanced).

Outward Rounding

Let x = [x, X] E ffR. If x and are not machine numbers, then they must be
rounded. In what follows, let x = Ex, x] be the rounded interval corresponding
to x. In order that all elements in x should also lie in x, x must be rounded
downward and x must be rounded upward; this is called outward rounding.
Then, x C x. The outward rounding is called optimal when

x := n{y = [y, y] I y J x, y, y are machine numbers}.

Note that for optimally rounded intervals, the bounds are usually not optimally
rounded in the sense used for real numbers, but only correctly rounded. Indeed,
the lower bound must be rounded to the next smaller machine number even
when the closest machine number is larger, and similarly, the upper bound
must be rounded to the next larger machine number. This directed rounding,
which is necessary for optimal outward rounding, is available for the results
of +, -, *, / and the square root on all processors conforming to the IEEE
standard for floating point arithmetic, defined in [45]; for the power and other
elementary functions, the IEEE standard prescribes nothing and one may have
to be content with a suboptimal outward rounding, which encloses the exact
result, but not necessarily in an optimal way.

For the common programming languages, there are extensions in which
rigorously outward rounded interval arithmetic is easily available: the (pub-
lic domain) INTLAB toolbox [85] for MATLAB, the PASCAL extension
PASCAL-XSC [52], the C extension C-XSC [51], and the FORTAN 90

1.5 Interval Arithmetic 43

modules FORTRAN-XSC [95] and (public domain) INTERVALARITH-
METIC [50].

The following examples illustrate interval operations and outward rounding;
we use B = 10, L = 2, and optimal outward rounding.

[1.1, 1.2] + [-2.1, 0.21 _ [-1.0, 1.4],

[1.1, 1.2] - [-2.1, 0.21 _ [0.9, 3.3],

[1.1, 1.2] * [-2.1, 0.2] = [-2.52, 0.24], rounded: [-2.6, 0.24],

[1.1, 1.2]/[-2.1, 0.2] not defined,

[-2.1, 0.2]/[1.1, 1.2] _ [-21/11, 2/11], rounded: [-2.0, 0.19],

[-2.1, 0.2]/[].1, 1000] _ [-21/11, 2/11], rounded: [-2.0, 0.19],
[-1.2, _1.1]2 = [1.21, 1.44], rounded: [1.2, 1.5],

[-2.1, 0.2]2 = [0, 4.41], rounded: [0, 4.5],

[1.0, 1.5] = [1.0, 1.22...], rounded: [1.0, 1.3].

1.5.5 Proposition. For optimal outward rounding and unbounded exponent
range,

where E = B1-L.

Proof We have x = L, x], in which x < x and z > x when correctly rounded.
It follows from the correctness of the rounding that

1x-xi <E111 and Ix-,fl <EIxI.

There are three cases to consider: x > 0, 0 E x, and x < 0.

CASE 1: x > 0 (i.e., x > 0). By hypothesis, x > x > 0, and by outward round-
ing,

x - x < Ex and X - x < Ex,

whence

x >x(1 -E) and x <(1+s).
So

x = [x, X] C [x(1 - E), x(1 + E)] _ [x, x][1 - E, I + E],

as asserted.

44 The Numerical Evaluation of Expressions

CASE 2: 0 E x (i.e., x < 0 < x). By hypothesis, x < x < 0 < z < . , whence
we can evaluate the absolute values to obtain

-z+x< -Ex and z-x<EX,

giving

0 > x > x(1 + E) and 0 < x < z(1 + s).

So

x = [X, 119 [x(1 + E), z(1 + E)] c [x, x][1- E, I + E].

CASE 3: (x < 0, i.e., z < 0) follows from Case 1 by multiplying with -1.

Interval Evaluation of Expressions

In arithmetic expressions, one can replace the variables with intervals and eval-
uate the resulting expressions using interval arithmetic. Different expressions
for the same function may produce different interval results; although this al-
ready holds for real arguments in finite precision arithmetic, it is much more
pronounced here and persists even in exact interval arithmetic. The simplest
example is the fact that x - x is generally not zero, but only an enclosure of it,
with a radius of the order of the radius of the operands. We now generalize this
observation to the interval evaluation of arbitrary expressions.

1.5.6 Theorem. Suppose that the arithmetic expression f (z 1, ... , zn) E .A(z 1,

.... Zn) can be evaluated at z1, ... , Z E 111(8, and let

X1 c zl,...,Xn C Zn.

Then:

(i) f can be evaluated at x1, ... , xn and

f (xl , ... , xn) c f (zl, ... , zn) (inclusion isotonicity),

If (Z 1 , ... , zn) 12i E z; } c f (zl , ... , Zn) (range inclusion).

In (ii), equality holds if each variable occurs only once in f (as, e.g., the
single variable z in the expression log(sin(1 - z3))).

1.5 Interval Arithmetic 45

(iii) Suppose that in the evaluation off (zI , ... , the elementary functions
cp E J and the power " are evaluated only on intervals in which they are
differentiable. Then, for small

r := maxrad(x;),

we have

rad 0(r).

We refer to this asymptotic result by saying that naive interval evaluation
has a linear approximation order.

Before we prove the theorem, we illustrate the statements with some
examples.

1.5.7 Example. We mentioned previously that expressions equivalent for real
arguments may behave differently for interval arguments. We look closer at
the example f (x) = x2, which always gives the range. Indeed, the square is
an elementary operation, defined such that this holds. What happens with the
equivalent expression x * x?

(i) If f (x) := x * x, and x := [-r, r], with 0 < r < 1, then f (x) = [-r, r]
[-r, r] = [-r2, r2], but the range of values off is only [f (x) I X E x} =
[0, r2]. The reason for the overestimation of the range of values of f is as
follows. In the multiplication x * x = O{z * X I X E X, X E x}, each z is
multiplied with every element of x, but in the calculation of the range of
values, x is multiplied only with itself, giving a tighter result. Again, this
shows the memory-less nature of interval analysis.

(ii) If f (x) := x * x and x := [2 - r, 2 + r], with 0 < r < Z, then

.f (x) = [(2 - r)2, (I + r)2] = {.f (x) I l E x),

that is, the range of values of f is not overestimated, in spite of the fact
that the condition from Theorem 1.5.6(ii) that each variable should occur
only once is not satisfied (the condition is therefore sufficient, but not
necessary). For the radius of f (x), we have rad f (x) = 0 (r) as asserted
in (iii) of Theorem 1.5.6.

(iii) If f (x) := fx-, z := [E, 1] and x = [e, s + 2r] (r < (1 - s)/2), then

46 The Numerical Evaluation of Expressions

rad x = r and

rad= (s+2r-/E-)= r
r

=O (r)
2 s+2r+IE-

ti 2,
for r -* 0. However, the constant hidden in the Landau symbol depends
on the choice of z and becomes unbounded as s --> 0.

(iv) If f (x) := fx-, z := [0, 1], and x [4r, 4r], with 0 < r < 4, then

=[!,r,2,]={f(x)IlEX},

which is to be expected from (ii), and

radx=r, rad= I / 0(r),

that is, the radius of is considerably greater than is expected from the
radius of x, leading to a loss of significant digits. This is due to the fact
that is not differentiable at x = 0; see statement (iii).

Proof of Theorem 1.5.6. Because arithmetic expressions are recursively de-
fined, we proceed by induction on the number of subexpressions. Clearly, it
suffices to show (a) that the theorem is valid for constants and variables, and
(b) that if the theorem is valid for the expressions g and h, then it is also valid
for -g, g o h, and Mp(g). Now (a) is clear; hence we assume that the theorem is
valid for g and h in place of f.

We show that Theorem 1.5.6 is valid for cp(g) with (p E J. We combine the
interval arguments to interval vectors

Z:_ (ZI,...,Zn)TEllll8", X (XI,...,Xn)TETATS1.

(i) By definition, and because cp is continuous and g(z) is compact and
connected,

.f (Z) = w(g(z))

_ I g E g(z)}

= {w(g) I g E g(z)}.

In particular, cp(g) is defined for all g r= g(z). Therefore, because by the in-
ductive hypothesis g(x) 9 g(z), f (x) is also defined, and f (x) = cp(g(x)).

1.5 Interval Arithmetic 47

Furthermore,

f(x)_{2(.)IgEg(x)}
C {49(g) 19 E g(z)} = f (z).

(ii) For x = [z, fl, (ii) follows immediately from (i). If each variable in f oc-
curs only once, then the same holds for g, and by the inductive hypothesis,
{g(z) I i E z} = g(z). From this, it follows that

{f(z)I2EZ}={gP(g(z))12EZ}

= {w(g) I g E g(Z)} = f(Z).

(iii) Set g := g(x). Because over the compact set g, the continuous function cP
attains its minimum and maximum, we have

f(x) _ (P(g) = [(P(91), (P(g2)1

for suitable gl, 92 E g. Thus by the mean value theorem,

rad f (x) = 1 (092) - 09i)) = 2(P ()(g2 - gi)

for some 4 E U{gh $2} c g. Let

M = sup kp'OI
E g(z)

Then

1
rad f(x) < 2MIg2-giI <Mradg= 0(r).

The proof for the case f = g o h with o E 0 is similar and is left to the
reader.

The Mean Value Form

The evaluation of f (xi, ... , gives, in general, only an enclosure for the
range of values of f. The naive method, in which real numbers are replaced
with intervals, often gives pessimistic bounds, especially for intervals of large
radius. However, for many numerical problems, an appropriate reformulation
of standard solution methods produces interval methods that provide bounds
that are provably realistic for narrow intervals. For a thorough treatment, see

48 The Numerical Evaluation of Expressions

Neumaier [70]; in this book, we look at only a few basic techniques for achieving

that.
For function evaluation, realistic bounds can be obtained for narrow input

intervals using the mean value form, a rigorous version of the linearization
method discussed in the previous section.

1.5.8 Theorem. Let f (x) = f (x i , ... , E .4(x1, ... , x,,), and suppose
that for the evaluation of f'(x) in z E Mn, the elementary functions and the
power are evaluated only on intervals in which they are differentiable. If x C z,

then

w* := Off (x) I . E x} c W:= .f (x) + f'(x)(x - z), (5.1)

and the overestimation is bounded by

0 < rad w - rad w* < 2 rad f(x) rad x. (5.2)

1.5.9 Remarks.

(i) Let z be inexactly known with absolute error < r and let x = [x - r, x + r].
Statement (5.1) says that the range of values w* as well as the required
value f (x) of f at x lie in the interval w. Instead of only an approximate
bound on the error in the calculation of f (x) as r - 0 (as in Section 1.4),
we now have a strict bound on the range of values of f for any fixed value
of the radius.

Statement (5.2) says how large the overestimation is. For r maxi rad xi

tending to zero, the overestimation is 0 (r2); that is, the same order of mag-
nitude as the neglected terms in the calculation of the condition number.
The order of approximation is therefore quadratic if we evaluate f at the
midpoint x = midx and correct it with f'(x)(x - x). This is in contrast
with the linear order of approximation for the interval evaluation f (x).

(ii) The expression f (z) + f'(x)(x - z) is called the mean value form of f;
for a geometrical interpretation, see Figure 1.3. The number

Cq=max 0,1- 2 rad f' (x) rad x

rad w

is a computable quality factor for the enclosure given by the mean value
form. Because one can rewrite (5.2) as

q - rad w < rad w* < rad w,

a q close to 1 shows that very little overestimation occurred in the

1.5 Interval Arithmetic 49

Figure 1.3. Enclosure by the mean value form.

computation of the range. Note that q = I - O (r) approaches I as the
radius of the arguments gets small (cf. Figure 1.4), unless the range w* is
only O(r2) (which may happen close to a local minimum).

(iii) For the evaluation of the mean value form in finite precision arithmetic, it
is important that the rounding errors in the evaluation of f (z) are taken
into account by calculating with a point interval [x, x] instead of with z.
However, x itself need not be the exact midpoint of the interval because,
as the proof shows, the theorem is valid for any X E x instead of I.

Figure 1.4. Enclosure of f (x) = x5 - 2x3 + 10 sin 5x over [0, 2] with the mean value
form.

50 The Numerical Evaluation of Expressions

Proof of Theorem 1.5.8. We choose X E x c z and we define

g(t) := f (X + t (X -1)) fort E [0, 1];

g(t) is well defined because the line X + t(X - X) lies in the interval x. By the
mean value theorem

f (X) = g(1) = g(0) + g'(T) = f (x) + f'(f)(X - X)

with = X + -r (X - X) for some r E [0, 1]. From this, we obtain

f (X) E f (x) + f'(x)(x - X) = w

for all X E x, whence w* c w. This proves (5.1).
For the overestimation bound (5.2), we first give a heuristic argument. We

have

f(x) = f(x)+ -X) E f(x)+ f'(x)(x-x).

If one assumes that and X range through the whole interval x, then because
of the overestimate of X by x and of f'(i) by f'(x) of O(r), one obtains an
overestimate of O(r2) for the product.

A rigorous proof is a little more technical, and we treat only the one-
dimensional case; the general case is similar, but requires more detailed ar-
guments. We write

c := fi(x), P := c(x - X)

so that

w=f(x)+p.

By definition of the product of intervals,

P= W for some c E c, d E x- X.

Now X := X + d e x, and

f (X) = f (X) + f'(l;)(X - X) for some i4 E X.

Hence

w= f(x)+p= f(X) - f'(l;)(X-X)+c(X-X)
= f (X) + (- f'('))(X - X)
E f(X)+(C-C)(X-X).

1.5 Interval Arithmetic

Because f (x) E w*, we conclude

w < w*+(c-c)radx.

Similarly,

w>w (c - c) rad x,

and therefore

2radw=w-w
<w*-w*+2(c-c)radx
= 2radw* + 4radcradx.

51

This proves the inequality in (5.2), and the asymptotic bound O(r2) follows
from Theorem 1.5.6(iii). 0

1.5.10 Examples. We show that the mean value form gives rigorous bounds on
the propagation error for inaccurate input data that are realistic when the inac-
curacies are small.

(i) We continue the discussion of Example 1.4.2(ii), where we obtained
for f (x) = x5 - 2x3 and Ix - 21 < 10-3 the approximate estimate
If (x) - 161 ti 0.056. Because the absolute error of z is r = 10-3, an
inaccurate X lies in the interval [2 - r, 2 + r]. For the calculations, we use
finite precision interval arithmetic with B = 10 and L = 5 and optimal
outward rounding.

(a) We bound the error using the mean value form, with f' (x) = 5x4 - 6x2.
From

w = f(2)+ f'([2-r,2+rD[-r, r]
= 16 + [55.815, 56.189][-0.001, 0.001]

= [15.943, 16.0571,

we obtain for the absolute error

If(x) - f(2)I 0.057.

These are safe bounds, realistic because of Example 1.4.2(ii).
(b) To show the superiority of the mean value form, we also bound the

error by means of naive interval evaluation. Here,

wo = f ([2 - r, 2 + r]) = [15.896, 16.105]

52 The Numerical Evaluation of Expressions

whence

If (X) - .f (2) I < 0.105.

These are safe bounds, but there is overestimation by a factor of
about 2.

(c) For the same example, we use naive interval arithmetic on the equiv-
alent expression h(x) = x3(x2 - 2):

wi = h([2 - r, 2 + r]) = [15.944, 16.057]

whence

If (x) - .f (2) I < 0.057.

The result here is the same as for the mean value form (and with
higher precision calculation it would be even sharper than the latter);
but this is due to special circumstances. In all operations, lower bounds
are combined with lower bounds only, and upper bounds with upper
bounds only. It is not difficult to see that in such a situation, always
the exact range is obtained. (For intervals around 1, we no longer have
this nice property.)

(ii) Let f (x) := x2. Then f'(x) = 2x. For x = [-r, r], we have w* = [0, r2]
and

w = f (0) + f'([-r, r])([-r, r] - 0)

= 2[-r, r][-r, r]

= 2[-r2, r2].

From this we obtain, for the radii of w* and w, rad w* = r2/2 and rad w =
2r2; that is, the mean value form gives rise to an overestimation of the radius
of w* by a factor of 4. The cause of this is that the range of values w* is
itself of size O(r2).

(iii) Let f (x) := 1/x. Then f'(x) _ -1/x2. For the wide interval x = [1, 2]
(where the asymptotic result of Theorem 1.5.8 is no longer relevant), one
hasw*=[1,1], and

w = f (1.5) + f'([l, 2])([1, 2] - 1.5)

= 115 + [114] [-0.5, 0.51 =
116,

6]
.

1.6 Exercises 53

In this case, the interval evaluation provides better results, namely

=wo=f([1,2])= [12][2, 1],

which, by Theorem 1.5.6, is optimal.

When r is not small, it is still true that the mean value form and the interval
evaluation provide strict error bounds, but it is no longer possible to make
general statements about the size of the overestimation. There may be significant
overestimation in the mean value form, and it is not uncommon that for wide
intervals, the naive interval evaluation gives better enclosures than the mean
value form; a striking example of this is f (x) = sinx.

When the intervals are too wide, both the naive interval evaluation and the
mean value form may even break down completely. Indeed, overestimation
in intermediate results may lead to a forbidden operation, as in the following
example.

1.5.11 Example. The harmless function f (x) = 1/(1 - x + x2) cannot be
evaluated at x = [0, 1]. The evaluation of the denominator (whose range is
[0.75, 1]) gives the enclosure 1 - [0, 1] + [0, 1] = [0, 2], and the subsequent
division is undefined. The derivative has the same problem, so that the mean
value form is undefined, too. Using as denominator (x - 1) * x + 1 reduces the
enclosure to [0, 1], but the problem persists.

In this particular example, one can remedy the problem by rewriting f as
f (x) = 1/(0.75 + (x - 0.5)2) and even gets the exact range (by Theorem
1.5.6(ii)), but in more sophisticated examples of the same kind, there is no easy
way out.

1.6 Exercises

1. (a) Use MATLAB to plot the functions defined by the following three
arithmetical expressions.

(i) f (x) :=
1
1 - L--x- for -1 < x < 1 and for IxI < 10-15,

(ii) f (x) := x -+I Ix - x --I Ix for I < x < 10 and for 2. 107 <
x <2. 108,

(iii) f (x) := (tanx-sinx)/x for0 < x < 1 andfor 10-8 < x < 10-7.
Observe the strong inaccuracy for the second choices.

(b) Use MATLAB to print, for the above three functions, the sentences:

54 The Numerical Evaluation of Expressions

The answer for f(x) accurate to 6 leading digits is y

The short format answer for f(x) is

y

The long format answer for f(x) is

y

but with x and y replaced by the numerical values x = 0.1111 and y =
f (0.1111). (You must switch the printing mode for the results; use the MAT-
LAB functions disp, num2str, format. See also fprintf and sprintf
for more flexible printing commands.)

2. Using differential numbers, evaluate the following functions and their
derivatives at the points x1 = 2 and x2 = 5. Give the intermediate results
for (a) and (b) to (at least) three decimal places. For (c), evaluate as a check
an expression for f' (x) at x 1 and x2. (You may work by hand, using a pocket
calculator, or use the automatic differentiation facilities of INTLAB.)

(a) f (x) := I+x2.

(b) f (x) := e (X+ 1)f
(C) f (x) (x2+3)(x-1) x-1

x2(x2+4) + x+l
3. Suppose that the polynomial

.f (x) _ aixn-`
i=O:n

is evaluated at the point z using the Homer scheme

fo = ao,

fi = fi-1z +ai (i=1..... n),

f (z) .fn

Show that

- f'(z) if x = z,fx.n-i-1
` f(x)- f (z) otherwise.i=0:n-1 x-z

4. Let

f(x) = aoxn +
aixn-1 + ... + an

be a polynomial of degree n. The complete Horner scheme is given by
i(O)

ai (i = 0, ... , n),

ao (1 = 0, .. , n),

W (i)z + (i1) i - j + 1, ..., n + 1A fi-1 fi-1 (-)

1.6 Exercises 55

Show that the polynomials

g1(x) := E fi(j)xn-i (j = 0, ... , n)
i=j:n

satisfy
(a) gj(x) = gj (z) + g j+i (x) (x - z) (j = 0, ... , n - 1),
(b) go(x) = Ek<j gk(Z)(X - Z)k + gj (X)(X - Z)1(j = 1, ... , n),

(j = 1, ... , n).(c) f +i) = gj (z) _f j!
Hint: For (a), use the preceding exercise; for (c), use the Taylor expansion
of f (x).
The relevance of the complete Homer scheme lies in (c), which shows that
the scheme may serve to compute scaled higher derivatives f U) (z)/j ! of
polynomials.

5. (a) A binary fraction of the form

r :_ (0.aia2 ... ak)2

with a E 10, 1 } (v = 1, ... , k) may be represented as

r =
v=0:k

with ao = 0. Transform the binary fraction

(0.101 100 011)2

into a decimal number using the Homer scheme.
(b) Using the complete Homer scheme (see the previous exercise), calcu-

late, for the polynomial

p(x) = 4x4 - 8x2 + 5x - 1,

the values p(x), p'(x), and p"(x) for x = 2.5 and for x = 4/3. (Use
MATLAB or hand calculation. For hand calculation, devise a scheme
to arrange the intermediate results so that performing and checking the
calculations is easy.)

6. Assuming an unbounded exponent range, prove that, on a computer with
an L-digit mantissa and base B, the relative error for optimal rounding is
bounded by s = z B I -L.

7. Let w0, x E R with wo, x > 0 and for i = 0, 1, 2, .. .

wi := x/w;

wi+i :_ ((n - 1)wi + wi)/n.

56 The Numerical Evaluation of Expressions

(a) Show that, for wo ,

fVI <U12 <... <1Ali <... < fx <... <wi <... <w2 <wl

and that the sequences { wi } and { 1ui } converge to w := T.

(b) For x := 4, w0 := 2, n := 3, 4 calculate, in each case, wi, wi (i < 7)
and print the values of i, wi, and wi in long format.

(c) For x := 4, w0 := 2, n := 25, 50, 75, 100, calculate, in each case,
wi, wi (i < n) and print the values of i, wi, and 1ui in long format.
Use the results to argue that the iteration is unsuitable for the practical
calculation of for large n.

8. (a) Analyze the behavior of the quotient fd(a)/fs of the derivative
f,. = f'(x) and the forward difference quotient fd(a) = (f (x + a)-
f (x))/a in exact arithmetic, and in finite precision arithmetic. What
do you expect for a - 0? What happens actually?

(b) Write a MATLAB program that tries to discover mistakes in the pro-
gramming of derivatives. This can be done by computing a table of quo-
tients fd(a)/fs for a number of values of a = 10-'; say, i = -10: 10,
and checking whether the behavior predicted in (a) actually occurs. Test
with some correct and some incorrect pairs of expressions for function
and derivative.

(c) How can one reduce the multidimensional case (checking for errors in
the gradient) to the previous situation?

9. (How not to calculate ex.) The value e' for given x E l[8 is to be estimated
from the series expansion

ex xv

v=0:oo v'

One calculates, for this purpose, the sums

x °
sn (x)

v1v=O:n '

for n = 0, 1, 2. Obtain a value of n such that Isn(x) - exI < 10-16
with x = -20 using a remainder estimate. Calculate u = sn (-20) with
MATLAB and compare the values so obtained with the optimally rounded
value obtained with the MATLAB command

v=exp(-20); disp(v-u);

How is the bad result to be explained?

1.6 Exercises 57

10. (a) Rearrange the arithmetic expressions from Exercise I so that the small-
est possible loss of precision results if x << 1 for (i), x >> 1 for (ii), and
0 < Ix I << 1 for (iii).

(b) Calculate f (x) from (i) with x := 10-3, B = 10, and L = 1, 2, 4, 8
by hand, and compare the resulting values with those obtained from
the rearranged expression.

11. The solutions x1 and x2 of a quadratic equation of the form

axe+bx+c=0

with a 0 are given by

x1,2 = (-b ± 52 - 4ac)/2a. (6.1)

Determine, from (6.1), the smaller solution of the equation

x = (1 - ax)2, (a > 0).

Why is the formula obtained unstable for small values of a? Derive a bet-
ter formula and find five distinct values of a that make the difference in
stability between the two formulas evident.

12. Find a stable formula for both solutions of a quadratic equation with com-
plex coefficients.

13. Cardano's formulas.
(a) Prove that all cubic equations

x3 + ax2 + bx + c = 0

with real coefficients a, b, c may be reduced by the substitution x =
z - s to the form

z3 + 3qz - 2r = 0. (6.2)

In the following assume q3 + r2 > 0.
(b) Using the formula z := p - q/p, derive a quadratic equation in p3,

and deduce from this an expression for a real solution of (6.2).
(c) Show that there is exactly one real solution. What are the complex

solutions?
(d) Show that both solutions of the quadratic equation in (b) give the same

real solution.

(e) Determine the real solution in part (b) for r := +1000 and q := 0.01,
choosing for p in turn both solutions of the quadratic equation. For
which one is the expression more numerically stable?

58 The Numerical Evaluation of Expressions

(f) For Irl << Iq 1, the real solution is small compared with q; its calculation

from the difference p - q/p is therefore numerically unstable. Find a
stable version.

(g) What happens for q3 + r2 < 0?
14. The standard deviation or, = to/n can be calculated for given data

xi (i = 1, ... , n) either with

(x)
?

- 1 (xi)
=I:n n -1:n

or with the recursion in Section 1.3. Calculate a20[for the values

xi := (499999899 + i)/3000 (i = 1, ... , 201)

using both methods and compare the two results with the exact value ob-
tained by analytic summation.
Hint: Use Ji-i:n i = n(n + 1)/2 and Ei=I:n i2 = n(n + 1)(2n + 1)/6.

15. A spring with a suspended mass m oscillates about its position of rest,
Hooke's law K(t) = -D x(t) is assumed. When the force K,,(t) := A
cos((o,,t) acts on the mass m, the equation of motion is

d 2
dt2x(t) +coox(t) =

m

cos((o0t)

with mo := D/m. It has the solution

x(t) _ - l
wo

cos(c)at).

16.

For which Wa is this formula ill-conditioned (t > 0 and coo > 0 fixed)?
The midpoint x of an interval x c 1118 can be calculated from

x:=(x+x)/2

or from

1 :=x+(x-x)/2.

These formulas give an in general inexact value x on an L-digit machine
with base B and optimal rounding.
(a) For B = 2,

x E x (6.5)

1.6 Exercises 59

for all x E h R whose end points are machine numbers. Prove this for
at least one of the formulas (6.3) or (6.4).

(b) Suppose that B = 10. For which formula is (6.5) false? Give a counter-
example, and prove that (6.5) holds for the other formula.

(c) Explain purpose and details of the MATLAB code

x=input('enter positive x>');

w=max(1,x);wold=2*w;

while w<wold

wold=w; w=w+(x/w-w)*0.5;

end;

What is the limit of w in exact arithmetic? Why does the loop terminate
in finite precision arithmetic after finitely many steps?

17. (a) Find intervals x, y, z E E8 for which the distributive law

x-(y+Z)=x-y+x.z

is violated.

(b) Show that, for all x, y, z c ER, the subdistributive law

x-(y+z)Cx-y+x.z

holds.

18. A camera has a lens with focal length f = 20 mm and a film of thickness
2Ab. The distance between the lens and the object is g, and the distance
between the lens and the film is bo. All objects at a distance g are focused
sharply if the lens equation

1 1 1

.f b g

is satisfied for some b E b = [bo - Ab, bo + Ab]. From the lens equation,
one obtains, for a given f and b := bo ± Ab,

1 b- f
g

_ _
1/f - 1/b b - f

A perturbation calculation gives

g g(bo) ± g'(bo) Ob.

60 The Numerical Evaluation of Expressions

Similarly, one obtains, for a given f and g with Ig - gol Ag,

1 g- fb= 1/f-1/g = g - f.

(a) How thick must the film be in order that an object at a given distance is
sharply focused? For g = [3650, 3652], [3650, 4400], [6000, 10000],
[10000, 20000] (in millimeters), calculate bo = b and Ab = rad b from
b using the formulas

1
b1 = and b2 =

g f
1/f-1/g g - .f

Explain the bad results for b2, and the good results for bl.
(b) At which distances are objects sharply focused, with a given bo, for a

film thickness of 0.02 mm? Calculate the interval g using the formulas

1

gi:= 1/f-1/b and g2
_

b-f
with bo = 20.1, 20.05, 20.03, 20.02, 20.01 mm, and using the approx-
imation

93 = g(bo) + [-1, 11 g'(bo) Ab.

Compare the results from gi, 92, and g3. Which of the three results is
increasingly in error for decreasing bo?

19. Write a program for bounding the range of values of p(x) := (1 - x)6 in
the interval

x := 1.5 + [-1, 1]/10` (i = 1,...,8)

(a) by evaluating p(x) on the interval x,
(b) by using the Homer scheme at z = x on the equivalent expression

po(x) =x6-6x5+15x4 -20x3+15x2-6x+1,

(c) by using Homer's scheme for the derivative and the mean value form

Po(x) + po(x)(x - x).

Interpret the results. (You are allowed to use unrounded interval arith-
metic if you cannot access directed rounding.)

2

Linear Systems of Equations

In this chapter, we discuss the solution of systems of n linear equations in n
variables. At some stage, most of the more advanced problems in scientific
calculations require the solution of linear systems; often these systems are very
large and their solution is the most time-consuming part of the computation.
Therefore, the efficient solution of linear systems and the analysis of the quality
of the solution and its dependence on data and rounding errors is one of the
central topics in numerical analysis. A fairly complete reference compendium
of numerical linear algebra is Golub and van Loan [31]; see also Demmel [17]
and Stewart [89]. An exhaustive source for overdetermined linear systems (that
we treat in passing only) is Bjorck [8].

We begin in Section 2.1 by introducing the triangular factorization as a com-
pact form of the well-known Gaussian elimination method for solving linear
systems, and show in Section 2.2 how to exploit symmetry with the LDLT and
the Cholesky factorization to reduce work and storage costs. We only touch the
savings possible for sparse matrices with many zeros by looking at the simple
banded case.

In Section 2.3, we show how to avoid numerical instability by means of
pivoting. In order to assess the closeness of a matrix to singularity and the
worst case sensitivity to input errors, we look in Section 2.4 at norms and in
Section 2.5 at condition numbers. Section 2.6 discusses iterative refinement as
a method to increase the accuracy of the computed solution and shows that
except for very ill-conditioned systems, one can indeed expect from iterative
refinement solutions of nearly optimal accuracy. Finally, Section 2.7 discusses
various techniques for a realistic error analysis of the solution of linear systems,
including interval techniques for the rigorous enclosure of the solution set of
linear systems with uncertain coefficients.

The solution of linear systems of equations lies at the heart of modem com-
putational practice. Therefore, a lot of effort has gone into the development

61

62 Linear Systems of Equations

of efficient and reliable implementations of appropriate solution methods. For
matrices of moderate size, the state of the art is embodied in the LAPACK [6]
subroutine collection. LAPACK routines are freely available from NETLIB
[67], an electronic distribution service for public domain numerical software.

If nothing else is said, everything in this chapter remains valid if the set C of
complex numbers is replaced with the set][8 of real numbers.

We use the notations Rm"" and cm"" to denote the space of real and complex
matrices, respectively, with m rows and n columns; Aik denotes the (i, k)-entry
of A. Absolute values and inequalities between vectors or between matrices
are interpreted componentwise.

The symbol AT denotes the transposed matrix with

(A
T)ik =Aki,

and AH denotes the conjugate transposed matrix with

(A
H

)ik = Aki

Here, it = a - ib denotes the complex conjugate of a complex number
a = a + ib(a, b E R), and not the upper bound of an interval. It is also
convenient to write

A-H (AH)-1 = (A-')H

and

A-T (AT)-1 = (A- 1)T.

A matrix A is called symmetric if AT = A, and Hermitian if AH = A. For
A E Rm"" we have AH = AT, and then symmetry and Hermiticity are synony-
mous.

The ith row of A is denoted by Ai:, and the kth column by A:k. The matrix

1=

with entries Iii = 1 and lik = 0 (i k), is called the unit matrix; its size
is usually inferred from the context. The columns of I are the unit vectors
e'k) = I.k (i = 1, ..., n) of the space C". If A is a nonsingular matrix, then
A-' A = AA-' = I. The symbols J and e denote matrices and column vectors,
all of whose entries are 1.

In MATLAB, the conjugate transpose of a matrix A is denoted by A' (and
the transpose by A. '); the ith row and kth column of A are obtained as A (i, :)

2.1 Gaussian Elimination 63

and A(: , k), respectively. The dimensions of an m x n matrix A are found
from [m, n] =size (A). The matrices 0 and J of size m x n are created by
zeros (m, n) and ones (m, n) ; the unit matrix of dimension n by eye (n) . Op-
erations on matrices are written in MATLAB as A+B, A-B, A*B (=A B), inv (A)
(= A-'), A\B (= A-' B), and A/B (= AB-1). The componentwise product and
quotient of (vectors and) matrices are written as A. *B and A. /B, respectively.
However, in our pseudo-MATLAB algorithms, we continue to use the notation
introduced before for the sake of readability.

2.1 Gaussian Elimination

Suppose that n equations in n unknowns with (real or) complex coefficents are
given,

Aiixi +Ai2x2+...+Ainxn = bi,

A2,x, +A22x2+...+A2nxn = b2,

Anlxl + An2x2 + ... + Annxn = bn,

in which Aik, b, E C for i, k = 1, ... , n. We can write this linear system in
compact matrix notation as Ax = b with A = (Aik) E C"" and x = (xi),
b = (bi) E C. The following theorem is known from linear algebra.

2.1.1 Theorem. Suppose that A E Cnxn and that b E C. The system of equa-
tions Ax = b has a unique solution x E Cn if and only if A is nonsingular (i.e.,
if det A 0, equivalently, if rank A = n). In this case, the solution x is given
by x = A- ' b. Moreover, the ith component of the solution is given by Cramer's
rule

xi =
det A(i) Lk=I:n (adj A)ikbk= i-1
det A det A

where the matrix A(') is obtained from A by replacing the ith column with b,
and the adjoint matrix adj A is formed from suitably signed subdeterminants
of A.

From a theoretical point of view, this theorem tells everything about the
solution. From a practical point of view, however, solving linear systems of
equations is a complex and diverse subject; the actual solution process is influ-
enced by many considerations involving speed, storage, accuracy, and structure.
In particular, we see that the numerical calculation of the solution using A-'
or Cramer's rule cannot be recommended for n > 3. The computational cost

64 Linear Systems of Equations

in both cases is considerably greater than is necessary; moreover, Cramer's rule
is numerically less stable than the other methods.

Solution methods for linear systems fall into two categories: direct methods,
which provide the answer with finitely many operations; and iterative methods,
which provide better and better approximations with increasing work. For sys-
tems with low or moderate dimensions and for large systems with a band
structure, the most efficient algorithms for solving linear systems are direct,
generally variants of Gaussian elimination, and we restrict our discussion to
these. For sparse systems, see, for example, Duff et al. [22] (direct methods)
and Weiss [97] (iterative methods).

Gaussian elimination is a systematic reduction process of general linear sys-
tems to those with a triangular coefficient matrix. Although Gaussian elimina-
tion currently is generally organized in the form of a triangular factorization,
more or less as described as follows, the basic idea is already known from school.

2.1.2 Example. In order to solve a system of equations such as the following:

x+y+z=1,
2x+4y+z=3,
-x+y-3z=5,

one begins by rearranging the system such that the coefficients of x in all of the
equations save one (e.g., the first) are zero. We achieve this, for example, by
subtracting twice the first row from the second row, and adding the first row to
the third. We obtain the new equations

2y - z = 1,
2y-2z=6.

Subtracting the first of these from the second gives

-z=5.

It remains to solve a system of equations of triangular form:

x+y+z=1,
2y-z=1

-z=5
and we obtain in reverse order z = -5, y = -2, x = 8.

The purpose of this elimination method is to transform the coefficient matrix
A to a matrix R in which only the coefficients in the upper right triangle are

2.1 Gaussian Elimination 65

distinct from zero, and to solve, instead of Ax = b, the triangular system
Rx = y, where y is the transformed right side. Because the latter is achieved
very easily, this is a very useful strategy.

For the compact form of Gaussian elimination, we need two types of trian-
gular matrices. An upper triangular matrix has the form

R=

C
where possible nonzeros, indicated by crosses, appear only in the upper right
triangle, that is, where Rik = 0 (i > k). (The letter R stands for right; there
is also a tradition of using the letter U for upper triangular matrices, coding
upper.) A lower triangular matrix has the form

x
x x

L= x x x
x x x x

x x x x

where possible nonzeros appear only in the lower left triangle, that is, where
Lik = 0 (i < k). (The letter L stands for left or lower.)

A matrix that is both lower and upper triangular, that is, that has the form

D11 0

D = =: Diag(D11, , Dnn),

0 Dnn

is called a diagonal matrix. For a diagonal matrix D, we have Dik = 0 (i k).

Triangular Systems of Equations

For an upper triangular matrix R E I[8n"n, we have Rx = y if and only if

Ji = T Rikxk = Riixi + E Rikxk
k=1:n k=i +1:n

The following pseudo-MATLAB algorithm solves Rx = y by substituting the
already calculated components Xk (k > i) into the ith equation and solving
for xi, for i = n, n - 1, ... , 1. It also checks whether one of the divisions
is forbidden, and then leaves the loop. (In MATLAB, == denotes the logical

66 Linear Systems of Equations

comparison for equality.) This happens if one of the Rt, vanishes, and because
(by induction and development of the determinant by the first column)

this is the case if R is singular.

2.1.3 Algorithm: Solve an Upper Triangular System (slow)

ier = 0;
for i=n: -1:1,

if R,1 == 0, ier = 1; break; end;

xi = (yj - > Rikxk)/Rit;
k=i+1:n

end;

% ier = 0: R is nonsingular and x = R y
% ier = 1: R is singular

It is possible to speed up this program by vectorizing the sum using MATLAB's
subarray facilities. To display this, we switch from pseudo-MATLAB to true
MATLAB.

2.1.4 Algorithm: Solve an Upper Triangular System

ier=O;

x=zeros(n,1); % ensures that x will be a column

for i=n:-1:1,

if R(i,i)==O, ier=1; break; end;

x(i)=(y(i)-R(i,i+1:n)*x(i+1:n))/R(i,i);

end;

ier=O: R is nonsingular and x=R\y

ier=1: R is singular

In the future, we shall frequently use the summation symbol for the sake
of visual clarity; it is understood that in programming, such sums are to be
converted to vectorized statements whenever possible.

For a lower triangular matrix L E lnxn we have Ly = b if and only if

bi = LikYk = Lii yi + LikYk
k=1:n k=1:i-1

The following algorithm solves Ly = b by substituting the already calculated
components yk (k < i) into the ith equation and solving for yj for i = 1, ... , n.

2.1 Gaussian Elimination 67

2.1.5 Algorithm: Solve a Lower Triangular System

ier = 0;

for i = I : n,
if L(i, i) == 0, ier = 1; break; end;
y(i) = (b(i) - L(i, 1 : i - 1) * y(1 : i - 1))/L(i, i);

end;
% ier = 0 : L is nonsingular and y = L b

% ier = 1 : L is singular

In case the diagonal entries satisfy Lit = 1 for all i, L is called a unit lower tri-
angular matrix, and the control structure simplifies because L is automatically
nonsingular and no divisions are needed.

Solving a triangular system of linear equations by either forward or back
substitution requires Ii=i:n(2i - 1) = n2 operations (and a few less for a unit
diagonal). Note that MATLAB recognizes whether a matrix A is triangular; if
it is, it calculates A\b in the previously mentioned cheap way.

The Triangular Factorization

A factorization A = L R into the product of a nonsingular lower triangular ma-
trix L and an upper triangular matrix R is called a triangular factorization
(or L R factorization or L U factorization) of A; it is called normalized if
Li; = 1 for i = 1, ... , n. The normalization is no substantial restriction because
if L is nonsingular, then LR = (LD-')(DR) is a normalized factorization for
the choice D = Diag(L), where

Diag(A) := 1 1 ,.. ... , An).

denotes the diagonal part of a matrix A E Cn"n If a triangular factorization
exists (we show later how to achieve this by pivoting), one can solve Ax = b
(and also get a simple formula for the determinant det A = det L det R) as
follows.

2.1.6 Algorithm: Solve Ax = b without Pivoting

STEP 1: Calculate a normalized triangular factorization LR of A.
STEP 2: Solve Ly = b by forward elimination.
STEP 3: Solve Rx = y by back substitution.

Then Ax =LRx=Ly=band detA=RR22...Rnn.

68 Linear Systems of Equations

This algorithm cannot always work because not every matrix has a triangular
factorization.

2.1.7 Example. Let

0 1

A:=
1 0

L11 0 R11 R12

L21 L22 0 R22

L11R,1 L11R12

L21R11 L21R12 +L22R22I

If a triangular factorization A= L R existed, then L 11 R 11 = 0, L 11 R 12 0,

and L21 R11 0. This is, however, impossible.

The following theorem gives a complete and constructive answer to the ques-
tion when a triangular factorization exists. However, this does not yet guarantee
numerical stability, and in Section 2.3, we incorporate pivoting steps to improve
the stability properties.

2.1.8 Theorem. A nonsingular matrix A E (C"' has at most one normal-
ized triangular factorization. The triangular factorization exists iff all leading
square submatrices A(m) of A, defined by

(m = 1, ..,n),

are nonsingular. In this case, the triangular factorization can be calculated
recursively from

Rik Aik - Lid Rik (k ? i),
i=1a-1

Lki ' Aki -
LkJRJi/

/Rii (k > i),
\\ 1=1:i-1

Proof

i = 1,...,n. (1.1)

(i) Suppose that a triangular factorization exists. We show that the equa-
tions (1.1) are satisfied. Because A = LR is nonsingular, 0 det A =
det L det R = R11 R,,,,, so Rii 0 (i = 1, ... , n). Because Lii = 1,

2.1 Gaussian Elimination 69

Lik = 0 fork > i and Rik = 0 fork < i, it follows that

Aik= Y LijRik= E L;jRjk (i,k=1,...,n). (1.2)
j=1:n j=1:min(i,k)

Therefore,

LjRjk+Rik fork> i,

Aik =
L;jRjk+LikRkk fork <i.

j=1:k-1

Solving the first equation for Rik and the second for L;k gives equations
(1.1). Note that we swapped the indices of L so that there is one outer loop
only.

(ii) By (i), A has a nonsingular triangular factorization if (1.2) holds with L;; ,

R;; 0 (i = 1, ..., n). This implies that for all m, A(m) = L(m)R(-) with
L<i") = Lii 0 (i = 1, ..., m) and R("`) = R;; : 0 (i = 1, ... , m).
Therefore, A(') is nonsingular for m = 1, ... , n. Conversely, if this holds,

then a simple induction argument shows that (1.2) holds, and Li, =
O,R;i=R('):0(i=1,...,n).

(iii) All of the unknown coefficients Rik (i < k) and Lki (i < k) can be calcu-
lated recursively from (1.1) and are thereby uniquely determined. The
factorization is unique because by (i) each factorization satisfies (1.1).

For a few classes of matrices arising frequently in practice, the triangular
factorization always exists. A square matrix A is called an H-matrix if there are
diagonal matrices D and D' such that III - DAD'IIOO < 1 (see Section 2.4 for
properties of matrix norms).

We recall that a square matrix A is called positive definite if xHAx > 0 for
all x # 0. In particular, Ax # 0 if x # 0; i.e., positive definite matrices are
nonsingular. The matrix A is called positive semidefinite if x H Ax > 0 for all x.
Here, the statements a > 0 or a > 0 include the statement that a is real. Note
that a nonsymmetric matrix A is positive (semi)definite if its Hermitian part
Assn, :=

2
(A +AH) has this property.

2.1.9 Corollary. If A is positive definite or is an H-matrix, then the triangular
factorization of A exists.

Proof. We check that the submatrices A(') (1 < i < n) are nonsingular.

(i) Suppose that A E Cn xn is positive definite. For X E C' (1 < i < n) with
x # 0, we define a vector y E Cn according to y j = x j (1 < j < i) and

70 Linear Systems of Equations

yj = 0 (i < j <n). Then, xHA(')x = yHAy > 0. The submatrices A(')
(1 < i < n) are consequently positive definite, and are therefore non-
singular.

(ii) Suppose that A E Cnxn is an H-matrix; without loss of generality, let A be
scaled so that 111 - A II,, < 1 . Because 1 1 1 - A(') II,, < 111 - A II < 1, each
A(') (1 < i < n) is an H-matrix and is therefore nonsingular.

The recursion (1.1) for the calculation of the triangular factorization goes
back to Crout. Several alternatives for it exist that compute exactly the same
intermediate results but in different orders that may have (dis)advantages on
different machines. They are discussed, for example, in Golub and van Loan
[31]; there, one can also find a proof of the equivalence of the factorization
approach and the reduction process to upper triangular form, outlined in the
introductory example.

In anticipation of the need for incorporation of row interchanges when no
triangular factorization exists, the following arrangement for the ith recursion
step of (1.1) is sensible. One divides the ith step into two stages. In stage (a),
R;i is found, and the analogous expressions Aki - F Lki Rj, (k = i + 1, ... , n)
in the numerators of Lik are calculated as well. In stage (b), the calculation of
the Rik (k = i + 1, ... , n) is done according to (1.1), and the calculation of
the Lki (k = i + 1, ... , n) is completed by dividing the expressions calculated
in stage (a) by Rii. This method of calculating the coefficients Rii has the
advantage that, when Rii = 0, this is immediately known, and unnecessary
additional calculations are avoided.

The coefficients Aik (k = i, ... , n) and Aki (k = i + 1, ... , n) in (1.1) can
be replaced with the corresponding elements of R and L, respectively, because
they are no longer needed. Thus, we need no additional storage locations for the
matrices R and L. The matrix elements stored in the array A at the conclusion
of the ith step correspond to the entries of L, R, and the original A, according
to the diagram in Figure 2.1. After n steps, A is completely overwritten with the

L R

L A

i
Figure 2.1. The matrices L, R, and A after the i th step.

2.1 Gaussian Elimination 71

elements of R and L. The calculation of the triangular factorization therefore
proceeds as follows.

2.1.10 Algorithm: Triangular Factorization without Pivoting

for i=1:n
for k=i:n

% find Rii and numerators of Lki, k > i
Aki = Aki - AkjAji;

j=1a-1
end
if Aii == 0, error('no factorization exists'); end;
for k=i+l:n

% find Rik, k`> i
Aik = Aik - > AijAjk;

j=1:i-1
% complete Lki, k > i
Aki = Aki/Aii;

end

end

The triangular factorization L R of A is obtainable as follows from the elements
stored in A after execution of the algorithm:

Aik fork < i,
Lik= 1 fork=i,

0 fork > i,
R'k A ,k

fork > i,
_ J 0 fork < i.

2.1.11 Example. Let the matrix A be given by

2 4 -4 2

4 2 1 1
A

-4 1 -1 3

2 1 3 1

STEP 1: In the first stage (a), nothing happens; in the second stage (b), nothing
is subtracted from the first row above the diagonal, and the first column
is divided by A 11 = 2 below the diagonal. In particular, the first row of
R is equal to the first row of A. In the following diagrams, coefficients
that result from the subtraction of inner products are marked S and

72 Linear Systems of Equations

coefficients that result from division are marked with D.

(a) (b)

2S 4 -4 2 2 4s -4S 2s

4S 2 1 1 2° 2 1 1
Step 1:

-4S 1 -1 3 -2° 1 -1 3

2S 1 3 1 1° 1 3 1

STEPS 2 and 3: In stage (a), an inner product is subtracted from the second
and third columns, both on and below the diagonal; in stage (b), an
inner product is subtracted from the second and third rows above the
diagonal, and the second and third columns are divided below the
diagonal by the diagonal element.

(a) (b)

2 4 -4 2 2 4 -4 2

2 -6S 1 1 2 -6 9s -3s
Step 2:

-2 9s -1 3 -2 z°- -1 3

1 -3S 3 1 1 Z° 3 1

(a) (b)

2 4 -4 2 2 4 -4 2

2 -6 9 -3 2 -6 9 -3
Step 3: 3 s 9 SS-2 _ 2 3 -2 -22

2 2 2

I 5s 5D
1

2 2
1 1 2

9

STEP 4: In the last step, only A,,,, remains to be calculated in accordance
with (a).

(a)

2 4 -4 2

2 -6 9 -3
Step 4: -2 - 3 9 5

2 2 2

1 1
5 ss

2 9

The triangular factorization of A = L R has now been carried out; we
have

1 0 0 0

2 1 0 0

L -2 -3 1 0

1 1
5

1
2 9

2.2 Variations on a Theme 73

and

2 4 -4 2

0 -6 9 -3
R= 0 0 9 s

2 2

0 0 0 -8
9

Note that the symmetry of A is reflected in the course of the calculation.
Each column below the diagonal, calculated in stage (a), is identical
with the row above the diagonal, calculated in stage (b). This implies
that for symmetric matrices the computational cost can be nearly halved

(cf. Algorithm 2.2.4).

Finding the triangular factorization of a matrix A E R"' takes

(i - 1)4(n - i) = 3n3 + 0(n 2)

i=1:n

operations.
Because of the possible division by zero or a small number, the solution

of linear systems with a triangular factorization may not be possible or may
be numerically unstable. Later, we show that by O(n2) further operations for
implicit scaling and column pivoting, the numerical stability can be improved
significantly. The asymptotic cost is unaffected.

Once a factorization of A is available, solving a linear system with any right
side takes only 2n2 operations because we must solve two triangular systems
of equations; thus, the bulk of the work is done in the factorization. It is a very
gratifying fact that for the solution of many linear systems with the same coef-
ficient matrix, only the cheap part of the computation must be done repeatedly.

A small number of operations is not the only measure of efficiency of al-
gorithms. Especially for larger problems, further gains can be achieved by
making use of vectorization or parallelization capabilities of modem comput-
ers. In many cases, this requires a rearrangement of the order of computations
that allow bigger pieces of the data to be handled in a uniform fashion or that
reduce the amount of communication between fast and slow storage media. A
thorough discussion of these points is given in Golub and van Loan [31].

2.2 Variations on a Theme

For special classes of linear systems, Gaussian elimination can be speeded up
by exploiting the structure of the coefficient matrices.

74 Linear Systems of Equations

Band Matrices

A (2m + 1)-band matrix is a square matrix A with Aik = 0 for Ii - kI > m;
in the special case m = 1, such a matrix is called tridiagonal. When Gaussian
elimination is applied to band matrices, the band form is preserved. It is there-
fore sufficient for calculation on a computer to store and calculate only the
elements of the bands (of which there are less than 2mn + n) instead of all the
n2 elements.

Gaussian elimination (without pivot search) for a system of linear equations
with a (2m + 1)-band matrix A consists of the following two algorithms.

2.2.1 Algorithm: Factorization of (2m + 1)-Band Matrices

ier = 0;
for i=1:n,

p = max(i - m, 1);
q = min(i + m, n);
Aii = Aii - E AijAji;

j=P:i-1
if Aii = 0, ier = 1; break; end;
for k=i+l:q,

Aki = Aki - > AkjAji;
j =P:i - I

end;
for k=i+l:q,

Aik = Aik - E AijAjk;
j=P:i-1

Aki = Aki/Aii;
end;

end;

2.2.2 Algorithm: Banded Forward and Back Solve

ier = 0;
for i = 1 : n,

p = max(i - m, 1);
yi = bi - T Lijyj;

j=p:i-I
end;
for i = n -1 : 1,

if Rii = 0, ier = 1; break; end;
q = min(i + m, n);
xi = (yi - E Rijxj)lRii

j=i+l:q
end;

2.2 Variations on a Theme 75

The factorization of a (2m + 1)-band matrices takes 3m2n + 0(mn) opera-
tions. For small m, the total cost is O (n), the same order of magnitude as that for
solving a factored band system. Hence, the advantage of reusing a factorization
to solve a second system with the same matrix is not as big as for dense systems.

For the discretization of boundary value problems with ordinary differential
equations, we always obtain band matrices with small bandwidth m. For dis-
cretized partial differential equations the bandwidth is generally large, but most
of the entries within the band vanish. To exploit this, one must resort to more gen-

eral methods for (large and) sparse matrices, that is, matrices containing a high
proportion of zeros among its entries (see, e.g., Duff, Erisman and Reid [22].
To explore MATLAB's sparse matrix facilities, start with help sparfun.

Symmetry

As seen in Example 2.1.11, the symmetry of a matrix is reflected in its triangular
factorization LR. For this reason, it is sufficient to calculate only the lower
triangular matrix L.

2.2.3 Proposition. If the Hermitian matrix A has a nonsingular normalized
triangularfactorization A = LR, then A = LDLH where D = Diag(R) is a
real diagonal matrix.

Proof Let D := Diag(R). Then

LR = A = AH =R H L H = (RH(DH)-I)(DHLH).

Because of the uniqueness of the normalized triangular factorization, it follows
from this that R = DHLH and Diag(R) = DH. Hence, D = DH, so that D is
real and A = LR = LDLH, as asserted.

The following variant of Algorithm 2.1.10 for real symmetric matrices (so
that LDLH = LDLT) exploits symmetry, using only 3n3 + O(n2) operations,
half as much as the nonsymmetric version.

2.2.4 Algorithm: Modified LDLT Factorization of a real Symmetric
Matrix A

ier = 0; S = sqrt(eps) * norm(A, inf);
for i = 1 : n,

76 Linear Systems of Equations

piv = Aii - Aij Aji ;
j=1a-1

if abs(piv) > S, Aii = piv;
else ier = 1; Aii = 8;
end

for k=i+1 :n,
Aik = Aik - E AijAik;

j=1:i-1

Aki = Aik/Aii;
end

end

%Now A contains the nontrivial elements of L, D and DLT
% if ier > 0, iterative refinement is advisable

Note that, as for the standard triangular factorization, the L DL H factorization

can be numerically unstable when a divisor becomes tiny, and it fails to exist
when a division by zero occurs. We simply replaced tiny pivots by a small
threshold value (using the machine accuracy eps in MATLAB) - small enough
to cause little perturbation, and large enough to eliminate stability problems.
For full accuracy in this case, it is advisable to improve the solutions of linear
systems by iterative refinement (see Algorithm 2.6.1). More careful remedies
(diagonal pivoting and the use of 2 x 2 diagonal blocks in D) are possible (see
Golub and van Loan [31]).

So far, the uniqueness of the triangular factorization has been attained through
the normalization Lii =1(i = 1, ... , n). However, for Hermitian positive def-
inite matrices, the factors can also be normalized so that A = LLH. This is
called a Cholesky factorization of A (the Ch is pronounced as a K, cf. [96]), and
L is referred to as the Cholesky factor of A. The conjugate transpose R = LH
is also referred to as the Cholesky factor; then the Cholesky factorization takes
the form A = RHR. (MATLAB's chol uses this version.)

2.2.5 Theorem, If A is Hermitian positive definite, thenAhasa unique Cholesky
factorization A = LLH in which the diagonal elements Lii (i = 1, ... , n) are
real and positive.

Proof. For X E Ci (1 < i < n) with x 0, we define a vector y E C' by y j =
xj (1<j<i)andyj = 0 (i < j<n).Then, xHA(i)x = yHAy > 0. The
submatrices Aii) (1 < i < n) are consequently positive definite and are therefore
nonsingular. Corollary 2.1.9 now implies that there exists a triangular factor-
ization A = LORD = LoDLo . Because A is positive definite, we have for each
diagonal entry Dii = (e(1))HDe(') = xHAx > 0 for x = Lo He(i). Thus we

2.2 Variations on a Theme 77

can take square roots and obtain, with D1/2 := Diag(Dii), L := LOD1j2, the
relation A = LoDLo = LoD1/2(D1/2)HLo =LL H .

If A is not positive definite, then it turns out that the square root of some
pivot element p < 0 must be determined, resulting in a failure. However, it is
sometimes meaningful in this case to construct instead a so-called modified
Cholesky factorization. This is obtained by replacing such pivot elements and,
to achieve numerical stability, all p < 8, by a small positive number 6. A
suitable value is S = III A II , where s is the machine accuracy. (In various
implementations of modified Cholesky factorizations, the choice of this thresh-
old differs and may vary from row to row. For details of a method especially
adapted to optimization, see Schnabel and Eskow [86].) The following algo-
rithm results directly from the equation A= LLT for real, symmetric A; by
careful indexing, it is ensured that the modified Cholesky factorization is over-
written over the upper triangular part of A, and the strict lower triangle remains
unchanged.

2.2.6 Algorithm: Modified Cholesky Factorization of a Real Symmetric
Matrix A

6 = slIAII;
if 8 == 0, def = -1; return; end;
def = 1;
for i=1:n,

AAii - A;
j=1:i-1

if A < 8 , def=0; A =8; end;
Aii = V _A;
for k=i+1:n,

Aik Aik - E Aii A
\\ j=I:i-I

end;
end;
% def = 1: A is positive definite; no modification applied
% def = 0: A is numerically not positive definite
% def = -1: A is the zero matrix

It can be shown that the Cholesky factorization is always numerically stable
(see, e.g., Higham [44]).

The computational cost of the Cholesky factorization is essentially (i.e., apart
from some square roots) the same as that for the LDLT factorization. Because

78 Linear Systems of Equations

in Algorithm 2.2.6 only the upper triangle of A is used and changed, one could
halve the storage location requirement by storing the strict upper triangle of A
in a vector of length n (n -1)/2 and the diagonal of A (or its inverse) in a vector
of length n, and adapting the corresponding index calculations. Alternatively,
one can keep a copy of the diagonal of the original A in a vector a; then, one has
both A and its Cholesky factor available for later use. This is useful for iterative
refinement (see Section 2.6).

Normal Equations

An overdetermined linear system, with more equations than variables, is solv-
able only in special cases. However, approximation problems frequently lead
to the problem of finding a vector x such that Ax ti b for some vector b, where
the dimension of b is larger than that of x.

A typical case is that the data vector is supposed to be generated by a stochastic

model y = Ax + s, where s is a noise vector with well-defined statistical prop-
erties. If the components of s are uncorrelated, random variables with mean zero
and constant variance, the Gauss-Markov theorem (see, e.g., Bjorck [8]) asserts
that the best linear unbiased estimator (BLUE) for the parameter vector x can
be found by minimizing the 2-norm II y - Ax 112 of the residual. Because then

Ily-Ax 112=IIs1128

is also minimal, this way of finding a vector x such that Ax = y is called the
method of least squares, and any vector x minimizing 11y - Ax 112 is called a
least squares solution of Ax y. The least squares solution can be found by
solving the so-called normal equations (2.1).

2.2.7 Theorem. Suppose that A E (C'""" b E Cm, and AHA is nonsingular.
Then llb - AxII2 assumes its minimum value exactly at the solution x* of the
normal equations

AHAx* = AHb. (2.1)

Proof. Weputr := b - Ax and r* := b - Ax*. Then (2.1) implies that AHr* =
0, whence also (r* -r)Hr* = (A(x -x*))Hr* = (x -x*)HAHr* = 0. It
follows from this that

11r112 = rHr + r*H(r* - r) = r*Hr* - (r* - r)Hr
= r*Hr* + (r* - r)H(r* - r) = IIr*I12 + IIr* - r112.

2.2 Variations on a Theme 79

Therefore, 11r112 > 1lr*112, and equality holds precisely when r* = r. In this2 2

case, however,

AHA(x - x*) = AH(r - r*) = 0;

and because of the regularity of AHA, the minimum is attained just for
x* =x.

Thus, the normal equations are obtained from the approximate equations by
multiplying with the transposed coefficient matrix. The coefficient matrix A H A

of the normal equations is Hermitian because (AHA)H = AH(AH)H = AHA,
and positive semidefinite because xHAHAx = JlAxii2 > 0 for all x. If A has
rank n, then AHA is positive definite because xHAHAx = 0 implies Ax = 0,
and hence x = 0.

In cases where the coefficient matrix A H A is well-conditioned (such as for
the approximation of functions by splines discussed in Section 3.4), the normal
equations can be used directly to obtain least squares solutions, by forming a
Cholesky factorization AHA = LLH, and solving the corresponding triangu-
lar systems of equations. However, frequently the normal equations are much
more ill-conditioned than the underlying minimization problem; the condition
number essentially squares. Thus for a problem in which half of the significant
figures would be lost because of the condition of the least squares problem, one
would obtain no significant figures by solving the normal equations.

2.2.8 Example. In curve fitting, the approximation function is often repre-
sented as a linear combination of basis functions. When these basis functions
have a similar behavior, the resulting equations are usually ill conditioned.

For example, let us try to compute with B = 10, L = 5, and optimal rounding
the best straight line through the three points (s;, t,) = (3.32, 4.32), (3.33, 4.33),
(3.34, 4.34). Of course, the true solution is the line s = t + 1. The formula
s = xI It + x2 leads to the overdetermined system Ax = b, where

3.32 1 4.32
A - 3.33 1 , b = 4.33

3.34 1 4.34

For the normal equations (2.1), one obtains

AHA ti
(33.997 9.991 AHb

(42.997)9 3

80 Linear Systems of Equations

The Cholesky factorization gives AHA LLT with

L ti (5.7678 0
1.7320 0.014142

and solving the system of equations gives

L-'AHb ti
7.4997)
0.001

and from this one obtains the (completely false) "solution"

1.2790
x -- (LH)-'L-'AHb ti

0.070817

Indeed, a computation of the condition number cond,,, (AHA) ti 3.1 . 106 (see
Section 2.5) reveals that with the accuracy used for the computations, one could
have expected no useful results.

Note that we should have fared much better by representing the line as a
linear combination s = xl (t - 3.33) + x2; one moral of the example is that one
should select good basis functions before fitting data. (A good choice is usually
one in which different basis functions differ in the number and distribution of
the zeros within the interval of interest.)

The right way to solve moderately ill-conditioned least squares problems is
by means of a so-called orthogonal factorization (or QR factorization) of A
into a product A = QR of a unitary matrix Q and an upper triangular matrix
R. Here, a matrix Q is called unitary if QHQ = I. A unitary matrix with real
entries is called orthogonal, and in this case, QT Q = I.

From an orthogonal factorization, the least squares solution of Ax ti y can
be computed by solving the triangular system

Rx = QHb. (2.2)

Indeed, because Q H Q = I, AH A=R H QH Q R = RH R, so that R is the (trans-
posed) Cholesky factor of AH, and the solution x* of (2.2) satisfies the normal
equations because

AHAx* = RHRx* = RHQHb = AHb.

For the stable computation of orthogonal factorizations, we refer to the books
mentioned in the introduction to this chapter. MATLAB provides the orthogonal
factorization via the routine qr, but it automatically produces a stable least

2.2 Variations on a Theme 81

squares solution of Ax ti b by x=A\b, so that the casual user need not to know
the details.

For strongly ill-conditioned least squares problems, even the solution of (2.2)
produces meaningless results. Remarkably, it is still possible to get sensible
solutions of Ax ti b, provided one has some qualitative information about the
desired solution. The key to a good solution is called regularization and involves
the so-called singular-value decomposition (SVD) of A, a factorization into a
product A = U E V H of two unitary matrices U and V and a diagonal matrix
E. For details about the SVD, we refer again to the books mentioned in the
introduction to this chapter; for details about regularization, refer to Hansen [40]

and Neumaier [71].

Matrix Inversion

Occasionally, one must compute a matrix inverse explicitly. (However, as we
shall see, it is inadvisable to solve Ax = b by computing first A-1 and then

x = A-W)
To avoid later repetition, we discuss immediately the numerically stable

case using a permuted factorization, obtained by multiplying the matrix by a
nonsingular (permutation) matrix P (see Algorithm 2.3.7). From a factorization
PA = LR, it is not difficult to compute an explicit inverse of A.

If we introduce the matrices k := R-1 and A := R-1L-1 = RL-', we can
split the computation of the inverse matrix A-' = R-1 L-1 P = AP into three
steps.

2.2.9 Algorithm: Matrix Inversion

STEP 1: Compute a permuted triangular factorization P A = L R (see Algorithm
2.3.7).

STEP 2: Determine R from the equation hl? = I.
STEP 3: Determine A from the equation AL = R.
STEP 4: Form the product A-1 = AP.

The details for how to proceed in steps 2 and 3 can be obtained as in Theorem
2.1.8 by expressing the matrix equations in components,

RiiRi! = 1,

RijRjk=O ifi <k,
j =i :k

E AijLjk = Rik,
j=k:n

82 Linear Systems of Equations

and solving for the unknown variables in an appropriate order (see Exercise 14).
For the calculation of an explicit inverse A-l, we need 2n3 + O(n2) operations
(see Exercise 14); that is, three times as many as for the triangular factorization.
For banded matrices, where the inverse is full, this ratio is even more pessimistic.

In practice, the computation of the inverse should be avoided whenever pos-
sible. The reason is that, given a factorization, the solution of the resulting
two triangular systems of equations takes only 2n2 + O(n) operations. This
is essentially the same amount as needed for the multiplication A-lb when an
explicit inverse is available. However, because the inverse is much more expen-
sive than the factorization, there is no incentive to compute it at all, except in
circumstances where the entries of A-l are of independent interest. In other ap-
plications where matrix inverses are used, it is usually possible (and profitable)
to avoid the explicit inverse, too.

2.3 Rounding Errors, Equilibration, and Pivot Search

We now consider techniques that ensure that the solution of linear systems is
computed in a numerically stable way.

Rounding Errors and Equilibration

In finite precision arithmetic, the triangular factorization is subject to rounding
errors. We first present a short and very simplified argument that serves to
identify the main source of errors; a detailed error analysis is given at the end
of this section (Theorem 2.3.9).

For simplicity, we suppose first that a rounding error appears only in a single
multiplication Li j Rjk; say, for i = p, j = q, k = r. In this case, we have

Rpr = Apr - 57 LpjRjr - LpgRgr(I - Epr)
j=l.p-l

joq
= Apr + LpgRgrSpr - LpjRjr,

j=l:p-l

where IEprI < BIf we define the matrix A obtained by changing in A the
(p, r)-entry to

Apr := Apr + LpgRgr£pr,

the triangular factorization LR (in which Rik := Rik for (i, k) (p, r)) that
we obtain instead of LR may be interpreted as the exact triangular factorization
of the matrix A. If I L pq Rqr I >> Apr; then this corresponds to a large relative
perturbation I A pr - Apr I / I A pr I of Apr, and the algorithm is unstable.

2.3 Rounding Errors, Equilibration, and Pivot Search 83

If rounding errors arise from other arithmetic operations in addition to mul-
tiplication, one finds similar expressions. Instability always arises if the mag-
nitude of a term Lid Rik is very large compared with the magnitudes of the
elements of A. In particular, if a divisor element Rii has a very small magni-
tude, then the magnitudes of the corresponding elements Lki (k > i) are large,
causing instability. For a few classes of matrices (positive definite matrices and
H-matrices; cf. Corollary 2.1.9), it can be shown that no instability can arise.
For general matrices, we must ensure stability by avoiding not only vanishing,
but also small divisors Rii. This is achieved by row (or sometimes column)
permutations.

One calls the row permuted into the ith row the ith pivoting row and the
resulting divisors Rii the pivot elements; the search for a suitable divisor is called
the pivot search. The most popular pivot search is column pivoting, also called
partial pivoting, which usually achieves stability with only O (n2) additional
comparisons. (The stability of Gaussian elimination for balanced matrices may
be further improved by so-called complete pivoting, which allows row and
column permutations. Here, the element of greatest magnitude in the remainder
of the matrix becomes the pivot element. However, the cost is considerably
higher; 0(n3) comparisons are necessary.)

In column pivoting, one searches the remainder of the column under consid-
eration for the element of greatest magnitude as the pivot element. Because in
the calculation of the Lki (k > i) the pivot element is a divisor, it follows that,
with column pivoting, I Lki I < 1. This implies that

I RikI :! IAikl + IRik1,
J=1:i-t

so that by an easy induction argument, all Rik are bounded by the expression
K, maxi,k IAikI, where the factor K can, in unusual cases, be exponential in
n, but typically varies only slowly with n. Therefore, if A is balanced (i.e.,
if all nonzero entries of A have a similar magnitude), then we typically have
numerical stability.

To balance a matrix with entries of widely different magnitudes, one usually
uses some form of scaling. In compact notation, scaling of a matrix A corre-
sponds to the multiplication of A by some diagonal matrix D; left multiplication
by D corresponds to row scaling (i.e., multiplication of each row by the cor-
responding diagonal element), and right multiplication by D corresponds to
column scaling (i.e., multiplication of each column by the corresponding diag-
onal element). For example, if

84 Linear Systems of Equations

then

ea eb
DA = fc fd ,

(ea f bl
ec f d

AD =

If one uses row scaling only, the most natural strategy for balancing A is row
equilibration (i.e., scaling each row such that the absolute values of its entries
sum to 1). This is achieved for the choice

-1

Dii JAikI
=1:n

(3.1)

An optimality property for this choice among all row scalings (but not among
two-sided scalings) is proved in Theorem 2.5.4. (Note that (3.1) is well de-
fined unless the ith row of A vanishes identically; in this case, we may take
w.l.o.g. Dii = 1.) In the following MATLAB program, the vector d contains
the diagonal entries of D.

2.3.1 Algorithm: Row Equilibration

d=ones(n,1);

for i=1:n,

dd=sum(abs(A(i,:));

if dd>0,

d(i)=1/dd;

A(i,:)=d(i)*A(i,:);

end;

end;

Although it usually works well, scaling by row equilibration only is sometimes
not the most appropriate way to balance a matrix.

2.3.2 Example. Rice [82] described the difficulties in scaling the matrix

1 10+20 10+10 1

10+20 10+20 I 1 o+40
A -

O-riv
1 I 10+40 O+50

1 10+40 10+10
1

to a well-behaved matrix; row equilibration and column equilibration
emphasize very different components of the matrix, and it is not at all clear
which elements should be regarded as large or small. However, using the

2.3 Rounding Errors, Equilibration, and Pivot Search 85

scaling matrices

D = diag(1, 10-15, 10-20, 10-25),

D' = diag(10-5, 10-20, 10-25, 10-30)

and the permutation matrix (cf. below)

0 1 0 0

1 0 0 0_
P

0 0 0 1 '

0 0 1 0

we get the strongly diagonally dominant matrix

1 10-15 10-40 10-1

PDAD' = 10-5 1 10-15 io-30

10-30 10-5 I iO-55
10-15 10-40 10-5 1

which is perfectly scaled for Gaussian elimination. (For a general method to
scale and permute a matrix to so-called I -matrix form, where all diagonal
entries are 1 and the other entries have absolute value of at most 1, see Olschowka

and Neumaier [76]).

Row Interchanges

We now consider what to do when no triangular factorization exists because
some divisor R;; is zero. One usually proceeds by what is called column pivoting
(i.e., performing suitable row permutations).

In linear algebra, permutations are written in compact notation by means of
permutation matrices. A matrix P is called a permutation matrix if, in each row
and column of P, the number 1 occurs exactly once and all other elements are
equal to 0. The multiplication of a matrix A with P on the left corresponds
to a permutation of rows; multiplication with P on the right corresponds to a
permutation of columns. For example, the permutation matrix

P1=(I ?)='
leaves A E C2x2 unchanged; the only other 2 x 2 permutation matrix is

P2 = 0
10)

,

86 Linear Systems of Equations

and we have

db c

A symmetric permutation of rows and columns that moves diagonal entries to
diagonal entries is given by replacing A with PA PT ; they may be useful, too,
because they preserve symmetry. Permutation matrices form a group (i.e., prod-
ucts and inverses of permutation matrices are again permutation matrices). This
allows one to store permutation matrices in terms of a product representation by
transpositions, which are simple permutations that only interchange two rows
(or columns), by storing information about the indices involved.

2.3.3 Example. We replace, in the matrix A of Example 2.1.11, the element
A33 = -1 with A33 = -11/2. The calculation is then unchanged up to and
including Step (2b), and we obtain the following diagrams.

(2b)
2 4 -4 2

2 -6 9 -3

-2 -3 -111 3
2 z

1
1

2 3 1

(3a)
/ 2 4 -4 2

2 -6 9 -3

-2 -3 Os 3
2

s1
Z

i 1l

In the next step, division by the element R33 = A33 should occur, among
other things. In this example, however, A33 = 0 (i.e., the division cannot be
performed). This makes an additional step necessary in the previously men-
tioned algorithm: we must exchange the third row with the fourth row. This
corresponds to a row permutation of the initial matrix A.

If one forms the triangular factorization of the matrix PA, then one obtains
just the corresponding permuted diagrams for A, including Step (3a). Because
the third diagonal element A33 is different from zero, one can continue the
process.

Permutation (3b)
2 4 -4 2 2 4 -4 2

2 -6 9 -3 2 -6 9 -3
1 1 1 1 i is

2 2 2 2 2

-2 -2 0 3 -2 -Z OD 3

2.3 Rounding Errors, Equilibration, and Pivot Search 87

(4a)
2 4 -4 2

2 -6 9 -3
1 I 5 i

2 2 2

-2 -3 0 SS
2 2

After Step (4a), the triangular factorization of PA with

1 0 0 0

_ 0 1 0 0
P

0 0 0 1

0 0 1 0

is overwritten over A.
What happens if all elements in the remaining column are equal to zero?

To construct an example for this case, we replace the elements A33 = -1 and
A43 = 3 with A33 = -11/2 and A43 = 1/2 and obtain the following diagrams

(2b) (3a)

2 4 -4 2 2 4 -4 2

2 -6 9 -3 2 -6 9 -3
-2 -3 -11 3 -2 -3 Os 3

2 2 2

1
2 i I 1 2 OS 1

Again, we obtain a zero on the diagonal; but this cannot be removed from the
diagonal by an exchange of the third and fourth rows. If we simply continue,
then the division in Step (3b) leads to L43 = 0/0 (i.e., any value can be taken
for L43). For simplicity, we set L43 = 0 and continue the recursion.

(3b) (4a)
2 4 -4 2 2 4 -4 2

2 -6 9 -3 2 -6 9 -3

3 5S
1 1

5-1 - 0 -l 0
2 2 2

1 1 0D 1 1
1

0
is

2 2
2

Indeed, we can carry out the factorization process formally, obtaining, however,
R33 = 0 (i.e., R, and therefore A, is singular).

It is easy to see that the permuted triangular factorization can be constructed
for arbitrary matrices A in exactly the same fashion as illustrated in the exam-
ples. Therefore, the following theorem holds.

88 Linear Systems of Equations

2.3.4 Theorem. For each n x n matrix A there is at least one permutation
matrix P such that the permuted matrix PA has a normalized triangular fac-
torization PA = LR.

Noting that det P det A = det(PA) = det(LR) = det L det R = det R and
using the permuted system PAx = Pb in place of Ax = b, we obtain the fol-
lowing final version of Algorithm 2.1.6.

2.3.5 Algorithm: Solve Ax = b with Pivoting

STEP 1: Calculate a permuted normalized triangular factorization PA = LR.
STEP 2: Solve Ly = Pb.
STEP 3: If R is nonsingular, solve Rx = y.

The resulting vector x is the solution of Ax = b. Moreover, det A = det R/
det P.

2.3.6 Remarks.

(i) If several systems of equations with the same coefficient matrix A are
to be solved, then only steps 2 and 3 must be repeated. Thus we save a
considerable amount of computing time.

(ii) P is never formed explicitly, but is represented as a product of single row
exchanges (transpositions); the number of the row exchanged with the ith
row in the ith step is stored as the ith component of a pivot vector.

(iii) As a product of many factors, det R is prone to overflow or underflow,
unless special precautions are taken to represent it in the form a Mk for
some big number M, and updating k occasionally. The determinant det P
is either +I or -1, depending on whether an even or an odd number of
exchanges were carried out.

(iv) log Idet Al = log Idet RI is needed in many statistical applications involv-
ing maximum likelihood estimation.

Pivot Search with Implicit Scaling

As we have seen, scaling is important to obtain an equilibrated matrix for
which column pivoting may be applied sensibly. In practice, it is customary to
avoid explicit scaling. Instead, one uses for the actual factorization the original
matrix and performs the scaling only implicitly to determine the pivot element of
largest absolute value. If we would start the factorization with the scaled matrix
DAD' in place of A, the factors L and R would scale to DLD-' (because of

2.3 Rounding Errors, Equilibration, and Pivot Search 89

normalization) and DRD'. Thus, R scales as A. Hence, in the ith step, the pivot
row index j would be selected by the condition

DjjAjiD'i > DkkAk;D' for all k > i,

One sees that in this condition, the D'ii cancel and only the row scaling affects
the choice of the pivot row. Writing dk := Dkk, we find the selection rule

Choose j > i such that djAji = max{dkAk; I k > i }.

This selection rule can now be used together with the unscaled A, and one
obtains the following algorithm.

2.3.7 Algorithm: Permuted Triangular Factorization with Implicit Row
Equilibration and Column Pivoting

find scale factors

d=ones(n,1);

for i=1:n,

dd=sum(abs(A(i,:));

if dd>O, d(i)=1/dd; end;

end;

main loop

for i=1:n,

find possible pivot elements

for k=i:n,

A(k,i)=A(k,i)- A(k,1:i-1)*A(1:i-l,i);

end;

find and save index of pivoting row

[val,j]=max(d(i:n).*abs(A(i:n,i)));j=i-1+j;p(i)=j;

% interchange rows i and j
if j>i,

A([i,j],:)=A([j,i],:);

d(j)=d(i); % d(i) no longer needed

end;

for k=i+1:n,

find R(i,k)

A(i,k)=A(i,k)-A(i,1:i-1)*A(1:i-l,k);

complete L(k,i)

if A(i,i) "= 0, A(k,i)=A(k,i)/A(i,i); end;

end;

end;

90 Linear Systems of Equations

Note that is necessary to store the pivot indices in a vector p because this
information is needed for the solution of a triangular system Ly = Pb; the
original right side b must be permuted as well.

2.3.8 Algorithm: Solving a Factored Linear System

% forward elimination
for i = 1 : n,

j = pi; if j > i, b([i, j]) = b([j, i]); end;

yj = bi - > AikYk;
k=1:i-I

end;

% back substitution
ier = 0;
fori=n: -1 :1,

if Aii == 0, ier = 1; break; end;

xi = (yi - > Aikxk)/Aii;
k=i+I:n

end;

% ier = 0: A is nonsingular and x = A Ib
% ier = 1: A is singular

Rounding Error Analysis for Gaussian Elimination

Rounding errors imply that any computed approximate solution i is in general
inaccurate. Already, rounding the components of the exact x* gives x with
xk = xk (l + Ek), lek 1 < s (E the machine precision), and the residual b - Al,
instead of being zero, can be as large as the upper bound in

lb - All = IA(x* - X)I < IAllx* - xl < EIAI lx*l.

We now show that in the execution of Gaussian elimination, the residual usually
is not much bigger than the unavoidable bound just derived. Theorem 2.5.6 then
implies that rounding errors have the same effect as a small perturbation of the
right side b. We may assume w.l.o.g. that the matrix is already permuted in such
a way that no further permutations are needed in the pivot search.

2.3.9 Theorem. Let x be an approximation to the solution of the system of
linear equations Ax* = b with A E (C"" and b E (C", calculated in finite-
precision arithmetic by means of Gaussian elimination without pivoting. Let E
be the machine precision. If the computed triangular matrices are denoted by

2.3 Rounding Errors, Equilibration, and Pivot Search 91

L and R and 5ns < 1, then

lb - MI <5nelLllRllxl

Usually (after partial pivoting), the entries of I L I I R I have the same order of
magnitude as A; then, the errors in Gaussian elimination with partial pivoting are
comparable to those made in forming products Ax. However (cf. Exercise 11),
occasionally unreasonable pivot growth may occur such that I L I I R I has much
bigger entries than A. In such cases, either complete pivoting (involving row
and column interchanges to select the absolutely largest pivot element) or an
alternative factorization such as the Q R-factorization, which are provably stable
without exception, should be used.

To prove the theorem, we must know how the expressions of the form

bm := (c_>aibi)/am , am0 0 (3.2)

that occur in the recurrence for the triangular factorization and the solution
of the triangular systems are computed. We assume that the rounding errors
in these expressions are equivalent to those obtained if these expressions are
calculated with the following algorithm.

2.3.10 Algorithm: Computation of (3.2)

SO=C;

for j=1 :m-l'
Si = si-I - aibi;

end;

bm = sm-I/am;

Proof of Theorem 2.3.9. We proceed in 5 steps.

STEP 1: Let E; := is/(1 - is)(i < 5n). Then

Jul <Ei, IqI <E=== <Ei+I, (3.3)

because for the positive sign,

IRI =lrl+a(l+n)I<E+E;(l+e) (i + 1)E
1-is

92 Linear Systems of Equations

and for the negative sign,

1+q
Ei+E = (i+1)E-iE2
1-E 1-(i+1)E+ie2<E'+1

STEP 2: We show that with the initial data ai, bi (i = 1, ... , m - 1) and c, the
calculated values s j satisfy the relation

c = aibi(1 + ai) + sj(1 + j) (j = 0, 1,..., m - 1) (3.4)

i=]:j

for suitable ai and Pi with magnitude <Ei. This clearly holds for j = 0
with 00 := 0. Suppose that (3.4) holds for some j < m - 1. Because
the rounding is correct,

Sj+1 = lsj - aj+l bj+1 (1 + µ))(1 + v) with JAI, IvI < e.

Solving for sj and multiplying by (1 + fij) gives, because of (3.3),

3j(1 + $j) = 3j+1(1 + fj)(1 + v)-1 + aj+Ibj+1(1 + pj)(1 +A)

= sj+](1 + F'j+1) + aj+1bj+](1 + aj+1)

with 1 aj+1 1, Ifj+1 I < Ej+1. From the inductive hypothesis (3.4), we
obtain

c = aibi(1 + ai) + 9j0 + fij)

i=1:j

= T a4bi(1+(xi)+s"j+1(1+F'j+1)
i=1:j+1

STEP 3: From bm = (Sm-1 /am) (1 + 77), 1 ij I < E, and (3.4), it follows that

j= aibi(1+ai)+ambm(1+pm-1)(1+17)-1

i=1:m-1

_ aibi(1 +ai),

whence, by (3.3), lam I < Em; we therefore obtain

i-1:m
ai bi ai

i=l:m
< -EM laillbil

i=1:m

(3.5)

2.3 Rounding Errors, Equilibration, and Pivot Search 93

STEP 4: Applying (3.5) to the recursive formulae of Crout (without pivoting)
gives, because si < sn for i < n,

Aik - T Lij R jk
j=1:i

Aki - E Lkj R ji
j=1:i

ILijIIRjkI,
j=1:i

<En E ILkjllRjil
j=1:i

if i < k, so for the computed triangular factors L and R of A,

IA - LRI <EnILIIRI.

Similarly, for the computed solutions y, x of the triangular systems
Ly=b,Rx=y,

bi - E Lijyj
j=1:i

<En E 1Lijllyjl,
j=1:i

Yi - E Rijxj
j=1:n

and we obtain

<En E IRijllxjl,
j=1:n

lb - LYl < EnILIIYI,

ly - Rxl :! EnlRlixl.

STEP 5: Using steps 3 and 4, we can estimate the residual. We have

lb - Axl = Ib-Ly-L(Rx-y)+(LR-A)uI
lb - Lyl + ILIIRI - yI + ILR - Allxi

En(ILIIYI + ILIIRIIxI + ILIIRIIxI)

En(ILlly - RxI + 3ILIIRIIxI)

sn(E. + 3)ILIIRIIxi.

By hypothesis, 5ns < 1, so sn = ne/(1 - ne) < 4ns < 1, whence the
theorem is proved.

Rounding error analyses like these are available for almost all numerical
algorithms that are widely used in practice. A comprehensive treatment of error
analyses for numerical linear algebra is in Higham [44]; see also Stummel

94 Linear Systems of Equations

and Hainer [92]. Generally, these analyses confirm rigorously what can be
argued much simpler without rigor, using the rules of thumb given in Chapter 1.

Therefore, later chapters discuss stability in this more elementary way only.

2.4 Vector and Matrix Norms

Estimating the effect of a small residual on the accuracy of the solution is a
problem independent of rounding errors and can be treated in terms of what
is called perturbation theory. For this, we need new tools; in particular, the
concept of a norm.

A mapping II II : Cn R is called a (vector) norm if, for all x, y E (Cn:

(i) Ilx II ? 0 with equality iff x = 0,
(ii) Ilaxll = IaIllxll for a E C,

(iii) llx + yll Ilxll + IIYII.

The most important vector norms are the Euclidean norm

Ilx 112 E IX, IZ = xnx,

the maximum norm

llxllco := max Ixil,

and the sum norm

Ilxlll := T, ixii.
i=l:n

In a finite-dimensional vector space, all norms are equivalent, in the sense that
any 6-neighborhood contains a suitable E'-neighborhood and is contained in a
suitable E"-neighborhood (cf. Exercise 16). However, for practical purposes,
different norms may yield quite different measures of "size." The previously
mentioned norms are appropriate if the objects they measure have components
of roughly the same order of magnitude.

The norm of a sum or difference of vectors can be bounded from below as
follows:

IIx±YII>-IlxUI - IIYII

and

llx ± Yll ? IIYII - llxll

2.4 Vector and Matrix Norms 95

because, for example,

11x 11 - IIYII = Ilx: Y f Y11 - IIYII
Ilx±Yll+IIYII - IIYII

= 11x±Yll

A metric in C' is defined through d (x, y) = fix -yII (Restricted to real 3-space
,the "ball" consisting of all x with II x - xo II < e is, for II.112,11.11 ,, and II III

a sphere-shaped, a cube-shaped, and an octahedral-shaped s-neighborhood of
xo, respectively.)

The matrix norm belonging to a vector norm is defined by

IIAII := sup{IIAxII I llxll = 1}.

The relations

Cnxn xECnIiAxll<IlA11IIxIl for all AC

I1ABI1 11A1111B11 for all A, B E cCnxn

11aA1l = I«IIIA11 for all A EC"x", a E C,

II i ll = 1

can be proved easily from the definition.
The following matrix norms belong to the vector norms II - 112, II II,, and

IIAII2=sup{ x"AHAXIx"x=1}
maximal eigenvalue of AHA;

is called the spectral norm; by definition, for a unitary matrix A, II A 112 =

IIA-'112=1.

IIAII=max TAd li=l,...,n
k

is called the row sum norm, and

IIAII1 =max ElAikl Ik =1,...,n

the column sum norm. We shall derive only the formula for the row sum norm.

96 Linear Systems of Equations

We have

IIAII, = Sup{IIAxII. IIIxII = 1}

sup Max
II:

Aikxk
IXkI<_I k

max IAikl>

k

and equality holds because the maximum is attained for xk = IAik I/Aik.
Obviously, the calculation of the spectral norm is more difficult than the

calculation of the row sum norm or the column sum norm, but there are some
useful, easily computable upper bounds.

2.4.1 Proposition. If A E Cnxn then

(i) II A 112 < II A II i II A II ., with equality, e.g., when A is diagonal.

(ii) IIAIIz _< II A II F Eik IAik 12; the equality sign holds if and only if

A = xyH with x, y E Cn (i.e., the rank of A is at most 1). IIAIIF is
called the Frobenius norm (or Schur norm) of A.

(iii) If A is Hermitian then II A 112 < II A II for every matrix norm II II

Proof. We use the fact that for any matrix norm II II and for each eigenvalue
A of a matrix A we have 1X1 < II A II, because for a corresponding eigenvector x

we have

1x1 = llAxll/11x11 = IlAxll/11x11 < IIAII.

(i) Let Amax be the eigenvalue of A H A of maximum absolute value. Then

IIA112 = 1),m.1 < IIAHAII0 IIAHII0IlAII00 = IIAII1 IIAII00.

(ii) By definition,

IIA112 = sup VI(Ax)H(Ax)
IIx112=1

and the supremum is attained for some x = x because of the compactness
of the unit ball. By the Cauchy-Schwarz inequality,

(Ai:x)2 < IIAi:11211x112 = IIAi:112 (i = 1, ... , n)

2.4 Vector and Matrix Norms 97

and therefore

IIA 112 = (Az)H(Az) _ IAi:x12 < IIAi:112 = IAik12.
i i i,k

Equality holds when equality holds in the Cauchy-Schwarz inequality
(i.e., when for all i the vectors (Aj:)T and z are linearly dependent). This
is equivalent to saying that the rank of the matrix A is < 1. Thus A may
be written as an outer product

A = (Y1x, y2x, ... , ynx) = xyH.

(iii) If Eli are the eigenvalues of the Hermitian matrix A, then A H A = A2
has the eigenvaluesA . Let Amax be the eigenvalue of A of maximum
absolute value. Then, by (4.1),

IIAII2 = Amax = IAmax1 IIAII.

Norms may serve to prove the nonsingularity of matrices close to the identity.

2.4.2 Proposition. If 111 - A 11 < 0 < 1, then A is nonsingular and

IIA-' II 1/(l -).

Proof. Suppose that Ax = 0. Then

Ilxll=llx-Ax11=II(1-A)xll<III-All -IIxlI<flllxll.

Because iB < 1 we conclude that Ilx II = 0, hence x = 0. Thus Ax = 0 has only
the trivial solution, so A is nonsingular. Furthermore, it follows from

IIA-'II<IIA-' -III+IIIII<IIA-'Il.III-All

that 11A-' 11 < 1/(1 - P).

M-Matrices and H-Matrices

There are important classes of matrices which satisfy a generalization of the
criterion in Proposition 2.4.2. We call A an H-matrix if diagonal matrices D1
and D2 exist such that III - DiAD216, < 1. By the proposition, an H-matrix
is nonsingular. Diagonally dominant matrices are matrices in which the weak

98 Linear Systems of Equations

row sum criterion

IAiil > 1AikI fori = 1,...,n (4.2)
k#i

holds. Diagonally dominant matrices are H-matrices if strict inequality holds
in (4.2) for all i. (To see this, use D, = Diag(A)-' and D2 = I.) In fact, strict
inequality in (4.2) for one i suffices if, in addition, A happens to be "irreducible";
see, e.g., Varga [94].

M-matrices are H-matrices with the sign distribution

Aii > 0, Aik < 0 for i k;

there are many other equivalent definitions of M-matrices. Each M-matrix A is
nonsingular and satisfies A-i > 0 (see Exercise 19). This inequality mirrors the
fact that M-matrices arise naturally as discretization of inverse positive elliptic
differential operators; but they arise also in other context (e.g., input-output
models in economics).

Monotone Norms

The absolute value of a vector or a matrix is defined by replacing all components
with their absolute value; for example,

For x, y E C and A, B E C '1 one easily sees that

Ix ± YI < IxI + IYI, IAxI < IAIIxI,
IA ± BI < IAI + IBI, IABI < IAIIBI.

A norm is called monotone if

Ix l<Y= IIx1I = IlIX lll<IIYII.

All vector norms considered above are monotone. The analogous result

Al I< B = IIAII = IIIAIII < IIBII

holds for the matrix norms II 11 1 and II II., but for II. 112 we only have

IAI <B = IIA112<111A1112<11B112

2.5 Condition Numbers and Data Perturbations 99

2.4.3 Proposition. A vector norm is monotone iff, for all diagonal matrices
D, the corresponding matrix norm satisfies

IIDII =max{IDjjIIi = 1,...,n}. (4.3)

Proof. Let II II be a monotone vector norm. Because I Dj, I Ile(') II = II D1; e(`) II =

IIDe(')II < IIDIIIIe(')II, we have lD+,I < IIDII, hence IIDII > max lDiil =:a.
Because l Dx l < a Ix I for all x, monotony implies II Dx lI = II I Dx I II < II a I x I II =
allxll, hence IIDII = sup IIDxII/IIxII <a. Thus IIDII = a, and (4.3) holds.

Conversely, suppose (4.3) holds for all diagonal D. We consider the special
diagonal matrix D = Diag(sign(x1), ..., where

sign(x) _
x/ixl ifx:A0,

11 ifx =0.

Then IIDII=IID-'11=1 and x=Dlxl, hence IIxII=IlDlxlll < IIDIIIIIxIII=
I I Ix I I I = IID-'x I I < I) D-' I I IIx I I = I I x I I . Thus we must have equality through-
out; hence IIx I I = I I Ix 111. Now suppose Ix I < y. W e take D = Diag(lxi I/yi , ...,

Ix,I/y,,) and find IIDII < 1, IxI = Dy, hence IIIx1II = IIDy1I < IIDIIIly1I < Ily1I.
Hence, the norm is monotone.

2.5 Condition Numbers and Data Perturbations

As is well known, a matrix A is nonsingular if and only if det A 0 0. Although
one can compute the determinant efficiently by a triangular factorization, check-
ing whether it is zero is difficult to do numerically. Indeed, rounding errors in the

numerical calculation of det A imply that the calculated value of the determinant
is almost always different from zero, even when the exact value is det A = 0.
Thus the unique solvability of Ax = b would be predicted from an inac-
curate determinant even when in reality no solution or infinitely many solutions
exist.

The size of the determinant is not even an appropriate measure for closeness
to singularity! For example, det(aA) = a" det A, so that multiplying a 50 x 50
matrix by a harmless factor of 3 increases the determinant by a factor of
3" > 1023.

For the analysis of the numerical solution of a system of linear algebraic
equations, however, it is important to know "how far from singular" a given
matrix is. We can then estimate how much error is allowed in order to still
obtain a useful result (i.e., in order to ensure that no singular matrix is found).
A useful measure is the condition number of A; it depends on the norm used

100 Linear Systems of Equations

and is defined by

cond(A) := IIA -'-111 - 11 All

for nonsingular matrices A; we add the norm index (e.g., cond',' (A)) if we refer

to a definite norm. For singular matrices, the condition number is set to oo.
Unlike for the determinant,

cond(aA) = cond(A) for a E (C.

The condition number indeed deserves its name because, as we show now, it
is a measure of the sensitivity of the solution x* of a linear system Ax* = b to
changes in the right side b.

2.5.1 Proposition. If Ax* = b then, for arbitrary X,

IIx*-XII: IIA-'II.Ilb-AXII (5.1)

and

IIx* - X11 < cond(A)
IIb - AXII

IIx* II IIbII

Proof (5.1) follows from

and (5.2) then from

(5.2)

IIbII = IIAx*II < IIAII IIx*ll. 0

The condition number also gives a lower bound on the distance from singularity
(For a related upper bound, see Rump [83]):

2.5.2 Proposition. If A is nonsingular, and B is a singular matrix with

IB-Al<81AI, (5.3)

then

8 > 1/cond(D,AD2)

for all nonsingular diagonal matrices D1, D2.

2.5 Condition Numbers and Data Perturbations 101

Note that (5.3) specifies a componentwise relative error of at most 3; in partic-
ular, zeros are unperturbed.

Proof. Because (5.3) is scaling invariant, it suffices to consider the case where
D, = D2 = I. Because B is singular, then so is A-' B, so, by Proposition 2.4.2,
III - A-' B II > 1, and we obtain

1<III-A-'BII
=11A-'(A - B) 11 <IIA-'IIIIB -AII

11A-' II II 81A111=Scond(A),

whence 3 > 1/cond(A).

In particular, a matrix that has a small condition number cannot be close to a
singular matrix. The converse is not true because the condition number depends
strongly on the scaling of the matrix, in a way illustrated by the following
example.

2.5.3 Example. If

A
0.005 1:-

1 1)

then

1 (-I 1A_i

0.995 1 -0.005

IIAIIoo =2, IIA-' II =2//0.995, and condom(A) 4. Now

D := 1200 0
)

DA = 1
2001

whence

(DA)-'
199

(-] 200),

IIDA11. =201, II(DA)-' IIA =201/199, and cond,,,(DA) ti 200. So the con-
dition number is increased by a factor of about 50 through scaling.

The following theorem (due to van der Sluis [93]) shows that equilibration
generally improves the condition number; in particular, the condition number
of the equilibrated matrix gives a better bound in Proposition 2.5.2.

102 Linear Systems of Equations

2.5.4 Theorem. If D runs through the set of nonsingular diagonal matrices,
then cond,,(DA) is minimal for

Dn=Vj:IAikI (i=l,...,n), (5.4)
k

that is, if

YI(DA)ik1=1 fori=l,...,n.
k

Proof. Without loss of generality, let A be scaled so that >k I Aik I = 1 for all i.
If D is an arbitrary nonsingular diagonal matrix, then

IIDAIIoo=max {IDI IAikI} = max IDiI = IIDII;
k

so

cond.(A) = IIA-'IIcllA11co= II(DA)-'DII<
II(DA)-'II.IIDII.=II(DA)-'II.IIDAII.

= cond.(DA).

To compute the condition number, one must usually have the inverse of A
explicitly, which is unduly expensive in many cases. If A is an H-matrix, we
can use Proposition 2.4.2 to get an upper bound that is often (but not always)
quite reasonable.

If one is content with an approximate value, one may proceed as follows,
using the row-sum norm 11 A-' Iloo Let si be the sum of the magnitudes of the
elements in the ith row of A-'. Then

IIA-'I1oo=max{siIi=1,...,n}=si0

for at least one index io. The ith row of A-' is

f(i) T e(`) TA-1

If a triangular factorization PA = LR is given, then f (`) is calculated as the
solution of the transposed system

ATf(')=e(').

We solve RT y = e(i), LT z = y, and set f () = PT z. If we were able to guess the
correct index i = io, then we would have simply si = 11 A-' II ; for an arbitrary

2.5 Condition Numbers and Data Perturbations 103

index i, we obtain a lower bound s, for IIA -' II oo If d is an arbitrary vector with

I d I = e, where e is the all-one vector, then

I(A-'d)iI =e`)T IA-'dl < e(i)TIA-'I Idl = I f(`)ITe=si.

The calculation of I (A-1 d)i I for all i is less expensive than the calculation of
all si, because only a single linear system must be solved, and not all the f (').
The index of the absolutely largest component of A-'d would therefore seem
to be a cheap and good substitute for the optimal index io.

Among the possibilities ford, the choice d := sign(A-Te) (interpreted com-
ponentwise) proves to be especially favorable. For this choice, we even obtain
the exact value si0 = IIA-' II,, whenever A-' has columnwise constant sign!
Indeed, the ith component ai of a := A-T e then has the sign of the ith column
of A-', and because d, = sign(ai), the ith component of A-'d satisfies the
relation

I(A-'d)iI=e(i)TIA-'dl=e(i)TIA-'I Idl=si.

2.5.5 Algorithm: Condition Estimation

STEP 1: Solve AT a = e and set d = sign(a).
STEP 2: Solve Ac = d and find i * such that I ci> I = maxi Ici I.
STEP 3: Solve AT f = e('*) and determine s = I f I T e.

Then IIA-1 II,, > s and often equality holds. Thus s serves as an estimate of

IIA-' ll..

Indeed, for random matrices A with uniformly distributed Aik E [-1, 1],
equality holds in 60-80% of the cases and 11 A-' Iloo < 3s in more than 99% of
the cases. (However, for specially constructed matrices, the estimate may be ar-
bitrarily bad.) Given an LR factorization, only 0(n2) additional operations are
necessary, so the estimation effort is small compared to the factorization work.

Data Perturbations

Often the coefficients of a system of equations are only inexactly known and
we are interested in the influence of this inexactness on the solution. In view
of Proposition 2.5.1, we discuss only the influence on the residuals, which is
somewhat easier to determine. The following basic result is due to Oettli and
Prager [75].

104 Linear Systems of Equations

2.5.6 Theorem. Let A E C0 " and b, i E C". Then for arbitrary nonnegative
matrices AA E ll8""" and nonnegative vectors Ab E R", the following statements

are equivalent:

(i) There exists A E C" "" and b E C" with Ai = b, I A - Al < AA, and
lb - bl < Ob.

(ii) The residual satisfies the inequality

lb-A.I<ob+AAlil.

Proof. It follows from (i) that

lb-MI =lb-b+(A-A)il<lb-bl+IA-Al lil<Ab+AAlil;

that is, (ii) holds.
Conversely, if (ii) holds, then we define qi as the ith component of the residual

divided by the ith component of the right side of (ii); that is,

bi - >,k Aikxk
qi

_
- (Ob)i + Y-k(AA)iklxlk

By assumption, Iqi I < 1. We define A E C"' and b E C" by

Aik Aik + qi (AA)ik/sign(ik), (i, k =1, ... > n),

bi bi - qi (Ab)i, (i =1, ... , n),

with the complex sign

sign(x)
Fx/IxI if x:0,

1 ifx=0.

< AA,(However, note that MATLAB evaluates sign(0) as 0.) Then IA - Al
lb-bl<Ab,andfori=l,...,n,

(b - Ai)i = bi - qi (Ab)i - T (Aik + qi (AA)ik/ sign(xk))xk

= (bi - E Aikxk) - qi ((Ob)i + 1:(AA)iklxkl)

= 0,

so Ai = b. Thus (i) is proved.

2.5 Condition Numbers and Data Perturbations 105

2.5.7 Remarks.

(i) The implication (ii) = (i) in Theorem 2.5.6 says that an approximation
x to the solution x* of Ax* = b with small residual can be represented
as the solution of a slightly perturbed system Al = b. (This argument is
a typical backward error analysis: Instead of the more difficult task of
showing how data perturbations affect the solutions, one analyzes whether
the approximations obtained can be interpreted as an exact solution of a
nearby system.)

In particular, if the coefficients of the system Al = b have a relative
error of at most s per component, then IA - Al <elAI and lb - bI < elbI.
An approximation z to x* = A - l b can then be regarded as acceptable if the

relation lb - MI <e(IbI + IAI Ixl) holds (i.e., if s > eo), where

eo:= max
jbi - Ek Aikxk

i I

(Here the natural interpretation for 0/0 is zero.) so is a scaling invariant
quality factor for computed approximations to systems of linear equations.
It is always between 0 and 1, and it is small iff the error in z can be explained
by small relative errors in the original data.

(ii) If we exchange the quantities distinguished by - and *, we can interpret
the implication (i) = (ii) as follows. The solution x* of a system of linear
equations Ax* = b approximates the solution X of a slightly perturbed sys-
tem AX = b with A A and b -- b in the sense that the residual b - Ax*
remains small. As seen in Proposition 2.5.1, the absolute error x* - x can
be a factor of IIA-1 II greater than the residual, and the relative error can
be a factor of cond(A) greater than the relative residual. As the condi-
tion number for function evaluation in Section 1.4, the number cond(A) is
therefore interpretable as the maximal magnification factor of the relative
error.

As an application of Theorem 2.5.6, we prove an easily calculable upper
bound on the distance to a singular matrix.

2.5.8 Proposition. Let.x 0 0, and let

E:= max Ek Aikxk

i Ek IAikxkl
(5.6)

Then there is a singular matrix A with I A - A I< 3 1 A I

106 Linear Systems of Equations

Proof. We have IM I < S I A I jx 1. By Theorem 2.5.6 with b = Ab = 0, there
exists A with Ax = 0 and I A - A I < S I A I. Because z # 0, it follows that A is

singular.

To make 6 small, a sensible choice for i is a solution of

Rx=e', (le,I=...=Ie'l=1) (5.7)

where PA = LR is a normalized triangular factorization that has been deter-
mined by using a column pivot search, and the signs of the e' are chosen during
back substitution such that the lzi I are as large as possible. If A is close to a
singular matrix, then I AX I remains bounded, whereas, typically the solution of
(5.7) determined in this way becomes very large and S becomes tiny.

2.6 Iterative Refinement

The accuracy of the solution that has been calculated with the aid of Gaussian
elimination can be improved by using the method of iterative refinement.

The equality P A= L R is only approximate because of rounding error. It
follows from this that the calculated "solution" x differs, in general, from the
"exact" solution x* = A-'b. The error vector S* :=x* - x satisfies

AS*=Ax*-Ax=b-AX;

therefore S* is the solution of the system of equations

AS*=b-Al. (6.1)

Thus we can calculate the error vector by solving a system of equations with the
same matrix, so that no new triangular factorization is necessary. The right side
r" := b - Al is called the residual corresponding to the approximation z; the
residual corresponding to the exact solution x* is zero. In an attempt to obtain a
better approximation than z, we solve the system of equations (6.1) for S* and
obtain x* = + V.

Because instead of the absolute error S* only an approximation S can be
calculated, we repeat this method with x := x + S until 11611 does not become
appreciably smaller - by a factor of 2, say. This serves as a convenient termi-
nation criterion for the iteration.

2.6.1 Algorithm: Iterative Refinement

STEP 1: Compute a permuted triangular factorization PA = LR, and initialize
x0=0, r'=b,1=1.

2.6 Iterative Refinement 107

x* _ ...
t L-t

x1 =
I

correct wrongI
IH

Figure 2.2. Iterative refinement (shaded digits are inaccurate).

STEP 2: Solve LR81= Pr1 for 81 and put x1 =x1-1 + 61.

STEP 3: If I > 1 and 1181 II, ? 21181-1 11,,,: stop with x* = x1 as best approxima-
tion found. Otherwise, update 1 = 1 + 1.

STEP 4: Calculate r1= b - Axl-1 (if possible in double precision) and continue
with step 2.

Figure 2.2 illustrates how the iterative refinennnt algorithm improves the
accuracy of a calculated solution. The solution x == x 1, calculated by means of
Gaussian elimination, typically agrees with some leading digits ofx* (cf. the first
two rows of the figure). Similarly, the calculated error b = 81 agrees with some
leading digits of the true error 81*; because 6 is several orders of magnitudes
smaller than x*, the new error 82* is much smaller than 8'*, and so on. In the
particular example drawn, the calculated error 63 satisfies II83IIoo > 21I82IIoo

and hence is not appreciably smaller than 82; we have reached the limiting
accuracy. In this way, we can obtain nearly L valid digits for the calculated
solution z*, although the initial approximation was rather inaccurate.

2.6.2 Remarks.

(i) The error IIx* - X*Iloo in Algorithm 2.6.1 almost always has an order of
magnitude 118111 , where I is the last index used; but this cannot be proved
because one has no control over the rounding error.

108 Linear Systems of Equations

(ii) For the implementation of iterative refinement, we need both A and the
factorization LR. Because A is overwritten by LR, a copy of A must be
made before computing the factorization.

(iii) Because the size of the error V is determined by the residual through
(6.1), it is essential to calculate the residual as accurately as possible. In
MATLAB, double precision accuracy is used for all calculations, and noth-
ing special must be done. However, when working in single precision, one
can exploit the fact that most computers construct, for the multiplication of
two single precision (L-digit) numbers the exact (2L-digit) product, and
then round this to L digits. For example, in FORTRAN77, the instructions

double precision rr

rr = b(i)

do 100 k=1,n
100 rr = rr - dprod(A(i, k), x(k))

r(i) = rr

produce the double precision value of the ith component of the residual
r = b - Ax, with A and b stored in single precision only. The final rounding
of rr to a single precision number stored in r(i) is harmless because it has
a small relative error.

2.6.3 Examples.

(i) The system Ax = b with
14

372 241 -613 210
A = -573 63 511 , b= -281

377 -484 107 170

is to be solved. Single precision Gaussian elimination with iterative refine-

ment using double precision residuals gives

x0 xl x2 x3

17.46114540 17.46091557 17.46099734 17.46101689
16.99352741 16.99329805 16.99337959 16.99339914
16.93472481 16.93449497 16.93457675 16.93459606.

Comparing x2 with x3, one would expect that x3 is accurate to six places.
The quality index (5.5) has the value 80 = .6110 - 8 and indicates that

2.6 Iterative Refinement 109

x3 can be regarded as the exact solution of a system Ax3 = b in which
A and b are obtained from A and b by rounding to the next machine
number.

Now let us consider the scaled system (10-3A)x = 10-3b. The given
data are now no longer exactly representable in the (base 2) computer,
and the resulting data errors have the following effect on the computed
iterates.

.X1 X2 z3 X4

17.46083331 17.46096158 17.46093845 17.46093869
16.99321566 16.99334383 16.99332047 16.99332070
16.93441272 16.93454123 16.93451762 16.93451786

One sees that, compared with the unscaled system, the seventh places of
the last iterations are affected; we see also that the agreement of X3 and
x4 up to the eighth place indicates a higher accuracy than is actually avail-
able. If one supposes that the coefficients of A and b are accurate only to
three of the eight given figures, one must reckon with a loss of another
8 - 3 = 5 figures in the result; then, only 6 - 5 = 1 figures are correct.
This indicates a nearly singular problem; we therefore estimate the dis-
tance to singularity from Proposition 2.5.8 and see that our prognosis of
the accuracy was too optimistic: With the given choice of x, we obtain a
singular matrix within a relative error 8 = 0.002. From this, it follows that
an absolute error of 0.5 in all of the coefficients < 250 (of the original
problem) leads to a possibly singular matrix, and one must doubt whether
the absolute accuracy of 0.5 in the coefficients guarantees a nonsingular
problem.

A more precise inspection of the data, which is still possible in this
3 x 3 problem, shows that if one replaces A21 with -572.5 and A23
with 510.5 then A becomes singular, since the sum of the columns be-
comes zero. Therefore the given data are actually too imprecise to fur-
nish sensible results; the relative error of this particular singular matrix is
< 0.5/511 < 10-4, a factor of about 20 smaller than the upper bound from
Proposition 2.5.8.

(ii) The system Ax = b with

372 241 -125 155

A = -573 63 182 , b = -946
377 -484 437 38

110 Linear Systems of Equations

is to be solved. Gaussian elimination with iterative refinement gives

xo xl

-0.255 228 35 -0.255 228 37
2.811 513 04 2.811 513 04

3.421 037 59 3.421 037 53,

so that we expect that x 1 is accurate to eight places. If we assume that
the coefficients (measured in millimetres) are accurate only to within an
absolute tolerance of 0.5, we expect that 8 - 5 = 3 places of x I are still
reliable. The calculated bound So = 0.76 from Proposition 2.5.8 indicates
no particular problem.

Limiting Accuracy of Iterative Refinement

For singular or almost singular matrices, iterative refinement does not converge.
To prove convergence and obtain a formula for the limiting accuracy of the iter-
ative refinement algorithm 2.6.1 in the presence of rounding error, we suppose
that the approximations (denoted by -) satisfy for 1 = 0, 1.... the following
inequalities (i) - (iv):

(i) IIF1 - AS'IIoo <sollSllloo (this is a test for the calculation of S1; by
Theorem 2.3.9, this is certainly satisfied with s o = 5ne II L II oo II R li oo);

(ii) 11x1-1 + S1 - x1ll ,, < e 1I.V 11oo (rounding error due to the addition of the
correction);

(iii) 11b - AX'-' - r1lloo < s, (rounding error due to the calculation of the
residual);

(iv) IIA-'11ooso <
a

(a quantitative nonsingularity requirement).

Assuming that

IlL11ool1Rlloo ti IILRIIoo ^ IlAlloo

and using (i), requirement (iv) is approximately equivalent to the requirement
20nscond00(A) < 1.

2.6.4 Theorem. Suppose that (i) - (iv) hold for I = 0, 1, ... and let x* be the
approximation for x* computed by iterative refinement. Then the error satisfies
the relation

Ilx* -x*Iloo <5s* where s*= IIA-'Iloosr +Ellx*11oo

2.6 Iterative Refinement

Proof. From x* = A-' b it follows that

IIx*-i`-' -8111. =IIA-'(r' -A8'+b-Ax'-' -r')Ilao
< IIA-'I100(Ilr' -AS'1100+11b-A1'-' - rill)

< IIA-' ll.(.-O118' 110. + Er) by (i) and (iii),

< 1118' 11m + IIA- ' II00Er by (iv).

111

Now let I be the index such that =i*. Because the termination criterion
must have been passed, we have II8`-' 1100 < 2118' 11, Therefore

I1x*-i*110 =II(x*-i'-i -S'-')+(i'-1+S'-1 -i'-')IIA

11X* - i'-' - S'-' 1100 + Elli`-' IIA, by (ii)

4118'- 11.+IIA-'110Er+Ellx*IIoo,

whence

Ilx* - i* 11 <
10111.

+ E*.

From this, it follows that

118` ll. = 11(X* - i*) - (x* - - Sl) II.

11x* -i*1100+ IIx* -i' ' -S'II.

< 2118'IIoo+E*+4118'1100+E*by(i).

(6.2)

So II8' 1100 < 8E*, and substituting this into (6.2), Ilx* - i* 11 < 5E*. 0

2.6.5 Remarks.

(i) The factor E* that occurs in the limiting accuracy estimate results from
putting together the unavoidable rounding error EIIi*1100 and the error
11 A-' 1100Er caused by the inexact residual. The double precision calculation

of the residual that has already been mentioned is therefore important for
the reduction of Er because 11A-' IIOO can be comparatively large.

(ii) In the proof, the final 8' is smaller than 8E* in norm, so that (as already
mentioned) 118` 1100 and IIx* - V11,,,, have the same order of magnitude
generally. However, no lower bound for 118' 1100 can be obtained from the
previous analysis, so that it is conceivable that 113111. is very much smaller

than Ilx* -x*I100
(iii) Under the same hypotheses,

11x*-i'11.<<IIA-'II.EOIIi'll.<411i'11.

112 Linear Systems of Equations

for Gaussian elimination without iterative refinement if x 1 = S°. For well-
conditioned matrices (cond(A) --IIA-1 IIA for equilibrated matrices),
Gaussian elimination without iterative refinement also gives good results;
for (not too) ill-conditioned matrices, only the order of magnitude is cor-
rect. However, even then, if we obtain only one valid decimal without
iterative refinement, then iterative refinement with sufficiently accurate
calculation of the residuals provides good results. Of course, we then need
about as many iterative steps as valid decimals. (Why?)

2.7 Error Bounds for Solutions of Linear Systems

Proposition 2.5.1 gives (fairly rough) error bounds for an approximation i to the
solution of a linear system Ax = b. The bounds cannot be improved in general
(e.g., inequality (5.1) is best possible because IIA-111 = sup(IIA-1i-III 11T 11 = 1}).

In particular, harmless looking approximations with a tiny residual can give rise
to large errors if cond(A) is large (or rather, if A is nearly singular).

2.7.1 Example. In order to illustrate this kind of effect, we consider an almost
singular equilibrated matrix A. We obtain such a matrix if, for example, we
change the singular matrix (1 1) by approximately 0.1% to A := 1.001 0.9991

1 1 0.999 1.001

(Changing the matrix by a smaller relative error gives similar but more pro-
nounced results.)

The solution of the system of equations Ax* = b with the right side b:= (z)
is x* For the approximate solution x = (1:001), we calculate the residual

.25 -249
T = (-0..002)

002 and the error8* = (_0.001) Because A-1 = l_249.75 250.25 , we have
IIA-1 IIA =500. Hence the bound (5.1) gives IIS*IIQO < 1, and the error in (5.1)
(and in (5.2)) is overestimated by a factor of 1000. The totally wrong approx-
imation z = (o) has a residual r " = (-0 0

. 0 0

2- 0 0 2)

0.002 of the same order, but the error is
S* and this time both bounds (5.1) and (5.2) are tight, without any over-
estimation.

We see from this example that for nearly singular matrices we cannot con-
clude from a small residual that the error is small. However, for equilibrated
matrices, one can conclude from a large residual that the absolute error has at
least the same order of magnitude,

II?II = IIAS*II < IIAII.118*II IIS*II,

and it may be much larger when the matrix is ill-conditioned (which, for equi-
librated matrices, is the same as saying that IIA-1 11 is large).

2.7 Error Bounds for Solutions of Linear Systems 113

From Theorem 2.3.9, we may deduce the heuristic but useful rule of thumb
that for the computed solution z one must expect a loss of accuracy of approx-
imately log10 cond(A) decimal places (relative to the machine precision). This
follows from the theorem if we make the additional assumption that

II ILIIRI II -- IILRII IIAII

because then

Ill - x* II =IIA-'(b - Ax) II

< IIA-' 115nsIIILIIRI1111111

ti 5ne cond(A) IIx 11.

If we omit the factor 5n in the approximate equality in order to compensate
for the overestimation of the "worst-case-analysis," then there remains a loss
of log10 cond(A) decimal places.

Realistic Error Bounds

As seen previously, the use of 11A-' 11 is often too crude for obtaining realistic
error bounds. In particular the bound (5.1) is usually much too bad if z is
determined by iterative refinement. To get error bounds that can be assessed as
to how realistic they are, one must invest more work.

An approximate but generally quite reliable estimate of the error (and at
the same time an improved approximation) can be obtained with one step of
iterative refinement, from the order of magnitude 115011 of the first correction 30
(cf. Figure 2.2).

Rigorous and realistic error bounds can be obtained from a good approxima-
tion C for A-1 (called a preconditioner and computed, e.g., using Algorithm
2.2.9), as follows. Because CA ti I, the norm III - CA 11 is small and the fol-
lowing theorem, due to Aird and Lynch [3], is applicable.

2.7.2 Theorem. If 111 - CA 11 < 1B < 1 then A is nonsingular, and for an arbi-
trary approximation x of x* = A-' b,

IIC(b - AI)II <IIx*-X11<IIC(b-AX)II
(7.1)

1+' 1-0

Proof. By Proposition 2.4.2, the matrix CA is nonsingular. Because 0
det(CA) = det C det A, the matrix A is nonsingular, too. From AS* = r, one

114 Linear Systems of Equations

finds that

S* = Cr" + (I - CA)S*,

Its*II < IICrII + III -CAIIIts*II < IICrII +8118*II,

Its*II >- IICrII - III - CAII Its*II > IICrII - fuus*II,

whence the assertion follows. 0

2.7.3 Remarks.

(i) The error bound (7.1) is realistic for small ,B because the actual error is
overestimated by a factor of at most q :_ (1 + l4)/(l - P); e.g., q < 1.23
for fl < 0.1.

(ii) In order to reduce the effects of rounding error one should calculate the
residual b - AX in double precision. Indeed, inaccuracies in C or P affect
the bound (7.1) much less than errors in the residual.

(iii) To evaluate the bound (7.1), we need 2n3 + O(n2) operations for the cal-
culation of LR and C, 4n3 operations for the multiplication CA (an op-
eration real o interval involves two operations with reals!), and O(n2) for
the remainder of the calculation. This means that altogether, 6n3 + O(n2)
operations are necessary for the calculation of a realistic bound for the
error of X. Comparing this with the 3n3 + O(n2) operations needed for
the calculation of X by Gaussian elimination, we see that the calculation
of realistic and guaranteed error bounds requires about nine times the cost
for solving the system approximatively.

Systems of Interval Equations

For many calculations with inexact data, the data are known to lie in specified
intervals. In this case, we can use interval arithmetic to compute error bounds
simultaneously with the solution instead of estimating the error from an analysis
of the error propogation.

In the following, we work with a fixed interval matrix A E 1(ll8"' and a fixed
interval vector b E RR'. We want to find a good enclosure for the solution of
AX* = b, where it is only known that A E A and b E b. Clearly, X* lies in the
solution set

E (A, b):=[V I AX * = b for some A E A, b b}.

The solution set is typically star-shaped. The calculation of the solution set is

2.7 Error Bounds for Solutions of Linear Systems 115

NX

X1

Figure 2.3. Star-shaped solution set.

quite expensive; for systems of dimension n, it can be shown that the star has
up to 2" spikes. We content ourselves with the computation of the interval hull
0E(A, b) of the solution set.

2.7.4 Example. The linear system of interval equations with

A [2, 2] [-2, 1] b - [-2, 2]
[-1, 21 [2, 4] = [-2, 2]

has the solution set drawn in Figure 2.3. The hull of the solution set is 0 E (A, b) _
([-4, 4], [-4, 4])T, drawn with dashed lines. (To construct the exact solution
set is a nontrivial task, even for 2 x 2 systems!)

Methods for determining the hull of the solution set are available (see, e.g.,
Neumaier [70, Chapter 6]) but must still in the worst case have an exponential
effort. Indeed, the problem belongs to the class of NP-hard problems (Garey
and Johnson [27]) for which it is a long-standing conjecture that no polyno-
mial algorithms exists. However, there are several methods that give at least a
reasonable inclusion of the solution set with a cost of O(n3).

116 Linear Systems of Equations

Krawczyk's Method

To obtain a realistic enclosure, we imitate the error estimation of Aird and Lynch

(Theorem 2.7.2). Let the preconditioner C E R' n be an approximation of the
inverse of mid(A). The solution z* of Ax* = b satisfies z* = Cb + (I - CA)x*.
If we know an interval vector xl with z* E x1, then also z* E Cb + (I - CA)x'
and we can improve the inclusion of . *:

z* E x1+1 := (Cb + (I - CA)xl) n xl.

How can we find an initial interval vector x° with x* E x°? By Theorem 2.7.2
(forx°=0), 11P 11. < IICbII./(1-$) if III-CAII,, < fl<1.Because IICbII,,, <
IICbII,, we define, as the initial interval, x°:= ([-a, a], ... , [-a, a])T with
c:= IICbII,/(1- P).

As seen from the following examples, it is worthwhile to terminate the itera-
tion when the sum Ql of the radii of the components of x1 is no longer rapidly de-

creasing. We thus obtain the following method, originally due to Krawczyk [53].

2.7.5 Algorithm: Krawczyk's Method for Solving Linear Interval
Equations

ier = 0;
a=C*b;
E=I-C*A;
% To save space, b and A could be overwritten with a and E.

,B = maxi Jk IEik I ; % must be rounded upwards
if > 1, ier= 1; return; end;

a = IIall./(1-) ;
X= ([-a, a], ... , [-a, a])T;

Qord = inf; a = >k rad (xk); fac = (I + P)/2;
while or < fac * Qold,

x = (a + Ex) nx;
Qold = o ; Or = Y-k rad (xk);

end;

If we denote by x' the box x after 1 iterations, then by construction, x* E x1 for
all l > 0, and x° D xl D x2... .

2.7.6 Example. In order to make rigorous the error estimates computed in
Examples 2.6.3(i)-(ii), we apply Krawczyk's method to the systems of lin-
ear equations discussed there. (To enable a comparison with the results in
Examples 2.6.3, the calculations were performed in single precision.)

2.7 Error Bounds for Solutions of Linear Systems 117

(i) In the first example, when all coefficients are treated as point intervals,
0 =.000050545 < 1, a = 51.392014, and

x1 x2 x3=x4

17.458548 17.460690 17.460690

16.9915 1 6 16.993005 16.993006

16.936372 16.934214 16.934214

a1 =.006260 a2 = .000891 a3 = .000891

One can see that x3 (and already x2) have five correct figures. If one again
supposes that there is an uncertainly of 0.5 in each coefficient, then all
of the coefficients are genuine intervals; All = [371.5, 372.5], and so on.
Now, in Krawczyk's method, ,B = 3.8025804 > 1 suggesting numerical
singularity of the matrix. No enclosure can be calculated.

(ii) In the second example, with point intervals we get the values ,B =
.000 000 309, a = 6.4877797, and

xl x2 =x3
- 0.2552286 - 0.2552283

2.8115124 2.8115 1212
9

3 4210363 42103773. 9 .
3

Ql =.00000125 Q2 =.00000031

with six correct figures for x2. With interval coefficients corresponding
to an uncertainty of 0.5 in each coefficient, we find $ =.01 166754,
a = 6.5725773, and (outwardly rounded at the fourth figure after the
decimal point)

xl x2 x3 x4
802

- 0.2303 -0.2 046 -0.2644 -0.2644461

278741

489 2 7883 27887
.8344

3'35017

404
4509

3.3912
4505

3.3916
4504

3.39116

a1=.1681 a2=.0622 a3=.0613 a4=.0613

with just under two correct figures for x4 (and already for x2). The safe
inclusions of Krawczyk's method are therefore about one decimal place
more pessimistic here than the precision that was estimated for Gaussian
elimination with iterative refinement.

We mention without proof the following statement about the quality of the
limit x°O, which obviously exists. A proof can be found in Neumaier [70].

118 Linear Systems of Equations

2.7.7 Theorem. The limit x°O of Krawczyk's iteration has the quadratic ap-
proximation property:

rad A, rad b = O (s) = 0< rad xO° - rad OE (A, b) = O (s2).

Thus if the radii of input data A and b are of order of magnitude O (e), then the
difference between the radius of the solution of Krawczyk's iteration x°O and
the radius of the hull of the solution set is of order of magnitude 0(82). The
method therefore provides realistic bounds if A and b have small radii (compare
with the discussion of the mean value form in Remark 1.5.9).

Even sharper results can be obtained with O(n3) operations by a more in-
volved method discovered by Hansen and Bliek; see Neumaier [72].

Interval Gaussian Elimination

For special classes of matrices, especially for M-matrices, for diagonally dom-
inant matrices, and for tridiagonal matrices, realistic error bounds can also be
calculated without using Krawczyk's method (and so without knowing an ap-
proximate inverse), by performing Gaussian elimination in interval arithmetic.
The recursions for the triangular factorization and for the solution of the tri-
angular systems of equations are simply calculated using interval arithmetic.
Because of the inclusion property of interval arithmetic (Theorem 1.5.6), this
gives an inclusion of the solution set. For matrices of the special form men-
tioned, the quality of the inclusion is very good - in the case of M-matrices A,
one even obtains for many right sides b the precise hull 0E(A, b):

2.7.8 Theorem. If A is an M-matrix and b > 0 orb < 0 or 0 E b then interval
Gaussian elimination gives the interval hull 0E(A, b) of the solution set.

The proof, which can be found in Neumaier [70], is based on the fact that
in these cases the smallest and the largest elements of the hull belong to the
solution set.

2.7.9 Example. The interval system of linear equations with

A :-
\

[2, 4] [-2, 0]'
b \

[-2, 21
[-1, 0] [2, 4] [-2, 2]/

satisfies the hypotheses of Theorem 2.20. The solution set (filled) and its inter-
val hull (dashed) are drawn in Figure 2.4.

2.8 Exercises 119

Nx

Xt

Figure 2.4. Solution set (filled) and interval hull of solution.

Note that, although interval Gaussian elimination can, in principle, be tried
for arbitrary interval systems of linear equations, it can be recommended only
for the classes of matrices mentioned previously (and certain other matrices,
e.g., 2 x 2 matrices). In many other cases, the radii of the intervals can become
so large in the course of the calculation (they may grow exponentially fast
with increasing dimension) that at some stage, all candidates for pivot elements
contain zero.

2.8 Exercises

1. The two systems of linear equations

Ax=V), 1=1,2

with

1 2 -1 0 2 -3

A :=
3 4 0 1 P) 15

b(z)
-3

0 2 5 4 35 0

1 2 3 4 30 -3

(8.1)

are given.

120 Linear Systems of Equations

(a) Calculate, by hand, the triangular factorization A = L R; then calculate
the exact solutions x(') (l = 1, 2) of (8.1) by solving the corresponding
triangular systems.

(b) Calculate the errors x(') - x(') of the approximations A\b(') com-
puted with the standard solution x = A\b of Ax = b in MATLAB.

2. (a) Use MATLAB to solve the systems of equations Ax = b with the co-
efficient matrices from Exercises 1, 9, 14, 26, 31, and 32 and right side
b := Ae. How accurate is the solution in each case?

(b) If you work in a FORTRAN or C environment, use a program library
such as LAPACK to do the same.

3. Given a triangular factorization A = LR of the matrix A E (C"'Let B =
A +auvT with a E C and u, v E 0. Show that the system of linear equa-
tions Bx = b (b E (C") can be solved with only O (n2) additional operations.
Hint: Rewrite in terms of solutions of two linear systems with matrix A.

4. Let A be an N2 x N2-matrix and b an N2-vector of the form

D -1 0 b(')
-I D -I b(2)

b(2)

A:=

0 -I D) b()
where the N x N-matrix D is given by

4 -1 0

I-1 4 -1

D:=

I is the N x N unit matrix, and the N-vectors b(') and b(2) are given
byb('):=(2, 1, 1,...,2)T and b (2) := (1, 0, 0, . . . , 0, 1)T,withNE{4,8,
12, 16, 20, . . . }. Matrices such as A result when discretizing boundary value
problems for elliptical partial differential equations.

Solve the system of equations Ax = b using the sparse matrix features of
MATLAB. Make a list of run times for different N. Suitable values depend

on your hardware.

2.8 Exercises 121

How many different techniques for reordering of sparse matrices are
available in MATLAB? Use the MATLAB command spy to visualize the
nonzero pattern of the matrix A before and after reordering of the rows and
columns.

Compare computational effort and run time for solving the system in
various reorderings to the results obtained from a calculation with matrix
A stored as a full matrix.
Hints: Have a look at the Sparse item in the demo menu Matrices. You
may also try help sparfun, help sparse, or help full.

5. Show that a square matrix A has a Cholesky factorization (possibly with
singular L) if and only if it is positive semidefinite.

6. For the data (xi, yi) = (-2, 0.5), (-1, 0.5), (0, 2), (1, 3.5), (2, 3.5), deter-
mine a straight line f (x) = a + fax such that Ei (y, - f (X,))2 is

minimal.
7. (a) Let P be a permutation matrix. Show that if A is Hermitian positive

definite or is an H-matrix, then the same holds for PAPH.
(b) A monomial matrix is a matrix A such that exactly one element in each

row and column is not equal to zero. Show that A is square, and one
can express each monomial matrix A as the product of a nonsingular
diagonal matrix and a permutation matrix in both forms A = PD or
A = D'P.

8. (a) Show that one can realize steps 2 and 3 in Algorithm 2.2.9 for matrix
inversion using 3n3 + 0(n2) operations only. (Assume P = 1, the unit
matrix.)

(b) Use the algorithm to calculate (by hand) the inverse of the matrix of
Exercise 1, starting with the factorization computed there.

9. (a) Show that the matrix

2 2 1

A:= 1 1 1

3 2 1

is invertible but has no triangular factorization.
(b) Give a permutation matrix P such that PA has a nonsingular triangular

factorization LR.
10. Show that column pivoting guarantees that the entries of L have absolute

value < 1, but those of R need not be bounded.
Hint: Consider matrices with Ai, = A,,, = 1, Aik = - f3 if i > k, and
Aik = 0 otherwise.

122 Linear Systems of Equations

11. (a) Find an explicit formula for the triangular factorization of the block
matrix

1 0 ... 0 11

-B 1 O 01

A= -B

with unit diagonal blocks and subdiagonal blocks -B E l[8axd

(b) Show that column pivoting produces no row interchanges if all entries
of B have absolute value < 1.

(c) Show that choosing for B a matrix with constant entries $ (d-' < ,B < 1),
some entries of the upper triangular factor R grow exponentially with
the dimension of A.

(d) Check the validity of (a) and (b) with a MATLAB program, using
MATLAB's 1u.

Note that matrices of a similar form arise naturally in multiple shooting
methods for 2-point boundary value problems (see Wright [991).

12. Write a MATLAB program for Gaussian elimination with column pivoting
for tridiagonal matrices. Show that storage and work count can be kept of
the order 0 (n).

13. How does pivoting affect the band structure?
(a) For the permuted triangular factorization of a (2m + 1)-band matrix,

show that L has m + 1 nonzero bands and R has 2m + I nonzero bands.
(b) Asymptotically, how many operations are required to compute the per-

muted triangular factorization of a (2m + 1)-band matrix?
(c) How many more operations (in %) are required for the solution of an

additional system of linear equations with the same coefficient matrix
and a different right side, with or without pivoting? (Two cases; keep
only the leading term in the operation counts!) How does this compare
with the relative cost of solving a dense system with an additional right
side?

(d) Write an algorithm that solves a linear system with a banded matrix in
a numerically stable way. Assume that the square matrix A is stored
in a rectangular array AB such that Aik = AB(i, m + I + i - k) if
Ik - i I < m, and Aik = 0 otherwise.

14. (a) In step 4 of Algorithm 2.2.9, the interchanges making up the permu-
tation matrix must be applied to the columns, and in reverse order.
Why?

2.8 Exercises 123

(b) Write a MATLAB program that realizes the algorithm (make use of
Exercise 8), and apply it to compute the inverse of the matrix

0 1 1

2 3 4

5 5 6

Compare with MATLAB's built in routine inv.
15. For i =1, ... , n let i(i) be the computed solution (in finite precision arith-

metic) obtained by Gaussian elimination from the system

ATx(i) = e(i)

in which e(i) is the ith unit vector.
(a) Show that the computed approximation C to the inverse A-' calculated

in finite precision arithmetic as in Exercise 14 coincides with the matrix

(X('), .. , X(n))T.

(b) Derive from Theorem 2.3.9 an upper bound for the residual II - CAI.
16. (a) Show that all norms on C" are equivalent; that is, if II II and II II' are two

arbitrary norms on C", then there are always constants 0 < c, d E 1[8 such

that for all x E C"

cllxll < Ilxll' <dllxll.

Hint: It suffices to prove this for II II = II II, Now use that continuous
functions on the cube surface Ilxll,,, = 1 attain their extrema.

(b) What are the optimal such constants (largest possible c, smallest pos-
sible d) for pairs of p-norms (p = 1, 2, oo)?

17. Show that the matrix norm belonging to an arbitrary vector norm has the
following properties for all a E C:

(a) IIAxIi < IIAII . Ilxll

(b) IIAII >_ 0; IIAII=0 A=0
(c) IlaAll = Jul IIAII

(d) IIA + BII < IIAII + IIBII

(e) IIABII < IIAII . IIBII

(f) I A 1 < B = IIAII < 11 1 A 111 < IIBII if the norm is monotone

(g) The implication

JAI < B = IIAII = II IAI II < IIBII

holds for the matrix norms 11 111 and 11 - 11,, but not in general for 11 112

124 Linear Systems of Equations

18. Prove the following bounds for the inverse of a matrix A:
(a) If II Ax II ? Y IIx II for all x E C' with y > 0 and II II an arbitrary vector

norm then A-' exists and IIA-' II < y-' for the matrix norm belonging
to the vector norm 11 II

(b) If x H Ax > y II x II z for all x E C" with y > 0, then IIA -' 112 < Y_1--
(c) If the denominator on the right side of the following three expressions

is positive, then

IIA-'III/min (lAiI - IAikI ,

k¢i

IIA-'1111/min (IAkkI-)7 IAikl
i#k

IIA-' 112 <<- I/ min Aii - 1 T IAik + Aki l
2 k#i

Hints: For arbitrary x, y E C", IxHYI < IIX112IIYII2 For arbitrary u, v E C,
Iuvl <ZIul2+ilvl2.

19. A matrix A is called an M-matrix if

Aii > 0, Aik < 0 for i k;

and one of the following equivalent conditions holds:
(i) There are diagonal matrices Dl and D2 such that III - DI AD2II < 1

(i.e., A is an H-matrix).
(ii) There is a vector u > 0 with Au > 0.

(iii) Ax > 0 x > 0.
(iv) A is nonsingular and A > 0.
Show that for matrices with the above sign distribution, these conditions
are indeed equivalent.

20. (a) Let A E C' " be nonpositive outside the diagonal, Aik < 0 for i 0 k.
Then A is an M-matrix if there are vectors u, v > 0 such that Au > v.

(b) If A' and A" are M-matrices and A' < A < A" (componentwise) then
A is an M-matrix.

Hint: Use Exercise 19. Show first that C = (A")-' B is an M-matrix; then
use B-' = (A"C)-1.

21. A lot of high-quality public domain software is freely available on the

2.8 Exercises 125

World Wide Web (WWW). The distributors of MATLAB maintain a page

http://www.mathworks.com/support/ftp/

with links to user-contributed software in MATLAB.
(a) Find out what is available about linear algebra, and find a routine for the

LDLT factorization. Generate a random normalized lower triangular
matrix L and a diagonal matrix D with diagonal entries of both signs,
and check whether the routine reconstructs L and D from the product
LDLT.

(b) If you are interested what one can do about linear systems with very
ill-conditioned matrices, get the regularization tools, described in
Hansen [40], from

http://www.imm.dtu.dk/ pch/Regutools/regutools.html

It takes a while to explore this interesting package!
22. Let x* be the solution of the system of linear equations

3x1 + IX2 = 21
1 29 99
4x1 + 280x2 = 280'

(8.2)

(a) Calculate the condition number of the coefficient matrix for the row-
sum norm.

(b) An approximation to the system (8.2) may be expressed in the form

0.333x1 + 0.143x2 = 0.477,

0.250x l + 0.104x2 = 0.353
(8.3)

by representing the coefficients A;k with three places after the decimal
point. Let the solution of (8.3) be z. Calculate the relative error IIx* -
X 11 / If 11 of the exact solutions x* and X of (8.2) and (8.3), respectively

(calculating by hand with rational numbers).
23. Use MATLAB's cond to compute the condition numbers of the matrices

A with entries Ark = fk(xi) (k = 1, ... , n and i = 1, ... , m; xi = (i - 1)/
(m - 1) with m = 10 and n = 5, 10, 20) in the following polynomial bases:

(a) fk(x) =xk-1,
(b) fk(x) = (x - 1/2)k-1,

(c) fk (x) = Tk (2x - 1), where Tk (x) is the kth Chebyshev polynomial (see
the proof of Proposition 3.1.14),

(d) fk(x)= llj-m-k,jeven(x -xj/2).

126 Linear Systems of Equations

Plot in each case some of the basis functions. (Only the bases with small
condition numbers are suitable for use in least squares data fitting.)

24. A matrix Q is called unitary if QH Q = I. Show that

cond2(Q) = 1,

cond2(A) = cond2 (QA) = cond2 (A Q) = cond2 (QH AQ)

for all unitary matrices Q E Cn xn and any invertible matrix A E C'<'1.
25. (a) Show that for the matrix norm corresponding to any monotone norm,

11A11 > maxIAii1,

and, if A is triangular,

cond(A) > max Aii

Akk

(b) Show that, for the spectral norm, cond2(AT) =cond2(A).
(c) Show that the condition number of a positive definite matrix A with

Cholesky factorization A = LLT satisfies

cond2 (A) = cond2 (L)2 > max
Lii

Lkk

2

26. (a) Calculate (by hand) an estimate c of cond(A) from Algorithm 2.5.5 for

0 -1 1

A:= -3 3 0
-3 7 -1

Is this estimated value exact, that is, is c = jjA jl,,,jjA-' hlo0?

(b) Give a 2 x 2 matrix A for which the estimated value c is not exact, that
is, for which s < IIA-1 11,

27. (a) Does the MATLAB operation x = A\b for solving Ax = b include it-
erative refinement? Find out by implementing an iterative refinement
method based on this operation, and test it with Hilbert matrices A with
entries Aik = I/ (i + k - 1) and all-one right side b = e.

(b) For Hilbert matrices of dimension n = 5, 10, 15, 20, after how many
steps of iterative refinement is the termination criterion satisfied?

(c) Confirm that Hilbert matrices of dimension n are increasingly ill con-
ditioned for increasing n by calculating their condition number for the
dimensions n = 5, 10, 15, 20. How does this explain the results of (b)?

2.8 Exercises 127

28. The two-point boundary value problem

k(k - 1)

(1
-x)Zy(x)=0, y(0)=1, y(l)=0

can be approximated by the linear tridiagonal system of linear equations
T y = b with

(2+qi -1 0

-1 2+q2
T=

0

-1
-1 2+qn

, b=eM

with q;=k(k-1)/(n+l-i)2.Then
Solve this system fork = 0.5 with n = 2'- 1 for several s, using Exercise

12 and (at least) one step of iterative refinement to obtain an approxima-
tion y(s) for the solution vector. Print the approximate values at the points
x = 0.25, 0.5, and 0.75 with and without iterative refinement, and compare
with the solution y(x) = (1 - x)k of the boundary value problem. Then do
the same for k = 4.

29. (a) Write a MATLAB program for the iterative refinement of approximate
solutions of least squares problems. Update the approximate solution
xt in the lth step of the method by x1+1 = xl + s', where s' be the
solution of RT Rsi = AT (b - Ax') and L is a Cholesky factor of the
normal equations (found with MATLAB's chol).

(b) Give a qualitative argument for the limit accuracy that can be obtained
by this way of iterative refinement.

30. The following technique may be used to assess heuristically the accuracy
of linear or nonlinear systems solvers or eigenvalues calculation routines
without doing any formal error analysis. (It does not work for problems
involving approximations other than rounding errors, as in numerical dif-
ferentiation, integration, or solving differential equations.)

Solve the systems (kA)x(k) = kb for k = 1, 3, 5 numerically, and derive
heuristic error estimates jx* - xI ti Ax for the solution x* of Ax* =b,
where

X = 3 (x(l) +X(3) +x(5)),

Ox, =
2

X,)2 + (Xi3) - (X'S)
X,)2)

128 Linear Systems of Equations

Compare with the true error for a system with known x*, constructed by
choosing random integral A and x* and b = Ax*. Explain! How reliable is
the heuristics?

31. Given the system of linear equations Ax = b with

0.051 -0.153 0 1

A := -0.153 -0.737 -0.598 , b:= 3

0 -0.598 -0.299 3

(a) Give a matrix A and a vector b such that Ax = b where

4280
X:= 1420

-2850

IA - Al <eoIAI, and Ib - bI <eoIb1, with smallest possible relative
error e0.

(b) Use . to determine a singular matrix A close to A, and compute the
"estimated singularity distance" (5.6).

32. (a) Using the built in solver verifylss of INTLAB to solve linear inter-
val equations with the four symmetric interval coefficient matrices A
defined by either

36.1

-63.4 14.7 symm.

33.1 -88.5 56.9
A:=

-75.2 21.6 -14.0 36.3

75.8 -22.4 15.2 -39.0 44.1

-27.4 83.3 -58.3 15.4 -17.0 69.4

or

d c c ... c

A.=
c d c ... c

C ... c d

with dimension n = 16 and c, d chosen from the following:

2.8 Exercises 129

c d

(a) 1.25 -3.34
(b) 1.25 3.34
(c) -1.26 18.9

Interpret the matrices either as thin interval matrices or as interval
matrices obtained by treating each number as only accurate to the
number of digits shown. Use as right side b = [15.65, 15.75]e when
the matrix is thin, and b = e = (1, ... , 1)T otherwise.
Is the system solvable in each of the eight cases?

(b) Implement Krawczyk's algorithm in INTLAB and compare the accu-
racy resulting in each iteration with that of the built-in solver.

3

Interpolation and Numerical Differentiation

In this chapter, we discuss the problem of finding a "nice" function of a single
variable that has given values at specified points. This is the so-called interpo-
lation problem. It is important both as a theoretical tool for the derivation and
analysis of other numerical algorithms (e.g., finding zeros of functions, numer-
ical integration, solving differential equations) and as a means to approximate
functions known only at a finite set of points.

Because a continuous function is not uniquely defined by a finite number
of function values, one must specify in advance a class of interpolation func-
tions with good approximation properties. The simplest class, polynomials,
has considerable theoretical importance; they can approximate any continu-
ous functions in a bounded interval with arbitrarily small error. However, they
often perform poorly when used to match many function values at specific
(e.g., equally spaced) points over a wide interval because they tend to produce
large spurious oscillations near the ends of the interval in which the data are
given. Hence polynomials are used only over narrow intervals, and large inter-
vals are split into smaller ones on which polynomials perform well. This results
in interpolation by piecewise polynomials, and indeed, the most widely used
interpolation schemes today are based on so-called splines - that is, piecewise
polynomials with strong smoothness properties.

In Section 3.1, we discuss the basic properties of polynomial interpolation,
including a discussion of its limitations. Section 3.2 then treats the important
special case of extrapolation to the limit, and applies it to numerical differentia-
tion, the problem of finding values of the derivative of a function for which one
has only a routine computing function values. Section 3.3 treats piecewise poly-
nomial interpolation in the simplest important case, that of cubic splines, and
discusses their excellent approximation properties. Finally, Section 3.5 relates
splines to another class of important interpolation functions, so-called radial
basis functions.

130

3.1 Interpolation by Polynomials 131

3.1 Interpolation by Polynomials

The simplest class of interpolating functions are the polynomials.

3.1.1 Theorem. (Lagrange Interpolation Formulas). For any pairwise dis-
tinct points x0, ... , x, , there is a unique polynomial pn of degree <n that
interpolates f (x) on xo, ... , x, . It can be represented explicitly as

Pn(x)= f(xi)Li(x), (1.1)
i = 0:n

where

Li(x):=
x -xj

i 0:n
xi - xj=iii

(1.2)

pn is called the interpolation polynomial to f at x0, ... , x,, and the Li (x) are
referred to as Lagrange polynomials.

Proof. By definition, the Li are polynomials of degree n with

Li (xj)
10 ifij,

1 ifi=j.

From this it follows that (1.1) is a polynomial of degree <n satisfying pn (xj) _
f (xj) for j = 0, ..., n.

For the proof of uniqueness, we suppose that p is an arbitrary polynomial of
degree <n with p (xj) = f (xj) for j = 0, ... , n. Then the polynomial pn - p
is of degree <n and has (at least) the n + I pairwise distinct zeros xo, ... , xn.
Therefore, pn(x) - p(x) is divisible by the product (x - x0) ... (x - xn).
However, the degree of the divisor is >n; hence, this is possible only if pn (x) -
p(x) is identically zero (i.e., if p = 170-

Although this result solves the problem completely, there are many situations
in which a different representation of the interpolation polynomial is more
useful. Note that the interpolation polynomial is uniquely determined by the
data, no matter in which form the polynomial is expressed. Hence one can pick
the form of the interpolation polynomial according to other considerations, such
as ease of use, computational cost, or numerical stability.

132 Interpolation and Numerical Differentiation

Linear and Quadratic Interpolation

To motivate the alternative approach we first look at linear and quadratic inter-
polation, the case of polynomials of degrees 1 and 2.

The linear interpolation problem is the case n = 1 and consists in finding for
given f (xo) and f (xi) a linear polynomial p1 with pi (xo) = f (xo) and p1 (x1) =
f (x1). The solution is well known from school: the straight line through the
points (xo, yo), (x1, yi) is given by the equation

Y - Yo Y1 -Yo
X - xo xl - xo

and, in the limiting case x1 -+ xo, the line through xo with given slope yo by

Y-Yo=yo
x - xo

The linear interpolation polynomial has therefore the representation

pi (x) = .f (xo) + f [x0, xil (x - xo), (1.3)

where

f(xI) - f(xo)
f [x0, x11 x1 - xo

if x1 O xo,
(1.4)

f'(xo) ifxl=xo.

We call f [xo, xI] a first-order divided difference of f. This notation for the
slope, and the associated form (1.3) proves to be very useful. In particular, (1.3)
is often a much more appropriate form to express linear polynomials numeri-
cally than using the representation p(x) = mx + b in the power basis.

3.1.2 Example. (With optimal rounding, B = 10, L = 5). The straight line
through the points (6000, 1) and (6001, - 3) may be represented, according
to (1.3), by

0.33333 + 0.66667
p (x) ti 0.33333 +

6000 - 6001 (x - 6000)

ti 0.33333 - 1.0000(x - 6000). (1.5)

In this form, the evaluation of p, (x) is stable and reproduces the function values
at xo and x1. However, if we convert (1.5) to standard form pi (x) = mx + b,
the resulting formula

p1(x) 1.0000x + 6000.3

3.1 Interpolation by Polynomials 133

gives very inaccurate values at the interpolating points:

x 6000 6001

pl(x) 0.33333 -0.66667

p&) 0.30000 -0.70000

From linear algebra, we are used to considering any two bases of a vector space
as equivalent. However, for numerical purposes, the example shows significant
differences. In particular, we conclude that expressing polynomials in the power

basis 1, x, x2, ... must be avoided to ensure numerical stability.

To find the quadratic interpolation polynomial p2 (a parabola, or, in a limiting
case, a straight line) to f at pairwise distinct points xo, x1, x2, we modify the
linear interpolation formula by a correction term that vanishes for x = xo and
x =X1:

p2(x):=f(xo)+f[xo,xIl(x-xo)+f[xo,x1,x2](x-xo)(x-x1).

Because x2 0xo, x1, the coefficient at our disposal, suggestively written as
f [xo, x1, x21, can be determined from the interpolation requirement p2(x2) _
f (x2). We find the second-order divided difference

f [xo, xi, x2] :=
f [xo, x21 - f [xo, xil if x2x1, xo. (1.6)

x2 - x1

3.1.3 Example. Let f (O) = 1, f (l) = 3, f(3) = 2. The parabola interpolating
at 0, 1 and 3 is calculated from the divided differences

3-1 2-1 1

f(xo)=1, f[xo,xll=
31-0

2, f[xo,x2l=3-0
3

and

to

1-2 5
f[xo,xl,x2]=3-1

6

=-6x 2 +
176x+1.p2(x)=1+2x- 56x(x-1) 5

For stability reasons, the first of the two expressions for P2(x) is, in finite
precision calculations, preferable to the second expression in the power basis.

134 Interpolation and Numerical Differentiation

Note that the divided difference notation (1.6), used with the variable x in
place of x2, allows us to write the linear interpolation formula (1.3) as an identity

f(x)=f(xo)+ f[xo,xi](x -xo)+f[xo,x1,x](x -xo)(x -x1)

by adding the error term

f[xo,x1,x](x -xo)(x -x1).

Newton Interpolation Formulas

To obtain the cubic interpolating polynomial, we may correct the quadratic
interpolation formula with a correction term that vanishes for x = xo, xI , x2;

by repetition of this process, we can find interpolating polynomials of any
degree in a similar way. This yields the interpolation formulas of Newton.
A generalization due to Hermite extends these formulas to the case where
repetitions of some of the xj are allowed; thus we do not assume that the xj are
pairwise distinct.

3.1.4 Theorem. (Newton Interpolation Formulas). Let D C I[8 be a closed
interval, let f : D IR be an (n + l)-times continuously differentiable function,

and let xo, x1, ... , x E D. Then:

(i) There are uniquely determined continuous functions f [xo, ... , x; ,]: D -f
IR (i = 0, 1, ... , n) such that

(1.7)

for alix ED.
(ii) F o r i = 0, 1, ... , n the polynomial

pi (x) f [x0] + f [x0, xi] (x - xo) + .
+.f[xo,...,xe-i,xi](x-x0)...(x-x;-1) (1.8)

interpolates the function f (x) at the points xo, ... , xi E D.
(iii) We have

f(x)=p1(x)+f[xo,...,xi,x](x-xo)...(x-xi). (1.9)

Proof. To prove (1.7), it suffices to show that

g1 (x) f[xo, ... , x,-1' x]

3.1 Interpolation by Polynomials 135

is n-i times continuously differentiable in x and satisfies

gi (x) = gi (xi) + (x - xi)gi+1(x). (1.10)

We proceed by induction, starting with go(x) = f [x] = f (x) for i = 0, where
this follows from our discussion of the linear case. Hence suppose that (1.10)
is true with i -1 in place of i. Then gi is n - i > 0 times continuously differen-
tiable and

1

Si(x) = gi(xi) + (x - xi) I gi(xi + t(x - xi)) dt. (1.11)

Thus, the function gi+i defined by

gi+1(x) _ .f [xo, ... , xi, x] :_ I g' (xi + t (x - xi)) dt

is still n -i -1 times continuously differentiable, and (1.10) holds for i . Equation
(1.9) is also proved by induction; the case i =0 was already treated. If we
suppose that (1.9) holds with i - 1 in place of i, we can use (1.7) and the
definition (3.1.8) to obtain

f(x) = Pi-1(x)+(f[xo,...,xi-1,xil+ f[xo,...,xi,x](x -xi))
X

=Pi(x)+f[xo,...,xi,xl(x-xo)...(x-xi).

Thus (1.9) holds generally.
Finally, substitution of x =xj into (1.9) gives the interpolation property

f (x1) = Pi (xj) for j =0, ... , i.

Equation (1.8) is called the Newton form of the interpolation polynomial
at x 0 xi. To evaluate an interpolation polynomial in Newton form, it is
advisable to use a Homer-like scheme. The recurrence

vn f [xo, ... , xn]

vi := f[xo, ... , xil + (x - xi)vi+1 (i =n - 1, n - 2, ... , 0)

gives rise to the expression

vi = f[xo, ...,xil + f [x0, ...,xi+ll(x -xi)+..
+f[x0,...,xnl(x -xi)...(x -xn-1)

from which vo = pn (x). A corresponding pseudo-MATLAB program is as
follows.

136 Interpolation and Numerical Differentiation

3.1.5 Algorithm: Evaluation of the Newton Form

% Assume di = f [xo,... , xi]

v=d,,;
for i = n - 1 : -1 : 0,

u=d,+(x-xi)*v;
end;

% Now v is the interpolated approximation to f (x)

(Because MATLAB has no indices < 1, a true MATLAB code should interpolate
instead x1, ... , x by a polynomial of degree <n - 1 and replace the zeros in
this pseudo code with Is.)

For the determination of the coefficients required in the Newton form, it
is useful to have a general interpretation of the f [xo, ... , x;] as higher order
divided differences, a symmetry property for divided differences, and a formula
for a limiting case. These generalize the fact that the slope of a line through two
points of a curve is independent of the ordering of these points and becomes
the tangent slope in the limit when these points merge.

3.1.6 Proposition.

(i) We have the divided difference representation

.f[xo,...>xi,x]=f[xo,...,xi-l,x]-.f[xo,...,xi-1,xi]

x - x;
for x ¢ xi.

(ii) The derivative with respect to the last argument is

d
dxf[xo,...,xi-1, x]=f[xo,...,xi-1>x,x]

(iii) The divided differences are symmetric functions of their arguments, that
is, for an arbitrary permutation Tr of the indices 0, 1, ... , i, we have

f[xo,xl, ...,xi]=f[xno,xnl, ...,x7[t]

Proof. (i) follows directly from (1.7) and (ii) as limiting case from (i). To
prove (iii), we note that the polynomial pi (x) that interpolates f at the points
xo, ... , xi has the highest coefficient f [x 0 xi]. A permutation rr of the
indices gives the same interpolation polynomial, but the representation (1.9)
yields as highest coefficient f [x, o, ... , in place of f [xo, ... , xi]. Hence
these must be the same. 0

3.1 Interpolation by Polynomials 137

3.1.7 Example. For the function f defined by

f (x) := I , SEC,
s - x

one can give closed formulas for all divided differences, namely

1

f[xo,...,xil= (1.12)(s-xo)(s-x1)...(s-x;)

Indeed, this holds for i = 0. If (1.12) is valid for some i > 0 then, for xi+i xi,

f[xo, ,

xi - xi+1

xi - xi+1

(s - xi)

s - x0) .. .(s - xi-1)(s

1

((s

- x0)...(s - xi+1)'

and by continuity, (1.12) holds in general.

- xi)(s - xi+1)(xi - xi+1)

Using the proposition, the coefficients of the Newton form can be calculated
recursively from the function values f [xk] = f (xk) if x 0 ,..., x, are pairwise
distinct: Once the values f [x 0 xi] for i < k are already known, then one
obtains f [xo, ... , xk_1, xk] from

0,...,k - I.
Xk - xi

To construct an interpolation polynomial of degree n in this way, one must use
0(n 2) operations; each evaluation in the Homer-like form then only takes O (n)
further operations. In practice, n is rarely larger than 5 or 6 and often only 2
or 3. The reason is that interpolation polynomials are not flexible enough to
approximate typical functions with high accuracy, except over short intervals
where a small degree is usually sufficient. Moreover, the more accurate spline
interpolation (see Section 2.3) only needs 0(n) operations.

138 Interpolation and Numerical Differentiation

The Interpolation Error

To investigate the accuracy of polynomial interpolation we look at the interpo-
lation errors

.f (x) - pi (x) = .f [X0, ... , xi, x] (x - xo) ... (x - xi). (1.13)

We first consider estimates for the divided difference term in terms of higher
derivatives at some point in the interval hull 0{xo, ... , xi, x}.

3.1.8 Theorem. Suppose that the function f : D C][8 --> R is n + 1 times con-
tinuously differentiable.

(i) If xo, .. , Xn E D, 0 < i < n, then

.f [xo, ... , xil = .f (')O with E U{xo, ... , xi}. (1.14)
i!

(ii) The error of the interpolation polynomial Pn to f at xo, ... , x E D can be
written as

f(n+1) ()
.f (x) - pn(x) =

(n + 1)1
qn(W), (1.15)

where

qn(x) := (x - xo) ... (x - xn) (1.16)

and E 0{xo,... , x,, x} depends on the interpolation points and on x.

Proof. We prove (i) by induction on n. For n = 0, (i) is obvious. We there-
fore assume that the assertion is true for some n > 0. If f : D --+ R is n + 2
times continuously differentiable, then we can use the inductive hypothesis
with g(x) := f [xo, x] in place off and find, for all i < n,

g(i)O
.f [x0, x1, ... , xi+1] = g[xl, ... , xi+11

for some E p{xl, ... , xi+1}.
Differentiating the integral representation

1g(O =.f[xo,]=f f'(xo+t(-xo))dt
0

3.1 Interpolation by Polynomials 139

from (1.11) i times with respect to , and using the mean value theorem of
integration it follows that

I i
g(r)()= t' f('+')(xo+t(s -xo))dt= f(i+')(xo+r(-xo))J t'dt

0 0

for some r E [0, 1]. Therefore

f[xo, xi+j] =
gm(o) fa+l)(

f I
t' dt

f(i+u(')
...,

i!
= ii o = (i+1)!

with

' xo + r(- xo) E D{xo, } c D{xo, ... , xi+i },

whence (i) is true in general.
Assertion (ii) follows from (i) and (1.9).

3.1.9 Corollary. If x, xo, ... , x E [a, b], then

II

I f(x) - pn(x)I <
!I

(n + I)1 Iq(x)I. (1.17)

This bounds the interpolation error as a product of a smoothness factor
II f

(n+DII /(n + 1)! depending on f only and a factor Iq(x)I depending on
the interpolation points only.

Hermite Interpolation

For xo = x, xi = x, [] { x 0 xi } _ (x), hence = x in relation (1.14),
and we find

10 x
f [x, x, ... , x] (i + 1 arguments) = f) . (1.18)

i!

One can use this property for the solution of the so-called Hermite interpolation
problem to find a polynomial matching both the function values and one or
more derivative values at the interpolation points. In the most important case
we want, for pairwise distinct interpolation points zo, z,, ... , z,n, a polynomial
p of degree <2m + I such that

p(zj)=f(zj) and p'(zj)=f'(zj) forj=0,...,m. (1.19)

1 40 Interpolation and Numerical Differentiation

To solve this problem one doubles each interpolation point, that is, one sets

x21 x2i+i:=z1 (J=0,...,m),

and calculates the corresponding Newton interpolation polynomial p = p2m+1.
The error formula (1.13) now takes the form

f (x) - p(x) = f [ZO, Z0, .. ., Zm, Zm, X](X - ZO)2 ... (X - Zm)2,

from which it easily follows that the interpolation requirement (1.19) is satisfied.
Similarly, in the general Hermite interpolation problem, an interpolation

point z j at which the function value and the values of the first kj derivatives
shall be matched has to be replaced by kj + I identical interpolation points
Xij = = Xi1+k; = z1; then, again, the Newton interpolation polynomial gives
the solution of minimal degree. A very special case of this is the situation where
the function value and the first n derivative values shall be matched at a single
point x0; then (1.15), (1.18) and Theorem 3.1.4 give the representation

(n)

f (x) = f (xo) + f'(xo)(x - xo) + ... + f nlxo) (x - xo)n

+ f(n+I)(
) (x - xO) n+1

(n+1)!

for some i; E Lj{x, xo}; and we see that the well-known Taylor formula with
remainder term is a special case of Hermite interpolation.

In actual practice, the confluent interpolation points cause problems in the
evaluation of the divided difference formulas because some of the denominators
xi - xk in the divided differences may become zero. However, by using the
permutation symmetry, the calculation can be arranged so that everything works
well. We simply compute the divided differences column by column in the
following scheme.

f (xo)
f[xo,x1]

.f (x1) f [xo, x1, x2]

f[x1,x2]
f(x2) f[x1,X2,X3]

f [xn-3, xn-2, Xn-1]
f [xn-2, Xn-1]

f [xn-2, Xn-1, Xn]

f [xn -1, X.]

f[xo,x1,...,xn]

3.1 Interpolation by Polynomials

The corresponding recursion for the d;k := f [x; , x;+i, ... , xk_1, xk] is

d; z, =

if x; ¢ xk,

otherwise,

141

because by construction the case x; = xk occurs only when x; = x;+i = = xk,
and then the (k - i)th derivative of f at x; is known.

Convergence

Under suitable (but for applications often too restricted) conditions, it can be
shown that when the number of interpolation points increases indefinitely, the
corresponding sequence of interpolation polynomials converges to the function
being interpolated.

In view of the close relation between Newton interpolation formulas and the
Taylor expansion, we suppose that the function f has an absolutely convergent
power series in the interval of interest. Then f can be viewed as a complex
analytic function in an open region D of the complex plane containing that in-
terval. (A comprehensive exposition of complex analysis from a computational
point of view is in Henrici [43].)

We restrict the discussion to convex D because then the results obtained
so far hold nearly without change (and with nearly identical proofs). We only
need to replace interval hulls (DS) by closed convex hulls (Cony S), and the
statements (1.14), (1.15), and (1.17) by

f O E Conv{xo, ... , x;f [xo, ... , x;] E Cony
i !

f(n+u()
If(x)-Pn(x)I sup Ign(x)I,

eConv(xo,...,x;) (n + 1)!

and

II

If (x) - pn(x)I
f
(n

(°++»

1)

11t
Iq(x)I>

where the oo-norm is taken over a convex domain containing all arguments.
The complex point of view allows us to use tools from complex analysis that

lead to a simple closed expression for divided differences. In the following,

D[c; r] :_ { l ; E (C I I l ; - cI < r}

denotes the closed complex disk with center c E C and radius r > 0, 8D its
positively oriented boundary, and int D its interior.

142 Interpolation and Numerical Differentiation

3.1.10 Proposition. Let f be a function analytic in the open set Do C C. If
the disk D[c; r] is contained in Do, then

f [x0, , x,] =
27ri

.f (s) ds for xo,... , xn E int D.
D (S - Xo)...(s - xn)

(1.20)

Proof. For n = 0, the formula /is just Cauchy's well-known integral formula

f (x) = I J f(s)(s) ds for all x E int K.
aK

Hence suppose that (1.20) is valid for n - I instead of n then, for xn_1 xn

(cf. Example 3.1.7),

f[x0,...,X.]= f[x0,...,xn-1]-f[x0,...,Xn-2,Xn]
xn_1 - xn

1 f(s) - f(S)
_ (s-xo)...(s-x,, 1) (s-xo)...(S-x"-2)(s-x,,)

ds
27ri fK xn_1 - X.

1 f (s) ds

27ri aK (S - XO) ... (S - Xn)

This formula remains valid in the limit x, xn_1. So (1.20) holds for n and
therefore in general.

3.1.11 Corollary. I f I f M for all 4 E D[c; r] and Ix3 - cl < p < r for
all j = 0, ... , n then

If[x X]I <
Mr

0,..., n

(r -
p)n+1'

Proof By the previous proposition,

If[xo,...,xn]I =
127r1I

f (s) ds

JaK (S - xO) ... (S - xn)

< 2n J
If(s)IIdsI

M
J

Ids l
K IS - XOI...ls - xnl - 27r (r - p)n+1 aK

M Mr
27rr =

27r(r - p)n+l (r - p)n+1'

(Here, f Ids I denotes the unoriented line integral.)

The fact that the number M is independent of n can be used to derive the
desired statement about the convergence of interpolating polynomials as n-), oo.

3.1 Interpolation by Polynomials 143

3.1.12 Theorem. Let f be a junction analytic in an open set D C_ C containing
the disk D[c; r]. For an infinite sequence of complex numbers xj E D[c; p]
(j = 0, 1, 2, . . .), let pn be the polynomial of degree <n that interpolates the

function at x0, xi, ... , xn. If r > 3p, then for x E D[c; p], the sequence p (x)
converges uniformly to f (x).

Proof. IfxED[c;p]then lx-xj I < 2p for all j=0,1,2,...,sotheinter-
polation error is bounded according to

If(x)-pn(x)I = If[x0,...,Xn,x]IIx-xoI...Ix-XnI

n+l

< Mr n+2
(2p)n+1 = Mr 2p(r - p)(r-p) r-p

For r > 3 p, I -pp I < 1, so that I f (x) - pn(x)I is majorized by a sequence that
does not depend on x and converges to zero. This proves uniform convergence
on D[c; p]. 0

The hypothesis r > 3p can be weakened a little by using more detailed con-
siderations and more complex shapes in place of disks. However, a well-known
example due to Runge shows that one cannot dispense with some condition of
this sort.

3.1.13 Example. Interpolation of the function f (x) := 1/(1 + x2) at more
and more equidistant interpolating points in the interval [-5, 5] leads to diver-
gence of the interpolating polynomials pn (x) for real x with I x I > 3.64, and
convergence for IxI < 3.63. We illustrate this in Figure 3.1; for a proof, see,
for example, Isaacson and Keller [46, Section 6.3.4].

5

Figure 3.1. Equidistant polynomial interpolation in many points may be poor.

144 Interpolation and Numerical Differentiation

The hypothesis of the theorem is not satisfied because f has poles at ±i,
although f is analytic in a large open and convex region containing the inter-
polation interval [-5, 5]. For such functions, the derivatives If I do not

vary too much, and the error behavior (1.15) of the interpolation polynomial
is mainly governed by the term q, (x) = (x - xo) ... (x - xn). The divergent
behavior finds its explanation by observing that, when the interpolation points
are equidistant and their number increases, this term develops huge spikes near
the interval boundaries. This can be seen from the table

n 16 32 64 128 256

Qn

of quotients

1.9.10' 3.1 4.4.10' 4.6.1016 1.9.1034

Qn= max Ign(x)I/max Ign(x)I
xE[-5,51 xE[-4,4]

Interpolation in Chebyshev Points

Although high-degree polynomial interpolation in equidistant points often leads
to strong oscillations near the boundaries of the interpolation intervals destroy-
ing convergence, the situation is better when the interpolation points are more
closely spaced there. Because interpolation on arbitrary intervals can be re-
duced to that on [-1, 1] through a linear transformation of variables, we restrict
the discussion to interpolation in the interval [-1, 1], where the formulas are
simplest.

The example just discussed suggests that a choice of the xi that keeps the
term qn (x) = (x - x0) . . . (x -xn) of a uniform magnitude between interpolation
points is more likely to produce useful interpolation polynomials. One can
achieve this by interpolating at the Chebyshev points, defined by

x1 := cos
2j + 1

7r (j = 0, ... , n). (1.21)2n+2

3.1.14 Proposition. For the Chebyshev points (1.21),

1
Ign(x)I <

2n
forx E [-1, 1],

and this value is attained between any two interpolation points.

3.2 Extrapolation and Numerical Differentiation 145

Proof. We introduce the Chebyshev polynomials T, defined recursively by

To(x) := 1, T, (x) := x, T2(x) =2x2 - 1,
Tn+1(x) := 2xTn (x) - Tn_1(x) (n =1, 2, ...). (1.22)

Clearly, the Tn are of degree n and, for n > 0, they have highest coefficient
2n-1. Using the addition theorem cos(a + $) + cos(a - IB) = 2 cos a cos $, a
simple induction proof yields the relation

Tn (x) = cos(n arccos x) for all n. (1.23)

This shows that the polynomial Tn+1 (x) has all Chebyshev points as zeros, and
hence Tn+I (x) = 2ngn (x). Moreover, the extrema of Tn+1 (x) are f1, attained
between consecutive zeros. This implies the assertion.

For the interpolation error in interpolation at Chebyshev points, one can prove
the following result.

3.1.15 Theorem. The interpolation polynomial p, (x) interpolating an arbi-
trary s times continuously differentiable functions f : [-1, 1] -* ll in the
Chebyshev points (1.21) satisfies

If(x)-Pn(x)I=O(
1

sn
Proof. See, for example, Conte and de Boor [12, Section 6.1].

This reference also shows that interpolation at the so-called expanded
Chebyshev points, which, adapted to a general interval [a, b], are given by

a+b a-b 2i+1 n
2

+ cos
2n + 2

n cos
2n + 2

is even slightly better.

3.2 Extrapolation and Numerical Differentiation

Extrapolation to the Limit

Extrapolation refers to the use of interpolation at points xo, ... , xn for the ap-
proximation of a function f at a point x V 0{xo, ... , xn }. Because interpolation
polynomials of low degree are generally rather inaccurate, and those of high
degree are often bad already near the boundary of the interpolation interval
and this behavior becomes worse outside the interval, extrapolation cannot be
recommended in practice.

146 Interpolation and Numerical Differentiation

A very important exception is the case in which the interpolating points
xj (j = 0, 1, 2, ...) form a sequence converging to zero, and the value of f at
x = 0 is sought. The reason is that in this particular case, the usually offending
term q, (x) behaves exceptionally well,

Iqn (o) I = Ixoxl ... xn 1, (2.1)

and converges very rapidly to zero even when the xj converge quite slowly.

3.2.1 Example. For the sequence xj := z (j = 0, 1, 2, ...), one finds the fol-
lowing results:

n 1 2 4 8 16

q, (0) 0.5h2 0.125h3 9.8. 10-4h5 1.5. 10-11h9 1.1 10-41h17

Thus the extrapolation to the limit from values at a given sequence (usually
xj =x°/Nj for some slowly growing divergent sequence Nj) can be expected
to give excellent results. It is a very valuable technique for getting function
values at a point (usually x = 0) when the function becomes more and more
difficult to evaluate as the argument approaches this point.

The Extrapolation Formulas of Neville

Because the value at the single point x = 0 is the only one of interest in extrap-
olation, the Newton interpolation polynomial is not the most common way to
compute this value. Instead, one generally uses the extrapolation formulas of
Neville, which give simultaneously the extrapolated values of many interpola-
tion polynomials at a single argument.

3.2.2 Theorem. The polynomials defined by

Pio(x) = f (xi),

Pik(x) Pi,k-1 (x) + (xi - x) Pi,k-1 (x) - Pi-1,k-1 (x) for k = 1, ... , i,
xi_k - xi

are the interpolation polynomials f o r fat xi_k, ... , Xi.
(2.2)

Proof. Obviously Pik(X) is of degree <k. We show by induction on k the
interpolation property

pik(xi) = f(xt) forl = i - k,i - k + 1,...,i. (2.3)

3.2 Extrapolation and Numerical Differentiation 147

The assertion (2.3) is clearly true for k = 0. Hence suppose that (2.3) holds
for k - 1 in place of k. In (2.2), the factor (x - xi) vanishes for x = xi, and the
fraction vanishes for x =xi_1, xi_2, ... , xi_k+1; therefore,

Pik(XI)=Pi,k-1(xl)=f(xl) fort=i,i-1,...,i-k+1.
Moreover, for x = xi_k, one obtains

Pik(xi-k) = Pi,k-l(xi-k) - (Pi,k-I(xi-k) - Pi-1,k-I(xi-k))
= Pi-1,k-1(xi-k) = f (xi-k),

so that (2.3) is valid for k and hence holds in general.
Thus pik(x) is the uniquely determined polynomial of degree <k which

interpolates the function f (x) at - k ,.. ... , xi.

The values Pik(0) are, for increasing k, successively better extrapolation ap-
proximations to f (0), until a stage is reached where the limitations of polyno-
mial interpolation (or rounding errors) increase the error again. In order to have
a natural stopping criterion, one monitors the values Si := I pii (0) - pi,i_1(0) I,
and stops the extrapolation if Si is no longer decreasing. Then one accepts pii (0)
as the best approximation for f (0), and has the value of Si as a natural estimate
for the error f (0) - pii(0). (Of course, this is not a rigorous bound; the true
error is unknown and might be larger.)

In the algorithmic formulation, we use only the xi for i > 0 in accord with the
lack of zero indices in MATLAB. We store Pik (0) - f (xi) in Pi+I _k, overwriting
old numbers no longer needed; the subtraction gives a slight improvement in
final accuracy because the intermediate quantities are then smaller.

3.2.3 Algorithm: Neville Extrapolation to Zero

i=1;P1=0;
fold =f(xl);
while 1,

i =i + 1; pi =0;

fest = f (xi); df = felt - fold;
forj =i - 1: -1:1,

Pj=P1+I +(Pi+l -P1 +df)*xi/(xj -xi);
end,

fold = felt; Sold = S;
S = abs(p2 - PI); if i > 2 & S > Sold, break; end,

end,

felt = fest + PI;
% best estimate I f (0) - felt I < 3

148 Interpolation and Numerical Differentiation

For the frequent case where xi = x /q' (i = 1, 2, ...), the factor xi / (xi _k - x1) in

the formula for Pik becomes 1/(qk - 1), and the algorithms takes the following
form.

3.2.4 Algorithm: Neville Extrapolation to Zero for xi = x/qi

i=1; P, =0;
fold = f (x 1);
while 1,

i=i+I;pi=0; Q=1;
fesr = f (xi); df = felt - fold;
forj=i-1: -1:1,

Q=Q*q;
Pj =P1+1 + (P1+i - P1 +df)/(Q - 1);

end,

fold = fesr; Sold = S;

S = abs(p2 - pi); if i > 2 & S > Sold, break; end,
end,

fesr = fest + PI;
% best estimate I f (0) - feS1I < S

We now demonstrate the power of the method with numerical differentiation;
other important applications include numerical integration (see Section 4.4) and
the solution of differential equations.

Numerical Differentiation

In practice, one often has functions f not given by arithmetical expressions and
therefore not easily differentiable by automatic methods. However, derivatives
are needed (or at least very useful) in many applications (e.g., to solve nonlinear
algebraic or differential equations, or to find the extreme values of a function).
In such cases, the common remedy is to resort to numerical differentiation.
In the simplest case one approximates, for fixed x, the required value f(x)
through a forward difference quotient

P(h):=
f[x,x+h]=f(x+hh- f(x) h#0

at a suitable value of h. By Taylor expansion, we find the error expansion

(r+1)

P(h) = f(x) + L, h' + O(hs+1) (2.4)
(i + 1!i=1:s

3.2 Extrapolation and Numerical Differentiation 149

if f is (s + 2) times differentiable at x. If f is expensive to evaluate, a fixed p (h)
is used as approximation to f'(x), with an error of O(h). However, because
for small h divided differences suffer from severe numerical instability due to
cancellation, the accuracy achievable in finite precision arithmetic is rather low.

However, if one can afford to spend several function values for the compu-
tation of the derivative, higher accuracy can be achieved as follows. Because
p(h) is continuous at h = 0, and (2.4) shows that it behaves locally like a
polynomial, it is natural to calculate the derivative f'(x) = p(O) by means of
extrapolation: For a suitable sequence of numbers h, # 0 converging to 0, one
calculates the interpolation polynomial pi using the values p(hi) = f [x, x +
h1] (j = 0, ... , i). Then the pi (0) can be expected to be increasingly accurate
approximations to f'(x), with an error of 0 (h0 . h,).

Another divided difference, the central difference quotient

f[x-h,x+h] = f(x + h) - f(x - h)
2h

(2i+t) x
_ .fi(x) + + 1)i

h2i + 0(h2s+2)

(2i

p(h2) (2.5)

approximates the derivative f'(x) with a smaller error of 0 (h2). Because in the
asymptotic expansion only even powers of h occur, it is sensible to consider this
expression as a function of h2 instead of h. Because now h2 plays the role of
the previous h in the extrapolation method, the extrapolation error term is now
0 (h2 ... h2). Thus h need not be chosen as small as for forward differences to
reduce the truncation error to the same level. Hence central differences suffer
from less cancellation and therefore lead to better results. The price to pay is
that the calculation of the values p(hi) = f [x - hj, x + hj] for j = 0, ... , n
requires 2n + 2 function evaluations f (x ± hj), whereas for the calculation of
f [x, x + hj] for j = 0, ... , n, only n + 2 function evaluations (f (x + hj) and
f (x)) are necessary.

3.2.5 Example. We want to find the value of the derivative of the function
given by f (x) = sinx at x = 1. Of course, the exact value is f'(1) = cos 1 =
0.540 302 305 868.... The following table lists the central difference quotients
p(h?) := f [x - hi, x + h;] for a number of values of hi > 0. Moreover, the
values pi (0) calculated by extrapolation are given for i = 1, 2. Correct digits
are underlined. We used a pocket calculator with B = 10, L = 12, and optimal
rounding, so that the working precision is s = 110-1 i ; but only 10 significant

digits can be displayed.

150 Interpolation and Numerical Differentiation

i h; f[x-h,,x+h,] Pi (0)

0 0.04 0.540 158 236 9
1 0.02 0.540 266 286 5 0.540 302 303 0
2 0.01 0.540 293 301 1 0.540 302 305 9
3 0.5. 10-2 0.540 300 054 8
4 10-4 0.540 302 315 0
5 0.5- 10-4 0.540 302 280 0
6 10-5 0.540 302 150 0
7 10-6 0.540 304 500 0
8 10-7 0.540 295 000 0

The accuracy of the central difference quotient first increases and attains its
optimum for h ti 10-4 as h decreases. Smaller values than h = 10-4 give less
accurate results, because the calculation of f [x - h, x + h] is hampered by
cancellation. The increasing cancellation can be seen from the trailing zeros at
small h.

The extrapolated value is correct to 10 places already for fairly large hi ; it is
remarkable (but typical) that it is more accurate than the best attainable value
for any of the central differences f [x - hi, x + hi]. To explain this behavior,
we now turn to a stability analysis.

The Optimal Step Size

We want to estimate the order of magnitude of h that is optimal for the cal-
culation of difference quotients and the resulting accuracy achievable for the
approximation of f' (x). In realistic circumstances, function values at arguments
near x can be evaluated only with a relative accuracy of s, say, so that

f(x±h)=f(x±h)(1+O(s)) (2.6)

is calculated instead of f (x ± h). In the most favorable circumstances, s is the
machine precision; usually s is larger. Inserting (2.6) into the definition (2.5)
of the divided difference gives

/
f[x-h,x+h]=f[x-h,x+h]+O(If(x)Ih I.

Because f(x) = f [x - h, x + h] + 0(I f"'(x)lh2) by (2.5), we find that the
total error

fi(x)-f[x-h,x+h]=0 (IfxI) +O(If (x)Ih2) (2.7)

3.2 Extrapolation and Numerical Differentiation 151

error

--- discretization error

rounding error
- total error

h
h

Figure 3.2. The numerical differentiation error in dependence on the step size h. The
optimal step size h minimizing the total error is close to the point where discretization
error and rounding error are equal.

consists of a contribution 0(n) due to errors in function evaluations and a
contribution O(h2), the discretization error due to the finite difference approx-
imation. The qualitative shape of the error curve is given in Figure 3.2.

By a similar argument one finds for a method that, in exact arithmetic, approx-
imates f'(x) with a discretization error of O(hS) a total error 8(h) (including
errors in function evaluations) of

E(h)=O(If(x)Ih)+0(1 fps+')(x)Ihs). (2.8)

Limiting Accuracy

Under the natural assumption that the hidden constants in the Landau symbols
do not change much for h in the relevant range, we can analyze the behavior of
(2.8) by replacing it with

6(h) =a- +bhs

where a and b are positive real constants. By setting the derivative equal to
zero, we find h = (as/sb)'/(s+) as the value for which 6(h) is minimal, and
the minimal value is 6,,,,,, = (s + 1)bhs = O(ss/(s+')). The optimal It is only a
little smaller than the value of h where the discretization error term matches
the function evaluation error term, which is It = (as/b)'/(s+1) and gives a total
error of the same magnitude.

152 Interpolation and Numerical Differentiation

If we take into account the dependence of a and b on f, we find that the
optimal magnitude of h is

f (x)
h°Pt=O f(s+1)(x)

1/(s+1)
E1/(S+I) (2.9)

Because in practice, f (s+') (x) is not available, one cannot use the optimal value
h°pt of h; a simpler heuristic substitute is

h = f (x) E1/(s+1)

f[x+ho,x-ho]
This value behaves correctly under scaling of f and x and still gives total errors

of the optimal order O(ss/(s+1)), but now with a suboptimal hidden factor.
In particular, for the approximation of f' (x) by the central difference quotient

f [x - h, x + h], cf. (2.5), we have s = 2 in (2.8), and the optimal magnitude of
It is O(s'/3), achieving the minimal total error of magnitude O(s2/3). This is
corroborated in the above example, where s = 210-11 is the machine precision.

Extrapolation of p(h2) using three values f [x - ho, x + h0], f [x - h 1i
x + h J, and f [x - h2, x + h2] with hi = h/2' gives a discretization error of
O(h6), hence O(61/7) as optimal magnitude for h and nearly full accuracy
0(66/7) as optimal magnitude for the minimal total error. Again, this is consis-
tent with the example.

Note that if we use for the calculation the forward difference quotient
f [x, x + h], cf. (2.4) we only have s = I in (2.8), and the optimal choice
It = O(e1/2) only gives the much inferior accuracy 0(61/2).

Higher Derivatives

For the approximation of higher derivatives one has to use higher order divided
differences. The experience with the first derivative suggests to use also central
differences with arguments symmetric around the point where the derivative
is to be approximated; then again odd powers of h cancel, and we can use
extrapolation for h2 -f 0.

To approximate second derivatives f"(x) one can use

2f ifh: 0;

then f"(x) = p(0), and the asymptotic expansion

p(h2)=.ftl(x)+
2+2)x)h2i+O(h2s+2)
(2ii = 1:s

3.3 Cubic Splines 153

holds for sufficiently often differentiable f. Because of the division by h2,
the total error now behaves like 0(h2) + 0(h2), giving an optimal error of
O(e1J2) for h of order 0(s'/4). With quadratic extrapolation, the error looks
like O (-) + O (h6), giving an improved optimal error of O (e3/4) for h of order
0(81/8). Note that the step size h must be chosen now much larger, reflecting
the fact that otherwise cancellation is much more severe.

To approximate third derivatives f "'(x) one uses similarly

p(h2) :=6f[x-2h,x-h,x,x+h,x+2h]
1(f(x+2h)- f (x - 2h)) - (f (x + h) - f(x-h))

h3
if h ¢0;

then f"'(x) = p(0) and p(h2) = f"'(x) + O(h2). The optimal h is now of order
0 (s 1/5), giving an error of order 0(82/5) . Again, extrapolation improves on this.

3.3 Cubic Splines

As shown, polynomial interpolation has good approximation properties on nar-
row intervals but may be poor on wide intervals. This suggests the use of piece-
wise polynomial functions to keep the advantages and overcome the problems
associated with polynomial interpolation.

Piecewise Linear Interpolation

To set the stage, we first look at the simple case of piecewise linear interpolation.

3.3.1 Definition.

(i) A grid on [a, b] is a set A = {x1, ... , satisfying

a=x1 <X2 <... (3.1)

x 1, ... , x are called the nodes of A, and h := max{ I xj+1 - xj I I J =
1, ... , n - 11 is called the mesh size of A. A grid A _ {x1, ... , x } is

called equispaced if

x,=a+(i-1)h fori=l,...,n;

the mesh size is then h = (b - a)/(n - 1).
(ii) A function p : [a, b] -* Tl is called piecewise linear over the grid A if it is

continuous and agrees on each interval [xi, x;+1] with a linear polynomial.

154 Interpolation and Numerical Differentiation

(iii) On the space of continuous, real-valued functions f defined on the interval
[a, b], we define the norms

If III := sup{I f (x)II x E [a, b]}

and

IIfllz=
fb

For piecewise linear interpolation, it is most natural to choose the grid 0 as the
set of interpolation points; then the interpolation condition

S(xj) = f (xj) for j = 1, ... , n (3.2)

automatically ensures continuity in [a, b], and we find the unique interpolant

S(x) = f (xj) + f [xj, xj+i](x - xj) for all x E [x1, xj+l].

We see immediately that an arbitrarily accurate approximation is possible when
the data points are sufficiently closely spaced (i.e., if the mesh size h is suffi-
ciently small). If, in addition, we assume sufficient smoothness of f, then we
can bound the achieved accuracy as follows.

3.3.2 Theorem. Let S(x) be a piecewise linear interpolating function on the
grid 0 = {x1, ... , x } with mesh size h over [a, b]. If the function f (x) to be
interpolated is twice continuously differentiable, then

zh
I f (x) - S(x)I <

8
IIf"III for all x E [a, b].

Proof. For X E [xj, xj+I], the relation

f (x) - S(x) = f [xj, x1+i , x] (x - xj) (x - xj+,)

implies the bound

If (x) - S(x)I 2IIf"II I(x - xMx - xj+i)I < 2IIf"III (x'+'
4

x')2

z

Bllf"III.

In order to increase the accuracy by three decimal places, it is necessary
to decrease h 2 by a factor of 1000, which requires the introduction of at least

3.3 Cubic Splines 155

1000 ti 32 subintervals between any two already existing grid points. This
means 32 times as much work; cubic polynomial interpolation would already
be of order 0 (h4), reducing the work factor to a more reasonable factor of

10005.6.
Thus, in many problems, piecewise linear interpolation is either too inaccu-

rate or too slow to give a satisfying accuracy. However, this can be remedied
by using piecewise polynomials of higher degree with sufficient smoothness.

Splines

We now add smoothness requirements that define a class of piecewise polyno-
mials with excellent approximation properties.

A spline of order k over a grid A is a k - 2 times continuously differentiable
function S : [a, b] - ll such that the (k - 2)nd derivative S(k-2) is piecewise

linear (over 0). A spline S of order k is piecewise a polynomial of degree at most
k - 1; indeed, S must agree between two adjacent nodes with a polynomial of
degree at most k because the (k - 2)nd derivative is linear. In particular, splines
of order 4 are piecewise cubic polynomials; they are called cubic splines.

Splines have excellent approximation properties. Because cubic splines are
satisfactory for many interpolation problems, we restrict to these and refer
for higher order splines to de Boor [15]. (For splines in several variables, see
de Boor [16].)

Important examples of splines are the so-called B-splines. A cubic basis
spline, short a B-spline over the grid 0 = {x,x }, is a cubic spline S, (x)
defined over the extended grid x_2 < x_1 < < with the property that
(for some t =0, 1, ... , n + 1) S,(x,) > 0 and S,(x) =0 for x V (X1_2, X,+2)
Cubic basis splines exist on every grid and are determined up to a constant
factor by the (extended) grid A and the index 1; see Section 3.5.

3.3.3 Example. For the equispaced case, one easily checks that the functions
defined by

Bk(x):=B(h-k)

where

I
B(x) := 1(2- IX 1)3 for 1 < IxI < 2, (3.3)

0 for jxj > 2

are B-splines on the equispaced grid with x, = xo + lh (cf. Figure 3.3).

156 Interpolation and Numerical Differentiation

Figure 3.3. Cubic B-splines for an equally spaced grid, h = a.

For interpolation by cubic splines, it is again most natural to choose the grid 0
as the set of interpolation points. The interpolation condition (3.2) again ensures
continuity in [a, b], but differentiability conditions must be enforced by suit-
able constraints. We represent S in [xj, xj+1] as a cubic Hermite interpolation
polynomial. Using the abbreviations

Pj = f [xj, xj+l], Yj = f [xj, xj+l, xj], sj = f [xj, xj+1, xj, xj+1],
(3.4)

we find

S(x) = f(xj)+Pj(x -xj)+yj(x -xj)(x -xj+i)
+8j(x-xj)2(x-xj+1) for all x E [xj,xj+l]. (3.5)

Because the derivatives of S at x j and x j+1 are not specified, the constants yj
and b j are still undetermined and at our disposal, and must be determined by
imposing the condition that a cubic spline is twice continuously differentiable
at the nodes (elsewhere, this is the case automatically). The calculation of the
corresponding coefficients yj and 8 j is very cheap but a little involved because,
as we show, a tridiagonal system of linear equations must be solved.

3.3 Cubic Splines 157

3.3.4 Theorem. Let 0 = {x1, ... , be a grid over [a, b] with spacings

hi=xi+i -x, (i=1,...,n- 1).

The function S given by (3.5) for x E [xj, xj+i] is a cubic spline, interpolating
f on the grid, precisely when there are numbers mj (j = 1, . . . , n) so that

yj=2mi+mj+t,
Sj=mj+h- mj

(j=1,...,n-1),
J

(3.6)

(1 - gi)mi-i +2mj+qjmj+1 = f [xi-I, x1, xj+i] (j=2,...,n - 1),
(3.7)

where

h-
qj= E [0, 1] (j=2,...,n- 1).

hj_1 + hj

Proof Because S(x) is piecewise cubic, S"(x) is piecewise linear, and if we
knew S"(x), then we would know S(x). Because, however, S"(x) is still un-
known, we define

mj =6S"(xj) forj=l,...,n.

Formula (3.5) gives the following derivatives for x E [xj, xj+i]:

S'(x) fii + yi (2x - xj - xj+t)
+ Sj (2(x - xj) (x - xj+i) + (x - xj)2),

S"(x) = 2yj + 2Sj (3x - 2xj - xj+1).

Thus we obtain the following continuity condition on S":

6mj = 2yj - 281hj for x - xj + 0 in S"(x),

6mj+l = 2yj + 4Sjhj for x - xj+i - 0 in S"(x);

but this is equivalent to (3.6).
To get (3.7), we derive continuity conditions on S' as x -+ xj + 0 and

x XJ+i - 0:

S'(xi) =Pi - yjhj =Pj - (2mj +mj+i)hj,

S'(xi+i)=fi +ylhi +S1hj=,i +(ml +2mj+i)hi

We can therefore formulate the continuity condition on S' as

Pi - (2mj +m.i+i)h.i =/i-i + (mj-i +2mi)hj-i;

158 Interpolation and Numerical Differentiation

this is equivalent to

f [x.i-1, xj, xj+i] =
f [xj, xj+i] - .f [xi-1, xj] = ii - Pi-1

xj+1 - xj_1 hj_1 + hj

(2mj + mj+,)h1 + (mj_1 + 2mj)hj_1
hj_1 + hj

for j = 2, ... , n - 1, and this simplifies to (3.7).

Because f [xj_ 1, xj, xj+,] can be computed from the known function values,
the previous equation gives n - 2 defining equations for the n unknowns mj.
We can pose various additional conditions to obtain the two missing equations.
We now examine four different possibilities.

CASE 1: A simple requirement is the free node condition for x2 and
this case, we demand that S(x) be given by the same cubic polyno-
mial in each of the two neighboring sets of intervals [x1, x2], [x2, x3]
and [xr_2, xi_1], thus x2 and x,,_1 are, in a certain sense,
"artificial" nodes of the spline. As a consequence, Scannot have
jumps at x2 or Since S"' shouldn't have a jump at x2, we must
have S, = 82, so

m2 -MI m3 - m2

X2 - x1 x3 - x2

This leads to the condition

(x3 - x1)mz - (x3 - x2)m, (h, + h2)m2 - hems
m3= _

X2 - x1 h,

Plugging this into (3.7) for j = 2 gives

h 1(h, + hz)f [x, , xz, x3] = him 1 + 2h, (h, + hz)mz + h 1 h2m3

= (hi - h2)m, + (2h1 + hz)(h, + hz)m2

= (h, - hz)(h, + hz)m,
+ (2h, + h2)(h, + h2)m2,

so

(2+ hz)m2=f[xix2x3i.1 - h1 h1 (3.8)
C hz

m, +
/

3.3 Cubic Splines 159

Similarly, the free node condition at xn_', gives the determining
equation

1
C2 +

hn-2 mn_1 + I 1 - h,,-2

J
Mn = .f [x,n-2, xn-1 , xn]. (3.9)

hn_1) \\ h,,-,

From (3.7) and these two additional equations, we obtain the tridiag-
onal linear system Am = d with

m=

f [x], x2, x3]
f [xl , x2, x3]

d=
P X2, x3, x4]

f[xn-2, xn-1,xn]
f[xn-2,xn-I, x,]

1 -h2/hl fori=1,
Aii = 1 - for i =n,

2 otherwise,

Ai,i+l
(2+h2/h1

=
Sl qj

fori=1,
otherwise,

Ai,i-1
2+hn_2/hn_1 fori=n,

= 1 - qj otherwise,

Aik = 0 if lk - i H > 1.

The computational cost to obtain the mi and, therefore, the spline
coefficients is only of order 0 (n). If we have an equispaced grid, then
we get the following matrix:

I

2

2
I

2

0

A=

LO

2 1

2
I 2
2

3 0

In this important special case, the solution of the linear system Am = b
simplifies a little; m2 and mn_1 may be determined directly, then m3
to mn_2 may be determined by Gaussian elimination, and m 1 and m

160 Interpolation and Numerical Differentiation

may be determined by substitution. Because of diagonal dominance,
pivoting is unnecessary.

CASE 2: Another possibility to determine two additional equations for the mj
is to choose two additional points, xo = x1 - ho and xn+1 = xn + hn,
near a and b and demand that S interpolate the function f at these
points. For xo, we obtain the additional condition

f[xo, x1, x21 = Y1 + 31(xo - xi)

3 m2-ml x1+x2
= 2(m1+m2)+ h xo- 2

so

f [xo X1, x21=
'

(2h1 +ho)m1 + (h1 - ho)m2
h 1

Similarly, we obtain as additional condition for xn+1 :

{ (2hn-1 + hn)mn + (hn-1 - hn)mn-1
J [xn-l, xn, xn+1j _

hn-i

This leads to a tridiagonal linear system analogous to that in Case 1
but with another right side d and other boundary values for A. This
linear system can also be solved without pivoting, provided that

x1 - xo x +1 - x 1 5n n

E - (3 10)
h1

'
hn-1 4

,

1
4 .

hbecause t en

1 3I- A (3.11)- 04
and A is an H-matrix.

CASE 3: If f is periodic with period in [a, b], we can construct S to be a
periodic spline with xo =xn_i, xn+1 = x2, and m1 =mn. In this case,
we obtain a linear system for m1, ..., mn_1 from (3.7), whose matrix

3.3 Cubic Splines

A has the following form:

fx x 0 .. 0 x
X x x 0 0

0 x x 0

I 0 0 x
x 0 0 x x

161

Here, III -
z
!All,,. < 1, so that we may again apply Gaussian elim-

ination without pivoting; however, because of the additional corner
elements outside the band, nonzero elements are produced in the last
rows and columns of the factorization. Thus the expense increases a
little, but remains of order O(n).

CASE 4: If the derivative of f at the end points x1 and x, is known (or can
reliably be estimated), we can set xo = x1 and xn+1 = xn; to obtain
m1 and m, we then compute the divided differences f [x1, x1, x21
and f [xn_ 1, xn , xn] from these derivative values. This corresponds to
the requirement that S'(x) = f'(x) for x E {x1,xn}. The spline so
obtained is called a complete spline interpolant.

In order to give a bound for the error of approximation 11 f - S11, , we first
prove the following.

3.3.5 Lemma. Suppose f is twice continuously differentiable in [a, b]. Then,
for every complete spline interpolant for f on [a, b],

IIS"II. < 31lf"Ii..

Proof. For a complete spline interpolant, 111-1 A 11 < 1; therefore, Proposition
2 2

2.4.2 implies

IIA-'11. <1.

Because f [x, x', x"] =
z

for some l4 E p{x, x', x"}, we have
11 f" Iloo. Because S" is piecewise linear, we have

Ildll. <

IIS"11. = max S"(xi)=6max Imi1=611m11...
i=1:n i=1:n

= 611A-'dll. 61(A-' Il.lldll,,. < 6. 1 ' Ilf"IIS

162 Interpolation and Numerical Differentiation

The following error bound for the complete spline interpolant results, as well
as similar bounds for the errors in derivatives.

3.3.6 Theorem. Suppose f is four times continuously differentiable in [a, b].
Then the bounds

IIf - Slloo - 16 if 1100'

3

IIf' - S'Iloo < 21I f141llo0>

h
IIf" - S"Iloo < 22 II f(4)II

hold for every complete spline interpolant with mesh size h.

Proof. For the proof, we utilize the cubic spline S with

S"(xj) = f"(xj) for j = 1,...,n,
S'(xj) = f'(xj) for j = 1 and j =n,

where the existence of S follows by integrating the piecewise linear function
through f"(xj) twice. Lemma 3.3.5 implies

IIf"-S"Iloo IIf"-3"1100+11(5'-S)"11oo

< IIf"-S"IIoo+311(5-f)"11.=411f"-S"1100.

Because S" is the piecewise linear interpolant to f" at the x Theorem 3.3.2
implies the bounds

zh
IIf" - S"Iloo <

g
II(f")"Il00

so

2

IIf"-S"1100<_ (3.12)

To obtain the corresponding inequalities for f and f', we set e := f - S.
Because e(xj) = 0, the relationship

e(x)=(x -xj)(x -xj+,)e[xj,xj+i,x]

then follows for x E [xj, xj+1], j = 1, ... , n - 1. Formula (3.12) and

3.3 Cubic Splines 163

J (x - xj) (x - xj+1) I < h2/4 then imply

h

2
Ilf -SII,,. =hell. < 4 .- lierr11,,.

< 161If(4)2

For the derivative of e, we obtain

e'(x) = (e[x, xj+i] - e[xr, xi+1]) - (e[x, xj+11 - e[x, x])
= (x - xj)e[x, x1, xj+11 - (xl+i - x)e[x, x, xj+11,

so (3.12) implies

1 1
3

IIf -S11.=11ell.<h. lle 11.+h 211err11.=hI1err11.< h

2 f (4)

2

11

3.3.7 Remarks.

(i) Comparison with Hermite interpolation shows that the approximation
error has the same order (0(h4)). In addition (and this can also be proved
for Hermite interpolation), the first and second derivatives are also approx-
imated with orders O (h3) and 0(h2). (The present simple proof does not
yield optimal coefficients in the error bounds; see de Boor [15] for best
estimates.)

(ii) For equispaced grids (i.e., x;+1 - xi = h for each i), it is possible to show
that the first derivative is also approximated with order O (h4) at the grid
points. Computation of the complete spline interpolant for a function f is
therefore also useful for numerical differentiation of f.

(iii) Theorem 3.3.6 holds without change for periodic splines in place of com-
plete splines. It also holds for splines defined by the free node condi-
tion and splines defined through additional interpolation points, when the
error expressions are multiplied by the (usually small) constant factor
4(1+311A-'II.).

An Optimality Property of Cubic Splines

We now prove an important optimality theorem for complete spline interpolants.

3.3.8 Theorem. Suppose f is twice continuously differentiable in [a, b], and
suppose S(x) is a complete spline interpolant for f on the grid a = x1 < <

164 Interpolation and Numerical Differentiation

x, = b. Then

IIS"II2 = Ilf"I122 2- IIf" - S"II2 < Ilf"II2.

Proof. To prove the statement, we compute the expression

2 2- Ilf IIS"I12F := I1f"II2

/b
= J (f"(x)2 - (f"(x) - S"(x))2 - S"(x)2) dx

a

fb(f"(X)
2 - S"(x))S"(x) dx

2 E (f"(x) - S" (x)) S" (x) dx.
i =2:n xi-

x.

1

Because S"(x) is differentiable when x E (xi_1, xi), we obtain

F = 2` ((f'(x) - S'(x))S"(x) - fi-il (f'(x) - S'(x))S"'(x) dx
Ix;

by integration by parts. Because the expression (f'(x) - S'(x))S"(x) is con-
tinuous on all of [a, b], and because S"'(x) exists and is constant in the interval
[xi _ 1, xi], we furthermore obtain

b

F=2 [(f'(x) - S'(x))S"(x)I - (f(x) - S(x)) Srn(x)
a

i = 2:n

Because f' and S' agree by assumption on the boundary, the first expression
vanishes. The second expression also vanishes because f and S agree at the
nodes xj (j = 1, ... , n). Therefore, e = 0, and the assertion follows.

3.3.9 Remarks.

(i) The optimality theorem states that the 2-norm of the second derivative of
the complete cubic spline interpolant is minimal over all twice continu-
ously differentiable functions that take on specified values at x1, ... , xn
and whose derivatives take on specified values at x1 and xn. This optimal-
ity property gave rise to the name "spline," borrowed from the name for
a bendable metal strip used by engineers in drafting. If such a physical
spline were forced to go through the data points, then the resulting curve
would be characterized by a minimum stress energy that is approximated

byf IIf"II2

3.4 Approximation by Splines 165

(ii) The 2-norm of the second derivative is an (approximate) measure for the
total curvature of the function. This is because the curvature of a function

f (x) is

f (x)K(x)
=

l + f'(x)2

Therefore, if the derivative of the function is small or almost constant, then
the curvature is approximately equal or proportional to the second deriva-
tive of the function, respectively. Thus, we can approximately interpret the
theorem in the following geometric way: the complete spline interpolant
has a total curvature that is at most as large as that of the original func-
tion. The theorem furthermore says that the complete spline interpolant
is approximately optimal over all interpolating functions in the sense of
minimal total curvature and therefore is more graphically esthetic.

(iii) The same proof produces analogous optimality for periodic splines and
the so-called natural splines, which are characterized by the condition
S"(xl) = 0. The latter are of course appropriate only for the ap-
proximation of functions f with f"(xi) = 0-

3.4 Approximation by Splines

In practice, we frequently know function values only approximately because
they come from experimental measurements or expensive simulations. Because
of their minimal curvature property, splines are ideal for fitting noisy data (xi, yi)

(i = 1, ... , m) lying approximately on a smooth curve y = f (x) of unknown
parametric form.

To find a suitable functional dependence, one represents f (x) as a cubic spline

S(x). If we interpolated noisy data with a node at each value we would obtain
a very unsmooth curve reflecting the noise introduced by the inaccuracies of
the function values. Therefore, one approximates the function by a spline with
a few nodes only.

Approximation by Interpolation

A simple and useful method is the following: We choose a few of the data
points as nodes and consider the spline interpolating f at these points. We then
compute the error interval

e=p{S(x) - f(x) I X E M)

corresponding to the set M of data points that were ignored. If the maximum

166 Interpolation and Numerical Differentiation

error is then larger than a previously specified accuracy bound, then we choose as

additional nodes those two data points at which the maximum positive and neg-
ative error occurred, and interpolate again. We then compute the maximal error
again, and so on, until the approximation is sufficiently accurate. The computa-
tional expense for this technique is O (nm), where m is the total number of data
points and n is the maximum number of data points that are chosen to be nodes.

A problem with all approximation methods is the treatment of outliers, that is,
particularly erroneous data points that are better ignored because they should not
make any contribution to the interpolating function. We can eliminate isolated
outliers for linearly ordered data points x, < x2 < < xm as follows. We write
s, = S(x,) - f (x,) and, for i < m,

e; =
si if 1si I -< ler+' 1

si+i otherwise.

We then take e = 0 {ei I i = 1, ... , in - 1) as error interval in the previous
method.

Approximation by Least Squares

A more sophisticated method that better reflects the stochastic nature of the noise
uses the method of least squares. Here, one picks as approximating function
the spline that minimizes the expression

m

W,(yi - S(x,))2, (4.1)

where the wi are appropriately chosen weights.
Regarding the choice of weights, we note that function values should make a

contribution to the approximating function in proportion to how precise they are;
thus the weights depend, among other things, on the accuracy of the function
values. In the following, we assume that the function values are all equally
precise; then a simple choice would be to set each wi to 1. However, the distance

between two adjacent data points should be reflected in the weights, too, because
individual data points should provide a smaller contribution in regions where
they are close together than in regions where they are far apart. A reasonable
choice is, for example,

(x2 - xi)/2 fori = 1,

wi (xi+, - xi_,)/2 for i = 2.... m - 1,
(xm - xm_1)/2 for i =m,

3.4 Approximation by Splines 167

because the expression (4.1) is then approximately equal to the integral
f (f (x) - S(x))2 dx = II f - SIIZ (see the trapezoidal rule in Section 4.3). With

this choice of weights, we approximately minimize the 2-norm of the error
function.

The choice of the number of nodes is more delicate because using too few
nodes gives a poor approximation, whereas using too many produces wiggly
curves fitting not only the information in the data but also their noise. A suitable
way is to proceed stepwise, essentially as explained in the approximation by
interpolation.

Minimization of (4.1) proceeds easiest when we represent the spline S(x)
as a linear combination of B-splines. The fact that these functions have small
compact support with little overlap ensures that the matrix of the associated
least squares problem is sparse and well conditioned.

In the following, we allow the nodes X1 < x2 < < xm of the spline to differ
from the data points xi. Usually, much fewer nodes are used than data points
are available.

To minimize (4.1), we assume that S is of the form

n

S(x) ZISI(x),
l=1

where the zt are parameters to be determined and where the S, are B-splines
over a fixed grid A. Thus, we seek the minimum of

m m

h(z) wi(Yt -S(xi))2= Fi(z)2=IIF(z)II ,

with

n

Fi (z) = wi (Yi - S(xi)) = wi Yi - Y z!S!(xi)

Written in matrix form, the previous equation is F(z) = D(y - Bz), where

D=Diag(wl,..., wn)El rnxm

Si(xi) SS(xi)

B = E Rmxn

S1(X.) ... Sn(xm)

Y:1 ERm, Z=

=(1Ym
Z i

Zn

168 Interpolation and Numerical Differentiation

We therefore need to solve the linear least squares problem

IIDy - DBz112 = min! (4.2)

Here, selection of the basis splines leads to a matrix B with a simple, sparse
form, in that there are at most four nonzero elements in each row of B. For
example, when n = 7, this leads to the following form, when there are pre-
cisely 1, 4, 2, 1, 2, 1 data points in the intervals [xi, xi+i], i =1, 2, 3, 4, 5, 6,
respectively:

To solve problem (4.2), we may use the normal equations

(DB)T DBz = (DB)T Dy (4.3)

(Theorem 2.2.7) because the matrix for this special problem is generally well-
conditioned. Formula (4.3) is equivalent to

(BT W B)z = BT WY,

where W = Diag(wl,... , wn). Because the element

(4.4)

(BTWB)jk= wiSj(xi)Sk(xi)

vanishes whenever Sj and Sk do not overlap, the matrix BT WB is a 7-band
matrix. Moreover, BT W B is positive definite, so that a solution of (4.4) via a
Cholesky factorization succeeds without problems.

Because B contains a total of at most 4m nonzero elements (and therefore
on average 4m/n nonzero elements per column) and (by symmetry) only four
bands must be computed, the computation of the left side of the normal equations
requires at most 4n 4m/n 3 = 0 (m) operations. Similarly, the formation of

3.4 Approximation by Splines 169

the right side also takes O (m) operations. Because the solution of the 7-band
system takes O(n) operations and n < m, a total of O(m) operations are
required to solve (4.4).

A comparison with approximation by interpolation shows that a factor of
O(n) is saved. Nonetheless, the least squares method is faster only beyond a
certain n because the constant associated with the expression for the cost is now
larger than before.

The least squares method can also be used for interpolation; then, in contrast
to the case already considered, the data points yi and the nodes Xi do not need
to correspond. According to de Boor [15],

xi fori=1,m
(xi_I + xi + xi+1)/3 otherwise

is a nearly optimal choice of nodes.

Parametric Splines

A case that often occurs in practice (e.g., when modeling forms such as airplane
wings) is that in which we seek a smooth curve that connects the pairs (xi, yi)
and (xi+i, Yi+i) Here, the xi (i = 1, ... , m) are in general not necessarily dis-
tinct. We cannot approximate such curves by a function f with f (xi) ti yi. To
solve this problem, we introduce an artificial parameter s and view the pairs
(x, y) as a function of s. This function can then be approximated by two splines.
We obtain good results when we take the following arclength approximation
for s:

Si := 0, si+1 := si + (xi+i - xi)2 + (Yi+i - Yi)2.

Then, si is the length of the piecewise linear curve which connects (xl, yl) with
(xi, yi) through the points (x2, Y2), ... , (xi_1, yi_I). If we now specify splines
S. and Sy corresponding to a grid on [0, sm] with Sx (si) ti xi and Sy (si) yi

(i = 1, ... , m), then the curve (x, y) = (SX(s), Sy(s)) is a smooth curve which
approximates the given point set.

3.4.1 Remarks.

(i) The constructed curve is invariant under orthogonal transformations (ro-
tations and reflections).

(ii) The parametric curve can be easily graphed, since we may simply graph
x=SX(s) andy=Sy(s).

170 Interpolation and Numerical Differentiation

(iii) If we are looking for a closed curve then x,,,+1 = x1 and y,,,+1 = yi, and we
can approximate with periodic splines.

3.5 Radial Basis Functions

Radial basis functions are real-valued functions defined on JRd that are radially
symmetric with respect to some center xi, and hence have the form cp (11X - xi 112)

for a suitable univariate function co : R+ - R. Most analyzed and used are
radial basis functions with

cp(r) = r2 + c2 (multiquadric)

cp(r) = r2 log r2 (thin plate spline)

cp(r) =
e-`zr2

(Gaussian)

Strong interpolation and approximation theorems are known for the interpola-
tion and approximation by linear combinations of radial basis functions; they
are based on the fact that good radial basis functions grow with Ilx II, but their
higher order divided differences decay (see, e.g., Light [56]). The multivariate
analysis is quite involved; here, we only relate univariate radial basis func-
tions to splines, to motivate that we may indeed expect good approximation
properties.

3.5.1 Theorem. The space of all piecewise linear functions with possible
breakpoints (nodes) at an infinite grid ... < xi <x1 + 1 < ... agrees with the
space of all linear combinations of the functions (Di (i = 1, ... , n) defined by
(Di(x):=1x -xiI.

Proof All piecewise linear functions over the grid ... < xi < xi+1 < ... have

a representation as a linear combination

S(x)= >S(xi)Bi(x)

of the linear B-splines

(x - xi-1)/(xi - xi-1) if xi-1 < x < xi,

Bi(x) = (x - xi+1)/(xi - xi+1) if xi < x < xi+1,

0 otherwise.

Now, whereas the functions

(Di(x):=Ix-xiI

3.5 Radial Basis Functions 171

(b)

-2 -1.5 -0.5 0 0.5 1 1.5 2 2.5

Figure 3.4. Linear B-splines as linear combinations of simple radial basis functions
(a) 'Pi, (b) Di+l,i, (c) Bi.

are unbounded and wedge-shaped, the differenced functions

(Di+i - (Di
xi+1 - xi

are constant outside [x,, xi+I], and the twice differenced functions

Bi(x) _
(Di+l,i - (Di,i-i

2

are the linear B-splines over the grid. In particular, Bi (x) and therefore all
piecewise linear functions are linear combinations of (Pi (x). Conversely, be-
cause each (Di (x) is piecewise linear, all their linear combinations are piecewise
linear. Thus approximation by piecewise linear functions is equivalent to ap-
proximation by linear combinations of Ix - xi 1. 0

More generally, higher order splines can be written as linear combinations
of functions of the form

(x -x1)

172 Interpolation and Numerical Differentiation

centered at xi where for order s splines,

Ix I' ifs is odd,

fi(x) xlxls-' if s is even.
(5.1)

Indeed, it is not difficult to see that, in generalization of the linear case, one
obtains B-splines of order s over an arbitrary grid by (s + 1)-fold repeated
differencing.

3.6 Exercises

1. Fit (by hand calculations) a parabola of the form g(x)=ax 2 + bx +c
through the points (50, 1), (51, 3), (52,

3
). Give all quantities and in-

termediate results to 5 decimal places. Compare the results obtained by
using the Newton interpolation formula with those that obtained from the
power form at the points x = 50, 50.5, 51, 51.5, 52.

2. (a) Write MATLAB programs that calculate and evaluate the interpolation
polynomial for a MATLAB function f at n pairwise distinct interpo-
lation points x1.... , xn.

(b) Interpolate the functions fl (x) := eX/'o and f2(x) := 1/(1 +x2) at the
equidistant interpolation points xi := - 5 + IOi/n, i = 0, ... , n.

For fl and f2 andn =1, 4, 8, 16, plot f and p, and calculate an es-
timate of the maximum error

max Ipn(X) - f (x)I
XEI

by evaluating the interpolation polynomial pn at 101 equidistant points
in the intervals (i) I = [-1, 1] and (ii) I = [-5, 51.

(c) For both functions and both intervals, determine the value of n where
the estimated error becomes least.

3. Let the function f : I[8 -+ R be sufficiently differentiable.
(a) Show that divided differences satisfy

forv=0,...,n.
(b) Find and prove an analogous expression for dxV f [xo, x1.... , xn].

4. Show that the Lagrange polynomials can be written as

L1(x) = q[x, x1]/q[x1, x1],

where q(x) = (x - x0) ... (x - xn).

3.6 Exercises 173

5. Given n + 1 points x0, ... , xn and an analytical function f : R -+ R, the
matrices Sn (f), A E j(n+1)x(n+1) are defined by Sn (f) := S with

f [xi , ... , xk] fori < k,
Sik:= (i,k=0,...,n)

0 fori > k

and

x0 1 0

xn-1

0 Xn

A :=

Prove for a, x0, ... , Xn E IR, and arbitrary n times differentiable functions

f, g:
(a) Sn(a)=aI, Sn(f ±g)=Sn(f)±Sn(g), Sn(x. f)=ASn(f)
(b) If p is a polynomial then Sn (p) = p(A).

(C) Sn (f ' g) = Sn (,f) . S. (g)
(d) If h := fg then

h[Xi,...,Xk]= E f[xi,...,xj]g[Xj,...,xk].
j=i:k

(e) Specialize (d) to get a formula for the kth derivative (fg)(k).
Hint: Use induction to get (b) from (a); deduce (c) from (b) and interpola-
tion.

6. Let di = f [xo,... , xi] and

A=

(xo 0 -do
1 X1 -d1

1 xn_1 -dn-
0 1 dnxn -

2

dn_1

D=

0 do

Show that pn (x) = det(Dx - A) is the Newton interpolation polynomial
for f at xo, ... , xn.

174 Interpolation and Numerical Differentiation

7. Let (xo, yo, yo) := (-1, -3, 19), (x,, yl, yl) := (0, 0, -1), and (x2, Y2,
y') := (1, 3, 19). Calculate the Hermite interpolation polynomial p(x) of
degree 5 with p(xv) = yv and p'(xv) = y' , v = 0, 1, 2.

8. Let pn (x) be the polynomial of degree <n that interpolates the sufficiently
smooth function f (x) at the pairwise distinct points xo,... , xn.
(a) Show that fork < n the kth derivative of the error function f (x) - pn (x)

has at least n - k + I zeros in the smallest interval [a, b] containing
all xv.

(b) Use (a) to prove for arbitrary kEN the existence of some E[a, b] such
that

f[x0,xl,...,xk]= (6.1)

(c) Show that the relation (6.1) holds even when certain interpolation points

coincide.
(d) Show that, for the Hermite interpolation polynomial pn (x) that coin-

cides with the values of the function f and its first derivative at the
points xo, ... , xn, the remainder formula

f(2n+2)()
2

P X) - pn(x) =
(2n + 2)! qn (x)

with E []{x0, ..., xn, x} and q, given bygn(x) := (x-xo) .

holds for arbitrary x E R.
9. Let D be a closed disk with fixed center c c: C and radius r. Let xv E D,

v = 0, ... , k be given points, and let

p:= max xv - cl.
v = 0,...,k

Then for every analytic function f : D C C C,

r
If[xo,xl,...,xk]l < (r-p)k+I

Now, let f (x) := eX, x E C.
(a) Give an explicit expression for S(r).
(b) For which value r of r is S(r) minimal (with c, x0, x1.... , xk E C

fixed)?
(c) How big is the overestimation factor

over .- S(r)qk -
for xo = x1 = = xk = c and k = 1, 2, 4, 8, 16, 32?

3.6 Exercises 175

10. The Chebyshev points

2j+1
xj :=cos2(n+1)it (j=0,...,n)

minimize the expression

sup
l,Et-1,1]

where qn(x) ._ (x - xo) ... (x - xn).
Show this for n = 1, and express the points x0, x, in terms of square roots.

11. Write a MATLAB program that calculates the derivative f'(x) of a given
differentiable function f at the point x E R. For this purpose use the central
difference quotient

f(x+hi) - .f(x - hi)f[x -h;,x+h;]:-
2h;

for h, := 2-i h0, i = 0, 1 , 2, ... , where h0 > 0 is given. Let p be the inter-
polation polynomial of degree <n satisfying

pn(h+)=.f[x-hi,x+hi], i=0,...,n.

Choose the degree n for which

Ipn+1(0) - pn(0)I > Ipn(0) - pn-1(0)I

holds for the first time. Then 1(p,(0) + p,-,(O)) is an estimate of f(x)
and 1 I pn (0) - pn_, (O) l is a bound for the error.

Determine in this way an approximation and an estimated error for the
derivative of f (x) := ex at x = 1 using in succession, the starting values
h0 := 1, 0.1, 0.01, 0.001, and compare the results with the true error.

12. Suppose, for the linear function f (x) := a + bx, with a, b ¢ 0, the first
derivative f'(0) = b is estimated from

Sh 2h
f (h) - f (-h)

in binary floating point arithmetic with mantissa length L and correct round-

ing. Let a and b be given binary floating point numbers and let h be a power
of 2, so that multiplication with h and division by 2h can be performed ex-
actly. Give a bound for the relative error I(bh - f'(0))/f'(0)I of the value
bh calculated for Eh. How does this bound behave as h 0?

176 Interpolation and Numerical Differentiation

13. A lot of high quality public domain software is freely available on the World

Wide Web (WWW). The NETLIB site at
http://www.netlib.org/

contains a rich collection of mathematical software, papers, and databases.
(a) Search the NETLIB repository for the key word "interpolation" and

explore some of the links provided.
(b) Get a suitable program for spline interpolation, and try it out on some

simple examples. (To get the program work in a MATLAB environ-
ment, you may need to learn something about how to make mex-
files that allow you to access FORTRAN or C programs from within
MATLAB.)

14. Let S f be the spline function corresponding to the grid xI < x2 < < xn

that interpolates f at the points xo, x1.... , xn+I. Show that the mapping
f - S f is linear, that is, that

Sf+g=Sf +Sg and Saf=aSf.

15. For an extended grid x_2 < x-I < xo < < xn < xn+I < Xn+2 < Xn+3,
define functions Bk (k = I.... , n) by

Bk(x)

ak,k_2(X - Xk-2)3

ak,k_2(x - Xk-2)3 + ak,k-I (X - Xk-I)3

01k,k+2(Xk+2 - x)3 + ak,k+I (Xk+I - X)3

ak,k+2(Xk+2 - X)3

0

where

a
Xk+2 - Xk-2

H (xi - x3)
li-kl<<2
i#k

for Xk_2 < X < xk_I,

for xk_I < X < Xk,

for Xk < X < Xk+l ,

for Xk+I < X < Xk+2,

otherwise,

(a) Show that these formulas define cubic splines, the B-splines over the
grid.

(b) Extend the grids (-5, -2, -1, 0, 1, 2, 5) and (-3, -2, -1, 0, 1, 2, 3)
by three arbitrary points on both sides and plot the nine resulting
B-splines (as defined previously) and their sum on the range of the ex-
tended grids, using the plotting features of MATLAB. The figure should
consist of two subplots, one for each grid, and be self-explaining; so
do not forget the labeling of the axes and a plot title.

3.6 Exercises 177

Hint: The MATLAB functions subplot, title, text, xlabel, and
ylabel may be useful. Try also set (gca, ' xlim' , [-6,61), and ex-
periment with set and get.

(c) The plot suggests a conjecture; can you formulate and prove it?
16. For given grid points x1 < x2 < < x, and function values f (x j), let

S(x) be the cubic spline with

S(x) = aj + Pj(x - xj) + Yj(x - xj) (x - xj+1)

+81(x-xj)2(x-xj+1) forx E [xj,xj+1],

satisfying S(x) = f (x j), j =1, ... , n and the free node condition at x2
and xn_1.
(a) Write a MATLAB subroutine that computes the coefficients a j, i4j, yj,

and 8 j (j =1, ... , n - 1) from the data points by solving the linear
tridiagonal system for the m j (cf. Theorem 3.3.5).

(b) Write a MATLAB program that evaluates the spline function S(x) at
an arbitrary point x. The program should only do three multiplications
per evaluation.
Hint: Imitate Homer's method.

(c) Does your program work correctly when you interpolate the function

f (x) := cosh x, x E [-2, 2],

at the equidistant points -2 = x1 < . . . < x11 =2?
17. Let S be a cubic spline with m j := S"(x j) for j =1, ... , n. S is called a

natural spline, provided m 1 = Mn = 0-
(a) Show that the natural spline that interpolates a function g minimizes

g" for all twice continuously differentiable interpolants f.
(b) Natural splines are not very appropriate for approximating functions

because near the boundary, the error of the approximation is typi-
cally 0(h2) instead of the expected 0(h3). To demonstrate this, deter-
mine the natural spline interpolant for the parabola f (x) = x2 over the
grid A = (-h, 0, h} and determine the maximum error in the interval
[-h, h]. (However, natural splines are the right choice if it is known
that the function is C2 and linear on both sides outside the interpolation
interval.)

18. Quadratic splines. Suppose that the function values f (xi) , i = 1, ... , n, are
known at the equidistant points x; = a+ (i -1) h, where h = (b -a) / (n - 1).
Show that there exists a unique quadratic (i.e. order 2) spline function S(x)
over the grid x' < < xn, where x' =a + (i - 2)h, i=0..... n that
interpolates f at x1, ... , xn.

178 Interpolation and Numerical Differentiation

Hint: Formulate a system of equations for the unknown coefficients of S
in each subinterval [x'-J, xi].

19. Dilation equations. Dilation equations relate splines at two different scales.
This provides the starting point for the multiresolution analysis of sound or
images by means of so-called wavelets. (For details, see, e.g., Daubeches
[13], De Vore and Lucier [21].)
(a) Show that

1-3x2 ifxI<1,
B(x) = 6(3 - IX 1)2 if 1 < xj < 3,

0 ifIxI>3

is a quadratic (B-)spline.
(b) Prove that B(x) satisfies for all x E Jl the dilation equation

B(x)= 1B(2x-3) +3B(2x-1) +3B(2x+1) +4B(2x+3).
4 4

(c) Derive a similar dilation equation for the cubic B-spline in (3.3).
20. (a) Show, for cp as in (5.1), that every linear combination

S(x) = E akW (x - xk) (6.2)
i=1:n

is k - 1 times differentiable, and S(k-')(x) is piecewise linear with
nodes at x1 , ... , xn.

(b) Write the cubic B-spline in (3.3) as a linear combination (6.2). Check
by plotting the graph for both expressions in MATLAB.
Hint: First match the second derivatives, then determine the free pa-
rameters to force compact support.

4

Numerical Integration

This chapter treats numerical methods for the approximation of one-dimensional

definite integrals of the form fn f (x) dx or fb co (x) f (x) dx. After a discussion
of general accuracy and convergence results, we consider the highly accurate
Gaussian quadrature rules, most suitable for smooth functions, possibly with
known endpoint singularities. Based on the trapezoidal rule, we then derive
adaptive step size methods for the integration of difficult integrands.

The final two sections show how the methods for integration can be extended
to multistep methods for solving initial value problems for systems of coupled
ordinary differential equations. However, the latter is a vast subject, and we
barely scratch the surface.

A thorough treatment of all aspects of numerical integration of univariate
functions is in Davis and Rabinowitz [14]. The integration of functions of several

variables is treated in Stroud [91], Engels [25], and Krommer and Ueberhuber
[54]. The solution of ordinary differential equations is covered thoroughly by
Hairer et al. [35, 36].

4.1 The Accuracy of Quadrature Formulas

In this section, we look at general approximation properties of formulas that
use a finite number of values of a function f to approximate a definite integral
of the form

b

I(f):=J f(x)dx. (1.1)
a

Because the integral (1.1) is linear in f, it is desirable that the approximating
formulas have the same property. We therefore only consider formulas of the
following form.

179

180 Numerical Integration

4.1.1 Definition. A formula of the form

Q(.f) E aj f (xi) (1.2)
j=O:N

is called an (N + 1)-point quadrature rule with the nodes xO, ... , XN and cor-
responding weights a 0 aN.

The nodes usually lie in the interval of integration [a, b] because the in-
tegrand is possibly undefined outside of [a, b]; for example, when f (x) _
Vc - a)(b - x).

In order for the formulas to remain numerically stable for large N, we require
that all weights be nonnegative; there is then no cancellation when we evaluate
Q (f) for functions of constant sign. Indeed, the maximum amplification factor
for the roundoff error is given by Y_ I aj I/ > a j for function values of approx-
imately constant magnitude, and this quotient is 1 precisely whenever the a j
are all nonnegative.

In order to obtain good approximation properties, we further require that the
quadrature rule integrates exactly all f in a particular class, where this class
must be meaningfully chosen. In the simplest case, the interval of integration is
finite and the integrand f (x) is continuous in [a, b]. In a formally only slightly
more general case, the integrand can be divided into the product of a simple but
possibly singular factor w(x), the so-called weight function, and a continuous
factor f (x). In this case, instead of (1. 1), the integral has the form

/b
I.(f)= J co(x)f(x)dx. (1.3)

a

Numerical evaluation of (1.3) is then still done approximately with a formula of
the form (1.2), where the weights a j are now dependent on the weight function

a) (X).

4.1.2 Examples. Apart from the most important trivial weight function w (x) _
1, frequently used weight functions are as follows:

(i) (o (x) = x" with a > -1 for [a, b] = [0, 1],
(ii) co(x) := 1/,/l - x2 for [a, b] _ [-1, 1],

(iii) w(x) := e-x for [a, b] _ [0, oo],
(iv) w(x) := e-x2 for [a, b] _ [-oo, oo]

The last two examples show how an appropriate choice of the weight function
makes numerical integration over an infinite interval possible with only a finite
number of function values.

4.1 The Accuracy of Quadrature Formulas 181

Normalized Quadrature Formulas

In general, it is often useful to use a linear transformation to transform the
interval of integration to the simplest possible interval. We demonstrate this for
various weight functions, namely:

CASE 1: The trivial weight function (o (x) = 1: One usually normalizes to
[a, b] = [-1, 1]. If

J
1 f(x)dx = a;f(xi)

holds for polynomials of degree < n, then the substitution t := c + xh
results in the formula

Lh

+h f(t)dt=ha;f(c+x;h)

for polynomials f of degree <n.
CASE 2: The algebraic weight (o (x) = x" (a > -1): One usually normalizes

to [a, b] = [0, 1]. If

fo
x'f (x) dx = at f (xt)

i

holds for polynomials of degree < n, then the substitution t :=xh
results in the formula

f

h

t" f (t) dt = hu+i T, a; f (x; h)

for polynomials f of degree < n.
CASE 3: The exponential weight co (x) = e-fix (A > 0): One usually normalizes

to [a, b] _ [0, oo], X = 1. If

fo
e-x f (x) dx = E ar.f (xt)

00

holds for polynomials of degree < n, then the substitution t := c +
,.-lx results in the formula

ef (t) dt = ,eaf (c +f
for polynomials f of degree <n.

182 Numerical Integration

Approximation Order

Because continuous functions can be approximated arbitrarily closely by poly-
nomials, it is reasonable to require that the quadrature formula (1.2) reproduces
the integral (1.3) exactly for low-degree polynomials.

4.1.3 Definition. A quadrature rule

Q(f) ajf(xj) (1.4)

has approximation order (or simply order) n + 1 with respect to the weight
function w(x) if

f
'b

J
(o (x) f (x) dx = Q(f) for all polynomials f of degree <n. (1.5)

a

In particular, when f is constant we have the following.

4.1.4 Corollary. A quadrature rule (1.4) has a positive approximation order
precisely when it satisfies the consistency condition

b

aj=J w(x)dx=1(1). (1.6)

We first consider the accuracy of quadrature rules, and investigate when we can
ensure the convergence of a sequence of quadrature rules to the integral (1.1).
The following two theorems give information in an important case.

4.1.5 Theorem. Suppose Q is a quadrature rule with nodes in [a, b] and
nonnegative weights. If Q has the order n + 1 with respect to the weight function

w(x), then the bound

f

b

w(x)f (x) dx - Q(f)
(jb

Iw(x)I+all lI-fIIj=0:n

holds for every continuous function f : [a, b] -). C and all polynomials pn of
degree < n. In particular, for nonnegative weight functions,

f
'b

J w(x).f(x)dx - Q(f) < 2I(I)IlPn - f 1l.- (1.7)
a

4.1 The Accuracy of Quadrature Formulas 183

Proof By assumption Q has order n + 1 so, for all polynomials p, of degree
< n we have

f
b

co(x)pn(x) dx = Q(pn)
a

It follows that

co(x)f(x)dx = J w(x)(f(x) -pn(x))dx+ Q(pn)J b b

a a

fbw(x)(f(x) - p(x)) dx + ajpn(xj).
j=0:n

With this we have

/b

J
co(x)f(x)dx-Q(f)

a fb()
(.f (x) - p(x)) dx + aj(p(xj

j=0:n
- f(xj))

b

< f
j=0:n

lIIf-pll(fbIw(x)I+Ia
j=0:n

In particular, if co(x) and all aj are nonnegative, then (1.6) impliesjbjbj=0:n
4.1.6 Theorem. Let Q, (l = 1, 2, ...) be a sequence of quadrature rules with
nodes in the bounded interval [a, b], nonnegative weights, having order n.1 + 1
with respect to some nonnegative weight function co (x). If n1 -* oo as l - oo,
then

a
f

for every continuous function f : [a, b] -f C.

Proof. By the Weierstrass approximation theorem, there is a sequence of poly-
nomials pk(x) (k = 0, 1, 2, ...) of degree k with

lim Ilpk-fII,) =O.k-oo

184 Numerical Integration

For sufficiently large l we have ni > k, so that Theorem 4.1.5 may be applied
to each of these polynomials Pk; we thus obtain

lim
L

b

w(x)f(x)dx - Qi(f) =0.

4.1.7 Remarks.

(i) Theorems of approximation theory imply that actually

IIf-PkIIo=O(k-m) ask--* o0

for m-times continuously differentiable functions; the approximation error
(1.7) therefore diminishes at least as rapidly.

(ii) Instead of requiring nonnegative weights it suffices to assume that the sums

r Jai I remain bounded.

For the most important case, that of constant weight co (x) = 1, we now prove
some statements about the accuracy of transformed quadrature rules over small
intervals.

4.1.8 Proposition. If the relationship

Lh
+h

(t) dt = h ai f (c + xh) + O (h"2) (h 0) (1.8)f

holds for all (n + 1)-times continuously differentiable functions f in [c - h,
c + h], then the corresponding quadrature rule

Q(f) = I:aif(xi) (1.9)

for (n + 1)-times continuously differentiable functions f in [-1, 1] has order
n + 1 with respect to w(x) = 1.

Proof. Suppose k < n and f (t) := (t - c)k. Then (1.8) holds, and we obtain

hk+1 - (-h)k+1

This implies

= h > ai(xih)k + O (h"+2)
k+1

1 - (-1)k+1
tk dt = 1

aixk + 0(hn+l-k)
k +

4.1 The Accuracy of Quadrature Formulas 185

Because n + I - k > 0, we obtain the relationship

I. tk dt = Q(xk)

in the limit h -* 0. The normalized quadrature rule (1.9) is therefore exact for
all xk with k < n. It is thus also exact for linear combinations of xk (k < n),
and therefore for all polynomials of degree <n, that is, it has order n + 1.

In practice we are interested in the converse of the previous proposition
because we start with a normalized quadrature rule and we desire a bound
for the error of integration over the original interval. We obtain this with the
following theorem.

4.1.9 Theorem. Suppose Q (f) = F ai f (x,) is a normalized quadrature rule
over the interval [-1, 1] with nonnegative weights a; and with order n + 1 with
respect to co(x) = 1. Then the error bound

Lh

+h

f(t)dt-h1: aif(c+xih)

holds for every N + I times continuously differentiable function f on [c - h,
c + h], where the maximum norm is over [c - h, c + h].

Proof Let pn (x) denote the polynomial of degree < n that interpolates g (x) :=
f (c +xh) at the Chebychev points. Theorem 3.1.8 and Proposition 3.1.14 then
imply

Vg(n+I) II

119 - pnlloo <
2n (n + 1)!

6 h
n+2

1

Il f
cn+t)

II(n + 1) ! 2

over the interval [-1, 1]. This and application of Theorem 4.1.5 to Q(g) give

Lh

+h

f(t)dt-hEaif(c+xih) = h I g(x) dx - Q(g)

<4h.II- 4h Ilg(n+I)JI
00

2" (n+1)!
16 h

n+2-
I1f("+I)Iloo(n + 1)! (2)

If we wish to compute the error bounds explicitly, we can bound 11 f In+')11
with interval arithmetic by computing If ("+') ([c - h, c + h]) I, provided an

186 Numerical Integration

arithmetic expression for f ("+') is available or f ("+') is computed recursively
via automatic differentiation from an arithmetic expression for f. However, the
error of integration can already be bounded in terms of the nth derivative; in
particular we have the following.

4.1.10 Theorem. If the quadrature rule Q(f) = _T ai f (xi), normalized on
[-1, 1], has nonnegative weights ai and order n + 1 with respect to co(x) = 1,
then

+hrc

J- f(t)dt-hEa; f(c+x;h)I
c h

n+l

<
16

(h)
rad(f(")([c-h,c+h])).

n! 2

Proof. Let pn_I (x) denote the polynomial of degree n - 1, which interpolates
g(x) := f (c + xh) at the Chebychev points, and let q(x) := 2'-"T"(x) be
the normalized Chebychev polynomial of degree n. Then jq(x)l < 2'-" for
x E [-1, 11. With a suitable constant y, we now define

p. (x) := Pn- I(x) + yq(x)

We then have

n

g(x) - P.-I(X) =
g(n)()q(x)

=
h n

n! n!

for some c [-1, 1], so

Ig(x)-Pn(x)I =
h

f(n)(C+4h)-Y Iq(x)I

nI f(n)([c-h,c+h])-y .21-".

We now choose y in such a way that the expression on the right side is minimal.
This is the case when y = n; mid f (")([c - h, c + h]). Then we get

II - Pnli
n!

()fl
rad (f([c - h, c + hi)).

4.2 Gaussian Quadrature Formulas 187

As in the proof of Proposition 4.1.9, we finally obtain

c+h

C

f(t)dt-hEaif(c+xih)I
c h

<
16

(h)n+I

n Ii
2 rad f ([c - h, c + h]). 1

4.1.11 Remarks.

(i) The bound for the error is still of order 0 (hn+2) because the radius of the
enclosure for the nth derivative is always 0 (h).

(ii) Under the assumptions of the theorem, the transformed quadrature rule for
the interval [c - h, c + h] also has order n + 1 because the nth derivative of
a polynomial of degree n is constant and the radius of a constant function
is zero, whence the error is zero.

(iii) We can avoid recursive differentiation if we use the Cauchy integral the-
orem to bound the higher order derivatives. Indeed, if f is analytic in the
complex disk D[c; r] with radius r > h centered at c, and if I f I < M
for E D[c; r], then Corollary 3.1.11 implies the bound

1 11f,11+11100 <
Mr

(n + 1)! - (r - h)n+2

and the bound in Proposition 4.1.9 becomes 16Mrgn+2, with q = h/(2r -
2h). For sharper bounds along similar lines, see Eiermann [24] and
Petras [80].

In order to apply these theorems in practice, we must know how to deter-
mine the 2n + 2 parameters aj and xj in the quadrature rule (1.4) in order to
obtain a predetermined approximation accuracy. In the next section, we integrate
interpolating polynomials to determine, for arbitrary weights, so-called inter-
polatory quadrature rules, among them the Gaussian quadrature rules, which
have particularly high order.

4.2 Gaussian Quadrature Formulas

When we require that all polynomials of degree <n are integrated exactly, we
obtain a class of (n + 1)-point quadrature formulas that are sufficiently accurate
for many purposes. In this vein, we have the following.

188 Numerical Integration

4.2.1 Definition. An (n + 1)-point quadrature formula Q(f) is an interpola-
tory quadrature formula for the weight function to (x) provided

Q(f)=w(x)f(x)dx
fa

b

for all polynomials f of degree < n, that is, when Q (f) has order n + 1 with
respect to w(x).

The following theorem gives information concerning existence and unique-
ness of interpolatory quadrature formulas.

4.2.2 Theorem. To each weight w (x) and n + 1 arbitrarily preassigned pair-
wise distinct nodes xo, ... , xn, there is exactly one quadrature formula with
order n + 1, namely

Q(f) = T ajf(xj)
j=O:n

with

/b
txj := J w(x)L1(x)dx,

a

with the Lagrange polynomials

x-x;
Lj(x) = F1 .i#jxj - x;

Proof. Suppose f (x) is a polynomial of degree <n. Then Lagrange's interpo-
lation formula (see Theorem 3.1.1)

f(x)= E Lj(x)f(xj)
j=O:n

implies, with

b

w(x) f (x) dx = w(x)L(x)f(x) dx

the desired representation. O

The interpolatory quadrature formulas corresponding to the constant weight
function (o (x) = 1 and equidistant nodes xj = a + j h (j = 0, ... , n) are

4.2 Gaussian Quadrature Formulas 189

called the Newton-Cotes quadrature rules of designed order n + 1. If n is even,
the true order is n + 2. Indeed, a symmetry argument shows that (2x -a -b)n+i
(and hence any polynomial of degree n + 1) is integrated exactly to zero when
n is even.

For n = 1, we obtain the simple trapezoidal rule

Ti(f) =
2

(f(a)+f(b))

of order n + 1 = 2, for n = 2 the simple Simpson rule (also called Kepler's
barrel rule)

Si(f) =
b

6

a
(f(a)+4f

(+ b)
+f(b))

of order n + 2 = 4, and for n = 4 the simple Milne rule

MI (f) = b90a (7.f(a)+32f
(3a

4 b I + 12f
a 2 bl

+ 32f (a+3b) +7f(b) I (2.1)

of order n + 2 = 6. If b - a = O(h), Theorem 4.1.9 implies that the error is
O(h3) for the simple trapezoidal rule, 0(h5) for the simple Simpson rule, and
O(h7) for the simple Milne rule.

In the section on adaptive integration, we meet these rules again as the first
members of infinite sequences TN (f), SN (f), and MN (f) of low order quadra-
ture rules.

Unfortunately, the Newton-Cotes formulas have negative weights aj when n
is large, more precisely for n = 8 and n > 10. For example, E l ad I/ > cr --
1011 for n = 40, which leads to a tremendous amplification of the roundoff
error introduced during computation of the f (xj). We must therefore choose
the nodes carefully if we want to maintain nonnegative weights.

As already shown in Section 3.1, many functions can be interpolated
better when the nodes are chosen closer together near the boundary, rather
than equidistant. We also use this principle here because in general the better
we interpolate a function, the better its integral is approximated. As an ex-
ample, we treat normalized quadrature formulas in with respect to w(x) = 1
on the interval [-1, 1]. Here, an advantageous distribution of the nodes is
given by the roots of the Chebychev polynomial cos(n arccos(x))
(see Section 3.1). However, the extreme values of the Chebychev polynomial,

190

that is,

Numerical Integration

xj =cos(rrj/n) for j =0,...,n

have proved in practice to be more appropriate nodes for integration. The cor-
responding interpolatory quadrature formulas are called Clenshaw-Curtis for-
mulas. We give without proof explicit formulas for their weights:

ai =

2
1 - 2

cos(27rjk/n)
for j =1, ..., n - 1,

n k=l:jn/zj 4k2 _ 1

1 1-2 z1_ =
1

forj=0,n.

2J
4k 1 n(2Ln/2J + 1)n k=Jan/E

Because aj > an, all aj are positive for this choice of nodes, so the quadrature
formula with these weights aj is numerically stable. In practice, in order to avoid
too many additional cosine evaluations, one tabulates the xj and aj for various
values of n (e.g., for n = 1, 2, 4, 8, 16, ...).

Until now we have specified the quadrature formulas in such a way that the
xj were somehow fixed beforehand and the weights aj were then computed.
We have thus not made use of the fact that we can also choose the nodes in order
to get a higher order with the same number of nodes. In order to find optimal
nodes, we prove the following proposition, which points out the conditions
under which an order higher than n + 1 can be achieved.

4.2.3 Proposition. An interpolatory quadrature formula with nodes xo, ... , xn
has order n + 1 + k precisely whenever the polynomial

obeys the relationship

f
b

J
w(x)q(x)x'dx = 0 for i = 0, ... , k - 1. (2.2)

a

Proof. Every polynomial f of degree n + k has the form

f(x) = p, (x) + q(x)r(x) (2.3)

for some polynomial pn of degree <n (the interpolating polynomial at the nodes
xo, ... , xn) and some polynomial r (x) of degree < k - 1. Thus Q (f) has order

4.2 Gaussian Quadrature Formulas 191

of approximation n + 1 + k precisely whenever the relationship

b
//(x)f(x)dx = Q(f) _ aif(xi),

a i=0:n

or equivalently

jb fb
aiP(Xi) =

J
(x)di=0:n

holds for all f of the form (2.3).
If we consider the difference between the left and right sides, we see that this

is the case precisely when

J b w(x)q(x)r(x) dx = 0
a

for all polynomials r(x) of degree <k - 1, that is, whenever (2.2) holds.

Equation (2.2) places k conditions on the n + I nodes. We may therefore
hope to satisfy these conditions with k = n + 1 with an appropriate choice of
nodes. The order of approximation 2n + 2 so obtained would thus then be twice
as large as before. As we shall now show, for nonnegative weights this is indeed
possible, in a unique way.

We need some additional notation for this. We introduce the abbreviation

/b
(f, g) := J w(x) f (x)g(x) dx (2.4)

a

for these frequently occurring integrals. Whenever the weight function w (x) is
continuous in (a, b) and the conditions

/b

J
w(x)dx=µo<oo, w(x)>0 forxE(a,b) (2.5)

a

hold, then (,) is a positive definite scalar product in the space of real contin-
uous bounded functions in the open interval (a, b).

4.2.4 Definition. A sequence of polynomials pi (x) (i = 0, 1, 2, ...) of degree
i is called a system of orthogonal polynomials over [a, b] with respect to the
weight function (o (x) if the condition

(pi,pj)=0 for i = 0, 1, . . . , j-1
is satisfied.

192 Numerical Integration

To every weight function w(x) satisfying (2.5) that is continuous in (a, b)
there corresponds a system of orthogonal polynomials that is unique to within
normalization. Such a system may be determined, for example, from the se-
quence 1, x, ... , x' with Gram-Schmidt orthogonalization.

Based on the following theorem, we can obtain quadrature formulas with
optimal order from such systems of orthogonal polynomials.

4.2.5 Theorem. Suppose w(x) is a weight function which is continuous in
(a, b) and which satisfies (2.5). Then for each n > 0 there is exactly one
quadrature formula

Gn(f) E ajf(x1)
j=O:n

with approximation order 2n + 2. Its weights

fb
ak =

J
Lk(x)2w(x) dx

a
(2.6)

are nonnegative and its nodes x1 all lie in the interval]a, b[. The nodes are the
roots of the (n + 1)st orthogonal polynomial pn+1 (x) with respect to the weight
function o) (x). In particular, the relationship

lim Gn (f) = J w (x) f (x) dx (2.7)b
a

holds for all continuous functions f in [a, b].

The uniquely determined quadrature formula Gn (f) is called the (n+l)-point
Gaussian quadrature rule for the weight function w(x) in [a, b].

Proof

(i) Suppose Gn satisfies

b

J
o) (x) f (x) dx = Gn(f) _ aif (xi) (2.8)

a i=0:n

for every polynomial f of degree <2n + 1. By Proposition 4.2.3, (q, xi) =
0 then holds for i = 0, ... , n. Thus q (x) is a polynomial of degree n + 1 that
is orthogonal to all polynomials of degree <n, so q (x) is proportional to

4.2 Gaussian Quadrature Formulas 193

pn+1(x), that is, the roots of pn+1 (x) correspond to those of q (x) and hence

to the nodes. By Theorem 4.2.2, the quadrature formula is thus unique.
We now determine the sign of the weights and the location of the nodes.

For this, we again use the Lagrange polynomial Lk (x), and choose the two
special polynomials

fl(x) Lk(X)2, f2(x) xLk(x)2

of degree <2n + 1 for f in (2.8). Because Lk(xj) = Skj, we obtain

b

ak = Gn(f1) =
J

Lk(x)2co(x)dx > 0
a

and

1 f b xLk(X)2co(X) dx

()
E]a b[Xk = akGn(f2) - a

b Lx to x dxf k () 2

(ii) Conversely, if the x, are the roots of p,+1 (x), the weights are given by (2.6),
and f is a polynomial of degree <2n + 1, then

f(X) - T Lj(X)2f(Xj) = g(X)pn+l(x)
j=O:n

for some polynomial g of degree < n, since the left side has each x j as a
root. Hence

fb

Ja

fb
f(x)dx-G(f)= f(x)- Lj(x)2f(xj) dx

j-0:n
b

_ g(x)pn+1(x)dx = 0
a

by (2.2). Thus Gn has indeed the approximation order 2n + 2.
Statement (2.7) now follows from Theorem 4.1.6.

Gaussian quadrature rules often give excellent results. However, despite the
good order of approximation, they are not universally applicable. To apply
them, it is essential (unlike for formulas with equidistant weights) to have a
function given by an expression (or a program) because the nodes xi are in
general irrational.

Tabulated nodes and weights for Gaussian quadrature rules for many different
weight functions can be found, for example, in Abramowitz and Stegun [1].

194 Numerical Integration

4.2.6 Example. Suppose w(x) = 1 and [a, b] = [-1, 1]. The corresponding
polynomials are (up to a constant normalization factor) the Legendre polyno-
mials. Orthogonalization of 1, x, ... , x" gives the sequence

1 3

po(x) = 1, pi(x) = x, p2(x) = x2 - 3, p3(x) = x
3
- 5 x,

and, continuing recursively for arbitrary j,

j2

p,i+i(x) = xpi(x) -
4j2 - 1

pj-t(x). (2.9)

For n < 2, we obtain the following nodes and weights. For n = 0,

x0=O, ao = 2,

for n = 1,

xo = 1/3, ao = 1,

xl = 1/3, al = 1,

d f 2an or n = ,

xo = -v[3-/5, ao = 5/9,

xl = 0, a, = 8/9,
x2 = 315, a2 = 5/9.

If we substitute z := c + hx (and add error terms from [1]), we obtain for n = 1
the formula

f
c+h 5

f(z)dz=h (f(c-

hI+f lc+ h

7//+
h
135f(4)(),

c h 73

which requires one function evaluation less than Simpson's rule, but has an
error term of the same order O (h5). For n = 2, we obtain the formula

c+h h

f(z)dz= 9(5f(c-h 315)+8f(c)+5f(c+h 3/5))
f-h

+ h7 (6)(),
3150

with the same number of function evaluations as Simpson's rule, but an error
term of a higher order 0 (h7).

4.2 Gaussian Quadrature Formulas 195

A 3-term recurrence relation like (2.9) is typical for orthogonal polynomials:

4.2.7 Proposition. Let Pk (x) be polynomials of degree k = 0, 1, .. . with high-
est coefficient 1, orthogonal with respect to the weight function co (x). Then, with
p_1(x) = 0, po(x) = 1, we have

P1(x) = (x - a1)P1-1(x) - bi pi-z(x) for j > 1, (2.10)

with the constants

a1 =
J

co(x)xpj_1(x)dx/fco(x)p2_1(x)dx (j 1),

bi = fw(x)pi(x)dx/fw(x)p2(x)dx (j > 2).

Proof. We fix j and expand the polynomial xpi_I (x) of degree j as a linear
combination

XP1-1(x) = E alpl(x)
1=0:j

Taking inner products with pk(x) and using the orthogonality, we find (xpi_1,

Pk) = ak(Pk, Pk), hence

ak = (xPi-1, Pk)l(Pk, Pk)-

By comparing the highest coefficients, we find ai = 1, hence

(xp1-1, Pj)l(Pi, pi) = 1. (2.11)

By definition of the innerproduct, (xp1_1, pk) = (pi_1,xpk) = Ofork < j-2
since pi-1 is orthogonal to all polynomials of degree < j - 1. Thus ak = 0 for
k < j - 2, and we find

xP1-1(x) = Pj(x) + ai-1Pi-1(x) + a1-2P1-2(x)

This gives (2.10) with

a1 = a1-1 = (xpi-1, Pi-1)l(P1-1, p1-1),

bi = ai-z = (xPi-1, Pi-z)l(Pj-z, P1-2)

= (Pi-l, Pi-1)l(P.i-2, Pi-z)

because (xp1_1, P1-2) = (xPi-z, P1-1) = (Pi-1, P1-1) by (2.11).

196 Numerical Integration

If the coefficients of the three-term recurrence relation are known, one can
compute the nodes and weights for the corresponding Gaussian quadrature
rules in a numerically stable way by solving a tridiagonal eigenvalue problem
(cf. Exercise 13). (This is preferable to forming the pj explicitly and finding
their zeros, which is much less stable.)

4.3 The Trapezoidal Rule

Gaussian rules have error terms that depend on high derivatives of f , and hence
are not suitable for the integration of functions with little smoothness. However,
even nondifferentiable continuous functions may always be integrated by an
approximation with Riemann sums. In this section, we refine this approach.

We assume that we know the values f (x1) (j = 0, ..., N) of a function
f (x) on a grid a = xo < x1 < ... < xN = b. When we review the analytical
definition of the integral in terms of Riemann sums, we see that it is possible
to approximate the integral by summing the areas of rectangles with sides of
lengths xi - x_1 and f (xi _,) or f (xi) (Figure 4.1).

We also immediately see that we obtain a better approximation if we replace
the rectangles with trapezoids obtained by joining a point (xi_1, f (xi_1)) with
the next point (xi, f (xi)); that is, we replace f (x) by a piecewise linear func-
tion through the data points (xi, f (xi)) and compute the area underneath this
piecewise linear function in terms of a sum of trapezoidal areas. Because the
area of a trapezoid is given by the product of its base and average height, we
obtain the approximation

fx
f(x)dx (xi-xi-i).

f(xi)+f(xi-i)
,_ , 2

A

XN1 b=XN

Figure 4.1. The integral as a sum of trapezoidal areas.

4.3 The Trapezoidal Rule 197

for the integral off over the subinterval [xi_1, xi]. By summing over all subin-
tervals, we obtain the following approximation for the integral over the entire
interval [a, b]:

fb f(x) dx =ifx,

f (x) dx (xi - xf_1)
f (xi) + f(xi-1)

=I:N x I i=I:N 2

After combining terms with the same index i, we obtain the trapezoidal rule
over the grid a = xo < x1 < ... < xN = b:

x1 - x0 xi+1 - xi-1
T(f) : = 2 f(xo) + 2 f(xi)

i=1:N-1

+
XN - xN-1

f (xN)
2

(3.1)

For equispaced nodes xi = a + i hN obtained by subdividing the interval [a, b]
into N equal parts of length hN := (b - a)/N, the trapezoidal rule simplifies
to the equidistant trapezoidal rule

TN(f) := hN E f (xi) +
h'

(f (a) + f (b)) (3.2)
i=1:N-1

with

hN = (b - a)/N, xi = a + ihN.

4.3.1 Remark. Usually, the nodes in an equidistant formula are not stored but
are computed while summing TN (f). However, whenever N is somewhat larger,

the nodes are not computed accurately with the formula xi = x,_1 + h because
rounding errors accumulate. For this reason, it is strongly recommended that
the slightly more expensive formula xi = a + ih be used. (In most cases, the
dominant cost is that for getting the function values, anyway.) Roundoff errors
can be further reduced if we sum the terms defining TN (f) in higher precision;
in most cases, the additional expense required for this is negligible compared
with the cost for function evaluations.

Clearly, the order of approximation of the trapezoidal rule is only n + 1 = 2,
so Theorem 4.1.6 does not apply. Nevertheless, convergence to the integral
follows because continuous functions may be approximated arbitrarily closely
by piecewise linear functions. Indeed, for twice continuously differentiable
functions, an error bound can be derived, using the following lemma.

198 Numerical Integration

4.3.2 Lemma. If f is twice continuously differentiable in [xi_ 1, xi], then there
is a , E [xi _ 1, xi] such that

fx f(x) dx = (xi - xi_1) f (xi) 2f f (xi-1) - (xi 12i-1)3 f"(i)
i_,

Proof. We use divided differences. For x E [xi-1, xi], we have

(x)dx
fxi _ ,

f Xi

(f (xi-1) + f [xi-1, xi](x - xi-1)
- Jxi

(xi - x,_1)2

2
= f (xi-1)(xi - xi-1) + f 1xi-1, xi l

+ f [xi_i, xi, x](x - xi-1)(x - xi)) dx

fxi
+

J
f[x!_1,xi,x](x -x1_1)(x - xi)dx.

xi_,

The mean value theorem for integrals states that

J
b f (x)g(x) dx = f (l;)

J
b g(x) dx for some E [a, b],

a a

provided f and g are continuous in [a, b] and g has a constant sign on [a, b].
Applying this to the last integral with g(x) := (x - x,_1)2 - (x, - xi_i)(x -
x_) = (x - xi-1) (x - xi) < 0, we obtain, after slight modification,

J
x f(x)dx = (xi -xi-1)f(xi) 2f(xi-1) + f[xi-I,xi,yi]
;_,

x

x ((x - x,_1)2 - (xi - xi-1)(x - xi-1)) dx
JX;_,

f(xi) + f (xi-1) f"(Wi) (xi -xi-1)3
= (x, - x,-1) 2 - 2 6

for suitable i , l;, E [a, b].

The following theorem for the trapezoidal rule results.

4.3.3 Theorem. For the trapezoidal rule on a grid with mesh size h, the bound

b

J f(x)dx-T(f)
a

2

< 12(b - a)IIf"II.

holds for all twice continuously differentiable functions f defined on [a, b].

4.3 The Trapezoidal Rule

Proof. From Lemma 4.3.2, the error is

b

I f(x)dx-T(f)
a

1')

199

(xi - xi-1)h211f"III
= h2 (b - a) 11 f"II ,.E

i=l:N 12 12
C

i=1:NI

4.3.4 Remark. The formula in Theorem 4.3.3 indeed gives the correct order
0(h2), but is otherwise fairly rough because it does not take account of varia-
tions in f" in the interval [a, b]. As we see from the first expression in the proof,
we may allow large steps xi -xi_1 everywhere where I f"I is small; however, in
order to maintain a small error, we must choose closely spaced nodes at those
places where I f"I is large. This already points to adaptive methods, which shall
be considered in the next section.

In order to increase the accuracy with which the trapezoidal rule approximates
an integral by a factor of 100, h must be decreased to h/10. This requires
approximately 10 times as many nodes and therefore approximately 10 times
as many function evaluations. That is too expensive in practice. Fortunately,
significant speed-ups are possible if the nodes are equidistant.

The key is the observation that, for equispaced grids, we can replace the
norm bound in Theorem 4.3.3 by an asymptotic expansion. This fact is very
important because it allows the use of extrapolation techniques to improve the
accuracy (see Section 4.4).

By Theorem 4.3.3, TN (f), given by the equidistant trapezoidal formula
(3.2), has an error approximately proportional to hN. More precisely, we show
here that it behaves like a polynomial in h2 , provided f has sufficiently
many derivatives. To this end, we express the individual trapezoidal areas
z (f (xi) + f (xi_1)) in integral form. Because we may use a linear transforma-
tion to get xf_1 = -1, xi = 1, h = 2, we first prove the following.

4.3.5 Lemma. There exist numbers y2j with yo = 1 and polynomials p j (x) of
degree j such that the relationship

g(1) +g(-1) = f I
(E y2jgl21)(x) + pm+1(x)glm+1)(x)) dx (3.3)

I'=O: Lml2J

holds for m > 0 and all (m + 1)-times continuously differentiable functions
g:[-1, 1]-4(C.

200 Numerical Integration

Proof We define

t

Im(g) f E yjg(1)(x)+Pm(x)g(m)(x) dx
1 j=0:m-1

for suitable constants yj and polynomials pm (x), and determine these such that
the conditions

Im(g)=g(1)+g(-1) form> 1, (3.4)

ym = 0 for odd m > 1 (3.5)

follow, which imply the assertion. By choosing

Yo 1, P, (X) x,

we find

I(g) = f(g(x)+xg'(x))dx

and (3.4) holds for m = 1. Also, with

1 x

Yj 2 f pj (x) dx, pj+t (x) f (yj - pj (z)) dz for j > 1,
I

we find

pj+1(x) = Yj - pj (x), pj+1(-1) = Pj+1(1) = 0,

so that, for (m + 1)-times continuously differentiable functions g,

Im+1(g) - Im (g) = f ((Ym - pm (x)) g(m)(x) + Pm+1 (x)g(m+l)(x)) dx

= f t (pm+1(x)g(m)(x) + pm+1(x)g(m)'(x)) dx

= f
1 (pm+1(x)g(m)(x))'dx = pm+l(x)g(m)(x)I1

1

= 0.

Thus, (3.4) is valid for all m > 1.

4.3 The Trapezoidal Rule 201

In order to prove (3.5), we assume that (3.5) is valid for odd m < 2k; this
is certainly the case when k = 0. We then plug the function g(x) := xm for
in = 2k + 1 into (3.4) and obtain

Im(g) = 1 + (-1)m.

However, the integral can be computed directly:

1 m .
Im(g) =

J
Yj !xm-J +Pm(x)m! dx

1 (i_(m).

=m! E yj +2ym(m+1-j)!
j=o:m-1

Because in is odd, the even terms in the sum vanish; but the odd terms also
vanish because of the induction hypothesis. Therefore, m! 2ym = 0, so that
(3.5) holds in general. 0

4.3.6 Remark. We may use the same argument as for (3.5) to obtain

Y2i _ 1 fork > 0
i=o:k (2k - 2i + 1)! (2k)!

for m = 2k; from this, the y2i (related to the so-called Bernoulli numbers) may
be computed recursively. However, we do not need their numerical values.

From (3.3), we deduce the following representation of the error term of the
equidistant trapezoidal rule.

4.3.7 Theorem. (Euler-MacLaurin Summation Formula). If f is an (m + 1)
times continuously differentiable function, then

TN (f)
= f f(x)dx+ cjh2 +rm(f), (3.6)

a j=I:Lm/2J

where the constants, independent of N, are

cj = 2-2jy2j(f(2j-1)(b) _ f(2j-1)(a)) (j = 1, ..., Lm/21),

and where the remainder term rm (f) is bounded by

Irm(.f)l <CmhN+l(b-a)IIf(m+I)II.

202 Numerical Integration

for some constant Cm depending only on m. In particular, r,,, (f) = 0 for
polynomials f of degree <m.

Proof. In order to use Lemma 4.3.5, we substitute

xi (t) := a + i +
t 1

2 h, h := hN

and set gi (t) := f (xi (t)). We then have xi_1 = xi (-1), xi = xi (1), so the
lemma implies

2 (.f (xi) + f (xi-1)) -
x

f (x) dx
Jxi_I

= 2(gi (1) + gi (- 1)) -
2
fgi(t)dt

=h f 1
2

J pm+l
(t)$im+1)(t) dt

1 j=1:Lrn/2J

= h
Y2j/g(2j-1)O1

-
g(2j-1)(-1)

2
j=1:Lm/21

1

+ f pm+l(t)gim+1)(t)dt

1

h
)2j

hI 2
Y2j (f(2'-1)(xi) - f(2i-1)(xi-1)) + 2rm(gi

j=I:Lm/2j
(3.7)

where the remainder term

rm(gi)
J

1

pm+1(t)glm+l)(t)dt

(h)m+l
jI P+l(t)f(m+l)(X(t))dt

is bounded by

)I 2Cmhm+1ll f(m+1)IIIrm(gi

with constant

CO

1

C. = 2m+2 f Ipm+1(t)Idt.

4.4 Adaptive Integration 203

By summing (3.7) over i = 1, ... , N we obtain

b

(x)dxTN(f) -
fa

f
h 2

Y2j f (2j-1)(b) - f(2j-1)(a) + rm(f),
1:1- 121

where the remainder term

rm(f) = h Ym(gi)
2 i=1:N

is bounded by

Jrm (f) l < h E 2Cmhm+1 II f(m+1)
11

= Cmhm+1(b - a) II f (m+1) 11
2 °°

j=LN

The Euler-MacLaurin summation formula now allows us to combine the
trapezoidal rule with extrapolation procedures and thus introduce very effective
quadrature rules.

4.4 Adaptive Integration

If we compute a sequence of values TN (f) for N = No, 2N0, 4N0, ... , then we
can obtain better quadrature rules by taking appropriate linear combinations.
To see this, we consider

TN (P = h2 (f(a)+f(b)+2 E f (a+ihN)
i=1:N-1)

T2N(f) = h4 (f(a) + .f(b)+2 .f(a+ihN)
i=LN-I

+2 E f a+ i -)hN))
i=1:N

=2 TN(f)+hN fla+(i-21hN1
i=1:N \ f f

Hence, if we know TN (f), then to compute T2N (f) it is sufficient to compute
the expression

RN(f) := hN f a + i - 21)hN I (4.1)
i=l:N

204 Numerical Integration

with N additional function evaluations, and we thus obtain

1

T2N(f) =
2

(TN(f)+RN(f)) (4.2)

The expression RN (f) is called the rectangle rule. The linear combination

4T2N (f) - TN (f) TN(f) + 2RN (f)
SN(f) 3 =

3

=
hN

(f(a)+f(b)+2 E f(a+ihN)
i=1:N-1

1+4 f a+ i-21fhNI
i=1:N

(4.3)

is called the (composite) Simpson rule because it generalizes the simple Simpson
rule, which is obtained as S, (f). Because

b

I(f) f(x)dx -f
we also have

lim RN(f) = lim SN(f) = I(f).
N->oo N-oo

However, although TN (f) and RN (f) approximate the integral I (f) with an
error of order 0 (h2), the error in Simpson's rule SN (f) has the more advan-
tageous order O(h4). This is due to the fact that the linear combination (4.3)
exactly eliminates the term c1 h2 in the Euler-MacLaurin summation formula
(Theorem 4.3.7). We give another proof that also provides the following error
bound.

4.4.1 Theorem. Suppose f is a four-times continuously differentiable function
on [a, b]. Then the error in Simpson's rule SN (f) is bounded by

f
b

f(x)dx-SN(f) h 4N< - --(b-a)Ilf(4)Iloo.
2880

Proof. We proceed similarly to the derivation of the error bound for the trape-
zoidal rule, and first compute a bound for the error on a subinterval [xi_ 1, xi].

Because the equation SN (f) = I (f) holds for f (x) = xi (i = 0, 1, 2, 3),
Simpson's rule is exact for all polynomials of degree <3. By Theorem 3.1.4,

4.4 Adaptive Integration 205

we find for the simple Simpson rule S(f) applied to [x,_1, x;],

Xi

f(x)dx-S(f)

f .f[Yo,Y1,Yi,Y2,Y](Y-Yo)(Y-Yi)2(y-Y2)dy,x

where yo := x;_1, yi := (x;_1 + x;)/2, and Y2 := x;. Because (y - yo)(y -
y i)2 (y - y2) < 0 for y E [xi _ 1, x;], we may apply the mean value theorem for
integrals to obtain

x
f (x) dx - S(f)

=f[Yo,Y1,Y1,Y2, h]

x

(Y-Yo)(Y-Yl)2(Y-Y2)dY
5 1(x+

2

- x,
f [Yo, Y1, Y1, Y2, '] t2(t2 - 1) dt

5
4

15 (h2 f[Yo, YI, YI, Y2,

I

90 (h2)5 f(4)(4)

for suitable l;', t; E [xi_1, x;]. By summation over all subintervals [x;_1, x;],
i = 1, ... , N, we then obtain

b

J
f(x)dx-SNW

a

< N IN()5 f9014111
=

2880
"N (b-a)llf 11,,.. 1:1

The linear combination

MN :_
15

(4.4)
16S2N - SN

is called the (composite) Milne rule because it generalizes the simple Milne rule,

which is obtained as Mi (f). The Milne rule similarly eliminates the factors cl
and c2 in the Euler-MacLaurin summation formula (Theorem 4.3.7), and thus
has an error of order 0 (h N). We may continue this elimination procedure; with

206 Numerical Integration

a new notation we obtain the following Romberg triangle.

TO,0 = TN

T1,O = T2N T1,I = SN
T2,0 = T4N T2,1 = S2N T2,2 = MN
T3,0 = T8N T3,, = S4N T3,2 = M2N T3,3

We now formulate this notation precisely and bound the error.

4.4.2 Theorem. Suppose f is (2m + 2)-times continuously differentiable on
[a, b]. If we set

TO,0 TN(f),

TO := T2'N(f) = 2(T-I,0 + R2'-'N(f)) (i = 1, 2, ...)

and

Ti,k-I - Ti-1,k-1
Ti,k Ti,k-1 + 4k - I

fork = I,...,i, (4.5)

then T,k(f) = T,k has order 2k + 2 with respect to w(x) = 1, and

jb
f (x) dx = Ti,k (f) + 0 (h2) (4.6)

holds for each i > 0 and k < m.

Proof. We show by induction on k that constants elk) (j > k) exist such that

/b
Ti,k = J f (x) dx + 0(h

r+2).
2

° j=k+I:m

By Theorem 4.3.7, this is valid for k = 0. It follows for k > 0 from

Ti,k-I - Ti-1,k-1
Ti,k=T,k-I+ 4k_1

4kTi,k-1 - Ti-1,k-1
4k-1

fb
(k-I)4k -2 2j 2j 2m-}-2

= f (x) dx + e1
4T:: 1 h2'N + (h 21N)

j=k+l:m

4.4 Adaptive Integration 207

with

ejk) := eJk-U 4k -2214k - 1 (j > k).

Formula (4.6) follows. Proposition 4.1.8 then shows that the order of T,k is
2k+2.

4.4.3 Remarks.

(i) To compute Tn,n, an exponential number 2' of function evaluations are
required; the resulting error is of order O(h2n+2). For errors of the same

order, Gaussian quadrature rules only require n + 1 function evaluations.
Thus the method is useful only for reasonably small values of n.

(ii) The Romberg triangle is equivalent to the Neville extrapolation formulas
(Algorithm 3.2.4 for q = 2) applied to the extrapolation of (x,, f,) _
(h2 , TN (f)), N = 2' to x = 0. The equivalence is explained by the Euler-
MacLaurin summation formula (Theorem 4.3.7): TN (f) is approximately
a polynomial pn of degree n in h2 , and the value of this polynomial p, at
zero then approximates the integral.

(iii) One can use Neville extrapolation also to compute an approximation to
the integral f f (x) dx from TN, (x) for arbitrary sequences of N, in place
of N , = 21. The Bulirsch sequence N , = 1, 2, 3, 4, 6, ... , 2', 3 . 2'-I, .. .
is a recommended alternative choice that makes good use of old function
values and often needs considerably fewer function values to achieve the
same accuracy.

A further improvement is possible by using rational extrapolation for-
mulas (see, e.g., Stoer and Bulirsch [90]) instead of Neville's formula
because the former often converge more rapidly.

(iv) It can be shown that the weights of Ti,k are all positive and the bound

f

b

f (x) dx - Ti,k < Y2k+2h2
N2 11 f(2n+2) II

00
(n = min(k, m))

holds. Thus, fork < m, the kth column of the Romberg triangle converges
to 1(f) as i oo with order h2kN2. By Theorem 4.1.6, the T, k even
converge to 1(f) as i + k -> oo for arbitrary continuous functions, and
indeed, the better that the functions can be approximated by polynomials,
the better the convergence.

In practice, we wish to be able to estimate the error approximately without
computation of higher order derivatives. For this purpose, the sizes of the last

208 Numerical Integration

correction Ei,k := I Ti,k_1 - Ti,k I may be chosen as an error estimate for Ti,k in
the Romberg triangle. This is reasonable if we can guarantee that, under ap-
propriate assumptions, the error I I (f) - Ti,k I is actually bounded by Eik. By
Theorem 4.4.2, we have I I (f) - Ti,k I = O (h 2k+2) with h = 2-'(b - a) and
Eik = O(h2k) because 11(f) - T,k_1I = O(h2k). We thus see that the relation
I I (f) - Ti,k I < Eik is usually true for sufficiently large i.

However, two arguments show that we cannot unconditionally trust this error
estimate. When roundoff errors result in T,k = Ti,k_I, we have Eik = 0 even
though the error is almost certainly larger. Moreover, the previous argument
holds only asymptotically as i - oo. However, we really need an error estimate
for small i. The previously mentioned bound then does not necessarily hold, as
we see from the following example of a rapidly decreasing function.

4.4.4 Example. If we integrate I := ff (1 +
2

e-25x) dx exactly, we obtain I =
1.02000.... With numerical integration with the Romberg triangle (with N = 1),
a desired relative error smaller than 0.5%, and computation with four significant
decimal places, we obtain:

T0,0 = 1.250

T1,0 = 1.125 T1,1 = 1.083

T2,0 = 1.063 T2,1 = 1.042 T2,2 = 1.039,

where E22 = I T2,2 - T2,1 I = 0.003, so 1 ti 1.039 ± 0.003. However, comparison
with the exact value gives I I - T2,2I ti 0.019; the actual error is therefore more
than six times larger than the estimated error.

Thus, we need to choose a reasonable security factor, say 10, and estimate

1(.f) ti T,k ± lOITi,k-I - Ti,kI. (4.7)

Adaptive Integration by Step Size Control

The Romberg procedure converges only slowly whenever the function to be
integrated has problems in the sense that higher derivatives do not exist or
are large at least one point (small m in Theorem 4.4.2). We may ameliorate
this with a more appropriate subdivision in which we partition the original
interval into subintervals, selecting smaller subintervals where the function
has such problems. However, in practice we do not usually know these points
beforehand; we thus need a step size control, that is, a procedure that, during
the computation subdivides recursively those intervals that contribute too large
an error in the integration.

4.4 Adaptive Integration 209

We obtain such a procedure if we work with a small part of the Romberg
triangle, Ti,k with k < i < n (and N = 1), to compute T,,,,, (n = 2 or 3). If
the resulting approximation is not accurate enough, we then halve the original
interval and compute the subintegrals separately. The T ,k with k < i < n - l for
the resulting subintervals can be computed easily from the already computed
function values, and the only additional function values needed to compute
the T,,,k are those involved in RN (f), N = 2n-1. This can be used in the
implementation to increase the effectiveness.

To avoid infinite loops, we may prescribe a lower bound hmin for the length
of the subintervals. If we fall below this length, we accept T,,,,, as the value
of the subintegral and we issue a warning that the desired precision has not
been attained. To avoid exceeding a prescribed error bound 0 for the entire
integral I [a, b] = f b f (x) dx, it is appropriate to require that every subintegral

I [x, xJ = fl f (x) dx has an error of at most 0(x - x)/(b - a); that is, we
assign to each subintegral that portion of the error corresponding to the ratio
of the length of the subinterval to the total length. However, this uniform error
strategy has certain disadvantages.

This is because in practice, many functions to be integrated behave poorly
primarily on the boundary; for example, when the derivative does not exist
there (as with lx- cos x for x = 0). The subintegrals on the boundary are then
especially inaccurate, and it is advisable to allow a larger error for these in
order to avoid having to subdivide too often. This can be achieved when we
assign the maximum error per interval with a boundary dominant error strategy.
For example, we may proceed as follows: If the maximum allowed error in the
interval [x, .x] is AO, we allow errors O1 and 02 for the intervals [x, x] and
[1, .fl] produced from the subdivision, where

1= O, , A2 =
3

Do ifx=a,z<b,
O1 = 300 A2 = 300 ifa<x,z=b,
A 1 = 0 , A2 = 3 AO otherwise.

If we use the portion of the Romberg triangle to I + 2s function
evaluations are required for s accepted subintervals. If we process the intervals
from left to right, then due to the splitting procedure, up to log((b - a)/hmin)
incompletely processed intervals may occur, and for each of them, 2n-1 already
available function values, the upper interval bound, and the maximum error
need to be stored (cf. Figure 4.2). Thus, (2n-1 + 2) log((b - a)/hmin) storage
locations are necessary to store information that is not immediately needed.
More sophisticated integration routines use variable order quadrature formulas

210 Numerical Integration

I

1
A/2 . 1°!?...................1

O/3 0/6
1

0/2..................1
.

0/4.5 .A/9..1.......0/6.......1 A/2................ ...I

Figure 4.2. The boundary dominant error strategy, n = 2.

(e.g., a variable portion of the Romberg triangle), and determine the optimal
order adaptively by an order control similar to that discussed in Section 4.5.

The boundary dominant error strategy can also be applied whenever the
integrand possesses singularities (or singular derivatives) at known points in
the interior. In this case, we subdivide the original interval a priori according
to the singularities, then we treat each subinterval separately.

4.5 Solving Ordinary Differential Equations

In this section, we treat (for reason of space quite superficially) numerical
approximation methods for the solution of initial value problems for systems of
coupled ordinary differential equations. To simplify the presentation, we limit
ourselves to autonomous problems of the form

yi(t)=FF(yI (t),...,yn(t)), yi(to)=yo (i=1,...,n),

or, in short vector notation,

y' = F(y), y(to) = yo.

(5.1)

However, this does not significantly limit applicability of the results. In partic-
ular, all methods for solving (5.1) can be generalized in a straightforward way
to nonautonomous systems

y' = F(t, y), y(to) = y°

4.5 Solving Ordinary Differential Equations 211

by making the system autonomous with the additional function yo = t and the
additional differential equation (and initial condition)

Yo = 1, Yo(to) = to

(In practice, this transformation is not explicitly applied, but the method is
transformed to correspond to it.) Similarly, higher order differential equations
can be reduced to the standard form (5.1); for example, the problem

x" = G(t, x), x(to) = x0, x'(to) = vo

is equivalent to (5.1) with

fx x° x x'

Y= X/ Y°= v° F X/ = G(t,x)
t to t 1

We pose the problem more precisely as follows. Suppose a continuous function
F : D C_ JR" - W1, a point yo E int(D), and a real interval [a, b] are given.
We seek a continuously differentiable function y : [a, b] -f]i8" with y(t) =
F(y(t)), y(a) = y°. Each such function is called a solution to the initial value
problem y' = F(y), y(a) = y° in the interval [a, b].

Peano's theorem provides rather general conditions for the existence of a
solution. It asserts that (5.1) has a solution in [a, a + h] for sufficiently small h
and that this solution can be continued until it reaches the boundary of D (i.e.,
until either t -+ no or IIY(t)II - no, or y(t) approaches the boundary of D as
t increases).

Because most differential equations cannot be solved explicitly, numerical
approximation methods are essential. Peano's continuation property is the ba-
sis for the development of such methods: From knowledge of the previously
computed solution, we compute a new solution point a short distance h > 0
away, and we repeat such integration steps until the upper limit of the interval
[a, b] is reached.

One traditionally divides numerical methods for the initial value problem
(5.1) into two classes: one-step methods and multistep (ormultivalue) methods.
One-step methods (also called Runge-Kutta methods) are memoryless and only
make use of the most recently computed solution point to compute a new
solution point, whereas multistep methods retain some memory of the history
by storing, using, and updating a matrix containing old and new information.

The successful numerical solution of initial value problems requires a
thorough knowledge of the propagation of rounding error and discretization

212 Numerical Integration

error. In this chapter, we give only an elementary introduction to multistep
methods (which are closely related to interpolation and integration techniques),
and treat the numerical issues by means of examples rather than analysis.
For an in-depth treatment of the whole subject, we refer the reader to Hairer
et al. [35, 36].

Euler's Method

The prototypical one-step method is the Euler's method. In it, we first replace
y' by a divided difference to obtain

Y(ti) - Y(to)
y'(to) = F(Y°)ti - to

or, with hi := t, - to,

t, =to+hi, y1 =Y°+hiF(y) ^"y(tl)

Continuing in the same way with variable step size hi, we obtain the formulas

ti+1 = ti + hi, yi+l = yi + hi F(Y')

for i = 0, ... , N - 1, and we expect to have y(ti) ti yi for i = 1, ... , N. To
define an approximating function y(t) for the solution of the initial value prob-
lem (5.1), we then simply interpolate these N + 1 points; for example, with
methods from Chapter 3.

One can show that, for constant step sizes hi = h, Euler's method has a
global error of order O(h) on intervals of length O(1), and thus converges to
the solution as h --). 0. However, as the following example shows, sometimes
very small step sizes are needed to get an acceptable solution.

4.5.1 Example. Application of Euler's method with constant step size hi = h
to the problem

Y' _ AY, Y(0) = I

leads to the approximation

yi = ah`i with ah = (1 + hl) tx ,

instead of the exact solution

y(ti) = exti.

4.5 Solving Ordinary Differential Equations 213

The method does converge because a h e as It - 0. The following table shows
what happens for larger step sizes.

hA .01 .1 1 10 100 1000
a 2.71 2.59 2.00 1.27 1.05 1.01

hA. -.01 -.1 -.5 -.9 -.99 -1
a 2.73 2.87 4.00 12.92 104.76 00

Once hl is no longer tiny, a is no longer close to e ti 2.718. Moreover, for
h), < -1, the "approximations" y'+' = (1 + h),)y' are violently oscillating
because 1 + hl is negative, and bear no resemblance to the desired solution.

In conclusion, we have qualitatively acceptable solutions for -Z < W. 1,

but good approximations only for jh;,I << 1. For A >> 0 it could be expected
that the step size It must be very small, in view of the growth behavior of eAt.
However, it is surprising that a very small step size is also necessary for X << 0,
even though the solution is negligibly small past a certain t-value! For negative
values of A (for example, when A = -105 and h = 0.02, see Figure 4.3), an

0.1

0.08F

0.06

IIIIIIIIIIIIIIIIIIIII

I I I

I

I I 1 I I I I I 1 1 1 1

-0.02-

-0.04-

-0.06-

-0.08-

L

I

I I I I I I I I I I I I I I I I I

11111111111111111
I I U

IIYI

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 4.3. Divergence of Euler's method for the stiff equation y' = -,ly, with A _
-105 and step size h = 0.02.

214 Numerical Integration

oscillating sequence occurs that increases in amplitude with t, and the sequence
has nothing at all to do with the solution.

The reason for the poor behavior of Euler's method for X << 0 is the very
steep direction field of the corresponding differential equation in the immediate
vicinity of the solution. Such differential equations are called stiff; to solve such

equations effectively, special care must be taken. To improve the accuracy of
Euler's method, we may consider the Taylor series expansion

y(t + h) = y(t) + hy'(t) + 2 y"(t) + O(h3)

= y(t) + hF(y(t)) + Zz F'(y(t))F(y(t)) + 0(h3).

This suggests the method

z

ti+I = ti +hi, yi+' = yi +hiF(y`) + 2' F(y`)F(y`),

which can be shown to have a global error of O (h 2). We may similarly take more

terms in the series to obtain formulas of arbitrarily high order. A disadvantage
of this Taylor series method is that, for F(y) E R", we must compute the
entries of the Jacobian F(y) (or even higher derivatives); usually, this additional
cost is unwarranted. However, if combined with automatic differentiation, an
advantage is an easy rigorous error analysis with interval methods (Moore [63],
Lohner [57], Neumaier [70a]).

Multistep Methods

To derive methods with increased order that avoid the use of derivative infor-
mation, we assume that the values

ti y(t,), f I = F(y')

have already been computed for j < i. If we integrate the differential equation,

+l

y(ti+1) = y(ti) + f F(y(t)) dt,

we know on the right side the function values F(y(tj)) ti F(y3) = f' ap-
proximately and can therefore approximate the integral with an interpolatory

4.5 Solving Ordinary Differential Equations 215

Table 4.1. Coefficients forAdams-Bashforth of order p = s + 1

s PO Al 2 $3

0
3 1

1

_
2 2
23 16 5

2
12 12 12

55 59 37 9
3

_ _
24 24 24 24

quadrature formula (see Section 4.2). We consider only the equidistant case

t,=a+ih, h=b -a
N

If one uses the lasts + 1 points ti_s..... t, as data points, then

f
t+h

y(tl) y(t) + F(y(t)) dt

= y(ti) + h $1 F(y(ti-j)) + O(hs+2)
j=O:s

for certain constants $ j depending on s.
The constants /j may be computed by integrating the Lagrange polynomials;

they are given for s < 3 in Table 4.1. They differ from those derived in
Section 4.2 because now the interpolation points are not chosen from [ti, ti+l],
but lie to the left of ti. By dropping the error term, one obtains the following
explicit Adams-Bashforth multistep method of order s + 1:

ti+1 = ti + h, yi+1 = yi + h E fij
F(y'-j).

j=O:s

The cost per step involves one function evaluation only. The global error can
be proved to be O as for numerical integration, one loses one power of
h for the global estimates because one has to sum over (b - a)/h steps.

If one includes the point to be computed in the set of interpolation points,
one finds implicit methods with an order that is higher by 1. Indeed,

y(ti+l) = y(ti) + h E $j F(y(ti-j)) + O(hs'+3)
j=-1:s

with s-dependent constants $j given for s < 3 in Table 4.2. One obtains the

216 Numerical Integration

Table 4.2. Coefficients for Adams-Moulton formulas of order
p=s+2

S $-1 $o $1 $2 $3

0
2

1

2

1
5 8 1

-12 12 12

9 19 5
2

24 24 - 24 24

251 646 264 106 19
3

720 720 - 720 720
_

720

following implicit Adams-Moulton multi-step method of order s + 2,

ti+t = ti + h, yi+1 = yi + h F(yi+1) + Pj F(yi-1)

J=0:s

in which the desired function value also appears on the right side.
Instead of solving this nonlinear system of equations, one replaces yi+1 on the

right side by the result of the corresponding explicit formula; the order, smaller
by 1, is restored when one multiplies by h. One thus computes a predictor yi+1
with an explicit method and then obtains the value yi+1 by using an implicit
method as a corrector, with yi+1 on the right side.

For example, one obtains with s = 3 the fifth orderAdams-Moulton predictor-
corrector method:

ti+l = ti + h;
% predictor step
yi+l = yi + i(55fi - 59f1-1 + 37f i-2 - 9ff-3);

4fi+1 = F

% corrector step
vi+1 = yi +

7zo-L(251 f
i+1 + 646f' - 264f'-' + 106f 1-2 - 19f1-3) ;

fi+l = F(yi+1);

Depending on the implementation, one or several corrector iterations may be
performed. Compared with the explicit method, the cost per step increased to
two function evaluations (if only one corrector step is taken).

It can be shown that the methods of Adams-Bashforth and of Adams-Moulton
converge with convergence order s+ 1 (i.e., global error O (hs+1)) ands+2 (i.e.,
global error 0(h'+2)), respectively. However, a formal analysis is important
here because, for general multistep methods where yi+1 depends linearly on

4.5 Solving Ordinary Differential Equations 217

older values y'-J, j > 0, the convergence and stability behavior may change
drastically.

4.5.2 Example. The Simpson rule gives

t, +h

Y(tt+,) - Y(ti-1) = F(y(t)) dt
q-h

= 6 (F(Y(t;+i)) +4F(Y(tt)) + F(Y(t,-1))) + O(hs),

hence suggests the implicit multistep formula

(5.2)

For the model problem

Y' _ AY, Y(0) = 1,

we find

yi+1 = Y`-I + 3h(y'+' + 4y' + yi-')

The general solution of this difference equation is

Y` = Ylzi + Y2Z2 (5.3)

where

zt _ 2J.h + 9 + 3A2h2 _ 1 + Ah + O ((),h)2) ti exh,

Z2 } 3 - A.h - {-1 + 3+ -e-1-113

are the solutions of the quadratic equation

2 ,lh 2Z2 =1-4
3

(z +4z+1).

Given y° and y' , we can solve the equations y, + y2 = yo = 1, y, Z i + Y2Z2 = yi
to find

yI - z2 zi - yi
Yt = Y2 =

Z7 - Z2Zl - Z2

Now, if ,l < 0 then the solution y (t) = eXt decays fort -+ oo; but unless yj = zi
(an unlikely situation), y2 0 0 and (5.3) explodes exponentially, even for tiny
values of Ah.

218 Numerical Integration

Solving Stiff Systems

Of considerable practical importance for stiff problems are additional implicit
multistep methods obtained by numerical differentiation. Here we approximate
g(i) := y(ti - ih) by an interpolating polynomial p,(-r) of degrees + 1 with
data points (r, g(r)) = (1, y'-!) (l = -1, 0, ..., s). This gives

g(r) ti Ps+1(i):= E Li(r)y'
i =- I :s

where

r - l
Li(r) =F11i-3I

is a Lagrange polynomial of degree s + 1; of course, for n > 1, we interpret
p,+I (t) as a vector of polynomials. We then have

F(y'+1) F(y(ti+l)) = y'(ti+I) = hg'(-1)

r Li(_t)yi-i
h i=--i:s

1

h
Ps+I (-1),

It is natural to fix y'+1 implicitly through the condition

yi+1 = ai y'-r + h,8_1 F(y'+1); (5.4)
j=0:s

the coefficients _ 1 = 1 /L' I (-1) and ai L'i (1) are easily computed
from the definition. They are gathered for s < 5 in Table 4.3.

The formulas obtained in this way (by Gear [29]) are called backwards dif-
ferentiation formulas, or BDF-formulas; they have orders + 1. Note that here

Table 4.3. Coefficients for BDF formulas of order p = s + I

S '6-1 a0 a1 a2 a3 a4 as

0 I 1

1 2 4 1

3 3
-

3

2 6 18 9 2
11 11 11 11

3 12 48 36 16 3
25 25

_
25 25

_
25

4 60 300 300 200 - 75 12

137 137 137 137 137 137

5 60 360 450 400 _ 225 72 10

147 147 147 147 147 147 147

4.6 Step Size and Order Control 219

y`+l is not computed as a sum of y' and a linear combination of the previous
s function values F(y`-1), but as a sum of the function value at the new point
Yj+i and a linear combination of the previous s values yi-1.

For stiff differential equations, both the Adams-Bashforth methods and the
Adams-Moulton methods suffer from the same instability as Euler's method so
that tiny step sizes are required. However, the BDF-formulas have (for s < 5
only) better stability properties, and are suitable (and indeed, the most popular
choice) for integrating stiff differential equations. However, when using the
BDF-formulas in predictor-corrector mode, one loses this stability property;
therefore, one must find y'+1 directly from (5.4) by solving a nonlinear system
of equations (e.g., using the methods of Chapter 6). The increased work per
step is more than made good for by the ability to use step sizes that reflect the
behavior of the solution instead of being forced by the approximation method
to tiny steps.

Properties of and implementation details for the BDF-formulas are discussed
in Gear [29]. A survey of other methods for stiff problems can be found in Byrne

and Hindmarsh [10].

4.6 Step Size and Order Control

For solving differential equations accurately, step sizes and order must be chosen
adaptively. In our discussion of numerical integration, we have already seen the
relevance of an adaptive choice of step size; but it is even more important in the
present context. To see this, we consider the following.

4.6.1 Example. The initial value problem

y'=y2, y(0)=3

has the solution

(t) =
3

Y 1 - 3t'

only defined for t < 1/3. Euler's method with constant step size h gives

yo = 3, y'+1 = y' + h(y')2 for i > 0.

As Table 4.4 with results for constant step sizes h = 0.1 and h = 0.01 shows, the
method with step size h = 0.1 continues far beyond the singularity, without any
noticeable effect in the approximate solution, whereas with step size h = 0.01
the pole is recognized, albeit too late. If one were to choose h still smaller, then

220 Numerical Integration

Table 4.4. Results for constant step sizes
using Euler's method

t; y(t;)
y`

h=0.1
y`

h=0.01

0 3 3 3

0.1 4.29 3.9 4.22
0.2 7.5 5.42 7.06
0.3 30 8.36 19.48

0.4 - 15.34 3.35- 106

0.47 -
I overflow

0.5 - 38.91 -
0.6 - 190.27 -
0.7 - 3810.34 -

one would obtain the position of the pole correspondingly more accurately. In
general, one needs small h near singularities, whereas, in order to keep the cost
small, one wishes to compute everywhere else with larger step sizes.

4.6.2 Example. The next example shows that an error analysis must also be
done along with the step size control. The initial value problem y' _ -y -2t/y,
y(0) = 1 has the solution y(t) = 1 - 2t, defined only for t < 2. Euler's
method, carried through with step size h = 0.001, gives the results shown in
Table 4.5. Surprisingly, the method can be continued without problems past
the singularity at t = 0.5. Only a weak hint that the solution might no longer
exist is given, by a sudden increase in the size of the increments y`+1 - yt after
t = 0.525. Exactly the same behavior results for smaller step sizes, except that
the large increments occur closer to 0.5.

We conclude that a reliable automatic method for solving initial value prob-
lems must include an estimate for the error in addition to the step size control,
and must be able to recognize the implications of that estimate.

Table 4.5. Results for y'= -y - 2t/y, y(0) = 1, using Euler's method

t; 0 0.100 0.200 0.300 0.400 0.499 0.500 0.510 0.520 0.525 0.530 0.600

y(ti) 1 0.894 0,775 0.632 0.447 0.045 0.000 - - - - -
y' 1 0.894 0.774 0.632 0.447 0,056 0.038 0.042 -0.023 -0.001 0.777 0.614

4.6 Step Size and Order Control 221

In each integration step, one can make several choices because both the

order p of the method and the step size h can be chosen arbitrarily. In principle,
one could change p and h in each step, but it has been found in practice that
doing this produces spurious instability that may accumulate to gross errors
in the computed solution. It is therefore recommended that before changing to
another step size and a possibly new order p, one has done at least p steps with
constant order and step size.

Local Error Estimation

To derive error estimates we must have a precise concept of the order of a
method. We say that a multistep method of the form

y'+' = ajy`-j +h E OjF(y'-j); (6.1)
j=O:s j=O:s

has order p if, for every polynomial q(x) of degree <p,

q(1) (ajq(-j) + #jq'(-j)). (6.2)
j=O:s

This is justified by the following result for constant step size h.

4.6.3 Theorem. If the multistep method (6.1) has order p, then for all (p + 2)-
times continuously differentiable functions y and all h E]l8,

y(t + h) = 1: ajy(t - jh)+h E,Bjy'(t- jh)+Eh(t) (6.3)
j=O:s j=O:s

with an error term

Eh(t) = CPhP+i y[t, t - h, ... , t - (p + 1)h] + O(hP+2) = O(hP+') (6.4)

and

CP = 1 + Y, (-j)P(jaj - (p + A).
j=O:s

Proof. By Theorem 3.1.8,

y(P+')(t+Th) y(P+')(t)y[t,t-h,...,t-(p+1)h]= _ +O(h).
(p+ 1)! (p+ 1)!

222 Numerical Integration

Taylor expansion of y(t) and y'(t) gives (for bounded j)

(k)

y(t + jh) = Y t)hkjk + O(hp+2)
k=O:p+I

k

=qh(j)+hp+jp+'y[t,t-h,...,t-(p+1)h]+O(hp+2)
(k+1) ty'(t + jh) = ' Y

k
Ohk jk + O(hp+')

k=0: p

=h-'qh(j)+(p+1)hpjpy[t,t-h,...,t- (p+1)h]
+ O(hp+')

with a polynomial qh(x) of degree at most p. Using (6.3) as a definition for
Eh (t), plugging in the expressions for y(t + jh) and y'(t + jh) and using (6.2),
we find (6.4).

If the last step was of order p, it is natural to perform a step of order p E
{p - 1, p, p + 1} next. Assuming that one has already performed p steps of
step size h, the theorem gives a local discretization error of the form

Yi+l - Y(ti+i) = Cphp+'Y[ti, . . . , ti-p-1] + 0(hP+2),

with yi+' = y(t,+,), where y(t) is the Taylor expansion of y(t) of order p at
ti. The divided differences are easily computable from the y'-J. If the step size
h remains the same, the order p with the smallest value of

wp Il Cphp+'Y[ti, ... , ti-p-1111

is the natural choice for the order in the next step.
However, if the new step size is changed to hi = ah (where a is still arbitrary),

the discretization error in the next step will be approximately aP+' wp. For this
error to be at most as large as the maximum allowable contribution S to the
global error, we must have aP+'wp < S. Including empirically determined
safety factors, one arrives at a recommended value of a given by

0.7(S/wp_,)'1p if p = p - 1,
a = 0.8(S/wp)'/(p+'> if p = P,

0.6(S/wp+t)'/(p+2) if p = p + 1.

The safety factors for a change of order are taken smaller than those for order p
to combat potential instability. One may also argue for multiplying instead by
suitable safety factors inside the parentheses, thus making them p dependent.

4.6 Step Size and Order Control 223

If the largest of these values for a is not too close to 1, the step size is changed
to hi = ah and the corresponding order p is used for the next step. To guarantee
accuracy, one must relocate the needed ti_j to their new equidistant positions
ti_j = t, - jhi and find approximations to y(ti - jhi) by interpolating the
already computed values. (Take enough points to keep the interpolation error
of the same order as the discretization error!)

Initially, one starts any multistep method with the Euler method, which
has order I and needs no past information. To avoid problems with stability
when step sizes change too rapidly (the known convergence results apply only
to constant or slowly changing step sizes), it is advisable to restart a multi-
step method when a << I and truncate large factors a to a suitable threshold
value.

The Global Error

As in all numerical methods, it is important to assess the effect of the local
approximation errors on the accuracy of the computed solution. Instead of a
formal analysis, we simply present some heuristic that covers the principal
pitfalls that must be addressed by good software.

The local error is the sum of the rounding errors r, made in the evaluation of
(6.l) and the approximation error O(hP+') (for an order p method) that gives
the difference to y(ti+,). We assume that rounding errors in computing function
values are O(sF) and the rounding error in computing the sum is O(s). Then
the total local error is O(hEF) + O(e) + O(hP+').

For simplicity, let us further assume that the local errors accumulate additively
to global errors. (This assumption is often right and often wrong.) If we use
constant step size h over the whole interval [a, b], the number of steps needed
is n = (b - a)/ h. The global error therefore becomes

(SF + E h+hP). (6.5)

Although our derivation was heuristic only and based on assumptions that are
often violated, the resulting equation (6.5) can be shown to hold rigorously
for all methods that are what is called asymptotically stable. In particular, this
includes the Adams-Bashforth methods and Adams-Moulton methods of all
orders, and the BDF methods of order up to six.

In exact arithmetic, (6.5) shows that the global error remains within a desired
bound 0 when O(0'/P) steps are taken and F is a p times continuously dif-
ferentiable function. (Most practical problems need much more flexibility, but

224 Numerical Integration

it is still an unsolved problem whether there is an efficient control of step size
and order such that the same statement holds.)

In finite precision arithmetic, (6.5) exhibits the same qualitative dependency
of the total error on the step size h as in the error analysis for numerical differenti-

ation (Section 3.2, Figure 3.2). In particular, the attainable accuracy deteriorates
as the step sizes tend to zero. However, as shown later, there are also marked
differences between these situations because the cure here is much simpler as
in the case of numerical differentiation.

As established in Section 3.2, there is an optimal step size hop1 = O (E' /(P+')).

The total error then has magnitude

Y. - y(tn) = O(EF + hP) = O(EF + EP/(P+i)1.

In particular, one sees that not only is a better accuracy attainable with a larger
order, but one may also proceed with a larger step size and hence with a smaller
total number of steps, thus reducing the total work. We also see that to get
optimal accuracy in the final results, one should calculate the linear combination
(6.1) with an accuracy E << e(P+I)/P. In particular, if F is computed to near

machine precision, then (6.1) should be calculated in higher precision to make
full use of the accuracy provided by F.

In FORTRAN, if F is computed in single precision, one would get the desired
accuracy of the yj by storing double precision versions yy(s - j) of the recent
yi_j and proceed with the computation of (6.1) according to the pseudo code

Fsum = > 8i F(y(i - j))
yy(s + 1) = > a j yy(s - j) + dprod(h, Fsum)
y(i + l) = real(yy(s + 1))
yy(l : s) = yy(2 : s + 1)

(The same analysis and advice is also relevant for adaptive numerical integra-
tion, where the number of function evaluations can be large and higher precision
may be appropriate in the addition of the contributions to the integral.)

A further error, neglected until now, occurs in computing the ti. At each step,
we actually compute t;+1 = t; -1- hi with rounding errors that accumulate signif-
icantly in a long number of short steps. This can lead to substantial systematic
errors when the number of steps becomes large. In order to keep the roundoff
error small, it is important to recompute the actual step size hi = t;+1 - t; used,
from the new (approximately computed) argument t;+i = t, + hi ; because of
cancellation that typically occurs in the computation of ti+i - ti, the step size hi
computed in this way is usually found exactly (cf. Section 1.3). This is one of
the few cases in which cancellation is advantageous in numerical computations.

4.7 Exercises 225

4.7 Exercises

1. Prove the error estimate

L
b

.f (x) dx = (b - a)f Ca
2

b
+ (b 24

E [a, b]

for the rectangle rule (also called midpoint rule) if f is twice continuously
differentiable functions f (x) on the interval [a, b].

2. Because the available function values f(x) = f (x j) + E j (j = 0, ... , N)
are generally contaminated by roundoff errors, one can ask for weights
a j chosen in such a way that the influence of roundoff errors is small.
Under appropriate assumptions (distribution of the 8j with mean zero and
standard deviation a), the root mean square error of a quadrature formula
Q(f) = >j=O:N a1 f (x1) is given by

rN =Q
j=O:N

(a) Show that rN for a quadrature formula of order > 1 is minimal when
all weights a j are equal.

(b) A quadrature formula in which all weights are equal and that is exact
for polynomials p(x) of degree <n is called a Chebychev quadra-
ture formula. Determine (for (o (x) = 1) the nodes and weights of the
Chebychev formula for n = 1, 2, and 3. (Remark: The equations for
the weights and points have real solutions only for n < 7 and n = 9.)

3. Given a closed interval [a, b] and nodes xj := a + jh, j = 0, 1, 2, 3
with h :_ (b - a)/3, derive a quadrature formula Q (f) = F-;=0:3 a; f(x1)
that matches I (f) = f b f (x) dx exactly for polynomials of degree <3.
Prove the error formula I (f) - Q(f) = 8h5 f14)0 O, E [a, b] for
f E C4[a, b]. Is Q(f) also exact for polynomials of degree 4?

4. Let Qk (f) (k = 1, 2, ...) be a normalized quadrature formula with non-
negative weights and order k + 1. Show that if f (x) can be expanded in
a power series about 0 with radius of convergence r > 1, then there is a
constant Cr (f) independent of k with

J
1 f(x)dx-Qk(.f)

Cr(f)<
(r - 1)k+1'

Find Cr(f) for f (x) = 1/(2 - x2), using Remark 4.1.11, and determine r
such that Cr (f) is minimal.

226 Numerical Integration

5. In order to approximately compute the definite integral f f (x) dx of a
function f E C6[0, 1], the following formulas may be applied (h := 1/n):

f 1.f (x) dx = h jf()+ ,f (vh) + I .f (1) - h2 f"(1)
0 2 v=1:n-1 2 12

(composite trapezoidal rule; cf. (3.1)),

f1 f(x)dx = 6 f(0)+2 f(vh) +4 f ((2v
2

1)h)

v=1:n-1 v=1:n

+f (1) 2880f(4)

(composite Simpson rule; cf. (3.1)),

f(x)dx = 0 7f(0)+32 f I (2v 4 I)h)
v=t:2n \ /

+ 12 E f (2v
2

1)h) + 14 E f (vh) + 7 f (1)
v=1:n v=1:n-1

483840
f16)

(3)

(composite Milne rule; cf. (4.4)) with t E [0, 1], i = 1, 2, 3. Let f (x)
x6.5

(a) For each formula, determine the smallest n such that the absolute value
of the remainder term is < 10-4. How many function evaluations would
be necessary to complete the numerical evaluation with this n?

(b) Using the formula that seems most appropriate to you, compute an ap-
proximation to fo x6-5dx to the accuracy 10-4 (with MATLAB). Com-
pare with the exact value of fo x6 5 dx.

6. Let a = xo < x1 < < xN = b be an equidistant grid.
(a) Show that if f (x) is monotone in [a, b], then the composite trapezoidal

rule satisfies

fb

J
f(x)dx-TN(f)

a

h6

<
b2Na

If (b) - .f (a) I.

(b) Show that if Q (f) is an arbitrary quadrature formula on the above sub-
division of [a, b] and I fb f (x) dx - Q(f) I < R(f) for all monotone

4.7 Exercises 227

functions f , where R (f) depends only on the f (xj), then R (f) >
iN I f (b) - f (a) 1. (Thus, in this sense, the trapezoidal rule is optimal.)

7. Write a MATLAB program to compute an approximation to the integral
f b f (x) dx with the composite Simpson rule; use it to compute 4 =
fo i+xz with an absolute error <10-5. How many equidistant points are
sufficient? (Assume that there is no roundoff error.)

8. Use MATLAB to compute the integral I = fo 2 cos x dx with an abso-
lute error <0.00005; use Simpson's rule with step size control.

9. Let f be a continuously differentiable function on [a, b].
(a) Show that

1
b

f (x) dxb-a a

E .f ([a, b]) (1 if
(a

2

b)
+ [-1, 1]b

4
arad(f'([a, b]))1 .

(b) Use (a) to write a MATLAB program for the adaptive integration of a
given continuous function f where interval extensions for f and f' are
available. (Use the range of slopes for f' when the derivative does not
exist over some interval, and split intervals recursively until an accuracy
specification is met.)

(c) Compute enclosures for fo
+x2

dx, f ' i i XZ dx and fo 2V1 _

/cosx dx with an error of at most 5 x 10' 1 (i = 2, 3, 4); give
the enclosures and the required number of function evaluations.

10. (a) Show by induction that the Vandermonde determinant

does not vanish for pairwise distinct xj E IR, j = 0, .. . , n.

(b) Use part (a) to show that for any grid a < xo < xi < < xn < b,
there exist uniquely determined numbers ao, ai, ... , an so that

j=O.n

jb
ajp(xj)=p(x)dx

for every polynomial p(x) of degree n.

228 Numerical Integration

11. (a) Show that the Chebychev polynomials T (x) (defined in (3.1.22)) are or-
thogonal over [-], 1] with respect to the weight function w(x):=
(1 - x2)-2.
(b) Show that Re(x + i,11 - x2)n for X E [-1, 1].

12. Determine for N = 0, 1, 2 the weights ai and arguments xi (j = 0, ... , N)
of the Gaussian quadrature formula over the interval [0, 1] with weight
function co(x) := x-1i2. (Find the roots xi of the orthogonal polynomial
p3 (x) with MATLAB's root.)

13. (a) Show that the characteristic polynomials pi (x) = det(xI - A1) of the
tridiagonal matrices

1 0\

satisfy the three-term recurrence relation

pi (x) _ (x - ai)pi-i(x) - bipi_2(x) forj > 1, (7.1)

started with p_1(x) = 0, po(x) = 1.
(b) Show that for any eigenvalue X of

x pi-1(),)ui = pi-i vi = b2...bi

define eigenvectors u; of and u of
(c) Show that the

La(x) = C' v - pi_1(x), where c; _ b2 . . . bi
i i

are the Lagrange polynomials for interpolation in the eigenvalues of
(Hint: Obtain an identity by computing (va)T in two

ways.)
(d) Deduce from (a)-(c) that the n + 1 nodes of a Gaussian quadrature

formula corresponding to orthogonal polynomials with three-term re-
currence relation (7.1) are given by the eigenvalues xi of
with corresponding weights ai = ca' f co(x) dx. (Hint: Use the or-
thogonality relations and po(x) = 1.)

4.7 Exercises 229

(e) If all bj are positive (which is the case for positive weight functions),
find a nonsingular diagonal matrix D such that An+1 = D-' An+, D is
symmetric. Confirm that also pn+,(x) = det(xI - An+1). Why does
this give another proof of the fact that all nodes are real?

(f) Show that in terms of eigenvectors wA of An+i of 2-norm 1, c>. = (wt)2.
Use this to compute with MATLAB's eig nodes and weights for the
12th order Gaussian quadrature formula for f f (x) dx.

14. A quadrature formula Q (f) := >i=o:N a; f (xi) with xi E [a, b] (i =
0, ... , N) is called closed provided xo = a and xN = b and ao, aN : 0.
Show that, if there is an error bound of the form

f

b

f (x) dx < JE(f)j

with E(f) := F_i=o:N #i f (xi) for all exponential functions f = (A E

IR), then Q(f) must be a closed quadrature formula and I fii I > jai I for
i =0, N.

15. Let Dk (f) := >i=o:N P; k) f (xi) with xo < x, < < xN. Suppose that

Dk(f) = I f(k)(sk(f)) forsomesk(f) E [xo,xI]

holds whenever f is a polynomial of degree <N.
(a) Show that DN (f) = f [xo, ... , xN], and give explicit formulas for the

(N) in terms of the x.i i

(b) Show that ,Bik) = 0 for i < N < k, i.e., that derivatives of order higher
than N cannot be estimated with N + I function values.

16. (a) Write a program for approximate computation of the definite integral
fb f (x) dx via Romberg integration. Use h, := (b - a)/2 as initial
step size. Halve the step size until the estimated absolute error is smaller
than 10-6, but at most 10 times. Compute and print the values in the
"Romberg triangle" as well as the estimated error of the best value.

(b) Test the program on the three functions
(i) f(x):=sinx,a:=0,b:=7r,
(ii) f(x):= x1 3,a:=0,b:=1,and
(iii) f (x) (1 + 15 cos2 x)-1/2 , a := 0, b := n/2.

17. Suppose that the approximation F(h) of the integral I, obtained with step
size h, satisfies

I = F(h) + ahP' + bhP2 + ch"3 + with p, < P2 < P3 < .

230 Numerical Integration

Give real numbers a, ,B, and y such that

I = aF(h) + PF
(h)

2
+ yF

(h)
4+ O(hP')

holds, to obtain a formula of order hP'.
18. To approximate the integral fD f (x, y) dxdy, D c Ilg2, via a formula of

the form

Avf (xv, yv)
v=I:N

(7.2)

with nodes (x,,, y,) and coefficients A, (v = 1, ..., N) we need to de-
termine 3N parameters. The formula (7.2) is said to have order m + 1
provided

IDv=1:N

forallq,r > 0withq+r =0, 1,...,m.
(a) What is the one-point formula that integrates all linear functions exactly

(i.e., has order 2)?
(b) For integration over the unit square

D:={(x,y)10<x<1,0<y<1},

show that there is an integration formula of the form (7.2) with nodes
(0, 0), (0, 1), (1 j2, 1/2), (1, 0), (1, 1), and order 3, and determine the
corresponding A, v = 0, ... , 5.

19. Consider the initial value problem

y' = 2y, y(0) = 1.

(a) Write down a solution to the initial value problem.
(b) Write down a closed expression for the approximate values yi obtained

with Euler's method with step size h.
(c) How small must h be for the relative error to be <2 10-4 in [0, 1]?
(d) Perform 10 steps with the step size determined in (c).

20. The function y(t) = t2/4 is a solution to the initial value problem

y'='/_Y_, y(0)=0.

However, Euler's method gives y' = 0 for all t and h > 0. Verify this
behavior numerically, and explain it.

4.7 Exercises 231

21. Consider an initial value problem of the form

y' = F(t, y), y (a) = a.

Suppose that the function F(t, z) is continuously differentiable in [a, b] x
R. Suppose that

F(t, z) > 0, F1(t, z) < 0, and Fy(t, z) < 0

for every t E [a, b] and z E R. Show that the approximations y' for y(ti)
obtained from Euler's piecewise linear method satisfy

Y, > Y(ti), i = 0, 1.... .

22. Compute (by hand or with a pocket calculator) an approximation to y(0.4)
to the solution of the initial value problem

Y"(t) = -Y(t), Y(0) = 1, Y'(0) = 0

by
(a) rewriting the differential equation as a system of first order differential

equations and using Euler's method with step size h = 0.1;
(b) using the following recursion rules derived from a truncated Taylor

expansion:

y0 := Y(0),
z0 := Y'(0),

h2
y'+1 := y1 + hz` + 2 F(ti, y`),

Z' + hF(ti, y'); (i = 0, ..., 3); (h = 0.1).

Interpret the rule explained in (b) geometrically.
23. When f is complex analytic, an initial value problem of the form

y' = F(t, y), y(a) = Yo (7.3)

may be solved via a Taylor expansion. To do this, one expands y(t) about
a to obtain

y(a + h) Y (a)_ by + remainder;
v=O:N-1 VI

function values and derivatives at a are computable by repeated differ-
entiation of (7.3). Neglecting the remainder term, one thus obtains an

232 Numerical Integration

approximation for y(a + h). Expansion of y about a + h gives an ap-
proximation at the point a + 2h, and so on.
(a) Perform this procedure for F(t, y) := t - y2, a := 0 and y° := 1. In

these computations, develop y to the fourth derivative (inclusive) and
choose h = 1/2, 1/4, and 1/8 as step sizes. What is the approximate
value at the point t = 1?

(b) Use an explicit form of the remainder term and interval arithmetic to
compute an enclosure for y(1).

24. To check the effect of different precisions on the global error discussed
at the end of Section 4.6, modify Euler's method for solving initial value
problems in MATLAB as follows:
Reduce the accuracy of Fh to single precision by multiplying the standard
MATLAB result with 1+le-8*randn (randn produces at different calls
normally distribbuted numbers with mean zero and standard deviation 1).
Perform the multiplication of F with h and the addition to y'
(a) in double precision (i.e., normal MATLAB operations);
(b) in simulated single precision (i.e., multiplying after each operation with

1+le-8*randn).
Compute an approximate solution at the point t = 10 for the initial value
problem y' = -0.1y, y(0) = 1, using constant step sizes h := 10-3, 10-4
and 10-5. Comment on the results.

25. (a) Verify that the Adams-Bashforth formulas, the Adams-Moulton for-
mulas, and the BDF formulas given in the text have the claimed order.

(b) For the orders for which the coefficients of these formulas are given
in the text, find the corresponding error constants Cp. (Hint: Use
Example 3.1.7.)

5

Univariate Nonlinear Equations

In this chapter we treat the problem of finding a zero of a real or complex
function f of one variable (a univariate function), that is, a number x* such
that f (x*) = 0. This problem appears in various contexts; we give here some
typical examples:

(i) Solutions of the equation p(x) = q (x) in one unknown are zeros of func-
tions f such as (among many others) f := p - q or f := p/q - 1.

(ii) Interior minima or maxima of continuously differentiable functions f are
zeros of the derivative f'.

(iii) Singular points x* of a continuous function f for which If (x) I -- oo as
x -+ x* (in particular, poles of f) are zeros of the inverted function

g(x) :_ 10,
I/f (x), if x # x*,

if x = x*,

continuously completed at x = x*.
(iv) The eigenvalues of a matrix A are zeros of the characteristic polynomial

f (,l) := det(;,I - A). Because of its importance, we look at this problem
more closely (see Section 5.3).

(v) Shooting methods for the solution of boundary value problems also lead
to the problem of determining zeros. The boundary-value problem

y"(t) = g(t, y(t), y'(t)), y : [a, b] ---]l8

Y(a) = Ya, y(b) = Yb

can often be solved by solving the corresponding initial-value problem

y,'s'(t) = g(t, Ys(t), Ys(t)), ys : [a, b] -+ JR

y, (a) = Ya, ys(a) = s

233

234 Univariate Nonlinear Equations

for various values of the parameters. The solution y = yS of the initial-
value problem is a solution of the boundary-value problem if s is a zero
of the function defined by

f (s) := ys (b) - .Yb.

We see that, depending on the source of the problem, a single evaluation of
f may be cheap or expensive. In particular, in examples (iv) and (v), function
values have a considerable cost. Thus one would like to determine a zero with
the fewest possible number of function evaluations. We also see that it may be
a nontrivial task to provide formulas for the derivative of f. Hence methods
that do not use derivative information (such as the secant method) are generally
preferred to methods that require derivatives (such as Newton's method).

Section 5.1 discusses the secant method and shows its local superlinear con-
vergence and its global difficulties. Section 5.2 introduces globally convergent
bisection methods, based on preserving sign changes, and shows how bisec-
tion methods can accomodate the locally fast secant method without sacrificing
their good global properties. For computing eigenvalues of real symmetric ma-
trices and other definite eigenvalue problems, bisection methods are refined in
Section 5.3 to produce all eigenvalues in a given interval.

In Section 5.4, we show that the secant method has a convergence order of
~1.618, and derive faster methods by Opitz and Muller with a convergence
order approaching 2. Section 5.5 considers the accuracy of approximate zeros
computable in finite precision arithmetic, the stability problems involved in
deflation (a technique for finding several zeros), and shows how to find all
zeros in an interval rigorously by employing interval techniques.

Complex zeros are treated in Section 5.6: Local methods can be safeguarded
by a spiral search, and complex analysis provides tools (such as Rouche's
theorem) for ascertaining the exact number of zeros of analytic functions.

Finally, Section 5.7 explores methods that use derivative information, and in
particular Newton's method. Although it is quadratically convergent, it needs
more information per step than the secant method and hence is generally slower.
However, as a simple prototype for the multivariate Newton method for systems
of equations (see Section 6.2), we discuss its properties in some detail - in
particular, the need for damping to prevent divergence or cycling.

5.1 The Secant Method

Smooth functions are locally almost linear; in a neighborhood of a simple
zero they are well approximated by a straight line. Therefore, if we have two

5.1 The Secant Method 235

approximations of a zero the zero is likely to be close to the intersection of the
interpolating line with the x-axis.

We therefore interpolate the function f in the neighborhood of the zero x*
at two points xi and xi -I through the linear function

P1(x) f(xi)+f[xi,xi-1](x -xi).

If the slope f [xi, xi_i] does not vanish, we expect that the zero

f(xi)
xi+1 xi -

f [xi, xi-1]

of p1 represents a better approximation for x* than xi and xi_i (Figure 5.1).
The iteration according to (1.1) is known as the secant method, and several

variants of it are known as regula falsi methods. For actual calculations, one

3

2

1

0

-2

-3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 5.1. A secant step for f (x) = x3 - 8x2 + 20x - 13.

236 Univariate Nonlinear Equations

Table 5.1. Results of the secant method in [], 2] for x2 -2

i xi sign(f) i xi sign(f)

1 1 - 6 1.41421143847487 -
2 2 + 7 1.41421356205732 -
3 1.33333333333333 - 8 1.41421356237310 +
4 1.40000000000000 - 9 1.41421356237310 +
5 1.41463414634146 + 10 1.41421356237309 -

may use one of the equivalent formulas

(xi - xi-1)f (xi)xi+1 = xi -
f(xi)-f(x;-1)

xi - xi_1

=
xi

1 - f (xi-1)/f (xi)
xi -1 If (xi) - xi f (xi -1)

f(xi) - f(xi-1)

of these, the first two are less prone to rounding error than the last one. (Why?)

5.1.1 Example. We consider f (x) := x2-2with x* = = 1.414213562...
with starting points x1 := 1, x2 := 2. Iteration according to (1.1) gives the re-
sults recorded in Table 5.1. After eight function evaluations, one has 10 valid
digits of the zero.

Convergence Speed

For the comparison of various methods for determining zeros, it is useful to have

more precise notions of the rate of convergence. A sequence xi (i = 1, 2, 3, ...)
is said to be (at least) linearly convergent to x* if there is a number q E (0, 1)
and a number c > 0 such that

Ix* - xi I < cq' for all i > 1;

the best possible q is called the convergence factor of the sequence. Clearly,
this implies that x* is the limit. More precisely, one speaks in this situation of
R-linear convergence as distinct from Q-linear convergence, characterized by
the stronger condition

jx* - xi+1 I < q jx* - xi I for all i > io > I

5.1 The Secant Method 237

for some convergence factor q E (0, 1). Obviously, each Q-linearly convergent
sequence is also R-linearly convergent (with c = Ix* -xi01 q -`0), but the converse

is not necessarily true.
For zero-finding methods, one generally expects a convergence speed that

is faster than linear. We say the sequence xi (i = 1, 2, 3, ...) with limit x*
converges Q-superlinearly if

Ix;+1-x*1 <q;Ixi-x*1 fori>0, with limq;=0,
i->00

and Q-quadratically if a relation of the form

Ixr+i - x*I < coIx; -x*12 fori > 0

holds. Obviously, each quadratically convergent sequence is superlinearly con-
vergent. To differentiate further between superlinear convergence speeds we
introduce later (see Section 5.4) the concept of convergence order.

These definitions carry over to vector sequences in R" if one replaces the
absolute values with a norm. Because all norms in II8" are equivalent, the defi-
nitions do not depend on the choice of the norm.

We shall apply the convergence concepts to arbitrary iterative methods, and
call a method locally linearly (superlinearly, quadratically) convergent to x* if,
for all initial iterates sufficiently close to x*, the method generates a sequence
that converges to x* linearly, superlinearly, or quadratically, respectively. Here
the attribute local refers to the fact that these measures of speed only apply to
an (often small) neighborhood of x*. In contrast, global convergence refers to
convergence from arbitrary starting points.

Convergence Speed of the Secant Method

The speed that the secant method displayed in Example 5.1.1 is quite typ-
ical. Indeed, usually the convergence of the secant method (1.1) is locally
Q-superlinear. The condition is that the limit is a simple zero of f. Here, a
zero x* of f is called a simple zero if f is continuously differentiable at x* and
f'(x*) 0 0.

5.1.2 Theorem. Let the function f be twice continuously differentiable in a
neighborhood of the simple zero x* and let c:=

z

f"(x*) f f'(x*). Then the
sequence defined by (1.1) converges to x* for all starting values x I, x2 (x1 x2)

sufficiently close to x*, and

x,+1 - x* = ci (xi - x*)(Xj_l - x*) (1.2)

238 Univariate Nonlinear Equations

with

lim c; = C.
I-*00

In particular, near simple zeros, the secant method is locally Q-superlinearly
convergent.

Proof. By the Newton interpolating formula

0 = f(x*)
= f (xi) + f [xi, x1) + f [xi, x;-1, x*](x* - xt)(x* - x;-1)

In a sufficiently small neighborhood of x*, the slope f [x;, xi-1] is close to
f'(x*) :0, and we can "solve" the linear part for x*. This gives

* f(x1) f[x;,x;-1,x*] * *X* = x; - - (x - x;)(x - x;-1)
f [xi, xi -1] f [xi, xi -1]

= x;+1 - c,(x* - x,)(x* - x;-1),

where

f [xi, x;-1, x*1c; :=
f [xi , xi-1]

So (1.2) holds.
For r, ' in a sufficiently small closed ball B[x*; r] around x*, the quotient

c; f [., ', x*]/f

remains bounded; suppose that lc; I < E. For starting values x1, x2 in the
ball B[x*; ro], where r0 = min(r, 1/2c), all iterates remain in this ball. Indeed,
assuming that Ixi-1 - x*I, Ix; - x*I < ro, we find by (1.2) that

Ixi+1 - x*I < 2lxi - x*I < ro.

By induction, Ix; - x*I < 22-`r0, so that x, converges to x*. Therefore,

f [x*, x*, x*] 1 f"(x*)
lim
i-*00 f [x*, x*] 2 f'(x*)

With q; := I c; I I x; -1 - x* I it follows from (1.2) that

Ix;+1 - x*I = q,lxi - x*I.

5.1 The Secant Method

Figure 5.2. Nonconvergence of the secant method.

239

Now Q-superlinear convergence follows from lim qi = 0. This proves the
theorem.

5.1.3 Corollary. If the iterates xi of the secant method converge to a simple
zero x* with f"(x*) 0, then for large i, the signs of xi - x* and f (xi) in the
secant method are periodic with period 3.

Proof. Let si = sign(xi - x*). Because lim ci = c # 0 by assumption, there is
an index io such that for i > io, the factors ci in (1.2) have the sign of c. Let
s = sign(c). Then (1.2) implies si+I = ssisi_i and hence si+2 = ssi+1si =
sssisi_isi = si_1, giving period 3.

As Table 5.1 shows, this periodic behavior is indeed observed locally, until
(after convergence) rounding errors spoil the pattern.

In spite of the good local behavior of the secant method, global convergence is
not guaranteed, as Figure 5.2 illustrates. The method may even break down com-
pletely if f [xi, xi_1] = 0 for some i because then the next iterate is undefined.

Multiple Zeros and Zero Clusters

It is easy to show that x* is a simple zero off if and only if f has the representa-
tion f (x) = (x -x*)g(x) in a neighborhood of x*, in which g is continuous and
g(x*) 0. More generally, x* is called an m fold zero off if in a neighborhood
of x* the relation

f (x) = (x - x*)rg(x), g(x*) 0 0 (1.4)

holds for some continuous function g.

240 Univariate Nonlinear Equations

For multiple zeros (m > 1), the secant method is only locally linearly
convergent.

5.1.4 Example. Suppose that we want to determine the double zero x* = 0
of the parabola f (x) x2. Iteration with (1.1) for x1 = 1 and x2 = i gives the
sequence

1 1 1 1

Xi= 3, 5, g, 13,...;x34=1.0810-7.

(The denominators n, form the Fibonacci sequence n,+1 = n; + ni_1.) The
convergence is Q-linear with convergence factor q = (Nf5- - 1)/2 ti 0.618.

If one perturbs a function f (x) with an m-fold zero x* slightly, then the
perturbed function f (x) has up to m distinct zeros, a so-called zero cluster,
in the immediate neighborhood of x*. (If all these zeros are simple, there is
an odd number of them if m is odd, and an even number if m is even.) In
particular, for m = 2, perturbation produces two closely neighboring zeros
(or none) from a double zero. From the numerical point of view, the behavior of
closely neighboring zeros and zero clusters is similar to that of multiple zeros;
in particular, most zero finding methods converge only slowly towards such
zeros, until one finds separating points in between that produce sign changes.
If an even number of simple zeros x* = x* , ... , 4, well separated from the
other zeros, lie in the immediate neighborhood of some point, it is difficult to
find a sign change for f because then the product of the linear factors x - xi*
is positive for all x outside of the hull of the x*. One must therefore hit by
chance into the cluster in order to find a sign change. In this case, finding a sign
change is therefore essentially the same as finding an "average solution," and
is therefore almost as difficult as finding a zero itself.

In practice, zeros of multiplicity m > 2 appear only very rarely. For this
reason, we consider only the case of a double zero. In a neighborhood of
the double zero x*, f (x) has the sign of g(x) in (1.4); so one does not re-
cognize such a zero through a sign change. However, x* is a simple zero of the
function

h(x) := (x - x*) Ig(x)I = sign(x - x*) I.f (x)I,

and the secant method applied to h gives

Xi - x1_1 Xi - xi-1
x1+1 = x1 - = x1 -1 - h(x1_i)/h(x,) 1 f f (xi_1)/f (x1)

The sign of the root is positive when x* E 0 {x,, x,_1 } and negative otherwise.

5.2 Bisection Methods 241

Table 5.2. The safeguarded root secant method

i xi xi+1 f(xi+1)

1 0 1.20000000000000 0.09760000000000

2 1.74522604659078 1.20000000000000 0.09760000000000

3 1.20000000000000 1.05644633886449 0.00674222757113

4 1.05644633886449 1.00526353445128 0.00005570200768

5 1.00526353445128 1.00014620797161 0.00000004275979

6 1.00014620797161 1.00000038426329 0.00000000000030

7 1.00000038426329 1.00000000002636 0

However, because x* is not known, we simply choose the negative sign. We call
the iteration by means of the formula

xi+1 = xi - 1- f(xi-1)/f(xi)
(1.5)

the root secant method. One can prove (see Exercise 4) that this choice guar-
antees locally superlinear convergence provided one safeguards the original
formula (1.5) by implicitly relabeling the xi after each iteration such that
If(xi+1)I < If(xi)I

5.1.5 Example. The function f (x) = x4-2x3+2x2-2x-1-1 has a double root
at x* = 1. Starting with x1 = 0, x2 = 1.2, the safeguarded root secant method
produces the results shown in Table 5.2. Note that in the second step, x2 and x3
were interchanged because the new function value was bigger than the so far
best function value. Convergence is indeed superlinear; it occurs, as Figure 5.3
shows, from the convex side of /If (x) I. The final accuracy is not extremely
high because multiple roots are highly sensitive to rounding errors (see Section
5.5). Of course, for a general f, it may happen that although initially there is
no sign change, a sign change is found during the iteration (1.5). We consider
this as an asset because it allows us to continue with a globally convergent
bracketing method, as discussed in the following section.

5.2 Bisection Methods

A different principle for determining a zero assumes that two points a and b
are known at which f has different signs (i.e., for which f (a) f (b) < 0). We
then speak of a sign change in f and refer to the pair a, b as a bracket. If f is
continuous in 0{a, b} and has there a sign change, then f has at least one zero
x* E U{a, b} (i.e., some zero is bracketed by a and b).

242

2.5

2

1.5

1

0.5

0

Univariate Nonlinear Equations

r

-0.5
0

I

1.2 1.4 1.6 1.8 2

If we evaluate f at some point x between a and b and look at its sign, one finds
a sign change in one of the two intervals resulting from splitting the interval at x.
We call this process bisection. Repeated bisection at suitably chosen splitting
points produces a sequence of increasingly narrow intervals, and by a good
choice of the splitting points we obtain a sequence of intervals that converges
to a zero of f. An advantage of such a bisection method is the fact that at each
iteration we have (at least in exact arithmetic) an interval in which the zero must
lie, and we can use this information to know when to stop.

In particular, if we choose as splitting point always the midpoint of the current
interval, the lengths of the intervals are halved at every step, and we get the
following algorithm. (0 and 1 are the MATLAB values for false and true; while
1 starts an infinite loop that is broken by the break in the stopping test.)

5.2.1 Algorithm: Midpoint Bisection to Find a Zero of f in [a, b]

f=f (a) ; f2=f (b) ;
if f*f2>0, error('no sign change'); end;

if f>0, x=a;a=b;b=x; end; % now f(a)<=0<=f(b)

0.2 1

Figure 5.3. The safeguarded root secant method (.,/If (x) I against x).

0.4 0.6 0.8

5.2 Bisection Methods 243

i=2; °h counts number of function evaluations

if f==O, x=a;

else

while 1,

x=(a+b)/2;

if abs(b-a)<=deltaO, break; end;

i=i+1; f=f (x) ;
if f>=O, b=x; end;

if f<=O, a=x; end;

end;

end;

f has a zero xstar with Ixstar-xl<=delta0/2

5.2.2 Example. For finding the zero x* = = 1.414213562... off (x) :=
x2 - 2 in the interval [1, 2], Algorithm 5.2.1 gives the results in Table 5.3.
Within 10 iterations we get an increase of accuracy of about 3 decimal places,
corresponding to a reduction of the initial interval by a factor 210 = 1024. The
accuracy attained at x9 is temporarily lost since If -x10 j > Ix* -x9 j. (This may
happen with R-linear convergence, but not with Q-linear convergence. Why?)

A comparison with Example 5.1.1 shows that the secant method is much
more effective than the midpoint bisection method, which would need 33 func-
tion evaluations to reach the same accuracy. This is due to the superlinear
convergence speed of the secant method.

In general, if xi, ai, and bi denote the values of x, a, and b after the ith
function evaluation, then the maximal error in xi satisfies the relation

1 1

1x* - xiI < 2Jbi_1 - ai_iI = 2f-2lb-aI fori > 2. (2.1)

Table 5.3. The bisection method for
f(x)=x2-2in[1,2]

i xi i xi

3 1.5 8 1.421875
4 1.25 9 1.4140625

5 1.375 10 1.41796875
6 1.4375 11 1.416015625

7 1.40625 12 1.4150390625

244 Univariate Nonlinear Equations

5.2.3 Proposition. The midpoint bisection method terminates after

r a
t = 2 4 logz

Ib -
So

Il

function evaluations.

(Here, [xl denotes the smallest integer >x.)

Proof. Termination occurs for the smallest i > 2 for which Ib;_i - a;_t I So.

From (2.1), one obtains i = t. 0

5.2.4 Remarks.

(i) Rounding error makes the error estimate (2.1) invalid; the final xi is a good
approximation to x* in the sense that close to xi, there is a sign change of
the computed version of f.

(ii) Bisection methods make essential use of the continuity of f. The methods
are therefore unsuitable for the determination of zeros of rational functions,
which may have poles in the interval of interest.

The following proposition is an immediate consequence of (2.1).

5.2.5 Proposition. The midpoint bisection method converges globally and
R-linearly, with convergence factor q = z.

Secant Bisection Method

Midpoint bisection is guaranteed to find a zero (when a sign change is known),
but it is slow. The secant method is locally fast but may fail globally. To get the
best of both worlds, we must combine both methods. Indeed, we can preserve
the global convergence of a bisection method if we choose arbitrary bisection
points, restricted only by the requirement that the interval widths shrink by at
least a fixed factor within a fixed number of iterations.

The convergence behavior of the midpoint bisection method may be dras-
tically accelerated if we manage to place the bisection point close to and on
alternating sides of the zero. The secant method is locally able to find points
very close to the zero, but as Example 5. 1.1 shows, the iterates may fall on the
same side of the zero twice in a row.

5.2 Bisection Methods 245

One can force convergence and sign change in the secant method, given x,
and x2 such that f(XI)f(X2) < 0 if one iterates according to

xi+1 =xi - f(xXf{xi,xi-11;
if f (xi_i) f (xi+,) < 0, xi = xi_i; end;

This forces f (xi) f (xi+i) <0, but in many cases, the lengths of the resulting
0{xi , xi _ I } do not approach zero because the xi converge for large i from one
side only, so that the stopping criterion lxi - xi_I I < co is no longer useful.
Moreover, the convergence is in such a case only linear.

At the cost of more elaborate programming one can, however, ensure global
and locally superlinear convergence. It is a general feature of nonlinear prob-
lems that there are no longer straightforward, simple algorithms for their solu-
tion, and that sophisticated safeguards are needed to make prototypical algo-
rithms robust. The complexity of the following program gives an impression of
the difference between a numerical prototype method that works on some ex-
amples and a piece of quality software that is robust and generates appropriate
warnings.

5.2.6 Algorithm: Secant Bisection Method with Sign Change Search

f=feval(func,x);nf=1;

if f==0, ier=0; return;

f2=feval(func,x2);nf=2;

if f2==0, x=x2; ier=0; return;

end;

end;

find sign change

while f*f2>0,

% place best point in position 2

if abs(f)<abs(f2), x1=x2;f1=f2;x2=x;f2=f;
else

end;

X1=X; f 1=f ;

safeguarded root secant formula

x=x2-(x2-xl)/(1-max(sgrt(fl/f2),2));

if x==x2 I nf==nfmax,

double zero or no sign change found

x=x2;ier=1; return;

end;

f=feval(func,x);nf=nf+1;

if f==0, ier=0; return; end;

end;

246 Univariate Nonlinear Equations

ier=-1; % we have a sign change f*f2<0

slow=0;

while nf<nfmax,

compute new point xx and accuracy

if slow==O,

standard secant step
if abs(f)<abs(f2),

xx=x- (x-x2) *f/ (f-f2) ;
acc=abs(xx-x);

else
xx=x2-(x2-x)*f2/(f2-f);

acc=abs(xx-x2);

end;

elseif slow==1,

% safeguarded secant extrapolation step

if fl*f2>0,

quot=max(fl/f2,2*(x-xl)/(x-x2));

xx=x2-(x2-xl)/(1-quot);

acc=abs(xx-x2);

else % fl*f>O

quot=max(f1/f,2*(x2-x1)/(x2-x));

xx=x-(x-xl)/(1-quot);

acc=abs(xx-x);

end;

else

safeguarded geometric mean step

if x*x2>0, xx=x*sqrt(x2/x); % preserves the sign!

elseif x==O, xx=0.1*x2;

elseif x2==O, xx=0.1*x;

else xx=0;

end;

acc=max(abs(xx-Cx,x2]));

end;

stopping tests

if acc<=O, x=xx;ier=-1; return; end;

ff=feval(func,xx);nf=nf+i;

if ff==O, x=xx;ier=O; return; end;

compute reduction factor and update bracket

5.2 Bisection Methods 247

if f2*ff<O, redfac=(x2-xx)/(x2-x);xl=x;fl=f;x=xx;f=ff;

else redfac=(x-xx)/(x-x2);xl=x2;fl=f2;x2=xx;f2=ff;

end;

force two consecutive mean steps if nonlocal (slow=2)

if redfac>0.7 I
slow==2, slow=slow+l;

else slow=0;

end;

end;

The algorithm is supplied with two starting approximations -x and x2. If
these do not yet produce a sign change, the safeguarded root secant method
is applied in the hope that it either locates a double root or that it finds a
sign change. (An additional safeguard was added to avoid huge steps when
two function values are nearly equal.) If neither happens, the iteration stops
after a predetermined number nfmax of function evaluations were used. This
is needed because without a sign change, there is no global convergence
guarantee.

The function of which zero is to be found must be defined by a function rou-
tine whose name is passed in the string func. For example, if func='myfunc' ,
then the expression f=feval(func,x) is interpreted by MATLAB as
f=myfunc W. The algorithm returns in x a zero if ier=O, an approximate
zero within the achievable accuracy if ier=-1, and the number with the abso-
lutely smallest function value found in case of failure ier=1. In the last case,
it might well be, however, that a good approximation to a double root has been
found.

The variable slow counts the number of consecutive times the length of
the bracket D{x, x2) has not been reduced by a factor of at least 1/J; if this
happened twice in a row, two mean bisection steps are performed in order to
speed up the width reduction. However, these mean bisections do not use the
arithmetic mean as bisection point (as in midpoint bisection) because for initial
intervals ranging over many orders of magnitude, the use of the geometric mean
is more appropriate. (For intervals containing zero, the geometric mean is not
well defined and an ad hoc recipe is used.)

If only a single iteration was slow, it is assumed that this is due to a secant
step that fell on the wrong side of the zero. Therefore, the most recent point x
and the last point with a function value of the same sign as f (x) are used to
perform a linear extrapolation step. However, because this can lead to very poor
points, even outside the current bracket (cf. Figure 5.2), a safeguard is applied
that restricts the step in a sensible way (cf. Exercise 7).

248 Univariate Nonlinear Equations

The secant bisection method is a robust and efficient method that (for four
times continuously differentiable functions) converges locally superlinearly to-
ward simple and double zeros.

The local superlinear and monotone convergence in a neighborhood of double

zeros is due to the behavior of the root secant method (cf. Exercise 4); the local
superlinear convergence to simple zeros follows because the local sign pattern
in the secant method (see Corollary 5.1.3) ensures that locally, the secant bisec-
tion method usually reduces to the secant method: In a step with slow=0, a sign
change occurs, and because the sign pattern has period 3, it must locally alternate

Thus, locally, two consecutive slow steps are forbidden. Moreover, locally,
after a slow step, the safeguard in the extrapolation formula can be shown to be
inactive (cf. Exercise 7).

Of course, global convergence is guaranteed only when a sign change is
found (after all, not all functions have zeros). In this case, the method performs
globally at most twice as slow as the midpoint bisection method (why?); but if
the function is sufficiently smooth, then much fewer function values are needed
once the neighborhood of superlinear convergence is reached.

5.2.7 Example. For the determination of a zero of

f(x):=1-10x+0.01ex

(Figure 5.4) with the initial values x, := 5, x2 := 20, the secant bisection method
gives the results in Table 5.4. A sign change is immediate. Sixteen function
evaluations were necessary to attain (and check) the full accuracy of 16 decimal
digits. Close to the zero, the sign pattern and the superlinear convergence of the
pure secant method is noticeable.

Practical experiments on the computer show that generally about 10-15 func-
tion evaluations suffice to find a zero. The number is smaller if x and x2 are not far

from a zero, and may be larger if (as in the example) f (x) or f (X2) is huge. How-
ever, because of the superlinear convergence, the number of function evaluations

is nearly independent of the accuracy requested, unless the latter is so high that
rounding errors produce erratic sign changes. Thus nfmax=20 is a good choice
to prevent useless function evaluations in case of nonconvergence. (To find sev-
eral zeros, one generally applies a technique called deflation; see Section 5.5.)

Unfortunately there are also situations in which the sign change is of no use,
namely if the continuity off in [a, b] is not guaranteed. Thus, for example, it can
happen that for rational functions, a bisection method finds instead of a zero, a
pole with a sign change (and then with slow convergence). In this case, one must

5.2 Bisection Methods 249

Table 5.4. Locating the zero of f (x) := 1 - l Ox + 0.01ex with the secant
bisection method

i xi f (xi) slow

1 5.0000000000000000 -47.5158684089742350 0

2 20.0000000000000000 4851452.9540979033000000 0

3 5.0001469108434691 -47.5171194663684280

4 5.0002938188092605 -47.5183704672215440 2

5 10.0002938144929130 121.3264462602397100 3

6 7.0713794514850772 -57.9360785853060920 0
7 8.0179789309415899 -48.8294182041005270 0
8 8.5868413839981272 -31.2618672757999010
9 8.9020135225054009 -14.5526201672795000 2

10 9.4351868431760817 31.8611779028851880 3

11 9.1647237200757186 4.8935773887754692 0

12 9.0986134854694392 -0.5572882149440375 0

13 9.1053724953793740 -0.0183804999496431
14 9.1056030246107298 0.0000723790792989 0

15 9.1056021203890367 -0.0000000093485397 0
16 9.1056021205058109 -0.0000000000000568

200

150

100

50

0

-50

0 2 4 6 8 10 12 14 16 18 20

Figure 5.4. Secant bisection method for f (x) = 1 - lOx + O.Olex.

250 Univariate Nonlinear Equations

safeguard the secant method instead by damping the steps taken. The details
are similar to that for the damped Newton method discussed in Section 5.7.

5.3 Spectral Bisection Methods for Eigenvalues

Many univariate zero-finding problems arise in the context of eigenvalue calcu-
lations. Special techniques are available for eigenvalues, and in this section we
discuss elementary techniques related to those for general zero-finding prob-
lems. Techniques based on similarity transformations are often superior but
cannot be treated here.

The eigenvalues of a matrix A are defined as the zeros of its characteristic
polynomial f (A) = det(,kI - A). The eigenvalues of a matrix pencil (A, B) (the
traditional name for a pair of square matrices) are defined as the zeros of its char-
acteristic polynomial f (A) = det(AB - A). And the zeros of f ()) := det G(A)
are the eigenvalues of the nonlinear eigenvalue problem associated with a pa-
rameter matrix G(;,), that is, a matrix dependent on the scalar parameter A.
(This includes the ordinary eigenvalue problem with G(A) = XI - A and the
general linear eigenvalue problem with G(A) _ AB - A.) In each case, A is a
possibly complex parameter.

To compute eigenvalues, one may apply any zerofinder to the characteristic
polynomial. If only the real eigenvalues are wanted, we can use, for example,
the secant bisection method; if complex eigenvalues are also sought, one would
use instead a spiral method discussed in Section 5.6. It is important to calculate
the value det G (XI) at an approximation Al to the eigenvalue A from a triangular
factorization of G(XI) and not from the coefficients of an explicit characteristic
polynomial. Indeed, eigenvalues are often - and for Hermitian matrices always -
well-conditioned, whereas computing zeros from explicit polynomials often
gives rise to severe numerical instability (see Example 5.5.1).

One needs about 10-15 function evaluations per eigenvalue. For full n x
n -matrices, the cost for one function evaluation is

3
n3 + O (n2). Hence the total

cost to calculates eigenvalues is 0(sn3) operations.
For linear eigenvalue problems, all n eigenvalues can be calculated by trans-

formation methods, in 0(n3) operations using the QR-algorithm for eigenval-
ues of matrices and the QZ-algorithm for matrix pencils (see, e.g., Golub and
van Loan [31], Parlett [79]). Thus these methods are preferred for dense ma-
trices. If, however, G(A) is banded with a narrow band, then these algorithms
require 0(n2) operations whereas the cost for the required factorizations is
only 0(n). Thus methods based on finding zeros of the determinant (or poles
of suitable rational functions; see Section 5.4) are superior when only a few of
the eigenvalues are required.

5.3 Spectral Bisection Methods for Eigenvalues 251

5.3.1 Example. The matrix

0 1 0 -2
1 0 2 0

A' 0 2 0 1

-2 0 1 0

(3.1)

has the eigenvalues ±,/5- ±2.23606797749979, both of which have multi-
plicity 2. We compute one of them as a zero of f (A) := det(AI - A) using the
secant bisection method (Algorithm 5.2.6).

With the starting values 3 and 6 we obtain the double eigenvalue A =
2.23606797749979 with full accuracy after nine evaluations of the determi-
nant using triangular factorizations.

If we use instead the explicit characteristic polynomial f (x) = x4 - 10x2 +
25, we obtain after 10 steps i = 2.2360679866043878, with only eight valid
decimal digits. As shown in Section 5.5, this corresponds to the limit accuracy
O(/) expected for double zeros.

The surprising order O (E) accuracy of the results when the determinant is
computed from a matrix factorization is typical for (nondefective) multiple
eigenvalues, and can be explained as follows: The determinant is calculated as
a product of the diagonal factors in R (and a sign from the permutations), and
close to a nondefective m-fold eigenvalue m of these factors have order O(E);
therefore the unavoidable error in f (x) is only of order O (efor x i x* and
the error in x* is O((e'n)'In) = O(E).

Definite Eigenvalue Problems

The parameter matrix G : D C C -+ C > is called definite in a real interval
[2] C_ D if, for), E [X,], G(A) is Hermitian and (componentwise) contin-
uously differentiable and the (componentwise) derivative G'(,l) := -!L G ()') is
positive definite.

5.3.2 Proposition. The linear parameter matrix G(?) _ AB - A is definite
(in ll) if and only if B and A are Hermitian and B is positive definite. In this
case, all the eigenvalues are real. In particular, all eigenvalues of a Hermitian
matrix are real.

Proof. The parameter matrix G (.k) = AB -A is Hermitian if and only if B and
A are Hermitian. The derivative G'(,l) = B is positive definite if and only if

252 Univariate Nonlinear Equations

B is positive definite. This proves the first assertion. For each eigenpair (A, x),
0 = xHG(X)x =),.xyBx - xyAx. By hypothesis, xyBx > 0 and xHAx is
real; from this it follows that .l = xyAx/xyBx is also real. Therefore all of
the eigenvalues are real.

In particular, this applies with B = I to the eigenvalues of a Hermitian
matrix A.

Quadratic eigenvalue problems are often definite after dividing the parameter
matrix by A:

5.3.3 Proposition. The parameter matrix of the form G (A) = AB + C -),-1 A
is definite in (-oo, 0) and (0, oo) if B, C, and A are Hermitian and A, B are
positive definite. All eigenvalues of the parameter matrix are then real.

Proof. Because B, C, and A are Hermitian, G(el) is also Hermitian. Further-
more, G'(A) = B +),-2 A and xHG'(A)x = xyBx + A 2xHAx > 0 if x # 0
and A E R\{0}. Consequently, G(A) is definite in (-oo, 0) and in (0, oo). For
each eigenpair (A, x),

0 = xHG(A)x = AxHBx +xHCx - A-1 xyAx.

Because the discriminant (x'Cx)2 + 4(xHBx)(xHAx) of the corresponding
quadratic equation in A is real and positive, all eigenvalues are real.

For definite eigenvalue problems, the bisection method can be improved to
give a method for the determination of all real eigenvalues in a given interval.

For the derivation of the method, we need some theory about Hermitian
matrices. For this purpose we arrange the eigenvalues of an Hermitian matrix,
which by Proposition 5.3.2 are all real, in order from smallest to largest, counting
multiple eigenvalues with their multiplicity in the characteristic polynomial

A1(A) <A2(A) < ... <

We denote with p(A) the number of nonnegative eigenvalues of A. If the matrix
A depends continuously on a parameter t, then the coefficients of the character-
istic polynomial det(AI - A) also vary continuously with t. Because the zeros
of a polynomial depend continuously on the coefficients, the eigenvalues Al (A)
depend continuously on t.

Fundamental for spectral bisection methods is the inertia theorem of
Sylvester. We use it in the following form.

5.3 Spectral Bisection Methods for Eigenvalues 253

5.3.4 Theorem. The number p (A) of nonnegative eigenvalues of an Hermitian
matrix A is invariant under congruence transformations; that is, if A0, A1E
Cn"n are Hermitian and if S is a nonsingular n x n matrix with Al = SAOSH,

then p(A1) = p(Ao)

Proof. Let aO be a complex number of modulus 1 with aO sign or for every

eigenvaluea of S. Then S := tS-(l-t)aoI is nonsingularforallt E [0, 1],and
the matrices At := S1AOSH are Hermitian for all t E [0, 1] and have the same
rank r:= rank A0. (Because SOAOSo = (-aO)AO(-6o) = AO and S1 AOSH =
SAOSH = A1, the notation is consistent.) If now At has rt positive and vt
negative eigenvalues, it follows that nt + vt = r is constant. Because the
eigenvalues of a matrix depend continuously on the coefficients, the integers
nt and v, must be constant themselves. In particular, p(A1) = n1 + n - r =
fro + n - r = p(Ao).

We note two important consequences of Sylvester's theorem.

5.3.5 Proposition. Suppose that A E Cnxn is Hermitian and that Or E JR. Then
p(aI - A) is the number of eigenvalues of A with ? < or.

Proof. The eigenvalues of a I - A are just the numbers a - X in which X runs
through the eigenvalues of A.

5.3.6 Proposition. Suppose that A, B E C' are Hermitian and that A - B
is positive definite. Then

Ai(A) > ki(B) fori = 1,...,n.

In particular, if A has rank r, then

p(A) > p(B) + n - r. (3.3)

Proof. Because A - B is positive definite there exists a Cholesky factorization
A - B = LLH. Suppose now that or :=)li (B) is an m-fold eigenvalue of B and
that j is the largest index with or =)vj (B). Then i > j - m and p(a I - B) = j ;
andforC := L-1(aI-B)L-Hwehavep(C) = p(LCLH) = p(aI-B) = j.
However, the matrix C has the m-fold eigenvalue zero; therefore p(C - 1)
j -m, whence p(aI - A) = p(aI - B-LLH) = p(L(C - I)LH) = p(C -
I) < j - m. Because i > j - m (see previous mention), Xi (A) > or = Xi (B).
This proves the assertion (3.2), and (3.3) follows immediately.

254 Univariate Nonlinear Equations

In order to be able to make practical use of Proposition 5.3.5, we need a
simple method for evaluating p(B) for Hermitian matrices B. If an LDLH
factorization of B exists (cf. Proposition 2.2.3 then we obtain p(B) as the
number of nonnegative diagonal elements of D; then p(B) = p(LDLH)
p(D) and the eigenvalues of D are just the diagonal elements.

5.3.7 Example. We are looking for the smallest eigenvalue ,l* in the interval
[0.5, 2.5] of the symmetric tridiagonal matrix T E R11 x 11 with diagonal entries
1 , 2, ... , 11 and subdiagonal entries 1. (The tridiagonal case can be handled
very efficiently without computing the entire factorization; see Exercise 11).
We initialize the bisection procedure by computing the number of eigenvalues
less than 0.5 and 2.5, respectively. We find that two eigenvalues are less than
0.5 and four eigenvalues are less than 2.5. In particular, we see that the third
eigenvalue A3 is the smallest one in [0.5, 2.5]. Table 5.5 shows the result of
further bisection steps and the resulting intervals containing A3. (The 1.0 + s in
the fourth trial indicates that for A = 1, the LDLH factorization does not exist,
and a perturbation must be used.)

A useful property of this spectral bisection method is that here an eigenvalue
with a particular number can be found. We also obtain additional information
about the positions of the other eigenvalues that can subsequently be used to
determine them. For example, we can read off Table 5.5 that [-oo, 0.5] contains
the two eigenvalues A 1 and A2, [0.5, 1.5] and [1.5, 2.5] contain one each (Al3 and

A4), and [2.5, oo] contains the remaining seven eigenvalues A.k, k = 5, ... , 11.

The spectral bisection method is globally convergent, but the convergence is
only linear. Therefore, to reduce the number of evaluations of p, it is advisable

Table 5.5. Example for spectral bisection

l at P1 =P(all - T) X3 E

1 0.5 2
2 2.5 4 [0.5, 2.5]

3 1.5 3 [0.5, 1.5]

4 1.0+6 3 [0.5, 1.0]

5 0.75 2 [0.75, 1.0]

6 0.875 2 [0.875, 1.01
7 0.9375 2 [0.9375, 1.0]
8 0.96875 3 [0.9375, 0.968751

9 0.953125 2 [0.953125,0.96875]

10 0.9609375 2 [0.9609375, 0.968751

11 0.96484375 3 [0.9609375, 0.964843751

5.3 Spectral Bisection Methods for Eigenvalues 255

to switch to a superlinear zerofinder, once an interval containing only one
desired eigenvalue has been found. The spectral bisection method is especially
effective if triangular factorizations are cheap (e.g., for Hermitian band matrices
with small bandwidth) and only a fraction of the eigenvalues (less than about
10%) are wanted.

Problems with the execution of the spectral bisection method arise only if the
LDLH factorization without pivoting does not exist or is numerically unstable.
Algorithm 2.2.4 simply perturbs the pivot element to compute the factoriza-
tion; for the computation of p(B), this seems acceptable as it corresponds to a
perturbation of A of similar size, and eigenvalues of Hermitian matrices are not
sensitive to small perturbations.

Alternatively, it is recommended by Parlett [79] to simply repeat the function
evaluation with a slightly changed value of the argument. One may also employ
in place of the L DL H factorization a so-called Bunch-Parlett factorization with
block-diagonal D and symmetric pivoting (see Golub and van Loan [31]), which
is numerically stable.

The bisection method demonstrated can also be adopted to solve general
definite eigenvalue problems. Almost everything remains the same; however,
in place of the inertia theorem of Sylvester, the following theorem is used.

5.3.8 Theorem. Suppose that G : D C C - C" is definite in [A, 1] _C
D fl R. Then the numbers p := p(G(X)), p p

p p real eigenvalues lie in the interval [,L, A]. (Here an eigenvalue ,l
is counted with a multiplicity given by the dimension of the null space of

Proof. Let gr()) := x E (C"\{0}. Then

a
axgx(A) =x1G'())x > 0 ford. E L,X],

that is, gX is strictly monotone increasing in [A, A] and

xHG(A1)x < xHG(X2)x

for

A < Al < A2 < ,l, x 0.

We deduce that G (A2) - G (A i) is positive definite for). < ; i < A2 < A. From
Proposition 5.3.6, we obtain

P(G(X,)) < p(G(A2)) fork < Ai < k2 < A.

256 Univariate Nonlinear Equations

If A2 is an m-fold eigenvalue of the parameter matrix G (A), it follows that

p(G(A1)) < p(G(A2)) - m fork < k1 < A2 < A.

Because of the continuous dependence of the eigenvalues X (G(.X)) on A, equal-
ity holds in this inequality if no eigenvalue of the parameter matrix G(A) lies
between Al and A2. This proves the theorem.

5.4 Convergence Order

To be able to compare the convergence speed of different zero finders, we
introduce the concept of convergence order. For a sequence of numbers xi that
converge to x*, we define the quantities

e, := -log10 Ixi -x*1.

Then lxi - x*I = 10-ej, and with

si := Leis :=max{s E ZI s <e,}

we find that

10-s,-1 < Jx1 - x*j < 10-s,

Therefore xi has at least ei correct digits after the decimal point. The growth
pattern of ei characterizes the convergence speed.

For Q-linear convergence,

lxi+1 - x*l < qlx, - x*l with 0 < q < 1,

we find the equivalent relation

ei+l > ei + 6, where loglo q > 0

by taking logarithms, and therefore also

ei+k > kiB + e, . (4.1)

Thus in k steps, one gains at least [kTJ decimal places. For R-linear conver-
gence,

Ix, - x*I < cq`, q E 10, l[

5.4 Convergence Order

one similarly obtains the equivalent relation

257

e; > i,8 + y where fi :_ - loglo q, y :_ - logio C. (4.2)

For example, the midpoint bisection method has q = 2, hence 1 0.301 >
0.3. After any 10 iterations,1013 > 3 further decimal places are ensured. Because
(4.1) implies (4.2), we see again that Q-linear convergence implies R-linear
convergence.

For Q-quadratic convergence,

Ix,+I - x*I < CoIxt - X. 2,

we have the equivalent relation e;+1 > 2e; - y, where y := loglo Co. Recur-
sively, one finds e; - y > 2`-k(ek - y). Thus, if we define 13 :_ (ej - y)/2j
with the smallest j such that ej > y, we obtain

e; > 2'# + y with 8 > 0,

so that the bound for the number of valid digits grows exponentially.
In general, we say that a sequence xI, x2, X3.... with limit x* converges with

(R-)convergence order of at least K > 1 or K = 1 if the numbers

satisfy

or

e; := -log1o1x; - x*I

e; > 13PK` + y for all i > 1,

ej? Ji+y foralli>1,

respectively, for suitable ,B > 0, y E R.
Thus Q- and R-linearly convergent sequences have convergence order 1, and

Q-quadratically convergent sequences have convergence order 2.
To determine the convergence order of methods like the secant method, we

need the following.

5.4.1 Lemma. Let po, p1, ... , p, be nonnegative numbers such that

1 > 0,

258 Univariate Nonlinear Equations

and let K be a positive solution of the equation

Ks+l = POKS + PIKs-l + ... + Ps. (4.3)

If e, is a sequence diverging to +oo such that

ei+l > Poei + pl ei-1 + ... + Psei-s + a

for some number a E l[8 then there are l4 > 0 and y E R such that

ei>PK'+y foralli>1.

Proof We choose io > s large enough such that ej +a/ p > 0 for all i > io - s,
and put

iB := min{K-' (ei +a/p) I i = io - s, ... , i0}.

Then 9 > 0, and we claim that

ej >,BK' -alp (4.4)

f o r all i > io - s. By construction, (4.4) holds for i = io - s, ... , io. Assuming
that it is valid for i - s, i - s + 1, ... , i (i > io) we have

ei+l poei + plei-1 + ... + Psei-s + a

Po(fK'
-alp)+PI(fKi-1 -alp)+...+Ps(,9K'-s-alp)+a

_ fK`-s
(PoKS + ... + Ps) - (Po + ... + Ps - P)al P

_)3Ki+I - a/p.

So by induction, (4.4) is valid for all i > io - s. If one chooses

y := min{-a/p, el - PK, e2 - PK2, .. eio-s-1 - IBK'o-s-l }

then one obtains

ej > fK' + y for all i > 1.

This proves the assertion.

One can show (see Exercise 14) that (4.3) has exactly one positive real
solution K, and this solution satisfies

1 < K < 1 + max{po, pl.... I PA.

5.4 Convergence Order 259

5.4.2 Corollary. For simple zeros, the secant method has convergence order
K = (1 + V)/2 c 1.618....

Proof. By Theorem 5.1.2, the secant iterates satisfy the relation

Ixi+t - x*I < cIxi - x*Ilxi-t -x*I,

where c = sup c, . Taking logarithms gives

ei+t > ei + ei-t + a

with a = - log10 c. Lemma 5.4.1 now implies that

ei>$K'+y withi8>0 and yEl[8

for the positive solution K = (1 + /5)/2 of the equation

K = K + 1.2

The Method of Opitz

It is possible to increase the convergence order of the secant method by using not
only information from the current and the previous iterate, but also information
from earlier iterates.

An interesting class of zero-finding methods due to Opitz [77] (and later
rediscovered by Larkin [55]) is based on approximating the poles of the function

h := 1/f by looking at the special case

a

For this function, the divided differences

x;] _ -s ,

a
, (x* - xi_,) ... (x* - xi)

were computed in Example 3.1.7. By taking quotients of successive terms, we
find

x* = x; +
h[xi-s, ... , xi-11

h[xi-s, ... , xi]

In the general case, we may consider this formula as providing approximations

260 Univariate Nonlinear Equations

to .x*. For, given x 1 xs+l this leads to the iterative method of Opitz:

Xi+l := xi +
h[xi-.r, ... , xi-1]

(for i > s). (Os)h[xi_s,...,xi]

In practice, x2, . .. , xs+l are generated for s > I by the corresponding lower
order Opitz formulas.

5.4.3 Theorem. For functions of the form

h(x) = Ps-I (x)

x - x*

in which ps_I is a polynomial of degree <s - 1, the Opitz formula (Os) gives
the exact pole x* in a single step.

Proof Indeed, by polynomial division one obtains

h(x) =
a

+ PS-2(x) with a = -ps-t(x*)x* -X

and the polynomial Ps_2 of degree <s - 2 does not appear in sufficiently higher
order divided differences. So the original argument for h(x) = 1/(x - x*)
applies again.

5.4.4 Theorem. Let x* be a simple pole of h and let h(x)(x* - x) be at least s
times continuously differentiable in a neighborhood of x*. Then the sequence xi
defined by the method of Opitz converges to x* for all initial values xl , ... , xs+

sufficiently close to x*, and

x* - Xi+l = C(js)(X* - xi)(X* - xi-1) ... (x* - xi_S) for i > s,

where cps) converges to a constant for i - oo. In particular, the method (Os) is
superlinearly convergent; the convergence order is the positive solution Ks = K
of KS+I = KS +K S-1 + . . . + I.

Proof We write

a
h(x) = x* - x + g(x)

where g is an (s - 1)-times continuously differentiable function. With the
abbreviations Ej := x* - xj (j = 1, 2, ...) and gi-s,i := S[xi_s,... , xi], we

5.4 Convergence Order

obtain

a
h[xi_s, ... , xi]

=
+ gi_s,i,Ei _s ... Si

and

Ei+1 = x* - xi+j = x* - xi -
h[xi-s,.. ., xi-ll
h[xi-s, , xil

whence

a

Ei+i = Ei a gi-Sj

pi--S,IEi - gi-5,1-1= Ei _s ... Ei
a + gi-s,isi-s ... Ei

In the neighborhood of the pole x* the quantities

C.
gi-s,jEi - gi-5,i-1
a+gi-s,iSis ...Ei

261

remain bounded. As in the proof for the secant method, one deduces the locally
superlinear convergence and that

s-1)(x*)-g(
i+oo ` (s - 1)!a

Taking logarithms of the relation

IEi+1I --- CIEi-sl ... 16i 1, C = sup IC1 1,

i>1

the convergence order follows from Lemma 5.4.1.

For the determination of a zero of f, one applies the method of Opitz to
the function h := 1/f. For s = 1, one obtains again the secant method. For
s = 2, one can show that the method is equivalent to that obtained by hyperbolic
interpolation,

.f (xi) (4.5)xi+I - xi - .f[xi, xi-1] - f(xi-i)f[xi, xi-1, xi-2]lf[xi-1, xi-2]

by rewriting the divided differences (see Exercise 15).
The convergence order of (Os) is monotone increasing with s (see Table 5.6).

In particular, (02) and (03) are superior to the secant method (01). The values

262 Univariate Nonlinear Equations

Table 5.6. Convergence order of (OS)
for different s

S KS S KS

1 1.61803 6 1.99196
2 1.83929 7 1.99603
3 1.92756 8 1.99803
4 1.96595 9 1.99902
5 1.98358 10 1.99951

s = 2 and s = 3 are useful in practice; locally, they give a saving of about
20% of the function evaluations. For a robust algorithm, the Opitz methods
must be combined with a bisection method, analogously to the secant bisection
method. Apart from replacing in Algorithm 5.2.6 the secant steps by steps
computed from (4.5) once enough function values are available, and storing
and updating the required divided differences, an asymptotic analysis of the
local sign change pattern (that now has period s + 2) reveals that to preserve
superlinear convergence, one may use mean steps only for slow > s.

Eigenvalues as Poles

Calculating multiple eigenvalues as in Section 5.3 via the determinant is gener-
ally slow because the superlinear convergence of zerofinding methods is lost.
This slowdown can be avoided for Hermitian matrices (and more generally for
nondefective matrix pencils, i.e., when a basis consisting of eigenvectors exists)
if one calculates the eigenvalue as a pole of a suitable function.

To find the eigenvalues of the parameter matrix G(A.), one may consider the
function

h(X) := aT G(A)-I b

for suitable a, b E C"\{0}. Obviously, each pole of h is an eigenvalue of G(A).
Typically, each (simple or multiple) eigenvalue of G(,l) is a simple pole of h;
however, eigenvalues can be lost by bad choices of a and b, and for defective
problems (and only for such problems), where the eigenvectors don't span the
full space, multiple poles can occur.

5.4.5 Proposition. Suppose that a, b E C"\{0}, that A, B E (Cn"and that
the matrix B is nonsingular. If G(X) := AB - A is nondefective, then the
function h()) :=a TG(A)-l b has no multiple poles.

5.4 Convergence Order 263

Proof. Because the matrix pencil (A, B) is nondefective, there is a basis u l, ... ,

U" E (C" of C" consisting of eigenvectors, Au` = A; Bu'. If we represent B-1 b
as a linear combination B-'b = Y' cr;u', where a; E C, then

satisfies the relation

G(A)x(A) _
a`

(ABu' - Au')
A - A;

_ a;Bu' = B(B-'b) = b.

From this, it follows that

h(A) = aT G(),)-fib = aT x(A) =57,a,aT u`

that is, h has only simple poles.

We illustrate this in the following examples.

5.4.6 Examples.

(i) For G(A) := (A - A0)I, the determinant f (A) := det G(A) = (A - A0)"
has the n-fold zero Ao. However, h(A) := aT G(A)-l b = aT b/(A - Ao) has
the simple pole Ao if aT b :h 0.

(ii) For the defective parameter matrix

G(A) 1\ 01
n = 2, f (A) := det G(A) = (A - 1)2 has the double zero A = 1, and h(A) :_
aT G(A)-Ib = aT b/(), - 1) + aib2/(A - 1)2 has A = 1 as a double pole
if aIb2 # 0. Thus the transformation of zeros to poles brings no advantage
for defective problems.

To determine the poles of h by the method of Opitz, one function evaluation is
necessary in each iteration. For the calculation of h(AI), we solve the system of
equations G (Aj)x' = b and find h (Al) = a Txl. Thus, as for the calculation of the
determinant, one triangular factorization per function evaluation is necessary,
but instead of taking the product of the diagonal terms, we must solve two
triangular systems.

264 Univariate Nonlinear Equations

Table 5.7. Evaluations of the function h to find the
double eigenvalue

i xi

1 6.00000000000000 1.10714285714286

2 3.00000000000000 0.25000000000000

3 2.12500000000000 -0.03875000000000
4 2.23897058823529 0.00100257895440

5 2.23598478789267 -0.00002874150660
6 2.23606785942768 -0.00000004079291
7 2.23606797405966 -0.00000000118853
8 2.23606797740430 -0.00000000003299
9 2.23606797749993 0.00000000000005

10 2.23606797749979 -0.00000000000000
11 2.23606797749979 0.00000000000000

5.4.7 Example. We repeat the calculation of the two double eigenvalues of the
matrix (3.1) of Example 5.3.1, this time as the poles of h (,l) := aT A)-1 b,
where a = b = (1, 1, 1, 1)T. With starting values x1 =6 and x2 = 3, we do
one Opitz step (01) and further Opitz steps (02), and find results as shown in
Table 5.7. After 11 evaluations of the function h, one of the double eigenvalues
is found with full accuracy.

Muller's Method

The method of Muller [65] is based on quadratic interpolation. From

0 = f (x*)
f (xi) + f [xi, xi_1](x* - x,)
+ f [xi, xi_1i xi_2](x - xi) x - xf_1

= f (xi) + wi (x* - x1) + f [xi, xi-1, xi-2](x* - xi)2,

where

O)i := f [xi, xi-11 + f [xi, xi-1, xi-2](xi - Xi-1),

we deduce that

2f(xi)
l ± Ch2i -4f(xi)f[xi,xi-1,xi-2]

To ensure that xi+1 is the zero closest to xi of the parabola interpolating in
xi, x_1, xi _2, the sign of the square root must be chosen such that the magnitude

5.5 Error Analysis 265

of the denominator is as large as possible (i.e., the correction is as small as pos-
sible). For real calculations, therefore, ± = sign(co,); for complex calculations,
± = sign (Re w, Re q + Im (o, Im q), where q denotes the square root in the
denominator.

One can show that the method of Muller has convergence order K 1.84,

the solution of K3 = K2 + K + 1 for simple zeros of a three times continu-
ously differentiable function; for double zeros it still converges superlinearly
with convergence order K ti 1.23, the solution of 2K3 = K2 + K + 1. A dis-
advantage is that the method may produce complex iterates from real starting
points. To avoid this, it is advisable to replace the square root of a negative
number by zero. (However, for finding complex roots, this may be an asset;
cf. Section 5.6.)

5.5 Error Analysis

Limiting Accuracy

Suppose that the computed approximation f (x) for f (x) satisfies

If(x)-f(x)I _<S

for all x near a zero x*. Because only f (x) is available in actual computation,
the methods considered determine a zero z* of f (x); and for such a zero, the
true function values only satisfy I f (z*) I < S.

Now suppose that x* is an m-fold zero of f. Then f (x) = (x - x*)rg(x)
with g(x*) 0, and it follows that

If -x*I = f(x*)
g(X*)

< ;
S

= 0(Y).
V Ig(x*)I

For simple zeros, we have more specifically

g(X*) = f (x) -
x(f

x*) = f [x*, x*] f'(x*),x

that is, the absolute error satisfies to a first approximation

S

Ix* - x*I I f (x*)I

From this, we draw some qualitative conclusions:

(i) For very small If '(x *) 1, that is, for very flat functions, the absolute error
in z* is strongly magnified. In this case, x* is ill-conditioned.

266 Univariate Nonlinear Equations

(ii) In particular, the absolute error in x* is magnified for multiple zeros;
because of (5. 1), one finds that the number of correct places is only about
the mth part of the mantissa length that is being used.

(iii) A double zero cannot be numerically distinguished from two simple zeros
that lie only about 0(/) apart.

These remarks are valid independently of the method used.

5.5.1 Example. Consider the polynomial

f(x):=(x-1)(x-2). (x-20)

of degree 20 in the standard from

f(x) =x20-210x19+.. + 20!

The coefficient of x 15 is (check with MATLAB's function poly!) -1672280820.
Therefore, a relative error of s in this coefficient produces an absolute pertur-
bation of

If (x) - f (x) I = 1672280820x158

in the function value at x. For the derivative at a zero x* = 1 , 2, ... , 20,

If'(x*)I = fl If - kI = (x* -1)!(20 - x*)!
k=1:20
kox*

so that the limiting accuracy for the calculation of the zero x* = 16 is about

1672280820 .16 158
3

15! 4!
6.14. e 0.014

for double precision (machine precision e 2.22.10-16). Thus about two digits
of relative accuracy can be expected for this zero. MATLAB's roots function
for computing all zeros of a polynomial produces for this polynomial the approx-
imation 16.00304396718421 in place of 16, with a relative error of 0.00019;
and if we multiply the coefficient of x15 by 1 + s, roots finds the approxima-
tion 15.96922528457543 with a relative error of 0.0019. The slightly higher
accuracy obtained is due to our worst-case analysis.

This example is quite typical for the sensitivity of zeros of high degree
polynomials in standard form, and explains why, for computing zeros, one
should avoid the transformation to the standard form when a polynomial is

5.5 Error Analysis 267

given in a less explicit form. In particular, this applies to the characteristic
polynomial of a matrix whose zeros are the eigenvalues, where, as we have
seen in Example 5.3.1, much better accuracy is achievable by using matrix
factorizations.

Deflation

To compute several (or all) of the zeros of a function f, the standard tech-
nique is called deflation and proceeds in analogy to polynomial division, as
follows.

If one already knows some zeros x*, ... , xs (s > 1) with corresponding mul-
tiplicities m1, ... , ms, then one may find other zeros by setting

g(x)
f (x)

(x - x)`"
j=l:s

(5.2)

and seeking solutions of g(x) = 0. By definition of a multiple zero, g(x)
converges to a number 0 0 as x Therefore, the solutions x*,...,xs

are "divided out" in this way, and one cannot converge to the same zero

again.
Although the numerically calculated value of x* is in general subject to

error, the so-called implicit deflation, which evaluates g (x) directly by formula
(5.2), is harmless from a stability point of view because even when the x are
inaccurate, the other zeros of f are still exactly zeros of g. The only possible
problems arise in a tiny neighborhood about the true and the calculated x*, and
because there is no further zero, this is usually irrelevant.

Note that when function evaluation is expensive, old function values not
very close to a deflated zero can be used again to check for sign changes of the
deflated function!

Warning. For polynomials in the power form, it seems natural to perform
the division explicitly by each linear factor x - x* using the Homer scheme,
because this again produces a polynomial g of lower degree instead of the
expression f (x)/(x - x*). Unfortunately, this explicit deflation may lead to
completely incorrect results even for exactly calculated zeros. The reason is
that for polynomials with zeros that are stable under small relative changes
in the coefficients but very sensitive to small absolute changes, already the defla-
tion of the absolutely largest zero ruins the quality of the other zeros. We show
this only by an example; for a more complete analysis of errors in deflation, see
Wilkinson [98].

268 Univariate Nonlinear Equations

5.5.2 Example. Unlike in the previous example, small relative errors in the
coefficients of the polynomial

f(x):=(x-1)(x-2-1)...(x-2-19)

= x20-(2-2-19)x19+.... +2-190

cause only small perturbations in the zeros; thus all zeros are well conditioned.
Indeed, the MATLAB polynomial root finder roots gives the zeros with a maxi-
mal absolute error of about 6.10-15. However, explicit deflation of the first zero
x* = 1 gives a polynomial g(x) with coefficients differing from those of
g(x) := (x-2-1) . . (x -2-19) by O(s). The tiny constant term is completely
altered, and the computed zeros of g(x) are found to be 0.49999999999390
instead of 0.5, 0.25000106540985 instead of 0.25, and the next largest roots
are already complex, 0.13465904883151 ± 0.01783932277158i.

5.5.3 Remark. For finding all (real or complex) zeros of polynomials, the
fastest and most reliable method is perhaps that of Jenkins and Traub [47,48]; it
finds all zeros of a polynomial of degree n in O (n2) operations by reformulating

it as an eigenvalue problem. The MATLAB 5 version of roots also proceeds
that way, but it takes no advantage of the sparsity in the resulting matrix, and
hence requires O(n3) operations.

The Interval Newton Method

For rigorous bounds on the zeros of a function, interval arithmetic may be used.
We suppose that the function f is given by an arithmetical expression, that f is
twice continuously differentiable in the interval x E IR, and that 0 ¢ f' (x). The
latter (holds in reasonably large neighborhoods of simple zeros, and) implies
that f is monotone in x and has there at most one zero x*.

Rigorous existence and nonexistence tests may be based on sign changes:

0 ' f (x) = there is no zero in x.
0 ¢ f'(x), f (x)f (x) > 0 = there is no zero in x.
0 ¢ f'(x), f (x f (x) < 0 = there is a unique zero in x.

Note that f must be evaluated at the thin intervals x = [x, x] and x = [z, x] in
order that rounding errors in the evaluation of f are correctly accounted for.

These tests may be used to find all real zeros in an interval x by splitting
the interval recursively until one of the conditions mentioned is satisfied. Af-
ter sufficiently many subdivisions, the only unverified parts are near multiple
zeros.

5.5 Error Analysis 269

Once the existence test applies, one can refine the box containing the solution
as follows. By the mean value theorem,

f00 = f(x) - f(x*) = f'()(x -x*)

for:; E U{x, x*}. If x* E x then

x*=x- f(x) Ex- f(x)
.f'() f'(x)

with x E x. Therefore, the intersection

x fl x - f (X)
f'(x)

(5.3)

also contains the zero. Iteration with the choice x := xi = mid xi leads to the
so-called interval Newton method

xl =x,

f (xi)xi, = xi n Xi - f (
l = I, 2, 3, .. .

x;)

(5.4)

Xi is deliberately written in boldface to emphasize that again, in order to cor-
rectly account for rounding errors, Xi must be a thin interval containing an
approximation to the midpoint of x,. A useful stopping criterion is xi+i = xi;
because xi+I c xi and finite precision arithmetic, this holds after finitely many
steps.

Because of (5.3), a zero x* cannot be "lost" by the iteration (5.4); that is,
x* E x implies that

x* E xi for all i.

However, it may happen that the iteration (5.4) stops with an empty intersection
xi = 0; then, of course, there was no zero in x.

As shown in Figure 5.5, the radius rad xi is at least halved in each iteration
due to the choice x = xi . Hence, if the iteration does not stop, then rad xi
converges to zero, and the sequence xi converges (in exact arithmetic) to a thin
interval x,,, = x,,,. Taking the limit in the iteration formula, we find

x =x .f (x.)
00 00

f' (xoo)
,

so that f (x,,,) = 0. Therefore, the limit xo,, = x* is the unique zero of f in x.

270 Univariate Nonlinear Equations

X.
X i+1

X.

Figure 5.5. The interval Newton method.

5.5.4 Theorem. If 0 V f'(x), then:

xi

(i) The iteration (5.4) stops after finitely many steps with empty xi = 0 if and
only if f has no zero in x.

(ii) The function f has a (unique) zero x* in x if and only if limi-+oc xi = x*.
In this case,

1

radxi+i < 2 radxi ,

and

radxi+i = O((radxi)2). (5.5)

In particular, the radii converge quadratically to zero.

Proof. Only the quadratic convergence (5.5) remains to be proved. By the mean
value theorem, f (z,) = x*) with l E L1{xi, x*}. Therefore

xi+1 = xi - (Xi - x*)
f'(0
.f (xi)

and

) . (5.6)radxi+1 = Iii - x*I rad
.f

l ,(1xi
)

Now I zi - x* I < radxi , f' is bounded on x, and by Theorem 1.5.6(iii),

rad
1

.f'(xi)
O (radxi) .

Insertion into (5.6) gives (5.5).

5.5 Error Analysis 271

5.5.5 Example. We determine the zero x* = = 1.41421356... of

f (x) := 1 - 3/(x2 + 1)

with the interval Newton method. We have f'(x) = 6x/(x2 + 1)2. Starting
with x1 := [1, 3], the first iteration gives

.f (xi) _ .f ([2, 2]) = 1 -
[2 2]2 + 1 = 1 - [535] _ [

5

2,

5

]

.f'(xi) =
6 - [1, 3] _ [6, 18] _ 3 9

[2, 10]2 [4, 100] 50 2

x2 =[1,31n([2,2]-[5 S] /[0 2] /
\ 86

=[1,3]n [--v, 45
=[1,1.91111...].

Further iteration (with eight-digit precision) gives the results in Table 5.8, with
termination because x2 = x6. An optimal inclusion of with respect to a
machine precision of eight decimal places is attained.

Because interval arithmetic is generally slower than real arithmetic, the split-
ting process mentioned previously can be speeded up by first locating as many
approximate zeros as one can find by the secant bisection method, say. Then
one picks narrow intervals containing the approximate zeros, but wide enough
that the sign is detectable without ambiguity by the interval evaluation fat each
end point; if the interval evaluation at some end point contains zero, the sign
is undetermined, and one must widen the interval adaptively by moving the

Table 5.8. Interval Newton method for
f(x)=1-3/(x2+ 1)inx, =[1,3]

xi

1 1.0000000 3.0000000
2 1.0000000 1.9111112
3 1.3183203 1.4422849
4 1.4085591 1.4194270

5 1.4142104 1.4142167
6 1.4142135 1.4142136
7 1.4142135 1.4142136

272 Univariate Nonlinear Equations

corresponding end point. The verification procedure can then be restricted to
the complements of the already verified intervals.

Error Bounds for Simple Eigenvalues and Associated Eigenvectors

Due to the special structure of eigenvalue problems, it is frequently possible to
improve on the error bounds for general functions by using more linear algebra.
Here, we consider only the case of simple real eigenvalues of a parameter matrix

G(A).
If ,l* is a simple eigenvalue, then we can find a matrix C and vectors a, b # 0

such that the parameter matrix

Go(),) := CG(A) + baH

is nonsingular in a neighborhood of ,l*. The following result permits the treat-
ment of eigenvalue problems as the problem of determining a zero of a contin-
uous function.

5.5.6 Proposition. Let CG(A) +baH where C is nonsingular. If k*
is a zero of

.f (),) := aHGo(A)-'b - 1

and x := Go(X*)-l b, then A* is an eigenvalue of G(k), and x is an associated
eigenvector, that is, G(.k*)x = 0.

Proof. If f (,l*) = 0 and x = Go(A*)-lb, then aHx = f (,l*)+l = 1. Therefore,
we have CG (X.*)x = Go(X*)x - baH x = b - b = 0; because C is nonsingular,
it follows that G(A*)x = 0.

To apply this, we first calculate an approximations to the unknown (simple)
eigenvalue A. Then, to find suitable values for a, b and C, we modify a nor-
malized triangular factorization LR of G(s) by replacing the diagonal element
R,, of R of least modulus with IIRII With the upper triangular matrix R' so
obtained, we have R = R' - ye(`)(e('))H where y = R'; - R;;, so that

(LR')-'G(9)
= (LR')-'LR = (R')-'R = I - y(R')-'e(')(e('))H

Thus if we put

a = e('), b N y(R')-l e('), C -- (LR')-,

then G0(g) ti I.

5.6 Complex Zeros 273

If the components of G(X) are given by arithmetical expressions and s is
a small interval containing s, then the interval evaluation Go(s) contains the
matrix G0(9) ti I. One can therefore expect that Go(s) is diagonally dominant,
or is at least an H-matrix; this can easily be checked in each case. Then for
t E s, Go(t) E Go(s) is nonsingular and f is continuous in s. Therefore, any
sign change in s encloses a zero of f and hence an eigenvalue of G(A). Note
that to account for rounding errors, the evaluation of f (A) for finding its sign
must be done with a thin interval [A, A] in place of X.

Once a sign change is verified, we may reduce the interval s to that defined
by the bracket obtained, and obtain the corresponding eigenvector by solving
the system of linear interval equations

Bx = b with b E B = G0(s)

by Krawczyk's method with the matrix (Diag B)-' as preconditioner.
If during the calculation no sign change is found in s, or if Go(s) is not

diagonally dominant or is not at least an H-matrix, this is an indication that s"
was a poor eigenvalue approximation, s was chosen too narrow, or there is a
multiple eigenvalue (or several close eigenvalues) near ss

5.6 Complex Zeros

In this section, we consider the problem of finding complex zeros x* E D of a
function f that is analytic in an open and bounded set D C C and continuous
in its closure D. In contrast to the situation for D C R, the number of zeros
(counting their multiplicity) is no longer affected by small perturbations in
f, which makes the determination of multiple zeros a much better behaved
problem. In particular, there are simple, globally convergent algorithms based
on a modified form of damping. The facts underlying such an algorithm are
given in the following theorem.

5.6.1 Theorem. Let xo E D and I f (x) I > I f (xo) I for all x c 8 D. Then f has
a zero in D. Moreover, if f (xo) 0, then every neighborhood of xo contains a

pointxi with If(xi)I < If(xo)I.

Proof Without loss of generality, we may assume that D is connected. For all
a with xo + a in a suitable neighborhood of x0, the power series

f(xo+a)= f °) (xo) a +
n!

is convergent.

274 Univariate Nonlinear Equations

If all derivatives are zero, then f (x) = f (xo) in a neighborhood of x0, so f
is a constant in D. This remains valid in D, contradicting the assumption.
Therefore, there is a smallest n with f (") (xo) 0 0, and we have

f(xo + CO = f(xo) + a"gn(a) (6.1)

with

f(n)(xo) f(n+1)(x0)
gn(a) =

n!
+ a (n + 1)!

+ ...

In particular, gn (0) 0 0. Taking the square of the absolute value in (6.1) gives

If(xo+a)12 = If (xo)12+2Re angn(a)f(xo)+IaI2n1gn(a)I2

= If (x0)12 + 2Re angn(0)f (xo) + O(Ia12")

< If(xo)12

if a is small enough and

Re a" g,, (0) f (xo) < 0. (6.2)

To satisfy (6.2), we choose a small e > 0 and find that

a"g,(0)f(xo) = -e

for the choice

1/n
a=as = (

-E

gn (0) f (xO
(6.3)

valid unless f (xo) = 0. Because aE -+ 0 ifs -+ 0, we have I f (xo + aE) I <
If (xo)I for sufficiently small e. This proves the second part.

Now If I attains its minimum on the compact set D, that is, there is some
x* E D such that

I f (x*) I < I f (x) I for all x E D, (6.4)

and the boundary condition implies that actually x* E D. If f (x*) 0, we may

use the previous argument with x* in place of x0, and find a contradiction to
(6.4). Therefore, f (x*) = 0.

5.6 Complex Zeros 275

Spiral Search

Using (6.3), we could compute a suitable a if we knew the nth derivative of f .
However, the computation of even the first derivative is usually unnecessarily
expensive, and we instead look for a method that works without derivatives.
The key is the observation that when a 0 makes a full revolution around
zero, the left side of (6.2) alternates in sign in 2n adjacent sectors of angle 7r/n.
Therefore, if we use a trial correction a and are in the wrong sector, we may
correct for it by decreasing a along a spiral toward zero.

A natural choice, originally proposed by Bauhuber [7], is to try the reduced
corrections qka (k = 0, 1, ...), where q is a complex number of absolute value
I q I < 1. The angle of q in polar coordinates must be chosen such that repeated
rotation around this angle guarantees that from arbitrary starting points, we land
soon in a sector with the correct sign, at least in the most frequent case that
n is small. The condition (6.2) that tells us whether we are in a good sector
reduces to Re qk" y < 0 with a constant y that depends on the problem. This is
equivalent to

kn arg(q) + cp E]21ir, (21 + 1)7r[for some l E Z, (6.5)

where cp = arg(y) - it/2. If we allow for n = 1, 2, 3, 4 at most 2, 2, 3, resp.
5 consecutive choices in a bad sector, independent of the choice of (P, this
restricts the angle to a narrow range, arg(q) E f] 20 n, 9 r [(cf. Exercise 22).
The simplest complex number with an angle in this range is 6i - 1; therefore,
a value

q = A(6i - 1) with ,l c [0.05, 0.15],

say, may be used. This rotates a in each trial by a good angle and shrinks it by
a factor of about 0.3041 - 0.9124, depending on the choice of X. Figure 5.6
displays a particular instance of the rotation and shrinking pattern for A =
0.13. Suitable starting corrections a can be found by a secant step (1.1), a
hyperbolic interpolation step (4.5), or a Muller step (4.6). The Muller step is
most useful when there are very close zeros, but a complex square root must be
computed.

Rounding errors may cause trouble when f is extremely flat near some point,
which typically happens when the above n gets large. (It is easy to construct
artificial examples for this.) If the initial correction is within the flat part, the
new function value may agree with the old one within their accuracy, and
the spiral search never leaves the flat region. The remedy is to expand the

276 Univariate Nonlinear Equations

Figure 5.6. Spiral search for a good sign in case n = 3. The spiraling factor is q =
0.13(6i - 1). The circles mark the initial a and corresponding rotated and shrinked
values. The third trial value gives the required sign; by design, this is the worst possible
case for n = 3.

size of the correction when the new function value is too close initially to the
old one.

Another safeguard is needed to avoid initial step sizes that are too large. One
possiblility is to enforce

lal < (1 + IxI + lxo1dI)°.

For p = 2, this still allows "local" quadratic convergence to infinite zeros (of
rational functions, say). If this is undesirable, one may take p = 1.

We formulate the resulting spiral search, using a particular choice of con-
stants that specify the conditions when to accept a new point, when to spiral,
when to expand and when to stop. E is the machine precision; kmax and p are
control parameters that may be set to fixed values. x0 and an initial a must be
provided as input. (In the absence of other information, one may start, e.g., with
x0=0,a= 1.)

5.6 Complex Zeros 277

5.6.2 Algorithm: Spiral Search for Complex Zeros

x=xo;f=If(xo)I;fok=e*f;
q=0.13*(6i-1);g11=1-/E-;qgl=1+le-;
while f > fok,

compute a nonzero correction a to x (e.g. a secant or Muller step);
if necessary, rescale to enforce lal < (1 + Ixl + lxoidl)P;
flat=1;
for k = 1 : kmax,

f, =I{ (x-a)I;if,fnew < ql l * f , % good step
x = x - a; f = fnew; break;

end;
if flat & fnew < qg 1 * f , % flat step

a=10*a;
else % long step

a=q* a; flat = 0;
end;
if k == kmax, return; end;

end;

end;

The algorithm stops when f < fok or when kmax changes of a did not result in
a sufficient decrease.

Rigorous Error Bounds

For constructing rigorous error bounds for complex zeros, we use the following
tool from complex analysis.

5.6.3 Theorem. Let f and g be analytic in the interior of a disk D and nonzero
and continuous on the boundary 3 D. If

>0 forallzE3D
g(z)

(6.6)

and each root is counted according to its multiplicity, then f and g have pre-
cisely the same number of zeros in D.

Proof. This is a refinement of Rouche's theorem, which assumes the stronger

278 Univariate Nonlinear Equations

condition

If(z)I > If (Z) -g(Z) I for all z E 8D.

However, the proof of Rouche's theorem in Henrici [43, Theorem 4.1 Ob] uses
in fact only the weaker assumption (6.6).

A simple consequence is the following result (slightly sharper than Neumaier
[69]).

5.6.4 Theorem. Let f be analytic in the disk D[z`; r] = {z E C I Iz - z1 < r},
and let0<8<r. If

Ref (k) (z) > k!

f (k) (Z) l-E 1 1!

Re 81-k for all z E D[z; 8], (6.7)

then f has precisely k roots in D[z; 8], where each root is counted according
to its multiplicity.

Proof. We apply Theorem 5.6.3 with

g(z) =
f(k)ki

z) (z - z)k

to D = D[z; 8]. Hermite interpolation at i gives

f(Z) = pk-1(Z)+ f[!,...,Z,z](z-z)k

with

0)

liz)(z-!)1, f[!....,z
z]=f(k)kid)

I<k

for some in D. For z E 8D, we have Iz - 21 = 8, hence

Ref (Z) = Re k! Re f(z`) (z - 2)1-k

g(Z) f(k)(Z) I<k l! f(k)(Z)

> Re f(k)(.) _ k! Re f IT SI-k > 0
f(k)(2) f(k)(Z)1,k l

by our hypothesis (6.7), and Theorem 5.6.3 applies.

5.6 Complex Zeros 279

For polynomials, one may use in place of the kth derivative the divided
difference used in the proof, computable by means of the first k steps of the
complete Homer scheme. With this change, S can usually be chosen somewhat
smaller.

The theorem may be used as an a posteriori test for existence, starting with
an approximate root z computed by standard numerical methods. It provides a
rigorous existence test, multiplicity count, and enclosure for the root or the root
cluster near Z. The successful application requires that we "guess" the right k
and a suitable 8. Because S should be kept small, a reasonable procedure is the
following: Let Sk be the positive real root of the polynomial

qk(6) = 8k
kl

- li

!<k

Re 81;

then (6.7) forces 8 > 8k. If 8k is small, then f(k) (Z) = f(k) (z) + 0(8) so that
it is sufficient to take 8 only slightly bigger than 8k. In practice, it is usually
sufficient to calculate Sk to a relative precision of 10% only and choose 8 = 28k;
because k is unknown, one tries k = 1 , 2, ... , until one succeeds or a limit on
k is attained.

If there is a k-fold zero z* and the remaining roots are far away, then Taylor's
formula gives

ti C1. l k."
f (z - Z*)k-l.

k

Thus

and

qk(3) ti 8k - ((8 + Iz - Z*I)k - 8k),

Sk ti Iz-Z*1/(k2- 1) < 1.5kIz-z*I,

so that we get with our choice 8 = 23k an overestimation of roughly 3k.

5.6.5 Example. Consider f (x) = x4 -2x3 -x2+2x+ I that has a double root
x* =

i
(1 + /) ti 1.618033989. To verify the double root, we must choose

k = 2. In this case, a suitable guess for the radius 8 is

8=232=p+ p2+4q,

where

p=2 Re f 1(2)

f"(z)
, q=2 Re f (z)

f 11 (z)

280 Univariate Nonlinear Equations

Table 5.9. Approximations 2 to the root and corresponding

enclosures

8 (upward rounded) 8/Ix* - 21

1.5 6.77. 10-' Enclosure not guaranteed
1.6 8.91. 10-2 4.94
1.61 3.92. 10-Z 4.88
1.618 1.65. 10-4 4.83
1.618034 5.44.10-s 4.83
1.62 9.48. 10-3 4.82
1.65 1.49. 10-1 4.66
1.7 3.69. 10-1 Enclosure not guaranteed

The condition guaranteeing two roots in the disk D[2; 8] is

inf { Re f (z)

l f,,(z")
Z E D[2; 8]

1
> (p + q/8)/8,

and this can be verified by means of complex interval arithmetic. For various
approximations z" to the root, we find the enclosures Ix* - 21 < 8 shown in
Table 5.9. Of course, the test does not guarantee the existence of a double root,
but only that of two (possibly coinciding) roots x* with Ix* - zI < 8.

Error Bounds for Polynomial Zeros

The following result, valid for arbitrary X, can be used to verify the accuracy of
approximations i to simple, real, or complex zeros of polynomials. If rigorous
results are required, the error term must be evaluated in interval arithmetic,
using as argument the thin interval [x, fl.

5.6.6 Theorem. If f is a polynomial of degree n and f'(x) # 0, 1 E C, then
there is at least one zero off in each disk in the complex plane that contains x
and.x - n ff In particular, there is a zero x* with

Ii-x-1 <n f (x)
f'(X)

The bound is best possible as f (x) = (x - x*)" shows.

5.7 Methods Using Derivative Information 281

Proof For .f (x) := ao(x - 1) ... (x - n)>

.f (x) _ log If (x)I = 1 + ... + 1 (6.9)f(x) dx x - , x-
If x* is the zero closest to z, then

Ix* -.fl < I4.j -z1 for j = l,...,n.

Therefore,

f'(x)
f (x)

n

and

Ix - x*I < n f (x)
f'(x)

This proves (6.8). A slight generalization of the argument gives the more general
assertion (see Exercise 21).

Much more information about complex zeros can be found in Henrici [43].

5.7 Methods Using Derivative Information

Newton's Method

As x; _, - x; , the secant slope f [xi, x; _ i] approaches the slope f' (xi) of the
tangent to f at the point xi. In this limiting case, formula (1.1) yields the formula
for Newton's method

xi
xi+, :=xi - () (7.1)

.f (xi)

5.7.1 Example. To compare with the bisection method and with the secant
method, the zero x* _ = 1.414215362... of the function f (x) = x2 - 2
is approximated by Newton's method. Starting with x, := 1, we get the results
in Table 5.10. After five function evaluations and five derivative evaluations,
one has 10 valid digits of x*.

In the example, the Newton sequence converges faster than the secant method.
That this is typical is a consequence of the local Q-quadratic convergence of
the Newton method.

282 Univariate Nonlinear Equations

Table 5.10. Results of Newton's
method for x2 -2

i xi

1 1

2 1.5

3 1.416666667

4 1.414215686
5 1.414213562

6 1.414213562

5.7.2 Theorem. Let the function f be twice continuously differentiable in a
neighborhood of the simple zero x*, and let c:=

i
f"(x*)/f'(x*). Then the

sequence defined by (7.1) converges to x* for all xi sufficiently close to x* and

xi+i - x* = c; (xi - x*)2 (7.2)

with

Jim c' = c.
i->00

In particular, Newton's method is Q-quadratically convergent to a simple zero,
and its convergence order is 2.

Proof. Formula (7.2) is proved just as the corresponding assertion for the secant
method. Convergence for initial values sufficiently close to x* again follows
from this. With co := sup Ic; I < oo, one obtains from (7.2) the relation

Ixi+1 - x*1 < colxi - x*12

from which the Q-quadratic convergence is apparent. By the results in Section
5.4, the convergence order is 2.

Comparison with the Secant Method

By comparing Theorems 5.7.2 and 5.1.2, we see that locally, Newton's method
converges in fewer iterations than the secant method. However, each step is
more expensive. If the cost for a derivative evaluation is about the same as that
for a function evaluation, it is more appropriate to compare one Newton step
with two secant steps. By Theorem 5.1.2, we have for the latter

xi+2 - x* = [ct+Ici(xi-I - x*)](x, - x*)2,

5.7 Methods Using Derivative Information 283

Table 5.11. A comparison of work versus order of accuracy

Function Newton method Secant method
evaluation Ei+1 ^' E? Ei+1 ^' EiEi-1

I E E

2 - E

3 E2 2

2 - E3

3 4 5

2 - Es

3 E8
13

2 - E21

3 E16
634

2 - E55

and because the term in square brackets tends to zero as i -* oo, two secant
steps are locally faster than one Newton step. Therefore, the secant method
is more efficient when function values and derivatives are equally costly. We
illustrate the behaviour in Table 5.11, where the asymptotic order of accuracy
after n = 1, 2.... function evaluations is displayed for both Newton's method
and the secant method.

In some cases, derivatives are much cheaper than function values when com-
puted together with the latter; in this case, Newton's method may be faster. We
use the convergence orders 2 of Newton's method and (1 + R)/2 ti 1.618 of
the secant method to compare the asymptotic costs in this case.

Let c and c' denote the cost of calculating f (xi) and f(xi), respectively.
As soon as f is not as simple as in our demonstration examples, the cost for
the other operations is negligible, so that the cost of calculating xi+1 (i > 1)
is essentially c + c' for Newton's method and c for the secant method. The
cost of s Newton steps, namely s(c + c'), is equivalent to that of s(1 + c'/c),
function evaluations, and the number of correct digits multiplies by a factor 2s.
With the same cost, s(1 + c'/c) secant steps may be performed, giving a gain
in the number of accurate digits by a factor l.618s0+c'/c) Therefore, the secant
method is locally more efficient than the Newton method if

1.618s(1+c'/c) > 2s

that is, if

c' log 2> _ 1-0.44.
c log 1.618

284 Univariate Nonlinear Equations

Therefore, locally, Newton's method is preferable to the secant method only
when the cost of calculating the derivative is at most 44% of the cost of a
function evaluation.

Global Behavior of Newton's Method

As for the secant method, the global behavior of Newton's method must be
assessed independent of the local convergence speed.

It can be shown that Newton's method converges for all starting points in some

dense subset of R if f is a polynomial of degree n with real zeros 1, ... , n only.
The argument is essentially that if not, it sooner or later generates some xi >
x* := (or xi < 4n), which is treated similarly).
Then,

0
1

<
f'(xi)

<
n

<
xi -x* f(xi) xi -x*

so that xi+1 = xi - f (xi)/f'(xi) satisfies the relation

xi - x* > xi - xi+1 >
n

that is,

0<xi+1-x* < (1-1)(xi-x*).
n

Thus Newton's method converges monotonically for all starting points outside
the hull of the set of zeros, with global convergence factor of at least 1 -

For large n, a sequence of n Newton steps therefore decreases Ix - x* I by at
least a factor (1 - n)n < e ti 0.37. For f (x) = (x - x*)n, where this bound
is asymptotically achieved, convergence is very slow; the same holds initially
for general polynomials if the starting point is so far away from all zeros that
these "look like a single cluster."

5.7.3 Example. For x1 = 100, Newton's method applied to f (x) = x2 -2
yields the results in Table 5.12. The sequence initially converges only linearly,

Table 5.12. Results of Newton's method for x2 - 2 with x1 = 100

i 1 2 3 4 5 6 7

xi 100 50.01 25.02 12.55 6.36 3.34 1.97

5.7 Methods Using Derivative Information 285

Table 5.13. Results of Newton's method for f (x) = 1 - lOx + 0.Olex
with x1 = 20

xi i xi

1 20.0000000000000000 10 11.1088835456740740

2 19.0000389558837600 11 10.2610830282869120

3 18.0001392428132970 12 9.5930334887471229

4 17.0003965996736000 13 9.2146744950274755

5 16.0010546324046890 14 9.1119744961101219

6 15.0027299459509860 15 9.1056248937564668

7 14.0069725232866720 16 9.1056021207975100

8 13.0176392772467740 17 9.1056021205058109

9 12.0441649793488760 18 9.1056021205058109

with a convergence factor of 1- n = 2 . (After iteration 7, quadratic convergence
sets in.)

Later in this section we discuss a modified Newton method that overcomes
this slow convergence, at least for polynomials.

Slowness of a different kind is observed in the next example.

5.7.4 Example. The function

f(x):= 1 - lOx + 0.01ex

has already been considered in Example 5.2.7 for the treatment of the secant
bisection method. Table 5.13 shows the convergence behavior of the Newton
method for xI := 20. It takes a long time for the locally quadratic convergence
to be noticeable. For the attainment of full accuracy, 17 evaluations of f and f'
are necessary. The secant bisection method with x1 = 5, x2 = 20 needs about
the same number of function evaluations but no derivative evaluations to achieve
the same accuracy.

On nonconvex problems, small perturbations of the starting point may
strongly influence the global behavior of Newton's method, if some intermedi-
ate iterate gets close to a stationary point.

5.7.5 Example. We demonstrate this with the function

f(x):= 1 - 2/(x2 + 1)

286

-1

Univariate Nonlinear Equations

f (x)

Figure 5.7. Graph of f (x) = I - 2/(x2 + 1).

3

displayed in Figure 5.7, which has zeros at +1 and -1. Table 5.14 shows that
three close initial values may result in completely different behavior.

The next example shows that the neighborhood where Newton's method
converges to a given zero may be very asymmetric, and very large in some
direction.

5.7.6 Example. For the function

Table 5.14.

f(x):=x-1-2/x

Newton's method for f (x) = 1
for different starting points xi

- 2/(x2 + 1)

i Xi Xi xi

1 1.999500 1.999720 1.999970
2 0.126031 0.125577 0.125062
3 2.109171 2.115887 2.123583
4 -0.118015 -0.134153 -0.152822
5 -2.235974 -1.997092 -1.787816
6 0.446951 -0.130986 -0.499058
7 0.983975 -2.039028 -0.968928
8 0.999874 -0.042251 -0.999533
9 1.000000 -5.959273 -1.000000

10 1.000000 46.906603 -1.000000
11 1.000000 -25754.409557 -1.000000

5.7 Methods Using Derivative Information

Table 5.15. Newton's methods for f (x) = x - 1 - 2/x with
two different starting points xt

i xi

1 1000.0000000000000000

2 1.0039979920039741

3 1.6702074291915645

4 1.9772917776064771

5 1.9999127426320478

6 1.9999999987309516

7 2.0000000000000000

8

9

10

11

12

13

14

15

16

xi

0.0010000000000000

0.0020004989997505

0.0040029909876475

0.0080139297363667

0.0160594553138831

0.0322437057559748

0.0649734647479344

0.1317795480072139

0.2698985122099006

0.5559697617074131

1.0969550112472573

1.7454226483923749

1.9871575101344159

1.9999722751335729

1.9999999998718863

2.0000000000000000

287

with zeros -1 and +2 and a pole at x = 0, Newton's method converges for
all values xl 0 0. As Table 5.15 shows, the convergence is very slow for
starting values Ixl I << I because for tiny xi we have only xi+1 ti 2xi. Very large
starting values, however, give a good approximation to a zero in a few Newton

steps.

The Damped Newton Method

If the Newton method diverges, then one can often obtain convergence in spite
of this through damping. The idea of damping is that, instead of a full Newton
step,

pi = -f(xi)/f'(xi),

only a partial step,

xi+1 xi + ai pi ,

is taken, in which the damping factor ai is chosen by successive halving of an
initial trial value ai = I until I f (xi+1) I < I f (xi) I. This ensures that the values
I f (xi) I are monotonically decreasing and converge (because they are bounded
below by zero). Often, but of course not always, the limiting value is zero.

288 Univariate Nonlinear Equations

5.7.7 Example. The function

has the derivative

f (x) := l0x5 - 36x3 + 90x

f'(x) := 50x4 - 108x2 + 90 = 50(x2 - 1.08)2 + 31.68 > 0,

so that f is monotone in R. The unique real zero of f is x* = 0. Starting from
xi = 6 (Table 5.16), Newton's method damped in this sense accepts always
the first trial value a = I for the damping factor, but the sequence of iterates
alternates for l > 8, and has the limit points +1 and -1, and If (±1)I = 64, cf.
Figure 5.8. The (mis-)convergence is unusually slow because the improvement
factor If (xi+i) I / I f (xi) I gets closer and closer to 1.

In. order to ensure the convergence of the sequence I f (xi) I to zero, clearly one
must require a little more than just I f (xi+i) I < I f (xi) 1. In practice, one demands

that

If(xi +aipi)I < (I -gai)If(xi)I (7.3)

for some fixed positive q < 1. (One usually takes a small but not tiny value, such
as q = 0.1.) Because the full Newton step taken for ai = 1 gives local quadratic
convergence, one tries in turn ai = 1, 2, 4, ... until (7.3) is satisfied. For
monotone functions, this indeed guarantees global convergence. (We analyze
this in detail in the multidimensional case in Section 6.2.)

Because the step length is now no longer a sign of closeness to the zero, one
stops the iteration when I f (xi) I no longer decreases significantly; for example,

Table 5.16. Simple damping does not help in all situations

i xi f(xi)

1 6.000000 70524.000000 21 -1.003877 -64.123953
2 4.843907 23011.672462 22 1.003706 64.118499
3 3.926470 7506.913694 23 -1.003550 -64.113517
4 3.198309 2456.653982 24 1.003407 64.108946
5 2.615756 815.686552 25 -1.003276 -64.104738
6 2.133620 284.525312 26 1.003154 64.100850
7 1.685220 115.294770 27 -1.003041 -64.097246
8 1.067196 66.134592 28 1.002936 64.093896
9 -1.009015 -64.287891 29 -1.002839 -64.090774

10 1.008081 64.258095 30 1.002747 64.087856

5.7 Methods Using Derivative Information 289

Figure 5.8. Oscillations of simply damped Newton iterates for f (x) = 10x5 - 36x3 +
90x.

when

If(xi)I < If(xi+1)I(1 +,/-0-)

with the machine precision E.

A Modified Newton Method

We promised after Example 5.7.3 a modification of the Newton method that,
for polynomials, also converges rapidly for large starting values. Let f be
a polynomial of degree n; by the fundamental theorem of algebra, there are
exactly n zeros 1, ... , i;,, (some of which may coincide), and f (x) = ao(x -
1) (x - For a simple zero x* off we have

f(x) dxlogIf(x)1 =x -x*+ x x -x*+x-c'j#x*

where c E C\{x*}, whence

.f (xi)
*X ti xi+I xi -

f' (xi) - X;-, f (xi)
(7.4)

290 Univariate Nonlinear Equations

The formula (7.4) defines the modified Newton method. Because the additional
term in the denominator of the correction term vanishes as xi
still locally Q-quadratically convergent. Because

x*, (7.4) is

= XX - 1ii+1 n-1f'(xi)
f (x;) x; -c

= 1Xi _
1 - i + i

x;c/ x;-c

xi - c-=x +1i

x;

Y-
4j-c +1xt c

j
>x, - j

it follows that xi+i approaches the value >2 (l; j - c) + c as xi - oo; in contrast
to the ordinary Newton method, for which xi+1 = (1 -

n)
xi + 0 (1) 00 as

xi -). oo, the modified Newton method provides for very large starting values
in only one step a reasonable guess of the magnitude of the zero (unless c is
chosen badly). Moreover, the modified Newton method has nice monotonicity
properties when the polynomial has only real zeros.

5.7.8 Theorem. Let f be a real polynomial with real zeros only, and suppose
that x1 > c.

(i) If all zeros off lie between c and x1, then the modified Newton sequence
converges and is monotonically decreasing.

(ii) If no zero lies between c and x1, then the modified Newton sequence con-
verges monotonically.

Proof.

(i) Let x* be the largest zero of f, and suppose that xi > x* (this certainly
holds for i = 1). Then we have

0< 1 < f'(xi)- n-1 = 1

xi - x* f (xi) xi - c xi - xi+l

and

i - Xi+1 > _
x; -x* x; -c

1 (xi - x*)(xi - c)

5.7 Methods Using Derivative Information

Table 5.17. Results of the modified Newton
method for f (x) = x2 - 2 with x, = 100

i xi

1 100.000000000000000

2 2.867949443501232

3 1.536378083259546

4 1.415956475989498

5 1.414213947729941

6 1.414213562373114

7 1.414213562373095

8 1.414213562373095

Therefore,

0<xi+1-x*<(xi-x*) 1- xi - C
xi-x*+n(x*-c)

_ (x, - x*)
(n c)

xi-x*+n(x/*-c)
\

<min ((n -1)(x*-c),I l-n I(xi-x*)I

291

By induction, it follows that x* < xi+1 < xi for all i > 1, and the last
inequality implies that xi converges to x*.

(ii) Similarly proved.

5.7.9 Example. Exercise 14 gives the bound 1 + max (I o I, I

o
21 I) = 3 for the

absolute values of the zeros of the polynomial f (x) := x2 -2. Therefore we may
choose c := -3. With the starting point x, := 100, the results of the modified
Newton method are given in Table 5.17.

Halley's Method

In the limiting case xi_j -+ xi(j = 1, ... , k), the Opitz formula (Ok) derived
in Section 5.4 takes the form

h(k-1)(xi)
xi+1 := xi + k (Hk)

h (k) (xi)

292 Univariate Nonlinear Equations

Then

I x* - xi+l I < CIx* - Xi Ik+1

that is, the method (Hk) has convergence order k + 1. The derivatives of h = l If
are calculated from

h

= -,
h =2fzf'3

ff
etc.

For k = 1, one again obtains Newton's method applied to f, with convergence
order K = 2; the case k = 2 leads to Halley's method

x =x - f (xi)
+1 i f,(x`) - f(xi)f"(x,) '

2f'(x,)

with cubic convergence (K = 3) to simple zeros. It can be shown that, for poly-
nomials with only real roots, Halley's method converges globally and mono-
tonically from arbitrary starting points.

Note that k derivatives of f are needed for the determination of the val-
ues h('-l)(xi), h(k)(xi) in (Hk). If for j =0, ... , k these derivatives require a
similar computational cost, then a step with (Hk) is about as expensive as k + 1
secant steps. A method where each step consists of k+ 1 secant steps has conver-
gence order (1.618 ...)k+l >> k + 1; therefore, the secant method is generally
much more efficient than any (Hk).

Other variants of the method of Opitz that use derivatives and old function
values can be based on partially confluent formulas such as

xi+1 xi +
h[xi, xi, xi-1, ...,xi-s+l,xi-s+l,xi-s]
h[xi, x 1 xi-s+1, xi-s+1, xi-s, xi-s]

In this particular case, the evaluation of h and h' is necessary in each iteration,
and we have

2 ...Ix* - xi_SI2Ix* - xi+1I <_ clx* - x11

and the convergence order is bounded by 3. Thus, one step of this variant is
already asymptotically less efficient than two steps of (02) (K2 ti 3.382 > 3).

A host of other methods for zeros of polynomials (and other univariate
functions) is known. The interested reader is referred to the bibliography by
McNamee [60]. An extensive numerical comparison of many zerofinders is in
Nerinckx and Haegemans [66].

5.8 Exercises 293

5.8 Exercises

1. What is the maximal length of a cable suspended between two poles of
equal height separated by a distance 2d = 100 m if the height h by which
it sags may not exceed 10 m? Can you guarantee that the result is accurate
to 1 cm?
Hint: The form of the cable is described by a catenary y(x) := a cosh(x/a).
First determine the are length between the poles in terms of a. Then obtain
a by finding a zero of a suitable equation.

2. How deeply will a tree trunk in the form of a circular cylinder of radius
r (in cm) and density pH (in g/cm3) be submerged in water (with density
pw = 1)? The area of the cross-section that is under water is given by

r2
F 2(a-sin a). (8.1)

The mass of the displaced water is equal to the mass of the tree trunk,
whence

F = nr2pH/pw (8.2)

Using (8.1) and (8.2), establish an equation f (a) = 0 for the angle a.
For r = 30 and PH = 3/4, determine graphically an approximation

ao for the zero a* of f (a). Improve the approximation using the secant
method. Use the solution to calculate the depth of immersion.

3. Show that for polynomials of degree n with only real zeros, the secant
method, started with two points above the largest zero coverges mono-
tonically, with global convergence factor of at least M1, .

4. Show that for three times continuously differentiable functions f, the root
secant method converges locally monotonically and superlinearly toward
double zeros x* of f.
Hint: You may assume that f"(x*) > 0 (why?). Distinguish two cases
depending on whether or not x, and x2 are on different sides of x*.

5. For the determination of the zero x* = off (x) := x2 - 2 in the interval
[0, 2], use the following variant of the secant method:

% Set starting values

xo=0; .o=2;i =0;
while 1

x=xi-f(.)lf[Xi,x,]
if f (x,) f (x) > 0

x.+1 = x; xi+1 = xi+1;

294 Univariate Nonlinear Equations

else

+1 xe + xi+1 = x;
end;
i=i+1;

end

List i, x. and .i for i = 1, 2, ... , 6 to five decimal places, and perform
iteration until Ix - /2-1 < 10-9. Interpret the results!

6. (a) Show that the cubic polynomial f (x) = ax3 + bx2 + cx + d (a 0 0)
has a sign change at the pair (x1, x2) with x1 = 0,

-max(lal,b,b+c,b+c+d)/a if ad > 0,
-min(-Ial,bb+c,b+c+d)/a otherwise.

Hint: Analyze the Homer form, noting that IX21 > 1.

(b) Based on (a), write a MATLAB program that computes all zeros of a
cubic polynomial.
Hint: After finding one zero, one finds the other two by solving a
quadratic equation directly.

(c) Can one use Cardano's formulas (see Exercise 1.13) to calculate all
zeros of x3 - 7x + 6 = 0, using real arithmetic only?

7. (a) Explain the safeguard used in the linear extrapolation step of the secant
bisection method.

(b) Show that in a sufficiently narrow bracket, this safeguard never becomes
active.

Hint: First show that it suffices without loss of generality to consider the
case x1 < x < x* < x2. Then show that q = max(f (xl)/f (x), 2(x2 -
x1)/(x2 - x)) satisfies q > 2 and (x - x1)/(1 - q) < - min(x - x1,
x2 - x). Interpret the behavior of x1e,,, = x - (x - xl)/(1 - q) for
the cases I f (x) I << f (x,) and I f (x) I >> f (x1), and compare with the
original secant formula.

8. (a) Determine the zero of f (x) := In x + ex - 100x in the interval [1, 10]
using the original secant method and the secant bisection version with
x1 :=1 and x2 := 10. For both methods, list i and xi (i = 1, 2, ...) until
the error is < So = 10-9. Interpret the results!

(b) Choose x1 := 6 and X2:= 7 for the above function and iterate with the
original secant method until Ixi - x;-1I < 10-9. List the values of xi
and the corresponding values of i.

9. Which zero of sin x is found by the secant bisection method started with
x1=1andx2=8?

5.8 Exercises 295

10. Let A E (Cnxn be a symmetric tridiagonal matrix with diagonal elements
a; , i = 1 , ... , n and subdiagonal elements Ni, i = 1, ... , n - 1.
(a) Show that forx E Cn withxi Ofor i = 1, ... , n, (.k, x) is an eigenpair

of A if and only if the quotients yi = x; _ 1 /xi, i = 1, ... , n satisfy the
recurrence relations

iii-lyi ai - i/yi+1, for i = n - 1, ... , 1,

F'n-1 yn = x - an

(b) Show that each zero of the continued fraction

q(t) := t - a1 -
t-a2-

p.2-I

t - an_I - t_n

is an eigenvalue of A.

(c) When is the converse true in (b)?
11. Let A be a Hermitian tridiagonal matrix.

(a) Suppose that orI - A has an LDLH factorization. Derive recurrence
formulas for the elements of the diagonal matrix D. (You may proceed
directly from the equation QI - A = LDLH, or use Exercise 10.)

(b) Show that the elements of L can be eliminated from the recurrence
derived in (a) to yield an algorithm that determines det(aI - A) with
a minimal amount of storage.

(c) Use (b) and the spectral bisection method to calculate bounds for the
two largest eigenvalues of the 21 x 21 matrix A with

11-i, ifk=i
Aik:= 1, iflk-il=1.

0, otherwise

Stop as soon as two decimal places are guaranteed.
12. Let G(),) : C -a C3x3 with

-10x2+x+10 2x2+2x+2 -x2+x-1
G(x) = 2x2+2x+2 -11x2+x+9 2x2+2x+3

-x2 + x - 1 2x2 +2X+3 -12x2 + 10

be given.
(a) Why are all eigenvalues of the parameter matrix G(x) real?

296 Univariate Nonlinear Equations

(b) G(A) has six eigenvalues in the interval [-2, 2]. Find them by spectral
bisection.

13. Let f : R -+ ll be continuously differentiable, and let x* be a simple zero
of f. Show for an arbitrary sequence xi (i = 0, 1, 2, ...) converging to x*:
(a) If, for i = 1 , 2, ... ,

Ixi+i - x*I gIxi - x*I with q < qo < 1,

then there exists an index io such that

If(xi+i)I golf(xi)I for all i > io.

(b) If

xi+i - x*lim = q with Iql < ql < 1,
i-oo xi -x*

then there exists an index i 1 such that

Ixi+i - xi I < qi Ixi - xi_i I for all i > il.

14. (a) Show that equation (4.3) has exactly one positive real solution K, and
that this solution satisfies 1 < K < K = 1 + max{po, pi, ... , ps}.
Hint: Show first that (p0K5 + pIKs-i + + ps)/Ks+I - 1 is positive
for K < 1 and negative for K = k, and its derivative is negative for all
K>0.

(b) Let p(x) = aoxn + alxn-1 + + an-ix + an be a polynomial of
degree n, and let q* be the uniquely determined positive solution of

Iaolgn = JaiJgn-i +...+Ian-ilq+Janl

Show that

<q* < 1+max
v=l:n

a
ao

for all zeros v of p(z).
Hint: Find a positive lower bound for if I:I > q*

15. (a) Show that formula (4.5) is indeed equivalent to the Opitz formula with
k=2forh=1/f.

(b) Show that for linear functions and hyperbolas f (x) = (ax + b)/
(cx + d), formula (4.5) gives the zero in a single step.

5.8 Exercises 297

16. Let f be p + 1 times continuously differentiable and suppose that the
iterates x j of Muller's method converge to a zero x* of f with multiplicity
p = 1 or p = 2. Show that there is a constant c > 0 such that

Ixj+1 - x*IP < clxj - x*I Ixj-1 - x*I Ixj-2 - x*I

for j = 3, 4, Deduce that that the (R-)convergence order of Muller's
method is the solution of K3 = K2 + K + 1 for convergence to simple zeros,
and the solution of 2K3 = K2 + K + 1 for convergence to double zeros.

17. The polynomial p1(x) := zx4 - 12x3 + 36x2 - 48x + 24 has the 4-fold
zero 2, and p2 (x) := x4 - 10x3 + 35x2 - 50x + 24 has the zeros 1, 2, 3, 4.
What is the effect on the zeros if the constant term is changed by adding
e = ±0.0024? Find the change exactly for p1(x), and numerically to six
decimal places for p2(x).

18. (a) Show that for a factored polynomial

f (x) = ao fl (x - xi)mr
i=1:n

we have

f(x)= 1

f (x) i-1:n x - xi

(b) If f is a polynomial with real roots only, then the zeros of f are the
only finite local extrema of the absolute value of the Newton correction

o(x) = -f (x)lf'(x).
Hint: Show first that 0(x)-1 is monotone between any two adjacent
zeros of f.

(c) Based on (b) and deflation, devise a damped Newton method that is
guaranteed to find all roots of a polynomial with real roots only.

(d) Show that for f (x) = (x - 1) (x2 + 3), I0(x) I has a local minimum at
x = -1.

19. (a) Let xi , ... , xJ (j < n) be known zeros of f (x). Show that for the cal-
culation of the zero of f (x) with implicit deflation, Newton's
method is equivalent with the iteration

f (xi)
xi+1 xi - f (xi) f'(xi)

k=l:j xi - xk

(b) To see that explicit deflation is numerically unstable, use Newton's
method (with starting value x1 = 10 for each zero) to calculate both

298 Univariate Nonlinear Equations

with implicit and explicit deflation all zeros of f (x) := x7 - 7x6 +
11x5 + 15x4 - 34x3 - 14x2 + 20x + 8, and compare the results with
the exact values 1, 1 f /2-, 1 ± /3-, 1 f 15-.

20. Assume that in Exercise 2 you only know that

r E [29.5, 30.5], PH E [0.74, 0.76].

Starting with an initial interval that contains a*, iterate with the interval
Newton method until no further improvement is obtained and calculate an
interval for the depth of immersion. (You are allowed to use unrounded
interval arithmetic if you have no access to directed rounding.)

21. (a) Prove Theorem 5.6.6.
Hint: Multiply (6.9) by a complex number, take its real part, and con-
clude that there must be some zero with Re(c/(x - ;)) > 0.

(b) Let x' = z - nf(X) What is the best error bound for Ix' - x* I?2f (x)'
[,22. (a) Let kl = k2 = 2, k3 = 3, k4 = 5. Show that for arg(q) E f] Zon, 17r

condition (6.5) cannot be violated for all k = 0, ... , kn.

(b) In which sense is this choice of the kn best possible?
23. (a) Write a MATLAB program that calculates a zero of an analytic function

f (x) using Muller's method. If for two iterates xj, xj+i,

xi+i
xi

<S

(where S is an input tolerance), perform one more iteration and ter-
minate. If xj = xj+1, terminate the iteration immediately. Test the
program with f (x) = x4 + x3 + 2x2 +X + 1.

(b) Incorporate into the MATLAB program a spiral search and find the
zeros again. Experiment with various choices for the contraction and
rotation factor q. Compare with the use of the secant formula instead
of Muller's.

24. (a) Determine, for n = 12, 16, 20, all zeros x*, ... , xn, of the truncated
exponential series

xv
Pn(x) :_ Y, -

v=0:n vI'

(The zeros are simple and pairwise conjugate complex.)
Use the programs of Exercise 23 with xo :_ - 6, x1 :_ - 5, x2

-4 as starting values and 8 = 10-4 as tolerance. On finding a pair

5.8 Exercises 299

of conjugate complex zeros (in MATLAB, conj gives the complex
conjugate), remove them by implicit deflation and begin again with the
above starting points.

(b) Calculate, for each of the estimates X* of the zeros, the error bound

Ixk -xkl < n

Print for each zero the number of iteration required, the last iterate that
was calculated, and the error bound.

(c) Plot the positions of the zeros you have found. What do you expect to
see for n -> oo?

25. For the functions f, (x) := x4 - 7x2 + 2x + 2 and f2(x) := x2 - 1999x +
1000000, perform six steps of Newton's method with x0 = 3 for f, (x) and
with x0 = 365 for f2(x). Interpret the results.

26. Let x* be a zero of the twice continuously differentiable function f : R
and suppose that f is strictly monotonically increasing and convex for

x > x*. Show the following:
(a) If x, > x2 > x*, then the sequence defined by the secant method started

with x, and x2 is well defined and converges monotonically to x*.
(b) If y, > x*, then the sequence yi defined by Newton's method yi+1 =

yi - f (yi)/f'(yi) is well defined and converges monotonically
to x*.

(c) If x, = y, > x* then x* < x2i < yi for all i > 1; that is, two steps of the
secant method always give (with about the same computational cost) a
better approximation than one Newton step.
Hint: The error can be represented in terms of x* and divided differ-
ences.

27. Investigate the convergence behavior of Newton's method for the polyno-
mial p(x) := x5 - 10x3 + 69x.
(a) Show that Newton's method converges with any starting point Ixol <

3 23.

23,(b) Show that g (x) =x - ff x is monotone on the interval x := [!,/2--3,
,/3-]. Deduce that g(x) maps x into -x and -x into x. What does this
imply for Newton's method started with Ixol E x?

28. Let p(x) = a0xn + a,xn-1 + + an_,x + an, a0 > 0, be a polynomial
of degree n with a real zero %'* for which

i; * > Re:,, for all zeros of p(x).

300 Univariate Nonlinear Equations

(a) Show that for zo > l4 * the iterative method

P(zj)
Zj+l := Zj -

P(zj)
P(zj)wj+l zj -np,(zj)

generates two sequences that converge to i'* with

wj <<r*<zj forj=1,2,3,...

and {z1 } is monotone decreasing.

Hint: Use Exercise 18(a).
(b) Using Exercise 14, show that the above hypotheses are valid for the

polynomial

P(X) = X" -
X"-1 - Xi-2 - ... - 1.

Calculate i * with the method from part (a) for n = 2, 3, 4, 5, 10 and
zo:=2.

6

Systems of Nonlinear Equations

In this chapter, we treat methods for finding a zero x* E D (i.e., a point x* E D
with F(x*) = 0) of a continuously differentiable function F : D C R" -*][8"
Such problems arise in many applications, such as the analysis of nonlinear
electronic circuits, chemical equilibrium problems, or chemical process design.
Nonlinear systems of equations must also frequently be solved as subtasks in
solving problems involving differential equations. For example, the solution of
initial value problems for stiff ordinary differential equations requires implicit
methods (see Section 4.5), which in each time step solve a nonlinear system,
and nonlinear boundary value problems for ordinary differential equations are
often solved by multiple shooting methods where large banded nonlinear sys-
tems must be solved to ensure the correct matching of pieces of the solution.
Nonlinear partial differential equations are reduced by finite element meth-
ods to solving sequences of huge structured nonlinear systems. Because most
physical processes, whether in satellite orbit calculations, weather forecasting,
oil recovery, or electronic chip design, can be described by nonlinear differ-
ential equations, the efficient solution of systems of nonlinear equations is of
considerable practical importance.

Stationary points of scalar multivariate function f : D C I[8" -). IR lead to a
nonlinear system of equations for the gradient, V f (x) = 0. The most important
case, finding the extrema of such functions, occurs frequently in industrial
applications where some practical objective such as profit, quality, weight,
cost, or loss must be maximized or minimized, but also in thermodynamical
or mechanical applications where some energy functional is to be minimized.
(To see how the additional structure of these optimization problems can be
exploited, consult Fletcher [26], Gill et al. [30] and Nocedal and Wright [73a].)

After the discussion of some auxiliary results in Section 6.1, we discuss the
multivariate version of Newton's method in Section 6.2. Emphasis is on obtain-
ing a robust damped version that can be proved to converge under fairly general

301

302 Systems of Nonlinear Equations

conditions. Section 6.3 discusses problems of error analysis and interval tech-
niques for the rigorous enclosure of solutions. Finally, some more specialized
methods and results are discussed in Section 6.4.

A basic reference for solving nonlinear systems of equations and uncon-
strained optimization problems is Dennis and Schnabel [18]. See also Allgower
and Georg [5] for parametrized or strongly nonlinear systems of equations.

6.1 Preliminaries

We recall here some ideas from multidimensional analysis on norm inequalities
and local expansions of functions, discuss the automatic differentiation of mul-
tivariate expressions, and state two fixed-point theorems that are needed later.
In the following, int D denotes the interior of a set D, and aD its boundary.

Integration

Let g : [a, b] -* R" be a vector-valued function that is continuous on [a, b] C R.
The Riemann integral f b g(t) dt is defined as the limit

fa

b

E (ti+1 - ti)g(ti)
=0:n

g(t) dt := lim
max(t;+i -r,)-+O

taken over all partitions a = to < t3 < ... < to+1 = b of the interval [a, b],
provided this limit exists.

6.1.1 Lemma. For every norm in R",

fbg(t)dt
<

jb
Ilg(t)II dt

if both sides are defined.

Proof. This follows from the inequality

E (ti+1 - ti)g(ti)
i=0:n

<- E (ti+I - ti)IIg(ti)II
i=O:n

by going to the limit. 0

6.1 Preliminaries 303

The Jacobian

The matrix A E R"" is called the Jacobian matrix (or derivative) of F : D C
)(8" R' at the point x° E D if

II F(x) - F(x°) - A(x - x°) II 1 0 as x -+x0
IIx - x011

one writes A = F'(x°). It follows immediately from the definition that

F(x) = F(x°) + F'(x°)(x - x0) + o(11x - x°11),

and if F' is Lipschitz continuous, the error term is of order O(11x - x°112).
Because all norms in 1R" are equivalent, the derivative does not depend on the
norm used. The function F is called (continuously) differentiable in D if the
Jacobian F(x) exists for all x E D (and is continuous there). If F is continuously
differentiable in D, then

F'(x)ik =
a

axk
F; (x) (i = 1, ... , m, k = 1, ... , n).

For example, for m = n = 2 and F(x) = (F'(x) , we have
FAX)

I Fi(x) Fi(x)ax, ax,
r lx1 =

0a F2(x) axz Fax)

When programming applications, it is important that derivatives are pro-
grammed correctly. Correctness may be checked as in Exercise 1.8.

We generalize the concept of a divided difference from the univariate case
(Section 3.1) to multivariate vector-valued functions by defining the multivari-
ate slope

F[x, x0] :_ f F'(x° + t (x - x°)) dt
0

if F is differentiable on the line xx°.

6.1.2 Lemma. Let D C W be convex and let F : D -* l[8" be continuously
differentiable in D.

(i) If x, x° E D then

F(x) - F(x°) = F[x, x°](x - x°).

(This is a strong form of the mean value theorem.)

304 Systems of Nonlinear Equations

(ii) If II F(x) II < L for all x E D, then

IIF[x,x°]I1 < L forallx,x0ED

and

II F(x) - F(x°) II < L Il x - x° II for all x, x° E D.

(This is a weak form of the mean value theorem.)
(iii) If F is Lipschitz continuous in D, that is, the relation

IIF'(x) - F'(y)II < yllx -)'II

holds for some y c IR, then

for all x,yED

11 F(x) - F(x°) - F'(x°)(x - x°) II < 2 IIx - x°I12 for all x, x° E D;

in particular

F(x) = F(x°) + F'(x°)(x - x°) + O(IIx - x°112).

(This is the truncated Taylor expansion with remainder term.)

Proof. Because D is convex, the function defined by

g(t) := F(x° + t(x - x°))

is continuously differentiable in [0, 1]. Therefore,

F(x) - F(x°) = g(1) - g(0) = J ge(t) dt
0

=
0

f F'(x° + t(x - x°))(x - x°) dt = F[x, x°](x - x°).

This proves (i). Now, by Lemma 6.1.1,

II F[x, x°] II = I fo/0+t_x0t1

I

< f IIF'(x°+t(x-x°))11dt
0

I

< f Ldt=L,
0

6.1 Preliminaries 305

and

IIF(x)-F(x°)I{ = IIF[x,x°](x-x°)II < IIF[x,x°]IIIIx-x°II <LIIx-x°II,

whence (ii) follows. The assertion (iii) follows similarly from

II F(x) - F(x°) - F'(x°)(x - x0)11

f(F'(xO + t(x - x°)) - F'(x°))(x - x°) dt

i

< f IIF'(x°+t(x-x°))-F'(x°)Illlx-x°Ildt
0

i

< Y 11 x° + t (x - x°) - x° II IIx - x° II dt
0

=Yllx-x0112 f tdt= 211x-x°112.
0

Reverse Automatic Differentiation

For many nonlinear problems, and in particular for those discussed in this
chapter, the numerical techniques work better if derivatives of the functions
involved are available. Because numerical differentiation is often inaccurate
(see Section 3.2), it is advisable to provide programs that compute derivatives
analytically. The basic principles were discussed already in Section 1.1 for the
univariate case. Here, we look briefly at the multivariate case. For more details,
see Griewank and Corliss [33].

Consider the calculation of y = F(x) where x E R', and y E JR is a vector
defined in terms of x by arithmetic expressions. We may introduce an auxilary
vector z E RN containing all intermediate results from the calculation of y, with
y retrievable from suitable coordinates of z, say y = Pz with a (0, 1) matrix P
that has exactly one 1 in each row. Then we get each zi with a single operation
from one or two zj (j < i) or xj. Therefore, we may write the computation as

z = H(x, z), (1.1)

where Hi (x, z) depends on one or two of the zj (j < i) or xj only. In particular,
the partial derivatives Hx(x, z) with respect to x and HZ (x, z) with respect to
z are extremely sparse; moreover, HZ (x, z) is strictly lower triangular. Now z
depends on x, and its derivative can be found by differentiating (1.1), giving

az az

ax
= Hx(x,z)+Hz(x,z)ax.

306 Systems of Nonlinear Equations

Bringing the partial derivatives to the left and solving for them, we find

az = (I - Hz (x, z))-1Hx(x, z).
ax

Because F'(x) = ay/8x = Paz/ax, we find

F'(x) = P(I - Hz (x, z))-1Hx(x, z). (1.3)

Note that the matrix to be inverted is unit lower triangular, so that one can
compute (1.2) by solving

(I - HZ) ax = Hx (1.4)

by forward substitution: with proper programming, the sparsity can be fully
exploited and the computation efficiently arranged. For one-dimensional x,
the resulting formulas are equivalent to the approach via differential numbers
discussed in Section 1.1. This way of calculating F'(x) is termed forward auto-
matic differentiation.

In many cases, especially when m << n, the formula (1.3) can be evaluated
more efficiently. Indeed, we can transpose the formula and find

F'(x)T = Hx(x, z)T (I - HZ(x, z))-T PT. (1.5)

Now we find K := (I - HZ(x, z))-T PT by solving with back substitution the
associated linear system

(I - HZ)T K = PT , (1.6)

the so-called adjoint equation with a unit upper triangular matrix, and obtain

F'(x) = KT Hx(x, Z). (1.7)

This way of proceeding is called reverse or backward automatic differentia-
tion because we solve for the components of K in reverse order. An apparent
disadvantage of this way of proceeding is that HX (x, z) must be stored fully
while it can be computed on the fly while solving (1.4). However, if m << n,
the advantage in speed is dramatic because (1.4) contains on the right side n
columns whereas (1.6) has only in columns. So the number of triangular solves
is cut down by a factor of m/n << 1.

6.1 Preliminaries

6.1.3 Example. To compute

2

f(x) =
xi +x 2X3 ex] -X4

X4

we need the intermediate expressions

Z1 = xi,
Z2 = X2X3,

Z3 = Z1 + Z2,

Z4 = Z3/X4,

Z5 = X1 - X4,

Z6 = eZ5 ,

Z7 = Z4Z6

307

(1.8)

to get f (x) =Z7- We may write the system (1.8) as z = H (x, z) and have y = Pz
with the 1 x 7-matrix P = (0 0 0 0 0 0 1). The Jacobian of H with respect
to z is the strictly lower triangular matrix

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 0 0 0 0

HZ(x,z) = 0 0 1/x4 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 Z6 0 0
0 0 0 Z6 0 Z4 0

As for any scalar-valued function, K = k is now a vector, and the linear system
(1.6) simply becomes

k1 - k3 = 0,

k2 - k3 = 0,

k3 - (1/x4)k4 = 0,
k4 - z6k7

k5 - z6k6

k6 - z4k7

k7

Thus,

k7 = 1, k6 = Z4, k5 = Z6Z4, k4 = Z6, k1 = k2 = k3 = Z6/X4, (1.9)

308 Systems of Nonlinear Equations

and we get the components of the gradient from (1.7) as

_ 8f (x) - f 8H(x, z)
61 8xj 8xj

Most components of 8H/8xj vanish, and we end up with

gi = ki 2x, + k5,

92 = k2x3,

g3 = k2x2,

g4 = k4(-Z3/x) - k5 = -k4Z4/x4 - k5-4

(1.10)

The whole gradient is computed from (1.9) and (1.10) with only 11 operations,
and because no exponential is involved, computing function value and gradient
takes less than twice the work for computing the function value alone. This is
not untypical for gradient computations in the reverse mode.

There are several good automatic differentiation programs (such as ADIFOR
[2], ADOL-C [34]) based on the formula (1.3) that exploit the forward approach,
the backward approach, or a mixture of both. They usually take a program for
calculation of F(x) as input and return a program that calculates F(x) and
F'(x) simultaneously.

Fixed-Point Theorems

Related to the equation F(x*) = 0 is the fixed point equation

x* = G(x*)

and the corresponding fixed point iteration

xl+' := G(x') (1 = 0, 1, 2, ...). (1.12)

The solutions of (1.11) are called fixed points of G. For application to the
problem of determining zeros of F, one sets G(x) = x - CF(x) with a suitable
C E W <". There are several important fixed-point theorems giving sufficient
conditions for the existence of at least one fixed point. They are useful in proving
the existence of zeros in specified regions of space, and relevant to a rigorous
error analysis.

6.1 Preliminaries 309

Banach'c Fixed-Point Theorem

The mapping G: D c]I8" -+ W is called a contraction in K C D if G maps K
into itself and if there exists 0 E 18 with 0 < 0 < I such that

IIG(x)-G(y)II ,11x-yll forallx,yEK;

P is called a contraction factor of G (in K). In particular, every contraction in
K is Lipschitz continuous.

6.1.4 Theorem. Let the mapping G : D c])g" 18" be a contraction in the
closed, convex set K c D. Then G has exactly one fixed point x* E K and
the iteration x1+1 := G(x') converges for all x° E K at least linearly to x*. The
relations

11x
1+1 - x*II < 111x1 -x*II,

and

11x
1+1 - x111

`Ilx
r -x* II

11x1+1 - x111

l+a 1-fl
hold, in which l3 denotes a contraction factor of G.

(1.13)

(1.14)

Proof. Let x° E K be arbitrary. Because G maps the set K into itself, x1 is
defined for all l > 0 and for l > 1,

Ilx1+1 - 41 = 11G(x') - G(x'-') II < 8Ilx' - x-ill,

so by induction,

Ilx1+1 - x111 -< f111 x' -X011.

Therefore for l < m,

IIx1-xm11 -< IIx1-xl+1II +...+ Ilxm-` - xmll
<(f' + ... + fm-1)11x' - x011

m _ 1

_ p - 11x1 - x,11,

so 11x1 - xm 11 -f 0 as 1, m -). oo. Therefore x1 is a Cauchy sequence and has a
limit x*. Because G is continuous,

x* = lim x1 = lim G(x1-') = G(x*),
1 00 1- 00

that is, x* is a fixed point of G. Moreover, because K is closed, x* E K.

310 Systems of Nonlinear Equations

An arbitrary fixed point x' E K satisfies

llx' - x*II = IIG(x') - G(x*)II 6llx' - x*II,

and we conclude x= x* because ,B < 1. Therefore x* is the only fixed point of
G in K. The inequality (1.13) now follows from

Ilx`+' - x*II = 11G(x') -G(x*) II <- Ilx'

x* 11,

and with this result, (1.14) follows from

(1- P) 11X' - X* 11 < lix` - x*II - Ilx`+' - X* 11 < Ilxl+' - x'II

< 11x` -x*II + Ilx1+' -x*11 < (1 +fl)Ilx' -x*II.

6.1.5 Remarks.

(i) We know an error bound of the same kind as (1.14) already from Theorem
23.2. As seen there, (1.14) is a realistic bound if fi does not lie too close
to 1.

(ii) Two difficulties in the application of the Banach fixed-point theorem lie
in the proof of the property that G maps K into itself and in the determi-
nation of a contraction factor ,B < 1. By Lemma 6.1.2(ii), one can choose

:= sup{ 11 G'(x)11 1 x E K). If this supremum is difficult to determine, one
can determine a simpler upper bound with the help of interval arithmetic
(see Section 6.3).

The Fixed-Point Theorems by Brouwer and Leray-Schauder

Two other important fixed point theorems guarantee the existence of at least
one fixed point, but uniqueness can no longer be guaranteed.

6.1.6 Theorem.

(i) (Fixed-point theorem by Leray and Schauder) Suppose that the map-
ping G : D c_ 18" -' R' is continuous and that K C D is compact. If
x° E int K and

G(x) #x° + ?(x - x°) for all x E aK, ?l > 1,

then G has at least one fixed point in K.

6.2 Newton's Method and Its Variants 311

(ii) (Fixed point theorem by Brouwer) Suppose that the mapping G : D C
I[8" -+ lR' is continuous and that K C_ D is nonempty, convex, and compact.

If G maps the set K into itself then G has at least one fixed point in K.

Proof. For n = I the theorem easily follows from the intermediate value
theorem. For the general case, we refer to Ortega and Rheinboldt [78] or
Neumaier [70] for a proof of (i), and deduce here only (ii) from (i). If x0 E int K
and A > 1 then, assuming G(x) = x° +,l(x - x°), the convexity of K implies
that

x = (1 - A)x° + ,l-1 G (x) E int K.

Therefore, G(x) x° + A(x - x0) for each x E 8K, A > 1, and by part (i), G
has a fixed point in K.

Note that Brouwer's fixed-point theorem weakens the hypotheses of Banach's
fixed-point theorem, but also gives a weaker conclusion. That the fixed point
is no longer uniquely determined can be seen, for example, by choosing the
identity for G.

6.2 Newton's Method and Its Variants

The multivariate extension of Newton's method, started at some x° E R", is
given by

x1+1 :=x1 - F'(xt)-' F(x') = x1 + p1, (2.1)

where p' is the solution of the system of linear equations

F'(x')p' = -F(x'). (2.2)

The solution pi of (2.2) is called the Newton correction or the Newton
direction. We emphasize that although the notation involving the inverse of
the Jacobian is very useful for purposes of analysis, in practice the matrix
F'(x')-l is never calculated explicitly because as seen in Section 2.2, p' can
be determined more efficiently by solving (2.2), for example, using Gaussian
elimination.

Newton's method is the basis of most methods for determining zeros in
I[8"; many other methods can be considered as variants of this method. To
show this, we characterize an arbitrary sequence xt(l = 0, 1, 2, ...) that con-
verges quadratically to a regular zero. Here, a zero x* E int D is called a

312 Systems of Nonlinear Equations

regular zero of F : D C_ }R' - lib" if F(x*) = 0, if F is differentiable in a neigh-
borhood of x* and F'(x*) is Lipschitz continuous and nonsingular in such a
neighborhood.

From now on, we frequently omit the iteration index l and simply write x
for xi and 1 for x'+' (and similarly p for p', etc.).

6.2.1 Theorem. Letx* E D be a regular zero ofthefunction F : D C_ R" -+R1
Suppose that the sequence x1 (l = 0, 1, 2, ...) converges to x* and that
p' := x'+' - x'. Then the following statements are equivalent:

(i) 111-x*II = 0(11x -x*112),
(ii) IIF(X)II = O(11F(x)112),

(iii) IIF(x) + F'(x)PII = O(1IF(x)112).

Proof. We remark first that by Lemma 6.1.2(iii),

F(x) = F(x*) + F'(x*)(x - x*) + O(Ilx - x*112).

Because F(x*) = 0 and F'(x*) is bounded, it follows that

IIF(x)II = 0(11x -x*II),

and for an appropriate c > 0

lix - x*II = II F'(x*)-'(F(x) - O(IIx -x*112))11

< iiF'(x*)-'11(11F(x)II +cllx -x*112).

For large 1, II F'(x*)-' II Iix - x* 11 < 2c-L, so

Iix -x*11 <- 11F'(x*)-'IIIIF(x)11 + 2Iix -x*ii,

(2.3)

and solving for 11x - x*11, we find

Iix-x*11 <211F'(x*)-'I111F(x) II = 0(11F(x)11). (2.4)

If now (i) holds, then by (2.3) and (2.4),

IIF(X)ii = 0(111 - x*11) = O(iix - x*ii2) = O(iIF(x)112),

6.2 Newton's Method and Its Variants 313

and if (ii) holds, then by (2.4) and (2.3),

Ill - x*II = 0(IIF(1)II) = 0(IIF(x)112) = O(IIx -x*112).

Therefore, (i) and (ii) are equivalent. To show that (ii) and (iii) are equivalent,
we introduce the abbreviation

r := F(x) + F'(x)p

and remark that by Lemma 6.1.2(iii),

F(1) = F(x) + F'(x)(1 - x) + 0(111- x112),

and

F(1) = r + 0(111- x112).

If (ii) now holds, then by (2.4)

111-x11<111-x*11+llx-x*II
= O(IIF(1)II) + O(IIF(x)II) = O(IIF(x)II),

and therefore by (2.5) and (ii)

Ilr11 < IIF(1)11+0(111-x112)= 0(11F(x)112)

so that (iii) holds. Conversely, if (iii) holds, then

Ilrll = O(IIF(x)112)

and

Ill - x11 = Ilpll = II F'(x)-'(F(x) - r)II
< IIF'(x)-`II(IIF(x)II + IIril)
= 0(1)0(11F(x)11) = 0(IIF(x)11).

(2.5)

(2.6)

By (2.5) and (2.6) we have

IIF(1)II < IIrII + 0(111- x112) = 0(11F(x)112),

so that (ii) holds. Therefore, (ii) and (iii) are also equivalent.

Because condition (iii) is obviously satisfied if p = -F'(x)-' F(x) is the
Newton correction, we find the following.

314 Systems of Nonlinear Equations

6.2.2 Corollary. Newton's method for a system of equations is locally quadrat-
ically convergent if it converges to a regular zero.

6.2.3 Example. Consider the function

x2-3x1
F(x):= xl2 2+ X1x3 + x3 - 3x2

x2+x2+1-3x3

with Jacobian

-6x1 2x2 0

F'(x):= 2x1 + x3 -6x2 xl + 2x3

0 2x2 + 1 -6x3

With the starting value x0 :=
(1

, 2, 2) T, the Newton method gives the results
displayed in Table 6.1. Only the seven leading digits are displayed; however,
full accuracy is obtained, and the local quadratic convergence is clearly visible
until rounding errors start to dominate.

The Discretized Newton Method

If a program calculating F(x) is not available, one can approximate the par-
tial derivatives by numerical differentiation to obtain an approximation A, for
F'(x'). If one then determines p' from the equation Al p' = -F(x') and again
sets xl+1 := x' + pl, then one speaks of a discretized Newton method. In order
to obtain quadratic convergence, the approximation must satisfy

IIA - F'(x)II = o(IIF(x)II);

Table 6.1. Simple Newton iteration

I X1 IIF(x`)II1 IIP1Ili

0 0.2500000 0.5000000 0.7500000 1.88e - 01 2.67e - 01
1 0.3583333 0.6000000 0.8083333 3.40e - 02 4.05e - 02
2 0.3386243 0.5856949 0.8018015 1.09e - 03 1.28e - 03
3 0.3379180 0.5852901 0.8016347 1.57e - 06 1.53e - 06
4 0.3379171 0.5852896 0.8016345 2.84e - 12 2.47e - 12
5 0.3379171 0.5852896 0.8016345 5.55e - 16 6.52e - 16
6 0.3379171 0.5852896 0.8016345 5.00e - 16 4.32e - 16

6.2 Newton's Method and Its Variants 315

because p =-A -'F(x) = O(IIF(x)II), it follows that

IIF(x) + F'(x)pII = II(A - F'(x))pII

< IIA - F'(x)IIIIPII = O(IIF(x)112).

The matrix A must therefore approximate F(x) increasingly well as II F(x) II
decreases.

In the case that different components of F(x) cannot be calculated one by
one, one may determine the approximation for F(x) columnwise from

F'(x)u N
F(x + hu) - F(x) or ti F(x + hu) - F(x - hu)

(2 7)
h 2h

in which h ¢ 0 is chosen suitably and u e HIP runs through the unit vectors
e(O, e(z) ... , e(") in succession.

If the dimension n is large but F(x) is sparse, that is, each component of F
depends only on a few variables, one can make use of this in the calculation of
A. If one knows, for example, that F'(x) is tridiagonal, then one obtains from
(2.7) with

u=(1,0,0,1,0,0,1,0,0,....)
u = (0, 1, 0, 0, 1, 0, 0, 1, 0, ...

U = (0, 0, 1, 0, 0, 1, 0, 0, 1, ...)

approximations for the columns

1,4,7,...
2,5,8,..., and

3,6,9.... of F'(x),

respectively (why?). In this case, only four evaluations of F are required for
the calculation of A by the forward and six evaluations of F for the central
difference quotient.

Damping

Under special monotonicity and convexity conditions (see Section 6.4),
Newton's method can be shown to converge in its simple form. However, as in
the univariate case, in general some sort of damping is necessary to get a robust
algorithm.

316 Systems of Nonlinear Equations

Table 6.2. Divergence with undamped Newton method

X1 IIF(x')II1 IIP'II1

0 2.00000 2.00000 5.1e + 00 3.3e + 01
1 -18.15888 -10.57944 6.8e + 02 1.5e + 01

2 -8.37101 -5.22873 1.7e + 02 7.3e + 00
3 -3.55249 -2.71907 4.1e + 01 3.6e + 00
4 -1.20146 -1.47283 l . l e + 01 2.8e + 00
5 -0.00041 0.09490 2.4e + 01 1.9e + 03

6 0.04510 -1865.23122 3.5e + 06 9.3e + 02

21 0.13650 0.15806 6.2e+00 4.4e+00
22 0.33360 -4.06082 2.Oe + 01 2.7e + 00
23 0.19666 -1.49748 7.3e + 00 2.6e + 00

24 0.15654 1.03237 6.6e + 00 2.4e + 00

6.2.4 Example. The function

- x1 +31n Ix1 I - x2 1
F(x):

Gx2 - xlx2 - 5x1 + 1

has the Jacobian

1 + 3/xl -2x2F'(x) _
4x1 - x2 - 5 -xl

For the starting vector x° := (2, 2) T, the Newton method gives the results dis-
played in Table 6.2, without apparent convergence.

As in the one-dimensional case, damping consists in taking only a partial
step

x := x + up,

with a damping factor a chosen such that

IIF(x +ap)II < (1 - ga)IIF(x)II (2.8)

for some fixed q, 0 < q < 1. It is important to note that requiring II F (x + up) II <
IIF(x)II is not enough (see Example 5.7.7).

Because a =1 corresponds to a full Newton step, which gives quadratic
convergence, one first tests whether (2.8) is satisfied. If this is not the case,
then one halves a until (2.8) holds; we shall show that this is possible under
very weak conditions. If in step l a smaller damping factor was used, then it is

6.2 Newton's Method and Its Variants 317

improbable that the next step has a large damping factor. Therefore, one uses
in the next iteration an adaptive initial step size, computed, for example, by

a = min(1, 4aoid) (2.9)

or the more cautious strategy

a _ (a if a decreased in the previous step, (2.10)
Sl min(1, 2a) otherwise.

Because in high dimensions, the computation of the exact Newton direction
may be expensive, we allow for approximate search directions p by requiring
only a bound

IIF(x)+F'(x)pll <q'IIF(x)II (2.11)

on the residuals. For F : D C_]R" -+ R" the following algorithm results, with
fixed numbers q, q' satisfying

0<q<1, 0<q'<1-q. (2.12)

6.2.5 Algorithm: Damped Approximate Newton Method

STEP 1: Choose a starting value x0 E D and compute II F(x°) II. Set l 0;

a = 1.
STEP 2: Determine p such that (2.11) holds, for example by solving F'(x) p =

- F (x).
STEP 3: Update a by (2.9) or (2.10).
STEP 4: Compute x = x + ap. If x = x, stop.
STEP 5: If z V int D or IIF(x)II ? (1 - ga)IIF(x)II, then replace a with a/2

and return to Step 4. Otherwise, replace l with l + 1 and return to
Step 2.

6.2.6 Example. We reconsider the determination of a zero of

Cx

xl+3Inlxil-x2 1
F(x):

21 - xlx2 - 5x1 + 1

from Example 6.2.4 with the same starting point x0 = (2, 2) T for which the ordi-
nary Newton method diverged. The damped Newton method (with q = 0.5, q' =
0.4) converges for II II = II 11 1 to the solution liml,,,, x' = (1.3734784,
-1.5249648)T, with both strategies for choosing the initial step size
(Table 6.3). The use of (2.9) takes fewer iterations and hence Jacobian

318 Systems of Nonlinear Equations

Table 6.3. Damped Newton method with 1-norm

t IIF(x')Ili lip1ll, al of

With damping (2.9) 0 5.08e + 00 3.27e + 01 6.25e - 02 6
1 4.14e + 00 1.96e + 00 2.50e - 01 8

2 3.31e + 00 1.95e + 00 2.50e - 01 12
3 2.69e + 00 2.19e + 00 2.50e - 01 16

4 2.31e + 00 3.89e + 00 6.25e - 02 22

5 2.21e + 00 5.44e + 00 3.12e - 02 27

6 2.16e + 00 6.70e + 00 3.12e - 02 31

7 2.12e + 00 7.76e + 00 3.12e - 02 35

8 2.09e + 00 6.91e + 00 3.12e - 02 39
9 2.04e + 00 4.79e + 00 1.25e - 01 41

10 1.88e + 00 1.16e + 00 5.00e - 01 43

11 8.59e - 01 2.55e - 01 1.00e + 00 45
12 3.93e - 02 1.04e - 02 1.00e + 00 47

13 8.1 le - 05 2.32e - 05 1.00e + 00 49

14 3.92e - 10 1.04e - 10 1.00e + 00 51

With damping (2.10) 0 5.08e + 00 3.27e + 01 6.25e - 02 6
1 4.14e + 00 1.96e + 00 6.25e - 02 8

2 3.89e + 00 1.94e + 00 1.25e - 01 10

13 1.25e + 00 4.05e - 01 5.00e - 01 37

14 6.00e - 01 1.36e - 01 1.00e + 00 39

15 3.30e - 02 1.34e - 02 1.00e + 00 41
16 1.78e - 04 5.64e - 05 1.00e + 00 43

17 2.91e - 09 6.65e - 10 1.00e + 00 45

evaluations, whereas (2.10) takes fewer function evaluations (displayed in the
column labeled nf).

Similarly, the 2-norm gives convergence for both strategies, but not as fast
as for the 1-norm cf. Table 6.4. However, for the maximum norm (and (2.9)),
the iterates stall near x22 = (-0.39215, -0.20505)T, although IIF(x22)II,c ti
3.24. The size of the correction 11 p2211", ti 2 104 is a sign that the Jacobian
matrix is very ill-conditioned near x22. There is a nearby singularity of the
Jacobian, and our convergence analysis does not apply. The other initial step
strategy also leads to nonconvergence with the maximum norm.

Convergence

We now investigate the feasibility and convergence of the damped Newton
method. First, we show that the loop in Steps 4-5 is finite.

6.2 Newton's Method and Its Variants 319

Table 6.4. Damped Newton method, with damping 2.9

With 2-norm

t IIF'(x')II2 UUPl112 al of

0 5.00e + 00 2.38e + 01 6.25e - 02 6

1 2.99e + 00 1.60e + 00 2.50e - 01 8

2 2.36e + 00 1.72e + 00 2.50e - 01 12

3 1.91e+00 2.12e+00 2.50e-01 16

12 1.16e + 00 3.34e - 01 1.00e + 00 50

13 2.62e - 01 9.75e - 02 1.00e + 00 52

14 1.27e - 02 4.67e - 03 1.00e + 00 54

15 2.39e - 05 7.37e - 06 1.00e + 00 56
16 5.43e - 1 1 1.29e - 11 1.00e + 00 58

With oo-norm

l IIF(x')Iloo IIP'lloo al of

0 5.00e + 00 2.02e + 01 1.25e - 01 5

1 4.36e + 00 4.59e + 00 2.50e - 01 8

2 3.36e + 00 6.30e + 00 3.12e - 02 15

3 3.28e+00 1.04e+01 7.81e-03 21

4 3.26e + 00 1.40e + 01 3.91e - 03 26

5 3.25e + 00 1.83e + 01 3.91e - 03 30

6 3.25e + 00 3.02e + 01 9.77e - 04 36

22 3.24e + 00 2.89e + 04 1.86e - 09 119
23 3.24e + 00 5.40e + 04 4.66e - 10 125

24 3.24e + 00 9.07e + 04 1.16e - 10 131

25 3.24e + 00 1.27e + 05 5.82e - 11 136

6.2.7 Proposition. Let the function F : D C]E8n - R n be continuously differ-
entiable. Suppose that x E int D, that F'(x) is nonsingular, and that

IIF(x)+F'(x)pll -- qlIF(x)II 0. (2.13)

If (2.12) holds then

IlpIl (q'+1)IIF'(x)-'IIIIF(x)II (2.14)

and (2.8) holds for all sufficiently small a > 0. If x* is a regular zero and
lix - x* 11 is sufficiently small, then (2.8) holds even for 0 < a < 1.

320 Systems of Nonlinear Equations

Proof From (2.13) we find

IIpII < IIF'(x)-' II IIF'(x)pll < IIF'(x)-' II(IIF(x) + F'(x)pll + IIF(x)ll)
< (q+ 1) II F'(x)-'

Il II F(x) II;

so (2.14) holds. For 0 < a < 1 and x + ap E D, it follows from (2.13) that

IIF(x+ap)II = IIF(x)+F'(x)ap+o(ailpll)II

= II(1-a)F(x)+a(F(x)+F'(x)p)II +o(alip1I)
< (1-a)IIF(x)II +a1IF(x)+F'(x)pII +o(allpll)

< (1- (1- q')a)IIF(x)II + o(a1Ip1I)

However, for sufficiently small a, we have o (a II p II) < (1 - q - q')a 11 F (x) II ,

so that (2.8) holds.
If x* is now a regular zero, then F'(x) is defined and bounded as x -* x

therefore, (2.14) implies

llpll = O(IIF(x)ll).

Because IIF(x)Il - 0 as x x*, one obtains for sufficiently small llx - x*II
the relations

x+apED

and

o(a1IPII) = o(a1IF(x)II) < (1- q - q')a1IF(x)II

for 0 < a < 1. Therefore, (2.8) now holds in this extended range.

It follows that if F'(x) is nonsingular in D, the damped Newton method never
cycles. By (2.8), a is changed only a finite number of times in each iteration.
Moreover, in the case of convergence to a regular zero, for sufficiently large 1,
the first a is accepted immediately; and because of Step 3, one takes locally
only undamped steps (a = 1). In particular, locally quadratic convergence is
retained if F' is Lipschitz continuous and p is chosen so that

II F(x) + F'(x)pll = O(IIF(x)II2).

In an important special case, the global convergence of the damped Newton
method can be shown.

6.2 Newton's Method and Its Variants 321

6.2.8 Theorem. Suppose that the function F : R" R" is uniquely invertible,

and F and its inverse function F-' are continuously differentiable. Then the
sequence x1 (1 = 0, 1, 2, ...) computed by the damped Newton method either
terminates with xi = x* or converges to x*, where x* is the unique zero of F.

Proof Because F-1 is continuously differentiable,

F'(x)-' = (F-')'(F(x))

exists; therefore, Step 2 can always be performed. By Proposition 6.2.7, 1 is
increased after finitely many steps so that - unless by chance F(xl) = 0 and we
are done - the sequence x' (I = 0, 1, 2, ...) is well defined. It is also bounded
because II F(x') II < II F(x°) II and {x E W1 I II F(x) II < II F(x°) 11 1 is bounded
as the image of the bounded closed set l y E R" I II y II < 11 F (x°) 11 1 under the
continuous mapping F-1. Therefore, the sequence x1 has at least one limit
point, that is, there is a convergent subsequence xt°(v = 0, 1, 2, ...) whose
limit we denote with x*. Because of the monotonicity of II F(x') II, we have

IIF(x*)II = in°f IIF(x')II

Similarly, (2.14) implies that the pi° are bounded; so there exists a limit point
p* of the sequence p'° (v = 0, 1, 2, ...). By deleting appropriate terms of the
sequence if necessary, we may assume that p* = limo , oo pi".

We now suppose that F(x*) 0 and derive a contradiction. By Proposition
6.2.7 there exists an a* E 11, 1, 4, 8, ... } with

II F(x* +a*p*)II < (I - qa*)IIF(x*)II;

Therefore, for all sufficiently large 1 = to we have

IIF(x'+a*p')II < (I - qa*) IIF(x')II.

By construction of the a, it follows that a > a*. In particular, a := lim inf al, >
a* > 0. If we now take the limit in

IIF(x*)II < IIF(x)II = II F(x +ap)II < (I - ga)IIF(x)II,

one obtains the contradiction

IIF(x*)II < (I -ga)IIF(x*) II < I1F(x*)II

322 Systems of Nonlinear Equations

Therefore, IIF(x*)II = 0; that is, x* is the (uniquely determined) zero of F. In
particular, there is only one limit point, that is, limj.,,, xi = x*.

6.2.9 Remarks.

(i) In general, some hypothesis like that in Theorem 6.2.8 is necessary because
the damped Newton method may otherwise converge slowly toward the set
of points where the Jacobian is singular. Whether this happens depends,
of course, a lot on the starting point x°, and cannot happen if the level
set {x E D III F(x) II II F(x°) III is compact and F'(x) is invertible and
bounded in this level set.

(ii) Alternative stopping criteria used in practice are (with some error tolerance
e>0)

IIF(x)II < e

or

Ilx - X11 _< EIIxil.

(iii) If the components of F(x°) or F'(x°) have very different orders of magni-
tude, then it is sensible to minimize the scaled function II CF (x) II instead
of II F(x) II , where C is an appropriate diagonal matrix. A useful possibil-
ity is to choose C such that CF'(x°) is equilibrated; if necessary, one can
modify C during the computation.

(iv) The principal work for a Newton step consists of the determination of the
matrix A as a suitable approximation to F'(x), and the solution of the sys-
tem of linear equations Ap = -F(x). Compared with this, several evalu-
ations of the function F usually play a subordinate role.

6.3 Error Analysis

Limiting Accuracy

The relation

F(i) = F[i, x*](x - x*)

derived in Lemma 6.1.2 gives

IIx- x*II = IIF[x,x*]-F(x)II < IIF[x,x*]-'II . IIF(x)II

(3.1)

If x is the computed approximation to x*, then one can expect only that
IIF(x)II < sF for some bound eF of the accuracy of function values that de-
pends on F and on the way in which F is evaluated. This gives for the error in

6.3 Error Analysis 323

I the approximate bound

III - x* II < 1117[I, x*]-' II £F ti II F'(x*)-' 116F.

Therefore, the limiting accuracy achievable is of the order of IIF'(x*)-' II£F,
and the maximal error in F (X) can be magnified by a factor of up to II F' (x *) -' II .

In the following, we make this approximate argument more rigorous.

Norm-wise Error Bounds

We deduce from Banach's fixed-point theorem a constructive existence theorem
for zeros and use it for giving explicit and rigorous error bounds.

6.3.1 Theorem. Suppose that the function F : D C 18" -+ R" is continuously
differentiable and that B :_ {x E 18" I IIx - x° II < £} lies in D.

(i) If there is a matrix C E W'><' with

III-CF'(x)ll<j9<1 forallxEB,

and

80:= IICF(x°)II < £(1 - 0),

then F has exactly one zero x* in B, and

£0/(1 +$) < IIx° -x*II -< £o/(1- ,e) < E.

(ii) Moreover, if 0 < 1/3 and co < £/3, then Newton's method started from x°
cannot break down and converges to x*.

Proof Because III - C F' (x) II < 1, C and F' (x) are nonsingular for all x E B.
If wedefine G:D- d8"byG(x):=x-CF(x),thenF(x*)=0gCF(x*)=
0 * x* = G(x*). Thus we must show that G has exactly one fixed point in B.
For this purpose, we prove that G has the contraction property. First, G'(x) =
I-CF'(x),soIIG'(x)11 -<,B < 1forxEB,andIIG(x)-G(y)II <0IIx-yII
for all x, y E B. In particular, for x E B,

IIG(x)-x°II < I1G(x)-G(x°)II +IIG(x°)-x011
<- OIlx - x011 + IICF(x°)II

< $s +£(1 -,B) < £;

324 Systems of Nonlinear Equations

therefore, G(x) E B for X E B. So G is a contraction with contraction factor
and (i) follows from the Banach fixed-point theorem.

For the proof of (ii), we consider the function G : D -> R" defined by

G(x) :=x - A-1F(x)

in which x E B and A := F'(x) are fixed. Then

III - CAII < R II(CA)-111 <
1

whence for x E B,

IIG'(x)II=III-A 'F'(x)ll
= II(CA)-1(I - CF'(x) - (I - CA))II

< II(CA)-111(111 - CF'(x)II + III - CAII)

<
1

1 12 .

It follows from this that

IIG(x) - G(y)II 12 Ilx - yII forx, y E B. (3.2)

We apply this inequality to Newton's method,

x1+1 := x1 - F'(x')-' F(x').

For l = 0, (i) and the hypothesis give Ilx° - x*11 < s0/(1 - fi) < !so < Zs. If
nowllx' -x*Il < '-isforsomel _ O,then11x1-x°II < Ilxl-x*Il+IIx°-x*II <
s, so x' E B. We can therefore apply (3.2) with x = z = x1, y = x* to obtain

Ilx'+1 -
x* 11

<
12fl

Ilx' - x*II

because x1+1 = 6(x'). Because fi < 3, it follows that 2fl/(1-,B) < 1 and
II x1+1 - x* II < e; from this it follows by induction that

IIx' - x*II << (2fl/(1-f))'Ilx°-x*II- 0 asl -oc.

Thus Newton's method is well-defined and convergent.

6.3.2 Remarks.

(i) The theorem is useful to provide rigorous a posteriori error bounds for
approximate zeros found by other means. For the maximum norm,

B = [x° -se,x°+se] =: xEJIR ,

6.3 Error Analysis 325

and ,B can be determined from l4 := II 1 - C F' (x) II by means of interval
arithmetic.

(ii) The best choice of the matrix C is an approximation to F'(x°)-l or
(mid F'(x))-l. Indeed, for C = F'(x°)-', x° -+ x* and s -+ 0, the contrac-
tion factor $ approaches zero. Therefore, one can regard fi as a measure
of the nearness of x0 to x* relative to the degree of nonlinearity of F.

(iii) In an implementation, one must choose s and s0 appropriately. Ideally, s
should be as a small as possible because ,B generally becomes larger as
B becomes wider. However, because E0 < s(1 - ,B) must be guaranteed,
one cannot choose s too small. A useful way to proceed is as follows: One
determines the bounds

IICF(x°)II. < so, III - CF'(x°)II. < Po < 1

and then sets s := 2so/(1 - no). Then one tests the relation

III -CF'(x)II. _P < 12P0 for x:=[x°- se, x0+ee], (3.3)

from which the required inequality follows. Generally, if (3.3) fails, the
zero is either very ill conditioned or x0 was not close to a zero.

6.3.3 Example. To show that

+ 8x2 - 5
F(x) _ (x+5x'

x2 + 5x2 - 8x, + 1)

has a zero in the box x = ([0' 1l we apply Theorem 6.3.1 with the maximum
[o,U '

norm and x° = (o.s), s = 0.5 (so that B = x). We have

_ 2x, + 5 8 _
F (x) -8 2x2 + '

F
(x) =

([1
-8 [5, 7]) '

and for

C (mid F (x))-
0.06 -0.08

(0.08 0.06

we find

F(x°) = (-10.25.75),
CF(x°) =

(0.125),

I - CF'(x) = [-1,1] (00.06

.08 0.06)

326 Systems of Nonlinear Equations

Thus 80 = 0.125, ,B = 0.14, and s0 < s(1 - 0). Thus there is a unique zero x*
in x, and we have

0.109 <
0.125

< 11x* -
x011". < 0.125

< 0.146.
1.14 0.86

In particular, x* E[0[0.354.354,,00.646].6461)

' Better approximations would have given shar-
per bounds.

The Interval Newton Method

In order to obtain simultaneous componentwise bounds that take rounding error
into account, one uses an interval version of Newton's method. We suppose
for this purpose that x is an interval that contains the required zero x*, and
we calculate F'(x). Then F'(x) < F'(x) for all E x and F[i, x*] _
fo F'(x* + t(I - x*)) dt E F'(x) for all X E x. Therefore, (3.1) gives

x* =X - A-'F(X) EX - 0E(F'(x), F(x)),

where E(F'(x), F(X)) denotes the hull of the solution set of the linear interval
equation Ai = F(I) (A E F'(x), I E x). This gives rise to the interval Newton
iteration

x1+1 := (X' - 0E(F'(x'), F(X1))) fl x1 with X' E x'. (3.4)

By our derivation, each xi contains any zero in x0.
In each step, a system of linear equations must be solved. In practice, one uses

in place of the hull a more easily computable enclosure, using an approximate
midpoint inverse C as preconditioner.

Following Krawczyk, one can proceed in a slightly simpler way, also using
C but saving the solution of the linear interval system. We rewrite (3.1) as

CF(I) = CF[X, x*](X - x*)

and observe that

x* = I - CF(I) - (I - CF[X, x*])(I - x*),

where I - CF[I, x*] can be expected to be small by the construction of C.
From this it follows that

x*EK(x,I)

6.3 Error Analysis 327

for X, x* E x, where the Krawczyk operator K : h Rn x 118" -). ffR" is defined by

K(x, X) :=X - CF(X) - (I - CF'(x))(X - x). (3.5)

Therefore, one may use in place of the interval Newton iteration (3.4) the
Krawczyk iteration

x i+l := K(x', X') fl x1 withX1 E x1,

again with a guarantee of not losing any zero contained in x0.
Note that because of the lack of the distributive law for intervals, the definition

of K cannot be "simplified" to x + C (F' (x) (X - x) - F (X)); this would produce
poor results only, because the radius would be bigger than that of x.

It is important to remember that in order to take rounding error into account,
one must use in the interval Newton iteration or the Krawczyk iteration in place
of X' the thin interval Xi = W, X1].

The Krawczyk operator can also be used to prove the existence of a zero in x.

6.3.4 Theorem. Suppose that z E X.

(i) IfFhas azero x*Exthen x*EK(x,X)flx.
(ii) If K(x, X) fl x = 0 then F has no zero in x.

(iii) If either

K(x, X) c intx

or the matrix C in (3.5) is nonsingular and

K(x, X) c x (3.7)

then F has a unique zero x* E X.

Proof (i) holds by construction, and (ii) is an immediate consequence of (i).
(iii) Suppose first that (3.6) holds. Because B := I - CF(X) c I - CF'(x)
B, we have

JBIrad x = JBIrad(X - x) = rad(B(X - x))

< rad(B(X - x)) = rad K(x, X) < radx

328 Systems of Nonlinear Equations

by (3.6). For D = Diag(rad x), we therefore have

III - D-'C F'(x)DII = IID-'BDII,, = max1: IBlikradxk
i k rad xi

= max
(IBIradx)i

< 1.
i rad xi

Thus CF'(z) is an H-matrix, hence nonsingular, and as a factor, C is nonsin-
gular.

Thus it suffices to consider the case where C is nonsingular and (3.7) holds. In
this case, K (x, z) is (componentwise) a centered form for G (x) := x - C F (x);
therefore, G(x) E K(x, X) C x for all x E x. By Brouwer's fixed-point theorem,
G has a unique fixed point x* E x, that is, x* = x* - CF(x*). Because C is
nonsingular, it follows that x* is the unique zero of F in x.

If x0 is a narrow (but not too narrow) box symmetric around a good approxi-
mation of a well-conditioned zero, Theorem 6.3.4 usually allows one to verify
existence in that box, and by refining it with Krawczyk's iteration, we may get
very narrow enclosures.

For large and sparse problems, the approximate inverse C is full, which makes
Krawczyk's method prohibitively expensive. A modification that respects spar-
sity is given in Rump [84].

Finding All Zeros

If one has found a zero i of F and conjectures that another zero x* exists,
then just as in the univariate case, one can attempt to determine it by deflation.
For this, one needs a damped Newton method that minimizes II F(x) II / Ilx - II

instead of 11 F(x) II. However, unlike in dimension 1, this function is no longer
smooth near i . Therefore, deflation in higher dimension tends to give erratic
results, and repeated deflation often finds several but rarely all the zeros.

All zeros in a specified box can be found by interval methods. In analogy to
the univariate case, interval methods for finding all zeros scan a given initial
box x E 1[lR by exhaustive covering with subboxes that contain no zero, are tiny
and guaranteed to contain a unique regular zero, or are tiny and likely to contain
a nonregular zero. This is done by recursively splitting x until corresponding
tests apply, such as those based on the Krawczyk operator. For details, see
Hansen [39], Kearfott [49], and Neumaier [70].

Continuation methods, discussed in the next section, can also find all zeros
of polynomial systems, at least with high probability (in theory with proba-
bility one). However, they cannot guarantee to find real zeros before complex

6.4 Further Techniques for Nonlinear Systems 329

ones. Because high order polynomial systems usually have a number of real or
complex zeros that is, exponential in the dimension, continuation methods for
finding all zeros are limited to low dimensions.

6.4 Further Techniques for Nonlinear Systems

An Affine Invariant Newton Method

The nonlinear systems arising in solving differential equations, for example,
for stiff initial value problems by backward differentiation formulas (Section
4.5), have quite often very ill-conditioned Jacobians. As a consequence, II F(x) II
has steep and narrow curved valleys and a damped Newton method based on
minimizing II F(x) II has difficulties because it must follow these valleys with
very short steps.

For such problems, the natural merit function for measuring the deviation
from a zero is a norm II L (x) II of the Newton correction A (x) = - F' (x)-1 F (x).
Near a zero, this gives the distance to it almost exactly because of the local
quadratic convergence of Newton's method. Moreover, it is unaffected by the
condition of F'(x) because it is affine invariant, that is, any linear transformation
F(x) :=CF(x) with nonsingular C yields the same A(x). Indeed, the matrix
C cancels out because

Fi(x)- -P (x) = (CF'(x))-1 CF(x) = F'(x) -'F (x).

However, the affinely equivalent function F(x) = F'(x°)-1 F(x) has well-
conditioned F'(x°) = I. Therefore, minimizing II0(x) II instead of II F(x) II im-
proves the geometry of the valleys and allows one to proceed in larger steps in
ill-conditioned problems.

Unfortunately, II A (x) II may increase along the Newton path, defined by the
family of solutions x*(t) of F(x) = (1 - t)F(x°), (t E [0, 1]) along which a
method based on decreasing II F(x) II would roughly proceed (look at infinites-
imal steps to see this). Hence, this variant may get stuck in a local minimum
of 110(x)11 in many situations where methods based on decreasing IIF(x)II
converge to a zero.

A common remedy is to test for a sufficient decrease by

II F'(x')-1 F(x' +aipi)II < (1 - ga)II F'(x') 1 F(x')II (4.1)

for some positive q < 1, so that the matrix is kept fixed during the determination
of a good step size (see, e.g., Deuflhard [19, 20], who also discusses other im-
plementation details). Unfortunately, this means that the merit function changes

330 Systems of Nonlinear Equations

at each step, making a global convergence proof along the old lines impossible.
Indeed, the method can cycle for innocuous problems, where methods that use
II F'(x) II have no problems (cf. Exercise 9).

However, a global convergence proof can be given if we mix the two ap-
proaches, using an acceptance test similar to (4.1) in regions where IID(x)II
increases, and switching back to the merit function II0(x) II when it has moved
sufficiently far over the region of increase.

The algorithm presented next is geared toward large-scale applications where
it is often inconvenient to solve exactly for the Newton step. We therefore
assume that in each step we have a (possibly crude) approximation M(x) to
F'(x) whose structure is simple enough that a factorization of M(x) is available.
Often, M(x) = LR, where L and R are approximate triangular factors of F'(x),
obtained by ignoring terms in the factorization that would destroy sparsity. One
speaks in this case of incomplete triangularfactorizations, and calls M(x) the
preconditioner. The case M(x) = F'(x) is, of course, admissible and produces
an affine invariant algorithm.

We now define the modified Newton correction

A(x) = -M(x)-'F(x). (4.2)

We use an arbitrary but fixed norm that should be a natural measure for changes
in x. The 1-norm is suitable if all components of x have about the same
magnitude. The algorithm depends on some constants that must satisfy the
restrictions

0<go<gI <q2<1, 0 < A I <µ2<l-qo. (4.3)

6.4.1 Algorithm: Affine Invariant Modified Newton Method

STEP 0: Start with l := 0, k :_ - 1, 8_i = oo.
STEP 1: Calculate a factorization of M(x') and A(x') = -M(x')-' F(x'). If

II (x)11 < g26k, (4.4)

setk:=k+1,Mk:=M(xl) and 8k:=IID(x')II
STEP 2: Calculate an approximate Newton direction p' such that

IIMk'(F(x')+F'(x')p')11 <go11Mk 1F(x')II. (4.5)

STEP 3: Find al such that either

IIMk'F(x'+aip')11
gI8k (4.6)

6.4 Further Techniques for Nonlinear Systems 331

or

Mk'F(xt +alp')II
1 - µ2aj < < 1

al.
(4.7)

IIMk'F(x')II

STEP 4: Set x1+1 := x1 + a1 p', 1:=1 + 1. If (4.6) was violated, goto Step 2,
else goto Step 1.

We first show that Step 3 can always be completed, at least when F is defined
everywhere.

6.4.2 Proposition. Suppose that F(x1 + apt) is defined for 0 < a < a. If

a> (1-q1)/µ with Al <µ<µ2 (4.8)

then either (4.7) holds for al = it, or the function defined by

P(a) =a
IIMk1F(x')II

1 + (4.9)1 (M1F(x'+ap')II -
1

has a zero & E [0, a]. In particular, Step 3 can be completed if a > (1-qi)/µ2.

Proof. In general, we have

JIM-'F(x+ap)II = JIM-'(F(x)+aF'(x)p)II +o(a)
= 11 (1 -a)M-'F(x)+aM-1(F(x)+F'(x)p)II + o(a)

< I1- aIII M-' F(x)II + IaIIIM-'(F(x) + F'(x)p)II

+o(a).

By (4.5) and (4.8), we conclude that for sufficiently small a > 0,

IIMk'F(x'+ap')II < 1 - a + aq + o(a) < 1 - aµ (4 10)o , .

IIMk'F(x')11

so that cp(a) < 0 for small a > 0. If cp(a) < 0 then at a = it this quotient is <
I - aµ < q1. However, by (4.7) for the previous steps, we find II Mk 1 F(xl) II
IIMk 'F (xk) II = Sk, whence (4.6) holds for a1 = it.

Also, if cp(a) > 0, then cp has a zero & E [0, a]. In particular, if it > 2(1 -
q1)/(µi + µ2), then (4.8) holds for µ = (µ1 + µ2)/2, and (4.7) is satisfied for
a1 =&.

332 Systems of Nonlinear Equations

Note that with it = (Al + µ2)/2, approximate zeros of qp also satisfy (4.7),
so that one may adapt any root finding method based on sign changes to check
each iterate for (4.6) and (4.7), and quit as soon as one of the two conditions
holds. In order to preserve fast local convergence, one should first try ai = 1.
(One may also use more sophisticated initial values for a1 as long as the choice
a1 = 1 results locally.)

If the first guess does not work and cp(ai) > 0, one already has a sign
change using the artificial value cp(0) = A - 1 + qo < 0 that (cf. (4.10)) is an
upper bound to the true range of limiting values of cp(a) as a -+ 0. If, however,
op(al) < 0, increase cal by repeated doubling (or so) until (4.6) or (4.7) holds or
a sign change is found.

6.4.3 Remarks.

(i) One must be able to store two factorizations, those of Mk and M(x1).
(ii) In Step 2, p1 = A(x') works if III - M(x')-i F'(x') II < qo, that is, if M(x)

is a sufficiently good approximation of F'(x). In practice, one may want to
choose qo adaptively, matching it to the accuracy of xi.

In general, all sorts of misbehavior may occur besides regular convergence
(and, as in the univariate case, this must be the case for any algorithm without
additional conditions that guarantee the existence of a solution). The possibili-
ties are classified in the following.

6.4.4 Proposition. Denote by zk the values of x1 at each completion of Step 1.
Then one of the following holds:

(i) F(zk) _+ 0 as k * oo.
(ii) For some subsequence, II zk. II - oo and II M (zk") II -+ 00.
(iii) F'(xi) is undefined or singular for some 1.
(iv) At some iteration, F(x' +ap') is not defined for large a, and Step 3 cannot

be completed (cf. Proposition 6.4.2).

Proof. Suppose neither (iii) nor (iv) holds. Then Step 2 can be satisfied by
choosing pi = -F'(x')-1 F(x'), and Step 3 can be completed by assumption.

If k remains bounded, then fork fixed at its largest value, (4.6) will always be
violated, and therefore (4.7) must hold. Equation (4.7) implies that II Mk 1 F (x) II

is monotone decreasing, and because (4.6) is violated, it must converge to a
positive limit. Going to the limit in (4.7) therefore gives a1 -- 0. However, now
(4.10) with s = A2 gives a contradiction.

6.4 Further Techniques for Nonlinear Systems 333

Hence, k increases without bound. By Steps 1 and 2, Sk+1 < g2Sk, hence
Sk < q2 So. Therefore,

IIF(Zk)II = IIMko(zk)II _ IIMkllsk IIMkIIgzSo. (4.11)

If II Mk II remains bounded (and by continuity, this holds in particular when Zk
remains bounded), then the right side of (4.11) converges to zero and (i) holds.
If not, then (ii) holds.

In particular, in an important case where all difficulties are absent, we have
the following global convergence theorem.

6.4.5 Theorem. If F is continuously differentiable in IR" with globally non-
singular F'(x) and bounded M(x), then

lim F(zk) = 0.
k-r oo

Proof. In Proposition 6.4.4, (ii) contradicts the boundedness of M, (iii) the
nonsingularity of F', and (iv) cannot hold because F is defined everywhere.
The only alternative left is (i).

Quasi-Newton Methods

It is possible to generalize the univariate secant method to higher dimensions; the
resulting methods are called quasi-Newton methods. Frequently, they perform
well, although they are generally regarded as somewhat less robust because
due to the approximations involved, it is not guaranteed that IIF(x + up) 11
decreases along a computed quasi-Newton direction p. (Indeed, to guarantee
that, one needs derivative information.)

To motivate the method, we write the univariate secant method in the form
xj+1 = x1 - q f (xi), where ci = 1 If [xi, x1_ 1]. Noting that ct (f (xt) - f (XI-1)) _
xl - xi_1, we see that a natural multivariate generalization is to use

X1+1 = xi - C,F(xi),

where Ci is a square matrix satisfying the secant condition

C1yj = s1, with yi := F(x1) - F(x1_1), st :=x1 - x1_1.

Note that no linear system must be solved, so that for problems with a dense
Jacobian, the linear algebra work is reduced from 0(n3) operations per step to
O(n2).

334 Systems of Nonlinear Equations

The secant condition can be easily enforced by defining

(sl - Cl-l yl)uiCl = C1-1 + T
ul yl

with an arbitrary vector ul 0. Among many possibilities, the choice regarded
as best for well-scaled x is

ul = ClT_lsl.

This defines Broyden's method and has reasonably good local convergence
properties (see Dennis and Schnabel [18] and Gay [28]). Of course, one loses
quadratic convergence for such methods, and global convergence proofs are
available only under stringent conditions. However, one can ensure local super-
linear convergence with convergence order at least "V2-. Therefore, the number
of significant digits doubles about every n iterations. This implies that, for prob-
lems with dense Jacobians, quasi-Newton methods are locally not much faster
than a discrete Newton method, which uses n function values to get a Jacobian
approximation. For sufficiently sparse problems, much fewer function values
suffice and discrete Newton methods are usually faster.

However, far from a solution, the convergence speed is much less predictable.
One again needs a damping strategy, and hence uses the search direction
pl = -C1F(xl) in place of the Newton direction.

Continuation Methods

For functions that satisfy only weak smoothness conditions there are special
algorithms that are based on topological concepts: homotopies (that generate a
smooth path to a solution), and simplicial decompositions (that generate piece-
wise linear paths). An in-depth discussion is given in Allgower and Georg [5];
see also Morgan [64] and Zangwill and Garcia [100]. Here we only outline the
basic idea of homotopy methods.

For t E [0, 1] one considers curves x = x(t) (called homotopies) for which
x (0) = x0 is a known point and x (1) = x * is a zero of F. Such curves are implic-
itly defined by the solution set of F(x, t) = 0, with an augmented expression
F(x, t) that satisfies F(x°, 0) = 0 and F(x, 1) = F(x) for all x. The basic
examples are

F(x, t) = F(x) - (1 - t)F(x°)

and

F(x, t) = tF(x) - (1 - t)F'(x°)(x - x°).

6.4 Further Techniques for Nonlinear Systems 335

Both choices are natural in that they are affine invariant, that is, the curves on
which the zeros lie are not affected by linear transformations of x or F.

The task of solving F(x) = 0 is now replaced by tracing the curves from the
known starting point at t = 0 to the point given by t = 1. Because the curve
guides the way to go, this may be the easiest way to arrive at a solution for
many hard zerofinding problems. However, it is possible that the path defined
by F(x, t) = 0 never arrives at t = 1, or turns back, or bifurcates into several
paths, and all this must be handled by a robust code. Existence of the path can
often be guaranteed by a fixed-point theorem.

The path-following problem is the special case m = 1, E = [0, 1] of the
more general problem of solving a parametrized system of equations

F(x, y) = 0

for x in dependence on a vector y of parameters from a set E C Il8,
where F : D x E --* l[8", x E D c l[8". This system of equations determines an
m-dimensional manifold of solutions, and often a functional dependence
H : E -+ D such that F(H(y), y) = 0 is sought. (Of course, in general, the
manifold need not have a one-to-one projection onto E, and this function may
have to be pieced together from several solution branches.)

The well-known theorem on implicit functions gives sufficient conditions
for the existence of H in a sufficiently small neighborhood of a solution. A
global statement about the existence of H is made in the following theorem,
whose proof (see Neumaier [68]) depends on a detailed topological analysis of
the situation. As in the fixed-point theorem of Leray and Schauder, a boundary
condition is the main thing to be established.

6.4.6 Theorem. Let D C R" be closed, let E C IW' be simply connected, and
let F : D x E I[8" be such that

(i) the derivative aj F(x, y) of F with respect to x exists in D x E and is
continuous and nonsingular there;

(ii) there exist x0 E int D and y° E E such that

F(x, y) ,O tF(x°, y°) for all x E 8D, y E E, t E [0, 1].

Then there is a continuous function H : E -- D with F(H(y), y) = 0 for
yeE.

To trace the curve determined by

F(x(t), t) = 0 (4.12)

336 Systems of Nonlinear Equations

there are a variety of continuation methods. The smooth continuation methods
assume that F is continuously differentiable and are based on the differential
equation

Fx(x(t), t)x(t) + FF(x(t), t) = 0 (4.13)

obtained by differentiating (4.12), using the chain rule. This is an implicit
differential equation, but as long as Fx is nonsingular, we can solve for x(t),

x(t) = -Fx(x(t), t)-'Fr(x(t), t). (4.14)

(A closer analysis of the singular case leads to turning points and bifurcation
points; see, e.g., Chow and Hale [111 and Seydel [88]. Now, (4.14) can be solved
by methods for ordinary differential equations. Alternatively, one may solve
(4.13) by methods for differential-algebraic equations; cf. Brenan, Campbell,
and Petzold [9].)

If F,, is well conditioned, (4.14) is easy to solve. However, for the application
to solving systems of equations by a homotopy, the well-conditioned case is
less relevant because one solves such problems easily with damped Newton
methods. In the ill-conditioned case, (4.14) is stiff, but advantage can be taken
of good predictors computed by extrapolating from past values.

Due to rounding errors and discretization errors in the solution of the dif-
ferential equation, a numerical solution based on (4.14) alone tends to wander
away from the manifold. To avoid this, one must monitor the residual size
11 F(x (t), t) 11 of the approximate solution curve x (t), and reduce the step size if
the residual size is deemed to be too large. For implementation details, see, for
example, Rheinboldt [81].

Global Monotone Convergence of Newton's Method

Newton's method is globally and monotonically convergent in an important
special case, namely when the derivative F(x) is an M-matrix and, in addition,
either F is convex or F' is isotone in x. (M-matrices were defined in Section 2.4;
see also Exercises 2.19 and 2.20.) The assumptions generalize the monotonicity
and convexity assumption in the univariate case; they are, for example, met
in systems of equations resulting from the discretization of certain nonlinear
ordinary or partial differential equations.

6.4.7 Theorem. Let F : D C R' R' be continuously differentiable. Let
F'(x) be an M-matrix in a convex subset Do c D, and suppose that there are

6.4 Further Techniques for Nonlinear Systems 337

vectors u, v > 0 such that

F'(x)u > v for all x E Do. (4.15)

Suppose that xo ED, that F(xo) > 0, and that [xo - uwT F(xo), xo] c Do for
a vector w with w; v, > 1 (i = 1, ... , n). Then

(i) F has exactly one zero x* in Do.
(ii) Each sequence of the form

x1+1 =x'-Al'F(x) (1 = 0, 1, 2, ...) (4.16)

in which the nonsingular matrices Ai remain bounded as l oo and satisfy
the ('subgradient') relations

Ai' > 0, F(x) > F(x')+Ai(x -x') forallxEDowithx <x'
(4.17)

remains in Do and converges monotonically to x*:

lim x1 = x
1-.oo

l+1 < x' < ... < xo.

Also, the error estimate

z' :=x' - uwTF(x') E Do = x* E [Z', x']

holds.

(4.18)

Proof We proceed in several steps.

STEP 1: For all x, y E Do, the matrix A = F[x, y] is an M-matrix with

F(x) - F(y) = A(x - y), Au > v. (4.19)

Indeed, F(x) - F(y) = A(x - y) holds by Lemma 6.1.2. Because
F'(x) is an M-matrix for X E Do,

i

Aik = J F , k (y + t (x - y)) dt < 0
0

for i # k, and by (4.15),

i t

Au=J F'(y + t (x - y))u dt > J vdt=v;
0 o

in particular (Exercise 2.20), A is an M-matrix.

338 Systems of Nonlinear Equations

STEP 2: We use induction to show that

x1 E Do, F(x1) > 0

and

(4.20)

ZkEDo = Zk <x1 fork <l (4.21)

for all l > 0. Because this holds for l = 0, we assume that (4.20) and
(4.21) hold for an index l and for all smaller indices. Then

x1+1 < x1 (4.22)

because Ai 1 > 0. If now Zk E Do and k < 1, then zk < xk because
F(xk) > 0, and by Step I

F(zk) = F(xk) + Ak(Zk - xk) = F(xk) - AkUWT F(xk)

< F(xk) - vwT F(xk) < 0.

Therefore, (4.21) and (4.17) imply

0 > F(zk) >> F (x') + A1(zk -x1)

= A,(xl - x1+1) + A,(Zk - x') = A,(zk - x1+1).

Because A 1 > 0, it follows that 0 > zk - x1+1, so Zk < x1+1. In

particular, x1+1 E [z°, x°] C Do, whence by (4.17) and (4.16),

F(x1+1) > F(x1) + A1(x1+1 - x1) = 0.

Therefore, (4.20) and (4.21) hold with l + I replacing 1, whence they
hold in general. Thus (4.22) also holds in general.

STEP 3: The limit x* = lime. x1 exists and is a zero of F.
Because the sequence x1 is monotone decreasing and is bounded

below by z°, it has a limit x*. From (4.16) it follows that F(x1) =
Al (x' - x1+1), and because of the boundedness of the Al it follows on
taking the limit that F(x*) = 0.

STEP 4: The point x* is the unique zero of F in Do.
Indeed, if y* is an arbitrary zero of F in Do, then 0 = F(x*) -

F(y*) = A(x* - y*) where A is an M-matrix. Multiplication with
A-1 gives y* = x*.

STEP 5: The error estimate (4.18) holds: Because of the monotonically decreas-
ing convergence of the x1 to x*, we have x* < x1, and because of (4.21),

we have z1 <x*. Therefore, x* E [z1, A.

6.4 Further Techniques for Nonlinear Systems 339

6.4.8 Remarks.

(i) If Al = F'(x') is an M-matrix, then A-' > 0 (see Exercise 2.19).
(ii) If Ai ' > 0 and F(x) < A, for all x E D° such that x < x', then (4.17)

holds, because then A< A, for the matrix in (4.19) with y = x', and
F(x) = F(x) + A(x - x') > F(x') + A, (x - x') because x < x'.

(iii) If, in particular, F(x) (x E D°) is an M-matrix with components that
are increasing in each variable, then (4.17) holds with A, = F'(x'). If
F'(x) is an M-matrix, but its components are not monotone, one can often
find bounds for the range of values of F'(x) for x in a rectangular box
[x, x'] c Do by means of interval arithmetic, and hence find an appropriate
A, in (4.17).

(iv) If F is convex in D°, that is, if the relation

F(Ax+(1-A)y)<AF(x)+(1-A)F(y) forO<A<1

holds for all x, y E D°, then

F(x) > F(y) + (F(y +,k(x - y)) - F(y))/A

and as A -a 0, the inequality

F(x) > F(y) + F'(y)(x - y) for all x, y E D° (4.23)

is obtained. If in addition, F'(x') is an M-matrix, then again, (4.17) holds
with Al = F'(x').

(v) The hypothesis F(x°) 2!: 0 may be fairly easily satisfied as follows:
(a) If (4.15) holds, and both x and x°:=x + uwT I F(x)I lie in D°,

then F(x°) = F(x) + A(x° - x) = F(x) + AuwT I F(x) I > F(x) +
vwTIF(x)I > F(x)+IF(x)I >0.

(b) If F is convex and both x and x°:= x - F'(x)'' F(x) lie in D°, then
F (x°) > F (x) + F' (x) (x° - x) = 0 because of (4.23).

(vi) If x* lies in the interior of D°, then the hypothesis of (4.18) is satisfied for
sufficiently large 1. From the enclosure (4.18), the estimate 1x1 - x* 1
uwT F(P) is obtained, which permits a simple analysis of the error.

(vii) In particular, in the special case D° = R' it follows from the previous
remarks that the Newton method is convergent for all starting values if
F is convex in the whole of R" and F'(x) is bounded above and below
by M-matrices. The last hypothesis may be replaced with the requirement

340 Systems of Nonlinear Equations

that F'(x) > 0 for x E IR", as can be seen by looking more closely at
the arguments used in the previous proof.

6.5 Exercises

1. Write a MATLAB program that determines a zero of a function F : R2 -+ R2

(a) by Newton's method, and
(b) by the damped Newton method (with the 1-norm).
In both cases, terminate the iteration when Ilx1+1 - XI II i < 10-6. Use

exp(x2 + y2) -3

x + y - sin(3(x + y))

as a test function. For (a), use the starting values x0 = (_°), (001, (o), (-o.D,

(i), (-io)' Q.5)' (o)> (1)' (1.5)' (-oos)' (-0.07 and (-05). Whichones

of these are reasonable? For (b), use the starting values xo = (_°) and (1.5)'
2. Let (xI (s), y, (s)) and (x2(t), y2(t)) be parametric representations of two

twice continuously differentiable curves in the real plane that intersect at
(x*, y*) at an angle cp* # 0.
(a) Find and justify a locally quadratically convergent iterative method for

the calculation of the point of intersection (x*, y*). The iteration for-
mula should depend only on the quantities t, x; , y, and the derivatives

xi, y;.
(b) Test it on the pair of curves (s, s2) (s E IR) and (t2, t) (t E IR).

3. The surface area M and the volume V of a bucket are given by the formulas

M = 7r(sx + sy + x2), V =
3

n
(x2 + xy + y2)h,

where x, y, h, and s are shown in Figure 6.1. Find the bucket that has the
greatest volume V* for the given surface area M = 7r. The radii of this
bucket are denoted by x* and y*.

Figure 6.1. Model of a bucket.

6.5 Exercises 341

(a) Show that these radii are zeros of the function F given by

F(x, y)
(1 - 4x2)(x + 2y - 2y3) + 4xy2(x2 - 1) + 3xy4

- (2x(1 - x2)2 + y(1 - 2x2 + 4x4) + 6xy2(x2 - y2) - 3y5)

(b) Write a MATLAB program that computes the optimal radii using
Newton's method. Choose as starting values (x°, y°) those radii that
give the greatest volume under the additional condition x = y (cylindri-
cal bucket; what is its volume?). Determine x*, y* and the correspond-
ing volume V* and height h*. What is the percentage gain compared
with the cylindrical bucket?

4. A pendulum of length L oscillates with a period of T = 2 (seconds). How
big is its maximum angular displacement? It satisfies the boundary value
problem

cp"(t) + L sinrp(t) = 0, (p(0) = cp(l) = 0;

here, t is the time and g is the gravitational acceleration. In order to solve
this equation by discretization, one replaces Wp"(t) with

cp(t - h) - 2cp(t) + p(t + h)
h2

and obtains approximate values xi ti cp(ih) for i = 0, ... , n and h :=1/n
from the following system of nonlinear equations:

f (x):=x;_1 -2x; +x;+1 +h29 sinxi =0, (5.1)

where
(a) Solve (5.1) by Newton's method for 1 = 39.775354 and initial vector

with components x ° := 12h2i (n - i), taking into account the tridiag-
onal form of f"(x). (Former exercises can be used.)

(b) Solve (5.1) with the discretized Newton method. You should only use
three directional derivatives per iteration.
Compare the results of (a) and (b) for different step sizes (n =
20, 40, 100). Plot the results and list for each iteration the angular
displacement x

i
cp (2) (which is the maximum) in degrees. (The

exact maximum angular displacement is 160°.)

342 Systems of Nonlinear Equations

5. To improve an approximation y' (x) to a solution y(x) of the nonlinear
boundary-value problem

y'(x) = F(x, Y(x)), r(Y(a), Y(b)) = 0, (5.2)

where F : R2 R and r :][82 - ll are given, one can calculate

Y'+'(x) = Y, (X) - 8'(x)

with (8, denotes the derivative with respect to the ith argument)

8'(x) :=c + J x(a2F(t, Y'(t))8'(t) - F(t, Y'(t)) + (y')'(t)) dt, (5.3)
a

where the constant c is determined such that

air(Y'(a), Y'(b))8'(a) + 82r(Y'(a), Y'(b))8'(b) = -r(y'(a), y'(b)).
(5.4)

(a) Find an explicit expression for c.
(b) Show that the solution of (5.3) is equivalent to a Newton step for an ap-

propriate zero-finding problem in a space of continuously differentiable
functions.

6. (a) Prove the fixed-point theorem of Leray-Schauder for the special Banach
space B := R.

(b) Prove the fixed-point theorem of Brouwer for B := R without using (a).
7. Let the mapping G : D CR" R" be a contraction in K C_ D with fixed

point x* E K and contraction factor f < 1. Instead of the iterates x1 defined
by the fixed-point iteration x1+1 := G(x), the inaccurate values

xt+' := G(x') + / G'

are actually calculated because of rounding error. Suppose that the error is
bounded according to

II A G' II < 8 for all l > 0.

The iteration begins with x° E K and is terminated with the first value of
the index l = 1o such that

IIx'+' - I'll >_ Ilx' - X'-' II.

6.5 Exercises 343

Show that for the error in .z :=110, a relation of the form

IIx - x*II < CS

holds, and find an explicit value for the constant C.
8. Using Theorem 6.3.1, give an a posteriori error estimate for one of the

approximate zeros X found in Exercise 1. Take rounding errors into account

by using interval arithmetic. Why must one evaluate F(i) with the point
interval x = [z, x]?

9. Let

F(x) -
1xi -x1x2-I-xi

z
X2 - xi

(a) Show that F'(x) is nonsingular in the region D = {x E R 2 I x2 < xi + 1 }
and that F has there a unique zero at x*

(b) Show that the Newton paths with starting points in D remain in D and
end at x*.

(c) Modify a damped Newton method that uses II F(x) II as merit function
by basing it on (4.1) instead, and compare for various random starting
points its behavior on D with that of the standard damped Newton
method, and with an implementation of Algorithm 6.4.1.

(d) Has the norm of the Newton correction a nonzero local minimum in
D?

10. Let F : D C 1R" - R" be continuously differentiable. Let F'(x) be an M-
matrix and let the vectors u, v > 0 be such that F'(x)u > v for all x E D.
Also let w E 118" be the vector with wi = v,-' (i = 1, ... n). Show that for
arbitrary X E D:
(a) If D contains all x e 1[8" such that Ix - x I < u wT I F (z) I then there is

exactly one zero x* of F such that

Ix* - xI u wTIF(x)I

(b) If, in addition, D is convex, then x* is the unique zero of F in D.
11. (a) Let

x + 2xi - x2
F(x) :=

Q3Q + 3x2 - xl

Show that Newton's method for the calculation of a solution of F(x) -
c = 0 converges for all c E 1[82 and all starting vectors x0 E 1l 2.

344 Systems of Nonlinear Equations

(b) Let

sinxl +3x1 -x2
F(x)

(sin X2 + 3x2 -XI

Show that Newton's method for F(x) = 0 with the starting value
x° = Tr (,) converges, but not to a zero of F.

(c) For F given in (a) and (b), use Exercise 10 to determine a priori esti-
mates for the solutions of F(x) = c with c arbitrary.

References

The number(s) at the end of each reference give the page number(s) where the reference
is cited.

[1] H. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1985. [193, 194]

[2] ADIFOR, Automatic Differentiation of Fortran, WWW-Document,
http://www-unix.mcs.anl.gov/autodiff/ADIFOR/[308]

[3] T. J. Aird and R. E. Lynch, Computable accurate upper and lower error bounds
for approximate solutions of linear algebraic systems, ACM Trans. Math.
Software 1 (1975), 217-231. [113]

[4] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic
Press, New York, 1983. [42]

[5] E. L. Allgower and K. Georg, Numerical Continuation Methods: An
Introduction, Springer, Berlin, 1990. [302, 334]

[6] E. Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, Philadelphia 1999.
Available online: http://www.netlib.org/lapack/lug/ [62]

[7] F. Bauhuber, Direkte Verfahren zur Berechnung der Nullstellen von Polynomen,
Computing 5 (1970), 97-118. [275]

[8] A. Bjorck, Numerical Methods for Least Squares Problems, SIAM,
Philadelphia, 1996. [61, 78]

[9] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of
Initial-Value Problems in Differential Algebraic Equations, Classics in Applied
Mathematics 14, SIAM, Philadelphia, 1996. [336]

[10] G. D. Byrne and A. C. Hindmarsh, Stiff ODE Solvers: A Review of Current and
Coming Attractions, J. Comput. Phys. 70 (1987), 1-62. [219]

[11] S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, New York,
1982. [336]

[12] S. D. Conte and C. de Boor, Elementary Numerical Analysis, 3rd ed.,
McGraw-Hill, Auckland, 1981. [145]

[13] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. [178]
[14] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed.,

Academic Press, Orlando, 1984. [179]
[15] C. de Boor, A Practical Guide to Splines, 2nd ed., Springer, New York, 2000.

[155, 163, 169]
[16] C. de Boor, Multivariate piecewise polynomials, pp. 65-109, in: Acta Numerica

1993 (A. Iserles, ed.), Cambridge University Press, Cambridge, 1993. [155]

345

346 References

[17] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997. [61]
[18] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ,
1983. [302, 334]

[19] P. Deuflhard, A modified Newton method for the solution of ill-conditioned
systems of non-linear equations with application to multiple shooting, Numer.
Math. 22 (1974), 289-315. [329]

[20] P. Deuflhard, Global inexact Newton methods for very large scale nonlinear
problems, IMPACT Comp. Sci. Eng. 3 (1991), 366-393. [329]

[21] R. A. De Vote and B. L. Lucier, Wavelets, pp. 1-56, in: Acta Numerica 1992
(A. Iserles, ed.), Cambridge University Press, Cambridge, 1992. [178]

[22] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices,
Oxford University Press, Oxford, 1986. [64, 75]

[23] J.-P. Eckmann, H. Koch, and P. Wittwer, A computer-assisted proof of
universality for area-preserving maps, Amer. Math. Soc. Memoir 289, AMS,
Providence (1984). [38]

[24] M. C. Eiermann, Automatic, guaranteed integration of analytic functions, BIT 29
(1989), 270-282. [187]

[25] H. Engels, Numerical Quadrature and Cubature, Academic Press, London,
1980. [179]

[26] R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, New York,
1987. [3011

[27] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP- Completeness, Freeman, San Francisco, 1979. [115]

[28] D. M. Gay, Some convergence properties of Broyden's method, SIAM J. Numer.
Anal. 16 (1979), 623-630. [334]

[29] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971. [218, 219]

[30] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press, London, 1981. [301]

[31] G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed., Johns Hopkins
University Press, Baltimore, 1989. [61, 70, 73, 76, 250, 255]

[32] A. Griewank, Evaluating Derivatives: Principles and Techniques of Automatic
Differentiation, SIAM, Philadelphia, 2000. [10]

[33] A. Griewank and G. F. Corliss, Automatic Differentiation of Algorithms, SIAM,
Philadelphia, 1991. [10, 305]

[34] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and A. Walther, ADOL-C:
A package for the automatic differentiation of algorithms written in C/C++,
ACM Trans Math. Software 22 (1996), 131-167.
http://www.math.tu-dresden.de/wir/project/adolc/[308]

[35] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential
Equations, Vol. 1, Springer, Berlin, 1987. [179, 212]

[36] E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Vol. 2,
Springer, Berlin, 1991. [179, 212]

[37] T. C. Hales, The Kepler Conjecture, Manuscript (1998). math.MG/9811071
http://www.math.lsa.umich.edu/-hales/countdown/[38]

[38] D. C. Hanselman and B. Littlefield, Mastering MATLAB 5: A Comprehensive
Tutorial and Reference, Prentice-Hall, Englewood Cliffs, NJ, 1998. [1]

[39] E. Hansen, Global Optimization Using Interval Analysis, Dekker, New York,
1992. [38, 328]

[40] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM,
Philadelphia, 1997. [81, 125]

References 347

[41] J. F. Hart, Computer Approximations, Krieger, Huntington, NY, 1978. [19, 22]
[42] J. Hass, M. Hutchings, and R. Schlafli, The double bubble conjecture, Electron.

Res. Announc. Amer. Math. Soc. 1 (1995), 98-102.
http://math.ucdavis.edu/-hass/bubbles.html[38]

[43] P. Henrici, Applied and Computational Complex Analysis, Vol. 1. Power Series -
Integration - Conformal Mapping - Location of Zeros, Wiley, New York, 1974.
[141, 278, 281]

[44] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
Philadelphia, 1996. [17, 77, 93]

[45] IEEE Computer Society, IEEE standard for binary floating-point arithmetic,
IEEE Std 754-1985, (1985). [15, 42]

[46] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover, New York,
1994.[143]

[47] M. A. Jenkins, Algorithm 493: Zeros of a real polynomial, ACM Trans. Math.
Software 1 (1975), 178-189. [268]

[48] M. A. Jenkins and J. F. Traub, A three-stage variable-shift iteration for
polynomial zeros and its relation to generalized Rayleigh iteration, Numer.
Math. 14 (1970), 252-263. [268]

[49] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer,
Dordrecht, 1996. [38, 328]

[50] R. B. Kearfott, Algorithm 763: INTERVAL-ARITHMETIC: A Fortran 90
module for an interval data type, ACM Trans. Math. Software 22 (1996),
385-392. [43]

[511 R. Klatte, U. Kulisch, C. Lawo, M. Rauch, and A. Wiethoff, C-XSC, a C++
Class Library for Extended Scientific Computing, Springer, Berlin, 1993. [42]

[52] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and C. Ullrich, PASCAL-XSC -
Language Reference with Examples, Springer, Berlin, 1992. [42]

[53] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlerschranken, Computing 4 (1969), 187-201. [116]

[54] A. R. Krommer and C. W. Ueberhuber, Computational Integration, SIAM,
Philadelphia, 1998. [179]

[55] F. M. Larkin, Root finding by divided differences, Numer. Math. 37 (1981)
93-104. [259]

[56] W. Light (ed.), Advances in Numerical Analysis: Wavelets, Subdivision
Algorithms, and Radial Basis Functions, Clarendon Press, Oxford, 1992. [170]

[57] R. Lohner, Enclosing the solutions of ordinary initial- and boundary-value
problems, pp. 255-286, in: E. Kaucher et al., eds., Computerarithmetic,
Teubner, Stuttgart, 1987. [214]

[58] MathWorks, Student Edition of MATLAB Version 5 for Windows, Prentice-Hall,
Englewood Cliffs, NJ, 1997. [1]

[59] MathWorks, Matlab online manuals (in PDF), WWW-document,
http://www.mathworks.com/access/helpdesk/help/fulldocset.shtml

[1]

[60] J. M. McNamee, A bibliography on roots of polynomials, J. Comput. Appl.
Math. 47 (1993), 391-394. Available online at
http://www.elsevier.com/homepage/sac/cam/mcnamee[292]

[61] K. Mehlhom and S. Naher, The LEDA Platform of Combinatorial and Geometric
Computing, Cambridge University Press, Cambridge, 1999. [38]

[62] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer as-
sisted proof. Part II: Details, Math. Comput. 67 (1998), 1023-1046. [38]

[63] R. E. Moore, Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1981. [42, 214]

348 References

[64] A. Morgan, Solving Polynomial Systems Using Continuation for Engineering
and Scientific Problems, Prentice-Hall, Englewood Cliffs, NJ, 1987. [334]

[65] D. E. Muller, A method for solving algebraic equations using an automatic
computer, Math. Tables Aids Comp. 10 (1956), 208-215. [264]

[66] D. Nerinckx and A. Haegemans, A comparison of non-linear equation solvers, J.
Comput. Appl. Math. 2 (1976), 145-148. [292]

[67] NETLIB, A repository of mathematical software, papers, and databases.
http://www.netlib.org/[15,621

[68] A. Neumaier, Existence regions and error bounds for implicit and inverse
functions, Z. Angew. Math. Mech. 65 (1985), 49-55. [335]

[69] A. Neumaier, An existence test for root clusters and multiple roots, Z. Angew.
Math. Mech. 68 (1988), 256-257. [278]

[70] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University
Press, Cambridge, 1990. [42, 48, 115, 117, 118, 311, 328]

[70a] A. Neumaier, Global, vigorous and realistic bounds for the solution of dissipative
differential equations, Computing 52 (1994), 315-336. [214]

[71] A. Neumaier, Solving ill-conditioned and singular linear systems: A tutorial on
regularization, SIAM Rev. 40 (1998), 636-666. [81]

[72] A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott
enclosure for linear interval equations, Rel. Comput. 5 (1999), 131-136.
Erratum, Rel. Comput. 6 (2000), 227. [118]

[73] A. Neumaier and T. Rage, Rigorous chaos verification in discrete dynamical
systems, Physica D 67 (1993), 327-346. [38]

[73a] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, Berlin, 1999.
[3011

[74] GNU OCTAVE. A high-level interactive language for numerical computations.
http://www.che.wisc.edu/octave[2]

[75] W. Oettli and W. Prager, Compatibility of approximate solution of linear
equations with given error bounds for coefficients and right-hand sides, Numer.
Math. 6 (1964), 405-409. [103]

[76] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian
elimination, Linear Algebra Appl. 240 (1996), 131-151. [85]

[77] G. Opitz, Gleichungsauflosung mittels einer speziellen Interpolation, Z. Angew.
Math. Mech. 38 (1958), 276-277. [259]

[78] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, New York, 1970. [3111

[79] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood
Cliffs, NJ, 1990. (Reprinted by SIAM, Philadelphia, 1998.) [250, 255]

[80] K. Petras, Gaussian versus optimal integration of analytic functions, Const.
Approx. 14 (1998), 231-245. [187]

[81] W. C. Rheinboldt, Numerical Analysis of Parameterized Nonlinear Equations,
Wiley, New York, 1986. [336]

[82] J. R. Rice, Matrix Computation and Mathematical Software, McGraw-Hill,
New York, 1981. [84]

[83] S. M. Rump, Verification methods for dense and sparse systems of equations,
pp. 63-136, in: J. Herzberger (ed.), Topics in Validated Computations - Studies
in Computational Mathematics, Elsevier, Amsterdam, 1994. [100]

[84] S. M. Rump, Improved iteration schemes for validation algorithms for dense and
sparse non-linear systems, Computing 57 (1996), 77-84. [328]

[85] S. M. Rump, INTLAB - INTerval LABoratory, pp. 77-104, in: Developments in
Reliable Computing (T. Csendes, ed.), Kluwer, Dordrecht, 1999.
http://www.ti3.tu-harburg.de/rump/intlab/index.html[10,42]

References 349

[86] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J.
Sci. Stat. Comput. 11(1990), 1136-1158. [77]

[87] SCILAB home page. http: //www-rocq. inria. fr/scilab/scilab.html
[2]

[88] R. Seydel, Practical Bifurcation and Stability Analysis, Springer, New York,
1994. [336]

[89] G. W. Stewart, Matrix Algorithms, SIAM, Philadelphia, 1998. [61]
[90] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, Berlin,

1987. [2071
[91] A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall,

Englewood Cliffs, NJ, 1971. [179]
[92] F. Stummel and K. Hainer, Introduction to Numerical Analysis, Longwood,

Stuttgart, 1982. [17, 94]
[93] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math.

14 (1969),14-23. [1011
[94] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ,

1962. [98]
[95] W. V. Walter, FORTRAN-XSC: A portable Fortran 90 module library for

accurate and reliable scientific computing, pp. 265-285, in: R. Albrecht et al.
(eds.), Validation Numerics - Theory and Applications. Computing
Supplementum 9, Springer, Wien, 1993. [43]

[96] J. Waldvogel, Pronunciation of Cholesky, Lanczos and Euler, NA-Digest
v90n 10 (1990).
http://www.netlib.org/cgi-bin/mfs/02/90/v9OnlO.html#2[64]

[97] R. Weiss, Parameter-Free Iterative Linear Solvers, Akademie-Verlag, Berlin,
1996. [64]

[98] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Dover Reprints, New
York, 1994. [267]

[99] S. J. Wright, A collection of problems for which Gaussian elimination with
partial pivoting is unstable, SIAMJ. Sci. Statist. Comput. 14 (1993), 231-238.
[122]

[100] W. I. Zangwill and C. B. Garcia, Pathways to Solutions, Fixed Points, and
Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1981. [334]

Index

(O,s), Opitz method, 260
A:k = kth column of A, 62
A;: = ith row of A, 62
D[c; r], closed disk in complex plane,

141

d f , differential number, 7
e, all-one vector, 62
e(k), unit vectors, 62
f[xo, x1], divided difference, 132

f [xo, ..., x;], divided difference, 134
1, unit matrix, 62
1(f), (weighted) integral of f, 180
J, all-one matrix, 62
L; (x), Lagrange polynomial, 131
O(-), Landau symbol, 34

Landau symbol, 34
Q(f), quadrature formula, 180
QR-algorithm, 250
QZ-algorithm, 250
RN (f), rectangle rule, 204
TN (f), equidistant trapezoidal rule,

197
T,,,k, entry of Romberg triangle, 206
x >> y, much greater than, 24
x << y, much smaller than, 24
, approximately equal to, 24
Cmxn 62
z, midpoint of x, 39
Conv S, closed convex hull, 141
int D, interior of D, 141
mid x, midpoint of x, 39
rad x, radius of x, 39
w(x), weight function, 180
8 D, boundary of D, 141
Rmxn 62
OS, interval hull, 40
E(A, b), solution set of linear interval system,

114
A(xi, ... , x), set of arithmetic expressions,

3

absolute value, 40, 98
accuracy, 23
algorithm

QR, 250
QZ, 250

Algorithm
Affine Invariant Modified Newton Method,

330
Damped Approximate Newton Method, 317

analytic, 4
approximation, 19

of closed curves, 170
by Cubic Splines, 165
expansion in a power series, 19
by interpolation, 165
iterative methods, 20
by least squares, 166
order

linear, 45
rational, 22

argument reduction, 19
arithmetic

interval, 38
arithmetic expression, 2, 3

definition, 3
evaluation, 4
interval, 44
stabilizing, 28

assignment, 11
automatic differentiation, 2

backward, 306
reverse, 305, 306

base, 15
best linear unbiased estimator

(BLUE), 78
bisection

midpoint bisection, 242
secant bisection, 244
spectral, 250, 254

351

352

bracket, 241
Bulirsch sequence, 207

cancellation, 25
Cardano's formulas, 57
characteristic polynomial, 250
Cho lesky

factor, 76
factorization, 76

modified, 77
Clenshaw-Curtis formulas, 190
column pivoting, 83, 85
condition, 23, 33

condition number, 34, 38
ill-conditioned, 33, 35
matrix condition number, 99
number, 99

continuation method, 334, 336
continued fraction, 22
convergence

factor, 236
global, 237
local, 237
order, 256, 257
Q-linear, 236
Q-quadratic, 237
Q-superlinear, 237
R-linear, 236

correct rounding, 16
Cramer's rule, 63

data perturbations, 99
defective, 262
deflation, 267

explicit, 267
implicit, 267

derivative
checking correctness, 56
multivariate, 303

determinant, 67, 88
difference quotient

central, 149
forward, 148

differential equation
Adams-Bashforth method, 215
Adams-Moulton method, 216
backwards differentiation formula

(BDF), 218
boundary-value problem, 233
Euler's method, 212
global error, 223
local error estimation, 221
multi-step method, 211, 214
multi-value method, 211
numerical solution of, 210
one-step method, 211
predictor-corrector method, 216

Index

rigorous solution of, 214
Runge-Kutta method, 211
shooting method, 122, 233
step size control, 219
stiff, 214, 218
Taylor series method, 214

differential number, 7
constant, 8

differentiation
analytical, 4
automatic, 7, 10

forward, 10
numerical, 148

discretization error, 151
higher derivatives, 152
optimal step size, 150
rounding error analysis, 150

discretization error
in numerical differentiation,

151

divided difference
confluent, 136
first-order, 132
general, 134
second-order, 133

double precision format, 15

eigenvalue problem
definite, 251
general linear, 250
nonlinear, 250
Opitz methods, 262
QR-algorithm, 250
QZ-algorithm, 250
rigorous error bounds, 272
spectral bisection, 250

equilibration, 84
error

damping, 35
magnification, 35

error analysis
for arithmetic expressions, 26
for iterative refinement, 110
for linear systems, 99, 112
for multivariate zeros, 322
reducing integration errors, 224
for triangular factorizations, 82, 90
for univariate zeros, 265

error bounds
a posteriori, 324
for complex zeros, 277
for nonlinear systems, 323
for polynomial zeros, 280
for simple eigenvalues, 272

Euler-MacLaurin Summation
Formula, 201

exponent range, 15

extrapolation, 145
Neville formulas, 146

factorization

Cholesky, 76
modified, 77

LDLH,75
LR, LU, 67
QR, 80
modified LDLT, 75
orthogonal, 80
SVD, 81
triangular, 67

incomplete, 330
fixed point, 308
floating point

IEEE standard, 15
number, 14

function
elementary, 3
piecewise cubic, 155
piecewise linear, 153

in terms of radial basis
functions, 170

piecewise polynomial, see spline,
155

radial basis function, 170
spline, see spline, 155

Gaussian elimination, 63
rounding error analysis, 90

global optimization, 38
gradual underflow, 18
grid, 153

H-matrix, 69, 97
Halley's Method, 291
Homer scheme, 10

complete, 54
for Newton form, 135

IEEE floating point standard, 15
if, if and only if, vii
ill-conditioned, see condition, 33
inclusion isotonicity, 44
integral, 302
integration

adaptive, 203
error estimation, 207
multivariate, 179
numerical, 179
quadrature formula, see quadrature

formula, 179
Romberg's method, 206
stepsize control, 208

interpolation
by cubic splines, 153, 156

Index

by polynomials, 131
convergence, 141
divergence, 143
interpolation error, 138
Lagrange formulas, 131
Newton formulas, 134

Hermite, 139
in Chebyshev Points, 144
in expanded Chebyshev points, 145
linear, 132
piecewise linear, 153
quadratic, 133

interval, 39
arithmetic, 38
arithmetic expression, 44
eigenvalue enclosure, 272
evaluation

mean value form, 47
hull, 9S, 40
Krawczyk's method, 116
Krawczyk iteration, 327
Krawczyk operator, 327
linear system, 114

Gaussian elimination, 118
solution set, E(A, b), 114

midpoint, mid x, 39
Newton's method

multivariate, 326
Newton method

univariate, 268
point interval, 39
radius, radx, 39
set of intervals, 39

INTLAB, 10
INTLAB
verifyiss,128

iterative method, 20
iterative refinement, 106

limiting accuracy, 110

Jacobian matrix, 303

Kepler's barrel rule, 189
Krawczyk iteration, 327
Krawczyk operator, 327

Landau symbols, 34
Lapack,62
Larkin method, 259
least squares

method, 78
solution, 78

limiting accuracy
for iterative refinement, 110
for multivariate zeros, 322
for numerical differentiation, 151
for univariate zeros, 265

353

354

linear system
error bounds, 112
interval equations, 114

Gaussian elimination, 118
Krawczyk's method, 116

iterative refinement, 106
overdetermined, 61, 78
quality factor, 105
regularization, 81
rounding errors, 82
sparse, 64
triangular, 65

Lipschitz continuous, 304

M-matrix, 98, 124
machine precision, 17
mantissa length, 15
MATLAB, I

1:n, 3
__, 65
A\b, 63, 67, 81
A', 62
A(:,k),63

A(1,:),62
A. ', 62
A. *B, 63
A. /B, 63
A/B, 63
chol, 76, 127
cond, 125
conj, 299
disp, 32
eig, 229
eps, 17
eye, 63
false, 242
feval,247
fprintf,54
full, 121
get, 177
help, I
input, 32
inv,63
lu, 122
max, 40
mex, 176
NaN, 15
num2str,11
ones,63
plot, 12
poly,266
print, 12
qr, 80
randn, 232
roots,266,268
set, 177
sign,104
size, 1 1, 63

Index

sparse, 121
sprintf,54

spy, 121
subplot,177

text, 177
title, 177
true, 242
xlabel,177

ylabel, 177

zeros,63

12

32
32

1,32
conjugate transpose, A', 62
figures, 176
online help, 1
passing function names, 247
precision, 15, 17
pseudo-, I
public domain variants

OCTAVE, 2
SCILAB, 2

sparse matrices, 75

subarray, 66
transpose, A. ' , 62
vector indexing, II

matrix
A,k = kth column of A, 62
A,_ = ith row of A, 62
absolute value, 62, 98
all-one matrix, J, 62
banded,74
condition number, 99
conjugate transposed, AH, 62
diagonal, 65
diagonally dominant, 97
factorization, see factorization, 67
H-matrix, 69, 97, 124
Hermitian, 62
Hilbert, 126
inequalities, 62
inverse, 81

conjugate transposed, A-H, 62
transposed, A- , 62

Jacobian, 303
M-matrix, 98
monomial, 121
norm, see norm, 94
notation, 62
orthogonal, 80
parameter matrix, 250
pencil, 250
permutation, 85

symmetric, 86
positive definite, 69
sparse, 75
symmetric, 62

transposed, AT, 62
triangular, 65
tridiagonal, 74
unitary, 80, 126
unit matrix, 1, 62

mean value form, 30, 48
mesh size, 153
Milne rule, 189
Muller's Method, 264

NETLIB, 62
Newton's method, 281

discretized, 314
global monotone convergence, 336
multivariate, 311

affine invariant, 329
convergence, 318
damped, 315
error analysis, 322

multivariate
interval, 326
local convergence, 314

univariate
damped, 287
global behavior, 284
modifed, 289
vs. secant method, 282

Newton path, 329
Newton step, 287
nodes, 153, 180
nonlinear system, 301

continuation method, 334
error bounds, 323
finding all zeros, 328
quasi-Newton method, 333

norm, 94
oo-norm, 94, 95
I-norm, 94,95
2-norm, 94, 95
column sum, 95
Euclidean, 94
matrix, 95
maximum, 94
monotone, 98
row sum, 95
spectral, 95
sum, 94

normal equations, 78
number

integer, 14
real, 14

fixed point, 14
floating point, 14

numerical differentiation
limiting accuracy, 151

numerical integration
rigorous, 185

numerical stability, 23

Index

OCTAVE, 2
operation, 3
Opitz method, 259
optimization problems, 301
orthogonal polynomial

3-term recurrence relation,
195

orthogonal polynomials, 191
outward rounding, 42
overflow, 18

parallelization, 73
parameter matrix, 250
partial pivoting, 83
PASCAL-XSC, 42
permutation

matrix, 85
symmetric, 86

perturbation theory, 94
pivot elements, 83
pivoting

column, 85
complete, 91

pivot search, 83, 88
point interval, 39
pole

Opitz methods, 259
polynomial

Cardano's formulas, 57
characteristic, 250
Chebyshev, 145
interpolation, 131
Lagrange, 131
Legendre, 194
Newton form, 135
orthogonal, 191

3-term recurrence relation,
195

positive definite, 69
positive semidefinite, 69
precision, 23

machine precision, 17
preconditioner, 113, 330

quadratic convergence, 21
quadrature formula

Clenshaw-Curtis, 190
closed, 229
Gaussian, 187, 192
interpolatory, 188
Milne rule, 189, 205, 226
Newton-Cotes, 189
normalized, 181
order, 182
rectangle rule, 204
Simpson rule, 189, 204, 226
trapezoidal rule, 189, 196, 226

equidistant, 197

355

356

quality factor
linear system, 105
mean value form, 48

quasi-Newton method, 333

range inclusion, 44
rectangle rule, 204
regula falsi, 235
regularization, 81
result adaptation, 19
Romberg triangle, 206
root secant method, 241
rounding, 16

by chopping, 16
correct, 16
optimal, 16, 42
outward, 42

row equilibration, 84

scaling, 83
implicit, 88

SCILAB, 2
search directions, 317
secant method, 234

convergence order, 259
convergence speed, 237
root secant, 241
secant bisection, 244
vs. Newton's method, 282

sign change, 241
Simpson rule, 189
single precision, 15
singular-value decomposition, 81
slope

multivariate, 303
spectral bisection, 254
spline, 155
Spline

Approximation, 165
spline

approximation error, 162
B-spline, 155, 176

in terms of radial basis functions, 172
basis spline, 155
complete, 161
cubic, 155
free node condition, 158
interpolation, 153, 156
optimality of complete splines, 163
parametric, 169
periodic, 160

stability, 37
numerical, 23
stabilizing expressions, 28

standard deviation, 2, 26, 30
subdistributive law, 59

Index

Theorem
of Aird and Lynch, 113
Euler-MacLaurin summation formula,

201
fixed point theorem

by Banach, 309
by Brouwer, 311
by Leray and Schauder, 310

Gauss-Markov, 78
inertia theorem of Sylvester, 252
of Oettli and Prager, 104
of Rouch6,277

of van der Sluis, 102
trapezoidal rule, 189, 197
triangular

factorization, 67
incomplete, 330

matrix, 65

underflow, 18

vector
absolute value, 62, 98
all-one vector, e, 62
inequalities, 62
norm, see norm, 94
unit vectors, e(k), 62

vectorization, 73

weight function, 180
weights, 180

zero, 233
bracket, 241
cluster, 239
complex, 273

rigorous error bounds, 277
spiral search, 275

deflation, 267
finding all zeros, 268, 328
hyperbolic interpolation, 261
interval Newton method, 268
limiting accuracy, 265
method of Larkin, 259
method of Opitz, 259
Muller's Method, 264
multiple, 239
multivariate, 301

limiting accuracy, 322
polynomial, 280

Cardano's formulas, 57
sign change, 241
simple, 239
univariate

Halley's method, 291
Newton's method, 281

	Cover
	Title Page
	Copyright
	Contents�
	Preface�
	1. The Numerical Evaluation of Expressions�
	1.1 Arithmetic Expressions and Automatic Differentiation�
	1.2 Numbers, Operations, and Elementary Functions�
	1.3 Numerical Stability�
	1.4 Error Propagation and Condition�
	1.5 Interval Arithmetic�
	1.6 Exercises�

	2. Linear Systems of Equations�
	2.1 Gaussian Elimination�
	2.2 Variations on a Theme�
	2.3 Rounding Errors, Equilibration, and Pivot Search�
	2.4 Vector and Matrix Norms�
	2.5 Condition Numbers and Data Perturbations�
	2.6 Iterative Refinement�
	2.7 Error Bounds for Solutions of Linear Systems�
	2.8 Exercises�

	3. Interpolation and Numerical Differentiation�
	3.1 Interpolation by Polynomials�
	3.2 Extrapolation and Numerical Differentiation�
	3.3 Cubic Splines�
	3.4 Approximation by Splines�
	3.5 Radial Basis Functions�
	3.6 Exercises�

	4. Numerical Integration�
	4.1 The Accuracy of Quadrature Formulas�
	4.2 Gaussian Quadrature Formulas�
	4.3 The Trapezoidal Rule�
	4.4 Adaptive Integration�
	4.5 Solving Ordinary Differential Equations�
	4.6 Step Size and Order Control�
	4.7 Exercises�

	5. Univariate Nonlinear Equations�
	5.1 The Secant Method�
	5.2 Bisection Methods�
	5.3 Spectral Bisection Methods for Eigenvalues�
	5.4 Convergence Order�
	5.5 Error Analysis�
	5.6 Complex Zeros�
	5.7 Methods Using Derivative Information�
	5.8 Exercises�

	6. Systems of Nonlinear Equations�
	6.1 Preliminaries�
	6.2 Newton's Method and Its Variants�
	6.3 Error Analysis�
	6.4 Further Techniques for Nonlinear Systems�
	6.5 Exercises�

	References�
	Index�

