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Preface

Statistical thinking will one day be as necessary for efficient citizenship as
the ability to read and write.

H. G. Wells (1866–1946)

In today’s complicated world, very few issues are clear-cut and without contro-
versy. In order to understand and form an opinion about an issue, one must
usually gather information, or data. To learn from data, one must know something
about statistics, which is the art of learning from data.

This introductory statistics text is written for college-level students in any field of
study. It can be used in a quarter, semester, or full-year course. Its only prerequisite
is high school algebra. Our goal in writing it is to present statistical concepts and
techniques in a manner that will teach students not only how and when to utilize
the statistical procedures developed, but also to understand why these procedures
should be used. As a result we have made a great effort to explain the ideas behind
the statistical concepts and techniques presented. Concepts are motivated, illus-
trated, and explained in a way that attempts to increase one’s intuition. It is only
when a student develops a feel or intuition for statistics that she or he is really on
the path toward making sense of data.

To illustrate the diverse applications of statistics and to offer students differ-
ent perspectives about the use of statistics, we have provided a wide variety of
text examples and problems to be worked by students. Most refer to real-world
issues, such as gun control, stock price models, health issues, driving age lim-
its, school admission ages, public policy issues, gender issues, use of helmets,
sports, disputed authorship, scientific fraud, and Vitamin C, among many oth-
ers. Many of them use data that not only are real but are themselves of interest.
The examples have been posed in a clear and concise manner and include many
thought-provoking problems that emphasize thinking and problem-solving skills.
In addition, some of the problems are designed to be open-ended and can be used
as starting points for term projects.

xvii



xviii Preface

SOME SPECIAL FEATURES OF THE TEXT

Introduction The first numbered section of each chapter is an introduction that
poses a realistic statistical situation to help students gain perspective on what they
will encounter in the chapter.

Statistics in Perspective Statistics in Perspective highlights are placed through-
out the book to illustrate real-world application of statistical techniques and
concepts. These perspectives are designed to help students analyze and interpret
data while utilizing proper statistical techniques and methodology.

Real Data Throughout the text discussions, examples, perspective highlights,
and problems, real data sets are used to enhance the students’ understanding of
the material. These data sets provide information for the study of current issues in
a variety of disciplines, such as health, medicine, sports, business, and education.

Historical Perspectives These enrichment sections profile prominent statisti-
cians and historical events, giving students an understanding of how the discipline
of statistics has evolved.

Problems/Review Problems This text includes hundreds of exercises placed at
the end of each section within a chapter, as well as more comprehensive review
problems at the end of each chapter. Many of these problems utilize real data and
are designed to assess the students’ conceptual as well as computational under-
standing of the material. Selected problems are open-ended and offer excellent
opportunity for extended discussion, group activities, or student projects.

Summary/Key Terms An end-of-chapter summary provides a detailed review
of important concepts and formulas covered in the chapter. Key terms and their
definitions are listed that serve as a working glossary within each chapter.

Formula Summary Important tables and formulas that students often refer to
and utilize are included on the inside front and back covers of the book. These
can serve as a quick reference when doing homework or studying for an exam.

Program CD-ROM A CD-ROM is provided with each volume that includes pro-
grams that can be used to solve basic statistical computation problems. Please
refer to Appendix E for a listing of these programs.

THE TEXT

In Chap. 1 we introduce the subject matter of statistics and present its two
branches. The first of these, called descriptive statistics, is concerned with the
collection, description, and summarization of data. The second branch, called
inferential statistics, deals with the drawing of conclusions from data.
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Chapters 2 and 3 are concerned with descriptive statistics. In Chap. 2 we discuss
tabular and graphical methods of presenting a set of data. We see that an effective
presentation of a data set can often reveal certain of its essential features. Chap. 3
shows how to summarize certain features of a data set.

In order to be able to draw conclusions from data it is necessary to have some
understanding of what they represent. For instance, it is often assumed that the
data constitute a “random sample from some population.” In order to under-
stand exactly what this and similar phrases signify, it is necessary to have some
understanding of probability, and that is the subject of Chap. 4. The study of
probability is often a troublesome issue in an introductory statistics class because
many students find it a difficult subject. As a result, certain textbooks have chosen
to downplay its importance and present it in a rather cursory style. We have cho-
sen a different approach and attempted to concentrate on its essential features and
to present them in a clear and easily understood manner. Thus, we have briefly
but carefully dealt with the concept of the events of an experiment, the properties
of the probabilities that are assigned to the events, and the idea of conditional
probability and independence. Our study of probability is continued in Chap. 5,
where discrete random variables are introduced, and in Chap. 6, which deals with
the normal and other continuous random variables.

Chapter 7 is concerned with the probability distributions of sampling statistics.
In this chapter we learn why the normal distribution is of such importance in
statistics.

Chapter 8 deals with the problem of using data to estimate certain parameters of
interest. For instance, we might want to estimate the proportion of people who
are presently in favor of congressional term limits. Two types of estimators are
studied. The first of these estimates the quantity of interest with a single number
(for instance, it might estimate that 52 percent of the voting population favors
term limits). The second type provides an estimator in the form of an interval
of values (for instance, it might estimate that between 49 and 55 percent of the
voting population favors term limits).

Chapter 9 introduces the important topic of statistical hypothesis testing, which
is concerned with using data to test the plausibility of a specified hypothesis.
For instance, such a test might reject the hypothesis that over 60 percent of the
voting population favors term limits. The concept of p value, which measures
the degree of plausibility of the hypothesis after the data have been observed, is
introduced.

Whereas the tests in Chap. 9 deal with a single population, the ones in Chap. 10
relate to two separate populations. For instance, we might be interested in testing
whether the proportions of men and of women that favor term limits are the
same.
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Probably the most widely used statistical inference technique is that of the anal-
ysis of variance; this is introduced in Chap. 11. This technique allows us to test
inferences about parameters that are affected by many different factors. Both one-
and two-factor analysis of variance problems are considered in this chapter.

In Chap. 12 we learn about linear regression and how it can be used to relate the
value of one variable (say, the height of a man) to that of another (the height
of his father). The concept of regression to the mean is discussed, and the regres-
sion fallacy is introduced and carefully explained. We also learn about the relation
between regression and correlation. Also, in an optional section, we use regression
to the mean along with the central limit theorem to present a simple, origi-
nal argument to explain why biological data sets often appear to be normally
distributed.

In Chap. 13 we present goodness-of-fit tests, which can be used to test whether
a proposed model is consistent with data. This chapter also considers popula-
tions classified according to two characteristics and shows how to test whether the
characteristics of a randomly chosen member of the population are independent.

Chapter 14 deals with nonparametric hypothesis tests, which are tests that can be
used in situations where the ones of earlier chapters are inappropriate. Chapter 15
introduces the subject matter of quality control, a key statistical technique in
manufacturing and production processes.

NEW TO THIS EDITION

The third edition has many new and updated examples and exercises. In addition,
there is a new subsection (12.11.1) on the use of dummy variables in multiple
regression models. There is also a new section (14.6) on the use of the Kruskal-
Wallis nonparametric test of the equality of multiple probability distributions,
with a subsection (14.6.1) giving a discussion of the Freedman test which can be
used to test this hypothesis when the data are comparison rankings. There is also
a new section (14.7) on the class of nonparametric tests known as permutation
tests.
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CHAPTER 1

Introduction to Statistics

Statisticians have already overrun every branch of science with a rapidity
of conquest rivalled only by Attila, Mohammed, and the Colorado beetle.

Maurice Kendall (British statistician)

CONTENTS

1.1 Introduction ......................................................................... 1

1.2 The Nature of Statistics ......................................................... 3

1.3 Populations and Samples ....................................................... 5

1.4 A Brief History of Statistics .................................................... 7

Key Terms .................................................................................. 10

The Changing Definition of Statistics ............................................. 11

Review Problems ......................................................................... 11

This chapter introduces the subject matter of statistics, the art of learning from
data. It describes the two branches of statistics, descriptive and inferential. The idea
of learning about a population by sampling and studying certain of its members
is discussed. Some history is presented.

1.1 INTRODUCTION
Is it better for children to start school at a younger or older age? This is certainly
a question of interest to many parents as well as to people who set public policy.
How can we answer it?

It is reasonable to start by thinking about this question, relating it to your own
experiences, and talking it over with friends. However, if you want to convince

Introductory Statistics, DOI: 10.1016/B978-0-12-374388-6.00001-6
© 2010, Elsevier Inc. All rights reserved. 1



2 CHAPTER 1: Introduction to Statistics

others and obtain a consensus, it is then necessary to gather some objective
information. For instance, in many states, achievement tests are given to children
at the end of their first year in school. The children’s results on these tests can
be obtained and then analyzed to see whether there appears to be a connection
between children’s ages at school entrance and their scores on the test. In fact,
such studies have been done, and they have generally concluded that older stu-
dent entrants have, as a group, fared better than younger entrants. However, it
has also been noted that the reason for this may just be that those students who
entered at an older age would be older at the time of the examination, and this
by itself may be what is responsible for their higher scores. For instance, suppose
parents did not send their 6-year-olds to school but rather waited an additional
year. Then, since these children will probably learn a great deal at home in that
year, they will probably score higher when they take the test at the end of their
first year of school than they would have if they had started school at age 6.

A recent study (Table 1.1) has attempted to improve upon earlier work by exami-
ning the effect of children’s age upon entering school on the eventual number of
years of school completed. These authors argue that the total number of years
spent in school is a better measure of school success than is a score on an
achievement test taken in an early grade. Using 1960 and 1980 census data, they
concluded that the age at which a child enters school has very little effect on the
total number of years that a child spends in school. Table 1.1 is an abridgment of
one presented in their work. The table indicates that for children beginning school
in 1949, the younger half (whose average entrance age was 6.29 years) spent an
average of 13.77 years, and the older half an average of 13.78 years, in school.

Note that we have not presented the preceding in order to make the case that the
ages at which children enter school do not affect their performance in school.

Table 1.1 Total Years in School Related to Starting Age

Younger half of children Older half of children

Average age on Average number of Average age on Average number of
Year starting school years completed starting school years completed

1946 6.38 13.84 6.62 13.67
1947 6.34 13.80 6.59 13.86
1948 6.31 13.78 6.56 13.79
1949 6.29 13.77 6.54 13.78
1950 6.24 13.68 6.53 13.68
1951 6.18 13.63 6.45 13.65
1952 6.08 13.49 6.37 13.53

Source: J. Angrist and A. Krueger, “The Effect of Age at School Entry on Educational Attainment: An Appli-
cation of Instrumental Variables with Moments from Two Samples,” Journal of the American Statistical
Association, vol. 87, no. 18, 1992, pp. 328–336.
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Rather we are using it to indicate the modern approach to learning about a
complicated question. Namely, one must collect relevant information, or data,
and these data must then be described and analyzed. Such is the subject matter of
statistics.

1.2 THE NATURE OF STATISTICS
It has become a truism in today’s world that in order to learn about something,
you must first collect data. For instance, the first step in learning about such
things as

1. The present state of the economy
2. The percentage of the voting public who favors a certain proposition
3. The average miles per gallon of a newly developed automobile
4. The efficacy of a new drug
5. The usefulness of a new way of teaching reading to children in elementary

school

is to collect relevant data.

Definition Statistics is the art of learning from data. It is concerned with the collection
of data, their subsequent description, and their analysis, which often leads to the drawing
of conclusions.

1.2.1 Data Collection
Sometimes a statistical analysis begins with a given set of data; for instance, the
government regularly collects and publicizes data about such quantities as the
unemployment rate and the gross domestic product. Statistics would then be used
to describe, summarize, and analyze these data.

In other situations, data are not yet available, and statistics can be utilized
to design an appropriate experiment to generate data. The experiment chosen
should depend on the use that one wants to make of the data. For instance, if
a cholesterol-lowering drug has just been developed and its efficacy needs to be
determined, volunteers will be recruited and their cholesterol levels noted. They
will then be given the drug for some period, and their levels will be measured
again. However, it would be an ineffective experiment if all the volunteers were
given the drug. For if this were so, then even if the cholesterol levels of all the
volunteers were significantly reduced, we would not be justified in concluding
that the improvements were due to the drug used and not to some other possi-
bility. For instance, it is a well-documented fact that any medication received by
a patient, whether or not it is directly related to that patient’s suffering, will often
lead to an improvement in the patient’s condition. This is the placebo effect, which
is not as surprising as it might seem at first, since a patient’s belief that she or he
is being effectively treated often leads to a reduction in stress, which can result in
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an improved state of health. In addition, there might have been other—usually
unknown—factors that played a role in the reduction of cholesterol levels.
Perhaps the weather was unusually warm (or cold), causing the volunteers to
spend more or less time outdoors than usual, and this was a factor. Thus, we see
that the experiment that calls for giving the drug to all the volunteers is not well
designed for generating data from which we can learn about the efficacy of that
drug.

A better experiment is one that tries to neutralize all other possible causes of the
change of cholesterol level except the drug. The accepted way of accomplishing
this is to divide the volunteers into two groups; then one group receives the drug,
and the other group receives a tablet (known as a placebo) that looks and tastes like
the drug but has no physiological effect. The volunteers should not know whether
they are receiving the true drug or the placebo, and indeed it is best if the medical
people overseeing the experiment also do not know, so their own biases will not
play a role. In addition, we want the division of the volunteers into the two groups
to be done such that neither of the groups is favored in that it tends to have the
“better” patients. The accepted best approach for arranging this is to break up the
volunteers “at random,” where by this term we mean that the breakup is done
in such a manner that all possible choices of people in the group receiving the
drug are equally likely. The group that does not receive any treatment (that is, the
volunteers that receive a placebo) is called the control group.

At the end of the experiment, the data should be described. For instance, the
before and after cholesterol levels of each volunteer should be presented, and
the experimenter should note whether the volunteer received the drug or the
placebo. In addition, summary measures such as the average reduction in choles-
terol of members of the control group and members of the drug group should be
determined.

Definition The part of statistics concerned with the description and summarization of
data is called descriptive statistics.

1.2.2 Inferential Statistics and Probability Models
When the experiment is completed and the data are described and summarized,
we hope to be able to draw a conclusion about the efficacy of the drug. For
instance, can we conclude that it is effective in reducing blood cholesterol levels?

Definition The part of statistics concerned with the drawing of conclusions from data
is called inferential statistics.

To be able to draw a conclusion from the data, we must take into account the
possibility of chance. For instance, suppose that the average reduction in choles-
terol is lower for the group receiving the drug than for the control group. Can we
conclude that this result is due to the drug? Or is it possible that the drug is really
ineffective and that the improvement was just a chance occurrence? For instance,
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the fact that a coin comes up heads 7 times in 10 flips does not necessarily mean
that the coin is more likely to come up heads than tails in future flips. Indeed, it
could be a perfectly ordinary coin that, by chance, just happened to land heads
7 times out of the total of 10 flips. (On the other hand, if the coin had landed
heads 47 times out of 50 flips, then we would be quite certain that it was not an
ordinary coin.)

To be able to draw logical conclusions from data, it is usually necessary to make
some assumptions about the chances (or probabilities) of obtaining the different
data values. The totality of these assumptions is referred to as a probability model
for the data.

Sometimes the nature of the data suggests the form of the probability model that
is assumed. For instance, suppose the data consist of the responses of a selected
group of individuals to a question about whether they are in favor of a senator’s
welfare reform proposal. Provided that this group was randomly selected, it is rea-
sonable to suppose that each individual queried was in favor of the proposal with
probability p, where p represents the unknown proportion of all citizens in favor
of the proposal. The resultant data can then be used to make inferences about p.

In other situations, the appropriate probability model for a given data set will not
be readily apparent. However, a careful description and presentation of the data
sometimes enable us to infer a reasonable model, which we can then try to verify
with the use of additional data.

Since the basis of statistical inference is the formulation of a probability model to
describe the data, an understanding of statistical inference requires some knowl-
edge of the theory of probability. In other words, statistical inference starts with
the assumption that important aspects of the phenomenon under study can be
described in terms of probabilities, and then it draws conclusions by using data
to make inferences about these probabilities.

1.3 POPULATIONS AND SAMPLES
In statistics, we are interested in obtaining information about a total collection
of elements, which we will refer to as the population. The population is often too
large for us to examine each of its members. For instance, we might have all the
residents of a given state, or all the television sets produced in the last year by
a particular manufacturer, or all the households in a given community. In such
cases, we try to learn about the population by choosing and then examining a
subgroup of its elements. This subgroup of a population is called a sample.

Definition The total collection of all the elements that we are interested in is called a
population.

A subgroup of the population that will be studied in detail is called a sample.
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In order for the sample to be informative about the total population, it must be,
in some sense, representative of that population. For instance, suppose that we
are interested in learning about the age distribution of people residing in a given
city, and we obtain the ages of the first 100 people to enter the town library. If the
average age of these 100 people is 46.2 years, are we justified in concluding that
this is approximately the average age of the entire population? Probably not, for
we could certainly argue that the sample chosen in this case is not representative of
the total population because usually more young students and senior citizens use
the library than do working-age citizens. Note that representative does not mean
that the age distribution of people in the sample is exactly that of the total popu-
lation, but rather that the sample was chosen in such a way that all parts of the
population had an equal chance to be included in the sample.

In certain situations, such as the library illustration, we are presented with a sam-
ple and must then decide whether this sample is reasonably representative of the
entire population. In practice, a given sample generally cannot be considered to
be representative of a population unless that sample has been chosen in a random
manner. This is because any specific nonrandom rule for selecting a sample often
results in one that is inherently biased toward some data values as opposed to
others.

Definition A sample of k members of a population is said to be a random sample,
sometimes called a simple random sample, if the members are chosen in such a way
that all possible choices of the k members are equally likely.

Thus, although it may seem paradoxical, we are most likely to obtain a represen-
tative sample by choosing its members in a totally random fashion without any
prior considerations of the elements that will be chosen. In other words, we need
not attempt to deliberately choose the sample so that it contains, for instance, the
same gender percentage and the same percentage of people in each profession as
found in the general population. Rather, we should just leave it up to “chance”
to obtain roughly the correct percentages. The actual mechanics of choosing a
random sample involve the use of random numbers and will be presented in
App. C.

Once a random sample is chosen, we can use statistical inference to draw
conclusions about the entire population by studying the elements of the sample.

*1.3.1 Stratified Random Sampling
A more sophisticated approach to sampling than simple random sampling is
the stratified random sampling approach. This approach, which requires more ini-
tial information about the population than does simple random sampling, can
be explained as follows. Consider a high school that contains 300 students in

∗The asterisk signifies optional material not used in the sequel.
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the first-year class, 500 in the second-year class, and 600 each in the third- and
fourth-year classes. Suppose that in order to learn about the students’ feelings
concerning a military draft for 18-year-olds, an in-depth interview of 100 stu-
dents will be done. Rather than randomly choosing 100 people from the 2000
students, in a stratified sample one calculates how many to choose from each
class. Since the proportion of students who are first-year is 300/2000 = 0.15, in
a stratified sample the percentage is the same and thus there are 100 × 0.15 = 15
first-year students in the sample. Similarly, one selects 100 × 0.25 = 25 second-
year students and 100 × 0.30 = 30 third-year and 30 fourth-year students. Then
one selects students from each class at random.

In other words, in this type of sample, first the population is stratified into sub-
populations, and then the correct number of elements is randomly chosen from
each of the subpopulations. As a result, the proportions of the sample members
that belong to each of the subpopulations are exactly the same as the proportions
for the total population. Stratification is particularly effective for learning about
the “average” member of the entire population when there are inherent differences
between the subpopulations with respect to the question of interest. For instance,
in the foregoing survey, the upper-grade students, being older, would be more
immediately affected by a military draft than the lower-grade students. Thus, each
class might have inherently different feelings about the draft, and stratification
would be effective in learning about the feelings of the average student.

1.4 A BRIEF HISTORY OF STATISTICS
A systematic collection of data on the population and the economy was begun
in the Italian city-states of Venice and Florence during the Renaissance. The term
statistics, derived from the word state, was used to refer to a collection of facts
of interest to the state. The idea of collecting data spread from Italy to the other
countries of western Europe. Indeed, by the first half of the 16th century, it was
common for European governments to require parishes to register births, mar-
riages, and deaths. Because of poor public health conditions this last statistic was
of particular interest.

The high mortality rate in Europe before the 19th century was due mainly to epi-
demic diseases, wars, and famines. Among epidemics the worst were the plagues.
Starting with the Black Plague in 1348, plagues recurred frequently for nearly 400
years. In 1562, as a way to alert the King’s court to consider moving to the country-
side, the city of London began to publish weekly bills of mortality. Initially these
mortality bills listed the places of death and whether a death had resulted from
plague. Beginning in 1625, the bills were expanded to include all causes of death.

In 1662 the English tradesman John Graunt published a book entitled Natural
and Political Observations Made upon the Bills of Mortality. Table 1.2, which notes



8 CHAPTER 1: Introduction to Statistics

Table 1.2 Total Deaths
in England

Year Burials Plague deaths

1592 25,886 11,503
1593 17,844 10,662
1603 37,294 30,561
1625 51,758 35,417
1636 23,359 10,400

the total number of deaths in England and the number due to the plague for five
different plague years, is taken from this book.

Graunt used the London bills of mortality to estimate the city’s population. For
instance, to estimate the population of London in 1660, Graunt surveyed house-
holds in certain London parishes (or neighborhoods) and discovered that, on
average, there were approximately 3 deaths for every 88 people. Dividing by 3
shows that, on average, there was roughly 1 death for every 88/3 people. Since the
London bills cited 13,200 deaths in London for that year, Graunt estimated the
London population to be about

13,200 · 88
3

= 387,200

Graunt used this estimate to project a figure for all England. In his book he noted
that these figures would be of interest to the rulers of the country, as indicators
of both the number of men who could be drafted into an army and the number
who could be taxed.

Graunt also used the London bills of mortality—and some intelligent guesswork
as to what diseases killed whom and at what age—to infer ages at death. (Recall
that the bills of mortality listed only causes and places of death, not the ages of
those dying.) Graunt then used this information to compute tables giving the
proportion of the population that dies at various ages. Table 1.3 is one of Graunt’s
mortality tables. It states, for instance, that of 100 births, 36 people will die before
reaching age 6, 24 will die between the ages of 6 and 15, and so on.

Graunt’s estimates of the ages at which people were dying were of great interest
to those in the business of selling annuities. Annuities are the opposite of life
insurance, in that one pays in a lump sum as an investment and then receives
regular payments for as long as one lives.

Graunt’s work on mortality tables inspired further work by Edmund Halley in
1693. Halley, the discoverer of the comet bearing his name (and also the man
who was most responsible, by both his encouragement and his financial support,
for the publication of Isaac Newton’s famous Principia Mathematica), used tables
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Table 1.3 Graunt’s Mortality Table

Age at death Deaths per 100 births

0–6 36
6–16 24

16–26 15
26–36 9
36–46 6
46–56 4
56–66 3
66–76 2

≥76 1

Note: The categories go up to, but do not include,
the right-hand value. For instance, 0–6 means ages
0 through 5 years.

of mortality to compute the odds that a person of any age would live to any other
particular age. Halley was influential in convincing the insurers of the time that
an annual life insurance premium should depend on the age of the person being
insured.

Following Graunt and Halley, the collection of data steadily increased throughout
the remainder of the 17th century and on into the 18th century. For instance, the
city of Paris began collecting bills of mortality in 1667; and by 1730 it had become
common practice throughout Europe to record ages at death.

The term statistics, which was used until the 18th century as a shorthand for the
descriptive science of states, in the 19th century became increasingly identified
with numbers. By the 1830s the term was almost universally regarded in Britain
and France as being synonymous with the numerical science of society. This change
in meaning was caused by the large availability of census records and other tabula-
tions that began to be systematically collected and published by the governments
of western Europe and the United States beginning around 1800.

Throughout the 19th century, although probability theory had been developed by
such mathematicians as Jacob Bernoulli, Karl Friedrich Gauss, and Pierre Simon
Laplace, its use in studying statistical findings was almost nonexistent, as most
social statisticians at the time were content to let the data speak for themselves.
In particular, at that time statisticians were not interested in drawing inferences
about individuals, but rather were concerned with the society as a whole. Thus,
they were not concerned with sampling but rather tried to obtain censuses of
the entire population. As a result, probabilistic inference from samples to a
population was almost unknown in 19th-century social statistics.

It was not until the late 1800s that statistics became concerned with inferring
conclusions from numerical data. The movement began with Francis Galton’s
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work on analyzing hereditary genius through the uses of what we would now
call regression and correlation analysis (see Chap. 12) and obtained much of its
impetus from the work of Karl Pearson. Pearson, who developed the chi-squared
goodness-of-fit test (see Chap. 13), was the first director of the Galton laboratory,
endowed by Francis Galton in 1904. There Pearson originated a research program
aimed at developing new methods of using statistics in inference. His laboratory
invited advanced students from science and industry to learn statistical methods
that could then be applied in their fields. One of his earliest visiting researchers
was W. S. Gosset, a chemist by training, who showed his devotion to Pearson by
publishing his own works under the name Student. (A famous story has it that
Gosset was afraid to publish under his own name for fear that his employers, the
Guinness brewery, would be unhappy to discover that one of its chemists was
doing research in statistics.) Gosset is famous for his development of the t test
(see Chap. 9).

Two of the most important areas of applied statistics in the early 20th century were
population biology and agriculture. This was due to the interest of Pearson and
others at his laboratory and to the remarkable accomplishments of the English
scientist Ronald A. Fisher. The theory of inference developed by these pioneers,
including, among others, Karl Pearson’s son Egon and the Polish-born mathe-
matical statistician Jerzy Neyman, was general enough to deal with a wide range
of quantitative and practical problems. As a result, after the early years of this
century, a rapidly increasing number of people in science, business, and govern-
ment began to regard statistics as a tool able to provide quantitative solutions to
scientific and practical problems.

Nowadays the ideas of statistics are everywhere. Descriptive statistics are featured
in every newspaper and magazine. Statistical inference has become indispensable
to public health and medical research, to marketing and quality control, to edu-
cation, to accounting, to economics, to meteorological forecasting, to polling and
surveys, to sports, to insurance, to gambling, and to all research that makes any
claim to being scientific. Statistics has indeed become ingrained in our intellectual
heritage.

KEY TERMS

Statistics: The art of learning from data.

Descriptive statistics: The part of statistics that deals with the description and
summarization of data.

Inferential statistics: The part of statistics that is concerned with drawing conclu-
sions from data.

Probability model: The mathematical assumptions relating to the likelihood of
different data values.



Review Problems 11

Population: A collection of elements of interest.

Sample: A subgroup of the population that is to be studied.

Random sample of size k: A sample chosen in such a manner that all subgroups
of size k are equally likely to be selected.

Stratified random sample: A sample obtained by dividing the population
into distinct subpopulations and then choosing random samples from each
subpopulation.

THE CHANGING DEFINITION OF STATISTICS

Statistics has then for its object that of presenting a faithful representation of a
state at a determined epoch. (Quetelet, 1849)

Statistics are the only tools by which an opening can be cut through the formidable
thicket of difficulties that bars the path of those who pursue the Science of man.
(Galton, 1889)

Statistics may be regarded (i) as the study of populations, (ii) as the study of
variation, and (iii) as the study of methods of the reduction of data. (Fisher, 1925)

Statistics is a scientific discipline concerned with collection, analysis, and inter-
pretation of data obtained from observation or experiment. The subject has a
coherent structure based on the theory of Probability and includes many different
procedures which contribute to research and development throughout the whole
of Science and Technology. (E. Pearson, 1936)

Statistics is the name for that science and art which deals with uncertain
inferences—which uses numbers to find out something about nature and expe-
rience. (Weaver, 1952)

Statistics has become known in the 20th century as the mathematical tool for
analyzing experimental and observational data. (Porter, 1986)

Statistics is the art of learning from data. (Ross, 2010)

REVIEW PROBLEMS

1. This problem refers to Table 1.1.
(a) In which year was there the largest difference between the aver-

age number of years of school completed by the younger and older
starters?

(b) Were there more years in which the average number of years com-
pleted by the younger starting group exceeded that of the older
group, or the opposite?
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2. The following is a graph of milk product consumption in the United
States from 1909 to 2000. What general conclusion would you draw?

3. The following data yield the percentages of U.S. adults, characterized
by educational level, that smoked in the years from 1999 to 2002.
(a) For which group has there been a steady decline?
(b) Would you say there is an overall trend?

Cigarette Use in the U.S. (% of all adults)

1999 2000 2001 2002

Total 25.8 24.9 24.9 26.0
Sex

Male 28.3 26.9 27.1 28.7
Female 23.4 23.1 23.0 23.4

Education
Non-high school graduate 39.9 32.4 33.8 35.2
High school graduate 36.4 31.1 32.1 32.3
Some college 32.5 27.7 26.7 29.0
College graduate 18.2 13.9 13.8 14.5

4. A medical researcher, trying to establish the efficacy of a new drug,
has begun testing the drug along with a placebo. To make sure that the
two groups of volunteer patients—those receiving the drug and those
receiving a placebo—are as nearly alike as possible, the researcher
has decided not to rely on chance but rather to carefully scrutinize the
volunteers and then choose the groupings himself. Is this approach
advisable? Why or why not?

5. Explain why it is important that a researcher who is trying to learn
about the usefulness of a new drug not know which patients are
receiving the new drug and which are receiving a placebo.

6. An election will be held next week, and by polling a sample of the
voting population we are trying to predict whether the Republican or
Democratic candidate will prevail. Which of the following methods of
selection will yield a representative sample?
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(a) Poll all people of voting age attending a college basketball game.
(b) Poll all people of voting age leaving a fancy midtown restaurant.
(c) Obtain a copy of the voter registration list, randomly choose 100

names, and question them.
(d) Use the results of a television call-in poll, in which the station

asked its viewers to call and tell their choice.
(e) Choose names from the telephone directory and call these

people.
7. The approach used in Prob. 6e led to a disastrous prediction in the

1936 Presidential election, in which Franklin Roosevelt defeated Alfred
Landon by a landslide. A Landon victory had been predicted by the
Literary Digest. The magazine based its prediction on the preferences
of a sample of voters chosen from lists of automobile and telephone
owners.

(a) Why do you think the Literary Digest ’s prediction was so far off?
(b) Has anything changed between 1936 and now that would make

you believe that the approach used by the Literary Digest would
work better today?

8. A researcher is trying to discover the average age at death for people
in the United States today. To obtain data, the obituary columns of
The New York Times are read for 30 days, and the ages at death of
people in the United States are noted. Do you think this approach will
lead to a representative sample?

9. If, in Prob. 8, the average age at death of those recorded is 82.4 years,
what conclusion could you draw?

10. To determine the proportion of people in your town who are smokers,
it has been decided to poll people at one of the following local spots:

(a) The pool hall
(b) The bowling alley
(c) The shopping mall
(d) The library
Which of these potential polling places would most likely result in a
reasonable approximation to the desired proportion? Why?

11. A university plans on conducting a survey of its recent graduates to
determine information on their yearly salaries. It randomly selected
200 recent graduates and sent them questionnaires dealing with their
present jobs. Of these 200, however, only 86 questionnaires were
returned. Suppose that the average of the yearly salaries reported was
$75,000.

(a) Would the university be correct in thinking that $75,000 was a
good approximation to the average salary level of all its graduates?
Explain the reasoning behind your answer.
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(b) If your answer to (a) is no, can you think of any set of conditions
relating to the group that returns questionnaires for which $75,000
would be a good approximation?

12. An article reported that a survey of clothing worn by pedestrians killed
at night in traffic accidents revealed that about 80 percent of the vic-
tims were wearing dark-colored clothing and 20 percent were wearing
light-colored clothing. The conclusion drawn in the article was that it
is safer to wear light-colored clothing at night.
(a) Is this conclusion justified? Explain.
(b) If your answer to (a) is no, what other information would be needed

before a final conclusion could be drawn?
13. Critique Graunt’s method for estimating the population of London.

What implicit assumption is he making?
14. The London bills of mortality listed 12,246 deaths in 1658. Supposing

that a survey of London parishes showed that roughly 2 percent of the
population died that year, use Graunt’s method to estimate London’s
population in 1658.

15. Suppose you were a seller of annuities in 1662, when Graunt’s book
was published. Explain how you would make use of his data on the
ages at which people were dying.

16. Based on Table 1.2, which of the five plague years appears to have
been the most severe? Explain your reasoning.

17. Based on Graunt’s mortality table:
(a) What proportion of babies survived to age 6?
(b) What proportion survived to age 46?
(c) What proportion died between the ages of 6 and 36?

18. Why do you think that the study of statistics is important in your field?
How do you expect to utilize it in your future work?

19. The chart on the following page gives the demographic and socio-
economic characteristics of adult smokers in upstate New York in 2006.
Use it to determine if the following statements appear to be true.
Answer yes or no.
(a) A higher proportion of men than of women are current smokers.
(b) The longer a person has been out of work, the more likely that

person is a smoker.
(c) The more education a person has, the more likely that person is to

smoke.
(d) Ethnicity does not appear to be related to smoking prevalence.
It should be noted that even when the answer to a preceding question
is yes that does not necessarily mean that the characteristic is a cause
of smoking, but only that there is a positive association between it and
smoking. The concept of association, or correlation, will be considered
in Chap. 3.



Review Problems 15



This page intentionally left blank



CHAPTER 2

Describing Data Sets

Numbers constitute the only universal language.
Nathaniel West

People who don’t count won’t count.
Anatole France
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In this chapter we learn methods for presenting and describing sets of data. We
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2.1 INTRODUCTION
It is very important that the numerical findings of any study be presented clearly
and concisely and in a manner that enables one to quickly obtain a feel for the
essential characteristics of the data. This is particularly needed when the set of data
is large, as is frequently the case in surveys or controlled experiments. Indeed, an
effective presentation of the data often quickly reveals important features such
as their range, degree of symmetry, how concentrated or spread out they are,
where they are concentrated, and so on. In this chapter we will be concerned with
techniques, both tabular and graphic, for presenting data sets.

Frequency tables and frequency graphs are presented in Sec. 2.2. These include a
variety of tables and graphs—line graphs, bar graphs, and polygon graphs—that
are useful for describing data sets having a relatively small number of distinct
values. As the number of distinct values becomes too large for these forms to be
effective, it is useful to break up the data into disjoint classes and consider the
number of data values that fall in each class. This is done in Sec. 2.3, where we
study the histogram, a bar graph that results from graphing class frequencies. A
variation of the histogram, called a stem-and-leaf plot, which uses the actual data
values to represent the size of a class, is studied in Sec. 2.4. In Sec. 2.5 we consider
the situation where the data consist of paired values, such as the population and
the crime rate of various cities, and introduce the scatter diagram as an effective
way of presenting such data. Some historical comments are presented in Sec. 2.6.

2.2 FREQUENCY TABLES AND GRAPHS
The following data represent the number of days of sick leave taken by each of 50
workers of a given company over the last 6 weeks:

2, 2, 0, 0, 5, 8, 3, 4, 1, 0, 0, 7, 1, 7, 1, 5, 4, 0, 4, 0, 1, 8, 9, 7, 0,

1, 7, 2, 5, 5, 4, 3, 3, 0, 0, 2, 5, 1, 3, 0, 1, 0, 2, 4, 5, 0, 5, 7, 5, 1

Since this data set contains only a relatively small number of distinct, or different,
values, it is convenient to represent it in a frequency table, which presents each
distinct value along with its frequency of occurrence. Table 2.1 is a frequency table
of the preceding data. In Table 2.1 the frequency column represents the number
of occurrences of each distinct value in the data set. Note that the sum of all the
frequencies is 50, the total number of data observations.

■ Example 2.1
Use Table 2.1 to answer the following questions:

(a) How many workers had at least 1 day of sick leave?
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Table 2.1 A Frequency Table of
Sick Leave Data

Value Frequency Value Frequency

0 12 5 8
1 8 6 0
2 5 7 5
3 4 8 2
4 5 9 1

(b) How many workers had between 3 and 5 days of sick leave?
(c) How many workers had more than 5 days of sick leave?

Solution

(a) Since 12 of the 50 workers had no days of sick leave, the answer is 50 −
12 = 38.

(b) The answer is the sum of the frequencies for values 3, 4, and 5; that is,
4 + 5 + 8 = 17.

(c) The answer is the sum of the frequencies for the values 6, 7, 8, and 9.
Therefore, the answer is 0 + 5 + 2 + 1 = 8. ■

2.2.1 Line Graphs, Bar Graphs, and Frequency Polygons
Data from a frequency table can be graphically pictured by a line graph, which
plots the successive values on the horizontal axis and indicates the corresponding
frequency by the height of a vertical line. A line graph for the data of Table 2.1 is
shown in Fig. 2.1.

FIGURE 2.1
A line graph.
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Sometimes the frequencies are represented not by lines but rather by bars hav-
ing some thickness. These graphs, called bar graphs, are often utilized. Figure 2.2
presents a bar graph for the data of Table 2.1.

Another type of graph used to represent a frequency table is the frequency polygon,
which plots the frequencies of the different data values and then connects the
plotted points with straight lines. Figure 2.3 presents the frequency polygon of
the data of Table 2.1.

A set of data is said to be symmetric about the value x0 if the frequencies of the
values x0 − c and x0 + c are the same for all c. That is, for every constant c, there

FIGURE 2.2
A bar graph.

FIGURE 2.3
A frequency polygon.
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Table 2.2 Frequency Table of a
Symmetric Data Set

Value Frequency Value Frequency

0 1 4 2
2 2 6 1
3 3 0 0

FIGURE 2.4
Bar graphs and symmetry.

are just as many data points that are c less than x0 as there are that are c greater
than x0. The data set presented in Table 2.2, a frequency table, is symmetric about
the value x0 = 3.

Data that are “close to” being symmetric are said to be approximately symmetric.
The easiest way to determine whether a data set is approximately symmetric is to
represent it graphically. Figure 2.4 presents three bar graphs: one of a symmetric
data set, one of an approximately symmetric data set, and one of a data set that
exhibits no symmetry.

2.2.2 Relative Frequency Graphs
It is sometimes convenient to consider and plot the relative rather than the abso-
lute frequencies of the data values. If f represents the frequency of occurrence
of some data value x, then the relative frequency f/n can be plotted versus x,
where n represents the total number of observations in the data set. For the data
of Table 2.1, n = 50 and so the relative frequencies are as given in Table 2.3.
Note that whereas the sum of the frequency column should be the total num-
ber of observations in the data set, the sum of the relative frequency column
should be 1.

A polygon plot of these relative frequencies is presented in Fig. 2.5. A plot of the
relative frequencies looks exactly like a plot of the absolute frequencies, except
that the labels on the vertical axis are the old labels divided by the total number
of observations in the data set.
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To Construct a Relative Frequency Table from a Data Set

Arrange the data set in increasing order of values. Determine the distinct values
and how often they occur. List these distinct values alongside their frequencies f
and their relative frequencies f/n, where n is the total number of observations in
the data set.

Table 2.3 Relative Frequencies, n = 50,
of Sick Leave Data

Value x Frequency f Relative frequency f/n

0 12
12
50

= 0.24

1 8
8
50

= 0.16

2 5
5
50

= 0.10

3 4
4
50

= 0.08

4 5
5
50

= 0.10

5 8
8
50

= 0.16

6 0
0
50

= 0.00

7 5
5
50

= 0.10

8 2
2
50

= 0.04

9 1
1
50

= 0.02

FIGURE 2.5
A relative frequency polygon.



2.2 Frequency Tables and Graphs 23

■ Example 2.2
The Masters Golf Tournament is played each year at the Augusta National Golf
Club in Augusta, Georgia. To discover what type of score it takes to win this
tournament, we have gathered all the winning scores from 1968 to 2004.

The Masters Golf Tournament Winners

Year Winner Score Year Winner Score

1968 Bob Goalby 277 1987 Larry Mize 285

1969 George Archer 281 1988 Sandy Lyle 281

1970 Billy Casper 279 1989 Nick Faldo 283

1971 Charles Coody 279 1990 Nick Faldo 278

1972 Jack Nicklaus 286 1991 Ian Woosnam 277

1973 Tommy Aaron 283 1992 Fred Couples 275

1974 Gary Player 278 1993 Bernhard Langer 277

1975 Jack Nicklaus 276 1994 J.M. Olazabal 279

1976 Ray Floyd 271 1995 Ben Crenshaw 274

1977 Tom Watson 276 1996 Nick Faldo 276

1978 Gary Player 277 1997 Tiger Woods 270

1979 Fuzzy Zoeller 280 1998 Mark O’Meara 279

1980 Severiano Ballesteros 275 1999 J.M. Olazabal 280

1981 Tom Watson 280 2000 Vijay Singh 278

1982 Craig Stadler 284 2001 Tiger Woods 272

1983 Severiano Ballesteros 280 2002 Tiger Woods 276

1984 Ben Crenshaw 277 2003 Mike Weir 281

1985 Bernhard Langer 282 2004 Phil Mickelson 279

1986 Jack Nicklaus 279

(a) Arrange the data set of winning scores in a relative frequency table.
(b) Plot these data in a relative frequency bar graph.

Solution

(a) The 37 winning scores range from a low of 270 to a high of 289. This is the
relative frequency table:

Winning score Frequency f Relative frequency f/37

270 1 0.027
271 1 0.027
272 1 0.027
274 1 0.027
275 2 0.054
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Winning score Frequency f Relative Frequency f/37

276 4 0.108
277 5 0.135
278 3 0.081
279 6 0.162
280 4 0.108
281 3 0.081
282 1 0.027
283 2 0.054
284 1 0.027
285 1 0.027
286 1 0.027

(b) The following is a relative frequency bar graph of the preceding data.

■

2.2.3 Pie Charts
A pie chart is often used to plot relative frequencies when the data are nonnumeric.
A circle is constructed and then is sliced up into distinct sectors, one for each dif-
ferent data value. The area of each sector, which is meant to represent the relative
frequency of the value that the sector represents, is determined as follows. If the
relative frequency of the data value is f/n, then the area of the sector is the frac-
tion f/n of the total area of the circle. For instance, the data in Table 2.4 give the
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Table 2.4 Murder Weapons

Percentage of murders
Type of weapon caused by this weapon

Handgun 52
Knife 18
Shotgun 7
Rifle 4
Personal weapon 6
Other 13

FIGURE 2.6
A pie chart.

relative frequencies of types of weapons used in murders in a large midwestern
city in 1985. These data are represented in a pie chart in Fig. 2.6.

If a data value has relative frequency f/n, then its sector can be obtained by set-
ting the angle at which the lines of the sector meet equal to 360 f/n degrees. For
instance, in Fig. 2.6, the angle of the lines forming the knife sector is 360(0.18) =
64.8◦.

PROBLEMS

1. The following data represent the sizes of 30 families that reside in a
small town in Guatemala:

5, 13, 9, 12, 7, 4, 8, 6, 6, 10, 7, 11, 10, 8, 15,

8, 6, 9, 12, 10, 7, 11, 10, 8, 12, 9, 7, 10, 7, 8
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(a) Construct a frequency table for these data.
(b) Using a line graph, plot the data.
(c) Plot the data as a frequency polygon.

2. The following frequency table relates the weekly sales of bicycles at a
given store over a 42-week period.

Value 0 1 2 3 4 5 6 7

Frequency 3 6 7 10 8 5 2 1

(a) In how many weeks were at least 2 bikes sold?
(b) In how many weeks were at least 5 bikes sold?
(c) In how many weeks were an even number of bikes sold?

3. Fifteen fourth-graders were asked how many blocks they lived from
school. The results are displayed in the following graph.

(a) What is the maximum number of blocks any student lives from
school?

(b) What is the minimum number of blocks?
(c) How many students live less than 5 blocks from school?
(d) How many students live more than 4 blocks from school?

4. Label each of the following data sets as symmetric, approximately
symmetric, or not at all symmetric.

A: 6, 0, 2, 1, 8, 3, 5

B: 4, 0, 4, 0, 2, 1, 3, 2

C: 1, 1, 0, 1, 0, 3, 3, 2, 2, 2

D: 9, 9, 1, 2, 3, 9, 8, 4, 5

5. The following table lists all the values but only some of the frequencies
for a symmetric data set. Fill in the missing numbers.

Value Frequency

10 8
20
30 7
40
50 3
60
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6. The following are the scores of 32 students who took a statistics test:

55, 70, 80, 75, 90, 80, 60, 100, 95, 70, 75, 85, 80, 80, 70, 95,

100, 80, 85, 70, 85, 90, 80, 75, 85, 70, 90, 60, 80, 70, 85, 80

Represent this data set in a frequency table, and then draw a bar
graph.

7. Draw a relative frequency table for the data of Prob. 1. Plot these
relative frequencies in a line graph.

8. The following data represent the time to tumor progression, measured
in months, for 65 patients having a particular type of brain tumor called
glioblastoma:

6, 5, 37, 10, 22, 9, 2, 16, 3, 3, 11, 9, 5, 14, 11, 3, 1, 4, 6, 2, 7,

3, 7, 5, 4, 8, 2, 7, 13, 16, 15, 9, 4, 4, 2, 3, 9, 5, 11, 3, 7, 5, 9,

3, 8, 9, 4, 10, 3, 2, 7, 6, 9, 3, 5, 4, 6, 4, 14, 3, 12, 6, 8, 12, 7

(a) Make up a relative frequency table for this data set.
(b) Plot the relative frequencies in a frequency polygon.
(c) Is this data set approximately symmetric?

9. The following relative frequency table is obtained from a data set of
the number of emergency appendectomies performed each month at
a certain hospital.

Value 0 1 2 3 4 5 6 7

Relative frequency 0.05 0.08 0.12 0.14 0.16 0.20 0.15 0.10

(a) What proportion of months has fewer than 2 emergency appen-
dectomies?

(b) What proportion of months has more than 5?
(c) Is this data set symmetric?

10. Relative frequency tables and plots are particularly useful when we
want to compare different sets of data. The following two data sets
relate the number of months from diagnosis to death of AIDS patients
for samples of male and female AIDS sufferers in the early years of the
epidemic.

Males 15 13 16 10 8 20 14 19 9 12 16 18 20 12 14 14

Females 8 12 10 8 14 12 13 11 9 8 9 10 14 9 10
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Plot these two data sets together in a relative frequency polygon. Use a
different color for each set. What conclusion can you draw about which
data set tends to have larger values?

11. Using the data of Example 2.2, determine the proportion of winning
scores in the Masters Golf Tournament that is
(a) Below 280
(b) 282 or higher
(c) Between 278 and 284 inclusive

The table on the following three pages gives the average number of days
in each month that various cities have at least 0.01 inch of precipitation.
Problems 12 through 14 refer to it.
12. Construct a relative frequency table for the average number of rainy

days in January for the different cities. Then plot the data in a relative
frequency polygon.

13. Using only the data relating to the first 12 cities listed, construct a fre-
quency table for the average number of rainy days in either November
or December.

14. Using only the data relating to the first 24 cities, construct relative
frequency tables for the month of June and separately for the month
of December. Then plot these two sets of data together in a relative
frequency polygon.

15. The following table gives the number of deaths on British roads in 1987
for individuals in various classifications.

Classification Number of deaths

Pedestrians 1699
Bicyclists 280
Motorcyclists 650
Automobile drivers 1327

Express this data set in a pie chart.
16. The following data, taken from The New York Times, represent the

percentage of items, by total weight, in the garbage of New York City.
Represent them in a pie chart.

Organic material (food, yard waste, lumber, etc.) 37.3
Paper 30.8
Bulk (furniture, refrigerators, etc.) 10.9
Plastic 8.5
Glass 5
Metal 4
Inorganic 2.2
Aluminum 0.9
Hazardous waste 0.4



Average Number of Days with Precipitation of 0.01 Inch or More

State City Length of record (yr.) Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual

AL Mobile 46 11 10 11 7 8 11 16 14 10 6 8 10 123

AK Juneau 43 18 17 18 17 17 16 17 18 20 24 19 21 220

AZ Phoenix 48 4 4 4 2 1 1 4 5 3 3 3 4 36

AR Little Rock 45 9 9 10 10 10 8 8 7 7 7 8 9 103

CA Los Angeles 52 6 6 6 3 1 1 1 0 1 2 4 5 36

Sacramento 48 10 9 9 5 3 1 0 0 1 3 7 9 58

San Diego 47 7 6 7 5 2 1 0 1 1 3 5 6 43

San Francisco 60 11 10 10 6 3 1 0 0 1 4 7 10 62

CO Denver 53 6 6 9 9 11 9 9 9 6 5 5 5 89

CT Hartford 33 11 10 11 11 12 11 10 10 9 8 11 12 127

DE Wilmington 40 11 10 11 11 11 10 9 9 8 8 10 10 117

DC Washington 46 10 9 11 10 11 10 10 9 8 7 8 9 111

FL Jacksonville 46 8 8 8 6 8 12 15 14 13 9 6 8 116

Miami 45 6 6 6 6 10 15 16 17 17 14 9 7 129

GA Atlanta 53 11 10 11 9 9 10 12 9 8 6 8 10 115

HI Honolulu 38 10 9 9 9 7 6 8 6 7 9 9 10 100

ID Boise 48 12 10 10 8 8 6 2 3 4 6 10 11 91

IL Chicago 29 11 10 12 12 11 10 10 9 10 9 10 12 127

Peoria 48 9 8 11 12 11 10 9 8 9 8 9 10 114

IN Indianapolis 48 12 10 13 12 12 10 9 9 8 8 10 12 125

IA Des Moines 48 7 7 10 11 11 11 9 9 9 8 7 8 107

KS Wichita 34 6 5 8 8 11 9 7 8 8 6 5 6 86

KY Louisville 40 11 11 13 12 12 10 11 8 8 8 10 11 125

LA New Orleans 39 10 9 9 7 8 11 15 13 10 6 7 10 114

ME Portland 47 11 10 11 12 13 11 10 9 8 9 12 12 128

MD Baltimore 37 10 9 11 11 11 9 9 10 7 7 9 9 113

MA Boston 36 12 10 12 11 12 11 9 10 9 9 11 12 126

(Continued )



(Continued )

State City Length of record (yr.) Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual

MI Detroit 29 13 11 13 12 11 11 9 9 10 9 12 14 135

Sault Ste. Marie 46 19 15 13 11 11 12 10 11 13 13 17 20 165

MN Duluth 46 12 10 11 10 12 13 11 11 12 10 11 12 134

Minneapolis-St. Paul 49 9 7 10 10 11 12 10 10 10 8 8 9 115

MS Jackson 24 11 9 10 8 10 8 10 10 8 6 8 10 109

MO Kansas City 15 7 7 11 11 11 11 7 9 8 8 8 8 107

St. Louis 30 8 8 11 11 11 10 8 8 8 8 10 9 111

MT Great Falls 50 9 8 9 9 12 12 7 8 7 6 7 8 101

NE Omaha 51 6 7 9 10 12 11 9 9 9 7 5 6 98

NV Reno 45 6 6 6 4 4 3 2 2 2 3 5 6 51

NH Concord 46 11 10 11 12 12 11 10 10 9 9 11 11 125

NJ Atlantic City 44 11 10 11 11 10 9 9 9 8 7 9 10 112

NM Albuquerque 48 4 4 5 3 4 4 9 9 6 5 3 4 61

NY Albany 41 12 10 12 12 13 11 10 10 10 9 12 12 134

Buffalo 44 20 17 16 14 12 10 10 11 11 12 16 20 169

New York 118 11 10 11 11 11 10 10 10 8 8 9 10 121

NC Charlotte 48 10 10 11 9 10 10 11 9 7 7 8 10 111

Raleigh 43 10 10 10 9 10 9 11 10 8 7 8 9 111

ND Bismarck 48 8 7 8 8 10 12 9 9 7 6 6 8 97

OH Cincinnati 40 12 11 13 13 11 11 10 9 8 8 11 12 129

Cleveland 46 16 14 15 14 13 11 10 10 10 11 14 16 156

Columbus 48 13 12 14 13 13 11 11 9 8 9 11 13 137

OK Oklahoma City 48 5 6 7 8 10 9 6 6 7 6 5 5 82

OR Portland 47 18 16 17 14 12 9 4 5 8 13 18 19 152

PA Philadelphia 47 11 9 11 11 11 10 9 9 8 8 9 10 117

Pittsburgh 35 16 14 16 14 12 12 11 10 9 11 13 17 154

RI Providence 34 11 10 12 11 11 11 9 10 8 8 11 12 124

SC Columbia 40 10 10 11 8 9 9 12 11 8 6 7 9 109

SD Sioux Falls 42 6 6 9 9 10 11 9 9 8 6 6 6 97



TN Memphis 37 10 9 11 10 9 8 9 8 7 6 9 10 106

Nashville 46 11 11 12 11 11 9 10 9 8 7 10 11 119

TX Dallas-Fort Worth 34 7 7 7 8 9 6 5 5 7 6 6 6 78

El Paso 48 4 3 2 2 2 4 8 8 5 4 3 4 48

Houston 18 10 8 9 7 9 9 9 10 10 8 9 9 106

UT Salt Lake City 59 10 9 10 9 8 5 5 6 5 6 8 9 91

VT Burlington 44 14 12 13 12 14 13 12 12 12 12 14 15 154

VA Norfolk 39 10 10 11 10 10 9 11 10 8 8 8 9 114

Richmond 50 10 9 11 9 11 9 11 10 8 7 8 9 113

WA Seattle 43 19 16 17 14 10 9 5 6 9 13 18 20 156

Spokane 40 14 12 11 9 9 8 4 5 6 8 12 15 113

WV Charleston 40 16 14 15 14 13 11 13 11 9 10 12 14 151

WI Milwaukee 47 11 10 12 12 12 11 10 9 9 9 10 11 125

WY Cheyenne 52 6 6 9 10 12 11 11 10 7 6 6 5 99

PR San Juan 32 16 13 12 13 17 16 19 18 17 17 18 19 195

Source: U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data.
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17. The following give the winning scores of the Masters Golf tourna-
ment from 2005 through 2009. Use them in conjunction with data
given in Example 2.2 to obtain a relative frequency table of all win-
ning scores from 1990 to 2009. Also, use the data given in Example 2.2
to obtain a relative frequency table of all winning scores from 1970 to
1989. Do winning scores appear to have changed much over the past
20 years?

Year Winner Score

2005 Tiger Woods 276
2006 Phil Mickelson 281
2007 Zach Johnson 289
2008 Trevor Immelman 280
2009 Angel Cabrera 276

2.3 GROUPED DATA AND HISTOGRAMS
As seen in Sec. 2.2, using a line or a bar graph to plot the frequencies of data
values is often an effective way of portraying a data set. However, for some data
sets the number of distinct values is too large to utilize this approach. Instead, in
such cases, we divide the values into groupings, or class intervals, and then plot
the number of data values falling in each class interval. The number of class inter-
vals chosen should be a trade-off between (1) choosing too few classes at a cost of
losing too much information about the actual data values in a class and (2) choos-
ing too many classes, which will result in the frequencies of each class being too
small for a pattern to be discernible. Although 5 to 10 class intervals are typical,
the appropriate number is a subjective choice, and of course you can try different
numbers of class intervals to see which of the resulting charts appears to be most
revealing about the data. It is common, although not essential, to choose class
intervals of equal length.

The endpoints of a class interval are called the class boundaries. We will adopt
the left-end inclusion convention, which stipulates that a class interval contains its
left-end but not its right-end boundary point. Thus, for instance, the class inter-
val 20–30 contains all values that are both greater than or equal to 20 and less
than 30.

The data in Table 2.5 represent the blood cholesterol levels of 40 first-year students
at a particular college. As a prelude to determining class size frequencies, it is useful
to rearrange the data in increasing order. This gives the 40 values of Table 2.6.

Since the data range from a minimum value of 171 to a maximum of 227, the
left-end boundary of the first class interval must be less than or equal to 171,
and the right-end boundary of the final class interval must be greater than 227.
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Table 2.5 Blood Cholesterol Levels

213 174 193 196 220 183 194 200
192 200 200 199 178 183 188 193
187 181 193 205 196 211 202 213
216 206 195 191 171 194 184 191
221 212 221 204 204 191 183 227

Table 2.6 Blood Cholesterol Levels in Increasing Order

171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195,
196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 227

Table 2.7 Frequency Table of Blood
Cholesterol Levels

Class intervals Frequency Relative frequency

170–180 3
3

40
= 0.075

180–190 7
7

40
= 0.175

190–200 13
13
40

= 0.325

200–210 8
8
40

= 0.20

210–220 5
5

40
= 0.125

220–230 4
4
40

= 0.10

One choice would be to have the first class interval be 170 to 180. This will
result in six class intervals. A frequency table giving the frequency (as well as
the relative frequency) of data values falling in each class interval is seen in
Table 2.7.

Note: Because of the left-end inclusion convention, the values of 200 were placed
in the class interval of 200 to 210, not in the interval of 190 to 200.

A bar graph plot of the data, with the bars placed adjacent to each other, is called
a histogram. The vertical axis of a histogram can represent either the class fre-
quency or the relative class frequency. In the former case, the histogram is called a
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frequency histogram and in the latter a relative frequency histogram. Figure 2.7 presents
a frequency histogram of the data of Table 2.7.

It is important to recognize that a class frequency table or a histogram based on
that table does not contain all the information in the original data set. These two
representations note only the number of data values in each class and not the
actual data values themselves. Thus, whereas such tables and charts are useful for
illustrating data, the original raw data set should always be saved.

To Construct a Histogram from a Data Set

1. Arrange the data in increasing order.
2. Choose class intervals so that all data points are covered.
3. Construct a frequency table.
4. Draw adjacent bars having heights determined by the frequencies in step 3.

The importance of a histogram is that it enables us to organize and present data
graphically so as to draw attention to certain important features of the data. For
instance, a histogram can often indicate

1. How symmetric the data are
2. How spread out the data are
3. Whether there are intervals having high levels of data concentration
4. Whether there are gaps in the data
5. Whether some data values are far apart from others

FIGURE 2.7
Frequency histogram for the data of Table 2.7.
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FIGURE 2.8
Characteristics of data detected by histograms. (a) symmetry, (b) degree of spread and where values are
concentrated, and (c) gaps in data and data far from others.

For instance, the histogram presented in Fig. 2.7 indicates that the frequencies
of the successive classes first increase and then decrease, reaching a maximum in
the class having limits of 190 to 200. The histograms of Fig. 2.8 give valuable
information about the data sets they represent. The data set whose histogram is
on the left side of Fig. 2.8(a) is symmetric, whereas the one on the right side is not.
The data set represented on the left side of Fig. 2.8(b) is fairly evenly spread out,
whereas the one for the right side is more concentrated. The data set represented
by the left side of Fig. 2.8(c) has a gap, whereas the one represented on the right
side has certain values far apart from the rest.

■ Example 2.3
Table 2.8 gives the birth rates (per 1000 population) in each of the 50 states of
the United States. Plot these data in a histogram.
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Table 2.8 Birth Rates per 1000 Population

State Rate State Rate State Rate

Alabama 14.2 Louisiana 15.7 Ohio 14.9

Alaska 21.9 Maine 13.8 Oklahoma 14.4

Arizona 19.0 Maryland 14.4 Oregon 15.5

Arkansas 14.5 Massachusetts 16.3 Pennsylvania 14.1

California 19.2 Michigan 15.4 Rhode Island 15.3

Colorado 15.9 Minnesota 15.3 South Carolina 15.7

Connecticut 14.7 Mississippi 16.1 South Dakota 15.4

Delaware 17.1 Missouri 15.5 Tennessee 15.5

Florida 15.2 Montana 14.1 Texas 17.7

Georgia 17.1 Nebraska 15.1 Utah 21.2

Hawaii 17.6 Nevada 16.5 Vermont 14.0

Idaho 15.2 New Hampshire 16.2 Virginia 15.3

Illinois 16.0 New Jersey 15.1 Washington 15.4

Indiana 14.8 New Mexico 17.9 West Virginia 12.4

Iowa 13.1 New York 16.2 Wisconsin 14.8

Kansas 14.2 North Carolina 15.6 Wyoming 13.7

Kentucky 14.1 North Dakota 16.5

Source: Department of Health and Human Services.

Solution

Since the data range from a low value of 12.4 to a high of 21.9, let us use class
intervals of length 1.5, starting at the value 12. With these class intervals, we
obtain the following frequency table.

Class intervals Frequency Class intervals Frequency

12.0–13.5 2 18.0–19.5 2

13.5–15.0 15 19.5–21.0 0

15.0–16.5 22 21.0–22.5 2

16.5–18.0 7

A histogram plot of these data is presented in Fig. 2.9.

A histogram is, in essence, a bar chart that graphs the frequencies or relative
frequencies of data falling into different class intervals. These class frequen-
cies can also be represented graphically by a frequency (or relative frequency)
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FIGURE 2.9
A histogram for birth rates in the 50 states.

polygon. Each class interval is represented by a value, usually taken to be the
midpoint of that interval. A plot is made of these values versus the frequencies
of the class intervals they represent. These plotted points are then connected by
straight lines to yield the frequency polygon. Such graphs are particularly useful
for comparing data sets, since the different frequency polygons can be plotted
on the same chart. ■

■ Example 2.4
The data of Table 2.9 represent class frequencies for the systolic blood pressure
of two groups of male industrial workers: those aged 30 to 40 and those aged
50 to 60.

It is difficult to directly compare the blood pressures for the two age groups since
the total number of workers in each group is different. To remove this difficulty,
we can compute and graph the relative frequencies of each of the classes. That
is, we divide all the frequencies relating to workers aged 30 to 39 by 2540 (the
number of such workers) and all the frequencies relating to workers aged 50 to
59 by 731. This results in Table 2.10.

Figure 2.10 graphs the relative frequency polygons for both age groups.
Having both frequency polygons on the same graph makes it easy to compare
the two data sets. For instance, it appears that the blood pressures of the older
group are more spread out among larger values than are those of the younger
group. ■
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Table 2.9 Class Frequencies of Systolic
Blood Pressure of Two Groups of Male
Workers

Number of workers

Blood pressure Aged 30–40 Aged 50–60

Less than 90 3 1
90–100 17 2

100–110 118 23
110–120 460 57
120–130 768 122
130–140 675 149
140–150 312 167
150–160 120 73
160–170 45 62
170–180 18 35
180–190 3 20
190–200 1 9
200–210 3
210–220 5
220–230 2
230–240 1

Total 2540 731

Table 2.10 Relative Class Frequencies
of Blood Pressures

Percentage of workers

Blood pressure Aged 30–40 Aged 50–60

Less than 90 0.12 0.14
90–100 0.67 0.27

100–110 4.65 3.15
110–120 18.11 7.80
120–130 30.24 16.69
130–140 26.57 20.38
140–150 12.28 22.84
150–160 4.72 9.99
160–170 1.77 8.48
170–180 0.71 4.79
180–190 0.12 2.74
190–200 0.04 1.23
200–210 0.41
210–220 0.68
220–230 0.27
230–240 0.14

Total 100.00 100.00

FIGURE 2.10
Relative frequency polygons for the data of Table 2.10.
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PROBLEMS

1. The following data set represents the scores on intelligence quotient
(IQ) examinations of 40 sixth-grade students at a particular school:

114, 122, 103, 118, 99, 105, 134, 125, 117, 106, 109, 104, 111, 127,

133, 111, 117, 103, 120, 98, 100, 130, 141, 119, 128, 106, 109, 115,

113, 121, 100, 130, 125, 117, 119, 113, 104, 108, 110, 102

(a) Present this data set in a frequency histogram.
(b) Which class interval contains the greatest number of data values?
(c) Is there a roughly equal number of data in each class interval?
(d) Does the histogram appear to be approximately symmetric? If so,

about which interval is it approximately symmetric?
2. The following data represent the daily high temperature (in degrees

Celsius) on July 4 in San Francisco over a sequence of 30 years:

22.8, 26.2, 31.7, 31.1, 26.9, 28.0, 29.4, 28.8, 26.7, 27.4, 28.2,

30.3, 29.5, 28.9, 27.5, 28.3, 24.1, 25.3, 28.5, 27.7, 24.4,

29.2, 30.3, 33.7, 27.5, 29.3, 30.2, 28.5, 32.2, 33.7

(a) Present this data set in a frequency histogram.
(b) What would you say is a “typical” July 4 temperature in San

Francisco?
(c) What other conclusions can be drawn from the histogram?

3. The following data (in thousands of dollars) represent the net annual
income for a sample of taxpayers:

47, 55, 18, 24, 27, 41, 50, 38, 33, 29, 15, 77, 64, 22, 19, 35, 39, 41,

67, 55, 121, 77, 80, 34, 41, 48, 60, 30, 22, 28, 84, 55, 26, 105, 62,

30, 17, 23, 31, 28, 56, 64, 88, 104, 115, 39, 25, 18, 21, 30, 57, 40,

38, 29, 19, 46, 40, 49, 72, 70, 37, 39, 18, 22, 29, 52, 94, 86, 23, 36

(a) Graph this data set in a frequency histogram having 5 class
intervals.

(b) Graph this data set in a frequency histogram having 10 class
intervals.

(c) Which histogram do you think is more informative? Why?
4. A set of 200 data points was broken up into 8 classes each of size

(in the units of the data) 3, and the frequency of values in each class
was determined. A frequency table was then constructed. However,
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some of the entries of this table were lost. Suppose that the part of the
frequency table that remains is as follows:

Class interval Frequency Relative frequency

0.05
14
18

15–18 38
0.10

42
11

Fill in the missing numbers and draw a relative frequency histogram.
5. The following is the ozone concentration (measured in parts per 100

million) of air in the downtown Los Angeles area during 25 consecutive
summer days in 2004:

6.2, 9.1, 2.4, 3.6, 1.9, 1.7, 4.5, 4.2, 3.3, 5.1, 6.0, 1.8, 2.3,

4.9, 3.7, 3.8, 5.5, 6.4, 8.6, 9.3, 7.7, 5.4, 7.2, 4.9, 6.2

(a) Construct a frequency histogram for this data set having 3 to 5 as
a class interval.

(b) Construct a frequency histogram for this data set having 2 to 3 as
a class interval.

(c) Which frequency histogram do you find more informative?
6. The following is the 2002 meat production, in thousands of metric tons,

for 11 different countries.

Country Production Country Production

Argentina 2,748 Japan 520
Australia 2,034 Mexico 1, 450
Brazil 7,150 Spain 592
China 5,616 United Kingdom 1, 390
France 1,666 United States 12, 424
Italy 1,161

(a) Represent the given data in a frequency histogram.
(b) A data value that is far removed from the others is called an outlier.

Is there an outlier in the given data?
7. Consider the blood cholesterol levels of the first 100 students in the

data set presented in App. A. Divide these students by gender group-
ings, and construct a class relative frequency table for each. Plot, on
the same chart, separate class relative frequency polygons for the
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female and male students. Can any conclusions be drawn about the
relationship between gender and cholesterol level?

8. Use the following table to construct a frequency histogram of the 2008
state sales tax rates of the 50 states and the District of Columbia.

State Sales Tax Rates, January 1, 2008

State Tax rates State Tax rates State Tax rates

Alabama 4 Louisiana 4 Ohio 5.5

Alaska none Maine 5 Oklahoma 4.5

Arizona 5.6 Maryland 6 Oregon none

Arkansas 6 Massachusetts 5 Pennsylvania 6

California 7.25 Michigan 6 Rhode Island 7

Colorado 2.9 Minnesota 6.5 South Carolina 6

Connecticut 6 Mississippi 7 South Dakota 4

Delaware none Missouri 4.225 Tennessee 7

Florida 6 Montana none Texas 6.25

Georgia 4 Nebraska 5.5 Utah 4.65

Hawaii 4 Nevada 6.5 Vermont 6

Idaho 6 New Hampshire none Virginia 5

Illinois 6.25 New Jersey 7 Washington 6.5

Indiana 6 New Mexico 5 West Virginia 6

Iowa 5 New York 4 Wisconsin 5

Kansas 5.3 North Carolina 4.25 Wyoming 4

Kentucky 6 North Dakota 5 Dist. of Columbia 5.75

The following table provides data concerning accidental death rates in
the United States over a variety of years. Use it to answer Problems 9
through 12.

Death Rates per 100,000 Population for the Principal Types of Accidental Deaths
in the United States, 1970–2002

Fires, Ingestion
flames, of food,

Year Motor vehicle Falls Poisoning Drowning smoke object Firearms

1970 26.8 8.3 2.6 3.9 3.3 1.4 1.2
1980 23.4 5.9 1.9 3.2 2.6 1.4 0.9
1985 19.3 5.0 2.2 2.2 2.1 1.5 0.7
1990 18.8 4.9 2.3 1.9 1.7 1.3 0.6
1991 17.3 5.0 2.6 1.8 1.6 1.3 0.6
1992 16.1 5.0 2.7 1.4 1.6 1.2 0.6
1993 16.3 5.1 3.4 1.5 1.5 1.2 0.6

(Continued)
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(Continued)

Fires, Ingestion
flames, of food,

Year Motor vehicle Falls Poisoning Drowning smoke object Firearms

1994 16.3 5.2 3.5 1.5 1.5 1.2 0.5
1995 16.5 5.3 3.4 1.7 1.4 1.2 0.5
1996 16.5 5.6 3.5 1.5 1.4 1.2 0.4
1997 16.2 5.8 3.8 1.5 1.3 1.2 0.4
1998 16.1 6.0 4.0 1.6 1.2 1.3 0.3
1999 15.5 4.8 4.5 1.3 1.2 1.4 0.3
2000 15.7 4.8 4.6 1.3 1.2 1.6 0.3
2001 15.7 5.1 5.0 1.2 1.2 1.4 0.3
2002 15.7 5.2 5.6 1.1 1.0 1.5 0.3

Source: National Safety Council.

9. Construct a relative frequency histogram of yearly death rates due to
motor vehicles.

10. Construct a relative frequency histogram of yearly death rates due to
falls.

11. Construct a relative frequency histogram of total yearly death rates
due to all listed causes.

12. Would you say that the accidental death rates are remaining relatively
steady?

13. Using the table described prior to Prob. 12 in Sec. 2.2, construct a histo-
gram for the average yearly number of rainy days for the cities listed.

14. Consider the following table.

Percentage of all drivers
Age of driver, years Percentage of all drivers in fatal accidents

15–20 9 18
20–25 13 21
25–30 13 14
30–35 11 11
35–40 9 7
40–45 8 6
45–50 8 5
50–55 7 5
55–60 6 4
60–65 6 3
65–70 4 2
70–75 3 2
Over 75 3 2
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By the left-end convention, 13 percent of all drivers are at least 25 but
less than 30 years old, and 11 percent of drivers killed in car accidents
are at least 30 but less than 35 years old.
(a) Draw a relative frequency histogram for the age breakdown of

drivers.
(b) Draw a relative frequency histogram for the age breakdown of

those drivers who are killed in car accidents.
(c) Which age group accounts for the largest number of fatal acci-

dents?
(d) Which age group should be charged the highest insurance premi-

ums? Explain your reasoning.
15. A cumulative relative frequency table gives, for an increasing

sequence of values, the percentage of data values that are less than
that value. It can be constructed from a relative frequency table by
simply adding the relative frequencies in a cumulative fashion. The
following table is the beginning of such a table for the two data sets
shown in Table 2.9. It says, for instance, that 5.44 percent of men aged
30 to 40 years have blood pressures below 110, as opposed to only 3.56
percent of those aged 50 to 60 years.

A Cumulative Relative Frequency Table for the
Data Sets of Table 2.9

Percentage of workers

Blood pressure less than Aged 30–40 Aged 50–60

90 0.12 0.14
100 0.79 0.41
110 5.44 3.56
120
130
·
·
·

240 100 100

(a) Explain why the cumulative relative frequency for the last class
must be 100.

(b) Complete the table.
(c) What does the table tell you about the two data sets? (That is,

which one tends to have smaller values?)
(d) Graph, on the same chart, cumulative relative frequency polygons

for the given data. Such graphs are called ogives (pronounced “OH
jives”).
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2.4 STEM-AND-LEAF PLOTS
A very efficient way of displaying a small-to-moderate size data set is to utilize
a stem-and-leaf plot. Such a plot is obtained by dividing each data value into two
parts—its stem and its leaf. For instance, if the data are all two-digit numbers, then
we could let the stem of a data value be the tens digit and the leaf be the ones digit.
That is, the value 84 is expressed as

Stem Leaf
8 4

and the two data values 84 and 87 are expressed as

Stem Leaf
8 4, 7

■ Example 2.5
Table 2.11 presents the per capita personal income for each of the 50 states and
the District of Columbia. The data are for 2002.

Table 2.11 Per Capita Personal Income (Dollars per Person), 2002

State name State name State name

United States 30,941 Kentucky 25,579 Ohio 29,405

Alabama 25,128 Louisiana 25,446 Oklahoma 25,575

Alaska 32,151 Maine 27,744 Oregon 28,731

Arizona 26,183 Maryland 36,298 Pennsylvania 31,727

Arkansas 23,512 Massachusetts 39,244 Rhode Island 31,319

California 32,996 Michigan 30,296 South Carolina 25,400

Colorado 33,276 Minnesota 34,071 South Dakota 26,894

Connecticut 42,706 Mississippi 22,372 Tennessee 27,671

Delaware 32,779 Missouri 28,936 Texas 28,551

District of Columbia 42,120 Montana 25,020 Utah 24,306

Florida 29,596 Nebraska 29,771 Vermont 29,567

Georgia 28,821 Nevada 30,180 Virginia 32,922

Hawaii 30,001 New Hampshire 34,334 Washington 32,677

Idaho 25,057 New Jersey 39,453 West Virginia 23,688

Illinois 33,404 New Mexico 23,941 Wisconsin 29,923

Indiana 28,240 New York 36,043 Wyoming 30,578

Iowa 28,280 North Carolina 27,711

Kansas 29,141 North Dakota 26,982
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The data presented in Table 2.11 are represented in the following stem-and-leaf
plot. Note that the values of the leaves are put in the plot in increasing order.

22 372
23 512, 688, 941
24 706
25 020, 057, 128, 400, 446, 575, 579
26 183, 894, 982
27 671, 711, 744
28 240, 280, 551, 731, 821, 936
29 141, 405, 567, 596, 771, 923
30 001, 180, 296, 578
31 319, 727
32 151, 677, 779, 922, 996
33 276, 404
34 071, 334
36 043, 298
39 244, 453
42 120, 706

The choice of stems should always be made so that the resultant stem-and-leaf
plot is informative about the data. For instance, consider Example 2.6. ■

■ Example 2.6
The following data represent the proportion of public elementary school
students that are classified as minority in each of 18 cities.

55.2, 47.8, 44.6, 64.2, 61.4, 36.6, 28.2, 57.4, 41.3,

44.6, 55.2, 39.6, 40.9, 52.2, 63.3, 34.5, 30.8, 45.3

If we let the stem denote the tens digit and the leaf represent the remainder of
the value, then the stem-and-leaf plot for the given data is as follows:

2 8.2
3 0.8, 4.5, 6.6, 9.6
4 0.9, 1.3, 4.6, 4.6, 5.3, 7.8
5 2.2, 5.2, 5.2, 7.4
6 1.4, 3.3, 4.2

We could have let the stem denote the integer part and the leaf the decimal part
of the value, so that the value 28.2 would be represented as

28 .2
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However, this would have resulted in too many stems (with too few leaves
each) to clearly illustrate the data set. ■

■ Example 2.7
The following stem-and-leaf plot represents the weights of 80 attendees at a
sporting convention. The stem represents the tens digit, and the leaves are the
ones digit.

10 2, 3, 3, 4, 7 (5)
11 0, 1, 2, 2, 3, 6, 9 (7)
12 1, 2, 4, 4, 6, 6, 6, 7, 9 (9)
13 1, 2, 2, 5, 5, 6, 6, 8, 9 (9)
14 0, 4, 6, 7, 7, 9, 9 (7)
15 1, 1, 5, 6, 6, 6, 7 (7)
16 0, 1, 1, 1, 2, 4, 5, 6, 8, 8 (10)
17 1, 1, 3, 5, 6, 6, 6 (7)
18 1, 2, 2, 5, 5, 6, 6, 9 (8)
19 0, 0, 1, 2, 4, 5 (6)
20 9, 9 (2)
21 7 (1)
22 1 (1)
23 (0)
24 9 (1)

The numbers in parentheses on the right represent the number of values in each
stem class. These summary numbers are often useful. They tell us, for instance,
that there are 10 values having stem 16; that is, 10 individuals have weights
between 160 and 169. Note that a stem without any leaves (such as stem value
23) indicates that there are no occurrences in that class.

It is clear from this plot that almost all the data values are between 100 and
200, and the spread is fairly uniform throughout this region, with the excep-
tion of fewer values in the intervals between 100 and 110 and between 190
and 200. ■

Stem-and-leaf plots are quite useful in showing all the data values in a clear repre-
sentation that can be the first step in describing, summarizing, and learning from
the data. It is most helpful in moderate-size data sets. (If the size of the data set
were very large, then, from a practical point of view, the values of all the leaves
might be too overwhelming and a stem-and-leaf plot might not be any more infor-
mative than a histogram.) Physically this plot looks like a histogram turned on its
side, with the additional plus that it presents the original within-group data val-
ues. These within-group values can be quite valuable to help you discover patterns
in the data, such as that all the data values are multiples of some common value,
or find out which values occur most frequently within a stem group.



2.4 Stem-and-Leaf Plots 47

Sometimes a stem-and-leaf plot appears to have too many leaves per stem line
and as a result looks cluttered. One possible solution is to double the number of
stems by having two stem lines for each stem value. On the top stem line in the
pair we could include all leaves having values 0 through 4, and on the bottom
stem line all leaves having values 5 through 9. For instance, suppose one line of
a stem-and-leaf plot is as follows:

6 0, 0, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 9

This could be broken into two lines:

6 0, 0, 1, 2, 2, 3, 4, 4, 4, 4
6 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 9

PROBLEMS

1. For the following data, draw stem-and-leaf plots having (a) 4 stems
and (b) 8 stems.

124, 129, 118, 135, 114, 139, 127, 141, 111, 144, 133, 127,

122, 119, 132, 137, 146, 122, 119, 115, 125, 132, 118, 126,

134, 147, 122, 119, 116, 125, 128, 130, 127, 135, 122, 141

2. The following table gives the maximal marginal 2008 tax rates of a
variety of states. Represent the data in a stem and leaf plot.

State Individual Income Taxes
(Tax rates for tax year 2008 – as of January 1, 2008)

State Maximal rate State Maximal rate

Alabama 5 Idaho 7.8
Alaska 0 Illinois 3.0
Arizona 4.54 Indiana 3.4
Arkansas 7.0 Iowa 8.98
California 9.3 Kansas 6.45
Colorado 4.63 Kentucky 6.0
Connecticut 5.0 Louisiana 6.0
Delaware 5.95 Maine 8.5
Florida 0 Maryland 5.5
Georgia 6.0 Massachusetts 5.3
Hawaii 8.25

Source: Statistical Abstract of the United States.
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3. The following are the ages, to the nearest year, of 43 patients admitted
to the emergency ward of a certain adult hospital:

23, 18, 31, 79, 44, 51, 24, 19, 17, 25, 27, 19, 44, 61, 22, 18,

14, 17, 29, 31, 22, 17, 15, 40, 55, 16, 17, 19, 20, 32, 20, 45,

53, 27, 16, 19, 22, 20, 18, 30, 20, 33, 21

Draw a stem-and-leaf plot for this data set. Use this plot to determine
the 5-year interval of ages that contains the largest number of data
points.

4. A psychologist recorded the following 48 reaction times (in seconds)
to a certain stimulus.

1.1, 2.1, 0.4, 3.3, 1.5, 1.3, 3.2, 2.0, 1.7, 0.6, 0.9, 1.6, 2.2, 2.6, 1.8, 0.9,

2.5, 3.0, 0.7, 1.3, 1.8, 2.9, 2.6, 1.8, 3.1, 2.6, 1.5, 1.2, 2.5, 2.8, 0.7, 2.3,

0.6, 1.8, 1.1, 2.9, 3.2, 2.8, 1.2, 2.4, 0.5, 0.7, 2.4, 1.6, 1.3, 2.8, 2.1, 1.5

(a) Construct a stem-and-leaf plot for these data.
(b) Construct a second stem-and-leaf plot, using additional stems.
(c) Which one seems more informative?
(d) Suppose a newspaper article stated, “The typical reaction time

was ______ seconds.” Fill in your guess as to the missing word.
5. The following data represent New York City’s daily revenue from

parking meters (in units of $5000) during 30 days in 2002.

108, 77, 58, 88, 65, 52, 104, 75, 80, 83, 74, 68, 94, 97, 83,

71, 78, 83, 90, 79, 84, 81, 68, 57, 59, 32, 75, 93, 100, 88

(a) Represent this data set in a stem-and-leaf plot.
(b) Do any of the data values seem “suspicious”? Why?

6. The volatility of a stock is an important property in the theory of stock
options pricing. It is an indication of how much change there tends to
be in the day-to-day price of the stock. A volatility of 0 means that the
price of the stock always remains the same. The higher the volatility,
the more the stock’s price tends to change. The following is a list of
the volatility of 32 companies whose stock is traded on the American
Stock Exchange:

0.26, 0.31, 0.45, 0.30, 0.26, 0.17, 0.33, 0.32, 0.37, 0.38, 0.35, 0.28, 0.37,

0.35, 0.29, 0.20, 0.33, 0.19, 0.31, 0.26, 0.24, 0.50, 0.22, 0.33, 0.51,

0.44, 0.63, 0.30, 0.28, 0.48, 0.42, 0.37
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(a) Represent these data in a stem-and-leaf plot.
(b) What is the largest data value?
(c) What is the smallest data value?
(d) What is a “typical” data value?

7. The following table gives the scores of the first 25 Super Bowl games
in professional football. Use it to construct a stem-and-leaf plot of
(a) The winning scores
(b) The losing scores
(c) The amounts by which the winning teams outscored the losing

teams

Super Bowls I-XXV

Game Date Winner Loser

XXV Jan. 27, 1991 New York (NFC) 20 Buffalo (AFC) 19

XXIV Jan. 28, 1990 San Francisco (NFC) 55 Denver (AFC) 10

XXIII Jan. 22, 1989 San Francisco (NFC) 20 Cincinnati (AFC) 16

XXII Jan. 31, 1988 Washington (NFC) 42 Denver (AFC) 10

XXI Jan. 25, 1987 New York (NFC) 39 Denver (AFC) 20

XX Jan. 26, 1986 Chicago (NFC) 46 New England (AFC) 10

XIX Jan. 20, 1985 San Francisco (NFC) 38 Miami (AFC) 16

XVIII Jan. 22, 1984 Los Angeles Raiders (AFC) 38 Washington (NFC) 9

XVII Jan. 30, 1983 Washington (NFC) 27 Miami (AFC) 17

XVI Jan. 24, 1982 San Francisco (NFC) 26 Cincinnati (AFC) 21

XV Jan. 25, 1981 Oakland (AFC) 27 Philadelphia (NFC) 10

XIV Jan. 20, 1980 Pittsburgh (AFC) 31 Los Angeles (NFC) 19

XIII Jan. 21, 1979 Pittsburgh (AFC) 35 Dallas (NFC) 31

XII Jan. 15, 1978 Dallas (NFC) 27 Denver (AFC) 10

XI Jan. 9, 1977 Oakland (AFC) 32 Minnesota (NFC) 14

X Jan. 18, 1976 Pittsburgh (AFC) 21 Dallas (NFC) 17

IX Jan. 12, 1975 Pittsburgh (AFC) 16 Minnesota (NFC) 6

VIII Jan. 13, 1974 Miami (AFC) 24 Minnesota (NFC) 7

VII Jan. 14, 1973 Miami (AFC) 14 Washington (NFC) 7

VI Jan. 16, 1972 Dallas (NFC) 24 Miami (AFC) 3

V Jan. 17, 1971 Baltimore (AFC) 16 Dallas (NFC) 13

IV Jan. 11, 1970 Kansas City (AFL) 23 Minnesota (NFL) 7

III Jan. 12, 1969 New York (AFL) 16 Baltimore (NFL) 7

II Jan. 14, 1968 Green Bay (NFL) 33 Oakland (AFL) 14

I Jan. 15, 1967 Green Bay (NFL) 35 Kansas City (AFL) 10
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8. Consider the following stem-and-leaf plot and histogram concerning
the same set of data.

2 1,1,4,7 2–3 x, x, x, x
3 0, 0, 3, 3, 6, 9, 9, 9 3–4 x, x, x, x, x, x, x, x
4 2, 2, 5, 8, 8, 8 4–5 x, x, x, x, x, x
5 1, 1, 7, 7 5–6 x, x, x, x
6 3, 3, 3, 6 6–7 x, x, x, x
7 2, 2, 5, 5, 5, 8 7–8 x, x, x, x, x, x

What can you conclude from the stem-and-leaf plot that would not
have been apparent from the histogram?

9. Use the data represented in the stem-and-leaf plot in Prob. 8 to answer
the following questions.
(a) How many data values are in the 40s?
(b) What percentage of values is greater than 50?
(c) What percentage of values has the ones digit equal to 1?

10. The following table gives the different 2002 incomes and Social Secu-
rity tax rates for a variety of countries.
(a) Represent the percentages paid in income tax in a histogram.
(b) Represent the percentages paid in Social Security tax in a stem-

and-leaf plot.

Tax Burden in Selected Countries*

Income Social Total Income Social Total
tax Security payment† tax Security payment†

Country (%) (%) (%) Country (%) (%) (%)

Denmark 33 11 43 Czech Republic 11 13 24
Belgium 28 14 41 United States 17 8 24
Germany 21 21 41 United Kingdom 16 8 23
Finland 26 6 32 Iceland 22 0 22
Poland 6 25 31 Luxembourg 8 14 22
Sweden 23 7 30 Switzerland 10 12 22
Turkey 15 15 30 New Zealand 20 0 20
Netherlands 7 22 29 Slovak Republic 7 13 19
Norway 21 8 29 Spain 13 6 19
Austria 11 18 29 Greece 1 16 17
Hungary 17 13 29 Portugal 6 11 17
Italy 19 9 28 Ireland 11 5 16
France 13 13 27 Japan 6 10 16
Canada 19 7 26 Korea 2 7 9
Australia 24 0 24 Mexico 2 2 4
∗ Does not include taxes not listed, such as sales tax or VAT. Rates shown apply to a single person with average earnings.
† Totals may not add due to rounding.
Source: Organization for Economic Cooperation and Development, 2002.
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11. A useful way of comparing two data sets is to put their stem-and-leaf
plots side by side. The following represents the scores of students in
two different schools on a standard examination. In both schools 24
students took the examination.

School A School B
Leaves Stem Leaves

0 5 3, 5, 7
8, 5 6 2, 5, 8, 9, 9

9, 7, 4, 2, 0 7 3, 6, 7, 8, 8, 9
9, 8, 8, 7, 7, 6, 5, 3 8 0, 2, 3, 5, 6, 6
8, 8, 6, 6, 5, 5, 3, 0 9 0, 1, 5

10 0

(a) Which school had the “high scorer”?
(b) Which school had the “low scorer”?
(c) Which school did better on the examination?
(d) Combine the two schools, and draw a stem-and-leaf plot for all 48

values.

2.5 SETS OF PAIRED DATA
Sometimes a data set consists of pairs of values that have some relationship to each
other. Each member of the data set is thought of as having an x value and a y value.
We often express the ith pair by the notation (xi, yi), i = 1, . . . , n. For instance, in
the data set presented in Table 2.12, xi represents the score on an intelligence
quotient (IQ) test, and yi represents the annual salary (to the nearest $1000) of
the ith chosen worker in a sample of 30 workers from a particular company. In
this section, we show how to effectively display data sets of paired values.

One approach to representing such a data set is to first consider each part of the
paired data separately and then plot the relevant histograms or stem-and-leaf plots
for each. For instance, Figs. 2.11 and 2.12 are stem-and-leaf plots of, respectively,
the IQ test scores and the annual salaries for the data presented in Table 2.12.

However, although Figs. 2.11 and 2.12 tell us a great deal about the individual
IQ scores and worker salaries, they tell us nothing about the relationship between
these two variables. Thus, for instance, by themselves they would not be useful in
helping us learn whether higher IQ scores tend to go along with higher income at
this company. To learn about how the data relate to such questions, it is necessary
to consider the paired values of each data point simultaneously.

A useful way of portraying a data set of paired values is to plot the data on a
two-dimensional rectangular plot with the x axis representing the x value of the
data and the y axis representing the y value. Such a plot is called a scatter diagram.
Figure 2.13 presents a scatter diagram for the data of Table 2.12.
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Table 2.12 Salaries versus IQ

Annual salary yi Annual salary yi
Worker i IQ score xi (in units of $1000) Worker i IQ score xi (in units of $1000)

1 110 68 16 84 19
2 107 30 17 83 16
3 83 13 18 112 52
4 87 24 19 80 11
5 117 40 20 91 13
6 104 22 21 113 29
7 110 25 22 124 71
8 118 62 23 79 19
9 116 45 24 116 43

10 94 70 25 113 44
11 93 15 26 94 17
12 101 22 27 95 15
13 93 18 28 104 30
14 76 20 29 115 63
15 91 14 30 90 16

12 4 (1)
11 0,0,2,3,3,5,6,6,7,8 (10)
10 1,4,4,7 (4)
9 0,1,1,3,3,4,4,5 (8)
8 0,3,3,4,7 (5)
7 6,9 (2)

FIGURE 2.11
Stem-and-leaf plot for IQ scores.

7 0,1 (2)
6 2,3,8 (3)
5 2 (1)
4 0,3,4,5 (4)
3 0,0 (2)
2 0,2,2,4,5,9 (6)
1 1,3,3,4,5,5,6,6,7,8,9,9 (12)

FIGURE 2.12
Stem-and-leaf plot for annual salaries (in $1000).

It is clear from Fig. 2.13 that higher incomes appear to go along with higher scores
on the IQ test. That is, while not every worker with a high IQ score receives a larger
salary than another worker with a lower score (compare worker 5 with worker 29),
it appears to be generally true.

The scatter diagram of Fig. 2.13 also appears to have some predictive uses. For
instance, suppose we wanted to predict the salary of a worker, similar to the
ones just considered, whose IQ test score is 120. One way to do this is to “fit by
eye” a line to the data set, as is done in Fig. 2.14. Since the y value on the line
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FIGURE 2.13
Scatter diagram of IQ versus income data.

FIGURE 2.14
Scatter diagram for IQ versus income: fitting a straight line by eye.
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corresponding to the x value of 120 is about 45, this seems like a reasonable
prediction for the annual salary of a worker whose IQ is 120.

In addition to displaying joint patterns of two variables and guiding predictions,
a scatter diagram is useful in detecting outliers, which are data points that do not
appear to follow the pattern of the other data points. (For example, the point (94,
70) in Fig. 2.13 does not appear to follow the general trend.) Having noted the
outliers, we can then decide whether the data pair is meaningful or is caused by
an error in data collection.

PROBLEMS

1. In an attempt to determine the relationship between the daily midday
temperature (measured in degrees Celsius) and the number of defective
parts produced during that day, a company recorded the following data
over 22 workdays.

Number of Number of
Temperature defective parts Temperature defective parts

24.2 25 24.8 23

22.7 31 20.6 20

30.5 36 25.1 25

28.6 33 21.4 25

25.5 19 23.7 23

32.0 24 23.9 27

28.6 27 25.2 30

26.5 25 27.4 33

25.3 16 28.3 32

26.0 14 28.8 35

24.4 22 26.6 24

(a) Draw a scatter diagram.
(b) What can you conclude from the scatter diagram?
(c) If tomorrow’s midday temperature reading were 24.0, what would

your best guess be as to the number of defective parts produced?
2. The following table gives, for each state, the percentage of its popu-

lation not covered by health insurance, in the years 1990, 2000, and
2002.
(a) Draw a scatter diagram relating the 1990 and 2000 rates.
(b) Draw a scatter diagram relating the 2000 and 2002 rates.



Health Insurance Coverage* by State, 1990, 2000, 2002

2002 2000 1990 2002 2000 1990

Not % not Not % not Not % not Not % not Not % not Not % not
covered† covered covered† covered covered† covered covered† covered covered† covered covered† covered

AL 564 12.7 582 13.3 710 17.4 MT 139 15.3 150 16.8 115 14.0
AK 119 18.7 117 18.7 77 15.4 NE 174 10.2 154 9.1 138 8.5
AZ 916 16.8 869 16.7 547 15.5 NV 418 19.7 344 16.8 201 16.5
AR 440 16.3 379 14.3 421 17.4 NH 125 9.9 103 8.4 107 9.9
CA 6,398 18.2 6,299 18.5 5,683 19.1 NJ 1,197 13.9 1,021 12.2 773 10.0
CO 720 16.1 620 14.3 495 14.7 NM 388 21.1 435 24.2 339 22.2
CT 356 10.5 330 9.8 226 6.9 NY 3,042 15.8 3,056 16.3 2,176 12.1
DE 79 9.9 72 9.3 96 13.9 NC 1,368 16.8 1,084 13.6 883 13.8
DC 74 13.0 78 14.0 109 19.2 ND 69 10.9 71 11.3 40 6.3
FL 2,843 17.3 2,829 17.7 2,376 18.0 OH 1,344 11.9 1,248 11.2 1,123 10.3
GA 1,354 16.1 1,166 14.3 971 15.3 OK 601 17.3 641 18.9 574 18.6
HI 123 10.0 113 9.4 81 7.3 OR 511 14.6 433 12.7 360 12.4
ID 233 17.9 199 15.4 159 15.2 PA 1,380 11.3 1,047 8.7 1,218 10.1
IL 1,767 14.1 1,704 13.9 1,272 10.9 RI 104 9.8 77 7.4 105 11.1
IN 797 13.1 674 11.2 587 10.7 SC 500 12.5 480 12.1 550 16.2
IA 277 9.5 253 8.8 225 8.1 SD 85 11.5 81 11.0 81 11.6
KS 280 10.4 289 10.9 272 10.8 TN 614 10.8 615 10.9 673 13.7
KY 548 13.6 545 13.6 480 13.2 TX 5,556 25.8 4,748 22.9 3,569 21.1
LA 820 18.4 789 18.1 797 19.7 UT 310 13.4 281 12.5 156 9.0
ME 144 11.3 138 10.9 139 11.2 VT 66 10.7 52 8.6 54 9.5
MD 730 13.4 547 10.4 601 12.7 VA 962 13.5 814 11.6 996 15.7
MA 644 9.9 549 8.7 530 9.1 WA 850 14.2 792 13.5 557 11.4
MI 1,158 11.7 901 9.2 865 9.4 WV 255 14.6 250 14.1 249 13.8
MN 397 7.9 399 8.1 389 8.9 WI 538 9.8 406 7.6 321 6.7
MS 465 16.7 380 13.6 531 19.9 WY 86 17.7 76 15.7 58 12.5
MO 646 11.6 524 9.5 665 12.7 U.S. 43,574 15.2 39,804 14.2 34,719 13.9
∗ For population, all ages, including those 65 or over, an age group largely covered by Medicare.
† In thousands.
Source: Bureau of the Census. U.S. Dept. of Commerce.
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3. The following table gives the 2000 and 2002 populations of some of the
largest counties in the United States.

Twenty-Five Largest Counties, by Population, 2000–2002

2002 2000 2002 2000
Country Population Population County Population Population

Los Angeles, CA 9,806,577 9,519,330 Broward, FL 1,709,118 1,623,018

Cook, IL 5,377,507 5,376,741 Riverside, CA 1,699,112 1,545,387

Harris, TX 3,557,055 3,400,578 Santa Clara, CA 1,683,505 1,682,585

Maricopa, AZ 3,303,876 3,072,149 New York, NY 1,546,856 1,537,195

Orange, CA 2,938,507 2,846,289 Tarrant, TX 1,527,366 1,446,219

San Diego, CA 2,906,660 2,813,833 Clark, NV 1,522,164 1,375,738

Kings, NY 2,488,194 2,465,326 Philadelphia, PA 1,492,231 1,517,550

Miami-Dade, FL 2,332,599 2,253,362 Middlesex, MA 1,474,160 1,465,396

Dallas, TX 2,283,953 2,218,899 Alameda, CA 1,472,310 1,443,741

Queens, NY 2,237,815 2,229,379 Suffolk, NY 1,458,655 1,419,369

Wayne, MI 2,045,540 2,061,162 Bexar, TX 1,446,333 1,392,927

San Bemardino, CA 1,816,072 1,709,434 Cuyahoga,OH 1,379,049 1,393,845

King, WA 1,759,604 1,737,032

Source: Bureau of the Census. U.S. Dept of Commerce.

(a) Represent these data in a scatter diagram.
(b) What conclusions can be drawn?

4. The following table gives the number of days in each year from 1993 to
2002 that did not meet acceptable air quality standards in a selection of
U.S. metropolitan areas.

Air Quality of Selected U.S. Metropolitan Areas, 1993–2002

Metropolitan statistical area 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Atlanta, GA 36 15 36 28 33 52 67 34 18 24
Bakersfield, CA 97 105 107 110 58 78 144 132 125 152
Baltimore, MD 48 40 36 28 30 51 40 19 32 42
Boston, MA–NH 2 6 7 4 7 8 10 1 12 16
Chicago, IL 4 13 24 7 10 12 19 2 22 21
Dallas, TX 12 24 29 10 27 33 25 22 16 15
Denver, CO 6 3 5 2 0 9 5 3 8 8
Detroit, MI 5 11 14 13 11 17 20 15 27 26
El Paso, TX 7 6 3 6 2 6 5 4 9 13
Fresno, CA 59 55 61 70 75 67 133 131 138 152
Houston, TX 27 41 66 28 47 38 52 42 29 23

(Continued )
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(Continued )

Metropolitan statistical area 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Las Vegas, NV–AZ 3 3 3 14 4 5 8 2 1 6
Los Angeles–Long Beach, CA 134 139 113 94 60 56 56 87 88 80
Miami, FL 6 1 2 1 3 8 7 2 1 1
Minneapolis–St. Paul, MN–WI 0 2 5 0 0 1 1 2 2 1
New Haven–Meriden, CT 12 13 14 8 19 9 19 9 15 25
New York, NY 11 16 21 14 23 18 25 19 19 31
Orange County, CA 25 15 9 9 3 6 14 31 31 19
Philadelphia, PA–NJ 62 37 38 38 38 37 32 22 29 33
Phoenix–Mesa, AZ 14 10 22 15 12 14 10 10 8 8
Pittsburgh, PA 14 22 27 12 21 39 40 29 52 53
Riverside–San Bernardino, CA 168 150 125 118 107 96 123 145 155 145
Sacramento, CA 20 37 41 44 17 29 69 45 49 69
St. Louis, MO–IL 9 33 38 23 15 24 31 18 17 34
Salt Lake City–Ogden, UT 5 17 5 14 2 19 8 15 15 18
San Diego, CA 59 46 48 31 14 33 33 31 31 20
San Francisco, CA 0 0 2 0 0 0 10 4 12 17
Seattle–Bellevue–Everett, WA 0 3 2 6 1 3 6 7 3 6
Ventura, CA 43 63 66 62 45 29 24 31 25 11
Washington, DC–MD–VA–WV 52 22 32 18 30 47 39 11 22 34

Note: Data indicate the number of days metropolitan statistical areas failed to meet acceptable air quality standards. All figures were revised
based on new standards set in 1998. Includes fine particles less than or equal to 2.5 mm in diameter.
Source: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards.

(a) Draw a scatter diagram relating the 2000 and 2002 entries for each
city.

(b) Do higher values in 2002 tend to go with higher values in 2000?
5. The following data relate the attention span (in minutes) to a score on

an IQ examination of 18 preschool-age children.

Attention Attention Attention
span IQ score span IQ score span IQ score

2.0 82 6.3 105 5.5 118
3.0 88 5.4 108 3.6 128
4.4 86 6.6 112 5.4 128
5.2 94 7.0 116 3.8 130
4.9 90 6.5 122 2.7 140
6.1 99 7.2 110 2.2 142

(a) Draw a scatter diagram.
(b) Give a plausible inference concerning the relation of attention span

to IQ score.
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6. The following data relate prime lending rates and the corresponding
inflation rate during 8 years in the 1970s.

Inflation rate Prime lending rate Inflation rate Prime lending rate

3.3 5.2 5.8 6.8
6.2 8.0 6.5 6.9
11.0 10.8 7.6 9.0
9.1 7.9

(a) Draw a scatter diagram.
(b) Fit a straight line drawn “by hand” to the data pairs.
(c) Using your straight line, predict the prime lending rate in a year

whose inflation rate is 7.2 percent.
7. A random group of 12 high school juniors were asked to estimate the

average number of hours they study each week. The grade point aver-
ages of these students were then determined, with the resulting data
being as given in the following. Use it to represent these data in a scatter
diagram.

Hours reported working and GPA

Hours GPA Hours GPA

6 2.8 11 3.3
14 3.2 12 3.4
3 3.1 5 2.7
22 3.6 24 3.8
9 3.0 15 3.0

8. Problem 7 of Sec. 2.4 gives the scores of the first 25 Super Bowl football
games. For each game, let y denote the score of the winning team, and
let x denote the number of points by which that team won. Draw a scat-
ter diagram relating x and y. Do high values of one tend to go with high
values of the other?

2.6 SOME HISTORICAL COMMENTS
Probably the first recorded instance of statistical graphics—that is, the represen-
tation of data by tables or graphs—was Sir Edmund Halley’s graphical analysis of
barometric pressure as a function of altitude, published in 1686. Using the rect-
angular coordinate system introduced by the French scientist René Descartes in
his study of analytic geometry, Halley plotted a scatter diagram and was then able
to fit a curve to the plotted data.
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In spite of Halley’s demonstrated success with graphical plotting, almost all the
applied scientists until the latter part of the 18th century emphasized tables rather
than graphs in presenting their data. Indeed, it was not until 1786, when William
Playfair invented the bar graph to represent a frequency table, that graphs began
to be regularly employed. In 1801 Playfair invented the pie chart and a short time
later originated the use of histograms to display data.

The use of graphs to represent continuous data—that is, data in which all the val-
ues are distinct—did not regularly appear until the 1830s. In 1833 the Frenchman
A. M. Guerry applied the bar chart form to continuous crime data, by first break-
ing up the data into classes, to produce a histogram. Systematic development
of the histogram was carried out by the Belgian statistician and social scientist
Adolphe Quetelet about 1846. Quetelet and his students demonstrated the useful-
ness of graphical analysis in their development of the social sciences. In doing so,
Quetelet popularized the practice, widely followed today, of initiating a research
study by first gathering and presenting numerical data. Indeed, along with the
additional steps of summarizing the data and then utilizing the methods of sta-
tistical inference to draw conclusions, this has become the accepted paradigm for
research in all fields connected with the social sciences. It has also become an
important technique in other fields, such as medical research (the testing of new
drugs and therapies), as well as in such traditionally nonnumerical fields as litera-
ture (in deciding authorship) and history (particularly as developed by the French
historian Fernand Braudel).

John Tukey
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The term histogram was first used by Karl Pearson in his 1895 lectures on statistical
graphics. The stem-and-leaf plot, which is a variant of the histogram, was intro-
duced by the U.S. statistician John Tukey in 1970. In the words of Tukey, “Whereas
a histogram uses a nonquantitative mark to indicate a data value, clearly the best
type of mark is a digit.”

KEY TERMS

Frequency: The number of times that a given value occurs in a data set.

Frequency table: A table that presents, for a given set of data, each distinct data
value along with its frequency.

Line graph: A graph of a frequency table. The abscissa specifies a data value, and
the frequency of occurrence of that value is indicated by the height of a vertical
line.

Bar chart (or bar graph): Similar to a line graph, except now the frequency of a
data value is indicated by the height of a bar.

Frequency polygon: A plot of the distinct data values and their frequencies that
connects the plotted points by straight lines.
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Symmetric data set: A data set is symmetric about a given value x0 if the
frequencies of the data values x0 − c and x0 + c are the same for all values of c.

Relative frequency: The frequency of a data value divided by the number of pieces
of data in the set.

Pie chart: A chart that indicates relative frequencies by slicing up a circle into
distinct sectors.

Histogram: A graph in which the data are divided into class intervals, whose
frequencies are shown in a bar graph.

Relative frequency histogram: A histogram that plots relative frequencies for each
data value in the set.

Stem-and-leaf plot: Similar to a histogram except that the frequency is indicated
by stringing together the last digits (the leaves) of the data.

Scatter diagram: A two-dimensional plot of a data set of paired values.

SUMMARY

This chapter presented various ways to graphically represent data sets. For
instance, consider the following set of 13 data values:

1, 2, 3, 1, 4, 2, 6, 2, 4, 3, 5, 4, 2

These values can be represented in a frequency table, which lists each value and the
number of times it occurs in the data, as follows:

A Frequency Table

Value Frequency Value Frequency

1 2 4 3
2 4 5 1
3 2 6 1

The data also can be graphically pictured by either a line graph or a bar chart. Some-
times the frequencies of the different data values are plotted on a graph, and then
the resulting points are connected by straight lines. This gives rise to a frequency
polygon.

When there are a large number of data values, often we break them up into class
intervals. A bar chart plot relating each class interval to the number of data values
falling in the interval is called a histogram. The y axis of this plot can represent
either the class frequency (that is, the number of data values in the interval) or
the proportion of all the data that lies in the class. In the former case we call the
plot a frequency histogram and in the latter case a relative frequency histogram.
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A line graph. A bar graph.

A frequency polygon.

Consider this data set:

41, 38, 44, 47, 33, 35, 55, 52, 41, 66, 64, 50, 49, 56,

55, 48, 52, 63, 59, 57, 75, 63, 38, 37

Using the five class intervals

30–40, 40–50, 50–60, 60–70, 70–80
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A histogram.

along with the left-end inclusion convention (which signifies that the interval
contains all points greater than or equal to its left-end member and less than its
right-end member), we have the histogram above to represent this data set.

Data sets can also be graphically displayed in a stem-and-leaf plot. The following
stem-and-leaf plot is for the preceding data set.

7 5
6 3,3,4,6
5 0,2,2,5,5,6,7,9
4 1,1,4,7,8,9
3 3,5,7,8,8
A stem-and-leaf plot.

Often data come in pairs. That is, for each element of the data set there is an
x value and a y value. A plot of the x and y values is called a scatter diagram. A
scatter diagram can be quite useful in ascertaining such things as whether high
x values appear to go along with high y values, or whether high x values tend to go
along with low y values, or whether there appears to be no particular association
between the x and y values of a pair.

The following data set of pairs

i 1 2 3 4 5 6 7 8
xi 8 12 7 15 5 12 10 22
yi 14 10 17 9 13 8 12 6
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A scatter diagram.

is represented in the scatter diagram above. The diagram indicates that high values
of one member of the pair appear to be generally associated with low values of
the other member of the pair.

Using these graphical tools, often we can communicate pertinent features of a
data set at a glance. As a result, we can learn things about the data that are not
immediately evident in the raw numbers themselves. The choice of which display
to use depends on such things as the size of the data set, the type of data, and the
number of distinct values.

REVIEW PROBLEMS

1. The following data are the blood types of 50 volunteers at a blood
plasma donation clinic:

O A O AB A A O O B A O A AB B O O O A B A A O A A O

B A O AB A O O A B A A A O B O O A O A B O AB A O B

(a) Represent these data in a frequency table.
(b) Represent them in a relative frequency table.
(c) Represent them in a pie chart.
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2. The following is a sample of prices, rounded to the nearest cent,
charged per gallon of standard gasoline in the San Francisco Bay area
in May 1991:

121, 119, 117, 121, 120, 120, 118, 124, 123, 139, 120,

115, 117, 121, 123, 120, 123, 118, 117, 122, 122, 119

(a) Construct a frequency histogram for this data set.
(b) Construct a frequency polygon.
(c) Construct a stem-and-leaf plot.
(d) Does any data value seem out of the ordinary? If so, explain why.

3. The following frequency table presents the number of female suicides
that took place in eight German states over 14 years.

Number of suicides per year 0 1 2 3 4 5 6 7 8 9 10

Frequency 9 19 17 20 15 11 8 2 3 5 3

Thus, for instance, there were a total of 20 cases in which states had
3 suicides in a year.
(a) How many suicides were reported over the 14 years?
(b) Represent the above data in a histogram.

4. The following table gives the 1991 crime rate (per 100,000 population)
in each state. Use it to construct a
(a) Frequency histogram of the total violent crime rates in the north-

eastern states
(b) Relative frequency histogram of the total property crime rates in

the southern states
(c) Stem-and-leaf plot of the murder rates in the western states
(d) Stem-and-leaf plot of the burglary rates in the midwestern states.

Violent crime Property crime

Region, Division, Forcible Aggravated Larceny— Motor
and State Total Total Murder rape Robbery assault Total Burglary theft vehicle theft

United States 5,898 758 9.8 42 273 433 5,140 1,252 3,229 659
Northeast 5,155 752 8.4 29 352 363 4,403 1,010 2,598 795

New England 4,950 532 4.1 30 159 338 4,419 1,103 2,600 716
Maine 3,768 132 1.2 22 23 86 3,636 903 2,570 163
New Hampshire 3,448 119 3.6 30 33 53 3,329 735 2,373 220
Vermont 3,955 117 2.1 31 12 72 3,838 1,020 2,674 144
Massachusetts 5,332 736 4.2 32 195 505 4,586 1,167 2,501 919

(Continued)
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Violent crime Property crime

Region, Division, Forcible Aggravated Larceny— Motor
and State Total Total Murder rape Robbery assault Total Burglary theft vehicle theft

Rhode Island 5,039 462 3.7 31 123 304 4,577 1,127 2,656 794
Connecticut 5,364 540 5.7 29 224 280 4,824 1,191 2,838 796

Middle Atlantic 5,227 829 9.9 29 419 372 4,398 978 2,598 823
New York 6,245 1,164 14.2 28 622 499 5,081 1,132 2,944 1,004
New Jersey 5,431 635 5.2 29 293 307 4,797 1,016 2,855 926
Pennsylvania 3,559 450 6.3 29 194 221 3,109 720 1,907 482

Midwest 5,257 631 7.8 45 223 355 4,626 1,037 3,082 507
East north central 5,482 704 8.9 50 263 383 4,777 1,056 3,151 570

Ohio 5,033 562 7.2 53 215 287 4,471 1,055 2,916 500
Indiana 4,818 505 7.5 41 116 340 4,312 977 2,871 465
Illinois 6,132 1,039 11.3 40 456 532 5,093 1,120 3,318 655
Michigan 6,138 803 10.8 79 243 470 5,335 1,186 3,469 680
Wisconsin 4,466 277 4.8 25 119 128 4,189 752 3,001 436

West north central 4,722 457 5.4 34 129 288 4,265 991 2,918 356
Minnesota 4,496 316 3.0 40 98 175 4,180 854 2,963 363
Iowa 4,134 303 2.0 21 45 235 3,831 832 2,828 171
Missouri 5,416 763 10.5 34 251 467 4,653 1,253 2,841 558
North Dakota 2,794 65 1.1 18 8 38 2,729 373 2,229 127
South Dakota 3,079 182 1.7 40 19 122 2,897 590 2,192 115
Nebraska 4,354 335 3.3 28 54 249 4,020 727 3,080 213
Kansas 5,534 500 6.1 45 138 310 5,035 1,307 3,377 351

South 6,417 798 12.1 45 252 489 5,618 1,498 3,518 603
South Atlantic 6,585 851 11.4 44 286 510 5,734 1,508 3,665 561

Delaware 5,869 714 5.4 86 215 408 5,155 1,128 3,652 375
Maryland 6,209 956 11.7 46 407 492 5,253 1,158 3,365 731
District of Columbia 10,768 2,453 80.6 36 1,216 1,121 8,315 2,074 4,880 1,360
Virginia 4,607 373 9.3 30 138 196 4,234 783 3,113 339
West Virginia 2,663 191 6.2 23 43 119 2,472 667 1,631 175
North Carolina 5,889 658 11.4 35 178 434 5,230 1,692 3,239 299
South Carolina 6,179 973 11.3 59 171 731 5,207 1,455 3,365 387
Georgia 6,493 738 12.8 42 268 415 5,755 1,515 3,629 611
Florida 8,547 1,184 9.4 52 400 723 7,363 2,006 4,573 784

East south central 4,687 631 10.4 41 149 430 4,056 1,196 2,465 395
Kentucky 3,358 438 6.8 35 83 313 2,920 797 1,909 215
Tennessee 5,367 726 11.0 46 213 456 4,641 1,365 2,662 614
Alabama 5,366 844 11.5 36 153 644 4,521 1,269 2,889 363
Mississippi 4,221 389 12.8 46 116 214 3,832 1,332 2,213 286

West south central 7,118 806 14.2 50 254 488 6,312 1,653 3,871 788

(Continued)
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(Continued)

Violent crime Property crime

Region, Division, Forcible Aggravated Larceny— Motor
and State Total Total Murder rape Robbery assault Total Burglary theft vehicle theft

Arkansas 5,175 593 11.1 45 136 402 4,582 1,227 3,014 341
Louisiana 6,425 951 16.9 41 279 614 5,473 1,412 3,489 573
Oklahoma 5,669 584 7.2 51 129 397 5,085 1,478 3,050 557
Texas 7,819 840 15.3 53 286 485 6,979 1,802 4,232 944

West 6,478 841 9.6 46 287 498 5,637 1,324 3,522 791
Mountain 6,125 544 6.5 44 122 371 5,581 1,247 3,843 491

Montana 3,648 140 2.6 20 19 99 3,508 524 2,778 206
Idaho 4,196 290 1.8 29 21 239 3,905 826 2,901 178
Wyoming 4,389 310 3.3 26 17 264 4,079 692 3,232 155
Colorado 6,074 559 5.9 47 107 399 5,515 1,158 3,930 426
New Mexico 6,679 835 10.5 52 120 652 5,845 1,723 3,775 346
Arizona 7,406 671 7.8 42 166 455 6,735 1,607 4,266 861
Utah 5,608 287 2.9 46 55 183 5,321 840 4,240 241
Nevada 6,299 677 11.8 66 312 287 5,622 1,404 3,565 652

Pacific 6,602 945 10.7 47 345 542 5,656 1,351 3,409 896
Washington 6,304 523 4.2 70 146 303 5,781 1,235 4,102 444
Oregon 5,755 506 4.6 53 150 298 5,249 1,176 3,598 474
California 6,773 1,090 12.7 42 411 624 5,683 1,398 3,246 1,039
Alaska 5,702 614 7.4 92 113 402 5,088 979 3,575 534
Hawaii 5,970 242 4.0 33 87 118 5,729 1,234 4,158 336

Source: U.S. Federal Bureau of Investigation, Crime in the United States, annual.

5. Construct a frequency table for a data set of 10 values that is symmetric
and has (a) 5 distinct values and (b) 4 distinct values. (c) About what
values are the data sets in parts (a) and (b) symmetric?

6. The following are the estimated oil reserves, in billions of barrels, for
four regions in the western hemisphere. Represent the data in a pie
chart.

United States 38.7
South America 22.6
Canada 8.8
Mexico 60.0

7. The following pie chart represents the percentages of the world’s 2006
total military spending by countries and regions of the world. Use it to
estimate the percentages of all military expenditures spent by (a) the
United States, and (b) China.
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Source: Stockholm International Peace Research Institude Yearbook 2007.

8. The following data refer to the ages (to the nearest year) at which
patients died at a large inner-city (nonbirthing) hospital:

1, 1, 1, 1, 3, 3, 4, 9, 17, 18, 19, 20, 20, 22, 24, 26, 28, 34,

45, 52, 56, 59, 63, 66, 68, 68, 69, 70, 74, 77, 81, 90

(a) Represent this data set in a histogram.
(b) Represent it in a frequency polygon.
(c) Represent it in a cumulative frequency polygon.
(d) Represent it in a stem-and-leaf plot.

Problems 9 to 11 refer to the last 50 student entries in App. A.

9. (a) Draw a histogram of the weights of these students.
(b) Comment on this histogram.

10. Draw a scatter diagram relating weight and cholesterol level. Com-
ment on what the scatter diagram indicates.
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11. Draw a scatter diagram relating weight and blood pressure. What does
this diagram indicate?

Problems 12 and 13 refer to the following table concerning the mathematics
and verbal SAT scores of a graduating class of high school seniors.

Verbal Mathematics Verbal Mathematics
Student score score Student score score

1 520 505 8 620 576
2 605 575 9 604 622
3 528 672 10 720 704
4 720 780 11 490 458
5 630 606 12 524 552
6 504 488 13 646 665
7 530 475 14 690 550

12. Draw side-by-side stem-and-leaf plots of the student scores on the
mathematics and verbal SAT examinations. Did the students, as a
group, perform better on one examination? If so, which one?

13. Draw a scatter diagram of student scores on the two examinations. Do
high scores on one tend to go along with high scores on the other?

14. The following table gives information about the age of the population
in both the United States and Mexico.

Proportion of population (percent)

Age, years Mexico United States

0–9 32.5 17.5
10–19 24 20
20–29 14.5 14.5
30–39 11 12
40–49 7.5 12.5
50–59 4.5 10.5
60–69 3.5 7
70–79 1.5 4
Over 80 1 2

(a) What percentage of the Mexican population is less than 30 years
old?

(b) What percentage of the U.S. population is less than 30 years old?
(c) Draw two relative frequency polygons on the same graph. Use

different colors for Mexican and for U.S. data.
(d) In general, how do the age distributions compare for the two

countries?



Review Problems 69

15. The following data relate to the normal monthly and annual precipita-
tion (in inches) for various cities.

Normal Monthly and Annual Precipitation in Selected Cities

State City Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual

AL Mobile 4.59 4.91 6.48 5.35 5.46 5.07 7.74 6.75 6.56 2.62 3.67 5.44 64.64

AK Juneau 3.69 3.74 3.34 2.92 3.41 2.98 4.13 5.02 6.40 7.71 5.15 4.66 53.15

AZ Phoenix 0.73 0.59 0.81 0.27 0.14 0.17 0.74 1.02 0.64 0.63 0.54 0.83 7.11

AR Little Rock 3.91 3.83 4.69 5.41 5.29 3.67 3.63 3.07 4.26 2.84 4.37 4.23 49.20

CA Los Angeles 3.06 2.49 1.76 0.93 0.14 0.04 0.01 0.10 0.15 0.26 1.52 1.62 12.08

Sacramento 4.03 2.88 2.06 1.31 0.33 0.11 0.05 0.07 0.27 0.86 2.23 2.90 17.10

San Diego 2.11 1.43 1.60 0.78 0.24 0.06 0.01 0.11 0.19 0.33 1.10 1.36 9.32

San Francisco 4.65 3.23 2.64 1.53 0.32 0.11 0.03 0.05 0.19 1.06 2.35 3.55 19.71

CO Denver 0.51 0.69 1.21 1.81 2.47 1.58 1.93 1.53 1.23 0.98 0.82 0.55 15.31

CT Hartford 3.53 3.19 4.15 4.02 3.37 3.38 3.09 4.00 3.94 3.51 4.05 4.16 44.39

DE Wilmington 3.11 2.99 3.87 3.39 3.23 3.51 3.90 4.03 3.59 2.89 3.33 3.54 41.38

DC Washington 2.76 2.62 3.46 2.93 3.48 3.35 3.88 4.40 3.22 2.90 2.82 3.18 39.00

FL Jacksonville 3.07 3.48 3.72 3.32 4.91 5.37 6.54 7.15 7.26 3.41 1.94 2.59 52.76

Miami 2.08 2.05 1.89 3.07 6.53 9.15 5.98 7.02 8.07 7.14 2.71 1.86 57.55

GA Atlanta 4.91 4.43 5.91 4.43 4.02 3.41 4.73 3.41 3.17 2.53 3.43 4.23 48.61

HI Honolulu 3.79 2.72 3.48 1.49 1.21 0.49 0.54 0.60 0.62 1.88 3.22 3.43 23.47

ID Boise 1.64 1.07 1.03 1.19 1.21 0.95 0.26 0.40 0.58 0.75 1.29 1.34 11.71

IL Chicago 1.60 1.31 2.59 3.66 3.15 4.08 3.63 3.53 3.35 2.28 2.06 2.10 33.34

Peoria 1.60 1.41 2.86 3.81 3.84 3.88 3.99 3.39 3.63 2.51 1.96 2.01 34.89

IN Indianapolis 2.65 2.46 3.61 3.68 3.66 3.99 4.32 3.46 2.74 2.51 3.04 3.00 39.12

IA Des Moines 1.01 1.12 2.20 3.21 3.96 4.18 3.22 4.11 3.09 2.16 1.52 1.05 30.83

KS Wichita 0.68 0.85 2.01 2.30 3.91 4.06 3.62 2.80 3.45 2.47 1.47 0.99 28.61

KY Louisville 3.38 3.23 4.73 4.11 4.15 3.60 4.10 3.31 3.35 2.63 3.49 3.48 43.56

LA New Orleans 4.97 5.23 4.73 4.50 5.07 4.63 6.73 6.02 5.87 2.66 4.06 5.27 59.74

Source: U.S. National Oceanic and Atmospheric Administration, Climatography of the United States, September 1982.

(a) Represent the normal precipitation amounts for April in a stem-
and-leaf plot.

(b) Represent the annual amounts in a histogram.
(c) Draw a scatter diagram relating the April amount to the annual

amount.
16. A data value that is far away from the other values is called an outlier.

In the following data sets, specify which, if any, of the data values are
outliers.
(a) 14, 22, 17, 5, 18, 22, 10, −17, 25, 28, 33, 12
(b) 5, 2, 13, 16, 9, 12, 7, 10, 54, 22, 18, 15, 12
(c) 18, 52, 14, 20, 24, 27, 43, 17, 25, 28, 3, 22, 6
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17. The following table presents data on the number of cars imported from
Japan and from Germany in the years 1970 to 2002.

New Passenger Cars Imported Into the United States

Japan Germany Japan Germany

1970 381, 338 674, 945 1987 2, 417, 509 377, 542
1971 703, 672 770, 807 1988 2, 123, 051 264, 249
1972 697, 788 676, 967 1989 2, 051, 525 216, 881
1973 624, 805 677, 465 1990 1, 867, 794 245, 286
1974 791, 791 619, 757 1991 1, 762, 347 171, 097
1975 695, 573 370, 012 1992 1, 598, 919 205, 248
1976 1, 128, 936 349, 804 1993 1, 501, 953 180, 383
1977 1, 341, 530 423, 492 1994 1, 488, 159 178, 774
1978 1, 563, 047 416, 231 1995 1, 114, 360 204, 932
1979 1, 617, 328 495, 565 1996 1, 190, 896 234, 909
1980 1, 991, 502 338, 711 1997 1, 387, 812 300, 489
1981 1, 911, 525 234, 052 1998 1, 456, 081 373, 330
1982 1, 801, 185 259, 385 1999 1, 707, 277 461, 061
1983 1, 871, 192 239, 807 2000 1, 839, 093 488, 323
1984 1, 948, 714 335, 032 2001 1, 790, 346 494, 131
1985 2, 527, 467 473, 110 2002 2, 046, 902 574, 455
1986 2, 618, 711 451, 699

Source: Bureau of the Census, Foreign Trade Division.

(a) What conclusions can you draw concerning the yearly number
of Japanese and of German cars imported into the United States
since 1990?

(b) Present a scatter diagram relating Japanese and German car
imports since 1990.



CHAPTER 3

Using Statistics to Summarize
Data Sets

I do hate averages. There is no greater mistake than to call arithmetic
an exact science. There are permutations and aberrations discernible to
minds entirely noble like mine; subtle variations which ordinary accoun-
tants fail to discover, hidden laws of numbers which it requires a mind like
mine to perceive. For instance if you average numbers from the bottom up
and then again from the top down, the result is always different.

A letter to the Mathematical Gazette (a 19th-century British
mathematical journal)

The way to make sense out of raw data is to compare and contrast, to
understand differences.

Gregory Bateson (in Steps to an Ecology of the Mind)
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Our objective in this chapter is to develop measures that can be used to summarize
a data set. These measures, formally called statistics, are quantities whose values
are determined by the data. We study the sample mean, sample median, and
sample mode. These are all statistics that measure the center or middle value of
a data set. Statistics that indicate the amount of variation in the data set are also
considered. We learn about what it means for a data set to be normal, and we
present an empirical rule concerning such sets. We also consider data sets consist-
ing of paired values, and we present a statistic that measures the degree to which
a scatter diagram of paired values can be approximated by a straight line.

3.1 INTRODUCTION
Modern-day experiments often track certain characteristics of thousands of indi-
viduals over time. For instance, in an attempt to learn about the health con-
sequences of certain common practices, the medical statisticians R. Doll and
A. B. Hill sent questionnaires in 1951 to all doctors in the United Kingdom and
received 40,000 replies. Their questionnaire dealt with age, eating habits, exercise
habits, and smoking habits. These doctors were then monitored for 10 years, and
the causes of death of those who died were determined. As one can imagine, this
study resulted in huge sets of data. For instance, even if we just focus on one com-
ponent of the study at a single moment of time, such as the doctors’ ages in 1951,
the resulting data set of 40,000 values is vast. To obtain a feel for such a large
data set, it is often necessary to summarize it by some suitably chosen measures.
In this chapter, we introduce different statistics that can be used to summarize
certain features of data sets.

To begin, suppose that we have in our possession sample data from some
underlying population. Now, whereas in Chap. 2 we showed how to describe and
portray data sets in their entirety, here we will be concerned with determining
certain summary measures about the data. These summary measures are called
statistics, where by a statistic we mean any numerical quantity whose value is
determined by the data.

Definition Numerical quantities computed from a data set are called statistics.

We will be concerned with statistics that describe the central tendency of the
data set; that is, they describe the center of the set of data values. Three different
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statistics for describing this—the sample mean, sample median, and sample
mode—will be presented in Secs. 3.2, 3.3, and 3.4, respectively. Once we have
some idea of the center of a data set, the question naturally arises as to how much
variation there is. That is, are most of the values close to the center, or do they vary
widely about the center? In Sec. 3.5 we will discuss the sample variance and sample
standard deviation, which are statistics designed to measure such variation.

In Sec. 3.6 we introduce the concept of a normal data set, which is a data set having
a bell-shaped histogram. For data sets that are close to being normal, we present
a rule that can be used to approximate the proportion of the data that is within a
specified number of sample standard deviations from the sample mean.

In the first six sections of this chapter, we concern ourselves with data sets where
each datum is a single value. However, in Sec. 3.7 we deal with paired data. That
is, each data point will consist of an x value and a y value. For instance, the x value
might represent the average number of cigarettes that an individual smoked per
day, and the y value could be the age at which that individual died. We intro-
duce a statistic called the sample correlation coefficient whose value indicates the
degree to which data points having large x values also have large y values and cor-
respondingly the degree to which those having small x values also have small y
values.

The Doll–Hill study yielded the result that only about 1 in 1000 nonsmoking
doctors died of lung cancer. For heavy smokers the figure was 1 in 8. In addition,
death rates from heart attacks were 50 percent higher for smokers.

3.2 SAMPLE MEAN
Suppose we have a sample of n data points whose values we designate by
x1, x2, . . . , xn. One statistic for indicating the center of this data set is the sample
mean, defined to equal the arithmetic average of the data values.

Definition The sample mean, which we designate by x (pronounced “x bar”), is
defined by

x =
∑n

i=1 xi

n
= x1 + x2 + · · · + xn

n

■ Example 3.1
The average fuel efficiencies, in miles per gallon, of cars sold in the United States
in the years 1999 to 2003 were

28.2, 28.3, 28.4, 28.5, 29.0

Find the sample mean of this set of data.
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Solution

The sample mean x is the average of the five data values. Thus,

x̄ = 28.2 + 28.3 + 28.4 + 28.5 + 29.0
5

= 142.4
5

= 28.48

Note from this example that whereas the sample mean is the average of all the
data values, it need not itself be one of them. ■

Consider again the data set x1, x2, . . . , xn. If each data value is increased by a
constant amount c, then this causes the sample mean also to be increased by c.
Mathematically, we can express this by saying that if

yi = xi + c i = 1, . . . , n

then

y = x + c

where y and x are the sample means of the yi and the xi, respectively. Therefore,
when it is convenient, we can compute x by first adding c to all the data values,
then computing the sample mean y of the new data, and finally subtracting c
from y to obtain x. Since it is sometimes a lot easier to work with the transformed
rather than the original data, this can greatly simplify the computation of x. Our
next example illustrates this point.

■ Example 3.2
The winning scores in the U.S. Masters Golf Tournament in the years from 1981
to 1990 were as follows:

280, 284, 280, 277, 282, 279, 285, 281, 283, 278

Find the sample mean of these winning scores.

Solution

Rather than directly adding the preceding numbers, first we subtract 280 from
(that is, add c = −280 to) each one to obtain the following transformed data:

0, 4, 0, −3, 2, −1, 5, 1, 3, −2

The sample mean of these transformed data, call it y, is

y = 0 + 4 + 0 − 3 + 2 − 1 + 5 + 1 + 3 − 2
10

= 9
10

Adding 280 to y shows that the sample mean of the original data is

x = 280.9 ■
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If each data value is multiplied by c, then so is the sample mean. That is, if

yi = cxi i = 1, . . . , n

then

y = cx

For instance, suppose that the sample mean of the height of a collection of indi-
viduals is 5.0 feet. Suppose that we now want to change the unit of measurement
from feet to inches. Then since each new data value is the old value multiplied
by 12, it follows that the sample mean of the new data is 12 · 5 = 60. That is, the
sample mean is 60 inches.

Our next example considers the computation of the sample mean when the data
are arranged in a frequency table.

■ Example 3.3
The number of suits sold daily by a women’s boutique for the past 6 days has
been arranged in the following frequency table:

Value Frequency

3 2
4 1
5 3

What is the sample mean?

Solution

Since the original data set consists of the 6 values

3, 3, 4, 5, 5, 5

it follows that the sample mean is

x = 3 + 3 + 4 + 5 + 5 + 5
6

= 3 × 2 + 4 × 1 + 5 × 3
6

= 25
6

That is, the sample mean of the number of suits sold daily is 4.25. ■
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In Example 3.3 we have seen that when the data are arranged in a frequency table,
the sample mean can be expressed as the sum of the products of the distinct values
and their frequencies, all divided by the size of the data set. This result holds in
general. To see this, suppose the data are given in a frequency table that lists k
distinct values x1, x2, . . . , xk with respective frequencies f1, f2, . . . , fk. It follows that
the data set consists of n observations, where n = ∑k

i=1 fi and where the value xi

appears fi times for i = 1, 2, . . . , k. Hence, the sample mean for this data set is

x = x1 + · · · + x1 + x2 + · · · + x2 + · · · + xk + · · · + xk

n

= f1x1 + f2x2 + · · · + fkxk

n
(3.1)

Now, if w1, w2, . . . , wk are nonnegative numbers that sum to 1, then

w1x1 + w2x2 + · · · + wkxk

is said to be a weighted average of the values x1, x2, . . . , xk with wi being the weight
of xi. For instance, suppose that k = 2. Now, if w1 = w2 = 1/2, then the weighted
average

w1x1 + w2x2 = 1
2

x1 + 1
2

x2

is just the ordinary average of x1 and x2. On the other hand, if w1 = 2/3 and
w2 = 1/3, then the weighted average

w1x1 + w2x2 = 2
3

x1 + 1
3

x2

gives twice as much weight to x1 as it does to x2.

By writing Eq. (3.1) as

x = f1
n

x1 + f2
n

x2 + · · · + fk
n

xk

we see that the sample mean x is a weighted average of the set of distinct values.
The weight given to the value xi is fi/n, the proportion of the data values that is
equal to xi. Thus, for instance, in Example 3.3 we could have written that

x = 2
6

× 3 + 1
6

× 4 + 3
6

× 5 = 25
6

■ Example 3.4
In a paper entitled “The Effects of Helmet Use on the Severity of Head Injuries in
Motorcycle Accidents” (published in the Journal of the American Statistical Associ-
ation, 1992, pp. 48–56), A. Weiss analyzed a sample of 770 similar motorcycle
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accidents that occurred in the Los Angeles area in 1976 and 1977. Each acci-
dent was classified according to the severity of the head injury suffered by the
motorcycle operator. The classification used was as follows:

Classification of accident Interpretation

0 No head injury
1 Minor head injury
2 Moderate head injury
3 Severe, not life-threatening
4 Severe and life-threatening
5 Critical, survival uncertain at time of accident
6 Fatal

In 331 of the accidents the operator wore a helmet, whereas in the other
439 accidents the operator did not. The following are frequency tables giving
the severities of the accidents that occurred when the operator was wearing and
was not wearing a helmet.

Frequency of driver Frequency of driver
Classification with helmet without helmet

0 248 227
1 58 135
2 11 33
3 3 14
4 2 3
5 8 21
6 1 6

331 439

Find the sample mean of the head severity classifications for those operators
who wore helmets and for those who did not.

Solution

The sample mean for those wearing helmets is

x = 0.248 + 1.58 + 2.11 + 3.3 + 4.2 + 5.8 + 6.1
331

= 143
331

= 0.432

The sample mean for those who did not wear a helmet is

x = 0.227 + 1.135 + 2.33 + 3.14 + 4.3 + 5.21 + 6.6
439

= 396
439

= 0.902
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Therefore, the data indicate that those cyclists who were wearing a helmet
suffered, on average, less severe head injuries than those who were not wearing
a helmet. ■

3.2.1 Deviations
Again suppose that sample data consist of the n values x1, . . . , xn and that x =∑n

i=1 xi/n is the sample mean. The differences between each of the data values
and the sample mean are called deviations.

Definition The deviations are the differences between the data values and the sample
mean. The value of the ith deviation is xi − x.

A useful identity is that the sum of all the deviations must equal 0. That is,

n∑
i=1

(xi − x) = 0

That this equality is true is seen by the following argument:

n∑
i=1

(xi − x) =
n∑

i=1

xi −
n∑

i=1

x

= nx − nx

= 0

This equality states that the sum of the positive deviations from the sample mean
must exactly balance the sum of the negative deviations. In physical terms, this
means that if n weights of equal mass are placed on a (weightless) rod at the
points xi, i = 1, . . . , n, then x is the point at which the rod will be in balance. This
balancing point is called the center of gravity (Fig. 3.1).

Historical Perspective

In the early days of sea voyages it was quite common for large portions of a ship’s
cargo to be either lost or damaged due to storms. To handle this potential loss,
there was a standard agreement that all those having merchandise aboard the ship
would contribute to pay for the value of all lost or damaged goods. The amount
of money that each of them was called upon to pay was known as havaria, and
from this Latin word derives our present word average. (Typically, if there were n
shippers having damages x1, . . . , xn, then the total loss was x1 + · · · + xn and the
havaria for each was (x1 + · · · + xn)/n.)
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FIGURE 3.1
The center of gravity of 0, 1, 2, 6, 10, 11 is (0 + 1 + 2 + 6 + 10 + 11)/6 = 30/6 = 5.

■ Example 3.5
For the data of Example 3.1, the deviations from the sample mean of 28.48 are

x1 − x = 28.2 − 28.48 = −0.28

x2 − x = 28.3 − 28.48 = −0.18

x3 − x = 28.4 − 28.48 = −0.08

x4 − x = 28.5 − 28.48 = 0.02

x5 − x = 29.0 − 28.48 = 0.52

As a check, we note that the sum of the deviations is

−0.28 − 0.18 − 0.08 + 0.02 + 0.52 = 0 ■

PROBLEMS

1. The following data represent the scores on a statistics examination of
a sample of students:

87, 63, 91, 72, 80, 77, 93, 69, 75, 79, 70, 83, 94, 75, 88

What is the sample mean?
2. The following data (from U.S. Department of Agriculture, Food Con-

sumption, Prices, and Expenditures) give the U.S. per capita consump-
tion (in pounds) of cheese in a sample of years.

Year 1965 1975 1985 1995 2001

Per capita consumption 10.0 14.8 23.4 26.4 30.1

Find the sample mean of the given data.
3. The following data give the annual average number of inches of pre-

cipitation and the average number of days of precipitation in a sample
of cities.



80 CHAPTER 3: Using Statistics to Summarize Data Sets

City Average amount of precipitation Average number of days

Albany, NY 35.74 134
Baltimore, MD 31.50 83
Casper, WY 11.43 95
Denver, CO 15.31 88
Fargo, ND 19.59 100
Houston, TX 44.76 105
Knoxville, TN 47.29 127
Los Angeles, CA 12.08 36
Miami, FL 57.55 129
New Orleans, LA 59.74 114
Pittsburgh, PA 36.30 154
San Antonio, TX 29.13 81
Wichita, KS 28.61 85

Source: National Oceanic and Atmospheric Administration.

(a) Find the sample mean of the average number of inches of
precipitation.

(b) Find the sample mean of the average number of days of precipita-
tion.

4. Consider five numbers. Suppose the mean of the first four numbers
is 14.
(a) If the fifth number is 24, what is the mean of all five numbers?
(b) If the mean of all five numbers is 24, what is the fifth number?

5. The sample mean of the weights of the adult women of town A is
larger than the sample mean of the weights of the adult women of
town B. Moreover, the sample mean of the weights of the adult men
of town A is larger than the sample mean of the weights of the adult
men of town B. Can we conclude that the sample mean of the weights
of the adults of town A is larger than the sample mean of the weights
of the adults of town B? Explain your answer.

6. Suppose that the sample mean of a set of 10 data points is x = 20.
(a) If it is discovered that a data point having value 15 was incorrectly

read as having value 13, what should be the revised value of x?
(b) Suppose there is an additional data point whose value is 22. Will

this increase or decrease the value of x?
(c) Using the original data (and not the revised data in part (a)), what

is the new value of x in part (b)?
7. The following table gives the number of cases of tetanus in the

27-country European community in the years from 1996 to 2004. Find
the sample mean of these 27 × 11 = 297 data values.
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Tetanus
Number of cases

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

EU-27 352 309 290 288 263 220 188 219 177 98
Belgium 3 1 0 1 1 3 1 1 2 3
Bulgaria 4 5 1 10 3 4 2 2 0 2
Czech Republic 0 2 1 0 1 3 0 0 0 0
Denmark 0 2 2 1 4 1 0 0 1 0
Germany 17 11 7 8 8 8 : : : :
Estonia 1 2 1 1 1 1 0 1 0 0
Ireland 0 0 1 1 1 3 0 0 1 0
Greece 7 2 2 6 16 4 3 7 5 7
Spain 45 45 32 38 29 23 21 24 16 18
France 39 29 20 17 29 28 17 30 25 17
Italy 105 103 119 91 98 63 69 73 56 :
Cyprus 0 0 0 0 0 0 1 2 0 0
Latvia 4 3 1 3 2 1 0 0 1 0
Lithuania 2 3 2 6 0 1 1 4 1 4
Luxembourg 1 0 0 0 0 0 0 0 0 0
Hungary 11 12 12 20 10 8 5 4 1 3
Malta 1 1 1 0 1 1 2 1 1 0
Netherlands 2 2 3 1 5 0 : 4 : :
Austria 0 0 0 0 0 0 : 0 : :
Poland 46 37 22 21 14 21 20 30 25 15
Portugal 23 16 24 25 15 15 11 6 9 8
Romania 22 17 23 19 14 23 21 13 11 8
Slovenia 5 5 3 5 9 2 5 3 2 2
Slovakia 1 0 0 0 0 0 2 0 0 0
Finland 1 0 2 8 : : : 0 : :
Sweden 3 3 2 2 0 1 0 0 0 1
United Kingdom 9 8 9 4 2 6 7 14 20 10

8. The following stem-and-leaf plot portrays the most recent 15 league
bowling scores of the author of this text. Compute the sample mean.

18 2, 4, 7
17 0
16 1,9
15 2, 2, 4, 8, 8
14
13 2, 1, 5, 5

9. Find the sample mean for this data set:

1, 2, 4, 7, 10, 12
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Now find the sample means for the data sets

3, 6, 12, 21, 30, 36 and 6, 7, 9, 12, 15, 17

10. Suppose that x is the sample mean of the data set consisting of the
data x1, . . . , xn. If the data are transformed according to the formula

yi = axi + b i = 1, . . . , n

what is the sample mean of the data set y1, . . . , yn? (In the equation, a
and b are given constants.)

11. The following data give the total number of fires in Ontario, Canada,
in the months of 2002:

6, 13, 5, 7, 7, 3, 7, 2, 5, 6, 9, 8

Find the sample mean of this data set.
12. The following data set specifies the total number of cars produced

in the United States over a sample of years. The data are in units of
1000 cars. Find the sample mean of the number of cars sold annually
in these years.

Year 1980 1985 1990 1995 2000 2002 2006

Number sold 8010 11,653 9783 11,985 12,832 12,326 11,264

Source: Statistical Abstract of the United States, 2008.

13. One-half the values of a sample are equal to 10, and the other half are
equal to 20. What is the sample mean?

14. The following is a frequency table of the ages of a sample of members
of a symphony for young adults.

Age value Frequency

16 9
17 12
18 15
19 10
20 8

Find the sample mean of the given ages.
15. Half the values of a sample are equal to 10, one-sixth are equal to 20,

and one-third are equal to 30. What is the sample mean?
16. There are two entrances to a parking lot. Student 1 counts the daily

number of cars that pass through entrance 1, and student 2 does the
same for entrance 2. Over 30 days, the data of student 1 yielded a
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sample mean of 122, and the data of student 2 yielded a sample mean
of 160. Over these 30 days, what was the daily average number of cars
that entered the parking lot?

17. A company runs two manufacturing plants. A sample of 30 engineers
at plant 1 yielded a sample mean salary of $33,600. A sample of 20 engi-
neers at plant 2 yielded a sample mean salary of $42,400. What is the
sample mean salary for all 50 engineers?

18. Suppose that we have two distinct samples of sizes n1 and n2. If the
sample mean of the first sample is x1 and that of the second is x2, what
is the sample mean of the combined sample of size n1 + n2?

19. Find the deviations for each of the three data sets of Prob. 9, and verify
your answers by showing that in each case the sum of the deviations
is 0.

20. Calculate the deviations for the data of Prob. 14 and check that they
sum to 0.

3.3 SAMPLE MEDIAN
The following data represent the number of weeks after completion of a learn-to-
drive course that it took a sample of seven people to obtain a driver’s license:

2, 110, 5, 7, 6, 7, 3

The sample mean of this data set is x = 140/7 = 20; and so six of the seven data
values are quite a bit less than the sample mean, and the seventh is much greater.
This points out a weakness of the sample mean as an indicator of the center of a
data set—namely, its value is greatly affected by extreme data values.

A statistic that is also used to indicate the center of a data set but that is not affected
by extreme values is the sample median, defined as the middle value when the data
are ranked in order from smallest to largest. We will let m denote the sample
median.

Definition Order the data values from smallest to largest. If the number of data values
is odd, then the sample median is the middle value in the ordered list; if it is even, then
the sample median is the average of the two middle values.

It follows from this definition that if there are three data values, then the sample
median is the second-smallest value; and if there are four, then it is the average of
the second- and the third-smallest values.

■ Example 3.6
The following data represent the number of weeks it took seven individuals to
obtain their driver’s licenses. Find the sample median.

2, 110, 5, 7, 6, 7, 3
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Solution

First arrange the data in increasing order.

2, 3, 5, 6, 7, 7, 110

Since the sample size is 7, it follows that the sample median is the fourth-
smallest value. That is, the sample median number of weeks it took to obtain
a driver’s license is m = 6 weeks. ■

■ Example 3.7
The following data represent the number of days it took 6 individuals to quit
smoking after completing a course designed for this purpose.

1, 2, 3, 5, 8, 100

What is the sample median?

Solution

Since the sample size is 6, the sample median is the average of the two middle
values; thus,

m = 3 + 5
2

= 4

That is, the sample median is 4 days. ■

In general, for a data set of n values, the sample median is the [(n + 1)/2]-
smallest value when n is odd and is the average of the (n/2)-smallest value and
the (n/2 + 1)-smallest value when n is even.

The sample mean and sample median are both useful statistics for describing the
central tendency of a data set. The sample mean, being the arithmetic average,
makes use of all the data values. The sample median, which makes use of only
one or two middle values, is not affected by extreme values.

■ Example 3.8
The following data give the names of the National Basketball Association (NBA)
individual scoring champions and their season scoring averages in each of the
seasons from 1992 to 2008.

(a) Find the sample median of the scoring averages.
(b) Find the sample mean of the scoring averages.
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1992–93 Michael Jordan, Chicago Bulls 32.6

1993–94 David Robinson, San Antonio Spurs 29.8

1994–95 Shaquille O’Neal, Orlando Magic 29.3

1995–96 Michael Jordan, Chicago Bulls 30.4

1996–97 Michael Jordan, Chicago Bulls 29.6

1997–98 Michael Jordan, Chicago Bulls 28.7

1998–99 Allen Iverson, Philadelphia 76ers 26.8

1999–00 Shaquille O’Neal, L.A. Lakers 29.7

2000–01 Allen Iverson, Philadelphia 76ers 31.1

2001–02 Allen Iverson, Philadelphia 76ers 31.4

2002–03 Tracy McGrady, Orlando Magic 32.1

2003–04 Tracy McGrady, Orlando Magic 28.0

2004–05 Allen Iverson, Philadelphia 76ers 30.7

2005–06 Kobe Bryant, L.A. Lakers 35.4

2006–07 Kobe Bryant, Los Angeles Lakers 31.6

2007–08 Lebron James, Cleveland Cavaliers 30.0

2008–09 Dwyane Wade, Miami Heat 30.2

Solution

(a) Since there are 17 data values, the sample median is the 9th smallest.
Therefore, the sample median is

m = 30.2

(b) The sum of all 17 values is 517.4, and so the sample mean is

x = 517.4
17

≈ 30.435 ■

Historical Perspective

The Dutch mathematician Christian Huyghens was one of the early developers of
the theory of probability. In 1669 his brother Ludwig, after studying the mortality
tables of the time, wrote to his famous older brother that “I have just been making
a table showing how long people have to live. . . . Live well! According to my
calculations you will live to be about 56 1

2 and I to 55.” Christian, intrigued, also
looked at the mortality tables but came up with different estimates for how long
both he and his brother would live. Why? Because they were looking at different
statistics. Ludwig was basing his estimates on the sample median while Christian
was basing his on the sample mean!
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For data sets that are roughly symmetric about their central values, the sample
mean and sample median will have values close to each other. For instance, the
data

4, 6, 8, 8, 9, 12, 15, 17, 19, 20, 22

are roughly symmetric about the value 12, which is the sample median. The
sample mean is x = 140/11 = 12.73, which is close to 12.

The question as to which of the two summarizing statistics is the more informative
depends on what you are interested in learning from the data set. For instance, if
a city government has a flat-rate income tax and is trying to figure out how much
income it can expect, then it would be more interested in the sample mean of
the income of its citizens than in the sample median (why is this?). On the other
hand, if the city government were planning to construct some middle-income
housing and were interested in the proportion of its citizens who would be able
to afford such housing, then the sample median might be more informative (why
is this?).

Although it is interesting to consider whether the sample mean or sample median
is more informative in a particular situation, note that we need never restrict our-
selves to a knowledge of just one of these quantities. They are both important,
and thus both should always be computed when a data set is summarized.

PROBLEMS

1. The following are the total yardages of a sample of 12 municipal golf
courses:

7040, 6620, 6050, 6300, 7170, 5990, 6330, 6780, 6540, 6690, 6200, 6830

(a) Find the sample median.
(b) Find the sample mean.

2. (a) Determine the sample median of the data set

14, 22, 8, 19, 15, 7, 8, 13, 20, 22, 24, 25, 11, 9, 14

(b) Increase each value in (a) by 5, and find the new sample median.
(c) Multiply each value in (a) by 3, and find the new sample median.

3. If the median of the data set xi, i = 1, . . . , n, is 10, what is the median of
the data set 2xi + 3, i = 1, . . . , n?

4. The following are the speeds of 40 cars as measured by a radar device
on a city street:
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22, 26, 31, 38, 27, 29, 33, 40, 36, 27, 25, 42, 28, 19, 28, 26, 33, 26, 37, 22,

31, 30, 44, 29, 25, 17, 46, 28, 31, 29, 40, 38, 26, 43, 45, 21, 29, 36, 33, 30

Find the sample median.
5. The following presents the male and female suicide rates per 100,000

population for a variety of countries.

Suicide Rates per 100,000 Population

Sex United States Australia Austria Canada Denmark France

Female 5.4 5.1 15.8 5.4 20.6 12.7
Male 19.7 18.2 42.1 20.5 35.1 33.1

Sex Italy Japan Netherlands Poland Sweden U.K. W. Germany

Female 4.3 14.9 8.1 4.4 11.5 5.7 12.0
Male 11.0 27.8 14.6 22.0 25.0 12.1 26.6

Source: World Health Organization, World Health Statistics.

(a) Find the sample median of the male suicide rates.
(b) Find the sample median of the female suicide rates.
(c) Find the sample mean of the male suicide rates.
(d) Find the sample mean of the female suicide rates.

6. Find the sample median of the average annual number of days of
precipitation in the cities noted in Prob. 3 of Sec. 3.2.

7. Find the sample median of the average annual number of inches of
precipitation in the cities noted in Prob. 3 of Sec. 3.2.

8. Find the sample median of the data presented in Prob. 8 of Sec. 2.3.
9. Use the table on death rates preceding Prob. 9 of Sec. 2.3 to find the

sample median of the death rates due to

(a) Falls
(b) Poisoning
(c) Drowning

10. The sample median of 10 distinct values is 5. What can you say about
the new sample median if

(a) An additional datum whose value is 7 is added to the data set?
(b) Two additional data values—3 and 42—are added to the data set?

11. The histogram in the figure on the following page describes the annual
rainfall, in inches, over the last 34 years in a certain western city. Since
the raw data are not recoverable from a histogram, we cannot use them
to exactly compute the value of the sample mean and sample median.
Still, based on this histogram, what is the largest possible value of
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(a) The sample mean?
(b) The sample median?
What is the smallest possible value of
(c) The sample mean?
(d) The sample median?
(e) The actual data follow:

15.2, 16.1, 16.5, 16.7, 17.2, 17.5, 17.7, 18.3, 18.6, 18.8, 18.9, 19.1,

19.2, 19.2, 19.6, 19.8, 19.9, 20.2, 20.3, 20.3, 20.8, 21.1, 21.4, 21.7,

22.2, 22.5, 22.5, 22.7, 22.9, 23.3, 23.6, 24.1, 24.5, 24.9

Determine the sample mean and sample median and see that they are
consistent with your previous answers.

12. A total of 100 people work at company A, whereas a total of 110 work
at company B. Suppose the total employee payroll is larger at company
A than at company B.
(a) What does this imply about the sample mean of the salaries at

company A with regards to the sample mean of the salaries at
company B?

(b) What does this imply about the sample median of the salaries at
company A with regards to the sample median of the salaries at
company B?

13. Using the data from Example 3.4, compute the sample medians of the
severity of head injuries suffered by motorcycle operators who were
wearing and who were not wearing helmets.



3.3 Sample Median 89

14. In the following situations, which do you think is a more informative
statistic, the sample mean or the sample median?
(a) In order to decide whether to discontinue a bus service from

Rochester to New York City, an executive studies the number of
riders on a sample of days.

(b) To determine how present-day college-bound students compare
with those of earlier years, a sample of entrance examination
scores from several years is consulted.

(c) A lawyer representing a defendant in a jury trial is studying the
IQ scores of the jurors who were selected.

(d) You purchased your home 6 years ago in a small suburban commu-
nity for $105,000, which was both the mean and the median price
for all homes sold that year in that community. However, in the
last couple of years some new, more expensive homes have been
built. To get an idea of the present value of your home, you study
recent sales prices of homes in your community.

15. Women make up the following percentages of the workforce in the
14 occupations listed.

Percentage Percentage
Occupation women Occupation women

Corporate executives 36.8 Doctors 17.6
Nurses 94.3 Lawyers 18.0
Sales supervisors 30.5 Elementary school teachers 85.2
Sales workers 68.6 Postal clerks 43.5
Firefighters 1.9 Police workers 10.9
Cleaning jobs 41.5 Construction supervisors 1.6
Construction workers 2.8 Truck drivers 2.1

For these percentages find
(a) The sample mean
(b) The sample median
It also turns out that women make up 44.4 percent of the total work-
force for these occupations. Is this consistent with your answers in (a)
and (b)? Explain!

16. Using data concerning the first 30 students in App. A, find the sample
median and the sample mean for
(a) Weight
(b) Cholesterol
(c) Blood pressure

17. The following table gives the median age at first marriage in the years
1992 to 2002.



90 CHAPTER 3: Using Statistics to Summarize Data Sets

(a) Find the sample median of the men’s median age.
(b) Find the sample median of the women’s median age.

U.S. Median Age at First Marriage

Year Men Women Year Men Women

2002 26.9 25.3 1996 27.1 24.8

2001 26.9 25.1 1995 26.9 24.5

2000 26.8 25.1 1994 26.7 24.5

1999 26.9 25.1 1993 26.5 24.5

1998 26.7 25.0 1992 26.5 24.4

1997 26.8 25.0

3.3.1 Sample Percentiles
The sample median is a special type of statistic known as a sample 100p percentile,
where p is any fraction between 0 and 1. Loosely speaking, a sample 100p per-
centile is the value such that 100p percent of the data values are less than it and
100(1 − p) percent of the values are greater than it.

Definition The sample 100p percentile is that data value having the property that at
least 100p percent of the data are less than or equal to it and at least 100(1 − p) percent
of the data values are greater than or equal to it. If two data values satisfy this condition,
then the sample 100p percentile is the arithmetic average of these values.

Note that the sample median is the sample 50th percentile. That is, it is the sample
100p percentile when p = 0.50.

Suppose the data from a sample of size n are arranged in increasing order from
smallest to largest. To determine the sample 100p percentile, we must determine
the data value such that

1. At least np of the data values are less than or equal to it.
2. At least n(1 − p) of the data values are greater than or equal to it.

Now if np is not an integer, then the only data value satisfying these requirements
is the one whose position is the smallest integer greater than np. For instance,
suppose we want the sample 90th percentile from a sample of size n = 12. Since
p = 0.9, we have np = 10.8 and n(1 − p) = 1.2. Thus, we require those data values
for which

1. At least 10.8 values are less than or equal to it (and so the data value must be
in position 11 or higher).

2. At least 1.2 values are greater than or equal to it (and so it must be in position
11 or lower).
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Clearly, the only data value that satisfies both requirements is the one that is in
position 11, and thus this is the sample 90th percentile.

On the other hand, if np is an integer, then both the value in position np and
the value in position np + 1 satisfy requirements (1) and (2); and so the sample
100p percentile value would be the average of these two data values. For instance,
suppose we wanted the sample 95th percentile from a data set of n = 20 values.
Then both the 19th and the 20th values (that is, the two largest values) will be
greater than or equal to at least np = 20(0.95) = 19 of the values and less than or
equal to at least n(1 − p) = 1 value. The 95th percentile is thus the average of the
19th and 20th largest values.

Summing up, we have shown the following.

To find the sample 100p percentile of a data set of size n

1. Arrange the data in increasing order.
2. If np is not an integer, determine the smallest integer greater than np. The data

value in that position is the sample 100p percentile.
3. If np is an integer, then the average of the values in positions np and np + 1 is

the sample 100p percentile.

■ Example 3.9
Which data value is the sample 90th percentile when the sample size is (a) 8,
(b) 16, and (c) 100?

Solution

(a) Since 0.9 × 8 = 7.2, which is not an integer, it follows that if the data are
arranged from smallest to largest, then the sample 90th percentile value
would be the 8th-smallest value (that is, the largest value).

(b) Since 0.9 × 16 = 14.4, which is not an integer, it follows that the sample
90th percentile would be the 15th-smallest value.

(c) Since 0.9 × 100 = 90 is an integer, the sample 90th percentile value is the
average of the 90th and the 91st values when the data are arranged from
smallest to largest. ■

■ Example 3.10
Table 3.1 lists the top 20 U.S. colleges and universities based on endowment
assets. Using these data, find the

(a) Sample 90th percentile
(b) Sample 20th percentile



92 CHAPTER 3: Using Statistics to Summarize Data Sets

Table 3.1 Top 20 Colleges and Universities in Endow-
ment Assets, 2005

2005
Endowment

Funds
Institution State ($000)

1 Harvard University MA 25,473,721
2 Yale University CT 15,224,900
3 Stanford University CA 12,205,000
4 University of Texas System TX 11,610,997
5 Princeton University NJ 11,206,500
6 Massachusetts Institute of Technology MA 6,712,436
7 University of California CA 5,221,916
8 Columbia University NY 5,190,564
9 The Texas A&M University System and TX 4,963,879

Foundations
10 University of Michigan Ml 4,931,338
11 Emory University GA 4,376,272
12 University of Pennsylvania PA 4,369,782
13 Washington University MO 4,268,415
14 Northwestern University IL 4,215,275
15 University of Chicago IL 4,137,494
16 Duke University NC 3,826,153
17 Cornell University NY 3,777,092
18 University of Notre Dame IN 3,650,224
19 Rice University TX 3,611,127
20 University of Virginia VA 3,219,098

Solution

(a) Because the sample size is 20 and 20 × 0.9 = 18, the sample 90th per-
centile is the average of the 18th- and 19th-smallest values. Equivalently,
it is the average of the 2nd- and 3rd-largest values. Hence,

sample 90th percentile = 15,224,900 + 12,205,000
2

= 13,714,950

That is, the sample 90th percentile of this data set is approximately
$13.7 billion.

(b) Because 20 × 0.2 = 4, the sample 20th percentile is the average of the
4th- and 5th-smallest values, giving the result

Sample 20th percentile = 3,777,092 + 3,826,153
2

= 3,801,623 ■
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The sample 25th percentile, 50th percentile, and 75th percentile are known as the
quartiles.

Definition The sample 25th percentile is called the first quartile. The sample 50th
percentile is called the median or the second quartile. The sample 75th percentile is
called the third quartile.

The quartiles break up a data set into four parts with about 25 percent of the
data values being less than the first quartile, about 25 percent being between the
first and second quartiles, about 25 percent being between the second and third
quartiles, and about 25 percent being larger than the third quartile.

■ Example 3.11
Find the sample quartiles for the following 18 data values, which represent the
ordered values of a sample of scores from a league bowling tournament:

122, 126, 133, 140, 145, 145, 149, 150, 157, 162, 166, 175, 177, 177, 183,
188, 199, 212

Solution

Since 0.253 × 18 = 4.5, the sample 25th percentile is the fifth-smallest value,
which is 145.

Since 0.50 × 18 = 9, the second quartile (or sample median) is the average of
the 9th- and 10th-smallest values and so is

157 + 162
2

= 159.5

Since 0.75 × 18 = 13.5, the third quartile is the 14th-smallest value, which
is 177. ■

PROBLEMS

1. Seventy-five values are arranged in increasing order. How would you
determine the sample
(a) 80th percentile
(b) 60th percentile
(c) 30th percentile
of this data set?

2. The following table gives the number of deaths of infants per 1,000
births in the 50 U.S. states in 2007. Use it to find the quartiles of the
state infant death rates.
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Number of Deaths of Infants per 1,000 Births and Total Infant Mortality

State Ranking
1 Montana 4.5 (52 Total) 25 Arizona 6.7 (630 Total)
1 Vermont 4.5 (30 Total) 27 Kentucky 6.8 (378 Total)
3 Minnesota 4.7 (332 Total) 28 Florida 7.0 (1,537 Total)
4 Massachusetts 4.8 (380 Total) 29 Kansas 7.2 (284 Total)
5 Iowa 5.1 (195 Total) 29 Pennsylvania 7.2 (1,049 Total)
6 California 5.2 (2,811 Total) 31 Illinois 7.5 (1,349 Total)
6 Utah 5.2 (264 Total) 31 Missouri 7.5 (584 Total)
8 Rhode Island 5.3 (68 Total) 31 Virginia 7.5 (776 Total)
9 Connecticut 5.5 (233 Total) 34 Michigan 7.6 (984 Total)
9 Oregon 5.5 (251 Total) 34 West Virginia 7.6 (158 Total)
9 Washington 5.5 (451 Total) 36 Ohio 7.7 (1,143 Total)
12 New Hampshire 5.6 (81 Total) 37 Indiana 8.0 (700 Total)
12 New Jersey 5.6 (651 Total) 37 Oklahoma 8.0 (411 Total)
12 North Dakota 5.6 (46 Total) 39 South Dakota 8.2 (93 Total)
15 Hawaii 5.7 (104 Total) 40 Arkansas 8.3 (319 Total)
15 Maine 5.7 (79 Total) 41 Maryland 8.4 (630 Total)
17 Wisconsin 6.0 (420 Total) 42 Georgia 8.5 (1,181 Total)
18 New York 6.1 (1,518 Total) 43 Delaware 8.6 (98 Total)
19 Idaho 6.2 (139 Total) 43 Tennessee 8.6 (687 Total)
20 Colorado 6.3 (434 Total) 45 Alabama 8.7 (516 Total)
20 New Mexico 6.3 (179 Total) 46 North Carolina 8.8 (1,053 Total)
20 Texas 6.3 (2,407 Total) 46 Wyoming 8.8 (60 Total)
23 Nevada 6.4 (225 Total) 48 South Carolina 9.3 (525 Total)
24 Nebraska 6.6 (173 Total) 49 Mississippi 9.8 (420 Total)
25 Alaska 6.7 (69 Total) 50 Louisiana 10.5 (684 Total)

3. Consider a data set of n values 1, 2, 3, . . . , n. Find the value of the sample
95th percentile when
(a) n = 100
(b) n = 101

The following table gives the number of physicians and of dentists per
100,000 population for 12 midwestern states in 2000. Problems 4 and 5 are
based on it.
4. For the physician’s rates per 100,000 population, find the

(a) Sample 40th percentile
(b) Sample 60th percentile
(c) Sample 80th percentile



3.3 Sample Median 95

State Physician’s rate Dentist’s rate

Ohio 188 56
Indiana 146 48
Illinois 206 61
Michigan 177 64
Wisconsin 177 70
Minnesota 207 70
Iowa 141 60
Missouri 186 55
North Dakota 157 55
South Dakota 129 54
Nebraska 162 71
Kansas 166 52

Source: American Medical Association, Physician Characteristics
and Distribution in the U.S.

5. For the dentist’s rates per 100,000 population, find the
(a) Sample 90th percentile
(b) Sample 50th percentile
(c) Sample 10th percentile

6. Suppose the sample 100p percentile of a set of data is 120. If we add
30 to each data value, what is the new value of the sample 100p
percentile?

7. Suppose the sample 100p percentile of a set of data is 230. If we multi-
ply each data value by a positive constant c, what is the new value of
the sample 100p percentile?

8. Find the sample 90th percentile of this data set:

75, 33, 55, 21, 46, 98, 103, 88, 35, 22, 29, 73, 37, 101,

121, 144, 133, 52, 54, 63, 21, 7

9. Use the table on page 96 to find the quartiles of 2006 traffic fatal-
ity rates (per 100 million vehicle miles) in the 50 states of the United
States.

10. The following are the quartiles of a large data set:

First quartile = 35

Second quartile = 47

Third quartile = 66



Traffic Fatalities by State: 1990 to 2006
[For deaths within 30 days of the accident]

Fatality rate1 Fatality rate1

State 1990 2000 2005 2006 1990 2006 State 1990 2000 2005 2006 1990 2006

U.S… 44,599 41,945 43,510 42,642 2.1 1.4 MO…. 1,097 1,157 1,257 1,096 2.2 1.6
AL …. 1,121 996 1,148 1,208 2.6 2.0 MT…. 212 237 251 263 2.5 2.3
AK…. 98 106 73 74 2.5 1.5 NE …. 262 276 276 269 1.9 1.4
AZ…. 869 1,036 1,179 1,288 2.5 2.1 NV …. 343 323 427 432 3.4 2.0
AR …. 604 652 654 665 2.9 2.0 NH …. 158 126 166 127 1.6 0.9
CA…. 5,192 3,753 4,333 4,236 2.0 1.3 NJ….. 886 731 747 772 1.5 1.0

CO…. 544 681 606 535 2.0 1.1 NM…. 499 432 488 484 3.1 1.9
CT…. 385 341 278 301 1.5 1.0 NY…. 2,217 1,460 1,434 1,456 2.1 1.0
DE …. 138 123 133 148 2.1 1.6 NC…. 1,385 1,557 1,547 1,559 2.2 1.5
DC…. 48 48 48 37 1.4 1.0 ND…. 112 86 123 111 1.9 1.4
FL….. 2,891 2,999 3,518 3,374 2.6 1.7 OH…. 1,638 1,366 1,321 1,238 1.8 1.1

GA…. 1,562 1,541 1,729 1,693 2.2 1.5 OK…. 641 650 803 765 1.9 1.6
HI….. 177 132 140 161 2.2 1.6 OR…. 579 451 487 477 2.2 1.3
ID….. 244 276 275 267 2.5 1.8 PA…. 1,646 1,520 1,616 1,525 1.9 1.4
IL….. 1,589 1,418 1,363 1,254 1.9 1.2 RI….. 84 80 87 81 1.1 1.0
IN….. 1,049 886 938 899 2.0 1.3 SC…. 979 1,065 1,094 1,037 2.8 2.1

IA….. 465 445 450 439 2.0 1.4 SD…. 153 173 186 191 2.2 2.1
KS…. 444 461 428 468 1.9 1.6 TN…. 1,177 1,307 1,270 1,287 2.5 1.8
KY…. 849 820 985 913 2.5 1.9 TX…. 3,250 3,779 3,536 3,475 2.1 1.5
LA…. 959 938 963 982 2.5 2.2 UT …. 272 373 282 287 1.9 1.1
ME…. 213 169 169 188 1.8 1.3 VT…. 90 76 73 87 1.5 1.1

MD…. 707 588 614 651 1.7 1.2 VA…. 1,079 929 947 963 1.8 1.2
MA…. 605 433 441 430 1.3 0.8 WA…. 825 631 649 630 1.8 1.1
Ml….. 1,571 1,382 1,129 1,085 1.9 1.0 WV…. 481 411 374 410 3.1 2.0
MN…. 566 625 559 494 1.5 0.9 Wl….. 769 799 815 724 1.7 1.2
MS…. 750 949 931 911 3.1 2.2 WY…. 125 152 170 195 2.1 2.1

1Deaths per 100 million vehicle miles traveled.
Source: U.S. National Highway Traffic Safety Administration, Traffic Safety Facts, annual. See <http://www-nrd.nhtsa.dot.gov/CATS/lndex.aspx>.
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(a) Give an interval in which approximately 50 percent of the data lie.
(b) Give a value which is greater than approximately 50 percent of the

data.
(c) Give a value such that approximately 25 percent of the data values

are greater than it.
11. A symmetric data set has its median equal to 40 and its third quartile

equal to 55. What is the value of the first quartile?

3.4 SAMPLE MODE
Another indicator of central tendency is the sample mode, which is the data value
that occurs most frequently in the data set.

■ Example 3.12
The following are the sizes of the last 8 dresses sold at a women’s boutique:

8, 10, 6, 4, 10, 12, 14, 10

What is the sample mode?

Solution

The sample mode is 10, since the value of 10 occurs most frequently. ■

If no single value occurs most frequently, then all the values that occur at the
highest frequency are called modal values. In such a situation we say that there is
no unique value of the sample mode.

■ Example 3.13
The ages of 6 children at a day care center are

2, 5, 3, 5, 2, 4

What are the modal values of this data set?

Solution

Since the ages 2 and 5 both occur most frequently, both 2 and 5 are modal
values. ■

■ Example 3.14
The following frequency table gives the values obtained in 30 throws of a die.
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Value Frequency

1 6
2 4
3 5
4 8
5 3
6 4

It is easy to pick out the modal value from a frequency table, since it is just that
value having the largest frequency.

For these data, find the

(a) Sample mode
(b) Sample median
(c) Sample mean

Solution

(a) Since the value 4 appears with the highest frequency, the sample mode is 4.
(b) Since there are 30 data values, the sample median is the average of the

15th- and 16th-smallest values. Since the 15th-smallest value is 3 and the
16th-smallest is 4, the sample median is 3.5.

(c) The sample mean is

x = 1 · 6 + 2 · 4 + 3 · 5 + 4 · 8 + 5 · 3 + 6 · 4
30

= 100
30

≈ 3.333 ■

PROBLEMS

1. Match each statement in the left-hand column with the correct data set
from the right-hand column.

1. Sample mode is 9 A: 5, 7, 8, 10, 13, 14
2. Sample mean is 9 B: 1, 2, 5, 9, 9, 15
3. Sample median is 9 C: 1, 2, 9, 12, 12, 18

2. Using the data from Example 2.2, find the sample mode of the winning
Masters Golf Tournament scores.

3. Using data concerning the first 100 students in App. A, find the sample
mode for
(a) Weight
(b) Blood pressure
(c) Cholesterol
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4. Suppose you want to guess the salary of a bank vice president whom
you have just met. If you want to have the greatest chance of being
correct to the nearest $1000, would you rather know the sample mean,
the sample median, or the sample mode of the salaries of bank vice
presidents?

5. Construct a data set for which the sample mean is 10, the sample
median is 8, and the sample mode is 6.

6. If the sample mode of the data xi, i = 1, . . . , n, is equal to 10, what is the
sample mode of the data yi = 2xi + 5, i = 1, . . . , n?

7. Joggers use a quarter-mile track around an athletic field. In a sample of
17 joggers, 1 did 2 loops, 4 did 4 loops, 5 did 6 loops, 6 did 8 loops, and
1 did 12 loops.
(a) What is the sample mode of the number of loops run by these

joggers?
(b) What is the sample mode of the distances run by these joggers?

8. The sample mean, sample median, and sample mode of the first 99 val-
ues of a data set of 198 values are all equal to 120. If the sample mean,
median, and mode of the final 99 values are all equal to 100, what can
you say about the sample mean of the entire data set? What can you
say about the sample median? What about the sample mode?

3.5 SAMPLE VARIANCE AND SAMPLE STANDARD
DEVIATION

Whereas so far we have talked about statistics that measure the central tendency
of a data set, we have not yet considered ones that measure its spread or variabil-
ity. For instance, although the following data sets A and B have the same sample
mean and sample median, there is clearly more spread in the values of B than in
those of A.

A: 1, 2, 5, 6, 6 B: −40, 0, 5, 20, 35

One way of measuring the variability of a data set is to consider the deviations of
the data values from a central value. The most commonly used central value for
this purpose is the sample mean. If the data values are x1, . . . , xn and the sample
mean is x = ∑n

i=1 xi/n then the deviation of the value xi from the sample mean is
xi − x, i = 1, . . . , n.

One might suppose that a natural measure of the variability of a set of data would
be the average of the deviations from the mean. However, as we have shown in
Sec. 3.2,

∑n
i=1(xi − x) = 0. That is, the sum of the deviations from the sample

mean is always equal to 0, and thus the average of the deviations from the sample
mean must also be 0. However, after some additional reflection it should be clear
that we really do not want to allow the positive and the negative deviations to
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cancel. Instead, we should be concerned about the individual deviations without
regard to their signs. This can be accomplished either by considering the absolute
values of the deviations or, as turns out to be more useful, by considering their
squares.

The sample variance is a measure of the “average” of the squared deviations from
the sample mean. However, for technical reasons (which will become clear in
Chap. 8) this “average” divides the sum of the n squared deviations by the quantity
n − 1, rather than by the usual value n.

Definition The sample variance, call it s2, of the data set xi, . . . , xn having sample
mean x = (∑n

i=1 xi
)

n is defined by

s2 =
∑n

i=1(xi − x)2

n − 1

■ Example 3.15
Find the sample variance of data set A.

Solution

It is determined as follows:

xi 1 2 5 6 6
x 4 4 4 4 4
xi − x −3 −2 1 2 2
(xi − x)2 9 4 1 4 4

Hence, for data set A,

s2 = 9 + 4 + 1 + 4 + 4
4

= 5.5 ■

■ Example 3.16
Find the sample variance for data set B.

Solution

The sample mean for data set B is also x = 4. Therefore, for this set, we have

xi −40 0 5 20 35
xi − x −44 −4 1 16 31
(xi − x)2 1936 16 1 256 961
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Thus,

s2 = 3170
4

= 792.5 ■

The following algebraic identity is useful for computing the sample variance by
hand:

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 (3.2)

■ Example 3.17
Check that identity (3.2) holds for data set A.

Solution

Since n = 5 and x = 4,

5∑
i=1

x2
i − nx2 = 1 + 4 + 25 + 36 + 36 − 5(16) = 102 − 80 = 22

From Example 3.15,

5∑
i=1

(xi − x)2 = 9 + 4 + 1 + 4 + 4 = 22

and so the identity checks out. ■

Suppose that we add a constant c to each of the data values x1, . . . , xn to obtain
the new data set y1, . . . , yn, where

yi = xi + c

To see how this affects the value of the sample variance, recall from Sec. 3.2
that

y = x + c

and so

yi − y = xi + c − (x + c) = xi − x

That is, the y deviations are equal to the x deviations, and therefore their sums of
squares are equal. Thus, we have shown the following useful result.
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The sample variance remains unchanged when a constant is added to each data
value.

The preceding result can often be used in conjunction with the algebraic identity
(3.2) to greatly reduce the time it takes to compute the sample variance.

■ Example 3.18
The following data give the yearly numbers of law enforcement officers killed
in the United States over 10 years:

164, 165, 157, 164, 152, 147, 148, 131, 147, 155

Find the sample variance of the number killed in these years.

Solution

Rather than working directly with the given data, let us subtract the value 150
from each data item. (That is, we are adding c = −150 to each data value.) This
results in the new data set

14, 15, 7, 14, 2, −3, −2, −19, −3, 5

Its sample mean is

y = 14 + 15 + 7 + 14 + 2 − 3 − 2 − 19 − 3 + 5
10

= 3.0

The sum of the squares of the new data is

10∑
i=1

y2
i = 142 + 152 + 72 + 142 + 22 + 32 + 22 + 192 + 32 + 52 = 1078

Therefore, using the algebraic identity (3.2) shows that

10∑
i=1

(yi − y)2 = 1078 − 10(9) = 988

Hence, the sample variance of the revised data, which is equal to the sample
variance of the original data, is

s2 = 988
9

≈ 109.78 ■

The positive square root of the sample variance is called the sample standard
deviation.
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Definition The quantity s, defined by

s =
√∑n

i=1(xi − x)2

n − 1

is called the sample standard deviation.

The sample standard deviation is measured in the same units as the original
data. That is, for instance, if the data are in feet, then the sample variance will
be expressed in units of square feet and the sample standard deviation in units
of feet.

If each data value xi, i = 1, . . . , n, is multiplied by a constant c to obtain the new
data set

yi = cxi i = 1, . . . , n

then the sample variance of the y data is the sample variance of the x data
multiplied by c2. That is,

s2
y = c2s2

x

where s2
y and s2

x are the sample variances of the new and old data sets, respec-
tively. Taking the square root of both sides of the preceding equation shows that
the standard deviation of the y data is equal to the absolute value of c times the
standard deviation of the x data, or

sy = |c|sx

Another indicator of the variability of a data set is the interquartile range, which is
equal to the third minus the first quartile. That is, roughly speaking, the interquar-
tile range is the length of the interval in which the middle half of the data
values lie.

■ Example 3.19
The Miller Analogies Test is a standardized test that is taken by a variety of stu-
dents applying to graduate and professional schools. Table 3.2 presents some
of the percentile scores on this examination for students, classified according
to the graduate fields they are entering. For instance, Table 3.2 states that the
median grade of students in the physical sciences is 68, whereas it is 49 for
those applying to law school.

Determine the interquartile ranges of the scores of students in the five specified
categories.
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Table 3.2 Selected Percentiles on the Miller Analogies
Test for Five Categories of Students

Physical Medical Social Languages and Law
Percentile sciences school sciences literature school

99 93 92 90 87 84
90 88 78 82 80 73
75 80 71 74 73 60
50 68 57 61 59 49
25 55 45 49 43 37

Solution

Since the interquartile range is the difference between the 75th and the 25th
sample percentiles, it follows that its value is

80 − 55 = 25 for scores of physical science students
71 − 45 = 26 for scores of medical school students
74 − 49 = 25 for scores of social science students
73 − 43 = 30 for scores of language and literature students
60 − 37 = 23 for scores of law school students ■

A box plot is often used to plot some of the summarizing statistics of a data set.
A straight-line segment stretching from the smallest to the largest data value is
drawn on a horizontal axis; imposed on the line is a “box,” which starts at the first
and continues to the third quartile, with the value of the second quartile indicated
by a vertical line. For instance, the following frequency table gives the starting
salaries of a sample of 42 graduating seniors of a liberal arts college.

Starting salary Frequency

47 4
48 1
49 3
50 5
51 8
52 10
53 0
54 5
56 2
57 3
60 1

The salaries go from a low of 47 to a high of 60. The value of the first quartile
(equal to the value of the 11th smallest on the list) is 50; the value of the second
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quartile (equal to the average of the 21st- and 22nd-smallest values) is 51.5; and
the value of the third quartile (equal to the value of the 32nd smallest on the list)
is 54. The box plot for this data set is as follows.

PROBLEMS

1. The following data give the per capita consumption of milk in the
years from 1983 to 1987. The data are from the U.S. Department of
Agriculture, Food Consumption, Prices, and Expenditures, annual.

Year Amount (in gallons per capita)

1983 26.3

1984 26.2

1985 26.4

1986 26.3

1987 25.9

Find the sample mean and the sample variance of this set.
2. You are given these data sets:

A: 66, 68, 71, 72, 72, 75 B: 2, 5, 9, 10, 10, 16

(a) Which one appears to have the larger sample variance?
(b) Determine the sample variance of data set A.
(c) Determine the sample variance of data set B.

3. The Masters Golf Tournament and the U.S. Open are the two most
prestigious golf tournaments in the United States. The Masters is
always played on the Augusta National golf course, whereas the U.S.
Open is played on different courses in different years. As a result, one
might expect the sample variance of the winning scores in the U.S.
Open to be higher than that of the winning scores in the Masters. To
check whether this is so, we have collected the winning scores in both
tournaments for 1981 to 1990.
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Winning score

Tournament 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

U.S. Open 273 282 280 276 279 279 277 278 278 280
Masters 280 284 280 277 282 279 285 281 283 278

(a) Compute the sample variance of the winning scores in the U.S.
Open tournament.

(b) Compute the sample variance of the winning scores in the Masters
tournament.

The following table gives the numbers of physicians and dentists in Japan
in the even-numbered years between 1984 and 2000. Problems 4 and 5 are
based on this table.

Number of Physicians and
Dentists (1984–2000)

Physicians Dentists

1984 173,452 61,283
1986 183,129 64,904
1988 193,682 68,692
1990 203,797 72,087
1992 211,498 75,628
1994 220,853 79,091
1996 230,297 83,403
1998 236,933 85,669
2000 243,201 88,410

4. Just by eyeballing, estimate the ratio of the sample variance of the
yearly number of physicians to the sample variance of the yearly
number of dentists.

5. Find the actual value of the ratio in problem 4.
6. An individual needing automobile insurance requested quotes from

10 different insurers for identical coverage and received the following
values (amounts are annual premiums in dollars):

720, 880, 630, 590, 1140, 908, 677, 720, 1260, 800

Find
(a) The sample mean
(b) The sample median
(c) The sample standard deviation

The following table gives the 2008 populations for each U.S. state and
territory. Problems 7, 8, and 9 refer to this data.
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Population Population
State (2008) State (2008)

California 36,756,666 Oklahoma 3,642,361
Texas 24,326,974 Connecticut 3,501,252
New York 19,490,297 Iowa 3,002,555
Florida 18,328,340 Mississippi 2,938,618
Illinois 12,901,563 Arkansas 2,855,390
Pennsylvania 12,448,279 Kansas 2,802,134
Ohio 11,485,910 Utah 2,736,424
Michigan 10,003,422 Nevada 2,600,167
Georgia 9,685,744 New Mexico 1,984,356
North Carolina 9,222,414 West Virginia 1,814,468
New Jersey 8,682,661 Nebraska 1,783,432
Virginia 7,769,089 Idaho 1,523,816
Washington 6,549,224 Maine 1,316,456
Arizona 6,500,180 New Hampshire 1,315,809
Massachusetts 6,497,967 Hawaii 1,288,198
Indiana 6,376,792 Rhode Island 1,050,788
Tennessee 6,214,888 Montana 967,440
Missouri 5,911,605 Delaware 873,092
Maryland 5,633,597 South Dakota 804,194
Wisconsin 5,627,967 Alaska 686,293
Minnesota 5,220,393 North Dakota 641,481
Colorado 4,939,456 Vermont 621,270
Alabama 4,661,900 District of Columbia 591,833
South Carolina 4,479,800 Wyoming 532,668
Louisiana 4,410,796 Guam 173,456
Kentucky 4,269,245 US Virgin Islands 108,448
Puerto Rico 3,954,037 Northern Mariana Islands 84,546
Oregon 3,790,060 American Samoa 57,291

7. Find the sample variance of the populations of the first 17 locales.
8. Find the sample variance of the populations of the next 17 locales.
9. Find the sample variance of the populations of the final 17 locales.

10. If s2 is the sample variance of the data xi, i = 1, . . . , n, what is the
sample variance of the data axi + b, i = 1, . . . , n, when a and b are given
constants?

11. Compute the sample variance and sample standard deviation of the
following data sets:
(a) 1, 2, 3, 4, 5
(b) 6, 7, 8, 9, 10
(c) 11, 12, 13, 14, 15
(d) 2, 4, 6, 8, 10
(e) 10, 20, 30, 40, 50
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12. On the U.S. side of the U.S.–Canada border, temperatures are mea-
sured in degrees Fahrenheit, whereas on the Canadian side they are
measured in degrees Celsius (also called Centigrade). Suppose that
during the month of January the sample mean of the temperatures,
as recorded on the U.S. side of the border, was 40◦F with a sample
variance of 12.

Use the formula for converting a Fahrenheit temperature to a Celsius
temperature

C = 5
9

(F − 32)

to find
(a) The sample mean recorded by the Canadians
(b) The sample variance recorded by the Canadians

13. Compute the sample mean and sample variance of the systolic blood
pressures of the first 50 students of the data set of App. A. Now do
the same with the last 50 students of this data set. Compare your
answers. Comment on the results of this comparison. Do you find it
surprising?

14. If s is the sample standard deviation of the data xi, i = 1, . . . , n, what is
the sample standard deviation of axi + b, i = 1, . . . , n? In this problem,
a and b are given constants.

15. The following table gives the number of motorcycle retail sales in
Japan for 8 different years. Use it to find the sample standard deviation
of the number of motorcycle sales in the 8 years.

Year 2001 2002 2003 2004 2005 2006 2007 2008

Motorcycle sales 751 771 760 700 707 700 685 522
(in thousands)

Source: Motorcycle Industry Council.

16. Find the sample standard deviation of the data set given by the
following frequency table:

Value Frequency Value Frequency

3 1 5 3
4 2 6 2

17. The following data represent the acidity of 40 successive rainfalls in
the state of Minnesota. The acidity is measured on a pH scale, which
varies from 1 (very acidic) to 7 (neutral).
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3.71, 4.23, 4.16, 2.98, 3.23, 4.67, 3.99, 5.04, 4.55, 3.24, 2.80, 3.44,

3.27, 2.66, 2.95, 4.70, 5.12, 3.77, 3.12, 2.38, 4.57, 3.88, 2.97, 3.70, 2.53, 2.67,

4.12, 4.80, 3.55, 3.86, 2.51, 3.33, 3.85, 2.35, 3.12, 4.39, 5.09, 3.38, 2.73, 3.07

(a) Find the sample standard deviation.
(b) Find the range.
(c) Find the interquartile range.

18. Consider the following two data sets:

A: 4.5, 0, 5.1, 5.0, 10, 5.2 B: 0.4, 0.1, 9, 0, 10, 9.5

(a) Determine the range for each data set.
(b) Determine the sample standard deviation for each data set.
(c) Determine the interquartile range for each data set.

3.6 NORMAL DATA SETS AND THE EMPIRICAL RULE
Many of the large data sets one encounters in practice have histograms that are
similar in shape. These histograms are often symmetric about their point of high-
est frequency and then decrease on both sides of this point in a bell-shaped
fashion. Such data sets are said to be normal, and their histograms are called normal
histograms.

Definition A data set is said to be normal if a histogram describing it has the following
properties:

1. It is highest at the middle interval.
2. Moving from the middle interval in either direction, the height decreases in such a

way that the entire histogram is bell-shaped.
3. The histogram is symmetric about its middle interval.

Figure 3.2 shows the histogram of a normal data set.

FIGURE 3.2
Histogram of a normal data set.
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FIGURE 3.3
Histogram of an approximately normal data set.

FIGURE 3.4
Histogram of a data set skewed to the left.

If the histogram of a data set is close to being a normal histogram, then we say that
the data set is approximately normal. For instance, the histogram given in Fig. 3.3 is
from an approximately normal data set, whereas the ones presented in Figs. 3.4
and 3.5 are not (since each is too nonsymmetric). Any data set that is not approx-
imately symmetric about its sample median is said to be skewed. It is called skewed
to the right if it has a long tail to the right and skewed to the left if it has a long tail
to the left. Thus the data set presented in Fig. 3.4 is skewed to the left, and the one
of Fig. 3.5 is skewed to the right.

It follows from the symmetry of the normal histogram that a data set that is
approximately normal will have its sample mean and sample median approxi-
mately equal.

Suppose that x and s are the sample mean and sample standard deviation, respec-
tively, of an approximately normal data set. The following rule, known as the
empirical rule, specifies the approximate proportions of the data observations that
are within s, 2s, and 3s of the sample mean x.
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FIGURE 3.5
Histogram of a data set skewed to the right.

Empirical Rule

If a data set is approximately normal with sample mean x and sample standard
deviation s, then the following are true.

1. Approximately 68 percent of the observations lie within

x ± s

2. Approximately 95 percent of the observations lie within

x ± 2s

3. Approximately 99.7 percent of the observations lie within

x ± 3s

■ Example 3.20
The scores of 25 students on a history examination are listed on the following
stem-and-leaf plot.

9 0, 0, 4
8 3, 4, 4, 6, 6, 9
7 0, 0, 3, 5, 5, 8, 9
6 2, 2, 4, 5, 7
5 0, 3, 5, 8
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FIGURE 3.6
Histogram of a bimodal data set.

By standing this figure on its side (or, equivalently, by turning the textbook),
we can see that the corresponding histogram is approximately normal. Use it
to assess the empirical rule.

Solution

A calculation yields that the sample mean and sample standard deviation of
the data are

x = 73.68 and s = 12.80

The empirical rule states that approximately 68 percent of the data values are
between x − s = 60.88 and x + s = 86.48. Since 17 of the observations actually
fall within 60.88 and 86.48, the actual percentage is 100(17/25) = 68 percent.
Similarly, the empirical rule states that approximately 95 percent of the data are
between x − 2s = 48.08 and x + 2s = 96.28, whereas, in actuality, 100 percent
of the data fall in this range. ■

A data set that is obtained by sampling from a population that is itself made up
of subpopulations of different types is usually not normal. Rather, the histogram
from such a data set often appears to resemble a combining, or superposition,
of normal histograms and thus will often have more than one local peak or
hump. Because the histogram will be higher at these local peaks than at their
neighboring values, these peaks are similar to modes. A data set whose histogram
has two local peaks is said to be bimodal. The data set represented in Fig. 3.6 is
bimodal.

Since a stem-and-leaf plot can be regarded as a histogram lying on its side, it is
useful in showing us whether a data set is approximately normal.

■ Example 3.21
The following is the stem-and-leaf plot of the weights of 200 members of a
health club.
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24 9
23
22 1
21 7
20 2, 2, 5, 5, 6, 9, 9, 9
19 0, 0, 0, 0, 0, 1, 1, 2, 4, 4, 5, 8
18 0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 9, 9, 9
17 1, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 9
16 0, 0, 1, 1, 1, 1, 2, 4, 5, 5, 6, 6, 8, 8, 8, 8
15 0, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9
14 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 8, 9, 9
13 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9
12 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9
11 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 9, 9
10 0, 2, 3, 3, 3, 4, 4, 5, 7, 7, 8

9 0, 0, 9
8 6

By standing it on its side, we see that its histogram does not appear to be
approximately normal. However, it is important to note that these data consist
of the weights of all members of the health club, both female and male. Since
these are clearly separate populations with regard to weight, it makes sense to
consider the data for each gender separately. We will now do so.

It turns out that these 200 data values are the weights of 97 women and 103
men. Separating the data for women and men results in the stem-and-leaf plots
in Figs. 3.7 and 3.8.

As we can see from the figures, the separated data for each sex appear to be
approximately normal. Let us calculate xw, sw, xm, and sm, the sample mean and
sample standard deviation for, respectively, the women and the men.

This calculation yields

xw = 125.70 xm = 174.69

sw = 15.58 sm = 21.23

16 0, 5
15 0, 1, 1, 1, 5
14 0, 0, 1, 2, 3, 4, 6, 7, 9
13 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 5, 5, 6, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9
12 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9
11 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 9, 9
10 2, 3, 3, 3, 4, 4, 5, 7, 7, 8
9 0, 0, 9
8 6

FIGURE 3.7
Weights of 97 female health club members.
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24 9
23
22 1
21 7
20 2, 2, 5, 5, 6, 9, 9, 9
19 0, 0, 0, 0, 0, 1, 1, 2, 4, 4, 5, 8
18 0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 9, 9, 9
17 1, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 9
16 0, 1, 1, 1, 1, 2, 4, 5, 6, 6, 8, 8, 8, 8
15 1, 1, 1, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9
14 0, 5, 7, 7, 8, 9
13 0, 1, 2, 3, 7
12 9

FIGURE 3.8
Weights of 103 male health club members.

A further corroboration of the approximate normality of the two sets of
separated data is provided by noting the similar values in each set of the sam-
ple mean and sample median. The sample median of the women’s weights
is the 49th-smallest data value, which equals 126, whereas for the men’s
data the sample median is the 52nd-smallest data value, which equals 174.
These are quite close to the two sample means, whose values are 125.7 and
174.69.

Given the values of the sample mean and sample standard deviation, it
follows from the empirical rule that approximately 68 percent of the women
will weigh between 110.1 and 141.3 and approximately 95 percent of the men
will weigh between 132.2 and 217.2. The actual percentages from Figs. 3.7 and
3.8 are

100 × 68
97

= 70.1 and 100 × 101
103

= 98.1 ■

PROBLEMS

1. The daily numbers of animals treated at a certain veterinarian clinic
over a 24-day period are as follows:

22, 17, 19, 31, 28, 29, 21, 33, 36, 24, 15, 28, 25, 28, 22,

27, 33, 19, 25, 28, 26, 20, 30, 32

(a) Plot these data in a histogram.
(b) Find the sample mean.
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(c) Find the sample median.
(d) Is this data set approximately normal?

Historical Perspective

Adolphe Quetelet
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)Quetelet and How the Normal Curve Uncovered Fraud

The Belgian social scientist and statistician Adolphe Quetelet was a great believer
in the hypothesis that most data sets relating to human measurements are normal.
In one study he measured the chests of 5738 Scottish soldiers, plotted the resulting
data in a histogram, and concluded that it was normal.

In a later study Quetelet used the shape of the normal histogram to uncover evi-
dence of fraud in regard to draft conscripts to the French army. He studied data
concerning the heights of a huge sample of 100,000 conscripts. Plotting the data
in a histogram—with class intervals of 1 inch—he found that, with the exception
of three class intervals around 62 inches, the data appeared to be normal. In par-
ticular, there were fewer values in the interval from 62 to 63 inches and slightly
more in the intervals from 60 to 61 and from 61 to 62 inches than would have
occurred with a perfect normal fit of the data. Trying to figure out why the nor-
mal curve did not fit as well as he had supposed it would, Quetelet discovered
that 62 inches was the minimum height required for soldiers in the French army.
Based on this and his confidence in the widespread applicability of normal data,
Quetelet concluded that some conscripts whose heights were slightly above 62
inches were “bending their knees” to appear shorter so as to avoid the draft.

For 50 years following Quetelet, that is, roughly from 1840 to 1890, it was widely
believed that most data sets from homogeneous populations (that is, data that
were not obviously a mixture of different populations) would appear to be nor-
mal if the sample size were sufficiently large. Whereas present-day statisticians
have become somewhat skeptical about this claim, it is quite common for a data
set to appear to come from a normal population. This phenomenon, which often
appears in data sets originating in either the biological or the physical sciences,
is partially explained by a mathematical result known as the central limit theorem.
Indeed, the central limit theorem (studied in Chap. 7) will in itself explain why
many data sets originating in the physical sciences are approximately normal. To
explain why biometric data (that is, data generated by studies in biology) often
appear to be normal, we will use what was originally an empirical observation
noted by Francis Galton but that nowadays has a sound scientific explanation,
called regression to the mean. Regression to the mean, in conjunction with the cen-
tral limit theorem and the passing of many generations, will yield our explanation
as to why a biometric data set is often normal. The explanation will be presented
in Chap. 12.
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2. The following data give the injury rates per 100,000 worker-hours for
a sample of 20 semiconductor firms:

1.4, 2.4, 3.7, 3.1, 2.0, 1.9, 2.5, 2.8, 2.2, 1.7, 3.1, 4.0, 2.2, 1.8,

2.6, 3.6, 2.9, 3.3, 2.0, 2.4

(a) Plot the data in a histogram.
(b) Is the data set roughly symmetric?
(c) If the answer to (b) is no, is it skewed to the left or to the right?
(d) If the answer to (b) is yes, is it approximately normal?

The following table gives the 2006 per capita consumption of milk in
various countries. Problems 3 and 4 refer to this table.

Per Capita Consumption of Milk and Milk Products
in Various Countries, 2006 data

Country Liquid milk drinks (litres)

Finland 183.9
Sweden 145.5
Ireland 129.8
Netherlands 122.9
Norway 116.7
Spain (2005) 119.1
Switzerland 112.5
United Kingdom (2005) 111.2
Australia (2005) 106.3
Canada (2005) 94.7
European Union (25 countries) 92.6
Germany 92.3
France 92.2
New Zealand (2005) 90.0
United States 83.9
Austria 80.2
Greece 69.0
Argentina (2005) 65.8
Italy 57.3
Mexico 40.7
China (2005) 8.8

Source: International Dairy Federation, Bulletin 423/2007.

3. Find the sample mean and sample median of the milk consumption
data set.

4. Plot the milk consumption data in a stem and leaf plot. Is the data set
approximately normal?
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5. The following represent the times (in minutes) it took 22 newly hired
workers to complete a standardized task:

166, 82, 175, 181, 169, 177, 180, 185, 159, 164, 170, 149, 188,

173, 170, 164, 158, 177, 173, 175, 190, 172

(a) Find the sample mean.
(b) Find the sample median.
(c) Plot the data in a histogram.
(d) Is this data set approximately normal?

6. The following data give the age at inauguration of all 43 presidents of
the United States.

Age at Age at
President inauguration President inauguration

1. Washington 57 23. B. Harrison 55
2. J. Adams 61 24. Cleveland 55
3. Jefferson 57 25. McKinley 54
4. Madison 57 26. T. Roosevelt 42
5. Monroe 58 27. Taft 51
6. J.Q. Adams 57 28. Wilson 56
7. Jackson 61 29. Harding 55
8. Van Buren 54 30. Coolidge 51
9. W. Harrison 68 31. Hoover 54

10. Tyler 51 32. F. Roosevelt 51
11. Polk 49 33. Truman 60
12. Taylor 64 34. Eisenhower 62
13. Fillmore 50 35. Kennedy 43
14. Pierce 48 36. L. Johnson 55
15. Buchanan 65 37. Nixon 56
16. Lincoln 52 38. Ford 61
17. A. Johnson 56 39. Carter 52
18. Grant 46 40. Reagan 69
19. Hayes 54 41. G. H. W. Bush 64
20. Garfield 49 42. Clinton 46
21. Arthur 50 43. G. W. Bush 54
22. Cleveland 47 44. Obama 47

(a) Find the sample mean and sample standard deviation of this data
set.

(b) Draw a histogram for the given data.
(c) Do the data appear to be approximately normal?
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(d) If the answer to (c) is yes, give an interval that you would expect
to contain approximately 95 percent of the data observations.

(e) What percentage of the data lies in the interval given in part (d)?
7. For the data on the weights of female health club members presented

in Fig. 3.7, the sample mean and sample standard deviation were com-
puted to be 125.70 and 15.58, respectively. Based on the shape of
Fig. 3.7 and these values, approximate the proportion of the women
whose weight is between 94.54 and 156.86 pounds. What is the actual
proportion?

8. A sample of 36 male coronary patients yielded the following data
concerning the ages at which they suffered their first heart attacks.

7 1, 2, 4, 5
6 0, 1, 2, 2, 3, 4, 5, 7
5 0, 1, 2, 3, 3, 4, 4, 4, 5, 6, 7, 8, 9
4 1, 2, 2, 3, 4, 5, 7, 8, 9
3 7, 9

(a) Determine x and s.
(b) From the shape of the stem-and-leaf plot, what percentage of data

values would you expect to be between x − s and x + s? Between
x − 2s and x + 2s?

(c) Find the actual percentages for the intervals given in (b).
9. If the histogram is skewed to the right, which statistic will be larger—

the sample mean or the sample median? (Hint : If you are not certain,
construct a data set that is skewed to the right and then calculate the
sample mean and sample median.)

10. The following data are the ages of a sample of 36 victims of violent
crime in a large eastern city:

25, 16, 14, 22, 17, 20, 15, 18, 33, 52, 70, 38, 18, 13, 22, 27, 19, 23,

33, 15, 13, 62, 21, 57, 66, 16, 24, 22, 31, 17, 20, 14, 26, 30, 18, 25

(a) Determine the sample mean.
(b) Find the sample median.
(c) Determine the sample standard deviation.
(d) Does this data set appear to be approximately normal?
(e) What proportion of the data lies within 1 sample standard devia-

tion of the sample mean?
(f) Compare your answer in (e) to the approximation provided by the

empirical rule.

The following table lists the 2002 per capita income for the 50 states.
Problems 11 to 13 refer to it.
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11. Using the data on the first 25 states,
(a) Plot the data in a histogram.
(b) Compute the sample mean.
(c) Compute the sample median.
(d) Compute the sample variance.
(e) Are the data approximately normal?
(f) Use the empirical rule to give an interval which should contain

approximately 68 percent of the observations.
(g) Use the empirical rule to give an interval which should contain

approximately 95 percent of the observations.
(h) Determine the actual proportion of observations in the interval

specified in (f).
(i) Determine the actual proportion of observations in the interval

specified in (g).
12. Repeat Prob. 11, this time using the data on the final 25 states.
13. Repeat Prob. 11, this time using all the data in the table.

Personal Income per Capita in Constant (1996) Dollars, 2002

State Income Rank State Income Rank

United States 27,857 (X) Kansas 26,237 26
Alabama 22,624 43 Kentucky 23,030 39
Alaska 28,947 14 Louisiana 22,910 41
Arizona 23,573 38 Maine 24,979 33
Arkansas 21,169 49 Maryland 32,680 4
California 29,707 10 Massachusetts 35,333 3
Colorado 29,959 9 Michigan 27,276 18
Connecticut 38,450 1 Minnesota 30,675 7
Delaware 29,512 12 Mississippi 20,142 50
Florida 26,646 23 Missouri 26,052 27
Georgia 25,949 28 Montana 22,526 45
Hawaii 27,011 20 Nebraska 26,804 22
Idaho 22,560 44 Nevada 27,172 19
Illinois 30,075 8 New Hampshire 30,912 6
Indiana 25,425 32 New Jersey 35,521 2
Iowa 25,461 31 New Mexico 21,555 47
New York 32,451 5 Tennessee 24,913 35
North Carolina 24,949 34 Texas 25,705 30
North Dakota 24,293 36 Utah 21,883 46
Ohio 26,474 25 Vermont 26,620 24
Oklahoma 23,026 40 Virginia 29,641 11
Oregon 25,867 29 Washington 29,420 13

(Continued)
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(Continued)

State Income Rank State Income Rank

Pennsylvania 28,565 15 West Virginia 21,327 48
Rhode Island 28,198 16 Wisconsin 26,941 21
South Carolina 22,868 42 Wyoming 27,530 17
South Dakota 24,214 37

Note: When states share the same rank, the next lower rank is omitted. Because of rounded data, states
may have identical values shown, but different ranks.

3.7 SAMPLE CORRELATION COEFFICIENT
Consider the data set of paired values (x1, y1), (x2, y2), . . . , (xn, yn). In this section
we will present a statistic, called the sample correlation coefficient, that measures the
degree to which larger x values go with larger y values and smaller x values go with
smaller y values.

The data in Table 3.3 represent the average daily number of cigarettes smoked
(the x variable) and the number of free radicals (the y variable), in a suitable unit,
found in the lungs of 10 smokers. (A free radical is a single atom of oxygen. It is
believed to be potentially harmful because it is highly reactive and has a strong
tendency to combine with other atoms within the body.) Figure 3.9 shows the
scatter diagram for these data.

From an examination of Fig. 3.9 we see that when the number of cigarettes is
high, there tends to be a large number of free radicals, and when the number of

Table 3.3 Cigarette Smoking and Free
Radicals

Person Number of cigarettes smoked Free radicals

1 18 202
2 32 644
3 25 411
4 60 755
5 12 144
6 25 302
7 50 512
8 15 223
9 22 183

10 30 375
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FIGURE 3.9
Cigarettes smoked versus number of free radicals.

Table 3.4 Pulse Rate and Years of School Completed

Person

1 2 3 4 5 6 7 8 9 10

Years of school 12 16 13 18 19 12 18 19 12 14

Pulse rate 73 67 74 63 73 84 60 62 76 71

cigarettes smoked is low, there tends to be a small number of free radicals. In this
case, we say that there is a positive correlation between these two variables.

We are also interested in determining the strength of the relationship between a
pair of variables in which large values of one variable tend to be associated with
small values of the other. For instance, the data of Table 3.4 represent the years
of schooling (variable x) and the resting pulse rate in beats per minute (variable
y) of 10 individuals. A scatter diagram of this data is presented in Fig. 3.10. From
Fig. 3.10 we see that higher numbers of years of schooling tend to be associated
with lower resting pulse rates and that lower numbers of years of schooling tend
to be associated with the higher resting pulse rates. This is an example of a negative
correlation.

To obtain a statistic that can be used to measure the association between the
individual values of a paired set, suppose the data set consists of the paired val-
ues (xi, yi), i = 1, . . . , n. Let x and y denote the sample mean of the x values and
the sample mean of the y values, respectively. For data pair i, consider xi − x the
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FIGURE 3.10
Scatter diagram of years in school and pulse rate.

deviation of its x value from the sample mean and yi − y the deviation of its y
value from the sample mean. Now if xi is a large x value, then it will be larger than
the average value of all the x’s and so the deviation xi − x will be a positive value.
Similarly, when xi is a small x value, then the deviation xi − x will be a negative
value. Since the same statements are true about the y deviations, we can conclude
the following.

When large values of the x variable tend to be associated with large values of the y
variable and small values of the x variable tend to be associated with small values
of the y variable, then the signs, either positive or negative, of xi − x and yi − y will
tend to be the same.

Now, if xi − x and yi − y both have the same sign (either positive or negative),
then their product (xi − x)(yi − y) will be positive. Thus, it follows that when large
x values tend to be associated with large y values and small x values are associ-
ated with small y values, then

∑n
i=1(xi − x)(yi − y) will tend to be a large positive

number.

The same logic also implies that when large values of one of the variables tend to
go along with small values of the other, then the signs of xi − x and yi − y will be
opposite, and so

∑n
i=1(xi − x)(yi − y) will be a large negative number.

To determine what it means for
∑n

i=1(xi − x)(yi − y) to be “large,” we standardize
this sum first by dividing by n − 1 and then by dividing by the product of the two
sample standard deviations. The resulting statistic is called the sample correlation
coefficient.
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Definition Let sx and sy denote, respectively, the sample standard deviations of the x
values and the y values. The sample correlation coefficient, call it r, of the data pairs
(xi, yi), i = 1, . . . , n, is defined by

r =
∑n

i=1(xi − x)(yi − y)
(n − 1)sxsy

=

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

n∑
i=1

(yi − y)2

When r > 0, we say that the sample data pairs are positively correlated; and when
r < 0, we say that they are negatively correlated.

We now list some of the properties of the sample correlation coefficient.

1. The sample correlation coefficient r is always between −1 and +1.
2. The sample correlation coefficient r will equal +1 if, for some constant a,

yi = a + bxi i = 1, . . . , n

where b is a positive constant.
3. The sample correlation coefficient r will equal −1 if, for some constant a,

yi = a + bxi i = 1, . . . , n

where b is a negative constant.
4. If r is the sample correlation coefficient for the data xi, yi, i = 1, . . . , n, then for

any constants a, b, c, d, it is also the sample correlation coefficient for the data

a + bxi, c + dyi i = 1, . . . , n

provided that b and d have the same sign (that is, provided that bd ≥ 0).

Property 1 says that the sample correlation coefficient r is always between −1 and
+1. Property 2 says that r will equal +1 when there is a straight-line (also called
a linear) relation between the paired data such that large y values are attached to
large x values. Property 3 says that r will equal −1 when the relation is linear and
large y values are attached to small x values. Property 4 states that the value of r is
unchanged when a constant is added to each of the x variables (or to each of the y
variables) or when each x variable (or each y variable) is multiplied by a positive
constant. This property implies that r does not depend on the dimensions chosen
to measure the data. For instance, the sample correlation coefficient between a
person’s height and weight does not depend on whether the height is measured
in feet or in inches or whether the weight is measured in pounds or kilograms.
Also if one of the values in the pair is temperature, then the sample correlation
coefficient is the same whether it is measured in degrees Fahrenheit or Celsius.
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For computational purposes, the following is a convenient formula for the sample
correlation coefficient.

Computational Formula for r

r =

n∑
i=1

xiyi − nxy√(
n∑

i=1
x2

i − nx2
)(

n∑
i=1

y2
i − ny2

)

■ Example 3.22
The following table gives the U.S. per capita consumption of whole milk (x)
and of low-fat milk (y) in three different years.

Per capita consumption
(gallons)

1980 1984 1984

Whole milk (x ) 17.1 14.7 12.8

Low-fat milk (y ) 10.6 11.5 13.2

Source: U.S. Department of Agriculture, Food Consumption,
Prices, and Expenditures.

Find the sample correlation coefficient r for the given data.

Solution

To make the computation easier, let us first subtract 12.8 from each of the x
values and 10.6 from each of the y values. This gives the new set of data pairs:

i

1 2 3

xi 4.3 1.9 0

yi 0 0.9 2.6

Now,

x = 4.3 + 1.9 + 0
3

= 2.0667

y = 0 + 0.9 + 2.6
3

= 1.1667
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3∑
i=1

xiyi = (1.9)(0.9) = 1.71

3∑
i=1

x2
i = (4.3)2 + (1.9)2 = 22.10

3∑
i=1

y2
i = (0.9)2 + (2.6)2 = 7.57

Thus,

r = 1.71 − 3(2.0667)(1.1667)√
[22.10 − 3(2.0667)2][7.57 − 3(1.1667)2]

= −0.97

Therefore, our three data pairs exhibit a very strong negative correlation
between consumption of whole and of low-fat milk.

For small data sets such as in Example 3.22, the sample correlation coefficient
can be easily obtained by hand. However, for large data sets this computation
can become tedious, and a calculator or statistical software is useful. ■

■ Example 3.23
Compute the sample correlation coefficient of the data of Table 3.3, which
relates the number of cigarettes smoked to the number of free radicals found
in a person’s lungs.

Solution

The number of pairs is 10. The pairs are as follows:

18, 202

32, 644

25, 411

60, 755

12, 144

25, 302

50, 512

15, 223

22, 183

30, 375

A calculation shows that the sample correlation coefficient is 0.8759639. ■
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The large value of the sample correlation coefficient indicates a strong positive
correlation between the number of cigarettes a person smokes and the number of
free radicals in that person’s lungs.

■ Example 3.24
Compute the sample correlation coefficient of the data of Table 3.4, which
relates a person’s resting pulse rate to the number of years of school completed.

Solution

The pairs are as follows:

12, 73

16, 67

13, 74

18, 63

19, 73

12, 84

18, 60

19, 62

12, 76

14, 71

The sample correlation coefficient is −0.763803.

The large negative value of the sample correlation coefficient indicates that, for
the data set considered, a high pulse rate tends to be associated with a small
number of years spent in school and a low pulse rate tends to be associated
with a large number of years spent in school. ■

The absolute value of the sample correlation coefficient r (that is, |r|—its value
without regard to its sign) is a measure of the strength of the linear relationship
between the x and the y values of a data pair. A value of |r| equal to 1 means that
there is a perfect linear relation; that is, a straight line can pass through all the data
points (xi, yi), i = 1, . . . , n. A value of |r| of about 0.8 means that the linear relation
is relatively strong; although there is no straight line that passes through all the
data points, there is one that is “close” to them all. A value of |r| around 0.3 means
that the linear relation is relatively weak. The sign of r gives the direction of the
relation. It is positive when the linear relation is such that smaller y values tend to
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FIGURE 3.11
Sample correlation coefficients.

go with smaller x values and larger y values with larger x values (and so a straight-
line approximation points upward); and it is negative when larger y values tend to
go with smaller x values and smaller y values with larger x values (and so a straight-
line approximation points downward). Figure 3.11 displays scatter diagrams for
data sets with various values of r.

Historical Perspective

Francis Galton

(B
et

tm
an

n
)

The development of the concept and utility of the sample correlation coefficient
involved the efforts of four of the great men of statistics. The original concept was
due to Francis Galton, who was trying to study the laws of inheritance from a
quantitative point of view. As such, he wanted to be able to quantify the degree to
which characteristics of an offspring relate to those of its parents. This led him to
name and define a form of the sample correlation coefficient that differs somewhat
from the one presently in use. Although originally it was meant to be used to assess
the hereditary influence of a parent on an offspring, Galton later realized that the
sample correlation coefficient presented a method of assessing the interrelation
between any two variables.

Although Francis Galton was the founder of the field of biometrics—the quan-
titative study of biology—its acknowledged leader, at least after 1900, was Karl
Pearson. After the Royal Society of London passed a resolution in 1900 stating
that it would no longer accept papers that applied mathematics to the study
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of biology, Pearson, with financial assistance from Galton, founded the statis-
tical journal Biometrika, which still flourishes today. The form of the sample
correlation coefficient that is presently in use (and that we have presented) is
due to Karl Pearson and was originally called Pearson’s product-moment correlation
coefficient.

The probabilities associated with the possible values of the sample correlation
coefficient r were discovered, in the case where the data pairs come from a normal
population, by William Gosset. There were, however, some technical errors in his
derivations, and these were subsequently corrected in a paper by Ronald Fisher.

PROBLEMS

1. Explain why the sample correlation coefficient for the data pairs

(121, 360), (242, 362), (363, 364)

is the same as that for the pairs

(1, 0), (2, 2), (3, 4)

which is the same as that for the pairs

(1, 0), (2, 1), (3, 2)

2. Compute the sample correlation coefficient for the data pairs in Prob. 1.

Statistics In Perspective

Correlation Measures Association, Not Causation

The results of Example 3.24 indicated a strong negative correlation between an indi-
vidual’s years of education and that individual’s resting pulse rate. However, this does
not imply that additional years of school will directly reduce one’s pulse rate. That is,
whereas additional years of school tend to be associated with a lower resting pulse rate,
this does not mean that it is a direct cause of it. Often the explanation for such an associa-
tion lies with an unexpressed factor that is related to both variables under consideration.
In this instance, it may be that a person who has spent additional time in school is more
aware of the latest findings in the area of health and thus may be more aware of the
importance of exercise and good nutrition; or perhaps it is not knowledge that is making
the difference but rather that people who have had more education tend to end up in jobs
that allow them more time for exercise and good nutrition. Probably the strong negative
correlation between years in school and resting pulse rate results from a combination of
these as well as other underlying factors.
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3. The following data represent the IQ scores of 10 mothers and their
eldest daughters.

Mother’s IQ Daughter’s IQ

135 121
127 131
124 112
120 115
115 99
112 118
104 106
96 89
94 92
85 90

(a) Draw a scatter diagram.
(b) Guess at the value of the sample correlation coefficient r.
(c) Compute r.
(d) What conclusions can you draw about the relationship between

the mother’s and daughter’s IQs?
4. The following is a sampling of 10 recently released first-time federal

prisoners. The data give their crime, their sentence, and the actual
time that they served.

Number Crime Sentence (months) Time served (months)

1 Drug abuse 44 24
2 Forgery 30 12
3 Drug abuse 52 26
4 Kidnapping 240 96
5 Income tax fraud 18 12
6 Drug abuse 60 28
7 Robbery 120 52
8 Embezzlement 24 14
9 Robbery 60 35

10 Robbery 96 49

Draw a scatter diagram of the sentence time versus time actually
served. Compute the sample correlation coefficient. What does this say
about the relationship between the length of a sentence and the time
actually served?

5. Using the data of Prob. 4, determine the sample correlation coefficient
of the sentence time and the proportion of that time actually served.
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What does this say about the relationship between the length of a
sentence and the proportion of this time that is actually served?

6. The following data refer to the number of adults in prison and on parole
in 12 midwestern states. The data are in thousands of adults.

State In prison On parole

Illinois 18.63 11.42
Indiana 9.90 2.80
Iowa 2.83 1.97
Kansas 4.73 2.28
Michigan 17.80 6.64
Minnesota 2.34 1.36
Missouri 9.92 4.53
Nebraska 1.81 0.36
North Dakota 0.42 0.17
Ohio 20.86 6.51
South Dakota 1.05 0.42
Wisconsin 5.44 3.85

(a) Draw a scatter diagram.
(b) Determine the sample correlation coefficient between the number

of adults in state prison and on parole in that state.
(c) Fill in the missing word. States having a large prison population

tend to have a(n)_____number of individuals on parole.
7. The following data relate the number of criminal cases filed in various

U.S. cities to the percentage of those cases that result in a plea of guilty.

Percentage of cases Number of cases
City resulting in a guilty plea filed

San Diego, CA 73 11,534
Dallas, TX 72 14,784
Portland, OR 62 3,892
Chicago, IL 41 35,528
Denver, CO 68 3,772
Philadelphia, PA 26 13,796
Lansing, MI 68 1,358
St. Louis, MO 63 3,649
Davenport, IA 60 1,312
Tallahassee, FL 50 2,879
Salt Lake City, UT 61 2,745

Determine the sample correlation coefficient between the number of
cases filed and the percentage of guilty pleas. What can you say about
the degree of association between these two variables for these data?
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8. The following table gives yearly per capita soft drink consumption (in
litres) and the yearly per capita milk consumption (in kg) for a variety
of countries. Use it to find the sample correlation coefficient between
soft drink and milk consumption.

Per capita soft drink and milk consumption

Country soft drink milk

United States 216 254
Australia 100 233
Switzerland 81 308
France 37 256
United Kingdom 97 230
The Netherlands 96 329
New Zealand 84 210
Germany 72 314
Italy 50 239
Japan 22 68

9. The following table lists per capita income data both for the U.S. and
for residents of the state of Colorado for each of the years from 1992
to 2007. Use it to compute the sample correlation coefficient between
U.S. and Colorado per capita income.

Annual Per Capita Personal Income

United States Colorado

1992 $20,854 $21,109
1993 $21,346 $22,054
1994 $22,172 $23,004
1995 $23,076 $24,226
1996 $24,175 $25,570
1997 $25,334 $26,846
1998 $26,883 $28,784
1999 $27,939 $30,492
2000 $29,845 $33,361
2001 $30,574 $34,438
2002 $30,821 $33,956
2003 $31,504 $33,989
2004 $33,123 $35,523
2005 $34,757 $37,600
2006 $36,714 $39,491
2007 $38,611 $41,042
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10. The following data give the numbers of physicians and dentists, per
100,000 population, in the United States for six different years.

1980 1981 1982 1983 1985 1986 2001

Physicians 211 217 222 228 237 246 253
Dentists 54 54 55 56 57 57 59

Source: Health Resources Statistics, annual.

(a) Show that the number of physicians and the number of dentists
are positively correlated for these years.

(b) Do you think that a large value of one of these variables by itself
causes a large value of the other? If not, how would you explain
the reason for the positive correlation?

The following table gives the death rates by selected causes in different
countries. It will be used in Probs. 11 to 13.

Death Rates per 100,000 Population by Selected Causes and Countries

Malignant neoplasm of—

Chronic
Ischemic Cerebro- Lung, Bronchitis, lever

heart vascular trachea, Female emphysema, disease and
Country Year disease disease bronchus Stomach breast asthma cirrhosis

United States 1984 218.1 60.1 52.7 6.0 31.9 8.3 12.9
Australia 1985 230.9 95.6 41.0 10.1 30.0 16.9 8.7
Austria 1986 155.1 133.2 34.3 20.7 31.6 22.3 26.6
Belgium 1984 120.6 95.0 55.9 14.7 36.8 22.6 12.4
Bulgaria 1985 245.9 254.5 30.6 24.2 21.5 28.6 16.2
Canada 1985 200.6 57.5 50.6 9.0 34.5 9.7 10.1
Czechoslovakia 1985 289.4 194.3 51.3 22.4 27.3 33.8 19.6
Denmark 1985 243.8 73.4 52.2 10.9 39.7 37.1 12.2
Finland 1986 259.8 105.0 36.4 17.3 23.9 19.8 8.8
France 1985 76.0 79.7 32.2 10.8 27.1 11.7 22.9
Hungary 1986 240.1 186.5 55.0 25.9 31.2 43.8 42.1
Italy 1983 128.9 121.9 42.1 23.9 28.9 30.9 31.5
Japan 1986 41.9 112.8 24.9 40.7 8.1 12.2 14.4
Netherlands 1985 164.6 71.1 56.3 15.6 38.2 17.8 5.5
New Zealand 1985 250.5 98.4 42.0 11.2 37.7 25.8 4.8
Norway 1985 208.5 88.6 26.3 14.4 25.9 18.2 6.9
Poland 1986 109.4 75.3 47.2 24.2 21.1 33.4 12.0
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(Continued )

Malignant neoplasm of—

Chronic
Ischemic Cerebro- Lung, Bronchitis, lever

heart vascular trachea, Female emphysema, disease and
Country Year disease disease bronchus Stomach breast asthma cirrhosis

Portugal 1986 76.6 216.4 18.7 26.5 22.6 17.8 30.0
Spain 1981 79.0 133.9 26.0 19.7 19.0 19.1 23.3
Sweden 1985 244.7 73.0 23.2 12.5 26.0 14.3 6.4
Switzerland 1986 112.0 65.6 36.6 12.0 36.6 17.5 10.4
United Kingdom:

England and Wales 1985 247.6 104.5 57.2 15.2 41.9 24.2 4.8
Scotland 1986 288.0 128.4 68.7 14.9 41.2 14.8 7.3

West Germany 1986 159.5 100.4 34.6 18.3 32.6 26.1 19.3

Source: World Health Organization, World Health Statistics.

In doing Probs. 11 to 13, use all the data if you are running either Program
3-2 or a statistical package. If you are working with a hand calculator, use
only the data relating to the first seven countries.
11. Find the sample correlation coefficient between the death rates of

ischemic heart disease and of chronic liver disease.
12. Find the sample correlation coefficient between the death rates of

stomach cancer and of female breast cancer.
13. Find the sample correlation coefficient between the death rates of lung

cancer and of bronchitis, emphysema, and asthma.
14. In a well-publicized experiment, a University of Pittsburgh researcher

enlisted the cooperation of public school teachers in Boston in obtain-
ing a baby tooth from each of their pupils. These teeth were then
sawed open and analyzed for lead content. The lead content of each
tooth was plotted against the pupil’s IQ test score. A strong nega-
tive correlation resulted between the amount of lead in the teeth and
the IQ scores. Newspapers headlined this result as “proof” that lead
ingestion results in decreased scholastic aptitude.
(a) Does this conclusion necessarily follow?
(b) Offer some other possible explanations.

15. A recent study has found a strong positive correlation between the
cholesterol levels of young adults and the amounts of time they spend
watching television.
(a) Would you have expected such a result? Why?
(b) Do you think that watching television causes higher cholesterol

levels?
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(c) Do you think that having a high cholesterol level makes a young
adult more likely to watch television?

(d) How would you explain the results of the study?
16. An analysis relating the number of points scored and fouls committed

by basketball players in the Pacific Ten conference has established a
strong positive correlation between these two variables. The analyst
has gone on record as claiming that this verifies the hypothesis that
offensive-minded basketball players tend to be very aggressive and
so tend to commit a large number of fouls. Can you think of a simpler
explanation for the positive correlation? (Hint: Think in terms of the
average number of minutes per game that a player is on the court.)

17. A New England Journal of Medicine study published in October 1993
found that people who have guns in their homes for protection are
3 times more likely to be murdered than those with no guns in the
home. Does this prove that an individual’s chance of being murdered
is increased when he or she purchases a gun to keep at home? Explain
your answer.

18. If for each of the fifty states we plot the paired data consisting of the
average income of residents of the state and the number of foreign-
born immigrants who reside in the state, then the data pairs will have
a positive correlation. Can we conclude that immigrants tend to have
higher incomes than native-born Americans? If not, how else could this
phenomenon be explained?

19. A recent study (reported in the May 5, 2008 LA Times) yielded a posi-
tive correlation between breast-fed babies and scores on a vocabulary
test taken at age 6. Discuss the potential difficulties in interpreting the
results of this study.

20. A recent study (reported in the March 10, 2009 NY Times) yielded a
negative correlation between the age of the father and the results of
cognitive tests given to the infant at ages 8 months, 4 years old, and
7 years old. Although the differences in scores between those infants
having younger and older fathers was slight the authors of the study
called the findings “unexpectedly startling.” (On the other hand there
was a positive correlation between a mother’s age and the cognitive
test scores.) Discuss the potential difficulties in interpreting the results
of this study.

KEY TERMS

Statistic: A numerical quantity whose value is determined by the data.

Sample mean: The arithmetic average of the values in a data set.
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Deviation: The difference between the individual data values and the sample
mean. If xi is the ith data value and x is the sample mean, then xi − x is called
the ith deviation.

Sample median: The middle value of an ordered set of data. For a data set of n
values, the sample median is the (n + 1)/2-smallest value when n is odd and
the average of the n/2- and n/2 + 1-smallest values when n is even.

Sample 100p percentile: That data value such that at least 100p percent of the
data are less than or equal to it and at least 100(1 − p) percent of the data are
greater than or equal to it. If two data values satisfy this criterion, then it is the
average of them.

First quartile: The sample 25th percentile.

Second quartile: The sample 50th percentile, which is also the sample median.

Third quartile: The sample 75th percentile.

Sample mode: The data value that occurs most frequently in a data set.

Sample variance: The statistic s2, defined by

s2 =
∑n

i=1(xi − x)2

n − 1

It measures the average of the squared deviations.

Sample standard deviation: The positive square root of the sample variance.

Range: The largest minus the smallest data value.

Interquartile range: The third quartile minus the first quartile.

Normal data set: One whose histogram is symmetric about its middle interval
and decreases on both sides of the middle in a bell-shaped manner.

Skewed data set: One whose histogram is not symmetric about its middle interval.
It is said to be skewed to the right if it has a long tail to the right and skewed to
the left if it has a long tail to the left.

Bimodal data set: One whose histogram has two local peaks or humps.

Sample correlation coefficient: For the set of paired values xi, yi, i = 1, . . . , n, it is
defined by

r =
∑n

i=1(xi − x)(yi − y)
(n − 1)sxsy

where x and sx are, respectively, the sample mean and the sample standard devi-
ation of the x values, and similarly for y and sy . A value of r near +1 indicates
that larger x values tend to be paired with larger y values and smaller x values tend
to be paired with smaller y values. A value near −1 indicates that larger x values
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tend to be paired with smaller y values and smaller x values tend to be paired with
larger y values.

SUMMARY

We have seen three different statistics which describe the center of a data set: the
sample mean, sample median, and sample mode.

The sample mean of the data x1 . . . , xn is defined by

x =
∑n

i=1 xi

n

and is a measure of the center of the data.

If the data are specified by the frequency table

Value Frequency

x1 f1
x2 f2
...

...

xk fk

then the sample mean of the n = ∑k
i=1 fi data values can be expressed as

x =
∑n

i=1 fixi

n

A useful identity is

n∑
i=1

(xi − x) = 0

The sample median is the middle value when the data are arranged from smallest
to largest. If there are an even number of data points, then it is the average of the
two middle values. It is also a measure of the center of the data set.

The sample mode is that value in the data set that occurs most frequently.

Suppose a data set of size n is arranged from smallest to largest. If np is not an
integer, then the sample 100p percentile is the value whose position is the smallest
integer larger than np. If np is an integer, then the sample 100p percentile is the
average of the values in positions np and np + 1.
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The sample 25th percentile is the first quartile. The sample 50th percentile (which
is equal to the sample median) is called the second quartile, and the sample 75th
percentile is called the third quartile.

The sample variance s2 is a measure of the spread in the data and is defined by

s2 =
∑n

i=1(xi − x)2

n − 1

where n is the size of the set. Its square root s is called the sample standard deviation,
and it is measured in the same units as the data.

The following identity is useful for computing the sample variance by using pencil
and paper or a hand calculator.

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2

Program 3-1 will compute the sample mean, sample variance, and sample stan-
dard deviation of any set of data.

Another statistic that describes the spread of the data is the range, the difference
between the largest and smallest data values.
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Normal data sets will have their sample mean and sample median approximately
equal. Their histograms are symmetric about the middle interval and exhibit a bell
shape.

The sample correlation coefficient r measures the degree of association between
two variables. Its value is between −1 and +1. A value of r near +1 indicates that
when one of the variables is large, the other one also tends to be large and that
when one of them is small, the other also tends to be small. A value of r near −1
indicates that when one of the variables is large, the other one tends to be small.

A large value of |r| indicates a strong association between the two variables.
Association does not imply causation.

REVIEW PROBLEMS

1. Construct a data set that is symmetric about 0 and contains
(a) Four distinct values
(b) Five distinct values
(c) In both cases, compute the sample mean and sample median.

2. The following stem-and-leaf plot records the diastolic blood pressure
of a sample of 30 men.

9 3, 5, 8
8 6, 7, 8, 9, 9, 9
7 0, 1, 2, 2, 4, 5, 5, 6, 7, 8
6 0, 1, 2, 2, 3, 4, 5, 5
5 4, 6, 8

(a) Compute the sample mean x.
(b) Compute the sample median.
(c) Compute the sample mode.
(d) Compute the sample standard deviation s.
(e) Do the data appear to be approximately normal?
(f) What proportion of the data values lies between x + 2s and x − 2s?
(g) Compare the answer in part (f) to the one prescribed by the

empirical rule.
3. The following data are the median ages of residents in each of the 50

states of the United States:

29.3 27.7 30.4 31.1 28.5

32.1 28.0 31.3 26.6 25.8

25.9 33.0 31.5 30.0 28.4

24.9 31.6 26.6 25.4 29.2

29.3 27.9 31.8 31.5 30.3
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28.5 29.3 26.6 31.2 32.1

31.4 30.1 27.0 28.5 27.6

28.9 29.4 30.5 31.2 29.4

29.3 30.1 28.8 27.9 30.4

32.3 30.4 25.8 27.1 26.9

(a) Find the median of these ages.
(b) Is this necessarily the median age of all people in the United

States? Explain.
(c) Find the quartiles.
(d) Find the sample 90th percentile.

4. Use Table 3.2 in Example 3.19 to fill in the answers.
(a) To have one’s score be among the top 10 percent of all physical

science students, it must be at least___.
(b) To have one’s score be among the top 25 percent of all social

science students, it must be at least___.
(c) To have one’s score be among the bottom 50 percent of all medical

students, it must be less than or equal to___.
(d) To have one’s score be among the middle 50 percent of all law

school students, it must be between___ and___.
5. The number of violent offenses per 100,000 population is given here

for each of the 50 states. Is this data set approximately normal?

Violent Crime per 100,000 Population, 2002

State Rate Rank State Rate Rank

United States 495 (X) Illinois 621 8
Alabama 444 21 Iowa 286 36
Alaska 563 12 Kansas 377 24
Arizona 553 13 Kentucky 279 38
Arkansas 424 22 Louisiana 662 6
California 593 10 Maine 108 48
Colorado 352 27 Maryland 770 2
Connecticut 311 33 Massachusetts 484 18
Delaware 599 9 Michigan 540 14
Florida 770 2 Minnesota 268 40
Georgia 459 20 Mississippi 343 31
Hawaii 262 41 Missouri 539 15
Indiana 357 26 Montana 352 27
Idaho 255 42 Nebraska 314 32

(Continued )
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(Continued)

State Rate Rank State Rate Rank

Nevada 638 7 South Carolina 822 1
New Hampshire 161 47 South Dakota 177 46
New Jersey 375 25 Tennessee 717 5
New Mexico 740 4 Texas 579 11
New York 496 17 Utah 237 43
North Carolina 470 19 Vermont 107 49
North Dakota 78 50 Virginia 291 35
Ohio 351 29 Washington 345 30
Oklahoma 503 16 West Virginia 234 44
Oregon 292 34 Wisconsin 225 45
Pennsylvania 402 23 Wyoming 274 39
Rhode Island 285 37

Note: Violent crime refers to violent offenses known to the police, which includes murder, forcible rape,
robbery, and aggravated assault. When states share the same rank, the next lower rank is omitted. Because
of rounded data, states may have identical values shown but different ranks.

6. The following data represent the birth weights at an inner-city hos-
pital in a large eastern city:

2.4, 3.3, 4.1, 5.0, 5.1, 5.2, 5.6, 5.8, 5.9, 5.9, 6.0, 6.1, 6.2, 6.3,

6.3, 6.4, 6.4, 6.5, 6.7, 6.8, 7.2, 7.4, 7.5, 7.5, 7.6, 7.6, 7.7, 7.8,

7.8, 7.9, 7.9, 8.3, 8.5, 8.8, 9.2, 9.7, 9.8, 9.9, 10.0, 10.3, 10.5

(a) Plot this in a stem-and-leaf diagram.
(b) Find the sample mean x.
(c) Find the sample median.
(d) Find the sample standard deviation s.
(e) What proportion of the data lies within x ± 2s?
(f) Do the data appear to be approximately normal?
(g) If your answer to (f) is yes, what would you have estimated, based

on your answers to (b) and (d), for (e)?
*7. Let a and b be constants. Show that if yi = a + bxi for i = 1, . . . , n, then

r, the sample correlation coefficient of the data pairs xi, yi, i = 1, . . . , n,
is given by
(a) r = 1 when b > 0
(b) r = −1 when b < 0
(Hint: Use the definition of r, not its computational formula.)

8. The following data are taken from the book Researches on the Proba-
bility of Criminal and Civil Verdicts, published in 1837 by the French
mathematician and probabilist Simeon Poisson. The book emphasized
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legal applications of probability. The data refer to the number of
people accused and convicted of crimes in France from 1825 to 1830.

Year Number accused Number convicted

1825 6652 4037

1826 6988 4348

1827 6929 4236

1828 7396 4551

1829 7373 4475

1830 6962 4130

(a) Determine the sample mean and sample median of the number
accused.

(b) Determine the sample mean and sample median of the number
convicted.

(c) Determine the sample standard deviation of the number accused.
(d) Determine the sample standard deviation of the number con-

victed.
(e) Would you expect the number accused and the number convicted

to have a positive or a negative sample correlation coefficient?
(f) Determine the sample correlation coefficient of the number of

accused and number of convicted.
(g) Determine the sample correlation coefficient between the num-

ber accused and the percentage of these who are convicted.
(h) Draw scatter diagrams for parts (f) and (g).
(i) Guess at the value of the sample correlation coefficient between

the number of convicted and the percentage convicted.
(j) Draw a scatter diagram for the variables in (i).

(k) Determine the sample correlation coefficient for the variables in
part (i).

9. Recent studies have been inconclusive about the connection between
coffee consumption and coronary heart disease. If a study indicated
that consumers of large amounts of coffee appeared to have a greater
chance of suffering heart attacks than did drinkers of moderate
amounts or drinkers of no coffee at all, would this necessarily “prove”
that excessive coffee drinking leads to an increased risk of heart
attack? What other explanations are possible?

10. Recent studies have indicated that death rates for married middle-
aged people appear to be lower than for single middle-aged people.
Does this mean that marriage tends to increase one’s life span? What
other explanations are possible?
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11. A June 9, 1994, article in The New York Times noted a study show-
ing that years with low inflation rates tend to be years with high
average-productivity increases. The article claimed that this sup-
ported the Federal Reserve Board’s claim that a low rate of inflation
tends to result in an increase in productivity. Do you think the study
provides strong evidence for this claim? Explain your answer.

12. The following table gives the 2008 medicare enrollment as a percent-
age of the total population for each of the 50 states and the District of
Columbia.
(a) Find the sample mean of these data values.
(b) Is your answer to part (a) necessarily equal to the percentage of the

entire population that is enrolled in medicare? Why or why not?

Alabama 17% Missouri 16%
Alaska 8% Montana 16%
Arizona 13% Nebraska 15%
Arkansas 18% Nevada 13%
California 12% New Hampshire 15%
Colorado 12% New Jersey 15%
Connecticut 15% New Mexico 15%
Delaware 16% New York 15%
District of Columbia 13% North Carolina 15%
Florida 17% North Dakota 16%
Georgia 12% Ohio 16%
Hawaii 15% Oklahoma 16%
Idaho 14% Oregon 15%
Illinois 15% Pennsylvania 18%
Indiana 15% Rhode Island 17%
Iowa 17% South Carolina 16%
Kansas 15% South Dakota 16%
Kentucky 17% Tennessee 16%
Louisiana 15% Texas 11%
Maine 19% Utah 10%
Maryland 13% Vermont 17%
Massachusetts 16% Virginia 14%
Michigan 15% Washington 14%
Minnesota 14% West Virginia 20%
Mississippi 16% Wisconsin 15%

Wyoming 14%

13. A sample of size n + m consists of numerical values from n men and
m women. If xw is the sample mean of the women’s values, and xm is
the sample mean of the men’s values what is the sample mean of the
entire sample?
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14. A random sample of individuals were rated as to their standing
posture. In addition, the numbers of days of back pain each had expe-
rienced during the past year were also recorded. Surprisingly to the
researcher these data indicated a positive correlation between good
posture and number of days of back pain. Does this indicate that good
posture causes back pain?

15. The following are the number of traffic deaths in a sample of states,
both for 2007 and 2008. Plot a scatter diagram and find the sample
correlation coefficient for the data pairs.

2007 and 2008 Traffic Fatalities
per State

State 2007 2008

WY 149 159
IL 1248 1044
MA 434 318
NJ 724 594
MD 615 560
OR 452 414
WA 568 504
FL 3221 2986
UT 291 271
NH 129 139
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CHAPTER 4

Probabil ity

Probability is the very guide of life.
Cicero, De Natura
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This chapter starts with consideration of an experiment whose outcome cannot be
predicted with certainty. We define the events of this experiment. We then intro-
duce the concept of the probability of an event, which is the probability that the
outcome of the experiment is contained in the event. An interpretation of the
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probability of an event as being a long-term relative frequency is given. Properties
of probabilities are discussed. The conditional probability of one event, given the
occurrence of a second event, is introduced. We see what it means for events to be
independent.

4.1 INTRODUCTION
To gain information about the current leader in the next gubernatorial election, a
representative sample of 100 voters has been polled. If 62 of those polled are in
favor of the Republican candidate, can we conclude that a majority of the state’s
voters favor this candidate? Or, is it possible that by chance the sample contained
a much greater proportion of this candidate’s supporters than is contained in
the general population and that the Democratic candidate is actually the current
choice of a majority of the electorate?

To answer these questions, it is necessary to know something about the chance
that as many as 62 people in a representative sample of size 100 would favor
a candidate who, in fact, is not favored by a majority of the entire population.
Indeed, as a general rule, to be able to draw valid inferences about a population
from a sample, one needs to know how likely it is that certain events will occur
under various circumstances. The determination of the likelihood, or chance, that
an event will occur is the subject matter of probability.

4.2 SAMPLE SPACE AND EVENTS OF
AN EXPERIMENT

The word probability is a commonly used term that relates to the chance that a
particular event will occur when some experiment is performed, where we use the
word experiment in a very broad sense. Indeed, an experiment for us is any process
that produces an observation, or outcome.

We are often concerned with an experiment whose outcome is not predictable,
with certainty, in advance. Even though the outcome of the experiment will not
be known in advance, we will suppose that the set of all possible outcomes is
known. This set of all possible outcomes of the experiment is called the sample
space and is denoted by S.

Definition An experiment is any process that produces an observation or outcome.
The set of all possible outcomes of an experiment is called the sample space.

■ Example 4.1
Some examples of experiments and their sample spaces are as follows.

(a) If the outcome of the experiment is the gender of a child, then

S = {g, b}
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where outcome g means that the child is a girl and b that it is a boy.
(b) If the experiment consists of flipping two coins and noting whether they

land heads or tails, then

S = {(H, H), (H, T), (T, H), (T, T)}

The outcome is (H, H) if both coins land heads, (H, T) if the first coin lands
heads and the second tails, (T, H) if the first is tails and the second is heads,
and (T, T) if both coins land tails.

(c) If the outcome of the experiment is the order of finish in a race among
7 horses having positions 1, 2, 3, 4, 5, 6, 7, then

S = {all orderings of 1, 2, 3, 4, 5, 6, 7}

The outcome (4, 1, 6, 7, 5, 3, 2) means, for instance, that the number
4 horse comes in first, the number 1 horse comes in second, and so on.

(d) Consider an experiment that consists of rolling two six-sided dice and
noting the sides facing up. Calling one of the dice die 1 and the other die
2, we can represent the outcome of this experiment by the pair of upturned
values on these dice. If we let (i, j) denote the outcome in which die 1 has
value i and die 2 has value j, then the sample space of this experiment is

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2),
(4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} ■

Any set of outcomes of the experiment is called an event. That is, an event is a
subset of the sample space. Events will be denoted by the capital letters A, B, C,
and so on.

■ Example 4.2
In Example 4.1(a), if A = {g}, then A is the event that the child is a girl. Similarly,
if B = {b}, then B is the event that the child is a boy.

In Example 4.1(b), if A = {(H, H), (H, T)}, then A is the event that the first coin
lands on heads.

In Example 4.1(c), if

A = {all outcomes in S starting with 2}

then A is the event that horse number 2 wins the race.
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In Example 4.1(d), if

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

then A is the event that the sum of the dice is 7. ■

Definition Any set of outcomes of the experiment is called an event. We designate
events by the letters A, B, C, and so on. We say that the event A occurs whenever the
outcome is contained in A.

For any two events A and B, we define the new event A ∪ B, called the union of
events A and B, to consist of all outcomes that are in A or in B or in both A and B.
That is, the event A ∪ B will occur if either A or B occurs.

In Example 4.1(a), if A = {g} is the event that the child is a girl and B = {b} is
the event that it is a boy, then A ∪ B = {g, b}. That is, A ∪ B is the whole sample
space S.

In Example 4.1(c), let

A = {all outcomes starting with 4}

be the event that the number 4 horse wins; and let

B = {all outcomes whose second element is 2}

be the event that the number 2 horse comes in second. Then A ∪ B is the event that
either the number 4 horse wins or the number 2 horse comes in second or both.

A graphical representation of events that is very useful is the Venn diagram. The
sample space S is represented as consisting of all the points in a large rectangle, and
events are represented as consisting of all the points in circles within the rectangle.
Events of interest are indicated by shading appropriate regions of the diagram. The
colored region of Fig. 4.1 represents the union of events A and B.

For any two events A and B, we define the intersection of A and B to consist of all
outcomes that are both in A and in B. That is, the intersection will occur if both
A and B occur. We denote the intersection of A and B by A ∩ B. The colored region
of Fig. 4.2 represents the intersection of events A and B.

In Example 4.1(b), if A = {(H, H), (H, T)} is the event that the first coin lands
heads and B = {(H, T), (T, T)} is the event that the second coin lands tails, then
A ∩ B = {(H, T)} is the event that the first coin lands heads and the second lands
tails.

In Example 4.1(c), if A is the event that the number 2 horse wins and B is the event
that the number 3 horse wins, then the event A ∩ B does not contain any outcomes
and so cannot occur. We call the event without any outcomes the null event, and
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FIGURE 4.1
A Venn diagram: shaded region is A ∪ B.

FIGURE 4.2
Shaded region is A ∩ B.

FIGURE 4.3
A and B are disjoint events.

designate it as Ø. If the intersection of A and B is the null event, then since A and B
cannot simultaneously occur, we say that A and B are disjoint, or mutually exclusive.
Two disjoint events are pictured in the Venn diagram of Fig. 4.3.

For any event A we define the event Ac, called the complement of A, to consist of
all outcomes in the sample space that are not in A. That is, Ac will occur when A
does not, and vice versa. For instance, in Example 4.1(a), if A = {g} is the event
that the child is a girl, then Ac = {b} is the event that it is a boy. Also note that
the complement of the sample space is the null set, that is, Sc = Ø. Figure 4.4
indicates Ac , the complement of event A.

We can also define unions and intersections of more than two events. For instance,
the union of events A, B, and C, written A ∪ B ∪ C, consists of all the outcomes
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FIGURE 4.4
Shaded region is Ac .

of the experiment that are in A or in B or in C. Thus, A ∪ B ∪ C will occur if at
least one of these events occurs. Similarly, the intersection A ∩ B ∩ C consists of
the outcomes that are in all the events A, B, and C. Thus, the intersection will occur
only if all the events occur.

We say that events A, B, and C are disjoint if no two of them can simultaneously
occur.

PROBLEMS

1. A box contains three balls—one red, one blue, and one yellow. Con-
sider an experiment that consists of withdrawing a ball from the box,
replacing it, and withdrawing a second ball.
(a) What is the sample space of this experiment?
(b) What is the event that the first ball drawn is yellow?
(c) What is the event that the same ball is drawn twice?

2. Repeat Prob. 1 when the second ball is drawn without replacement of
the first ball.

3. Audrey and her boyfriend Charles must both choose which colleges
they will attend in the coming fall. Audrey was accepted at the Uni-
versity of Michigan (MI), Reed College (OR), San Jose State College
(CA), Yale University (CT), and Oregon State University (OR). Charles
was accepted at Oregon State University and San Jose State College.
Let the outcome of the experiment consist of the colleges that Audrey
and Charles choose to attend.
(a) List all the outcomes in sample space S.
(b) List all the outcomes in the event that Audrey and Charles attend

the same school.
(c) List all the outcomes in the event that Audrey and Charles attend

different schools.
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(d) List all the outcomes in the event that Audrey and Charles attend
schools in the same state.

4. An experiment consists of flipping a coin three times and each time
noting whether it lands heads or tails.
(a) What is the sample space of this experiment?
(b) What is the event that tails occur more often than heads?

5. Family members have decided that their next vacation will be either
in France or in Canada. If they go to France, they can either fly or take
a boat. If they go to Canada, they can drive, take a train, or fly. Letting
the outcome of the experiment be the location of their vacation and
their mode of travel, list all the points in sample space S. Also list all
the outcomes in A, where A is the event that the family flies to the
destination.

6. The New York Yankees and the Chicago White Sox are playing three
games this weekend. Assuming that all games are played to a conclu-
sion and that we are interested only in which team wins each game,
list all the outcomes in sample space S. Also list all the outcomes in
A, where A is the event that the Yankees win more games than the
White Sox.

7. Let S = {1, 2, 3, 4, 5, 6}, A = {1, 3, 5}, B = {4, 6}, and C = {1, 4}. Find
(a) A ∩ B
(b) B ∪ C
(c) A ∪ (B ∩ C)

(d) (A ∪ B)c

Note: The operations within parentheses are performed first. For
instance, in (c) first determine the intersection of B and C, and then
take the union of A and that set.

8. A cafeteria offers a three-course meal. One chooses a main course, a
starch, and a dessert. The possible choices are as follows:

Meal Choices

Main course Chicken or roast beef
Starch course Pasta or rice or potatoes
Dessert Ice cream or gelatin or apple pie

An individual is to choose one course from each category.
(a) List all the outcomes in the sample space.
(b) Let A be the event that ice cream is chosen. List all the outcomes

in A.
(c) Let B be the event that chicken is chosen. List all the outcomes

in B.



152 CHAPTER 4: Probability

(d) List all the outcomes in the event A ∩ B.
(e) Let C be the event that rice is chosen. List all the outcomes in C.
(f) List all the outcomes in the event A ∩ B ∩ C.

9. A hospital administrator codes patients according to whether they
have insurance and according to their condition, which is rated as
good, fair, serious, or critical. The administrator records a 0 if a patient
has no insurance and a 1 if he or she does, and then records one of
the letters g, f , s, or c, depending on the patient’s condition. Thus, for
instance, the coding 1, g is used for a patient with insurance who is in
good condition. Consider an experiment that consists of the coding of
a new patient.
(a) List the sample space of this experiment.
(b) Specify the event corresponding to the patient’s being in serious

or critical condition and having no medical insurance.
(c) Specify the event corresponding to the patient’s being in either

good or fair condition.
(d) Specify the event corresponding to the patient’s having insurance.

10. The following pairs of events E and F relate to the same experiment.
Tell in each case whether E and F are disjoint events.
(a) A die is rolled. Event E is that it lands on an even number, and F

is the event that it lands on an odd number.
(b) A die is rolled. Event E is that it lands on 3, and F is the event that

it lands on an even number.
(c) A person is chosen. Event E is that this person was born in the

United States, and F is the event that this person is a U.S. citizen.
(d) A man is chosen. Event E is that he is over 30 years of age, and F

is the event that he has been married for over 30 years.
(e) A woman waiting in line to register her car at the department

of motor vehicles is chosen. Event E is that the car is made in
the United States, and F is the event that it is made in a foreign
country.

11. Let A be the event that a rolled die lands on an even number.
(a) Describe in words the event Ac.
(b) Describe in words the event (Ac)c.
(c) In general, let A be an event. What is the complement of its

complement? That is, what is (Ac)c?
12. Two dice are rolled. Let A be the event that the sum of the dice is even,

let B be the event that the first die lands on 1, and let C be the event
that the sum of the dice is 6. Describe the following events.
(a) A ∩ B
(b) A ∪ B
(c) B ∩ C
(d) Bc
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(e) Ac ∩ C
(f) A ∩ B ∩ C

13. Let A, B, and C be events. Use Venn diagrams to represent the event
that of A, B, and C
(a) Only A occurs.
(b) Both A and B occur, but C does not.
(c) At least one event occurs.
(d) At least two of the events occur.
(e) All three events occur.

4.3 PROPERTIES OF PROBABILITY
It is an empirical fact that if an experiment is continually repeated under the same
conditions, then, for any event A, the proportion of times that the outcome is
contained in A approaches some value as the number of repetitions increases. For
example, if a coin is continually flipped, then the proportion of flips landing on
tails will approach some value as the number of flips increases. It is this long-run
proportion, or relative frequency, that we often have in mind when we speak of the
probability of an event.

Consider an experiment whose sample space is S. We suppose that for each event
A there is a number, denoted P(A) and called the probability of event A, that is in
accord with the following three properties.

PROPERTY 1: For any event A, the probability of A is a number between 0 and 1.
That is,

0 ≤ P(A) ≤ 1

PROPERTY 2: The probability of sample space S is 1. Symbolically,

P(S) = 1

PROPERTY 3: The probability of the union of disjoint events is equal to the sum
of the probabilities of these events. For instance, if A and B are disjoint, then

P(A ∪ B) = P(A) + P(B)

The quantity P(A) represents the probability that the outcome of the experiment is
contained in event A. Property 1 states that the probability that the outcome of the
experiment is contained in A is some value between 0 and 1. Property 2 states that,
with probability 1, the outcome of the experiment will be an element of sample
space S. Property 3 states that if events A and B cannot simultaneously occur, then
the probability that the outcome of the experiment is contained in either A or B
is equal to the sum of the probability that it is in A and the probability that it
is in B.
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If we interpret P(A) as the long-run relative frequency of event A, then the stated
conditions are satisfied. The proportion of experiments in which the outcome is
contained in A would certainly be a number between 0 and 1. The proportion of
experiments in which the outcome is contained in S is 1 since all outcomes are
contained in sample space S. Finally, if A and B have no outcomes in common,
then the proportion of experiments whose outcome is in either A or B is equal
to the proportion whose outcome is in A plus the proportion whose outcome is
in B. For instance, if the proportion of time that a pair of rolled dice sums to 7 is
1/6 and the proportion of time that they sum to 11 is 1/18, then the proportion
of time that they sum to either 7 or 11 is 1/6 + 1/18 = 2/9.

Properties 1, 2, and 3 can be used to establish some general results concerning
probabilities. For instance, since A and Ac are disjoint events whose union is the
entire sample space, we can write

S = A ∪ Ac

Using properties 2 and 3 now yields the following.

1 = P(S) by property 2

= P(A ∪ Ac)

= P(A) + P(Ac) by property 3

Therefore, we see that

P(Ac) = 1 − P(A)

In words, the probability that the outcome of the experiment is not contained in
A is 1 minus the probability that it is. For instance, if the probability of obtaining
heads on the toss of a coin is 0.4, then the probability of obtaining tails is 0.6.

The following formula relates the probability of the union of events A and B,
which are not necessarily disjoint, to P(A), P(B), and the probability of the
intersection of A and B. It is often called the addition rule of probability.

Addition Rule

For any events A and B,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

To see why the addition rule holds, note that P(A ∪ B) is the probability of all out-
comes that are either in A or in B. On the other hand, P(A) + P(B) is the probability
of all the outcomes that are in A plus the probability of all the outcomes that are
in B. Since any outcome that is in both A and B is counted twice in P(A) + P(B)
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FIGURE 4.5
P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

and only once in P(A ∪ B) (see Fig. 4.5), it follows that

P(A) + P(B) = P(A ∪ B) + P(A ∩ B)

Subtracting P(A ∩ B) from both sides of the preceding equation gives the addition
rule.

Example 4.3 illustrates the use of the addition rule.

■ Example 4.3
A certain retail establishment accepts either the American Express or the VISA
credit card. A total of 22 percent of its customers carry an American Express
card, 58 percent carry a VISA credit card, and 14 percent carry both. What is the
probability that a customer will have at least one of these cards?

Solution

Let A denote the event that the customer has an American Express card, and let
B be the event that she or he has a VISA card. The given information yields

P(A) = 0.22 P(B) = 0.58 P(A ∩ B) = 0.14

By the additive rule, the desired probability P(A ∪ B) is

P(A ∪ B) = 0.22 + 0.58 − 0.14 = 0.66

That is, 66 percent of the establishment’s customers carry at least one of the
cards that it will accept. ■

As an illustration of the interpretation of probability as a long-run relative fre-
quency, we have simulated 10,000 flips of a perfectly symmetric coin. The total
numbers of heads and tails that occurred in the first 10, 50, 100, 500, 2000, 6000,
8000, and 10,000 flips, along with the proportion of them that was heads, are
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presented in Table 4.1. Note how the proportion of the flips that lands heads
becomes very close to 0.5 as the number of flips increases.

Table 4.1 10,000 Flips of a Symmetric Coin

Number of heads Number of tails Proportion of first n
n in first n flips in first n flips flips that lands on heads

10 3 7 0.3
50 21 29 0.42

100 46 54 0.46
500 248 252 0.496

2,000 1,004 996 0.502
6,000 3,011 2,989 0.5018
8,000 3,974 4,026 0.4968

10,000 5,011 4,989 0.5011

Table 4.2 10,000 Rolls of a Symmetric Die

i

1 2 3 4 5 6

Frequency of outcome 1724 1664 1628 1648 1672 1664
Relative frequency 0.1724 0.1664 0.1628 0.1648 0.1672 0.1664

Note: 1/6 = 0.166667.

The results of 10,000 simulated rolls of a perfectly symmetric die are presented in
Table 4.2.

PROBLEMS

1. Suppose the sample space of an experiment is

S = {1, 2, 3, 4, 5, 6}
Let Ai denote the event consisting of the single outcome i, and suppose
that

P(A1) = 0.1 P(A4) = 0.15

P(A2) = 0.2 P(A5) = 0.1

P(A3) = 0.15 P(A6) = 0.3

That is, the outcome of the experiment is 1 with probability 0.1, it is 2
with probability 0.2, it is 3 with probability 0.15, and so on. Let events
E, F, and G be as follows:

E = {1, 3, 5} F = {2, 4, 6} G = {1, 4, 6}



4.3 Properties of Probability 157

Historical Perspective
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The notion that chance, or probability, can be treated numerically is relatively
recent. Indeed, for most of recorded history it was felt that what occurred in life
was determined by forces that were beyond one’s ability to understand. It was only
during the first half of the 17th century, near the end of the Renaissance, that peo-
ple became curious about the world and the laws governing its operation. Among
the curious were the gamblers. A group of Italian gamblers, unable to answer cer-
tain questions concerning dice, approached the famous scientist Galileo. Galileo,
though busy with other work, found their problems to be of interest and not only
provided solutions but also wrote a short treatise on games of chance.

A few years later a similar story took place in France, where a gambler known as
Chevalier de Mere resided. De Mere, a strong amateur mathematician as well as
a gambler, had an acquaintance with the brilliant mathematician Blaise Pascal. It
was to Pascal that de Mere turned for help in his more difficult gaming questions.
One particular problem, known as the problem of the points, concerned the equi-
table division of stakes when two players are interrupted in the midst of a game of
chance. Pascal found this problem particularly intriguing and, in 1654, wrote to
the mathematician Pierre Fermat about it. Their resulting exchange of letters not
only led to a solution of this problem but also laid the framework for the solution
of many other problems connected with games of chance. Their celebrated corre-
spondence, cited by some as the birth date of probability, stimulated interest in
probability among some of the foremost European mathematicians of the time.
For instance, the young Dutch genius Ludwig Huyghens came to Paris to discuss
the new subject, and activity in this new field grew rapidly.

Find
(a) P(E), P(F), P(G) (b) P(E ∪ F)

(c) P(E ∪ G) (d) P(F ∪ G)

(e) P(E ∪ F ∪ G) (f) P(E ∩ F)

(g) P(F ∩ G) (h) P(E ∩ G)

(i) P(E ∩ F ∩ G)

2. If A and B are disjoint events for which P(A) = 0.2 and P(B) = 0.5, find
(a) P(Ac)

(b) P(A ∪ B)

(c) P(A ∩ B)

(d) P(Ac ∩ B)

3. Phenylketonuria is a genetic disorder that produces mental retarda-
tion. About one child in every 10,000 live births in the United States
has phenylketonuria. What is the probability that the next child born
in a Houston hospital has phenylketonuria?
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4. A certain person encounters three traffic lights when driving to work.
Suppose that the following represent the probabilities of the total
number of red lights that she has to stop for:

P(0 red lights) = 0.14

P(1 red light) = 0.36

P(2 red lights) = 0.34

P(3 red lights) = 0.16

(a) What is the probability that she stops for at least one red light
when driving to work?

(b) What is the probability that she stops for more than two red lights?
5. If A and B are disjoint events, is the following possible?

P(A) + P(B) = 1.2

What if A and B are not disjoint?
6. If the probability of drawing a king from a deck of pinochle cards is 1/6

and the probability of drawing an ace is 1/6, what is the probability of
drawing either an ace or a king?

7. Suppose that the demand for Christmas trees from a certain dealer
will be

1100 with probability 0.2
1400 with probability 0.3
1600 with probability 0.4
2000 with probability 0.1

Find the probability that the dealer will be able to sell his entire stock
if he purchases
(a) 1100 trees
(b) 1400 trees
(c) 1600 trees
(d) 2000 trees

8. The Japanese automobile company Lexus has established a reputation
for quality control. Recent statistics indicate that a newly purchased
Lexus ES 350 will have

0 defects with probability 0.12
1 defect with probability 0.18
2 defects with probability 0.25
3 defects with probability 0.20
4 defects with probability 0.15
5 or more defects with probability 0.10
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If you purchase a new Lexus ES 350, find the probability that it will
have
(a) 2 or fewer defects
(b) 4 or more defects
(c) Between (inclusive) 1 and 3 defects
Let p denote the probability it will have an even number of defects.
Whereas the information given above does not enable us to specify
the value of p, find the
(d) Largest
(e) Smallest
value of p which is consistent with the preceding.

9. When typing a five-page manuscript, a certain typist makes

0 errors with probability 0.20
1 error with probability 0.35
2 errors with probability 0.25
3 errors with probability 0.15
4 or more errors with probability 0.05

If you give such a manuscript to this typist, find the probability that it
will contain
(a) 3 or fewer errors
(b) 2 or fewer errors
(c) 0 errors

10. The following table is a modern version of a life table, which was first
developed by John Graunt in 1662. It gives the probabilities that a
newly born member of a certain specified group will die in his or her
ith decade of life, for i ranging from 1 to 10. The first decade starts with
birth and ends with an individual’s 10th birthday. The second decade
starts at age 10 and ends at the 20th birthday, and so on.

Life Table

Probability Probability
Decade of death Decade of death

1 0.062 6 0.124
2 0.012 7 0.215
3 0.024 8 0.271
4 0.033 9 0.168
5 0.063 10 0.028

For example, the probability that a newborn child dies in her or his
fifties is 0.124. Find the probability that a newborn will
(a) Die between the ages of 30 and 60
(b) Not survive to age 40
(c) Survive to age 80
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11. The family picnic scheduled for tomorrow will be postponed if it is
either cloudy or rainy. The weather report states that there is a 40
percent chance of rain tomorrow, a 50 percent chance of cloudiness,
and a 20 percent chance that it will be both cloudy and rainy. What is
the probability that the picnic will be postponed?

12. In Example 4.3, what proportion of customers has neither an American
Express nor a VISA card?

13. It is estimated that 30 percent of all adults in the United States are
obese and that 3 percent suffer from diabetes. If 2 percent of the popu-
lation both is obese and suffers from diabetes, what percentage of the
population either is obese or suffers from diabetes?

14. Welds of tubular joints can have two types of defects, which we call A
and B. Each weld produced has defect A with probability 0.064, defect
B with probability 0.043, and both defects with probability 0.025. Find
the proportion of welds that has
(a) Either defect A or defect B
(b) Neither defect

15. A customer that goes to the suit department of a certain store will pur-
chase a suit with probability 0.3. The customer will purchase a tie with
probability 0.2 and will purchase both a suit and a tie with probability
0.1. What proportion of customers purchases neither a suit nor a tie?

16. Anita has a 40 percent chance of receiving an A grade in statistics,
a 60 percent chance of receiving an A in physics, and an 86 percent
chance of receiving an A in either statistics or physics. Find the
probability that she
(a) Does not receive an A in either statistics or physics
(b) Receives A’s in both statistics and physics

17. This problem uses a Venn diagram to present a formal proof of the
addition rule. Events A and B are represented by circles in the Venn
diagram.

In terms of A and B, describe the region labeled
(a) I
(b) II
(c) III
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Express, in terms of P(I), P(II), and P(III),
(d) P(A ∪ B)

(e) P(A)

(f) P(B)

(g) P(A ∩ B)

(h) Conclude that

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

4.4 EXPERIMENTS HAVING EQUALLY LIKELY
OUTCOMES

For certain experiments it is natural to assume that each outcome in the sample
space S is equally likely to occur. That is, if sample space S consists of N outcomes,
say, S = {1, 2, . . . , N}, then it is often reasonable to suppose that

P({1}) = P({2}) = · · · = P({N})

In this expression, P({i}) is the probability of the event consisting of the single
outcome i; that is, it is the probability that the outcome of the experiment is i.

Using the properties of probability, we can show that the foregoing implies that
the probability of any event A is equal to the proportion of the outcomes in the
sample space that is in A. That is,

P(A) = number of outcomes in S that are in A
N

■ Example 4.4
In a survey of 420 members of a retirement center, it was found that 144 are
smokers and 276 are not. If a member is selected in such a way that each of the
members is equally likely to be the one selected, what is the probability that
person is a smoker?

Solution

There are 420 outcomes in the sample space of the experiment of selecting a
member of the center. Namely, the outcome is the person selected. Since there
are 144 outcomes in the event that the selected person is a smoker, it follows
that the probability of this event is

P{smoker} = 144
420

= 12
35

■
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■ Example 4.5
Suppose that when two dice are rolled, each of the 36 possible outcomes given
in Example 4.1(d) is equally likely. Find the probability that the sum of the
dice is 6 and that it is 7.

Solution

If we let A denote the event that the sum of the dice is 6 and B that it is 7, then

A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

and

B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

Therefore, since A contains 5 outcomes and B contains 6, we see that

P(A) = P{sum is 6} = 5/36

P(B) = P{sum is 7} = 6/36 = 1/6 ■

■ Example 4.6
One man and one woman are to be selected from a group that consists of
10 married couples. If all possible selections are equally likely, what is the
probability that the woman and man selected are married to each other?

Solution

Once the man is selected, there are 10 possible choices of the woman. Since
one of these 10 choices is the wife of the man chosen, we see that the desired
probability is 1/10. ■

When each outcome of the sample space is equally likely to be the outcome of
the experiment, we say that an element of the sample space is randomly selected.

■ Example 4.7
An elementary school is offering two optional language classes, one in French
and the other in Spanish. These classes are open to any of the 120 upper-grade
students in the school. Suppose there are 32 students in the French class, 36
in the Spanish class, and a total of 8 who are in both classes. If an upper-grade
student is randomly chosen, what is the probability that this student is enrolled
in at least one of these classes?
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Solution

Let A and B denote, respectively, the events that the randomly chosen student
is enrolled in the French class and is enrolled in the Spanish class. We will
determine P(A ∪ B), the probability that the student is enrolled in either French
or Spanish, by using the addition rule

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Since 32 of the 120 students are enrolled in the French class, 36 of the 120 are
in the Spanish class, and 8 of the 120 are in both classes, we have

P(A) = 32
120

, P(B) = 36
120

, and P(A ∩ B) = 8
120

Therefore,

P(A ∪ B) = 32
120

+ 36
120

− 8
120

= 1
2

That is, the probability that a randomly chosen student is taking at least one of
the language classes is 1/2. ■

■ Example 4.8
Table 4.3 lists the earnings frequencies of all full-time workers who are at
least 15 years old, classified according to their annual salary and gender.

Table 4.3 Earnings of Workers by Sex, 1989

Number Distribution (percent)Earnings group
(in $1000) Women Men Women Men

<5 427,000 548,000 1.4 1.1
5–10 440,000 358,000 1.4 .7
10–15 1,274,000 889,000 4.1 1.8
15–20 1,982,000 1,454,000 6.3 2.9
20–30 6,291,000 5,081,000 20.1 10.2
30–40 6,555,000 6,386,000 20.9 12.9
40–50 5,169,000 6,648,000 16.5 13.4
50–100 8,255,000 20,984,000 26.3 42.1
>100 947,000 7,377,000 3.0 14.9

Total 31,340,000 49,678,000 100.0 100.0

Source: Department of Commerce, Bureau of the Census.
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Suppose one of these workers is randomly chosen. Find the probability that this
person is
(a) A woman (b) A man
(c) A man earning under $30,000 (d) A woman earning over $50,000

Solution

(a) Since 31,340,000 of the 31,340,000 + 49,678,000 = 81,018,000 workers
are women, it follows that the probability that a randomly chosen worker
is a woman is

31,340,000
81,018,000

≈ .3868

That is, there is approximately a 38.7 percent chance that the randomly
selected worker is a woman.

(b) Since the event that the randomly selected worker is a man is the comple-
ment of the event that the worker is a woman, we see from (a) that the
probability is approximately 1 − 0.3868 = 0.6132.

(c) Since (in thousands) the number of men earning under $30,000 is

548 + 358 + 889 + 1454 + 5081 = 8330

we see that the desired probability is 8330/81,018 ≈ .1028. That is, there
is approximately a 10.3 percent chance that the person selected is a man
with an income under $30,000.

(d) The probability that the person selected is a woman with an income above
$50,000 is

8255 + 947
81,018

≈ .1136

That is, there is approximately an 11.4 percent chance that the person
selected is a woman with an income above $50,000. ■

PROBLEMS

1. In an experiment involving smoke detectors, an alarm was set off at
a college dormitory at 3 a.m. Out of 216 residents of the dormitory,
128 slept through the alarm. If one of the residents is randomly cho-
sen, what is the probability that this person did not sleep through the
alarm?

2. Among 32 dieters following a similar routine, 18 lost weight, 5 gained
weight, and 9 remained the same weight. If one of these dieters is
randomly chosen, find the probability that he or she
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(a) Gained weight
(b) Lost weight
(c) Neither lost nor gained weight

3. One card is to be selected at random from an ordinary deck of 52 cards.
Find the probability that the selected card is
(a) An ace (b) Not an ace
(c) A spade (d) The ace of spades

4. The following table lists the 10 countries with the highest production
of meat.

Meat production
Country (thousands of metric tons)

China 20,136
United States 17,564
Russia 12,698
Germany 6,395
France 3,853
Brazil 3,003
Argentina 2,951
Britain 2,440
Italy 2,413
Australia 2,373

Suppose a World Health Organization committee is formed to dis-
cuss the long-term ramifications of producing such quantities of meat.
Suppose further that it consists of one representative from each of
these countries. If the chair of this committee is then randomly cho-
sen, find the probability that this person will be from a country whose
production of meat (in thousands of metric tons)
(a) Exceeds 10,000
(b) Is under 3500
(c) Is between 4000 and 6000
(d) Is less than 2000

5. Suppose that distinct integer values are written on each of 3 cards.
These cards are then randomly given the designations A, B, and C. The
values on cards A and B are then compared. If the smaller of these val-
ues is then compared with the value on card C, what is the probability
that it is also smaller than the value on card C ?

6. A bag containing pennies and dimes has 4 times as many dimes as
pennies. One coin is drawn. Assuming that the drawn coin is equally
likely to be any of the coins, what is the probability that it is a dime?

7. A total of 44 out of 100 patients at a rehabilitation center are signed up
for a special exercise program that consists of a swimming class and a
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calisthenics class. Each of these 44 patients takes at least one of these
classes. Suppose that there are 26 patients in the swimming class and
28 in the calisthenics class. Find the probability that a randomly chosen
patient at the center is
(a) Not in the exercise program
(b) Enrolled in both classes

8. Of the families in a certain community, 20 percent have a cat, 32
percent have a dog, and 12 percent have both a cat and a dog.
(a) If a family is chosen at random, what is the probability it has

neither a dog nor a cat?
(b) If the community consists of 1000 families, how many of them have

either a cat or a dog?
9. Of the students at a girls’ school, 60 percent wear neither a ring nor

a necklace, 20 percent wear a ring, and 30 percent wear a necklace.
If one of them is randomly chosen, find the probability that she is
wearing
(a) A ring or a necklace
(b) A ring and a necklace

10. A sports club has 120 members, of whom 44 play tennis, 30 play
squash, and 18 play both tennis and squash. If a member is chosen
at random, find the probability that this person
(a) Does not play tennis
(b) Does not play squash
(c) Plays neither tennis nor squash

11. In Prob. 10, how many members play either tennis or squash?
12. If two dice are rolled, find the probability that the sum of the dice is

(a) Either 7 or 11
(b) One of the values 2, 3, or 12
(c) An even number

13. Suppose 2 people are randomly chosen from a set of 20 people that
consists of 10 married couples. What is the probability that the 2 people
are married to each other? (Hint: After the initial person is chosen, the
next one is equally likely to be any of the remaining people.)

14. Find the probability that a randomly chosen worker in Example 4.8
(a) Earns under $15,000
(b) Is a woman who earns between $20,000 and $40,000
(c) Earns under $50,000

15. A real estate agent has a set of 10 keys, one of which will open the
front door of a house he is trying to show to a client. If the keys are
tried in a completely random order, find the probability that
(a) The first key opens the door
(b) All 10 keys are tried
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16. A group of 5 girls and 4 boys is randomly lined up.
(a) What is the probability that the person in the second position is

a boy?
(b) What is the probability that Charles (one of the boys) is in the

second position?
17. The following data are from the U.S. National Oceanic and Atmo-

spheric Administration. They give the average number of days in each
month with precipitation of 0.01 inch or more for Washington, D.C.

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

10 9 11 10 11 10 10 9 8 7 8 9

Find the probability you will encounter rain if you are planning to visit
Washington, D.C., next
(a) January 5
(b) August 12
(c) April 15
(d) May 15
(e) October 12

4.5 CONDITIONAL PROBABILITY AND
INDEPENDENCE

We are often interested in determining probabilities when some partial informa-
tion concerning the outcome of the experiment is available. In such situations,
the probabilities are called conditional probabilities.

As an example of a conditional probability, suppose two dice are to be rolled.
Then, as noted in Example 4.1(d), the sample space of this experiment is the set
of 36 outcomes (i, j), where both i and j range from 1 through 6. The outcome
(i, j) results when the first die lands on i and the second on j.

Suppose that each of the 36 possible outcomes is equally likely to occur and thus
has probability 1/36. (When this is the case, we say that the dice are fair.) Suppose
further that the first die lands on 4. Given this information, what is the resulting
probability that the sum of the dice is 10? To determine this probability, we reason
as follows. Given that the first die lands on 4, there are 6 possible outcomes of the
experiment, namely,

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

In addition, since these outcomes initially had the same probabilities of occur-
rence, they should still have equal probabilities. That is, given that the first die
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lands on 4, the conditional probability of each of the outcomes should be 1/6.
Since in only one of the outcomes is the sum of the dice equal to 10, namely,
the outcome (4, 6), it follows that the conditional probability that the sum is 10,
given that the first die lands on 4, is 1/6.

If we let B denote the event that the sum of the dice is 10 and let A denote the event
that the first die lands on 4, then the probability obtained is called the conditional
probability of B given that A has occurred. It is denoted by

P(B|A)

A general formula for P(B|A) can be derived by an argument similar to the one
used earlier. Suppose that the outcome of the experiment is contained in A. Now,
in order for the outcome also to be in B, it must be in both A and B; that is,
it must be in A ∩ B. However, since we know that the outcome is in A, it follows
that A becomes our new (or reduced) sample space, and the probability that event
A ∩ B occurs is the probability of A ∩ B relative to the probability of A. That is (see
Fig. 4.6),

P(B|A) = P(A ∩ B)

P(A)

This definition of conditional probability is consistent with the interpretation of
probability as being a long-run relative frequency. To show this, suppose that a
large number, call it n, of repetitions of the experiment are performed. We will now
argue that if we consider only those experiments in which A occurs, then P(B|A)

will equal the long-run proportion of them in which B also occurs. To see this,
note that since P(A) is the long-run proportion of experiments in which A occurs,
it follows that in n repetitions of the experiment, A will occur approximately nP(A)

times. Similarly, in approximately nP(A ∩ B) of these experiments, both A and
B will occur. Hence, out of the approximately nP(A) experiments for which the
outcome is contained in A, approximately nP(A ∩ B) of them will also have their
outcomes in B. Therefore, of those experiments whose outcomes are in A, the
proportion whose outcome is also in B is approximately equal to

nP(A ∩ B)

nP(A)
= P(A ∩ B)

P(A)

FIGURE 4.6
P(B|A) = P(A∩B)

P(A)
.
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Since this approximation becomes exact as n becomes larger and larger, we see
that we have given the appropriate definition of the conditional probability of B
given that A has occurred.

■ Example 4.9
As a further check of the preceding formula for the conditional probability, use
it to compute the conditional probability that the sum of a pair of rolled dice
is 10, given that the first die lands on 4.

Solution

Letting B denote the event that the sum of the dice is 10 and A the event that
the first die lands on 4, we have

P(B|A) = P(A ∩ B)

P(A)

= P({(4, 6)})
P({(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)})

= 1/36
6/36

= 1
6

Therefore, we obtain the same result as before. ■

■ Example 4.10
The organization that employs Jacobi is organizing a parent-daughter dinner
for those employees having at least one daughter. Each of these employees
is asked to attend along with one of his or her daughters. If Jacobi is known
to have two children, what is the conditional probability that they are both
girls given that Jacobi is invited to the dinner? Assume the sample space S is
given by

S = {(g, g), (g, b), (b, g), (b, b)}

and that all these outcomes are equally likely, where the outcome (g, b) means,
for instance, that Jacobi’s oldest child is a girl and youngest is a boy.

Solution

Since Jacobi is invited to the dinner, we know that at least one of Jacobi’s chil-
dren is a girl. Letting B denote the event that both of them are girls and A the
event that at least one is a girl, we see that the desired probability is P(B|A). This
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is determined as follows:

P(B|A) = P(A ∩ B)

P(A)

= P({g, g})
P({(g, g), (g, b), (b, g)})

= 1/4
3/4

= 1
3

That is, the conditional probability that both of Jacobi’s children are girls given
that at least one is a girl is 1/3. Many students incorrectly suppose that this
conditional probability is 1/2, reasoning that the Jacobi child not attending
the dinner is equally likely to be a boy or a girl. Their mistake lies in assuming
that these two possibilities are equally likely, for initially there were 4 equally
likely outcomes. The information that at least one of the children is a girl is
equivalent to knowing that the outcome is not (b, b). Thus we are left with the
3 equally likely outcomes, (g, g), (g, b), (b, g), showing that there is only a 1/3
chance that Jacobi has two girls. ■

■ Example 4.11
Table 4.4 lists the number (in thousands) of students enrolled in a California
State College, categorized by sex and age.

(a) Suppose a student is randomly chosen. What is the probability this student
is a woman?

Find the conditional probability that a randomly chosen student is

(b) Over 35, given that this student is a man
(c) Over 35, given that this student is a woman
(d) A woman, given that this student is over 35
(e) A man, given that this student is between 20 and 21

Solution

(a) Since there are 6663 women out of a total of 12,544 students, it follows
that the probability that a randomly chosen student is a woman is

6663
12,544

= 0.5312

(b) Since there are a total of 5881 males, of whom 684 are over age 35, the
desired conditional probability is

P(over 35|man) = 684
5881

= 0.1163
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Table 4.4 Enrollment

Sex and age

Total 12,544
Male 5,881

14 to 17 years old 91
18 and 19 years old 1,309
20 and 21 years old 1,089
22 to 24 years old 1,080
25 to 29 years old 1,016
30 to 34 years old 613
35 years old and over 684

Female 6,663
14 to 17 years old 119
18 and 19 years old 1,455
20 and 21 years old 1,135
22 to 24 years old 968
25 to 29 years old 931
30 to 34 years old 716
35 years old and over 1,339

(c) By similar reasoning to that used in (b), we see that

P(over 35|woman) = 1339
6663

= 0.2010

(d) Since there are a total of 684 + 1339 = 2023 students who are over age 35,
of whom 1339 are women, it follows that

P(woman|over 35) = 1339
2023

= 0.6619

(e) Since there are a total of 1089 + 1135 = 2224 students who are between
20 and 21, of whom 1089 are men, it follows that

P(man|between 20 and 21) = 1089
2224

= 0.4897

■

Since

P(B|A) = P(A ∩ B)

P(A)

we obtain, upon multiplying both sides by P(A), the following result, known as
the multiplication rule.
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Multiplication Rule

P(A ∩ B) = P(A)P(B|A)

This rule states that the probability that both A and B occur is equal to the prob-
ability that A occurs multiplied by the conditional probability of B given that A
occurs. It is often quite useful for computing the probability of an intersection.

■ Example 4.12
Suppose that two people are randomly chosen from a group of 4 women and
6 men.

(a) What is the probability that both are women?
(b) What is the probability that one is a woman and the other a man?

Solution

(a) Let A and B denote, respectively, the events that the first person selected is
a woman and that the second person selected is a woman. To compute the
desired probability P(A ∩ B), we start with the identity

P(A ∩ B) = P(A)P(B|A)

Now since the first person chosen is equally likely to be any of the 10
people, of whom 4 are women, it follows that

P(A) = 4
10

Now given that the first person selected is a woman, it follows that the next
selection is equally likely to be any of the remaining 9 people, of whom 3
are women. Therefore,

P(B|A) = 3
9

and so

P(A ∩ B) = 4
10

· 3
9

= 2
15

(b) To determine the probability that the chosen pair consists of 1 woman
and 1 man, note first that this can occur in two disjoint ways. Either the
first person chosen is a man and the second chosen is a woman, or vice
versa. Let us determine the probabilities for each of these cases. Letting A
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denote the event that the first person chosen is a man and B the event that
the second person chosen is a woman, we have

P(A ∩ B) = P(A)P(B|A)

Now, since the first person is equally likely to be any of the 10 people, of
whom 6 are men,

P(A) = 6
10

Also, given that the first person is a man, the next selection is equally likely
to be any of the remaining 9 people, of whom 4 are women, and so

P(B|A) = 4
9

Therefore,

P(man then woman) = P(A ∩ B) = 6
10

· 4
9

= 4
15

By similar reasoning, the probability that the first person chosen is a
woman and the second chosen is a man is

P(woman then man) = 4
10

· 6
9

= 4
15

Since the event that the chosen pair consists of a woman and a man is the
union of the above two disjoint events, we see that

P(1 woman and 1 man) = 4
15

+ 4
15

= 8
15 ■

The conditional probability that B occurs given that A has occurred is not generally
equal to the (unconditional) probability of B. That is, knowing that A has occurred
generally changes the chances of B’s occurrence. In the cases where P(B|A) is equal
to P(B), we say that B is independent of A.

Since

P(A ∩ B) = P(A)P(B|A)

we see that B is independent of A if

P(A ∩ B) = P(A)P(B)

Since this equation is symmetric in A and B, it follows that if B is independent of
A, then A is also independent of B.
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It can also be shown that if A and B are independent, then the probability of B
given that A does not occur is also equal to the (unconditional) probability of B.
That is, if A and B are independent, then

P(B|Ac) = P(B)

Thus, when A and B are independent, any information about the occurrence or
nonoccurrence of one of these events does not affect the probability of the other.

Events A and B are independent if

P(A ∩ B) = P(A)P(B)

If A and B are independent, then the probability that a given one of them occurs
is unchanged by information as to whether the other one has occurred.

■ Example 4.13
Suppose that we roll a pair of fair dice, so each of the 36 possible outcomes is
equally likely. Let A denote the event that the first die lands on 3, let B be the
event that the sum of the dice is 8, and let C be the event that the sum of the
dice is 7.

(a) Are A and B independent?
(b) Are A and C independent?

Solution

(a) Since A ∩ B is the event that the first die lands on 3 and the second on 5,
we see that

P(A ∩ B) = P({(3, 5)}) = 1
36

On the other hand,

P(A) = P({(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}) = 6
36

and

P(B) = P({(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}) = 5
36

Therefore, since 1/36 
= (6/36) · (5/36), we see that

P(A ∩ B) 
= P(A)P(B)

and so events A and B are not independent.
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Intuitively, the reason why the events are not independent is that the
chance that the sum of the dice is 8 is affected by the outcome of the first
die. In particular, the chance that the sum is 8 is enhanced when the first
die is 3, since then we still have a chance of obtaining the total of 8 (which
we would not have if the first die were 1).

(b) Events A and C are independent. This is seen by noting that

P(A ∩ C) = P({3, 4}) = 1
36

while

P(A) = 1
6

and

P(C) = P({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) = 6
36

Therefore,

P(A ∩ C) = P(A)(C)

and so events A and C are independent.

It is rather intuitive that the event that the sum of the dice is 7 should be
independent of the event that the first die lands on 3. For no matter what
the outcome of the first die, there will always be exactly one outcome of
the second die that results in the sum being equal to 7. As a result, the
conditional probability that the sum is 7 given the value of the first die
will always equal 1/6. ■

■ Example 4.14
Consider Table 4.4, presented in Example 4.11. Suppose that a female student
is randomly chosen, as is, independently, a male student. Find the probability
that both students are between 22 and 24 years old.

Solution

Since 1080 of the 5881 male students are between 22 and 24 years old, it
follows that

P({male is between 22 and 24}) = 1080
5881

≈ 0.1836

Similarly, since 968 of the 6663 female students are between 22 and 24 years
old, we see that

P({female is between 22 and 24}) = 968
6663

≈ 0.1453
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Since the choices of the male and female students are independent, we obtain

P({both are between ages 22 and 24}) = 1080
5881

.
968

6663
≈ 0.0267

That is, there is approximately a 2.7 percent chance that both students are
between 22 and 24 years of age. ■

While so far we have discussed independence only for pairs of events, this concept
can be extended to any number of events. The probability of the intersection of any
number of independent events will be equal to the product of their probabilities.

If A1, . . . , An are independent, then

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) · · · P(An)

■ Example 4.15
A couple is planning on having three children. Assuming that each child
is equally likely to be of either sex and that the sexes of the children are
independent, find the probability that

(a) All three children will be girls.
(b) At least one child will be a girl.

Solution

(a) If we let Ai be the event that their ith child is a girl, then

P(all girls) = P(A1 ∩ A2 ∩ A3)

= P(A1)P(A2)P(A3) by independence

= 1
2

· 1
2

· 1
2

= 1
8

(b) The easiest way to compute the probability of at least one girl is by first com-
puting the probability of the complementary event—that all the children
are boys. Since, by the same reasoning as used in part (a),

P(all boys) = 1
8

we see that

P(at least one girl) = 1 − P(all boys) = 7
8

■
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PROBLEMS

1. It is estimated that 30 percent of all adults in the United States are
obese, 3 percent of all adults suffer from diabetes, and 2 percent of
all adults both are obese and suffer from diabetes. Determine the
conditional probability that a randomly chosen individual
(a) Suffers from diabetes given that he or she is obese
(b) Is obese given that she or he suffers from diabetes

2. Suppose a coin is flipped twice. Assume that all four possibilities are
equally likely to occur. Find the conditional probability that both coins
land heads given that the first one does.

3. Consider Table 4.3 as presented in Example 4.8. Suppose that one of
the workers is randomly chosen. Find the conditional probability that
this worker
(a) Is a woman given that he or she earns over $25,000
(b) Earns over $25,000 given that this worker is a woman

4. Fifty-two percent of the students at a certain college are females.
Five percent of the students in this college are majoring in computer
science. Two percent of the students are women majoring in com-
puter science. If a student is selected at random, find the conditional
probability that
(a) This student is female, given that the student is majoring in

computer science
(b) This student is majoring in computer science, given that the

student is female
Problems 5 and 6 refer to the data in the following table, which describes the age
distribution of residents in a northern California county.

Age Number

0–9 4200
10–19 5100
20–29 6200
30–39 4400
40–49 3600
50–59 2500
60–69 1800
Over 70 1100

5. If a resident is randomly selected from this county, determine the
probability that the resident is
(a) Less than 10 years old
(b) Between 10 and 20 years old
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(c) Between 20 and 30 years old
(d) Between 30 and 40 years old

6. Find the conditional probability that a randomly chosen resident is
(a) Between 10 and 20 years old, given that the resident is less than

30 years old
(b) Between 30 and 40 years old, given that the resident is older

than 30
7. A games club has 120 members, of whom 40 play chess, 56 play bridge,

and 26 play both chess and bridge. If a member of the club is randomly
chosen, find the conditional probability that she or he
(a) Plays chess given that he or she plays bridge
(b) Plays bridge given that she or he plays chess

8. Refer to Table 4.4, which is presented in Example 4.11. Determine the
conditional probability that a randomly chosen student is
(a) Less than 25 years old, given that the student is a man
(b) A man, given that this student is less than 25 years old
(c) Less than 25 years old, given that the student is a woman
(d) A woman, given that this student is less than 25 years old

9. Following is a pie chart detailing the after-graduation plans of the 2004
graduating class of Harvard University.

Suppose a student from this class is randomly chosen. Given that this
student is not planning to go into either business or teaching, what is
the probability that this student
(a) Is planning to go into graduate study?
(b) Is planning to go into either teaching or graduate study?
(c) Is planning to go into either communications or graduate study?
(d) Is not planning to go into science/technology?
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(e) Is not planning to go into either communications or business?
(f) Is not planning to go into either science/technology or govern-

ment/politics?
10. Many psychologists believe that birth order and personality are rela-

ted. To study this hypothesis, 400 elementary school children were
randomly selected and then given a test to measure confidence. On
the results of this test each of the students was classified as being
either confident or not confident. The numbers falling into each of the
possible categories are:

Firstborn Not firstborn

Confident 62 60

Not confident 105 173

That is, for instance, out of 167 students who were firstborn children,
a total of 62 were rated as being confident. Suppose that a student is
randomly chosen from this group.
(a) What is the probability that the student is a firstborn?
(b) What is the probability that the student is rated confident?
(c) What is the conditional probability that the student is rated confi-

dent given that the student is a firstborn?
(d) What is the conditional probability that the student is rated confi-

dent given that the student is not a firstborn?
(e) What is the conditional probability that the student is a firstborn

given that the student is confident?
11. Two cards are randomly selected from a deck of 52 playing cards. What

is the conditional probability they are both aces given that they are of
different suits?

12. In the U.S. Presidential election of 1984, 68.3 percent of those citi-
zens eligible to vote registered; and of those registering to vote, 59.9
percent actually voted. Suppose a citizen eligible to vote is randomly
chosen.
(a) What is the probability that this person voted?
(b) What is the conditional probability that this person registered

given that he or she did not vote?
Note: In order to vote, first you must register.

13. There are 30 psychiatrists and 24 psychologists attending a cer-
tain conference. Two of these 54 people are randomly chosen to
take part in a panel discussion. What is the probability that at least
one psychologist is chosen? (Hint: You may want to first determine
the probability of the complementary event that no psychologists are
chosen.)
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14. A child has 12 socks in a drawer; 5 are red, 4 are blue, and 3 are green.
If 2 socks are chosen at random, find the probability that they are
(a) Both red
(b) Both blue
(c) Both green
(d) The same color

15. Two cards are chosen at random from a deck of 52 playing cards. Find
the probability that
(a) Neither one is a spade
(b) At least one is a spade
(c) Both are spades

16. There are n socks in a drawer, of which 3 are red. Suppose that if 2
socks are randomly chosen, then the probability that they are both red
is 1/2. Find n.

*17. Suppose the occurrence of A makes it more likely that B will occur. In
that case, show that the occurrence of B makes it more likely that A
will occur.

That is, show that if

P(B|A) > P(B)

then it is also true that

P(A|B) > P(A)

18. Two fair dice are rolled.
(a) What is the probability that at least one of the dice lands on 6?
(b) What is the conditional probability that at least one of the dice

lands on 6 given that their sum is 9?
(c) What is the conditional probability that at least one of the dice

lands on 6 given that their sum is 10?
19. There is a 40 percent chance that a particular company will set up a

new branch office in Chicago. If it does, there is a 60 percent chance
that Norris will be named the manager. What is the probability that
Norris will be named the manager of a new Chicago office?

20. According to a geologist, the probability that a certain plot of land con-
tains oil is 0.7. Moreover, if oil is present, then the probability of hitting
it with the first well is 0.5. What is the probability that the first well
hits oil?

21. At a certain hospital, the probability that a patient dies on the operat-
ing table during open heart surgery is 0.20. A patient who survives the
operating table has a 15 percent chance of dying in the hospital from
the aftereffects of the operation. What fraction of open-heart surgery
patients survive both the operation and its aftereffects?
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22. An urn initially contains 4 white and 6 black balls. Each time a ball is
drawn, its color is noted and then it is replaced in the urn along with
another ball of the same color. What is the probability that the first
2 balls drawn are black?

23. Reconsider Prob. 7.
(a) If a member is randomly chosen, what is the probability that the

chosen person plays either chess or bridge?
(b) How many members play neither chess nor bridge?
If two members are randomly chosen, find the probability that
(c) They both play chess.
(d) Neither one plays chess or bridge.
(e) Both play either chess or bridge.

24. Consider Table 4.4 as given in Example 4.11. Suppose that a
female student and a male student are independently and randomly
chosen.
(a) Find the probability that exactly one of them is over 30 years old.
(b) Given that exactly one of them is over 30 years old, find the

conditional probability that the male is older.
25. José and Jim go duck hunting together. Suppose that José hits the

target with probability 0.3 and Jim, independently, with probability
0.1. They both fire one shot at a duck.
(a) Given that exactly one shot hits the duck, what is the conditional

probability that it is José’s shot? That it is Jim’s?

(b) Given that the duck is hit, what is the conditional probability that
José hit it? That Jim hit it?

26. A couple has two children. Let Adenote the event that their older child
is a girl, and let B denote the event that their younger child is a boy.
Assuming that all 4 possible outcomes are equally likely, show that
A and B are independent.

27. A simplified model for the movement of the price of a stock supposes
that on each day the stock’s price either moves up 1 unit with proba-
bility p or moves down 1 unit with probability 1 − p. The changes on
different days are assumed to be independent. Suppose that for a cer-
tain stock p is equal to 1/2. (Therefore, for instance, if the stock’s price
at the end of today is 100 units, then its price at the end of tomorrow
will equally likely be either 101 or 99.)
(a) What is the probability that after 2 days the stock will be at its

original price?

(b) What is the probability that after 3 days the stock’s price will have
increased by 1 unit?

(c) If after 3 days the stock’s price has increased by 1 unit, what is the
conditional probability that it went up on the first day?
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28. A male New York resident is randomly selected. Which of the following
pairs of events Aand Bcan reasonably be assumed to be independent?
(a) A: He is a journalist.

B: He has brown eyes.

(b) A: He had a headache yesterday.
B: He was in an accident yesterday.

(c) A: He is wearing a white shirt.
B: He is late to work.

29. A coin that is equally likely to land on heads or on tails is successively
flipped until tails appear. Assuming that the successive flips are inde-
pendent, what is the probability that the coin will have to be tossed at
least 5 times? (Hint: Fill in the missing word in the following sentence.
The coin will have to be tossed at least 5 times if the first ______ flips
all land on heads.)

30. A die is thrown until a 5 appears. Assuming that the die is equally
likely to land on any of its six sides and that the successive throws
are independent, what is the probability that it takes more than six
throws?

31. Suppose that the probability of getting a busy signal when you call a
friend is 0.1. Would it be reasonable to suppose that the probability of
getting successive busy signals when you call two friends, one right
after the other, is 0.01? If not, can you think of a condition under which
this would be a reasonable supposition?

32. Two fields contain 9 and 12 plots of land, as shown here.

For an agricultural experiment, one plot from each field will be selected
at random, independently of each other.
(a) What is the probability that both selected plots are corner plots?
(b) What is the probability that neither plot is a corner plot?
(c) What is the probability at least one of the selected plots is a corner

plot?
33. A card is to be randomly selected from a deck of 52 playing cards. Let

A be the event that the card selected is an ace, and let B be the event
that the card is a spade. Show that A and B are independent.
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34. A pair of fair dice is rolled. Let A be the event that the sum of the dice
is equal to 7. Is A independent of the event that the first die lands on
1? on 2? on 4? on 5? on 6?

35. What is the probability that two strangers have the same birthday?
36. A U.S. publication reported that 4.78 percent of all deaths in 1988

were caused by accidents. What is the probability that three randomly
chosen deaths were all due to accidents?

37. Each relay in the following circuits will close with probability 0.8. If
all relays function independently, what is the probability that a cur-
rent flows between A and B for the respective circuits? (The circuit in
part (a) of the figure, which needs both of its relays to close, is called
a series circuit. The circuit in part (b), which needs at least one of its
relays to close, is called a parallel circuit.)

Hint: For parts (b) and (c) use the addition rule.
38. An urn contains 5 white and 5 black balls. Two balls are randomly

selected from this urn. Let Abe the event that the first ball is white and
B be the event that the second ball is black. Are A and B independent
events? Explain your reasoning.

39. Suppose in Prob. 38 that the first ball is returned to the urn before the
second is selected. Will A and B be independent in this case? Again,
explain your answer.

40. Suppose that each person who is asked whether she or he is in favor of
a certain proposition will answer yes with probability 0.7 and no with
probability 0.3. Assume that the answers given by different people are
independent. Of the next four people asked, find the probability that
(a) All give the same answer.
(b) The first two answer no and the final two yes.
(c) At least one answers no.
(d) Exactly three answer yes.
(e) At least one answers yes.

41. The following data, obtained from the U.S. National Oceanic and
Atmospheric Administration, give the average number of days with
precipitation of 0.01 inch or more in different months for the cities of
Mobile, Phoenix, and Los Angeles.
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Average Number of Days with Precipitation of
0.01 Inch or More

City January April July

Mobile 11 7 16
Phoenix 4 2 4
Los Angeles 6 3 1

Suppose that in the coming year you are planning to visit Phoenix on
January 4, Los Angeles on April 10, and Mobile on July 15.
(a) What is the probability that it will rain on all three trips?
(b) What is the probability it will be dry on all three trips?
(c) What is the probability that you encounter rain in Phoenix and

Mobile but not in Los Angeles?
(d) What is the probability that you encounter rain in Mobile and Los

Angeles but not in Phoenix?
(e) What is the probability that you encounter rain in Phoenix and Los

Angeles but not in Mobile?
(f) What is the probability that it rains in exactly two of your three

trips?
42. Each computer chip produced by machine A is defective with prob-

ability 0.10, whereas each chip produced by machine B is defective
with probability 0.05. If one chip is taken from machine Aand one from
machine B, find the probability (assuming independence) that
(a) Both chips are defective.
(b) Both are not defective.
(c) Exactly one of them is defective.
If it happens that exactly one of the two chips is defective, find the
probability that it was the one from
(d) Machine A
(e) Machine B

43. Genetic testing has enabled parents to determine if their children are
at risk for cystic fibrosis (CF), a degenerative neural disease. A child
who receives a CF gene from both parents will develop the disease by
his or her teenage years and will not live to adulthood. A child who
receives either zero or one CF gene will not develop the disease; how-
ever, if she or he does receive one CF gene, it may be passed on to
subsequent offspring. If an individual has a CF gene, then each of his
or her children will receive that gene with probability 1/2.
(a) If both parents possess the CF gene, what is the probability that

their child will develop cystic fibrosis?
(b) What is the probability that a 25-year-old person who does not

have CF but whose sibling does, carries the gene?
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*4.6 BAYES’ THEOREM
For any two events A and B, we have the following representation for A:

A = (A ∩ B) ∪ (A ∩ Bc)

That this is valid is easily seen by noting that for an outcome to be in A, either it
must be in both A and B or it must be in A but not in B (see Fig. 4.7). Since A ∩ B
and A ∩ Bc are mutually exclusive (why?), we have by Property 3 (see Sec. 4.3)

P(A) = P(A ∩ B) + P(A ∩ Bc)

Since

P(A ∩ B) = P(A|B)P(B) and P(A ∩ Bc) = P(A|Bc)P(Bc)

we have thus shown the following equality:

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) (4.1)

This equality states that the probability of event A is a weighted average of the
conditional probability of A given that B occurs and the conditional probability
of A given that B does not occur; each conditional probability is weighted by the
probability of the event on which it is conditioned. It is a very useful formula for it
often enables us to compute the probability of an event A by first “conditioning”
on whether a second event B occurs.

Before illustrating the use of Eq. (4.1), we first consider the problem of how to
reevaluate an initial probability in light of additional evidence. Suppose there is
a certain hypothesis under consideration; let H denote the event that the hypo-
thesis is true and P(H) the probability that the hypothesis is true. Now, suppose
that additional evidence, call it E, concerning this hypothesis becomes avail-
able. We thus want to determine P(H|E), the conditional probability that the

FIGURE 4.7
A = (A ∩ B) ∪ (A ∪ Bc)
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hypothesis is true given the new evidence E. Now, by the definition of conditional
probability,

P(H|E) = P(H ∩ E)

P(E)
= P(E|H)P(H)

P(E)

By making use of Eq. (4.1), we can compute P(E) by conditioning on whether the
hypothesis is true. This yields the following identity, known as Bayes’ theorem.

Bayes’ Theorem

P(H|E) = P(E|H)P(H)

P(E|H)P(H) + P(E|Hc)P(Hc)

■ Example 4.16
An insurance company believes that people can be divided into two classes—
those who are prone to have accidents and those who are not. The data
indicate that an accident-prone person will have an accident in a 1-year period
with probability 0.1; the probability for all others is 0.05. Suppose that the
probability is 0.2 that a new policyholder is accident-prone.

(a) What is the probability that a new policyholder will have an accident in
the first year?

(b) If a new policyholder has an accident in the first year, what is the probabil-
ity that he or she is accident-prone?

Solution

Let H be the event that the new policyholder is accident-prone, and let A denote
the event that she or he has an accident in the first year. We can compute P(A)

by conditioning on whether the person is accident-prone:

P(A) = P(A|H)P(H) + P(A|Hc)P(Hc)

= (0.1)(0.2) + (0.05)(0.8) = 0.06

Therefore, there is a 6 percent chance that a new policyholder will have an
accident in the first year.

We compute P(H|A) as follows:

P(H|A) = P(H ∩ A)

P(A)

= P(A|H)P(H)

P(A)

= (0.1)(0.2)

0.06
= 1

3
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Therefore, given that a new policyholder has an accident in the first year, the
conditional probability that the policyholder is prone to accidents is 1/3. ■

■ Example 4.17
A blood test is 99 percent effective in detecting a certain disease when the dis-
ease is present. However, the test also yields a false-positive result for 2 percent
of the healthy patients tested. (That is, if a healthy person is tested, then with
probability 0.02 the test will say that this person has the disease.) Suppose 0.5
percent of the population has the disease. Find the conditional probability that
a randomly tested individual actually has the disease given that his or her test
result is positive.

Solution

Let D denote the event that the person has the disease, and let E be the event that
the test is positive. We want to determine P(D|E), which can be accomplished
by using Bayes’ theorem as follows:

P(D|E) = P(E|D)P(D)

P(E|D)P(D) + P(E|Dc)P(Dc)

= (0.99)(0.005)

(0.99)(0.005) + (0.02)(0.995)
= 0.199

Thus, there is approximately a 20 percent chance that a randomly chosen per-
son from the population who tests positive actually has the disease. (The reason
why it is so low is that the chance that a randomly chosen person is free of
the disease yet tests positive is greater than the chance that the person has the
disease and tests positive.) ■

PROBLEMS

1. There are two coins on a table. When both are flipped, one coin lands
on heads with probability 0.5 while the other lands on heads with
probability 0.6. A coin is randomly selected from the table and flipped.
(a) What is the probability it lands on heads?
(b) Given that it lands on tails, what is the conditional probability that

it was the fair coin (that is, the one equally likely to land heads or
tails)?

2. Suppose that when answering a question on a multiple-choice test, a
student either knows the answer or guesses at it. If he guesses at the
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answer, then he will be correct with probability 1/5. If the probability
that a student knows the answer is 0.6, what is the conditional prob-
ability that the student knew the answer given that he answered it
correctly?

3. The inspector in charge of a criminal investigation is 60 percent certain
of the guilt of a certain suspect. A new piece of evidence proving that
the criminal was left-handed has just been discovered. Whereas the
inspector knows that 18 percent of the population is left-handed, she
is waiting to find out whether the suspect is left-handed.
(a) What is the probability that the suspect is left-handed?
(b) If the suspect turns out to be left-handed, what is the probability

that the suspect is guilty?
4. Urn 1 contains 4 red and 3 blue balls, and urn 2 contains 2 red and 2

blue balls. A ball is randomly selected from urn 1 and placed in urn 2.
A ball is then drawn from urn 2.
(a) What is the probability that the ball drawn from urn 2 is red?
(b) What is the conditional probability that the ball drawn from urn 1

is red given that a blue ball is drawn from urn 2?
5. Consider a diagnostic test that is 97 percent accurate on both those

who have and those who do not have the disease. (That is, if a per-
son has the disease, then with probability 0.97 the diagnosis will be
positive; and if the person does not have the disease, then with prob-
ability 0.97 the diagnosis will be negative.) Suppose 2 percent of the
population has the disease. What is the conditional probability that a
randomly selected member of the population has the disease if that
person’s diagnosis was positive?

6. There are three cards in a hat. One is colored red on both sides, one is
black on both sides, and one is red on one side and black on the other.
The cards are thoroughly mixed in the hat, and one card is drawn and
placed on a table. If the side facing up is red, what is the conditional
probability that the other side is black?

7. A total of 52 percent of voting-age residents of a certain city are Repub-
licans, and the other 48 percent are Democrats. Of these residents, 64
percent of the Republicans and 42 percent of the Democrats are in favor
of discontinuing affirmative action city hiring policies. A voting-age
resident is randomly chosen.
(a) What is the probability that the chosen person is in favor of

discontinuing affirmative action city hiring policies?
(b) If the person chosen is against discontinuing affirmative action

hiring policies, what is the probability she or he is a Republican?
8. A person’s eye color is determined by a single pair of genes. If both

genes are blue-eyed genes, then the person will have blue eyes; if they
are both brown-eyed genes, then the person will have brown eyes;
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and if one gene is blue-eyed and the other is brown-eyed, then the
person will have brown eyes. (Because of this latter fact we say that
the brown-eyed gene is dominant over the blue-eyed one.) A newborn
child independently receives one eye gene from each parent, and the
gene that the child receives from a parent is equally likely to be either
of the two eye genes of that parent. Suppose that Susan has blue eyes
and both her parents have brown eyes.
(a) What is the eye gene pair of Susan’s mother? of her father?
(b) Susan’s brown-eyed sister is pregnant. If her sister’s husband has

blue eyes, what is the probability the baby will have blue eyes?
Hint: What is the probability that Susan’s sister has a blue-eyed
gene?

9. Twelve percent of all U.S. households are in California. A total of 1.3
percent of all U.S. households earn over 250,000 dollars per year, while
a total of 3.3 percent of all California households earn over 250,000
dollars per year. A U.S. household is randomly chosen.
(a) What percentage of non-California households earn over 250,000

dollars per year?
(b) Given that the chosen household earns over 250,000 dollars per

year, what is the probability it is a California household?

*4.7 COUNTING PRINCIPLES
As seen in Sec. 4.4, we often determine probabilities by counting the number of
different outcomes in a specified event. The key to doing this effectively is to make
use of the following rule, known as the basic principle of counting.

Basic Principle of Counting

Suppose an experiment consists of two parts. If part 1 can result in any of n pos-
sible outcomes and if for each outcome of part 1 there are m possible outcomes
of part 2, then there is a total of nm possible outcomes of the experiment.

That the basic principle is valid can easily be seen by enumerating all possible
outcomes of the experiment:

(1, 1), (1, 2), . . . , (1, m)

(2, 1), (2, 2), . . . , (2, m)

.

.

.

(n, 1), (n, 2), . . . , (n, m)
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where we say that the outcome of the experiment is (i, j) if part 1 of the experiment
resulted in its ith possible outcome and part 2 then resulted in its jth possible
outcome. Since the preceding display contains n rows, each of which consists of
m outcomes, it follows that there is total of m + m · · · + m = nm outcomes.

■ Example 4.18
One man and one woman are to be selected from a group consisting of 12
women and 8 men. How many different choices are possible?

Solution

By regarding the choice of the woman as the first part of the experiment and
the choice of the man as the second, we see from the basic principle that there
are 12 · 8 = 96 possible outcomes. ■

■ Example 4.19
Two people are to be selected from a group that consists of 10 married couples.
How many different choices are possible? If each choice is equally likely, what
is the probability that the two people selected are married to each other?

Solution

Since the first person selected is any of the 20 people and the next one is
then any of the remaining 19, it follows from the basic principle that there
are 20 · 19 = 380 possible outcomes. Now, for each married couple there are
2 outcomes that result in that couple’s selection. Namely, the husband could
be the first person selected and the wife the second, or the reverse. Thus, there
are 2 · 10 = 20 different outcomes that result in a married couple’s selection.
Hence, assuming that that all possible outcomes are equally likely, it fol-
lows that the probability that the people selected are married to each other
is 20/380 = 1/19. ■

When the experiment consists of more than two parts, the basic principle can be
generalized as follows.

Generalized Basic Principle of Counting

Suppose an experiment consists of r parts. Suppose there are n1 possible outcomes
of part 1 and then n2 possible outcomes of part 2 and then n3 possible outcomes
of part 3, and so on. Then there is a total of n1 · n2 · · · nr possible outcomes of the
experiment.

As an application of the generalized principle, suppose that we want to determine
the number of different ways that the three letters a, b, c can be arranged in a linear
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order. By direct enumeration we can see that there are 6 possible arrangements:

abc, acb, bac, bca, cab, cba

This result could also have been obtained by using the generalized basic principle
of counting. That is, there are 3 choices for the first element in the ordering, there
are then 2 choices for the second, and then 1 choice for the third position. Hence,
there are 3 · 2 · 1 = 6 possible outcomes.

Suppose now that we want to determine the number of different arrangements of
n objects. By the same reasoning, we see that there is a total of

n · (n − 1) · (n − 2) · · · 3 · 2 · 1

different arrangements. Each of these arrangements is called a permutation. It is
convenient to introduce for the foregoing expression the notation n!, which is
read “n factorial.” That is,

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1

Thus, for instance,

1! = 1

2! = 2 · 1 = 2

3! = 3 · 2 · 1 = 6

4! = 4 · 3 · 2 · 1 = 24

and so on. In addition, it is convenient to define 0! to be equal to 1.

■ Example 4.20
If four people are in a room, what is the probability that no two of them
celebrate their birthday on the same day of the year?

Solution

Since each person can celebrate his or her birthday on any of the 365 days of
the year, it follows from the generalized basic principle that there is a total of

365 · 365 · 365 · 365 = (365)4

possible outcomes. (We are ignoring the possibility that someone was born on
February 29.) Let us now determine the number of outcomes in which no two
individuals have the same birthday. This will occur if the birthday of the first
person is any of the 365 days, the birthday of the second person is then any
one of the remaining 364 days, the birthday of the third person is then any one
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of the remaining 363 days, and the birthday of the final person is then any of
the remaining 362 days. Thus, by the generalized basic principle of counting,
we see that there is a total of

365 · 364 · 363 · 362

different outcomes in which all the 4 birthdays are different. Hence, if we
assume that all of the possible outcomes are equally likely, we obtain the
probability that no two people have the same birthday:

365 · 364 · 363 · 362
365 · 365 · 365 · 365

= 0.983644

The same approach can be used to find the probability that a group of n people
will all have different birthdays, for any integer n. It is an interesting fact that
when n = 23, this probability is less than 1/2. That is, if there are 23 people in
a room, then it is more likely than not that at least two of them will celebrate
the same birthday. ■

Suppose now that we are interested in choosing 3 of the 5 items a, b, c, d, e. How
many different choices are possible? To answer this we can reason as follows.
Since there are 5 possible choices for the first item and then 4 possible choices
for the next one and finally 3 possible choices for the final item, it follows that
there are 5 · 4 · 3 possible choices when the order in which the items are chosen is
considered relevant. However, in this set of ordered choices, every group of three
items will appear 3! times. For instance, consider the group consisting of the items
a, b, and c. Each of the permutations

abc, acb, bac, bca, cab, cba

of these three elements will be included in the set of possible choices when the
order of selection is considered relevant. Therefore it follows that the number of
different groups of size 3 that can be formed from 5 items, when the order of
selection is not considered relevant, is

5 · 4 · 3
3 · 2 · 1

= 10

Suppose now that we are interested in determining the number of different groups
of size r that can be chosen from a set of n elements. By the same reasoning as
before, it follows that there are

n · (n − 1) · · · (n − r + 1)

r!

different groups. Since, n(n − 1) · · · (n − r + 1) can be written as n!/(n − r)!, we
can express this number as n!/[(n − r)! r! ].
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Notation and Terminology

Define
(n

r

)
, for r ≤ n, by

(
n
r

)
= n!

(n − r)! r!
= n(n − 1) · · · (n − r + 1)

r!

Call
(n

r

)
the number of combinations of n things taken r at a time; it represents

the number of different groups of size r that can be selected from a set of size n
when the order of selection is not of importance.

■ Example 4.21
(a) How many different groups of size 2 can be selected from the items a, b, c?
(b) How many different groups of size 2 can be chosen from a set of 6 people?
(c) How many different groups of size 3 can be chosen from a set of 6 people?

Solution

(a) There are
(3

2

) = 3·2
2·1 = 3 different groups of 2 items that can be selected from

the items a, b, c: a and b, a and c, and b and c.

(b) and (c) From a set of 6 people there are

(
6
2

)
= 6 · 5

2 · 1
= 15

different groups of size 2 that can be chosen, and

(
6
3

)
= 6 · 5 · 4

3 · 2 · 1
= 20

different groups of size 3. ■

■ Example 4.22
A random sample of size 3 is to be selected from a set of 10 items. What is the
probability that a prespecified item will be selected?

Solution

There are
(10

3

)
different groups that can be chosen. The number of different

groups that contain the specified item is equal to the number of choices of the
additional 2 items from the remaining 9 items after the specified item is chosen.
Thus, there are

(9
2

)
different groups that contain the given item. So, assuming

that a random sample is one in which each group is equally likely to be selected,
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we see that the desired probability that a given item is selected is(9
2

)
(10

3

) = 9 · 8
2 · 1

÷ 10 · 9 · 8
3 · 2 · 1

= 9 · 8 · 3 · 2 · 1
2 · 1 · 10 · 9 · 8

= 3
10

That is, there is a 3-in-10 chance that a given item will be selected. ■

■ Example 4.23
A committee of 4 people is to be selected from a group of 5 men and 7 women.
If the selection is made randomly, what is the probability the committee will
consist of 2 men and 2 women?

Solution

We will assume that “the selection is made randomly” means that each of the(12
4

)
possible combinations is equally likely to be chosen. Because there are

(5
2

)
possible choices of 2 men and

(7
2

)
possible choices of 2 women, it follows

from the basic principle of counting that there are
(5
2

)(7
2

)
possible outcomes

that contain 2 men and 2 women. Therefore, the desired probability is(5
2

)(7
2

)
(12

4

) = 5 · 4 · 7 · 6 · 4 · 3 · 2 · 1
2 · 1 · 2 · 1 · 12 · 11 · 10 · 9

= 14
33 ■

It follows from the formula (
n
r

)
= n!

r!(n − r)!

that (
n
r

)
=
(

n
n − r

)

■ Example 4.24
Compare

(8
5

)
and

(12
10

)
.

Solution (
8
5

)
=
(

8
3

)
= 8 · 7 · 6

3 · 2 · 1
= 56

(
12
10

)
=
(

12
2

)
= 12 · 11

2 · 1
= 66 ■

The identity
(n

r

) = ( n
n−r

)
can be seen by a “counting argument.” Suppose we want

to select r items from a set of n items. Since this can be done either by directly
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specifying the r items to be selected or equivalently by specifying the n − r items
that are not to be selected, it follows that the number of choices of r items is equal
to the number of choices of n − r items. For instance, any choice of 8 of the first
10 integers corresponds to a choice of the 2 integers that are not chosen.

■ Example 4.25
Suppose that n + m digits, n of which are equal to 1 and m of which are
equal to 0, are to be arranged in a linear order. How many different arrange-
ments are possible? For instance, if n = 2 and m = 1, then there are 3 possible
arrangements:

1, 1, 0 1, 0, 1 0, 1, 1

Solution

Each arrangement will have a digit in position 1, another digit in position 2,
another in position 3, . . . , and finally a digit in position n + m. Each arrange-
ment can therefore be described by specifying the n positions that contain the
digit 1. That is, each different choice of n of the n + m positions will result in a
different arrangement. Therefore, there are

(n+m
n

)
different arrangements.

Of course, we can also describe an arrangement by specifying the m positions
that contain the digit 0. This results in the solution

(n+m
m

)
, which is equal to(n+m

n

)
. ■

PROBLEMS

1. How many different 7-place license plates are possible when the first
3 places are for letters and the last 4 are for digits?

2. How many different batting orders are possible for a baseball team
consisting of 9 players?

3. 9! = 362,880. What is the value of 10!?
4. There is a certain type of combination lock that has a dial that can be

stopped at any of the numbers 1 through 36. To open the lock you
have to twirl the dial clockwise until a certain number is reached,
then twirl it counterclockwise until a second number is reached, and
then twirl it clockwise until a third number is reached. If you have
forgotten the three numbers (which need not be different from each
other), how many different possibilities might you have to try before
the lock opens?

5. Telephone area codes in the United States and Canada consist of a
sequence of three digits. The first digit is an integer between 2 and 9;
the second digit is either 0 or 1; the third digit is any integer between
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1 and 9. How many area codes are possible? How many area codes
starting with a 4 are possible?

6. A well-known nursery tale starts as follows:
As I was going to St. Ives
I met a man with 7 wives.
Each wife had 7 sacks,
Each sack had 7 cats,
Each cat had 7 kittens.

How many kittens did our traveler meet?
7. (a) If four workers are to be assigned to four jobs how many different

assignments are possible?
(b) How many assignments are possible if workers 1 and 2 are both

qualified only for jobs 1 and 2 and workers 3 and 4 are both
qualified only for jobs 3 and 4?

8. Use the formula

(
n
r

)
= n!

(n − r)! r!

to find
(n

0

)
, where n is a positive integer. Recall that 0! is defined to

equal 1. Since
(n

r

)
is supposed to equal the number of groups of size

r that can be formed from a set of n objects, do you think the answer
makes sense?

9. Calculate the following:

(
8
4

)
,
(

9
2

)
,
(

7
6

)
,
(

10
3

)

10. Consider a group of 20 people. If everyone shakes hands with everyone
else, how many handshakes take place?

11. A student must choose four courses from among French, Spanish,
History, Physics, and English Literature.
(a) How many different choices are possible?
(b) If the student chooses randomly, what is the probability that both

French and Spanish are chosen?
12. A delivery company has 10 trucks, of which 3 have faulty brakes. If an

inspector randomly chooses 2 of the trucks for a brake check, what is
the probability that none of the trucks with faulty brakes are chosen?

13. A company regularly receives large shipments of computer chips. The
company’s policy is to randomly select and test 10 of the chips. If 2 or
more of these are found to be defective, then the shipment is returned;
otherwise the shipment is accepted. Suppose that a shipment of 100
chips contains 14 that are defective.
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(a) What is the probability that the sample inspected has no defective
chips?

(b) What is the probability that the sample inspected has 1 defective
chip?

(c) What is the probability this shipment will be rejected?
14. In a state lottery, a player must choose 8 of the numbers from 1 to 40.

The Lottery Commission then performs an experiment that selects 8 of
these 40 numbers. Assuming that the choice of the Lottery Commis-
sion is equally likely to be any of the

(40
8

)
combinations, what is the

probability that a player has
(a) All 8 of the selected numbers?
(b) Seven of the selected numbers?
(c) At least 6 of the selected numbers?

15. An approved jury list contains 22 men and 18 women. What is the prob-
ability that a random selection of 12 of these people will result in a jury
with
(a) Six women and 6 men?
(b) Eight women and 4 men?
(c) At least 10 men?

16. The second Earl of Yarborough is reported to have bet at odds of 1000
to 1 that a bridge hand of 13 cards would contain at least one card
that is 10 or higher. (By 10 or higher we mean that it is either ten,
jack, queen, king, or ace.) Nowadays, we call a hand that has no cards
higher than 9 a Yarborough. What is the probability that a randomly
selected bridge hand is a Yarborough?

17. An instructor gives her class a set of 10 problems and tells the class
that the final exam (in 1 week) will consist of a random selection of 5 of
the problems. If a student has figured out how to do 7 of the problems
by the time of the exam, what is the probability he or she will correctly
answer
(a) All 5 problems?
(b) At least 4 of the problems?

18. Consider the grid of points shown here.

Suppose that starting at the point labeled A you can at each move
either go one step up or one step to the right. You keep doing this
until the point labeled B is reached. How many different paths from
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A to B are possible? Hint: To go from A to B you have to go 4 steps
to the right and 3 steps up. Indeed, any path can be specified by an
arrangement of 4 r’s and 3 u’s. For instance, the arrangement

r, r, r, r, u, u, u

specifies the following path:

19. Suppose, in Prob. 18, that a path from A to B is randomly chosen. What
is the probability it goes through the point circled in the following grid?
(Hint: How many paths are there from A to the circled point? How
many from the circled point to B?)

KEY TERMS

Experiment: Any process that produces an observation.

Outcome: The observation produced by an experiment.

Sample space: The set of all possible outcomes of an experiment.

Event: Any set of outcomes of the experiment. An event is a subset of sample
space S. The event is said to occur if the outcome of the experiment is contained
in it.

Union of events: The union of events A and B, denoted by A ∪ B, consists of all
outcomes that are in A or in B or in both A and B.

Intersection of events: The intersection of events A and B, denoted by A ∩ B,
consists of all outcomes that are in both A and B.

Complement of an event: The complement of event A, denoted by Ac, consists
of all outcomes that are not in A.

Mutually exclusive or disjoint: Events are mutually exclusive or disjoint if they
cannot occur simultaneously.
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Null event: The event containing no outcomes. It is the complement of sample
space S.

Venn diagram: A graphical representation of events.

Probability of an event: The probability of event A, denoted by P(A), is the
probability that the outcome of the experiment is contained in A.

Addition rule of probability: The formula

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Conditional probability: The probability of one event given the information that
a second event has occurred. We denote the conditional probability of B given
that A has occurred by P(B|A).

Multiplication rule: The formula

P(A ∩ B) = P(A)P(B|A)

Independent: Two events are said to be independent if knowing whether a specific
one has occurred does not change the probability that the other occurs.
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SUMMARY

Let S denote all possible outcomes of an experiment whose outcome is not
predictable in advance. S is called the sample space of the experiment.

Any set of outcomes, or equivalently any subset of S, is called an event. If A and
B are events, then A ∪ B, called the union of A and B, is the event consisting of all
outcomes that are in A or in B or in both A and B. The event A ∩ B is called the
intersection of A and B. It consists of all outcomes that are in both A and B.

For any event A, we define the event Ac, called the complement of A, to consist of
all outcomes in S that are not in A. The event Sc, which contains no outcomes,
is designated by ∅. If A ∩ B = ∅, meaning that A and B have no outcomes in
common, then we say that A and B are disjoint (also called mutually exclusive).

We suppose that for every event A there is a number P(A), called the probability
of A. These probabilities satisfy the following three properties.

PROPERTY 1: 0 ≤ P(A) ≤ 1

PROPERTY 2: P(S) = 1

PROPERTY 3: P(A ∪ B) = P(A) + P(B) when A ∩ B = ∅

The quantity P(A) represents the probability that the outcome of the experiment
is in A. If so, we say that A occurs.

The identity

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

is called the addition rule of probability.

We sometimes assume that all the outcomes of an experiment are equally likely.
Under this assumption, it can be shown that

P(A) = Numbers of outcomes in A
Numbers of outcomes in S

The conditional probability of B given that A has occurred is denoted by P(B|A)

and is given by the following equation:

P(B|A) = P(A ∩ B)

P(A)

Multiplying both sides of this equation by P(A) gives the following identity,
known as the multiplication rule:

P(A ∩ B) = P(A)P(B|A)
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If

P(A ∩ B) = P(A)P(B)

then we say that events A and B are independent. If A and B are independent, then
the probability that one of them will occur is unchanged by information as to
whether the other has occurred.

REVIEW PROBLEMS

1. Of 12 bottles in a case of wine, 3 are bad. Suppose 2 bottles are
randomly chosen from the case. Find the probability that
(a) The first bottle chosen is good.
(b) The second bottle chosen is good.
(c) Both bottles are good.
(d) Both bottles are bad.
(e) One is good, and one is bad.

2. A basketball player makes each of her foul shots with probability 0.8.
Suppose she is fouled and is awarded two foul shots. Assuming that
the results of different foul shots are independent, find the probability
that she
(a) Makes both shots
(b) Misses both shots
(c) Makes the second shot given that she missed the first

3. Suppose that a basketball player makes her first foul shot with prob-
ability 0.8. However, suppose that the probability that she makes her
second shot depends on whether the first shot is successful. Specifi-
cally, suppose that if she is successful on her first shot, then her second
will be successful with probability 0.85, whereas if she misses her first
shot, then the second will be successful with probability 0.7. Find the
probability that she
(a) Makes both shots
(b) Misses both shots
(c) Makes the first but misses the second shot

4. Of the registered voters in a certain community 54 percent are women
and 46 percent are men. Sixty-eight percent of the registered women
voters and 62 percent of the registered men voters voted in the last
local election. If a registered voter from this community is randomly
chosen, find the probability that this person is
(a) A woman who voted in the last election
(b) A man who did not vote in the last election
(c) What is the conditional probability that this person is a man given

that this person voted in the last election?
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5. A kindergarten class consists of 24 students—13 girls and 11 boys.
Each day one of these children is chosen as “student of the day.” The
selection is made as follows. At the beginning of the school year, the
names of the children are written on slips of paper, which are then
put in a large urn. On the first day of school, the urn is shaken and a
name is chosen to be student of the day. The next day this process is
repeated with the remaining 23 slips of paper, and so on. When each
student has been selected once (which occurs on day 24), the process
is repeated.
(a) What is the probability that the first selection is a boy?
(b) If the first selection is a boy, what is the probability that the second

is a girl?
6. Two cards are chosen from an ordinary deck of 52 playing cards. Find

the probability that
(a) Both are aces.
(b) Both are spades.
(c) They are of different suits.
(d) They are of different denominations.

7. What is the probability of the following outcomes when a fair coin is
independently tossed 6 times?
(a) H H H H H H
(b) H T H T H T
(c) T T H H T H

8. Find the probability of getting a perfect score just by guessing on a
true/false test with
(a) 2 questions
(b) 3 questions
(c) 10 questions

9. A cafeteria offers a three-course meal. One chooses a main course, a
starch, and a dessert. The possible choices are given in this table.

Meal Choices

Main course Chicken or roast beef
Starch course Rice or potatoes
Dessert Melon or ice cream or gelatin

Let the outcome of an experiment be the dinner selection of a person
who makes one selection from each of the courses.
(a) List all the outcomes in sample space S.
(b) Suppose the person is allergic to rice and melon. List all the out-

comes in the event corresponding to a choice that is acceptable to
this person.
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(c) If the person randomly chooses a dessert, what is the probability
it is ice cream?

(d) If the person makes a random choice in each of the courses, what
is the probability that chicken, rice, and melon are chosen?

10. The following is a breakdown by age and sex of the population of the
United States. The numbers in each class are in units of 1 million.

Sex

Age Females Males

Under 25 years 48.8 50.4
Over 25 years 74.5 66.6

Suppose a person is chosen at random. Let A be the event that the
person is male and B be the event that the person is under age 25.
Find
(a) P(A) and P(Ac) (b) P(B) and P(Bc)

(c) P(A ∩ B) (d) P(A ∩ Bc)

(e) P(A|B) (f) P(B|A)

11. A person has three keys of which only one fits a certain lock. If she
tries the keys in a random order, find the probability that
(a) The successful key is the first one tried.
(b) The successful key is the second one tried.
(c) The successful key is the third one tried.
(d) The second key works given that the first one did not.

12. Two cards from an ordinary playing deck constitute a blackjack if one
card is an ace and the other is a face card, where a face card is 10,
jack, queen, or king. What is the probability that a random selection
of two cards yields a blackjack? (Hint: You might try to compute the
probability that the first card is an ace and the second a face card, and
the probability that the first is a face card and the second an ace.)

13. A delivery company has 12 trucks, of which 4 have faulty brakes. If an
inspector randomly chooses 2 of the trucks for a brake check, what is
the probability that neither one has faulty brakes?

14. Suppose that A and B are independent events, and

P(A) = 0.8 P(Bc) = 0.4

Find
(a) P(A ∩ B)

(b) P(A ∪ B)

(c) P(B)

(d) P(Ac ∩ B)
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15. A deck of 52 cards is shuffled, and the cards are turned face up, one at
a time.
(a) What is the probability that the first card turned up is the ace of

spades?
(b) Let A denote the event that the first card turned up is not the ace of

spades, and let B denote the event that the second card turned up
is the ace of spades. Therefore, A ∩ B is the event that the second
card turned up is the ace of spades. Compute the probability of
this event by using

P(A ∩ B) = P(A)P(B|A)

(c) Fill in the missing word in the following intuitive argument for the
solution obtained in part (b): Since all orderings are equally likely,
the second card turned up is _______ likely to be any of the 52 cards.

(d) What is the probability that the 17th card turned up is the ace of
spades?

16. Floppy disks go through a two-stage inspection procedure. Each disk is
checked first manually and then electronically. If the disk is defective,
then a manual inspection will spot the defect with probability 0.70.
A defective disk that passes the manual inspection will be detected
electronically with probability 0.80. What percentage of defective disks
is not detected?

17. Assume that business conditions in any year can be classified as either
good or bad. Suppose that if business is good this year, then with prob-
ability 0.7 it will also be good next year. Also suppose that if business
is bad this year, then with probability 0.4 it will be good next year.
The probability that business will be good this year is 0.6. Find the
probabilities that the following statements are true.
(a) Business conditions both this year and next will be good.
(b) Business conditions will be good this year and bad next year.
(c) Business conditions will be bad both years.
(d) Business conditions will be good next year.
(e) Given that business conditions are good next year, what is the

conditional probability that they were good this year?
18. Both John and Maureen have one gene for blue eyes and one for brown

eyes. A child of theirs will receive one gene for eye color from Maureen
and one from John. The gene received from each parent is equally
likely to be either of the parent’s two genes. Also, the gene received
from John is independent of the one received from Maureen. If a child
receives a blue gene from both John and Maureen, then that child will
have blue eyes; otherwise, it will have brown eyes. Maureen and John
have two children.
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(a) What is the probability that their older child has blue eyes?
(b) What is the probability that the older child has blue and the

younger has brown eyes?
(c) What is the probability that the older has brown and the younger

has blue eyes?
(d) What is the probability that one child has blue eyes and the other

has brown eyes?
(e) What is the probability they both have blue eyes?
(f) What is the probability they both have brown eyes?

19. It is estimated that for the U.S. adult population as a whole, 55 percent
are above ideal weight, 20 percent have high blood pressure, and 60
percent either are above ideal weight or have high blood pressure. Let
A be the event that a randomly chosen member of the population is
above his or her ideal weight, and let B be the event that this person
has high blood pressure. Are A and B independent events?

20. A card is randomly selected from a deck of playing cards. Let A be the
event that the card is an ace, and let B be the event that it is a spade.
State whether A and B are independent, if the deck is
(a) A standard deck of 52 cards
(b) A standard deck, with all 13 hearts removed
(c) A standard deck, with the hearts from 2 through 9 removed

21. A total of 500 married working couples were polled about whether
their annual salaries exceeded $75,000. The following information was
obtained:

Husband

Wife Less than $75,000 More than $75,000

Less than $75,000 212 198

More than $75,000 36 54

Thus, for instance, in 36 couples, the wife earned over $75,000 and
the husband earned less than $75,000. One of the couples is randomly
chosen.
(a) What is the probability that the husband earns less than $75,000?
(b) What is the conditional probability that the wife earns more than

$75,000 given that the husband earns more than this amount?
(c) What is the conditional probability that the wife earns more than

$75,000 given that the husband earns less than this amount?
(d) Are the salaries of the wife and husband independent?

22. The probability that a new car battery functions for over 10,000 miles
is 0.8, the probability it functions for over 20,000 miles is 0.4, and the
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probability it functions for over 30,000 miles is 0.1. If a new car battery
is still working after 10,000 miles, find the conditional probability
that
(a) Its total life will exceed 20,000 miles.
(b) Its additional life will exceed 20,000 miles.

23. Of the drivers who stop at a certain gas station, 90 percent purchase
either gasoline or oil. A total of 86 percent purchase gasoline, and 8
percent purchase oil.
(a) What percentage of drivers purchase gasoline and oil?
(b) Find the conditional probability that a driver

(i) Purchases oil given that she or he purchases gasoline
(ii) Purchases gasoline given that he or she purchases oil

(iii) Suppose a driver stops at a gas station. Are the events that the
driver purchases oil and that the driver purchases gasoline
independent?

The following table gives participation rates at various artistic and leisure
activities for individuals in different age categories. The data are for the
year 2000, and the numbers represent the proportion of the population
being considered who satisfied the stated criteria.

Attended at least once Visited
at least Read—
once— novel,

Classical art short
Jazz music Opera Ballet museum stories,

perfor- perfor- perfor- Musical perfor- or poetry, or
Characteristic mance mance mance plays Plays mance gallery plays

Average 10 13 3 17 12 4 22 56
18–24 years old 14 11 2 15 11 4 22 57
25–34 years old 15 12 2 16 12 5 26 59
35–44 years old 10 16 4 21 14 6 27 62
45–54 years old 8 15 4 20 13 3 22 57
55–64 years old 5 11 3 18 10 4 19 50
65–74 years old 3 13 3 13 10 4 16 50
75 years old and over 1 10 1 8 7 2 10 48
Male 10 11 2 15 11 3 21 48
Female 9 14 3 19 12 5 23 63

Source: U.S. National Endowment for the Arts.

Problems 24 to 26 refer to the preceding table.
24. Suppose an 18- to 24-year-old is randomly chosen, as is a 35- to 44-

year-old. Find the probability that
(a) Both attended a jazz performance.
(b) Exactly one attended a jazz performance.
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(c) Given that exactly one of them attended a jazz performance, what
is the conditional probability that it was the younger person who
attended?

25. Suppose that a man and a woman are randomly chosen. Find the
probability that
(a) Exactly one attended a ballet performance.
(b) At least one attended an opera.
(c) Both attended a musical play.

26. Suppose an individual is randomly chosen. Is the given table infor-
mative enough for us to determine the probability that this individual
attended both a jazz and a classical music performance? If not, under
what assumption would we be able to determine this probability?
Compute the probability under this assumption, and then tell whether
you think it is a reasonable assumption in this situation.

27. There is a 60 percent chance that event Awill occur. If Adoes not occur,
then there is a 10 percent chance that B will occur.
(a) What is the probability that at least one of the events A or B occur?
(b) If A is the event that the Democratic candidate wins the presiden-

tial election in 2012 and B is the event that there is a 6.2 or higher
earthquake in Los Angeles sometime in 2013, what would you take
as the probability that both A and B occur? What assumption are
you making?

28. Suppose that distinct integer values are written on each of three cards.
Suppose you are to be offered these cards in a random order. When you
are offered a card you must immediately either accept it or reject it. If
you accept a card, the process ends. If you reject a card then the next
card (if a card still remains) is offered. If you reject the first two cards
offered, then you must accept the final card.
(a) If you plan to accept the first card offered, what is the probability

that you will accept the highest valued card?
(b) If you plan to reject the first card offered, and to then accept the

second card if and only if its value is greater than the value of the
first card, what is the probability that you will accept the highest
valued card?

29. Let A, B, C be events such that P(A) = .2, P(B) = .3, P(C) = .4. Find the
probability that at least one of the events A and B occur if
(a) A and B are mutually exclusive.
(b) A and B are independent.
Find the probability that all of the events A, B, C occur if
(c) A, B, C are independent.
(d) A, B, C are mutually exclusive.

30. Two percent of women of age 45 who participate in routine screening
have breast cancer. Ninety percent of those with breast cancer have
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positive mammographies. Ten percent of the women who do not have
breast cancer will also have positive mammographies. Given a woman
has a positive mammography, what is the probability she has breast
cancer?

31. Identical, also called monozygotic, twins form when a single fertilized
egg splits into two genetically identical parts. The twins share the
same DNA set and are thus always of the same sex. Fraternal, also
called dizygotic, twins develop when two separate eggs are fertilized
and implant in the uterus. The genetic connection is no more or less
the same as siblings born at separate times. If 64 percent of all twin
pairs are of the same sex, what percentage of twin pairs are identical
twins?
Hint: Compute the probability that a twin pair is of the same sex by
conditioning on whether the pair is monozygotic.
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Discrete Random Variables

His sacred majesty, chance, decides everything.
Voltaire
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We continue our study of probability by introducing random variables
—quantities whose values are determined by the outcome of the experiment. The
expected value of a random variable is defined, and its properties are explored. The
concept of variance is introduced. An important special type of random variable,
known as the binomial, is studied.

5.1 INTRODUCTION
The National Basketball Association (NBA) draft lottery involves the 11 teams
that had the worst won–lost records during the preceding year. Sixty-six Ping-Pong
balls are placed in an urn. Each of these balls is inscribed with the name of a team;
11 have the name of the team with the worst record, 10 have the name of the team
with the second-worst record, 9 have the name of the team with the third-worst
record, and so on (with 1 ball having the name of the team with the 11th-worst
record). A ball is then chosen at random, and the team whose name is on the ball
is given the first pick in the draft of players about to enter the league. All the other
balls belonging to this team are then removed, and another ball is chosen. The
team to which this ball “belongs” receives the second draft pick. Finally, another
ball is chosen, and the team named on this ball receives the third draft pick. The
remaining draft picks, 4 through 11, are then awarded to the 8 teams that did not
“win the lottery,” in inverse order of their won–lost records. For instance, if the
team with the worst record did not receive any of the 3 lottery picks, then that
team would receive the fourth draft pick.

The outcome of this draft lottery is the order in which the 11 teams get to select
players. However, rather than being concerned mainly about the actual outcome,
we are sometimes more interested in the values of certain specified quantities.
For instance, we may be primarily interested in finding out which team gets the
first choice or in learning the draft number of our home team. These quantities of
interest are known as random variables, and a special type, called discrete, will be
studied in this chapter.

Random variables are introduced in Sec. 5.2. In Sec. 5.3 we consider the notion
of the expected value of a random variable. We see that this represents, in a sense
made precise, the average value of the random variable. Properties of the expected
value are presented in Sec. 5.3.

Section 5.4 is concerned with the variance of a random variable, which is a mea-
sure of the amount by which a random variable tends to differ from its expected
value. The concept of independent random variables is introduced in this section.

Section 5.5 deals with a very important type of discrete random variable that
is called binomial. We see how such random variables arise and study their
properties.
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Sections 5.6 and 5.7 introduce the hypergeometric and the Poisson random
variable. We explain how these discrete random variables arise and study their
properties.

The first ball drawn in the 1993 NBA draft lottery belonged to the Orlando Magic, even
though the Magic had finished the season with the 11th-worst record and so had only
1 of the 66 balls!

5.2 RANDOM VARIABLES
When a probability experiment is performed, often we are not interested in all the
details of the experimental result, but rather are interested in the value of some
numerical quantity determined by the result. For instance, in tossing dice, often
we care about only their sum and are not concerned about the values on the indi-
vidual dice. Also, an investor might not be interested in all the changes in the price
of a stock on a given day, but rather might care about only the price at the end
of the day. These quantities of interest that are determined by the result of the
experiment are known as random variables.

Since the value of a random variable is determined by the outcome of the
experiment, we may assign probabilities to its possible values.

■ Example 5.1
The outcome of the NBA draft lottery experiment, which was discussed in
Sec. 5.1, is the specification of the teams that are to receive the first, second,
and third picks in the draft. For instance, outcome (3, 1, 4) could mean that
the team with the third-worst record received pick number 1, the team with
the worst record received pick number 2, and the team with the fourth-worst
record received pick number 3. If we let X denote the team that received
draft pick 1, then X would equal 3 if the outcome of the experiment were
(3, 1, 4).

Clearly, X can take on any integral value between 1 and 11 inclusive. It will
equal 1 if the first ball chosen is one of the 11 balls that belong to the team
with the worst record, it will equal 2 if the first ball is one of the 10 balls that
belong to the team with the second-worst record, and so on. Since each of the
66 balls is equally likely to be the first ball chosen, it follows that

P{X = 1} = 11
66

P{X = 7} = 5
66

P{X = 2} = 10
66

P{X = 8} = 4
66
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P{X = 3} = 9
66

P{X = 9} = 3
66

P{X = 4} = 8
66

P{X = 10} = 2
66

P{X = 5} = 7
66

P{X = 11} = 1
66

P{X = 6} = 6
66 ■

■ Example 5.2
Suppose we are about to learn the sexes of the three children of a certain family.
The sample space of this experiment consists of the following 8 outcomes:

{(b, b, b), (b, b, g), (b, g, b), (b, g, g), (g, b, b), (g, b, g), (g, g, b), (g, g, g)}

The outcome (g, b, b) means, for instance, that the youngest child is a girl, the
next youngest is a boy, and the oldest is a boy. Suppose that each of these
8 possible outcomes is equally likely, and so each has probability 1/8.

If we let X denote the number of female children in this family, then the value
of X is determined by the outcome of the experiment. That is, X is a random
variable whose value will be 0, 1, 2, or 3. We now determine the probabilities
that X will equal each of these four values.

Since X will equal 0 if the outcome is (b, b, b), we see that

P{X = 0} = P{(b, b, b)} = 1
8

Since X will equal 1 if the outcome is (b, b, g) or (b, g, b) or (g, b, b), we have

P{X = 1} = P({(b, b, g), (b, g, b), (g, b, b)}) = 3
8

Similarly,

P{X = 2} = P({(b, g, g), (g, b, g), (g, g, b)}) = 3
8

P{X = 3} = P({(g, g, g)}) = 1
8 ■

A random variable is said to be discrete if its possible values constitute a sequence
of separated points on the number line. Thus, for instance, any random variable
that can take on only a finite number of different values is discrete.
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In this chapter we will study discrete random variables. Let X be such a quan-
tity, and suppose that it has n possible values, which we will label x1, x2, . . . , xn.
As in Examples 5.1 and 5.2, we will use the notation P{X = xi} to represent the
probability that X is equal to xi. The collection of these probabilities is called
the probability distribution of X. Since X must take on one of these n values, we
know that

n∑
i=1

P{X = xi} = 1

■ Example 5.3
Suppose that X is a random variable that takes on one of the values 1, 2, or 3. If

P{X = 1} = 0.4 and P{X = 2} = 0.1

what is P{X = 3}?

Solution

Since the probabilities must sum to 1, we have

1 = P{X = 1} + P{X = 2} + P{X = 3}
or

1 = 0.4 + 0.1 + P{X = 3}
Therefore,

P{X = 3} = 1 − 0.5 = 0.5

A graph of P{X = i} is shown in Fig. 5.1. ■

FIGURE 5.1
A graph of P{X = i}.
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■ Example 5.4
A saleswoman has scheduled two appointments to sell encyclopedias. She feels
that her first appointment will lead to a sale with probability 0.3. She also feels
that the second will lead to a sale with probability 0.6 and that the results from
the two appointments are independent. What is the probability distribution
of X, the number of sales made?

Solution

The random variable X can take on any of the values 0, 1, or 2. It will equal 0
if neither appointment leads to a sale, and so

P{X = 0} = P{no sale on first, no sale on second}
= P{no sale on first}P{no sale on second} by independence

= (1 − 0.3)(1 − 0.6) = 0.28

The random variable X will equal 1 either if there is a sale on the first and not
on the second appointment or if there is no sale on the first and one sale on
the second appointment. Since these two events are disjoint, we have

P{X = 1} = P{sale on first, no sale on second}
+ P{no sale on first, sale on second}

= P{sale on first}P{no sale on second}
+ P{no sale on first}P{sale on second}

= 0.3(1 − 0.6) + (1 − 0.3)0.6 = 0.54

Finally the random variable X will equal 2 if both appointments result in sales;
thus

P{X = 2} = P{sale on first, sale on second}
= P{sale on first}P{sale on second}
= (0.3) (0.6) = 0.18

As a check on this result, we note that

P{X = 0} + P{X = 1} + P{X = 2} = 0.28 + 0.54 + 0.18 = 1 ■
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PROBLEMS

1. In Example 5.2, let the random variable Y equal 1 if the family has at
least one child of each sex, and let it equal 0 otherwise. Find P{Y = 0}
and P{Y = 1}.

2. In Example 5.2, let the random variable W equal the number of girls
that came before the first boy. (If the outcome is (g, g, g), take W equal
to 3.) Give the possible values of W along with their probabilities. That
is, give the probability distribution of W .

3. The following table presents the total number of tornadoes (violent,
rotating columns of air with wind speeds over 100 miles per hour) in
the United States between 1980 and 1991.

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
Tornadoes 866 783 1046 931 907 684 764 656 702 856 1133 1132

Source: U.S. National Oceanic and Atmospheric Administration.

Suppose that one of these years is randomly selected, and let X denote
the number of tornadoes in that year. Find
(a) P{X > 900}
(b) P{X ≤ 800}
(c) P{X = 852}
(d) P{700 < X < 850}

4. Suppose a pair of dice is rolled. Let X denote their sum. What are the
possible values of X? Assuming that each of the 36 possible outcomes
of the experiment is equally likely, what is the probability distribution
of X?

5. In Prob. 4, let Y denote the smaller of the two numbers appearing on
the two dice. (If both dice show the same number, take that as the
value of Y .) Determine the probability distribution of Y .

6. Two people are to meet in the park. Each person is equally likely to
arrive, independent of the other, at 2:00, 2:30, or 3:00 p.m. Let X equal
the time that the first person to arrive has to wait, where X is taken to
equal 0 if both people arrive at the same time.
(a) What are the possible values of X?

(b) What are the probabilities that X assumes each of these values?
7. Two volleyball teams are to play a 2-out-of-3 series, in which they

continue to play until one has won 2 games. Suppose that the home
team wins each game played, independently, with probability 0.7. Let
X denote the number of games played.
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(a) What are the possible values of X?
(b) What is the probability distribution of X?

8. Suppose that 2 batteries are randomly chosen from a bin containing
10 batteries, of which 7 are good and 3 are defective. Let X denote the
number of defective batteries chosen. Give the possible values of X
along with their probabilities.

9. A shipment of parts contains 120 items of which 10 are defective. Two
of these items are randomly chosen and inspected. Let X denote the
number that are defective. Find the probability distribution of X.

10. A contractor will bid for two jobs in sequence. She has a 0.5 probability
of winning the first job. If she wins the first job, then she has a 0.2
chance of winning the second job; if she loses the first job, then she
has a 0.4 chance of winning the second job. (In the latter case, her bid
will be lower.) Let X denote the number of jobs that she wins. Find the
probability distribution of X.

11. Whenever a certain college basketball player goes to the foul line for
two shots, he makes his first shot with probability 0.75. If he makes the
first shot, then he makes the second shot with probability 0.80; if he
misses the first shot, then he makes the second one with probability
0.70. Let X denote the number of shots he makes when he goes to the
foul line for two shots. Find the probability distribution of X.

In Probs. 12, 13, and 14, tell whether the set of numbers p(i), i =
1, 2, 3, 4, 5, can represent the probabilities P{X = i} of a random vari-
able whose set of values is 1, 2, 3, 4, or 5. If your answer is no, explain
why.

12.
i p (i)

1 0.4

2 0.1

3 0.2

4 0.1

5 0.3

13.
i p (i)

1 0.2

2 0.3

3 0.4

4 −0.1

5 0.2
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14.
i p (i)

1 0.3
2 0.1
3 0.2
4 0.4
5 0.0

15. In a study of 223 households in a small rural town in Iowa, a sociologist
has collected data about the number of children in each household.
The data showed that there are 348 children in the town, with the
breakdown of the number of children in each household as follows:
38 households have 0 children, 82 have 1 child, 57 have 2 children,
34 have 3 children, 10 have 4 children, and 2 have 5 children. Suppose
that one of these households is randomly selected for a more detailed
interview. Let X denote the number of children in the household
selected. Give the probability distribution of X.

16. Suppose that, in Prob. 15, one of the 348 children of the town is ran-
domly selected. Let Y denote the number of children in the family of
the selected child. Find the probability distribution of Y .

17. Suppose that X takes on one of the values 1, 2, 3, 4, or 5. If P{X < 3} =
0.4 and P{X > 3} = 0.5, find
(a) P{X = 3}
(b) P{X < 4}

18. An insurance agent has two clients, each of whom has a life insurance
policy that pays $100,000 upon death. Their probabilities of dying this
year are 0.05 and 0.10. Let X denote the total amount of money that
will be paid this year to the clients’ beneficiaries. Assuming that the
event that client 1 dies is independent of the event that client 2 dies,
determine the probability distribution of X.

19. A bakery has 3 special cakes at the beginning of the day. The daily
demand for this type of cake is

0 with probability 0.15
1 with probability 0.20
2 with probability 0.35
3 with probability 0.15
4 with probability 0.10
5 or more with probability 0.05

Let X denote the number of cakes that remain unsold at the end of the
day. Determine the probability distribution of X.
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5.3 EXPECTED VALUE
A key concept in probability is the expected value of a random variable. If X is
a discrete random variable that takes on one of the possible values x1, x2, . . . , xn,
then the expected value of X, denoted by E[X], is defined by

E[X] =
n∑

i=1

xiP{X = xi}

The expected value of X is a weighted average of the possible values of X, with
each value weighted by the probability that X assumes it. For instance, suppose X
is equally likely to be either 0 or 1, and so

P{X = 0} = P{X = 1} = 1
2

then

E[X] = 0
(1

2

)
+ 1

(1
2

)
= 1

2

is equal to the ordinary average of the two possible values 0 and 1 that X can
assume. On the other hand, if

P{X = 0} = 2
3

and P{X = 1} = 1
3

then

E[X] = 0
(2

3

)
+ 1

(1
3

)
= 1

3

is a weighted average of the two possible values 0 and 1, where the value 0 is given
twice as much weight as the value 1, since it is twice as likely that X will equal 0
as it is that X will equal 1.

Definition and Terminology

The expected value of a discrete random variable X whose possible values are
x1, x2, . . . , xn, is denoted by E[X] and is defined by

E[X] =
n∑

i=1

xiP{X = xi}

Other names used for E[X] are the expectation of X and the mean of X.

Another motivation for the definition of the expected value relies on the frequency
interpretation of probabilities. This interpretation assumes that if a very large
number (in theory, an infinite number) of independent replications of an experi-
ment are performed, then the proportion of time that event A occurs will equal
P(A). Now consider a random variable X that takes on one of the possible values
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x1, x2, . . . , xn, with respective probabilities p(x1), p(x2), . . . , p(xn); and think of X as
representing our winnings in a single game of chance. We will now argue that if
we play a large number of such games, then our average winning per game will be
E[X]. To see this, suppose that we play N games, where N is a very large number.
Since, by the frequency interpretation of probability, the proportion of games in
which we win xi will approximately equal p(xi), it follows that we will win xi in
approximately Np(xi) of the N games. Since this is true for each xi, it follows that
our total winnings in the N games will be approximately equal to

n∑
i=1

xi(number of games we win xi) =
n∑

i=1

xiNp(xi)

Therefore, our average winning per game will be

∑n
i=1 xiNp(xi)

N
=

n∑
i=1

xip(xi) = E[X]

In other words, if X is a random variable associated with some experiment, then
the average value of X over a large number of replications of the experiment is
approximately E[X].

■ Example 5.5
Suppose we roll a die that is equally likely to have any of its 6 sides appear face
up. Find E[X], where X is the side facing up.

Solution

Since

P[X = i] = 1
6

for i = 1, 2, 3, 4, 5, 6

we see that

E[X] = 1
(

1
6

)
+ 2

(
1
6

)
+ 3

(
1
6

)
+ 4

(
1
6

)
+ 5

(
1
6

)
+ 6

(
1
6

)

= 21
6

= 3.5

Note that the expected value of X is not one of the possible values of X. Even
though we call E[X] the expected value of X, it should be interpreted not as
the value that we expect X to have, but rather as the average value of X in a
large number of repetitions of the experiment. That is, if we continually roll a
die, then after a large number of rolls the average of all the outcomes will be
approximately 3.5. ■
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■ Example 5.6
Consider a random variable X that takes on either the value 1 or 0 with
respective probabilities p and 1 − p. That is,

P[X = 1] = p and P{X = 0} = 1 − p

Find E[X].

Solution

The expected value of this random variable is

E[X] = 1(p) + 0(1 − p) = p ■

■ Example 5.7
An insurance company sets its annual premium on its life insurance policies
so that it makes an expected profit of 1 percent of the amount it would have
to pay out upon death. Find the annual premium on a $200,000 life insurance
policy for an individual who will die during the year with probability 0.02.

Solution

In units of $1000, the insurance company will set its premium so that its
expected profit is 1 percent of 200, or 2. If we let A denote the annual premium,
then the profit of the insurance company will be either

A if policyholder lives

or

A − 200 if policyholder dies

Therefore, the expected profit is given by

E[profit] = AP{policyholder lives} + (A − 200)P{policyholder dies}
= A(1 − 0.02) + (A − 200)(0.02)

= A − 200(0.02)

= A − 4

So the company will have an expected profit of $2000 if it charges an annual
premium of $6000. ■

As seen in Example 5.7, E[X] is always measured in the same units (dollars in that
example) as the random variable X.
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FIGURE 5.2
Center of gravity = E[X].

The concept of expected value is analogous to the physical concept of the cen-
ter of gravity of a distribution of mass. Consider a discrete random variable with
probabilities given by p(xi), i ≥ 1. If we imagine a rod on which weights having
masses p(xi) are placed at points xi, i ≥ 1 (Fig. 5.2), then the point at which the
rod would be in balance is known as the center of gravity. It can be shown by the
laws of mechanics that this point is

∑
i

xip(xi) = E[X]

5.3.1 Properties of Expected Values
Let X be a random variable with expected value E[X]. If c is a constant, then the
quantities cX and X + c are also random variables and so have expected values.
The following useful results can be shown:

E[cX] = cE[X]

E[X + c] = E[X] + c

That is, the expected value of a constant times a random variable is equal to the
constant times the expected value of the random variable; and the expected value
of a constant plus a random variable is equal to the constant plus the expected
value of the random variable.

■ Example 5.8
A married couple works for the same employer. The wife’s Christmas bonus is
a random variable whose expected value is $1500.

(a) If the husband’s bonus is set to equal 80 percent of his wife’s, find the
expected value of the husband’s bonus.

(b) If the husband’s bonus is set to equal $1000 more than his wife’s, find its
expected value.



222 CHAPTER 5: Discrete Random Variables

Solution

Let X denote the bonus (in dollars) to be paid to the wife.

(a) Since the bonus paid to the husband is equal to 0.8X, we have

E[bonus to husband] = E[0.8X] = 0.8E[X] = $1200

(b) In this case the bonus to be paid to the husband is X + 1000, and so

E[bonus to husband] = E[X + 1000] = E[X] + 1000 = $2500 ■

A very useful property is that the expected value of the sum of random variables
is equal to the sum of the individual expected values.

For any random variables X and Y ,

E[X + Y ] = E[X] + E[Y ]

■ Example 5.9
The following are the annual incomes of 7 men and 7 women who are residents
of a certain community.

Annual Income (in $1000)

Men Women

33.5 24.2
25.0 19.5
28.6 27.4
41.0 28.6
30.5 32.2
29.6 22.4
32.8 21.6

Suppose that a woman and a man are randomly chosen. Find the expected
value of the sum of their incomes.

Solution

Let X be the man’s income and Y the woman’s income. Since X is equally likely
to be any of the 7 values in the men’s column, we see that
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E[X] = 1
7

(33.5 + 25 + 28.6 + 41 + 30.5 + 29.6 + 32.8)

= 221
7

≈ 31.571

Similarly,

E[Y ] = 1
7

(24.2 + 19.5 + 27.4 + 28.6 + 32.2 + 22.4 + 21.6)

= 175.9
7

≈ 25.129

Therefore, the expected value of the sum of their incomes is

E[X + Y ] = E[X] + E[Y ]

≈ 56.700

That is, the expected value of the sum of their incomes is approximately
$56,700. ■

■ Example 5.10
The following table lists the number of civilian full-time law enforcement
employees in eight cities in 1990.

City Civilian law enforcement employees

Minneapolis, MN 105
Newark, NJ 155
Omaha, NE 149
Portland, OR 195
San Antonio, TX 290
San Jose, CA 357
Tucson, AZ 246
Tulsa, OK 178

Source: Department of Justice, Uniform Crime Reports for the United
States, 1990.

Suppose that two of the cities are to be randomly chosen and all the civilian law
enforcement employees of these cities are to be interviewed. Find the expected
number of people who will be interviewed.

Solution

Let X be the number of civilian employees in the first city chosen, and let Y
be the number in the second city chosen. Since the selection of the cities is
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random, each of the 8 cities has the same chance to be the first city selected;
similarly, each of the 8 cities has the same chance to be the second selection.
Therefore, both X and Y are equally likely to be any of the 8 values in the given
table, and so

E[X] = E[Y ] = 1
8

(105 + 155 + 149 + 195 + 290 + 357 + 246 + 178)

= 1675
8

and so

E[X + Y ] = E[X] + E[Y ] = 1675
4

= 418.75

That is, the expected number of interviews that will be needed is 418.75. ■

By using the frequency interpretation of expected value as being the average value
of a random variable over a large number of replications of the experiment, it
is easy to see intuitively why the expected value of a sum is equal to the sum
of the expected values. For instance, suppose we always make the same two bets
on each spin of a roulette wheel, one bet concerning the color of the slot where
the ball lands and the other concerning the number on that slot. Let X and Y be
the amounts (in dollars) that we lose on the color bet and on the number bet,
respectively, in a single spin of the wheel. Then, X + Y is our total loss in a single
spin. Now, if in the long run we lose an average of 1 per spin on the color bet (so
E[X] = 1) and we lose an average of 2 per spin on the number bet (so E[Y ] = 2),
then our average total loss per spin (equal to E[X + Y ]) will clearly be 1 + 2 = 3.

The result that the expected value of the sum of random variables is equal to the
sum of the expected values holds for not only two but any number of random
variables.

Useful Result

For any positive integer k and random variables X1, . . . , Xk,

E

⎡
⎣ k∑

i=1

Xi

⎤
⎦ =

k∑
i=1

E[Xi]

■ Example 5.11
A building contractor has sent in bids for three jobs. If the contractor obtains
these jobs, they will yield respective profits of 20, 25, and 40 (in units of $1000).
On the other hand, for each job the contractor does not win, he will incur
a loss (due to time and money already spent in making the bid) of 2. If the
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probabilities that the contractor will get these jobs are, respectively, 0.3, 0.6,
and 0.2, what is the expected total profit?

Solution

Let Xi denote the profit from job i, i = 1, 2, 3. Now by interpreting a loss as a
negative profit, we have

P{X1 = 20} = 0.3 P{X1 = −2} = 1 − 0.3 = 0.7

Therefore,

E[X1] = 20(0.3) − 2(0.7) = 4.6

Similarly,

E[X2] = 25(0.6) − 2(0.4) = 14.2

and

E[X3] = 40(0.2) − 2(0.8) = 6.4

The total profit is X1 + X2 + X3, and so

E[total profit] = E[X1 + X2 + X3]

= E[X1] + E[X2] + E[X3]

= 4.6 + 14.2 + 6.4

= 25.2

Therefore, the expected total profit is $25,200. ■

PROBLEMS

In the following problems, p(i) stands for P{X = i}.
1. Find the expected value of X when

(a) p(1) = 1/3, p(2) = 1/3, p(3) = 1/3
(b) p(1) = 1/2, p(2) = 1/3, p(3) = 1/6
(c) p(1) = 1/6, p(2) = 1/3, p(3) = 1/2

2. Find E[X] when
(a) p(1) = 0.1, p(2) = 0.3, p(3) = 0.3, p(4) = 0.2, p(5) = 0.1
(b) p(1) = 0.3, p(2) = 0.1, p(3) = 0.2, p(4) = 0.1, p(5) = 0.3
(c) p(1) = 0.2, p(2) = 0, p(3) = 0.6, p(4) = 0, p(5) = 0.2
(d) p(3) = 1
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3. A distributor makes a profit of $30 on each item that is received in
perfect condition and suffers a loss of $6 on each item that is received in
less-than-perfect condition. If each item received is in perfect condition
with probability 0.4, what is the distributor’s expected profit per item?

4. In a certain liability suit, a lawyer has to decide whether to charge
a straight fee of $1200 or to take the case on a contingency basis, in
which case she will receive a fee of $5000 only if her client wins the
case. Determine whether the straight fee or the contingency arrange-
ment will result in a higher expected fee when the probability that the
client will win the case is
(a) 1/2
(b) 1/3
(c) 1/4
(d) 1/5

5. Suppose X can take on any of the values 1, 2, and 3. Find E[X] if

p(1) = 0.3 and p(2) = 0.5

6. Let X be a random variable that is equally likely to take on any of the
values 1, 2, . . . , n. That is,

P{X = i} = 1
n

i = 1, . . . , n

(a) If n = 2, find E[X].
(b) If n = 3, find E[X].
(c) If n = 4, find E[X].
(d) For general n, what is the value of E[X]?
(e) Verify your answer in part (d) by making use of the algebraic

identity

n∑
i=1

i = n(n + 1)

2

7. A pair of fair dice is rolled. Find the expected value of the
(a) Smaller
(b) Larger
of the two upturned faces. (If both dice show the same number, then
take this to be the value of both the smaller and the larger of the
upturned faces.)

8. A computer software firm has been told by its local utility company
that there is a 25 percent chance that the electricity will be shut off
at some time during the next working day. The company estimates
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that it will cost $400 in lost revenues if employees do not use their
computers tomorrow, and it will cost $1200 if the employees suffer a
cutoff in power while using them. If the company wants to minimize
the expected value of its loss, should it risk using the computers?

9. An engineering firm must decide whether to prepare a bid for a con-
struction project. It will cost $800 to prepare a bid. If it does prepare a
bid, then the firm will make a gross profit (excluding the preparation
cost) of $0 if it does not get the contract, $3000 if it gets the contract and
the weather is bad, or $6000 if it gets the contract and the weather is
not bad. If the probability of getting the contract is 0.4 and the probabil-
ity that the weather will be bad is 0.6, what is the company’s expected
net profit if it prepares a bid?

10. All blood donated to a blood bank is tested before it is used. To reduce
the total number of tests, the bank takes small samples of the blood
of four separate donors and pools these samples. The pooled blood is
analyzed. If it is deemed acceptable, then the bank stores the blood of
these four people for future use. If it is deemed unacceptable, then
the blood from each of the four donors is separately tested. There-
fore, either one test or five tests are needed to handle the blood of
four donors. Find the expected number of tests needed if each donor’s
blood is independently unacceptable with probability 0.1.

11. Two people are randomly chosen from a group of 10 men and
20 women. Let X denote the number of men chosen, and let Y denote
the number of women.

(a) Find E[X].
(b) Find E[Y ].
(c) Find E[X + Y ].

12. If the two teams in a World Series have the same chance of winning
each game, independent of the results of previously played games,
then the probabilities that the series will end in 4, 5, 6, or 7 games are,
respectively, 1/8, 1/4, 5/16, and 5/16. What is the expected number of
games played in such a series?

13. A company that operates a chain of hardware stores is planning to
open a new store in one of two locations. If it chooses the first location,
the company thinks it will make a first-year profit of $40,000 if the store
is successful and will have a first-year loss of $10,000 if the store is
unsuccessful. At the second location, the company thinks it will make
a first-year profit of $60,000 if the store is successful and a first-year
loss of $25,000 if the store is unsuccessful.
(a) If the probability of success is 1/2 for both locations, which location

will result in a larger expected first-year profit?
(b) Repeat part (a), this time assuming that the probability that the

store is successful is 1/3.
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14. If it rains tomorrow, you will earn $200 by doing some tutoring; if it is
dry, you will earn $300 by doing construction work. If the probability of
rain is 1/4, what is the expected amount that you will earn tomorrow?

15. If you have a 1/10 chance of gaining $400 and a 9/10 chance of gaining
−$50 (that is, of losing $50), what is your expected gain?

16. If an investment has a 0.4 probability of making a $30,000 profit and a
0.6 probability of losing $15,000, does this investment have a positive
expected gain?

17. It costs $40 to test a certain component of a machine. If a defective
component is installed, it costs $950 to repair the damage that results
to the machine. From the point of view of minimizing the expected
cost, determine whether the component should be installed without
testing if it is known that its probability of being defective is
(a) 0.1
(b) 0.05
(c) 0.01
(d) What would the probability of a defective component be if one

were indifferent between testing and installing the component
untested?

18. A fair bet is one in which the expected gain is equal to 0. If you bet
1 unit on a number in roulette, then you will gain 35 units if the num-
ber appears and will lose 1 unit if it does not. If the roulette wheel is
perfectly balanced, then the probability that your number will appear
is 1/38. What is the expected gain on a 1-unit bet? Is it a fair bet?

19. A school holding a raffle will sell each ticket for $1. The school will
give out seven prizes −1 for $100, 2 for $50, and 4 for $25. Suppose
you purchase one ticket. If a total of 500 tickets is sold, what is your
expected gain? (Hint: Your gain is −1 (if you do not win a prize),
24 (if you win a $25 prize), 49 (if you win a $50 prize), or 99 (if you
win a $100 prize).)

20. A roulette wheel has 18 numbers colored red, 18 colored black, and
2 (zero and double zero) that are uncolored. If you bet 1 unit on the
outcome red, then either you win 1 if a red number appears or you
lose 1 if a red number does not appear. What is your expected gain?

21. The first player to win 2 sets is the winner of a tennis match. Suppose
that whatever happened in the previous sets, each player has proba-
bility 1/2 of winning the next set. Determine the expected number of
sets played.

22. Suppose in Prob. 21 that the players are not of equal ability and that
player 1 wins each set, independent of the results of earlier sets, with
probability 1/3.
(a) Find the expected number of sets played.
(b) What is the probability that player 1 wins?
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23. An insurance company sells a life insurance policy that pays $250,000
if the insured dies for an annual premium of $1400. If the probability
that the policyholder dies in the course of the year is 0.005, what is the
company’s expected annual profit from that policyholder?

24. In Example 5.8, find in both (a) and (b) the expected value of the sum
of the bonuses earned by the wife and husband.

25. If E[X] = μ, what is E[X − μ]?
26. Four buses carrying 148 students from the same school arrive at a foot-

ball stadium. The buses carry, respectively, 40, 33, 50, and 25 students.
One of the students is randomly selected. Let X be the number of stu-
dents who were on the bus carrying the selected student. One of 4 bus
drivers is also randomly chosen. Let Y be the number of students who
were on his or her bus.
(a) Calculate E[X] and E[Y ].

(b) Can you give an intuitive reason why E[X] is larger than E[Y ]?
27. A small nursery must decide on the number of Christmas trees to stock.

The trees cost $6 each and are to be sold for $20. Unsold trees are
worthless. The nursery estimates that the probability distribution for
the demand on trees is as follows:

Amount demanded 1200 1500 1800

Probability 0.5 0.2 0.3

Determine the nursery’s expected profit if it purchases
(a) 1200 trees

(b) 1500 trees

(c) 1800 trees
28. Repeat Prob. 27, this time assuming that any unsold tree must be

disposed of at a cost of $2 per tree.
29. The daily demand at a bakery for a certain cake is as follows:

Daily demand 0 1 2 3 4

Probability 0.15 0.25 0.30 0.15 0.15

It costs the bakery $4 to bake each cake, which sells for $20. Any cakes
left unsold at the end of the day are thrown away. Would the bakery
have a higher expected profit if it baked 2 or 3 or 4 cakes daily?

30. If E[X] = 5 and E[Y ] = 12, find
(a) E[3X + 4Y ]

(b) E[2 + 5Y + X]

(c) E[4 + Y ]
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31. Determine the expected sum of a pair of fair dice by
(a) Using the probability distribution of the sum
(b) Using Example 5.5 along with the fact that the expected value of

the sum of random variables is equal to the sum of their expected
values

32. A husband’s year-end bonus will be

0 with probability 0.3
$1000 with probability 0.6
$2000 with probability 0.1

His wife’s bonus will be

$1000 with probability 0.7
$2000 with probability 0.3

Let S be the sum of their bonuses, and find E[S].
33. The following data give the numbers of U.S. bank failures in the years

1995 to 2002.

Year Closed or assisted

1995 8

1996 6

1997 1

1998 3

1999 8

2000 7

2001 4

2002 11

Suppose that a congressional committee has decided to randomly
choose 2 of these years and then document each of the incidents
that occurred in either year. Determine the expected number of such
incidents.

34. Repeat Prob. 33, this time supposing that the committee is to randomly
choose 3 of the years.

35. A small taxi company has 4 taxis. In a month’s time, each taxi will get
0 traffic tickets with probability 0.3, 1 traffic ticket with probability 0.5,
or 2 traffic tickets with probability 0.2. What is the expected number
of tickets per month amassed by the fleet of 4 taxis?

36. Suppose that 2 batteries are randomly selected from a drawer con-
taining 8 good and 2 defective batteries. Let W denote the number
of defective batteries selected.
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(a) Find E[W] by first determining the probability distribution of W .
Let X equal 1 if the first battery chosen is defective, and let X equal
0 otherwise. Also let Y equal 1 if the second battery is defective and
equal 0 otherwise.
(b) Give an equation relating X, Y , and W .
(c) Use the equation in (b) to obtain E[W].

5.4 VARIANCE OF RANDOM VARIABLES
It is useful to be able to summarize the properties of a random variable by a
few suitably chosen measures. One such measure is the expected value. However,
while the expected value gives the weighted average of the possible values of the
random variable, it does not tell us anything about the variation, or spread, of
these values. For instance, consider random variables U, V , and W , whose values
and probabilities are as follows:

U = 0 with probability 1

V =
{

−1 with probability 1/2

1 with probability 1/2

W =
{

−10 with probability 1/2

10 with probability 1/2

Whereas all three random variables have expected value 0, there is clearly less
spread in the values of U than in V and less spread in the values of V than in W .

Since we expect a random variable X to take on values around its mean E[X], a
reasonable way of measuring the variation of X is to consider how far X tends
to be from its mean on the average. That is, we could consider E[|X − μ|], where
μ = E[X] and |X − μ| is the absolute value of the difference between X and μ.
However, it turns out to be more convenient to consider not the absolute value
but the square of the difference.

Definition If X is a random variable with expected value μ, then the variance of X,
denoted by Var(X), is defined by

Var(X) = E[(X − μ)2]

Upon expanding (X − μ)2 to obtain X2 − 2μX + μ2 and then taking the expected
value of each term, we obtain after a little algebra the following useful computa-
tional formula for Var(X):

Var(X) = E[X2] − μ2 (5.1)



232 CHAPTER 5: Discrete Random Variables

where

μ = E[X]

Using Eq. (5.1) is usually the easiest way to compute the variance of X.

■ Example 5.12
Find Var(X) when the random variable X is such that

X =
{

1 with probability p
0 with probability 1 − p

Solution

In Example 5.6 we showed that E[X] = p. Therefore, using the computational
formula for the variance, we have

Var(X) = E[X2] − p2

Now,

X2 =
{

12 if X = 1
02 if X = 0

Since 12 = 1 and 02 = 0, we see that

E[X2] = 1 · P{X = 1} + 0 · P{X = 0}
= 1 · p = p

Hence,

Var(X) = p − p2 = p(1 − p) ■

■ Example 5.13
The return from a certain investment (in units of $1000) is a random variable
X with probability distribution

P{X = −1} = 0.7 P{X = 4} = 0.2 P{X = 8} = 0.1

Find Var(X), the variance of the return.
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Solution

Let us first compute the expected return as follows:

μ = E[X] = −1(0.7) + 4(0.2) + 8(0.1)

= 0.9

That is, the expected return is $900. To compute Var(X), we use the formula

Var(X) = E[X2] − μ2

Now, since X2 will equal (−1)2, 42, or 82 with respective probabilities of 0.7,
0.2, and 0.1, we have

E[X2] = 1(0.7) + 16(0.2) + 64(0.1)

= 10.3

Therefore,

Var(X) = 10.3 − (0.9)2

= 9.49 ■

5.4.1 Properties of Variances
For any random variable X and constant c, it can be shown that

Var(cX) = c2Var(X)

Var(X + c) = Var(X)

That is, the variance of the product of a constant and a random variable is equal to
the constant squared times the variance of the random variable; and the variance
of the sum of a constant and a random variable is equal to the variance of the
random variable.

Whereas the expected value of the sum of random variables is always equal to the
sum of the expectations, the corresponding result for variances is generally not
true. For instance, consider the following.

Var(X + X) = Var(2X)

= 22Var(X)


= Var(X) + Var(X)

However, there is an important case in which the variance of the sum of random
variables is equal to the sum of the variances, and this occurs when the random
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variables are independent. Before presenting this result, we must introduce the
concept of independent random variables.

We say that X and Y are independent if knowing the value of one of them does
not change the probabilities of the other. That is, if X takes on one of the values
xi, i ≥ 1, and Y takes on one of the values yj, j ≥ 1, then X and Y are independent
if the events that X is equal to xi and Y is equal to yj are independent events for
all xi and yj.

Definition Random variables X and Y are independent if knowing the value of one
of them does not change the probabilities of the other.

It turns out that the variance of the sum of independent random variables is equal
to the sum of their variances.

Useful Result

If X and Y are independent random variables, then

Var(X + Y) = Var(X) + Var(Y)

More generally, if X1, X2, . . . , Xk are independent random variables, then

Var

⎛
⎝ k∑

i=1

Xi

⎞
⎠ =

k∑
i=1

Var(Xi)

■ Example 5.14
Determine the variance of the sum obtained when a pair of fair dice is rolled.

Solution

Number the dice, and let X be the value of the first die and Y the value of the
second die. Then the desired quantity is Var(X + Y). Since the outcomes of the
two dice are independent, we know that

Var(X + Y) = Var(X) + Var(Y)

To compute Var(X), the variance of the face of the first die, recall that it was
shown in Example 5.5 that

E[X] = 7
2
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Since X2 is equally likely to be any of the values 12, 22, 32, 42, 52, and 62, we
have

E[X2] = 1
6

(1 + 4 + 9 + 16 + 25 + 36) = 91
6

Therefore,

Var(X) = E[X2] −
(

7
2

)2

= 91
6

− 49
4

= 35
12

Since Y has the same probability distribution as X, it also has variance 35/12,
and so

Var(X + Y) = 35
12

+ 35
12

= 35
6

■

The positive square root of the variance is called the standard deviation (SD).

Definition The quantity SD(X), defined by

SD(X) = √
Var(X)

is called the standard deviation of X.

The standard deviation, like the expected value, is measured in the same units
as is the random variable. That is, if the value of X is given in terms of miles,
then so will the expected value and the standard deviation, too. To compute the
standard deviation of a random variable, compute the variance and then take its
square root.

■ Example 5.15
The annual gross earnings of a certain rock singer are a random variable with an
expected value of $400,000 and a standard deviation of $80,000. The singer’s
manager receives 15 percent of this amount. Determine the expected value and
standard deviation of the amount received by the manager.

Solution

If we let X denote the earnings (in units of $1000) of the singer, then the
manager earns 0.15X. Its expected value is obtained as follows:

E[0.15X] = 0.15E[X] = 60
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To compute the standard deviation, first determine the variance:

Var(0.15X) = (0.15)2Var(X)

Taking the square root of both sides of the preceding gives

SD(0.15X) = 0.15 SD(X) = 12

Therefore, the amount received by the manager is a random variable with an
expected value of $60,000 and a standard deviation of $12,000. ■

PROBLEMS

1. Determine the variances of random variables U, V , and W , defined at
the beginning of Sec. 5.4.

2. Let p(i) = P{X = i}. Consider
(a) p(0) = 0.50, p(1) = 0.50
(b) p(0) = 0.60, p(1) = 0.40
(c) p(0) = 0.90, p(1) = 0.10
In which case do you think Var(X) would be largest? And in which case
would it be smallest? Determine the actual variances and check your
answers.

3. Suppose that, for some constant c, P{X = c} = 1. Find Var(X).
4. Find the variances of the random variables specified in Prob. 1 of

Sec. 5.3.
5. Find Var(X) for the X given in Prob. 5 of Sec. 5.3.
6. If the probability that you earn $300 is 1/3 and the probability that you

earn $600 is 2/3, what is the variance of the amount that you earn?
7. Find the variance of the number of sets played in the situation

described in Prob. 21 of Sec. 5.3.
8. A small electronics company that started up 4 years ago has 60

employees. The following is a frequency table relating the number of
years (rounded up) that these employees have been with the company.

Number of years Frequency

1 12

2 25

3 16

4 7
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Suppose one of these workers is randomly chosen. Let X denote the
number of years he or she has been with the company. Find
(a) E[X]
(b) Var(X)

9. The vacation time received by a worker of a certain company depends
on the economic performance of the company. Suppose that Fong, an
employee of this company, will receive

0 weeks’ vacation with probability 0.4
1 week’s vacation with probability 0.2
2 weeks’ vacation with probability 0.4

Suppose also that Fontanez, another employee, will receive

0 weeks’ vacation with probability 0.3
1 week’s vacation with probability 0.4
2 weeks’ vacation with probability 0.3

Let X denote the number of weeks of vacation for Fong and Y denote
the number of weeks for Fontanez.
(a) Which do you think is larger, Var(X) or Var(Y)?
(b) Find Var(X).
(c) Find Var(Y).

10. Find the variance of the profit earned by the nursery in Prob. 27(b) of
Sec. 5.3.

11. Two fair coins are tossed. Determine Var(X) when X is the number of
heads that appear.
(a) Use the definition of the variance.
(b) Use the fact that the variance of the sum of independent random

variables is equal to the sum of the variances.
12. Find the variance of the number of tickets obtained by the fleet of taxis,

as described in Prob. 35 of Sec. 5.3. Assume that the numbers of tickets
received by each of the taxis are independent.

13. A lawyer must decide whether to charge a fixed fee of $2000 or to
take a contingency fee of $8000 if she wins the case (and $0 if she
loses). She estimates that her probability of winning is 0.3. Determine
the standard deviation of her fee if
(a) She takes the fixed fee.
(b) She takes the contingency fee.

14. Find the standard deviation of the amount of money you will earn in
Prob. 14 of Sec. 5.3.

15. The following is a frequency table giving the number of courses being
taken by 210 first-year students at a certain college.
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Number of classes Frequency

1 2
2 15
3 37
4 90
5 49
6 14
7 3

Let X denote the number of courses taken by a randomly chosen
student. Find
(a) E[X]
(b) SD(X)

16. The amount of money that Robert earns has expected value $30,000
and standard deviation $3000. The amount of money that his wife
Sandra earns has expected value $32,000 and standard deviation
$5000. Determine the
(a) Expected value
(b) Standard deviation
of the total earnings of this family. In answering part (b), assume that
Robert’s earnings and Sandra’s earnings are independent. (Hint: In
answering part (b), first find the variance of the family’s total earnings.)

17. If Var(X) = 4, what is SD(3X)? (Hint: First find Var(3X).)
18. If Var(2X + 3) = 16, what is SD(X)?
19. If X and Y are independent random variables, both having variance 1,

find
(a) Var(X + Y)

(b) Var(X − Y)

5.5 BINOMIAL RANDOM VARIABLES
One of the most important types of random variables is the binomial, which arises
as follows. Suppose that n independent subexperiments (or trials) are performed,
each of which results in either a “success” with probability p or a “failure” with
probability 1 − p. If X is the total number of successes that occur in n trials, then
X is said to be a binomial random variable with parameters n and p.

Before presenting the general formula for the probability that a binomial random
variable X takes on each of its possible values 0, 1, . . . , n, we consider a special
case. Suppose that n = 3 and that we are interested in the probability that X is
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equal to 2. That is, we are interested in the probability that 3 independent trials,
each of which is a success with probability p, will result in a total of 2 successes.
To determine this probability, consider all the outcomes that give rise to exactly
2 successes:

(s, s, f ), (s, f , s), (f , s, s)

The outcome (s, f , s) means, for instance, that the first trial is a success, the second
a failure, and the third a success. Now, by the assumed independence of the trials,
it follows that each of these outcomes has probability p2(1 − p). For instance, if
Si is the event that trial i is a success and Fi is the event that trial i is a failure, then

P(s, f , s) = P(S1 ∩ F2 ∩ S3)

= P(S1)P(F2)P(S3) by independence

= p(1 − p)p

Since each of the 3 outcomes that result in a total of 2 successes consists of 2
successes and 1 failure, it follows in a similar fashion that each occurs with prob-
ability p2(1 − p). Therefore, the probability of a total of 2 successes in the 3 trials
is 3p2(1 − p).

Consider now the general case in which we have n independent trials. Let X denote
the number of successes. To determine P{X = i}, consider any outcome that results
in a total of i successes. Since this outcome will have a total of i successes and
n − i failures, it follows from the independence of the trials that its probability
will be pi(1 − p)n−i. That is, each outcome that results in X = i will have the same
probability pi(1 − p)n−i. Therefore, P{X = i} is equal to this common probability
multiplied by the number of different outcomes that result in i successes. Now, it
can be shown that there are n!/[i!(n − i)!] different outcomes that result in a total
of i successes and n − i failures, where n! (read “n factorial”) is equal to 1 when
n = 0 and is equal to the product of the natural numbers from 1 to n otherwise.
That is,

0! = 1

n! = n · (n − 1) · · · 3 · 2 · 1 if n > 0

A binomial random variable with parameters n and p represents the number of
successes in n independent trials, when each trial is a success with probability p.
If X is such a random variable, then for i = 0, . . . , n,

P{X = i} = n!
i! (n − i)!

pi(1 − p)n−i
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As a check of the preceding equation, note that it states that the probability that
there are no successes in n trials is

p{X = 0} = n!
0! (n − 0)!

p0(1 − p)n−0

= (1 − p)n since 0! = p0 = 1

However, the foregoing is clearly correct since the probability that there are 0
successes, and so all the trials are failures, is, by independence, (1 − p)(1 − p) · · ·
(1 − p) = (1 − p)n.

The probabilities of three binomial random variables with respective parameters
n = 10, p = 0.5, n = 10, p = 0.3, and n = 10, p = 0.6 are presented in Fig. 5.3.

■ Example 5.16
Three fair coins are flipped. If the outcomes are independent, determine the
probability that there are a total of i heads, for i = 0, 1, 2, 3.

Solution

If we let X denote the number of heads (“successes”), then X is a binomial
random variable with parameters n = 3, p = 0.5. By the preceding we have

P{X = 0} = 3!
0! 3!

(
1
2

)0(1
2

)3

=
(

1
2

)3

= 1
8

P{X = 1} = 3!
1! 2!

(
1
2

)1(1
2

)2

= 3
(

1
2

)3

= 3
8

P{X = 2} = 3!
2! 1!

(
1
2

)2(1
2

)1

= 3
(

1
2

)3

= 3
8

P{X = 3} = 3!
3! 0!

(
1
2

)3(1
2

)0

=
(

1
2

)3

= 1
8

■

■ Example 5.17
Suppose that a particular trait (such as eye color or handedness) is determined
by a single pair of genes, and suppose that d represents a dominant gene and
r a recessive gene. A person with the pair of genes (d, d) is said to be pure
dominant, one with the pair (r, r) is said to be pure recessive, and one with the
pair (d, r) is said to be hybrid. The pure dominant and the hybrid are alike in
appearance. When two individuals mate, the resulting offspring receives one
gene from each parent, and this gene is equally likely to be either of the parent’s
two genes.
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FIGURE 5.3
Binomial probabilities.

(a) What is the probability that the offspring of two hybrid parents has the
opposite (recessive) appearance?

(b) Suppose two hybrid parents have 4 offsprings. What is the probability 1 of
the 4 offspring has the recessive appearance?
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Solution

(a) The offspring will have the recessive appearance if it receives a reces-
sive gene from each parent. By independence, the probability of this is
(1/2)(1/2) = 1/4.

(b) Assuming the genes obtained by the different offspring are independent
(which is the common assumption in genetics), it follows from part (a)
that the number of offspring having the recessive appearance is a binomial
random variable with parameters n = 4 and p = 1/4. Therefore, if X is the
number of offspring that have the recessive appearance, then

P{X = 1} = 4!
1! 3!

(
1
4

)1(3
4

)3

= 4
(

1
4

)(
3
4

)3

= 27
64

Suppose that X is a binomial random variable with parameters n and p, and
suppose we want to calculate the probability that X is less than or equal to
some value j. In principle, we could compute this as follows:

P{X ≤ j} =
j∑

i=0

P{X = i} =
j∑

i=0

n!
i! (n − i)!

pi(1 − p)n−i

The amount of computation called for in the preceding equation can be rather
large. To relieve this, Table D.5 (in App. D) gives the values of P{X ≤ j} for
n ≤ 20 and for various values of p. In addition, you can use Program 5-1. In
this program you enter the binomial parameters and the desired value of j, and
you get as output the probability that the binomial is less than or equal to j, the
probability that the binomial is equal to j, and the probability that the binomial
is greater than or equal to j. ■

■ Example 5.18
(a) Determine P{X ≤ 12} when X is a binomial random variable with param-

eters 20 and 0.4.
(b) Determine P{Y ≤ 10} when Y is a binomial random variable with param-

eters 16 and 0.5.

Solution

From Table D.5, we see that
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(a) P{X ≤ 12} = 0.9790
(b) P{Y ≤ 10} = 1 − P{Y < 10} = 1 − P{Y ≤ 9} = 1 − 0.7728 = 0.2272

We could also have run Program 5-1 to obtain the following:
The probability that a binomial (20, 0.4) is less than or equal to 12 is 0.978969.
The probability that a binomial (16, 0.5) is greater than or equal to 10 is
0.2272506. ■

5.5.1 Expected Value and Variance of a Binomial Random
Variable

A binomial (n, p) random variable X is equal to the number of successes in n
independent trials when each trial is a success with probability p. As a result, we
can represent X as

X =
n∑

i=1

Xi

where Xi is equal to 1 if trial i is a success and is equal to 0 if trial i is a failure.
Since

P{Xi = 1} = p and P{Xi = 0} = 1 − p

it follows from the results of Examples 5.6 and 5.12 that

E[Xi] = p and Var(Xi) = p(1 − p)

Therefore, using the fact that the expectation of the sum of random variables is
equal to the sum of their expectations, we see that

E[X] = np

Also, since the variance of the sum of independent random variables is equal to
the sum of their variances, we have

Var(X) = np(1 − p)

Let us summarize.

If X is binomial with parameters n and p, then

E[X] = np

Var(X) = np(1 − p)



244 CHAPTER 5: Discrete Random Variables

■ Example 5.19
Suppose that each screw produced is independently defective with probability
0.01. Find the expected value and variance of the number of defective screws in
a shipment of size 1000.

Solution

The number of defective screws in the shipment of size 1000 is a binomial ran-
dom variable with parameters n = 1000, p = 0.01. Hence, the expected number
of defective screws is

E[number of defectives] = 1000(0.01) = 10

and the variance of the number of defective screws is

Var(number of defectives) = 1000(0.01)(0.99) = 9.9 ■

Historical Perspective

B
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an

n

Jacques Bernoulli

Independent trials having a common success probability p were first studied by the
Swiss mathematician Jacques Bernoulli (1654–1705). In his book Ars Conjectandi
(The Art of Conjecturing), published by his nephew Nicholas eight years after his
death in 1713, Bernoulli showed that if the number of such trials were large, then
the proportion of them that were successes would be close to p with a probability
near 1.

Jacques Bernoulli was from the first generation of the most famous mathematical
family of all time. Altogether there were anywhere between 8 and 12 Bernoullis,
spread over three generations, who made fundamental contributions to probabil-
ity, statistics, and mathematics. One difficulty in knowing their exact number is
the fact that several had the same name. (For example, two of the sons of Jacques’
brother Jean were named Jacques and Jean.) Another difficulty is that several of the
Bernoullis were known by different names in different places. Our Jacques (some-
times written Jaques), for instance, was also known as Jakob (sometimes written
Jacob) and as James Bernoulli. But whatever their number, their influence and
output were prodigious. Like the Bachs of music, the Bernoullis of mathematics
were a family for the ages!

PROBLEMS

1. Find (a) 4! (b) 5! (c) 7!

2. Find (a)
8!

3! 5!
(b)

7!
3! 4!

(c)
9!

4! 5!
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3. Given that 9! = 362,880, find 10!.
4. Use the probability distribution of a binomial random variable with

parameters n and p to show that

P{X = n} = pn

Then argue directly why this is valid.
5. If X is a binomial random variable with parameters n = 8 and p = 0.4,

find
(a) P{X = 3}
(b) P{X = 5}
(c) P{X = 7}

6. Each ball bearing produced is independently defective with probabil-
ity 0.05. If a sample of 5 is inspected, find the probability that
(a) None are defective.
(b) Two or more are defective.

7. Suppose you will be attending 6 hockey games. If each game indepen-
dently will go to overtime with probability 0.10, find the probability
that

(a) At least 1 of the games will go into overtime.
(b) At most 1 of the games will go into overtime.

8. A satellite system consists of 4 components and can function if at
least 2 of them are working. If each component independently works
with probability 0.8, what is the probability the system will function?

9. A communications channel transmits the digits 0 and 1. Because of
static, each digit transmitted is independently incorrectly received
with probability 0.1. Suppose an important single-digit message is
to be transmitted. To reduce the chance of error, the string of digits
0 0 0 0 0 is to be transmitted if the message is 0 and the string 1 1 1 1 1
is to be transmitted if the message is 1. The receiver of the message
uses “majority rule” to decode; that is, she decodes the message as 0
if there are at least 3 zeros in the message received and as 1 otherwise.
(a) For the message to be incorrectly decoded, how many of the

5 digits received would have to be incorrect?
(b) What is the probability that the message is incorrectly decoded?

10. A multiple-choice examination has 3 possible answers for each of
5 questions. What is the probability that a student will get 4 or more
correct answers just by guessing?

11. A man claims to have extrasensory perception (ESP). As a test, a fair
coin is to be flipped 8 times, and he is asked to predict the outcomes in
advance. Suppose he gets 6 correct answers. What is the probability
that he would have got at least this number of correct answers if he
had no ESP but had just guessed?
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12. Each diskette produced by a certain company will be defective with
probability 0.05 independent of the others. The company sells the
diskettes in packages of 10 and offers a money-back guarantee that
all the diskettes in a package will be nondefective. Suppose that this
offer is always taken up.

(a) What is the probability that a package is returned?
(b) If someone buys 3 packages, what is the probability that exactly 1

of them is returned?
13. Four fair dice are to be rolled. Find the probability that

(a) 6 appears at least once.
(b) 6 appears exactly once.
(c) 6 appears at least twice.

14. Statistics indicate that alcohol is a factor in 55 percent of fatal auto-
mobile accidents. Of the next 3 fatal automobile accidents, find the
probability that alcohol is a factor in
(a) All 3
(b) Exactly 2
(c) At least 1

15. Individuals who have two sickle cell genes will develop the disease
called sickle cell anemia, while individuals having none or one sickle
cell gene will not be harmed. If two people, both of whom have one
sickle cell gene, have a child, then that child will receive two sickle
cell genes with probability 1/4. Suppose that both members of each
of three different couples have exactly one sickle cell gene. If each of
these couples has a child, find the probability that
(a) None of the children receives two sickle cell genes.
(b) Exactly one of the children receives two sickle cell genes.
(c) Exactly two of the children receive two sickle cell genes.
(d) All three children receive two sickle cell genes.

16. Let X be a binomial random variable with parameters n = 20 and
p = 0.6. Find

(a) P{X ≤ 14}
(b) P{X < 10}
(c) P{X ≥ 13}

(d) P{X > 10}
(e) P{9 ≤ X ≤ 16}
(f) P{7 < X < 15}

17. A fair die is to be rolled 20 times. Find the expected value of the number
of times

(a) 6 appears.
(b) 5 or 6 appears.

(c) An even number appears.
(d) Anything else but 6 appears.

18. Find the variances of the random variables in Prob. 17.
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19. The probability that a fluorescent bulb burns for at least 500 hours is
0.90. Of 8 such bulbs, find the probability that
(a) All 8 burn for at least 500 hours.
(b) Exactly 7 burn for at least 500 hours.
(c) What is the expected value of the number of bulbs that burn for at

least 500 hours?
(d) What is the variance of the number of bulbs that burn for at least

500 hours?
20. If a fair coin is flipped 500 times, what is the standard deviation of the

number of times that a head appears?
21. The FBI has reported that 44 percent of murder victims are killed with

handguns. If 4 murder victims are randomly selected, find
(a) The probability that they were all killed by handguns
(b) The probability that none were killed by handguns
(c) The probability that at least two were killed by handguns
(d) The expected number killed by handguns
(e) The standard deviation of the number killed by handguns

22. The expected number of heads in a series of 10 flips of a coin is 6. What
is the probability there are 8 heads?

23. If X is a binomial random variable with expected value 4 and variance
2.4, find
(a) P{X = 0}
(b) P{X = 12}

24. If X is a binomial random variable with expected value 4.5 and variance
0.45, find
(a) P{X = 3}
(b) P{X ≥ 4}

25. Find the mean and standard deviation of a binomial random variable
with parameters
(a) n = 100, p = 0.5
(b) n = 100, p = 0.4
(c) n = 100, p = 0.6

(d) n = 50, p = 0.5
(e) n = 150, p = 0.5
(f) n = 200, p = 0.25

26. The National Basketball Association championship series is a best-of-
seven series, meaning that the first team to win four games is declared
the champion. In its history, no team has ever come back to win the
championship after being behind three games to one. Assuming that
each of the games played in this year’s series is equally likely to be
won by either team, independent of the results of earlier games, what
is the probability that the upcoming championship series will be the
first time that a team comes back from a three-game-to-one deficit to
win the series?
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*5.6 HYPERGEOMETRIC RANDOM VARIABLES
Suppose that n batteries are to be randomly selected from a bin of N batteries, of
which Np are functional and the other N(1 − p) are defective. The random variable
X, equal to the number of functional batteries in the sample, is then said to be a
hypergeometric random variable with parameters n, N, p.

We can interpret the preceding experiment as consisting of n trials, where trial i
is considered a success if the ith battery withdrawn is a functional battery. Since
each of the N batteries is equally likely to be the ith one withdrawn, it follows
that trial i is a success with probability Np/N = p. Therefore, X can be thought
of as representing the number of successes in n trials where each trial is a success
with probability p. What distinguishes X from a binomial random variable is that
these trials are not independent. For instance, suppose that two batteries are to
be withdrawn from a bin of five batteries, of which one is functional and the
others defective. (That is, n = 2, N = 5, p = 1/5.) Then the probability that the
second battery withdrawn is functional is 1/5. However, if the first one withdrawn
is functional, then the conditional probability that the second one is functional
is 0 (since when the second battery is chosen all four remaining batteries in the
bin are defective). That is, when the selections of the batteries are made without
replacing the previously chosen ones, the trials are not independent, so X is not a
binomial random variable.

By using the result that each of the n trials is a success with probability p, it can be
shown that the expected number of successes is np. That is,

E[X] = np

In addition, it can be shown that the variance of the hypergeometric random
variable is given by

Var(X) = N − n
N − 1

np(1 − p)

Thus, whereas the expected value of the hypergeometric random variable with
parameters n, N, p is the same as that of the binomial random variable with
parameters n, p, its variance is smaller than that of the binomial by the factor
(N − n)/(N − 1).

■ Example 5.20
If 6 people are randomly selected from a group consisting of 12 men and
8 women, then the number of women chosen is a hypergeometric ran-
dom variable with parameters n = 6, N = 20, p = 8/20 = 0.4. Its mean and
variance are

E[X] = 6(0.4) = 2.4 Var(X) = 14
19

6(0.4)(0.6) ≈ 1.061
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Similarly, the number of men chosen is a hypergeometric random variable with
parameters n = 6, N = 20, p = 0.6. ■

Suppose now that N, the number of batteries in the urn, is large in comparison
to n, the number to be selected. For instance, suppose that 20 batteries are to be
randomly chosen from a bin containing 10,000 batteries of which 90 percent are
functional. In this case, no matter which batteries were previously chosen each
new selection will be defective with a probability that is approximately equal to
0.9. For instance, the first battery selected will be functional with probability 0.9.
If the first battery is functional then the next one will also be functional with
probability 8999/9999 ≈ .89999, whereas if the first battery is defective then the
second one will be functional with probability 9000/9999 ≈ .90009. A similar
argument holds for the other selections, and thus we may conclude that when N
is large in relation to n, then the n trials are approximately independent, which
means that X is approximately a binomial random variable.

When N is large in relation to n, a hypergeometric random variable with param-
eters n, N, p approximately has a binomial distribution with parameters n
and p.

PROBLEMS

In the following problems, state whether the random variable X is binomial or
hypergeometric. Also give its parameters (n and p if it is binomial or n, N, and p
if it is hypergeometric).

1. A lot of 200 items contains 18 defectives. Let X denote the number of
defectives in a sample of 20 items.

2. A restaurant knows from past experience that 15 percent of all reser-
vations do not show. Twenty reservations are expected tonight. Let X
denote the number that show.

3. In one version of the game of lotto each player selects six of the numbers
from 1 to 54. The organizers also randomly select six of these numbers.
These latter six are called the winning numbers. Let X denote how many
of a given player’s six selections are winning numbers.

4. Each new fuse produced is independently defective with probabil-
ity 0.05. Let X denote the number of defective fuses in the last 100
produced.

5. Suppose that a collection of 100 fuses contains 5 that are defective.
Let X denote the number of defectives discovered when 20 of them are
randomly chosen and inspected.

6. A deck of cards is shuffled and the cards are successively turned over.
Let X denote the number of aces in the first 10 cards.
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7. A deck of cards is shuffled and the top card is turned over. The card
is then returned to the deck and the operation repeated. This continues
until a total of 10 cards have been turned over. Let X denote the number
of aces that have appeared.

*5.7 POISSON RANDOM VARIABLES
A random variable X that takes on one of the values 0, 1, 2, . . . is said to be a Pois-
son random variable with parameter λ if for some positive value λ its probabilities
are given by

P{X = i} = cλi/i!, i = 0, 1, . . .

In the preceding, c is a constant that depends on λ. Its explicit value is given by
c = e−λ, where e is a famous mathematical constant that is approximately equal
to 2.718.

A random variable X is called a Poisson random variable with parameter λ if

P{X = i} = e−λλi

i!
, i = 0, 1, . . .

A graph of the probabilities of a Poisson random variable having parameter λ = 4
is presented in Fig. 5.4.

■ Example 5.21
If X is a Poisson random variable with parameter λ = 2, find P{X = 0}.

Solution

P{X = 0} = e−220

0!

Using the facts that 20 = 1 and 0! = 1, we obtain

P{X = 0} = e−2 = 0.1353

In the preceding, the value of e−2 was obtained from a table of exponentials.
Alternatively, it could have been obtained from a scientific hand calculator or
a personal computer. ■

Poisson random variables arise as approximations to binomial random variables.
Consider n independent trials, each of which results in either a success with prob-
ability p or a failure with probability 1 − p. If the number of trials is large and the
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FIGURE 5.4
Probabilities of a Poisson random variable with λ = 4.

probability of a success on a trial is small, then the total number of successes will
be approximately a Poisson random variable with parameter λ = np.

Some examples of random variables whose probabilities are approximately given,
for some λ, by Poisson probabilities are the following:

1. The number of misprints on a page of a book
2. The number of people in a community who are at least 100 years old
3. The number of people entering a post office on a given day

Each of these is approximately Poisson because of the Poisson approximation
to the binomial. For instance, we can suppose that each letter typed on a page
has a small probability of being a misprint, and so the number of misprints on
a page will be approximately a Poisson random variable with parameter λ = np,
where n is the large number of letters on a page and p is the small probability that
any given letter is a misprint.

■ Example 5.22
Suppose that items produced by a certain machine are independently defective
with probability 0.1. What is the probability that a sample of 10 items will
contain at most 1 defective item? What is the Poisson approximation for this
probability?
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Solution

If we let X denote the number of defective items, then X is a binomial random
variable with parameters n = 10, p = 0.1. Thus the desired probability is

P{X = 0} + P{X = 1} =
(

10
0

)
(0.1)0(0.9)10 +

(
10
1

)
(0.1)1(0.9)9

= 0.7361

Since np = 10(0.1) = 1, the Poisson approximation yields the value

P{X = 0} + P{X = 1} = e−1 + e−1 = 0.7358

Thus, even in this case, where n is equal to 10 (which is not that large) and
p is equal to 0.1 (which is not that small), the Poisson approximation to the
binomial probability is quite accurate. ■

Both the expected value and the variance of a Poisson random variable are equal
to λ. That is, we have the following.

If X is a Poisson random variable with parameter λ, λ > 0, then

E[X] = λ

Var(X) = λ

■ Example 5.23
Suppose the average number of accidents occurring weekly on a particular
highway is equal to 1.2. Approximate the probability that there is at least one
accident this week.

Solution

Let X denote the number of accidents. Because it is reasonable to suppose that
there are a large number of cars passing along the highway, each having a small
probability of being involved in an accident, the number of such accidents
should be approximately a Poisson random variable. That is, if X denotes the
number of accidents that will occur this week, then X is approximately a Pois-
son random variable with mean value λ = 1.2. The desired probability is now
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obtained as follows:

P{X > 0} = 1 − P{X = 0}

= 1 − e−1.2(1.2)0

0!

= 1 − e−1.2

= 1 − 0.3012

= 0.6988

Therefore, there is approximately a 70 percent chance that there will be at least
one accident this week. ■

PROBLEMS

The following will be needed for the problems. The values given are correct to four
decimal places.

e−1/2 = 0.6065, e−4 = 0.0183, e−1 = 0.3679, e−0.3 = 0.7408

1. If X is Poisson with mean λ = 4, find
(a) P{X = 1}
(b) P{X = 2}
(c) P{X > 2}

2. Compare the Poisson approximation with the true binomial probability
in the following cases:
(a) P{X = 2} when n = 10, p = 0.1
(b) P{X = 2} when n = 10, p = 0.05
(c) P{X = 2} when n = 10, p = 0.01
(d) P{X = 2} when n = 10, p = 0.3

3. You buy a lottery ticket in 500 lotteries. In each lottery your chance of
winning a prize is 1/1000. What is the approximate probability for the
following?
(a) You win 0 prizes.
(b) You win exactly 1 prize.
(c) You win at least 2 prizes.

4. If X is Poisson with mean λ = 144, find
(a) E[X]
(b) SD(X)
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5. A particular insurance company pays out an average of 4 major medical
claims in a month.
(a) Approximate the probability that it pays no major medical claims in

the coming month?
(b) Approximate the probability that it pays at most 2 major medical

claims in the coming month?
(c) Approximate the probability that it pays at least 4 major medical

claims in the coming month?

KEY TERMS

Random variable: A quantity whose value is determined by the outcome of a
probability experiment.

Discrete random variable: A random variable whose possible values constitute a
sequence of disjoint points on the number line.

Expected value of a random variable: A weighted average of the possible values
of a random variable; the weight given to a value is the probability that the
random variable is equal to that value. Also called the expectation or the mean
of the random variable.

Variance of a random variable: The expected value of the square of the difference
between the random variable and its expected value.

Standard deviation of a random variable: The square root of the variance.

Independent random variables: A set of random variables having the property
that knowing the values of any subset of them does not affect the probabilities
of the remaining ones.

Binomial random variable with parameters n and p: A random variable equal to
the number of successes in n independent trials when each trial is a success with
probability p.

SUMMARY

A random variable is a quantity whose value is determined by the outcome of
a probability experiment. If its possible values can be written as a sequence of
distinct numbers, then the random variable is called discrete.

Let X be a random variable whose possible values are xi, i = 1, . . . , n; and suppose
X takes on the value xi with probability P{X = xi}. The expected value of X, also
referred to as the mean of X or the expectation of X, is denoted by E[X] and is
defined as

E[X] =
n∑

i=1

xiP{X = xi}
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If X is a random variable and c is a constant, then

E[cX] = cE[X]

E[X + c] = E[X] + c

For any random variables X1, . . . , Xk,

E[X1 + X2 + · · · + Xk] = E[X1] + E[X2] + · · · + E[Xk]

The random variables X and Y are independent if knowing the value of one of them
does not change the probabilities for the other.

The variance of a random variable measures the average squared distance of the
random variable from its mean. Specifically, if X has mean μ = E[X], then the
variance of X, denoted by Var(X), is defined as

Var(X) = E[(X − μ)2]

A property of the variance is that for any constant c and random variable X,

Var(cX) = c2Var(X)

Var(X + c) = Var(X)

Whereas the variance of the sum of random variables in general is not equal to
the sum of their variances, it is true in the special case where the random variables
are independent. That is,

Var(X + Y ) = Var(X) + Var(Y)

if X and Y are independent.

The square root of the variance is called the standard deviation and is denoted by
SD(X). That is,

SD(X) +√
Var(X)

Consider n independent trials in which each trial results in a success with proba-
bility p. If X is the total number of successes, then X is said to be a binomial random
variable with parameters n and p. Its probabilities are given by

P{X = i} = n!
i!(n − i)!

pi(1 − p)n−i i = 0, . . . , n

In the above, n! (called n factorial) is defined by

0! = 1 n! = n(n − 1) . . . 3 · 2 · 1
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The mean and variance of a binomial random variable with parameters n and
p are

E[X] = np and Var (X) = np(1 − p)

Binomial random variables with large values of n and small values of p can be
approximated by a Poisson random variable, whose probabilities are given by

P{X = i} = e−λ λi

i!
, i = 0, 1, . . .

where λ = np. The mean and variance of this random variable are both equal to λ.

REVIEW PROBLEMS

1. If P{X ≤ 4} = 0.8 and P{X = 4} = 0.2, find
(a) P{X ≥ 4}
(b) P{X < 4}

2. If P{X ≤ 6} = 0.7 and P{X < 6} = 0.5, find
(a) P{X = 6}
(b) P{X > 6}

3. A graduating law student is not certain whether he actually wants
to practice law or go into business with his family. He has decided
to base his decision on whether he can pass the bar examination. He
has decided to give himself at most 4 attempts at the examination;
he will practice law if he passes the examination or go into the family
business if he fails on all 4 tries. Suppose that each time he takes the
bar examination he is successful, independent of his previous results,
with probability 0.3. Let X denote the number of times he takes the bar
examination.
(a) What are the possible values that X can assume?
(b) What is the probability distribution of X?
(c) What is the probability that he passes the bar examination?
(d) Find E[X].
(e) Find Var (X).

4. Suppose that X is either 1 or 2. If E[X] = 1.6, find P{X = 1}.
5. A gambling book recommends the following “winning strategy” for

the game of roulette. It recommends that a gambler bet $1 on red. If red
appears (which has probability 18/38 of occurring), then the gambler
should take her $1 profit and quit. If the gambler loses this bet (which
has probability 20/38 of occurring) and so is behind $1, then she should
make a $2 bet on red and then quit. Let X denote the gambler’s final
winnings.
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(a) Find P{X > 0}.
(b) Are you convinced that the strategy is a winning strategy? Why

or why not?

(c) Find E[X].
6. Two people are to meet in the park. Each person is equally likely to

arrive, independent of the other, at 3:00, 4:00, or 5:00 p.m. Let X equal
the time that the first person to arrive has to wait, where X is taken to
equal 0 if they both arrive at the same time. Find E[X].

7. There is a 0.3 probability that a used-car salesman will sell a car to
his next customer. If he does, then the car that is purchased is equally
likely to cost $4000 or $6000. Let X denote the amount of money that
the customer spends.
(a) Find the probability distribution of X.

(b) Find E[X].

(c) Find Var (X).

(d) Find SD (X).
8. Suppose that 2 batteries are randomly chosen from a bin containing 12

batteries, of which 8 are good and 4 are defective. What is the expected
number of defective batteries chosen?

9. A company is preparing a bid for a contract to supply a city’s schools
with notebook supplies. The cost to the company of supplying the
material is $140,000. It is considering two alternate bids: to bid high
(25 percent above cost) or to bid low (10 percent above cost). From
past experience the company knows that if it bids high, then the prob-
ability of winning the contract is 0.15, whereas if it bids low, then the
probability of winning the contract is 0.40. Which bid will maximize
the company’s expected profit?

10. If E[3X + 10] = 70, what is E[X]?
11. The probability that a vacuum cleaner saleswoman makes no sales

today is 1/3, the probability she makes 1 sale is 1/2, and the probability
she makes 2 sales is 1/6. Each sale made is independent and equally
likely to be either a standard cleaner, which costs $500, or a deluxe
cleaner, which costs $1000. Let X denote the total dollar value of all
sales.
(a) Find P{X = 0}.
(b) Find P{X = 500}.
(c) Find P{X = 1000}.
(d) Find P{X = 1500}.
(e) Find P{X = 2000}.
(f) Find E[X].
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(g) Suppose that the saleswoman receives a 20 percent commission
on the sales that she makes. Let Y denote the amount of money
she earns. Find E[Y ].

12. The 5 families living on a certain block have a total of 12 children. One
of the families has 4 children, one has 3, two have 2, and one has 1.
Let X denote the number of children in a randomly selected family,
and let Y denote the number of children in the family of a randomly
selected child. That is, X refers to an experiment in which each of the
five families is equally likely to be selected, whereas Y refers to one in
which each of the 12 children is equally likely to be selected.
(a) Which do you think has the larger expected value, X or Y?
(b) Calculate E[X] and E[Y ].

13. A financier is evaluating two investment possibilities. Investment A
will result in

$200,000 profit with probability 1/4
$100,000 profit with probability 1/4
$150,000 loss with probability 1/2

Investment B will result in

$300,000 profit with probability 1/8
$200,000 profit with probability 1/4
$150,000 loss with probability 3/8
$400,000 loss with probability 1/4

(a) What is the expected profit of investment A?
(b) What is the expected profit of investment B?
(c) What is the investor’s expected profit if she or he invests in both

A and B?
14. If Var (X) = 4, find

(a) Var (2X + 14)

(b) SD (2X)

(c) SD (2X + 14)

15. Suppose E[X] = μ and SD(X) = σ . Let

Y = X − μ

σ

(a) Show that E[Y ] = 0.
(b) Show that Var (Y) = 1.
The random variable Y is called the standardized version of X. That is,
given a random variable, if we subtract its expected value and divide
the result by its standard deviation, then the resulting random variable
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is said to be standardized. The standardized variable has expected
value 0 and variance 1.

16. A manager has two clients. The gross annual earnings of his first client
are a random variable with expected value $200,000 and standard
deviation $60,000. The gross annual earnings of his second client are
a random variable with expected value $140,000 and standard devia-
tion $50,000. If the manager’s fee is 15 percent of his first client’s gross
earnings and 20 percent of his second client’s gross earnings, find the
(a) Expected value of the manager’s fee
(b) Standard deviation of the manager’s total fee
In part (b) assume that the earnings of the two clients are independent.

17. A weighted coin that comes up heads with probability 0.6 is flipped n
times. Find the probability that the total number of heads in these flips
exceeds the total number of tails when
(a) n = 1 (b) n = 3 (c) n = 5 (d) n = 7 (e) n = 9 (f) n = 19

18. Each customer who enters a television store will buy a normal-size
television with probability 0.3, buy an extra-large television with prob-
ability 0.1, or not buy any television with probability 0.6. Find the
probability that the next 5 customers
(a) Purchase a total of 3 normal-size sets
(b) Do not purchase any extra-large sets
(c) Purchase a total of 2 sets

19. A saleswoman has a 60 percent chance of making a sale each time she
visits a computer store. She visits 3 stores each month. Assume that
the outcomes of successive visits are independent.
(a) What is the probability she makes no sales next month?
(b) What is the probability she makes 2 sales next month?
(c) What is the probability that she makes at least 1 sale in each of

the next 3 months?
20. Let X be a binomial random variable such that

E[X] = 6 and Var (X) = 2.4

Find
(a) P{X > 2} (b) P{X ≤ 9} (c) P{X = 12}

21. A coin that comes up heads with probability 1/3 is to be flipped 3 times.
Which is more likely: that heads appears exactly once, or that it does
not appear exactly once?
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CHAPTER 6

Normal Random Variables

Among other peculiarities of the 19th century is this one, that by initiating
the systematic collection of statistics it has made the quantitative study of
social forces possible.

Alfred North Whitehead
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We introduce continuous random variables, which are random variables that can
take on any value in an interval. We show how their probabilities are determined
from an associated curve known as a probability density function. A special type
of continuous random variable, known as a normal random variable, is studied.
The standard normal random variable is introduced, and a table is presented that
enables us to compute the probabilities of that variable. We show how any normal
random variable can be transformed to a standard one, enabling us to determine
its probabilities. We present the additive property of normal random variables.
The percentiles of normal random variables are studied.

6.1 INTRODUCTION
In this chapter we introduce and study the normal distribution. Both from a theo-
retical and from an applied point of view, this distribution is unquestionably the
most important in all statistics.

The normal distribution is one of a class of distributions that are called continuous.
Continuous distributions are introduced in Sec. 6.2. In Sec. 6.3 we define what is
meant by a normal distribution and present an approximation rule concerning
its probabilities. In Sec. 6.4, we consider the standard normal distribution, which
is a normal distribution having mean 0 and variance 1, and we show how to
determine its probabilities by use of a table. In Sec. 6.5 we show how any normal
random variable can be transformed to a standard normal, and we use this trans-
formation to determine the probabilities of that variable. The additive property
of normal random variables is discussed in Sec. 6.6, and in Sec. 6.7 we consider
their percentiles.

The normal distribution was introduced by the French mathematician Abraham
De Moivre in 1733.

6.2 CONTINUOUS RANDOM VARIABLES
Whereas the possible values of a discrete random variable can be written as a
sequence of isolated values, a continuous random variable is one whose set of possi-
ble values is an interval. That is, a continuous random variable is able to take on
any value within some interval. For example, such variables as the time it takes
to complete a scientific experiment and the weight of an individual are usually
considered to be continuous random variables.

Every continuous random variable X has a curve associated with it. This curve,
formally known as a probability density function, can be used to obtain probabilities
associated with the random variable. This is accomplished as follows. Consider
any two points a and b, where a is less than b. The probability that X assumes a
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FIGURE 6.1
Probability density function of X.

value that lies between a and b is equal to the area under the curve between a and b.
That is,

P{a ≤ X ≤ b} = area under curve between a and b

Figure 6.1 presents a probability density function.

Since X must assume some value, it follows that the total area under the density
curve must equal 1. Also, since the area under the graph of the probability density
function between points a and b is the same regardless of whether the endpoints
a and b are themselves included, we see that

P{a ≤ X ≤ b} = P{a < X < b}
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Abraham De Moivre

Abraham De Moivre (1667–1754)

Today there is no shortage of statistical consultants, many of whom ply their
trade in the most elegant of settings. However, the first of their breed worked,
in the early years of the 18th century, out of a dark, grubby betting shop in Long
Acres, London, known as Slaughter’s Coffee House. He was Abraham De Moivre,
a Protestant refugee from Catholic France, and for a price he would compute the
probability of gambling bets in all types of games of chance.

Although De Moivre, the discoverer of the normal curve, made his living at the
coffee shop, he was a mathematician of recognized abilities. Indeed, he was
a member of the Royal Society and was reported to be an intimate of Isaac
Newton.
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This is Karl Pearson imagining De Moivre at work at Slaughter’s Coffee House:

I picture De Moivre working at a dirty table in the coffee house with a
broken-down gambler beside him and Isaac Newton walking through the
crowd to his corner to fetch out his friend. It would make a great picture for
an inspired artist.

That is, the probability that a continuous random variable lies in some interval is
the same whether you include the endpoints of the interval or not.

The probability density curve of a random variable X is a curve that never goes
below the x axis and has the property that the total area between it and the
x axis is equal to 1. It determines the probabilities of X in that the area under
the curve between points a and b is equal to the probability that X is between
a and b.

PROBLEMS

1. Figure 6.2 is a probability density function for the random variable that
represents the time (in minutes) it takes a repairer to service a televi-
sion. The numbers in the regions represent the areas of those regions.
What is the probability that the repairer takes
(a) Less than 20
(b) Less than 40
(c) More than 50
(d) Between 40 and 70 minutes to complete a repair?

2. A random variable is said to be a uniform random variable in the interval
(a, b) if its set of possible values is this interval and if its density curve
is a horizontal line. That is, its density curve is as given in Fig. 6.3.

FIGURE 6.2
Probability density function of X.
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FIGURE 6.3
Density curve of the uniform (a, b) random variable.

(a) Explain why the height of the density curve is 1/(b − a). (Hint:
Remember that the total area under the density curve must equal 1,
and recall the formula for the area of a rectangle.)

(b) What is P{X ≤ (a + b)/2}?
3. Suppose that X is a uniform random variable over the interval (0, 1). That

is, a = 0 and b = 1 for the random variable in Prob. 2. Find
(a) P{X > 1/3}
(b) P{X ≤ 0.7}
(c) P{0.3 < X ≤ 0.9}
(d) P{0.2 ≤ X < 0.8}

4. You are to meet a friend at 2 p.m. However, while you are always exactly
on time, your friend is always late and indeed will arrive at the meeting
place at a time uniformly distributed between 2 and 3 p.m. Find the
probability that you will have to wait
(a) At least 30 minutes
(b) Less than 15 minutes
(c) Between 10 and 35 minutes
(d) Less than 45 minutes

5. Suppose in Prob. 4 that your friend will arrive at a time that is uniformly
distributed between 1:30 and 3 p.m. Find the probability that
(a) You are the first to arrive.
(b) Your friend will have to wait more than 15 minutes.
(c) You will have to wait over 30 minutes.

6. Suppose that the number of minutes of playing time of a certain college
basketball player in a randomly chosen game has the following density
curve.
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Find the probability that the player plays
(a) Over 20 minutes
(b) Less than 25 minutes
(c) Between 15 and 35 minutes
(d) More than 35 minutes

7. Let X denote the number of minutes played by the basketballer of
Prob. 6. Find
(a) P{20 < X < 30}
(b) P{X > 50}
(c) P{20 < X < 40}
(d) P{15 < X < 25}

8. It is now 2 p.m., and Joan is planning on studying for her statistics test
until 6 p.m., when she will have to go out to dinner. However, she knows
that she will probably have interruptions and thinks that the amount of
time she will actually spend studying in the next 4 hours is a random
variable whose probability density curve is as follows:

(a) What is the height of the curve at the value 2? (Hint: You will have
to recall the formula for the area of a triangle.)

(b) What is the probability she will study more than 3 hours?
(c) What is the probability she will study between 1 and 3 hours?

6.3 NORMAL RANDOM VARIABLES
The most important type of random variable is the normal random variable. The
probability density function of a normal random variable X is determined by two
parameters: the expected value and the standard deviation of X. We designate
these values as μ and σ , respectively. That is, we will let

μ = E[X] and σ = SD(X)

The normal probability density function is a bell-shaped density curve that is sym-
metric about the value μ. Its variability is measured by σ . The larger σ is, the
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FIGURE 6.4
Three normal probability density functions.

more variability there is in this curve. Figure 6.4 presents three different normal
probability density functions. Note how the curves flatten out as σ increases.

Because the probability density function of a normal random variable X is sym-
metric about its expected value μ, it follows that X is equally likely to be on either
side of μ. That is,

P{X < μ} = P{X > μ} = 1
2

Not all bell-shaped symmetric density curves are normal. The normal density
curves are specified by a particular formula: The height of the curve above point x
on the abscissa is

1√
2πσ

e−(x−μ)2/2σ2

Although we will not make direct use of this formula, it is interesting to note
that it involves two of the famous constants of mathematics: π (the area of a
circle of radius 1) and e (which is the base of the natural logarithms). Also note
that this formula is completely specified by the mean value μ and the standard
deviation σ .

A normal random variable having mean value 0 and standard deviation 1 is called
a standard normal random variable, and its density curve is called the standard
normal curve. Figure 6.5 presents the standard normal curve. In this text we will
use (and reserve) the letter Z to represent a standard normal random variable.

In Sec. 6.5 we will show how to determine probabilities concerning an arbi-
trary normal random variable by relating them to probabilities about the stan-
dard normal random variable. In doing so, we will show the following useful
approximation rule for normal probabilities.
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FIGURE 6.5
The standard normal curve.

Approximation Rule

A normal random variable with mean μ and standard deviation σ will be

Between μ − σ and μ + σ with approximate probability 0.68

Between μ − 2σ and μ + 2σ with approximate probability 0.95

Between μ − 3σ and μ + 3σ with approximate probability 0.997

This approximation rule is illustrated in Fig. 6.6. It often enables us to obtain a
quick feel for a data set.

■ Example 6.1
Test scores on the Scholastic Aptitude Test (SAT) verbal portion are normally
distributed with a mean score of 504. If the standard deviation of a score is 84,
then we can conclude that approximately 68 percent of all scores are between
504 − 84 and 504 + 84. That is, approximately 68 percent of the scores are
between 420 and 588. Also, approximately 95 percent of them are between
504 − 168 = 336 and 504 + 168 = 672; and approximately 99.7 percent are
between 252 and 756. ■

The approximation rule is the theoretical basis of the empirical rule of Sec. 3.6.
The connection between these rules will become apparent in Chap. 8, when we
show how a sample mean and sample standard deviation can be used to estimate
the quantities μ and σ .

By using the symmetry of the normal curve about the value μ, we can obtain
other facts from the approximation rule. For instance, since the area between μ

and μ + σ is the same as that between μ − σ and μ, it follows from this rule
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FIGURE 6.6
Approximate areas under a normal curve.

that a normal random variable will be between μ and μ + σ with approximate
probability 0.68/2 = 0.34.

PROBLEMS

1. The systolic blood pressures of adults, in the appropriate units, are
normally distributed with a mean of 128.4 and a standard deviation
of 19.6.
(a) Give an interval in which the blood pressures of approximately

68 percent of the population fall.
(b) Give an interval in which the blood pressures of approximately

95 percent of the population fall.
(c) Give an interval in which the blood pressures of approximately

99.7 percent of the population fall.
2. The heights of a certain population of males are normally distributed

with mean 69 inches and standard deviation 6.5 inches. Approximate
the proportion of this population whose height is less than 82 inches.

Problems 3 through 16 are multiple-choice problems. Give the answer you
think is closest to the true answer. Remember, Z always refers to a stan-
dard normal random variable. Draw a picture in each case to justify your
answer.

3. P{−2 < Z < 2} is approximately
(a) 0.68 (b) 0.95 (c) 0.975 (d) 0.50
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4. P{Z > −1} is approximately
(a) 0.50 (b) 0.95 (c) 0.84 (d) 0.16

5. P{Z > 1} is approximately
(a) 0.50 (b) 0.95 (c) 0.84 (d) 0.16

6. P{Z > 3} is approximately
(a) 0.30 (b) 0.05 (c) 0 (d) 0.99

7. P{Z < 2} is approximately
(a) 0.95 (b) 0.05 (c) 0.975 (d) 0.025

In Probs. 8 to 11, X is a normal random variable with expected value 15 and
standard deviation 4.

8. The probability that X is between 11 and 19 is approximately
(a) 0.50 (b) 0.95 (c) 0.68 (d) 0.34

9. The probability that X is less than 23 is approximately
(a) 0.975 (b) 0.95 (c) 0.68 (d) 0.05

10. The probability that X is less than 11 is approximately
(a) 0.34 (b) 0.05 (c) 0.16 (d) 0.50

11. The probability that X is greater than 27 is approximately
(a) 0.05 (b) 0 (c) 0.01 (d) 0.32

12. Variable X is a normal random variable with standard deviation 3.
If the probability that X is between 7 and 19 is 0.95, then the expected
value of X is approximately
(a) 16 (b) 15 (c) 14 (d) 13

13. Variable X is a normal random variable with standard deviation 3.
If the probability that X is less than 16 is 0.84, then the expected value
of X is approximately
(a) 16 (b) 15 (c) 14 (d) 13

14. Variable X is a normal random variable with standard deviation 3. If
the probability that X is greater than 16 is 0.975, then the expected
value of X is approximately
(a) 20 (b) 22 (c) 23 (d) 25

15. Variable X is a normal random variable with expected value 100. If the
probability that X is greater than 90 is 0.84, then the standard deviation
of X is approximately
(a) 5 (b) 10 (c) 15 (d) 20

16. Variable X is a normal random variable with expected value 100. If
the probability that X is greater than 130 is 0.025, then the standard
deviation of X is approximately
(a) 5 (b) 10 (c) 15 (d) 20

17. If X is normal with expected value 100 and standard deviation 2, and
Y is normal with expected value 100 and standard deviation 4, is X or
is Y more likely to
(a) Exceed 104 (b) Exceed 96 (c) Exceed 100
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18. If X is normal with expected value 100 and standard deviation 2, and
Y is normal with expected value 105 and standard deviation 10, is X or
is Y more likely to
(a) Exceed 105 (b) Be less than 95

19. The scores on a particular job aptitude test are normal with expected
value 400 and standard deviation 100. If a company will consider only
those applicants scoring in the top 5 percent, determine whether it
should consider one whose score is
(a) 400 (b) 450 (c) 500 (d) 600

6.4 PROBABILITIES ASSOCIATED WITH A STANDARD
NORMAL RANDOM VARIABLE

Let Z be a standard normal random variable. That is, Z is a normal random vari-
able with mean 0 and standard deviation 1. The probability that Z is between two
numbers a and b is equal to the area under the standard normal curve between a
and b. Areas under this curve have been computed, and tables have been prepared
that enable us to find these probabilities. One such table is Table 6.1.

For each nonnegative value of x, Table 6.1 specifies the probability that Z is less
than x. For instance, suppose we want to determine P{Z < 1.22}. To do this, first
we must find the entry in the table corresponding to x = 1.22. This is done by first
searching the left-hand column to find the row labeled 1.2 and then searching the
top row to find the column labeled 0.02. The value that is in both the row labeled
1.2 and the column labeled 0.02 is the desired probability. Since this value is
0.8888, we see that

P{Z < 1.22} = 0.8888

A portion of Table 6.1 illustrating the preceding is presented here:

x 0.00 0.01 0.02 0.03 … 0.09

0.0 0.5000 0.5040
...

1.1 0.8413
1.2 0.8849 0.8869 0.8888
1.3 0.9032

We can also use Table 6.1 to determine the probability that Z is greater than x. For
instance, suppose we want to determine the probability that Z is greater than 2.
To accomplish this, we note that either Z is less than or equal to 2 or Z is greater
than 2, and so

P{Z ≤ 2} + P{Z > 2} = 1
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Table 6.1 Standard Normal Probabilities

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Data value in table is P{Z < x}.
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or

P{Z > 2} = 1 − P{Z ≤ 2}
= 1 − 0.9772

= 0.0228

In other words, the probability that Z is larger than x can be obtained by
subtracting from 1 the probability that Z is smaller than x. That is, for any x,

P{Z > x} = 1 − P{Z ≤ x}

■ Example 6.2
Find

(a) P{Z < 1.5}
(b) P{Z ≥ 0.8}

Solution

(a) From Table 6.1,

P{Z < 1.5} = 0.9332

(b) From Table 6.1, P{Z < 0.8} = 0.7881 and so

P{Z ≥ 0.8} = 1 − 0.7881 = 0.2119 ■

While Table 6.1 specifies P{Z < x} for only nonnegative values of x, it can be used
even when x is negative. Probabilities for negative x are obtained from the table
by making use of the symmetry about zero of the standard normal curve. For
instance, suppose we want to calculate the probability that Z is less than −2. By
symmetry (see Fig. 6.7), this is the same as the probability that Z is greater than 2;
and so

P{Z < −2} = 1 − P{Z > 2}
= 1 − P{Z < 2}
= 1 − 0.9772 = 0.0028

In general, for any value of x,

P{Z < −x} = P{Z > x} = 1 − P{Z < x}
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FIGURE 6.7
P{Z < −2} = P{Z > 2}.

FIGURE 6.8
P{a < Z < b} = P{Z < b} − P{Z < a}.

We can determine the probability that Z lies between a and b, for a < b, by deter-
mining the probability that Z is less than b and then subtracting from this the
probability that Z is less than a. (See Fig. 6.8.)

■ Example 6.3
Find

(a) P{1 < Z < 2}
(b) P{−1.5 < Z < 2.5}

Solution

(a) P{1 < Z < 2} = P{Z < 2} − P{Z < 1}
= 0.9772 − 0.8413
= 0.1359

(b) P{−1.5 < Z < 2.5} = P{Z < 2.5} − P{Z < −1.5}
= P{Z < 2.5} − P{Z > 1.5}
= 0.9938 − (1 − 0.9332)

= 0.9270
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FIGURE 6.9
P{Z > a} = P{Z < −a}.

Let a be positive and consider P{|Z| > a}, the probability that a standard
normal is, in absolute value, larger than a. Since |Z| will exceed a if either
Z > a or Z < −a, we see that

P{|Z| > a} = P{Z > a} + P{Z < −a}
= 2P{Z > a}

where the last equality uses the symmetry of the standard normal density
curve (Fig. 6.9). ■

■ Example 6.4
Find P{|Z| > 1.8}.

Solution

P{|Z| > 1.8} = 2P{Z > 1.8}
= 2(1 − 0.9641)

= 0.0718 ■

Another easily established result is that for any positive value of a

P{−a < Z < a} = 2P{Z < a} − 1

The verification of this result is left as an exercise.

Table 6.1 is also listed as Table D.1 in App. D. In addition, Program 6-1 can be used
to obtain normal probabilities. You enter the value x, and the program outputs
P{Z < x}.
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■ Example 6.5
Determine P{Z > 0.84}.

Solution

We can either use Table 6.1 or run Program 6-1, which computes the probability
that a standard normal random variable is less than x. Running Program 6-1,
we learn that if the desired value of x is 0.84, the probability is 0.7995459.

The desired probability is 1 − 0.80 = 0.20. That is, there is a 20 percent chance
that a standard normal random variable will exceed 0.84. ■

PROBLEMS

1. For a standard normal random variable Z find
(a) P{Z < 2.2}
(b) P{Z > 1.1}
(c) P{0 < Z < 2}
(d) P{−0.9 < Z < 1.2}
(e) P{Z > −1.96}
(f) P{Z < −0.72}

(g) P{|Z| < 1.64}
(h) P{|Z| > 1.20}
(i) P{−2.2 < Z < 1.2}

2. Show that −Z is also a standard normal random variable. Hint: It suffices
to show that, for all x,

P{−Z < x} = P{Z < x}

3. Find the value of the question mark:

P{−3 < Z < −2} = P{2 < Z <?}

Use a picture to show that your answer is correct.
4. Use a picture of the standard normal curve to show that

P{Z > −2} = P{Z < 2}

5. Argue, using either pictures or equations, that for any positive value
of a,

P{−a < Z < a} = 2P{Z < a} − 1
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6. Find
(a) P{−1 < Z < 1}
(b) P{|Z| < 1.4}

7. Find the value of x, to two decimal places, for which
(a) P{Z > x} = 0.05
(b) P{Z > x} = 0.025
(c) P{Z > x} = 0.005
(d) P{Z < x} = 0.50
(e) P{Z < x} = 0.66
(f) P{|Z| < x} = 0.99
(g) P{|Z| < x} = 0.75
(h) P{|Z| > x} = 0.90
(i) P{|Z| > x} = 0.50

6.5 FINDING NORMAL PROBABILITIES: CONVERSION
TO THE STANDARD NORMAL

Let X be a normal random variable with mean μ and standard deviation σ . We
can determine probabilities concerning X by using the fact that the variable Z
defined by

Z = X − μ

σ

has a standard normal distribution. That is, if we standardize a normal random
variable by subtracting its mean and then dividing by its standard deviation, the
resulting variable has a standard normal distribution.

The value of the standardized variable tells us how many standard deviations the
original variable is from its mean. For instance, if the standardized variable Z has
value 2, then

Z = X − μ

σ
= 2

or

X − μ = 2σ

That is, X is larger than its mean by 2 standard deviations.

We can compute any probability statement about X by writing an equivalent state-
ment in terms of Z = (X − μ)/σ and then making use of Table 6.1 or Program 6-1.
For instance, suppose we want to compute P{X < a}. Since X < a is equivalent to
the statement

X − μ

σ
<

a − μ

σ
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we see that

P{X < a} = P
{

X − μ

σ
<

a − μ

σ

}

= P
{

Z <
a − μ

σ

}

where Z is a standard normal random variable.

■ Example 6.6
IQ examination scores for sixth-graders are normally distributed with mean
value 100 and standard deviation 14.2.

(a) What is the probability a randomly chosen sixth-grader has a score greater
than 130?

(b) What is the probability a randomly chosen sixth-grader has a score between
90 and 115?

Solution

Let X denote the score of a randomly chosen student. We compute probabilities
concerning X by making use of the fact that the standardized variable

Z = X − 100
14.2

has a standard normal distribution.

(a) P{X > 130} = P
{X−100

14.2 > 130−100
14.2

}
= P[Z > 2.1127]
= 0.017

(b) The inequality 90 < X < 115 is equivalent to

90 − 100
14.2

<
X − 100

14.2
<

115 − 100
14.2

or, equivalently,

−0.7042 < Z < 1.056

Therefore,

P{90 < X < 115} = P{−0.7042 < Z < 1.056}
= P{Z < 1.056} − P{Z < −0.7042}
= 0.854 − 0.242

= 0.612 ■
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■ Example 6.7
Let X be normal with mean μ and standard deviation σ . Find

(a) P{|X − μ| > σ }
(b) P{|X − μ| > 2σ }
(c) P{|X − μ| > 3σ }
Solution

The statement |X − μ| > aσ is, in terms of the standardized variable Z =
(X − μ)/σ , equivalent to the statement |Z| > a. Using this fact, we obtain the
following results.

(a) P{|X − μ| > σ } = P{|Z| > 1}
= 2P{Z > 1}
= 2(1 − 0.8413)

= 0.3174

(b) P{|X − μ| > 2σ } = P{|Z| > 2}
= 2P{Z > 2}
= 0.0456

(c) P{|X − μ| > 3σ } = P{|Z| > 3}
= 2P{Z > 3}
= 0.0026

Thus, we see that the probability that a normal random variable differs from
its mean by more than 1 standard deviation is (to two decimal places) 0.32;
or equivalently, the complementary probability that it is within 1 standard
deviation of its mean is 0.68. Similarly, parts (b) and (c) imply, respectively,
that the probability the random variable is within 2 standard deviations of
its mean is 0.95 and the probability that it is within 3 standard deviations
of its mean is 0.997. Thus we have verified the approximation rule presented
in Sec. 6.3. ■

6.6 ADDITIVE PROPERTY OF NORMAL RANDOM
VARIABLES

The fact that Z = (X − μ)/σ is a standard normal random variable follows from
the fact that if one either adds or multiplies a normal random variable by a con-
stant, then the resulting random variable remains normal. As a result, if X is
normal with mean μ and standard deviation σ , then Z = (X − μ)/σ also will be
normal. It is now easy to verify that Z has expected value 0 and variance 1.

An important fact about normal random variables is that the sum of independent
normal random variables is also a normal random variable. That is, if X and Y
are independent normal random variables with respective parameters μx, σx and
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μy , σy, then X + Y also will be normal. Its mean value will be

E[X + Y ] = E[X] + E[Y ] = μx + μy

Its variance is

Var(X + Y) = Var(X) + Var(Y) = σ2
x + σ 2

y

That is, we have the following result.

Suppose X and Y are independent normal random variables with means μx and
μy and standard deviations σx and σy , respectively. Then X + Y is normal with
mean

E[X + Y ] = μx + μy

and standard deviation

SD(X + Y) =
√

σ 2
x + σ 2

y

■ Example 6.8
Suppose the amount of time a light bulb works before burning out is a normal
random variable with mean 400 hours and standard deviation 40 hours. If an
individual purchases two such bulbs, one of which will be used as a spare to
replace the other when it burns out, what is the probability that the total life of
the bulbs will exceed 750 hours?

Solution

We need to compute the probability that X + Y > 750, where X is the life of
the bulb used first and Y is the life of the other bulb. Variables X and Y are both
normal with mean 400 and standard deviation 40. In addition, we will suppose
they are independent, and so X + Y is also normal with mean 800 and standard
deviation

√
402 + 402 = √

3200. Therefore, Z = (X + Y − 800)/
√

3200 has a
standard normal distribution. Thus, we have

P[X + Y > 750] = P
{

X + Y − 800√
3200

>
750 − 800√

3200

}

= P{Z > −0.884}
= P{Z < 0.884}
= 0.81

Therefore, there is an 81 percent chance that the total life of the two bulbs
exceeds 750 hours. ■
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■ Example 6.9
Data from the U.S. Department of Agriculture indicate that the annual amount
of apples eaten by a randomly chosen woman is normally distributed with a
mean of 19.9 pounds and a standard deviation of 3.2 pounds, whereas the
amount eaten by a randomly chosen man is normally distributed with a mean
of 20.7 pounds and a standard deviation of 3.4 pounds. Suppose a man and
a woman are randomly chosen. What is the probability that the woman ate a
greater amount of apples than the man?

Solution

Let X denote the amount eaten by the woman and Y the amount eaten by the
man. We want to determine P{X > Y}, or equivalently P{X − Y > 0}. Now X is
a normal random variable with mean 19.9 and standard deviation 3.2. Also −Y
is a normal random variable (since it is equal to the normal random variable
Y multiplied by the constant −1) with mean −20.7 and standard deviation
| − 1|(3.4) = 3.4. Therefore, their sum X + (−Y)(= X − Y) is normal with
mean

E[X − Y ] = 19.9 + (−20.7) = −0.8

and standard deviation

SD(X − Y) = √
(3.2)2 + (3.4)2 = 4.669

Thus, if we let W = X − Y , then

P{W > 0} = P
{

W + 0.8
4.669

>
0.8

4.669

}

= P[Z > 0.17]

= 1 − 0.5675 = 0.4325

That is, with probability 0.4325 the randomly chosen woman would have eaten
a greater amount of apples than the randomly chosen man. ■

PROBLEMS

1. Explain carefully why the inequality

x > a

is equivalent to the inequality

x − μ

σ
>

a − μ

σ
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What fact are we using about the quantity? (Hint: Would these
inequalities be equivalent if σ were negative?)

2. If X is normal with mean 10 and standard deviation 3, find
(a) P{X > 12}
(b) P{X < 13}
(c) P{8 < X < 11}
(d) P{X > 7}
(e) P{|X − 10| > 5}
(f) P{X > 10}

(g) P{X > 20}
3. The length of time that a new hair dryer functions before breaking

down is normally distributed with mean 40 months and standard
deviation 8 months. The manufacturer is thinking of guaranteeing
each dryer for 3 years. What proportion of dryers will not meet this
guarantee?

4. The scores on a scholastic achievement test were normally distributed
with mean 520 and standard deviation 94.
(a) If your score was 700, by how many standard deviations did it

exceed the average score?
(b) What percentage of examination takers received a higher score

than you did?
5. The number of bottles of shampoo sold monthly by a certain discount

drugstore is a normal random variable with mean 212 and standard
deviation 40. Find the probability that next month’s shampoo sales
will be
(a) Greater than 200
(b) Less than 250
(c) Greater than 200 but less than 250

6. The life of a certain automobile tire is normally distributed with mean
35,000 miles and standard deviation 5000 miles.
(a) What proportion of such tires last between 30,000 and 40,000

miles?
(b) What proportion of such tires last over 40,000 miles?
(c) What proportion last over 50,000 miles?

7. Suppose you purchased such a tire as described in Prob. 6. If the
tire is in working condition after 40,000 miles, what is the con-
ditional probability that it will still be working after an additional
10,000 miles?

8. The pulse rate of young adults is normally distributed with a mean of
72 beats per minute and a standard deviation of 9.5 beats per minute.
If the requirements for the military rule out anyone whose rate is
over 95 beats per minute, what percentage of the population of young
adults does not meet this standard?



6.6 Additive Property of Normal Random Variables 283

9. The time required to complete a certain loan application form is a nor-
mal random variable with mean 90 minutes and standard deviation
15 minutes. Find the probability that an application form is filled out in
(a) Less than 75 minutes
(b) More than 100 minutes
(c) Between 90 and 120 minutes

10. The bolts produced by a manufacturer are specified to be between
1.09 and 1.11 inches in diameter. If the production process results
in the diameter of bolts being a normal random variable with mean
1.10 inches and standard deviation 0.005 inch, what percentage of
bolts do not meet the specifications?

11. The activation pressure of a valve produced by a certain company is
a normal random variable with expected value 26 pounds per square
inch and standard deviation 4 pounds per square inch. What percent-
age of the valves produced by this company have activation pressures
between 20 and 32 pounds per square inch?

12. You are planning on junking your old car after it runs an additional
20,000 miles. The battery on this car has just failed, and you must
decide which of two types of batteries, costing the same amount, to
purchase. After some research you have discovered that the lifetime
of the first battery is normally distributed with mean life 24,000 and
standard deviation 6000 miles, and the lifetime of the second battery
is normally distributed with mean life 22,000 and standard deviation
2000 miles.
(a) If all you care about is that the battery purchased lasts at least

20,000 miles, which one should you buy?
(b) What if you wanted the battery to last for 21,000 miles?

13. Value at Risk (VAR) has become a key concept in financial calculations.
The VAR of an investment is defined as that value v such that there
is only a 1 percent chance that the loss from the investment will be
greater than v.
(a) If the gain from an investment is a normal random variable with

mean 10 and variance 49 determine the VAR. (If X is the gain, then
−X is the loss.)

(b) Among a set of investments all of whose gains are normally dis-
tributed, show that the one having the smallest VAR is the one
having the largest value of μ − 2.33σ , where μ and σ are the mean
and variance of the gain from the investment.

14. The annual rainfall in Cincinnati, Ohio, is normally distributed with
mean 40.14 inches and standard deviation 8.7 inches.
(a) What is the probability that this year’s rainfall exceeds 42 inches?
(b) What is the probability that the sum of the next 2 years’ rainfall

exceeds 84 inches?
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(c) What is the probability that the sum of the next 3 years’ rainfall
exceeds 126 inches?

(d) For parts (b) and (c), what independence assumptions are you
making?

15. The height of adult women in the United States is normally distributed
with mean 64.5 inches and standard deviation 2.4 inches. Find the
probability that a randomly chosen woman is
(a) Less than 63 inches tall
(b) Less than 70 inches tall
(c) Between 63 and 70 inches tall
(d) Alice is 72 inches tall. What percentage of women are shorter than

Alice?
(e) Find the probability that the average of the heights of two ran-

domly chosen women is greater than 67.5 inches.
16. The weight of an introductory chemistry textbook is a normal random

variable with mean 3.5 pounds and standard deviation 2.2 pounds,
whereas the weight of an introductory economics textbook is a nor-
mal random variable with mean 4.6 pounds and standard deviation
1.3 pounds. If Alice is planning on taking introductory courses in both
chemistry and economics, find the probability that
(a) The total weight of her two books will exceed 9 pounds.
(b) Her economics book will be heavier than her chemistry book.
(c) What assumption have you made?

17. The weekly demand for a product approximately has a normal dis-
tribution with mean 1,000 and standard deviation 200. The current
on-hand inventory is 2200 and no deliveries will be occurring in the
next two weeks. Assuming that the demands in different weeks are
independent,
(a) What is the probability that the demand in each of the next two

weeks is less than 1100?
(b) What is the probability that the total of the demands in the next

two weeks exceeds 2200?

6.7 PERCENTILES OF NORMAL RANDOM VARIABLES
For any α between 0 and 1, we define zα to be that value for which

P{Z > zα} = α

In words, the probability that a standard normal random variable is greater than
zα is equal to α (see Fig. 6.10).
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FIGURE 6.10
P{Z > zα} = α.

We can determine the value of zα by using Table 6.1. For instance, suppose we
want to find z0.025. Since

P{Z < z0.025} = 1 − P{Z > z0.025} = 0.975

we search in Table 6.1 for the entry 0.975, and then we find the value x that
corresponds to this entry. Since the value 0.975 is found in the row labeled 1.9
and the column labeled 0.06, we see that

z0.025 = 1.96

That is, 2.5 percent of the time a standard normal random variable will
exceed 1.96.

Since 97.5 percent of the time a standard normal random variable will be less than
1.96, we say that 1.96 is the 97.5 percentile of the standard normal distribution. In
general, since 100(1 − α) percent of the time a standard normal random variable
will be less than zα , we call zα the 100(1 − α) percentile of the standard normal
distribution.

Suppose now that we want to find z0.05. If we search Table 6.1 for the value 0.95,
we do not find this exact value. Rather, we see that

P{Z < 1.64} = 0.9495

and

P{Z < 1.65} = 0.9505

Therefore, it would seem that z0.05 lies roughly halfway between 1.64 and 1.65,
and so we could approximate it by 1.645. In fact, it turns out that, to three
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decimal places, this is the correct answer, and so

z0.05 = 1.645

The values of z0.10, z0.05, z0.025, z0.01, and z0.005, are, as we will see in later chapters,
of particular importance in statistics. Their values are as follows:

z0.10 = 1.282 z0.025 = 1.960 z0.005 = 2.576

z0.05 = 1.645 z0.01 = 2.326

For all other values of α, we can use Table 6.1 to find zα by searching for the entry
that is closest to 1 − α. In addition, Program 6-2 can be used to obtain zα .

■ Example 6.10
Find

(a) z0.25

(b) z0.80

Solution

(a) The 75th percentile z0.25 is the value for which

P{Z > z0.25} = 0.25

or, equivalently,

P{Z < z0.25} = 0.75

The closest entry to 0.75 in Table 6.1 is the entry 0.7486, which corresponds
to the value 0.67. Thus, we see that

z0.25 ≈ 0.67

A more precise value could be obtained by running Program 6-2. This
gives the following: If a is equal to 0.25, we learn that the value of z0.25

is 0.6744897.
(b) We are asked to find the value z0.80 such that

P{Z > z0.80} = 0.80

Now the value of z0.80 will be negative (why is this?), and so it is best to
write the equivalent equation (see Fig. 6.11)

P{Z < −z0.80} = 0.80
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FIGURE 6.11
P{Z < −z0.8} = 0.80.

From Table 6.1 we see that

−z0.80 ≈ 0.84

and so
z0.80 ≈ −0.84 ■

We can easily obtain the percentiles of any normal random variable by converting
to the standard normal. For instance, suppose we want to find the value x for
which

P{X < x} = 0.95

when X is normal with mean 40 and standard deviation 5. By writing the
inequality X < x in terms of the standardized variable Z = (X − 40)/5, we see
that

0.95 = P{X < x}

= P
{

X − 40
5

<
x − 40

5

}

= P
{

Z <
x − 40

5

}

But P{Z < z0.05} = 0.95, and so we obtain

x − 40
5

= z0.05 = 1.645

and so the desired value of x is

x = 5(1.645) + 40 = 48.225
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■ Example 6.11
An IQ test produces scores that are normally distributed with mean value
100 and standard deviation 14.2. The top 1 percent of all scores is in what
range?

Solution

We want to find the value of x for which

P{X > x} = 0.01

when X is normal with mean 100 and standard deviation 14.2. Now

P{X > x} = P
{

X − 100
14.2

>
x − 100

14.2

}

= P
{

Z >
x − 100

14.2

}

Since P{Z > z0.01} = 0.01, it follows that the preceding probability will equal
0.01 if

x − 100
14.2

= z0.01 = 2.33

and so

x = 14.2(2.33) + 100 = 133.086

That is, the top 1 percent consists of all those having scores above 134. ■

Figure 6.12 illustrates the result

P{X > μ + σ zα} = α

when X is a normal random variable with mean μ and standard deviation σ .

FIGURE 6.12
P{X > μ + σ zα} = α.
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PROBLEMS

1. Find to two decimal places:
(a) z0.07

(b) z0.12

(c) z0.30

(d) z0.03

(e) z0.65

(f) z0.50

(g) z0.95

(h) z0.008

2. Find the value of x for which
(a) P{|Z| > x} = 0.05
(b) P{|Z| > x} = 0.025
(c) P{|Z| > x} = 0.005

3. If X is a normal random variable with mean 50 and standard devia-
tion 6, find the approximate value of x for which
(a) P{X > x} = 0.5
(b) P{X > x} = 0.10
(c) P{X > x} = 0.025
(d) P{X < x} = 0.05
(e) P{X < x} = 0.88

4. Scores on an examination for real estate brokers are normally dis-
tributed with mean 420 and standard deviation 66. If the real estate
board wants to designate the highest 10 percent of all scores as
excellent, at what score should excellence begin?

5. Suppose in Prob. 4 that the board wants only the highest 25 percent to
pass. What should be set as the passing score?

6. The time it takes for high school boys to run 1 mile is normally dis-
tributed with mean 460 seconds and standard deviation 40 seconds.
All those falling in the slowest 20 percent are deemed to need addi-
tional training. What is the critical time above which one is deemed to
need additional training?

7. In Prob. 6, the fastest 5 percent all ran the mile in less than x seconds.
What is the smallest value of x for which the preceding is a true
statement?

8. Repeat Prob. 7, replacing fastest 5 percent by fastest 1 percent.
9. The amount of radiation that can be absorbed by an individual before

death ensues varies from individual to individual. However, over the
entire population this amount is normally distributed with mean 500
roentgens and standard deviation 150 roentgens. Above what dosage
level will only 5 percent of those exposed survive?
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10. Transmissions on a new car will last for a normally distributed amount
of time with mean 70,000 miles and standard deviation 10,000 miles.
A warranty on this part is to be provided by the manufacturer. If the
company wants to limit warranty work to no more than 20 percent
of the cars sold, what should be the length (in miles) of the warranty
period?

11. The attendance at home football games of a certain college is a normal
random variable with mean 52,000 and standard deviation 4000. Which
of the following statements are true?
(a) Over 80 percent of the games have an attendance of over 46,000.
(b) The attendance exceeds 58,000 less than 10 percent of the time.

12. Scores on the quantitative part of the Graduate Record Examination
were normally distributed with a mean score of 510 and a standard
deviation of 92. How high a score was necessary to be in the top
(a) 10
(b) 5
(c) 1
percent of all scores?

13. The fasting blood glucose level (per 100 milliliters of blood) of diabetics
is normally distributed with mean 106 milligrams and standard devia-
tion 8 milligrams. In order for the blood glucose level of a diabetic to be
in the lower 20 percent of all diabetics, that person’s blood level must
be less than what value?

KEY TERMS

Continuous random variable: A random variable that can take on any value in
some interval.

Probability density function: A curve associated with a continuous random vari-
able. The probability that the random variable is between two points is equal
to the area under the curve between these points.

Normal random variable: A type of continuous random variable whose proba-
bility density function is a bell-shaped symmetric curve.

Standard normal random variable: A normal random variable having mean 0
and variance 1.

100p percentile of a continuous random variable: The probability that the
random variable is less than this value is p.

SUMMARY

A continuous random variable is one that can assume any value within some
interval. Its probabilities can be obtained from its probability density curve.
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Specifically, the probability that the random variable will lie between points a
and b will equal the area under the density curve between a and b.

A normal random variable X has a probability density curve that is specified by
two parameters, the mean μ and the standard deviation σ of X. The density curve
is a bell-shaped curve that is symmetric about μ and spreads out more as the value
of σ gets larger.

A normal random variable will take on a value that is within 1 standard devi-
ation of its mean approximately 68 percent of the time; it will take on a value
that is within 2 standard deviations of its mean approximately 95 percent of the
time; and it will take on a value that is within 3 standard deviations of its mean
approximately 99.7 percent of the time.

A normal random variable having mean 0 and standard deviation 1 is called a
standard normal random variable. We let Z designate such a random variable. Prob-
abilities of a standard normal random variable can be obtained from Table 6.1
(reprinted as Table D.1). For any nonnegative value x, specified up to two deci-
mal places, this table gives the probability that a standard normal random variable
is less than x. For negative x, this probability can be obtained by making use of
the symmetry of the normal curve about 0. This results in the equality

P{Z < x} = P{Z > −x}
The value of P{Z > −x} = 1 − P{Z < −x} can now be obtained from Table 6.1.

Program 6-1 can also be used to obtain probabilities of standard normal random
variables.

If X is normal with mean μ and standard deviation σ , then Z, defined by

Z = X − μ

σ

Historical Perspective

Karl F. Gauss

(B
et

tm
an

n)

The Normal Curve

The normal distribution was introduced by the French mathematician Abraham
De Moivre in 1733. De Moivre, who used this distribution to approximate proba-
bilities connected with coin tossing, called it the exponential bell-shaped curve.
Its usefulness, however, only became truly apparent in 1809 when the famous
German mathematician K. F. Gauss used it as an integral part of his approach to
predicting the location of astronomical entities. As a result, it became common
after this time to call it the Gaussian distribution.

During the middle to late 19th century, however, most statisticians started to
believe that the majority of data sets would have histograms conforming to the
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Gaussian bell-shaped form. Indeed, it came to be accepted that it was “normal”
for any well-behaved data set to follow this curve. As a result, following the lead of
Karl Pearson, people began referring to the Gaussian curve as simply the normal
curve. (For an explanation as to why so many data sets conform to the normal
curve, the interested student will have to wait to read Secs. 7.3 and 12.6.)

Karl Friedrich Gauss (1777–1855), one of the earliest users of the normal curve,
was one of the greatest mathematicians of all time. Listen to the words of the well-
known mathematical historian E. T. Bell, as expressed in his 1954 book Men of
Mathematics. In a chapter entitled “The Prince of Mathematicians,” he writes:

Archimedes, Newton, and Gauss; these three are in a class by themselves
among the great mathematicians, and it is not for ordinary mortals to
attempt to rank them in order of merit. All three started tidal waves in both
pure and applied mathematics. Archimedes esteemed his pure mathemat-
ics more highly than its applications; Newton appears to have found the
chief justification for his mathematical inventions in the scientific uses to
which he put them; while Gauss declared it was all one to him whether he
worked on the pure or on the applied side.

has a standard normal distribution. This fact enables us to compute probabilities
of X by transforming them to probabilities concerning Z. For instance,

P{X < a} = P
{

X − μ

σ
<

a − μ

σ

}

= P
{

Z <
a − μ

σ

}

For any value of α between 0 and 1 the quantity zα is defined as that value for
which

P{Z > zα} = α

Thus, a standard normal will be less than zα with probability 1 − α. That is,
100(1 − α) percent of the time Z will be less than zα . The quantity zα is called
the 100(1 − α) percentile of the standard normal distribution.

The values zα for specified α can be obtained either from Table 6.1 or by run-
ning Program 6-2. The percentiles of an arbitrary normal random variable X with
mean μ and standard deviation σ can be obtained from the standard normal per-
centiles by using the fact that Z = (X − μ)/σ is a standard normal distribution.
For instance, suppose we want to find the value x for which

P{X > x} = α
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Thus, we want to find x for which

α = P
{

X − μ

σ
>

x − μ

σ

}

= P
{

Z >
x − μ

σ

}

Therefore, since P{Z > zα} = α, we can conclude that

X − μ

σ
= zα

or

x = μ + σ zα

REVIEW PROBLEMS

1. The heights of adult males are normally distributed with a mean of
69 inches and a standard deviation of 2.8 inches. Let X denote the
height of a randomly chosen male adult. Find
(a) P{X > 65}
(b) P{62 < X < 72}
(c) P{|X − 69| > 6}
(d) P{63 < X < 75}
(e) P{X > 72}
(f) P{X < 60}

(g) x if P{X > x} = 0.01
(h) x if P{X < x} = 0.95
(i) x if P{X < x} = 0.40

2. Find
(a) z0.04

(b) z0.22

(c) P{Z > 2.2}
(d) P{Z < 1.6}
(e) z0.78

3. In tests conducted on jet pilots, it was found that their blackout thresh-
olds are normally distributed with a mean of 4.5g and a standard
deviation of 0.7g. If only those pilots whose thresholds are in the top
25 percent are to be allowed to apply to become astronauts, what is
the cutoff point?
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4. In Prob. 3, find the proportion of jet pilots who have blackout
thresholds
(a) Above 5g
(b) Below 4g
(c) Between 3.7g and 5.2g

5. The working life of a certain type of light bulb is normally distributed
with a mean of 500 hours and a standard deviation of 60 hours.
(a) What proportion of such bulbs lasts more than 560 hours?
(b) What proportion lasts less than 440 hours?
(c) If a light bulb is still working after 440 hours of operation, what is

the conditional probability that its lifetime exceeds 560 hours?
(d) Fill in the missing number in the following sentence. Ten percent

of these bulbs will have a lifetime of at least _______ hours.
6. The American Cancer Society has stated that a 25-year-old man who

smokes a pack of cigarettes a day gives up, on average, 5.5 years of
life. Assuming that the number of years lost is normally distributed
with mean 5.5 and standard deviation 1.5, find the probability that the
decrease in life of such a man is
(a) Less than 2 years
(b) More than 8 years
(c) Between 4 and 7 years

7. Suppose that the yearly cost of upkeep for condominium owners at a
certain complex is normal with mean $3000 and standard deviation
$600. Find the probability that an owner’s total cost over the next
2 years will
(a) Exceed $5000
(b) Be less than $7000
(c) Be between $5000 and $7000
Assume that costs incurred in different years are independent random
variables.

8. The speeds of cars traveling on New Jersey highways are normally dis-
tributed with mean 60 miles per hour and standard deviation 5 miles
per hour. If New Jersey police follow a policy of ticketing only the
fastest 5 percent, at what speed do the police start to issue tickets?

9. The gross weekly sales at a certain used-car lot are normal with mean
$18,800 and standard deviation $9000.
(a) What is the probability that next week’s sales exceed $20,000?
(b) What is the probability that weekly sales will exceed $20,000 in

each of the next 2 weeks?
(c) What is the probability that the total sales in the next 2 weeks

exceed $40,000?
In parts (b) and (c) assume that the sales totals in different weeks are
independent.



Review Problems 295

10. The yearly number of miles accumulated by an automobile in a large
car rental company’s fleet is normal with mean 18,000 miles and
standard deviation 1700 miles. At the end of the year the company
sells 80 percent of its year-old cars, keeping the 20 percent with the
lowest mileage. Do you think a car whose year-end mileage is 17,400
is likely to be kept?

11. An analysis of the scores of professional football games has led some
researchers to conclude that a team that is favored by x points will
outscore its opponent by a random number of points that is approx-
imately normally distributed with mean x and standard deviation 14.
Thus, for instance, the difference in the points scored by a team that is
favored by 5 points and its opponent will be a normal random variable
with mean 5 and standard deviation 14. Assuming that this theory is
correct, determine the probability that
(a) A team that is favored by 7 points wins the game.
(b) A team that is a 4-point underdog wins the game.
(c) A team that is a 14-point favorite loses the game.

12. U.S. Department of Agriculture data for 1987 indicate that the amount
of tomatoes consumed per year by a randomly chosen woman is a
normal random variable with a mean of 14.0 pounds and a standard
deviation of 2.7 pounds, while the amount eaten yearly by a randomly
chosen man is a normal random variable with a mean of 14.6 pounds
and a standard deviation of 3.0 pounds. Suppose a man and a woman
are randomly chosen. Find the probability that
(a) The woman ate more than 14.6 pounds of tomatoes in 1987.
(b) The man ate less than 14 pounds of tomatoes in 1987.
(c) The woman ate more and the man ate less than 15 pounds of

tomatoes in 1987.
(d) The woman ate more tomatoes in 1987 than did the man.

13. Suppose in Prob. 12 that a person, equally likely to be either a man or
a woman, is chosen. Find the probability that this person is
(a) A woman who ate less than 14 pounds of tomatoes in 1987.
(b) A man who ate more than 14 pounds of tomatoes in 1987.

14. The salaries of physicians in a certain speciality are approximately nor-
mally distributed. If 25 percent of these physicians earn below 180,000
dollars and 25 percent earn above 320,000 what fraction earn
(a) Below 250,000 dollars?
(b) Between 260,000 and 300,000 dollars?

15. The monthly demand for a certain product is a normal random variable
with mean 50 and standard deviation 10.
(a) If you have 60 units on stock at the beginning of the month, what

is the probability you will still have stock remaining at the end of
the month?
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(b) What is the probability that the total demand over the next three
months exceeds 180?

(c) What assumption did you make in answering part (b)?
16. The sample mean of the scores on your economics exam was 60 with a

sample standard deviation of 20 while the sample mean of the scores
on your statistics exam was 55 with a sample standard deviation of 10.
You scored 70 on the economics exam and 62 on the statistics exam.
Assume that test scores on both exams approximately follow a normal
histogram.
(a) On which exam is the percentage of scores that are below your

score the highest?
(b) Approximate the percentage of scores on the economics exam that

were below your score.
(c) Approximate the percentage of scores on the statistics exam that

were below your score.
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He uses statistics as a drunken man uses lampposts—for support rather
than illumination.

Andrew Lang (Scottish author)

I could prove God statistically.
George Gallup, U.S. pollster
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We introduce the concept of sampling from a population distribution. The sample
mean and sample variance are studied, and their expectations and variances
are given. The central limit theorem is presented and applied to show that the
distribution of the sample mean is approximately normal.

We consider samples taken from a finite population in which certain members
have a particular characteristic of interest. We show that when the population
size is large, the number of members of the sample who have the characteristic
is approximately a binomial random variable. The central limit theorem is used
to show that the probabilities of such a random variable can be approximated by
the probabilities of a normal random variable.

We present the distribution of the sample variance in the case where the underly-
ing population distribution is normal.

7.1 A PREVIEW
If you bet $1 on a number at a roulette table in a U.S. casino, then either you will
win $35 if your number appears on the roulette wheel or you will lose $1 if it
does not. Since the wheel has 38 slots–numbered 0, 00, and each of the integers
from 1 to 36—it follows that the probability that your number appears is 1/38.
As a result, your expected gain on the bet is

E[gain] = 35
(

1
38

)
− 1

(
37
38

)
= − 2

38
= −0.0526

That is, your expected loss on each spin of the wheel is approximately 5.3 cents.

Suppose you continually place bets at the roulette table. How lucky do you have
to be in order to be winning money at the end of your play? Well, it depends on
how long you continue to play. Indeed, after 100 plays you will be ahead with
probability 0.4916. On the other hand, after 1000 plays your chance of being
ahead drops to 0.39. After 100,000 plays not only will you almost certainly be
losing (your probability of being ahead is approximately 0.002), but also you can
be 95 percent certain that your average loss per play will be 5.26 ± 1.13 cents (read
as 5.26 plus or minus 1.13 cents). In other words, even if you did not know it to
begin with, if you play long enough, you will learn that the average loss per game
is around 5.26 cents.

7.2 INTRODUCTION
One of the key concerns of statistics is the drawing of conclusions from a set of
observed data. These data will usually consist of a sample of certain elements of a
population, and the objective will be to use the sample to draw conclusions about
the entire population.
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Suppose that each member of a population has a numerical value associated
with it. To use sample data to make inferences about the values of the entire pop-
ulation, it is necessary to make some assumptions about the population values
and about the relationship between the sample and the population. One such
assumption is that there is an underlying probability distribution for the popula-
tion values. That is, the values of different members of the population are assumed
to be independent random variables having a common distribution. In addition,
the sample data are assumed to be independent values from this distribution.
Thus, by observing the sample data we are able to learn about this underlying
population distribution.

Definition If X1, . . . , Xn are independent random variables having a common proba-
bility distribution, we say they constitute a sample from that distribution.

In most applications, the population distribution will not be completely known,
and one will attempt to use the sample data to make inferences about it. For
instance, a manufacturer may be producing a new type of battery to be used in a
particular electric-powered automobile. These batteries will each last for a random
number of miles having some unknown probability distribution. To learn about
this underlying probability distribution, the manufacturer could build and road-
test a set of batteries. The resulting data, consisting of the number of miles of use
obtained from each battery, would then constitute a sample from this distribution.

In this chapter we are concerned with the probability distributions of certain statis-
tics that arise from a sample, where a statistic is a numerical quantity whose value
is determined by the sample. Two important statistics that we will consider are
the sample mean and the sample variance. In Sec. 7.3, we consider the sample
mean and present formulas for the expectation and variance of this statistic. We
also note that when the sample size is at least moderately large, the probability
distribution of the sample mean can be approximated by a normal distribution.
This result, which follows from one of the most important theoretical results in
probability theory, known as the central limit theorem, will be discussed in Sec. 7.4.
In Sec. 7.5 we concern ourselves with situations in which we are sampling from a
finite population of objects, and we explain what it means for the sample to be a
random sample. When the population size is large in relation to the sample size,
then we often treat the population as if it were infinite. We illustrate and explain
exactly when this can be done and what the consequences are. In Sec. 7.6, we con-
sider the distribution of the sample variance from a sample chosen from a normal
population.

7.3 SAMPLE MEAN
Consider a population of elements, each of which has a numerical value attached
to it. For instance, the population might consist of the adults of a specified
community, and the value attached to each adult might be her or his annual
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income, or height, or age, and so on. We often suppose that the value associated
with any member of the population can be regarded as being the value of a
random variable having expectation μ and variance σ 2. The quantities μ and
σ2 are called the population mean and the population variance, respectively. Let
X1, X2, . . . , Xn be a sample of values from this population. The sample mean is
defined by

X = X1 + · · · + Xn

n

Since the value of the sample mean X is determined by the values of the random
variables in the sample, it follows that X is also a random variable. Its expectation
can be shown to be

E[X] = μ

That is, the expected value of the sample mean X is equal to the population
mean μ.

In addition, it can be shown that the variance of the sample mean is

Var(X) = σ 2

n

Thus we see that the sample mean X has the same expected value as an individual
data value, but its variance is smaller than that of an individual data value by
the factor 1/n, where n is the size of the sample. Therefore, we can conclude that
X is also centered on the population mean μ, but its spread becomes more and
more reduced as the sample size increases. Figure 7.1 plots the probability density

FIGURE 7.1
Densities of sample means from a standard normal population.
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function of the sample mean from a standard normal population for a variety of
sample sizes.

■ Example 7.1
Let us check the preceding formulas for the expected value and variance of the
sample mean by considering a sample of size 2 from a population whose values
are equally likely to be either 1 or 2. That is, if X is the value of a member of
the population, then

P{X = 1} = 1
2

P{X = 2} = 1
2

The population mean and variance are obtained as follows:

μ = E[X] = 1
(

1
2

)
+ 2

(
1
2

)
= 1.5

and

σ 2 = Var(X) = E[(X − μ)2]

= (1 − 1.5)2
(

1
2

)
+ (2 − 1.5)2

(
1
2

)

= 1
4

To obtain the probability distribution of the sample mean (X1 + X2)/2, note
that the pair of values X1, X2 can assume any of four possible pairs of values

(1, 1), (1, 2), (2, 1), (2, 2)

where the pair (2, 1) means, for instance, that X1 = 2, X2 = 1. By the indepen-
dence of X1 and X2 it follows that the probability of any given pair is 1/4.
Therefore, we see that the possible values of X = (X1 + X2)/2 along with their
respective probabilities are as follows:

P{X = 1} = P{(1, 1)} = 1
4

P{X = 1.5} = P{(1, 2) or (2, 1)} = 2
4

= 1
2

P{X = 2} = P{(2, 2)} = 1
4

Therefore,

E[X] = 1
(

1
4

)
+ 1.5

(
1
2

)
+ 2

(
1
4

)
= 6

4
= 1.5
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Also

Var(X) = E
[
(X − 1.5)2]

= (1 − 1.5)2
(

1
4

)
+ (1.5 − 1.5)2

(
1
2

)
+ (2 − 1.5)2

(
1
4

)

= 1
16

+ 0 + 1
16

= 1
8

which, since μ = 1.5 and σ 2 = 1/4, verifies that E[X] = μ and Var(X) = σ 2/2.

Figure 7.2 plots the population probability distribution alongside the proba-
bility distribution of the sample mean of a sample of size 2. ■

The standard deviation of a random variable, which is equal to the square root of
its variance, is a direct indicator of the spread in the distribution. It follows from
the identity

Var(X) = σ 2

n

that SD(X), the standard deviation of the sample mean X, is given by

SD(X) =
√

σ2

n
= σ√

n

In the preceding formula, σ is the population standard deviation, and n is the
sample size.

The standard deviation of the sample mean is equal to the population standard
deviation divided by the square root of the sample size.

Summing up, we have seen in this section that the expectation of the sample mean
from a sample of size n will equal the population mean, and the variance of the

FIGURE 7.2
Probability mass functions.
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sample mean will equal the population variance reduced by the factor 1/n. Now,
whereas knowledge of the mean and variance of a statistic tells us quite a bit about
its probability distribution, it still leaves much unanswered. We will, however,
show in Sec. 7.4 that the probability distribution of a sample mean is approxi-
mately normal, and, as we know, a normal distribution is completely specified by
its mean and variance.

PROBLEMS

1. Consider the population described in Example 7.1. Plot the possible val-
ues along with their probabilities of the sample mean of a sample of
size
(a) n = 3
(b) n = 4
In both cases also derive the standard deviation of the sample mean.

2. Suppose that X1 and X2 constitute a sample of size 2 from a popula-
tion in which a typical value X is equal to either 1 or 2 with respective
probabilities

P{X = 1} = 0.7 P{X = 2} = 0.3

(a) Compute E[X].
(b) Compute Var(X).
(c) What are the possible values of X = (X1 + X2) /2?
(d) Determine the probabilities that X assumes the values in (c).
(e) Using (d), directly compute E[X] and Var(X).
(f) Are your answers to (a), (b), and (e) consistent with the formulas

presented in this section?
3. Consider a population whose probabilities are given by

p(1) = p(2) = p(3) = 1
3

(a) Determine E[X].
(b) Determine SD(X).
(c) Let X denote the sample mean of a sample of size 2 from this

population. Determine the possible values of X along with their
probabilities.

(d) Use the result of part (c) to compute E[X] and SD(X).
(e) Are your answers consistent?

4. The amount of money withdrawn in each transaction at an automatic
teller of a branch of the Bank of America has mean $80 and standard
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deviation $40. What are the mean and standard deviation of the average
amount withdrawn in the next 20 transactions?

5. A producer of cigarettes claims that the mean nicotine content in its
cigarettes is 2.4 milligrams with a standard deviation of 0.2 milligrams.
Assuming these figures are correct, find the expected value and vari-
ance of the sample mean nicotine content of
(a) 36 (b) 64 (c) 100 (d) 900
randomly chosen cigarettes.

6. The lifetime of a certain type of electric bulb has expected value 475
hours and standard deviation 60 hours. Determine the expected value
and standard deviation of the sample mean of
(a) 100 (b) 200 (c) 400
such lightbulbs.

7. The weight of a randomly chosen person riding a ferry has expected
value 155 pounds and standard deviation 28 pounds. The ferry has
the capacity to carry 100 riders. Find the expected value and standard
deviation of the total passenger weight load of a ferry at capacity.

7.4 CENTRAL LIMIT THEOREM
In the previous section we showed that if we take a sample of size n from a
population whose elements have mean μ and standard deviation σ then the
sample mean X will have mean μ and standard deviation σ/

√
n. In this section,

we consider one of the most important results in probability theory, known as
the central limit theorem, which states that the sum (and thus also the average)
of a large number of independent random variables is approximately normally
distributed.

Central Limit Theorem

Let X1, X2, . . . , Xn be a sample from a population having mean μ and standard
deviation σ . For n large, the sum

X1 + X2 + · · · + Xn

will approximately have a normal distribution with mean nμ and standard
deviation σ

√
n.

■ Example 7.2
An insurance company has 10,000 (=104) automobile policyholders. If the
expected yearly claim per policyholder is $260 with a standard deviation
of $800, approximate the probability that the total yearly claim exceeds
$2.8 million (=$2.8 × 106).
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Solution

Number the policyholders, and let Xi denote the yearly claim of policyholder
i, i = 1, . . . , 104. By the central limit theorem, X = ∑104

i=1 Xi will have an approx-
imately normal distribution with mean 104 × 260 = 2.6 × 106 and standard
deviation 800

√
104 = 800 × 102 = 8 × 104. Hence,

P{X > 2.8 × 106} = P
{

X − 2.6 × 106

8 × 104 >
2.8 × 106 − 2.6 × 106

8 × 104

}

≈ P
{

Z >
0.2 × 106

8 × 104

}

= P
{
Z >

20
8

}
= P{Z > 2.5} = 0.0062

where ≈ means “is approximately equal to.” That is, there are only 6 chances
out of 1000 that the total yearly claim will exceed $2.8 million. ■

The preceding version of the central limit theorem is by no means the most
general, for it can be shown that

∑n
i=1 Xi will have an approximately normal dis-

tribution even in cases where the random variables Xi have different distributions.
Indeed, provided that all the random variables tend to be of roughly the same
magnitude so that none of them tends to dominate the value of the sum, it can
be shown that the sum of a large number of independent random variables will
have an approximately normal distribution.

Not only does the central limit theorem give us a method for approximating the
distribution of the sum of random variables, but also it helps explain the remark-
able fact that the empirical frequencies of so many naturally occurring populations
exhibit a bell-shaped (that is, a normal) curve. Indeed, one of the first uses of the
central limit theorem was to provide a theoretical justification of the empirical
fact that measurement errors tend to be normally distributed. That is, by regard-
ing an error in measurement as being composed of the sum of a large number
of small independent errors, the central limit theorem implies that it should
be approximately normal. For instance, the error in a measurement in astron-
omy can be regarded as being equal to the sum of small errors caused by such
things as

1. Temperature effects on the measuring device
2. Bending of the device caused by the rays of the sun
3. Elastic effects
4. Air currents
5. Air vibrations
6. Human errors
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Therefore, by the central limit theorem, the total measurement error will approxi-
mately follow a normal distribution. From this it follows that a histogram of errors
resulting from a series of measurements of the same object will tend to follow a
bell-shaped normal curve.

The central limit theorem also partially explains why many data sets related to
biological characteristics tend to be approximately normal. For instance, con-
sider a particular couple, call them Maria and Peter Fontanez, and consider the
heights of their daughters (say, when they are 20 years old). Now, the height
of a given daughter can be thought of as being composed of the sum of a large
number of roughly independent random variables—relating, among other things,
to the random set of genes that the daughter received from her parents as well
as environmental factors. Since each of these variables plays only a small role
in determining the total height, it seems reasonable, based on the central limit
theorem, that the height of a Fontanez daughter will be normally distributed.
If the Fontanez family has many daughters, then a histogram of their heights
should roughly follow a normal curve. (The same thing is true for the sons of
Peter and Maria, but the normal curve of the sons would have different parame-
ters from the one of the daughters. The central limit theorem cannot be used to
conclude that a plot of the heights of all the Fontanez children would follow a
normal curve, since the gender factor does not play a “small” role in determining
height.)

Thus, the central limit theorem can be used to explain why the heights of the
many daughters of a particular pair of parents will follow a normal curve. How-
ever, by itself the theorem does not explain why a histogram of the heights of
a collection of daughters from different parents will follow a normal curve. To
see why not, suppose that this collection includes both a daughter of Maria and
Peter Fontanez and a daughter of Henry and Catherine Silva. By the same argu-
ment given before, the height of the Silva daughter will be normally distributed,
as will the height of the Fontanez daughter. However, the parameters of these
two normal distributions—one for each family—will be different. (For instance,
if Catherine and Henry are both around 6 feet tall while Maria and Peter are both
about 5 feet tall, then it is clear that the heights of their daughters will have dif-
ferent normal distributions.) By the same reasoning, we can conclude that the
heights of a collection of many women, from different families, will all come
from different normal distributions. It is, therefore, by no means apparent that a
plot of those heights would itself follow a normal curve. (A more complete expla-
nation of why biological data sets often follow a normal curve will be given in
Chap. 12.)

7.4.1 Distribution of the Sample Mean
The central limit theorem can be used to approximate the probability distribution
of the sample mean. That is, let X1, . . . , Xn be a sample from a population having
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Historical Perspective

The application of the central limit theorem to show that measurement errors are
approximately normally distributed is regarded as an important contribution to
science. Indeed, in the 17th and 18th centuries, the central limit theorem was
often called the law of frequency of errors.

The law of frequency of errors was considered a major advance by scientists. Listen to
the words of Francis Galton (taken from his book Natural Inheritance, published
in 1889):

I know of scarcely anything so apt to impress the imagination as the won-
derful form of cosmic order expressed by the “Law of Frequency of Error.”
The Law would have been personified by the Greeks and deified, if they had
known of it. It reigns with serenity and in complete self-effacement amidst
the wildest confusion. The huger the mob and the greater the apparent
anarchy, the more perfect is its sway. It is the supreme law of unreason.

mean μ and variance σ2, and let

X =
∑n

i=1 Xi

n

be the sample mean. Since a constant multiple of a normal random variable is also
normal, it follows from the central limit theorem that X (which equals

∑n
i=1 Xi

multiplied by the constant 1/n) also will be approximately normal when the
sample size n is large. Since X has expectation μ and standard deviation σ/

√
n,

the standardized variable

X − μ

σ/
√

n

has an approximately standard normal distribution.

Let X be the sample mean of a sample of size n from a population having mean
μ and variance σ 2. By the central limit theorem,

P{X ≤ a} = P

{
X − μ

σ/
√

n
≤ a − μ

σ/
√

n

}

≈ P
{

Z ≤ a − μ

σ/
√

n

}

where Z is a standard normal.
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■ Example 7.3
The blood cholesterol levels of a population of workers have mean 202 and
standard deviation 14.

(a) If a sample of 36 workers is selected, approximate the probability that
the sample mean of their blood cholesterol levels will lie between 198
and 206.

(b) Repeat (a) for a sample size of 64.

Solution

(a) It follows from the central limit theorem that X is approximately normal
with mean μ = 202 and standard deviation σ/

√
n = 14/

√
36 = 7/3. Thus

the standardized variable

W = X − 202
7/3

has an approximately standard normal distribution. To compute P{198 ≤
X ≤ 206}, first we must write the inequality in terms of the standardized
variable W . This results in the equality

P{198 ≤ X ≤ 206} = P

{
198 − 202

7/3
≤ X − 202

7/3
≤ 206 − 202

7/3

}

= P {−1.714 ≤ W ≤ 1.714}
≈ P {−1.714 ≤ Z ≤ 1.714}
= 2P {Z ≤ 1.714} − 1

= 0.913

where Z is a standard normal random variable and the final equality
follows from Table D.1 in App. D (or from Program 6-1).

(b) For a sample size of 64, the sample mean X will have mean 202 and stan-
dard deviation 14/

√
64 = 7/4. Hence, writing the desired probability in

terms of the standardized variable

X − 202
7/4

yields

P
{
198 ≤ X ≤ 206

} = P

{
198 − 202

7/4
≤ X − 202

7/4
≤ 206 − 202

7/4

}

≈ P {−2.286 ≤ Z ≤ 2.286}
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= 2P {Z ≤ 2.286} − 1

= 0.978

Thus, we see that increasing the sample size from 36 to 64 increases the prob-
ability that the sample mean will be within 4 of the population mean from
0.913 to 0.978. ■

■ Example 7.4
An astronomer is interested in measuring, in units of light-years, the distance
from her observatory to a distant star. However, the astronomer knows that
due to differing atmospheric conditions and normal errors, each time a mea-
surement is made, it will yield not the exact distance, but an estimate of it. As
a result, she is planning on making a series of 10 measurements and using the
average of these measurements as her estimated value for the actual distance. If
the values of the measurements constitute a sample from a population having
mean d (the actual distance) and a standard deviation of 3 light-years, approx-
imate the probability that the astronomer’s estimated value of the distance will
be within 0.5 light-years of the actual distance.

Solution

The probability of interest is

P
{−0.5 < X − d < 0.5

}
where X is the sample mean of the 10 measurements. Since X has mean d and
standard deviation 3/

√
10, this probability should be written in terms of the

standardized variable

X − d

3/
√

10

This gives

P
{−0.5 < X − d < 0.5

} = P

{
−0.5

3/
√

10
<

X − d

3/
√

10
<

0.5

3/
√

10

}

≈ P
{ −0.5

3/
√

10
< Z <

0.5

3/
√

10

}

= P {−0.527 < Z < 0.527}
= 2P {Z < 0.527} − 1 = 0.402

Therefore, we see that with 10 measurements there is a 40.2 percent chance that
the estimated distance will be within plus or minus 0.5 light-years of the actual
distance. ■
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FIGURE 7.3
Density of the average of n exponential random variables.

7.4.2 How Large a Sample Is Needed?
The central limit theorem leaves open the question of how large the sample size
n needs to be for the normal approximation to be valid, and indeed the answer
depends on the population distribution of the sample data. For instance, if the
underlying population distribution is normal, then the sample mean X will also
be normal, no matter what the sample size is. A general rule of thumb is that you
can be confident of the normal approximation whenever the sample size n is at
least 30. That is, practically speaking, no matter how nonnormal the underlying
population distribution is, the sample mean of a sample size of at least 30 will be
approximately normal. In most cases the normal approximation is valid for much
smaller sample sizes. Indeed, usually a sample size of 5 will suffice for the approxi-
mation to be valid. Figure 7.3 presents the distribution of the sample means from a
certain underlying population distribution (known as the exponential distribution)
for samples sizes n = 1, 5, and 10.

Historical Perspective

(C
u

lv
er

)

Pierre Simon,
Marquis de Laplace

The central limit theorem was originally stated and proved by the French mathe-
matician Pierre Simon, the Marquis de Laplace, who came to this theorem from
his observations that errors of measurement (which usually can be regarded as
being the sum of a large number of tiny forces) tend to be normally distributed.
Laplace, who was also a famous astronomer (and indeed was called “the Newton
of France”), was one of the great early contributors to both probability and statis-
tics. Laplace was a popularizer of the uses of probability in everyday life. He
strongly believed in its importance, as is indicated by the following quotation,
taken from his published book Analytical Theory of Probability.
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We see that the theory of probability is at bottom only common sense
reduced to calculation; it makes us appreciate with exactitude what rea-
sonable minds feel by a sort of instinct, often without being able to account
for it .… It is remarkable that this science, which originated in the considera-
tion of games of chance, should become the most important object of human
knowledge .… The most important questions of life are, for the most part,
really only problems of probability.

An interesting footnote to the central limit theorem is that, because of it, most
scientists in the late 19th and early 20th centuries believed that almost all data sets
were normal. In the words of the famous French mathematician Henri Poincaré,

Everyone believes it: experimentalists believe that it is a mathematical
theorem, and mathematicians believe that it is an empirical fact.

PROBLEMS

1. Consider a sample from a population having mean 128 and standard
deviation 16. Compute the approximate probability that the sample
mean will lie between 124 and 132 when the sample size is
(a) n = 9
(b) n = 25
(c) n = 100

2. Frequent fliers of a particular airline fly a random number of miles
each year, having mean and standard deviation (in thousands of miles)
of 23 and 11, respectively. As a promotional gimmick, the airline has
decided to randomly select 20 of these fliers and give them, as a bonus,
a check of $10 for each 1000 miles flown. Approximate the probability
that the total amount paid out is
(a) Between $4500 and $5000
(b) More than $5200

3. In Example 7.2, approximate the probability that the yearly payout of
the insurance company is between $2.5 and $2.7 million.

4. If you place a $1 bet on a number of a roulette wheel, then either you
win $35, with probability 1/38, or you lose $1, with probability 37/38.
Let X denote your gain on a bet of this type.
(a) Find E[X] and SD(X).
Suppose you continually place bets of the preceding type. Show that
(b) The probability that you will be winning after 1000 bets is approx-

imately 0.39.
(c) The probability that you will be winning after 100,000 bets is

approximately 0.002.
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5. The time it takes to develop a photographic print is a random variable
with mean 17 seconds and standard deviation 0.8 seconds. Approx-
imate the probability that the total amount of time that it takes to
process 100 prints is
(a) More than 1720 seconds
(b) Between 1690 and 1710 seconds

6. A zircon semiconductor is critical to the operation of a supercon-
ductor and must be immediately replaced upon failure. Its expected
lifetime is 100 hours, and its standard deviation is 34 hours. If 22
of these semiconductors are available, approximate the probability
that the superconductor can operate for the next 2000 hours. (That is,
approximate the probability that the sum of the 22 lifetimes exceeds
2000.)

7. The amount of paper a print shop uses per job has mean 200 pages and
standard deviation 50 pages. There are 2300 sheets of paper on hand
and 10 jobs that need to be filled. What is the approximate probability
that 10 jobs can be filled with the paper on hand?

8. A highway department has enough salt to handle a total of 80 inches of
snowfall. Suppose the daily amount of snow has a mean of 1.5 inches
and a standard deviation of 0.3 inches.
(a) Approximate the probability that the salt on hand will suffice for

the next 50 days.
(b) What assumption did you make in solving part (a)?
(c) Do you think this assumption is justified? Explain briefly!

9. Fifty numbers are rounded off to the nearest integer and then summed.
If the individual roundoff errors are uniformly distributed between
–0.5 and 0.5, what is the approximate probability that the resultant
sum differs from the exact sum by more than 3? (Use the fact that the
mean and variance of a random variable that is uniformly distributed
between –0.5 and 0.5 are 0 and 1/12, respectively.)

10. A six-sided die, in which each side is equally likely to appear, is
repeatedly rolled until the total of all rolls exceeds 400. What is the
approximate probability that this will require more than 140 rolls?
(Hint: Relate this to the probability that the sum of the first 140 rolls is
less than 400.)

11. In Example 7.4, approximate the probability that the astronomer’s
estimate will be within 0.5 light-years of the true distance if
(a) She makes a total of 100 observations.
(b) She makes 10 observations but has found a way of improving the

measurement technique so that the standard deviation of each
observation is reduced from 3 to 2 light-years.

12. Suppose that the number of miles that an electric car battery func-
tions has mean μ and standard deviation 100. Using the central limit
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theorem, approximate the probability that the average number of miles
per battery obtained from a set of n batteries will differ from μ by more
than 20 if
(a) n = 10 (b) n = 20 (c) n = 40 (d) n = 100

13. A producer of cigarettes claims that the mean nicotine content in its
cigarettes is 2.4 milligrams with a standard deviation of 0.2 milligrams.
Assuming these figures are correct, approximate the probability that
the sample mean of 100 randomly chosen cigarettes is
(a) Greater than 2.5 milligrams
(b) Less than 2.25 milligrams

14. The lifetime of a certain type of electric bulb has expected value 500
hours and standard deviation 60 hours. Approximate the probability
that the sample mean of 20 such lightbulbs is less than 480 hours.

15. Consider a sample of size 16 from a population having mean 100 and
standard deviation σ . Approximate the probability that the sample
mean lies between 96 and 104 when
(a) σ = 16 (b) σ = 8 (c) σ = 4 (d) σ = 2 (e) σ = 1

16. An instructor knows from past experience that student examination
scores have mean 77 and standard deviation 15. At present, the
instructor is teaching two separate classes—one of size 25 and the
other of size 64.
(a) Approximate the probability that the average test score in the

class of size 25 lies between 72 and 82.
(b) Repeat (a) for the class of size 64.
(c) What is the approximate probability that the average test score in

the class of size 25 is higher than that in the class of size 64?
(d) Suppose the average scores in the two classes are 76 and 83.

Which class—the one of size 25 or the one of size 64—do you think
was more likely to have averaged 83? Explain your intuition.

7.5 SAMPLING PROPORTIONS FROM A FINITE
POPULATION

Consider a population of size N in which certain elements have a particular char-
acteristic of interest. Let p denote the proportion of the population having this
characteristic. So Np elements of the population have it and N(1 − p) do not.

■ Example 7.5
Suppose that 60 out of a total of 900 students of a particular school are left-
handed. If left-handedness is the characteristic of interest, then N = 900 and
p = 60/900 = 1/15. ■
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A sample of size n is said to be a random sample if it is chosen in a manner so
that each of the possible population subsets of size n is equally likely to be in the
sample. For instance, if the population consists of the three elements a, b, c, then
a random sample of size 2 is one chosen so that it is equally likely to be any of
the subsets {a, b}, {a, c}, and {b, c}. A random subset can be chosen sequentially by
letting its first element be equally likely to be any of the N elements of the popu-
lation, then letting its second element be equally likely to be any of the remaining
N − 1 elements of the population, and so on.

Definition A sample of size n selected from a population of N elements is said to be
a random sample if it is selected in such a manner that the sample chosen is equally
likely to be any of the subsets of size n.

The mechanics of using a computer to choose a random sample are explained in
App. C. (In addition, Program A-1 on the enclosed disk can be used to accomplish
this task.)

Suppose now that a random sample of size n has been chosen from a population
of size N. For i = 1, . . . , n, let

Xi =
{

1 if the ith member of the sample has the characteristic
0 otherwise

Consider now the sum of the Xi; that is, consider

X = X1 + X2 + · · · + Xn

Since the term Xi contributes 1 to the sum if the ith member of the sample has the
characteristic and contributes 0 otherwise, it follows that the sum is equal to the
number of members of the sample that possess the characteristic. (For instance,
suppose n = 3 and X1 = 1, X2 = 0, and X3 = 1. Then members 1 and 3 of the
sample possess the characteristic, and member 2 does not. Hence, exactly 2 of
the sample members possess it, as indicated by X1 + X2 + X3 = 2.) Similarly, the
sample mean

X = X
n

=
∑n

i=1 Xi

n

will equal the proportion of members of the sample who possess the characteristic.
Let us now consider the probabilities associated with the statistic X.

Since the ith member of the sample is equally likely to be any of the N members
of the population, of which Np have the characteristic, it follows that

P {Xi = 1} = Np
N

= p
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Also

P {Xi = 0} = 1 − P {Xi = 1} = 1 − p

That is, each Xi is equal to either 1 or 0 with respective probabilities p and 1 − p.

Note that the random variables X1, X2, . . . , Xn are not independent. For instance,
since the second selection is equally likely to be any of the N members of the
population, of which Np have the characteristic, it follows that the probability
that the second selection has the characteristic is Np/N = p. That is, without any
knowledge of the outcome of the first selection,

P {X2 = 1} = p

However, the conditional probability that X2 = 1, given that the first selection has
the characteristic, is

P {X2 = 1|X1 = 1} = Np − 1
N − 1

which is seen by noting that if the first selection has the characteristic, then the
second selection is equally likely to be any of the remaining N − 1 elements of
which Np − 1 have the characteristic. Similarly, the probability that the second
selection has the characteristic, given that the first one does not, is

P {X2 = 1|X1 = 0} = Np
N − 1

Thus, knowing whether the first element of the random sample has the character-
istic changes the probability for the next element. However, when the population
size N is large in relation to the sample size n, this change will be very slight. For
instance, if N = 1000 and p = 0.4, then

P {X2 = 1|X1 = 1} = 399
999

= 0.3994

which is very close to the unconditional probability that X2 = 1; namely,

P {X2 = 1} = 0.4

Similarly, the probability that the second element of the sample has the charac-
teristic, given that the first does not, will be given by

P {X2 = 1|X1 = 0} = 400
999

= 0.4004

which is again very close to 0.4.
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Indeed, it can be shown that when the population size N is large with respect to
the sample size n, then X1, X2, . . . , Xn are approximately independent. Now if we
think of each Xi as representing the result of a trial that is a success if Xi equals 1
and a failure otherwise, it follows that

∑n
i=1 Xi can be thought of as representing

the total number of successes in n trials. Hence, if the X’s are independent, then
X represents the number of successes in n independent trials, where each trial is a
success with probability p. In other words, X is a binomial random variable with
parameters n and p.

If we let X denote the number of members of the population who have the char-
acteristic, then it follows from the preceding that if the population size N is large
in relation to the sample size n, then the distribution of X is approximately a
binomial distribution with parameters n and p.

For the remainder of this text we will suppose that the underlying population is large in
relation to the sample size, and we will take the distribution of X to be binomial.

By using the formulas given in Sec. 5.5.1 for the mean and standard deviation of
a binomial random variable, we see that

E[X] = np and SD(X) = √
np(1 − p)

Since X, the proportion of the sample that has the characteristic, is equal to X/n,
we see that

E[X] = E[X]
n

= p

and

SD(X) = SD(X)

n
=
√

p
(
1 − p

)
n

■ Example 7.6
Suppose that 50 percent of the population is planning on voting for candidate
A in an upcoming election. If a random sample of size 100 is chosen, then the
proportion of those in the sample who favor candidate A has expected value

E[X] = 0.50

and standard deviation

SD(X) =
√

0.50(1 − 0.50)

100
=
√

1
400

= 0.05

■
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7.5.1 Probabilities Associated with Sample Proportions:
The Normal Approximation to the Binomial
Distribution

Again, let X denote the proportion of members of a random sample of size n
who have a certain characteristic. To determine the probabilities connected with
the random variable X, we make use of the fact that X = nX is binomial with
parameters n and p. Now, binomial probabilities can be approximated by making
use of the central limit theorem. Indeed, from an historical point of view, one of
the most important applications of the central limit theorem was in computing
binomial probabilities.

To see how this is accomplished, let X denote a binomial random variable having
parameters n and p. Since X can be thought of as being equal to the number of
successes in n independent trials when each trial is a success with probability p, it
follows that it can be represented as

X = X1 + X2 + · · · + Xn

where

Xi =
{

1 if trial i is a success
0 if trial i is a failure

Now, in Examples 5.6 and 5.12, we showed that

E[Xi] = P and Var(Xi) = p(1 − p)

Hence, it follows that X/n can be regarded as the sample mean of a sample of size
n from a population having mean p and standard deviation

√
p(1 − p). Thus, from

the central limit theorem, we see that for n large,

X/n − p√
p(1 − p)/n

= X − np√
np(1 − p)

will have an approximately standard normal distribution. (Figure 7.4 graphically
illustrates how the probability distribution of a binomial random variable with
parameters n and p becomes more and more “normal” as n becomes larger and
larger.)

From a practical point of view, the normal approximation to the binomial is quite
good provided n is large enough that the quantities np and n(1 − p) are both
greater than 5.

■ Example 7.7
Suppose that exactly 46 percent of the population favors a particular candidate.
If a random sample of size 200 is chosen, what is the probability that at least
100 favor this candidate?
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FIGURE 7.4
Probability mass functions of binomial random variables become more normal with increasing n.

Solution

If X is the number who favor the candidate, then X is a binomial random
variable with parameters n = 200 and p = 0.46. The desired probability is
P{X ≥ 100}. To employ the normal approximation, first we note that since
the binomial is a discrete and the normal is a continuous random variable,
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it is best to compute P{X = i} as P{i − 0.5 ≤ X ≤ i + 0.5} when applying the
normal approximation (this is called the continuity correction). Therefore, to
compute P{X ≥ 100}, we should use the normal approximation on the equiva-
lent probability P{X ≥ 99.5}. Considering the standardized variable

X − 200(0.46)√
200(0.46)(0.54)

= X − 92
7.0484

we obtain the following normal approximation to the desired probability:

P {X ≥ 100} = P {X ≥ 99.5}

= P
{

X − 92
7.0484

≥ 99.5 − 92
7.0484

}

≈ P {Z > 1.0641}
= 0.144(from Table D.1 or Program 6-1)

The exact value of the desired probability could, of course, have been obtained
from Program 5-1. Running this program shows that the exact probability
that a binomial random variable with parameters n = 200 and p = 0.46 is
greater than or equal to 100 is 0.1437. Thus, in this problem, the normal
approximation gives an answer that is correct to three decimal places. ■

PROBLEMS

1. Suppose that 60 percent of the residents of a city are in favor of teach-
ing evolution in high school. Determine the mean and the standard
deviation of the proportion of a random sample of size n that is in favor
when
(a) n = 10 (b) n = 100
(c) n = 1, 000 (d) n = 10, 000

2. Ten percent of all electrical batteries are defective. In a random
selection of 8 of these batteries, find the probability that
(a) There are no defective batteries.
(b) More than 15 percent of the batteries are defective.
(c) Between 8 and 12 percent of the batteries are defective.

3. Suppose there was a random selection of n = 50 batteries in Prob. 2.
Determine approximate probabilities for parts (a), (b), and (c) of that
problem.

4. Consider Prob. 1. Find the probability that over 55 percent of the mem-
bers of the sample are in favor of the proposal if the sample size is
(a) n = 10 (b) n = 100
(c) n = 1000 (d) n = 10,000
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*A Cautionary Tale: Be Sure you are Sampling From
the Right Population
Company X, which is not located near any public transportation and all of whose
employees drive to work, is concerned that not enough people are utilizing carpools.
The company has decided that if the average number of workers per car is less than
3, then it will organize its own carpool service and, at the same time, begin charging
those employees who drive noncarpool automobiles a stiff parking fee.To determine if
such a change is justified, 100 workers were chosen at random and were queried as to
the number of workers in the car in which they drove to work that day. The average
answer was 3.4; that is, the sum of the 100 answers divided by 100 was 3.4. On the basis
of this, the company chose not to change its policy. Did the company make the correct
decision?

This question is very tricky because the company, when selecting its random sample of
100 workers, has chosen a random sample from the wrong population. Since it wanted
to learn about the average number of workers per car, the company should have cho-
sen a random sample from the population of cars arriving in the parking lot—not from
the population of workers. To see why, consider an extreme case where there are only
2 cars and 5 workers, with one of the cars containing 4 workers and the other containing
1 worker. Now, if we average over the 2 cars, then the average number of workers per car
is clearly (4 + 1)/2 = 2.5. However, if we average over all the workers, then since 4 of the
5 workers ride in a car containing 4 workers, it follows that the average is (4 + 4 + 4 +
4 + 1)/5 = 3.4.

In general, by randomly choosing workers (as opposed to cars) it follows that cars con-
taining more riders will tend to be more heavily represented (by their riders) in the sample
than will those cars having fewer riders. As a result, the average number of riders in the
cars of the randomly chosen workers will tend to be larger than the average number of
workers per car.

To obtain a correct estimate of the average number of workers per car, the random sam-
ple should have been created by randomly choosing among the cars in the parking lot
and then ascertaining how many workers were in each car.

Because the wrong random sample was chosen, the company cannot conclude that the
average number of workers per car is at least 3. Indeed, a new sample chosen in the
manner just noted will have to be taken before the company can decide whether any
changes are needed.

The following table gives the 2003 first-quarter unemployment rates for a
selection of countries. Problems 5, 6, and 7 are based on it.

United States Australia Canada Germany Italy Japan Sweden

6.2 6.1 6.9 9.2 8.9 5.4 6.1

5. Suppose that a random sample of 400 German workers was selected.
Approximate the probability that
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(a) Forty or fewer were unemployed
(b) More than 50 were unemployed

6. Suppose that a random sample of 600 Japanese workers was selected.
Approximate the probability that
(a) Thirty or fewer were unemployed
(b) More than 40 were unemployed

7. Suppose that a random sample of 200 Canadian workers was selected.
Approximate the probability that
(a) Ten or fewer were unemployed
(b) More than 25 were unemployed

8. If 65 percent of the population of a certain community is in favor of
a proposed increase in school taxes, find the approximate probability
that a random sample of 100 people will contain
(a) At least 45 who are in favor of the proposition
(b) Fewer than 60 who are in favor
(c) Between 55 and 75 who are in favor

9. The ideal size of a first-year class at a particular college is 160 students.
The college, from past experience, knows that on average only 40 per-
cent of those accepted for admission will actually attend. Based on
this, the college employs a policy of initially accepting 350 appli-
cants. Find the normal approximation to the probability that this will
result in
(a) More than 160 accepted students attending
(b) Fewer than 150 accepted students attending

10. An airline company experiences a 6 percent rate of no-shows among
passengers holding reservations. If 260 people hold reservations on a
flight in which the airplane can hold a maximum of 250 people, approx-
imate the probability that the company will be able to accommodate
everyone having a reservation who shows up.

The following table lists the likely fields of study as given by the entering
college class of a large university system. Problems 11 through 14 are based
on this table. In each of these problems suppose that a random sample of
200 entering students is chosen.

Field of study Percentage

Arts and humanities 9
Biological sciences 4
Business 27
Education 9
Engineering 10

(Continued )
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(Continued)

Field of study Percentage

Physical sciences 2
Social sciences 9
Professional 11
Technical 3
Other 16

Source: Higher Educational Institute,
University of California, Los Angeles, CA,
The American Freshman National Norms,
annual.

11. What is the probability that 22 or more students are planning to major
in arts and humanities?

12. What is the probability that more than 60 students are planning to
major in business?

13. What is the probability that 30 or more are planning to major in one of
the sciences (biological, physical, or social)?

14. What is the probability that fewer than 15 students are planning to
major in engineering?

15. Let X be a binomial random variable with parameters n = 100 and
p = 0.2. Approximate the following probabilities.
(a) P{X ≤ 25}
(b) P{X > 30}
(c) P{15 < X < 22}

16. Let X be a binomial random variable with parameters n = 150 and
p = 0.6. Approximate the following probabilities.
(a) P{X ≤ 100}
(b) P{X > 75}
(c) P{80 < X < 100}

17. A recent study has shown that 54 percent of all incoming first-year
students at major universities do not graduate within 4 years of their
entrance. Suppose a random sample of 500 entering first-year students
is to be surveyed after 4 years.
(a) What is the approximate probability that fewer than half graduate

within 4 years?
(b) What is the approximate probability that more than 175 but fewer

than 225 students graduate within 4 years?
The following table gives the percentages of individuals, categorized by
gender, who follow certain negative health practices. Problems 18, 19, and
20 are based on this table.
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Sleep 6 hours or Never eat Are 30% or
less per night Smoker breakfast more overweight

Males 22.7 32.6 25.2 12.1
Females 21.4 27.8 23.6 13.7

Source: U.S. National Center for Health Statistics, Health Promotion and Disease
Prevention. 1985.

18. Suppose a random sample of 300 males is chosen. Approximate the
probability that
(a) At least 75 never eat breakfast.
(b) Fewer than 100 smoke.

19. Suppose a random sample of 300 females is chosen. Approximate the
probability that
(a) At least 25 are overweight by 30 percent or more.
(b) Fewer than 50 sleep 6 hours or less nightly.

20. Suppose random samples of 300 females and 300 males are chosen.
Approximate the probability that there are more smokers in the sam-
ple of men than in the sample of woman. (Hint: Let X and Y denote,
respectively, the numbers of men and women in the samples who are
smokers. Write the desired probability as P{X − Y > 0}, and recall that
the difference of two independent normal random variables is also a
normal random variable.)

7.6 DISTRIBUTION OF THE SAMPLE VARIANCE OF A
NORMAL POPULATION

Before discussing the distribution of the sample variance of a normal population,
we need to introduce the concept of the chi-squared distribution, which is the
distribution of the sum of the squares of independent standard normal random
variables.

Definition If Z1, . . . , Zn are independent standard normal random variables, then the
random variable

n∑
i=1

Z2
i

is said to be a chi-squared random variable with n degrees of freedom.

Figure 7.5 presents the chi-squared density functions for three different values of
the degree of freedom parameter n.
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FIGURE 7.5
Chi-squared density function with n degrees of freedom, n = 1, 3, 10.

To determine the expected value of a chi-squared random variable, note first that
for a standard normal random variable Z,

1 = Var(Z)

= E
[
Z2]− (E[Z])2

= E
[
Z2] since E[Z] = 0

Hence, E[Z2] = 1 and so

E

[
n∑

i=1

Z2
i

]
=

n∑
i=1

E
[
Z2

i
] = n

The expected value of a chi-squared random variable is equal to its number of
degrees of freedom.

Suppose now that we have a sample X1, . . . , Xn from a normal population having
mean μ and variance σ 2. Consider the sample variance S2 defined by

S2 =
∑n

i=1

(
Xi − X

)2

n − 1

The following result can be proved:

Theorem

(n − 1)S2

σ 2 =
∑n

i=1
(
Xi − X

)2
σ 2

has a chi-squared distribution with n − 1 degrees of freedom.

Although a mathematical proof of this theorem is beyond the scope of this text,
we can obtain some understanding of why it is true. This understanding will also



Key Terms 325

be useful in guiding our intuition as we continue our studies in later chapters. To
begin, let us consider the standardized variables (Xi − μ)/σ , i = 1, . . . , n, where μ

is the population mean. Since these variables are independent standard normals,
it follows that the sum of their squares,

∑n
i=1 (Xi − μ)2

σ 2

has a chi-squared distribution with n degrees of freedom. Now, if we substitute
the sample mean X for the population mean μ, then the new quantity,

∑n
i=1

(
Xi − X

)2

σ 2

will remain a chi-squared random variable, but it will lose 1 degree of free-
dom because the population mean (μ) is replaced by its estimator (the sample
mean X).

PROBLEMS

1. The following data sets come from normal populations whose standard
deviation σ is specified. In each case, determine the value of a statis-
tic whose distribution is chi-squared, and tell how many degrees of
freedom this distribution has.
(a) 104, 110, 100, 98, 106; σ = 4
(b) 1.2, 1.6, 2.0, 1.5, 1.3, 1.8; σ = 0.5
(c) 12.4, 14.0, 16.0; σ = 2.4

2. Explain why a chi-squared random variable having n degrees of freedom
will approximately have the distribution of a normal random variable
when n is large. (Hint: Use the central limit theorem.)

KEY TERMS

A sample from a population distribution: If X1, . . . , Xn are independent random
variables having a common distribution F, we say that they constitute a sample
from the population distribution F.

Statistic: A numerical quantity whose value is determined by the sample.

Sample mean: If X1, . . . , Xn are a sample, then the sample mean is

X =
∑n

i=1 Xi

n
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Sample variance: If X1, . . . , Xn are a sample, then the sample variance is

S2 =
∑n

i=1
(
Xi − X

)2

n − 1

Central limit theorem: A theorem stating that the sum of a sample of size n
from a population will approximately have a normal distribution when n is
large.

Random sample: A sample of n members of a population is a random sample if
it is obtained in such a manner that each of the possible subsets of n members
is equally likely to be the chosen sample.

Chi-squared distribution with n degrees of freedom: The distribution of the
sum of the squares of n independent standard normals.

SUMMARY

If X is the sample mean of a sample of size n from a population having mean μ

and standard deviation σ , then its mean and standard deviation are

E[X] = μ and SD(X) = σ√
n

The central limit theorem states that the sample mean of a sample of size n
from a population having mean μ and standard deviation σ will, for large n,
have an approximately normal distribution with mean μ and standard deviation
σ/

√
n.

Consider a random sample of size n from a population of N individuals in which
Np of them have a certain characteristic. Let X denote the number of members of
the sample who have the characteristic. When N is large in relation to n, X will be
an approximately binomial random variable with parameters n and p. In this text,
we will always suppose that this is the case.

The proportion of the sample having the characteristic, namely, X = X/n, has a
mean and a standard deviation given by

E[X] = p and SD(X) =
√

p(1 − p)
n

It follows from the central limit theorem that a binomial random variable with
parameters n and p can, for reasonably large n, be approximated by a normal
random variable with mean np and standard deviation

√
np(1 − p). The approxi-

mation should be quite accurate provided that n is large enough that both np and
n(1 − p) are larger than 5.
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If S2 is the sample variance from a sample of size n from a normal population
having variance σ 2, then (n − 1)S2/σ 2 has a chi-squared distribution with n − 1
degrees of freedom.

The expected value of a chi-squared random variable is equal to its number of
degrees of freedom.

REVIEW PROBLEMS

1. The sample mean and sample standard deviation of all student scores
on the last Scholastic Aptitude Test (SAT) examination were, respec-
tively, 517 and 120. Find the approximate probability that a random
sample of 144 students would have an average score exceeding
(a) 507
(b) 517
(c) 537
(d) 550

2. Let X denote the sample mean of a sample of size 10 from a population
whose probability distribution is given by

P{X = i} =

⎧⎪⎪⎨
⎪⎪⎩

0.1 if i = 1
0.2 if i = 2
0.3 if i = 3
0.4 if i = 4

Compute
(a) The population mean μ

(b) The population standard deviation σ

(c) E[X]
(d) Var(X)

(e) SD(X)

3. In Prob. 2, suppose the sample size was 2. Find the probability distri-
bution of X, and use it to compute E[X] and SD(X). Check your answers
by using the values of μ and σ .

4. The mean and standard deviation of the lifetime of a type of battery
used in electric cars are, respectively, 225 and 24 minutes. Approxi-
mate the probability that a set of 10 batteries, used one after the other,
will last for more than
(a) 2200 minutes
(b) 2350 minutes
(c) 2500 minutes
(d) What is the probability they will last between 2200 and 2350

minutes?
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5. Suppose that 12 percent of the members of a population are left-
handed. In a random sample of 100 individuals from this population,
(a) Find the mean and standard deviation of the number of left-

handed people.
(b) Find the probability that this number is between 10 and 14

inclusive.
6. The weight of a randomly chosen person riding a ferry has expected

value 155 and standard deviation 28 pounds. The ferry’s capacity is
100 riders. Find the probability that, at capacity, the total passenger
load exceeds 16,000 pounds.

7. The monthly telephone bill of a student residing in a dormitory has
an expected value of $15 with a standard deviation of $7. Let X
denote the sum of the monthly telephone bills of a sample of 20 such
students.
(a) What is E[X]?
(b) What is SD(X)?
(c) Approximate the probability that X exceeds $300.

8. A recent newspaper article claimed that the average salary of newly
graduated seniors majoring in chemical engineering is $54,000, with
a standard deviation of $5000. Suppose a random sample of 12 such
graduates revealed an average salary of $45,000. How likely is it that
an average salary as low as or lower than $45,000 would have been
observed from this sample if the newspaper article were correct?

9. An advertising agency ran a campaign to introduce a product. At the
end of its campaign, it claimed that at least 25 percent of all consumers
were now familiar with the product. To verify this claim, the producer
randomly sampled 1000 consumers and found that 232 knew of the
product. If 25 percent of all consumers actually knew of the product,
what is the probability that as few as 232 (that is, 232 or less) in a
random sample of 1000 consumers were familiar?

10. A club basketball team will play a 60-game season. Of these games 32
are against class A teams and 28 are against class B teams. The out-
comes of all the games are independent. The team will win each game
against a class A opponent with probability 0.5, and it will win each
game against a class B opponent with probability 0.7. Let X denote the
total number of victories in the season.
(a) Is X a binomial random variable?
(b) Let XA and XB denote, respectively, the number of victories against

class A and class B teams. What are the distributions of XA and XB?
(c) What is the relationship among XA, XB, and X?
(d) Approximate the probability that the team wins 40 or more games.

(Hint: Recall that the sum of independent normal random variables
is also a normal random variable.)
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11. If X is binomial with parameters n = 80 and p = 0.4, approximate the
following probabilities.
(a) P{X > 34}
(b) P{X ≤ 42}
(c) P{25 ≤ X ≤ 39}

12. Consider the following simple model for daily changes in price of a
stock. Suppose that on each day the price either goes up 1 with prob-
ability 0.52 or goes down 1 with probability 0.48. Suppose the price
at the beginning of day 1 is 200. Let X denote the price at the end of
day 100.
(a) Define random variables X1, X2, . . . , X100 such that

X = 200 +
100∑
i=1

Xi

(b) Determine E[Xi]
(c) Determine Var(Xi)

(d) Use the central limit theorem to approximate P{X ≥ 210}
13. The following are the percentages of U.S. residents, classified by age,

who were not covered by health insurance in 2002.

Age Percentage not covered

under 18 11.6
18 to 24 29.6
25 to 34 24.9
35 to 44 17.7
45 to 64 13.5
65 and over 0.8

Suppose random samples of 1000 people in each age category are
selected. Approximate the probability that
(a) At least 100 of those under 18 are not covered.
(b) Fewer than 260 of those 25 to 34 years old are uncovered.
(c) At most 5 of those 65 and over and at most 120 of those 45 to 64

years old are uncovered.
(d) More of those who are 18 to 24 years old than of those who are

25 to 34 years old are uncovered.
14. A university administrator wants a quick estimate of the average num-

ber of students enrolled per class. Because he does not want the faculty
to be aware of his interest, he has decided to enlist the aid of students.
He has decided to randomly choose 100 names from the roster of
students and have them determine and then report to him the number
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of students in each of their classes. His estimate of the average number
of students per class will be the average number reported per class.
(a) Will this method achieve the desired goal?
(b) If the answer to part (a) is yes, explain why. If it is no, give a

method that will work.



CHAPTER 8

Estimation

“Data! Data! Data!” he cried impatiently. “I can’t make bricks without
clay.”

Sherlock Holmes (A. C. Doyle), Adventures of the Copper Breeches
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We learn how to use sample data to estimate a population mean, a population
variance, and a population proportion. We discuss point estimates, which are
single-value estimates of the parameter. The standard error of these estimates is
considered. We also consider interval estimates that contain the parameter with
specified degrees of confidence.

8.1 INTRODUCTION
It would not be unusual to see in a daily newspaper that “a recent poll of 1500
randomly chosen Americans indicates that 22 percent of the entire U.S. popula-
tion is presently dieting, with a margin of error of ±2 percent.” Perhaps you have
wondered about such claims. For instance, what exactly does with a margin of error
of ±2 percent mean? Also how is it possible, in a nation of over 150 million adults,
that the proportion of them presently on diets can be ascertained by a sampling
of only 1500 people?

In this chapter we will find the answers to these questions. In general, we will
consider how one can learn about the numerical characteristics of a population
by analyzing results from a sample of this population.

Whereas the numerical values of the members of the population can be sum-
marized by a population probability distribution, this distribution is often not
completely known. For instance, certain of its parameters, such as its mean and its
standard deviation, may be unknown. A fundamental concern in statistics relates
to how one can use the results from a sample of the population to estimate these
unknown parameters.

For instance, if the items of the population consist of newly manufactured
computer chips, then we may be interested in learning about the average func-
tional lifetime of these chips. That is, we would be interested in estimating the
population mean of the distribution of the lifetimes of these chips.

In this chapter we will consider ways of estimating certain parameters of the popu-
lation distribution. To accomplish this, we will show how to use estimators and
the estimates they give rise to.

Definition An estimator is a statistic whose value depends on the particular sample
drawn. The value of the estimator, called the estimate, is used to predict the value of a
population parameter.

For instance, if we want to estimate the mean lifetime of a chip, then we could
employ the sample mean as an estimator of the population mean. If the value of
the sample mean were 122 hours, then the estimate of the population mean would
be 122 hours.

In Sec. 8.2 we consider the problem of estimating a population mean; in Sec. 8.3
we consider the problem of estimating a population proportion. Section 8.4



8.2 Point Estimator of a Population Mean 333

deals with estimating the population variance. The estimators considered in these
sections are called point estimators because they are single values we hope will be
close to the parameters they are estimating. In the remaining sections, we consider
the problem of obtaining interval estimators. In this case, rather than specifying a
particular value as our estimate, we specify an interval in which we predict that the
parameter lies. We also consider the question of how much confidence to attach to
a given interval estimate, that is, how certain we can be that the parameter indeed
lies within this interval.

8.2 POINT ESTIMATOR OF A POPULATION MEAN
Let X1, . . . , Xn denote a sample from a population whose mean μ is unknown. The
sample mean X can be used as an estimator of μ. Since, as was noted in Sec. 7.3,

E[X] = μ

we see that the expected value of this estimator is the parameter we want to
estimate. Such an estimator is called unbiased.

Definition An estimator whose expected value is equal to the parameter it is estimating
is said to be an unbiased estimator of that parameter.

■ Example 8.1
To estimate the average amount of damages claimed in fires at medium-size
apartment complexes, a consumer organization sampled the files of a large
insurance company to come up with the following amounts (in thousands of
dollars) for 10 claims:

121, 55, 63, 12, 8, 141, 42, 51, 66, 103

The estimate of the mean amount of damages claimed in all fires of the type
being considered is thus

X = 121 + 55 + 63 + 12 + 8 + 141 + 42 + 51 + 66 + 103
10

= 662
10

= 66.2

That is, we estimate that the mean fire damage claim is $66,200. ■

As we have shown, the sample mean X has expected value μ. Since a random
variable is not likely to be too many standard deviations away from its expected
value, it is important to determine the standard deviation of X. However, as we
have already noted in Sec. 7.3,

SD(X) = σ√
n



334 CHAPTER 8: Estimation

where σ is the population standard deviation. The quantity SD(X) is sometimes
called the standard error of X as an estimator of the mean. Since a random variable
is unlikely to be more than 2 standard deviations away from its mean (especially
when that random variable is approximately normal, as X will be when the sample
size n is large), we are usually fairly confident that the estimate of the population
mean will be correct to within ±2 standard errors. Note that the standard error
decreases by the square root of the sample size; as a result, to cut the standard
error in half, we must increase the sample size by a factor of 4.

■ Example 8.2
Successive tests for the level of potassium in an individual’s blood vary because
of the basic imprecision of the test and because the actual level itself varies,
depending on such things as the amount of food recently eaten and the amount
of exertion recently undergone. Suppose it is known that, for a given individual,
the successive readings of potassium level vary around a mean value μ with a
standard deviation of 0.3. If a set of four readings on a particular individual
yields the data

3.6, 3.9, 3.4, 3.5

then the estimate of the mean potassium level of that person is

3.6 + 3.9 + 3.4 + 3.5
4

= 3.6

with the standard error of the estimate being equal to

SD(X) = σ√
n

= 0.3
2

= 0.15

Therefore, we can be quite confident that the actual mean will not differ from
3.6 by more than 0.30.

Suppose we wanted the estimator to have a standard error of 0.05. Then, since
this would be a reduction in standard error by a factor of 3, it follows that we
would have had to choose a sample 9 times as large. That is, we would have
had to take 36 blood potassium readings. ■

PROBLEMS

1. The weights of a random sample of eight participants in the 2004
Boston Marathon were as follows:

121, 163, 144, 152, 186, 130, 128, 140
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Use these data to estimate the average weight of all the participants
in this race.

2. Suppose, in Prob. 1, that the data represented the weights of the top
eight finishers in the marathon. Would you still be able to use these
data to estimate the average weight of all the runners? Explain!

3. To determine the average amount of money spent by university stu-
dents on textbooks, a random sample of 10 students was chosen, and
the students were questioned. If the amounts (to the nearest dollar)
spent were

422, 146, 368, 52, 212, 454, 366, 711, 227, 680

what is your estimate of the average amount spent by all students at
the university?

4. A random sample of nine preschoolers from a given neighborhood
yielded the following data concerning the number of hours per day
each one spent watching television:

3, 0, 5, 3.5, 1.5, 2, 3, 2.5, 2

Estimate the average number of hours per day spent watching televi-
sion by preschoolers in that neighborhood.

5. A manufacturer of compact disk players wants to estimate the average
lifetime of the lasers in its product. A random sample of 40 is chosen.
If the sum of the lifetimes of these lasers is 6624 hours, what is the
estimate of the average lifetime of a laser?

6. A proposed study for estimating the average cholesterol level of work-
ing adults calls for a sample size of 1000. If we want to reduce
the resulting standard error by a factor of 4, what sample size is
necessary?

7. It is known that the standard deviation of the weight of a newborn
child is 10 ounces. If we want to estimate the average weight of a
newborn, how large a sample will be needed for the standard error of
the estimate to be less than 3 ounces?

8. The following data represent the number of minutes each of a random
sample of 12 recent patients at a medical clinic spent waiting to see a
physician:

46, 38, 22, 54, 60, 36, 44, 50, 35, 66, 48, 30

Use these data to estimate the average waiting time of all patients at
this clinic.

9. The following frequency table gives the household sizes of a random
selection of 100 single-family households in a given city.
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Household size Frequency

1 11
2 19
3 28
4 26
5 11
6 4
7 1

Estimate the average size of all single-family households in the city.
10. Does (a) or (b) yield a more precise estimator of μ?

(a) The sample mean of a sample of size n from a population with mean
μ and variance σ2

(b) The sample mean of a sample of size 3n from a population with
mean μ and variance 2σ 2

(c) How large would the sample in (b) have to be in order to match
the precision of the estimator in (a)?

11. Repeat Prob. 10 when (a) and (b) are as follows:
(a) The sample mean of a sample of size n from a population with mean

μ and standard deviation σ

(b) The sample mean of a sample of size 3n from a population with
mean μ and standard deviation 3σ

8.3 POINT ESTIMATOR OF A POPULATION
PROPORTION

Suppose that we are trying to estimate the proportion of a large population that
is in favor of a given proposition. Let p denote the unknown proportion. To esti-
mate p, a random sample should be chosen, and then p should be estimated by
the proportion of the sample that is in favor. Calling this estimator p̂, we can
express it by

p̂ = X
n

where X is the number of members of the sample who are in favor of the
proposition and n is the size of the sample.

From the results of Sec. 7.5, we know that

E[p̂] = p

That is, p̂, the proportion of the sample in favor of the proposition, is an unbiased
estimator of p, the proportion of the entire population that is in favor. The spread
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of the estimator p̂ about its mean p is measured by its standard deviation, which
(again from Sec. 7.5) is equal to

SD(p̂) =
√

p(1 − p)
n

The standard deviation of p̂ is also called the standard error of p̂ as an estimator of
the population proportion p. By the foregoing formula this standard error will be
small whenever the sample size n is large. In fact, since it can be shown that for
every value of p

p(1 − p) ≤ 1
4

it follows that

SD(p̂) ≤
√

1
4n

= 1

2
√

n

For instance, suppose a random sample of size 900 is chosen. Then no matter what
proportion of the population is actually in favor of the proposition, it follows
that the standard error of the estimator of this proportion is less than or equal to
1/(2

√
900) = 1/60.

The preceding formula and bound on the standard error assume that we are
drawing a random sample of size n from an infinitely large population. When
the population size is smaller (as, of course, it will be in practice), then so is the
standard error, thus making the estimator even more precise than just indicated.

■ Example 8.3
A school district is trying to determine its students’ reaction to a proposed
dress code. To do so, the school selected a random sample of 50 students and
questioned them. If 20 were in favor of the proposal, then

(a) Estimate the proportion of all students who are in favor.
(b) Estimate the standard error of the estimate.

Solution

(a) The estimate of the proportion of all students who are in favor of the dress
code is 20/50 = 0.40.

(b) The standard error of the estimate is
√

p(1 − p)/50, where p is the actual
proportion of the entire population that is in favor. Using the estimate
for p of 0.4, we can estimate this standard error by

√
0.4(1 − 0.4)/50 =

0.0693. ■
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PROBLEMS

1. In 1985, out of a random sample of 1325 North Americans questioned,
510 said that the Communist party would win a free election if one
were held in the Soviet Union. Estimate the proportion of all North
Americans who felt the same way at that time.

2. Estimate the standard error of the estimate in Prob. 1.
3. To learn the percentage of members who are in favor of increasing

annual dues, a large social organization questioned a randomly cho-
sen sample of 20 members. If 13 members were in favor, what is the
estimate of the proportion of all members who are in favor? What is
the estimate of the standard error?

4. The following are the results of 20 games of solitaire, a card game that
results in either a win (w) or a loss (l):

w, l, l, l, w, l, l, w, l, w, w, l, l, l, l, w, l, l, w, l

(a) Estimate the probability of winning a game of solitaire.
(b) Estimate the standard error of the estimate in part (a).
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5. A random sample of 85 students at a large public university revealed
that 35 students owned a car that was less than 5 years old. Estimate
the proportion of all students at the university who own a car less
than 5 years old. What is the estimate of the standard error of this
estimate?

6. A random sample of 100 parents found that 64 are in favor of raising
the driving age to 18.
(a) Estimate the proportion of the entire population of parents who

are in favor of raising the driving age to 18.
(b) Estimate the standard error of the estimate in part (a).

7. A random sample of 1000 construction workers revealed that 122 are
presently unemployed.
(a) Estimate the proportion of all construction workers who are

unemployed.
(b) Estimate the standard error of the estimate in part (a).

8. Out of a random sample of 500 architects, 104 were women.
(a) Estimate the proportion of all architects who are women.
(b) Estimate the standard error of the estimate in part (a).

9. A random sample of 1200 engineers included 28 Hispanic Americans,
45 African Americans, and 104 females. Estimate the proportion of all
engineers who are
(a) Hispanic American
(b) African American
(c) Female

10. In parts (a), (b), and (c) of Prob. 9, estimate the standard error of the
estimate.

11. A random sample of 400 death certificates related to teenagers
yielded that 98 had died due to a motor vehicle accident.
(a) Estimate the proportion of all teenage deaths due to motor vehicle

accidents.
(b) Estimate the standard error of the estimate in part (a).

12. A survey is being planned to discover the proportion of the population
that is in favor of a new school bond. How large a sample is needed in
order to be certain that the standard error of the resulting estimator
is less than or equal to 0.1?

13. Los Angeles has roughly 3 times the voters of San Diego. Each city
will be voting on a local education bond initiative. To determine the
sentiments of the voters, a random sample of 3000 Los Angeles voters
and a random sample of 1000 San Diego voters will be queried. Of the
following statements, which is most accurate?
(a) The resulting estimates of the proportions of people who will vote

for the bonds in the two cities were equally accurate.
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(b) The Los Angeles estimate is 3 times as accurate.
(c) The Los Angeles estimate is roughly 1.7 times as accurate.
Explain how you are interpreting the word accurate in statements (a),
(b), and (c).

*14. The city of Chicago had 12,048 full-time law enforcement officers in
1990. To determine the number of African Americans in this group,
a random sample of 600 officers was chosen, and it was discovered
that 87 were African Americans.
(a) Estimate the number of African American law enforcement offi-

cers who were employed full-time in Chicago in 1990.
(b) Estimate the standard error of the estimate of part (a).
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∗8.3.1 Estimating the Probability of a Sensitive Event
Suppose that a company is interested in learning about the extent of illegal drug
use among its employees. However, the company recognizes that employees
might be reluctant to truthfully answer questions on this subject even if they have
been assured that their answers will be kept in confidence. Indeed, even if the
company assures workers that responses will not be traced to particular individu-
als, the employees might still remain suspicious and not answer truthfully. Given
this background, how can the company elicit the desired information?

We now present a method that will enable the company to gather the desired
information while at the same time protecting the privacy of those questioned.
The method is to employ a randomization technique, and it works as follows: To
begin, suppose that the sensitive question is stated in such a way that yes is the sen-
sitive answer. For instance, the question could be, Have you used any illegal drugs
in the past month? Presumably if the true answer is no, then the worker will not
hesitate to give that answer. However, if the real answer is yes, then some workers
may still answer no. To relieve any pressure to lie, the following rule for answering
should be explained to each worker before the questioning begins: After the ques-
tion has been posed, the worker is to flip a fair coin, not allowing the questioner to
see the result of the flip. If the coin lands on heads, then the worker should answer
yes to the question; and if it lands on tails, then the worker should answer the
question honestly. It should be explained to the worker that an answer of yes does
not mean that he or she is admitting to having used illegal drugs, since that answer
may have resulted solely from the coin flip’s landing on heads (which will occur
50 percent of the time). In this manner the workers sampled should feel assured
that they can play the game truthfully and, at the same time, preserve their privacy.

Let us now analyze this situation to see how it can be used to estimate p, the pro-
portion of the workforce that has actually used an illegal drug in the past month.
Let q = 1 − p denote the proportion that has not. Let us start by computing the
probability that a sampled worker will answer no to the question. Since this will
occur only if both (1) the coin toss lands on tails and (2) the worker has not used
any illegal drugs in the past month, we see that

P{no} = 1
2

× q = q
2

Hence, we can take the fraction of workers sampled who answered no as our
estimate of q/2; or, equivalently, we can estimate q to be twice the proportion
who answered no. Since p = 1 − q, this will also result in an estimate of p, the
proportion of all workers who have used an illegal drug in the past month.

For instance, if 70 percent of the workers sampled answered the question in the
affirmative, and so 30 percent answered no, then we would estimate that q was
equal to 2(0.3) = 0.6. That is, we would estimate that 60 percent of the population
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has not, and so 40 percent of the population has, used an illegal drug in the past
month. If 35 percent of the workers answered no, then we would estimate that q
was equal to 2(0.35) = 0.7 and thus that p = 0.3. Similarly, if 48 percent of the
workers answered no, then our estimate of p would be 1 − 2(0.48) = 0.04.

Thus, by this trick of having each respondent flip a coin, we are able to obtain an
estimate of p. However, the “price” we pay is an increased value of the standard
error. Indeed, it can be shown that the standard error of the estimator of p is now√

(1 + p)(1 − p)/n, which is larger than the standard error of the estimator when
there is no need to use a coin flip (because all answers will be honestly given).

PROBLEMS

1. Suppose the randomization scheme described in this section is emplo-
yed. If a sample of 50 people results in 32 yes answers, what is the
estimate of p?

2. In Prob. 1, what would your estimate of p be if 40 of the 50 people
answered yes?

3. When the randomization technique is used, the standard error of the
estimator of p is

√
(1 + p)(1 − p)/n. Now, if there was no need to use

the randomization technique, because everyone always answered hon-
estly, then the standard error of the estimator of p would be

√
p(1 − p)/n.

The ratio of these standard errors is thus

Standard error with randomization
Usual standard error

=
√

1 + p
p

This ratio is thus an indicator of the price one must pay because of the
sensitivity of the question.
(a) Do you think this price would be higher for large or small values

of p?
(b) Determine the value of this ratio for p = 0.1, 0.5, and 0.9.

8.4 ESTIMATING A POPULATION VARIANCE
Suppose that we have a sample of size n, X1, . . . , Xn, from a population whose
variance σ 2 is unknown, and that we are interested in using the sample data to
estimate σ 2. The sample variance S2, defined by

S2 =
∑n

i=1(Xi − X )2

n − 1

is an estimator of the population variance σ 2. To understand why, recall that the
population variance is the expected squared difference between an observation
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and the population mean μ. That is, for i = 1, . . . , n,

σ 2 = E[(Xi − μ)2]

Thus, it seems that the natural estimator of σ2 would be the average of the squared
differences between the data and the population mean μ. That is, it seems that the
appropriate estimator of σ 2 would be∑n

i=1 (Xi − μ)2

n

This is indeed the appropriate estimator of σ2 when the population mean μ is
known. However, if the population mean μ is also unknown, then it is reasonable
to use the foregoing expression with μ replaced by its estimator, namely, X. To
keep the estimator unbiased, this also leads us to change the denominator from
n to n − 1; and thus we obtain the estimator S2.

If the population mean μ is known, then the appropriate estimator of the
population variance σ 2 is ∑n

i=1 (Xi − μ)2

n

If the population mean μ is unknown, then the appropriate estimator of the
population variance σ 2 is

S2 =
∑n

i=1 (Xi − X)2

n − 1

S2 is an unbiased estimator of σ 2, that is,

E[S2] = σ 2

Since the sample variance S2 will be used to estimate the population variance σ 2,
it is natural to use

√
S2 to estimate the population standard deviation σ .

The population standard deviation σ is estimated by S, the sample standard
deviation.

■ Example 8.4
A random sample of nine electronic components produced by a certain com-
pany yields the following sizes (in suitable units):

1211, 1224, 1197, 1208, 1220, 1216, 1213, 1198, 1197
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What are the estimates of the population standard deviation and the population
variance?

Solution

To answer this, we need to compute the sample variance S2. Since subtracting
a constant value from each data point will not affect the value of this statistic,
start by subtracting 1200 from each datum to obtain the following transformed
data set:

11, 24, −3, 8, 20, 16, 13, −2, −3

Using a calculator on these transformed data shows that the values of the
sample variance and sample standard deviation are

S2 = 103 S = 10.149

Therefore, the respective estimates of the population standard deviation and
the population variance are 10.149 and 103. ■

Statistics in Perspective

Variance Reduction Is the Key to Success in Manufacturing

According to Japanese quality control experts, the key to a successful manufacturing
process—whether one is producing automobile parts, electronic equipment, computer
chips, screws, or anything else—is to ensure that the production process consistently
produces, at a reasonable cost, items that have values close to their target values. By this
they mean that for any item being produced there is always a certain target value that the
manufacturer is shooting at. For instance, when car doors are produced, there is a target
value for the door’s width. To be competitive, the widths of the doors produced must be
consistently close to this value. These experts say that the key to producing items close
to the target value is to ensure that the variance of the items produced is minimal. That is,
once a production process has been established that produces items whose values have
a small variance, then the difficult part of reaching the goal of consistently producing
items whose values are near the target value has been accomplished.

Experience has led these experts to conclude that it is then a relatively simple matter
to fine-tune the process so that the mean value of the item is close to the target value.
(For an analogy, these experts are saying that if you want to build a rifle that will enable
a shooter to consistently hit a particular target, then you should first concentrate on
building a rifle that is extremely stable and will always give the same result when it is
pointed in the same direction, and then you should train the shooter to shoot straight.)

PROBLEMS

1. A survey was undertaken to learn about the variation in the weekly
number of hours worked by university professors. A sample of 10
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professors yielded the following data:

48, 22, 19, 65, 72, 37, 55, 60, 49, 28

Use these data to estimate the population standard deviation of the
number of hours that college professors work in a week.

2. The following data refer to the widths (in inches) of slots on nine
successively produced duralumin forgings, which will be used as a
terminal block at the end of an airplane wing span:

8.751, 8.744, 8.749, 8.750, 8.752, 8.749, 8.764, 8.746, 8.753

Estimate the mean and the standard deviation of the width of a slot.
3. The following data refer to the amounts (in tons) of chemicals pro-

duced daily at a chemical plant. Use them to estimate the mean and
the variance of the daily production.

776, 810, 790, 788, 822, 806, 795, 807, 812, 791

4. Consistency is of great importance in manufacturing baseballs, for one
does not want the balls to be either too lively or too dead. The balls are
tested by dropping them from a standard height and then measuring
how high they bounce. A sample of 30 balls resulted in the following
summary statistics:

30∑
i=1

Xi = 52.1
30∑
i=1

X2
i = 136.2

Estimate the standard deviation of the size of the bounce. Hint: Recall
the identity

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2

5. Use the data of Prob. 1 of Sec. 8.2 to estimate the standard deviation
of the weights of the runners in the 2004 Boston Marathon.

Problems 6, 7, and 8 refer to the following sample data:

104, 110, 114, 97, 105, 113, 106, 101, 100, 107

6. Estimate the population mean μ and the population variance σ 2.
7. Suppose it is known that the population mean is 104. Estimate the

population variance.
8. Suppose it is known that the population mean is 106. Estimate the

population standard deviation.
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9. Use the data of Prob. 8 of Sec. 8.2 to estimate the standard deviation
of the waiting times of patients at the medical clinic.

10. A manufacturer of furniture wants to test a sample of newly deve-
loped fire-resistant chairs to learn about the distribution of heat that
these chairs can sustain before starting to burn. A sample of seven
chairs is chosen, and each is put, one at a time, in a closed burn
room. Once a chair is placed in this room, its temperature is increased,
one degree at a time, until the chair bursts into flames. Suppose the
burn temperatures for the seven chairs are (in degrees Fahrenheit) as
follows:

458, 440, 482, 455, 491, 477, 446

(a) Estimate the mean burn temperature of this type of chair.
(b) Estimate the standard deviation of the burn temperature of this

type of chair.
11. Use the data of Prob. 9 of Sec. 8.2 to estimate the standard deviation

of the size of a single-family household in the city considered.
12. Suppose that the systolic blood pressure of a worker in the mining

industry is normally distributed. Suppose also that a random sample
of 13 such workers yielded the following blood pressures:

129, 134, 142, 114, 120, 116, 133, 142, 138, 148, 129, 133, 141

(a) Estimate the mean systolic blood pressure of all miners.
(b) Estimate the standard deviation of the systolic blood pressure.
(c) Use the estimates in parts (a) and (b) along with the fact that the

blood pressures are normally distributed to obtain an estimate of
the proportion of all miners whose blood pressure exceeds 150.

13. The linear random walk model for the successive daily prices of a stock
or commodity supposes that the successive differences of the end-of-
day prices of a given stock constitute a random sample from a normal
population. The following 20 data values represent the closing prices
of crude oil on the New York Mercantile Exchange on 20 consecutive
trading days in 1994. Assuming the linear random walk model, use
these data to estimate the mean and standard deviation of the popu-
lation distribution. (Note that the data give rise to 19 values from this
distribution, the first being 17.60 − 17.50 = 0.10, the second being
17.81 − 17.60 = 0.21, and so on.)

17.50, 17.60, 17.81, 17.67, 17.53, 17.39, 17.12, 16.71, 16.70, 16.83,

17.21, 17.24, 17.22, 17.67, 17.83, 17.67, 17.55, 17.68, 17.98, 18.39

14. Due to a lack of precision in the scale used, the value obtained when
a fish is weighed is normal with mean equal to the actual weight of
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the fish and with standard deviation equal to 0.1 grams. A sample of
12 different fish was chosen, and the fish were weighed, with the
following results:

5.5, 6.2, 5.8, 5.7, 6.0, 6.2, 5.9, 5.8, 6.1, 6.0, 5.7, 5.6

Estimate the population standard deviation of the actual weight of
a fish.

Hint: First note that, due to the error involved in weighing a fish, each
data value is not the true weight of a fish, but rather is the true weight
plus an error term. This error term is an independent random variable
that has mean 0 and standard deviation 0.1. Therefore,

Data = true weight + error

and so

Var (data) = Var (true weight) + Var (error)

To determine the variance of the true weight, first estimate the vari-
ance of the data.

8.5 INTERVAL ESTIMATORS OF THE MEAN OF
A NORMAL POPULATION WITH KNOWN
POPULATION VARIANCE

When we estimate a parameter by a point estimator, we do not expect the resulting
estimator to exactly equal the parameter, but we expect that it will be “close” to it.
To be more specific, we sometimes try to find an interval about the point estimator
in which we can be highly confident that the parameter lies. Such an interval is
called an interval estimator.

Definition An interval estimator of a population parameter is an interval that is
predicted to contain the parameter. The confidence we ascribe to the interval is the
probability that it will contain the parameter.

To determine an interval estimator of a population parameter, we use the prob-
ability distribution of the point estimator of that parameter. Let us see how this
works in the case of the interval estimator of a normal mean when the population
standard deviation is assumed known.

Let X1, . . . , Xn be a sample of size n from a normal population having known
standard deviation σ , and suppose we want to utilize this sample to obtain a
95 percent confidence interval estimator for the population mean μ. To obtain
such an interval, we start with the sample mean X, which is the point estimator



348 CHAPTER 8: Estimation

of μ. We now make use of the fact that X is normal with mean μ and standard
deviation σ/

√
n, which implies that the standardized variable

Z = X − μ

σ/
√

n
= √

n
X − μ

σ

has a standard normal distribution. Now, since z0.025 = 1.96, it follows that
95 percent of the time the absolute value of Z is less than or equal to 1.96 (see
Fig. 8.1).

Thus, we can write

P
{√

n
σ

∣∣X − μ
∣∣ ≤ 1.96

}
= 0.95

Upon multiplying both sides of the inequality by σ/
√

n, we see that the preceding
equation is equivalent to

P
{∣∣X − μ

∣∣ ≤ 1.96
σ√
n

}
= 0.95

From the preceding statement we see that, with 95 percent probability, μ and X
will be within 1.96σ/

√
n of each other. But this is equivalent to stating that

P
{

X − 1.96
σ√
n

≤ μ ≤ X + 1.96
σ√
n

}
= 0.95

That is, with 95 percent probability, the interval X ± 1.96σ/
√

n will contain the
population mean.

FIGURE 8.1
P{|Z| ≤ 1.96} = P{−1.96 ≤ Z ≤ 1.96} = 0.95.
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The interval from X − 1.96σ/
√

n to X + 1.96σ/
√

n is said to be a 95 percent
confidence interval estimator of the population mean μ. If the observed value of
X is x, then we call the interval x ± 1.96σ/

√
n a 95 percent confidence interval

estimate of μ.

In the long run, 95 percent of the interval estimates so constructed will contain
the mean of the population from which the sample is drawn.

■ Example 8.5
Suppose that if a signal having intensity μ originates at location A, then the
intensity recorded at location B is normally distributed with mean μ and stan-
dard deviation 3. That is, due to “noise,” the intensity recorded differs from
the actual intensity of the signal by an amount that is normal with mean 0
and standard deviation 3. To reduce the error, the same signal is independently
recorded 10 times. If the successive recorded values are

17, 21, 20, 18, 19, 22, 20, 21, 16, 19

construct a 95 percent confidence interval for μ, the actual intensity.

Solution

The value of the sample mean is

17 + 21 + 20 + 18 + 19 + 22 + 20 + 21 + 16 + 19
10

= 19.3

Since σ = 3, it follows that a 95 percent confidence interval estimate of μ is
given by

19.3 ± 19.6
3√
10

= 19.3 ± 1.86

That is, we can assert with 95 percent confidence that the actual intensity of
the signal lies between 17.44 and 21.16. A picture of this confidence interval
estimate is given in Fig. 8.2. ■

We can also consider confidence interval estimators having confidence levels dif-
ferent from 0.95. Recall that for any value of α between 0 and 1, the probability

FIGURE 8.2
Confidence interval estimate of μ for Example 8.5.
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FIGURE 8.3
P{|Z| ≤ zα/2} = P{−zα/2 ≤ Z ≤ zα/2} = 1 − α.

Table 8.1 Confidence Level Percentiles

Confidence level Corresponding
100(1 − α) value of α Value of zα/2

90 0.10 z0.05 = 1.645
95 0.05 z0.025 = 1.960
99 0.01 z0.005 = 2.576

that a standard normal lies in the interval between −zα/2 and zα/2 is equal to 1 − α

(Fig. 8.3). From this it follows that

P
{√

n
σ

∣∣X − μ
∣∣ ≤ zα/2

}
= 1 − α

By the same logic used previously when α = 0.05(z0.025 = 1.96), we can show
that, with probability 1 − α, μ will lie in the interval X ± zα/2σ/

√
n.

The interval X ± zα/2σ/
√

n is called a 100(1 − α) percent confidence interval estimator
of the population mean.

Table 8.1 lists the values of zα/2 needed to construct 90, 95, and 99 percent
confidence interval estimates of μ.

■ Example 8.6
Determine, for the data of Example 8.5,

(a) A 90 percent confidence interval estimate of μ

(b) A 99 percent confidence interval estimate of μ
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Solution

We are being asked to construct a 100(1 − α) confidence interval estimate, with
α = 0.10 in part (a) and α = 0.01 in part (b). Now

z0.05 = 1.645 and z0.005 = 2.576

and so the 90 percent confidence interval estimator is

X ± 1.645
σ√
n

and the 99 percent confidence interval estimator is

X ± 2.576
σ√
n

For the data of Example 8.5, n = 10, X = 19.3, and σ = 3. Therefore, the 90
and 99 percent confidence interval estimates for μ are, respectively,

19.3 ± 1.645
3√
10

= 19.3 ± 1.56

and

19.3 ± 2.576
3√
10

= 19.3 ± 2.44

Figure 8.4 indicates the 90, 95, and 99 percent confidence interval estimates
of μ. Note that the larger the confidence coefficient 100(1 − α), the larger the
length of this interval. This makes sense because if you want to increase your
certainty that the parameter lies in a specified interval, then you will clearly
have to enlarge that interval. ■

Sometimes we are interested in obtaining a 100(1 − α) percent confidence inter-
val whose length is less than or equal to some specified value, and the problem

FIGURE 8.4
The 90, 95, and 99 percent confidence interval estimates.
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FIGURE 8.5
The 95 percent confidence interval for μ.

is to choose the appropriate sample size. For instance, suppose we want to deter-
mine an interval of length at most b that, with 95 percent certainty, contains the
population mean. How large a sample is needed? To answer this, note that since
z0.025 = 1.96, a 95 percent confidence interval for μ based on a sample of size n
is (see Fig. 8.5)

X ± 1.96
σ√
n

Since the length of this interval is

Length of interval = 2(1.96)
σ√
n

= 3.92
σ√
n

we must choose n so that

3.92σ√
n

≤ b

or, equivalently,

√
n ≥ 3.92σ

b

Upon squaring both sides we see that the sample size n must be chosen so that

n ≥
(

3.92σ

b

)2

■ Example 8.7
If the population standard deviation is σ = 2 and we want a 95 percent con-
fidence interval estimate of the mean μ that is of size less than or equal to
b = 0.01, how large a sample is needed?

Solution

We have to select a sample of size n, where

n ≥
(

3.92 × 2
0.1

)2

= (78.4)2 = 6146.6

That is, a sample of size 6147 or larger is needed. ■
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The analysis for determining the required sample size so that the length of a
100(1 − α) percent confidence interval is less than or equal to b is exactly the
same as given when α = 0.05. The result is as follows.

Determining the Necessary Sample Size

The length of the 100(1 − α) percent confidence interval estimator of the popu-
lation mean will be less than or equal to b when the sample size n satisfies

n ≥
(

2za/2σ

b

)2

The confidence interval estimator is

X ± za/2
σ√
n

■ Example 8.8
From past experience it is known that the weights of salmon grown at a com-
mercial hatchery are normal with a mean that varies from season to season but
with a standard deviation that remains fixed at 0.3 pounds. If we want to be 90
percent certain that our estimate of the mean weight of a salmon is correct to
within ±0.1 pounds, how large a sample is needed? What if we want to be 99
percent certain?

Solution

Since the 90 percent confidence interval estimator from a sample of size n will
be X ± 1.645σ/

√
n, it follows that we can be 90 percent confident that the point

estimator X will be within ±0.1 of μ whenever the length of this confidence
interval is less than or equal to 0.2 (see Fig. 8.6). Hence, from the preceding we
see that n must be chosen so that

n ≥
(

2 × 1.645 × 0.3
0.2

)2

= 24.35

That is, a sample size of at least 25 is required.

On the other hand, if we wanted to be 99 percent certain that X will be within
0.1 pounds of the true mean, then since z0.005 = 2.576, the sample size n would

FIGURE 8.6
Confidence interval centered at X. If length of interval is 2L, then X is within L of any point in the interval.
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need to satisfy

n ≥
(

2 × 2.576 × 0.3
0.2

)2

= 59.72

That is, a sample of size 60 or more is needed. ■

In deriving confidence interval estimators of a normal mean whose variance σ2 is
known, we used the fact that X is normally distributed with mean μ and standard
deviation σ/

√
n. However, by the central limit theorem, this will remain approx-

imately true for the sample mean of any population distribution provided the
sample size n is relatively large (n ≥ 30 is almost always sufficiently large). As a
result, we can use the interval X ± za/2σ/

√
n as a 100(1 − α) percent confidence

interval estimator of the population mean for any population provided the sample
size is large enough for the central limit theorem to apply.

■ Example 8.9
To estimate μ, the average nicotine content of a newly marketed cigarette,
44 of these cigarettes are randomly chosen, and their nicotine contents are
determined.

(a) If the average nicotine finding is 1.74 milligrams, what is a 95 percent
confidence interval estimator of μ?

(b) How large a sample is necessary for the length of the 95 percent confidence
interval to be less than or equal to 0.3 milligrams?

Assume that it is known from past experience that the standard deviation of the
nicotine content of a cigarette is equal to 0.7 milligrams.

Solution

(a) Since 44 is a large sample size, we do not have to suppose that the popu-
lation distribution is normal to assert that a 95 percent confidence interval
estimator of the population mean is

X ± z0.025
σ√
n

In this case, the estimator reduces to

1.74 ± 1.96(0.7)√
44

= 1.74 ± 0.207

That is, we can assert with 95 percent confidence that the average amount
of nicotine per cigarette lies between 1.533 and 1.947 milligrams.
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(b) The length of the 95 percent confidence interval estimate will be less than
or equal to 0.3 if the sample size n is large enough that

n ≥
(

2 × 1.96 × 0.7
0.3

)2

= 83.7

That is, a sample size of at least 84 is needed. ■

8.5.1 Lower and Upper Confidence Bounds
Sometimes we are interested in making a statement to the effect that a population
mean is, with a given degree of confidence, greater than some stated value. To
obtain such a lower confidence bound for the population mean, we again use the
fact that

Z = √
n

X − μ

σ

has a standard normal distribution. As a result, it follows that (see Fig. 8.7)

P

{√
n

X − μ

σ
< zα

}
= 1 − α

which can be rewritten as

P
{
μ > X − zα

σ√
n

}
= 1 − α

From this equation, we can conclude the following.

FIGURE 8.7
P{Z ≤ zα} = 1 − α.
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A 100(1 − α) percent lower confidence bound for the population mean μ is
given by

X − zα

σ√
n

That is, with 100(1 − α) percent confidence, we can assert that

μ > X − zα

σ√
n

■ Example 8.10
Suppose in Example 8.8 that we want to specify a value that, with 95 percent
confidence, is less than the average weight of a salmon. If a sample of 50 salmon
yields an average weight of 5.6 pounds, determine this value.

Solution

We are asked to find a 95 percent lower confidence bound for μ. By the
preceding analysis this will be given by

X − z0.05
σ√
n

Since z0.05 = 1.645, σ = 0.3, n = 50, and X = 5.6, the lower confidence bound
will equal

5.6 − 1.645
0.3√

50
= 5.530

That is, we can assert, with 95 percent confidence, that the mean weight of a
salmon is greater than 5.530 pounds. ■

We can also derive a 100(1 − α) percent upper confidence bound for μ. The result
is the following.

A 100(1 − α) percent upper confidence bound for the population mean μ is
given by

X + zα
σ√
n

That is, with 100(1 − α) percent confidence, we can assert that

μ < X + zα

σ√
n
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■ Example 8.11
In Example 8.9, find a 95 percent upper confidence bound for μ.

Solution

A 95 percent upper confidence bound is given by

X + z0.05
σ√
n

= 1.74 + 1.645
0.7√

44
= 1.914

That is, we can assert with 95 percent confidence that the average nicotine
content is less than 1.914 milligrams. ■

PROBLEMS

1. An electric scale gives a reading equal to the true weight plus a random
error that is normally distributed with mean 0 and standard deviation
σ = 0.1 ounces. Suppose that the results of five successive weighings
of the same object are as follows: 3.142, 3.163, 3.155, 3.150, 3.141.
(a) Determine a 95 percent confidence interval estimate of the true

weight.
(b) Determine a 99 percent confidence interval estimate of the true

weight.
2. Suppose that a hospital administrator states that a statistical experi-

ment has indicated that “With 90 percent certainty, the average
weight at birth of all boys born at the certain hospital is between 6.6
and 7.2 pounds.” How would you interpret this statement?

3. The polychlorinated biphenyl (PCB) concentration of a fish caught in
Lake Michigan was measured by a technique that is known to result
in an error of measurement that is normally distributed with stan-
dard deviation 0.08 parts per million. If the results of 10 independent
measurements of this fish are

11.2, 12.4, 10.8, 11.6, 12.5, 10.1, 11.0, 12.2, 12.4, 10.6

give a 95 percent confidence interval estimate of the PCB level of this
fish.

4. Suppose in Prob. 3 that 40 measurements are taken, with the same
average value resulting as in Prob. 3. Again determine a 95 percent
confidence interval estimate of the PCB level of the fish tested.

5. The life of a particular brand of television picture tube is known to be
normally distributed with a standard deviation of 400 hours. Suppose
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that a random sample of 20 tubes resulted in an average lifetime of
9000 hours. Obtain a
(a) 90 percent
(b) 95 percent
confidence interval estimate of the mean lifetime of such a tube.

6. An engineering firm manufactures a space rocket component that
will function for a length of time that is normally distributed with
a standard deviation of 3.4 hours. If a random sample of nine such
components has an average life of 10.8 hours, find a
(a) 95 percent
(b) 99 percent
confidence interval estimate of the mean length of time that these
components function.

7. The standard deviation of test scores on a certain achievement test is
11.3. A random sample of 81 students had a sample mean score of 74.6.
Find a 90 percent confidence interval estimate for the average score of
all students.

8. In Prob. 7, suppose the sample mean score was 74.6 but the sample
was of size 324. Again find a 90 percent confidence interval estimate.

9. The standard deviation of the lifetime of a certain type of lightbulb is
known to equal 100 hours. A sample of 169 such bulbs had an average
life of 1350 hours. Find a
(a) 90 percent
(b) 95 percent
(c) 99 percent
confidence interval estimate of the mean life of this type of bulb.

10. The average life of a sample of 10 tires of a certain brand was 28,400
miles. If it is known that the lifetimes of such tires are normally dis-
tributed with a standard deviation of 3300 miles, determine a 95
percent confidence interval estimate of the mean life.

11. For Prob. 10, how large a sample would be needed to obtain a 99
percent confidence interval estimator of smaller size than the interval
obtained in the problem?

12. A pilot study has revealed that the standard deviation of workers’
monthly earnings in the chemical industry is $180. How large a sample
must be chosen to obtain an estimator of the mean salary that, with 90
percent confidence, will be correct to within ±$20?

13. Repeat Prob. 12 for when you require 95 percent confidence.
14. A college admissions officer wanted to know the average Scholastic

Aptitude Test (SAT) score of this year’s class of entering students.
Rather than checking all student folders, she decided to use a ran-
domly chosen sample. If it is known that student scores are normally
distributed with a standard deviation of 70, how large a random
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sample is needed if the admissions officer wants to obtain a 95 percent
confidence interval estimate that is of length 4 or less?

15. In Prob. 7, find a
(a) 90 percent lower confidence bound
(b) 95 percent lower confidence bound
(c) 95 percent upper confidence bound
(d) 99 percent upper confidence bound
for the average test score.

16. The following are data from a normal population with standard devia-
tion 3:

5, 4, 8, 12, 11, 7, 14, 12, 15, 10

(a) Find a value that, with 95 percent confidence, is larger than the
population mean.

(b) Find a value that, with 99 percent confidence, is smaller than the
population mean.

17. Suppose, on the basis of the sample data noted in Prob. 10, that the
tire manufacturer advertises, “With 95 percent certainty, the average
tire life is over 26,000 miles.” Is this false advertising?

8.6 INTERVAL ESTIMATORS OF THE MEAN OF
A NORMAL POPULATION WITH UNKNOWN
POPULATION VARIANCE

Suppose now that we have a sample X1, . . . , Xn from a normal population having
an unknown mean μ and an unknown standard deviation σ , and we want to use
the sample data to obtain an interval estimator of the population mean μ.

To start, let us recall how we obtained the interval estimator of μ when σ was
assumed to be known. This was accomplished by using the fact that Z, the
standardized version of the point estimator X, which is given by

Z = √
n

X − μ

σ

has a standard normal distribution. Since σ is no longer known, it is natural to
replace it by its estimator S, the sample standard deviation, and thus to base our
confidence interval on the variable Tn−1 given by

Tn−1 = √
n

X − μ

S

The random variable Tn−1 just defined is said to be a t random variable having
n − 1 degrees of freedom.



360 CHAPTER 8: Estimation

The random variable

Tn−1 = √
n

X − μ

S

is said to be a t random variable having n − 1 degrees of freedom.

The reason that Tn−1 has n − 1 degrees of freedom is that the sample variance
S2, which is being used to estimate σ 2, has, when multiplied by (n − 1)/σ 2, a
chi-squared distribution with n − 1 degrees of freedom (see Sec. 7.6).

The density function of a t random variable, like a standard normal random
variable, is symmetric about zero. It looks similar to a standard normal density,
although it is somewhat more spread out, resulting in its having “larger tails.” As
the degree of freedom parameter increases, the density becomes more and more
similar to the standard normal density. Figure 8.8 depicts the probability density
functions of t random variables for a variety of different degrees of freedom.

The quantity tn,α is defined to be such that

P{Tn > tn,α} = α

where Tn is a t random variable with n degrees of freedom (see Fig. 8.9).

Since P{Tn < tn,α} = 1 − α, it follows that tn,α is the 100(1 − α) percentile of the
t distribution with n degrees of freedom. For instance, P{Tn < tn,0.05} = 0.095,

FIGURE 8.8
Standard normal and t distributions.
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FIGURE 8.9
The t density percentile: P{Tn > tn,α} = α.

showing that 95 percent of the time a t random variable having n degrees of free-
dom will be less than tn,0.05. The quantity tn,α is analogous to the quantity zα of
the standard normal distribution.

Values of tn,α for various values of n and α are presented in App. D, Table D.2. In
addition, Program 8-1 will compute the value of these percentiles. Program 8-2
can also be used to compute the probabilities of a t random variable.

■ Example 8.12
Find t8,0.05.

Solution

The value of t8,0.05 can be obtained from Table D.2. The following is taken from
that table.

Values of tn,α

↓
n α = 0.10 α = 0.05 α = 0.025

6 1.440 1.943 2.447
7 1.415 1.895 2.365

→ 8 1.397 1.860 2.306
9 1.383 1.833 2.262

Reading down the α = 0.05 column for the row n = 8 shows that t8,0.05 =
1.860. ■

By the symmetry of the t distribution about zero, it follows (see Fig. 8.10) that

P
{|Tn| ≤ tn,α/2

} = P
{−tn,α/2 ≤ Tn ≤ tn,α/2

} = 1 − α
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FIGURE 8.10
P{|Tn| ≤ tn,α/2} = P{−tn,α/2 ≤ Tn ≤ tn,α/2} = 1 − α.

Hence, upon using the result that
√

n
(

X − μ
)
/S has a t distribution with n − 1

degrees of freedom, we see that

P

{√
n

∣∣X − μ
∣∣

S
≤ tn−1,α/2

}
= 1 − α

In exactly the same manner as we did when σ was known, we can show that the
preceding equation is equivalent to

P
{

X − tn−1,α/2
S√
n

≤ μ ≤ X + tn−1,α/2
S√
n

}
= 1 − α

Therefore, we showed the following.

A 100(1 − σ) percent confidence interval estimator for the population mean μ is
given by the interval

X ± tn−1,α/2
S√
n

Program 8-3 will compute the desired confidence interval estimate for a given
data set.

■ Example 8.13
The Environmental Protection Agency (EPA) is concerned about the amounts
of PCB, a toxic chemical, in the milk of nursing mothers. In a sample of 20
women, the amounts (in parts per million) of PCB were as follows:

16, 0, 0, 2, 3, 6, 8, 2, 5, 0, 12, 10, 5, 7, 2, 3, 8, 17, 9, 1

Use these data to obtain a

(a) 95 percent confidence interval
(b) 99 percent confidence interval

of the average amount of PCB in the milk of nursing mothers.
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Solution

A simple calculation yields that the sample mean and sample standard devia-
tion are

X = 5.8 S = 5.085

Since 100(1 − α) equals 0.95 when α = 0.05 and equals 0.99 when α = 0.01,
we need the values of t19,0.025 and t19,0.005. From Table D.2 we see that

t19,0.025 = 2.093 t19,0.005 = 2.861

Hence, the 95 percent confidence interval estimate of μ is

5.8 ± 2.093
5.085√

20
= 5.8 ± 2.38

and the 99 percent confidence interval estimate of μ is

5.8 ± 2.861
5.085√

20
= 5.8 ± 3.25

That is, we can be 95 percent confident that the average amount of PCB in
the milk of nursing mothers is between 3.42 and 8.18 parts per million; and
we can be 99 percent confident that it is between 2.55 and 9.05 parts per
million.

This could also have been solved by running Program 8-3, which yields the
following.
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■

8.6.1 Lower and Upper Confidence Bounds
Lower and upper confidence bounds for μ are also easily derived, with the
following results.

A 100(1 − α) percent lower confidence bound for μ is given by

X − tn−1,α
S√
n
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That is, with 100(1 − α) percent confidence the population mean is greater than

X − tn−1,α
S√
n

A 100(1 − α) percent upper confidence bound for μ is given by

X + tn−1,α
S√
n

That is, with 100(1 − α) percent confidence the population mean is less than

X + tn−1,α
S√
n

■ Example 8.14
In Example 8.13, find a

(a) 95 percent upper confidence bound
(b) 99 percent lower confidence bound

for the average amount of PCB in nursing mothers.

Solution

The sample size in Example 8.13 was equal to 20, and the values of the sample
mean and the sample standard deviation were

X = 5.8 S = 5.085

(a) From Table D.2 we see that

t19,0.05 = 1.729

Therefore, the 95 percent upper confidence bound is

5.8 + 1.729
5.085√

20
= 7.77

That is, we can be 95 percent confident that the average PCB level in the
milk of nursing mothers is less than 7.77 parts per million.

(b) From Table D.2,

t19,0.01 = 2.539
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Therefore, the 99 percent lower confidence bound is

5.8 − 2.539
5.085√

20
= 2.91

and so we can be 99 percent confident that the average PCB level in the
milk of nursing mothers is greater than 2.91 parts per million. ■

Program 8-3 will also compute upper and lower confidence bounds having any
desired confidence level.

PROBLEMS

1. The National Center for Educational Statistics recently chose a random
sample of 2000 newly graduated college students and queried each
one about the time it took to complete his or her degree. If the sample
mean was 5.2 years with a sample standard deviation of 1.2 years,
construct
(a) A 95 percent confidence interval estimate of the mean completion

time of all newly graduated students
(b) A 99 percent confidence interval estimate

2. The manager of a shipping department of a mail-order operation
located in New York has been receiving complaints about the length
of time it takes for customers in California to receive their orders. To
learn more about this potential problem, the manager chose a random
sample of 12 orders and then checked to see how many days it took to
receive each of these orders. The resulting data were

15, 20, 10, 11, 7, 12, 9, 14, 12, 8, 13, 16

(a) Find a 90 percent confidence interval estimate for the mean time
it takes California customers to receive their orders.

(b) Find a 95 percent confidence interval estimate.
3. A survey was instituted to estimate μ, the mean salary of middle-

level bank executives. A random sample of 15 executives yielded the
following yearly salaries (in units of $1000):

88, 121, 75, 39, 52, 102, 95, 78, 69, 82, 80, 84, 72, 115, 106

Find a
(a) 90 percent
(b) 95 percent
(c) 95 percent
confidence interval estimate of μ.
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4. The numbers of riders on an intercity bus on 12 randomly chosen
days are

47, 66, 55, 53, 49, 65, 48, 44, 50, 61, 60, 55

(a) Estimate the mean number of daily riders.
(b) Estimate the standard deviation of the daily number of riders.
(c) Give a 95 percent confidence interval estimate for the mean num-

ber of daily riders.
5. Use the data of Prob. 1 of Sec. 8.2 to obtain a

(a) 95 percent
(b) 99 percent
confidence interval estimate of the average weight of all participants
of the 2004 Boston Marathon.

6. A random sample of 30 General Electric transistors resulted in an
average lifetime of 1210 hours with a sample standard deviation of
92 hours. Compute a
(a) 90 percent
(b) 95 percent
(c) 99 percent
confidence interval estimate of the mean life of all General Electric
transistors.

7. In Prob. 10 of Sec. 8.4 determine a 95 percent confidence interval
estimate of the population mean burn temperature.

8. The following are the losing scores in seven randomly chosen Super
Bowl football games:

10, 16, 20, 17, 31, 19, 14

Construct a 95 percent confidence interval estimate of the average
losing score in a Super Bowl game.

9. The following are the winning scores in eight randomly chosen
Masters Golf Tournaments:

285, 279, 280, 288, 279, 286, 284, 279

Use these data to construct a 90 percent confidence interval estimate
of the average winning score in the Masters.

10. All the students at a certain school are to be given a psychological
task. To determine the average time it will take a student to perform
this task, a random sample of 20 students was chosen and each was
given the task. If it took these students an average of 12.4 minutes to
complete the task with a sample standard deviation of 3.3 minutes,
find a 95 percent confidence interval estimate for the average time it
will take all students in the school to perform this task.
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11. A large company self-insures its large fleet of cars against collisions.
To determine its mean repair cost per collision, it has randomly chosen
a sample of 16 accidents. If the average repair cost in these accidents
is $2200 with a sample standard deviation of $800, find a 90 percent
confidence interval estimate of the mean cost per collision.

12. An anthropologist measured the heights (in inches) of a random sam-
ple of 64 men of a certain tribe, and she found that the sample mean
was 72.4 and the sample standard deviation was 2.2. Find a
(a) 95 percent
(b) 99 percent
confidence interval estimate of the average height of all men of the
tribe.

13. To determine the average time span of a phone call made during mid-
day, the telephone company has randomly selected a sample of 1200
such calls. The sample mean of these calls is 4.7 minutes, and the
sample standard deviation is 2.2 minutes. Find a
(a) 90 percent
(b) 95 percent
confidence interval estimate of the mean length of all such calls.

14. Each of 20 science students independently measured the melting point
of lead. The sample mean and sample standard deviation of these
measurements were (in degrees Celsius) 330.2 and 15.4, respectively.
Construct a
(a) 95 percent
(b) 99 percent
confidence interval estimate of the true melting point of lead.

15. A random sample of 300 Citibank VISA cardholder accounts indicated
a sample mean debt of $1220 with a sample standard deviation of $840.
Construct a 95 percent confidence interval estimate of the average
debt of all cardholders.

16. To obtain information about the number of years that Chicago police
officers have been on the job, a sample of 46 officers was chosen.
Their average time on the job was 14.8 years with a sample standard
deviation of 8.2 years. Determine a
(a) 90 percent
(b) 95 percent
(c) 99 percent
confidence interval estimate for the average time on the job of all
Chicago police officers.

17. The following statement was made by an “expert” in statistics. “If a
sample of size 9 is chosen from a normal distribution having mean μ,
then we can be 95 percent certain that μ will lie within X ± 1.96S/3
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where X is the sample mean and S is the sample standard deviation.”
Is this statement correct?

18. The geometric random walk model for the price of a stock supposes
that the successive differences in the logarithms of the closing prices
of the stock constitute a sample from a normal population. This implies
that the percentage changes in the successive closing prices constitute
a random sample from a population (as opposed to the linear random
walk model given in Problem 13 of Sec. 8.4, which supposes that the
magnitudes of the changes constitute a random sample). Thus, for
instance, under the geometric random walk model, the chance that a
stock whose price is 100 will increase to 102 is the same as the chance
when its price is 50 that it will increase to 51.

The following data give the logarithms and the successive differences
of the logarithms of the closing crude oil prices of 20 consecutive trad-
ing days in 1994. Assuming the applicability of the geometric random
walk model, use them to construct a 95 percent confidence interval for
the population mean.

Price log (price) log (price) difference

17.50 2.862201

17.60 2.867899 5.697966E − 03

17.81 2.87976 1.186109E − 02

17.67 2.871868 −7.891655E − 03

17.53 2.863914 −7.954597E − 03

17.39 2.855895 −8.018494E − 03

17.12 2.840247 −1.564789E − 02

16.71 2.816007 −2.424002E − 02

16.70 2.815409 −5.986691E − 04

16.83 2.823163 7.754326E − 03

17.21 2.84549 2.232742E − 02

17.24 2.847232 1.741886E − 03

17.22 2.846071 −1.16086E − 03

17.67 2.871868 2.579689E − 02

17.83 2.880883 9.01413E − 03

17.67 2.871868 −9.01413E − 03

17.55 2.865054 −6.81448E − 03

17.68 2.872434 7.380247E − 03

17.98 2.88926 1.682591E − 02

18.39 2.911807 2.254701E − 02
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19. Twelve successively tested lightbulbs functioned for the following
lengths of time (measured in hours):

35.6, 39.2, 18.4, 42.0, 45.3, 34.5, 27.9, 24.4, 19.9, 40.1, 37.2, 32.9

(a) Give a 95 percent confidence interval estimate of the mean life of
a lightbulb.

(b) A claim has been made that the results of this experiment indicate
that “One can be 99 percent certain that the mean life exceeds 30
hours.” Do you agree with this statement?

20. A school principal was instructed by his board to determine the aver-
age number of school days missed by students in the past year. Rather
than making a complete survey of all students, the principal drew
a random sample of 50 names. He then discovered that the average
number of days missed by these 50 students was 8.4 with a sample
standard deviation of 5.1.
(a) What is a 95 percent confidence interval estimate of the average

number of days missed by all students?
(b) At a subsequent board meeting the principal stated, “With 95 per-

cent confidence I can state that the average number of days missed
is less than _____.” Fill in the missing number.

21. In Prob. 3, suppose we want to assert, with 99 percent confidence, that
the average salary is greater than ν1. What is the appropriate value of
ν1? What would the value of ν2 be if we wanted to assert, with 99
percent confidence, that the average salary was less than ν2?

22. In Prob. 2, find a number that is, with 95 percent confidence, greater
than the average time it takes California customers to receive their
orders.

23. To convince a potential buyer of the worth of her company, an exec-
utive has ordered a survey of the daily cash receipts of the business.
A sample of 14 days revealed the following values (in units of $100):

33, 12, 48, 40, 26, 17, 29, 38, 34, 41, 25, 51, 49, 34

If the executive wants to present these data in the most favorable way,
should she present a confidence interval estimate or a one-sided con-
fidence bound? If one-sided, should it be an upper or a lower bound? If
you were the executive, how would you complete the following? “I am
95 percent confident that …”

24. To calm the concerns of a group of citizens worried about air pollution
in their neighborhood, a government inspector has obtained sample
data relating to carbon monoxide concentrations. The data, in parts
per million, are as follows:

101.4, 103.3, 101.6, 111.6, 98.4, 95.0, 93.6
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If these numbers appear reasonably low to the inspector, how should
he, when speaking “with 99 percent confidence,” present the results
to the group?

8.7 INTERVAL ESTIMATORS OF A POPULATION
PROPORTION

Suppose that we desire an interval estimator of p, the proportion of individuals
in a large population who have a certain characteristic. Suppose further that a
random sample of size n is chosen, and it is determined that X of the individuals
in the sample have the characteristic. If we let p̂ = X/n denote the proportion
of the sample having the characteristic, then as previously noted in Sec. 8.3, the
expected value and standard deviation of p̂ are

E[p̂] = p

SD(p̂) =
√

p(1 − p)
n

When n is large enough that both np and n(1 − p) are greater than 5, we can use the
normal approximation to the binomial distribution to assert that an approximate
100(1 − α) percent confidence interval estimator of p is given by

p̂ ± zα/2SD(p̂)

Although the standard deviation of p̂ is not known, since it involves the unknown
proportion p, we can estimate it by replacing p by its estimator p̂ in the expression

for SD(p̂). That is, we can estimate SD(p̂) by
√

p̂(1 − p̂)/n. This gives rise to the
following.

An approximate 100(1 − α) percent confidence interval estimator of p is given by

p̂ ± zα/2

√
p̂(1 − p̂)

n

where p̂ is the proportion of members of the sample of size n who have the
characteristic of interest.

■ Example 8.15
Out of a random sample of 100 students at a university, 82 stated that they were
nonsmokers. Based on this, construct a 99 percent confidence interval estimate
of p, the proportion of all the students at the university who are nonsmokers.
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Solution

Since 100(1 − α) = 0.99 when α = 0.01, we need the value of zα/2 = z0.005,
which from Table D.2 is equal to 2.576. The 99 percent confidence interval
estimate of p is thus

0.82 ± 2.576

√
0.82(1 − 0.82)

100

or

0.82 ± 0.099

That is, we can assert with 99 percent confidence that the true percentage of
nonsmokers is between 72.1 and 91.9 percent. ■

■ Example 8.16
On December 24, 1991, The New York Times reported that a poll indicated that
46 percent of the population was in favor of the way that President Bush was
handling the economy, with a margin of error of ±3 percent. What does this
mean? Can we infer how many people were questioned?

Solution

It has become common practice for the news media to present 95 percent confi-
dence intervals. That is, unless it is specifically mentioned otherwise, it is almost
always the case that the interval quoted represents a 95 percent confidence
interval. Since Z0.025 = 1.96, a 95 percent confidence interval for p is given by

p̂ ± 1.96

√
p̂(1 − p̂)

n

where n is the sample size. Since p̂, the proportion of those in the random
sample who are in favor of the President’s handling of the economy, is equal
to 0.46, it follows that the 95 percent confidence interval estimate of p, the
proportion of the population in favor, is

0.46 ± 1.96

√
(0.46)(0.54)

n

Since the margin of error is ±3 percent, it follows that

1.96

√
(0.46)(0.54)

n
= 0.03
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Squaring both sides of this equation shows that

(1.96)2 (0.46)(0.54)

n
= (0.03)2

or

n = (1.96)2(0.46)(0.54)

(0.03)2 = 1060.3

That is, approximately 1060 people were sampled, and 46 percent were in favor
of President Bush’s handling of the economy. ■

8.7.1 Length of the Confidence Interval
Since the 100(1 − α) percent confidence interval for p goes from

p̂ − zα/2

√
p̂(1 − p̂)

n
to p̂ + zα/2

√
p̂(1 − p̂)

n

it follows that the length of the interval is as follows.

Statistics in Perspective

Case Study

The Aid to Families with Dependent Children (AFDC) program recognizes that errors
are inevitable, and so not every family that it funds actually meets the eligibility require-
ments. However, California holds its counties responsible for overseeing the eligibility
requirements and has set a maximum error rate of 4 percent.That is, if over 4 percent of
the funded cases in a county are found to be ineligible, then a financial penalty is placed
upon the county, with the amount of the penalty determined by the error percentage.
Since the state does not have the resources to check every case for eligibility, it uses
random sampling to estimate the error percentages.

In 1981, a random sample of 152 cases was chosen in Alameda County, California, and 9
were found to be ineligible. Based on this estimated percentage of 100 × 9/152 = 5.9
percent, a penalty of $949,597 was imposed by the state on the county. The county
appealed to the courts, arguing that 9 errors in 152 trials were not sufficient evidence
to prove that its error percentage exceeded 4 percent. With help from statistical experts,
the court decided that it was unfair to take the point estimate of 5.9 percent as the true
error percentage of the county. The court decided it would be fairer to use the lower end
of the 95 percent confidence interval estimate. Since the 95 percent confidence interval
estimate of the proportion of all funded cases that are ineligible is

0.059 ± 1.96

√
0.059(1 − 0.059)

152
= 0.059 ± 0.037
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Statistics in Perspective (continued)
it follows that the lower end of this interval is 0.059 − 0.037 = 0.022. Since this lower
confidence limit is less than the acceptable value of 0.04, the court overturned the state’s
decision and ruled that no penalties were owed.

The length of a 100(1 − α) percent confidence interval is

2zα/2

√
p̂(1 − p̂)

n

where p̂ is the proportion of the sample having the characteristic.

Since it can be shown that the product p̂(1 − p̂) is always less than or equal to 1/4,
it follows from the preceding expression that an upper bound on the length of the
confidence interval is given by 2zα/2

√
1/(4n), which is equivalent to the statement

Length of 100(1 − α) percent confidence interval ≤ zα/2√
n

The preceding bound can be used to determine the appropriate sample size
needed to obtain a confidence interval whose length is less than a specified value.
For instance, suppose that we want to determine a sufficient sample size so that
the length of the resulting 100(1 − α) percent confidence interval is less than some
fixed value b. In this case, upon using the preceding inequality, we can conclude
that any sample size n for which

zα/2√
n

< b

will suffice. That is, n must be chosen so that

√
n >

zα/2

b

Upon squaring both sides, we see that n must be such that

n >
(zα/2

b

)2

■ Example 8.17
How large a sample is needed to ensure that the length of the 90 percent
confidence interval estimate of p is less than 0.01?
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Solution

To guarantee that the length of the 90 percent confidence interval estimator is
less than 0.01, we need to choose n so that

n >
( z0.05

0.01

)2

Since z0.05 = 1.645, this gives

n >(164.5)2 = 27, 062.25

That is, the sample size needs to be at least 27,063 to ensure that the length of
the 90 percent confidence interval will be less than 0.01.

If we let L denote the length of the confidence interval for p,

← L →
p̂ − L

2 p̂ p̂ + L
2

then since this interval is centered at p̂, it follows that p̂ is within L/2 of any point
in the interval. Therefore, if p lies in the interval, then the distance from p̂ to p
is at most L/2. In Example 8.17 we can thus assert, with 90 percent confidence,
that for a sample size as large as 27,063 the observed sample proportion will
be within 0.005 of the true population proportion. ■

8.7.2 Lower and Upper Confidence Bounds
Lower and upper confidence bounds for p are easily derived and are given as
follows.

A 100(1 − α) percent lower confidence bound for p is given by

p̂ − zα

√
p̂(1 − p̂)

n

That is, with 100(1 − α) percent confidence, the proportion of the population that
has the characteristic is greater than this value.

A 100(1 − α) percent upper confidence bound for p is given by

p̂ + zα

√
p̂(1 − p̂)

n

That is, with 100(1 − α) percent confidence, the proportion of the population that
has the characteristic is less than this value.
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■ Example 8.18
A random sample of 125 individuals working in a large city indicated that 42 are
dissatisfied with their working conditions. Construct a 95 percent lower confi-
dence bound on the percentage of all workers in that city who are dissatisfied
with their working conditions.

Solution

Since z0.05 = 1.645 and 42/125 = 0.336, the 95 percent lower bound is
given by

0.336 − 1.645

√
0.336(0.664)

125
= 0.2665
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That is, we can be 95 percent certain that over 26.6 percent of all workers are
dissatisfied with their working conditions. ■

PROBLEMS

1. A random sample of 500 California voters indicated that 302 are in
favor of the death penalty. Construct a 99 percent confidence interval
estimate of the proportion of all California voters in favor of the death
penalty.

2. It is felt that first-time heart attack victims are particularly vulnerable
to additional heart attacks during the year following the first attack.
To estimate the proportion of victims who suffer an additional attack
within 1 year, a random sample of 300 recent heart attack patients was
tracked for 1 year.
(a) If 46 of them suffered an attack within this year, give a 95 percent

confidence interval estimate of the desired proportion.
(b) Repeat part (a) assuming 92 suffered an attack within the year.

3. To estimate p, the proportion of all newborn babies who are male,
the gender of 10,000 newborn babies was noted. If 5106 were male,
determine a
(a) 90 percent
(b) 99 percent
confidence interval estimate of p.

4. A poll of 1200 voters in 1980 gave Ronald Reagan 57 percent of the vote.
Construct a 99 percent confidence interval estimate of the proportion
of the population who favored Reagan at the time of the poll.

5. A random sample of 100 Los Angeles residents indicated that 64 were
in favor of strict gun control legislation. Determine a 95 percent confi-
dence interval estimate of the proportion of all Los Angeles residents
who favor gun control.

6. A random sample of 100 recent recipients of Ph.D.s in science indi-
cated that 42 were optimistic about their future possibilities in science.
Find a
(a) 90 percent
(b) 99 percent
confidence interval estimate of the proportion of all recent recipients
of Ph.D.s in science who are optimistic.

7. In Prob. 1 of Sec. 8.3, find a 95 percent confidence interval estimate of
the proportion of North Americans who believed the Communist party
would have won a free election in the Soviet Union in 1985.

8. Using the data of Prob. 4 of Sec. 8.3, find a 90 percent confidence
interval estimate of the probability of winning at solitaire.
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9. A wine importer has the opportunity to purchase a large consignment
of 1947 Chateau Lafite Rothschild wine. Because of the wine’s age,
some of the bottles may have turned to vinegar. However, the only way
to determine whether a bottle is still good is to open it and drink some.
As a result, the importer has arranged with the seller to randomly
select and open 20 bottles. Suppose 3 of these bottles are spoiled. Con-
struct a 95 percent confidence interval estimate of the proportion of the
entire consignment that is spoiled.

10. A sample of 100 cups of coffee from a coffee machine is collected, and
the amount of coffee in each cup is measured. Suppose that 9 cups
contain less than the amount of coffee specified on the machine. Con-
struct a 90 percent confidence interval estimate of the proportion of all
cups dispensed that give less than the specified amount of coffee.

11. A random sample of 400 librarians included 335 women. Give a 95 per-
cent confidence interval estimate of the proportion of all librarians who
are women.

12. A random sample of 300 authors included 117 men. Give a 95 per-
cent confidence interval estimate of the proportion of all authors who
are men.

13. A random sample of 9 states (West Virginia, New York, Idaho, Texas,
New Mexico, Indiana, Utah, Maryland, and Maine) indicated that in 2
of these states the 1990 per capita income exceeded $20,000. Construct
a 90 percent confidence interval estimate of the proportion of all states
that had a 1990 per capita income in excess of $20,000.

14. A random sample of 1000 psychologists included 457 men. Give a 95
percent confidence interval estimate of the proportion of all psycholo-
gists who are men.

15. A random sample of 500 accountants included 42 African Americans,
18 Hispanic Americans, and 246 women. Construct a 95 percent
confidence interval estimate of the proportion of all accountants
who are
(a) African American
(b) Hispanic American
(c) Female

16. In a poll conducted on January 22, 2004, out of a random sample of
600 people, 450 stated they were in favor of the war against Iraq.
Construct a
(a) 90 percent
(b) 95 percent
(c) 99 percent
confidence interval estimate of p, the proportion of the population in
favor of the war at the time.
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17. The poll mentioned in Prob. 16 was quoted in the January 28, 2004,
San Francisco Chronicle, where it was stated that “75 percent of the
population are in favor, with a margin of error of plus or minus 4
percentage points.”
(a) Explain why the Chronicle should have stated that the margin of

error is plus or minus 3.46 percentage points.
(b) Explain how the Chronicle erred to come up with the value of

±4 percent.
18. A recent newspaper poll indicated that candidate A is favored over

candidate B by a 53-to-47 percentage, with a margin of error of ±4
percent. The newspaper then stated that since the 6-point gap is larger
than the margin of error, its readers can be certain that candidate A is
the current choice. Is this reasoning correct?

19. A market research firm is interested in determining the proportion of
households that are watching a particular sporting event. To accom-
plish this task, it plans on using a telephone poll of randomly chosen
households.
(a) How large a sample is needed if the company wants to be

90 percent certain that its estimate is correct to within ±0.02?
(b) Suppose there is a sample whose size is the answer in part (a).

If 23 percent of the sample were watching the sporting event, do
you expect that the 90 percent confidence interval will be exactly
of length 0.02, larger than 0.02, or smaller than 0.02?

(c) Construct the 90 percent confidence interval for part (b).
20. What is the smallest number of death certificates we must randomly

sample to estimate the proportion of the U.S. population that dies
of cancer, if we want the estimate to be correct to within 0.01 with
95 percent confidence?

21. Suppose in Prob. 20 that it is known that roughly 20 percent of all
deaths are due to cancer. Using this information, determine approxi-
mately how many death certificates will have to be sampled to meet
the requirements of Prob. 20.

22. Use the data of Prob. 14 to obtain a 95 percent lower confidence bound
for the proportion of all psychologists who are men.

23. Use the data of Prob. 11 to obtain a 95 percent upper confidence bound
for the proportion of all librarians who are women.

24. A manufacturer is planning on putting out an advertisement claim-
ing that over x percent of the users of his product are satisfied with
it. To determine x, a random sample of 500 users was questioned. If
92 percent of these people indicated satisfaction and the manufacturer
wants to be 95 percent confident about the validity of the advertise-
ment, what value of x should be used in the advertisement? What value
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should be used if the manufacturer was willing to be only 90 percent
confident about the accuracy of the advertisement?

25. Use the data of Prob. 15 to obtain a
(a) 90 percent lower confidence bound
(b) 90 percent upper confidence bound
for the proportion of all accountants who are either African American
or Hispanic American.

26. In Prob. 16 construct a
(a) 95 percent upper confidence bound
(b) 95 percent lower confidence bound
for p, the proportion of the population in favor of the war at the time of
the poll.

27. Suppose in Prob. 9 that the importer has decided that purchase of the
consignment will be profitable if less than 20 percent of the bottles is
spoiled. From the data of this problem, should the importer be
(a) 95 percent certain
(b) 99 percent certain
that the purchase will be profitable?

28. Refer to the data in Prob. 5. Fill in the missing numbers for these
statements:
(a) With 95 percent confidence, more than _______ percent of all

Los Angeles residents favor gun control.
(b) With 95 percent confidence, less than _______ percent of all

Los Angeles residents favor gun control.

KEY TERMS

Estimator: A statistic used to approximate a population parameter. Sometimes
called a point estimator.

Estimate: The observed value of the estimator.

Unbiased estimator: An estimator whose expected value is equal to the parame-
ter that it is trying to estimate.

Standard error of an (unbiased) estimator: The standard deviation of the esti-
mator. It is an indication of how close we can expect the estimator to be to the
parameter.

Confidence interval estimator: An interval whose endpoints are determined
by the data. The parameter will lie within this interval with a certain degree
of confidence. This interval is usually centered at the point estimator of the
parameter.

100(1 − α) percent level of confidence: The long-term proportion of time that the
parameter will lie within the interval. Equivalently, before the data are observed,
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the interval estimator will contain the parameter with probability 1 − α; after
the data are observed, the resultant interval estimate contains the parameter
with 100(1 − α) percent confidence.

Lower confidence bound: A number, whose value is determined by the data,
which is less than a certain parameter with a given degree of confidence.

Upper confidence bound: A number, whose value is determined by the data,
which is greater than a certain parameter with a given degree of confidence.

t Random variable: If X1, . . . , Xn are a sample from a normal population having
mean μ, then the random variable

√
n

X − μ

S

is said to be a t random variable with n − 1 degrees of freedom, where X and S
are, respectively, the sample mean and sample standard deviation.

SUMMARY

The sample mean X is an unbiased estimator of the population mean μ. Its stan-
dard deviation, sometimes referred to as the standard error of X as an estimator of
μ, is given by

SD(X) = σ√
n

where σ is the population standard deviation.

The statistic p̂, equal to the proportion of a random sample having a given char-
acteristic, is the estimate of p, the proportion of the entire population with the
characteristic. The standard error of the estimate is

SD(p̂) =
√

p(1 − p)
n

where n is the sample size. The standard error can be estimated by√
p̂(1 − p̂)

n

The sample variance S2 is the estimator of the population variance σ 2. Corre-
spondingly, the sample standard deviation S is used to estimate the population
standard deviation σ .

If X1, . . . , Xn are a sample from a normal population having a known standard
deviation σ ,

X ± zα/2
σ√
n
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is a 100(1 − α) percent confidence interval estimator of the population mean μ.
The length of this interval, namely,

2zα/2
σ√
n

will be less than or equal to b when the sample size n is such that

n ≥
(

2zα/2σ

b

)2

A 100(1 − α) lower confidence bound for μ is given by

X − zα

σ√
n

That is, we can assert with 100(1 − α) percent confidence that

μ > X − zα

σ√
n

A 100(1 − α) upper confidence bound for μ is

X + zα

σ√
n

That is, we can assert with 100(1 − α) percent confidence that

μ < X + zα

σ√
n

If X1, . . . , Xn are a sample from a normal population whose standard deviation is
unknown, a 100(1 − α) percent confidence interval estimator of μ is

X ± tn−1,α/2
S√
n

In the preceding, tn−1,α/2 is such that

P
{
Tn−1 > tn−1,α/2

} = α

2

when Tn−1 is a t random variable with n − 1 degrees of freedom.

The 100(1 − α) percent lower and upper confidence bounds for μ are, respectively,
given by

X − tn−1,α
S√
n
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and

X + tn−1,α
S√
n

To obtain a confidence interval estimate of p, the proportion of a large population with
a specific characteristic, take a random sample of size n. If p̂ is the proportion of
the random sample that has the characteristic, then an approximate 100(1 − α)

percent confidence interval estimator of p is

p̂ ± zα/2

√
p̂(1 − p̂)

n

The length of this interval always satisfies

Length of confidence interval ≤ zα/2√
n

The distance from the center to the endpoints of the 95 percent confidence interval
estimator, that is, 1.96

√
p̂(1 − p̂)/n, is commonly referred to as the margin of error.

For instance, suppose a newspaper states that a new poll indicates that 64 percent
of the population consider themselves to be conservationists, with a margin of
error of ±3 percent. By this, the newspaper means that the results of the poll
yield that the 95 percent confidence interval estimate of the proportion of the
population who consider themselves to be conservationists is 0.64 ± 0.03.

REVIEW PROBLEMS

1. Which case would yield a more precise estimator of μ?
(a) A sample of size n from a population having mean 2μ and vari-

ance σ2

(b) A sample of size 2n from a population having mean μ and standard
deviation σ

2. The weights of ball bearings are normally distributed with standard
deviation 0.5 millimeters.
(a) How large a sample is needed if you want to be 95 percent certain

that your estimate of the mean weight of a ball bearing is correct
to within ±0.1 millimeters?

(b) Repeat (a) if you want the estimate to be correct to within ±0.01
millimeters.

(c) If a sample of size 8 yields the values

4.1, 4.6, 3.9, 3.3, 4.0, 3.5, 3.9, 4.2

give a 95 percent confidence interval estimate for the mean
weight.
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3. A random sample of 50 people from a certain population was asked
to keep a record of the amount of time spent watching television in
a specified week. If the sample mean of the resulting data was 24.4
hours and the sample standard deviation was 7.4 hours, give a 95 per-
cent confidence interval estimate for the average time spent watching
television by all members of the population that week.

4. Use the first 30 data values in App. A to give a 90 percent confi-
dence interval estimate of the average blood cholesterol level of all the
students on the list. Now break up the 30 data values into two groups—
one for the females and one for the males. Use the data for each gender
separately to obtain 90 percent confidence interval estimates for the
mean cholesterol level of the women and of the men. How much con-
fidence would you put in the assertion that the average levels for
both the men and the women lie within their respective 90 percent
confidence intervals?

5. A standardized test is given annually to all sixth-grade students in the
state of Washington. To find out the average score of students in her
district, a school supervisor selects a random sample of 100 students.
If the sample mean of these students’ scores is 320 and the sample
standard deviation is 16, give a 95 percent confidence interval estimate
of the average score of students in that supervisor’s district.

6. An airline is interested in determining the proportion of its customers
who are flying for reasons of business. If the airline wants to be
90 percent certain that its estimate will be correct to within 2 percent,
how large a random sample should it select?

7. The following data represent the number of drinks sold from a vend-
ing machine on a sample of 20 days:

56, 44, 53, 40, 65, 39, 36, 41, 47, 55, 51, 50, 72, 45, 69, 38, 40, 51, 47, 53

(a) Determine a 95 percent confidence interval estimate of the mean
number of drinks sold daily.

(b) Repeat part (a) for a 90 percent confidence interval.
8. It is thought that the deepest part of sleep, which is also thought to be

the time during which dreams most frequently occur, is characterized
by rapid eye movement (REM) of the sleeper. The successive lengths
of seven REM intervals of a sleep volunteer were determined at a sleep
clinic. The following times in minutes resulted:

37, 42, 51, 39, 44, 48, 29

Give a 99 percent confidence interval estimate for the mean length of
a REM interval of the volunteer.

9. A large corporation is analyzing its present health care policy. It
is particularly interested in its average cost for delivering a baby.
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Suppose that a random sample of 24 claims yields that the sample
mean of the delivery costs is $1840 and the sample standard devia-
tion is $740. Construct a 95 percent confidence interval estimate of the
corporation’s present mean cost per delivery.

10. A court-ordered survey yielded the result that out of a randomly cho-
sen sample of 300 farm workers, 144 were in favor of unionizing.
Construct a 90 percent confidence interval estimate of the proportion
of all farm workers who wanted to be unionized.

11. A sample of nine fastballs thrown by a certain pitcher were measured
at speeds of

94, 87, 80, 91, 85, 102, 85, 80, 93

miles per hour.
(a) What is the point estimate of the mean speed of this pitcher’s

fastball?
(b) Construct a 95 percent confidence interval estimate of the mean

speed.
12. A sample of size 9 yields a sample mean of 35. Construct a 95 percent

confidence interval estimate of the population mean if the population
standard deviation is known to equal
(a) 3
(b) 6
(c) 12

13. Repeat Prob. 12 for a sample size of 36.
14. The following are scores on IQ tests of a random sample of 18 students

at a large eastern university:

130, 122, 119, 142, 136, 127, 120, 152, 141,

132, 127, 118, 150, 141, 133, 137, 129, 142

(a) Construct a 90 percent confidence interval estimate of the average
IQ score of all students at the university.

(b) Construct a 95 percent confidence interval estimate.
(c) Construct a 99 percent confidence interval estimate.

15. To comply with federal regulations, the state director of education
needs to estimate the proportion of all secondary school teachers
who are female. If there are 518 females in a random sample of 1000
teachers, construct a 95 percent confidence interval estimate.

16. In Prob. 15, suppose the director had wanted a 99 percent confidence
interval estimate whose length was guaranteed to be at most 0.03.
How large a sample would have been necessary?

17. The Census Bureau, to determine the national unemployment rate,
uses a random sample of size 50,000. What is the largest possible
margin of error?
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18. A researcher wants to learn the proportion of the public that favors a
certain candidate for office. If a random sample of size 1600 is chosen,
what is the largest possible margin of error?

19. A problem of interest in baseball is whether a sacrifice bunt is a good
strategy when there is a player on first base and there are no outs.
Assuming that the bunter will be out but will be successful in advan-
cing the runner on base, we could compare the probability of scoring a
run with a player on first base and no outs to the probability of scoring
a run with a player on second base and one out. The following data
resulted from a study of randomly chosen major league baseball games
played in 1959 and 1960.

Number of Proportion of cases in which Total number
Base occupied outs no runs are scored of cases

First 0 0.604 1728
Second 1 0.610 657

(a) Give a 95 percent confidence interval estimate for the probability
of scoring at least one run when there is a player on first base and
there are no outs.

(b) Give a 95 percent confidence interval estimate for the probability
of scoring at least one run when there is a player on second base
and one out.

20. Use the data of Prob. 15 to construct a
(a) 90 percent
(b) 95 percent
(c) 99 percent
upper confidence bound for the proportion of all secondary school
teachers who are female.

21. Repeat Prob. 20, this time constructing lower confidence bounds. If you
were an advocate of greater hiring of female teachers, would you tend
to quote an upper or a lower confidence bound?

22. Suppose that a random sample of nine recently sold houses in a cer-
tain neighborhood resulted in a sample mean price of $222,000, with
a sample standard deviation of $12,000. Give a 95 percent upper con-
fidence bound for the mean price of all recently sold houses in this
neighborhood.



CHAPTER 9

Testing Statistical Hypotheses

The great tragedy of science—the slaying of a beautiful hypothesis by an
ugly set of data.

Thomas H. Huxley, English biologist (Biogenesis and Abiogenesis)

We all learn by experience, and the lesson this time is that you should
never lose sight of the alternative.

Sherlock Holmes, in The Adventures of Black Peter by Sir Arthur Conan Doyle
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We explain what a statistical hypothesis is and show how sample data can be
used to test it. We distinguish between the null hypothesis and the alternative
hypothesis. We explain the significance of rejecting a null hypothesis and of not
rejecting it. We introduce the concept of the p value that results from a test.

Tests concerning the mean of a normal population are studied, when the popu-
lation variance is both known and unknown. One-sided and two-sided tests are
considered. Tests concerning a population proportion are presented.

9.1 INTRODUCTION
There has been a great deal of controversy in recent years over the possible dan-
gers of living near a high-level electromagnetic field (EMF). One researcher, after
hearing many anecdotal tales concerning the large increases in cancers, especially
among children, in communities living near an EMF, decided to study the possi-
ble dangers. To do so, she first studied maps giving the locations of electric power
lines and then used them to select a fairly large community that was located in
a high-level EMF area. She spent time interviewing people in the local schools,
hospitals, and public health facilities in order to discover the number of children
who had been afflicted with (any type of ) cancer in the previous 3 years, and she
found that there had been 32 such cases.

She then visited a government public health library to learn about the number of
cases of childhood cancer that could be expected in a community the size of the
one she was considering. She learned that the average number of cases of child-
hood cancer over a 3-year period in such a community was 16.2, with a standard
deviation of 4.7.

Is the discovery of 32 cases of childhood cancers significantly large enough, in
comparison with the average number of 16.2, for the researcher to conclude that
there is some special factor in the community being studied that increases the
chance for children to contract cancer? Or is it possible that there is nothing spe-
cial about the community and that the greater number of cancers is due solely to
chance? In this chapter we will show how such questions can be answered.

9.2 HYPOTHESIS TESTS AND SIGNIFICANCE
LEVELS

Statistical inference is the science of drawing conclusions about a population
based on information contained in a sample. A particular type of inference is
involved with the testing of hypotheses concerning some of the parameters of
the population distribution. These hypotheses will usually specify that a popula-
tion parameter, such as the population mean or variance, has a value that lies in a
particular region. We must then decide whether this hypothesis is consistent with
data obtained in a sample.
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Definition A statistical hypothesis is a statement about the nature of a population. It
is often stated in terms of a population parameter.

To test a statistical hypothesis, we must decide whether that hypothesis appears to
be consistent with the data of the sample. For instance, suppose that a tobacco firm
claims that it has discovered a new way of curing tobacco leaves that will result
in a mean nicotine content of a cigarette of 1.5 milligrams or less. Suppose that a
researcher is skeptical of this claim and indeed believes that the mean will exceed
1.5 milligrams. To disprove the claim of the tobacco firm, the researcher has
decided to test its hypothesis that the mean is less than or equal to 1.5 milligrams.
The statistical hypothesis to be tested, which is called the null hypothesis and is
denoted by H0, is thus that the mean nicotine content is less than or equal to
1.5 milligrams. Symbolically, if we let μ denote this mean nicotine content per
cigarette, then we can express the null hypothesis as

H0: μ ≤ 1.5

The alternative to the null hypothesis, which the tester is actually trying to estab-
lish, is called the alternative hypothesis and is designated by H1. For our example,
H1 is the hypothesis that the mean nicotine content exceeds 1.5 milligrams, which
can be written symbolically as

H1: μ > 1.5

The null hypothesis, denoted by H0, is a statement about a population parameter.
The alternative hypothesis is denoted by H1. The null hypothesis will be rejected
if it appears to be inconsistent with the sample data and will not be rejected
otherwise.

To test the null hypothesis that the mean nicotine content per cigarette is less
than or equal to 1.5 milligrams, a random sample of cigarettes cured by the new
method should be chosen and their nicotine content measured. If the resulting
sample data are not “consistent” with the null hypothesis, then we say that the
null hypothesis is rejected; if they are “consistent” with the null hypothesis, then
the null hypothesis is not rejected.

The decision of whether to reject the null hypothesis is based on the value of a
test statistic.

Definition A test statistic is a statistic whose value is determined from the sample data.
Depending on the value of this test statistic, the null hypothesis will be rejected or not.

In the cigarette example being considered, the test statistic might be the aver-
age nicotine content of the sample of cigarettes. The statistical test would then
reject the null hypothesis when this test statistic was sufficiently larger than 1.5.
In general, if we let TS denote the test statistic, then to complete our specifications
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of the test, we must designate the set of values of TS for which the null hypothesis
will be rejected.

Definition The critical region, also called the rejection region, is that set of values
of the test statistic for which the null hypothesis is rejected.

The statistical test of the null hypothesis H0 is completely specified once the test
statistic and the critical region are specified. If TS denotes the test statistic and C
denotes the critical region, then the statistical test of the null hypothesis H0 is as
follows:

Reject H0 if TS is in C
Do not reject H0 if TS is not in C

For instance, in the nicotine example we have been considering, if it were known
that the standard deviation of a cigarette’s nicotine content was 0.8 milligrams,
then one possible test of the null hypothesis is to use the test statistic X, equal to
the sample mean nicotine level, along with the critical region

C =
{

X ≥ 1.5 + 1.312√
n

}

That is, the null hypothesis is to be

Rejected if X ≥ 1.5 + 1.312√
n

Not rejected otherwise

where n is the sample size. (The rationale behind the choice of this particular
critical region will become apparent in the next section.)

For instance, if the foregoing test is employed and if the sample size is 36, then
the null hypothesis that the population mean is less than or equal to 1.5 will be
rejected if X ≥ 1.719 and will not be rejected if X < 1.719. It is important to note
that even when the estimate of μ—namely, the value of the sample mean X—
exceeds 1.5, the null hypothesis may still not be rejected. Indeed, when n = 36, a
sample mean value of 1.7 will not result in rejection of the null hypothesis. This is
true even though such a large value of the sample mean is certainly not evidence
in support of the null hypothesis. Nevertheless, it is consistent with the null
hypothesis in that if the population mean is 1.5, then there is a reasonable prob-
ability that the average of a sample of size 36 will be as large as 1.7. On the other
hand, a value of the sample mean as large as 1.9 is so unlikely if the population
mean is less than or equal to 1.5 that it will lead to rejection of this hypothesis.

The rejection of the null hypothesis H0 is a strong statement that H0 does not
appear to be consistent with the observed data. The result that H0 is not rejected
is a weak statement that should be interpreted to mean that H0 is consistent with
the data.
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Thus, in any procedure for testing a given null hypothesis, two different types of
errors can result. The first, called a type I error, is said to result if the test rejects H0

when H0 is true. The second, called a type II error, is said to occur if the test does
not reject H0 when H0 is false. Now, it must be understood that the objective of
a statistical test of the null hypothesis H0 is not to determine whether H0 is true,
but rather to determine if its truth is consistent with the resultant data. Therefore,
given this objective, it is reasonable that H0 should be rejected only if the sample
data are very unlikely when H0 is true. The classical way of accomplishing this
is to specify a small value α and then require that the test have the property that
whenever H0 is true, its probability of being rejected is less than or equal to α.
The value α, called the level of significance of the test, is usually set in advance, with
commonly chosen values being α = 0.10, 0.05, and 0.01.

The classical procedure for testing a null hypothesis is to fix a small significance
level α and then require that the probability of rejecting H0 when H0 is true is less
than or equal to α.

Because of the asymmetry in the test regarding the null and alternative hypotheses,
it follows that the only time in which an hypothesis can be regarded as having
been “proved” by the data is when the null hypothesis is rejected (thus “proving”
that the alternative is true). For this reason the following rule should be noted.

If you are trying to establish a certain hypothesis, then that hypothesis should be
designated as the alternative hypothesis. Similarly, if you are trying to discredit a
hypothesis, that hypothesis should be designated the null hypothesis.

Thus, for instance, if the tobacco company is running the experiment to prove that
the mean nicotine level of its cigarettes is less than 1.5, then it should choose for
the null hypothesis

H0: μ ≥ 1.5

and for the alternative hypothesis

H1: μ > 1.5

Then the company could use a rejection of the null hypothesis as “proof” of its
claim that the mean nicotine content was less than 1.5 milligrams.

Suppose now that we are interested in developing a test of a certain hypothesis
regarding θ , a parameter of the population distribution. Specifically, suppose that
for a given region R we are trying to test the null hypothesis that θ lies in the
region R.
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That is, we want to test

H0: θ lies in R

against the alternative

H1: θ does not lie in R

An approach to developing a test of H0, at level of significance α, is to start by
determining a point estimator of θ . The test will reject H0 when this point esti-
mator is “far away” from the region R. However, to determine how “far away” it
needs to be to justify rejection of H0, first we need to determine the probability
distribution of the point estimator when H0 is true. This will enable us to specify
the appropriate critical region so that the probability that the estimator will fall in
that region when H0 is true is less than or equal to α. In the following section we
will illustrate this approach by considering tests concerning the mean of a normal
population.

PROBLEMS

1. Consider a trial in which a jury must decide between hypothesis A that
the defendant is guilty and hypothesis B that he or she is innocent.
(a) In the framework of hypothesis testing and the U.S. legal system,

which of the hypotheses should be the null hypothesis?
(b) What do you think would be the appropriate significance level in

this situation?
2. A British pharmaceutical company, Glaxo Holdings, has recently devel-

oped a new drug for migraine headaches. Among the claims Glaxo made
for its drug, called somatriptan, was that the mean time needed for it
to enter the bloodstream is less than 10 minutes. To convince the Food
and Drug Administration of the validity of this claim, Glaxo conducted
an experiment on a randomly chosen set of migraine sufferers. To prove
the company’s claim, what should Glaxo have taken as the null and the
alternative hypotheses?

3. Suppose a test of

H0: μ = 0 against H1: μ 
= 0

resulted in rejection of H0 at the 5 percent level of significance. Which
of the following statements is (are) accurate?
(a) The data proved that μ is significantly different from 0, meaning

that it is far away from 0.
(b) The data were significantly strong enough to conclude that μ is not

equal to 0.
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(c) The probability that μ is equal to 0 is less than 0.05.
(d) The hypothesis that μ is equal to 0 was rejected by a procedure that

would have resulted in rejection only 5 percent of the time when μ

is equal to 0.

Historical Perspective
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Jerzy Neyman

The concept of significance level was originated by the English statistician
Ronald A. Fisher. Fisher also formulated the concept of the null hypothesis as
the hypothesis that one is trying to disprove. In Fisher’s words, “Every experi-
ment may be said to exist only in order to give the facts a chance of disproving
the null hypothesis.” The idea of an alternative hypothesis was due to the joint
efforts of the Polish-born statistician Jerzy Neyman and his longtime collabo-
rator Egon (son of Karl) Pearson. Fisher, however, did not accept the idea of an
alternative hypothesis, arguing that in most scientific applications it was not
possible to specify such alternatives, and a great feud ensued between Fisher on
one side and Neyman and Pearson on the other. Due to both Fisher’s temper-
ament, which was contentious to say the least, and the fact that he was already
involved in a controversy with Neyman over the relative benefits of confidence
interval estimates, which were originated by Neyman, and Fisher’s own fidu-
cial interval estimates (which are not much used today), the argument became
extremely personal and vitriolic. At one point Fisher called Neyman’s position
“horrifying for intellectual freedom in the West.”

Fisher is famous for his scientific feuds. Aside from the one just mentioned,
he carried on a most heated debate with Karl Pearson over the relative mer-
its of two different general approaches for obtaining point estimators, called
the method of moments and the method of maximum likelihood. Fisher, who was
a founder of the field of population genetics, also carried out a long-term
feud with Sewell Wright, another influential population geneticist, over the
role played by chance in the determination of future gene frequencies. (Curi-
ously enough, it was the biologist Wright and not the statistician Fisher who
championed cause as a key factor in long-term evolutionary developments.)

4. Let μ denote the mean value of some population. Suppose that in order
to test

H0: μ ≤ 1.5

against the alternative hypothesis

H1: μ > 1.5

a sample is chosen from the population.
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(a) Suppose for this sample that H0 was not rejected. Does this imply
that the sample data would have resulted in rejection of the null
hypothesis if we had been testing the following?

H0: μ > 1.5 against H1: μ ≤ 1.5

(b) Suppose this sample resulted in the rejection of H0. Does this imply
that the same sample data would have resulted in not rejecting the
null hypothesis if we had been testing the following?

H0: μ > 1.5 against H1: μ ≤ 1.5

Assume that all tests are at the 5 percent level of significance, and
explain your answers!

9.3 TESTS CONCERNING THE MEAN OF A NORMAL
POPULATION: CASE OF KNOWN VARIANCE

Suppose that X1, . . . , Xn are a sample from a normal distribution having an
unknown mean μ and a known variance σ2, and suppose we want to test the null
hypothesis that the mean μ is equal to some specified value against the alternative
that it is not. That is, we want to test

H0: μ = μ0

against the alternative hypothesis

H1: μ 
= μ0

for a specified value μ0.

Since the natural point estimator of the population mean μ is the sample mean

X =
∑n

i=1 Xi

n

it would seem reasonable to reject the hypothesis that the population mean is
equal to μ0 when X is far away from μ0. That is, the critical region of the test
should be of the form

C = {
X1, . . . , Xn:

∣∣ X − μ0
∣∣ ≥ c

}
for a suitable value of c.

Suppose we want the test to have significance level α. Then c must be chosen so
that the probability, when μ0 is the population mean, that X differs from μ0 by c
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or more is equal to α. That is, c should be such that

P
{∣∣X − μ0

∣∣ ≥ c
} = α when μ = μ0 (9.1)

However, when μ is equal to μ0, X is normally distributed with mean μ0 and
standard deviation σ/

√
n, and so the standardized variable Z, defined by

Z = X − μ0

σ/
√

n
=

√
n

σ

(
X − μ0

)
will have a standard normal distribution. Now, since the inequality

∣∣X − μ0
∣∣ ≥ c

is equivalent to
√

n
σ

∣∣X − μ0
∣∣ ≥

√
n

σ
c

it follows that probability statement (9.1) is equivalent to

P
{
|Z| ≥ √

n
c
σ

}
= α

Since the probability that the absolute value of a standard normal exceeds some
value is equal to twice the probability that a standard normal exceeds that value
(see Fig. 9.1), we see from the preceding that

2P
{
Z ≥ √

n
c
α

}
= α

FIGURE 9.1
P{|Z| ≥ c} = P{Z ≥ c} + P{Z ≤ −c} = 2P{Z ≥ c}.
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or

P
{
Z ≥ √

n
c
σ

}
= α

2

Since zα/2 is defined to be such that

P
{
Z ≥ zα/2

} = α

2

it follows from the preceding that

√
n

c
σ

= zα/2

or

c = zα/2
σ√
n

Therefore, the significance-level-α test of the null hypothesis that the population
mean is equal to the specified value μ0 against the alternative that it is not equal
to μ0 is to reject the null hypothesis if

∣∣X − μ0
∣∣ ≥ zα/2

σ√
n

or, equivalently, to

Reject H0 if

√
n

σ

∣∣X − μ0
∣∣ ≥ zα/2

Not reject H0 otherwise

This test is pictorially depicted in Fig. 9.2. Note that in Fig. 9.2 we have superim-
posed the standard normal density function over the real line, since that is the
density of the test statistic

√
n
(

X − μ0
)
/σ when H0 is true. Also, because of this

fact, the preceding test is often called the Z test.

■ Example 9.1
Suppose that if a signal of intensity μ is emitted from a particular star, then
the value received at an observatory on earth is a normal random variable with
mean μ and standard deviation 4. In other words, the value of the signal emit-
ted is altered by random noise, which is normally distributed with mean 0 and
standard deviation 4. It is suspected that the intensity of the signal is equal to 10.
Test whether this hypothesis is plausible if the same signal is independently
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FIGURE 9.2
Test of H0: μ = μ0 against H1: μ 
= μ0.

received 20 times and the average of the 20 values received is 11.6. Use the
5 percent level of significance.

Solution

If μ represents the actual intensity of the signal emitted, then the null hypoth-
esis we want to test is

H0: μ = 10

against the alternative

H1: μ 
= 10

Suppose we are interested in testing this at significance level 0.05. To begin, we
compute the value of the statistic

√
n

σ

∣∣X − μ0
∣∣ =

√
20
4

|11.6 − 10| = 1.79

Since this value is less than z0.025 = 1.96, the null hypothesis is not rejected.
In other words, we conclude that the data are not inconsistent with the null
hypothesis that the value of the signal is equal to 10. The reason for this is that
a sample mean as far from the value 10 as the one observed would occur, when
H0 is true, over 5 percent of the time. Note, however, that if the significance level
were chosen to be α = 0.1, as opposed to α = 0.05, then the null hypothesis
would be rejected (since zα/2 = z0.05 = 1.645). ■

It is important to note that the “correct” level of significance to use in any
given hypothesis-testing situation depends on the individual circumstances of
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that situation. If rejecting H0 resulted in a large cost that would be wasted if H0

were indeed true, then we would probably elect to be conservative and choose
a small significance level. For instance, suppose that H1 is the hypothesis that
a new method of production is superior to the one presently in use. Since a
rejection of H0 would result in a change of methods, we would want to make
certain that the probability of rejection when H0 is true is quite small; that is, we
would want a small value of α. Also, if we initially felt quite strongly that the null
hypothesis was true, then we would require very strong data evidence to the con-
trary for us to reject H0, and so we would again choose a very small significance
level.

The hypothesis test just given can be described as follows: The value, call it v, of
the test statistic

√
n
(

X − μ0
)
/σ is determined. The test now calls for rejection of

H0 if the probability that the absolute value of the test statistic will be as large as
|v| is, when H0 is true, less than or equal to α. It therefore follows that the test
can be performed by computing, first, the value v of the test statistic and, second,
the probability that the absolute value of a standard normal will exceed |v|. This
probability, called the p value, gives the critical significance level, in the sense that
H0 will be rejected if the p value is less than or equal to the significance level α

and will not be rejected otherwise.

The p value is the smallest significance level at which the data lead to rejection
of the null hypothesis. It gives the probability that data as unsupportive of H0 as
those observed will occur when H0 is true. A small p value (say, 0.05 or less) is a
strong indicator that the null hypothesis is not true. The smaller the p value, the
greater the evidence for the falsity of H0.

In practice, the significance level is often not set in advance; rather, the data are
used to determine the p value. This value is often either so large that it is clear that
the null hypothesis should not be rejected or so small that it is clear that the null
hypothesis should be rejected.

■ Example 9.2
Suppose that the average of the 20 values in Example 9.1 is equal to 10.8.
In this case the absolute value of the test statistic is

√
n

σ
|X − μ0| =

√
20
4

|10.8 − 10| = 0.894

Since

P {|Z| ≥ 0.894} = 2P {Z ≥ 0.894}
= 0.371 (from Table D.1)
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it follows that the p value is 0.371. Therefore, the null hypothesis that the signal
value is 10 will not be rejected at any significance level less than 0.371. Since
we never want to use a significance level as high as that, H0 will not be rejected.

On the other hand, if the value of the sample mean were 7.8, then the absolute
value of the test statistic would be

√
20
4

(2.2) = 2.46

and so the p value would be

p value = P{|Z| ≥ 2.46}
= 2P{Z ≥ 2.46}
= 0.014

Thus, H0 would be rejected at all significance levels above 0.014 and would not
be rejected for lower significance levels. ■

The next example is concerned with determining the probability of not rejecting
the null hypothesis when it is false.

■ Example 9.3
In Example 9.1, assuming a 0.05 significance level, what is the probability that
the null hypothesis (that the signal intensity is equal to 10) will not be rejected
when the actual signal value is 9.2?

Solution

In Example 9.1, σ = 4 and n = 20. Therefore, the significance-level-0.05 test of

H0: μ = 10 against H1: μ 
= 10

is to reject H0 if

√
20
4

|X − 10| ≥ z0.025

or, equivalently, if

|X − 10| ≥ 4z0.025√
20
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Since 4z0.025
√

20 = 4 × 1.96/
√

20 = 1.753, this means that H0 is to be rejected
if the distance between X and 10 is at least 1.753. That is, H0 will be rejected if
either

X ≥ 10 + 1.753

or

X ≤ 10 − 1.753

That is, if

X ≥ 11.753 or X ≤ 8.247

then H0 will be rejected.

Now, if the population mean is 9.2, then X will be normal with mean 9.2 and
standard deviation 4/

√
20 = 0.894; and so the standardized variable

Z = X − 9.2
0.894

will be a standard normal random variable. Thus, when the true value of the
signal is 9.2, we see that

P{rejection of H0} = P{X ≥ 11.753} + P{X ≤ 8.247}

= P

{
X − 9.2
0.894

≥ 11.753 − 9.2
0.894

}
+ P

{
X − 9.2
0.894

≤ 8.247 − 9.2
0.894

}

= P{Z ≥ 2.856} + P{Z ≤ −1.066}
= 0.0021 + 0.1432

= 0.1453

That is, when the true signal value is 9.2, there is an 85.47 percent chance that
the 0.05 significance level test will not reject the null hypothesis that the signal
value is equal to 10. ■

PROBLEMS

In all problems, assume that the relevant distribution is normal.

1. The device that an astronomer utilizes to measure distances results in
measurements that have a mean value equal to the actual distance
of the object being surveyed and a standard deviation of 0.5 light-
years. Present theory indicates that the actual distance from Earth to
the asteroid Phyla is 14.4 light-years. Test this hypothesis, at the 5 per-
cent level of significance, if six independent measurements yielded the
data

15.1, 14.8, 14.0, 15.2, 14.7, 14.5
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2. A previous sample of fish in Lake Michigan indicated that the mean
polychlorinated biphenyl (PCB) concentration per fish was 11.2 parts
per million with a standard deviation of 2 parts per million. Suppose a
new random sample of 10 fish has the following concentrations:

11.5, 12.0, 11.6, 11.8, 10.4, 10.8, 12.2, 11.9, 12.4, 12.6

Assume that the standard deviation has remained equal to 2 parts per
million, and test the hypothesis that the mean PCB concentration has
also remained unchanged at 11.2 parts per million. Use the 5 percent
level of significance.

3. To test the hypothesis

H0: μ = 105 against H1: μ 
= 105

a sample of size 9 is chosen. If the sample mean is X = 100, find the
p value if the population standard deviation is known to be
(a) σ = 5
(b) σ = 10
(c) σ = 15
In which cases would the null hypothesis be rejected at the 5 percent
level of significance? What about at the 1 percent level?

4. Repeat Prob. 3 for a sample mean that is the same but for a sample size
of 36.

5. A colony of laboratory mice consists of several thousand mice. The
average weight of all the mice is 32 grams with a standard devia-
tion of 4 grams. A laboratory assistant was asked by a scientist to
select 25 mice for an experiment. However, before performing the
experiment, the scientist decided to weigh the mice as an indicator
of whether the assistant’s selection constituted a random sample or
whether it was made with some unconscious bias (perhaps the mice
selected were the ones that were slowest in avoiding the assistant,
which might indicate some inferiority about this group). If the sam-
ple mean of the 25 mice was 30.4, would this be significant evidence,
at the 5 percent level of significance, against the hypothesis that the
selection constituted a random sample?

6. It is known that the value received at a local receiving station is equal
to the value sent plus a random error that is normal with mean 0 and
standard deviation 2. If the same value is sent 7 times, compute the
p value for the test of the null hypothesis that the value sent is equal
to 14, if the values received are

14.6, 14.8, 15.1, 13.2, 12.4, 16.8, 16.3
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7. Historical data indicate that household water use tends to be normally
distributed with a mean of 360 gallons and a standard deviation of
40 gallons per day. To see if this is still the situation, a random sample
of 200 households was chosen. The average daily water use in these
households was then seen to equal 374 gallons per day.
(a) Are these data consistent with the historical distribution? Use the

5 percent level of significance.
(b) What is the p value?

8. When a certain production process is operating properly, it produces
items that each have a measurable characteristic with mean 122 and
standard deviation 9. However, occasionally the process goes out of
control, and this results in a change in the mean of the items produced.
Test the hypothesis that the process is presently in control if a random
sample of 10 recently produced items had the following values:

123, 120, 115, 125, 131, 127, 130, 118, 125, 128

Specify the null and alternative hypotheses, and find the p value.
9. A leasing firm operates on the assumption that the annual number of

miles driven in its leased cars is normally distributed with mean 13,500
and standard deviation 4000 miles. To see whether this assumption
is valid, a random sample of 36 one-year-old cars has been checked.
What conclusion can you draw if the average mileage on these 36 cars
is 15,233?

10. A population distribution is known to have standard deviation 20.
Determine the p value of a test of the hypothesis that the population
mean is equal to 50, if the average of a sample of 64 observations is
(a) 52.5
(b) 55.0
(c) 57.5

11. Traffic authorities claim that traffic lights are red for a time that is nor-
mal with mean 30 seconds and standard deviation 1.4 seconds. To test
this claim, a sample of 40 traffic lights was checked. If the average time
of the 40 red lights observed was 32.2 seconds, can we conclude, at the
5 percent level of significance, that the authorities are incorrect? What
about at the 1 percent level of significance?

12. The number of cases of childhood cancer occurring within a 3-year
span in communities of a specified size has an approximately nor-
mal distribution with mean 16.2 and standard deviation 4.7. To see
whether this distribution changes when the community is situated
near a high-level electromagnetic field, a researcher chose such a com-
munity and subsequently discovered that there had been a total of
32 cases of childhood cancers within the last 3 years. Using these
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data, find the p value of the test of the hypothesis that the distribu-
tion of the number of childhood cancers in communities near high-level
electromagnetic fields remains normal with mean 16.2 and standard
deviation 4.7.

13. The following data are known to come from a normal population hav-
ing standard deviation 2. Use them to test the hypothesis that the
population mean is equal to 15. Determine the significance levels at
which the test would reject and those at which it would not reject this
hypothesis.

15.6, 16.4, 14.8, 17.2, 16.9, 15.3, 14.0, 15.9

14. Suppose, in Prob. 1, that current theory is wrong and that the actual
distance to the asteroid Phyla is 14.8 light-years. What is the probabil-
ity that a series of 10 readings, each of which has a mean equal to the
actual distance and a standard deviation of 0.8 light-years, will result
in a rejection of the null hypothesis that the distance is 14 light-years?
Use a 1 percent level of significance.

15. In Prob. 6 compute the probability that the null hypothesis that the
value 14 is sent will be rejected, at the 5 percent level of significance,
when the actual value sent is
(a) 15
(b) 13
(c) 16

9.3.1 One-Sided Tests
So far we have been considering two-sided hypothesis-testing problems in which
the null hypothesis is that μ is equal to a specified value μ0 and the test is to
reject this hypothesis if X is either too much larger or too much smaller than μ0.
However, in many situations, the hypothesis we are interested in testing is that
the mean is less than or equal to some specified value μ0 versus the alternative
that it is greater than that value. That is, we are often interested in testing

H0: μ ≤ μ0

against the alternative

H1: μ > μ0

Since we would want to reject H0 only when the sample mean X is much larger
than μ0 (and no longer when it is much smaller), it can be shown, in exactly the
same fashion as was done in the two-sided case, that the significance-level-α test
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FIGURE 9.3
Testing H0: μ ≤ μ0 against H1: μ > μ0.

is to

Reject H0 if
√

n
X − μ0

σ
≥ zα

Not reject H0 otherwise

A pictorial depiction of this test is shown in Fig. 9.3.

This test can be carried out alternatively by first computing the value of the test
statistic

√
n
(
X − μ0

)
/σ . The p value is then equal to the probability that a standard

normal random variable is at least as large as this value. That is, if the value of the
test statistic is v, then

p value = P{Z ≥ v}

The null hypothesis is then rejected at any significance level greater than or equal
to the p value.

In similar fashion, we can test the null hypothesis

H0: μ ≥ μ0

against the alternative

H1: μ < μ0

by first computing the value of the test statistic
√

n
(
X − μ0

)
/σ . The p value then

equals the probability that a standard normal is less than or equal to this value,
and the null hypothesis is rejected if the significance level is at least as large as the
p value.
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■ Example 9.4
All cigarettes presently being sold have an average nicotine content of at least
1.5 milligrams per cigarette. A firm that produces cigarettes claims that it has
discovered a new technique for curing tobacco leaves that results in an average
nicotine content of a cigarette of less than 1.5 milligrams. To test this claim,
a sample of 20 of the firm’s cigarettes was analyzed. If it were known that the
standard deviation of a cigarette’s nicotine content was 0.7 milligrams, what
conclusions could be drawn, at the 5 percent level of significance, if the average
nicotine content of these 20 cigarettes were 1.42 milligrams?

Solution

To see if the results establish the firm’s claim, let us see if they would lead to
rejection of the hypothesis that the firm’s cigarettes do not have an average
nicotine content lower than 1.5 milligrams. That is, we should test

H0: μ ≥ 1.5

against the firm’s claim of

H1: μ < 1.5

Since the value of the test statistic is

√
n

X − μ0

σ
= √

20
1.42 − 1.5

0.7
= −0.511

it follows that the p value is

p value = P{Z ≤ −0.511} = 0.305

Since the p value exceeds 0.05, the foregoing data do not enable us to reject
the null hypothesis and conclude that the mean content per cigarette is less
than 1.5 milligrams. In other words, even though the evidence supports the
cigarette producer’s claim (since the average nicotine content of those cigarettes
tested was indeed less than 1.5 milligrams), that evidence is not strong enough
to prove the claim. This is because a result at least as supportive of the alter-
native hypothesis H1 as that obtained would be expected to occur 30.5 per-
cent of the time when the mean nicotine content was 1.5 milligrams per
cigarette. ■

Statistical hypothesis tests in which either the null or the alternative hypothesis
states that a parameter is greater (or less) than a certain value are called one-sided
tests.
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Table 9.1 Hypothesis Tests Concerning the Mean μ of a Normal
Population with Known Variance σ 2.

X1, . . . , Xn are sample data, and X =
∑n

i=1 Xi
n

Test statistic p Value if
H0 H1 TS Significance-level-α test TS = ν

μ = μ0 μ 
= μ0
√

n X−μ0
σ

Reject H0 if |TS| ≥ zα/2 2P{Z ≥ |ν|}
Do not reject H0 otherwise

μ ≤ μ0 μ > μ0
√

n X−μ0
σ

Reject H0 if TS ≥ zα P{Z ≥ ν}
Do not reject H0 otherwise

μ ≥ μ0 μ < μ0
√

n X−μ0
σ

Reject H0 if TS ≤ −zα P{Z ≤ ν}
Do not reject H0 otherwise

We have assumed so far that the underlying population distribution is the nor-
mal distribution. However, we have only used this assumption to conclude that√

n
(
X − μ

)
/σ has a standard normal distribution. But by the central limit theo-

rem this result will approximately hold, no matter what the underlying population
distribution, as long as n is reasonably large. A rule of thumb is that a sample size
of n ≥ 30 will almost always suffice. Indeed, for many population distributions,
a value of n as small as 4 or 5 will result in a good approximation. Thus, all the
hypothesis tests developed so far can often be used even when the underlying
population distribution is not normal.

Table 9.1 summarizes the tests presented in this section.

PROBLEMS

1. The weights of salmon grown at a commercial hatchery are normally
distributed with a standard deviation of 1.2 pounds. The hatchery
claims that the mean weight of this year’s crop is at least 7.6 pounds.
Suppose a random sample of 16 fish yielded an average weight of
7.2 pounds. Is this strong enough evidence to reject the hatchery’s
claims at the
(a) 5 percent level of significance?
(b) 1 percent level of significance?
(c) What is the p value?

2. Consider a test of H0: μ ≤ 100 versus H1: μ > 100. Suppose that a sam-
ple of size 20 has a sample mean of X = 105. Determine the p value of
this outcome if the population standard deviation is known to equal
(a) 5
(b) 10
(c) 15
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Statistics in Perspective

Three Mile Island

A still-unsettled question is whether the nuclear accident at Three Mile Island, which
released low-level nuclear radiation into the areas surrounding it, is responsible for an
increase in the number of cases of hyperthyroidism. Hyperthyroidism, which results
when the thyroid gland is malfunctioning, can lead to mental retardation if it is not
treated quickly. It has been reported that 11 babies suffering from hyperthyroidism were
born in the surrounding areas between March 28, 1979 (the day of the accident), and
December 28, 1979 (nine months later). In addition, it was reported that the normal
number of such babies to be born in the surrounding areas over a 9-month period is
approximately normally distributed with a mean approximately equal to 3 and a standard
deviation approximately equal to 2. Given this information, let us start by determining
the probability that such a large number of cases of hyperthyroidism as 11 could have
occurred by chance.

To begin, note that if the accident did not have any health effects and if the 9 months
following the accident were ordinary months, then the number of newborn babies suffer-
ing from hyperthyroidism should have an approximately normal distribution with mean 3
and standard deviation 2. On the other hand, if the accident had a deleterious effect on
hyperthyroidism, then the mean of the distribution would be larger than 3. Hence, let
us suppose that the data come from a normal distribution with standard deviation 2 and
use them to test

H0: μ ≤ 3 against H1: μ > 3

where μ is the mean number of newborns who suffer from hyperthyroidism.

Since the observed number is 11, the p value of these data is

p value = P{X ≥ 11}
= P{X ≥ 10.5} continuity correction

= P
{

X − 3
2

≥ 10.5 − 3
2

}
≈ P{Z ≥ 3.75}
< 0.0001

Thus the null hypothesis would be rejected at the 1 percent (or even at the 0.1 percent)
level of significance.

It is important to note that this test does not prove that the nuclear accident was
the cause of the increase in hyperthyroidism; and in fact it does not even prove that
there was an increase in this disease. Indeed, it is hard to know what can be con-
cluded from this test without having a great deal more information. For instance, one
difficulty results from our not knowing why the particular hypothesis considered was
chosen to be studied. That is, was there some prior scientific reason for believing that
a release of nuclear radiation might result in increased hyperthyroidism in newborns,
or did someone just check all possible diseases he could think of (and possibly for a
variety of age groups) and then test whether there was a significant change in its inci-
dence after the accident? The trouble with such an approach (which is often called
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Statistics in Perspective (continued)
data mining, or going on a fishing expedition ) is that even if no real changes resulted
from the accident, just by chance some of the many tests might yield a significant
result. (For instance, if 20 independent hypothesis tests are run, then even if all the
null hypotheses are true, at least one of them will be rejected at the 1 percent level of
significance with probability 1 − (0.99)20 = 0.18.)

Another difficulty in interpreting the results of our hypothesis test concerns the confi-
dence we have in the numbers given to us. For instance, can we really be certain that
under normal conditions the mean number of newborns suffering from hyperthyroidism
is equal to 3? Is it not more likely that whereas on average 3 newborns would normally be
diagnosed to be suffering from this disease, other newborn sufferers may go undetected?
Would there not be a much smaller chance that a sufferer would fail to be diagnosed as
being such in the period following the accident, given that everyone was alert for such
increases in that period? Also, perhaps there are degrees of hyperthyroidism, and a new-
born diagnosed as being a sufferer in the tense months following the accident would not
have been so diagnosed in normal times.

Note that we are not trying to argue that there was not a real increase in hyperthyroidism
following the accident at Three Mile Island. Rather, we are trying to make the reader
aware of the potential difficulties in correctly evaluating a statistical study.

3. Repeat Prob. 2, this time supposing that the value of the sample mean
is 108.

4. It is extremely important in a certain chemical process that a solution
to be used as a reactant have a pH level greater than 8.40. A method for
determining pH that is available for solutions of this type is known to
give measurements that are normally distributed with a mean equal
to the actual pH and with a standard deviation of 0.05. Suppose 10
independent measurements yielded the following pH values:

8.30, 8.42, 8.44, 8.32, 8.43, 8.41, 8.42, 8.46, 8.37, 8.42

Suppose it is a very serious mistake to run the process with a reactant
having a pH level less than or equal to 8.40.
(a) What null hypothesis should be tested?
(b) What is the alternative hypothesis?
(c) Using the 5 percent level of significance, what would you advise—

to use or not to use the solution?
(d) What is the p value of the hypothesis test?

5. An advertisement for a toothpaste claims that use of the product signif-
icantly reduces the number of cavities of children in their cavity-prone
years. Cavities per year for this age group are normal with mean 3 and
standard deviation 1. A study of 2500 children who used this tooth-
paste found an average of 2.95 cavities per child. Assume that the
standard deviation of the number of cavities of a child using this new
toothpaste remains equal to 1.
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(a) Are these data strong enough, at the 5 percent level of signifi-
cance, to establish the claim of the toothpaste advertisement?

(b) Is this a significant enough reason for your children to switch to
this toothpaste?

6. A farmer claims to be able to produce larger tomatoes. To test this
claim, a tomato variety that has a mean diameter size of 8.2 centime-
ters with a standard deviation of 2.4 centimeters is used. If a sample
of 36 tomatoes yielded a sample mean of 9.1 centimeters, does this
prove that the mean size is indeed larger? Assume that the population
standard deviation remains equal to 2.4, and use the 5 percent level of
significance.

7. Suppose that the cigarette firm is now, after the test described in
Example 9.4, even more convinced about its claim that the mean nico-
tine content of its cigarettes is less than 1.5 milligrams per cigarette.
Would you suggest another test? With the same sample size?

8. The following data come from a normal population having standard
deviation 4:

105, 108, 112, 121, 100, 105, 99, 107, 112, 122, 118, 105

Use them to test the null hypothesis that the population mean is less
than or equal to 100 at the
(a) 5 percent level of significance
(b) 1 percent level of significance
(c) What is the p value?

9. A soft drink company claims that its machines dispense, on average,
6 ounces per cup with a standard deviation of 0.14 ounces. A consumer
advocate is skeptical of this claim, believing that the mean amount dis-
pensed is less than 6 ounces. To gain information, a sample of size 100
is chosen. If the average amount per cup is 5.6 ounces, what conclu-
sions can be drawn? State the null and alternative hypotheses, and
give the p value.

10. The significance-level-α test of

H0: μ = μ0 against H1: μ > μ0

is the same as the one for testing

H0: μ ≤ μ0 against H1: μ > μ0

Does this seem reasonable to you? Explain!

9.4 THE t TEST FOR THE MEAN OF A NORMAL
POPULATION: CASE OF UNKNOWN VARIANCE

We have previously assumed that the only unknown parameter of the normal
population distribution is its mean. However, by far the more common case is
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when the standard deviation σ is also unknown. In this section we will show how
to perform hypothesis tests of the mean in this situation.

To begin, suppose that we are about to observe the results of a sample of size n
from a normal population having an unknown mean μ and an unknown standard
deviation σ , and suppose that we are interested in using the data to test the null
hypothesis

H0: μ = μ0

against the alternative

H1: μ 
= μ0

As in the previous section, it again seems reasonable to reject H0 when the
point estimator of the population mean μ—that is, the sample mean X—is far
from μ0. However, how far away it needs to be to justify rejection of H0 was
shown in Sec. 9.3 to depend on the standard deviation σ . Specifically, we showed
that a significance-level-α test called for rejecting H0 when |X − μ0| was at least
zα/2σ/

√
n or, equivalently, when

√
n|X − μ0|

σ
≥ zα/2

Now, when σ is no longer assumed to be known, it is reasonable to estimate it by
the sample standard deviation S, given by

S =
√∑n

i = 1

(
Xi − X

)2

n − 1

and to employ a test that calls for rejecting H0 when the absolute value of the test
statistic T is large, where

T = √
n

X − μ0

S

To determine how large |T| needs to be to justify rejection at the α level of signif-
icance, we need to know its probability distribution when H0 is true. However,
as noted in Sec. 8.6, when μ = μ0, the statistic T has a t distribution with n − 1
degrees of freedom. Since the absolute value of such a random variable will exceed
tn−1,α/2 with probability α (see Fig. 9.4), it follows that a significance-level-α test of

H0: μ = μ0 versus H1: μ 
= μ0

is, when σ is unknown, to

Reject H0 if |T| ≥ tn−1,α/2

Not reject H0 otherwise

This test, which is pictorially illustrated in Fig. 9.5, is called a two-sided t test.
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FIGURE 9.4
P{|Tn−1| ≥ tn−1,α/2} = α.

FIGURE 9.5
The significance-level-α two-sided t test.

If we let ν denote the value of the test statistic T = √
n
(
X − μ0

)
/S, then the p value

of the data is the probability that the absolute value of a t random variable having
n − 1 degrees of freedom will be as large as |ν|, which is equal to twice the prob-
ability that a t random variable with n − 1 degrees of freedom will be as large as
|ν|. (That is, the p value is the probability that a value of the test statistic at least as
large as the one obtained would have occurred if the null hypothesis were true.)
The test then calls for rejection at all significance levels that are at least as large as
the p value.

If the value of the test statistic is ν, then

p value = P{|Tn−1| ≥ |v|}
= 2P{Tn−1 ≥ |v|}

where Tn−1 is a t random variable with n − 1 degrees of freedom.
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■ Example 9.5
Among a clinic’s patients having high blood cholesterol levels of at least 240
milliliters per deciliter of blood serum, volunteers were recruited to test a new
drug designed to reduce blood cholesterol. A group of 40 volunteers were given
the drug for 60 days, and the changes in their blood cholesterol levels were
noted. If the average change was a decrease of 6.8 with a sample standard
deviation of 12.1, what conclusions can we draw? Use the 5 percent level of
significance.

Solution

Let us begin by testing the hypothesis that any changes in blood cholesterol
levels were due purely to chance. That is, let us use the data to test the null
hypothesis

H0: μ = 0 versus H1: μ 
= 0

where μ is the mean decrease in cholesterol. The value of the test statistic T is

T =
√

n(X − μ0)

S
=

√
40(6.8)

12.1
= 3.554

Since, from Table D.2, t39,0.025 = 2.02, the null hypothesis is rejected at the
5 percent level of significance. In fact the p value of the data is given by

p value = 2P{T39 > 3.554}
= 0.0001 from Program 8-2

Thus, at any significance level greater than 0.0001, we reject the hypothesis that
the change in levels is due solely to chance.

However, note that we would not be justified at this point in concluding that the
changes in cholesterol levels are due to the specific drug used and not to some
other possibility. For instance, it is well known that any medication received
by a patient (whether or not this medication is directly relevant to the patient’s
suffering) often leads to an improvement in the patient’s condition (the placebo
effect). Also other factors might be involved that could have caused the reduc-
tion in blood cholesterol levels; for instance, weather conditions during the
testing period might conceivably have affected these levels.

Indeed, it must be concluded that the preceding testing scheme was very poorly
designed for learning about the effectiveness of the drug, for in order to test
whether a particular treatment has an effect on a disease that may be affected
by many things, it is necessary to design an experiment that neutralizes all
other possible causes of change except for the drug. The accepted approach for
accomplishing this is to divide the volunteers at random into two groups: One
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group is to receive the drug, and the other group (the control group) is to receive
a placebo (that is, a tablet, that looks and tastes like the actual drug but that
has no physiological effect). The volunteers should not be told whether they
are in the actual group or in the control group. Indeed, it is best if even the
clinicians do not have this information (such tests are called double-blind) so as
not to allow their own hopes and biases to play a role in their before-and-after
evaluations of the patients. Since the two groups are chosen at random from
the volunteers, we can now hope that on average all factors affecting the two
groups will be the same except that one group received the actual drug and the
other received a placebo. Hence, any difference in performance between the
two groups can be attributed to the drug. ■

Program 9-1 computes the value of the test statistic T and the corresponding p
value. It can be applied for both one- and two-sided tests. (The one-sided tests
will be presented shortly.)

■ Example 9.6
Historical data indicate that the mean acidity (pH) level of rain in a certain
industrial region in West Virginia is 5.2. To see whether there has been any
recent change in this value, the acidity levels of 12 rainstorms over the past
year have been measured, with the following results:

6.1, 5.4, 4.8, 5.8, 6.6, 5.3, 6.1, 4.4, 3.9, 6.8, 6.5, 6.3

Are these data strong enough, at the 5 percent level of significance, for us to
conclude that the acidity of the rain has changed from its historical value?

Solution

To test the hypothesis of no change in acidity, that is, to test

H0: μ = 5.2 versus H1: μ 
= 5.2

first we compute the value of the test statistic T . Now, a simple calculation using
the given data yields for the values of the sample mean and sample standard
deviation,

X = 5.667 and S = 0.921

Thus, the value of the test statistic is

T = √
12

5.667 − 5.2
0.921

= 1.76

Since, from Table D.2 of App. D, t11,0.025 = 2.20, the null hypothesis is not
rejected at the 5 percent level of significance. That is, the data are not strong



414 CHAPTER 9: Testing Statistical Hypotheses

enough to enable us to conclude, at the 5 percent level of significance, that the
acidity of the rain has changed.

We could also have solved this problem by computing the p value by running
Program 9-1 as follows:

The value of mu-zero is 5.2
The sample size is 12
The data values are 6.1, 5.4, 4.8, 5.8, 6.6, 5.3, 6.1, 4.4, 3.9, 6.8, 6.5, and 6.3
The program computes the value of the t-statistic as 1.755621
The p-value is 0.1069365

Thus, the p value is 0.107, and so the null hypothesis would not be rejected
even at the 10 percent level of significance. ■

Suppose now that we want to test the null hypothesis

H0: μ ≤ μ0

against the alternative

H1: μ > μ0

In this situation, we want to reject the null hypothesis that the population mean
is less than or equal to μ0 only when the test statistic

T = √
n

X − μ0

S

is significantly large (for this will tend to occur when the sample mean is sig-
nificantly larger than μ0). Therefore, we obtain the following significance-level-α
test:

Reject H0 if T ≥ tn−1,α

Do not reject H0 otherwise
A pictorial depiction of the test is shown in Fig. 9.6.

Equivalently, the preceding test can be performed by first computing the value of
the test statistic T , say its value is ν, and then computing the p value, which is
equal to the probability that a t random variable with n − 1 degrees of freedom
will be at least as large as ν. That is, if T = ν, then

p value = P{Tn−1 ≥ ν}

If we want to test the hypothesis

H0: μ ≥ μ0 versus H1: μ < μ0
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FIGURE 9.6
Testing H0: μ ≤ μ0 against H1: μ > μ0.

then the test is analogous. The significance-level-α test is again based on the test
statistic

T = √
n

X − μ0

S

and the test is as follows:

Reject H0 if T ≤ −tn−1,α

Do not reject H0 otherwise

In addition, the p value equals the probability that a t random variable with n − 1
degrees of freedom is less than or equal to the observed value of T .

Program 9-1 will compute the value of the test statistic T and the resulting p
value. If only summary data are provided, then Program 8-2, which computes
probabilities concerning t random variables, can be employed.

■ Example 9.7
The manufacturer of a new fiberglass tire claims that the average life of a set of
its tires is at least 50,000 miles. To verify this claim, a sample of 8 sets of tires
was chosen, and the tires subsequently were tested by a consumer agency. If
the resulting values of the sample mean and sample variance were, respectively,
47.2 and 3.1 (in 1000 miles), test the manufacturer’s claim.

Solution

To determine whether the foregoing data are consistent with the hypothesis
that the mean life is at least 50,000 miles, we will test

H0: μ ≥ 50 versus H1: μ < 50
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Statistics in Perspective

What is the Appropriate Null Hypothesis?

Suppose that the television tubes produced by a certain manufacturer are known to
have mean lifetimes of 3000 hours of use. An outside consultant claims that a new
production method will lead to a greater mean life. To check this, a pilot program is
designed to produce a sample of tubes by the newly suggested approach. How should
the manufacturer use the resulting data?

At first glance, it might appear that the data should be used to test

H0: μ ≤ 3000 against H1: μ > 3000

Then a rejection of H0 would be strong evidence that the newly proposed approach
resulted in an improved tube. However, the trouble with testing this hypothesis is that if
the sample size is large enough, then there is a reasonable chance of rejecting H0 even in
cases where the new mean life is only, say, 3001 hours, and it might not be economically
feasible to make the changeover for such a small increase in mean life. Indeed, the data
should be used to test

H0: μ ≤ 3000 + c

against

H1: μ > 3000 + c

where c is the smallest increase in mean life that would make it economically feasible to
make the production change. ■

A rejection of the null hypothesis H0 would then discredit the claim of the
manufacturer. The value of the test statistic T is

T = √
8

47.2 − 50
3.1

= −2.55

Since t7,0.05 = 1.895 and the test calls for rejecting H0 when T is less than or
equal to −t7,α , it follows that H0 is rejected at the 5 percent level of signif-
icance. On the other hand, since t7,0.01= 2.998, H0 would not be rejected at
the 1 percent level. Running Program 8-2 shows that the p value is equal to
0.019, illustrating that the data strongly indicate that the manufacturer’s claim
is invalid. ■

The t test can be used even when the underlying distribution is not normal, pro-
vided the sample size is reasonably large. This is true because, by the central limit
theorem, the sample mean X will be approximately normal no matter what the
population distribution and because the sample standard deviation S will approxi-
mately equal σ . Indeed, since for large n the t distribution with n − 1 degrees
of freedom is almost identical to the standard normal, the foregoing is equiva-
lent to noting that

√
n
(

X − μ0
)
/S will have an approximately standard normal

distribution when μ0 is the population mean and the sample size n is large.

Table 9.2 summarizes the tests presented in this section.
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Table 9.2 Hypothesis Tests Concerning the Mean μ of a Normal Popu-
lation with Unknown Variance σ2.

X1, . . . , Xn are sample data; X =
∑n

i=1 Xi
n S2 =

∑n
i=1
(
Xi−X

)2

n−1

Test statistic p Value if
H0 H1 TS Significance-level-α test TS = ν

μ = μ0 μ 
= μ0
√

n X−μ0
S Reject H0 if |TS| ≥ tn−1,α/2 2P{Tn−1 = |ν|}

Do not reject otherwise

μ ≤ μ0 μ > μ0
√

n X−μ0
S Reject H0 if TS ≥ tn−1,α P{Tn−1 ≥ ν}

Do not reject otherwise

μ ≥ μ0 μ < μ0
√

n X−μ0
S Reject H0 if TS ≤ −tn−1,α P{Tn−1 ≤ ν}

Do not reject H0 otherwise

Tn−1 is a t random variable with n − 1 degrees of freedom, and tn−1,α and tn−1,α/2 are such that P{Tn−1 ≥
tn−1,α} = α and P{Tn−1 ≥ tn−1,α/2} = α/2.

PROBLEMS

1. There is some variability in the amount of phenobarbital in each cap-
sule sold by a manufacturer. However, the manufacturer claims that
the mean value is 20.0 milligrams. To test this, a sample of 25 pills
yielded a sample mean of 19.7 with a sample standard deviation of
1.3. What inference would you draw from these data? In particular,
are the data strong enough evidence to discredit the claim of the
manufacturer? Use the 5 percent level of significance.

2. A fast-food establishment has been averaging about $2000 of business
per weekday. To see whether business is changing due to a deteriorat-
ing economy (which may or may not be good for the fast-food industry),
management has decided to carefully study the figures for the next
8 days. Suppose the figures are

2050, 2212, 1880, 2121, 2205, 2018, 1980, 2188

(a) What are the null and the alternative hypotheses?
(b) Are the data significant enough, at the 5 percent level, to prove

that a change has occurred?
(c) What about at the 1 percent level?
(d) If you can run Program 9-1 or some equivalent software, find the

p value.
3. To test the hypothesis that a normal population has mean 100,

a random sample of size 10 is chosen. If the sample mean is 110, will
you reject the null hypothesis if the following is known?
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Historical Perspective
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Ronald A. Fisher

William S. Gosset

In 1908, William Sealy Gosset, writing under the name Student, published
the distribution of the t statistic

√
n
(
X − μ

)
/S. It was an important result, for

it enabled one to make tests of population means when only small samples
were available, as was often the case at the Guinness brewery, where Gosset
was employed. Its importance, however, was not noted, and it was mainly
ignored by the statistical community at the time. This was primarily because
the idea of learning from small samples went against the prevailing scientific
beliefs, which were that “if your sample was sufficiently large, then substi-
tute S for σ and use the normal distribution, and if your sample was not
sufficiently large, then do not apply statistics.” One of the few to realize its
importance was R. A. Fisher, who in a later paper refined and fixed some tech-
nical errors in Gosset’s work. However, it was not until Fisher’s book Statistical
Methods for Research Workers appeared in 1925 that the t test became widely
used and appreciated. Fisher’s book was a tremendous success, and it went
through 11 editions in its first 25 years. While it was extremely influential,
it was, like Fisher’s other writings, not easy to read. Indeed, it was said by a
coworker at the time that “No student should attempt to read it who has not
read it before.”
(Note: Photograph of Gosset from Student: A Statistical Biography of William Sealy Gosset. Based on
writings by E. S. Pearson, edited and augmented by R. L. Plackett with the assistance of G. A. Barnard.
Clarendon Press, Oxford, 1990. Photograph from Annals of Eugenics, 1939, vol. 9.)

(a) The population standard deviation is known to equal 15.
(b) The population standard deviation is unknown, and the sample

standard deviation is 15.
Use the 5 percent level of significance.

4. The number of lunches served daily at a school cafeteria last
year was normally distributed with mean 300. The menu has been
changed this year to healthier foods, and the administration wants
to test the hypothesis that the mean number of lunches sold is
unchanged. A sample of 12 days yielded the following number of
lunches sold:

312, 284, 281, 295, 306, 273, 264, 258, 301, 277, 280, 275

Is the hypothesis that the mean is equal to 300 rejected at the
(a) 10 percent
(b) 5 percent
(c) 1 percent
level of significance?
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5. An oceanographer wants to check whether the average depth of
the ocean in a certain region is 55 fathoms, as had been previously
reported. He took soundings at 36 randomly chosen locations in the
region and obtained a sample mean of 56.4 fathoms with a sample
standard deviation of 5.1 fathoms. Are these data significant enough
to reject the null hypothesis that the mean depth is 55 fathoms, at the
(a) 10 percent
(b) 5 percent
(c) 1 percent
level of significance?

6. Twenty years ago, entering first-year high school students could do
an average of 24 push-ups in 60 seconds. To see whether this remains
true today, a random sample of 36 first-year students was chosen. If
their average was 22.5 with a sample standard deviation of 3.1, can
we conclude that the mean is no longer equal to 24? Use the 5 percent
level of significance.

7. The mean response time of a species of pigs to a stimulus is 0.8 sec-
onds. Twenty-eight pigs were given 2 ounces of alcohol and then
tested. If their average response time was 1.0 seconds with a standard
deviation of 0.3 seconds, can we conclude that alcohol affects the mean
response time? Use the 5 percent level of significance.

8. Previous studies have shown that mice gain, on average, 5 grams
of weight during their first 10 days after being weaned. A group of
36 mice had the artificial sweetener aspartame added to their food.
Their average gain was 4.5 grams, with a sample standard deviation
of 0.9 grams. Can we conclude, at the 1 percent level, that the addition
of aspartame had an effect?

9. Use the results of last Sunday’s National Football League (NFL) profes-
sional games to test the hypothesis that the average number of points
scored by winning teams is 26.2. Use the 5 percent level of significance.

10. Use the results of last Sunday’s major league baseball scores to test the
hypothesis that the average number of runs scored by winning teams
is 5.6. Use the 5 percent level of significance.

11. A bakery was taken to court for selling loaves of bread that were under-
weight. These loaves were advertised as weighing 24 ounces. In its
defense, the bakery claimed that the advertised weight was meant
to imply not that each loaf weighed exactly 24 ounces, but rather
that the average value over all loaves was 24 ounces. The prosecu-
tion in a rebuttal produced evidence that a randomly chosen sample
of 20 loaves had an average weight of 22.8 ounces with a sample
standard deviation of 1.4 ounces. In her ruling, the judge stated that
advertising a weight of 24 ounces would be acceptable if the mean
weight were at least 23 ounces.
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(a) What hypothesis should be tested?
(b) For the 5 percent level of significance, what should the judge

rule?
12. A recently published study claimed that the average academic year

salary of full professors at colleges and universities in the United States
is $87,800. Students at a certain private school guess that the average
salary of their professors is higher than this figure and so have decided
to test the null hypothesis

H0: μ ≤ 87, 800 against H1: μ > 87, 800

where μ is the average salary of full professors at their school.
A random sample of 10 professors elicited the following salaries (in
units of $1000):

91.0, 79.8, 102.0, 93.5, 82.0, 88.6, 90.0, 98.6, 101.0, 84.0

(a) Is the null hypothesis rejected at the 10 percent level of signifi-
cance?

(b) What about at the 5 percent level?
13. A car is advertised as getting at least 31 miles per gallon in highway

driving on trips of at least 100 miles. Suppose the miles per gallon
obtained in 8 independent experiments (each consisting of a nonstop
highway trip of 100 miles) are

28, 29, 31, 27, 30, 35, 25, 29

(a) If we want to check if these data disprove the advertising claim,
what should we take as the null hypothesis?

(b) What is the alternative hypothesis?
(c) Is the claim disproved at the 5 percent level of significance?
(d) What about at the 1 percent level?

14. A manufacturer claims that the mean lifetime of the batteries it pro-
duces is at least 250 hours of use. A sample of 20 batteries yielded the
following data:

237, 254, 255, 239, 244, 248, 252, 255, 233, 259, 236,

232, 243, 261, 255, 245, 248, 243, 238, 246

(a) Are these data consistent, at the 5 percent level, with the claim of
the manufacturer?

(b) What about at the 1 percent level?
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15. A water official insists that the average daily household water use in
a certain county is at least 400 gallons. To check this claim, a random
sample of 25 households was checked. The average of those sampled
was 367 with a sample standard deviation of 62. Is this consistent with
the official’s claim?

16. A company supplies plastic sheets for industrial use. A new type of
plastic has been produced, and the company would like to prove to an
independent assessor that the average stress resistance of this new
product is greater than 30.0, where stress resistance is measured in
pounds per square inch necessary to crack the sheet. A random sample
of size 12 yielded the following values of stress resistance:

30.1, 27.8, 32.2, 29.4, 24.8, 31.6, 28.8, 29.4, 30.5, 27.6, 33.9, 31.4

(a) Do these data establish that the mean stress resistance is greater
than 30.0 pounds per square inch, at the 5 percent level of
significance?

(b) What was the null hypothesis in part (a)?
(c) If the answer to (a) is no, do the data establish that the mean stress

resistance is less than 30 pounds per square inch?
17. A medical scientist believes that the average basal temperature of

(outwardly) healthy individuals has increased over time and is now
greater than 98.6◦ F (37◦ C). To prove this, she has randomly selected
100 healthy individuals. If their mean temperature is 98.74◦ F with
a sample standard deviation of 1.1◦ F, does this prove her claim at the
5 percent level? What about at the 1 percent level?

18. In 2001, entering students at a certain university had an average score
of 542 on the verbal part of the SAT. A random sample of the scores of
20 students in the 2003 class resulted in these scores:

542, 490, 582, 511, 515, 564, 500, 602, 488, 512, 518,

522, 505, 569, 575, 515, 520, 528, 533, 515

Do the given data prove that the average score has decreased to below
542? Use the 5 percent level of significance.

9.5 HYPOTHESIS TESTS CONCERNING POPULATION
PROPORTIONS

In this section we will consider tests concerning the proportion of members of a
population that possess a certain characteristic. We suppose that the population is
very large (in theory, of infinite size), and we let p denote the unknown proportion
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of the population with the characteristic. We will be interested in testing the null
hypothesis

H0: p ≤ p0
against the alternative

H1: p ≥ p0

for a specified value p0.

If a random selection of n elements of the population is made, then X, the num-
ber with the characteristic, will have a binomial distribution with parameters n
and p. Now it should be clear that we want to reject the null hypothesis that the
proportion is less than or equal to p0 only when X is sufficiently large. Hence, if
the observed value of X is x, then the p value of these data will equal the proba-
bility that at least as large a value would have been obtained if p had been equal
to p0 (which is the largest possible value of p under the null hypothesis). That is,
if we observe that X is equal to x, then

p value = P{X ≥ x}

where X is a binomial random variable with parameters n and p0.

The p value can now be computed either by using the normal approximation or
by running Program 5-1, which computes the binomial probabilities. The null
hypothesis should then be rejected at any significance level that is greater than or
equal to the p value.

■ Example 9.8
A noted educator claims that over half the adult U.S. population is concerned
about the lack of educational programs shown on television. To gather data
about this issue, a national polling service randomly chose and questioned
920 individuals. If 478 (52 percent) of those surveyed stated that they are con-
cerned at the lack of educational programs on television, does this prove the
claim of the educator?

Solution

To prove the educator’s claim, we must show that the data are strong enough
to reject the hypothesis that at most 50 percent of the population is concerned
about the lack of educational programs on television. That is, if we let p denote
the proportion of the population that is concerned about this issue, then we
should use the data to test

H0: p ≤ 0.50 versus H1: p > 0.50
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Since 478 people in the sample were concerned, it follows that the p value of
these data is

p value = P{X ≥ 478} when X is binomial (920, 0.50)

= 0.1243 from Program 5-1

For such a large p value we cannot conclude that the educator’s claim has
been proved. Although the data are certainly in support of that claim, since
52 percent of those surveyed were concerned by the lack of educational pro-
grams on television, such a result would have had a reasonable chance of
occurring even if the claim were incorrect, and so the null hypothesis is not
rejected.

If Program 5-1 were not available to us, then we could have approximated
the p value by using the normal approximation to binomial probabilities.
Since np = 920(0.50) = 460 and np(1 − p) = 460(0.5) = 230, this would have
yielded the following:

p value = P{X ≥ 478}
= P{X ≥ 477.5} continuity correction

= P
{

X − 460√
230

≥ 477.5 − 460√
230

}
≈ P{Z ≥ 1.154} = 0.1242

Thus the p value obtained by the normal approximation is quite close to the
exact p value obtained by running Program 5-1. ■

For another type of example in which we are interested in a hypothesis test of
a binomial parameter, consider a process that produces items that are classified
as being either acceptable or defective. A common assumption is that each item
produced is independently defective with a certain probability p, and so the num-
ber of defective items in a batch of size n will have a binomial distribution with
parameters n and p.

■ Example 9.9
A computer chip manufacturer claims that at most 2 percent of the chips it
produces are defective. An electronics company, impressed by that claim, has
purchased a large quantity of chips. To determine if the manufacturer’s claim
is plausible, the company has decided to test a sample of 400 of these chips. If
there are 13 defective chips (3.25 percent) among these 400, does this disprove
(at the 5 percent level of significance) the manufacturer’s claim?
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Solution

If p is the probability that a chip is defective, then we should test the null
hypothesis

H0: p ≤ 0.02 against H1: p > 0.02

That is, to see if the data disprove the manufacturer’s claim, we must take that
claim as the null hypothesis. Since 13 of the 400 chips were observed to be
defective, the p value is equal to the probability that such a large number of
defectives would have occurred if p were equal to 0.02 (its largest possible value
under H0). Therefore,

p value = P{X ≥ 13} where X is binomial (400, 0.02)

= 0.0619 from Program 5-1

and so the data, though clearly not in favor of the manufacturer’s claim, are not
quite strong enough to reject that claim at the 5 percent level of significance.

If we had used the normal approximation, then we would have obtained the
following result for the p value:

p value = P{X ≥ 13} where X is binomial (400, 0.02)

= P{X ≥ 12.5} continuity correction

= P
{

X − 8√
8 (0.98)

≥ 12.5 − 8√
8 (0.98)

}
≈ P{Z ≥ 1.607} where Z is standard normal

= 0.054

Thus, the approximate p value obtained by using the normal approximation,
though not as close to the actual p value of 0.062 as we might have liked,
is still accurate enough to lead to the correct conclusion that the data are
not quite strong enough to reject the null hypothesis at the 5 percent level of
significance. ■

Once again, let p denote the proportion of members of a large population who
possess a certain characteristic, but suppose that we now want to test

H0: p ≥ p0

against

H0: p < p0

for some specified value p0. That is, we want to test the null hypothesis that the
proportion of the population with the characteristic is at least p0 against the alter-
native that it is less than p0. If a random sample of n members of the population



9.5 Hypothesis Tests Concerning Population Proportions 425

results in x of them having the characteristic, then the p value of these data is
given by

p value = P{X ≤ x}
where X is a binomial random variable with parameters n and p0.

That is, when the null hypothesis is that p is at least as large as p0, then the p value
is equal to the probability that a value as small as or smaller than the one observed
would have occurred if p were equal to p0.

9.5.1 Two-Sided Tests of p
Computation of the p value of the test data becomes slightly more involved when
we are interested in testing the hypothesis

H0: p = p0

against the two-sided alternative

H1: p 
= p0

for a specified value p0.

Again suppose that a sample of size n is chosen, and let X denote the number of
members of the sample who possess the characteristic of interest. We will want to
reject H0 when X/n, the proportion of the sample with the characteristic, is either
much smaller or much larger than p0 or, equivalently, when X is either very small
or very large in relation to np0. Since we want the total probability of rejection to
be less than or equal to α when p0 is indeed the true proportion, we can attain
these objectives by rejecting for both large and small values of X with probability,
when H0 is true, α/2. That is, if we observe a value such that the probability is less
than or equal to α/2 that X would be either that large or that small when H0 is
true, then H0 should be rejected.

Therefore, if the observed value of X is x, then H0 will be rejected if either

P{X ≤ x} ≤ α

2

or

P{X ≥ x} ≤ α

2

when X is a binomial random variable with parameters n and p0. Hence, the
significance-level-α test will reject H0 if

Min{P{X ≤ x}, P{X ≥ x}} ≤ α

2
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or, equivalently, if

2 Min{P{X ≤ x}, P{X ≥ x}} ≤ α

where X is binomial (n, p0). From this, it follows that if x members of a random
sample of size n have the characteristic, then the p value for the test of

H0: p = p0 versus H1: p 
= p0

is as follows:

p value = 2 Min{P{X ≤ x}, P{X ≥ x}}
where X is a binomial random variable with parameters n and p0.

Since it will usually be evident which of the two probabilities in the expression for
the p value will be smaller (if x ≤ np0, then it will almost always be the first, and
otherwise the second, probability), Program 5-1 or the normal approximation is
needed only once to obtain the p value.

■ Example 9.10
Historical data indicate that 4 percent of the components produced at a certain
manufacturing facility are defective. A particularly acrimonious labor dispute
has recently been concluded, and management is curious about whether it will
result in any change in this figure of 4 percent. If a random sample of 500 items
indicated 16 defectives (3.2 percent), is this significant evidence, at the 5 percent
level of significance, to conclude that a change has occurred?

Solution

To be able to conclude that a change has occurred, the data need to be strong
enough to reject the null hypothesis when you are testing

H0: p = 0.04 versus H1: p 
= 0.04

where p is the probability that an item is defective. The p value of the observed
data of 16 defectives in 500 items is

p value = 2 Min{P{X ≤ 16}, P{X ≥ 16}}
where X is a binomial (500, 0.04) random variable. Since 500 × 0.04 = 20, we
see that

p value = 2P{X ≤ 16}
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Since X has mean 20 and standard deviation
√

20 (0.96) = 4.38, it is clear that
twice the probability that X will be less than or equal to 16—a value less than
1 standard deviation lower than the mean—is not going to be small enough to
justify rejection. Indeed, it can be shown that

p value = 2P{X ≤ 16} = 0.432

and so there is not sufficient evidence to reject the hypothesis that the proba-
bility of a defective item has remained unchanged. ■

■ Example 9.11
Identical, also called monozygotic, twins form when a single fertilized egg splits
into two genetically identical parts. The twins share the same DNA set, thus
they may share many similar attributes. However, since physical appearance
is influenced by environmental factors and not just genetics, identical twins
can actually look very different. Fraternal, also called dizygotic, twins develop
when two separate eggs are fertilized and implant in the uterus. The genetic
connection of fraternal twins is no more nor less the same as siblings born at
separate times. The literature states that 28 percent of all twin pairs are identical
twins.

Suppose that a hypothetical doctor interested in testing whether 28 percent
was accurate has decided to gather data on twins born in the hospital in which
the doctor works. However, in obtaining permission to run such a study she
discovers that finding out whether a gender similar twin pair is monozygotic
requires a DNA test, which is both expensive and requires the permission of
the twin-bearing parents. To avoid this expense she reasons that if p is the
probability that twins are identical, then the probability that they will be of
the same sex can be easily derived. Letting SS be the event that a twin pair
is of the same sex, then conditioning on whether the pair is identical or not
gives

P(SS) = P(SS|identical)P(identical) + P(SS|fraternal)P(fraternal)

= 1(p) + 1
2

(1 − p)

= 1 + p
2

where the preceding used that fraternal twins, being genetically the same as any
pair of siblings, would have one chance in two of being of the same sex. Thus,
if p = 0.28, then

P(SS) = 1.28
2

= 0.64
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Based on the preceding analysis the doctor has decided to test the hypothesis
that the probability that a twin pair will be identical is 0.28 by testing whether
the probability that a twin pair is of the same sex is 0.64. Assuming that data
collected over one year by the researcher showed that 36 of 74 twin pairs were
of the same sex, what conclusion can be drawn?

Solution

Let q be the probability that a twin pair is of the same sex. Then to test the
hypothesis that 28 percent of all twin pairs are identical twins, the researcher
will test the null hypothesis

H0: q = 0.64 versus H1: q 
= 0.64

Now, the number of the 74 twin pairs that are of the same sex has a binomial
distribution with parameters 74 and q. Hence, the p value of the test of H0 that
results when 36 of 74 twin pairs are of the same sex is

p value = 2 min{P{X ≤ 36}, P{X ≥ 36}}

where X is a binomial (74, 0.64) random variable. Because 74 × 0.64 = 47.36,
we see that

p value = 2P{X ≤ 36}

Using the normal approximation yields

p value = 2P{X ≤ 36.5}

= 2P
{

X − 74(0.64)√
74(0.64) (0.36)

≤ 36.5 − 74(0.64)√
74(0.64) (0.36)

}

≈ 2P
{

Z ≤ 36.5 − 74(0.64)√
74(0.64) (0.36)

}

= 2P{Z ≤ −2.630}
= 2(1 − P{Z ≤ 2.630})
= 0.0086

Thus the null hypothesis would be rejected at even the 1 percent level of
significance. ■

Table 9.3 sums up the tests concerning the population proportion p.
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Table 9.3 Hypothesis Tests Concerning p, the Proportion of a Large
Population that Has a Certain Characteristic

The number of population members in a sample of size n that have the characteristic is X, and B is a
binomial random variable with parameters n and p0.

H0 H1 Test statistic TS p Value if TS = x

P ≤ p0 p > p 0 X P{B ≥ x}
P ≥ p0 p < p 0 X P{B ≤ x}
P = p0 p 
= p 0 X 2 Min{P{B ≤ x}, P{B ≥ x}}

PROBLEMS

In solving the following problems, either make use of Program 5-1 or
equivalent software to compute the relevant binomial probabilities, or use
the normal approximation.

1. A standard drug is known to be effective in 72 percent of cases in
which it is used to treat a certain infection. A new drug has been devel-
oped, and testing has found it to be effective in 42 cases out of 50.
Is this strong enough evidence to prove that the new drug is more
effective than the old one? Find the relevant p value.

2. An economist thinks that at least 60 percent of recently arrived
immigrants who have been working in the health profession in the
United States for more than 1 year feel that they are underemployed
with respect to their training. Suppose a random sample of size 450
indicated that 294 individuals (65.3 percent) felt they were under-
employed. Is this strong enough evidence, at the 5 percent level of
significance, to prove that the economist is correct? What about at the
1 percent level of significance?

3. Shoplifting is a serious problem for retailers. In the past, a large depart-
ment store found that 1 out of every 14 people entering the store
engaged in some form of shoplifting. To help alleviate this problem, 3
months ago the store hired additional security guards. This additional
hiring was widely publicized. To assess its effect, the store recently
chose 300 shoppers at random and closely followed their movements
by camera. If 18 of these 300 shoppers were involved in shoplifting,
does this prove, at the 5 percent level of significance, that the new
policy is working?

4. Let p denote the proportion of voters in a large city who are in
favor of restructuring the city government, and consider a test of the
hypothesis

H0 : p ≥ 0.60 against H1: p < 0.60
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A random sample of n voters indicated that x are in favor of restruc-
turing. In each of the following cases, would a significance-level-α test
result in rejection of H0?
(a) n = 100, x = 50, α = 0.10
(b) n = 100, x = 50, α = 0.05
(c) n = 100, x = 50, α = 0.01
(d) n = 200, x = 100, α = 0.01

Historical Perspective
The First Published Hypothesis Test “Proved” the Existence of God
Remarkably enough, the first published paper in which a statistical test was
made of a null hypothesis was used to claim the existence of God. In a paper
published in the Philosophical Transactions of the Royal Society in 1710, John
Arbuthnot looked at the number of males and females born in each of the
82 years from 1629 to 1710, and he discovered that in each of these years
the number of male births exceeded the number of female births. Arbuthnot
argued that this could not have been due solely to chance, for if each birth
were equally likely to be either a boy or a girl (and so each year would be
equally likely to have either more male births or more female births), then the
probability of the observed outcome would equal (1/2)82. Thus, he argued,
the hypothesis that the event occurred solely by chance must be rejected (in
our language, the p value of the test of H0: p = 1/2 versus H1: p 
= 1/2 was
2(1/2)82). Arbuthnot then argued that the result must have been due to plan-
ning, and as he believed it was beneficial to initially have an excess of male
babies, since males tend to do more hazardous work than females and thus
tend to die earlier, he concluded that it was the work of God. (For reasons
not totally understood, it appears that the probability of a newborn’s being
male is closer to 0.51 than it is to 0.50.)

5. A politician claims that over 50 percent of the population is in favor
of her candidacy. To prove this claim, she has commissioned a polling
organization to do a study. This organization chose a random sample
of individuals in the population and asked each member of the sample
if he or she was in favor of the politician’s candidacy.
(a) To prove the politician’s claim, what should be the null and

alternative hypotheses?
Consider the following three alternative results, and give the
relevant p values for each one.

(b) A random sample of 100 voters indicated that 56 (56 percent) are
in favor of her candidacy.

(c) A random sample of 200 voters indicated that 112 (56 percent) are
in favor of her candidacy.
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(d) A random sample of 500 indicated that 280 (56 percent) are in favor
of her candidacy.
Give an intuitive explanation for the discrepancy in results, if there
are any, even though in each of cases (b), (c), and (d) the same
percentage of the sample was in favor.

6. A revamped television news program has claimed to its advertisers
that at least 24 percent of all television sets that are on when the pro-
gram runs are tuned in to it. This figure of 24 percent is particularly
important because the advertising rate increases at that level of view-
ers. Suppose a random sample indicated that 50 out of 200 televisions
were indeed tuned in to the program.
(a) Is this strong enough evidence, at the 5 percent significance level,

to establish the accuracy of the claim?
(b) Is this strong enough evidence, at the 5 percent significance level,

to prove that the claim is unfounded?
(c) Would you say that the results of this sample are evidence for or

against the claim of the news program?
(d) What do you think should be done next?

7. Three independent news services are running a poll to determine if
over half the population supports an initiative concerning limitations
on driving automobiles in the downtown area. Each news service
wants to see if the evidence indicates that over half the population
is in favor. As a result, all three services will be testing

H0: p ≤ 0.5 against H1: p > 0.5

where p is the proportion of the population in favor of the initiative.
(a) Suppose the first news organization samples 100 people, of whom

56 are in favor of the initiative. Is this strong enough evidence,
at the 5 percent level of significance, to reject the null hypothesis
and in doing so establish that over half the population favors the
initiative?

(b) Suppose the second news organization samples 120 people, of
whom 68 are in favor of the initiative. Is this strong enough
evidence, at the 5 percent level of significance, to reject the null
hypothesis?

(c) Suppose the third news organization samples 110 people, of whom
62 are in favor of the initiative. Is this strong enough evidence, at
the 5 percent level of significance, to reject the null hypothesis?

(d) Suppose the news organizations combine their samples, to come
up with a sample of 330 people, of whom 186 support the
initiative. Is this strong enough evidence, at the 5 percent level
of significance, to reject the null hypothesis?
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8. An ambulance service claims that at least 45 percent of its calls involve
life-threatening emergencies. To check this claim, a random sample
of 200 calls was selected from the service’s files. If 70 of these calls
involved life-threatening emergencies, is the service’s claim believable
(a) at the 5 percent
(b) at the 1 percent
level of significance?

9. A retailer has received a large shipment of items of a certain type. If it
can be established that over 4 percent of the items in the shipment are
defective, then the shipment will be returned. Suppose that 5 defec-
tives are found in a random sample of 90 items. Should the shipment be
returned to its sender? Use the 10 percent level of significance. What
about at the 5 percent level?

10. A campus newspaper editorial claims that at least 75 percent of the
students favor traditional course grades rather than a pass/fail option.
To gain information, a dean randomly sampled 50 students and learned
that 32 of them favor traditional grades. Are these data consistent with
the claim made in the editorial? Use the 5 percent level of significance.

11. A recent survey published by the Higher Educational Research Insti-
tute stated that 22 percent of entering college students classified
themselves as politically liberal. If 65 out of a random sample of 264
entering students at the University of California at Berkeley classified
themselves as liberals, does this establish, at the 5 percent level
of significance, that the percentage at Berkeley is higher than the
national figure?

12. It has been “common wisdom” for some time that 22 percent of
the population have a firearm at home. In a recently concluded poll,
54 out of 200 randomly chosen people were found to have a firearm in
their homes. Is this strong enough evidence, at the 5 percent level of
significance, to disprove common wisdom?

13. The average length of a red light is 30 seconds. Because of this,
a certain individual feels lucky whenever he has to wait less than
15 seconds when encountering a red light. This individual assumes
that the probability that he is lucky is 0.5. To test this hypothesis, he
timed himself at 30 red lights. If he had to wait more than 15 seconds a
total of 19 times, should he reject the hypothesis that p is equal to 0.5?
(a) Use the 10 percent level of significance.
(b) Use the 5 percent level of significance.
(c) What is the p value?

14. A statistics student wants to test the hypothesis that a certain
coin is equally likely to land on either heads or tails when it is
flipped. The student flips the coin 200 times, obtaining 116 heads and
84 tails.
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(a) For the 5 percent level of significance, what conclusion should be
drawn?

(b) What are the null and the alternative hypotheses?
(c) What is the p value?

15. Twenty-five percent of women of child-bearing age smoke. A scien-
tist wanted to test the hypothesis that this is also the proportion of
smokers in the population of women who suffer ectopic pregnancies.
To do so, the scientist chose a random sample of 120 women who had
recently suffered an ectopic pregnancy. If 48 of these women turn out
to be smokers, what is the p value of the test of the hypothesis

H0: p = 0.25 against H1: p 
= 0.25

where p is the proportion of smokers in the population of women who
have suffered an ectopic pregnancy?

KEY TERMS

Statistical hypothesis: A statement about the nature of a population. It is often
stated in terms of a population parameter.

Null hypothesis: A statistical hypothesis that is to be tested.

Alternative hypothesis: The alternative to the null hypothesis.

Test statistic: A function of the sample data. Depending on its value, the null
hypothesis will be either rejected or not rejected.

Critical region: If the value of the test statistic falls in this region, then the null
hypothesis is rejected.

Significance level: A small value set in advance of the testing. It represents the
maximal probability of rejecting the null hypothesis when it is true.

Z test: A test of the null hypothesis that the mean of a normal population having
a known variance is equal to a specified value.

p value: The smallest significance level at which the null hypothesis is rejected.

One-sided tests: Statistical hypothesis tests in which either the null or the alterna-
tive hypothesis is that a population parameter is less than or equal to (or greater
than or equal to) some specified value.

t test: A test of the null hypothesis that the mean of a normal population having
an unknown variance is equal to a specified value.

SUMMARY

A statistical hypothesis is a statement about the parameters of a population
distribution.
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The hypothesis to be tested is called the null hypothesis and is denoted by H0. The
alternative hypothesis is denoted by H1.

A hypothesis test is defined by a test statistic, which is a function of the sample
data, and a critical region. The null hypothesis is rejected if the value of the test
statistic falls within the critical region and is not rejected otherwise. The critical
region is chosen so that the probability of rejecting the null hypothesis, when it is
true, is no greater than a predetermined value α, called the significance level of the
test. The significance level is typically set equal to such values as 0.10, 0.05, and
0.01. The 5 percent level of significance, that is, α = 0.05, has become the most
common in practice.

Since the significance level is set to equal some small value, there is only a small
chance of rejecting H0 when it is true. Thus a statistical hypothesis test is basically
trying to determine whether the data are consistent with a given null hypothesis.
Therefore, rejecting H0 is a strong statement that the null hypothesis does not
appear to be consistent with the data, whereas not rejecting H0 is a much weaker
statement to the effect that H0 is not inconsistent with the data. For this reason,
the hypothesis that one is trying to establish should generally be designated as the
alternative hypothesis so that it can be “statistically proved” by a rejection of the
null hypothesis.

Often in practice a significance level is not set in advance, but rather the test statis-
tic is observed to determine the minimal significance level that would result in a
rejection of the null hypothesis. This minimal significance level is called the p
value. Thus, once the p value is determined, the null hypothesis will be rejected at
any significance level that is at least as large as the p value. The following rules of
thumb concerning the p value are in rough use:

p value > 0.1 Data provide weak evidence against H0.

p value ≈ 0.05 Data provide moderate evidence against H0.

p value < 0.01 Data provide strong evidence against H0.

1. Testing H0: μ = μ0 against H1: μ 
= μ0 in a normal population having known
standard deviation σ : The significance-level-α test is based on the test statistic

√
n

X − μ0

σ

and it is to

Reject H0 if
√

n
|X − μ0|

σ
≥ zα/2

Not reject H0 otherwise
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If the observed value of the test statistic is v, then the p value is given by

p value = P{|Z| ≥ |ν|}
= 2P{Z ≥ |ν|}

where Z is a standard normal random variable.
2. Testing

(1) H0 : μ ≤ μ0 against H1: μ > μ0

or
(2) H0 : μ ≥ μ0 against H1: μ < μ0

in a normal population having known standard deviation σ : These are called one-
sided tests. The significance-level-α test in both situations is based on the test
statistic

√
n
(
X − μ0

)
/σ . The test in situation (1) is to

Reject H0 if
√

n

(
X − μ0

)
σ

≥ zα

Not reject H0 otherwise

Alternatively the test in (1) can be performed by first determining the p value
of the data. If the value of the test statistic is ν, then the p value is

p value = P{Z ≥ ν}
where Z is a standard normal random variable. The null hypothesis will now
be rejected at any significance level at least as large as the p value.

In situation (2), the significance-level-α test is to

Reject H0 if
√

n

(
X − μ0

)
σ

≤ −zα

Not reject H0 otherwise

Alternatively, if the value of the test statistic
√

n
(
X − μ0

)
/σ is v, then the p

value is given by

p value = P{Z ≤ ν}
where Z is a standard normal random variable.

3. Two-sided t test of

H0: μ = μ0 against H1: μ 
= μ0

in a normal population whose variance is unknown: This test is based on the test
statistic

T =
√

n
(

X − μ0
)

S



436 CHAPTER 9: Testing Statistical Hypotheses

where n is the sample size and S is the sample standard deviation. The
significance-level-α test is to

Reject H0 if |T| ≥ tn−1,α/2

Not reject H0 otherwise

The value tn−1,α/2 is such that

P{Tn−1 > tn−1,α/2} = α

2

when Tn−1 is a t random variable having n − 1 degrees of freedom. This is
called the t test.
This t test can be alternatively run by first calculating the value of the test
statistic T . If it is equal to ν, then the p value is given by

p value = P{|Tn−1| ≥ |ν|}
= 2P{Tn−1 ≥ |ν|}

where Tn−1 is a t random variable with n − 1 degrees of freedom.
4. One-sided t tests of

(1) H0: μ ≤ μ0 against H1: μ > μ0

or
(2) H0: μ ≥ μ0 against H1: μ < μ0

in a normal population having an unknown variance: These tests are again based
on the test statistic

T = √
n

X − μ0

S

where n is the sample size and S is the sample standard deviation.
The significance-level-α test of (1) is to

Reject H0 if T ≥ tn−1,α

Not reject H0 otherwise

Alternatively, the p value may be derived. If the value of the test statistic T is v,
the p value is obtained from

p value = P{Tn−1 ≥ ν}
where Tn−1 is a t random variable having n − 1 degrees of freedom.
The significance-level-α test of (2) is to

Reject H0 if T ≤ −tn−1,α

Not reject H0 otherwise
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If the value of T is ν, then the p value of the test of (2) is

p value = P{Tn−1 ≤ v}

5. Hypothesis tests concerning proportions: If p is the proportion of a large population
that has a certain characteristic, then to test

H0: p ≤ p0 versus H1: p > p0

a random sample of n elements of the population should be drawn. The test
statistic is X, the number of members of the sample with the characteristic. If
the value of X is x, then the p value is given by

p value = P{B ≥ x}

where B is a binomial random variable with parameters n and p0.
Suppose we had wanted to test

H0: p ≥ p0 versus H1: p < p0

If the observed value of the test statistic is x, then the p value is given by

p value = P{B ≤ x}

where again B is binomial with parameters n and p0.
The binomial probabilities can be calculated by using Program 5-1 or can be
approximated by making use of the normal approximation to the binomial.
Suppose now that the desired test is two-sided; that is, we want to test

H0: p = p0 versus H1: p 
= p0

If the number of members of the sample with the characteristic is x, then the
p value is

p value = 2 Min{P{B ≤ x}, P{B ≥ x}}

where B is binomial with parameters n and p0.

REVIEW PROBLEMS AND PROPOSED CASE STUDIES

1. Suppose you were to explain to a person who has not yet studied statis-
tics that a statistical test has just resulted in the rejection of the null
hypothesis that a population mean μ is equal to 0. That is, H0: μ = 0
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has been rejected, say, at the 5 percent level of significance. Which of
the following is a more accurate statement?
(a) The evidence of the data indicated that the population mean

differs significantly from 0.
(b) The evidence of the data was significant enough to indicate that

the population mean differs from 0.
What is misleading about the less accurate of these two statements?

2. Suppose that the result of a statistical test was that the p value was
equal to 0.11.
(a) Would the null hypothesis be rejected at the 5 percent level of

significance?
(b) Would you say that this test provided evidence for the truth of the

null hypothesis? Briefly explain your answer.
3. Suppose you happened to read the following statement in your

local newspaper. “A recent study provided significant evidence that
the mean heights of women have increased over the past twenty
years.”
(a) Do you regard this as a precise statement?
(b) What interpretation would you give to the statement?

4. A fact that has been long known but little understood is that in their
early years twins tend to have lower IQ levels and tend to be slower
in picking up language skills than nontwins. Recently, some psychol-
ogists have speculated that this may be due to the fact that parents
spend less time with a twin child than they do with a single child. The
reason for this is possibly that a twin always has to share the parent’s
attention with her or his sibling. The reason is also possibly economic
in nature, since twins place a greater economic burden on parents
than do single children, and so parents of twins may have less time in
general to spend with their offspring.

Devise a study that could be used to test the hypothesis that twins
obtain less parental time than single children.

Assuming that this hypothesis is correct, devise a study that might
enable you to conclude that this is the reason for the long known but
little understood fact.

5. An individual’s present route to work results in, on average, 40 min-
utes of travel time per trip. An alternate route has been suggested by
a friend, who claims that it will reduce the travel time. Suppose that
the new route was tried on 10 randomly chosen occasions with the
following times resulting:

44, 38.5, 37.5, 39, 38.2, 36, 42, 36.5, 36, 34
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Do these data establish the claim that the new route is shorter, at the
(a) 1 percent
(b) 5 percent
(c) 10 percent
level of significance?

6. To test the null hypothesis

H0: μ = 15 versus H1: μ 
= 15

a sample of size 12 is taken. If the sample mean is 14.4, find the p value
if the population standard deviation is known to equal
(a) 0.5
(b) 1.0
(c) 2.0

7. It has been claimed that over 30 percent of entering college students
have blood cholesterol levels of at least 200. Use the last 20 students
in the list in App. A to test this hypothesis. What conclusion do you
draw at the 5 percent level of significance?

8. Psychologists who consider themselves disciples of Alfred Adler
believe that birth order has a strong effect on personality. Adler
believed that firstborn (including only) children tend to be more self-
confident and success-oriented than later-born children. For instance,
of the first 102 appointments to the U.S. Supreme Court, 55 per-
cent have been firstborn children, whereas only 37 percent of the
population at large are firstborn.
(a) Using these data about the Supreme Court, test the hypothesis

that the belief of Adlerians is wrong and being firstborn does not
have a statistical effect on one’s personality.

(b) Is the result of (a) a convincing proof of the validity of the Adlerian
position? (Hint: Recall data mining.)

(c) Construct your own study to try to prove or disprove Adler’s belief.
Choose some sample of successful people (perhaps sample 200
major league baseball players), and find out what percentage of
them are firstborn.

9. An individual named Nicholas Caputo was the clerk of Essex County,
New Jersey, for an extended period. One of his duties as clerk was to
hold a drawing to determine whether Democratic or Republican candi-
dates would be listed first on county ballots. During his reign as clerk,
the Democrats won the drawing on 40 of 41 occasions. As a result,
Caputo, a Democrat, acquired the nickname the man with the golden
arm. In 1985 Essex County Republicans sued Caputo, claiming that he
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was discriminating against them. If you were the judge, how would
you rule? Explain!

10. A recent theory claims that famous people are more likely to die in the
6-month period after their birthday than in the 6-month period preced-
ing it. That is, the claim is that a famous person born on July 1 would
be more likely to die between July 1 and December 31 than between
January 1 and July 1. The reasoning is that a famous person would
probably look forward to all the attention and affection lavished on the
birthday, and this anticipation would strengthen the person’s “will to
live.” A countertheory is that famous people are less likely to die in
the 6-month period following their birthdays due to their increased
strength resulting from their birthday celebration. Still others assert
that both theories are wrong.

Let p denote the probability that a famous person will die within a
6-month period following his or her birthday, and consider a test of

H0: p = 1
2

versus H1: p 
= 1
2

(a) Suppose someone compiled a list of 200 famous dead people in
each of 25 separate fields and then ran 25 separate tests of the
stated null hypothesis.

Even if H0 is always true, what is the probability that at least one
of the tests will result in a rejection of H0 at the 5 percent level of
significance?

(b) Compile a list of between 100 and 200 famous dead people, and
use it to test the stated hypothesis.

11. Choose a random sample of 16 women from the list provided in App. A,
and use their weights to test the null hypothesis that the average
weight of all the women on the list is not greater than 110 pounds.
Use the 5 percent level of significance.

12. Suppose that team A and team B are to play a National Football League
game and team A is favored by f points. Let S(A) and S(B) denote,
respectively, the scores of teams A and B, and let X = S(A) − S(B) − f .
That is, X is the amount by which team A beats the point spread. It
has been claimed that the distribution of X is normal with mean 0 and
standard deviation 14. Use data concerning randomly chosen football
games to test this hypothesis.

13. The random walk model for the price of a stock or commodity assumes
that the successive differences in the logarithms of the closing prices
of a given commodity constitute a random sample from a normal
population. The following data give the closing prices of gold on 17
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consecutive trading days in 1994. Use it to test the hypothesis that the
mean daily change is equal to 0.

Closing prices

387.10 391.00 389.50 391.00 395.00 396.25

388.00 391.95 390.25 390.50 393.50 395.45

389.65 391.05 388.00 394.00 396.25

Note: The data are ordered by columns. The first value is 387.10, the second
388.00, the third 389.65, the fourth 391.00, and so on.

14. A null hypothesis will be rejected when the value of the test statistic
TS is large. The observed value of TS is 1.3. Suppose that when the
null hypothesis is true, the probability that TS is at least as large as
1.3 is 0.063.
(a) Will the null hypothesis be rejected at the 5 percent level of

significance?
(b) Will the null hypothesis be rejected at the 10 percent level of

significance?
(c) What is the p value?

15. It has been a long-time belief that the proportion of California births of
African American mothers that result in twins is about 1.32 percent.
(The twinning rate appears to be influenced by the ethnicity of the
mother: claims are that it is 1.05 for Caucasian Americans, and 0.72
percent for Asian Americans.) A scientist believes that this number
is no longer correct and that the actual percentage is about 1.8 per-
cent. Consequently, she has decided to test the null hypothesis that
the proportion is at most 1.32 percent by gathering data on the next
1,000 recorded birthing events in California.
(a) What is the minimal number of twin births needed to be able to

reject, at the 5 percent level of significance, the null hypothesis
that the probability that the twinning rate in African American
mothers is no greater than 1.32 per hundred births?

(b) What is the probability that the preceding null hypothesis will
be rejected, at the 5 percent level of significance, if the actual
twinning rate is 1.80?

16. In 1995, the Fermi Laboratory announced the discovery of the top
quark, the last of six quarks predicted by the “standard model of
physics.” The evidence for its existence was statistical in nature and
involved signals created when antiprotons and protons were forced to
collide. In a Physical Review Letters paper documenting the evidence,
Abe, Akimoto, and Akopian (known in physics circle as the three A’s)
based their conclusion on a theoretical analysis that indicated that
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the number of decay events in a certain time interval would have a
Poisson distribution with a mean equal to 6.7 if a top quark did not
exist and with a larger mean if it did exist. In a careful analysis of the
data the three A’s showed that the actual count was 27. Is this strong
enough evidence to prove the hypothesis that the mean of the Poisson
distribution was greater than 6.7?



CHAPTER 10

Hypothesis Tests Concerning
Two Populations

Statistics are like therapists—they will testify for both sides.
Fiorello La Guardia, former mayor of New York City

Numbers don’t lie; and they don’t forgive.
Harry Angstrom in Rabbit Is Rich by John Updike
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The importance of using a control in the testing of a new drug or a new procedure
is discussed, and we see how this often results in comparisons between parameters
of two different populations. We show how to test that two normal populations
have the same population mean, both when the population variances are known
and when they are unknown. We show how to test the equality of two population
proportions.

10.1 INTRODUCTION
An ongoing debate of great importance turns on whether megadoses—of the order
of 25,000 to 30,000 milligrams daily—of vitamin C can be effective in treating
patients suffering from cancerous tumors. On one side of the controversy was the
great U.S. chemist Linus Pauling, who was a strong advocate of vitamin C ther-
apy, and a growing number of researchers, and on the other side are the majority
of mainstream cancer therapists. While many experiments have been set up to
test whether vitamin C is therapeutically effective, there has been controversy
surrounding many of them. Some of these experiments, which reported nega-
tive results, have been attacked by vitamin C proponents as utilizing too small
dosages of the vitamin. Others of the experiments, reported by Prof. Pauling and
his associates, have been met with skepticism by some in the medical community.
To settle all doubts, a definitive experiment was planned and carried out in recent
years at the Mayo Clinic. In this famous study, part of a group of terminally ill
cancer patients was given, in addition to the regular medication, large doses of
vitamin C for three months. The remainder of the group received a placebo along
with the regular medication. After the three-month period, the experiment was
discontinued. These patients were then monitored until death to determine if the
life span of those who had received vitamin C was longer than that of the control
group. A summary statement was issued at the end of the experiment. This state-
ment, which was widely disseminated by the news media, reported that there was
no significant difference in the life span of those patients who had received the
vitamin C treatment. This experiment, regarded by some in the medical commu-
nity as being of seminal importance in discrediting vitamin C cancer therapy, was
attacked by Pauling as being irrelevant to the claims of the proponents of vitamin
C. According to the theory developed by Pauling and others, vitamin C would be
expected to have protective value only while it was being taken and would not be
expected to have any ongoing effect once it was discontinued. Indeed, according
to earlier writings of Pauling, an immediate (as was done in the study) rather than
a gradual stopping of vitamin C could have some potential negative effects. The
controversy continues.

It is important to note that it would not have been sufficient for the Mayo Clinic to
have given megadoses of vitamin C to all the volunteer patients. Even if there were
significant increases in the additional life spans of these patients in comparison
with the known life span distribution of patients suffering from this cancer, it
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would not be possible to attribute the cause of this increase to vitamin C. For one
thing, the placebo effect—in which any type of “extra” treatment gives additional
hope to a patient, and this in itself can have beneficial effects—could not be ruled
out. For another, the additional life span could be due to factors totally uncon-
nected to the experiment. Thus, to be able to draw a valid conclusion from the
experiment, it was necessary to have a second group of volunteer patients, treated
in all manners the same as the first, except that they did not receive additional
vitamin C but rather only medication that looks and tastes like it. (Of course, to
ensure that the two groups are as alike as possible, with the exception of their
vitamin C intake, the group of volunteer patients was randomly divided into the
two groups—the treated group, whose members received the vitamin C, and the
control group, whose members received the placebo.) This resulted in two sepa-
rate samples, and the resultant data were used to test the hypothesis that the mean
additional lifetimes of these two groups are identical.

Indeed, in all situations in which one is trying to study the effect of a given factor,
such as the administration of vitamin C, one wants to hold all other factors con-
stant so that any change from the norm can be attributed solely to the factor under
study. However, because this is often impossible to achieve outside experiments
in the physical sciences, it is usually necessary to consider two samples—one of
which is to receive the factor under study and the other of which is a control group
that will not receive the factor—and then determine whether there is a statisti-
cally significant difference in the responses of these two samples. For this reason,
tests concerning two sampled populations are of great importance in a variety of
applications.

In this chapter we will show how to test the hypothesis that two population
means are equal when a sample from each population is available. In Sec. 10.2
we will suppose that the underlying population distributions are normal, with
known variances. Although it is rarely the case that the population variances will
be known, the analysis presented in this section will be useful in showing us how
to handle the more important cases where this assumption is no longer made.
In fact, we show in Sec. 10.3 how to test the hypothesis that the two population
means are equal when the variances are unknown, provided that the sample sizes
are large. The case where the sample sizes are not large is considered in Sec. 10.4.
To be able to test the hypothesis in this case, it turns out to be necessary to assume
that the unknown population variances are equal.

In Sec. 10.5 we consider situations in which the two samples are related because of
a natural pairing between the elements of the two data sets. For instance, one of the
data values in the first sample might refer to an individual’s blood pressure before
receiving any medication, whereas one of the data values in the second sample
might refer to that same person’s blood pressure after receiving medication.

In Sec. 10.6 we consider tests concerning the equality of two binomial propor-
tions.
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10.2 TESTING EQUALITY OF MEANS OF TWO
NORMAL POPULATIONS: CASE OF KNOWN
VARIANCES

Suppose that X1, . . . , Xn are a sample from a normal population having mean μx

and variance σ2
x ; and suppose that Y1, . . . , Ym are an independent sample from a

normal population having mean μy and variance σ 2
y . Assuming that the popula-

tion variances σ2
x and σ 2

y are known, let us consider a test of the null hypothesis
that the two population means are equal; that is, let us consider a test of

H0: μx = μy

against the alternative

H1: μx 
= μy

Since the estimators of μx and μy are the respective sample means

X =
∑n

i=1 Xi

n
and Y =

∑m
i=1 Yi

m

it seems reasonable that H0 should be rejected when X and Y are far apart. That
is, for an appropriate constant c, it would seem that the test should be to

Reject H0 if |X − Y | ≥ c
Not reject H0 otherwise

To specify the appropriate value of c, say, for a significance-level-α test, first we
need to determine the probability distribution of X − Y . Now, X is normal with
mean μx and variance σ 2

x /n. And similarly, Y is normal with mean μy and vari-
ance σ 2

y /m. Since the difference of independent normal random variables remains

normally distributed, it follows that X − Y is normal with mean

E
[

X − Y
] = E

[
X
]− E

[
Y
] = μx − μy

and variance

Var
(

X − Y
) = Var

(
X
)+ Var

(−Y
)

= Var
(

X
)+ (−1)2 Var

(
Y
)

= Var
(

X
)+ Var

(
Y
)

= σ 2
x

n
+ σ 2

y

m
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Hence, the standardized variable

X − Y − (
μx − μy

)
√

σ2
x /n + σ 2

y /m

has a standard normal distribution. Therefore, when the null hypothesis
H0: μx = μy is true, the test statistic TS, given by

TS = X − Y√
σ2

x /n + σ2
y /m

(10.1)

will have a standard normal distribution. Now, a standard normal random
variable Z will, in absolute value, exceed zα/2 with probability α; that is,

P{|Z| ≥ zα/2} = 2P{Z ≥ zα/2} = α

Thus, since we want to reject H0 when |TS| is large, it follows that the appropriate
significance-level-α test of

H0: μx = μy against H1: μx 
= μy

is to

Reject H0 if |TS| ≥ zα/2

Not reject H0 otherwise

where the test statistic TS is given by Eq. (10.1).

An alternative way of carrying out this test is first to compute the value of the test
statistic TS; say that the data yield the value v. The resulting p value for the test
of H0 versus H1 is the probability that the absolute value of a standard normal
random variable is at least as large as |v|. That is, if TS is v, then

p value = P{|Z| ≥ |v|} = 2P{Z ≥ |v|}

where Z is a standard normal random variable.

■ Example 10.1
Two new methods for producing a tire have been proposed. The manufacturer
believes there will be no appreciable difference in the lifetimes of tires produced
by these methods. To test the plausibility of such a hypothesis, a sample of 9
tires is produced by method 1 and a sample of 7 tires by method 2. The first
sample of tires is to be road-tested at location A and the second at location B.
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Table 10.1 Tire Lives in Units of 1000 Kilometers

Tires tested at A Tires tested at B Tires tested at A Tires tested at B

66.4 58.2 61.4 58.7
61.6 60.4 62.5 56.1
60.5 55.2 64.4
59.1 62.0 60.7
63.6 57.3

It is known, from previous experience, that the lifetime of a tire tested at either
of these locations is a normal random variable with a mean life due to the tire
but with a variance that is due to the location. Specifically, it is known that the
lifetimes of tires tested at location A are normal with a standard deviation equal
to 3000 kilometers, whereas those tested at location B have lifetimes that are
normal with a standard deviation of 4000 kilometers.

Should the data in Table 10.1 cause the manufacturer to reject the hypothesis
that the mean lifetime is the same for both types of tires? Use a 5 percent level
of significance.

Solution

Call the tires tested at location A the X sample and those tested at B the Y
sample. To test

H0: μx = μy against H1: μx 
= μy

we need to compute the value of the test statistic TS. Now, the sample means
are given by

X = 62.2444 Y = 58.2714

Since n = 9, m = 7, σx = 3, and σy = 4, we see that the value of the test
statistic is

TS = 62.2444 − 58.2714√
9/9 + 16/7

= 2.192

Thus the p value is equal to

p value = 2P{Z ≥ 2.192} = 0.0284

and so the hypothesis of equal means is rejected at any significance level greater
than or equal to 0.0284. In particular, it is rejected at the 5 percent (α = 0.05)
level of significance. ■
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If we were interested in testing the null hypothesis

H0: μx ≤ μy

against the one-sided alternative

H1: μx > μy

then the null hypothesis will be rejected only when the test statistic TS is large. In
this case, therefore, the significance-level-α test is to

Reject H0 if TS ≥ zα

Not reject H0 otherwise

where

TS = X − Y√
σ2

x /n + σ2
y /m

Equivalently, if the observed value of TS is v, then the p value is

p value = P{Z ≥ v}.

■ Example 10.2
Suppose the purpose of the experiment in Example 10.1 was to attempt to prove
the hypothesis that the mean life of the first set of tires exceeded that of the sec-
ond set by more than 1000 kilometers. Are the data strong enough to establish
this at, say, the 5 percent level of significance?

Solution

Let Yi denote the life of the ith tire of the second set, i = 1, . . . , 7. If we set
Wi = Yi + 1, then we are interested in determining whether the data will enable
us to conclude that μx > μw, where μx is the mean life of tires in the first set
and μw is the mean of Wi. To decide this, we should take this conclusion to be
the alternative hypothesis. That is, we should test

H0: μx ≤ μw against H1: μx > μw

In other words, a rejection of H0 would be strong evidence for the validity of the
hypothesis that the mean life of the first set of tires exceeds that of the second
set by more than 1000 kilometers.
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Table 10.2 Tests of Means of Two Normal Populations Having
Known Variances when Samples are Independent

The sample mean of a sample of size n from a normal population having mean μx

and known variance σ2
x is X. The sample mean of a sample of size m from a second

normal population having mean μy and known variance σ 2
y is Y . The two samples are

independent.

H0 H1 Test statistic TS Significance-level-α test p value if TS = v

μx = μy μx 
= μy
X−Y√

σ2
x /n+σ 2

y /m
Reject H0 if |TS| ≥ zα/2

Do not reject otherwise
2P{Z ≥ |v|}

μx ≤ μy μx > μy
X−Y√

σ2
x /n+σ 2

y /m
Reject H0 if TS ≥ zα

Do not reject otherwise
P{Z ≥ v}

To test this hypothesis, we compute the value of the test statistic TS, being
careful to add 1 to the values given in Table 10.1 for tires tested at location
B. This yields

X = 62.2444 W = 59.2714

and

TS = 62.2444 − 59.2714√
9/9 + 16/7

= 1.640

Since we want to reject H0 when TS is large, the p value is the probability that
a standard normal will exceed 1.640. That is,

p value = P{Z ≥ 1.640} = 0.0505

Thus, even though the evidence is strongly in favor of the alternative hypothesis,
it is not quite strong enough to cause us to reject the null hypothesis at the 5
percent level of significance. ■

Table 10.2 details both the two-sided test and the one-sided test presented in this
section.

PROBLEMS

1. An experiment is performed to test the difference in effectiveness of
two methods of cultivating wheat. A total of 12 patches of ground are
treated with shallow plowing and 14 with deep plowing. The average
yield per ground area of the first group is 45.2 bushels, and the average
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yield for the second group is 48.6 bushels. Suppose it is known that
shallow plowing results in a ground yield having a standard deviation
of 0.8 bushels, while deep plowing results in a standard deviation of 1.0
bushels.
(a) Are the given data consistent, at the 5 percent level of signifi-

cance, with the hypothesis that the mean yield is the same for both
methods?

(b) What is the p value for this hypothesis test?
2. A method for measuring the pH level of a solution yields a measurement

value that is normally distributed with a mean equal to the actual pH
of the solution and with a standard deviation equal to 0.05. An environ-
mental pollution scientist claims that two different solutions come from
the same source. If this is so, then the pH level of the solutions will be
equal. To test the plausibility of this claim, 10 independent measure-
ments were made of the pH level for both solutions, with the following
data resulting:

Measurements of Measurements of Measurements of Measurements of
solution A solution B solution A solution B

6.24 6.27 6.26 6.31
6.31 6.25 6.24 6.28
6.28 6.33 6.29 6.29
6.30 6.27 6.22 6.34
6.25 6.24 6.28 6.27

(a) Do these data disprove the scientist’s claim? Use the 5 percent level
of significance.

(b) What is the p value?
3. Two machines used for cutting steel are calibrated to cut exactly the

same lengths. To test this hypothesis, each machine is used to cut
10 pieces of steel. These pieces are then measured (with negligible
measuring error). Suppose the resulting data are as follows:

Machine 1 Machine 2 Machine 1 Machine 2

122.40 122.36 121.76 122.40
123.12 121.88 122.31 122.12
122.51 122.20 123.20 121.78
123.12 122.88 122.48 122.85
122.55 123.43 121.96 123.04

Assume that it is known that the standard deviation of the length of a
cut (made by either machine) is equal to 0.50.
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(a) Test the hypothesis that the machines are set at the same value,
that is, that the mean lengths of their cuttings are equal. Use the 5
percent level of significance.

(b) Find the p value.
4. The following are the values of independent samples from two different

populations.

Sample 1: 122, 114, 130, 165, 144, 133, 139, 142, 150

Sample 2: 108, 125, 122, 140, 132, 120, 137, 128, 138

Let μ1 and μ2 be the respective means of the two populations. Find the
p value of the test of the null hypothesis

H0: μ1 ≤ μ2

against the alternative

H1: μ1 > μ2

when the population standard deviations are σ1 = 10 and
(a) σ2 = 5
(b) σ2 = 10
(c) σ2 = 20

5. In this section, we presented the test of

H0: μx ≤ μy against H1: μx > μy

Explain why it was not necessary to separately present the test of

H0: μx ≥ μy against H1: μx < μy

6. The device used by astronomers to measure distances results in mea-
surements that have a mean value equal to the actual distance of the
object being surveyed and a standard deviation of 0.5 light-years. An
astronomer is interested in testing the widely held hypothesis that
asteroid A is at least as close to the earth as is asteroid B. To test
this hypothesis, the astronomer made 8 independent measurements on
asteroid A and 12 on asteroid B. If the average of the measurements
for asteroid A was 22.4 light-years and the average of those for aster-
oid B was 21.3, will the hypothesis be rejected at the 5 percent level of
significance? What is the p value?

7. The value received at a certain message-receiving station is equal to the
value sent plus a random error that is normal, with mean 0 and standard
deviation 2. Two messages, each consisting of a single value, are to be
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sent. Because of the random error, each message will be sent 9 times.
Before reception, the receiver is fairly certain that the first message
value will be less than or equal to the second. Should this hypothesis be
rejected if the average of the values relating to message 1 is 5.6 whereas
the average of those relating to message 2 is 4.1? Use the 1 percent level
of significance.

8. A large industrial firm has its manufacturing operations at one end of
a large river. A public health official thinks that the firm is increasing
the polychlorinated biphenyl (PCB) level of the river by dumping toxic
waste. To gain information, the official took 12 readings of water from
the part of the river situated by the firm and 14 readings near the other
end of the river. The sample mean of the 12 readings of water near the
firm was 32 parts per billion, and the sample mean of the other set of 14
readings was 22 parts per billion. Assume that the value of each reading
of water is equal to the actual PCB level at that end of the river where
the water is collected plus a random error due to the measuring device
that is normal, with mean 0 and standard deviation 8 parts per billion.
(a) Using the given data and the 5 percent level of significance, can we

reject the hypothesis that the PCB level at the firm’s end of the river
is no greater than the PCB level at the other end?

(b) What is the p value?

10.3 TESTING EQUALITY OF MEANS: UNKNOWN
VARIANCES AND LARGE SAMPLE SIZES

In the previous section we supposed that the population variances were known
to the experimenter. However, it is far more common that these parameters are
unknown. That is, if the mean of a population is unknown, then it is likely that
the variance will also be unknown.

Let us again suppose that we have two independent samples X1, . . . , Xn and
Y1, . . . , Ym and are interested in testing a hypothesis concerning their means μx

and μy . Although we do not assume that the population variances σ 2
x and σ 2

y are
known, we will suppose that the sample sizes n and m are large.

To determine the appropriate test in this situation, we will make use of the fact
that for large sample sizes the sample variances will approximately equal the pop-
ulation variances. Thus, it seems reasonable that we can substitute the sample
variances S2

x and S2
y for the population variances and make use of the analysis

developed in the previous section. That is, analogous with the result that

X − Y − (
μx − μy

)
√

σ2
x /n + σ 2

y /m
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has a standard normal distribution, it would seem that for large values of n and
m, the random variable

X − Y − (
μx − μy

)
√

S2
x/n + S2

y /m

will have an approximately standard normal distribution. Since this result is
indeed true, it follows that we can utilize the same tests developed in Sec. 10.2
except that the sample variances are now utilized in place of the population
variances. For instance, the significance-level-α test of

H0: μx = μy

against

H1: μx 
= μy

is to reject when |TS| ≥ zα/2, where the test statistic TS is now given by

TS = X − Y√
S2

x/n + S2
y /m

An equivalent way of determining the outcome is first to determine the value of
the test statistic TS, say it is v, and then to calculate the p value, given by

p value = P{|Z| ≥ |v|} = 2P{Z ≥ |v|}

Also, if we want to test the one-sided hypothesis

H0: μx ≤ μy

against

H1: μx > μy

then we use the same test statistic as before. The test is to

Reject H0 if TS ≥ zα

Not reject H0 otherwise

Equivalently, if the observed value of TS is v, then the p value is

p value = P{Z ≥ v}
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Remarks We have not yet specified how large n and m should be for the preceding to be
valid. A general rule of thumb is for both sample sizes to be at least 30, although values
of 20 or more will usually suffice.

Even when the underlying population distributions are themselves not normal, the central
limit theorem implies that the sample means X and Y will be approximately normal. For
this reason the preceding tests of population means can be used for arbitrary underlying
distributions provided that the sample sizes are large. (Again, sample sizes of at least 20
should suffice.)

■ Example 10.3
To test the effectiveness of a new cholesterol-lowering medication, 100 volun-
teers were randomly divided into two groups of size 50 each. Members of the
first group were given pills containing the new medication, while members of
the second, or control, group were given pills containing lovastatin, one of the
standard medications for lowering blood cholesterol. All the volunteers were
instructed to take a pill every 12 hours for the next 3 months. None of the
volunteers knew which group they were in.

Suppose that the result of this experiment was an average reduction of 8.2 with
a sample variance of 5.4 in the blood cholesterol levels of those taking the old
medication, and an average reduction of 8.8 with a sample variance of 4.5 of
those taking the newer medication. Do these results prove, at the 5 percent
level, that the new medication is more effective than the old one?

Solution

Let μx denote the mean cholesterol reduction of a volunteer who is given the
new medication, and let μy be the equivalent value for one given the control. If
we want to see if the data were sufficient to prove that μx > μy , then we should
use them to test

H0: μx ≤ μy against H1: μx > μy

The value of the test statistic is

TS = 8.8 − 8.2√
4.5/50 + 5.4/50

= 1.3484

Since this is a one-sided test where the null hypothesis will be rejected when
TS is large, the p value equals the probability that a standard normal (which
would be the approximate distribution of TS if μx = μy) is as large as 1.3484.
That is, the p value of these data is

p value = P{Z ≥ 1.3484} = 0.089



456 CHAPTER 10: Hypothesis Tests Concerning Two Populations

Since the p value is greater than 0.05, the evidence is not strong enough to
establish, at the 5 percent level of significance, that the new medication is more
effective than the old. ■

In Example 10.3, note that we compared the new drug to a standard medication
rather than to a placebo. Now, when a new drug is tested in situations where
there is no accepted treatment, the drug should always be tested against a placebo.
However, if there is a viable treatment already in place, then the new drug should
be tested against it. This is obvious in very serious diseases, where there may be
ethical questions related to prescribing a placebo. Also, in general, one always
hopes to conclude that a new drug is better than the previous state-of-the-art drug
as opposed to concluding that it is “better than nothing.”

■ Example 10.4
A phenomenon quite similar to the placebo effect is often observed in indus-
trial human-factor experiments. It has been noted that a worker’s productivity
usually increases when that worker becomes aware that she or he is being mon-
itored. Because this phenomenon was documented and widely publicized after
some studies on increasing productivity carried out at the Hawthorne plant of
the Western Electric company, it is sometimes referred to as the Hawthorne effect.
To counter this effect, industrial experiments often make use of a control group.

An industrial consultant has suggested a modification of the existing method
for producing semiconductors. She claims that this modification will increase
the number of semiconductors a worker can produce in a day. To test the
effectiveness of her ideas, management has set up a small study. A group of
50 workers have been randomly divided into two groups. One of the groups,
consisting of 30 workers, has been trained in the modification proposed by the
consultant. The other group, acting as a control, has been trained in a differ-
ent modification. These two modifications are considered by management to
be roughly equal in complexity of learning and in time of implementation. In
addition, management is quite certain that the alternative (to the one proposed
by the consultant) modification would not have any real effect on productiv-
ity. Neither group was told whether it was learning the consultant’s proposal
or not.

The workers were then monitored for a period of time with the following
results.

For those trained in the technique of the consultant:
The average number of semiconductors produced per worker was 242.
The sample variance was 62.2.

For those workers in the control group:
The average number of semiconductors produced per worker was 234.
The sample variance was 58.4.
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Are these data sufficient to prove that the consultant’s modification will increase
productivity?

Solution

Let μx denote the mean number of semiconductors that would be produced
over the period of the study by workers trained in the method of the consultant.
Also let μy denote the mean number produced by workers given the alternative
technique. To prove the consultant’s claim that μx > μy , we need to test

H0: μx ≤ μy against H1: μx > μy

The data are

n = 30 m = 20

X = 242 Y = 234

S2
x = 62.2 S2

y = 58.4

Thus the value of the test statistic is

TS = 242 − 234√
62.2/30 + 58.4/20

= 3.58

Hence, the p value of these data is

p value = P{Z ≥ 3.58} = 0.0002

Thus, the data are significant enough to prove that the consultant’s modification
was more effective than the one used by the control group. ■

Historical Perspective

The idea of using part of a sample as a control goes back a long way. In the 11th
century, the Arabic doctor Avicenna laid down rules for medical experimentation
on human subjects. Some of these touched on the use of controls. In 1626 Francis
Bacon published an account of the effects of steeping wheat seeds in nine different
mixtures, such as water mixed with cow dung, urine, and different types of wine,
with unsteeped seed as a control. The greatest yield resulted when seed was steeped
in urine.

The first general writing on experiments using controls was done by the British
farmer Arthur Young. Young stressed that agricultural experiments must always
compare a new treatment with a known one. He published his thoughts in 1771
in the book A Course of Experimental Agriculture.
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When we are given raw data, rather than summary statistics, the sample means
and sample variances can be calculated by a manual computation or by using a
calculator or a computer program such as Program 3-1. These quantities should
then be used to determine the value of the test statistic TS. Finally, the p value
can then be obtained by using the normal probability table (Table D.1 in
App. D).

Historical Perspective

The Hawthorne effect illustrates that the presence of an observer may affect the
behavior of those being observed. As noted in Example 10.4, the recognition
of this phenomenon grew out of research conducted during the 1920s at the
Hawthorne plant of Western Electric. Investigators set out to determine how the
productivity of workers at this plant could be improved. Their initial studies were
designed to examine the effects of changes in lighting on the productivity of work-
ers assembling telephone components. Gradual increases in lighting were made,
and each change led to increased productivity. Productivity, in fact, continued to
increase even when the lighting was made abnormally bright. Even more surpris-
ing was the fact that when the lighting was reduced, productivity still continued
to rise.

■ Example 10.5
Test

H0: μx ≤ μy against H1: μx > μy

for the following data:

X: 22, 21, 25, 29, 31, 18, 28, 33, 28, 26, 32,35, 27, 29, 26

Y : 14, 17, 22, 18, 19, 21, 24, 33, 28, 22, 27, 18, 21, 19, 33, 31

Solution

A simple calculation yields that

n = 15 m = 16

X = 27.333 Y = 22.938

S2
x = 21.238 S2

y = 34.329
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Table 10.3 Tests of Means of Two Normal Populations Having
Unknown Variances when Samples are Independent and Sample
Sizes are Large

The sample mean and sample variance of a sample of size n from a normal population
having mean μx and unknown variance σ 2

x are, respectively, X and S2
x . The sample mean

and sample variance of a sample of size m from a second normal population having
mean μy and unknown variance σ 2

y are, respectively, Y and S2
y . The two samples are

independent, and both n and m are at least 20.

H0 H1 Test statistic TS Significance-level-α test p value if TS = v

μx = μy μx 
= μy
X−Y√

S2
x /n+S2

y /m
Reject H0 if |TS| ≥ zα/2

Do not reject otherwise
2P{Z ≥ |v|}

μx ≤ μy μx > μy
X−Y√

S2
x /n+S2

y /m
Reject H0 if TS ≥ zα

Do not reject otherwise
P{Z ≥ v}

Hence the value of TS is

TS = 4.395√
21.238/15 + 34.329/16

= 2.33

Since this is a one-sided test that will call for rejection only at large values of
TS, we have

p value = P{Z ≥ 2.33} = 0.01

Therefore, the hypothesis that the mean of the X population is no greater than
that of the Y population would be rejected at all significance levels greater than
or equal to 0.01. ■

Table 10.3 details both the two-sided and the one-sided tests presented in this
section.

PROBLEMS

1. A high school is interested in determining whether two of its instruc-
tors are equally able to prepare students for a statewide examination
in geometry. Seventy students taking geometry this semester were
randomly divided into two groups of 35 each. Instructor 1 taught geom-
etry to the first group, and instructor 2 to the second. At the end of
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the semester, the students took the statewide examination, with the
following results:

Class of instructor 1 Class of instructor 2

X = 72.6 Y = 74.0
S2

x = 6.6 S2
y = 6.2

Can we conclude from these results that the instructors are not equally
able in preparing students for the examinations? Use the 5 percent
level of significance. Give the null and alternative hypotheses and the
resulting p value.

2. Sample weights (in pounds) of newborn babies born in two adjacent
counties in western Pennsylvania yielded the following data:

n = 53 m = 44

X = 6.8 Y = 7.2

S2 = 5.2 S2 = 4.9

Consider a test of the hypothesis that the mean weight of newborns is
the same in both counties. What is the resulting p value? How would
you express your conclusions to an intelligent person who has not yet
studied statistics?

3. An administrator of a large exercise spa is curious as to whether
women members younger than 40 years old use the spa with the same
frequency as do women members over age 40. Random samples of
30 women younger than 40 years of age and 30 women older than age
40 were chosen and the women tracked for the following month. The
result was that the younger group had a sample mean of 3.6 visits with
a sample standard deviation of 1.3 visits, while the older group had a
sample mean of 3.8 visits with a sample standard deviation of 1.4 visits.
Use these data to test the hypothesis that the mean number of visits of
the population of older women is the same as that of younger women.

4. You are interested in testing the hypothesis that the mean travel time
from your home to work in the morning is the same as the mean travel
time from work back to home in the evening. To check this hypothesis,
you recorded the times for 40 workdays. It turned out that the sample
mean for the trip to work was 38 minutes with a sample standard
deviation of 4 minutes, and the sample mean of the return trip home
was 42 minutes with a sample standard deviation of 7 minutes.
(a) What conclusion can you draw at the 5 percent level of signifi-

cance?
(b) What is the p value?
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5. The following experiment was conducted to compare the yields of
two varieties of tomato plants. Thirty-six plants of each variety were
randomly selected and planted in a field. The first variety produced
an average yield of 12.4 kilograms per plant with a sample standard
deviation of 1.6 kilograms. The second variety produced an average
yield of 14.2 kilograms per plant with a sample standard deviation of
1.8 kilograms. Does this provide sufficient evidence to conclude that
there is a difference in the mean yield for the two varieties? At what
level of significance?

6. Data were collected to determine if there is a difference between
the mean IQ scores of urban and rural students in upper Michigan.
A random sample of 100 urban students yielded a sample mean score
of 102.2 and a sample standard deviation of 11.8. A random sample of
60 rural students yielded a sample mean score of 105.3 with a sample
standard deviation of 10.6. Are the data significant enough, at the
5 percent level, for us to reject the hypothesis that the mean scores of
urban and rural students are the same?

7. In Prob. 6, are the data significant enough, at the 1 percent level, to
conclude that the mean score of rural students in upper Michigan
is greater than that of urban students? What are the null and the
alternative hypotheses?

8. Suppose in Prob. 5 that the experimenter wanted to prove that the
average yield of the second variety was greater than that of the first.
What conclusion would have been drawn? Use a 5 percent level of
significance.

9. A firm must decide between two different suppliers of lightbulbs.
Management has decided to order from supplier A unless it can be
“proved” that the mean lifetime of lightbulbs from supplier B is supe-
rior. A test of 28 lightbulbs from A and 32 lightbulbs from B yielded
the following data as to the number of hours of use given by each
lightbulb:

A:121, 76, 88, 103, 96, 89, 100, 112, 105, 101, 92, 98, 87, 75, 111,

118, 121, 96, 93, 82, 105, 78, 84, 96, 103, 119, 85, 84

B:127, 133, 87, 91, 81, 122, 115, 107, 109, 89, 82, 90, 81, 104, 109, 110,

106, 85, 93, 90, 100, 122, 117, 109, 98, 94, 103, 107, 101, 99, 112, 90

At the 5 percent level of significance, which supplier should be used?
Give the hypothesis to be tested and the resulting p value.

10. An administrator of a business school claims that the average salary
of its graduates is, after 10 years, at least $5000 higher than that of
comparable graduates of a rival institution. To study this claim, a
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random sample of 50 students who had graduated 10 years ago was
selected, and the salaries of the graduates were determined. A similar
sample of students from the rival institute was also chosen. Suppose
the following data resulted:

College Rival institution

n = 50 m = 50
X = 85.2 Y = 74.8

S2
x = 26.4 S2

y = 24.5

(a) To determine whether these data prove the administrator’s claim,
what should be the null and the alternative hypotheses?

(b) What is the resulting p value?
(c) What conclusions can you draw?

11. An attempt was recently made to verify whether women are being
discriminated against, as far as wages are concerned, in a certain
industry. To study this claim, a court-appointed researcher obtained
a random sample of employees with 8 or more years’ experience and
with a history of regular employment during that time. With the unit
of wages being $1, the following data on hourly pay resulted:

Female workers Male workers

Sample size: 55 Sample size: 72
Sample mean: 10.80 Sample mean: 12.20
Sample variance: 0.90 Sample variance: 1.1

(a) What hypothesis should be tested? Give the null and the
alternative hypotheses.

(b) What is the resulting p value?
(c) What does this prove?

12. The following data summary was obtained from a comparison of the
lead content of human hair removed from adult individuals who had
died between 1880 and 1920 with the lead content of present-day
adults. The data were in units of micrograms, equal to one-millionth
of a gram.

1880–1920 Today

Sample size 30 100
Sample mean 48.5 26.6
Sample standard deviation 14.5 12.3

(a) Do these data establish, at the 1 percent level of significance, that
the mean lead content of human hair is less today than it was in
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the years between 1880 and 1920? Clearly state what the null and
alternative hypotheses are.

(b) What is the p value for the hypothesis tested in part (a)?
13. Forty workers were randomly divided into two sets of 20 each. Each

set spent 2 weeks in a self-training program that was designed to
teach a new production technique. The first set of workers was accom-
panied by a supervisor whose only job was to check that the workers
were all paying attention. The second group was left on its own. After
the program ended, the workers were tested. The results were as
follows:

Sample mean Sample standard deviation

Supervised group 70.6 8.4
Unsupervised group 77.4 7.4

(a) Test the null hypothesis that supervision had no effect on the
performance of the workers. Use the 1 percent level of significance.

(b) What is the p value?
(c) What would you conclude was the result of the supervision?

10.4 TESTING EQUALITY OF MEANS:
SMALL-SAMPLE TESTS WHEN THE UNKNOWN
POPULATION VARIANCES ARE EQUAL

Suppose again that we have independent samples from two normal populations:

X1, . . . , Xn and Y1, . . . , Ym

and we are interested in testing hypotheses concerning the respective population
means μx and μy . Unlike in the previous sections, we will suppose neither that the
population variances are known nor that the sample sizes n and m are necessarily
large.

In many situations, even though they are unknown, it is reasonable to sup-
pose that the population variances σ 2

x and σ 2
y are approximately equal. So let us

assume they are equal and denote their common value by σ 2. That is, suppose
that

σ 2
x = σ 2

y = σ2

To obtain a test of the null hypothesis

H0: μx = μy against H1: μx 
= μy
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when the population variances are equal, we start with the fact, shown in
Sec. 10.2, that

X − Y − (
μx − μy

)
√

σ 2
x /n + σ 2

y /m

has a standard normal distribution.

Thus, since σ 2
x = σ2

y = σ2, we see that when H0 is true (and so μx − μy = 0), then(
X − Y

)
/

√
σ 2 /n + σ 2/m has a standard normal distribution. That is,

When H0 is true,

X − Y√
σ 2/n + σ 2/m (10.2)

has a standard normal distribution.

The preceding result cannot be directly employed to test the null hypothesis of
equal means since it involves the unknown parameter σ2. As a result, we will first
obtain an estimator of σ2 and then determine the effect on the distribution of the
quantity (10.2) when σ 2 is replaced by its estimator.

To obtain an estimator for σ2, we make use of the fact that the sample variances
S2

x and S2
y are both estimators of the common population variance σ 2. It is thus

natural to combine, or pool, these two estimators. In other words, it is natural
to consider a weighted average of the two sample variances. To determine the
appropriate weights to attach to each one, recall that the sample variance from a
sample of size, say, k has k − 1 degrees of freedom associated with it. From this we
see that S2

x has n − 1 degrees of freedom associated with it, and S2
x has m − 1 degrees

of freedom. Thus, we will use a pooled estimator that weights S2
x by the factor

(n − 1)/(n − 1 + m − 1) and weights S2
y by the factor (m − 1)/(n − 1 + m − 1).

Definition The estimator S2
p defined by

S2
p = n − 1

n + m − 2
S2

x + m − 1
n + m − 2

S2
y

is called the pooled estimator of σ 2.

Note that the larger the sample size, the greater the weight given to its sample
variance in estimating σ 2. Also note that the pooled estimator will have n − 1 +
m − 1 = n + m − 2 degrees of freedom attached to it.



10.4 Testing Equality of Means: Small-Sample Tests 465

If, in expression (10.2), we replace σ 2 by its pooled estimator S2
p , then the resultant

statistic can be shown, when H0 is true, to have a t distribution with n + m − 2
degrees of freedom. (This is directly analogous to what happens to the distribution
of

√
n
(

X − μ
)
/σ when the population variance σ 2 is replaced by the sample vari-

ance S2—namely, this replacement changes the standard normal random variable√
n
(

X − μ
)
/σ to

√
n
(

X − μ
)
/S, which is a t random variable with n−1 degrees

of freedom.)

From the preceding we see that to test

H0: μx = μy against H1: μx 
= μy

one should first compute the value of the test statistic

TS = X − Y√
S2

p (1/n + 1/m)

The significance-level-α test is then to

Reject H0 if |TS| ≥ tn+m−2, α/2

Not reject H0 otherwise

Alternatively the test can be run by determining the p value. If TS is observed to
equal v, then the resulting p value of the test of H0 against H1 is given by

p value = P{|Tn+m−2| ≥ |v|}
= 2P{Tn+m−2 ≥ |v|}

where Tn+m−2 is a t random variable having n + m − 2 degrees of freedom.

If we are interested in testing the one-sided hypothesis

H0: μx ≤ μy against H1: μx > μy

then H0 will be rejected at large values of TS. Thus the significance-level-α test is to

Reject H0 if TS ≥ tn+m−2,α

Not reject H0 otherwise

If the value of the test statistics TS is v, then the p value is given by

p value = P{Tn+m−2 ≥ v}
Program 10-1 will compute both the value of the test statistic and the correspond-
ing p value for either a one-sided or a two-sided test.
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■ Example 10.6
Twenty-two volunteers at a cold-research institute caught a cold after having
been exposed to various cold viruses. A random selection of 10 volunteers were
given tablets containing 1 gram of vitamin C. These tablets were taken 4 times a
day. The control group, consisting of the other 12 volunteers, was given placebo
tablets that looked and tasted exactly like the vitamin C ones. This was contin-
ued for each volunteer until a doctor, who did not know whether the volunteer
was receiving vitamin C or the placebo, decided that the volunteer was no
longer suffering from the cold. The length of time the cold lasted was then
recorded.

At the end of this experiment, the following data resulted:

Treated with Treated with Treated with Treated with
vitamin C placebo vitamin C placebo

5.5 6.5 7.5 7.5
6.0 6.0 5.5 6.5
7.0 8.5 7.0 7.5
6.0 7.0 6.5 6.0
7.5 6.5 8.5
6.0 8.0 7.0

Do these data prove that taking 4 grams of vitamin C daily reduces the time
that a cold lasts? At what level of significance?

Solution

To prove the foregoing hypothesis, we need to reject the null hypothesis in a
test of

H0: μp ≤ μc against H1: μp > μc

where μc is the mean time a cold lasts when the vitamin C tablets are taken and
μp is the mean time when the placebo is taken. Assuming that the variance of
the length of the cold is the same for the vitamin C patients and the placebo
patients, we test the hypothesis by running Program 10-1. This program com-
putes the p value when testing that two normal populations having equal but
unknown variances have a common mean.

The sample 1 values are as follows: 6.5, 6, 8.5, 7, 6.5, 8, 7.5, 6.5, 7.5, 6, 8.5,
and 7.

The sample 2 values are as follows: 5.5, 6, 7, 6, 7.5, 6, 7.5, 5.5, 7, and 6.5.
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Program 10-1 computes the value of the t statistic as 1.898695366.

When we enter the values into Program 10-1, we make sure to note that the
alternative hypothesis is not two-sided but rather is that the mean of sample 1
exceeds that of sample 2.

Consequently, the program computes the p value as 0.03607053133.

Thus H0 would be rejected at the 5 percent level of significance.

Of course, if it was not convenient to run Program 10-1, then we could perform
the test by first computing the values of the statistics X, Y , S2

x , S2
y , and S2

p , where
the X sample corresponds to those receiving a placebo and the Y sample to
those receiving vitamin C. These computations give the values

X = 7.125 Y = 6.450

S2
x = 0.778 S2

y = 0.581

Therefore,

S2
p = 11

20
S2

x + 9
20

S2
y = 0.689

and the value of the test statistic is

TS = 0.675√
0.689(1/12 + 1/10)

= 1.90
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Table 10.4 Tests of Means of Two Normal Populations Having
Unknown Though Equal Variances when Samples are Independent

The sample mean and sample variance, respectively, of a sample size n from a normal
population having mean μx and varianceσ 2 areX andS2

x . And the sample mean and sample
variance of a sample of size m from a second normal population having mean μy and variance
σ 2 are Yand S2

y . The two samples are independent.

S2
p = (n−1)S2

x +(m−1)S2
y

n+m−2

H0 H1 Test statistic TS Significance-level-α test p value if TS = v

μx = μy μx 
= μy
X−Y√

S 2
p (1/n + 1/m)

Reject H0 if |TS| ≥ tn+m−2,α/2

Do not reject otherwise
2P{Tn+m−2 ≥ |v|}

μx ≤ μy μx > μy
X−Y√

S 2
p (1/n + 1/m)

Reject H0 if TS ≥ tn + m − 2,α

Do not reject otherwise
P{Tn + m − 2 ≥ v}

Since, from Table D.2, t20,0.05 = 1.725, the null hypothesis is rejected at
the 5 percent level of significance. That is, the evidence is significant, at the
5 percent level, in establishing that vitamin C reduces the mean time that a cold
persists. ■

Table 10.4 details both the two-sided test and the one-sided test presented in this
section.

PROBLEMS

In the following problems, assume that the population distributions are
normal and have equal variances.

1. Twenty-five males between the ages of 25 and 30 who were par-
ticipating in a well-known heart study carried out in Framingham,
Massachusetts were randomly selected. Of these, 11 were smokers
and 14 were not. The following data refer to readings of their systolic
blood pressure:

Smokers Nonsmokers Smokers Nonsmokers

124 130 131 127

134 122 133 135

136 128 125 120

125 129 118 122

133 118 120

127 122 115

135 116 123
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Do the data indicate, at the 1 percent level of significance, a difference
in mean systolic blood pressure levels for the populations repre-
sented by the two groups? If not, what about at the 5 percent
level?

2. A study was instituted to learn how the diets of women changed
during the winter and the summer. A random group of 12 women
were observed during the month of July, and the percentage of
each woman’s calories that came from fat was determined. Similar
observations were made on a different randomly selected group of
size 12 during the month of January. Suppose the results were as
follows:

July: 32.2, 27.4, 28.6, 32.4, 40.5, 26.2, 29.4, 25.8, 36.6, 30.3,

28.5, 32.0

January: 30.5, 28.4, 40.2, 37.6, 36.5, 38.8, 34.7, 29.5, 29.7, 37.2,

41.5, 37.0

Test the hypothesis that the mean fat intake is the same for both
months. Use the
(a) 5 percent
(b) 1 percent
level of significance.

3. A consumer organization has compared the time it takes a generic pain
reliever tablet to dissolve with the time it takes a name-brand tablet.
Nine tablets of each were checked. The following data resulted:

Generic: 14.2, 14.7, 13.9, 15.3, 14.8, 13.6, 14.6, 14.9, 14.2

Name: 14.3, 14.9, 14.4, 13.8, 15.0, 15.1, 14.4, 14.7, 14.9

(a) Do the given data establish, at the 5 percent level of significance,
that the name-brand tablet is quicker to dissolve?

(b) What about at the 10 percent level of significance?
4. To learn about the feeding habits of bats, a collection of 22 bats were

tagged and tracked by radio. Of these 22 bats, 12 were female and 10
were male. The distances flown (in meters) between feedings were
noted for each of the 22 bats, and the following summary statistics
were obtained:

Female bats Male bats

n = 12 m = 10
X = 180 Y = 136
Sx = 92 Sy = 86
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Test the hypothesis that the mean distance flown between feedings is
the same for the populations of male and female bats. Use the 5 percent
level of significance.

5. To determine the effectiveness of a new method of teaching read-
ing to young children, a group of 20 nonreading children were ran-
domly divided into two groups of 10 each. The first group was taught
by a standard method and the second group by an experimental
method. At the end of the school term, a reading examination was
given to each of the students, with the following summary statistics
resulting:

Students using standard Students using experimental

Average score = 65.6 Average score = 70.4
Standard deviation = 5.4 Standard deviation = 4.8

Are these data strong enough to prove, at the 5 percent level of sig-
nificance, that the experimental method results in a higher mean test
score?

6. Redo Prob. 2 of Sec. 10.3, assuming that the population variances are
equal.
(a) Would you reject the null hypothesis at the 5 percent level of

significance?
(b) How does the p value compare with the one previously obtained?

7. To learn about how diet affects the chances of getting diverticular dis-
ease, 20 vegetarians, 6 of whom had the disease, were studied. The
total daily dietary fiber consumed by each of these individuals was
determined, with the following results:

With disease Without disease

n = 6 m = 14
X = 26.8 grams Y = 42.5 grams
Sx = 9.2 grams Sy = 9.5 grams

Test the hypothesis that the mean dietary fiber consumed daily is the
same for the population of vegetarians having diverticular disease and
the population of vegetarians who do not have this disease. Use the 5
percent level of significance.

8. It is “well known” that the average automobile commuter in the Los
Angeles area drives more miles daily than does a commuter in the San
Francisco Bay area. To see whether this “fact” is indeed true, a ran-
dom sample of 20 Los Angeles area commuters and 20 San Francisco
Bay area commuters were randomly chosen and their driving habits
monitored. The following data relating to the average number and
standard deviation of miles driven resulted.
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Los Angeles San Francisco
commuter commuter

X = 57.4 X = 52.8
Sx = 12.4 Sy = 13.8

Do these data prove the hypothesis that the mean distance driven by
Los Angeles commuters exceeds that of San Francisco commuters?
Use the
(a) 10
(b) 5
(c) 1
percent level of significance.

9. The following are the results of independent samples of two different
populations.

X: 10.3, 10.4, 11.3, 13.5, 12.7, 11.1, 10.9, 9.7, 14.5, 13.3

Y : 12.4, 11.7, 13.5, 12.9, 13.4, 15.5, 16.3, 13.7, 14.3

Test the null hypothesis that the two population means are equal
against the alternative that they are unequal, at the
(a) 10 percent
(b) 5 percent
(c) 1 percent
level of significance.

10. A manager is considering instituting an additional 15-minute coffee
break if it can be shown to decrease the number of errors that employ-
ees commit. The manager divided a sample of 20 employees into two
groups of 10 each. Members of one group followed the same work
schedule as before, but the members of the other group were given
a 15-minute coffee break in the middle of the day. The following data
give the total number of errors committed by each of the 20 workers
over the next 20 working days.

Coffee break group: 8, 7, 5, 8, 10, 9, 7, 8, 4, 5

No-break group: 7, 6, 14, 12, 13, 8, 9, 6, 10, 9

Test the hypothesis, at the 5 percent level of significance, that institut-
ing a coffee break does not reduce the mean number of errors. What is
your conclusion?

10.5 PAIRED-SAMPLE t TEST
Suppose that X1, . . . , Xn and Y1, . . . , Yn are samples of the same size from differ-
ent normal populations having respective means μx and μy . In certain situations
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there will be a relationship between the data values Xi and Yi. Because of this
relationship, the pairs of data values Xi, Yi, i = 1, . . . , n, will not be independent;
so we will not be able to use the methods of previous sections to test hypotheses
concerning μx and μy .

■ Example 10.7
Suppose we are interested in learning about the effect of a newly developed
gasoline detergent additive on automobile mileage. To gather information,
seven cars have been assembled, and their gasoline mileages (in units of miles
per gallon) have been determined. For each car this determination is made both
when gasoline without the additive is used and when gasoline with the additive
is used. The data can be represented as follows:

Car Mileage without additive Mileage with additive

1 24.2 23.5
2 30.4 29.6
3 32.7 32.3
4 19.8 17.6
5 25.0 25.3
6 24.9 25.4
7 22.2 20.6

For instance, car 1 got 24.2 miles per gallon by using gasoline without the addi-
tive and only 23.5 miles per gallon by using gasoline with the additive, whereas
car 4 obtained 19.8 miles per gallon by using gasoline without the additive and
17.6 miles per gallon by using gasoline with the additive.

Now, it is easy to see that two factors will determine a car’s mileage per gallon.
One factor is whether the gasoline includes the additive, and the second factor
is the car itself. For this reason we should not treat the two samples as being
independent; rather, we should consider paired data. ■

Suppose we want to test

H0: μx = μy against H1: μx 
= μy

where the two samples consist of the paired data Xi, Yi, = 1, . . . , n. We can test this

null hypothesis that the population means are equal by looking at the differences
between the data values in a pairing. That is, let

Di = Xi − Yi i = 1, . . . , n



10.5 Paired-Sample t Test 473

Now,

E
[
Di
] = E

[
Xi
]− E

[
Yi
]

or, with μd = E[Di],

μd = μx − μy

The hypothesis that μx = μy is therefore equivalent to the hypothesis that μd = 0.
Thus we can test the hypothesis that the population means are equal by testing

H0: μd = 0 against H1: μd 
= 0

Assuming that the random variables D1, . . . , Dn constitute a sample from a nor-
mal population, we can test this null hypothesis by using the t test described
in Sec. 9.4. That is, if we let D and Sd denote, respectively, the sample mean
and sample standard deviation of the data D1, . . . , Dn, then the test statistic TS
is given by

TS = √
n

D
Sd

The significance-level-α test will be to

Reject H0 if |TS| ≥ tn−1, α/2

Not reject H0 otherwise

where the value of tn−1,α/2 can be obtained from Table D.2.

Equivalently, the test can be performed by computing the value of the test statistic
TS, say it is equal to v, and then computing the resulting p value, given by

p value = P{|Tn−1| ≥ |v|} = 2P{Tn−1 ≥ |v|}
where Tn−1 is a t random variable with n − 1 degrees of freedom. If a personal
computer is available, then Program 9-1 can be used to determine the value of
the test statistic and the resulting p value. The successive data values entered in
this program should be D1, D2, . . . , Dn and the value of μ0 (the null hypothesis
value for the mean of D) entered should be 0.

■ Example 10.8
Using the data of Example 10.7, test, at the 5 percent level of significance, the
null hypothesis that the additive does not change the mean number of miles
obtained per gallon of gasoline.
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Solution

If it is not convenient to run Program 9-1, we can use the data to compute first
the differences Di and then the summary statistics D and Sd. Using the data
differences

0.7, 0.8, 0.4, 2.2, −0.3, −0.5, 1.6

results in the values

D = 0.7 Sd = 0.966

Therefore, the value of the test statistic is

TS =
√

7 (0.7)

0.966
= 1.917

Since, from Table D.2, t6,0.025 = 2.447, the null hypothesis that the mean
mileage is the same whether or not the gasoline used contains the additive is
not rejected at the 5 percent level of significance.

If a personal computer is available, then we can solve the problem by running
Program 9-1. This yields the following:

Thus the null hypothesis will not even be rejected at the 10 percent level of
significance. ■

One-sided tests concerning the two population means are similarly obtained. For
instance, to test

H0: μx ≤ μy against H1: μx > μy
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we use the data D1, . . . , Dn and test

H0: μd ≤ 0 against H1: μd > 0

Again with the test statistic

TS = √
n

D
Sd

the significance-level-α test is to

Reject H0 if TS > tn−1,α

Not reject H0 otherwise

Equivalently, if the value of TS is v, then the p value is

p value = P{Tn−1 ≥ v}
Program 9-1 can be used again to determine the value of the test statistic and
the resulting p value. (If summary statistics D and Sd are given, then the p value
can be obtained by calculating v, the value of the test statistic, and then running
Program 8-1 to determine P{Tn−1 ≥ v}.)

■ Example 10.9
The management of a chain of stores wanted to determine whether advertising
tended to increase its sales of women’s shoes. To do so, management deter-
mined the number of shoe sales at six stores during a two-week period. While
there were no advertisements in the first week, advertising was begun at the
beginning of the second week. Assuming that any change in sales is due solely
to the advertising, do the resulting data prove that advertising increases the
mean number of sales? Use the 1 percent level of significance.

Store First-week sales Second-week sales

1 46 54
2 54 60
3 74 96
4 60 75
5 63 80
6 45 50

Solution

Letting Di denote the increase in sales at store i, we need to check if the data are
significant enough to establish that μd > 0. Hence, we should test

H0: μd ≤ 0 against H1: μd > 0
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Using the data values 8, 6, 22, 15, 17, 5, we run Program 9-1 to obtain the
following:

Thus the hypothesis that advertising does not result in increased sales is rejected
at any significance level greater than or equal to 0.0038. Therefore, it is rejected
at the 1 percent level of significance. ■

PROBLEMS

1. The following data relate to the heart rates (in beats per minute)
of 12 individuals both before and after using chewing tobacco. The
subjects were regular users of this substance.

Subject Heart rate before use Heart rate after use

1 73 77
2 67 69
3 68 73
4 60 70
5 76 74
6 80 88
7 73 76
8 77 82
9 66 69

10 58 61
11 82 84
12 78 80
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(a) Test the hypothesis, at the 5 percent level of significance, that
chewing smokeless tobacco does not result in a change in the
mean heart rate of the population of regular users of chewing
tobacco.

(b) What is the resulting p value?
2. A shoe salesman claims that using his company’s running shoes will

result, on average, in faster times. To check this claim, a track coach
assembled a team of 10 sprinters. The coach randomly divided the
runners into two groups of size 5. The members of the first group then
ran 100 yards, using their usual running shoes; the members of the
second group ran 100 yards, using the company’s shoes. After time
was given for rest, the group who ran with their usual shoes changed
into the company’s shoes and members of the other group changed
to their usual shoes. Then they all ran another dash of 100 yards. The
following data resulted:

Racer

1 2 3 4 5 6 7 8 9 10

Time (old shoes) 10.5 10.3 11.0 10.9 11.3 9.9 10.1 10.7 12.2 11.1
Time (new shoes) 10.3 10.0 10.6 11.1 11.0 9.8 10.2 10.5 11.8 10.5

Do these data prove the claim of the salesman that the company’s new
shoes result, on average, in lower times? Use the 10 percent level of
significance. What about at the 5 percent level?

3. Use the t test on the following paired data to test

H0: μx = μy against H1: μx 
= μy

at the 5 percent level of significance.

i

1 2 3 4 5 6 7 8 9 10 11

Xi 122 132 141 127 141 119 124 131 145 140 135
Yi 134 126 133 122 155 116 118 137 140 133 142

4. A question of medical interest is whether jogging leads to a reduc-
tion in systolic blood pressure. To learn about this question, eight
nonjogging volunteers have agreed to begin a 1-month jogging
program. At the end of the month their blood pressures were deter-
mined and compared with earlier values, with the following data
resulting:
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Subject

1 2 3 4 5 6 7 8

Blood pressure before 134 122 118 130 144 125 127 133
Blood pressure after 130 120 123 127 138 121 132 135

(a) Suppose you want to see if these data are significant enough to
prove that jogging for 1 month will tend to reduce the systolic
blood pressure. Give the null and alternative hypotheses.

(b) Do the data prove the hypothesis in (a) at the 5 percent level of
significance?

(c) Do the data prove that the hypothesis is false?
(d) How would you present the results of this experiment to a medical

person who is not trained in statistics?

5. The following table gives the scores on a test of intelligence for 14 pairs
of monozygotic (commonly called identical) twins who were separated
at birth. One member of each pair was raised by a biological parent,
while the other was raised in a home that did not contain either of
their biological parents. The IQ test used is known in the psychological
literature as the “dominoes” IQ test.

Twin raised Twin raised Twin raised Twin raised
by mother by neither by mother by neither
or father parent or father parent

23 18 22 15

30 25 31 23

25 28 29 27

18 22 24 26

19 14 28 19

25 34 31 30

28 36 27 28

(a) Test the hypothesis that the mean IQ test score of a twin is not
affected by whether he or she is raised by a biological parent. Use
the 5 percent level of significance.

(b) What conclusions, if any, can be drawn from your hypothesis
test?

6. Consider Prob. 2 of Sec. 10.4. Suppose that the same women were used
for both months and that the data in each of the columns referred to
the same woman’s fat intake during the summer and winter.
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(a) Test the hypothesis that there is no difference in fat intake during
summer and winter. Use the 5 percent level of significance.

(b) Repeat (a), this time using the 1 percent level.

7. The following are scores on two IQ tests of 12 university students. One
of the tests was taken before the student had a course in statistics, and
the other was taken after.

Student IQ score before course IQ score after course

1 104 111
2 125 120
3 127 138
4 102 113
5 140 142
6 122 130
7 118 114
8 110 121
9 126 135

10 138 145
11 116 118
12 125 125

Use these data to test the hypothesis that a student’s score on an IQ
test will not tend to be any different after the student takes a statistics
course. Use the 5 percent level of significance.

8. To see whether there are any differences in starting salaries for women
and men law school graduates, a set of eight law firms was selected.
For each of these firms a recently hired woman and a recently hired
man were randomly chosen. The following starting salary information
resulted from interviewing those chosen.

Company

1 2 3 4 5 6 7 8

Woman’s salary 52 53.2 78 75 62.5 72 39 49
Man’s salary 54 55.5 78 81 64.5 70 42 51

Use the given data to test the hypothesis, at the 10 percent level of
significance, that the starting salary is the same for both sexes.

9. To study the effectiveness of a certain commercial liquid protein diet,
the Food and Drug Administration sampled nine individuals who were
entering the program. Their weights both immediately before they
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entered and six months after they completed the two-week program
were recorded. The following data resulted:

Person Weight before Weight after

1 197 185
2 212 220
3 188 180
4 226 217
5 170 185
6 194 197
7 233 219
8 166 170
9 205 202

Suppose we want to determine if these data prove that the diet is effec-
tive, in the sense that the expected weight loss after six months is
positive.
(a) What is the null hypothesis to be tested, and what is the alterna-

tive?
(b) Do the data prove that the diet works? Use the 5 percent level.

10. The following are the motor vehicle death rates per 100 million vehicle
miles for a random selection of states in 1985, 1989, and 2001.

State 1985 Rate 1989 Rate 2001 Rate

Arkansas 3.4 3.3 2.1
Colorado 2.4 1.9 1.7
Indiana 2.6 1.9 1.3
Kentucky 2.6 2.4 1.8
Massachusetts 1.9 1.7 0.9
Ohio 2.1 2.1 1.3
Tennessee 3.4 2.3 1.8
Wyoming 2.7 2.3 2.3

Source: Accident Facts, National Safety Council, Chicago.

(a) Do the data establish, at the 5 percent level of significance, that
the motor vehicle death rate was lower in 1989 than in 1985?

(b) Do the data establish, at the 5 percent level of significance, that
the death rate was lower in 2001?

(c) What is the p value for the tests in parts (a) and (b)?
11. The following data give the marriage rates per 1000 population in a

random sample of countries.
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Crude Marriage Rates for Selected Countries
(per 1000 population)

Country 1999 1998 1997 1990

Australia 6.0 – 5.8 6.9
Austria 4.8 4.8 5.1 5.8
Belgium 4.3 4.4 4.7 6.6
Bulgaria 4.2 4.3 4.1 6.7
Czech Republic 5.2 5.4 5.6 8.4
Denmark 6.6 6.5 6.4 6.1
Finland 4.7 4.5 4.6 4.8
Germany 5.2 5.1 5.2 6.5
Greece 6.4 5.5 5.7 5.8
Hungary 4.5 4.5 4.6 6.4
Ireland 4.9 – 4.3 5.0
Israel 5.9 – 5.6 7.0
Japan 6.3 6.3 6.2 5.8
Luxembourg 4.9 – 4.8 6.2
Netherlands 5.6 – 5.5 6.4
New Zealand 5.3 – 5.3 7.0
Norway 5.3 – – 5.2
Poland 5.7 5.4 5.3 6.7
Portugal 6.8 6.7 6.5 7.3
Romania 6.5 6.4 6.5 8.3
Russia 5.8 5.8 6.3 8.9
Sweden 4.0 3.5 3.7 4.7
Switzerland 4.9 – 5.3 6.9

Test the hypothesis that the worldwide marriage rates in 1999 are
greater than those in 1990.

10.6 TESTING EQUALITY OF POPULATION
PROPORTIONS

Consider two large populations, and let p1 and p2 denote, respectively, the propor-
tions of the members of these two populations that have a certain characteristic
of interest. Suppose that we are interested in testing the hypothesis that these
proportions are equal against the alternative that they are unequal. That is, we
are interested in testing

H0: p1 = p2 against H1: p1 
= p2

To test this null hypothesis, suppose that independent random samples, of respec-
tive sizes n1 and n2, are drawn from the populations. Let X1 and X2 represent the
number of elements in the two samples that have the characteristic.
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Let p̂1and p̂2 denote, respectively, the proportions of the members of the two sam-
ples that have the characteristic. That is, p̂1 = X1/n1 and p̂2 = X2/n2. Since p̂1 and
p̂2 are the respective estimators of p1 and p2, it is evident that we want to reject
H0 when p̂1 and p̂2 are far apart, that is, when |p̂1 − p̂2| is sufficiently large. To see
how far apart they need be to justify rejection of H0, first we need to determine
the probability distribution of p̂1 − p̂2.

Recall from Sec. 7.5 that the mean and variance of the proportion of the first
sample that has the characteristic is given by

E
[
p̂1
] = p1 Var

(
p̂1

) = p1
(
1 − p1

)
n1

and, similarly, for the second sample,

E
[
p̂2
] = p2 Var

(
p̂2
) = p2

(
1 − p2

)
n2

Thus we see that

E
[
p̂1 − p̂2

] = E
[
p̂1
]− E

[
p̂2
]

= p1 − p2

Var
(
p̂1 − p̂2

) = Var
(
p̂1
)+ Var

(
p̂2
)

= p1
(
1 − p1

)
n1

+ p2
(
1 − p2

)
n2

In addition, if we suppose that n1 and n2 are reasonably large, then p̂1 and p̂2

will have an approximately normal distribution, and thus so will their difference
p̂1 − p̂2. As a result, the standardized variable

p̂1 − p̂2 − (
p1 − p2

)
√

p1
(
1 − p1

)
/n1 + p2

(
1 − p2

)
/n2

will have a distribution that is approximately that of a standard normal random
variable.

Now suppose that H0 is true, and so the proportions are equal. Let p denote
their common value; that is, p1 = p2 = p. In this case p1 = p2 = 0, and so the
quantity

W = p̂1 − p̂2√
p
(
1 − p

)
/n1 + p

(
1 − p

)
/n2

(10.3)

will have an approximately standard normal distribution. We cannot, however,
base our test directly on W , for it depends on the unknown quantity p. However,
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we can estimate p by noting that of the combined sample of size n1 + n2 there are
a total of X1 + X2 = n1p̂1 + n2p̂2 elements that have the characteristic of interest.
Therefore, when H0 is true and each population has the same proportion of its
members with the characteristic, the natural estimator of that common proportion
p is as follows.

p̂ = n1p̂1 + n2p̂2

n1 + n2
= X1 + X2

n1 + n2

The estimator p̂ is called the pooled estimator of p.

We will now substitute the estimator p̂ for the unknown parameter p in Eq. (10.3)
for W and base our test on the resulting expression. That is, we will use the test
statistic

TS = p̂1 − p̂2√
p̂
(
1 − p̂

)
/n1 + p̂

(
1 − p̂

)
/n2

= p̂1 − p̂2√
(1/n1 + 1/n2) p̂

(
1 − p̂

)
It can be shown that for reasonably large values of n1 and n2 (both being at least
30 should suffice), TS will, when H0 is true, have a distribution that is approxi-
mately equal to the standard normal distribution. Thus, the significance-level-α
test of

H0: p1 = p2 against H1: p1 
= p2

is to

Reject H0 if |TS| ≥ zα/2

Not reject H0 otherwise

The test can also be performed by determining the value of the test statistic, say it
is equal to v, and then determining the p value given by

p value = P{|Z| ≥ |v|} = 2P{Z ≥ |v|}

where Z is (as always) a standard normal random variable.

■ Example 10.10
In criminal proceedings a convicted defendant is sometimes sent to prison
by the presiding judge and is sometimes not. A question has arisen in legal
circles as to whether a judge’s decision is affected by (1) whether the defendant
pleaded guilty or (2) whether he or she pleaded innocent but was subsequently
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found guilty. The following data refer to individuals, all having previous prison
records, convicted of second-degree robbery.

74, out of 142 who pleaded guilty, went to prison

61, out of 72 who pleaded not guilty, went to prison

Do these data indicate that a convicted individual’s chance of being sent to
prison depends on whether she or he had pleaded guilty?

Solution

Let p1 denote the probability that a convicted individual who pleaded guilty
will be sent to prison, and let p2 denote the corresponding probability for one
who pleaded innocent but was adjudged guilty. To see if the data are significant
enough to prove that p1 
= p2, we need to test

H0: p1 = p2 against H1: p1 
= p2

The data yield

n1 = 142 p̂1 = 74
142

= 0.5211

n2 = 72 p̂2 = 61
72

= 0.8472

The value of the pooled estimator p̂ is

p̂ = 74 + 61
142 + 72

= 0.6308

and the value of the test statistic is

TS = 0.5211 − 0.8472√
(1/142 + 1/72) (0.6308) (1 − 0.6308)

= −4.67

The p value is given by

p value = 2P{Z ≥ 4.67} ≈ 0

For such a small p value the null hypothesis will be rejected. That is, we can
conclude that the decision of a judge, with regard to whether a convicted defen-
dant should be sent to prison, is indeed affected by whether that defendant
pleaded guilty or innocent. (We cannot, however, conclude that pleading guilty
is a good strategy for a defendant as far as avoiding prison is concerned. The
reason we cannot is that a defendant who pleads innocent has a chance of being
acquitted.) ■

Our next example illustrates the difficulties that abound in modeling real
phenomena.
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■ Example 10.11
Predicting a child’s gender Suppose we are interested in determining a model
for predicting the gender of future children in families. The simplest model
would be to suppose that each new birth, no matter what the present makeup
of the family, will be a boy with some probability p0. (Interestingly enough,
existing data indicate that p0 would be closer to 0.51 than to 0.50.)

Somewhat surprisingly, this simple model does not hold up when real data
are considered. For instance, data on the gender of members of French fami-
lies were given by Malinvaud in 1955. Consider families having four or more
children. Malinvaud reported 36,694 such families whose first three children
were girls (that is, the three eldest children were girls), and he reported 42,212
such families whose first three children were all boys. Malinvaud’s data indi-
cated that in those families whose first three children were all girls, their next
child was a boy 49.6 percent of the time, whereas in the families whose first
three children were all boys, the next one was a boy 52.3 percent of the
time.

Let p1 denote the probability that the next child of a family presently composed
of three girls is a boy, and let p2 denote the corresponding probability for a
family presently composed of three boys. If we use the given data to test

H0: p1 = p2 against H1: p1 
= p2

then we have

n1 = 36,694 n2 = 42, 212

p̂1 = 0.496 p̂2 = 0.523

and so

p̂ = 36,694 (0.496) + 42, 212 (0.523)

36,694 + 42,212
= 0.51044

Therefore, the value of the test statistic is

TS = 0.496 − 0.523√
(1/36,694 + 1/42,212) (0.5104) (1 − 0.5104)

= −7.567

Since |TS| ≥ z0.005 = 2.58, the null hypothesis that the probability that the next
child is a boy is the same regardless of whether the present family is made up
of three girls or of three boys is rejected at the 1 percent level of significance.
Indeed, the p value of these data is

p value = P{|Z| ≥ 7.567} = 2P{Z ≥ 7.567} ≈ 0

This shows that any model that assumes that the probability of the gender of an
unborn does not depend on the present makeup of the family is not consistent
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with existing data. (One model that is consistent with the given data is to suppose
that each family has its own probability that a newborn will be a boy, with this
probability remainingthesamenomatterwhat thepresentmakeupof the family.
This probability, however, differs from family to family.) ■

The ideal way to test the hypothesis that the results of two different treatments
are identical is to randomly divide a group of people into a set that will receive
the first treatment and one that will receive the second. However, such random-
ization is not always possible. For instance, if we want to study whether drinking
alcohol increases the risk of prostate cancer, we cannot instruct a randomly cho-
sen sample to drink alcohol. An alternative way to study the hypothesis is to use
an observational study that begins by randomly choosing a set of drinkers and one
of nondrinkers. These sets are followed for a period of time and the resulting data
are then used to test the hypothesis that members of the two groups have the same
risk for prostate cancer.

Our next example illustrates another way of performing an observational study.

■ Example 10.12
In 1970, the researchers Herbst, Ulfelder, and Poskanzer (H-U-P) suspected that
vaginal cancer in young women, a rather rare disease, might be caused by one’s
mother having taken the drug diethylstilbestrol (usually referred to as DES)
while pregnant. To study this possibility, the researchers could have performed
an observational study by searching for a (treatment) group of women whose
mothers took DES when pregnant and a (control) group of women whose
mothers did not. They could then observe these groups for a period of time
and use the resulting data to test the hypothesis that the probabilities of con-
tracting vaginal cancer are the same for both groups. However, because vaginal
cancer is so rare (in both groups), such a study would require a large number
of individuals in both groups and would probably have to continue for many
years to obtain significant results. Consequently, H-U-P decided on a differ-
ent type of observational study. They uncovered 8 women between the ages of
15 and 22 who had vaginal cancer. Each of these women (called cases) was
then matched with 4 others, called referents or controls. Each of the referents of
a case was free of the cancer and was born within 5 days in the same hospital
and in the same type of room (either private or public) as the case. Arguing that
if DES had no effect on vaginal cancer then the probability, call it pc, that the
mother of a case took DES would be the same as the probability, call it pr , that
the mother of a referent took DES, the researchers H-U-P decided to test

H0: pc = pr against H1: pc 
= pr

Discovering that 7 of the 8 cases had mothers who took DES while preg-
nant whereas none of the 32 referents had mothers who took the drug,
the researchers concluded that there was a strong association between
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DES and vaginal cancer (see Herbst, A., Ulfelder, H., and Poskanzer, D.,
“Adenocarcinoma of the Vagina: Association of Maternal Stilbestrol Therapy
with Tumor Appearance in Young Women,” New England Journal of Medicine,
284, 878–881, 1971). (The p value for these data is approximately 0.) ■

If we are interested in verifying the one-sided hypothesis that p1 is larger than p2,
then we should take that to be the alternative hypothesis and so test

H0: p1 ≤ p2 against H1: p1 > p2

The same test statistic TS as used before is still employed, but now we reject H0

only when TS is large (since this occurs when p̂1 − p̂2 is large). Thus, the one-sided
significance-level-α test is to

Reject H0 if TS ≥ zα

Not reject H0 otherwise

Alternatively, if the value of the test statistic TS is v, then the resulting p value is

p value = P{Z ≥ v}

where Z is a standard normal.

Remark The test of

H0: p1 ≤ p2 against H1: p1 > p2

is the same as

H0: p1 = p2 against H1: p1 > p2

This is so because in both cases we want to reject H0 when p̂1 − p̂2 is so large that such
a large value would have been highly unlikely if p1 were not greater than p2.

■ Example 10.13
A manufacturer has devised a new method for producing computer chips. He
feels that this new method will reduce the proportion of chips that turn out to
have defects. To verify this, 320 chips were produced by the new method and
360 by the old. The result was that 76 of the former and 94 of the latter were
defective. Is this significant enough evidence for the manufacturer to conclude
that the new method will produce a smaller proportion of defective chips? Use
the 5 percent level of significance.

Solution

Let p1 denote the probability that a chip produced by the old method will be
defective, and let p2 denote the corresponding probability for a chip produced
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by the new method. To conclude that p1 > p2, we need to reject H0 when
testing

H0: p1 ≤ p2 against H1: p1 > p2

The data are

n1 = 360 n2 = 320

p̂1 = 94
360

= 0.2611 p̂2 = 76
320

= 0.2375

The value of the pooled estimator is thus

p̂ = 94 + 76
360 + 320

= 0.25

Hence, the value of the test statistic is

TS = 0.2611 − 0.2375√
(1/360 + 1/320) (0.25) (0.75)

= 0.7094

Since z0.05 = 1.645, we cannot reject the null hypothesis at the 5 percent level
of significance. That is, the evidence is not significant enough for us to conclude
that the new method will produce a smaller percentage of defective chips than
the old method.

The p value for the data is

p value = P{Z ≥ 0.7094} = 0.239

indicating that a value of TS at least as large as the one observed will occur
24 percent of the time when the two probabilities are equal. ■

Table 10.5 details the tests considered in this section.

Table 10.5 Tests Concerning Two Binomial Probabilities

The proportions of members of two populations that have a certain characteristic are p1
and p2. A random sample of size n1 is chosen from the first population, and an indepen-
dent random sample of size n2 is chosen from the second population. The numbers of
members of the two samples with the characteristic are X1 and X2, respectively.

p̂1 = X1
n1

p̂2 = X2
n2

p̂ = X1+X2
n1+n2

H0 H1 Test statistic TS Significance-level-α test p value if TS = v

p1 = p2 p1 
= p2
p̂1−p̂2√

(1/n1+1/n2)p̂(1−p̂)
Reject H0 if |TS| ≥ zα/2

Do not reject otherwise
2P{Z ≥ |v|}

p1 ≤ p2 p1 > p2
p̂1−p̂2√

(1/n1+1/n2)p̂(1−p̂)
Reject H0 if TS ≥ zα

Do not reject otherwise
P{Z ≥ v}
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Statistics In Perspective

Do Not Misinterpret a Rejection

We must be careful when deciding what a rejection of the null hypothesis really means,
for often interpretations are given that are not warranted by the available data. For
instance, suppose a hypothesis test was performed to study whether the probabilities
that a patient does not survive an operation are the same at hospitals A and B. Suppose
that a random sample of the operations performed at hospital A yielded that 72 out of
480 patients operated on did not survive, whereas a sample at hospital B yielded that 30
of 360 did not survive. While we can certainly conclude from these data that the survival
probabilities are unequal, we cannot conclude that hospital A is not doing as good a job
as hospital B, for without additional data we cannot rule out such possibilities as that
hospital A is performing more high-risk operations than is B and that is the reason it has
a lower survival rate.

For another example that indicates how careful we must be when interpreting the
meaning of a rejected hypothesis, consider a hypothetical study of the salaries of male
and female salespeople at a large corporation. Suppose that a random sample of 50 male
and 50 female employees indicated that the average salary of the men was $40,000 per
year whereas that of the women was $36,000. Assuming that the sample variances were
small, a test of the hypothesis that the mean salary was the same for both populations
would be rejected. But what could we conclude from this? For instance, would we be
justified in concluding that the women are being discriminated against? The answer is
that we cannot come to such a conclusion with the information presented, for there are
many possible explanations for the apparent differences in mean salary.

One possibility might be that the mix of experienced and inexperienced workers is dif-
ferent for the two sexes. For instance, taking into account whether an employee had
worked for more or less than 5 years might have produced the following data.

Year of employment Number Average salary ($)

Men:

Less than 5 10 34,000

More than 5 40 41,500

Total 50 40,500

Women:

Less than 5 40 34,500

More than 5 10 42,000

Total 50 36,500

For instance, a total of 10 of the 50 women have been employed more than 5 years,
and their average salary is $42,000 per year. Thus, we see that even though the average
salary of the men is higher than that of the women, when time of employment is taken
into account, the female employees are actually receiving higher salaries than their male
counterparts.
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PROBLEMS

1. Two methods have been proposed for producing transistors. If method
1 resulted in 20 unacceptable transistors out of a total of 100 produced
and method 2 resulted in 12 unacceptable transistors out of a total of
100 produced, can we conclude that the proportions of unacceptable
transistors that will be produced by the two methods are different?
(a) Use the 5 percent level of significance.
(b) What about at the 10 percent level of significance?

2. A random sample of 220 female and 210 male coffee drinkers were
questioned. The result was that 71 of the women and 58 of the men
indicated a preference for decaffeinated coffee. Do these data estab-
lish, at the 5 percent level of significance, that the proportion of
female coffee drinkers who prefer decaffeinated coffee differs from the
corresponding proportion for men? What is the p value?

3. An automobile insurance company selected random samples of 300
single male policyholders and 300 married male policyholders, all
between the ages of 25 and 30. It recorded the number who had
reported accidents at some time within the past 3 years. The resulting
data were that 19 percent of the single policyholders and 12 percent
of the married ones had reported an accident.

(a) Does this establish, at the 10 percent level of significance, that
there is a difference in these two types of policyholders?

(b) What is the p value for the test in part (a)?
4. A large swine flu vaccination program was instituted in 1976. Approx-

imately 50 million of the roughly 220 million North Americans received
the vaccine. Of the 383 persons who subsequently contracted swine
flu, 202 had received the vaccine.
(a) Test the hypothesis, at the 5 percent level, that the probability of

contracting swine flu is the same for the vaccinated portion of the
population as for the unvaccinated.

(b) Do the results of part (a) indicate that the vaccine itself was
causing the flu? Can you think of any other possible explanations?

5. Two insect sprays are to be compared. Two rooms of equal size are
sprayed, one with spray 1 and the other with spray 2. Then 100 insects
are released in each room, and after 2 hours the dead insects are
counted. Suppose the result is 64 dead insects in the room sprayed
with spray 1 and 52 dead insects in the other room.

(a) Is the evidence significant enough for us to reject, at the 5 percent
level, the hypothesis that the two sprays have equal ability to kill
insects?

(b) What is the p value of the test in part (a)?
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6. Random samples of 100 residents from San Francisco and 100 from
Los Angeles were chosen, and the residents were questioned about
whether they favored raising the driving age. The result was that 56 of
those fromSanFranciscoand45of those fromLosAngeleswere in favor.
(a) Are these data strong enough to establish, at the 10 percent level

of significance, that the proportions of the population in the two
cities that are in favor are different?

(b) What about at the 5 percent level?
7. In 1983, a random sample of 1000 scientists included 212 female sci-

entists. On the other hand, a random sample of 1000 scientists drawn
in 1990 included 272 women. Use these data to test the hypothesis,
at the 5 percent level of significance, that the proportion of scientists
who are female was the same in 1983 as in 1990. Also find the p value.

8. Example 10.11 considered a model for predicting a child’s gender. One
generalization of that model would be to suppose that a child’s gender
depends only on the number of previous children in the family and on
the number of these who are boys. If this were so, then the gender of
the third child in families whose children presently consist of one boy
and one girl would not depend on whether the order of the first two
children was boy–girl or girl–boy. The following data give the gender
of the third child in families whose first two children were a boy and
a girl. It distinguishes whether the boy or the girl was older. (Boy–girl
means, for instance, that the older child was a boy.)

Boy–girl families Girl–boy families

412 boys 560 boys
418 girls 544 girls

Use the given data to test the hypothesis that the sex of a third child in
a family presently having one boy and one girl does not depend upon
the gender birth order of the two older siblings. Use the 5 percent level
of significance.

9. According to the National Center for Health Statistics, there were a
total of 330,535 African American females and 341,441 African Ameri-
can males born in 1988. Also in that year, 1,483,487 white females and
1,562,675 white males were born. Use these data to test the hypothesis
that the proportion of all African American babies who are female is
equal to the proportion of all white babies who are female. Use the 5
percent level of significance. Also find the p value.

10. Suppose a random sample of 480 heart-bypass operations at hospital
A showed that 72 patients did not survive, whereas a random sam-
ple of 360 operations at hospital B showed that 30 patients did not
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survive. Find the p value of the test of the hypothesis that the survival
probabilities are the same at the two hospitals.

11. A birthing class run by the University of California has recently added
a lecture on the importance of the use of automobile car seats for
children. This decision was made after a study of the results of an
experiment in which the lecture was given in some of the birthing
classes and not in others. A follow-up interview, carried out 1 year
later, questioned 82 couples who had heard the lecture and 120 who
had not. A total of 78 of the couples who had heard the lecture stated
that they always used an infant car seat, whereas a total of 90 of those
couples not attending the lecture made the same claim.
(a) Assuming the accuracy of the given information, is the difference

significant enough to conclude that instituting the lecture will
result in increased use of car seats? Use the 5 percent level of
significance.

(b) What is the p value?
12. In a study of the effect of two chemotherapy treatments on the survival

of patients with multiple myeloma, each of 156 patients were equally
likely to be given either one of the two treatments. As reported by
Lipsitz, Dear, Laird, and Molenberghs in a 1998 paper in Biometrics,
the result of this was that 39 of the 72 patients given the first treatment
and 44 of the 84 patients given the second treatment survived for over
five years.
(a) Use these data to test the null hypothesis that the two treatments

are equally effective.
(b) Is the fact that 72 of the patients received one of the treatments

while 84 received the other consistent with the claim that the
determination of the treatment to be given to each patient was
made in a totally random fashion?

13. To see how effective a newly developed vaccine is against the com-
mon cold, 204 workers at a ski resort were randomly divided into two
groups of size 102 each. Members of the first group were given the
vaccine throughout the winter months, while members of the second
group were given a placebo. By the end of the winter season, it turned
out that 29 individuals who had been receiving the vaccine caught at
least one cold, compared to 34 of those receiving the placebo. Does
this prove, at the 5 percent level of significance, that the vaccine is
effective in preventing colds?

14. The American Cancer Society recently sampled 2500 adults and
determined that 738 of them were smokers. A similar poll of 2000
adults carried out in 1986 yielded a total of 640 smokers. Do these
figures prove that the proportion of adults who smoke has decreased
since 1986?
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(a) Use the 5 percent level of significance.
(b) Use the 1 percent level of significance.

15. In a recent study of 22,000 male physicians, half were given a daily
dose of aspirin while the other half were given a placebo. The study
was continued for a period of 6 years. During this time 104 of those
taking the aspirin and 189 of those taking the placebo suffered heart
attacks. Does this result indicate that taking a daily dose of aspirin
decreases the risk of suffering a heart attack? Give the null hypothesis
and the resulting p value.

16. In the 1970s, the U.S. Veterans Administration conducted an exper-
iment comparing coronary artery bypass surgery with medical drug
therapy as treatments for coronary artery disease. The experiment
involved 596 patients, of whom 286 were randomly assigned to receive
surgery, with the remaining 310 assigned to drug therapy. A total of
252 of those receiving surgery and a total of 270 of those receiving drug
therapy were still alive 3 years after treatment. Use these data to test
the hypothesis that the survival probabilities are equal.

KEY TERMS

Two-sample tests: Tests concerning the relationships of parameters from two
separate populations.

Paired-sample tests: Tests where the data consist of pairs of dependent variables.

SUMMARY

I. Testing Equality of Population Means: Independent Samples. Suppose that
X1, . . . , Xn and Y1, . . . , Ym are independent samples from normal populations
having respective parameters μx, σ2

x and μy , σ2
y .

Case 1: σ 2
x and σ 2

y are known.

To test

H0: μx = μy against H1: μx 
= μy

use the test statistic

TS = X − Y√
σ2

x /n + σ2
y /m
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The significance-level-α test is to

Reject H0 if |TS| ≥ zα/2

Not reject H0 otherwise

If the value of TS is v, then

p value = P{|Z| ≥ |v|} = 2P{Z ≥ |v|}
where Z is a standard normal random variable.

The significance-level-α test of

H0: μx ≤ μy against H1: μx > μy

uses the same test statistic. The test is to

Reject H0 if TS ≥ zα

Not reject H0 otherwise

If TS = v, then the p value is

p value = P{Z ≥ v}

Case 2: σ2
x and σ 2

y are unknown and n and m are large.

To test

H0: μx = μy against H1: μx 
= μy

or

H0: μx ≤ μy against H1: μx > μy

use the test statistic

TS = X − Y√
S2

x/n + S2
y /m

where S2
x and S2

y are the respective sample variances. The test statistic, the
significance-level-α test, and the p value are then exactly the same as in case 1.

Case 3: σ2
x are σ2

y assumed to be unknown but equal.

To test

H0: μx = μy against H1: μx 
= μy
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use the test statistic

TS = X − Y√
S2

p (1/n + 1/m)

where S2
p , called the pooled estimator of the common variance, is given by

S2
p = n − 1

n + m − 2
S2

x + m − 1
n + m − 2

S2
y

The significance-level-α test is to

Reject H0 if |TS| ≥ tn+m−2,α/2

Not reject H0 otherwise

If TS = v, then the p value is

p value = 2P{tn+m−2 ≥ |v|}

In the preceding, Tn+m−2 is a t random variable having n + m − 2 degrees of
freedom, and tn+m−2,α is such that

P{Tn+m−2 ≥ tn+m−2,α} = α

To test

H0: μx ≤ μy against H1: μx > μy

use the same test statistic. The significance-level-α test is to

Reject H0 if TS ≥ tn+m−2,α

Not reject H0 otherwise

If TS = v, then

p value = P{Tn+m−2 ≥ v}

II. Testing Equality of Population Means: Paired Samples. Suppose X1, . . . , Xn

and Y1, . . . , Yn are samples from populations having respective means of μx and
μy . Suppose also that these samples are not independent but that the n pairs of
random variables Xi and Yi are dependent, i = 1, . . . , n. Let, for each i,

Di = Xi − Yi



496 CHAPTER 10: Hypothesis Tests Concerning Two Populations

and suppose that D1, . . . , Dn constitute a sample from a normal population. Let

μd = E
[
Di
] = μx − μy

To test

H0: μx = μy against H1: μx 
= μy

test the equivalent hypothesis

H0: μd = 0 against H1: μd 
= 0

Testing that the two samples have equal means is thus equivalent to testing that a
normal population has mean 0. This latter hypothesis is tested by using the t test
presented in Sec. 9.4. The test statistic is

TS = √
n

D
Sd

and the significance-level-α test is to

Reject H0 if |TS| ≥ tn−1,α/2

Not reject H0 otherwise

If TS = v, then

p value = 2P{Tn−1 ≥ |v|}

To test the one-sided hypothesis

H0: μx ≤ μy against H1: μx > μy

use the test statistic

TS = √
n

D
Sd

The significance-level-α test is to

Reject H0 if TS ≥ tn−1,α

Not reject H0 otherwise

If TS = v, then

p value = P{Tn−1 ≥ v}
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III. Testing Equality of Population Proportions. Consider two large populations
and a certain characteristic possessed by some members of these populations. Let
p1 and p2 denote, respectively, the proportions of the members of the first and
second populations that possess this characteristic. Suppose that a random sample
of size n1 is chosen from population 1 and that one of size n2 is chosen from
population 2. Let X1 and X2 denote, respectively, the numbers of members of
these samples that possess the characteristic.

Let

p̂1 = X1

n1
and p̂2 = X2

n2

denote the proportions of the samples that have the characteristic, and let

p̂ = X1 + X2

n1 + n2

denote the proportion of the combined samples with the characteristic.

To test

H0: p1 = p2 against H1: p1 
= p2

use the test statistic

TS = p̂1 − p̂2√
(1/n1 + 1/n2)p̂(1 − p̂)

The significance-level-α test is to

Reject H0 if |TS| ≥ zα/2

Not reject H0 otherwise

If the value of TS is v, then

p value = 2P{Z ≥ |v|}
To test

H0: p1 ≤ p2 against H1: p1 > p2

use the same test statistic. The significance-level-α test is to

Reject H0 if TS ≥ zα

Not reject H0 otherwise

If TS = v, then

p value = P{Z ≥ v}
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Remark In the foregoing, as in all the text, Z always refers to a standard normal random
variable, and zα is such that

P{Z ≥ zα} = α

REVIEW PROBLEMS

1. The following data concerning the birth weight (in grams) of new-
borns resulted from a study that attempted to determine the effect of
maternal smoking on unborn babies.

Nonsmokers Smokers

n = 1820 m = 1340
X = 3480 grams Y = 3260 grams
Sx = 9.2 grams Sy = 10.4 grams

(a) Test the hypothesis, at the 5 percent level of significance, that the
mean weight of a newborn is the same whether or not the mother
is a smoker.

(b) What is the p value in part (a)?
2. A study was initiated to compare two treatments for reducing the pos-

sibility of rejection in heart transplants. The first treatment involves
giving the patient sodium salicylate, and the second calls for this drug
to be given in conjunction with a second drug, azathioprine. The study
was conducted on male rats, with one type of rat being used as heart
donor and a second type being used as recipient. (The use of differ-
ent types of rats ensured that recipients would not survive too long.)
The variable of interest is the survival time in days after receipt of the
transplanted heart. The following summary statistics were obtained.

Sodium Sodium salicylate
salicylate with azathioprine

n = 14 m = 12
X = 15.2 days Y = 14 days
Sx = 9.2 days Sy = 9.0 days

Test the hypothesis, at the 5 percent level, that both treatments are
equally effective in the population of rats.

3. A recent study concerning knee injuries of football players compared
two types of football shoes. Out of a randomly chosen group of 1440
players, 240 used multicleated shoes and 1200 used more conventional
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football shoes. All played on natural grass. Of those using the multi-
cleated shoes, 13 suffered knee injuries. Of those using conventional
shoes, 78 suffered knee injuries.
(a) Test the hypothesis that the probability of a knee injury is the same

for both groups of players. Use the 5 percent level of significance.
(b) What is the p value in part (a)?
(c) Are the given data strong enough to establish that the multi-

cleated shoes are superior to the conventional ones in terms of
reducing the probability of a knee injury?

(d) In part (c), at what levels of significance would the evidence be
strong enough?

4. Use the first 60 data values in App. A. Test, at the 5 percent level of
significance, the hypothesis that men’s and women’s mean
(a) Cholesterol
(b) Blood pressure
are equal.

5. The following data come from an experiment performed by Charles
Darwin and reported in his 1876 book The Effects of Cross- and Self-
Fertilization in the Vegetable Kingdom. The data were first analyzed
by Darwin’s cousin Francis Galton. Galton’s analysis was, however, in
error. A correct analysis was eventually done by R. A. Fisher.

Darwin’s experiment dealt with 15 pairs of Zea mays, a type of corn
plant. One plant in each pair had been cross-fertilized while the other
plant had been self-fertilized. The pairs were grown in the same pot,
and their heights were measured. The data were as follows:

Pair Cross-fertilized plant Self-fertilized plant

1 23.5 17.375
2 12 20.375
3 21 20
4 22 20
5 19.125 18.375
6 21.5 18.625
7 22.125 18.625
8 20.375 15.25
9 18.25 16.5

10 21.625 18
11 23.25 16.25
12 21 18
13 22.125 12.75
14 23 15.5
15 12 18
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(a) Test, at the 5 percent level of significance, the hypothesis that the
mean height of cross-fertilized Zea mays corn plants is equal to
that of self-fertilized Zea mays plants.

(b) Determine the p value for the test of the hypothesis in part (a).
6. A continuing debate in public health circles concerns the dangers of

being exposed to dioxin, an environmental contaminant. A German
study published in the October 19, 1991, issue of The Lancet, a British
medical journal, considered records of workers at a herbicide manu-
facturing plant that made use of dioxin. A control group consisted of
workers at a nearby gas supply company who had similar medical pro-
files. The following data relating to the number of workers who had
died from cancer were obtained.

Control group Dioxin-exposed group

Sample size 1583 1242

Number dying from cancer 113 123

(a) Test the hypothesis that the probability of dying from cancer is
the same for the two groups. Use the 1 percent level of signi-
ficance.

(b) Find the p value for the test of part (a).
7. Consider Prob. 6. Of the 1583 gas company workers whose records

were studied, there were a total of 1184 men and 399 women. Of these
individuals, 93 men and 20 women died of cancer. Test the hypothesis,
at the 5 percent level, that the probability of dying from cancer is the
same for workers of both sexes.

8. A random sample of 56 women revealed that 38 were in favor of gun
control. A random sample of 64 men revealed that 32 were in favor.
Use these data to test the hypothesis that the proportion of men and
the proportion of women in favor of gun control are the same. Use the
5 percent level of significance. What is the p value?

9. Use the data presented in Review Prob. 19 of Chap. 8 to test the
hypothesis that the chances of scoring a run are the same when there
is one out and a player on second base and when there are no outs and
a player on first base.

10. The following data concern 100 randomly chosen professional baseball
games and 100 randomly chosen professional football games in the
1990–91 season. The data present, for the two sports, the number of
games in which the team leading at the three-quarter mark (end of
the seventh inning in baseball and end of the third quarter in football)
ended up losing the game.
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Sport Number of games Number of games lost by leader

Baseball 92 6

Football 93 21

Find the p value of the test of the hypothesis that the probability of the
leading team’s losing the game is the same in both sports. (Note: The
number of games is not 100 because 8 of the baseball games and 7 of
the football games were tied at the three-quarter point.)

11. The following relates to the same set of sample games reported in
Prob. 10. It details the number of games in which the home team was
the winner.

Sport Number of games Number of games that home team won

Baseball 100 53

Football 99 57

Test the hypothesis, at the 5 percent level of significance, that the
proportion of games won by the home team is the same in both sports.

12. Suppose that a test of H0: μx = μy against H1: μx 
= μy results in reject-
ing H0 at the 5 percent level of significance. Which of the following
statements is (are) true?
(a) The difference in sample means was statistically significant at the

1 percent level of significance.
(b) The difference in sample means was statistically significant at the

10 percent level of significance.
(c) The difference in sample means is equal to the difference in

population means.
13. To verify the hypothesis that blood lead levels tend to be higher for

children whose parents work in a factory that uses lead in the man-
ufacturing process, researchers examined lead levels in the blood of
33 children whose parents worked in a battery manufacturing factory.
(Morton, D., Saah, A., Silberg, S., Owens, W., Roberts, M., and Saah, M.,
“Lead Absorption in Children of Employees in a Lead-Related Indus-
try,” American Journal of Epidemiology, 115, 549–555, 1982.) Each of
these children were then matched by another child who was of sim-
ilar age, lived in a similar neighborhood, had a similar exposure to
traffic, but whose parent did not work with lead. The blood levels of
the 33 cases (sample 1) as well as those of the 33 controls (sample 2)
were then used to test the hypothesis that the average blood levels of
these groups are the same. If the resulting sample means and sample
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standard deviations were

X1 = 0.015, S1 = 0.004, X2 = 0.006, S2 = 0.006

find the resulting p value. Assume a common variance.
14. A scientist looking into the effect of smoking on heart disease has cho-

sen a large random sample of smokers and another of nonsmokers.
She plans to study these two groups for 5 years to see if the number of
heart attacks among the members of the smokers group is significantly
greater than the number among the nonsmokers. Such a result, the sci-
entist believes, should be strong evidence of an association between
smoking and heart attacks.
Would the scientist be justified in her conclusion if the following were
true?
1. Older people are at greater risk of heart disease than are younger

people.
2. As a group, smokers tend to be somewhat older than nonsmokers.
Explain how the experimental design can be improved so that mean-
ingful conclusions can be drawn.
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Analysis of Variance

Statistics will prove anything, even the truth.
N. Moynihan (British writer)
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We present a general approach, called the analysis of variance (ANOVA), for making
inferences about the mean values of a variety of random variables. In one-factor
ANOVA, the mean of a variable depends on only a single factor, namely, the sam-
ple to which it belongs. In two-factor ANOVA, the random variables are thought of
as being arrayed in a rectangular arrangement, and the mean of a variable depends
on both its row and its column factor. We show how to test the hypothesis that the
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in, as well as the analogous hypothesis that the mean does not depend on which
column it is in.
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11.1 INTRODUCTION
In recent years, many people have expressed the fear that large parts of U.S.
industry are becoming increasingly unable to compete effectively in the world
economy. For instance, U.S. public opinion has shifted to the belief that Japanese-
made automobiles are of higher quality than their U.S.-made counterparts. Japan,
and not the United States, is now considered by many to be the world leader in
applying statistical techniques to improve quality.

Statistical quality control methods were developed by U.S. industrial statisticians
in the 1920s and 1930s. These early methods were primarily concerned with
surveillance of existing manufacturing processes. They relied to a large degree on
the use of statistical sampling procedures to enable statisticians to quickly detect
when something had gone wrong with the manufacturing process. In recent years,
however, the emphasis in statistical quality control has shifted from overseeing a
manufacturing process to designing that process. That is, led by some Japanese
quality control experts, a feeling has developed that the primary contribution of
statistics should be in determining effective ways of manufacturing a product.

For instance, when producing computer chips, the manufacturer needs to decide
upon the raw materials to be used, the temperature at which to fuse the parts,
the shape and the size of the chip, and other factors. For a given set of choices
of these factors, the manufacturer wants to know the mean quality value of the
resulting chip. This will enable her or him to determine the choices of the factors
of production that would be most appropriate for obtaining a quality product.

In this chapter we introduce the statistical technique used for analyzing the fore-
going type of problem. It is a general method for making inferences about a
multitude of parameters relating to population means. Its use will enable us, for
instance, to determine the mean quality level of a manufactured item for a variety
of choices of factor settings. The statistical technique was invented by R. A. Fisher
and is known as the analysis of variance (ANOVA).

Whereas the previous chapter was concerned with hypothesis tests of two pop-
ulation means, this chapter considers tests of multiple population means. For
instance, in Sec. 11.2 we will suppose that we have data from m populations and
are interested in testing the hypothesis that all the population means are equal.
This scenario is said to constitute a one-factor analysis of variance, since the model
assumes that the mean of a variable depends on only one factor, namely, the
sample from which the observation is taken.

In Sec. 11.3 we consider models in which it is assumed that two factors deter-
mine the mean value of a variable. In such cases the variables to be observed
can be thought of as being arranged in a rectangular array, and the mean value
of a specified variable depends on both the row and the column in which it is
located. For this two-factor analysis of variance problem we show how to estimate
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the mean values. In addition we show how to test the hypothesis that a specified
factor does not affect the mean. For instance, we might have data of the yearly
rainfall in various desert locations over a series of years. Two factors would affect
the yearly amount of rainfall in a region—the location of the region and the year
considered—and we might be interested in testing whether it is only the location
and not the year that makes a difference in the mean yearly rainfall.

In all the models considered in this chapter, we assume that the data are normally
distributed with the same (though unknown) variance σ 2. The analysis of variance
approach for testing a null hypothesis H0 concerning multiple parameters is based
on deriving two estimators of the common variance σ2. The first estimator is a
valid estimator of σ2 whether the null hypothesis is true or not, while the second
one is a valid estimator only when H0 is true. In addition, when H0 is not true,
this latter estimator will overestimate σ2, in that the estimator will tend to exceed
it. The test compares the values of these two estimators and rejects H0 when the
ratio of the second estimator to the first is sufficiently large. In other words, since
the two estimators should be close to each other when H0 is true (because they
both estimate σ 2 in this case) whereas the second estimator should tend to be
larger than the first when H0 is not true, it is natural to reject H0 when the second
estimator is significantly larger than the first.

11.2 ONE-FACTOR ANALYSIS OF VARIANCE
Consider m samples, each of size n. Suppose that these samples are independent
and that sample i comes from a population that is normally distributed with
mean μi and variance σ 2, i = 1, . . . , m. We will be interested in testing the null
hypothesis

H0: μ1 = μ2 = · · · = μm

against

H1: not all the means are equal

That is, we will be testing the null hypothesis that all the population means are
equal against the alternative that at least two population means differ.

Let Xi and S2
i denote the sample mean and sample variance, respectively, for the

data of the ith sample, i = 1, . . . , m. Our test of our null hypothesis will be car-
ried out by comparing the values of two estimators of the common variance σ 2.
Our first estimator, which will be a valid estimator of σ 2 whether or not the null
hypothesis is true, is obtained by noting that each of the sample variances S2

i is
an unbiased estimator of its population variance σ2. Since we have m of these
estimators, namely, S2

1, . . . , S2
m, we will combine them into a single estimator by
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taking their average. That is, our first estimator of σ 2 is given by

1
m

m∑
i=1

S2
i

Note that this estimator was obtained without assuming anything about the truth
or falsity of the null hypothesis.

Our second estimator of σ2 will be a valid estimator only when the null hypothesis
is true. So let us assume that H0 is true, and thus all the population means μi are
equal, say, μi = μ for all i. Under this condition it follows that the m sample
means X1, X2, . . . , Xm will all be normally distributed with the same mean μ and
the same variance σ 2/n. In other words, when the null hypothesis is true, the
data X1, X2, . . . , Xm constitute a sample from a normal population having variance
σ 2/n. As a result, the sample variance of these data will, when H0 is true, be an
estimator of σ 2/n. Designate this sample variance by S

2
. That is,

S
2 =

∑m
i=1(Xi − X)2

m − 1

where

X = 1
m

m∑
i=1

Xi

Since S
2

is an unbiased estimator of σ 2/n when H0 is true, it follows in this case
that nS

2
is an estimator of σ2. That is, our second estimator of σ 2 is nS

2
. Hence,

we have shown that

m∑
i=1

S2
i

m
always estimates σ 2

nS
2

estimates σ 2 when H0 is true

Since it can be shown that nS
2

will tend to be larger than σ 2 when H0 is not true,
it is reasonable to let the test statistic TS be given by

TS = nS
2∑m

i=1 S2
i /m

and to reject H0 when TS is sufficiently large.

To determine how large TS needs to be to justify rejecting H0, we use the fact
that when H0 is true, TS will have what is known as an F distribution with
m − 1 numerator and m(n − 1) denominator degrees of freedom. Let Fm−1,m(n−1),α



11.2 One-Factor Analysis of Variance 507

FIGURE 11.1
Random variable F with degrees of freedom r, s: P{F ≥ Fr,s,a} = α.

Table 11.1 Values of Fr,s,0.05

r = Degrees of freedom
for numerator

s = Degrees of freedom
for denominator 1 2 3 4

4 7.71 6.94 6.59 6.39
5 6.61 5.79 5.41 5.19
...

...
...

...
...

10 4.96 4.10 3.71 3.48

denote the α critical value of this distribution. That is, the probability that an F
random variable having numerator and denominator degrees of freedom m − 1
and m(n − 1), respectively, will exceed Fm−1,m(n−1),α is equal to α (see Fig. 11.1).
The significance-level-α test of H0 is as follows:

Reject H0 if
nS

2

∑m
i=1

S2
i

m

≥ Fm−1,m(n−1),α

Do not reject H0 otherwise

Values of Fr,s,0.05 for various values of r and s are presented in App. Table D.4. Part
of this table is presented now in Table 11.1. For instance, from Table 11.1, we see
that there is a 5 percent chance that an F random variable having 3 numerator
and 10 denominator degrees of freedom will exceed 3.71.

A Remark on the Degrees of Freedom
The numerator degrees of freedom of the F random variable are determined by
the numerator estimator nS

2
. Since S

2
is the sample variance from a sample of

size m, it follows that it has m − 1 degrees of freedom. Similarly, the denominator
estimator is based on the statistic

∑m
i=1 S2

i . Since each of the sample variances
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S2
i is based on a sample of size n, it follows that they each have n − 1 degrees of

freedom. Summing the m sample variances then results in a statistic with m(n − 1)

degrees of freedom.

■ Example 11.1
An investigator for a consumer cooperative organized a study of the mileages
obtainable from three different brands of gasoline. Using 15 identical motors
set to run at the same speed, the investigator randomly assigned each brand of
gasoline to 5 of the motors. Each of the motors was then run on 10 gallons of
gasoline, with the total mileages obtained as follows.

Gas 1 Gas 2 Gas 3

220 244 252
251 235 272
226 232 250
246 242 238
260 225 256

Test the hypothesis that the average mileage obtained is the same for all three
types of gasoline. Use the 5 percent level of significance.

Solution

Since there are three samples, each of size 5, we see that m = 3 and n = 5. The
sample means are

X1 = 1203
5

= 240.6

X2 = 1178
5

= 235.6

X3 = 1268
5

= 253.6

The average of the three sample means is

X = 240.6 + 235.6 + 253.6
3

= 243.2667

Therefore, the sample variance of the data Xi,i = 1, 2, 3, is

S
2 = (240.6 − 243.2667)2 + (235.6 − 243.2667)2 + (253.6 − 243.2667)2

2

= 86.3333
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The numerator estimate is thus

5S
2 = 431.667

Computing the sample variances from the three samples yields S2
1 = 287.8,

S2
2 = 59.3, and S2

3 = 150.8, so the denominator estimate is

3∑
i=1

S2
i

3
= 165.967

Therefore, the value of the test statistic is

TS = 431.667
165.967

= 2.60

Since m − 1 = 2 and m(n − 1) = 12, we must compare the value of the TS with
the value of F2,12,0.05. Now, from App. Table D.4, we see that F2,12,0.05 = 3.89.
Since the value of the test statistic does not exceed 3.89, it follows that at the
5 percent level of significance we cannot reject the null hypothesis that the
gasolines give equal mileage.

Another way of doing the computations for the hypothesis test that all the pop-
ulation means are equal is by computing the p value. If the value of the test
statistic TS is v, then the p value will be given by

p value = P{Fm−1,m(n−1) ≥ v}
where Fm−1,m(n−1) is an F random variable with m − 1 numerator and m(n − 1)

denominator degrees of freedom. ■

Program 11-1 will compute the value of the test statistic TS and the resulting
p value.

■ Example 11.2
Let us do the computations of Example 11.1 by using Program 11-1. After the
data have been entered, we get the following output.

The denominator estimate is 165.967

The numerator estimate is 431.667

The value of the f-statistic is 2.6009

The p-value is 0.11525 ■

Table 11.2 summarizes the results of this section.

Remark When m = 2, the preceding is a test of the null hypothesis that two independent
samples, having a common population variance, have the same mean. The reader might
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Table 11.2 One-Factor ANOVA Table

Variables Xi and S2
i , i = 1, . . . , m, are the sample means and sample variances, respec-

tively, of independent samples of size n from normal populations having means μi and
a common variance σ 2.

Source of estimator Estimator of σ 2 Value of test statistic

Between samples nS
2 = n

∑m
i=1(Xi − X)2

m − 1
TS = nS

2

∑m
i=1

S2
i
m

Within samples
m∑

i=1

S2
i

m

Significance-level-α test of H0: all μ1 values are equal:

Reject H0 if TS ≥ Fm−1,m(n−1),α

Do not reject H0 otherwise
If TS = v, then p value = P{Fm−1,m(n−1)≥v}
where Fm−1,m(n−1) is an F random variable with m − 1 numerator and m(n − 1)

denominator degrees of freedom.

wonder how this compares with the one presented in Chap. 10. It turns out that the tests
are exactly the same. That is, assuming the same data are used, they always give rise to
exactly the same p value.

PROBLEMS

1. Consider the data from three samples, each of size 4. (That is, m = 3,
n = 4.)

Sample 1 5 9 12 6

Sample 2 13 12 20 11

Sample 3 8 12 16 8

(a) Determine the three sample means Xi, i = 1, 2, 3.
(b) Find X, the average of the three sample means.
(c) Show that X is equal to the average of the 12 data values.

2. Use the data in Prob. 1 to test the hypothesis that the three population
means are equal. Use the 5 percent level of significance.

3. A nutritionist randomly divided 15 bicyclists into three groups of five
each. Members of the first group were given vitamin supplements to
take with each of their meals over the next 3 weeks. The second group
was instructed to eat a particular type of high-fiber whole-grain cereal
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for the next 3 weeks. Members of the third group were instructed to eat
as they normally do. After the 3-week period elapsed, the nutritionist
had each bicyclist ride 6 miles. The following times were recorded:

Vitamin group 15.6 16.4 17.2 15.5 16.3

Fiber cereal group 17.1 16.3 15.8 16.4 16.0

Control group 15.9 17.2 16.4 15.4 16.8

Are these data consistent with the hypothesis that neither the vitamin
nor the fiber cereal affects the speed of a bicyclist? Use the 5 percent
level of significance.

4. To determine whether the percentage of calories in a person’s diet
that is due to fat is the same across the country, random samples of 20
volunteers each were chosen in the three different regions. Each vol-
unteer’s percentage of total calories due to fat was determined, with
the following summarized data resulting.

Region i Xi S2
i

i = 1 32.4 102
i = 2 36.4 112
i = 3 37.1 138

Test the null hypothesis that the percentage of calories due to fat does
not vary for individuals living in the three regions. Use the 5 percent
level of significance.

5. Six servings each of three different brands of processed meat were
tested for fat content. The following data (in fat percentage per gram
of weight) resulted.

Brand Fat content

1 32 34 31 35 33 30
2 40 36 33 29 35 32
3 37 30 28 33 37 39

Do the data enable us to reject, at the 5 percent level of significance,
the hypothesis that the average fat content is the same for all three
brands?

6. An important factor in the sales of a new golf ball is how far it will
travel when hit. Four different types of balls were hit by an auto-
matic driving machine 25 times each, and their distances (in yards)
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were recorded. The following data, referring to the sample means and
sample variances obtained with each type of ball, resulted.

Ball i Xi S2
i

1 212 26
2 220 23
3 198 25
4 214 24

Using the 5 percent level of significance, test the null hypothesis that
the mean distance traveled is the same for each type of ball.

7. Three standard chemical procedures are used to determine the mag-
nesium content in a certain chemical compound. Each procedure was
used 4 times on a given compound with the following data resulting.

Method 1 76.43 78.61 80.40 78.22

Method 2 80.40 82.24 72.70 76.04

Method 3 82.16 84.14 80.20 81.33

Test the hypothesis that the mean readings are the same for all three
methods. Use the 5 percent level of significance.

8. An emergency room physician wanted to learn whether there were
any differences in the time it takes for three different inhaled steroids
to clear a mild asthmatic attack. Over a period of weeks, she ran-
domly administered these steroids to asthma sufferers and noted the
number of minutes it took for the patient’s lungs to become clear.
Afterward, she discovered that 12 patients had been treated with each
type of steroid, with the following sample means and sample variances
resulting.

Steroid Xi S2
i

A 32 145
B 40 138
C 30 150

Test the hypothesis that the mean time to clear a mild asthmatic
attack is the same for all three steroids. Use the 5 percent level of
significance.

9. The following data refer to the numbers of deaths per 10,000 adults in
a large eastern city in different seasons of the years from 1982 to 1986.
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Year Winter Spring Summer Fall

1982 33.6 31.4 29.8 32.1
1983 32.5 30.1 28.5 29.9
1984 35.3 33.2 29.5 28.7
1985 34.4 28.6 33.9 30.1
1986 37.3 34.1 28.5 29.4

Test the hypothesis that death rates do not depend on the season. Use
the 5 percent level of significance.

10. A nutrition expert claims that the amount of running a person does
relates to that person’s blood cholesterol level. Six runners from each
of three running categories were randomly chosen to have their blood
cholesterol levels checked. The sample means and sample variances
were as follows:

Weekly miles run Xi S2
i

Less than 15 188 190
Between 15 and 30 181 211
More than 30 174 202

Do these data prove the nutritionist’s claim? Use the 5 percent level of
significance.

11. A college administrator claims that there is no difference in first-year
grade-point averages for students entering the college from any of
three different local high schools. The following data give the first-year
grade-point averages of 15 randomly chosen students—5 from each of
the three high schools. Are they strong enough, at the 5 percent level,
to disprove the claim of the administrator?

School A School B School C

3.2 2.8 2.5
2.7 3.0 2.8
3.0 3.3 2.4
3.3 2.5 2.2
2.6 3.1 3.0

12. A psychologist conducted an experiment concerning maze test scores
of a strain of laboratory mice trained under different laboratory con-
ditions. A group of 24 mice was randomly divided into three groups
of 8 each. Members of the first group were given a type of cognitive
training, those in the second group were given a type of behavioral
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training, and those in the third group were not trained at all. The
maze test scores (judged by someone who did not know which training
particular mice received) were summarized as follows:

Group Xi S2
i

1 74.2 111.4
2 78.5 102.1
3 80.0 124.0

Is this sufficient evidence to conclude that the different types of train-
ing have an effect on maze test scores? Use the 5 percent level of
significance.

11.3 TWO-FACTOR ANALYSIS OF VARIANCE:
INTRODUCTION AND PARAMETER ESTIMATION

Whereas the model of Sec. 11.2 enabled us to study the effect of a single factor
on a data set, we can also study the effects of several factors. In this section we
suppose that each data value is affected by two factors.

■ Example 11.3
Four different standardized reading achievement tests were administered to
each of five students. Their scores were as follows:

Student

Examination 1 2 3 4 5

1 75 73 60 70 86
2 78 71 64 72 90
3 80 69 62 70 85
4 73 67 63 80 92

Each value in this set of 20 data points is affected by two factors: the examina-
tion and the student whose score on that examination is being recorded. The
examination factor has four possible values, or levels, and the student factor has
five possible levels. ■

In general, let us suppose that there are m possible levels of the first factor and n
possible levels of the second. Let Xij denote the value of the data obtained when
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the first factor is at level i and the second factor is at level j. We often portray the
data set in the following array of rows and columns:

X11 X12 · · · X1j · · · X1n

X21 X22 · · · X2j · · · X2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xi1 Xi2 · · · Xij · · · Xin

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xm1 Xm2 · · · Xmj · · · Xmn

Because of this we refer to the first factor as the row factor and the second factor
as the column factor. Also, the data value Xij is the value in row i and column j.

As in Sec. 11.2, we suppose that all the data values Xij, i = 1, . . . , m, j = 1, . . . , n,
are independent normal random variables with common variance σ2. However,
whereas in Sec. 11.2 we supposed that only a single factor affected the mean value
of a data point—namely, the sample to which it belonged—in this section we
will suppose that the mean value of the data point depends on both its row and
its column. However, before specifying this model, we first recall the model of
Sec. 11.2. If we let Xij represent the value of the jth member of sample i, then this
model supposes that

E[Xij] = μi

If we now let μ denote the average value of the μi, that is,

μ =
∑m

i=1 μi

m

then we can write the preceding as

E[Xij] = μ + αi

where αi = μi· − μ. With this definition of αi equal to the deviation of μi from
the average of the means μ, it is easy to see that

m∑
i=1

αi = 0

In the case of two factors, we write our model in terms of row and column devi-
ations. Specifically, we suppose that the expected value of variable Xij can be
expressed as follows:

E[Xij] = μ + αi + βj
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The value μ is referred to as the grand mean, αi is the deviation from the grand mean
due to row i, and βj is the deviation from the grand mean due to column j. In addition,
these quantities satisfy the following equalities:

m∑
i=1

αi =
n∑

j−1

βj = 0

Let us start by determining estimators for parameters μ, αi, and βj, i = 1, . . . , m,
j = 1, . . . , n. To do so, we will find it convenient to introduce the following “dot”
notation. Let

Xi. =
∑n

j=1 Xij

n
= average of all values in row i

X.j =
∑m

i=1 Xij

m
= average of all values in column j

X.. =
∑m

i=1
∑n

j=1 Xij

nm
= average of all nm data values

It is not difficult to show that

E[Xi.] = μ + αi

E[X.j] = μ + βj

E[X..] = μ

Since the preceding is equivalent to

E[X..] = μ

E[Xi. − X..] = αi

E[X.j − X..] = βj

we see that unbiased estimators of μ, αi and βj—call them μ̂, α̂i, and β̂j—are
given by

μ̂ = X..

α̂i = Xi. − X..

β̂j = X.j − X..
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■ Example 11.4
The following data from Example 11.3 give the scores obtained when four
different reading tests were given to each of five students. Use it to estimate
the parameters of the model.

Student

Examination 1 2 3 4 5 Row totals Xi.

1 75 73 60 70 86 364 72.8
2 78 71 64 72 90 375 75
3 80 69 62 70 85 366 73.2
4 73 67 63 80 92 375 75

Column totals 306 280 249 292 353 1480 ← grand total

X.j 76.5 70 62.25 73 88.25 X.. = 1480
20

= 74

The estimators are

μ̂ = 74

α̂1 = 72.8 − 74 = −1.2 β̂1 = 76.5 − 74 = 2.5
α̂2 = 75 − 74 = 1 β̂2 = 70 − 74 = −4
α̂3 = 73.2 − 74 = −0.8 β̂3 = 62.25 − 74 = −11.75
α̂4 = 75 − 74 = 1 β̂4 = 73 − 74 = −1

β̂5 = 88.25 − 74 = 14.25

Therefore, for instance, if one of the students is randomly chosen and then
given a randomly chosen examination, then our estimate of the mean score
that will be obtained is μ̂ = 74. If we were told that examination i was taken,
then this would increase our estimate of the mean score by the amount α̂i; if
we were told that the student chosen was number j, then this would increase
our estimate of the mean score by the amount β̂j. Thus, for instance, we would
estimate that the score obtained on examination 1 by student 2 is the value of
a random variable whose mean is μ̂ + α̂1 + β̂2 = 74 − 1.2 − 4 = 68.8. ■

Remark In the preceding we defined X .. by using the double-summation notation. That
is, we used notation of the form

m∑
i=1

n∑
j=1

Xij

This expression is meant to be the sum of the terms Xij for all nm possible values of the
pair i, j.
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Equivalently, suppose that the data values Xij are arranged in rows and columns as given
at the beginning of this section. Let Ti denote the sum of the values in row i. That is,

Ti =
n∑

j=1

Xij

Then the double summation notation is defined by

m∑
i=1

n∑
j=1

Xij =
m∑

i=1

Ti

In words, the double summation is equal to the sum of all the row sums; that is, it is just
the sum of all the nm data values Xij. (It is easy to see that it is also equal to the sum of
the n column sums.)

PROBLEMS

1. In a study of air pollution, samples of air were taken at three different
locations at five different times. The following data refer to the amount
of particulate matter present in the air (in units of milligrams per cubic
meter).

Location

Time 1 2 3

1. January 2006 78 84 87
2. July 2006 75 69 82
3. January 2007 66 60 70
4. July 2007 71 64 61
5. January 2008 58 55 52

Assuming the model

E[Xij] = μ + αi + βj

estimate the unknown parameters.
2. Using the data of Prob. 1, verify that

X.. =
∑m

i=1 Xi.
m

=
∑n

j=1 Xj.

n

Express in words what this equation states.
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3. The following data refer to the numbers of boxes packed by each of
three men during three different shifts.

Man

Shift 1 2 3

1. 9–11 a.m. 32 27 29
2. 1–3 p.m. 31 26 22
3. 3–5 p.m. 33 30 25

Assuming the model of this section, estimate the unknown parameters.
4. Use the results of Example 11.4 to estimate E[Xij] = μ + αi + βj for all

the possible values of i and j, i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5. Compare the
estimated values E[Xij] with the observed values of Xij as given in that
example.

5. The following table gives the birth rates per 1000 population for four
different countries in four different years.

2003 2002 2001 1990

Australia 12.6 12.71 12.86 15.4
Austria 9.4 9.58 9.74 11.6
Belgium 10.4 10.58 10.74 12.6
Czech Republic 9.0 9.08 9.11 13.4

Assuming the model of this section, estimate the
(a) Grand mean of the birth rates
(b) Deviation from the grand mean of Australian birth rates
(c) Deviation from the grand mean of the 1990 birth rates

6. The following table provides the unemployment rates for three levels of
educational attainment in four different years.

Level of education 1980 1984 1988 2000

Did not graduate from high school 8.4 12.1 9.6 8.8
High school graduate 5.1 7.2 5.4 6.1
College graduate 1.9 2.7 1.7 2.2

Source: U.S. Bureau of Labor Statistics, Labor Force Statistics.

Assuming the model of this section, estimate
(a) The grand mean μ

(b) The row deviations, αi, i = 1, 2, 3, 4
(c) The column deviations, βj, j = 1, 2, 3, 4
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7. The following table provides the unemployment rates for five different
industries in three different years.

Industry 2000 2001 2002

Transportation 3.4 4.3 4.9
Mining 4.4 4.2 6.3
Construction 6.2 7.1 9.2
Manufacturing 3.5 5.2 6.7
Information 3.2 4.9 6.9

Source: U.S. Bureau of Labor Statistics, Employment and
Earnings, monthly.

Assuming the model of this section, estimate the unknown parameters.
8. Suppose that xij = i + 4j. (So, for instance, x11 = 1 + 4 = 5, and x23 = 2 +

4 · 3 = 14.) Write out in a rectangular array of rows and columns all the
12 values of xij where i is 1 or 2 or 3 and j is 1 or 2 or 3 or 4. Put the value
of xij in the location joining row i and column j.

9. In Prob. 8, determine

(a)
4∑

j=1
x1j (b)

4∑
j=1

x2j

(c)
4∑

j=1
x3j (d)

3∑
i=1

4∑
j=1

xij

11.4 TWO-FACTOR ANALYSIS OF VARIANCE:
TESTING HYPOTHESES

Consider the two-factor model in which one has data values Xij, i = 1, . . . , m and
j = 1, . . . , n. These data are assumed to be independent normal random variables
with a common variance σ 2 and with mean values satisfying

E[Xij] = μ + αi + βj

where

m∑
i=1

αi =
n∑

j=1

βj = 0

In this section we will test the hypothesis

H0: all αi = 0
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against

H1: not all αi are 0

This null hypothesis states that there is no row effect, in that the value of a datum
is not affected by its row factor level.

We will also test the analogous hypothesis for columns, namely,

H0: all βj are 0

against

H1: not all βj are 0

To obtain tests for the foregoing null hypotheses, we will apply the analysis of
variance approach in which two different estimators are derived for the variance
σ 2. The first will always be a valid estimator, whereas the second will be a valid
estimator only when the null hypothesis is true. In addition, the second estimator
will tend to overestimate σ 2 when the null hypothesis is not true.

To obtain our first estimator of σ 2, we recall that the sum of the squares of N stan-
dard normal random variables is a chi-squared random variable with N degrees
of freedom. Since the nm standardized variables

Xij − E[Xij]

σ

i = 1, . . . , m, j = 1, . . . , n are all standard normal, it follows that

∑m
i=1

∑n
j=1(Xij − E[Xij])2

σ 2 =
∑m

i=1
∑n

j=1(Xij − μ − αi − βj)
2

σ 2

is chi squared with nm degrees of freedom. If in the preceding expression we now
replace the unknown parameters μ, α1, α2, . . . , αm, β1, β2, . . . , βn by their estima-
tors μ̂, α̂1, α̂2, . . . , α̂m, β̂1, β̂2, . . . , β̂n, then it turns out that the resulting expression
will remain chi squared but will lose 1 degree of freedom for each parameter that
is estimated. To determine how many parameters are to be estimated, we must
be careful to remember that

∑m
i=1 αi = ∑n

j=1 βj = 0. Since the sum of all the αi is
0, it follows that once we have estimated m − 1 of the αi then we have also esti-
mated the final one. Hence, only m − 1 parameters are to be estimated in order
to determine all the estimators α̂i. For the same reason only n − 1 of the βj need
to be estimated to determine estimators for all n of them. Since μ is also to be
estimated, we see that the number of parameters to be estimated is

1 + (m − 1) + (n − 1) = m + n − 1
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As a result, it follows that∑m
i=1

∑n
j=1(Xij − μ̂ − α̂i − β̂j)

2

σ 2

is a chi-squared random variable with nm − (n + m − 1) = (n − 1)(m − 1) degrees
of freedom.

Since

μ̂ = X..

α̂i = Xi. − X..

β̂j = X.j − X..

we see that

μ̂ + α̂i + β̂j = X.. + Xi. − X.. + X.j − X..

= Xi. + X.j − X..

Thus, the statistic ∑m
i=1

∑n
j=1(Xij − Xi· − X.j + X..)2

σ 2 (11.1)

is chi squared with (n − 1)(m − 1) degrees of freedom.

The sum of squares SSe defined by

SSe =
m∑

i=1

n∑
j=1

(Xij − Xi. − X.j + X..)2

is called the error sum of squares.

If we think of the difference between a random variable and its estimated mean
as being an “error,” then SSe is equal to the sum of the squares of the errors. Since
SSe/σ

2 is just the expression in Eq. (11.1), we see that SSe/σ
2 is chi squared with

(n − 1)(m − 1) degrees of freedom. As the expected value of a chi-squared random
variable is equal to its number of degrees of freedom, we have

E
[

SSe

σ 2

]
= (n − 1)(m − 1)
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or

E
[

SSe

(n − 1)(m − 1)

]
= σ 2

That is, letting N = (n − 1)(m − 1), we have shown the following.

SSe

N
is an unbiased estimator of σ 2.

Suppose now that we want to test the null hypothesis that there is no row effect;
that is, we want to test

H0 : all the αi are 0

against

H1 : not all the αi are 0

To obtain a second estimator of σ2, consider the row averages Xi., i = 1, . . . , m.
Note that when H0 is true, each αi is equal to 0, and so

E[Xi·] = μ + αi = μ

Since each Xi. is the average of n random variables, each having variance σ 2, it
follows that

Var(Xi.) = σ 2

n

Thus, we see that when H0 is true,

∑m
i=1(Xi. − E[Xi·])2

Var(Xi·)
= n

∑m
i=1(Xi. − μ)2

σ 2

will be chi squared with m degrees of freedom. If we now substitute X.. (the estima-
tor of μ) for μ in the preceding, the resulting expression will remain chi squared
but with one less degree of freedom. That is, it will have m − 1 degrees of freedom.
We thus have the following.

When H0 is true, then

n
∑m

i=1(Xi. − X..)2

σ 2

is chi squared with m − 1 degrees of freedom.
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The statistic SSr defined by

SSr = n
m∑

i=1

(Xi. − X..)2

is called the row sum of squares.

We have already seen that when H0 is true, SSr/σ
2 is chi squared with m − 1

degrees of freedom. As a result, when H0 is true,

E
[

SSr

σ 2

]
= m − 1

or, equivalently,

E
[

SSr

m − 1

]
= σ 2

In addition, it can be shown that SSr/(m − 1) will tend to be larger than σ 2 when
H0 is not true. Thus, once again we have obtained two estimators of σ 2. The first
estimator, SSe/N, where N = (n − 1)(m − 1), is a valid estimator whether or not
the null hypothesis is true. The second estimator, SSr/(m − 1), is a valid estimator
of σ 2 only when H0 is true and tends to be larger than σ 2 when H0 is not true.

The test of the null hypothesis H0 that there is no row effect involves compar-
ing the two estimators just given, and it calls for rejection when the second is
significantly larger than the first. Specifically, we use the test statistic

TS = SSr/(m − 1)

SSe/N

and the significance-level-α test is to

Reject H0 if TS ≥ Fm−1,N,α

Not reject H0 otherwise

Alternatively the test can be performed by calculating the p value. If the value of
the test statistic is v, then the p value is given by

p value = P{Fm−1,N ≥ v}

where Fm−1,N is an F random variable with m − 1 numerator and N denominator
degrees of freedom.

A similar test can be derived to test the null hypothesis that there is no column
effect, that is, that all the βj are equal to 0. The results of both tests are summarized
in Table 11.3.
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Table 11.3 Two-Factor ANOVA

Sum of squares Degrees of freedom

Row SSr = n
m∑

i=1
(Xi. − X..)2 m − 1

Column SSc = m
n∑

j=1
(X.ij − X..)2 n − 1

Error SSe = m∑
i=1

n∑
j=1

(Xij − Xi. − X.j + X..)2 (n − 1)(m − 1)

Let N = (n − 1)(m − 1)

Null Test Significance- p Value if
hypothesis statistic level-α test TS = v

No row effect
(all αi = 0)

SSr/(m − 1)

SSe/N
Reject if TS ≥ Fm−1,N,α P{Fm−1,N ≥ v}

No column effect
(all βj = 0)

SSe/(n − 1)

SSe/N
Reject if TS ≥ Fn−1,N,α P{Fn−1,N ≥ v}

Program 11-2 will do the computations and give the p value.

■ Example 11.5
The following are the numbers of defective items produced by four workers
using, in turn, three different machines.

Worker

Machine 1 2 3 4

1 41 42 40 35
2 35 42 43 36
3 42 39 44 47

Test whether there are significant differences between the machines and the
workers.

Solution

Since there are three rows and four columns, we see that m = 3 and n = 4
Computing the row and column averages gives the following results:

X1· = 41 + 42 + 40 + 35
4

= 39.5 X.1 = 41 + 35 + 42
3

= 39.33



526 CHAPTER 11: Analysis of Variance

X2· = 35 + 42 + 43 + 36
4

= 39 X.2 = 42 + 42 + 39
3

= 41

X3· = 42 + 39 + 44 + 47
4

= 43 X.3 = 40 + 43 + 44
3

= 42.3

X.4 = 35 + 36 + 47
3

= 39.33

Also

X.. = 39.5 + 39 + 43
3

= 40.5

Thus,

SSr = n
m∑

i=1

(Xi. − X..)2

= 4[12 + (1.5)2 + (2.5)2]

= 38

and

SSc = m
n∑

j=1

(X.j − X..)2

= 3[(1.17)2 + (0.5)2 + (1.83)2 + (1.17)2]

= 19.010

The calculation of SSe is more involved because we must add the sum of the
squares of the terms Xij − Xi. − X.j + X.. as i ranges from 1 to 3 and j from 1 to 4.
The first term in this sum, when i = 1 and j = 1, is

(41 − 39.5 − 39.33 + 40.5)2

Adding all 12 terms gives

SSe = 94.05

Since m − 1 = 2 and N = 2 · 3 = 6, the test statistic for the hypothesis that there
is no row effect is

TS(row) = 38/2
94.05/6

= 1.21

From App. Table D.4 we see that F2,6,0.05 = 5.14, and so the hypothesis that
the mean number of defective items is unaffected by which machine is used is
not rejected at the 5 percent level of significance.
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The test statistic for the hypothesis that there is no column effect is

TS(col.) = 19.010/3
94.05/6

= 0.40

From App. Table D.4 we see that F3,6,0.05 = 4.76, and so the hypothesis that the
mean number of defective items is unaffected by which worker is used is also
not rejected at the 5 percent level of significance. ■

We could also have solved the above by running a program such as Program 11-2.
Running Program 11-2 yields the following output:

The value of the F-statistic for testing that there is no row effect is 1.212766
The p-value for testing that there is no row effect is 0.3571476
The value of the F-statistic for testing that there is no column effect is 0.4042554
The p-value for testing that there is no column effect is 0.7555629

Since both p values are greater than 0.05, we cannot reject at the 5 percent sig-
nificance level the hypothesis that the machine used does not affect the mean
number of defective items produced; nor can we reject the hypothesis that the
worker employed does not affect the mean number of defective items produced.

PROBLEMS

1. An experiment was performed to determine the effect of three different
fuels and three different types of launchers on the range of a certain mis-
sile. The following data, in the number of miles traveled by the missile,
resulted.

Fuel 1 Fuel 2 Fuel 3

Launcher 1 70.4 71.7 78.5
Launcher 2 80.2 82.8 76.4
Launcher 3 90.4 85.7 84.8

Find out whether these data imply, at the 5 percent level of significance,
that there are differences in the mean mileages obtained by using
(a) Different launchers
(b) Different fuels

2. An important consideration in deciding which database management
system to employ is the mean time required to learn how to use the
system. A test was designed involving three systems and four users.
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Each user took the following amount of time (in hours) in training with
each system:

User

1 2 3 4

System 1 20 23 18 17
System 2 20 21 17 16
System 3 28 26 23 22

(a) Using the 5 percent level of significance, test the hypothesis that
the mean training time is the same for all the systems.

(b) Using the 5 percent level of significance, test the hypothesis that
the mean training time is the same for all the users.

3. Five different varieties of oats were planted in each of four separated
fields. The following yields resulted.

Field

Oat variety 1 2 3 4

1 296 357 340 348
2 402 390 420 335
3 345 342 358 308
4 360 322 336 270
5 324 339 357 308

Find out whether the data are consistent with the hypothesis that the
mean yield does not depend on
(a) The field
(b) The oat variety
Use the 5 percent level of significance.

4. In Example 11.3, test the hypothesis that the mean score of a student
does not depend on which test is taken.

5. In Prob. 1 of Sec. 11.3, test the hypothesis that the mean air pollution
level
(a) Is unchanging in time
(b) Does not depend on the location
Use the 5 percent level of significance.

6. In Prob. 3 of Sec. 11.3, test the hypothesis that the mean number of
boxes packed does not depend on
(a) The worker doing the packing
(b) The shift
Use the 5 percent level of significance.
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7. The following data give the percentages of random samples of United
Kingdom citizens who were smokers, in a variety of years.

Age (years)

Year 16–19 20–24 25–34 35–49 50–59 60+

1978 34 44 45 45 45 30
1988 28 37 36 36 33 23
1998 31 40 35 30 27 16
2000 29 35 35 29 27 16
2002 25 38 34 28 26 15
2007 20 31 27 22 21 12

(a) Test the hypothesis that the actual percentages of smokers do not
depend on the year considered.

(b) Test the hypothesis that there is no effect due to age group.
8. In Prob. 5 of Sec. 11.3, test the hypothesis that

(a) The mean birth rates do not depend on the particular country being
considered.

(b) The mean birth rates do not depend on the particular year being
considered.

9. In Prob. 7 of Sec. 11.3, test the hypothesis that
(a) The mean unemployment rates do not depend on the particular

industry being considered.
(b) The mean unemployment rates do not depend on the particular year

being considered.

11.5 FINAL COMMENTS
This chapter presented a brief introduction to a powerful statistical technique
known as the analysis of variance (ANOVA). This technique enables statisticians
to draw inferences about population means when these mean values are affected
by many different factors. For instance, whereas we have considered only one- and
two-factor ANOVA problems, any number of factors could affect the value of an
outcome. In addition, there could be interactions between some of these factors.
For instance, in two-factor ANOVA, it might be the case that the combination of a
particular row and a particular column greatly affects a mean value. For example,
while individually each of two carcinogens may be relatively harmless, perhaps
in conjunction they are devastating. The general theory of ANOVA shows how to
deal with these and a variety of other situations.

ANOVA was developed by R. A. Fisher, who applied it to a large number of
agricultural problems during his tenure as chief scientist at the Rothamstead
Experimental Laboratories. ANOVA has since been widely applied in a variety
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of fields. For instance, in education one might want to study how a student’s
learning of algebra is affected by such factors as the instructor, the syllabus of the
algebra course, the time spent on each class, the number of classes, the number
of students in each class, and the textbook used. ANOVA has also been widely
applied in studies in psychology, social science, manufacturing, biology, and
many other fields. Indeed, ANOVA is probably the most widely used of all the
statistical techniques.

KEY TERMS

One-factor analysis of variance: A model concerning a collection of normal ran-
dom variables. It supposes that the variances of these random variables are
equal and that their mean values depend on only a single factor, namely, the
sample to which the random variable belongs.

F statistic: A test statistic that is, when the null hypothesis is true, a ratio of two
estimators of a common variance.

Two-factor analysis of variance: A model in which a set of normal random vari-
ables having a common variance is arranged in an array of rows and columns.
The mean value of any of them depends on two factors, namely, the row and
the column in which the variable lies.

SUMMARY

One-Factor Analysis of Variance Consider m independent samples, each of size
n. Let μ1, μ2, . . . , μm be the respective means of these m samples, and consider a
test of

H0: all the means are equal

against

H1: not all the means are equal

Let Xi and S2
i denote the sample mean and sample variance, respectively,

from sample i, i = 1, . . . , m. Also, let S
2

be the sample variance of the data set
X1, . . . , Xm.

To test H0 against H1, use the test statistic

TS = nS
2∑m

i=1 S2
i /m
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The significance-level-α test is to

Reject H0 if TS ≥ Fm−1,m(n−1),α

Not reject H0 Otherwise

If the value of TS is v, then

p value = P{Fm−1,m(n−1)≥v}

Program 11-1 can be used both to compute the value of TS and to obtain the
resulting p value.

Note: Variable Fr,s represents an F random variable having r numerator and s
denominator degrees of freedom. Also, Fr,s,α is defined to be such that

P{Fr,s ≥ Fr,s,α} = α

Two-Factor Analysis of Variance: The Model. Suppose that each data value is
affected by two factors, and suppose that there are m possible values, or levels,
of the first factor and n of the second factor. Let Xij denote the datum obtained
when the first factor is at level i and the second factor is at level j. The data set can
be arranged in the following array of rows and columns:

X11 X12 · · · X1j · · · X1n

X21 X22 · · · X2j · · · X2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xi1 Xi2 · · · Xij · · · Xin

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xm1 Xm2 · · · Xmj · · · Xmn

The two-factor ANOVA model supposes that the Xij are normal random variables
having means given by

E[Xij] = μ + αi + βj

and a common variance

Var(Xij) = σ2

The foregoing parameters satisfy

m∑
i=1

αi =
n∑

j=1

βj = 0
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Estimating the Parameters. Let

Xi. =
∑n

j=1 Xij

n

X.j =
∑m

i=1 Xij

m

X.. =
∑m

i=1
∑n

j=1 Xij

nm

The estimators of the parameters are as follows:

μ̂ = X..

α̂i = Xi. − X..

β̂j = X.j − X..

Testing Hypotheses. Let

SSe =
m∑

i=1

n∑
j=1

(Xij − Xi. − X.j + X..)2

SSr = n
m∑

i=1

(Xi. − X..)2

SSc = m
n∑

j=1

(X.j − X..)2

SSe, SSr , and SSc are called, respectively, the error sum of squares, the row sum of
squares, and the column sum of squares. Also let N = (n − 1)(m − 1).

To test H0: all αi = 0 against H1: not all αi = 0, use test statistic

TS = SSr/(m − 1)

SSe/N

The significance-level-α test is to

Reject H0 if TS ≥ Fm−1,N,α

Not reject H0 otherwise

If TS = v, then the p value is given by

p value = P{Fm−1,N ≥ v}
To test H0: all βj = 0 versus H1: not all βj = 0, use test statistic

TS = SSc/(n − 1)

SSe/N
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The significance-level-α test is to

Reject H0 if TS ≥ Fn−1,N,α

Not reject H0 Otherwise

If TS = v, then the p value is given by

p value = P{Fn−1,N ≥ v}
Program 11-2 can be used for the foregoing hypothesis tests. It will compute the
values of the two test statistics and give the resulting p values.

REVIEW PROBLEMS

1. A corporation has three apparently identical manufacturing plants.
Wanting to see if these plants are equally effective, management ran-
domly chose 30 days. On 10 of these days it determined the daily
output at plant 1. On another 10 days, it determined the daily output
at plant 2, and on the final 10 days management determined the daily
output at plant 3. The following summary data give the sample means
and sample variances of the daily numbers of items produced at the
three plants over those days.

Plant i Xi S2
i

i = 1 325 450
i = 2 413 520
i = 3 366 444

Test the hypothesis that the mean number of items produced daily is
the same for all three plants. Use the 5 percent level of significance.

2. Sixty nonreading preschool students were randomly divided into four
groups of 15 each. Each group was given a different type of course in
learning how to read. Afterward, the students were tested with the
following results.

Group Xi S2
i

1 65 224
2 62 241
3 68 233
4 61 245

Test the null hypothesis that the reading courses are equally effective.
Use the 5 percent level of significance.
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3. Preliminary studies indicate a possible connection between one’s nat-
ural hair color and threshold for pain. A sample of 12 women were
classified as to having light, medium, or dark hair. Each was then given
a pain sensitivity test, with the following scores resulting.

Light Medium Dark

63 60 45
72 48 33
52 44 57
60 53 40

Are the given data sufficient to establish that hair color affects the
results of a pain sensitivity test? Use the 5 percent level of significance.

4. Three different washing machines were employed to test four different
detergents. The following data give a coded score of the effectiveness
of each washing.

Machine

Detergent 1 2 3

1 53 50 59
2 54 54 60
3 56 58 62
4 50 45 57

(a) Estimate the improvement in mean value with detergent 1 over
detergent (i) 2, (ii) 3, and (iii) 4.

(b) Estimate the improvement in mean value when machine 3 is used
as opposed to machine (i) 1 and (ii) 2.

(c) Test the hypothesis that the detergent used does not affect the
score.

(d) Test the hypothesis that the machine used does not affect the
score.

In both (c) and (d), use the 5 percent level of significance.
5. Suppose in Prob. 4 that the 12 applications of the detergents were

all on different randomly chosen machines. Test the hypothesis, at the
5 percent significance level, that the detergents are equally effective.

6. In Example 11.3 test the hypothesis that the mean test score depends
only on the test taken and not on which student is taking the test.

7. A manufacturer of women’s beauty products is considering four new
variations of a hair dye. An important consideration in a hair dye is
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its lasting power, defined as the number of days until treated hair
becomes indistinguishable from untreated hair. To learn about the
lasting power of its new variations, the company hired three long-
haired women. Each woman’s hair was divided into four sections,
and each section was treated by one of the dyes. The following data
concerning the lasting power resulted.

Dye

Woman 1 2 3 4

1 15 20 27 21
2 30 33 25 27
3 37 44 41 46

(a) Test, at the 5 percent level of significance, the hypothesis that the
four variations have the same mean lasting power.

(b) Estimate the mean lasting power obtained when woman 2 uses
dye 2.

(c) Test, at the 5 percent level of significance, the hypothesis that the
mean lasting power does not depend on which woman is being
tested.

8. Use the following data to test the hypotheses of

(a) No row effect
(b) No column effect

17 23 35 39 5
42 28 19 40 14
36 23 31 44 13
27 40 25 50 17

9. Problem 9 of Sec. 11.2 implicitly assumes that the number of deaths
is not affected by the year under consideration. However, consider a
two-factor ANOVA model for this problem.

(a) Test the hypothesis that there is no effect due to the year.
(b) Test the hypothesis that there is no seasonal effect.

10. The following data relate to the ages at death of a certain species of
rats that were fed one of three types of diet. The rats chosen were of
a type having a short life span, and they were randomly divided into
three groups. The data are the sample means and sample variances
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of the ages of death (measured in months) of the three groups. Each
group is of size 8.

Very low-calorie Moderate-calorie High-calorie

Sample mean 22.4 16.8 13.7
Sample variance 24.0 23.2 17.1

Test the hypothesis, at the 5 percent level of significance, that the
mean lifetime of a rat is not affected by its diet. What about at the
1 percent level?



CHAPTER 12

Linear Regression

We know a thing when we understand it.
George Berkeley (British philosopher for whom the

California city was named)

You can observe a lot just by watching.
Yogi Berra
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We study the simple linear regression model which, except for random error,
assumes a straight-line relationship between a response and an input variable. We
use the method of least squares to estimate the parameters of this model. Assum-
ing that the random error is normal with mean 0 and variance σ 2, we show how
to test hypotheses concerning the parameters of the model. The concept of regres-
sion to the mean is introduced; we explain when it arises and how one must be
careful to avoid the regression fallacy in its presence. We explain the coefficient of
determination. Finally, we introduce the multiple linear regression model, which
relates a response variable to a set of input variables.

It was a spring day in 1888, and Francis Galton was out for a stroll in the country-
side. While walking, he considered a question that had concerned him for some
time. What was the relationship between a child’s physical and mental characteris-
tics and those of the child’s parents? For instance, simplifying his ideas somewhat,
Galton believed that the height of a child at adulthood should have an expected
value equal to the height of his or her (same-sex) parent. But if this were so, then it
would follow that about one-half of the offspring of very tall (short) people would
be even taller (shorter) than their parents. Thus each new generation should pro-
duce taller (as well as shorter) people than the previous generation. However,
on the contrary, data indicated a stability in the heights of the population from
generation to generation. How could this apparent contradiction be explained?

It came to Galton in a flash. In his own words, “A temporary shower drove
me to seek refuge by a recess in the rock by the side of a pathway. There
the idea flashed across me and I forgot everything else for a moment in my
great delight.”

Galton’s flash of insight was that the mean value of a child’s characteristic (such
as height) was not equal to his or her parent’s height but rather was between
this value and the average value of the entire population. Thus, for instance, the
heights of the offspring of very tall people (called, by Galton, people “taller than
mediocrity”) would tend to be shorter than their parents. Similarly, the offspring
of those shorter than mediocrity would tend to be taller than their parents. Galton
called this insight “regression to mediocrity”; we call it regression to the mean.



12.1 Introduction 539

12.1 INTRODUCTION
We are often interested in trying to determine the relationship between a pair of
variables. For instance, how does the amount of money spent in advertising a new
product relate to the first month’s sales figures for that product? Or how does the
amount of catalyst employed in a scientific experiment relate to the yield of that
experiment? Or how does the height of a father relate to that of his son?

In many situations the values of the variables are not determined simultaneously
in time; rather, one of the variables will be set at some value, and this will, in turn,
affect the value of the second variable. For instance, the advertising budget would
be set before the sales figures are determined, and the amount of catalyst to be
used would be set before the resulting yield could be determined. The variable
whose value is determined first is called the input or independent variable and the
other is called the response or dependent variable.

Suppose that the value of the independent variable is set to equal x. Let Y denote
the resulting value of the dependent variable. The simplest type of relationship
between this pair of variables is a straight-line, or linear, relation of the form

Y = α + βx (12.1)

This model, however, supposes that (once the values of the parameters α and β are
determined) it would be possible to predict exactly the response for any value of
the input variable. In practice, however, such precision is almost never attainable,
and the most that one can expect is that the preceding equation is valid subject to
random error.

In Sec. 12.2 we explain precisely the meaning of the linear regression model, which
assumes that Eq. (12.1) is valid, subject to random error. In Sec. 12.3 we show how
data can be used to estimate the regression parameters α and β. The estimators
presented are based on the least-squares approach to finding the best straight-line
fit for a set of data pairs. Section 12.4 deals with the error random variable, which
will be taken to be a normal random variable having mean 0 and variance σ2. The
problem of estimating σ 2 will be considered.

In Sec. 12.5 we consider tests of the statistical hypothesis that there is no linear
relationship between the response variable Y and the input value x. Section 12.6
deals with the concept of regression to the mean. It is shown that this phenomenon
arises when the value of the regression parameter β is between 0 and 1. We explain
how this phenomenon will often occur in testing–retesting situations and how
a careless analysis of such data can often lead one into the regression fallacy. In
addition, we indicate in this section how regression to the mean, in conjunc-
tion with the central limit theorem and the passing of many generations, can
be used to explain why biological data sets are so often approximately normally
distributed.
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Section 12.7 is concerned with determining an interval that, with a fixed degree
of confidence, will contain a future response corresponding to a specified input.
These intervals, which make use of previously obtained data, are known as pre-
diction intervals. Sections 12.8 and 12.9 present, respectively, the coefficient of
determination and the correlation coefficient. Both quantities can be used to indi-
cate the degree of fit of the linear regression model to the data. An approach to
assessing the validity of the linear regression model, by analyzing the residuals, is
dealt with in Sec. 12.10.

In Sec. 12.11 we consider the multiple linear regression model, where one tries to
predict a response not on the basis of the value of a single input variable but on
the basis of the values of two or more such variables.

12.2 SIMPLE LINEAR REGRESSION MODEL
Consider a pair of variables, one of which is called the input variable and the other
the response variable. Suppose that for a specified value x of the input variable the
value of the response variable Y can be expressed as

Y = α + βx + e

The quantities α and β are parameters. The variable e, called the random error, is
assumed to be a random variable having mean 0.

Definition The relationship between the response variable Y and the input variable x
specified in the preceding equation is called a simple linear regression.

The simple linear regression relationship can also be expressed by stating that for
any value x of the input variable, the response variable Y is a random variable
with mean given by

E[Y ] = α + βx

Thus a simple linear regression model supposes a straight-line relationship
between the mean value of the response and the value of the input variable.
Parameters α and β will almost always be unknown and will have to be estimated
from data.

To see if a simple linear regression might be a reasonable model for the relation-
ship between a pair of variables, one should first collect and then plot data on the
paired values of the variables. For instance, suppose there is available a set of data
pairs (xi, yi), i = 1, . . . , n, meaning that when the input variable was set to equal
xi, the observed value of the response variable was yi. These points should then
be plotted to see if, subject to random error, a straight-line relationship between x
and y appears to be a reasonable assumption. The resulting plot is called a scatter
diagram.
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■ Example 12.1
A new type of washing machine was recently introduced in 11 department
stores. These stores are of roughly equal size and are located in similar types
of communities. The manufacturer varied the price charged in each store, and
the following data, giving the number of units sold in 1 month for each of the
different prices, resulted.

Price ($) Number sold

280 44
290 41
300 34
310 38
320 33
330 30
340 32
350 26
360 28
370 23
380 20

A plot of the number of units sold y versus the price x for these 11 data pairs is
given in Fig. 12.1. The resulting scatter diagram indicates that, subject to ran-
dom error, the assumption of a straight-line relationship between the number
of units sold and the price appears to be reasonable. That is, a simple linear
regression model appears to be appropriate.

FIGURE 12.1
A scatter diagram for the data of Example 12.1. ■
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Remark The input variable x in the linear regression model is not usually thought of
as being a random variable. Rather it is regarded as a constant that can be set at various
values. The resulting response Y, on the other hand, is regarded as a random variable
whose mean value depends in a linear way on the input x. It is for this reason that we use
the capital, or uppercase, letter Y to represent the response. We use a small, or lowercase, y
to denote an observed value of Y, and so y will represent the observed value of the response
at the input value x.

PROBLEMS

1. The following 12 data pairs relate y, the percentage yield of a labora-
tory experiment, to x, the temperature at which the experiment was
conducted.

i xi yi i xi yi

1 100 45 7 150 69
2 110 51 8 160 74
3 120 54 9 170 78
4 125 53 10 180 86
5 130 59 11 190 89
6 140 63 12 200 94

(a) Represent these data in a scatter diagram.
(b) Do you think a simple linear regression model would be appropri-

ate for describing the relationship between percentage yield and
temperature?

2. An area manager in a department store wants to study the relationship
between the number of workers on duty and the value of merchandise
lost to shoplifters. To do so, she assigned a different number of clerks
for each of 10 weeks. The results were as follows:

Week Number of workers Loss

1 9 420
2 11 350
3 12 360
4 13 300
5 15 225
6 18 200
7 16 230
8 14 280
9 12 315

10 10 410
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(a) Which variable should be the input variable and which should be
the response?

(b) Plot the data in a scatter diagram.
(c) Does a simple linear regression model appear reasonable?

3. The following data relate the traffic density, described in the number
of automobiles per mile, to the average speed of traffic on a moderately
large city thoroughfare. The data were collected at the same location at
10 different times within a span of 3 months.

Density Speed

69 25.4
56 32.5
62 28.6

119 11.3
84 21.3
74 22.1
73 22.3
90 18.5
38 37.2
22 44.6

(a) Which variable is the input and which is the response?
(b) Draw a scatter diagram.
(c) Does a simple linear regression model appear to be reasonable?

4. Repeat Prob. 3, but now let the square root of the speed, rather than the
speed itself, be the response variable.

5. The use that can be obtained from a tire is affected by the air pressure
in the tire. A new type of tire was tested for wear at different pressures,
with the following results:

Pressure Mileage
(pounds per square inch) (thousands of miles)

30 29.4
31 32.2
32 35.9
33 38.4
34 36.6
35 34.8
36 35.0
37 32.2
38 30.5
39 28.6
40 27.4
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(a) Plot the data in a scatter diagram.
(b) Does a simple linear regression model appear appropriate for

describing the relation between tire pressure and miles of use?

12.3 ESTIMATING THE REGRESSION PARAMETERS
Suppose that the responses Yi corresponding to the input values xi, i = 1, . . . , n,
are to be observed and used to estimate the parameters α and β in a simple linear
regression model

Y = α + βx + e

To determine estimators of α and β, we reason as follows: If A and B were the
respective estimators of α and β, then the estimator of the response corresponding
to the input value xi would be A + Bxi. Since the actual response is Yi, it fol-
lows that the difference between the actual response and its estimated value is
given by

εi ≡ Yi − (A + Bxi)

That is, εi represents the error that would result from using estimators A and B to
predict the response at input value xi (Fig. 12.2).

Now, it is reasonable to choose our estimates of α and β to be the values of A and
B that make these errors as small as possible. To accomplish this, we choose A
and B to minimize the value of

∑n
i=1 ε2

i , the sum of the squares of the errors. The
resulting estimators of α and β are called least-square estimators.

FIGURE 12.2
The errors.
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Definition For given data pairs (xi, Yi), i = 1, . . . , n, the least-square estimators of α

and β are the values of A and B that make

n∑
i=1

ε2
1 =

n∑
i=1

(Yi − A − Bxi)
2

as small as possible.

Remark The reason we want
∑n

i=1 ε2
i , rather than

∑n
i=1 εi, to be small is that the sum

of the errors can be small even when individual error terms are large (since large positive
and large negative errors cancel). On the other hand, this could not happen with the sum
of the squares of the errors since none of the terms could be negative.

It can be shown that the least-squares estimators of α and β, which we call α̂ and
β̂, are given by

β̂ =
∑n

i=1 (xi − x)(Yi − Y)∑n
i=1 (xi − x)2

α̂ = Y − β̂x

where

x =
∑n

i=1 xi

n
and Y =

∑n
i=1 Yi

n

The line

y = α̂ + β̂x

is called the estimated regression line: β̂ is the slope, and α̂ is the intercept of this
line.

Notation: If we let

SxY =
n∑

i=1

(xi − x)(Yi − Y)

Sxx =
n∑

i=1

(xi − x)2

SYY =
n∑

i=1

(Yi − Y)2
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then the least-squares estimators can be expressed as

β̂ = SxY

Sxx

α̂ = Y − β̂x

The values of α̂ and β̂ can be obtained either by a pencil-and-paper computation
or by using a hand calculator. In addition, Program 12-1 will compute the least-
squares estimators and the estimated regression line. This program also gives the
user the option of computing some other statistics whose values will be needed
in the following sections.

■ Example 12.2
A large midwestern bank is planning on introducing a new word processing sys-
tem to its secretarial staff. To learn about the amount of training that is needed
to effectively implement the new system, the bank chose eight employees of
roughly equal skill. These workers were trained for different amounts of time
and were then individually put to work on a given project. The following data
indicate the training times and the resulting times (both in hours) that it took
each worker to complete the project.

Worker Training time (= x) Time to complete project (= Y )

1 22 18.4
2 18 19.2
3 30 14.5
4 16 19.0
5 25 16.6
6 20 17.7
7 10 24.4
8 14 21.0

(a) What is the estimated regression line?
(b) Predict the amount of time it would take a worker who receives 28 hours

of training to complete the project.
(c) Predict the amount of time it would take a worker who receives 50 hours

of training to complete the project.

Solution

(a) Rather than calculating by hand (which you will be asked to do in
Prob. 2), we run Program 12-1, which computes the least-squares estima-
tors and related statistics in simple linear regression models. We obtain the
following:
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First, enter the number of data pairs n, which is 8.

Next, enter the 8 successive pairs, which are:

22, 18.4
18, 19.2
30, 14.5
16, 19
25, 16.6
20, 17.7
10, 24.4
14, 21

The program computes the least-squares estimators as follows:

A = 27.46606

B = −0.4447002

The estimated regression line is as follows:

Y = 27.46606 − 0.4447002x

A plot of the scatter diagram and the resulting estimated regression line is
given in Fig. 12.3.

(b) The best prediction of the completion time corresponding to the training
time of 28 hours is its mean value, namely,

α + 28β

FIGURE 12.3
A scatter diagram and the estimated regression line.
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By using the estimates of α and β previously derived, the predicted
completion time is

27.466 − 28(0.445) = 15.006

(c) This part asks for the prediction at the input value 50, which is far greater
than all the input values in our data set. As a result, even though the scatter
diagram indicates that a straight-line fit should be a reasonable approxi-
mation for the range of input values considered, one should be extremely
cautious about assuming that the relationship will continue to be a straight
line for input values as large as 50. Thus, it is prudent not to attempt to
answer part (c) on the basis of the available data. ■

Warning: Do not use the estimated regression line to predict responses at input values
that are far outside the range of the ones used to obtain this line.

The following formulas can be useful when you are computing by hand.

SxY =
n∑

i=1

xiYi − nx Y

Sxx =
n∑

i=1

x2
i − nx2

PROBLEMS

1. Find, by a hand computation, the estimated regression line for the
following data:

x y

1 4
2 7
3 8
5 12

(a) Plot the scatter diagram, and draw the estimated regression line.
(b) Double all the data values and repeat part (a).

2. Verify the value given in Example 12.2 for the estimated regression
line either by a pencil-and-paper computation or by using a hand
calculator.

3. The following pairs of data represent the amounts of damages (in thou-
sands of dollars) in fires at middle-class residences in a certain city
and the distances (in miles) from these residences to the nearest fire
station.
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Distance Damage

5.2 36.2
4.4 28.8
3.0 22.6
1.2 8.8
7.5 41.5
9.4 25.4

(a) Draw a scatter diagram.
(b) Try to approximate the relationship between the distance and

damage by drawing a straight line through the data.
(c) Find the estimated regression line, and compare it to the line

drawn in part (b).
4. Consider Prob. 1 of Sec. 12.2.

(a) Draw a straight line through the data points.
(b) Determine the estimated regression line, and compare it to the

line drawn in part (a).
5. The amounts (in millions of pounds) of poultry products consumed in

the United States for the years 1995 through 2002 are as follows:

25.9 26.8 27.3 27.8 29.6 30.5 30.8 32.6

(a) Letting the year be the independent variable and consumption the
dependent variable, plot a scatter diagram.

(b) Find the estimated regression line. (To simplify the algebra, you
can take the x variable to be the year minus 1995. That is, year
1985 has value 0, 1996 has value 1, and so on.)

(c) Plot the estimated regression line on the scatter diagram.
(d) Predict the 1994 consumption figure.
(e) Predict the 2004 consumption figure.

6. The following are the average 2003 math SAT scores in a sample of
states, along with the percentage of graduating seniors who took the
test.

State Average score Percentage

Arizona 525 38
California 519 54
Indiana 504 63
Missouri 583 8
Louisiana 559 8
Oregon 527 57
Virginia 510 71
Wisconsin 594 7
Texas 491 57
Vermont 512 70
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Find the estimated regression line.
7. The following table relates the world production of wood pulp to the

world production of newsprint for each of seven different years. The
data come from the Statistical Division of the United Nations, New
York, Monthly Bulletin of Statistics and are in units of 1 million metric
tons.

Wood pulp Newsprint

124.4 25.4
131.3 27.8
133.1 28.3
136.6 29.3
142.0 30.6
150.1 32.3
150.3 33.1

(a) Taking the amount of wood pulp as the independent (or input)
variable, find the estimated regression line.

(b) Predict the amount of newsprint produced in a year in which 146.0
million metric tons of wood pulp is produced.

(c) Taking the amount of newsprint as the input variable, find the
estimated regression line.

(d) Predict the amount of wood pulp produced in a year in which 32.0
million metric tons of newsprint is produced.

8. It is believed that the more alcohol there is in an individual’s blood-
stream, the slower is that person’s reaction time. To test this, 10
volunteers were given different amounts of alcohol. Their blood alcohol
levels were determined as percentages of their body weights. The vol-
unteers were then tested to determine their reaction times to a given
stimulus. The following data resulted.

x = amount of alcohol y = reaction time

in blood (percent) (seconds)

0.08 0.32
0.10 0.38
0.12 0.44
0.14 0.42
0.15 0.47
0.16 0.51
0.18 0.63

(a) Plot a scatter diagram.
(b) Approximate the estimated regression line by drawing a straight

line through the data.
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(c) What is the estimated regression line?
(d) Compare the lines in parts (b) and (c). Are their slopes nearly

equal? How about the intercepts?
Predict the reaction time for an individual (not one of the original
volunteers) whose blood alcohol content is
(e) 0.15
(f) 0.17

9. In Example 12.2, suppose the eight training times had been chosen in
advance. How do you think the decision as to the assignment of the
eight workers to these training times should have been made?

10. In an experiment designed to study the relationship between the num-
ber of alcoholic drinks consumed and blood alcohol concentration,
seven individuals having the same body size were randomly assigned
a certain number of alcoholic drinks. After a wait of 1 hour, their blood
alcohol levels were checked. The results were as follows.

Number of drinks Blood alcohol level

0.5 0.01

1 0.02

2 0.05

3 0.09

4 0.10

5 0.14

6 0.20

(a) Draw a scatter diagram.
(b) Find the estimated regression line, and draw it on the scatter

diagram.
(c) Predict the blood alcohol level of a person, of the same general size

as the people in the experiment, who had 3 drinks 1 hour ago.
(d) What if the person in part (b) had 7 drinks 1 hour ago?

11. The following data relate the per capita consumption of cigarettes in
1930 and men’s death rates from lung cancer in 1950, for a variety of
countries.

1930 Per capita cigarette 1950 Deaths per
Country consumption million men

Australia 480 180

Canada 500 150

Denmark 380 170

Finland 1100 350

(Continued)
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(Continued)

1930 Per capita cigarette 1950 Deaths per
Country consumption million men

Great Britain 1100 460
Iceland 230 60
The Netherlands 490 240
Norway 250 90
Sweden 300 110
Switzerland 510 250
United States 1300 200

(a) Determine the estimated regression line.
Predict the number of 1950 lung cancer deaths per million men in
a country whose 1930 per capita cigarette consumption was

(b) 600
(c) 850
(d) 1000

12. The following are the average scores on the mathematics part of the
Scholastic Aptitude Test (SAT) for some of the years from 1994 to
2009.

Year SAT Score

1994 504
1996 508
1998 512
2000 514
2002 516
2004 518
2005 520
2007 515
2009 515

Assuming a simple linear regression model, predict the average scores
in 1997, 2006 and 2008.

13. Use the data of Prob. 3 in Sec. 3.7 to predict the IQ of the daughter of
a woman having an IQ of 130.

14. Use the data of Prob. 6 in Sec. 3.7 to predict the number of adults on
parole in a state having 14,500 adults in prison.

15. The following data relate the proportions of coal miners who exhibit
symptoms of pneumoconiosis to the number of years of working in
coal mines. Use it to estimate the probability that a coal miner who
has worked for 42 years will have pneumoconiosis.
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Proportion having
Years working pneumoconiosis

5 0
10 0.0090
15 0.0185
20 0.0672
25 0.1542
30 0.1720
35 0.1840
40 0.2105
45 0.3570
50 0.4545

12.4 ERROR RANDOM VARIABLE
We have defined the linear regression model by the relationship

Y = α + βx + e

where α and β are unknown parameters that will have to be estimated and e is
an error random variable having mean 0. To be able to make statistical inferences
about the regression parameters α and β, it is necessary to make some additional
assumptions concerning the error random variable e. The usual assumption,
which we will be making, is that e is a normal random variable with mean 0 and
variance σ 2. Thus we are assuming that the variance of the error random variable
remains the same no matter what input value x is used.

Put another way, this assumption is equivalent to assuming that for any input
value x, the response variable Y is a random variable that is normally distributed
with mean

E[Y ] = α + βx

and variance

Var(Y) = σ 2

An additional assumption we will make is that all response variables are indepen-
dent. That is, for instance, the response from input value x1 will be assumed to be
independent of the response from input value x2.

The quantity σ2 is an unknown that will have to be estimated from the data. To
see how this can be accomplished, suppose that we will be observing the response
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values Yi corresponding to the input values xi, i = 1, . . . , n. Now, for each value
of i, the standardized variable

Yi − E[Yi]√
Var(Yi)

= Yi − (α + βxi)

σ

will have a standard normal distribution. Thus, since a chi-squared random vari-
able with n degrees of freedom is defined to be the sum of the squares of n
independent standard normals, we see that

∑n
i=1 (Yi − α − βxi)

2

σ 2

is chi squared with n degrees of freedom.

If we now substitute the estimators α̂ and β̂ for α and β in the preceding expres-
sion, then the resulting variable will remain chi squared but will now have n − 2
degrees of freedom (since 1 degree of freedom will be lost for each parameter that
is estimated). That is,

∑n
i=1 (Yi − α̂ − β̂xi)

2

σ 2

is chi squared with n − 2 degrees of freedom.

The quantities

Yi − α̂ − β̂xi i = 1, . . . , n

are called residuals. They represent the differences between the actual and the pre-
dicted responses. We will let SSR denote the sum of the squares of these residuals.
That is,

SSR =
n∑

i=1

(Yi − α̂ − β̂xi)
2

From the preceding result, we thus have

SSR

σ 2

is chi squared with n − 2 degrees of freedom.
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Since the expected value of a chi-squared random variable is equal to its number
of degrees of freedom, we obtain

E[SSR]
σ 2 = n − 2

or

E
[

SSR

n − 2

]
= σ 2

In other words, SSR/(n − 2) can be used to estimate σ 2.

SSR

n − 2

is the estimator of σ2.

Program 12-1 can be utilized to compute the value of SSR.

■ Example 12.3
Consider Example 12.2 and suppose that we are interested in estimating the
value of σ 2. To do so, we could again run Program 12-1, this time asking
for the additional statistics. This would result in the following additional
output:

S(x,Y) = −125.3499
S(x,x) = 281.875
S(Y,Y) = 61.08057
SSR = 5.337465
THE SQUARE ROOT OF (n − 2)S(x, x)/SSR is 17.80067

The estimate of σ 2 is 5.3375/6 = 0.8896. ■

The following formula for SSR is useful when you are using a calculator or
computing by hand.

Computational formula for SSR:

SSR = SxxSYY − S2
xY

Sxx

The easiest way to compute SSR by hand is first to determine Sxx , SxY , and SYY and
then to apply the preceding formula.
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PROBLEMS

1. Estimate σ 2 in Prob. 1 of Sec. 12.2.
2. Estimate σ 2 in Prob. 2 of Sec. 12.2.
3. The following data relate the speed of a particular typist and the temper-

ature setting of his office. The units are words per minute and degrees
Fahrenheit.

Temperature Typing speed

50 63
60 74
70 79

(a) Compute, by hand, the value of SSR.
(b) Estimate σ2.
(c) If the temperature is set at 65, what typing speed would you

predict?
4. Estimate σ 2 in Prob. 3 of Sec. 12.2.
5. Estimate σ 2 in Prob. 10 of Sec. 12.3.
6. The following data give, for certain years between 1982 and 2002, the

percentages of British women who were cigarette smokers.

Year 1982 1984 1988 1990 1994 1996 1998 2000 2002

Percentage 33.1 31.8 30.4 24.3 26.3 27.7 26.3 25.3 24.8

Treat these data as coming from a linear regression model, with the
input being the year and the response being the percentage. Take 1982
as the base year, so 1982 has input value x = 0, 1986 has input value
x = 4, and so on.
(a) Estimate the value of σ2.
(b) Predict the percentage of British women who smoked in 1997.

7. Estimate σ 2 in Prob. 11 of Sec. 12.3.
8. In data relating the ages at which 25 fathers (x) and their respective

sons (Y ) first began to shave, the following summary statistics resulted:

x = 13.9 Y = 14.6

Sxx = 46.8 SYY = 53.3 SxY = 12.2

(a) Determine the estimated regression line.
(b) Predict the age at which a boy will begin to shave if his father

began to shave at age 15.1 years.
(c) Estimate σ2.
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12.5 TESTING THE HYPOTHESIS THAT β = 0
An important hypothesis to consider with respect to the simple linear regression
model

Y = α + βx + e

is the hypothesis that β = 0. Its importance lies in the fact that it is equivalent to
stating that a response does not depend on the value of the input; or, in other
words, there is no regression on the input value.

To derive a test of

H0: β = 0 against H1: β 
= 0

first it is necessary to study the distribution of β̂, the estimator of β. That is, we
will clearly want to reject H0 when β̂ is far from 0 and not to reject it other-
wise. To determine how far away β̂ needs be from 0 to justify rejection of the
null hypothesis, it is necessary to know something about its distribution.

It can be shown that β̂ is normally distributed with mean and variance, respec-
tively, given by

E[β̂] = β

and

Var(β̂) = σ 2

Sxx

Hence, the standardized variable

β̂ − β√
σ2/Sxx

=
√

Sxx

σ 2 (β̂ − β)

will have a standard normal distribution.

We cannot directly base a test on the preceding fact, however, since the standard-
ized variable involves the unknown parameter σ 2. However, if we replace σ 2 by its
estimator SSR/(n − 2), which is chi squared with n − 2 degrees of freedom, then it
can be shown that the resulting quantity will now have a t distribution with n − 2
degrees of freedom. That is,

√
(n − 2)Sxx

SSR
(β̂ − β)

has a t distribution with n − 2 degrees of freedom.
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It follows from the preceding that if H0 is true and so β = 0, then

√
(n − 2)Sxx

SSR
β̂

has a t distribution with n − 2 degrees of freedom. This gives rise to the following
test of H0.

A significance-level-γ test of H0 is to

Reject H0 if | TS | ≥ tn−2,γ/2

Not reject H0 otherwise

where

TS =
√

(n − 2)Sxx

SSR
β̂

An equivalent way of performing this test is first to compute the value of the test
statistic TS; say its value is ν. The null hypothesis should then be rejected if the
desired significance level γ is at least as large as the p value given by

p value = P {|Tn−2| ≥ |ν|}
= 2P{Tn−2 ≥ |ν|}

where Tn−2 is a t random variable with n − 2 degrees of freedom. Program 8-2 can
be used to compute this latter probability.

■ Example 12.4
An individual claims that the fuel consumption of his automobile does not
depend on how fast the car is driven. To test the plausibility of this hypothesis,
the car was tested at various speeds between 45 and 75 miles per hour. The
miles per gallon attained at each of these speeds were determined, with the
following data resulting.



12.5 Testing the Hypothesis that β = 0 559

Speed Miles per gallon

45 24.2
50 25.0
55 23.3
60 22.0
65 21.5
70 20.6
75 19.8

Do these data refute the claim that the mileage per gallon of gas is unaffected
by the speed at which the car is being driven?

Solution

Suppose that a simple linear regression model

Y = α + βx + e

relates Y , the miles per gallon of the car, to x, the speed at which it is being
driven. Now, the claim being made is that the regression coefficient β is equal
to 0. To see if the data are strong enough to refute this claim, we need to see if
they lead to a rejection of the null hypothesis in testing

H0: β = 0 against H1: β 
= 0

To compute the value of the test statistic, first we will compute the values of
Sxx, SYY , and SxY . A hand calculation yields

Sxx = 700 SYY = 21.757 SxY = −119

The computational formula for SSR presented at the end of Sec. 12.4 gives

SSR = SxxSYY − S2
xY

Sxx

= 700(21.757) − 1192

700
= 1.527

Since

β̂ = SxY

Sxx
= −119

700
= −0.17
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the value of the test statistic is

TS =
√

5(700)

1.527
(−0.17) = −8.139

Since from App. Table D.2 t5,0.005 = 4.032, it follows that the hypothesis that
β = 0 is rejected at the 1 percent level of significance. Thus, the claim that the
mileage does not depend on the speed at which the car is driven is rejected.
Indeed, there is clearly strong evidence that increased speeds lead to decreased
efficiencies. ■

PROBLEMS

1. Test the hypothesis that β = 0 for the following data.

x Y

3 7
8 8

10 6
13 7

Use the 5 percent level of significance.
2. The following data set presents the heights of 12 male law school class-

mates whose law school examination scores were roughly equal. It
also gives their annual salaries 5 years after graduation. Each went
into corporate law. The height is in inches, and the salary is in units of
$1000.

Height Salary

64 111
65 114
66 108
67 123
69 97
70 116
72 125
72 108
74 142
74 122
75 110
76 134

(a) Do the given data establish the hypothesis that a lawyer’s salary
is related to his height? Use the 5 percent level of significance.
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(b) What was the null hypothesis in part (a)?
3. The following table relates the number of sunspots that appeared each

year from 1970 to 1980 to the number of automobile accident deaths
during that year. The data for automobile accident deaths are in units
of 1000 deaths.

Automobile
Year Sunspots deaths

70 165 54.6
71 89 53.3
72 55 56.3
73 34 49.6
74 9 47.1
75 30 45.9
76 59 48.5
77 83 50.1
78 109 52.4
79 127 52.5
80 153 53.2

Test the hypothesis that the number of automobile accident deaths
is not related to the number of sunspots. Use the 5 percent level of
significance.

4. An electric utility wants to estimate the relationship between the
daily summer temperature and the amount of electricity used by its
customers. The following data were collected.

Temperature Electricity
(degrees Fahrenheit) (millions of kilowatts)

85 22.5
90 23.7
76 20.3
91 23.4
84 24.2
94 23.5
88 22.9
85 22.4
97 26.1
86 23.1
82 22.5
78 20.9
77 21.0
83 22.6
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(a) Find the estimated regression line.
(b) Predict the electricity that will be consumed tomorrow if the

predicted temperature for tomorrow is 93.
(c) Test the hypothesis, at the 5 percent level of significance, that

the daily temperature has no effect on the amount of electricity
consumed.

Problems 5 through 8 refer to the following data relating cigarette smoking
and death rates for four types of cancers in 14 states. The data are based
in part on records concerning 1960 cigarette tax receipts.

Cigarette Smoking and Cancer Death Rates

Deaths per year per 100,000 people

Cigarettes per Bladder Lung Kidney
State person cancer cancer cancer Leukemia

California 2860 4.46 22.07 2.66 7.06
Idaho 2010 3.08 13.58 2.46 6.62
Illinois 2791 4.75 22.80 2.95 7.27
Indiana 2618 4.09 20.30 2.81 7.00
Iowa 2212 4.23 16.59 2.90 7.69
Kansas 2184 2.91 16.84 2.88 7.42
Kentucky 2344 2.86 17.71 2.13 6.41
Massachusetts 2692 4.69 22.04 3.03 6.89
Minnesota 2206 3.72 14.20 3.54 8.28
New York 2914 5.30 25.02 3.10 7.23
Alaska 3034 3.46 25.88 4.32 4.90
Nevada 4240 6.54 23.03 2.85 6.67
Utah 1400 3.31 12.01 2.20 6.71
Texas 2257 3.21 20.74 2.69 7.02

5. (a) Draw a scatter diagram of cigarettes smoked versus death rate
from bladder cancer.

(b) Find the estimated regression line.
(c) Test the hypothesis, at the 5 percent level of significance, that

cigarette consumption does not affect the death rate from bladder
cancer.

(d) Repeat part (c) at the 1 percent level of significance.
6. (a) Draw a scatter diagram of cigarettes smoked versus death rate

from lung cancer.
(b) Find the estimated regression line.
(c) Test the hypothesis, at the 5 percent level of significance,

that cigarette consumption does not affect the death rate from
lung cancer.

(d) Repeat part (c) at the 1 percent level of significance.
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7. (a) Draw a scatter diagram of cigarettes smoked versus death rate
from kidney cancer.

(b) Find the estimated regression line.
(c) Test the hypothesis, at the 5 percent level of significance, that

cigarette consumption does not affect the death rate from kidney
cancer.

(d) Repeat part (c) at the 1 percent level of significance.
8. (a) Draw a scatter diagram of cigarettes smoked versus death rate

from leukemia.
(b) Find the estimated regression line.
(c) Test the hypothesis, at the 5 percent level of significance, that cig-

arette consumption does not affect the death rate from leukemia.
(d) Repeat part (c) at the 1 percent level of significance.

9. In Prob. 3 of Sec. 12.3, test the null hypothesis that the amount of fire
damage sustained by a property does not depend on its distance to the
nearest fire station. Use the 5 percent level of significance.

10. The following table gives the percentages of 15-year-old British boys
and girls who are smokers, in a sample of years from 1982 to 2003. Use
it to
(a) Test, at the 5 percent level of significance, the hypothesis that the

percentage of the boys who smoke is unchanging over time.
(b) Test, at the 5 percent level of significance, the hypothesis that the

percentage of the girls who smoke is unchanging over time.
(c) Test, at the 5 percent level of significance, the hypothesis that the

percentage of 15-year-olds who smoke is unchanging over time.

Percentage of 15-Year-Old Pupils Who Are Regular Smokers (at least
1 cigarette/week on average), England

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2003

Boys 24 28 18 17 25 21 26 28 19 21 18
Girls 25 28 27 22 25 25 30 33 29 26 26
All 25 28 22 20 25 23 28 30 24 23 22

11. The following table gives the U.S. per capita consumption of bananas,
apples, and oranges (in pounds) in seven different years.

Bananas Apples Oranges Bananas Apples Oranges

17.4 16.2 15.7 21.2 17.6 15.6
17.6 18.2 15.4 23.4 16.6 12.0
20.8 18.3 15.4 24.9 20.3 13.9
22.5 17.1 12.3

Source: U.S. Department of Agriculture, Food Consumption, Prices and Expenditures.
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Test the hypotheses that the yearly amount of bananas consumed is
unrelated to the yearly amount of
(a) Apples consumed
(b) Oranges consumed
(c) Test the hypothesis that the yearly per capita amount of

oranges consumed is unrelated to the yearly amount of apples
consumed.

12.6 REGRESSION TO THE MEAN
The term regression was originally employed by Francis Galton while describing the
laws of inheritance. Galton believed that these laws caused population extremes to
“regress towards the mean.” By this he meant that children of individuals having
extreme values of a certain characteristic would tend to have less extreme values
of this characteristic than their parents.

If we assume a linear regression relationship between the characteristic of the off-
spring Y and that of the parent x, then a regression to the mean will occur when
the regression parameter β is between 0 and 1. That is, if

E[Y ] = α + βx

and 0 < β < 1, then E[Y ] will be smaller than x when x is large and will be greater
than x when x is small. That this statement is true can be easily checked either
algebraically or by plotting the two straight lines

y = α + βx
and

y = x

A plot indicates that when 0 < β < 1, the line y = α + βx is above the line y = x
for small values of x and is below it for large values of x. Such a plot is given in
Fig. 12.4.

FIGURE 12.4
Regression to the mean occurs when 0 < β < 1. For x small, α + βx > x; for x large, α + βx < x.
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■ Example 12.5
To illustrate Galton’s thesis of regression to the mean, the British statistician
Karl Pearson plotted the heights of 10 randomly chosen sons versus those of
their fathers. The resulting data (in inches) were as follows.

Father’s height Son’s height Father’s height Son’s height

60 63.6 67 67.1
62 65.2 68 67.4
64 66 70 68.3
65 65.5 72 70.1
66 66.9 74 70

A scatter diagram representing these data is presented in Fig. 12.5.

Note that whereas the data appear to indicate that taller fathers tend to have
taller sons, they also appear to indicate that the sons of fathers who are either
extremely short or extremely tall tend to be more “average” than their fathers;
that is, there is a regression toward the mean.

We will determine whether the preceding data are strong enough to prove that
there is a regression toward the mean by taking this statement as the alternative
hypothesis. That is, we use the given data to test

H0: β ≥ 1 against H1: β < 1

FIGURE 12.5
Scatter diagram of son’s height versus father’s height.
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Now, this test is equivalent to a test of

H0: β = 1 against H1: β < 1

and will be based on the fact that

√
(n − 2)Sxx

SSR
(β̂ − β)

has a t distribution with n − 2 degrees of freedom.

Hence, when β = 1, the test statistic

TS =
√

8Sxx

SSR
(β̂ − 1)

has a t distribution with 8 degrees of freedom. The significance-level-α test will
be to reject H0 when the value of TS is sufficiently small (since this will occur
when β̂, the estimator of β, is sufficiently smaller than 1). Specifically, the test
is to

Reject H0 if TS ≤ −t8,a

Not reject H0 Otherwise

To determine the value of the test statistic TS, we run Program 12-1 and obtain
the following:

The least-squares estimators are as follows

A = 35.97757

B = 0.4645573

The estimated regression line is

Y = 35.97757 + 0.4645573x

S(x,Y) = 79.71875

S(x,x) = 171.6016

S(Y,Y) = 38.53125

SSR = 1.497325

The square root of (n − 2)S(x, x)/SSR is 30.27942

From the preceding we see that

TS = 30.2794(0.4646 − 1) = −16.21
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Since t8,0.01 = 2.896, we see that

TS < −t8, 0.01

and so the null hypothesis that β ≥ 1 is rejected at the 1 percent level of
significance. In fact the p value is

p value = P{T8 ≤ −16.213} ≈ 0

and so the null hypothesis that β ≥ 1 is rejected at almost any significance
level, thus establishing a regression toward the mean. ■

A modern biological explanation for the phenomenon of regression to the mean
would roughly go along the lines of noting that since an offspring obtains a ran-
dom selection of one-half of each parent’s genes, it follows that the offspring of a
very tall parent would, by chance, tend to have fewer “tall” genes than its parent.

While the most important applications of the phenomenon of regression to the
mean concern the relationship between the biological characteristics of an off-
spring and those of its parents, this phenomenon also arises in situations where
we have two sets of data referring to the same variables. We illustrate it in
Example 12.6.

■ Example 12.6
The following data relate the number of motor vehicle deaths occurring in 12
counties in the northwestern United States in the years 1988 and 1989.

County Deaths in 1988 Deaths in 1989

1 121 104
2 96 91
3 85 101
4 113 110
5 102 117
6 118 108
7 90 96
8 84 102
9 107 114

10 112 96
11 95 88
12 101 106

The scatter diagram for this data set appears in Fig. 12.6. A glance at Fig. 12.6
indicates that in 1989 there was, for the most part, a reduction in the number
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FIGURE 12.6
Scatter diagram of 1989 deaths versus 1988 deaths.

of deaths in those counties that had a large number of motor vehicle deaths
in 1988. Similarly, there appears to have been an increase in those counties
that had a low value in 1988. Thus, we would expect that a regression to the
mean is in effect. In fact, running Program 12-1 yields the estimated regression
equation

y = 74.589 + 0.276x

which shows that the estimated value of β indeed appears to be less than 1.

One must be careful when considering the reason behind the phenomenon of
regression to the mean in the preceding data. For instance, it might be natural
to suppose that those counties that had a large number of deaths caused by
motor vehicles in 1988 would have made a large effort—perhaps by improving
the safety of their roads or by making people more aware of the potential dan-
gers of unsafe driving—to reduce this number. In addition, we might suppose
that those counties that had the fewest number of deaths in 1988 might have
“rested on their laurels” and not made much of an effort to further improve
their numbers—and as a result had an increase in the number of casualties the
following year.

While the foregoing suppositions might be correct, it is important to realize
that a regression to the mean would probably have occurred even if none of
the counties had done anything out of the ordinary. Indeed, it could very well
be the case that those counties having large numbers of casualties in 1988 were
just very unlucky in that year, and thus a decrease in the next year was just a
return to a more normal result for them. (For an analogy, if 9 heads result when
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10 fair coins are flipped, then it is quite likely that another flip of these 10 coins
will result in fewer than 9 heads.) Similarly, those counties having few deaths
in 1988 might have been “lucky” that year, and a more normal result in 1989
would thus lead to an increase.

The mistaken belief that regression to the mean is due to some outside influ-
ence, when it is in reality just due to “chance,” is heard frequently enough that
it is often referred to as the regression fallacy. ■

Regression to the mean plays a key role in the explanation of why so many com-
munal biological data sets from a homogeneous population tend to have “normal
curve” histograms. For instance, if one plotted the heights of all senior girls in a
specified high school, then it is a good bet that the resulting histogram would
strongly resemble the bell-shaped normal curve. One possible explanation for
this combines the central limit theorem, regression to the mean, and the passing
of many generations. We now sketch it.

*12.6.1 Why Biological Data Sets Are Often Normally
Distributed

We will present this argument in the context of considering the heights of females
in a population. We will follow this population of females over many generations.
Suppose that there are initially k women, whom we will refer to as the initial gen-
eration, and that their heights are x1, . . . , xk. These k values are considered to be
totally arbitrary. Let d denote the largest minus the smallest of these values. For
instance, if

k = 3 x1 = 60 x2 = 58 x3 = 66

then d = 66 − 58 = 8.

If Y denotes the height of a female child of a woman whose height is x, then we
will assume the linear regression model

Y = α + βx + e

In this model we will make the usual assumption that e is an error random variable
that is normally distributed with mean 0 and variance σ 2. However, whereas this
assumption is often made without any real attempt at justification, it seems quite
reasonable in this application because of the central limit theorem. That is, the
height of a daughter of a woman of height x can be thought of as being composed
of the sum of a large number of approximately independent random variables that
relate, among other things, to the random set of genes that she receives as well as
to environmental factors. Hence, by the central limit theorem, her height should
be approximately normally distributed. We will also assume that regression to the
mean is in effect, that is, that 0 < β < 1.
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Thus, the heights of the daughters of the k women of the initial population are
all normally distributed. However, it is important to note that their mean heights
are all different. For instance, a daughter of the woman of height x1 will have a
normally distributed height with mean value α + βx1, whereas the daughter of
the woman of height x2 will have a different mean height, namely, α + βx2. Thus,
the heights of all the daughters do not come from the same normal distribution,
and for that reason a plot of all their heights would not follow the normal curve.

However, if we now consider the difference between the largest and the smallest
mean height of all the daughters of the initial set of women, then it is not difficult
to show that

Difference ≤ βd

(If each woman of the initial set of women had at least one daughter, then this
inequality would be an equality.) If we now consider the daughters of these daugh-
ters, then it can be shown that their heights will be normally distributed with
differing means and a common variance. The difference between the largest and
the smallest mean height of these second-generation daughters can be shown to
satisfy

Difference ≤ β2d

Indeed, if we suppose that more and more generations have passed and we con-
sider the women of the nth generation after the initial population, then it can be
shown that the heights of the women in this generation are normally distributed
with the same variance and with mean values that, while differing, are such that
the difference between the largest and smallest of them satisfies

Difference ≤ βnd

Now, since 0 < β < 1, it follows that as n grows larger, βnd gets closer and closer
to 0. Thus, after a large enough number of generations have passed, all the women
in the population will have normally distributed heights with approximately the
same mean and with a common variance. That is, after many generations have
passed, the heights of the women will come from approximately the same normal
population, and thus at this point a plot of these heights will approximately follow
the bell-shaped normal curve.

PROBLEMS

1. The following data come from an experiment performed by Francis
Galton. The data relate the diameter of an offspring seed to that of its
parent seed in the case of a self-fertilized seed.
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Diameter of Diameter of
parent seed offspring seed

15 15.3
16 16.4
17 15.5
18 16.2
19 16.0
20 17.4
21 17.5

(a) Estimate the regression parameters.
(b) Does there appear to be a regression to the mean?

2. In Example 12.6 it was shown that the estimated value of β is less than
1. Using the data of this example, test the hypothesis

H0: β ≥ 1 against H1: β < 1

Would H0 be rejected at the 5 percent level of significance?
3. Would you be surprised if the following data sets exhibited a regres-

sion to the mean? Would you expect them to exhibit this phenomenon?
Explain your answers.
(a) You go to 10 different restaurants that you know nothing about

in advance. You eat a meal in each one and give a numerical
ranking—anywhere from 0 to 100—to the quality of the meal. You
then return to each of these restaurants and again give a ranking
to the meal. The data consist of the two scores of each of the 10
restaurants.

(b) At the beginning of an hour, 12 individuals check their pulse rates
to determine the number of heartbeats per minute. Call these the x
values. After 1 hour, they repeat this to obtain the y values.

(c) The set considers paired data concerning different mutual funds.
For each mutual fund, the x variable is the 1995 ranking of the fund,
and the corresponding y variable is the 1996 ranking.

(d) The data consist of the paired scores of 20 first-year preschoolers,
with the first value in the pair being the student’s test score on an
IQ examination given to all entering students and the second value
being the same student’s score on an IQ test given at the end of the
first month in school.

4. Test

H0: β = 1 against H1: β < 1

for the following set of data. Use the 5 percent level of significance.
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x y

24 27
21 24
26 20
17 22
15 21
24 20
23 17

5. The following are the average 2000 and 2002 math SAT scores in a
sample of states.

State 2000 2002

Arizona 523 523
California 518 517
Indiana 501 503
Missouri 577 580
Florida 486 473
Oregon 527 528
Virginia 500 506
Wisconsin 597 599
Texas 500 500
Vermont 508 510

(a) Find the estimated regression line.
(b) Does it indicate a regression to the mean?

6. Figure 12.7 presents a histogram of the heights of 8585 men. How well
does it appear to fit a normal curve?

FIGURE 12.7
A histogram of heights.
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FIGURE 12.8
A histogram of weights.

7. Figure 12.8 presents a histogram of the weights of 7738 men. How well
do these data fit a normal curve?

12.7 PREDICTION INTERVALS FOR FUTURE
RESPONSES

Suppose, in the linear regression model, that input values xi have led to the
response values yi, i = 1, . . . , n. The best prediction of the value of a new response
at input x0 is, of course, α̂ + β̂x0. However, rather than give a single number as
the predicted value, it is often more useful to be able to present an interval that
you predict, with a certain degree of confidence, will contain the response value.
Such a prediction interval is given by the following.

Prediction interval for a response at input value x0, based on the response values yi at the
input values xi, i = 1, . . . , n:

With 100(1 − γ ) degree confidence, the response Y at the input value x0 will lie
in the interval

α̂ + β̂x0 ± tn−2,γ/2W

where tn−2,γ/2 is the 100(1 − γ /2)th percentile of the t distribution with n − 2
degrees of freedom, and

W =
√[

1 + 1
n

+ (x0 − x)2

Sxx

]
SSR

n − 2
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The quantities α̂, β̂, x, Sxx, and SSR are all computed from the data xi, yi, i =
1, . . . , n.

■ Example 12.7
Using the data of Example 12.6, specify an interval that, with 95 percent confi-
dence, will contain the adult height of a newborn son whose father is 70 inches
tall.

Solution

From the output of Program 12-1, we obtain

α̂ + 70β̂ = 68.497

W = 0.4659

Since from Table D.2, t8,0.025 = 2.306, we see that the 95 percent prediction
interval of the height of the son of a 70-inch-tall man is

68.497 ± 2.306(0.4659) = 68.497 ± 1.074

That is, we can be 95 percent confident that the son’s height will be between
67.423 and 69.571 inches. ■

■ Example 12.8
A company that runs a hamburger concession at a college football stadium must
decide on Monday how much to order for the game that is to be played on the
following Saturday. The company bases its order on the number of tickets for
the game that have already been sold by Monday. The following data give the
advance ticket sales and the number of hamburgers purchased for each game
played this year. All data are in units of 1000.

Advance ticket sales Hamburgers sold

29.4 19.5
21.4 16.2
18.0 15.3
25.2 18.0
32.5 20.4
23.9 16.8

If 26,000 tickets have been sold by Monday for next Saturday’s game, deter-
mine a 95 percent prediction interval for the amount of hamburgers that will
be sold.
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Solution

Running Program 12-1 gives the following output, if we request predicted
future responses and the value of the input is 26.

The predicted response is 18.04578.

W = 0.3381453

Since t4,0.025 = 2.776, we see from the output that the 95 percent prediction
interval is

18.046 ± 2.776(0.338) = 18.046 ± 0.938

That is, with 95 percent confidence, between 17,108 and 18,984 hamburgers
will be sold. ■

PROBLEMS

1. Use the following data to
(a) Predict the response at the input value x = 4.
(b) Determine an interval that contains, with 95 percent confidence, the

response in part (a).

x y

1 5
2 8
5 15

2. An official of a large automobile manufacturing firm wanted to study
the relationship between a worker’s age and his or her level of absen-
teeism. The following data concerning 10 randomly chosen employees
were collected.

Age 40 28 34 27 21 38 19 55 31 35

Days missed 1 6 6 9 12 4 13 2 5 3

(a) Predict the number of days missed by a worker aged 42.
(b) Determine a 95 percent prediction interval for the quantity in

part (a).
3. The following data were recently reported by an economist who wanted

to learn about the relationship between a family’s income and the pro-
portion of that income spent on food. Each of the families consisted of
a married couple with two teenage children.
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Income (in $1000) Percentage spent on food

28 35
36 33
44 32
56 29
70 23
78 19
84 17

(a) Find the estimated regression line.
(b) Predict the amount of money spent on food by a family of size 4 that

earns 51,000 dollars annually.
(c) Determine a 95 percent confidence prediction interval for the amo-

unt in (b).
(d) Repeat part (c), but this time obtain a prediction interval having

99 percent confidence.
4. The following data relate the scores of 10 students on a college entrance

examination to their grade-point average at the end of their first
year.

Entrance examination score Grade-point average

88 3.2
74 2.7
70 2.3
77 2.9
83 2.8
94 3.6
92 3.0
81 2.8
85 3.3
92 3.1

(a) Predict the grade-point average of a student, not listed in the given
data, who scored 88 on the entrance examination.

(b) Obtain a 90 percent prediction interval for the score of the student
described in part (a).

(c) Test the hypothesis, at the 5 percent level of significance, that a
student’s grade-point average is independent of her or his score on
the entrance examination.

5. Glass plays an important role in criminal investigations, because crim-
inal activity often results in the breakage of windows and other glass
objects. Since glass fragments often lodge in the clothing of criminals, it
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is important to be able to identify such fragments as having come from
the crime scene. Two physical properties of glass that are useful for
identification purposes are its refractive index, which is relatively easy
to measure, and its density, which is much more difficult to measure.
The measurement of density is, however, greatly facilitated when one
has a good estimate of this value before setting up the laboratory exper-
iment needed to determine it exactly. Thus, it would be quite useful if
one could use the refractive index of a glass fragment to estimate its
density.

The following data relate the refractive index to the density for 12
selected pieces of glass.

Refractive index Density Refractive index Density

1.514 2.480 1.516 2.484
1.515 2.482 1.517 2.486
1.516 2.480 1.518 2.495
1.517 2.490 1.519 2.498
1.517 2.482 1.522 2.511
1.520 2.505 1.525 2.520

(a) Predict the density of a fragment of glass whose refractive index is
1.520.

(b) Determine an interval that, with 95 percent confidence, will con-
tain the density of a fragment of glass whose refractive index
is 1.520.

6. The following summary data relate to the ages of puberty of 20 mother–
daughter pairs. The x data refer to the mother’s age and the Y data to
her daughter’s age at puberty.

x = 12.8 Y = 12.9

Sxx = 36.5 SYY = 42.4 SxY = 24.4

(a) Find the estimated regression line.
(b) Use the computational formula given at the end of Sec. 12.4 to

compute SSR.
(c) Test, at the 5 percent level of significance, the hypothesis that β = 0.
(d) If a mother reached puberty at age 13.8, determine an interval

that, with 95 percent confidence, will contain the age at which her
daughter reaches puberty.

7. The following data relate the grade-point average (GPA) in account-
ing courses to the starting annual salary of eight 2004 accounting
graduates.
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Accounting GPA Starting salary (in $1000)

3.4 42
2.5 29
3.0 33
2.8 32
3.7 40
3.5 44
2.7 30
3.1 35

(a) Predict the annual salary of a recent graduate whose grade-point
average in accounting courses was 2.9.

(b) Determine an interval that, with 95 percent confidence, will contain
the annual salary in part (a).

(c) Repeat parts (a) and (b) for a graduate having a 3.6 GPA.

12.8 COEFFICIENT OF DETERMINATION
Suppose we want to measure the amount of variation in the set of response values
Y1, . . . , Yn corresponding to the set of input values x1, . . . , xn. A standard measure
in statistics of the amount of variation in a set of values Y1, . . . , Yn is given by the
quantity

SYY =
n∑

i=1

(Yi − Y)2

For instance, if all the Yis are equal—and thus are all equal to Y—then SYY will
equal 0.

The variation in the values of the Yi arises from two factors. First, since the input
values xi are different, the response variables Yi all have different mean values,
which will result in some variation in their values. Second, the variation also
arises from the fact that even when the difference in the input values is taken
into account, each of the response variables Yi has variance σ 2 and thus will not
exactly equal the predicted value at its input xi.

Let us consider now the question of how much of the variation in the values of
the response variables is due to the different input values and how much is due to
the inherent variance of the responses even when the input values are taken into
account. To answer this question, note that the quantity

SSR =
n∑

i=1

(Yi − α̂ − β̂xi)
2
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measures the remaining amount of variation in the response values after the
different input values have been taken into account. Thus,

SYY − SSR

represents the amount of variation in the response variables that is explained by
the different input values; and so the quantity R2 defined by

R2 = SYY − SSR

SYY

= 1 − SSR

SYY

represents the proportion of variation in the response variables that is explained
by the different input values.

Definition The quantity R2 is called the coefficient of determination.

The coefficient of determination R2 will have a value between 0 and 1. A value of
R2 near 1 indicates that most of the variation of the response data is explained by
the different input values, whereas a value of R2 near 0 indicates that little of the
variation is explained by the different input values.

■ Example 12.9
In Example 12.5, which relates the height of a son to that of his father, the
output from Program 12-1 yielded

SYY = 38.521 SSR = 1.497

Thus,

R2 = 1 − 1.497
38.531

= 0.961

In other words, 96 percent of the variation of the heights of the 10 individuals is
explained by the heights of their fathers. The remaining (unexplained) 4 percent
of the variation is due to the variance of a son’s height even when the father’s
height is taken into account. (That is, it is due to σ 2, the variance of the error
random variable.) ■

The value of R2 is often used as an indicator of how well the regression model fits
the data, with a value near 1 indicating a good fit and one near 0 indicating a poor
fit. In other words, if the regression model is able to explain most of the variation
in the response data, then it is considered to fit the data well.

■ Example 12.10
In Example 12.8, which relates the number of hamburgers sold at a football
game to the advance ticket sales for that game, Program 12-1 yielded

SYY = 19.440 SSR = 0.390
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Thus,

R2 = 1 − 0.390
19.440

= 0.98

and so 98 percent of the variation in the different amounts of hamburgers
sold in the six games is explained by the advance ticket sales for these games.
(Loosely put, 98 percent of the amount sold is explained by the advance ticket
sales.) ■

PROBLEMS

1. A real estate brokerage gathered the following information relating the
selling prices of three-bedroom homes in a particular neighborhood to
the sizes of these homes. (The square footage data are in units of 1000
square feet, whereas the selling price data are in units of $1000.)

Square footage Selling price

2.3 240
1.8 212
2.6 253
3.0 280
2.4 248
2.3 232
2.7 260

(a) Plot the data in a scatter diagram.
(b) Determine the estimated regression line.
(c) What percentage of the selling price is explained by the square

footage?
(d) A house of size 2600 square feet has just come on the market. Deter-

mine an interval in which, with 95 percent confidence, the selling
price of this house will lie.

2. Determine R2 for the following data set:

x y

2 10
3 16
5 22

3. It is difficult and time-consuming to directly measure the amount of pro-
tein in a liver sample. As a result, medical laboratories often make use
of the fact that the amount of protein is related to the amount of light
that would be absorbed by the sample. As a result, a spectrometer that
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emits light is shined upon a solution that contains the liver sample, and
the amount of light absorbed is then used to estimate the amount of
protein.

This procedure was tried on five samples having known amounts of
protein, with the following data resulting:

Light absorbed Amount of protein (mg)

0.44 2
0.82 16
1.20 30
1.61 46
1.83 55

(a) Determine the coefficient of determination.
(b) Does this appear to be a reasonable way of estimating the amount

of protein in a liver sample?
(c) What is the estimate of the amount of protein when the light

absorbed is 1.5?
(d) Determine a prediction interval in which we can have 90 percent

confidence for the quantity in part (c).
4. Determine the coefficient of determination for the data of Prob. 1 of

Sec. 12.2.
5. Determine the coefficient of determination for the data of Example 12.6.
6. A new-car dealer is interested in the relationship between the number

of salespeople working on a weekend and the number of cars sold. Data
were gathered for six consecutive Sundays:

Number of salespeople Number of cars sold

5 22
7 20
4 15
2 9
4 17
8 25

(a) Determine the estimated regression line.
(b) What is the coefficient of determination?
(c) How much of the variation in the number of automobiles sold is

explained by the number of salespeople?
(d) Test the null hypothesis that the mean number of sales does not

depend on the number of salespeople working.
7. Find the coefficient of determination in Prob. 8 of Sec. 12.4.
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12.9 SAMPLE CORRELATION COEFFICIENT
Consider a set of data pairs (xi, Yi), i = 1, . . . , n. In Sec. 3.7 we defined the sample
correlation coefficient of this data set by

r =
∑n

i=1(xi − x)(Yi − Y)√∑n
i=1(xi − x)2

∑n
i−1 (Yi − Y)2

It was noted that r provided a measure of the degree to which high values of x are
paired with high values of Y and low values of x with low values of Y . A value of r
near +1 indicated that large x values were strongly associated with large Y values
and small x values were strongly associated with small Y values, whereas a value
near −1 indicated that large x values were strongly associated with small Y values
and small x values with large Y values.

In the notation of this chapter, r would be expressed as

r = SxY√
SxxSYY

Upon using the identity

SSR = SxxSYY − S2
xY

Sxx

that was presented at the end of Sec. 12.4, we can show that the absolute value of
the sample correlation coefficient r can be expressed as

|r| =
√

1 − SSR

SYY

That is,

|r| = √
R2

and so, except for its sign indicating whether it is positive or negative, the
sample correlation coefficient is equal to the square root of the coefficient of
determination. The sign of r is the same as that of β̂.

All this gives additional meaning to the sample correlation coefficient. For
instance, if a data set has its sample correlation coefficient r equal to 0.9, then
this implies that a simple linear regression model for these data explains 81 per-
cent (since R2 = 0.92 = 0.81) of the variation in the response values. That is, 81
percent of the variation in the response values is explained by the different input
values.
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PROBLEMS

1. Determine the coefficient of determination and the sample correlation
coefficient for the following data sets of paired values.

(a) dfdsf
x y

2 4
3 5
5 9

(b) dfdsf
x y

4 2
5 3
9 5

What does this lead you to conclude?
*2. Show that the sample correlation coefficient of a given set of data pairs

(ui, vi) is the same regardless of whether the ui are considered to be the
input values or the response values.

3. Find the sample correlation coefficient when the coefficient of deter-
mination and the estimated regression line are
(a) R2 = 0.64, y = 2x + 4
(b) R2 = 0.64, y = 2x − 4
(c) R2 = 0.64, y = −2x + 0.4
(d) R2 = 0.64, y = −2x − 0.4

4. If the sample correlation coefficient is 0.95, how much of the variation
in the responses is explained by the different input values?

5. The following data relate the ages of wives and husbands when they
were married. Before you look at the data, would you expect a positive,
negative, or near-zero value of the sample correlation coefficient?

Wife’s age 18 24 40 33 30 25

Husband’s age 21 29 51 30 36 25

(a) Letting the wife’s age be the input, find the estimated regression
line for determining the husband’s age.

(b) Letting the husband’s age be the input, find the estimated
regression line for determining the wife’s age.

(c) Determine the coefficient of determination and the sample
correlation coefficient for the situation described in part (a).

(d) Determine the coefficient of determination and the sample
correlation coefficient for the situation described in part (b).

6. Find the sample correlation coefficient in Prob. 6 of Sec. 12.7.
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12.10 ANALYSIS OF RESIDUALS: ASSESSING
THE MODEL

The initial step for ascertaining whether the simple linear regression model

Y = α + βx + e

where e is a normal random variable with mean 0 and variance 1, is appropriate in
a given situation is to investigate the scatter diagram. Indeed, this is often sufficient
to convince one that the regression model is or is not correct. When the scatter
diagram does not by itself rule out the preceding model, then the least-squares esti-
mators A and B should be computed and the residuals Yi − (A + Bxi), i = 1, . . . , n,
analyzed. The analysis begins by normalizing, or standardizing, the residuals by
dividing them by

√
SSR/(n − 2), the estimate of the standard deviation of the Yi.

The resulting quantities

Yi − (A + Bxi)√
SSR/(n − 2)

i = 1, . . . , n

are called the standardized residuals.

When the simple linear regression model is correct, the standardized residuals are
approximately independent standard normal random variables and thus should
be randomly distributed about 0 with about 95 percent of their values being
between −2 and +2 (since P{ − 1.96 < Z < 1.96} = 0.95). In addition, a plot of
the standardized residuals should not indicate any distinct pattern. Indeed, any
indication of a distinct pattern should make one suspicious about the validity of
the assumed simple linear regression model.

Figure 12.9 presents three different scatter diagrams and their associated stan-
dardized residuals. The first of these, as indicated both by its scatter diagram and
the random nature of its standardized residuals, appears to fit the straight-line
model quite well. The second residual plot shows a discernible pattern, in that
the residuals appear to be first decreasing and then increasing as the input level
increases. This often means that higher-order (than just linear) terms are needed
to describe the relationship between the input and response. Indeed, this is also
indicated by the scatter diagram in this case. The third standardized residual plot
also shows a pattern, in that the absolute value of the residuals, and thus their
squares, appear to be increasing, as the input level increases. This often indicates
that the variance of the response is not constant but increases with the input
level.
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FIGURE 12.9
Three scatter diagrams and their associated standardized residuals. (Continued )
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FIGURE 12.9

PROBLEMS

1. Plot the standardized residuals using the data from Example 1 of
Sec. 12.3. What conclusions can be drawn about the assumption of a
simple linear regression model?

2. Plot the standardized residuals using the data from Example 6 of
Sec. 12.3. What conclusions can be drawn about the assumption of a
simple linear regression model?

12.11 MULTIPLE LINEAR REGRESSION MODEL
Up to now we have been concerned with predicting the value of a response on
the basis of the value of a single input variable. However, in many situations the
response is dependent on a multitude of input variables.

■ Example 12.11
In laboratory experiments two factors that often affect the percentage yield of
the experiment are the temperature and the pressure at which the experiment
is conducted. The following data detail the results of four independent experi-
ments. For each experiment, we have the temperature (in degrees Fahrenheit)
at which the experiment is run, the pressure (in pounds per square inch), and
the percentage yield.
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Experiment Temperature Pressure Percentage yield

1 140 210 68
2 150 220 82
3 160 210 74
4 130 230 80

■

Suppose that we are interested in predicting the response value Y on the basis of
the values of the k input variables x1, x2, . . . , xk.

Definition The multiple linear regression model supposes that the response Y is
related to the input values xi, i = 1, . . . , k, through the relationship

Y = β0 + β1x1 + β2x2 + · · · + βkxk + e

In this expression, β0, β1, . . . , βk are regression parameters and e is an error random
variable that has mean 0. The regression parameters will not be initially known
and must be estimated from a set of data.

Suppose that we have at our disposal a set of n responses corresponding to n
different sets of the k input values. Let yi denote the ith response, and let the k
input values corresponding to this response be xi1, xi2, . . . , xik, i = 1, . . . , n. Thus,
for instance, y1 was the response when the k input values were x11, x12, . . . , x1k.
The data set is presented in Fig. 12.10.

■ Example 12.12
In Example 12.11 there are two input variables, the temperature and the pres-
sure, and so k = 2. There are four experimental results, and so n = 4. The value

Set Input 1 Input 2 … Input k Response

1 x11 x12 … x1k y1

2 x21 x22 … x2k y2

3 x31 x32 … x3k y3
...
n xn1 xn2 … xnk yn

FIGURE 12.10
Data on n experiments.
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xi1 refers to the temperature and xi2 to the pressure of experiment i. The value
yi is the percentage yield (response) of experiment i. Thus, for instance,

x31 = 160 x32 = 210 y3 = 74 ■

To estimate the regression parameters again, as in the case of simple linear regres-
sion, we use the method of least squares. That is, we start by noting that if B0,
B1, . . . , Bk are estimators of the regression parameters β0, β1, . . . , βk, then the
estimate of the response when the input values are xi1, xi2, . . . , xik is given by

Estimated response = B0 + B1xi1 + B2xi2 + · · · + Bkxik

Since the actual response was yi, we see that the difference between the actual
response and what would have been predicted if we had used the estimators B0,
B1, . . . , Bk is

εi = yi − (B0 + B1xi1 + B2xi2 + · · · + Bkxik)

Thus, εi can be regarded as the error that would have resulted if we had used the
estimators Bi, i = 0, . . . , k. The estimators that make the sum of the squares of the
errors as small as possible are called the least-squares estimators.

The least-squares estimators of the regression parameters are the choices of Bi that
make

n∑
i=1

ε2
i

as small as possible.

The actual computations needed to obtain the least-squares estimators are alge-
braically messy and will not be presented here. Instead we refer to Program 12-2
to do the computations for us. The outputs of this program are the estimates of
the regression parameters. In addition, the program provides predicted response
values for specified sets of input values. That is, if the user enters the values x1,
x2, . . . , xk, then the computer will print out the value of B(0) + B(1)x1 + · · · +
B(k)xk, where B(0), B(1), . . . , B(k) are the least-squares estimators of the regression
parameters.

■ Example 12.13
The following data relate the suicide rate y to the population size x1 and the
yearly divorce rate x2 in eight different cities.
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Population Divorce rate per Suicide rate per
Location (thousands) 100,000 100,000

Akron, OH 679 30.4 11.6
Anaheim, CA 1420 34.1 16.1
Buffalo, NY 1349 17.2 9.3
Austin, TX 296 26.8 9.1
Chicago, IL 3975 29.1 8.4
Columbia, SC 323 18.7 7.7
Detroit, MI 2200 32.6 11.3
Gary, IN 633 32.5 8.4

(a) Fit a multiple regression model to these data. That is, fit a model of the
form

Y = β0 + β1x1 + β2x2 + e

where Y is the suicide rate, x1 is the population, and x2 is the divorce rate.
(b) Predict the suicide rate in a county having a population of 400,000 people

and a divorce rate of 28.4 divorces yearly for every 1000 people.

Historical Perspective

Method of Least Squares

The first publication detailing the method of least squares was due to the French
mathematical scientist Adrien-Marie Legendre in 1805. Legendre presented the
method in the appendix to his book Nouvelles methodes pour la determination
des orbites des cometes (New Methods for Determining the Orbits of Comets). After
explaining the method, Legendre worked out an example, using data from
the 1795 survey of the French meridian arc, an example in which k = 2 and
n = 5. In 1809 Karl Friedrich Gauss published a justification of the method of
least squares that highlighted the normal as the distribution of the error term.
In his paper Gauss started a controversy by claiming that he had been using
the method since 1795. Gauss claimed that he had used the method of least
squares in 1801 to locate the missing asteroid Ceres. This asteroid, the largest
in the solar system and the first to be discovered, was spotted by the Italian
astronomer Giuseppe Piazzi of the Palerno Observatory on January 1, 1801.
Piazzi observed it for 40 consecutive days at which time the asteroid, which had
a very low luminosity, disappeared from view. In the hope that other scientists
would be able to determine its path, Piazzi published the data concerning his
observations. Months later the news and data reached the attention of Gauss.
In a short time, and without any explanation of his method, Gauss published
a predicted orbit for the asteroid. Shortly afterward, Ceres was found in almost
the exact position predicted by Gauss.
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The ensuing priority dispute between Legendre and Gauss became rather
heated. In the 1820 edition of his book, Legendre added an attack on Gauss that
he attributed to the anonymous writer Monsieur***. Gauss, in turn, solicited
testimony from colleagues to the effect that he had told them of his method
before 1805. Present-day scholars for the most part accept Gauss’ claim that he
knew and used the method of least squares before Legendre. (Gauss is famous
for often letting many years go by before publishing his results.) However, most
scholars also feel that priority should be determined by the earliest date of
publication and so the credit for the discovery of the method of least squares
rightfully belongs to Legendre.

Solution

Running Program 12-2 gives the following output:

The estimates of the regression coefficients are as follows

B(0) = 3.686646

B(1) = −2.411092E−04

B(2) = .2485504

If the two input values are 400 and 28.4, the predicted response is 10.64903.
That is, the estimated multiple regression equation is

Y = 3.6866 − 0.00024x1 + 0.24855x2

The predicted suicide rate is

y = 3.6866 − 0.00024 × 400 + 0.24855 × 28.4

= 10.649

That is, we predict that in such a county the yearly suicide rate is 10.649 per
100,000 residents. Since the population size is 400,000, this means a prediction
of 42.596 suicides per year. ■

12.11.1 Dummy Variables for Categorical Data
Suppose that in determining a multiple regression model for predicting a person’s
blood cholesterol level a researcher has decided on the following five independent
variables:

1. Number of pounds overweight
2. Number of pounds underweight
3. Average number of hours of exercise per week
4. Average number of calories due to saturated fats eaten daily
5. Whether a smoker or not
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Whereas each of the first four variables will take on a value in some interval, the
final variable is a categorical variable that indicates whether the person under
consideration has or does not have a certain characteristic (which, in our case,
is whether the person is a smoker or not). To determine which category the
person belongs to, we let

x5 =
{

1, if person is a smoker
0, if person is not a smoker

We can now try to fit the multiple regression model

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + e

where x1 is the number of pounds the individual is overweight, x2 is the num-
ber of pounds the individual is underweight, x3 is the averge number of hours
the individual exercises per week, x4 is average number of calories due to satu-
rated fats the individual eats each week, x5 is as above, and Y is the individual’s
cholesterol level. The variable x5 is called a dummy variable, as its only purpose
is to indicate whether or not the Y value is determined from data having a
particular characteristic.

The reader may wonder at this point why we use a dummy variable rather than
just running separate multiple regressions for smokers and nonsmokers. The
main reason for using a dummy variable is that we can use all the data in a
single regression thus yielding better estimates than if we broke the data into
two parts (one for smokers and the other for nonsmokers) and then used the
divided data to run separate multiple regressions. However, what has to be
clearly understood is what is being assumed when dummy variables are used.
Namely, we are assuming that if Ys stands for the cholesterol level of a smoker,
and Yn the cholesterol level of a nonsmoker, then for specified values of x1, x2,
x3, and x4,

E[Yn] = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5

and

E[Yn] = β0 + β1x1 + β2x2 + β3x3 + β4x4

In other words, in using the model with a dummy variable we are assuming
that if a smoker and nonsmoker had the same values for the four quantita-
tive variables x1, x2, x3, x4 then the difference between their mean cholesterol
levels would always be a constant, no matter what the values of x1, x2, x3,
x4. Put another way, using the language of the analysis of variance the model
supposes that there is no interaction in determining cholesterol level between
the quantitative variables and whether or not the person is a smoker. (Thus, for
instance, the dummy variable model assumes that the amount that one is over-
weight has the same effect on raising the cholesterol on a smoker as it does on a
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nonsmoker.) Because this seems like a large assumption, it is typically prefer-
able when the data set is large enough to use two regression models rather
than combining into one model by the use of a dummy variable. (Although
it is true that the standard multiple regression model assumes that there is
no interaction between the different variable values, this assumption seems
more questionable when one of the variables is a dummy variable indicating
a qualitative characteristic than when all the variables are quantitative.)

In situations, however, where there are multiple qualitative characteristics
that the researcher feels are relevant it might be necessary to utilize dummy
variables, for otherwise the data set may become too fragmented to yield
reliable estimates of the regression parameters. So, for instance, if the choles-
terol researcher felt that the sex of the person was also a relevant factor, then
the researcher could utilize a multiple regression model having two dummy
variables, namely x5 and

x6 =
{

1, if person is a male

0, if person is a female

PROBLEMS

1. The following data relate the selling price y to the living space x1, the
lot size x2, and the number of bathrooms x3 for 10 recently sold homes
in a common area.

Selling price House size Number of
(thousands of dollars) (square feet) Lot size (acres) bathrooms

170 1300 0.25 1
177 1450 0.30 1.5
191 1600 0.30 2
194 1850 0.45 2
202 2100 0.40 2
210 2000 0.40 2.5
214 2100 0.50 2
228 2400 0.50 2.5
240 2700 0.50 2.5
252 2600 0.70 3

(a) Fit a multiple linear regression model to the data.
(b) Predict the selling price of a home of 2500 square feet whose lot size

is 0.4 acres and that has two bathrooms.
(c) What if the house in part (b) had three bathrooms?
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2. In Example 12.11, predict the yield of an experiment run at a tempera-
ture of 150 degrees Fahrenheit and with a pressure of 215 pounds per
square inch.

3. Fit a multiple linear regression model to the following data set:

x1 x2 x3 x4 y

1 3 5 9 121
2 4 4 10 165
1.5 8 2 14 150
3 9 3 8 170
1 11 4 12 140

Predict the value of a response taken at the input values

x1 = 2 x2 = 7 x3 = 3 x4 = 13

4. The following data set refers to Stanford heart transplants. It relates the
survival time of patients after receiving a heart transplant to their age
and to a mismatch score that is used as an indicator of how well the
transplanted heart should match the recipient.

Survival time (days) Mismatch Score Age

624 1.32 51.0
1350 0.87 54.1

64 1.89 54.6
46 0.61 42.5

1024 1.13 43.4
280 1.12 49.5
10 2.76 55.3
60 0.69 64.5
836 1.58 45.0
136 1.62 52.0
730 0.96 58.4
39 1.38 42.8

(a) Fit a multiple linear regression model to these data.
(b) Estimate the survival time of a 50-year-old heart transplant patient

whose mismatch score is 1.46.
5. A steel company will be producing cold-reduced sheet steel consisting

of 0.15 percent copper and produced at an annealing temperature of
1150 degrees Fahrenheit. The company is interested in estimating the
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mean hardness of this steel. It collected the following data on 10 differ-
ent specimens of sheet steel that had been produced at different copper
contents and annealing temperatures.

Annealing
Hardness Copper content temperature

79.2 0.02 1050
64.0 0.03 1200
55.7 0.03 1250
56.3 0.04 1300
58.6 0.10 1300
49.8 0.09 1450
51.1 0.12 1400
61.0 0.09 1200
70.4 0.15 1100
84.3 0.16 1000

Estimate the mean hardness of the steel to be produced.
6. In the subsection on dummy variables it was supposed that two of the

variables in a cholesterol study referred to the number of pounds the
subject was overweight and the number he or she was underweight. Do
you think this was a good idea as opposed to, say, just having a single
variable equal to the weight of the person? What if the single variable
was the number of pounds (positive or negative) that an individual was
overweight?

7. Consider a multiple regression model where the researcher is planning
to use both smoking and sex as categorical variables. Discuss having
dummy variables for both of these quantities versus having 4 dummy
variables x5, x6, x7, x8 defined as

x5 =
{

1, if person is a male smoker

0, otherwise

x6 =
{

1, if person is a female smoker

0, otherwise

x7 =
{

1, if person is a male nonsmoker

0, otherwise

x8 =
{

1, if person is a female nonsmoker

0, otherwise
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KEY TERMS

Simple linear regression: A model that relates a response variable Y to an input
variable x by the equation

Y = α + βx + e

The quantities α and β are parameters of the regression model, and e is an error
random variable.

Dependent variable: Another term for the response variable.

Independent variable: Another term for the input variable.

Method of least squares: A method for obtaining estimators of the regression
parameters α and β. It chooses as estimators those values that make the sum of
the squares of the differences between the observed and the predicted responses
as small as possible.

Regression to the mean: This phenomenon occurs when the regression parameter
β is strictly between 0 and 1. This makes the mean response corresponding to
the input level x larger than x when x is small and smaller than x when x is large.
This phenomenon is common in testing–retesting situations.

Regression fallacy: The belief in testing–retesting situations that the phenomenon
of regression to the mean has a significant cause when it is actually just a by-
product of random fluctuations.

Coefficient of determination: A statistic whose value indicates the proportion
of the variation in the response values that is caused by the different input
values.

Sample correlation coefficient: Its absolute value is the square root of the coef-
ficient of determination. Its sign is the same as that of the estimator of the
regression parameter β.

Multiple linear regression: A model that relates a response variable Y to a set of
k input variables x1, . . . , xk by the equation

Y = β0 + β1x1 + β2x2 + · · · + βkxk + e

SUMMARY

The simple linear regression model relates the value of a response random variable
Y to the value of an input variable x by the equation

Y = α + βx + e

The parameters α and β are regression parameters that have to be estimated from
data. The quantity e is an error random variable that has expected value 0.
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The method of least squares is used to estimate the regression parameters α and β.
Suppose that experiments are run at the input levels xi, i = 1, . . . , n. Let Yi, i =
1, . . . , n, denote the corresponding outputs. The least-squares approach is to
choose as estimators of α and β the values of A and B that make

n∑
i=1

(Yi − A − Bxi)
2

as small as possible. The values of A and B that accomplish this—call these values
α̂ and β̂—are given by

β̂ = SxY

Sxx

α̂ = Y − β̂x

where x and Y are the average values of the xi’s and the Yi’s, respectively, and

SxY =
n∑

i=1

(xi − x)(Yi − Y) =
n∑

i=1

xiYi − nxY

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2

The straight-line relationship

y = α̂ + β̂x

is called the estimated regression line.

The error random variable e is assumed to be a normal random variable with
expected value 0 and variance σ 2, where σ 2 is unknown and needs to be estimated
from the data. The estimator of σ 2 is

SSR

n − 2

where the quantity SSR, called the sum of the squares of the residuals, is defined by

SSR =
n∑

i=1

(Yi − α̂ − β̂xi)
2

The quantities Yi − α̂ − β̂xi, representing the difference between the actual
response and its predicted value under the least-squares estimators, are called the
residuals.

The following is a useful computational formula for finding SSR when using a
hand calculator.

SSR = SxxSYY − S2
xY

SYY
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where

SYY =
n∑

i=1

(Yi − Y)2

If the regression parameter β is equal to 0, then the value of a response will not
be affected by its input value x. To see if this hypothesis is plausible, we test

H0: β = 0 against H1: β 
= 0

The significance-level-γ test is based on the test statistic

TS =
√

(n − 2)Sxx

SSR
β̂

and is to

Reject H0 if |TS| ≥ tn−2,γ/2

Not reject H0 otherwise

Equivalently, if the value of TS is v, then the p value is given by

p value = 2P {Tn−2 ≥ |v|}

where Tn−2 is a t random variable with n − 2 degrees of freedom.

The phenomenon of regression to the mean is said to occur when the regression
parameter β lies between 0 and 1. When this is the case, the expected response
corresponding to the input value x will be greater than x when x is small and will
be less than x when x is large.

The phenomenon of regression to the mean is often seen in testing–retesting situ-
ations involving a homogeneous population. This is because some of those being
tested will, purely by chance, do significantly better or worse than is their norm. In
the repeated test they will often obtain a more normal result. Thus, those scoring
high on the first test often come down somewhat on the second while those scor-
ing low on the first test often improve on the second. The belief that something
significant has caused the regression to the mean (for instance, that the lower-
scoring students studied much harder for the retest while the higher-scoring ones
were complacent) when in fact it was just due to random fluctuations about the
mean value is called the regression fallacy.

The input–response data pairs (xi, yi), i = 1, . . . , n, can be used to provide a pre-
diction interval that, with a prescribed degree of confidence, will contain a future
response at the input value x0. Specifically, we can assert, with 100(1 − γ ) percent



598 CHAPTER 12: Linear Regression

confidence, that the response at the input value x0 will lie in the interval

α̂ + β̂x0 ± tn−2,γ/2W

where

W =
√[

1 + 1
n

+ (x0 − x)2

Sxx

]
SSR

(n − 2)

The quantities α̂, β̂, x, Sxx, and W are all based on the data pairs (xi, yi), i = 1, . . . , n,
and can be obtained by running Program 12-1.

The quantity R2 defined by

R2 = 1 − SSR

Syy

is called the coefficient of determination. Its value, which will always lie between 0
and 1, can be interpreted as the proportion of the variation in the response values
that is explained by the different input values.

The quantity r, defined by

r = SxY√
SxxSYY

is called the sample correlation coefficient. Aside from its sign (either positive or
negative) it is equal to the square root of the coefficient of determination. That is,

|r| = √
R2

The quantities

Yi − (A + Bxi)√
SSR/ (n − 2)

i = 1, . . . , n

are called the standardized residuals. A plot of these residuals can be used to assess
the accuracy of the linear regression model.

The multiple linear regression model relates a response random variable Y to a set
of input variables x1, . . . , xk according to the equation

Y = β0 + β1x1 + β2x2 + · · · + βkxk + e

In this equation, β0, β1, . . . , βk are regression parameters and e is an error random
variable having mean 0.
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The regression parameters are estimated from data by using the method of least
squares. That is, the estimators are chosen to minimize the sum of the squares of
the differences between the actual observed response values and their predicted
values. Program 12-2 can be used to obtain these estimates. This program will also
return predicted values of responses corresponding to arbitrarily entered input
values.

REVIEW PROBLEMS

1. The following relates the breaking strength of eight pieces of rope and
the percentage of that rope that is nylon (rather than cotton).

Breaking strength
Percentage nylon (pounds)

0 160
10 240
20 325
20 340
30 395
40 450
50 510
50 520

(a) Plot the data in a scatter diagram.
(b) Give the estimated regression line.
(c) Predict the breaking strength of a new piece of rope that is

50 percent nylon.
(d) Give an interval that, with 95 percent confidence, will contain the

breaking strength of a piece of rope that is 50 percent nylon.
2. It is generally accepted that by increasing the number of units it

produces, a manufacturer can often decrease its cost per unit. The fol-
lowing relates the manufacturing cost per unit to the number of units
produced.

Number of units 10 20 50 100 150 200

Cost per unit 9.4 9.2 9.0 8.5 8.1 7.4

(a) Predict the cost per unit when a production run of 125 units is
called for.

(b) Estimate the variance of the cost in part (a).
(c) Give an interval that, with 99 percent confidence, will contain the

cost per unit when a production run of 110 units is used.
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3. Use the data relating to the first 20 women on the data set given in
App. A. Let the input variable be the weight and the response variable
be the systolic blood pressure.
(a) Estimate the regression parameters.
(b) Give a 95 percent prediction interval for the systolic blood pressure

of a female student who weighs 120 pounds.
(c) Find all female students in App. A that weigh between 119 and 121

pounds. What percentage of them have systolic blood pressures
that fall within the interval given in (c)?

4. A set of 10 married couples are randomly chosen from a given commu-
nity, and the 20 individuals are given an IQ test. Number the couples,
and let xi and yi denote the score of the wife and of the husband of
couple i. Do you think that a plot of the resulting scatter diagram will
indicate a regression to the mean? Explain.

5. Experienced flight instructors have claimed that praise for an excep-
tionally fine landing is typically followed by a poorer landing on the
next attempt, whereas criticism of a faulty landing is typically followed
by an improved landing. Should we thus conclude that verbal praise
tends to lower performance levels whereas verbal criticism tends to
raise them? Or is some other explanation possible?

6. The following data relate the average number of cigarettes smoked
daily to the number of free radicals found in the lungs of eight
individuals.

Number of cigarettes Free radicals

0 94
10 144
14 182
5 120

18 240
20 234
30 321
40 400

(a) Represent this data set in a scatter diagram.
(b) Fit a straight line to the data “by hand.”
(c) Determine the estimated regression line, and compare it to the one

drawn in part (b).
(d) Predict the number of free radicals in someone who smokes an

average of 26 cigarettes daily.
(e) Determine a prediction interval which, with 95 percent confidence,

will contain the amount of free radicals in an individual who
smokes an average of 26 cigarettes daily.
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7. The following data give the gasoline retail prices per gallon in the
United States for each of the years from 1990 to 2002.

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Price 1.16 1.14 1.13 1.11 1.11 1.15 1.23 1.23 1.06 1.17 1.51 1.46 1.36

(a) Find the estimated regression line.
(b) Test the hypothesis, at the 5 percent level of significance, that

β = 0.
8. The following are the average scores of college-bound high school stu-

dents on the science and reasoning section of the American College
Testing (ACT) examination in certain years through 2003, excluding
1998.

Year 1996 1997 1999 2000 2001 2002 2003

Score 20.9 21.0 21.0 21.0 21.0 20.8 20.8

Source: High Schools Profile Report, ACT Program, Iowa City, IA.

(a) Predict the 1998 average score.
(b) Find a 95 percent prediction interval for that score.

9. The following table gives the percentage of workers in manufacturing
who were union members in both 1984 and 1989 for a random sample
of nine states.

State 1984 1989

Alabama 27.3 23.8
Colorado 10.9 9.5
Illinois 40.9 29.8
Kentucky 27.0 21.5
Minnesota 25.7 16.4
New Jersey 25.4 24.4
Texas 15.9 13.8
Wisconsin 31.1 23.0
New York 50.4 47.2

Source: Manufacturing Climates Study, Grant/
Thornton, Chicago, annual.

(a) The percentage of Ohio’s manufacturing workers who were union
members was 41.6 in 1984. Predict the 1989 percentage.

(b) Oklahoma’s union membership percentage was 17.5 in 1984.
Construct an interval that, with 95 percent confidence, contains
Oklahoma’s membership percentage in 1989.
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10. The following give the body mass index (BMI) and systolic blood pres-
sure of 8 randomly chosen men who do not take any blood pressure
medication.

BMI Systolic Blood Pressure

20.3 116
22.0 110
26.4 131
28.2 136
31.0 144
32.6 138
17.6 122
19.4 115

Give an interval that, with 95 percent confidence, will include the
systolic blood pressure of a man who does not take blood pressure
medication and whose BMI is 26.0.

11. The tensile strength of a certain synthetic fiber is thought to be
related to the percentage of cotton in the fiber and to the drying time
of the fiber. A study of eight pieces of fiber yielded the following
results.

Percentage of cotton Drying time Tensile strength

13 2.1 212
15 2.2 221
18 2.5 230
20 2.4 219
18 3.2 245
20 3.3 238
17 4.1 243
18 4.3 242

(a) Fit a multiple regression equation, with tensile strength being the
response and the percentage of cotton and the drying time being
the input variables.

(b) Predict the tensile strength of a synthetic fiber having 22 percent
cotton whose drying time is 3.5.

12. The following data refer to the seasonal wheat yield per acre at eight
different locations, all having roughly the same quality soil. The data
relate the wheat yield at each location to the seasonal amount of
rainfall and the amount of fertilizer used per acre.
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Rainfall Fertilizer
(inches) (pounds per acre) Wheat yield

15.4 100 46.6
18.2 85 45.7
17.6 95 50.4
18.4 140 66.5
24.0 150 82.1
25.2 100 63.7
30.3 120 75.8
31.0 80 58.9

(a) Estimate the regression parameters.
(b) Estimate the additional yield in wheat for each additional inch of

rain.
(c) Estimate the additional yield in wheat for each additional pound

of fertilizer.
(d) Predict the wheat yield in a year having 26 inches of rain if the

amount of fertilizer used that year was 130 pounds per acre.
13. A recently completed study attempted to relate job satisfaction to

income and seniority for a random sample of nine municipal work-
ers. The job satisfaction value given for each worker is his or her own
assessment of such, with a score of 1 being the lowest and 10 being
the highest. The following data resulted.

Yearly income
(thousands of dollars) Years on the job Job satisfaction

47 8 5.6
42 4 6.3
54 12 6.8
48 9 6.7
56 16 7.0
59 14 7.7
53 10 7.0
62 15 8.0
66 22 7.8

(a) Estimate the regression parameters.
(b) What qualitative conclusions can you draw about how job satisfac-

tion changes when income remains fixed and the number of years
of service increases?

(c) Predict the job satisfaction of an employee who has spent 5 years
on the job and earns a yearly salary of $51,000.
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14. Suppose in Prob. 13 that job satisfaction was related to years on the
job, and so the following data would have resulted:

Years on the job Job satisfaction Years on the job Job satisfaction

8 5.6 14 7.7
4 6.3 10 7.0

12 6.8 15 8.0
9 6.7 22 7.8

16 7.0

(a) Estimate the regression parameters α and β.
(b) What is the qualitative relationship between years of service and

job satisfaction? That is, based on the given data, what appears to
happen to job satisfaction as service increases?

(c) Compare your answer to part (b) to the answer you obtained in
part (b) of Prob. 13.

(d) What conclusion, if any, can you draw from your answer in part (c)?
15. The correct answer to Prob. 5 of Sec. 12.5 is to reject the hypothesis that

cigarette consumption and bladder cancer rates are unrelated. Does
this imply that cigarette smoking directly leads to an increased risk of
contracting bladder cancer, or can you think of another explanation?
(Hint: Is there another variable you can think of that is statistically
associated with both smoking and bladder cancer? What type of data
collection and statistical procedure would you recommend to increase
our knowledge about the factors affecting bladder cancer rates?)
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Chi-Squared Goodness-of-Fit Tests

Still, it is an error to argue in front of your data. You find yourself insensibly
twisting them round to fit your theories.

Sherlock Holmes, The Adventures of Wisteria Lodge

A few observations and much reasoning lead to error; many observations
and a little reasoning to truth.

Alexis Carrel
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having two values, and we show how to test the hypothesis that the two values of
a randomly selected member of the population are independent.

13.1 INTRODUCTION
The manipulation of data to make them conform to a particular scientific hypoth-
esis is considered to be an instance of scientific fraud. There have been many such
cases of scientific fraud over the years, ranging in severity from slight “fudging”
to outright falsification of data. For instance, one of the most egregious examples
involved the British educational psychologist Cyril Burt. Burt was highly regarded
in his lifetime—indeed, he was eventually knighted by the Queen of England and
became Sir Cyril—for his research on the IQs of identical twins who were raised
apart. However, it is now widely accepted that in his published work he invented
not only the data he published but also the very existence of his supposed research
subjects and collaborators.

Perhaps the most puzzling instance of scientific fraud involves the Austrian monk
Gregor Mendel (1822–1884), who is regarded as the founder of the theory of
genetics. In 1865 Mendel published a paper outlining the results of a series of
experiments carried out on garden peas. One of the experiments was concerned
with the color—either yellow or green—of the seeds of such peas. Mendel began
his experiment by breeding peas of pure yellow strain, which is a strain of peas in
which every plant in every generation has only yellow seeds. He also bred a pure
green strain. Mendel then crossed peas of the pure yellow strain with those of the
pure green strain. The result of this crossing, known as first-generation hybrid seeds,
was always a yellow seed. That is, there were no green seeds in this generation.

Mendel then crossed these first-generation seeds with themselves, to obtain
second-generation seeds. Surprisingly, green seeds reappeared in this generation.
In fact, approximately 25 percent of second-generation seeds were green, and
75 percent were yellow.

In his paper, Mendel presented a theory to explain these results. His theory sup-
posed that each seed contained two entities, which we now call genes, that together
determine the color of the seed. Each gene is one of two types: type y (for yellow)
or type g (for green). Mendel’s theory was that the pair of genes in the pure yellow
strain seeds is always y,y. That is, both genes in a pea from the pure yellow strain
are yellow. Similarly, the pair of genes in seeds from the pure green strain are g,g.
Mendel now supposed that when two seeds are crossed, the resulting offspring
obtains one gene from each parent. In addition, Mendel supposed that the gene
obtained from a parent is equally likely to be either one of the two genes of that
parent. Thus, when a pure y,y yellow seed is matched with a pure g,g green seed,
the offspring will necessarily have one y and one g seed; that is, the offspring
will have the gene pair y,g. Since every offspring resulting from a cross of a pure
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yellow and a pure green seed was itself yellow, Mendel postulated that the y gene
was dominant over the g gene, in that a seed having the gene pair y,g would be
yellow. See Fig. 13.1.

Consider now what happens when two first-generation seeds are crossed. First
note that both seeds are hybrids having the gene pair y,g. Also note that in order
for the offspring seed to be green, it must receive the g gene from each parent.
Since each parent is equally likely to contribute either its y or its g gene, it follows
that the probability that both parents contribute their g genes is 1/2 × 1/2 = 1/4.
Thus, the result of a large number of crossings of first-generation seeds should
be that approximately 25 percent of the next-generation seeds are green. This is
exactly the result reported by Mendel. See Fig. 13.2.

FIGURE 13.1
Crossing pure yellow seeds with pure green seeds.

FIGURE 13.2
Crossing hybrid first-generation seeds.
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Mendel’s discovery is first-rate science of the highest order. Although it took some
time (as his work was ignored for almost 30 years), his theory of genetics has
become a cornerstone of basic science.

It is not difficult to imagine the consternation among geneticists when, in 1936,
R. A. Fisher published a paper that analyzed Mendel’s data and concluded that
they fit the theory too well to be explained by chance. Using the chi-squared
goodness-of-fit test that had been developed by Karl Pearson, Fisher showed that
an overall data fit at least as good as the one reported by Mendel would have
occurred with a probability equal to 0.00004.

For instance, Mendel reported that of 8023 second-generation peas, 6022 were
yellow and 2001 were green. That is, the fraction of the second-generation peas
that was green was 2001/8023 = 0.2494, which is almost exactly equal to the
theoretical probability 0.25. Although such a good fit in itself is not that unlikely
(at least as good a fit as this would occur roughly 10 percent of the time), the trou-
ble was that almost all the experiments reported by Mendel resulted in data that
were in unusually close agreement with the theoretical probability. By combining
the results of all the experiments reported by Mendel, Fisher came up with the
(p value) probability of 0.00004.

Although believing that Mendel’s data had been manipulated, Fisher apparently
exonerated Mendel himself from direct blame. Indeed, Fisher has gone on record
as believing that the data were probably manipulated by an assistant who knew
the results that Mendel expected. (Of course, equally plausible is that Mendel him-
self made mistakes in recording the data. Even honest people can see what is not
there, when they believe it should be.)

In Sec. 13.2 we present the chi-squared goodness-of-fit test, which can be used
to determine how well a given data set fits a particular probability model. Its use
enables us to test the validity of the probability model.

In Sec. 13.3 we consider populations in which each member is classified according
to two distinct characteristics. We show how the goodness-of-fit test can be used
to test the hypothesis that the two characteristics of a randomly chosen member
of the population are independent.

The two characteristics of members of a population will be independent if knowl-
edge of one of the characteristics of a randomly chosen member of the population
does not affect the probabilities of the other characteristic of this member.
Whereas in Sec. 13.3 we suppose that the data result from a random sample of the
entire population, in Sec. 13.4 we consider a different type of sampling scheme.
This new scheme starts by focusing attention on one of the characteristics. It deter-
mines the various possible values of this characteristic and then chooses random
samples from the subpopulations of members having each of the possible val-
ues. For instance, if one of the characteristics is gender, then rather than choose
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a random sample from the entire population, as is done in Sec. 13.3, we now
choose random samples from the subpopulations of men and women. A test for
independence is presented when this type of sampling scheme is used. In addi-
tion, we show how the results of Sec. 13.4 can be used to test the hypothesis that
an arbitrary number of population proportions are equal. In the special case of
two populations, the test is identical to the one presented in Sec. 10.6.

13.2 CHI-SQUARED GOODNESS-OF-FIT TESTS
Consider a very large population, and suppose that each member of the popula-
tion has a value that can be 1 or 2 or 3 or . . . or k. For a given set of probabilities
pi, i = 1, . . . , k, we will consider the problem of testing the null hypothesis that
pi represents, for each i, the proportion of the population that has value i. That
is, if we let Pi denote the true proportion of the population that has value i, for
i = 1, . . . , k, then we are interested in testing

H0: P1 = p1, P2 = p2, . . . , Pk = pk

against the alternative hypothesis

H1: Pi 
= pi for some i, i = 1, . . . , k

■ Example 13.1
It is known that 41 percent of the U.S. population has type A blood, 9 percent
has type B, 4 percent has type AB, and 46 percent has type O. Suppose that
we suspect that the blood type distribution of people suffering from stomach
cancer is different from that of the overall population.

To verify that the blood type distribution is different for those suffering from
stomach cancer, we could test the null hypothesis

H0: P1 = 0.41, P2 = 0.09, P3 = 0.04, P4 = 0.46

where P1 is the proportion of all those with stomach cancer who have type A
blood, P2 is the proportion of those who have type B blood, P3 is the pro-
portion who have type AB blood, and P4 is the proportion who have type O
blood. A rejection of H0 would then enable us to conclude that the blood type
distribution is indeed different for those suffering from stomach cancer.

In the preceding scenario, each member of the population of individuals who
are suffering from stomach cancer is given one of four possible values accord-
ing to his or her blood type. We are interested in testing the hypothesis that
P1 = 0.41, P2 = 0.09, P3 = 0.04, P4 = 0.46 represent the proportions of this
population having each of the different values. ■



610 CHAPTER 13: Chi-Squared Goodness-of-Fit Tests

To test the null hypothesis that Pi = pi, i = 1, . . . , k, first we need to draw a random
sample of elements from the population. Suppose this sample is of size n. Let Ni

denote the number of elements of the sample that have value i, for i = 1, . . . , k.
Now, if the null hypothesis is true, then each element of the sample will have
value i with probability pi. Also, since the population is assumed to be very large,
it follows that the successive values of the members of the sample will be indepen-
dent. Thus, if the null hypothesis is true, then Ni will have the same distribution as
the number of successes in n independent trials, when each trial is a success with
probability pi. That is, if H0 is true, then Ni will be a binomial random variable
with parameters n and pi. Since the expected value of a binomial is the product of
its parameters, we see that when H0 is true,

E[Ni] = npi i = 1, . . . , k

For each i, let ei denote this expected number of outcomes that equal i when H0

is true. That is,

ei = npi

Thus, when H0 is true, we expect that Ni would be relatively close to ei. That is,
when the null hypothesis is true, the quantity (Ni − ei)

2 should not be too large,
say, in relation to ei. Since this is true for each value of i, a reasonable way of
testing H0 would be to compute the value of the test statistic

TS =
k∑

i=1

(Ni − ei)
2

ei

and then reject H0 when TS is sufficiently large.

To determine how large TS need be to justify rejection of the null hypothesis,
we use a result that was proved by Karl Pearson in 1900. This result states that
for large values of n, TS will have an approximately chi-squared distribution with
k − 1 degrees of freedom. Let χ2

k−1, α denote the 100(1 − α)th percentile of this
distribution; that is, a chi-squared random variable having k − 1 degrees of free-
dom will exceed this value with probability α (Fig. 13.3). Then the approximate
significance-level-α test of the null hypothesis H0 against the alternative H1 is as
follows:

Reject H0 if TS ≥ χ2
k−1, α

Do not reject H0 otherwise

The preceding is called the chi-squared goodness-of-fit test. For reasonably large
values of n, it results in a hypothesis test of H0 whose significance level is approxi-
mately equal to α. An accepted rule of thumb is that this approximation will
be quite good provided n is large enough so that ei ≥ 1 for each i and at least
80 percent of the values ei exceed 5.
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FIGURE 13.3
Chi-squared percentile P

(
χ2

m ≥ χ2
m, α

) = α.

Table 13.1 Some Values of χ2
m, α

m α = 0.99 α = 0.95 α = 0.05 α = 0.01

1 0.000157 0.00393 3.841 6.635
2 0.0201 0.103 5.991 9.210
3 0.115 0.352 7.815 11.345
4 0.297 0.711 9.488 13.277
5 0.554 1.145 11.070 15.086
6 0.872 1.635 12.592 16.812
7 1.239 2.167 14.067 18.475

Values of χ2
m, α for various values of m and α are given in App. Table D.3. A portion

of this table is represented in Table 13.1.

■ Example 13.2
Suppose, in Example 13.1, that a random sample of 200 stomach cancer
patients yielded 92 having blood type A, 20 having blood type B, 4 having
blood type AB, and 84 having blood type O. Are these data significant enough,
at the 5 percent level of significance, to enable us to reject the null hypothesis
that the blood type distribution of stomach cancer sufferers is the same as that
of the general population?

Solution

The observed frequencies are

N1 = 92 N2 = 20 N3 = 4 N4 = 84

whereas the expected frequencies, when H0 is true, are

e1 = np1 = 200 × 0.41 = 82

e2 = np2 = 200 × 0.09 = 18

e3 = np3 = 200 × 0.04 = 8

e4 = np4 = 200 × 0.46 = 92
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Thus, the value of the test statistic is

TS = (92 − 82)2

82
+ (20 − 18)2

18
+ (4 − 8)2

8
+ (84 − 92)2

92

= 4.1374

Since this value is not as large as χ2
3, 0.05 = 7.815 (obtained from Table 13.1),

it follows that we cannot reject, at the 5 percent level of significance, the null
hypothesis that the blood type distribution of people with stomach cancer is
the same as that of the general public. ■

The chi-squared goodness-of-fit test can also be performed by determining the p
value of the resulting data. If the data result in the test statistic having a value v,
then the p value equals the probability that a value at least as large as v will have
occurred if H0 is true. Now, when H0 is true, the distribution of the test statistic TS
is approximately chi squared with k − 1 degrees of freedom. Thus, it follows that
the p value is approximately equal to the probability that a chi-squared random
variable with k − 1 degrees of freedom is at least as large as v. The null hypothesis
is then rejected at any significance level greater than or equal to the p value and is
not rejected at all lower significance levels.

To Determine the p value of the Chi-Squared Test

1. Calculate the value of the test statistic TS.
2. If the value of TS is v, then the p value is

p value = P
{
χ2

k−1 ≥ v
}

where χ2
k−1 is a chi-squared random variable with k − 1 degrees of freedom.

Program 13-1 can be used to determine both the value of the test statistic TS and
the resulting p value.

■ Example 13.3
To determine whether accidents are more likely to occur on certain days of the
week, data have been collected on all the accidents requiring medical atten-
tion that occurred over the last 12 months at an automobile plant in northern
California. The data yielded a total of 250 accidents, with the number occurring
on each day of the week being as follows:

Monday 62
Tuesday 47
Wednesday 44
Thursday 45
Friday 52
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Use the preceding data to test, at the 5 percent level of significance, the
hypothesis that an accident is equally likely to occur on any day of the week.

Solution

We want to test the null hypothesis that

Pi = 1
5

i = 1, 2, 3, 4, 5

The observed data are N1 = 62, N2 = 47, N3 = 44, N4 = 45, and N5 = 52.
Running Program 13-1 yields for the value of TS and the resulting p value

TS = 4.36 p value = 0.359

Thus, a value of TS at least as large as the one obtained would be expected to
occur 35.9 percent of the time when H0 is true, and so the null hypothesis
that accidents are equally likely to occur on any day of the week cannot be
rejected. ■

Sometimes a data set is reported that is in such strong agreement with the expec-
tations of the null hypothesis that one becomes suspicious about the possibility
that the data may have been manipulated. One way of ascertaining the likelihood
of this possibility is to calculate the value v of the test statistic TS and then to deter-
mine how likely it is that a value as small as or smaller than v will have occurred
when the null hypothesis is true. That is, one should determine P{χ2

k−1 ≥ v}.
An extremely small value of this probability is then strong evidence for possible
data manipulation.

■ Example 13.4
In the introduction to this chapter, we commented on an experiment performed
by Gregor Mendel in which he reported that a cross of 8023 hybrid peas resulted
in 6022 yellow and 2001 green peas. In theory, each cross should result in a
yellow pea with probability 3/4 and a green one with probability 1/4. To deter-
mine if the data fit the model too well, we start by determining the value of the
test statistic TS.

The parameters of this problem are

n = 8023 k = 2 p1 = 3/4 p2 = 1/4 N1 = 6022 N2 = 2001

Since

e1 = 8023 × 3
4

= 6017.25

e2 = 8023 × 1
4

= 2005.75
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the value of the test statistic TS is

TS = (6022 − 6017.25)2

6017.25
+ (2001 − 2005.75)2

2005.75

= 0.015

Since 0.015 is greater than χ2
1,0.95 = 0.004, it follows that a value as small as

or smaller than 0.015 would occur over 5 percent of the time (see Fig. 13.4).
Thus, the data do not indicate any manipulation.

Indeed, it can be computed (say, from Program 13-2, which would give the
p value P{χ2

1 ≥ 0.015} as output) that

P
{
χ2

1 ≤ 0.015
} = 0.0974

and so roughly 10 percent of the time TS would be as small as the value
obtained when Mendel’s data were used. While this by itself is not suggestive of
any (conscious or unconscious) data manipulation, it turns out that almost all
the data sets reported by Mendel fit his theoretical expectations as well as this
one. Indeed, the probability that the sum of the values of all the chi-squared
test statistics reported by Mendel, one for each experiment, would be as small
as or smaller than the value obtained by using Mendel’s data is 0.00004. ■

Table 13.2 summarizes the chi-squared goodness-of-fit test.

FIGURE 13.4
χ2

1, 0.95 = 0.004 implies that P
{
χ2

1 ≤ 0.015
} ≥ 0.05.
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Table 13.2 Chi-Squared Goodness-of-Fit Test

Suppose that each member of a population has one of the values 1, 2, . . . , k. Let Pi be the
proportion of the population that has value i, i = 1, . . . , k. Let pi, i = 1, . . . , k, be a specified
set of nonnegative numbers that sum to 1, and consider a test of

H0: Pi = pi for all i = 1, . . . , k

against

H1: Pi 
= pi for some i = 1, . . . , k

To test this, draw a random sample of n members of the population. Let ei = npi, i =
1, . . . , k, and make n large enough so that all the ei are at least 1 and at least 80 percent
of them are at least 5.

Let Ni equal the number of members of the sample that have value i. Use the test statistic

TS =
k∑

i=1

(Ni − ei)
2

ei

The significance-level-α test is to

Reject H0 if TS ≥ χ2
k−1, α

Not reject H0 otherwise

Equivalently, if the value of TS is v, then the p value is given by

p value = P{χ2
k−1 ≥ v}

Here χ2
k−1 is a chi-squared random variable with k − 1 degrees of freedom and χ2

k−1, α is
the 100(1 − α)th percentile of this distribution.

PROBLEMS

1. Determine the following chi-squared percentile values.
(a) χ2

5, 0.01

(b) χ2
5, 0.05

(c) χ2
10, 0.01

(d) χ2
10, 0.05

(e) χ2
20, 0.05
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2. Consider a data set of 200 elements having the following frequency
table:

Outcome Frequency

1 44
2 38
3 57
4 61

Consider a test of the hypothesis that each of the 200 data values is
equally likely to be any of the values 1 through 4.
(a) Express notationally the null and the alternative hypotheses.
(b) Compute the value of the test statistic.
(c) What conclusion is drawn at the 10 percent level of significance?
(d) Repeat part (c), using the 5 percent significance level.
(e) Repeat part (c), using the 1 percent significance level.

Historical Perspective
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An epochal event in the history of statistics occurred in 1900, when Karl Pearson
published a paper in The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science. In this paper he presented his chi-squared goodness-of-fit
test. This was an event of great importance because it changed the way peo-
ple viewed the subject of statistics. Whereas up to then most scientists thought
of statistics as a discipline of data organization and presentation, many were
led by this paper to view statistics as a discipline concerned with the testing of
hypotheses.

3. In a certain county, it has been historically accepted that 52 percent
of the patients who go to hospital emergency rooms are in stable
condition, 32 percent are in serious condition, and 16 percent are in
critical condition. However, a particular county hospital feels that its
percentages are different. To prove its claim, the hospital has randomly
selected a sample of 300 patients who have visited its emergency room
in the past 6 months. The numbers falling in each grouping are as
follows:

Stable 148
Serious 92
Critical 60
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Do these data prove the claim of the hospital? Explain carefully what
the null hypothesis is, and use the 5 percent level of significance.

4. A random sample of 100 student absences yielded the following data
on the days of the week on which the absences occurred:

Day Monday Tuesday Wednesday Thursday Friday

Frequency 27 19 13 15 26

Test the hypothesis that an absence is equally likely to occur on any
of the five days. What are your conclusions?

5. Consider an experiment having six possible outcomes whose proba-
bilities are hypothesized to be 0.1, 0.1, 0.05, 0.4, 0.2, and 0.15. This is
to be tested by performing 60 independent replications of the exper-
iment. If the resultant number of times that each of the six outcomes
occur is 4, 3, 7, 17, 16, and 13, should the hypothesis be rejected? Use
the 5 percent level of significance.

6. In a certain region, 84 percent of drivers have no accidents in a year,
14 percent have exactly one accident, and 2 percent have two or more
accidents. In a random sample of 400 lawyers, 308 had no accidents,
66 had one accident, and 26 had two or more. Could you conclude from
this that lawyers do not exhibit the same accident profile as the rest
of the drivers in the region?

7. The past output of a machine indicates that each unit it produces
will be

Top grade with probability 0.38
High grade with probability 0.32
Medium grade with probability 0.26
Low grade with probability 0.04

A new machine, designed to perform the same job, has produced 500
items with the following results:

Top grade 222
High grade 171
Medium grade 98
Low grade 9

Can the difference in output be ascribed solely to chance? Explain!
8. Roll a die 100 times, keeping track of the frequency of each of the six

possible outcomes. Use the resulting data to test the hypothesis that
all six sides are equally likely to come up.
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9. A marketing manager claims that mail-order sales are equally likely
to come from each of four different regions. An employee does not
agree and so has collected a random sample of 400 recent orders. They
yielded the following numbers from each region:

Region 1 106
Region 2 138
Region 3 76
Region 4 80

Do the data disprove the manager’s claim at the 5 percent level of
significance? What about at the 1 percent level of significance?

10. A study was instigated to see if southern California earthquakes of at
least moderate size (having values of at least 4.4 on the Richter scale)
are more likely to occur on certain days of the week than on others.
The catalogs yielded the following data on 1100 earthquakes:

Day Sun Mon Tues Wed Thurs Fri Sat

Number of earthquakes 156 144 170 158 172 148 152

Test, at the 5 percent level, the hypothesis that an earthquake is
equally likely to occur on any of the seven days of the week.

11. In certain state lotteries one buys a ticket and then chooses four dif-
ferent integers, between 0 and 36 inclusive. The lottery commission
then randomly selects four numbers in this range in such a way that
all possible choices are equally likely. After taking out its percentage—
sometimes as high as 40 percent—the lottery commission then divides
the remainder equally among all those players who had the correct
choice of four numbers. Since all possible four-number choices are
equally likely to be chosen by the commission, it is easy to see that
it is best to select “unpopular” numbers so that if you do win, you
will not have to share the prize with too many others. That is, since
your chances of being a winner and the amount of money returned to
the winners’ pool do not depend on your selection, it is best to choose
numbers that others are unlikely to choose.

This reasoning raises the question of whether there are indeed unpop-
ular numbers, that is, numbers that are played less frequently than
others. To answer this question, one could perform a chi-squared
test of the hypothesis that all choices of lottery players are equally
likely.

Consider a simplified lottery in which each player selects one of
the integers between 1 and 10. Suppose that a random sample of
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10,000 previously purchased lottery tickets yielded that each of the
10 numbers had been played with the following frequencies:

Number Frequency

1 1122
2 1025
3 1247
4 818
5 1043
6 827
7 1149
8 946
9 801

10 1022

Do these data prove that the 10 numbers are not being played with
equal frequency?

12. Data provided by the U.S. Bureau of Labor Statistics indicate that the
age breakdown, by percentage, of all U.S. workers who are on flexible
schedules is as follows:

Age range Percentage

16–24 13.7
25–34 32.5
35–44 26.3
45–54 17.1
55 and up 10.4

Suppose that a random sample of 240 workers on flexible schedules in
the city of Sacramento yielded 24 in the age range of 16 to 24, 94 in
the age range of 25 to 34, 48 in the age range of 35 to 44, 35 in the age
range of 45 to 54, and 39 in the age range of 55 and up. Can we con-
clude, at the 5 percent level of significance, that the age breakdown of
Sacramento workers on flexible schedules is different from the national
breakdown?

13. The 1995 annual report of the Girl Scouts of America indicates that
59.8 percent of members were 8 years old or younger, 32.4 percent
were between 9 and 11 years old, and 7.8 percent were 12 years and
older. In 2002, a random sample of 400 Girl Scouts contained 255 who
were 8 years old or younger, 112 who were between 9 and 11 years
old, and 33 who were 12 years old or over. Test the hypothesis that the
2002 percentages are the same as they were in 1995. Use the 5 percent
level of significance.
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14. Karl Pearson reported that he flipped a coin 24,000 times, with 12,012
heads and 11,988 tails resulting. Is this believable? Explain the rea-
soning behind your answer.

15. The following gives the age breakdown, by percentages, of unmarried
women having children in 1986:

Age range Percentage

14 or less 1.1
15–19 32.0
20–24 36.0
25–29 18.9
30 and up 12.0

Source: U.S. National Center for Health Statis-
tics, Vital Statistics of the United States.

A recent random sample of 1000 births to unmarried women indicated
that 42 of the mothers were age 14 or younger, 403 were between
15 and 19 years old, 315 were between 20 and 24 years old, 150 were
between 25 and 29 years old, and 90 were 30 years or older. Do these
data prove that today’s percentages differ from those in 1986?

13.3 TESTING FOR INDEPENDENCE IN
POPULATIONS CLASSIFIED ACCORDING
TO TWO CHARACTERISTICS

Consider a large population in which each member is classified according to two
distinct characteristics, which we shall designate as the X characteristic and the
Y characteristic. Suppose that the possible values for the X characteristic are
denoted as 1 or 2 or . . . or r; similarly, the possible values of the Y character-
istic are denoted as 1 or 2 or . . . or s. Thus, there are r possible values for the X
characteristic and s possible values for the Y characteristic.

■ Example 13.5
Consider a population of voting-age adults, and suppose that each adult is clas-
sified according to both gender—female or male—and political affiliation—
Democrat, Republican, or Independent. Let the X characteristic represent gen-
der and the Y characteristic represent political affiliation. Since there are two
possible genders and three possible political affiliations, r = 2 and s = 3. Let
us say that a person’s X characteristic is 1 if the person is a woman and 2 if the
person is a man. Also, say that a person’s Y characteristic is 1 if the person is a
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Democrat, 2 if the person is a Republican, and 3 if he or she is an Independent.
Thus, for instance, a woman who is a Republican would have X characteristic
1 and Y characteristic 2. ■

Let Pij denote the proportion of the population that has both X characterization
i and Y characterization j, for i being any of the values 1, 2, . . . , r and j being any
of the values 1, 2, . . . , s. Also, let Pi denote the proportion of the population who
have X characteristic i, and let Qj be the proportion who have Y characteristic j.
Thus if X and Y denote the values of the X characteristic and Y characteristic of a
randomly chosen member of the population, then

P{X = i, Y = j} = Pij

P{X = i} = Pi

P{Y = j} = Qj

■ Example 13.6
For the situation described in Example 13.5, P11 represents the proportion of
the population consisting of women who classify themselves as Democrats, P12

is the proportion of the population consisting of women who classify them-
selves as Republicans, and P13 is the proportion of the population consisting
of women who classify themselves as Independents. The proportions P21, P22,
and P23 are defined similarly, with men replacing women in the definitions. The
quantities P1 and P2 are the proportions of the population that are, respectively,
women and men; Q1, Q2, and Q3 are the proportions of the population that
are, respectively, Democrats, Republicans, and Independents. ■

We will be interested in developing a test of the hypothesis that the X charac-
teristic and Y characteristic of a randomly chosen member of the population are
independent. Recalling that X and Y are independent if

P{X = i, Y = j} = P{X = i}P{Y = j}
it follows that we want to test the null hypothesis

H0: Pij = PiQj for all i = 1, . . . , r, j = 1, . . . , s

against the alternative

H1: Pij 
= PiQj for some values of i and j

To test this hypothesis of independence, we start by choosing a random sample
of size n of members of the population. Let Nij denote the number of elements of
the sample that have both X characteristic i and Y characteristic j.
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■ Example 13.7
Consider Example 13.5, and suppose that a random sample of 300 people were
chosen from the population, with the following data resulting:

j

i Democrat Republican Independent Total

Women 68 56 32 156
Men 52 72 20 144
Total 120 128 52 300

Thus, for instance, the random sample of size 300 contained 68 women
who classified themselves as Democrats, 56 women who classified themselves
as Republicans, and 32 women who classified themselves as Independents;
that is, N11 = 68, N12 = 56, and N13 = 32. Similarly, N21 = 52, N22 = 72, and
N23 = 20.

This table, which specifies the number of members of the sample that fall in
each of the rs cells, is called a contingency table. ■

If the hypothesis is true that the X and Y characteristics of a randomly chosen
member of the population are independent, then each element of the sample will
have X characteristic i and Y characteristic j with probability PiQj. Hence, if these
probabilities were known then, from the results of Sec. 13.2, we could test H0 by
using the test statistic

TS =
∑

i

∑
j

(Nij − eij)
2

eij

where

eij = nPiQj

The quantity eij represents the expected number, when H0 is true, of elements in
the sample that have both X characteristic i and Y characteristic j. In computing
TS we must calculate the sum of the terms for all rs possible values of the pair
i, j. When H0 is true, TS will have an approximately chi-squared distribution with
rs − 1 degrees of freedom.

The trouble with using this approach directly is that the r + s quantities Pi and
Qj, i = 1, . . . , r, j = 1, . . . , s, are not specified by the null hypothesis. Thus, we need
first to estimate them. To do so, let Ni and Mj denote the number of elements of
the sample that have, respectively, X characteristic i and Y characteristic j. Because
Ni/n and Mj/n are the proportions of the sample having, respectively, X charac-
teristic i and Y characteristic j, it is natural to use them as estimators of Pi and Qj.
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That is, we estimate Pi and Qj by

P̂i = Ni

n
Q̂j = Mj

n

This leads to the following estimate of eij:

êij = nP̂iQ̂j = NiMj

n

In words, êij is equal to the product of the number of members of the sample that
have X characteristic i (that is, the sum of row i of the contingency table) and the
number of members of the sample that have Y characteristic j (that is, the sum of
column j of the contingency table) divided by the sample size n.

Thus, it seems that a reasonable test statistic to use in testing the independence of
the X characteristic and the Y characteristic is the following:

TS =
∑

i

∑
j

(Nij − êij)
2

êij

where êij, i = 1, . . . , r, j = 1, . . . , s, are as just given.

To specify the set of values of TS that will result in rejection of the null hypothesis,
we need to know the distribution of TS when the null hypothesis is true. It can be
shown that when H0 is true, the distribution of the test statistic TS is approximately
a chi-squared distribution with (r − 1)(s − 1) degrees of freedom. From this, it
follows that the significance-level-α test of H0 is as follows:

Reject H0 if TS ≥ χ2
(r−1)(s−1), α

Do not reject H0 otherwise

A technical remark: It is not difficult to see why the test statistic TS should have
(r − 1)(s − 1) degrees of freedom. Recall from Sec. 13.2 that if all the values Pi and
Qj are specified in advance, then the test statistic has rs − 1 degrees of freedom.
(This is so since k, the number of different types of elements in the population, is
equal to rs.) Now, at first glance it may seem that we have to use the data to esti-
mate r + s parameters. However, since the Pi’s and the Qj’s both sum to 1—that is,
�iPi = �jQj = 1—we really only need to estimate r − 1 of the Pi’s and s − 1 of the
Qj’s. (For instance, if r is equal to 2, then an estimate of P1 will automatically pro-
vide an estimate of P2 since P2 = 1 − P1.) Hence, we actually need to estimate r −
1 + s − 1 = r + s − 2 parameters. Since a degree of freedom is lost for each param-
eter estimated, it follows that the resulting test statistic has rs − 1 − (r + s − 2)

= rs − r − s + 1 = (r − 1)(s − 1) degrees of freedom.
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■ Example 13.8
The data of Example 13.7 are as follows:

j

i 1 2 3 Total = Ni

1 68 56 32 156
2 52 72 20 144
Total = Mj 120 128 52 300

What conclusion can be drawn? Use the 5 percent level of significance.

Solution

From the given data, the six values of

êij = NiMj

n

are as follows:

ê11 = N1M1

n
= 156 × 120

300
= 62.40

ê12 = N1M2

n
= 156 × 128

300
= 66.56

ê13 = N1M3

n
= 156 × 52

300
= 27.04

ê21 = N2M1

n
= 144 × 120

300
= 57.60

ê22 = N2M2

n
= 144 × 128

300
= 61.44

ê23 = N2M3

n
= 144 × 52

300
= 24.96

The value of the test statistic is thus

TS = (68 − 62.40)2

62.40
+ (56 − 66.56)2

66.56
+ (32 − 27.04)2

27.04

+ (52 − 57.60)2

57.60
+ (72 − 61.44)2

61.44
+ (20 − 24.96)2

24.96
= 6.433

Since r = 2 and s = 3, (r − 1)(s − 1) = 2 and so we must compare the value of
TS with the critical value χ2

2, 0.05. From Table 13.1,

χ2
2, 0.05 = 5.991
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Since TS ≥ 5.991, the null hypothesis is rejected at the 5 percent level of
significance. That is, the hypothesis that gender and political affiliation of
members of the population are independent is rejected at the 5 percent level
of significance. ■

The test of the hypothesis that the X and Y characteristics of a randomly chosen
member of the population are independent can also be performed by determining
the p value of the data. This is accomplished by first calculating the value of the
test statistic TS. If its value is v, then the p value is given by

p value = P
{
χ2

(r−1)(s−1) ≥ v
}

where χ2
(r−1)(s−1) is a chi-squared random variable with (r − 1)(s − 1) degrees of

freedom.

Program 13-2 will calculate the value of the test statistic and then determine the
resulting p value. The program supposes that the data are arranged in the form of
a contingency table and asks the user to input the successive rows of this table.

■ Example 13.9
A public health scientist wanted to learn about the relationship between the
marital status of patients being treated for depression and the severity of their
conditions. The scientist chose a random sample of 159 patients who had been
treated for depression at a mental health clinic and had these patients classified
according to the severity of their depression—severe, normal, or mild—and
according to their marital status. The following data resulted.

Marital status

Depressive state Married Single Widowed or divorced Totals

Severe 22 16 19 57
Normal 33 29 14 76
Mild 14 9 3 26
Totals 69 54 36 159

Determine the p value of the test of the hypothesis that the depressive state of
the clinic’s patients is independent of their marital status.

Solution

We run Program 13-2 to obtain that the value of the test statistic and the
resulting p value are

TS = 6.828 p value = 0.145 ■

The test for independence is summarized in Table 13.3.
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Table 13.3 Testing Independence of Two Characteristics of Members
of a Population

Assume that each member of a population has both an X and a Y characteristic. Let r and
s denote the number of possible X and Y characteristics, respectively. To test

H0: characteristics of a randomly chosen member are independent

against

H1: characteristics of a randomly chosen member are not independent

choose a sample of n members of the population. Let Nij denote the number of these that
have both X characteristic i and Y characteristic j. Also let

Ni =∑
j

Nij and Mj =∑
i

Nij

denote, respectively, the number of members of the sample that have X characteristic i
and that have Y characteristic j. The test statistic is

TS =∑
i

∑

j

(Nij − êij)
2

êij

where êij = NiMj/n. The significance-level-α test is as follows:

Reject H0 if TS ≥ χ2
(r−1)(s−1), α

Do not reject H0 otherwise

Equivalently, if the value of TS is v, then the p value is

p value = P{χ2
(r−1)(s−1) ≥ v}

PROBLEMS

1. The following contingency table presents data from a sample of a
population that is characterized in two different ways:

X characteristic

Y characteristic A B C

1 32 12 40
2 56 48 60
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(a) Determine the value of the test statistic when testing that the two
characteristics are independent.

(b) Would the null hypothesis be rejected at the 5 percent level of
significance?

(c) What about at the 1 percent level?
2. There is some evidence that ownership of a dog may have predictive

value in determining whether an individual will survive a heart attack.
The following data are from a random sample of 95 individuals who
each suffered a severe heart attack. The data classify each of these
individuals with respect to (1) whether they were still alive 1 year after
their attack and (2) whether they had a dog as a pet.

Had pet No pet

Survived 28 44
Did not survive 8 15

Do these data prove, at the 5 percent level of significance, that owning
a pet and survival are dependent? Explain carefully what null hypothesis
you are testing and what test statistic you are using.

Historical Perspective
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Her biographer called her the passionate statistician. It was an appropriate descrip-
tion of Florence Nightingale, the woman who almost single-handedly changed
nursing into a science. During the Crimean war she searched out and collected
data on sanitary conditions and mortality rates in military hospitals, and she
used these data to statistically prove that the two were dependent. Her work was
instrumental in improving the hygienic conditions in hospitals and resulted in
the saving of untold lives.

Florence Nightingale was a follower of the Belgian statistician Adolphe Quetelet,
and she believed, as he did, that “accidents occur with astonishing regularity when
the same conditions exist.” She held that successful administrators were ones who
searched out data. She felt that the universe evolved in accordance with a divine
plan and that it was every person’s job to learn to live in harmony with it. But to
understand this plan, she believed that one had to study statistics. In the words
of Karl Pearson, “For Florence Nightingale, statistics were more than a study, they
were her religion.”

3. A random sample of 187 voters were chosen, and the voters were
asked to evaluate the performance of the first 100 days of the U.S. Pres-
ident. Use the resulting data to test the hypothesis that the evaluation
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of an individual does not depend on whether that individual is a man
or woman.

Women Men

Positive evaluation 54 47
Negative evaluation 20 32
Not sure 23 11

Use the 5 percent level of significance.
4. An insurance company is interested in determining whether there is

a relationship between automobile accident frequency and cigarette
smoking. It randomly sampled 597 policyholders and came up with the
following data:

Number of accidents
in last 2 years Smokers Nonsmokers

0 35 170
1 79 190
2 or more 57 66

Test the hypothesis, at the 5 percent level of significance, that the acci-
dent frequency of a randomly chosen policyholder is independent of
his or her smoking habits.

5. The management of a certain hotel is interested in whether all its
guests are treated the same regardless of the prices of their rooms.
They randomly chose 155 recent guests and questioned them about
the service they had received at the hotel. The following summary data
resulted:

Type of room

Service ranking Economy Standard Luxury

Excellent 30 21 9
Good 36 29 8
Fair 12 8 2

What conclusions would you draw?
6. The following data categorize a random selection of professors of a cer-

tain university according to their teaching performance (as measured
by the students in their classes) in the most recent semester and the
number of courses they were teaching at the time.
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Number of courses

Student ranking 1 2 3 or more

Above average 12 10 4
Average 32 40 38
Below average 7 12 25

Test, at the 5 percent level, the hypothesis that a professor’s teaching
performance is independent of the number of courses she or he is
teaching.

7. In Prob. 6, it is possible that only certain professors, usually ones who
specialize in research, would teach only one course in a semester. These
wouldthentendtobemoreadvancedcoursesandtohavefewerstudents
thaninmostcourses.Thus,tolearnmoredirectlywhetherteachingaddi-
tional courses affects teaching performance, it might be reasonable to
consider thedataofProb.6with thecolumnpertainingto thoseteaching
only one class deleted. Make this change and repeat Prob. 6.

8. The socioeconomic status of residents of a particular neighborhood can
be classified as either lower or middle class. A sample of residents
were questioned about their attitude toward a planned public health
clinic for the neighborhood. The results are as follows:

Socioeconomic class

Attitude Lower Middle

In favor 87 63
Against 46 55

Test the hypothesis, at the 5 percent level of significance, that lower-
and middle-class residents of the neighborhood have the same attitude
toward the new clinic.

9. A market research firm has distributed samples of a new shampoo to a
variety of individuals. The following data summarize the comments of
these individuals about the shampoo as well as provide the age group
into which they fall.

Age group (years)

Rating 15–20 21–30 Over 30

Excellent 18 20 41
Good 25 27 43
Fair 17 15 26
Poor 3 2 8
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Do these data prove that different age groups have different opinions
about the shampoo? Use the 5 percent level of significance.

10. A random sample of 160 patients at a health maintenance organization
yielded the following information about their smoking status and blood
cholesterol counts:

Blood cholesterol count

Smoking status Low Moderate High

Heavy 6 14 24
Light 12 23 15
Nonsmoker 23 32 11

(a) Would the hypothesis of independence between blood cholesterol
count and smoking status be rejected at the 5 percent level of
significance?

(b) Repeat part (a), but this time use the 1 percent level of significance.
(c) Do your results imply that a reduction in smoking will result in a

lowered blood cholesterol level? Explain!
11. To see if there was any dependency between the type of professional

job held and one’s religious affiliation, a random sample of 638 indi-
viduals belonging to a national organization of doctors, lawyers, and
engineers were chosen in a study. The results of the sample are given
in the following contingency table:

Doctors Lawyers Engineers

Protestant 64 110 152
Catholic 60 86 78
Jewish 57 21 10

Test the hypothesis, at the 5 percent level of significance, that the pro-
fession of individuals in this organization and their religious affiliation
are independent. Repeat at the 1 percent level.

12. Look at the following contingency table and guess (without any com-
putations) as to the result of a test, at the 5 percent level of significance,
of the hypothesis that the two data characteristics are independent.

A B C

1 26 44 30
2 14 30 25
3 30 45 33

Now perform the computations.
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13. Repeat Prob. 11, but first double all the data values.
14. Repeat Prob. 12, but first double all the data values.

13.4 TESTING FOR INDEPENDENCE IN
CONTINGENCY TABLES WITH FIXED
MARGINAL TOTALS

In Example 13.5 we were interested in determining whether gender and political
affiliation were dependent in a particular population. To test this hypothesis, we
first chose a random sample of people from this population and then noted their
characteristics. However, another way in which we could gather data is to fix in
advance the numbers of men and women in the sample and then to choose ran-
dom samples of those sizes from the subpopulations of men and women. That
is, rather than let the numbers of women and men in the sample be determined
by chance, we might decide these numbers in advance. Because doing so would
result in fixed specified values for the total numbers of men and women in the
sample, the resulting contingency table is often said to have fixed margins (since
the totals are given in the margins of the table).

It turns out that even when the data are collected in the manner just prescribed, the
same hypothesis test as given in Sec. 13.3 can be used to test for the independence
of the two characteristics. The test statistic remains

TS =
∑

i

∑
j

(Nij − êij)
2

êij

where

Nij = number of members of sample who have both X characteristic i and Y
characteristic j

Ni = number of members of sample who have X characteristic i

Mj = number of members of sample who have Y characteristic j

and

êij = NiMj

n

where n is the total size of the sample.

In addition, it is still true that when H0 is true, TS will have an approximately chi-
squared distribution with (r − 1)(s − 1) degrees of freedom. (The quantities r and
s refer, of course, to the numbers of possible values of the X and Y characteristic,
respectively.) In other words, the test of the independence hypothesis is unaffected
by whether the marginal totals of one characteristic are fixed in advance or result
from a random sample of the entire population.
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■ Example 13.10
A randomly chosen group of 20,000 nonsmokers and one of 10,000 smokers
were followed over a 10-year period. The following data relate the numbers
developing lung cancer in that period.

Smokers Nonsmokers Total

Lung cancer 62 14 76
No lung cancer 9, 938 19, 986 29, 924
Total 10, 000 20, 000 30, 000

Test the hypothesis that smoking and lung cancer are independent. Use the
1 percent level of significance.

Solution

The estimated numbers expected to fall in each ij cell are

ê11 = (76)(10,000)

30,000
= 25.33

ê12 = (76)(20,000)

30,000
= 50.67

ê21 = (29,924)(10,000)

30,000
= 9974.67

ê22 = (29,924)(20,000)

30,000
= 19,949.33

Therefore, the value of the test statistic is

TS = (62 − 25.33)2

25.33
+ (14 − 50.67)2

50.67
+ (9938 − 9974.67)2

9974.67

+ (19,986 − 19,949.33)2

19,949.33

= 53.09 + 26.54 + 0.13 + 0.07 = 79.83

Since this is far larger than χ2
1, 0.01 = 6.635, we reject the null hypothesis that

whether a randomly chosen person develops lung cancer is independent of
whether that person is a smoker. ■

We now show how we can use the framework of this section to test the hypoth-
esis that m population proportions are equal. To begin, consider m separate
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populations of individuals. Suppose that the proportion of members of the ith
population that are in favor of a certain proposition is pi, and consider a test of
the null hypothesis that all the pi’s are equal. That is, consider a test of

H0: p1 = p2 = · · · = pm

against

H1: not all the pi’s are equal

To obtain a test of this null hypothesis, consider first the superpopulation con-
sisting of all members of each of the m populations. Any member of this
superpopulation can be classified according to two characteristics. The first
characteristic specifies which of the m populations the member is from, and the
second characteristic specifies whether the member is in favor of the proposi-
tion. Now, the hypothesis that all the pi’s are equal is just the hypothesis that the
same proportions of members of each population are in favor of the proposition.
But this is exactly the same as stating that for members of the superpopula-
tion the characteristic of being for or against the proposition is independent
of the population that the member is from. That is, the null hypothesis H0 is
equivalent to the hypothesis of independence of the two characteristics of the
superpopulation.

Therefore, we can test H0 by first choosing independent random samples of fixed
sizes from each of the m populations. If we let Mi be the sample size from popula-
tion i, for i = 1, . . . , m, we can test H0 by testing for independence in the following
contingency table:

Population

1 2 … m Total

In favor F1 F2 · · · Fm N1

Against A1 A2 · · · Am N2

Total M1 M2 · · · Mm

Here, Fi refers to the number of members of population i who are in favor, and
Ai refers to the number who are against the proposition.

■ Example 13.11
A recent study reported that 500 female office workers were randomly chosen
and questioned in each of four different countries. One of the questions related



634 CHAPTER 13: Chi-Squared Goodness-of-Fit Tests

to whether these women often received verbal or sexual abuse on the job. The
following data resulted:

Country Number reporting abuse

Australia 28
Germany 30
Japan 58
United States 55

Based on these data, is it plausible that the proportions of female office workers
who often feel abused at work are the same for these countries?

Solution

Putting the data in the form of a contingency table gives the following:

Country

1 2 3 4 Total

Receive abuse 28 30 58 55 171
Do not receive abuse 472 470 442 445 1829
Total 500 500 500 500 2000

We can now test the null hypothesis by testing for independence in the preced-
ing contingency table. If we run Program 13-2, then the value of the test statistic
and the resulting p value are

TS = 19.51 p value = 0.0002

Therefore, the hypothesis that the percentages of women who feel they are
being abused on the job are the same for these countries is rejected at the
1 percent level of significance (and, indeed, at any significance level above 0.02
percent). ■

When there are only two populations, the preceding test of the equality of
population proportions is identical to the one presented in Sec. 10.6.

PROBLEMS

1. Can we conclude from the results of Example 13.10 that smoking
causes lung cancer? What other explanations are possible?

2. A study of the relationship between school preferences and family
income questioned 100 upper-income and 100 lower-income families
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in a certain city about the type of school they would most like their
children to attend. These are the resulting data:

Preference Upper income Lower income

Public 22 19
Private religious 31 39
Private nonreligious 47 42

What conclusions can you draw?
3. A sample of 300 cars having cellular phones and one of 400 cars with-

out phones were tracked for 1 year. The following table gives the
number of these cars involved in accidents over that year.

Accident No accident

Cellular phone 22 278
No Phone 26 374

Use these data to test the hypothesis that having a cellular phone in
your car and being involved in an accident are independent. Use the
5 percent level of significance.

4. A newspaper chain sampled 100 readers of each of its three major
newspapers to determine their economic class. The results were as
follows:

Newspaper

Economic class 1 2 3

Lower middle 22 25 28
Middle 41 37 44
Upper middle 37 38 28

Test the hypothesis that the newspaper an individual reads and the
economic class to which that person belongs are independent. Use the
5 percent level.

5. The following table shows the number of defective and acceptable
items in samples taken both before and after the introduction of a
modification in the manufacturing process.

Defective Nondefective

Before 22 404
After 18 422
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Does the data prove that the modification results in a different percent-
age of defective items?

6. From a statistics class of 200 students, 100 were randomly chosen
to watch the lectures on television rather than in person. The other
100 stayed in the lecture hall. The final grades of the students are as
follows:

A B C Less than C

In-class students 22 38 35 5
Television students 18 32 40 10

Test the hypothesis that final grades are independent of whether the
student watches on television or is present in the lecture hall. Can we
reject at the 5 percent level of significance? What about at the 1 percent
level?

7. To study the effect of fluoridated water supplies on tooth decay, two
communities of roughly the same socioeconomic status were chosen.
One of these communities had fluoridated water, while the other did
not. Random samples of 200 teenagers from both communities were
chosen, and the numbers of cavities they had were determined. The
following data resulted:

Cavities Fluoridated town Nonfluoridated town

0 154 133
1 20 18
2 14 21
3 or more 12 28

Do these data establish, at the 5 percent level of significance, that the
number of dental cavities a person has is not independent of whether
that person’s water supply is fluoridated? What about at the 1 percent
level?

8. An automobile dealership sent out postcards to 990 potential cus-
tomers, offering them a free test drive of one of its cars. Each postcard
was colored red, white, light blue, or green. Here are data relating the
number of customers who responded and the colors of the postcards
they had been sent:

Red White Blue Green

Responded 108 106 105 127
No response 142 144 135 123
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Test the hypothesis that the color of the postcard sent does not
affect the recipient’s chance of responding. Use the 5 percent level of
significance.

9. Random samples of 50 college students, 40 college faculty, and 60
bankers yielded the following data relating to the numbers of smokers
in these samples:

Group Number who smoke

College students 18
College faculty 12
Bankers 24

(a) Test the hypothesis, at the 10 percent level of significance, that the
same percentages of college students, college faculty, and bankers
are smokers.

(b) Repeat part (a) at the 5 percent level of significance.
(c) Repeat part (a) at the 1 percent level of significance.

10. To determine if a malpractice lawsuit is more likely to follow certain
types of surgery, random samples of three different types of surgeries
were studied, and the following data resulted:

Type of operation Number sampled Number leading to a lawsuit

Heart surgery 400 16
Brain surgery 300 19
Appendectomy 300 7

Test the hypothesis that the percentages of the surgical operations
that lead to lawsuits are the same for each of the three types.
(a) Use the 5 percent level of significance.
(b) Use the 1 percent level of significance.

KEY TERMS

Goodness-of-fit test: A statistical test of the hypothesis that a specified set of k
probabilities represents the proportion of members of a large population that
fall into each of k distinct categories.

Contingency table: A table that classifies each element of a sample according to
two distinct characteristics.
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SUMMARY

Goodness-of-Fit Tests Consider a large population of elements, each of which
has a value that is 1 or 2 or . . . or k. Let Pi denote the proportion of the popu-
lation that has value i, for i = 1, . . . , k. For a given set of probabilities p1, . . . ,
pk(pi ≥ 0,

∑
i pi = 1), consider a test of

H0: Pi = pi for all i = 1, . . . , k

against the alternative

H1: Pi 
= pi for some i, i = 1, . . . , k

To test this null hypothesis, first draw a random sample of n elements of the
population. Let Ni denote the number of elements in the sample that have value
i. The test statistic to be employed is

TS =
k∑

i=1

(Ni − ei)
2

ei

where

ei = npi

When H0 is true, ei is equal to the expected number of elements in the sample
that have value i.

The hypothesis test is to reject H0 when TS is sufficiently large. To determine how
large, we use the fact that when H0 is true, TS has a distribution that is approxi-
mately a chi-squared distribution with k − 1 degrees of freedom. This implies that
the significance-level-α test is to

Reject H0 if TS ≥ χ2
k−1,α

Not reject H0 otherwise

The quantity χ2
k−1,α is defined by

P{χ2
k−1 ≥ χ2

k−1,α} = α

where χ2
k−1 is a chi-squared random variable with k − 1 degrees of freedom.

This test is called the chi-squared goodness-of-fit test. It can also be implemented by
determining the p value of the data set. If the observed value of TS is v, then the p
value is

p value = P{χ2
k−1 ≥ v}
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Program 13-1 can be used to determine the value of the test statistic and the
resulting p value.

Testing for Independence in Populations Whose Elements Are Classified
According to Two Different Characteristics Suppose now that each element of
a population is classified according to two distinct characteristics, which we call
the X characteristic and the Y characteristic. Suppose the possible values of the X
characteristic are 1 or 2 or . . . or r, and the possible values for the Y characteristic
are 1 or 2 or . . . or s. Let Pij denote the proportion of the population that has X char-
acteristic i and Y characteristic j. Let Pi denote the proportion of the population
whose X characteristic is i, i = 1, . . . , r; and let Qj denote the proportion whose Y
characteristic is j, j = 1, . . . , s.

Consider a test of the null hypothesis that the X and Y characteristics of a ran-
domly chosen member of the population are independent. That is, consider a
test of

H0: Pij = PiQj for all i, j

against

H1: Pij 
= PiQj for some i, j

To test this, draw a random sample of n elements of the population. Let Nij denote
the number of these having X characteristic i and Y characteristic j. Also let Ni

denote the number that have X characteristic i; and let Mj denote the number that
have Y characteristic j. The test statistic used to test H0 is

TS =
∑

i

∑
j

(Nij − êij)
2

êij

where

êij = NiMj

n

The summation in the expression for TS is over all rs possible values of the pair
i, j. The significance-level-α test is to

Reject H0 if TS ≥ χ2
(r−1)(s−1),α

Not reject H0 otherwise

Equivalently, the test can be implemented by computing the p value. If the value
of TS is v, then the p value is given by

p value = P{χ2
(r−1)(s−1) ≥ v}

Program 13-2 can be used to determine both the value of TS and the resulting p
value.
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The same test as just given can also be employed when the sample chosen is not
a random sample from the entire population but rather a collection of random
samples of fixed sizes from the r (or s) subpopulations whose X characteristic (or
Y characteristic) is fixed.

The following tabular presentation of the data is called a contingency table:

Y characteristic

X characteristic 1 2 . . . j . . . s Total

1 N11 N12 … N1j … N1s N1

i Ni1 Ni2 … Nij … Nis Ni

r Nr1 Nr2 … Nrj … Nrs Nr

Total M1 M2 … Mj … Ms n

REVIEW PROBLEMS

1. The following data classify minor accidents over the past year at a
certain industrial plant, according to the time periods in which these
accidents occurred.

Time period Number of accidents

8–10 a.m. 47

10–12 p.m. 52

1–3 p.m. 57

3–5 p.m. 63

Test the hypothesis that each accident was equally likely to occur in
any of the four time periods. Use the 5 percent level of significance.

2. A movie distribution company often sets up sneak previews of new
movies. In such a situation a movie whose title had not previously
been announced is shown in addition to the regularly scheduled movie.
When the audience leaves the theater, individuals are given question-
naires to be filled out at home and mailed back to the company. Such
information is then used by the company in deciding how widely to
distribute the movie. Of some interest is whether the popularity of a
movie will be the same over different parts of the country. To test this
hypothesis, a sneak preview was scheduled in four theaters around the
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country. One theater was in New York, one in Chicago, one in Phoenix,
and one in Seattle. The following are ratings given to the movie by
audiences in these four places:

Location

Rating New York Chicago Phoenix Seattle

Excellent 234 141 108 142
Good 303 256 165 170
Poor 102 88 41 45

Test, at the 5 percent level, the hypothesis that the audience reaction
is independent of the location. What about at the 1 percent level?

3. Suppose that a die is rolled 600 times. Consider a test of the hypothesis
that each roll is equally likely to be any of the six faces. Make up data
you think will result in a p value approximately equal to
(a) 0.50
(b) 0.05
(c) 0.95
(d) Approximate the actual p values for the data you presented in parts

(a), (b), and (c).
4. It has been claimed that the proportions of voters presently favoring

the Democratic, Republican, or Independent candidate in an upcoming
election are 40, 42, and 18 percent. To test this hypothesis, a random
sample of 50 voters yielded the following results:

Democrat Republican Independent

Number favoring 18 22 10

Is the claim consistent with the preceding data? Use the 5 percent level
of significance.

5. The following data come from a study of randomly selected automo-
bile accidents. It categorizes each accident by the weight of the car
involved and the severity of injury suffered by the driver.

Weight of car (pounds)

Injury Less than 2500 2500–3000 Greater than 3000

Very severe 34 22 8
Average 43 41 47
Moderate 51 60 50
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Test, at the 5 percent level of significance, the hypothesis that the
severity of injury and the weight of the car are independent.

6. A friend reported the following results when rolling a die 1000
times:

Outcome Frequency

1 167
2 165
3 167
4 166
5 167
6 168

Do you believe these results? Explain!
7. A random sample of 527 earthquakes in western Japan yielded

the following frequencies of occurrence at certain time periods in
a day:

Time period Frequency

12 a.m.–6 a.m. 123
6 a.m.–12 p.m. 135
12 p.m.–6 p.m. 141
6 p.m.–12 a.m. 128

Test the hypothesis that earthquakes are equally likely to occur in each
of the four time periods.

8. The following data give the number of murders, by day of the week, in
the state of Utah from 1978 through 1990:

Day Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Number 109 74 97 94 83 107 100

Test the hypothesis, at the 5 percent level, that a murder was equally
likely to occur on any of the 7 days of the week.

9. The following table gives the cumulative percentage distribution of
the heights of U.S. women residents aged 18 to 24 in the years 1976
through 1980:
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Height Women’s cumulative percentage

5 feet 0 inches 4.22
5 feet 3 inches 29.06
5 feet 5 inches 58.09
5 feet 7 inches 85.37
5 feet 8 inches 92.30

Source: U.S. National Center for Health Statistics, Vital and Health
Statistics, series 11, no. 238.

Thus, for instance, 4.22 percent of women in those years were less than
or equal to 5 feet 0 inches tall, 24.84 percent were larger than 5 feet 0
inches but less than or equal to 5 feet 3 inches in height, and so on.

Suppose that a random selection of 200 present-day women in the age
bracket of 18 to 24 resulted in 6 of them being less than 5 feet 0 inches,
42 of them being between 5 feet 0 inches and 5 feet 3 inches, 48 of
them being between 5 feet 3 inches and 5 feet 5 inches, 60 of them
being between 5 feet 5 inches and 5 feet 7 inches, 21 being between
5 feet 7 inches and 5 feet 8 inches, and the rest being taller than 5
feet 8 inches. Would these data imply that the height distribution has
changed? Use the 5 percent level of significance.

10. One of Mendel’s breeding experiments resulted in the following data:

Type of pea Expected Observed

Smooth yellow 313 315
Wrinkled yellow 104 101
Smooth green 104 108
Wrinkled green 35 32

Do you think such a good fit is “too good to be true”?
11. A public health clinic detailed the results of 260 elderly patients who

had been advised to have a flu vaccine. A total of 184 agreed to have
the vaccine, while the other 76 declined. The flu season results for
this group were as follows:

Vaccine No vaccine

Flu 10 6
No flu 174 70
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Does the data establish that those receiving the vaccine had a differ-
ent chance of contracting the flu from those not receiving the vaccine?
Use the 5 percent level of significance. If it does, check at the 1 percent
level of significance; if not, check at the 10 percent level.

12. A random sample of 262 married men in their fifties were classified
according to their education and number of children. The following
contingency table describes the data:

Number of children

Education 0–1 2–3 More than 3

Elementary 10 28 22
Secondary 19 63 38
College 14 41 27

Test the hypothesis that the size of a family is independent of the
educational level of the father. Use the 5 percent level of significance.

13. The following data relate a mother’s age and the birth weight (in
grams) of her child:

Birth weight (grams)

Mother’s age (years) Less than 2500 More than 2500

20 or less 12 50
Greater than 20 18 125

(a) Test the hypothesis, at the 5 percent level of significance, that the
baby’s birth weight is independent of the mother’s age.

(b) What is the p value?
14. Repeat Prob. 13 when the four data values are all doubled.
15. On a course evaluation form, students are asked to rank the course

as excellent, fair, or poor. In addition, students signify whether the
course is required or not for them. A random sample of 121 such
evaluations yielded the following data:

Rating

Excellent Average Poor

Required 14 42 18
Not required 12 28 7
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Test, at the 5 percent level, the hypothesis that course rating is
independent of whether the course is required. What about at the
1 percent level?

16. A class of 154 students in statistics meets in a room that can hold
250 students. Out of curiousity, the instructor categorized each stu-
dent by gender and seat location. Using the following data, test the
hypothesis that these characterizations are independent.

Front Middle Back

Females 22 40 18
Males 10 38 26

17. One might imagine that the first digits of numbers found in an almanac
would be equally likely to be 1 or 2 or . . . or 9. Make a random selection
of numbers from an almanac, and note the first digit of each. Use the
data to test the hypothesis that all nine digits are equally likely.

18. Repeat Prob. 17, this time using the second digit.
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CHAPTER 14

Nonparametric Hypotheses Tests

Man prefers to believe that which he prefers to be true.
Francis Bacon (Moral: You had better test your hypothesis)
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hypotheses concerning the median of the distribution. The signed-rank test for
testing that a population distribution is symmetric about 0 is introduced. We
present the rank-sum test for testing the equality of two population distribu-
tions. Finally, we study the runs test that can be used to test the hypothesis that
a sequence of 0s and 1s is a random sequence that does not follow any specified
pattern.

14.1 INTRODUCTION
Are we making the earth warmer? More precisely, are humans’ actions causing the
earth’s temperature to rise? Even though data appear to indicate that recent annual
average temperatures are among the highest ever recorded, this question is sur-
prisingly difficult to answer. One difficulty involves the change in the geographic
locations where measurements are taken over time. For instance, past tempera-
ture measurements were usually taken in relatively secluded rural regions, whereas
present-day measurements are usually taken near cities having many paved roads
(that tend to hold heat). This fact, in itself, will result in higher present-day
temperature readings. Another difficulty results from uncertainty concerning the
accuracy of measurements from long ago. In addition, there is the statistical ques-
tion as to whether higher present-day temperatures are due to some real change,
such as the burning of carbon-based products that might result in the trapping of
the sun’s energy in the earth’s atmosphere, or whether these higher readings are
just the chance fluctuations in random samples.

To get a handle on the statistical part of the problem, we want to be able to test
whether a data set of temperatures over time represents a random sample from
some fixed probability distribution, or whether the distribution of temperatures
is itself changing over time.

In considering this question—Is there a fixed underlying distribution of temper-
atures that is unchanging over time?—it is important to note that we are not
specifying in advance the form of this distribution. In particular, since there is
no à priori reason to believe that such an underlying distribution would necessar-
ily be a normal distribution, we certainly do not want to make that supposition.
Rather we need to develop a hypothesis test that is valid for any underlying type of
distribution. Hypotheses tests that can be used in situations where the underlying
distribution of the data is not required to have any particular form will be studied
in this chapter. Because the validity of these tests does not rest on the assump-
tion of any particular parametric form (such as normality) for the underlying
distribution, these tests are called nonparametric.

14.2 SIGN TEST
Consider a large population of elements, each of which has a measurable value.
Suppose that the distribution of population values is continuous and that we are
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interested in testing hypotheses concerning the median, or middle value, of this
distribution. If the population distribution is normal, then the median is equal to
the mean, and the methods of the previous chapters should be employed. How-
ever, we do not make the normality assumption here, but we present tests that
can be used for any continuous distribution.

Let η denote the median value of the population. That is, exactly half of the mem-
bers of the population have values less than η, and half have values greater than η.
Equivalently, if X is a randomly chosen member of the population, then

P{X < η} = P{X > η} = 1
2

Suppose now that we want to test the null hypothesis that the median is equal to
some given value m. To obtain a test of

H0: η = m

against

H1: η 
= m

let p denote the proportion of the entire population whose value is less than m.
That is,

p = P{X < m}

where X is a randomly chosen member of the population. Now if the null hypoth-
esis is true and m is indeed the median, then p will equal 1/2. On the other hand,
if m is not equal to the median, then p will not equal 1/2. Therefore, a test of
the hypothesis that the median is equal to m is equivalent to a test of the null
hypothesis

H0: p = 1
2

against the alternative

H1: p 
= 1
2

Thus we see that testing the hypothesis that the median is equal to m is equivalent
to testing whether a population proportion is equal to 1/2. This proportion is, of
course, equal to the proportion of the population whose value is less than m.

We can now make use of the results of Sec. 9.5.1 to obtain a test of the null
hypothesis H0 that the median of the population is equal to m. Namely, choose
a random sample of n elements of the population, and let TS denote the num-
ber of them having values less than m. Note that when H0 is true, TS will be a



650 CHAPTER 14: Nonparametric Hypotheses Tests

binomial random variable with parameters n and 1/2. The test is to reject the
null hypothesis if the value of TS is too large or too small. Specifically, if the
observed value of TS is i, then the significance-level-α test calls for rejecting H0 if
either

P{N ≥ i} ≤ α

2

or

P{N ≤ i} ≤ α

2

where N is a binomial random variable with parameters (n, 1/2). Figure 14.1
illustrates the test.

Because we have assumed that the population distribution is continuous, there
should not, in principle, be any data values exactly equal to m. However, since
measurements are recorded to the accuracy of the instrumentation used, this may
occur in practice. If there are values equal to m, they should be eliminated and the
value of n reduced accordingly.

In terms of the p value, the foregoing can be summed up as follows.

To test

H0: η = m against H1: η 
= m

choose a random sample. Discard any values equal to m. Let n be the number
of values that remain. Let the test statistic be the number of values that are less
than m. If there are i such values, then the p value is

p value = 2 Min(P{N ≤ i}, P{N ≥ i})

where N is a binomial random variable with parameters n and 1/2. The null
hypothesis is then rejected at all significance levels greater than or equal to the
p value and is not rejected otherwise.

FIGURE 14.1
A test of H0: η = m against H1: η 
= m.
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To find the p value, it is not necessary to compute both P{N ≤ i} and P{N ≥ i}.
Rather we only need to compute the smaller of these two probabilities. Since
E[N] = n/2, this will be P{N ≤ i} when i is small (compared to n/2) and P{N ≥ i}
when i is large (compared to n/2). When i is near n/2, no computations are nec-
essary since both probabilities are close to 1/2 and so the p value is near 1. Thus,
from a practical point of view, the p value can be expressed as

p value =
{

2P{N ≤ i} if i ≤ n
2

2P{N ≥ i} if i ≥ n
2

where N is binomial with parameters n and 1/2.

■ Example 14.1
The inventory ordering policy of a particular shoe store is partly based on the
belief that the median foot size of teenage boys is 10.25 inches. To test this
hypothesis, the foot size of each of a random sample of 50 boys was deter-
mined. Suppose that 36 boys had sizes in excess of 10.25 inches. Does this
disprove the hypothesis that the median size is 10.25?

Solution

Let N be a binomial random variable with parameters (50, 1/2). Since 36 is
larger than 50(1/2) = 25, we see that the p value is

p value = 2P{N ≥ 36}
We can now use either the normal approximation or Program 5-1 to explicitly
compute this probability. Since

E[N] = 50 × 1
2

= 25 Var(N) = 50 × 1
2

× 1
2

= 12.5

the normal approximation yields the following:

p value = 2P{N ≥ 36}
= 2P{N ≥ 35.5} (the continuity correction)

= 2P
{

N − 25√
12.5

≥ 35.5 − 25√
12.5

}

≈ 2P{Z ≥ 2.97}
= 0.0030 from Table D.1

(Program 5-1, which computes binomial probabilities, yields the exact value
0.0026.) Thus the belief that the median shoe size is 10.25 inches is rejected



652 CHAPTER 14: Nonparametric Hypotheses Tests

even at the 1 percent level of significance. There appears to be strong evidence
that the median shoe size is greater than 10.25. ■

Suppose X1, . . . , Xn are the n sample data values. Since the value of the test statistic
depends on only the signs, either positive or negative, of the values Xi − m, the
foregoing test is called the sign test.

14.2.1 Testing the Equality of Population Distributions
when Samples Are Paired

The sign test can also be used to compare two populations when there is a natural
pairing between the elements of their samples. We illustrate this by an example.

■ Example 14.2
An experiment was performed to see if two different sunscreen lotions, both
having sun protection factor 15, are equally effective. A group of 12 volunteers
exposed their backs to the sun for 1 hour in midday. Each volunteer had brand
A sunscreen on one side of his or her spine and brand B on the other side.
A measure of the amount of sunburn resulting on both sides of the spine was
then determined for each volunteer. If 10 of the volunteers had less of a burn
on the side receiving brand A sunscreen than on the side receiving brand B, can
we conclude that the brands are not equally effective?

Solution

In this example we can imagine that we have two different populations, the
population of backs receiving brand A sunscreen and the population receiving
brand B. The “paired” members of the two samples are the two sides of each
volunteer’s back. Now if the two sunscreens were equally effective, then the
median of the difference in sunburn of the two sides of a volunteer’s back would
equal 0. That is, just by chance, roughly half of the time brand A should perform
better than brand B, and vice versa. Thus, we can test for equality of effectiveness
by testing the hypothesis that the median of the difference between the brand
A and the brand B sunburn of each volunteer is equal to 0.

Since the number of differences whose value is negative is 10, which is greater
than 12(1/2) = 6, we obtain from the sign test that the p value is

p value = 2P{N ≥ 10}
where N is binomial with parameters (12, 1/2). Since

P{N ≥ 10} = P{N = 10} + P{N = 11} + P{N = 12}
= 12!

10! 2!

(1
2

)12 + 12!
11! 1!

(1
2

)12 + 12!
12! 0!

(1
2

)12

=
[

12 · 11
2 · 1

+ 12 + 1
](1

2

)12 = 79
4096
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we see that

p value = 158
4096

= 0.0386

Thus, the null hypothesis of equal effectiveness is rejected at any significance
level greater than or equal to 3.86 percent. (For instance, it is rejected at the 5,
but not the 1, percent level of significance.) ■

14.2.2 One-Sided Tests
We can also use the sign test to test one-sided hypotheses about a population
median. Suppose we want to test

H0: η ≤ m

against

H1: η > m

where η is the population median and m is some specified value. Again, let p
denote the proportion of the population whose values are less than m. Now if
the null hypothesis is true and so m is at least as large as η, then the proportion
of the population whose value is less than m is at least 1/2 (Fig. 14.2). Similarly,

FIGURE 14.2
P{X < m} < 1/2 if η > m P{X < m} = 1/2 if η = m P{X < m} > 1/2 if η < m.
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if the alternative hypothesis is true and so m is less than η, then the proportion
of the population whose value is less than m is less than 1/2 (see Fig. 14.2). Hence,
the preceding is equivalent to testing

H0: p ≥ 1
2

against

H1: p <
1
2

To use the sign test to test this one-sided hypothesis, choose a random sample
of n elements of the population. Suppose that i of them have values that are less
than m. The resulting p value is the probability that a value as small as or smaller
than i would have occurred by chance if each element had probability 1/2 of
being less than or equal to m. That is, letting N be a binomial random variable
with parameters (n, 1/2), we have

p value = P{N ≤ i}

■ Example 14.3
A bank has decided to build a branch office in a particular community if it can
be established that the median annual income of residents of the community
is greater than $40,000. To obtain information, a random sample of 80 fami-
lies were chosen, and the families were questioned about their income. Of the
80 families, 52 had annual incomes above and 28 had annual incomes below
$40,000. Is this information significant enough, at the 5 percent level of signifi-
cance, to establish that the median income in the community is greater than
$40,000?

Solution

We need to see if the data are sufficiently strong to reject the null hypothesis
when testing

H0: η ≤ 40 against H1: η > 40

If p is the proportion of families in the population with annual incomes below
$40,000, then this is equivalent to testing

H0: p ≥ 1
2

against H1: p <
1
2

Since 28 of the 80 sampled families have annual incomes below $40,000, the
p value of the data is

p value = P{N ≤ 28}
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where N is a binomial random variable with parameters (80, 1/2). Using
Program 5-1 (or the normal approximation) yields

p value = 0.0048

For such a low p value, the null hypothesis that the median income is less
than or equal to $40,000 is rejected, thus establishing that the median income
almost certainly exceeds this value. ■

A test of the one-sided null hypothesis that the median is at least m is similar to
the preceding. Thus the one-sided tests are as follows.

One-Sided Hypotheses Tests of the Median

To test either

H0: η ≤ m against H1: η > m (14.1)

or

H0: η ≥ m against H1: η < m (14.2)

choose a random sample from the population. Remove all values equal to m.
Suppose n remain. Let TS denote the number of data values that are less than m.
If TS is equal to i, then the p values are

p value = P{N ≤ i} in case (14.1)

p value = P{N ≥ i} in case (14.2)

where N is a binomial random variable with parameters n and 1/2.

PROBLEMS

1. The published figure for the median systolic blood pressure of middle-
aged men is 128. To determine if there has been any change in this
value, a random sample of 100 men have been selected. Test the
hypothesis that the median is equal to 128 if
(a) 60 men have readings above 128
(b) 70 men have readings above 128
(c) 80 men have readings above 128
In each case, determine the p value.

2. In 2001, the median household income for the state of Connecticut was
$52,758. A recent survey randomly sampled 250 households and discov-
ered that 42 percent had incomes below the 2001 median and 58 percent
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had incomes above it. Does this establish that the median household
income in Connecticut is no longer the same as in 2001? What is the
p value?

3. Fifty students at the police academy took target practice, using two dif-
ferent types of guns. Each student took half of her or his shots with the
less expensive gun and the other half with the more expensive gun.
If 29 students had higher scores with the less expensive gun, does this
establish that the two guns are not equally effective? Use the 5 percent
level of significance.

4. A dermatology clinic wants to compare the effectiveness of a new hand
cream and the one it presently recommends to patients suffering from
eczema. To gather information, half of its patients are told to put the
new skin cream on their left hand and the old cream on their right hand
each night for one week; the other half are told to put the new cream on
their right hand and the old one on their left. Each patient is examined
after one week. Suppose that for 60 percent of the patients the hand
receiving the new cream showed greater improvement than the one
receiving the old cream.

When the number of patients involved is equal to

(a) 10 (b) 20 (c) 50 (d) 100 (e) 500

do these data prove that the two creams are not equally effective? Use
the 5 percent level of significance. Also find the p value in each case.

5. A statistics instructor has made up an examination for a large class of
students. She wants the median score on the examination to be at least
72 and thinks that this test will enable her to reach her goal. To be cau-
tious, she has randomly chosen 13 students to take the examination
early. If their scores are

65, 79, 77, 90, 56, 60, 65, 80, 70, 69, 83, 69, 65

should the hypothesis that the median score will be at least 72 be
rejected? Use the 5 percent level of significance.

6. The median selling price of a home in a certain residential community
has been steady at $122,000 for the past 2 years. To determine if the
median price has increased, a random sample of 20 recently sold homes
were chosen. The selling prices of these homes were (in units of $1000)

144, 116, 125, 128, 96, 92, 163, 130, 120, 142, 155,
133, 110, 105, 136, 140, 124, 130, 88, 146

Are these data strong enough to establish that the median price has
increased? Use the 5 percent level of significance.
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7. To test the hypothesis that the median weight of 16-year-old females
from Los Angeles is at least 110 pounds, a random sample of 200 such
females were chosen. If 120 females weighed less than 110 pounds,
does this discredit the hypothesis? Use the 5 percent level of signifi-
cance. What is the p value?

8. In an attempt to prove that fish oil lowers blood cholesterol levels, a
nutritionist instructed 24 volunteers to take a certain fish oil supplement
for 3 months. After this time each volunteer had his or her blood choles-
terol level checked. Suppose that a comparison with their levels before
the beginning of the experiment showed that 16 of the 24 volunteers
experienced a reduction in cholesterol levels.

(a) What are the null and the alternative hypotheses?
(b) Is the null hypothesis rejected? Use the 5 percent level of signifi-

cance.
(c) What is the p value?

14.3 SIGNED-RANK TEST
In Sec. 14.2.1 we saw how the sign test could be used to test the null hypothesis
that two populations have the same distribution of values, when the data con-
sisted of paired samples. To test this hypothesis, we considered the differences of
the paired-sample values. We noted that if the null hypothesis were true, then the
median of these differences would be 0. The sign test was then used to test this
latter hypothesis.

The only information needed for the sign test of the equality of two population
distributions, when paired samples are used, is the number of times the first data
value in a pair is larger than the second. That is, the sign test does not require
the actual values of the data pairs, only knowledge of which is larger. However,
although it is easy to use, the sign test is not a particularly efficient test of the
null hypothesis that the population distributions are the same. For if this null
hypothesis is indeed true, then not only will the distribution of paired differences
have median zero but it will also have the stronger property of being symmetric
about zero. That is, for any number x it will be just as likely for the first value in
the pair to be larger than the second by the amount x as for the second value to be
larger than the first by this amount (see Fig. 14.3). The sign test, however, does not
check for symmetry of the distribution of differences, only that its median value
is equal to zero.

For instance, suppose that the data consist of 12 paired values whose differences
are as follows:

2, 5, −0.1, −0.4, −0.3, 9, 7, 8, 12, −0.5, −1, −0.6
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FIGURE 14.3
A density symmetric about 0. Areas of shaded regions are equal.

Since six of the differences are positive and six are negative, this data set is perfectly
consistent with the hypothesis that the median of the differences is 0. On the other
hand, since all the large values are on the positive side, the data do not appear to
be consistent with the hypothesis that their distribution is symmetric about 0.
Thus, it seems highly unlikely that the population distributions are equal.

Suppose again that we want to use data consisting of paired samples to test the
hypothesis that two population distributions are equal. We now present a test
that is more sensitive than the sign test. It is called the signed-rank test, and it
proceeds by testing whether the distribution of the differences of the paired values
is symmetric about 0.

Suppose that paired samples of size n are chosen from the two populations. Let Di

denote the difference between the first population value and the second popula-
tion value of the ith pair, for i = 1, . . . , n. Now order these n differences according
to their absolute values. That is, the first difference should be the value of Di hav-
ing smallest absolute value, and so on. The test statistic for the signed-rank test
is the sum of the ranks (or positions) of the negative numbers in the resulting
sequence.

■ Example 14.4
Suppose the data consist of the following four paired-sample values:

i Xi Yi

1 4.6 6.2
2 3.8 1.5
3 6.6 11.7
4 6.0 2.1
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The differences Xi − Yi are thus

−1.6, 2.3, −5.1, 3.9

Ordering these differences according to absolute value, from the smallest to the
largest, gives the following:

−1.6, 2.3, 3.9, −5.1

Since the ranks of the negative values are 1 and 4, the value of the signed-rank
test statistic is

TS = 1 + 4 = 5

In other words, since the ranked differences in positions 1 and 4 are negative,
TS = 1 + 4 = 5. ■

The signed-rank test is like the sign test, in that it considers those data pairs in
which the first population value is less than the second. But whereas the sign test
gives equal weight to each such pair, the signed-rank test gives larger weights to
the pairs whose differences are farthest from zero.

The signed-rank test calls for the rejection of the null hypothesis when we are
testing

H0: two population distributions are equal

against

H1: two population distributions are not equal

if the test statistic TS is either sufficiently large or sufficiently small. A large value
of TS indicates that the majority of the larger values of the differences have nega-
tive signs; whereas a small value indicates that the majority have positive signs.
Either situation would be evidence against the symmetry of the distribution of
differences and thus evidence against H0.

If the value of the test statistic is t, then the signed-rank test rejects H0 if either

P{TS ≤ t} ≤ α

2

or

P{TS ≥ t} ≤ α

2

Here, α is the level of significance, and the probabilities are to be computed under
the assumption that H0 is true. Equivalently, we have the following statement
concerning the p value.
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Suppose the value of TS is t. The p value of the signed-rank test is given by

p value = 2 Min(P{TS ≤ t}, P{TS ≥ t})
where the probabilities are to be determined under the assumption that H0 is true.

To be able to implement the signed-rank test, we need to be able to compute the
preceding probabilities. The key to accomplishing this is the fact than when H0

is true, and so the distribution of differences is symmetric about zero, each of the
differences is equally likely to be either positive or negative, independent of the
others. Program 14-1 makes use of this fact to explicitly determine the necessary
probabilities and the resulting p value. The inputs needed are the sample size n
and the value of the test statistic TS.

■ Example 14.5
A psychology instructor wanted to see if students would perform equally well
on two different examinations. He selected 12 students, who all agreed to take
part in the experiment. Six of the students were given examination A, and
the other six examination B. On the next day the students were tested on the
examination they had not yet taken. Thus, each of the 12 students took both
examinations. The following pairs of scores were obtained by the students on
the two examinations:

Student

Examination 1 2 3 4 5 6 7 8 9 10 11 12

A 763 419 586 920 881 758 262 332 717 909 940 835
B 797 404 576 855 762 707 195 341 728 817 947 849

Thus, for instance, student 3 scored 586 on examination A and 576 on test B.
The paired differences are as follows:

−34, 15, 10, 65, 119, 51, 67, −9, −11, 92, −7, −14

Ordering these in increasing order of their absolute values gives

−7, −9, 10, −11, −14, 15, −34, 51, 65, 67, 92, 119

Since the differences in positions 1, 2, 4, 5, and 7 are negative, the value of the
test statistic is

TS = 1 + 2 + 4 + 5 + 7 = 19
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To obtain the p value, we now run Program 14-1, which computes the p value
for the signed-rank test that a population distribution is symmetric about 0.
Our sample size is 12 and our observed value of the sum of signed ranks is 19.
The p value as computed by Program 14-1 is 0.1293945.

Thus, the p value is 0.129, and so the null hypothesis that the distributions of
student scores on the two examinations are identical cannot be rejected at the
10 percent level of significance. ■

By making use of the fact that the ordered differences are independent random
variables that are each equally likely to be either positive or negative, it can be
established that when H0 is true, the mean and variance of TS are given by,
respectively,

E[TS] = n(n + 1)

4

and

Var(TS) = n(n + 1)(2n + 1)

24

In addition, it can be shown that for moderately large values of n, TS will have
a distribution, when H0 is true, that is approximately normal with the preced-
ing mean and variance. These facts enable us to approximate the p value when
Program 14-1 is not available.

■ Example 14.6
Let us see how well the normal approximation of the p value works for the data
of Example 14.5. Since n = 12, we obtain from the preceding formulas that,
when H0 is true,

E[TS] = 12 · 13
4

= 39 Var(TS) = 12 · 13 · 25
24

= 162.5

The value of the test statistic is 19. Since this value is less than E[TS], it is clear
that P{TS ≤ 19} is smaller than P{TS ≥ 19}. Therefore,

p value = 2P{TS ≤ 19}
= 2P{TS ≤ 19.5} (continuity correction)

= 2P
{

TS − 39√
162.5

≤ 19.5 − 39√
162.5

}

≈ 2P{Z ≤ −1.530}
= 0.126
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Thus, the normal approximation yields an approximate p value that is quite
close to the actual p value of 0.129 given in Example 14.5. ■

A general rule of thumb is that the normal approximation to the p value will be
quite good provided that n, the number of paired-data values, is at least 25. (In
fact, this may be rather conservative, since in our example the approximation was
quite good and n was only equal to 12.)

■ Example 14.7
Suppose from a sample of 25 paired values the value of TS is 238. Assuming
that the distribution of differences is symmetric about 0, we see from the pre-
ceding formulas that

E[TS] = 25 · 26
4

= 162.5

√
Var(TS) =

√
25 · 26 · 51

24
= 37.165

The normal approximation to the p value is thus

p value = 2P{TS ≥ 238}
= 2P{TS ≥ 237.5}

= 2P
{

TS − 162.5
37.165

≥ 237.5 − 162.5
37.165

}

≈ 2P{Z ≥ 2.018}
= 0.0436

On the other hand, using Program 14-1 yields the exact p value:

p value = 0.0422

Thus, once again we see that the approximation is quite close to the exact
value. ■

14.3.1 Zero Differences and Ties
If a difference has value 0 (because its paired values are equal), then that data
value should be discarded and the value of n should be reduced by 1.

If some of the differences have the same absolute value, then the weight given to
a negative difference should be the average of the ranks of all the differences with
the same absolute value. For instance, if the differences are

−1, 3, 8, −3
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then the ordered differences are

−1, 3, −3, 8

Since there is a tie between the second and third differences, the value of the test
statistic is

TS = 1 + 2 + 3
2

= 3.5

Program 14-1 should not be used if there are any ties. Instead the normal
approximation should be employed.

Table 14.1 sums up the signed-rank test.

Table 14.1 Signed-Rank Test

It tests the hypothesis that two population distributions are equal by using paired samples,
where X1, . . . , Xn are the sample from the first population; Y1, . . . , Yn are the sample from the
second population; Xi and Yi are paired; and Di = Xi − Yi, i = 1, . . . , n.

To test

H0: distribution of Di is symmetric about 0

against

H1: distribution of Di is not symmetric about 0

first eliminate any Di equal to 0. Change the value of n to let it reflect the number of non-zero
differences. Take TS equal to the sum of the positions of the negative differences Di, when
the Di are ranked in increasing order of their absolute values. If two or more of the Di values
are equal, then they are each given a rank equal to the average of their ranks.

If TS = t, then

p value = 2 Min(P{TS ≤ t}, P{TS ≥ t})

where the probabilities are to be computed under the assumption that H0 is true. The prob-
ability can be approximated by using the fact than when H0 is true, TS is approximately a
normal random variable with mean and variance, respectively, given by

E[TS] = n(n + 1)

4
Var(TS) = n(n + 1)(2n + 1)

24

If there are no ties, then the exact p value can be obtained by running Program 14-1.
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PROBLEMS

1. Determine the value of the signed-rank test statistic if the differences
of paired values are as follows.
(a) −17, 33, 22, −8, 55, −41, −18, 40, 39, 14, −88, 99, 102, −5, 7
(b) 44, 2, 1, −0.4, −3, −13, 44, 50, 1.1, −2.2, 0.01, −4, −6.6
(c) 12, 15, 19, 8, −3, −7, −22, −55, 48, 31, 89, 92

2. Assuming that the difference of paired values has a distribution that is
symmetric about 0, determine the mean and variance for the signed-
rank test statistic for each of the parts of Prob. 1.

3. For each part of Prob. 1, find the p value of the hypothesis that the
distribution of the differences is symmetric about 0. Use the normal
approximation.

4. Compare the answers obtained in Prob. 3 with the exact p values given
by Program 14-1.

5. A history professor wondered if the student graders for her course
tended to take into account whether term papers were handwritten
or typed. As an experiment, the professor divided up 28 students into
14 pairs. Each pair of students was regarded by the professor to have
roughly the same abilities. The professor then assigned a project and
asked one member of each pair to turn in a handwritten report and
the other member to turn in a typed report. For each pair, the deci-
sion as to which student was asked for the handwritten report was
based on the flip of a coin. The grades given to the projects were as
follows:

Pair Handwritten Typed

1 83 88
2 75 91
3 75 72
4 60 70
5 72 80
6 55 65
7 94 90
8 85 89
9 78 85
10 96 93
11 80 86
12 75 79
13 66 64
14 55 68
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(a) Would you conclude that how the paper is presented, either typed
or handwritten, had an effect on the score given? Use the 5 percent
level of significance.

(b) What is the p value?
6. To test the effectiveness of sealants on reducing cavities, half the teeth

of 100 children were treated and the other half left untreated. After 6
months the difference between the number of cavities in the treated
and untreated teeth of each child was determined. The signed-rank
test statistic for these differences was 1830. Can we conclude, at the
5 percent level of significance, that sealants make a difference? What
about at the 1 percent level of significance?

7. A consumer organization wanted to determine whether automobile
repair shops were giving different estimates to women than to men.
It selected two cars having the identical defect and gave one to
a man and the other to a woman. Randomly choosing eight repair
shops, the organization had the man take his car to four of these
shops and the woman go to the other four. One week later they
repeated the process, with the man going to the shops previously visi-
ted by the woman, and vice versa. The dollar prices quoted were as
follows:

Price quoted Price quoted
Shop to man ($) to woman ($)

1 145 145
2 220 300
3 150 200
4 100 125
5 250 400
6 150 135
7 180 200
8 240 275

Test the hypothesis that the sex of the person bringing the car to the
repair shop does not affect the quoted price, using the
(a) Sign test
(b) Signed-rank test

8. Eleven patients having high albumin content in their blood are treated
with a medicine. The measured values of their albumin both before and
after the medication are as follows:
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Blood Content of Albumin (grams per 100 milliliters)

Patient Before medication After medication

1 5.04 4.82
2 5.16 5.20
3 4.75 4.30
4 5.25 5.06
5 4.80 5.38
6 5.10 4.89
7 6.05 5.22
8 5.27 4.69
9 4.77 4.52

10 4.86 4.72
11 6.14 6.26

(a) What is the value of the test statistic of the signed-rank test?
(b) What is the p value of the test that the treatment has no effect?

9. An engineer claims that painting the exterior of a particular aircraft
will affect its cruising speed. To check this claim, 10 aircraft just off the
assembly line were flown to determine cruising speed prior to paint-
ing, and they were flown again after being painted. The following data
resulted:

Cruising speed
(miles per hour)

Aircraft No paint Paint

1 426.1 416.7
2 438.5 431.0
3 440.6 442.6
4 418.5 423.6
5 441.2 447.5
6 427.5 423.9
7 412.2 412.8
8 421.0 419.8
9 434.7 424.1

10 411.9 418.7

Do the data establish that the engineer is correct? Use the 5 percent
level of significance.

10. Let X1, . . . , Xn be a random sample of data from a certain population.
Suppose we want to test the hypothesis that data from this population
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are symmetric about some value v. Explain how we could accomplish
this by using the signed-rank test. (Hint: Let Di = Xi − v.)

14.4 RANK-SUM TEST FOR COMPARING TWO
POPULATIONS

Consider two populations having a certain measurable characteristic, and suppose
we are interested in testing the hypothesis that the two population distributions of
this characteristic are the same. To test this hypothesis, suppose that independent
samples of sizes n and m are drawn from the two populations.

If we were willing to assume that the underlying probability distributions were
both normal, then we would apply the two-sample tests developed in Chap. 10.
However, instead we will develop a nonparametric test that does not require the
assumption of normality.

To begin, rank the n + m data values from the two samples from smallest to largest.
That is, give rank 1 to the smallest data value, rank 2 to the second smallest, and
so on. For the time being we will assume that the n + m values are all distinct,
so there are no ties. Designate one of the samples (it makes no difference which
one) as the first sample. The test we will consider makes use of the test statistic TS,
defined to equal the sum of the ranks of the first sample. That is,

TS = sum of ranks of data in first sample

■ Example 14.8
To determine if reflex reaction time is age dependent, a sample of eight
20-year-old men and an independent sample of nine 50-year-old men were
chosen. The following represents their reaction times (in seconds) to a given
stimulus.

20-year-olds: 4.22, 5.13, 1.80, 3.34, 2.72, 2.80, 4.33, 3.60

50-year-olds: 5.42, 3.39, 2.55, 4.45, 5.55, 4.96, 5.88, 6.30, 5.10

Putting these 17 values in increasing order gives the following:

1.80, ∗ 2.55, 2.72, ∗ 2.80, ∗ 3.34, ∗ 3.39, 3.60, ∗ 4.22, ∗ 4.33, ∗

4.45, 4.96, 5.10, 5.13, ∗5.42, 5.55, 5.88, 6.30

We have put a star next to the data values that come from the 20-year-olds
(which we are taking to be the first sample). Hence, the value of the sum of the
ranks of the first sample is

TS = 1 + 3 + 4 + 5 + 7 + 8 + 9 + 13 = 50 ■
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Let H0 be the hypothesis that the two population distributions are identical, and
suppose that the value of the test statistic TS is t. Since we want to reject H0 if the
value of TS is either significantly large or significantly small, it follows that the
significance-level-α test will call for rejection of H0 if either

P{TS ≤ t} ≤ α

2

or

P{TS ≥ t} ≤ α

2

where both of the preceding probabilities are to be computed under the assump-
tion that H0 is true. In other words, the null hypothesis will be rejected if the sum
of the ranks from the first sample is either too small or too large to be explained by
chance. As a result, it follows that the significance-level-α test will call for rejection
of H0 if the p value of the data set, given by

p value = 2 Min(P{TS ≤ t}, P{TS ≥ t})
is less than or equal to α.

To determine the probabilities, we need to know the distribution of TS when H0

is true. To begin, suppose that the first sample is the one of size n. Now, when
H0 is true and so all the n + m data values come from the same distribution, it
follows that the set of ranks of the first sample will have the same distribution
as a random selection of n of the values 1, 2, . . . , n + m. Using this, we can show
that when H0 is true, the mean and variance of TS are given by the following
formulas.

When H0 is true,

E[TS] = n(n + m + 1)

2

Var(TS) = nm(n + m + 1)

12

In addition, it can be shown that when n and m are both of at least moderate
size (both being larger than 7 should suffice), TS will, when H0 is true, have an
approximately normal distribution. Hence, if the sample sizes are not too small, it
follows that TS will be approximately normal with a mean and variance as stated
in the preceding.
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■ Example 14.9
In Example 14.8, n = 8, m = 9, and the value of the sum of the ranks of the
first sample was TS = 50. Now,

E[TS] = n(n + m + 1)

2
= 72 Var(TS) = nm(n + m + 1)

12
= 108

Since the observed value of TS was less than its mean, we have

p value = 2P{TS ≤ 50}
= 2P{TS ≤ 50.5}

= 2P
{

TS − 72√
108

≤ 50.5 − 72√
108

}

≈ 2P{Z ≤ −2.069}
= 0.0385

Therefore, the null hypothesis that the two population distributions are iden-
tical would be rejected at the 5 percent level of significance. ■

If there are any ties, then the rank of a data value should be the average of the ranks
of all those with the same value. For instance, if the first-sample data are 2, 4, 4,
6 and the second-sample data are 5, 6, 7, then the sum of the ranks of the data
of sample 1 is 1 + 2.5 + 2.5 + 5.5 = 11.5. The test should then be run exactly
as before. (It turns out that the possibility of ties has the effect of reducing the
variance of TS when the null hypothesis is true. As a result, the p value previously
given will be larger than the actual p value that takes into account the tied values.
In consequence, the test presented will be conservative, in that whenever ties are
present and it calls for rejection, then a more sophisticated test that takes the ties
into account will also call for rejection of the null hypothesis.)

Statistics in Perspective

The test developed in this section is called the two-sample rank-sum test. Aside from
the sign test, which goes back to Arbuthnot in 1710 (see Sec. 9.5), it was one of the
first nonparametric tests to be developed. It was jointly and independently discov-
ered in the mid-1940s by Wilcoxon and the team of Mann and Whitney. Because
of this, the test is sometimes called the Wilcoxon sum-of-ranks test and sometimes
the Mann–Whitney test. The publications of Wilcoxon and Mann–Whitney were
the beginning of a wave of research on nonparametric tests, one that has not yet
abated.
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■ Example 14.10
In an attempt to determine if the vocabulary skills of two different students are
similar, an English teacher had each of them write a short essay on the same
topic. The teacher then counted the number of times each student used words
having four or more letters. The following data resulted:

Number of words
used having i letters

i Student 1 Student 2

4 44 49
5 16 11
6 8 5
7 7 4
8 4 1
9 2 1

10 3 0

Thus, for instance, 8 out of the 84 words (having four or more letters) written
by student 1 and 5 of the 71 words used by student 2 were six-letter words. Use
these data to test the hypothesis that the word-length frequency distributions
of the two students are the same.

Solution

The data consist of one sample of 84 words and another sample of 71 words.
Since in the combined samples of 155 words the data value 4 appears 93 times,
each of these 93 data values is given a rank equal to the average of the rank
numbers 1 through 93. That is, each is given rank

1 + 2 + · · · + 93
93

= 1 + 93
2

= 47

Also, since the next-smallest data value (the value 5) occurs 27 times, each of
these values shares the ranks from 94 through 120. Therefore, each of the data
values 5 is given rank

94 + 120
2

= 107

Similarly, the data values 6, 7, 8, 9, and 10 are given rank values as follows:

Data value 4 5 6 7 8 9 10

Rank 47 107 127 139 147 151 154
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The sum of the ranks of the sample of 71 words has value

TS = 47 × 49 + 107 × 11 + 127 × 5 + 139 × 4 + 147 + 151 = 4969

Since n = 71 and m = 84, we see that

n(n + m + 1)

2
= 5538

nm(n + m + 1)

12
= 77,532

Thus, the approximate p value is

p value = 2P{TS ≤ 4969}
= 2P{TS ≤ 4969.5}

= 2P
{

TS − 5538√
77,532

≤ 4969.5 − 5538√
77,532

}

≈ 2P{Z ≤ −2.04}
= 0.041

and so the hypothesis that the word-length distributions of the two students
are identical is rejected at the 5 percent level of significance. ■

In cases where the sample sizes are not large, say, when either is less than 8, we can
no longer assume that the distribution of the sum of the ranks is approximately
normal. However, we can still employ the rank-sum test by directly computing
the exact p value. To do so, we use the fact that when H0 is true, the set of ranks
of the first sample has the same distribution as a random selection of n of the
values 1, 2, . . . , n + m. By using this, it is possible (with the help of a computer) to
explicitly determine the p value. Program 14-2 computes the exact p value for the
rank-sum test. The inputs needed are the sizes of the first and second samples and
the sum of the ranks of the elements of the first sample. Whereas either sample can
be designated as the first sample, the program will run fastest if the first sample is
the one whose sum of ranks is smaller. In addition, since this program implicitly
assumes there are no ties, it can be used only when the value of TS is an integer.

Historical Perspective
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The use of statistical techniques to make literary comparisons goes back a long
way. In 1901, Thomas Mendenhall, who had been a professor of physics at Ohio
State University, published a comparison of the frequencies of the number of
letters in the words used by Shakespeare and other authors. Mendenhall noted
that nearly all Shakespeare’s plays had approximately the same frequency distri-
bution. He showed that Shakespeare used a higher proportion of words with one,
two, four, or five letters and a lesser proportion of the others when compared
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with either Dickens or Thackeray. Francis Bacon’s distribution was also found to
be quite different from Shakespeare’s. Excitement was stirred, however, because
an analysis of the plays of Christopher Marlowe produced a word-size frequency
distribution almost identical to that of Shakespeare’s.

More recently, statistical analysis has been employed to decide the authorship of
12 Federalist papers. These papers, consisting of 77 letters, appeared anonymously
in New York State newspapers between 1787 and 1788. The letters tried to per-
suade the citizens of New York to ratify the Constitution. Although it was generally
known that the authors of the papers were Alexander Hamilton, John Jay, and
James Madison, it was not known which of them was responsible for each spe-
cific paper. As of 1964, authorship of most of the papers had been determined.
However, a long-standing dispute remained concerning the authorship of 12 of
them. In a book published in 1964, Harvard statisticians Frederic Mosteller and
David Wallace used a statistical analysis to conclude that all 12 papers had been
written by Madison alone. Their analysis considered such things as the frequency
distributions of each author’s use of such words as by, from, to, and upon.

■ Example 14.11
Let us reconsider Example 14.9, this time using Program 14-2 to compute the
p value. This program runs best if you designate the sample having the smaller
sum of ranks as the first sample. The size of the first sample is 8. The size of
the second sample is 9. The sum of the ranks of the first sample is 50. Program
14-2 computes the p value as 3.595229E-02.

Thus the exact p value is 0.0359, which is reasonably close to the appro-
ximate value of 0.0385 obtained by using the normal approximation in
Example 14.9. ■

14.4.1 Comparing Nonparametric Tests with Tests that
Assume Normal Distributions

The strength of nonparametric tests is that they can be used without making
any assumptions about the form of the underlying distributions. The price that
one pays for using a nonparametric test is that it will not be as effective in cases
where the distributions are normal or approximately normal as would a test that
starts out by assuming normality. Somewhat surprisingly, the loss in effectiveness
is relatively small. For instance, it can be shown that when sample sizes n and
m are large, the efficiency of the nonparametric rank-sum test is approximately
95 percent of that of the two-sample t test when the distributions are indeed nor-
mal. By this, we loosely mean that when the population distributions are normal
but unequal, then the chance of rejection with the nonparametric test with sam-
ples of size n is roughly the same as with the normal-based t test with samples
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of size 0.95n. This is an impressive result, and it might easily lead one to con-
clude that the nonparametric test is superior if one is not absolutely certain that
the distributions are close to normal. For if the distributions are not normal,
then the normal test is based on a false assumption; and even if the distributions
are normal, the nonparametric one is almost as good. However, even when the
underlying distributions are not normal, the normal test will be a good one when
sample sizes n and m are large. This is so because this test is based on a test statis-
tic that will be approximately normal even when the population distributions are
not. We can thus conclude that, for large sample sizes, the normal-based t test will
be an effective test.

Probably the best we can say is that if one is not certain that the underlying dis-
tribution is at least approximately normal, then for moderate sample sizes the
rank-sum nonparametric test is preferred to the two-sample t test. On the other
hand, in cases of large sample sizes, either test type can be used. A key difference,
however, that can be useful in deciding which type of test to use is that the t test
is designed to detect differences in the population means, whereas the rank-sum
test is designed to detect any difference in the population distributions.

PROBLEMS

1. The following data are from independent samples from two popula-
tions.

Sample 1: 142, 155, 237, 244, 202, 111, 326, 334, 350, 247

Sample 2: 212, 277, 175, 138, 341, 255, 303, 188

(a) Determine the sum of the ranks of the data from sample 1.
(b) Determine the sum of the ranks of the data from sample 2.

2. There is an algebraic identity stating that the sum of the first k positive
integers is equal to k(k + 1)/2. That is,

k∑
i=1

i = k(k + 1)

2

Use this identity to determine the relationship between the sum of the
ranks of the sample of size n and the sum of the ranks of the sample of
size m. Use the results of Prob. 1 to check your result. Assume that all
n + m data values are different.

3. A study was carried out to determine if educational opportunities in
rural and urban California counties are the same. Two counties of
roughly the same socioeconomic makeup, one in an urban area and the
other in a rural area, were chosen. The Scholastic Aptitude Test (SAT)
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scores of a random sample of high school graduates were obtained in
both counties. The results were as follows:

Rural Urban

544 610
567 498
475 505
658 711
590 545
602 613
571 509
502 514
578 609

Find the p value of the test of the hypothesis that the distributions of
scores in both counties are identical. Use the normal approximation.

4. A group of 16 volunteers were randomly divided into two subgroups
of 8 each. Members of the first subgroup were given daily tablets con-
taining 5 grams of vitamin C, and members of the second subgroup
were given a placebo. After 1 month the blood cholesterol levels of
the 16 individuals were measured and compared with their levels at
the beginning of the experiment. The reductions in blood cholesterol
levels for the two subgroups were as follows:

Vitamin C Placebo

6 9
12 −3
14 0
2 −1
7 5
7 3
1 −4
8 −1

Test the null hypothesis, at the 5 percent level of significance, that
vitamin C and the placebo are equally effective in reducing cholesterol.
Assume that the distribution of the test statistic is approximately nor-
mal when the null hypothesis is true. (A negative data value means
that the blood cholesterol level increased. For instance, the data value
−4 indicates an increase of 4 in the blood cholesterol reading.)
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5. A study was conducted to test the hypothesis that the starting salary
distribution of seniors graduating from Stanford University with a
degree in Computer Science (CS) was the same as the one for CS grad-
uates of the University of California at Berkeley. A random sample of
recently graduating students yielded the following yearly salaries (in
units of $1000):

Stanford Berkeley

57.8 52.6
60.4 56.6
71.2 61.0
52.5 47.9
68.0 55.0
69.6 62.5
70.0 66.4
54.0 57.5
48.8 56.5
57.6 49.8

What conclusion would you draw at the 5 percent level of significance?
6. An experiment designed to determine the effectiveness of vitamin B1

in stimulating the growth of mushrooms was performed. The vitamin
was applied to 9 mushrooms, selected at random from a set of 17. The
remaining 8 mushrooms were left untreated. The weights (in grams)
of all 17 mushrooms at the end of the experiment were as follows:

Untreated mushrooms: 18, 12.4, 13.5, 14.6, 24, 21, 23, 17.5

Vitamin B1 mushrooms: 34, 27, 21.2, 29, 20.5, 19.6, 28, 33, 19

Test, at the 5 percent level, the hypothesis that the vitamin B1 treat-
ment had no effect.

7. Twenty-four workers were randomly divided into two sets of 12 each.
Each set of workers was put through a 2-week training program. How-
ever, the first set of workers spent an additional day on “motivational”
material. At the end of the training session the workers were given a
series of tests and then ranked according to their performances. If the
sum of the ranks of the workers who went through the motivational
material was 136, what is the p value of the test of the hypothesis that
the motivational material has no effect?

8. Use Program 14-2 to find the exact p value in Prob. 4.
9. Use Program 14-2 to find the exact p value in Prob. 5.

10. Redo Prob. 1 in Sec. 10.4, this time using a nonparametric test.
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14.5 RUNS TEST FOR RANDOMNESS
A basic assumption in much of data analysis is that a set of data constitutes a
random sample from some population. However, sometimes the data set is not
actually a random sample from a population but rather is one that has some
internal pattern. For instance, the data might tend to be increasing or decreas-
ing over time, or they may follow some cyclical pattern where they increase and
then decrease in a cyclic manner (see Fig. 14.4). In this section we will develop a
test of the hypothesis that a given data set constitutes a random sample.

To test the hypothesis that a given sequence of data values constitutes a random
sample, suppose initially that each datum can take on only two possible values,
which we designate 0 and 1. Consider any data set of 0s and 1s, and call any
consecutive sequence of either 0s or 1s a run. For instance, the data set

0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0

contains a total of nine runs: 5 runs of 0s and four runs of 1s. The first run consists
of the single value 0; the next run consists of the three values 1, 1, 1; the next one
consists of the two values 0, 0; and so on.

Suppose that the data set consists of a total of n + m values, of which n are equal
to 1 and m are equal to 0. Let R denote the number of runs in the data set. Now
if the data set were a random sample from some population, then all possible
orderings of the n + m values (consisting of n 1s and m 0s) would be equally
likely. By using this result it is possible to determine the probability distribution
of R and thus to test the null hypothesis H0 that the data set is a random sample
by rejecting H0 if the value of R is either too small or too large to be explained by
chance. Specifically, if the value of R is r, then the significance-level-α test calls for

FIGURE 14.4
Nonrandom data sets.
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rejecting H0 if either

P{R ≤ r} ≤ α

2

or

P{R ≥ r} ≤ α

2

where these probabilities are computed under the assumption that the null
hypothesis is true. The resulting test is called the runs test.

We can also perform the runs test by observing the value of R, say it is r, and then
calculating the resulting p value:

p value = 2 Min(P{R ≤ r}, P{R ≥ r})

Program 14-3 determines this p value by calculating the relevant probabilities.

■ Example 14.12
The following are the outcomes of the last 24 games played by a local softball
team. The letter W signifies a win and L a loss.

W , L, L, L, W , L, L, W , L, L, W , L, L, W , L, W , L, L, L, L, W , L, W , L

Is this data set consistent with randomness?

Solution

To test the hypothesis of randomness, note that the data set of 8 W ’s and
16 L’s contains a total of 16 runs. To see whether this justifies a rejection of
the hypothesis of randomness, we run Program 14-3.

The number of ones is 8. The number of zeros is 16. The number of runs is 16.
The p value as computed by Program 14-3 is 0.052497.

Thus, since the p value is 0.0525, it follows that the hypothesis of randomness
cannot be rejected at the 5 percent level of significance. That is, although the
evidence of the data is against the hypothesis of randomness, it is not quite
strong enough to cause us to reject that hypothesis at the 5 percent level of
significance. ■

If Program 14-3 is not readily available to be run, then we can obtain an approxi-
mate p value by making use of a result that states that when the null hypothesis is
true, R will have an approximately normal distribution with mean and variance



678 CHAPTER 14: Nonparametric Hypotheses Tests

given, respectively, by

μ = 2nm
n + m

+ 1

and

σ 2 = 2nm(2nm − n − m)

(n + m)2(n + m − 1)

This will lead to a good approximation for the distribution of R provided that n
and m, the numbers of 1s and 0s in the data set, are both of at least moderate size.
(Both being at least 20 should suffice.)

If we observe a total of r runs, then the p value is given by

p value = 2 Min(P{R ≤ r}, P{R ≥ r})

We can now use the preceding normal approximation to compute the relevant
probability concerning R.

■ Example 14.13
Let us repeat Example 14.12, this time determining the approximate p value
by using the preceding normal approximation. Since n = 8 and m = 16, we
see that

μ = 2 · 8 · 16
24

+ 1 = 11.667

σ 2 = 256(256 − 24)

24 · 24 · 23
= 4.4831

Since there are a total of 16 runs, the p value is given by

p value = 2 Min(P{R ≤ 16}, P{R ≥ 16})

Since E[R] = 11.667 is less than 16, it follows that P{R ≥ 16} is smaller than
P{R ≤ 16}. Thus,

p value = 2P{R ≥ 16}
= 2P{R ≥ 15.5} (continuity correction)

= 2P
{

R − 11.667√
4.4831

≥ 15.5 − 11.667√
4.4831

}

≈ 2P{Z ≥ 1.81}
= 0.07
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Since this approximate p value is greater than 0.05, the null hypothesis is not
rejected at the 5 percent level of significance. Therefore, the approximate p value
leads us to the same conclusion, at the 5 percent level of significance, as does
the exact p value. However, the approximate value of 0.07 is not that close to
the actual p value of 0.0525. Of course, in this example, the values of n and m
(namely, 8 and 16) do not meet the rule of thumb that both should be at least
20 for the approximation to be accurate. ■

■ Example 14.14
Consider a sequence that contains 20 zeros and 20 ones. Suppose that there are
27 runs in this sequence. Compare the actual p value of the test of the hypoth-
esis that the sequence is random with the approximate p value obtained by
using the normal approximation.

Solution

Let us start with the normal approximation. Since n = m = 20, the mean and
standard deviation of the number of runs are, respectively,

μ = 2 · 20 · 20
40

+ 1 = 21 σ =
√

2 · 20 · 20 · 760
40 · 40 · 39

= 3.121

Therefore, since the observed number of runs is 27, the normal approximation
gives the following:

p value = P{R ≥ 27}
= 2P{R ≥ 26.5}

= 2P
{

R − 21
3.121

≥ 26.5 − 21
3.121

}

≈ 2P{Z ≥ 1.762}
= 0.078

On the other hand, running Program 14-3 gives the exact p value:

The number of ones is 20. The number of zeros is 20. The number of runs is 27.
The p value is computed by program 14-3 as 0.075996.

Therefore, in this example (where both n and m are equal to 20) the approxi-
mate p value of 0.078 is quite close to the actual p value of 0.076. ■

We can also use the runs test to test for randomness when the sequence of data
values does not comprise just 0s and 1s. To test whether a given sequence of data
X1, X2, . . . , Xn constitutes a random sample from some population, let sm denote
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the sample median of this data set. Now, for each data value determine whether
it is less than or equal to sm or whether it is greater than sm. Put a 0 in position i if
Xi is less than or equal to sm, and put a 1 otherwise. If the original data set consti-
tuted a random sample from some distribution, then the sequence of 0s and 1s
will also constitute a random sample. Therefore, we can test whether the original
data set is a random sample by using the runs test on the resulting sequence of
0s and 1s.

■ Example 14.15
The average summer temperatures in degrees Fahrenheit for 20 successive years
from 1971 to 1990 in a given west coast city are

72, 71, 70, 82, 80, 77, 71, 85, 75, 80, 82, 81, 83, 82, 85, 86, 83, 81, 82, 84

Test the hypothesis that the data constitute a random sample.

Solution

The sample median m is the average of the 10th and the 11th smallest values.
Therefore,

sm = 81 + 82
2

= 81.5

The data of 0s and 1s that indicate whether each value is less than or equal to
or greater than 81.5 are as follows:

0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1

Thus, the sequence of 0s and 1s consists of 10 of each and has a total of 10
runs. To determine if this value is significantly greater or larger than could be
expected by chance if the data were truly random, we run Program 14-3.

The number of ones is 10. The number of zeros is 10. The number of runs is 10.
The p value is computed as 0.8281409.

For such a large p value, the hypothesis of randomness is not rejected. That is,
the data give no evidence of not being a random sample.

If we had used the normal approximation, then we would have first computed
μ and σ , the null hypothesis mean and standard deviation of the total number
of runs. Since n = m = 10,

μ = 200
20

+ 1 = 11 σ =
√

200(180)

400 · 19
= 2.176
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Since the observed number of runs is 10, the p value given by the normal
approximation is

p value = 2P{R ≤ 10}
= 2P{R ≤ 10.5}

= 2P
{

R − 11
2.176

≤ 10.5 − 11
2.176

}

≈ 2P{Z ≤ −0.23}
= 0.818

Thus, the normal approximation is quite accurate in this example. ■

■ Example 14.16
The following are the successive numbers of points scored by a certain high
school basketball team in the 23 games it played in the 1994–1995 season. Is
it reasonable to suppose that the scores constitute a random sample?

77, 62, 58, 64, 66, 72, 59, 69, 80, 74, 72, 69, 74, 83, 85, 87, 80, 88, 76,

77, 82, 85, 83

Solution

The sample median is the 12th-smallest score, namely, 76. The sequence of 0s
and 1s indicating whether each value is less than or equal to or greater than 76
is as follows:

1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1

Thus, this sequence consists of twelve 0s and eleven 1s, and has seven runs.
From Program 14-3, we see that the p value = 0.02997, and thus the hypothesis
that the data constitute a random sample is rejected at the 5 percent level of
significance. ■

PROBLEMS

Unless otherwise stated, use either Program 14-3 or the normal approxima-
tion, whichever is more convenient, in answering the following questions.

1. Suppose a sequence of 0s and 1s contains twenty 0s and thirty 1s. Let R
denote the total number of runs. What are the (a) largest and (b) smallest
possible values of R?
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2. Determine the number of runs for the following data sets of 0s and 1s.
(a) 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1
(b) 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1
(c) 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0

3. The following data relate to the acceptability of the 26 most recently
produced watches at a Swiss watch factory. The value 1 signifies that
the watch is acceptable and the value 0 that it is unacceptable.

1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1

Test the hypothesis, at the 5 percent level of significance, that the data
constitute a random sample.

4. A production run of 60 items resulted in 12 defectives. The defectives
are item numbers 9, 14, 15, 26, 30, 36, 37, 44, 45, 46, 59, and 60.
(a) What is the value of R, the total number of runs?
(b) Can we conclude, at the 5 percent level of significance, that the

successive items do not constitute a random sample?
5. A total of 25 people, 10 of whom are women, are to be interviewed. The

interviewer is told to interview them in a randomly chosen order. Sup-
pose that the sequence of sexes of the successively interviewed people
is as follows:

F F M F F F F M M F F M F F M M M M M M M M M M M

Did the interviewer follow instructions? Explain, and give the relevant
p value.

6. Over the last 50 days the Dow Jones industrial average increased on 32
days and decreased on the other 18 days. If the total number of runs
(of increasing or decreasing Dow Jones average) was 22, what is the
p value of the test of the hypothesis that the increases and decreases
constituted a random sample?

7. The lifetimes, in hours, of 30 successively produced storage batteries
are as follows:

148, 152, 155, 147, 176, 170, 165, 149, 138, 155, 160, 153, 162, 155, 159,

174, 168, 149, 182, 177, 191, 185, 178, 176, 182, 184, 181, 177, 160, 154

(a) What is the sample median?
(b) What is the value of R, the number of runs in the corresponding data

that details for each data value whether it is less than (or equal to)
or greater than the sample median?

(c) Do these data disprove the hypothesis that the sequence of values
constitutes a random sample?
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8. The following data represent end-of-year Dow Jones averages for a
sequence of 10 consecutive years:

910, 890, 1010, 1033, 1080, 1275, 1288, 1553, 1980, 2702

Test the hypothesis, at the 5 percent level of significance, that these
data can be thought of as constituting a random sample.

14.6 TESTING THE EQUALITY OF MULTIPLE
PROBABILITY DISTRIBUTIONS

Whereas in Section 14.4 we showed how to test the hypothesis that population
distributions are identical when there are two such populations, we are sometimes
faced with the situation where there are more than two populations. So suppose
there are k populations and that Fi is the distribution function of some measur-
able value of the elements of population i. We are interested in testing the null
hypothesis

H0: F1 = F2 = · · · = Fk

against the alternative

H1: not all of the Fi are equal

To test the null hypothesis, suppose that independent samples are drawn from
each of the k populations. Let ni denote the size of the sample chosen from popu-
lation i, i = 1, . . . , k, and let N = ∑k

i=1 ni denote the total number of data values
obtained. Now rank these N data values from smallest to largest, and let Ri denote
the sum of the ranks of the ni data values from population i, i = 1, . . . , k.

Noting that when H0 is true, the rank of any individual data value is equally likely
to be any of the ranks 1, 2, . . . , N, it follows that the expected rank of any individ-
ual data is 1+2+···+N

N = N+1
2 . Consequently, with n̄ = N+1

2 , it follows that when
H0 is true the expected value of the sum of the ranks of the ni data values from
population i is ni(N + 1)/2 = nin̄. That is, if Ri is the sum of the ranks of the ni

data values from population i then, when H0 is true,

E[Ri] = nin̄

Drawing our inspiration from the goodness-of-fit test, let us consider the test
statistic

T =
k∑

i=1

(Ri − nin̄)2

nin̄
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and use a test that rejects the null hypothesis when T is large. Now,

T = 1
n̄

k∑
i=1

(
R2

i − 2Rinin̄ + n2
i n̄2

ni

)

= 1
n̄

k∑
i=1

R2
i

ni
− 2

k∑
i=1

Ri + n̄
k∑

i=1

ni

= 1
n̄

k∑
i=1

R2
i

ni
− 2

k∑
i=1

Ri + Nn̄

Because
∑k

i=1 Ri is the sum of the ranks of all N data values,

k∑
i=1

Ri = 1 + 2 + · · · + N = N(N + 1)

2
= Nn̄

and so

T = 1
n̄

k∑
i=1

R2
i

ni
− Nn̄

Hence, rejecting H0 when T is large is equivalent to rejecting H0 when
∑k

i=1 R2
i /ni

is large. So, we might as well let the test statistic be

TS =
k∑

i=1

R2
i

ni

To determine the appropriate significance-level-α test, we need the distribution of
TS when H0 is true. While its exact distribution is rather complicated, we can use
the result that, when H0 is true and all ni are at least 5, the distribution of

12
N(N + 1)

TS − 3(N + 1)

is approximately that of a chi-squared random variable with k − 1 degrees of free-
dom. Using this, we thus see an approximate significance-level-α test of the null
hypothesis that all distributions are identical is to

reject H0 if
12

N(N + 1)
TS − 3(N + 1) ≥ χ2

k−1,α

The preceding is known as the Kruskal-Wallis test.

■ Example 14.17
Suppose that 10 experts are to analyze three different wines, giving numerical
scores ranging from 0 (terrible wine) to 10 (exceptional wine) to each wine. Use
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the resulting scores given below to test, at the 5 percent level of significance, the
null hypothesis that the wines are of identical quality.

Numerical Scores given to
Wines A, B, C by Ten Experts

A B C

7.21 6.04 6.42
6.60 6.26 4.80
6.22 7.44 7.05
7.38 8.02 5.84
8.20 6.91 7.13
7.07 6.65 6.54
6.72 7.11 7.04
5.89 7.15 5.22
9.02 6.61 6.83
6.88 7.29 7.08

Solution

Ordering the 30 rankings gives that the sum of the ranks of wines A, B, and
C are

RA = 176, RB = 175, RC = 114

yielding that

12
N(N + 1)

TS − 3(N + 1) = 12
30(31)

(176)2 + (175)2 + (114)2

10
− 93 = 3.254

Because χ2
2,.05 = 5.99 it follows that the null hypothesis can not be rejected.

Indeed, the resulting p value is

p value ≈ P
{
χ2

2 > 3.254
} = .1965 ■

14.6.1 When the Data Are a Set of Comparison Rankings
Before giving the general problem, let us illustrate by again considering
Example 14.17. However, suppose now that the 10 wine experts each compare
and rank the 3 wines, with each expert ranking the wines from best (score equal
to 1) to worst (score equal to 3). Suppose we want to use the results of these rank-
ings to test the null hypothesis that the wines are identical in quality and thus the
ranking by each expert is equally likely to be any of the 3! = 6 possible orderings.
We could test this null hypothesis by viewing the data as the results of 10 trials,
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where each trial corresponds to the rankings of an expert. That is, we could take
the result of an expert as a permutation of the numbers 1, 2, 3, where the result
i, j, k would mean that the expert gave rank i to wine A, rank j to wine B, and rank
k to wine C. The null hypothesis would be that all 6 possible outcomes of a trial
are equally likely, and this could be tested by a goodness-of-fit test. However, a
total of 10 trial results in a situation where each trial has 6 possible outcomes
is not nearly enough trials to obtain meaningful test results. Thus, we consider a
different test.

Let RA, RB, and RC be the sum of the ranks given by the experts to the wines
A, B, and C, respectively. Now, if the null hypothesis is true and the wines are of
identical quality then each expert would be equally likely to give wine A any of
the rankings 1, 2, or 3. Thus, the expected rank given to wine A by each expert is
1(1/3) + 2(1/3) + 3(1/3) = 2. As there are 10 experts, it follows that when H0 is
true

E[RA] = 10 · 2 = 20

Indeed the same reasoning shows that, when H0 is true,

E[RA] = E[RB] = E[RC] = 20

So, again inspired by the goodness-of-fit test statistic, it seems reasonable to reject
the null hypothesis when

(RA − 20)2

20
+ (RB − 20)2

20
+ (RC − 20)2

20

is sufficiently large. Equivalently, we would want to reject when

(RA − 20)2 + (RB − 20)2 + (RC − 20)2

is sufficiently large.

In the general case, let us suppose that k items are to be ranked by each of n
experts. (In the wine example, k = 3, n = 10.) To test the null hypothesis H0 that
all k items are of identical quality, we let Ri denote the sum of the rankings given
to item i by all n experts. Using that, under H0, each expert is equally likely to give
wine i any of the rankings 1, 2, . . . , k, it follows that the expected ranking given to
wine i by each expert is

1 + 2 + · · · + k
k

= k + 1
2

As there are n experts, it follows, when H0 is true, that

E[Ri] = n(k + 1)/2



14.6 Testing the Equality of Multiple Probability Distributions 687

Because E[Ri] is the same for all i, it follows that to reject H0 when
∑n

i=1
(Ri−E[Ri])2

E[Ri]
is large is equivalent to letting the test statistic be

TS =
n∑

i=1

(Ri − n(k + 1)/2)2

and rejecting H0 when TS is sufficiently large.

To determine how large TS need be to justify rejecting H0, we make use of the
result that, when H0 is true,

12
nk(k + 1)

TS = 12
nk(k + 1)

n∑
i=1

(Ri − n(k + 1)/2)2

has approximately a chi-squared distribution with k − 1 degrees of freedom.

■ Example 14.18
If the 10 experts in Example 14.17 had used comparative ranking of wines A, B,
C, the following data would have resulted. Use them to test the null hypothesis
that the wines are all of equal quality.

Rankings of Wines A,
B, C by Ten Experts

A B C

1 3 2
1 2 3
3 1 2
2 1 3
1 3 2
1 2 3
3 1 2
2 1 3
1 3 2
3 1 2

Solution

We see by the preceding that RA = 18, RB = 18, RC = 24. Hence,

TS = (18 − 20)2 + (18 − 20)2 + (24 − 20)2 = 24

Because 12
10·3·4 TS = TS

10 is, when H0 is true, approximately a chi-squared random
variable with 2 degrees of freedom, and because the data give that TS

10 = 2.4, the
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p value of the test of H0 is

p value ≈ P(χ2
2 ≥ 2.4) = .3012

showing that the data are not inconsistent with the hypothesis that the wines
are of identical quality. ■

The preceding test for the equality of multiple population distributions when the
data consists of a set of comparison rankings is known as the Freedman test.

PROBLEMS

1. Use the data of Prob. 1 of Sec. 11.2 to test the hypothesis that the three
population distributions are identical.

2. Redo Prob. 11 of Sec. 11.2, this time using a nonparametric test.
3. The following are the weights of random samples of adult males from

three different political affiliations. Use them to test the null hypothesis
that the weight of a randomly chosen man is independent of his political
affiliation.

Weights of Republicans: 204, 178, 195, 187, 152, 166, 240, 182

Weights of Democrats: 200, 168, 175, 192, 156, 164, 180, 166

Weights of Independents: 172, 177, 168, 183, 159, 172, 192, 165

4. Nine members of a population were randomly chosen and asked to give
a comparison ranking of 3 different possible styles that an automobile
company could use in a new car it is developing. Their rankings of the
styles A, B and C were as follows:

1 2 3

A C B
A B C
C B A
B A C
A B C
A C B
C B A
B C A
C A B

Use these rankings to test the hypothesis that all three styles would be
equally favored by the entire population.
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14.7 PERMUTATION TESTS
Until now all the nonparametric tests we have considered use test statistics based
solely on the ranks of the data values. Permutation tests, however, are nonpara-
metric tests that use the precise data values obtained. For an example, suppose we
want to to test the null hypothesis H0 that the data X1, . . . , XN is a sample from
some population having an unknown population distribution. In a permutation
test, the data is observed, a test statistic is derived, and the p value is then com-
puted conditional on knowing the set S of data values observed. For instance if
N = 3 and X1 = 5, X2 = 7, X3 = 2, then the p value is computed conditional on
the information that the set of data values is S = {2, 5, 7}. The computation of the
p value makes use of the fact that, conditional on the set of data values S, each
of the N! possible ways of assigning these N values to the original data is equally
likely when the null hypothesis is true. That is, suppose that N = 3 and the set of
data values is, as in the preceding, S = {2, 5, 7}. Now the null hypothesis H0 states
that X1, X2, X3 are independent and identically distributed. Consequently, if H0

is true then, given the data set S, it follows that the vector (X1, X2, X3) is equally
likely to equal any of the 3! permutations of the values 2, 5, 7.

The implementation of a permutation test is as follows. Depending on the alterna-
tive hypothesis, a test statistic TS is chosen. Suppose, for the moment, that large
values of the test statistic are evidence for the alternative hypothesis. The data
values are then observed, say that Xi = xi, i = 1, . . . , N, and the value of TS is cal-
culated. If the value of the test statistic is TS = t, the resulting p value of the null
hypothesis that results from these data is the probability that TS would be at least
as large as t when all possible assignments of the N data values to the variables
X1, . . . , XN are equally likely.

For an illustration, suppose we are to observe data over N weeks, with Xi being
the data value observed in week i, i = 1, . . . , N, and that we want to use these data
to test the null hypothesis

H0: X1, . . . , XN are independent and identically distributed

against

H1: Xi tends to increase as i increases

Now if the null hypothesis is true and the data are independent and identically
distributed then, conditional on knowing the set of values {x1, . . . , xN}, but not
knowing which value corresponds to X1 or which corresponds to X2 and so on,
the statistic

∑N
j=1 j Xj would be distributed as if we randomly paired up the two

data sets {1, . . . , N} and {x1, . . . , xN} and then summed the products of the N
paired values. On the other hand, if the alternative hypothesis were true, then∑N

j=1 j Xj would tend to be larger than if we just randomly paired the values
1, . . . , N with the values in the set {x1, . . . , xN}, and then summed the products
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of the N pairs. This is because the sum of the paired values of two sets of equal
size is largest when the largest values are paired with each other, the second largest
are paired with each other, and so on. (In statistical terms the correlation coeffi-
cient of data pairs (j, Xj), j = 1, . . . , N is large when the Xj tend to increase as j
increases.) Consequently, one possible permutation test of H0 versus H1 is to use
the test statistic

TS =
N∑

j=1

j Xj

and then reject the null hypothesis when TS is sufficiently large.

The test is performed as follows.

1. Observe the data values—say Xj = xj, j = 1, . . . , N.
2. Let t = ∑N

j=1 j xj.
3. Compute the p value, equal to the probability that a random pairing of the

numbers 1, 2, . . . , N with the values x1, x2, . . . , xN would result in the sum of
the products of the paired terms being at least t.

To compute the p value we use the result that, for a given set of data values
S = {x1, . . . , xN}, when the null hypothesis that the data values are independent
and identically distributed is true then TS = ∑N

j=1 j Xj is approximately a normal
random variable with mean

E[TS] = N(N + 1)

2
x̄

and variance

Var(TS) = N(N + 1)(2N + 1)

6(N − 1)
(ss − Nx̄2) + N2(N + 1)2

4(N − 1)

(
x̄2 − ss

N

)

where

x̄ = 1
N

N∑
i=1

xi and ss =
N∑

i=1

x2
i

That is, x̄ is the average of the data values observed, and ss is the sum of the squares
of these values.

■ Example 14.19
To determine if the weekly sales of DVD players is on a downward trend the
manager of a large electronics store has been tracking such sales for the past
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12 weeks, with the following sales figures from week 1 to week 12 (the current
week) resulting:

22, 24, 20, 18, 16, 14, 15, 15, 13, 17, 12, 14

Are the data strong enough to reject the null hypothesis that the distribution of
sales is unchanging in time, and so enable the manager to conclude that there
is a downward trend in sales?

Solution

Let the null hypothesis be that the distribution of sales is unchanged over time,
and let the alternative hypothesis be that there is a downward trend in sales.
Thus, if the alternative hypothesis is true then there would be a negative corre-
lation between Xj, the sales during week j, and j. So a relatively small value of∑12

j=1 j Xj would be evidence in favor of the alternative hypothesis. Now, with
xj equal to the observed value of Xj, the sales data gives that

12∑
j=1

j xj = 1178

A calculation yields that when H0 is true,

E[TS] = 1300 Var(TS) = 1958.81

Because we want to reject the null hypothesis when TS is small, the normal
approximation yields that

p value = PH0(TS ≤ 1178)

= PH0

(
TS − 1300√

1958.81
≤ 1178 − 1300√

1958.81

)

≈ P(Z < −2.757)

= .0029

Consequently, we reject the null hypothesis that the distribution of sales has
not changed as time has passed.

Let us now suppose that whereas the set of 12 data values was as before, they now
appeared in the order

22, 14, 14, 16, 24, 20, 18, 15, 17, 15, 12, 13
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With these data, the value of the test statistic is
∑12

j=1 j Xj = 1233, and the normal
approximation yields that

p value = PH0(TS ≤ 1233)

= PH0

(
TS − 1300√

1958.81
≤ 1233 − 1300√

1958.81

)

≈ �(−1.514)

= .065

Consequently, in this case the data would not enable us to reject the null hypoth-
esis at, say, the 5 percent level of significance though it would lead to a rejection
at the 10 percent level of significance.

Finally, suppose again that the set of 12 data values was as before, but suppose
that they now appeared in the order

22, 14, 14, 16, 24, 13, 18, 15, 17, 15, 12, 20

In this case, the value of the test statistic is
∑12

j=1 j Xj = 1275. Thus, the normal
approximation yields that

p value = PH0(TS ≤ 1275)

= PH0

(
TS − 1300√

1958.81
≤ 1275 − 1300√

1958.81

)

≈ �(−.565)

≈ .286

Consequently, in this case the data would not enable us to reject the null
hypothesis at any reasonable level of significance.

PROBLEMS

1. The following are a student’s weekly exam scores. Do they prove
that the student improved (as far as exam score) as the semester
progressed?

68, 64, 72, 80, 72, 84, 76, 86, 94, 92

2. A baseball player has the reputation of starting slowly at the begin-
ning of a season but then continually improving as the season pro-
gresses. Do the following data, which indicate the number of hits he
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has in consecutive five-game strings of the season, strongly validate
the player’s reputation?

8, 3, 7, 12, 4, 7, 13, 6, 0, 9, 12, 4, 4, 6, 10

KEY TERMS

Nonparametric hypotheses tests: A class of hypotheses tests about a population
that do not assume that the population distribution is a specified type.

Sign test: A nonparametric test concerning the median of a population. The test
statistic counts the number of data values less than the hypothesized median.

Signed-rank test: A nonparametric test of the null hypothesis that a population
distribution is symmetric about a specified value.

Rank-sum test: A nonparametric test of the equality of two population distribu-
tions. It uses independent samples from the populations and then ranks the
combined data from the two samples. The sum of the ranks of (either) one of
the samples is the test statistic.

Runs test: A nonparametric test of the hypothesis that an ordered data sequence
constitutes a random sample from some population.

SUMMARY

In this chapter we learned how to test a statistical hypothesis without making any
assumptions about the form of the underlying probability distributions. Such tests
are called nonparametric.

Sign Test
The sign test can be used to test hypotheses concerning the median of a distribu-
tion. Suppose that for a specified value m we want to test

H0: η = m

against

H1: η 
= m

where η is the median of the population distribution. To obtain a test, choose
a sample of elements of the population, discarding any data values exactly equal
to m. Suppose n data values remain. The test statistic of the sign test is the number
of remaining values that are less than m. If there are i such values, then the p value
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of the sign test is given by

p value =
{

2P{N ≤ i} if i ≤ n
2

2P{N ≥ i} if i ≥ n
2

where N is a binomial random variable with parameters n and p = 1/2. The com-
putation of the binomial probability can be done either by running Program 5-1
or by using the normal approximation to the binomial.

The sign test can also be used to test the one-sided hypothesis

H0: η ≤ m against H1: η > m

It uses the same test statistic as earlier, namely, the number of data values that are
less than m. If the value of the test statistic is i, then the p value is given by

p value = P{N ≤ i}

where again N is binomial with parameters n and p = 1/2.

If the one-sided hypothesis to be tested is

H0: η ≥ m against H1: η < m

then the p value, when there are i values less than m, is

p value = P{N ≥ i}

where N is binomial with parameters n and p = 1/2.

As in all hypothesis testing, the null hypothesis is rejected at any significance level
greater than or equal to the p value.

Signed-Rank Test
The signed-rank test is used to test the hypothesis that a population distribution
is symmetric about the value 0. In applications, the population often consists of
the differences of paired data. The signed-rank test calls for choosing a random
sample from the population, discarding any data values equal to 0. It then ranks
the remaining nonzero values, say there are n of them, in increasing order of their
absolute values. The test statistic is equal to the sum of the rankings of the negative
data values. If the value of the test statistic TS is equal to t, then the p value is

p value = 2 Min(P{TS ≤ t}, P{TS ≥ t})

where the probabilities are to be computed under the assumption that the null
hypothesis is true. The p value can be found either by using Program 14-1 or by



Summary 695

using the fact that TS will have approximately, when the null hypothesis is true
and n is of least moderate size, a normal distribution with mean and variance,
respectively, given by

E[TS] = n(n + 1)

4
Var(TS) = n(n + 1)(2n + 1)

24

Rank-Sum Test
The rank-sum test can be used to test the null hypothesis that two population dis-
tributions are identical, when the data consist of independent samples from these
populations. Arbitrarily designate one of the samples as the first sample. Suppose
that the size of this sample is n and that of the other sample is m. Now rank the
combined samples. The test statistic TS of the rank-sum test is the sum of the ranks
of the first sample. The rank-sum test calls for rejecting the null hypothesis when
the value of the test statistic is either significantly large or significantly small.

When n and m are both greater than 7, the test statistic TS will, when H0 is true,
have an approximately normal distribution with mean and variance given by,
respectively,

E[TS] = n(n + m + 1)

2
Var(TS) = nm(n + m + 1)

12

This enables us to approximate the p value, which when TS = t is given by

p value ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2P
{

Z ≤ t + 0.5 − n(n + m + 1)/2√
nm(n + m + 1)/12

}
if t <

n(n + m + 1)

2

2P
{

Z ≥ t − 0.5 − n(n + m + 1)/2√
nm(n + m + 1)/12

}
if t >

n(n + m + 1)

2

For values of t near n(n + m + 1)/2, the p value is close to 1, and so the null
hypothesis would not be rejected (and the preceding probability need not be
calculated).

For small values of n and m the exact p value can be obtained by running
Program 14-2.

Runs Test
The runs test can be used to test the null hypothesis that a given sequence of data
constitutes a random sample from some population. It supposes that each datum
is either a 0 or a 1. Any consecutive sequence of either 0s or 1s is called a run. The
test statistic for the runs test is R, the total number of runs. If the observed value
of R is r, then the p value of the runs test is given by

p value = 2 Min(P{R ≤ r}, P{R ≥ r})



696 CHAPTER 14: Nonparametric Hypotheses Tests

The probabilities here are to be computed under the assumption that the null
hypothesis is true.

Program 14-3 can be used to determine this p value. If Program 14–3 is not avail-
able, we can approximate the p value by making use of the fact that when the null
hypothesis is true, R will have an approximately normal distribution. The mean
and variance, respectively, of this distribution are

μ = 2nm
n + m

+ 1 σ2 = 2nm(2nm − n − m)

(n + m)2(n + m − 1)

REVIEW PROBLEMS

1. Use a nonparametric test to solve Prob. 2 in Sec. 10.4.
2. Use a nonparametric test to solve Prob. 3 in Sec. 10.4.
3. According to the Federal Reserve Bulletin of January 1992, in 1989 the

sample median net worth of all 55-year-olds in the labor force was
$104,500. (The sample mean was $438,300.) Suppose that a random
sample of 1000 such workers today yielded the result that 421 had a
family net worth (in 1989 dollars) of over $104,500. Can we conclude,
at the 5 percent level of significance, that the median net worth has
decreased?

4. An experiment was initiated to study the effect of a newly developed
gasoline detergent on automobile mileage. The following data, repre-
senting mileage per gallon before and after the detergent was added
for each of eight cars, resulted:

Mileage Mileage
Car without additive with additive

1 24.2 23.5
2 30.4 29.6
3 32.7 32.3
4 19.8 17.6
5 25.0 25.3
6 24.9 25.4
7 22.2 20.6
8 21.5 20.7

Find the p value of the test of the hypothesis that mileage is not
affected by the additive when using
(a) The sign test
(b) The signed-rank test
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Compare your results with each other and with Example 10.8 of
Sec. 10.5.

5. Test the hypothesis that the weights of the students given in App. A
constitute a random sample. Use the first 40 data values to test this
hypothesis. What is the p value?

6. Choose a random sample of 30 of the students in App. A. Use those
data to test the hypothesis that the median weight of all the students
listed is less than or equal to 130 pounds.

7. Choose a random sample of 40 students from App. A, and use this
sample to test the hypothesis that the distribution of blood cholesterol
readings is the same for both sexes.

8. A chemist tests a variety of blood samples for a certain virus. The suc-
cessive results are as follows, with P meaning that the virus is present
and A that it is absent.

A A P P P A A A A P P A A A A A A P P A A P P P P

Test the hypothesis that the chemist tested the samples in a random
order. Use the 5 percent level of significance. Also determine the p
value.

9. Repeat Example 10.9, this time using a nonparametric test.
10. Explain how we could have used a contingency table analysis to test

the hypothesis in Example 14.10. Do this test, find the p value, and
compare it with the one obtained in Example 14.10. Since the contin-
gency table test is different from the one used in Example 14.10, the
two p values need not be equal.

11. Consider Prob. 7 of Sec. 14.3. Suppose now that the same car had
been brought to 16 different automobile repair shops, with the woman
bringing it into 8 of them and the man to the other 8. Suppose the
data on the quoted repair prices were as given in that problem. Test
the hypothesis, at the 5 percent level of significance, that the distri-
butions of price quotes received by the man and by the woman are
the same.
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CHAPTER 15

Quality Control

Statistical thinking will one day be as necessary for efficient citizenship as
the ability to read and write.

H.G.Wells (1866–1946)
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We introduce control charts, which are used to determine when a process that
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the item is acceptable or not.

Introductory Statistics, DOI: 10.1016/B978-0-12-374388-6.00015-6
© 2010, Elsevier Inc. All rights reserved. 699



700 CHAPTER 15: Quality Control

15.1 INTRODUCTION
Almost every industrial system—whether it involves the manufacturing of prod-
ucts or the servicing of customers—results in some random variation in the items
it processes. That is, no matter how stringently the system is being controlled,
there is always going to be some variation in the items processed. For instance,
the successive items produced by a manufacturing process will not all be identical,
and the successive times that it takes to service customers will often be different,
even when the underlying operation is performing as required. This type of varia-
tion, called chance variation, is considered inherent to the system. However, there is
another type of variation that sometimes appears. This variation, far from being
inherent to the system, is due to some assignable cause, and it usually has an
adverse effect on the quality of the industrial operation. For instance, in a manu-
facturing context, this latter variation may be caused by a faulty machine setting,
or by poor quality of the raw materials being employed, or by incorrect software,
or by human error, or by any of a large number of possibilities. When the only
variation present is due to chance and not to any assignable cause, we say that
the process is in control; a key problem in quality control is to determine when a
process is in control and when it is out of control.

In this chapter we study control charts, which can be used to indicate when a
process has gone out of control. The types of control charts we consider are deter-
mined by two numbers, called the upper control limit (UCL) and the lower control
limit (LCL). To utilize these charts, first we divide the data generated by the indus-
trial concern into subgroups. Then we compute the subgroup averages, and when
one of these does not fall within the upper and lower control limits, we conclude
that the process is out of control.

In Sec. 15.2 we suppose that the successive items processed have measurable
characteristics—this could refer to their quality level in a manufacturing context
or to their service time in a service industry—whose mean and variance are known
when the process is operating in control. We show how to construct control charts
that are useful for detecting a change in the mean of the in-control distribution.
In Sec. 15.3 we construct a control chart for situations in which each item, rather
than having some measurable characteristic, is classified as being either satisfac-
tory or unsatisfactory. In Secs. 15.4 and 15.5 we introduce two types of control
charts that are particularly effective in detecting small shifts in the mean value
of a process: Exponentially Weighted Moving-Average control charts in Sec. 15.4, and
Cumulative Sum control charts in Sec. 15.5.

15.2 THE X CONTROL CHART FOR DETECTING
A SHIFT IN THE MEAN

Suppose that when an industrial system is in control, the successive items it pro-
cesses have measurable values that are independent, normal random variables
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with mean μ and variance σ 2. However, due to unforeseeable circumstances,
suppose that the system may go out of control and, as a result, begin to pro-
cess items having values from a different distribution. We want to be able to
recognize when this occurs so as to stop the system, learn what is wrong, and
fix it.

Let the measurable values of the successive items processed by the system be
denoted by X1, X2, . . .. In our attempt to determine when the process goes out
of control, we will find it convenient first to break up the data into subgroups of
some fixed size—call this size n. Among other things, this value of n should be
chosen so as to yield uniformity of data values within individual subgroups. That
is, we should attempt to choose n so that it is reasonable, when a shift in distribu-
tion occurs, that it will occur between and not within subgroups. Thus, in practice
n is often chosen so that all the data within a subgroup relate to items processed
on the same day, or on the same shift, or with the same settings, etc.

Let Xi, i = 1, 2, . . ., denote the average of the ith subgroup. Since, when in control,
all the data values are normal with mean μ and variance σ 2, it follows that Xi,
the sample mean of n of them, is normally distributed with mean and variance
given, respectively, by

E
[
Xi
] = μ

Var
(
Xi
) = σ2

n

Hence, it follows that when the process is in control,

Z = Xi − μ√
σ 2/n

is a standard normal random variable. That is, if the process remains in control
throughout the processing of subgroup i, then

√
n(Xi − μ)/σ has a standard nor-

mal distribution. Now, a standard normal random variable Z will almost always
be between −3 and +3. Indeed, from Table 6.1 we see that P{−3 < Z < 3} =
0.9973. Hence, if the process remains in control throughout the processing of
subgroup i, then we would certainly expect that

−3 <

√
n
(
Xi − μ

)
σ

< 3

or, equivalently, that

μ − 3σ√
n

< Xi < μ + 3σ√
n
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FIGURE 15.1
Control chart for X; n = size of subgroup.

The values

LCL = μ − 3σ√
n

UCL = μ + 3σ√
n

are called, respectively, the lower control limit and the upper control limit.

The X control chart, which is primarily designed to detect a change in the average
value of an item processed, is obtained by plotting the successive subgroup aver-
ages Xi and declaring that the process is out of control the first time that Xi does
not fall between LCL and UCL (Fig. 15.1).

Since an X control chart will declare a process out of control only when a subgroup
average falls outside the control limits, it is important that the subgroups be cho-
sen so that it becomes highly likely that any shift in distribution that occurs is
between subgroups. This is so because it is easier to detect a shift in a subgroup
having all, rather than only some of, its values out of control.

■ Example 15.1
The time it takes a computer servicing firm to install a hard disk along with
some sophisticated software for its use is a random variable having mean
25 minutes and standard deviation 6 minutes. The company has two employ-
ees who work on this operation. To monitor the efficiency of these employees,
the company has plotted the successive average times that it takes them to com-
plete four jobs. The odd-number subgroups refer to the first employee, and the
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even-number subgroups refer to the second. Suppose the first 20 of these
successive subgroup averages are as follows (see Fig. 15.2 for a plot):

Subgroup X Subgroup X Subgroup X Subgroup X

1 23.6 6 24.6 11 29.4 16 32.8
2 20.8 7 22.6 12 27.8 17 23.3
3 25.5 8 24.4 13 26.8 18 30.5
4 26.2 9 24.7 14 27.2 29 25.3
5 23.3 10 26.0 15 24.0 20 34.1

What conclusions can be drawn?

Solution

Since the subgroup size is 4 and since the successive data values have mean
μ = 25 and standard deviation σ = 6 when the process is in control, it follows
that the control limits are given by

LCL = 25 − 18√
4

= 16 UCL = 25 + 18√
4

= 34

Since the average of subgroup 20 is greater than UCL, it appears that the system
is no longer in control. Indeed, since all the last six even-number subgroup
averages are larger than the in-control mean of 25 (with the final three being
significantly larger), it seems probable that the second employee has been out
of control for some time. ■

FIGURE 15.2
Control chart for data of Example 15.1.
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We have assumed here that when the process is in control, the underlying distri-
bution of an item’s measurable characteristic is a normal distribution; and, in fact,
this is often the case in manufacturing processes. In addition, as long as this dis-
tribution is somewhat close to being normal, the subgroup averages will, because
of the central limit theorem, be approximately normal and so would be unlikely
to differ from their mean by more than 3 standard deviations. As a result, by uti-
lizing subgroup averages it is not necessary for us to know the entire in-control
distribution, only its mean and variance. This is the most important reason for uti-
lizing subgroup averages rather than individual data points. Typical values of the
subgroup size are 4, 5, and 6. The reason for this is that if one uses a smaller sub-
group size, then the approximate normality of the subgroup average might come
into question. On the other hand, since one cannot detect an out-of-control sys-
tem without processing all the items of at least one subgroup, the subgroup size
should not be too large.

Because the X control chart was first suggested by Walter Shewhart, it is often
referred to as the Shewhart control chart. In essence, it works by using each subgroup
to test the statistical hypothesis

H0: mean = μ against the alternative H1: mean 
= μ

at the significance level α = P{|Z| > 3} = 0.0027. Whenever the null hypothesis
is rejected, the process is declared to be out of control.

Although we usually talk about control charts in the context of a manufacturing
process, they can be utilized in a variety of situations, as indicated by the next
example.

■ Example 15.2
Consider a small video rental store in which the daily rentals on each of the
weekdays Monday through Thursday have mean 52 and standard deviation 10.
If the numbers of videos rented daily (Monday to Thursday) in the past week are

32, 38, 28, 30

can we conclude that a change in distribution has occurred?

Solution

Let a subgroup consist of the number of rentals on the four specified weekdays
of each week. Since the in-control mean and standard deviation are μ = 52
and σ = 10, respectively, it follows that the control limits are

LCL = 52 − 3(10)√
4

= 37

UCL = 52 + 3(10)√
4

= 67
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Since the most recent subgroup average is (32 + 38 + 28 + 30)/4 = 32, which
is outside these limits, we can declare that the average number of videos rented
daily is no longer equal to 52.

At this juncture the store’s manager should try to discover (1) the cause of
the change in mean and (2) whether it appears to be a temporary or a more
permanent change. For instance, he or she might discover that there were some
particularly interesting television programs in the past week, such as a World
Series or the Olympics, or a political convention, which would lead to the
belief that the change is of a short-term nature. Or else it might be discovered
that the change in mean was caused by a new competitor in the neighborhood,
and this might result in a more permanent change. ■

Sometimes not all the measurable values of the items produced are noted, only
those of a randomly selected subset of items. When this is the situation, it is
natural to let subgroups consist of items that are produced at roughly the same
time.

PROBLEMS

1. When it is in control, a process produces items having mean 100 and
standard deviation 10. Determine upper and lower control limits for the
subgroup average when the subgroup size is
(a) 4 (b) 5 (c) 6 (d) 10

2. When a process is working properly, it produces items that have mean
35 and standard deviation 4. To monitor this process, subgroups of
size 4 are sampled. If the following table represents the averages of
the first 20 subgroups, does it appear that the process was in control
throughout?

Subgroup X Subgroup X

1 31.2 11 36.4

2 38.4 12 31.1

3 35.0 13 32.3

4 33.3 14 37.8

5 34.7 15 36.6

6 31.1 16 40.4

7 35.8 17 41.2

8 34.4 18 35.9

9 37.1 19 40.4

10 34.2 20 32.5
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3. When a manufacturing process is in control it produces wire whose
diameter has mean 80 with standard deviation 10 (in units of 1/10,000
inch). The following data represent the sample mean of subgroups of
size 5:

85, 88, 90, 77, 79, 83, 90, 75, 94, 80, 84, 86, 88

Does the process appear to have been in control?
4. A control chart is maintained on the time it takes workers to per-

form a certain task. The time that it should take is normal with mean
26 minutes and standard deviation 4.2 minutes. The following are X
values for 10 subgroups of size 4:

28.2, 28.4, 31.1, 27.3, 33.2, 31.4, 27.9, 30.4, 31.3, 30.4

(a) Determine the upper and lower control limits.
(b) Does it appear that the process was in control?

5. When a seam welding process is working correctly, the distance from
the weld to the center of the seam is normally distributed with mean
0 and standard deviation 0.005 inches. If the following values are the
average of the distances from the weld to the center in eight subgroups
of size 5, does it appear that the process was in control during their
processing?

Subgroup Average distance

1 0.0023
2 −0.0012
3 −0.0015
4 0.0031
5 0.0038
6 0.0051
7 0.0022
8 −0.0033

6. Prior to 1995 the number of murders committed yearly in the United
States per 100,000 population was normally distributed with mean 9.0
and standard deviation 1.1. The following are the rates from 1995 to
2002:

8.4, 7.4, 6.8, 6.3, 5.7, 5.5, 5.6, 5.4

Can we conclude that the murder rate has changed from its historical
value? Use subgroups of size 2.
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15.2.1 When the Mean and Variance Are Unknown
If one is just starting up a control chart and does not have reliable historical data,
then the mean μ and the standard deviation σ have to be estimated. To do so,
one employs k of the subgroups, where if possible k should be such that k ≥ 20
and nk ≥ 100, where n is the size of a subgroup. If Xi is the average of subgroup
i, then μ can be estimated by X, the average of the subgroup averages. That is,

X = X1 + · · · + Xk

k

Since X is the average of all the nk data values, it is the “natural” estimator of the
population mean μ.

To estimate σ , let Si be the sample standard deviation of the data of subgroup
i, i = 1, . . . , k, and let S be the average of these subgroup standard deviations.
That is,

S = S1 + · · · + Sk

k

Because the expected value of S is not equal to σ , we divide it by a constant c(n)

that depends on the subgroup sample size n, to obtain an estimator whose mean
is σ . That is, we use the estimator S/c(n), which is such that

E
[
S/c(n)

] = σ

The values of c(n) for n ranging between 3 and 9 are presented in the following
table.

Values of c(n)

c(3) = 0.8862266

c(4) = 0.9213181

c(5) = 0.9399851

c(6) = 0.9515332

c(7) = 0.9593684

c(8) = 0.9650309

c(9) = 0.9693103

The preceding estimators of μ and σ make use of all of the k subgroups
and are thus reasonable only if the system has remained in control through-
out their processing. To verify this, we compute the control limits based on
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these estimators:

LCL = X − 3S√
nc(n)

UCL = X + 3S√
nc(n)

Then we check that each of the k subgroup averages falls within these limits. If
any of them fall outside, then we must decide if it is reasonable to suppose that
the system was temporarily out of control when the items in that subgroup were
processed. If such is the case, or if the reason for the out-of-control data values
is discovered and fixed, then those subgroup averages should be removed, addi-
tional ones obtained, and the estimates of μ and σ recomputed. This continues
until all the subgroup averages fall within the estimated control limits. Of course,
if many subgroup averages along the way do not fall within the limits and have
to be removed, then it is clear that no control has yet been established.

■ Example 15.3
Consider a new plant set up to manufacture automobile air conditioners that
release only minimal amounts of harmful chlorofluorocarbons. After each air
conditioner is produced, it is checked to determine the amount of chloroflu-
orocarbons, suitably measured, that it releases in a 1-hour run period. The
following data give the sample averages and sample standard deviations of 50
air conditioners that have been divided into 10 subgroups of size 5:

i Xi Si

1 30.1 1.22
2 29.7 1.40
3 31.2 0.81
4 29.9 1.10
5 30.3 0.93
6 30.2 0.82
7 31.0 1.54
8 31.4 1.58
9 30.9 1.26
10 32.0 1.60

The values of the estimators of μ and σ are

X = 30.670,
S

c(5)
= 1.226

0.9399851
= 1.304
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Since 3(1.304)/
√

5 = 1.750, it follows that the estimated control limits are

LCL = 30.670 − 1.750 = 28.920

UCL = 30.670 + 1.750 = 32.420

Because all of the subgroup averages fall within these limits, we can suppose
that the process is in control with μ = 30.670 and σ = 1.304.

Suppose now that it is required that at least 99 percent of all air conditioners
release no more than 33.40 units of chlorofluorocarbons per hour. Assuming
that the production process remains in control with the values of its mean
and standard deviation exactly as estimated in the preceding, will this require-
ment be met? To answer this, note that if X, the amount of chlorofluorocarbon
released by an air conditioner in an hour, is a normal random variable with
mean 30.670 and standard deviation 1.304, then

P{X > 33.40} = P
{

X − 30.670
1.304

>
33.40 − 30.670

1.304

}

= P{Z > 2.094}
= 0.018

Hence, 1.8 percent of the air conditioners will have an hourly release above
33.4, and so the requirement that at least 99 percent of them satisfy this
condition will not be met. ■

Remark The estimator X is the average of all the nk data values and is thus the obvious
estimator of the mean value μ. On the other hand, it may not be immediately apparent
why we do not utilize the sample standard deviation of all the nk data values, namely,√

S
2
, where

S2 =
∑nk

i=1 (Xi − X)2

nk − 1

to obtain an estimator of σ . This is not done because the system may not have been in
control throughout the processing of the first k subgroups, and thus this latter estimator
may be very far from the actual in-control value of σ . On the other hand, even if there
had been a change in the mean value during the processing of the k subgroups, provided
that the standard deviation remained the same, the estimator S/c(n) will still be a good
estimator of σ since it only requires that the data values in each subgroup have the same
mean (which may differ for the different subgroups).



710 CHAPTER 15: Quality Control

15.2.2 S Control Charts
The X control chart is designed to pick up any change in the population mean.
In cases where we are also concerned about possible changes in the population
standard deviation, we can utilize an S control chart.

As in the previous sections, suppose that the items produced by a process that is
in control have values that are normally distributed with mean μ and standard
deviation σ . If Si is the sample standard deviation for subgroup i, then, as noted
in Sec. 15.2.1,

E
[

Si

c(n)

]
= σ

implying that

E
[
Si
] = c(n)σ

where n is the subgroup size. In addition, using the identity

Var(Si) = E
[
S2

i
]− (E[Si])2

we obtain from the preceding, and the fact that the expected value of the sample
variance is the population variance, that

Var(Si) = σ2 − c2(n)σ 2

= σ2[1 − c2(n)
]

That is, provided the process is in control, Si is a random variable with mean c(n)σ

and standard deviation σ
√

1 − c2(n). Hence, since a random variable is unlikely
to be more than 3 standard deviations from its mean, it is reasonable to set the
lower and upper control limits of the S control chart as follows:

LCL = c(n)σ − 3σ
√

1 − c2(n)

UCL = c(n)σ + 3σ
√

1 − c2(n)

The successive values of Si should be plotted to make certain they fall within the
control limits. When a value falls outside, the process should be stopped and
declared to be out of control.

When one is just starting up a control chart and σ is unknown, it can be estimated
from S/c(n), where S is the average of k subgroup standard deviations. Using the
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foregoing, the estimated control limits become

LCL = S
[

1 − 3
√

1
c2(n)

− 1
]

UCL = S
[

1 + 3
√

1
c2(n)

− 1
]

As when an X control chart is begun, it should then be checked that the k sub-
group standard deviations fall within these control limits. Those that fall outside
should be discarded, and the estimate of σ should be recomputed (possibly using
additional data).

■ Example 15.4
The following are the subgroup averages and subgroup standard deviations (in
minutes) of 20 subgroups of size 5 from a newly established manufacturing
facility that produces steel shafts. The data refer to the production time.

Subgroup X S Subgroup X S Subgroup X S

1 35.1 4.2 8 38.4 5.1 15 43.2 3.5
2 33.2 4.4 9 35.7 3.8 16 41.3 8.2
3 31.7 2.5 10 27.2 6.2 17 35.7 8.1
4 35.4 3.2 11 38.1 4.2 18 36.3 4.2
5 34.5 2.6 12 37.6 3.9 19 35.4 4.1
6 36.4 4.5 13 38.8 3.2 20 34.6 3.7
7 35.9 3.4 14 34.3 4.0

Since

X = 35.94, S = 4.35, c(5) = 0.9400

we obtain that the preliminary lower and upper control limits for X and S are
as follows:

LCL(X) = 35.94 − 3(4.35)

0.94
√

5
= 29.731

UCL(X) = 35.94 + 3(4.35)

0.94
√

5
= 42.149

LCL(S) = 4.35
[

1 − 3
√

1
(0.94)2 − 1

]
= −0.386

UCL(S) = 4.35
[

1 + 3
√

1
(0.94)2 − 1

]
= 9.087
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The control charts for and X and S, with the preceding control limits, are shown
in Figs. 15.3 and 15.4. Since the sample means of subgroups 10 and 15 fall out-
side the control limits, these subgroups should be eliminated and the control
limits recomputed. We leave the necessary computations as an exercise. ■

FIGURE 15.3
Control chart for S.

FIGURE 15.4
Control chart for X.
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PROBLEMS

1. Data from 150 items produced by a newly started production process
are collected. The data are divided into 25 subgroups of size 6 each,
and the sample mean and sample standard deviation of each subgroup
are determined. Suppose that

25∑
i=1

Xi = 357.3,
25∑
i=1

Si = 5.44

(a) Using the preceding data, determine the trial control limits for an X
control chart. Assume that each of the 25 subgroup averages falls
within these limits.

(b) Suppose that the requirement of a produced item is that it should
have a measurable value in the range 14.3 ± 0.50. Assuming that
the process remains in control with a mean and variance equal to
the estimates derived from the preceding data, what percentage of
items will have values within these specification limits?

2. The following are X and S values for 20 subgroups of size 5:

Subgroup X S Subgroup X S

1 33.8 5.1 11 29.7 5.1
2 37.2 5.4 12 31.6 5.3
3 40.4 6.1 13 38.4 5.8
4 39.3 5.5 14 40.2 6.4
5 41.1 5.2 15 35.6 4.8
6 40.4 4.8 16 36.4 4.6
7 35.0 5.0 17 37.2 6.1
8 36.1 4.1 18 31.3 5.7
9 38.2 7.3 19 33.6 5.5

10 32.4 6.6 20 36.7 4.2

(a) Determine trial control limits for an X control chart.
(b) Does it appear that the process was in control throughout?
(c) Estimate the percentage of the produced items that have values

between 25 and 45.
3. The following are the successive subgroup averages and sample stan-

dard deviations of data relating to an electrical characteristic (measured
in decibels) of ceramic strips. The subgroups are of size 4.

X: 16.1, 15.7, 16.6, 16.0, 14.7, 15.8, 16.4, 14.5, 15.8, 17.2

S: 2.7, 2.9, 2.2, 1.0, 1.3, 2.6, 3.1, 2.5, 5.3, 4.4
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(a) Use the preceding to estimate the population mean and standard
deviation.

(b) Does the process appear to have been in control?
4. Historical data indicate that the amount of time it should take to perform

a certain job has mean 26 minutes and standard deviation 8.3 minutes.
(a) Determine the control limits for an X control chart using subgroups

of size 5.
(b) Determine the control limits for an S control chart using subgroups

of size 5.
5. The following data refer to the amounts by which the diameters of

pieces of wire, measured in units of 0.001 inches, exceed a specified
value.

Subgroup Data values

1 2.5 0.5 2.0 −1.2 1.4

2 0.2 0.3 0.5 1.1 1.5

3 1.5 1.3 1.2 −1.0 0.7

4 0.2 0.5 −2.0 0.0 −1.3

5 −0.2 0.1 0.3 −0.6 0.5

6 1.1 −0.5 0.6 0.5 0.2

7 1.1 −1.0 −1.2 1.3 0.1

8 0.2 −1.5 −0.5 1.5 0.3

9 −2.0 −1.5 1.6 1.4 0.1

10 −0.5 3.2 −0.1 −1.0 −1.5

11 0.1 1.5 −0.2 0.3 2.1

12 0.0 −2.0 −0.5 0.6 −0.5

13 −1.0 −0.5 −0.5 −1.0 0.2

14 0.5 1.3 −1.2 −0.5 −2.7

15 1.1 0.8 1.5 −1.5 1.2

(a) Set up trial control limits for X and S control charts.
(b) Does the process appear to have been in control throughout?
(c) If the answer to (b) is no, construct revised control limits.

6. The following are X and S values for the initial 10 subgroups, each of
size 5, of a new production facility:

X: 20.2, 28.4, 31.1, 27.3, 33.2, 31.4, 27.9, 30.4, 31.3, 30.4

S: 7.2, 2.8, 3.4, 4.1, 4.0, 3.3, 4.5, 3.0, 2.7, 2.1

(a) Use the preceding to determine trial control limits for an X control
chart and an S control chart.
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(b) Does the process appear to have been in control throughout?
(c) If no additional data are available, what control limits would you

suggest be used for future data?
7. Complete Example 15.4.
8. For Prob. 1, determine the trial control limits of an S control chart.
9. For Prob. 2, determine the trial control limits of an S control chart.

15.3 CONTROL CHARTS FOR FRACTION
DEFECTIVE

The X control chart can be used when the data are measurements whose values can
vary continuously over a region. However, in some situations the items processed
have values that are classified as either acceptable or unacceptable. For instance, a
manufactured item can be classified as defective or not; or the service of a customer
could be rated (by the customer) as acceptable or not. In this section we show how
to construct control charts for these situations.

Let us suppose that when the system is in control, each item processed will inde-
pendently be defective with probability p. If we let X denote the number of
defective items in a subgroup of n items, then, assuming the system has been
in control, X will be a binomial random variable with parameters n and p; and
thus

E[X] = np

Var(X) = np(1 − p)

Hence, when the system is in control, the number of defectives in a subgroup of
size n should be, with high probability, between the lower and upper limits

LCL = np − 3
√

np(1 − p)

UCL = np + 3
√

np(1 − p)

The subgroup size n is usually much larger than the typical values of between
4 and 10 used in X control charts. The main reason is that if p is small (as is
typically the case) and n is not of reasonable size, then most of the subgroups will
have zero defects even when the process goes out of control; thus it would take
longer to detect this out-of-control situation than it would if n were chosen so
that np was not too small. A secondary reason for using a larger value of n is that
when np is of moderate size, X will have an approximately normal distribution,
and so when in control, each subgroup statistic will fall within the control limits
with probability approximately equal to 1 − 0.0027 = 0.9973.
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■ Example 15.5
Successive samples of 200 screws are drawn from the production of an auto-
matic screw machine, with each screw being rated as acceptable or defective.
Suppose that it is known from historical data that when the process is in control,
each screw is independently defective with probability 0.07. If the following
values represent the number of defective screws in each of 20 samples, would
the process have been declared out of control at any time during the collection
of these samples?

Subgroup Defectives Subgroup Defectives

1 23 11 4
2 22 12 13
3 12 13 17
4 13 14 5
5 15 15 9
6 11 16 5
7 25 17 19
8 16 18 7
9 23 19 22

10 14 20 17

Solution

Since n = 200 and p = 0.07, we have

np = 14 3
√

np(1 − p) = 10.825

and so

LCL = 14 − 10.825 = 3.175

UCL = 14 + 10.825 = 24.825

Since the number of defectives in subgroup 7 falls outside the range from LCL
to UCL, the process would have been declared out of control at that point. ■

Remark Note that we are attempting to detect any change in quality even when this
change results in a quality improvement. That is, we regard the process as being out of
control even when the probability of a defective item decreases. The reason for this is that
it is important to recognize any change in quality, for either better or worse, so as to be
able to evaluate the reason for the change. In other words, if an improvement in product
quality occurs, then it is important to determine the reason for this improvement (what
are we doing right?).
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PROBLEMS

1. The following data represent the number of defective bearing and seal
assemblies in samples of size 200.

Sample Number of Sample Number of
number defectives number defectives

1 7 11 4

2 3 12 10

3 2 13 0

4 6 14 8

5 9 15 3

6 4 16 6

7 3 17 2

8 3 18 1

9 2 19 6

10 5 20 10

Suppose that when the process is in control, each assembly is defective
with probability 0.03. Does it appear that the process was in control
throughout?

2. Suppose that when a process is in control, each item produced is defec-
tive with probability 0.04. If the control chart takes daily samples of size
500, compute the upper and lower control limits.

3. Historically, 4 percent of fiber containers are defective due to con-
tamination from gluing. The following data represent the number of
defective containers in successive samples of size 100.

3, 5, 1, 0, 4, 7, 8, 9, 5, 7, 1, 3, 0, 5, 3, 6, 4, 8, 3, 6

(a) Does the process appear to have been in control?
(b) What are the control limits?

15.4 EXPONENTIALLY WEIGHTED
MOVING-AVERAGE CONTROL CHARTS

Whereas the X control chart is powerful for detecting large changes in the mean
value that may occur temporarily, it is not as efficient for detecting a smaller
change that tends to persist. For instance, consider a process whose subgroup aver-
ages have mean μ = 100 and standard deviation σ/

√
n = 2 when it is in control.



718 CHAPTER 15: Quality Control

FIGURE 15.5
Successive subgroup averages.

The X control chart would thus have control limits 100 ± 6. Suppose that the
successive subgroup averages are (see Fig. 15.5):

98, 101.2, 99.4, 103, 104.2, 104.3, 103.2, 104.1, 104.4

Although it is fairly obvious that the process is out of control (since, among other
things, four of the last five subgroup averages exceed μ by more than 2 subgroup
standard deviations), the X control chart would not have detected this result. The
foregoing illustrates a fundamental weakness of the X control chart, namely that
it considers each subgroup average in isolation and not in relation to the values
of nearby subgroup averages. Because of this, it requires a subgroup average to be
far away from μ before it declares the process out of control.

We will now consider a more sophisticated control chart, known as an exponen-
tial weighted moving-average chart, that considers subgroup averages in relation to
those around it. To begin, suppose as before that when the process is in control it
produces items whose values are normally distributed with mean μ and standard
deviation σ . Let the subgroup size be n, and let Xi denote the average of the val-
ues in subgroup i, i ≥ 1. Now, let β denote a constant value between 0 and 1, and
define the sequence of values W0, W1, … as follows:

W0 = μ

Wt = βXt + (1 − β)Wt−1, t = 1, 2, . . .
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That is, the initial value of the W sequence is μ, and each successive value is a
weighted average of the next subgroup average and the previous W value. The
sequence of values W0, W1, W2, … is called an exponentially weighted moving average
(EWMA). (It is also sometimes called a geometrically weighted moving average.) It
is called this because it can be shown that Wt , the value of the moving average at
time t, can be expressed as

Wt = βXt + β(1 − β)Xt−1 + β(1 − β)2Xt−2

+ · · · + β(1 − β)t−1X1 + β(1 − β)tμ

In other words, Wt is a weighted average of all the subgroup averages up to time
t, giving weight β to the most recent value and then successively decreasing the
weights of earlier subgroup averages by the factor 1 − β, and finally giving weight
β(1 − β)t to the in-control mean μ.

The smaller the value chosen for β, the more alike are the successive weights.
For instance, if we take β = 0.2, then the successive weights are 0.2, 0.16, 0.128,
0.1024, 0.08192, and so on; whereas if we take β = 0.9, then the successive
weights are 0.9, 0.09, 0.009, and so on.

Since Wt can be expressed as the sum of independent normal random variables,
it too is normal. Its expected value is

E[Wt] = μ

and, for t of at least moderate size, its standard deviation is approximately given by

SD(Wt) =
√

β

2 − β

σ√
n

The control chart that continually plots Wt and declares that the process is out of
control the first time that it falls outside the control limits

LCL = μ − 3

√
β

2 − β

σ√
n

UCL = μ + 3

√
β

2 − β

σ√
n

is called the standard exponential weighted moving-average control chart with weight-
ing factor β.

■ Example 15.6
A repair shop will send a worker to a caller’s home to repair electronic equip-
ment. Upon receiving a request, it dispatches a worker who is instructed to
call in when the job is completed. Historical data indicate that the time from
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when the server is dispatched until he or she calls is a normal random variable
with mean 62 minutes and standard deviation 24 minutes. To keep aware of
any changes in this distribution, the repair shop plots a standard EWMA con-
trol chart, with each data value being the average of 4 successive times and
with a weighting factor β = 0.25. If the present value of the chart is 60 and the
following are the next 16 subgroup averages, what can we conclude?

48, 52, 70, 62, 57, 81, 56, 59, 77, 82, 78, 80, 74, 82, 68, 84

Solution

Starting with W0 = 60, the successive values of W1,…,W16 can be obtained
from the formula

Wt = 0.25Xt + 0.75Wt−1

This gives,

W1 = (0.25)(48) + (0.75)(60) = 57

W2 = (0.25)(52) + (0.75)(57) = 55.75

W3 = (0.25)(70) + (0.75)(55.75) = 59.31

W4 = (0.25)(62) + (0.75)(59.31) = 59.98

W5 = (0.25)(57) + (0.75)(59.98) = 59.24

W6 = (0.25)(81) + (0.75)(59.24) = 64.68

and so on, with the following being the values of W7 through W16:

62.50, 61.61, 65.48, 69.60, 71.70, 73.78, 73.83, 75.87, 73.90, 76.43

A graph of the successive values of the moving average is given in Fig. 15.6.
Since

3

√
0.25
1.75

24√
4

= 13.61

the control limits of the standard EWMA control chart with weighting factor
β = 0.25 are

LCL = 62 − 13.61 = 48.39

UCL = 62 + 13.61 = 75.61

Thus, the EWMA control chart would have declared the system out of con-
trol after determining W14 (and also after W16). On the other hand, since
a subgroup standard deviation is σ/

√
n = 12, it is interesting that no data

value differed from μ = 62 by as much as 2 subgroup standard deviations,
and so the standard X control chart would not have declared the system out of
control. ■
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FIGURE 15.6
An EWMA control chart.

PROBLEMS

1. Consider a process whose in-control subgroup averages are normal
with mean 50 and standard deviation 5. The following table represents
50 simulated values from a normal distribution with mean 54 and stan-
dard deviation 5. That is, the data represent subgroup averages after
the process has gone out of control by an increase in the mean of 0.8
subgroup standard deviations.

Subgroups Subgroups Subgroups Subgroups Subgroups
1–10 11–20 21–30 31–40 41–50

59.81 52.79 50.04 58.56 54.95
51.38 56.52 51.49 50.79 53.22
52.87 54.98 56.93 54.19 49.31
62.38 58.00 50.13 58.65 47.08
53.59 56.91 52.29 57.41 53.31
60.39 54.26 56.74 56.79 51.42
46.64 58.43 48.62 50.86 61.57
55.84 53.41 44.58 51.14 57.33
55.78 48.43 57.46 61.26 60.34
53.27 52.65 60.98 56.68 49.97
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(a) When would a standard X control chart have discovered the process
to be out of control?

(b) Repeat part (a), this time using a standard EWMA chart with
β = 0.5.

(c) Repeat part (a), this time using a standard EWMA chart with
β = 0.25.

2. Repeat Problem 1, this time using the data in the reverse order. That is,
let 49.97 be the first value, 60.34 the second, and so on.

3. Repeat Problem 2 of Section 15.2, this time employing a standard EWMA
control chart with weighting factor β = 0.7.

4. Repeat Problem 3 of Section 15.2, this time employing a standard EWMA
control chart with weighting factor β = 0.5.

15.5 CUMULATIVE-SUM CONTROL CHARTS
The major competitor to the EWMA type of control chart for detecting a small
to moderate-sized change in the mean is the cumulative-sum (often reduced to as
cu-sum) control chart.

Suppose, as before, that X1, X2, . . . represent successive averages of subgroups
of size n and that when the process is in control these random variables have
mean μ and standard deviation σ/

√
n. Initially, suppose we are only interested

in determining when an increase in the mean value occurs. The (one-sided)
cumulative-sum control chart for detecting an increase in the mean operates as
follows: Choose positive constants d and B, and let

Yj = Xj − μ − dσ√
n

j ≥ 1

Note that when the process is in control, and so E
[
Xj
] = μ,

E
[
Yj
] = − dσ√

n
< 0

Now let

S0 = 0

Sj+1 = max
{
Sj + Yj+1, 0

}
, j ≥ 0

The cumulative-sum control chart having parameters d and B continually plots Sj

and declares that the mean value has increased at the first j such that

Sj >
Bσ√

n
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To understand the rationale behind this control chart, suppose we had decided to
continually plot the sum of all the random variables Y i that have been observed
so far. That is, suppose we had decided to plot the successive values of Pj,
where

Pj =
j∑

i=1

Yi

which can also be written as

P0 = 0

Pj+1 = Pj + Yj+1, j ≥ 0

Now, when the system has always been in control, all of the Yi have a negative
expected value, and thus we would expect their sum to be negative. Hence, if
the value of Pj ever became large—say, greater than Bσ/

√
n—then this would be

strong evidence that the process has gone out of control (by having an increase in
the mean value of a produced item). The difficulty, however, is that if the system
goes out of control only after some long time, then the value of Pj at that time will
most likely be strongly negative (since up to then we would have been summing
random variables having a negative mean), and thus it would take a long time for
its value to exceed Bσ/

√
n. Therefore, to keep the sum from becoming very nega-

tive while the process is in control, the cumulative-sum control chart employs the
simple trick of resetting its value to 0 whenever it becomes negative. That is, the
quantity Sj is the cumulative sum of all of the Yi up to time j, with the exception
that any time this sum becomes negative its value is reset to 0.

■ Example 15.7
Suppose that the mean and standard deviation of a subgroup average are,
respectively, μ = 30 and σ/

√
n = 8, and consider the cumulative-sum control

chart with d = 0.5, B = 5. If the first eight subgroup averages are

29, 33, 35, 42, 36, 44, 43, 45

then the successive values of Yj = Xj − 30 − 4 = Xj − 34 are

Y1 = −5, Y2 = −1, Y3 = 1, Y4 = 8, Y5 = 2,

Y6 = 10, Y7 = 9, Y8 = 11

Therefore,

S1 = max{−5, 0} = 0

S2 = max{−1, 0} = 0

S3 = max{1, 0} = 1
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S4 = max{9, 0} = 9

S5 = max{11, 0} = 11

S6 = max{21, 0} = 21

S7 = max{30, 0} = 30

S8 = max{41, 0} = 41

Since the control limit is

Bσ√
n

= 5(8) = 40

the cumulative-sum chart would declare that the mean has increased after
observing the eighth subgroup average. ■

To detect either a positive or a negative change in the mean, we employ two one-
sided cumulative-sum charts simultaneously. We begin by noting that a decrease
in E[Xi] is equivalent to an increase in E[−Xi]. Hence, we can detect a decrease in
the mean value of an item by running a one-sided cumulative-sum chart on the
negatives of the subgroup averages. That is, for specified values d and B, not only
do we plot the quantities Sj as before, but, in addition, we let

Wj = −Xj − (−μ) − dσ

n
= μ − Xj − dσ√

n

and then also plot the values Tj, where

T0 = 0

Tj+1 = max
{
Tj + Wj+1, 0

}
, j ≥ 0

The first time that either Sj or Tj exceeds Bσ/
√

n, the process is said to be out of
control.

Summing up: The following steps result in a cumulative-sum control chart for
detecting a change in the mean value of a produced item: Choose positive con-
stants d and B; use the successive subgroup averages to determine the values of Sj

and Tj; declare the process out of control the first time that either exceeds Bσ/
√

n.
Three common choices of the pair of values d and B are: d = 0.25, B = 8.00;
d = 0.50, B = 4.77; and d = 1, B = 2.49. Any of these choices results in a control
rule that has approximately the same false alarm rate as does the X control chart
that declares the process out of control the first time a subgroup average differs
from μ by more than 3σ/

√
n. As a general rule of thumb, the smaller the change

in mean one wants to guard against, the smaller should be the chosen value of d.
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PROBLEMS

1. Repeat Prob. 1 of Sec. 15.5, this time using a cumulative-sum chart with
(a) d = 0.25, B = 8
(b) d = 0.5, B = 4.77

2. Repeat Prob. 2 of Sec. 15.2, this time employing a cumulative-sum
control chart with d = 1 and B = 2.49.

3. Repeat Prob. 3 of Sec. 15.2, this time employing a cumulative-sum
control chart with d = 0.5 and B = 4.77.

KEY TERMS

Control chart: A graphical procedure for enabling one to detect when a produc-
tion process has gone out of control.

SUMMARY

Suppose that a production process produces items, each of which has a measur-
able value that, when the process is in control, has mean μ and standard deviation
σ . To detect any change, the items are put into subgroups of size n, and the sub-
group averages X are plotted. Whenever a subgroup average is either less than the
lower control limit

LCL = μ − 3σ√
n

or greater than the upper control limit

UCL = μ + 3σ√
n

then the process is declared to be out of control.

Sometimes rather than having a continuous value, each item is classified as being
either acceptable or defective. Let p denote the probability that an item is defective
when the process is in control. To determine when it goes out of control, items are
again put into subgroups of size n. When the number of defectives in a subgroup
falls outside the control limits

LCL = np − 3
√

np(1 − p) and UCL = np + 3
√

np(1 − p)

then the process is declared to be out of control.

Other types of control charts considered are the exponentially weighted moving-
average control charts and cumulative-sum control charts. The former plots a
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weighted average of all the subgroup averages, with the weights decreasing expo-
nentially the further in the past are data to which the subgroup average refers. The
latter plots a cumulative sum of terms whose mean is negative when the process
is in control, with this sum being reset to 0 when it becomes negative. The process
is then called out of control when the cumulative sum becomes larger than some
preset value.

REVIEW PROBLEMS

1. The distance between two adjacent pins of a memory chip for enhanced
graphics adapters has, when the production process is in control, a
mean of 1.5 millimeters and standard deviation of 0.001 millimeters.
Determine the upper and lower control limits for an X control chart,
using subgroups of size 4.

2. Prior to 1993 the number of burglaries committed yearly in the United
States per 100,000 population was normally distributed with mean 1236
and standard deviation 120. The following are the rates from 1993
through 2001:

1099.7, 1042.1, 987.0, 945.0, 918.8, 863.2, 770.4, 728.8, 740.8

Can we conclude that the burglary rate changed from its historical
value? Use subgroups of size 3.

3. When a process is performing correctly, 1.5 percent of the items pro-
duced do not conform to specifications. If items are grouped into sub-
groups of size 300, determine the upper and lower control limits for this
control chart.

4. The numbers of defective switches in 12 samples of size 200 are as
follows:

4, 7, 2, 5, 9, 5, 7, 10, 8, 3, 12, 9

Suppose that when the process is in control, each switch is defective
with probability 0.03. Does the process appear to have been in control?
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APPENDIX A

A Data Set

Student Weight Cholesterol Pressure Gender Student Weight Cholesterol Pressure Gender

1 147 213 127 F 30 129 194 114 M
2 156 174 116 M 31 111 184 104 F
3 112 193 110 F 32 156 191 118 M
4 127 196 110 F 33 155 221 107 F
5 144 220 130 F 34 104 212 111 F
6 140 183 99 M 35 217 221 156 M
7 119 194 112 F 36 132 204 117 F
8 139 200 102 F 37 103 204 121 F
9 161 192 121 M 38 171 191 105 M

10 146 200 125 F 39 135 183 110 F
11 190 200 125 M 40 249 227 137 M
12 126 199 133 F 41 185 188 119 M
13 164 178 130 M 42 194 200 109 M
14 176 183 136 M 43 165 197 123 M
15 131 188 112 F 44 121 208 100 F
16 107 193 113 F 45 124 218 102 F
17 116 187 112 F 46 113 194 119 F
18 157 181 129 M 47 110 212 119 F
19 186 193 137 M 48 136 207 99 F
20 189 205 113 M 49 221 219 149 M
21 147 196 113 M 50 151 201 109 F
22 112 211 110 F 51 182 208 130 M
23 209 202 97 M 52 151 192 107 M
24 135 213 103 F 53 182 192 136 M
25 168 216 95 M 54 149 191 124 M
26 209 206 107 M 55 162 196 132 M
27 102 195 102 F 56 168 193 92 M
28 166 191 111 M 57 185 185 123 M
29 132 171 112 M 58 191 201 118 M

(Continued )

729
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(Continued )

Student Weight Cholesterol Pressure Gender Student Weight Cholesterol Pressure Gender

59 173 185 114 M 102 184 192 129 M
60 186 203 114 M 103 179 202 129 M
61 161 177 119 M 104 105 211 109 F
62 149 213 124 F 105 157 179 109 M
63 103 192 104 F 106 202 210 124 M
64 126 193 99 F 107 140 188 112 F
65 181 212 141 M 108 165 203 114 F
66 190 188 124 M 109 184 199 151 M
67 124 201 114 F 110 132 195 129 F
68 175 219 125 M 111 119 202 117 F
69 161 189 120 M 112 158 195 112 M
70 160 203 108 F 113 138 217 101 F
71 171 186 111 M 114 177 194 136 M
72 176 186 114 M 115 99 204 129 F
73 156 196 99 M 116 177 198 126 M
74 126 195 123 F 117 134 195 111 F
75 138 205 113 F 118 133 168 98 M
76 136 223 131 F 119 194 201 120 M
77 192 195 125 M 120 140 211 132 F
78 122 205 110 F 121 104 195 106 F
79 176 198 96 M 122 191 180 130 M
80 195 215 143 M 123 184 205 116 M
81 126 202 102 F 124 155 189 117 M
82 138 196 124 F 125 126 196 112 F
83 166 196 103 M 126 190 195 124 M
84 86 190 106 F 127 132 218 120 F
85 90 185 110 F 128 133 194 121 F
86 177 188 109 M 129 174 203 128 M
87 136 197 129 F 130 168 190 120 M
88 103 196 95 F 131 190 196 132 M
89 190 227 134 M 132 176 194 107 M
90 130 211 119 F 133 121 210 118 F
91 205 219 130 M 134 131 167 105 M
92 127 202 121 F 135 174 203 88 M
93 182 204 129 M 136 112 183 94 F
94 122 213 116 F 137 121 203 116 F
95 139 202 102 F 138 132 194 104 F
96 189 205 102 M 139 155 188 111 M
97 147 184 114 M 140 127 189 106 F
98 180 198 123 M 141 151 193 120 M
99 130 180 94 M 142 189 221 126 M

100 130 204 118 F 143 123 194 129 F
101 150 197 110 F 144 137 196 113 F
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(Continued )

Student Weight Cholesterol Pressure Gender Student Weight Cholesterol Pressure Gender

145 122 201 113 F 187 108 185 96 F
146 126 212 121 F 188 126 194 122 F
147 136 210 120 F 189 175 201 138 M
148 145 168 115 M 190 168 182 118 M
149 202 202 122 M 191 115 194 122 F
150 151 206 108 F 192 129 193 90 F
151 137 178 128 M 193 131 209 119 F
152 90 178 100 F 194 187 182 134 M
153 177 220 123 M 195 185 200 127 M
154 139 214 120 F 196 114 196 113 F
155 172 191 117 M 197 206 216 124 M
156 107 179 106 F 198 151 212 113 F
157 186 209 129 M 199 128 204 110 F
158 198 196 140 M 200 128 204 115 F
159 113 184 110 F 201 183 190 136 M
160 143 209 105 F 202 104 192 93 F
161 205 198 137 M 203 99 209 110 F
162 186 206 111 M 204 201 208 120 M
163 174 189 129 M 205 129 204 100 F
164 171 197 132 M 206 149 193 117 F
165 209 202 128 M 207 123 200 120 F
166 126 203 134 F 208 179 191 122 M
167 160 185 109 M 209 150 216 128 F
168 127 212 124 F 210 133 193 110 F
169 112 193 115 F 211 112 190 107 F
170 155 184 112 M 212 175 188 113 M
171 111 181 111 F 213 120 182 126 F
172 151 196 129 M 214 126 207 110 F
173 110 181 113 F 215 170 201 101 M
174 159 192 115 M 216 175 211 115 M
175 173 196 131 M 217 134 219 129 F
176 148 191 101 M 218 118 211 113 F
177 141 216 110 F 219 118 178 109 F
178 161 186 123 M 220 164 196 107 M
179 125 209 113 F 221 186 190 134 M
180 114 200 109 F 222 172 189 134 M
181 125 206 135 F 223 173 207 101 M
182 129 214 100 F 224 185 206 128 M
183 115 207 115 F 225 190 198 117 M
184 142 197 118 F 226 146 200 112 F
185 183 202 114 M 227 103 179 100 F
186 181 212 118 M 228 124 215 124 F

(Continued )
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(Continued )

Student Weight Cholesterol Pressure Gender Student Weight Cholesterol Pressure Gender

229 186 213 124 M 271 195 195 148 M
230 166 166 129 M 272 199 201 125 M
231 138 201 120 F 273 148 202 120 F
232 175 198 118 M 274 164 190 113 M
233 104 194 100 F 275 137 196 107 F
234 213 206 130 M 276 133 173 121 M
235 171 182 118 M 277 104 214 112 F
236 180 213 119 M 278 126 194 116 F
237 187 197 128 M 279 120 220 116 F
238 117 194 106 F 280 148 204 131 F
239 108 185 105 F 281 100 206 89 F
240 128 202 105 F 282 178 190 125 M
241 170 196 118 M 283 149 188 108 F
242 183 176 126 M 284 157 194 124 M
243 143 190 101 M 285 99 203 95 F
244 160 205 120 F 286 192 208 127 M
245 185 184 113 M 287 175 181 145 M
246 122 193 142 F 288 208 193 123 M
247 225 218 142 M 289 201 208 138 M
248 139 191 99 F 290 174 199 111 M
249 123 207 116 F 291 188 189 119 M
250 129 176 108 F 292 151 205 133 F
251 142 220 137 F 293 202 220 126 M
252 146 191 116 M 294 125 198 106 F
253 129 201 100 F 295 176 190 116 M
254 163 171 119 M 296 183 188 96 M
255 177 206 134 M 297 118 198 130 F
256 183 190 116 M 298 125 204 111 F
257 120 201 104 F 299 237 209 127 M
258 188 214 115 M 300 124 186 127 F
259 140 182 119 M 301 98 194 104 F
260 166 197 113 M 302 182 199 108 M
261 122 199 107 F 303 184 206 149 M
262 177 207 124 M 304 137 189 113 F
263 184 204 122 M 305 126 177 111 F
264 113 198 121 F 306 202 198 130 M
265 214 221 142 M 307 225 212 142 M
266 144 205 111 M 308 181 200 122 M
267 188 188 132 M 309 178 187 121 M
268 114 204 127 F 310 132 221 110 F
269 158 213 111 F 311 164 201 134 M
270 146 196 116 M 312 163 191 138 M
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Mathematical Preliminaries

B.1 SUMMATION
Consider four numbers that we will call x1, x2, x3, and x4. If s is equal to the sum
of these numbers, then we can express this fact either by writing

s = x1 + x2 + x3 + x4

or by using the summation notation
∑

. In this latter situation we write

s =
4∑

i=1

xi

which means that s is equal to the sum of the xi values as i ranges from 1 to 4.

The summation notation is quite useful when we want to sum a large number of
quantities. For instance, suppose that we were given 100 numbers, designated as
x1, x2, and so on, up to x100. We could then compactly express s, the sum of these
numbers, as

s =
100∑
i=1

xi

If we want the sum to include only the 60 numbers starting at x20 and ending at
x79, then we could express this sum by the notation

79∑
i=20

xi

That is,
∑79

i=20 xi is the sum of the xi values as i ranges from 20 to 79.

B.2 ABSOLUTE VALUE
The absolute value of a number is its magnitude regardless of its sign. For instance,
the absolute value of 4 is 4, whereas the absolute value of −5 is 5. In general, the
absolute value of a positive number is that number, whereas the absolute value
of a negative number is its negative. We use the symbol |x| to denote the absolute 733
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FIGURE B.1
Distance from −2 to 0 is |−2| = 2.

value of the number x. Thus,

|x| =
{

x if x ≥ 0
−x if x < 0

If we represent each real number by a point on a straight line, then |x| is the
distance from point x to the origin 0. This is illustrated by Fig. B.1.

If x and y are any two numbers, then |x − y| is equal to the distance between x
and y. For instance, if x = 5 and y = 2, then |x − y| = |5 − 2| = |3| = 3. On the
other hand, if x = 5 and y = −2, then |x − y| = |5 − (−2)| = |5 + 2| = 7. That is,
the distance between 5 and 2 is 3, whereas the distance between 5 and −2 is 7.

B.3 SET NOTATION
Consider a collection of numbers, for instance, all the real numbers. Sometimes
we are interested in the subcollection of these numbers that satisfies a particular
property. Let A designate a certain property; for instance, A could be the property
that the number is positive or that it is an even integer or that it is a prime integer.
We express the numbers in the collection that have the property A by the notation

{x : x has property A}
which is read as “the set of all the values x in the collection that have the property
A.” For instance,

{x : x is an even integer between 1 and 7}
is just the set consisting of the three values 2, 4, and 6. That is

{x : x is an even integer between 1 and 7} = {2, 4, 6}
We are sometimes interested in the set of all numbers that are within some fixed
distance of a specified number. For instance, consider the set of all numbers that
are within 2 of the number 5. This set can be expressed as

{x : |x − 5| ≤ 2}
Because a number will be within 2 of the number 5 if and only if that number lies
between 3 and 7, we have

{x : |x − 5| ≤ 2} = {x : 3 ≤ x ≤ 7}
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How to Choose a Random Sample

As we have seen in this book, it is extremely important to be able to choose a
random sample. Suppose that we want to choose a random sample of size n from
a population of size N. How can we accomplish this?

The first step is to number the population from 1 to N in any arbitrary manner.
Then we will choose a random sample by designating n elements of the popula-
tion that are to be in the sample. To do this, we start by letting the first element
of the sample be equally likely to be any of the N elements. The next element is
then chosen so that it is equally likely to be any of the remaining N − 1 elements,
the next so that it is equally likely to be any of the remaining N − 2 elements, and
so on, until we have amassed a total of n elements, which constitute the random
sample.

To implement this scheme, it seems that we would always have to keep track
of which elements had already been selected. However, by a neat trick, it turns
out that this is not necessary. Indeed, we can arrange the N elements in an
ordered list and then randomly choose not the elements themselves but rather
the positions of the elements that are to be put in the random sample. Let us
see how it works when N = 7 and n = 3. We start by numbering each of the
7 elements in the population and then arranging them in a list. Say the initial
order is

1, 2, 3, 4, 5, 6, 7

We now choose a number that is equally likely to be 1, 2, 3, 4, 5, 6, or 7; say 4 is
chosen. This means that the element in position 4 (element number 4 in this case)
is put in the random sample. To indicate that this element is in the random sample
and to make certain that this element will not be chosen again, we interchange
in the list the element in position 4 with the one in position 7. This results in the
new list ordering

1, 2, 3, 7, 5, 6, 4

735
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where we have underlined the element that is in the random sample. The next
element to be put in the random sample should be equally likely to be any of the
elements in the first 6 positions. Thus we select a value that is equally likely to be
1, 2, 3, 4, 5, or 6; the element in that position will become part of the random
sample. And to indicate this and to leave the first 5 positions for the elements
that have not yet been chosen, we interchange the element in the position chosen
with the element in position 6. For instance, if the value chosen was 4, then the
element in position 4 (that is, element number 7) becomes part of the random
sample, and the new list ordering is

1, 2, 3, 6, 5, 7, 4

The final element of the random sample is equally likely to be any of the elements
in positions 1 through 5, so we select a value that is equally likely to be 1, 2, 3, 4,
or 5 and interchange the element in that position with the one in position 5. For
instance, if the value is 2, then the new ordering is

1, 5, 3, 6, 2, 7, 4

Since there are now three elements in the random sample, namely, 2, 7, and 4,
the process is complete.

To implement the foregoing algorithm for generating a random sample, we need
to know how to generate the value of a random quantity that is equally likely to be
any of the numbers 1, 2, 3, . . . , k. The key to doing this is to make use of random
numbers that are the values of random variables that are uniformly distributed
over the interval (0, 1). Most computers have a built-in random number generator
that allows one to call for the value of such a quantity. If U designates a random
number—that is, U is uniformly distributed over the interval (0, 1)—then it can
be shown that

I = Int (kU) + 1

will be equally likely to be any of the values 1, 2, . . . , k, where Int (x) stands for
the integer part of x. For instance,

Int (4.3) = 4

Int (12.9) = 12

and so on.

Program A-1 uses these to generate a random sample of size n from the set of
numbers 1, 2, . . . , N. When running this program, you will be asked first to enter
the values of n and N and then to enter any four-digit number. For this last request,
just type and enter any number that comes to mind. The output from this program
is the subset of size n that constitutes the random sample.
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■ Example C.1
Suppose we want to choose a random sample of size 12 from a population of
200 members. To do so, we start by arbitrarily numbering the 200 members of
the population so that they now have numbers 1 to 200. We run Program A-1
to obtain the 12 members of the population that are to constitute the random
sample.

THIS PROGRAM GENERATES A RANDOM SAMPLE OF K
OF THE INTEGERS 1 THRU N
ENTER THE VALUE OF N
? 200
ENTER THE VALUE OF K
? 12
Random Number Seed (--232,768 to 32,767)? 355
THE RANDOM SAMPLE CONSISTS OF THE FOLLOWING 12 ELEMENTS
90 89 82 162 21 81 182 45 38 195 64 1 ■
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APPENDIX D

Tables

Table D.1 Standard Normal Probabilities
Table entries give P{Z ≤ x}.
x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

(Continued )
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Table D.1 (Continued )

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Table D.2 Percentiles tn, α of t Distributions

α

n 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792



APPENDIX D: Tables 741

Table D.2 (Continued )

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

n = degrees of freedom.

Table D.3 Percentiles χ2
n,α of the Chi-Squared Distributions

α

n 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005

1 0.00+ 0.00+ 0.00+ 0.00+ 0.02 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.84
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80

(Continued )
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Table D.3 (Continued )

α

n 0.995 0.990 0.975 0.950 0.900 0.500 0.100 0.050 0.025 0.010 0.005

16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 210.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

n = degrees of freedom.



Table D.4 Percentiles of F Distributions
95th Percentiles of Fn,m Distributions

Degrees of freedom for the numerator n

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞
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1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

(Continued )



Table D.4 (Continued )
95th Percentiles of Fn,m Distributions

Degrees of freedom for the numerator n

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
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21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.55 1.43 1.35 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00



Table D.4 (Continued )

90th Percentiles of F Distributions

Degrees of freedom for the numerator n

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞

D
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d
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o
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o

r
m

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69

(Continued )
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Table D.4 (Continued )

90th Percentiles of F Distributions

Degrees of freedom for the numerator n

D
eg

re
es

o
f
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d
o
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e
d

en
o

m
in

at
o

r
m

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47
30 2.88 2.49 2.28 2.14 2.03 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00
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Table D.4 (Continued )

99th Percentiles of F Distributions

Degrees of freedom for the numerator n

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞

D
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e
d

en
o

m
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m

1 4052 4999.5 5403 5625 5764 5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.46
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.36 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

(Continued )
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Table D.4 (Continued )

99th Percentiles of F Distributions

Degrees of freedom for the numerator n

1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞
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17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.59
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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Table D.5 Binomial Distribution Function

Data in the table are the values of P{Bin(n, p) ≤ i}, where Bin(n, p) is a binomial random
variable with parameters n and p. For values of p > 0.05, use the identity P{Bin(n, p) ≤ i} =
1 − P{Bin(n, 1 − p) ≤ n − i − 1}.

p

n i 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500
1 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8755 0.8400 0.7975 0.7500

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250
1 0.9928 0.9720 0.9392 0.8960 0.8438 0.7840 0.7182 0.6480 0.5748 0.5000
2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9571 0.9360 0.9089 0.8750

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625
1 0.9860 0.9477 0.8905 0.8192 0.7383 0.6517 0.5630 0.4752 0.3910 0.3125
2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875
3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9850 0.9744 0.9590 0.9375

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0312
1 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875
2 0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5000
3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9460 0.9130 0.8688 0.8125
4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.9815 0.9688

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156
1 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094
2 0.9978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438
3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8826 0.8208 0.7447 0.6562
4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.9590 0.9308 0.8906

5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078
1 0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625
2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266
3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000
4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734

5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375
6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039
1 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352
2 0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445
3 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633
4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367

5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555
6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648

(Continued )
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Table D.5 (Continued )

p

n i 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020
1 0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195
2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898
3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539
4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5000

5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461
6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
1 0.9139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0232 0.0107
2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547
3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719
4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770

5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230
6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281
7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

11 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005
1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059
2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327
3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133
4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744

5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000
6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256
7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867
8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002
1 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032
2 0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193
3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730
4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938

5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872
6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128
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Table D.5 (Continued )

p

n i 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062
8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998

13 0 0.5133 0.2542 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001
1 0.8646 0.6213 0.3983 0.2336 0.1267 0.0637 0.0296 0.0126 0.0049 0.0017
2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0579 0.0269 0.0112
3 0.9969 0.9658 0.8820 0.7437 0.5843 0.4206 0.2783 0.1686 0.0929 0.0461
4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334

5 1.0000 0.9991 0.9925 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905
6 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000
7 1.0000 1.0000 0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095
8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.9302 0.8666
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9922 0.9797 0.9539

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.0001
1 0.8470 0.5846 0.3567 0.1979 0.1010 0.0475 0.0205 0.0081 0.0029 0.0009
2 0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.0839 0.0398 0.0170 0.0065
3 0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.0632 0.0287
4 0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.0898

5 1.0000 0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.2120
6 1.0000 0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953
7 1.0000 1.0000 0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6074
8 1.0000 1.0000 1.0000 0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.7880
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 0.9940 0.9825 0.9574 0.9102

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989 0.9961 0.9886 0.9713
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9978 0.9935
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000
1 0.8290 0.5490 0.3186 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005
2 0.9638 0.8159 0.6042 0.3980 0.2361 0.1268 0.0617 0.0271 0.0107 0.0037
3 0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.0424 0.0176
4 0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.0592

(Continued )
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Table D.5 (Continued )

p

n i 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

5 0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509
6 1.0000 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036
7 1.0000 1.0000 0.9996 0.9958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000
8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9848 0.9578 0.9050 0.8182 0.6964
9 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9937 0.9824
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9963
13 1.0000 1.0000 1.9000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000
1 0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0098 0.0033 0.0010 0.0003
2 0.9571 0.7892 0.5614 0.3518 0.1971 0.0994 0.0451 0.0183 0.0066 0.0021
3 0.9930 0.9316 0.7899 0.5981 0.4050 0.2459 0.1339 0.0651 0.0281 0.0106
4 0.9991 0.9830 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384

5 0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.4900 0.3288 0.1976 0.1051
6 1.0000 0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.3660 0.2272
7 1.0000 0.9999 0.9989 0.9930 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018
8 1.0000 1.0000 0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982
9 1.0000 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728

10 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.4181 0.1668 0.0631 0.0225 0.0075 0.0023 0.0007 0.0002 0.0000 0.0000
1 0.7922 0.4818 0.2525 0.1182 0.0501 0.0193 0.0067 0.0021 0.0006 0.0001
2 0.9497 0.7618 0.5198 0.3096 0.1637 0.0774 0.0327 0.0123 0.0041 0.0012
3 0.9912 0.9174 0.7556 0.5489 0.3530 0.2019 0.1028 0.0464 0.0184 0.0063
4 0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.1260 0.0596 0.0245

5 0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.0717
6 1.0000 0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662
7 1.0000 0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145
8 1.0000 1.0000 0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5000
9 1.0000 1.0000 1.0000 0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855

10 1.0000 1.0000 1.0000 0.9999 0.9994 0.9968 0.9880 0.9652 0.9174 0.8338
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9970 0.9894 0.9699 0.9283
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Table D.5 (Continued )

p

n i 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9975 0.9914 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9988
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 0.3972 0.1501 0.0536 0.0180 0.0056 0.0016 0.0004 0.0001 0.0000 0.0000
1 0.7735 0.4503 0.2241 0.0991 0.0395 0.0142 0.0046 0.0013 0.0003 0.0001
2 0.9419 0.7338 0.4797 0.2713 0.1353 0.0600 0.0236 0.0082 0.0025 0.0007
3 0.9891 0.9018 0.7202 0.5010 0.3057 0.1646 0.0783 0.0328 0.0120 0.0038
4 0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.0942 0.0411 0.0154
5 0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.3550 0.2088 0.1077 0.0481

6 1.0000 0.9988 0.9882 0.9487 0.8610 0.7217 0.5491 0.3743 0.2258 0.1189
7 1.0000 0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403
8 1.0000 1.0000 0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073
9 1.0000 1.0000 0.9999 0.9991 0.9946 0.9790 0.9403 0.8653 0.7473 0.5927

10 1.0000 1.0000 1.0000 0.9998 0.9988 0.9939 0.9788 0.9424 0.8720 0.7597
11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9986 0.9938 0.9797 0.9463 0.8811
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9986 0.9942 0.9817 0.9519
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9846
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9962

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000
1 0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000
2 0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004
3 0.9868 0.8850 0.6841 0.4551 0.2630 0.1332 0.0591 0.0230 0.0077 0.0022
4 0.9980 0.9648 0.8556 0.6733 0.4654 0.2822 0.1500 0.0696 0.0280 0.0096

5 0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.0777 0.0318
6 1.0000 0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.0835
7 1.0000 0.9997 0.9959 0.9767 0.9225 0.8180 0.6656 0.4878 0.3169 0.1796
8 1.0000 1.0000 0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.4940 0.3238
9 1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.6710 0.5000

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762
11 1.0000 1.0000 1.0000 1.0000 0.9995 0.9972 0.9886 0.9648 0.9129 0.8204
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9969 0.9884 0.9658 0.9165
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9969 0.9891 0.9682
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904

(Continued )



754 APPENDIX D: Tables

Table D.5 (Continued )

p

n i 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000
1 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000
2 0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002
3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013
4 0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059

5 0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207
6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577
7 1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316
8 1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517
9 1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119

10 1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881
11 1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9941
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Programs

Program What It Computes

3-1 Sample mean, sample variance, sample standard deviation
3-2 Sample correlation coefficient
5-1 Binomial probabilities
6-1 Standard normal probability distribution
6-2 Percentiles of the standard normal distribution
8-1 Percentiles of t distributions
8-2 The t distribution probabilities
8-3 Confidence interval estimates and bounds for a mean
9-1 The p value for the t test

10-1 The p value in the two-sample t test
11-1 The p value in one-factor ANOVA
11-2 The p value in two-factor ANOVA
12-1 Statistics in simple linear regression model
12-2 Least-squares estimators in multiple linear regression
13-1 The p value in chi-squared goodness-of-fit test
13-2 The p value in test of independence in a contingency table
14-1 The p value in the signed-rank test
14-2 The p value in the rank-sum test
14-3 The p value in the runs test

A-1 A random subset

755



This page intentionally left blank



CHAPTER 0

Answers to Odd-Numbered Problems

Chapter 1 Problems

1. (a) 1946
(b) There were more years in which the average number of years completed

by the older group exceeded that of the younger group.
3. (a) From 1985 to 1990 sales declined.

(b) The total number of cars sold from 1985 to 1987 was 20,693,000 versus
18,120,000 from 1988 to 1990.

(c) No
5. Researchers with such knowledge may be influenced by their own biases

concerning the usefulness of the new drug.
7. (a) In 1936 automobile and telephone owners were probably not represen-

tative of the total voter population.
(b) Yes. Automobile and telephone ownership is now more widespread and

thus more representative of the total voter population.
9. The average age of death for U.S. citizens whose obituary is listed in The New

York Times is about 82.4 years.
11. (a) No. Graduates who return the questionnaire may not be representative

of the total population of graduates.
(b) If the number of questionnaires returned were very close to 200—

the number of questionnaires sent—then the approximation would be
better.

13. Graunt implicitly assumed that the parishes he surveyed were representative
of the total London population.

15. Data on the ages at which people were dying can be used to determine appro-
ximately how long on average the annuity payments will continue. This can
be used to determine how much to charge for the annuity.

Introductory Statistics, DOI: 10.1016/B978-0-12-374388-6.00017-x
© 2010, Elsevier Inc. All rights reserved. 757
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17. (a) 64%
(b) 10%
(c) 48%

19. (a) Yes
(b) Yes
(c) No
(d) No

Section 2.2

1. (a) Family size Frequency

4 1
5 1
6 3
7 5
8 5
9 3

10 5
11 2
12 3
13 1
14 0
15 1

(b)

(c)
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3. (a) 12
(b) 1
(c) 11
(d) 3
(e) 3

5.
Value Frequency

10 8

20 3

30 7

40 7

50 3

60 8

7. Family size Frequency Relative frequency

4 1 0.03

5 1 0.03

6 3 0.10

7 5 0.17

8 5 0.17

9 3 0.10

10 5 0.17

11 2 0.07

12 3 0.10

13 1 0.03

14 0 0.00

15 1 0.03

9. (a) 0.13
(b) 0.25
(c) No



760 Answers to Odd-Numbered Problems

11. (a) 0.649
(b) 0.162
(c) 0.540

13. Average number
of rainy days in
Nov. or Dec. Frequency

7 1
9 1

10 1
11 1
16 1
17 3
18 1
20 1
23 1
40 1

Section 2.3

1. (a)

(b) Class intervals 100–110 and 110–120
(c) No
(d) No
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3. (a)

(b)

(c) The chart in part (a) seems more informative since it shows a clearer
pattern.

5. (a)

(b)

(c) The chart in part (b) seems more informative.
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7. (a)

(b)

Female Relative
cholesterol Frequency frequency

170–180 1 1/46 = 0.02

180–190 5 5/46 = 0.11

190–200 13 13/46 = 0.28

200–210 15 15/46 = 0.33

210–220 9 9/46 = 0.20

220–230 3 3/46 = 0.07

Male Relative
cholestrol Frequency frequency

170–180 3 3/54 = 0.06

180–190 13 13/54 = 0.24

190–200 19 19/54 = 0.35

200–210 10 10/54 = 0.19

210–220 6 6/54 = 0.11

220–230 3 3/54 = 0.06
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Female students appear to have higher cholesterol levels.
13.

15. (a) It is the sum of the relative frequencies for all classes.
(b)

Percentage of workers

Blood pressure less than Ages 30–40 Ages 50–60

90 0.12 0.14
100 0.79 0.41
110 5.43 3.56
120 23.54 11.35
130 53.78 28.04
140 80.35 48.43
150 92.64 71.27
160 97.36 81.26
170 99.13 89.74
180 99.84 94.53
190 99.96 97.26
200 100.00 98.50
210 100.00 98.91
220 100.00 99.59
230 100.00 99.86
240 100.00 100.00
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(c) Ages 30 to 40 tend to have smaller values.
(d)

Section 2.4

1. (a) 11 1, 4, 5, 6, 8, 8, 9, 9, 9
12 2, 2, 2, 2, 4, 5, 5, 6, 7, 7, 7, 8, 9
13 0, 2, 2, 3, 4, 5, 5, 7, 9
14 1, 1, 4, 6, 7

(b) 11 1, 4
11 5, 6, 8, 8, 9, 9, 9
12 2, 2, 2, 2, 4
12 5, 5, 6, 7, 7, 7, 8, 9
13 0, 2, 2, 3, 4
13 5, 5, 7, 9
14 1, 1, 4
14 6, 7

3. 1 4
1 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9
2 0, 0, 0, 0, 1, 2, 2, 2, 3, 4
2 5, 7, 7, 9
3 0, 1, 1, 2, 3
3
4 0, 4, 4
4 5
5 1, 3
5 5
6 1
6
7
7 9

The interval 15–20 contains 14 data points.
The interval 16–21 contains 17 data points.
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5. (a) 3 2
4
5 2, 7, 8, 9
6 5, 8, 8
7 1, 4, 5, 5, 7, 8, 9
8 0, 1, 3, 3, 3, 4, 8, 8
9 0, 3, 4, 7

10 0, 4, 8

(b) Yes. The value 32 seems suspicious since it is so much smaller than the
others.

7. (a) 1 4, 6, 6, 6
2 0, 0, 1, 3, 4, 4, 6, 7, 7, 7
3 1, 2, 3, 5, 5, 8, 8, 9
4 2, 6
5 5

(b) 0 3, 6, 7, 7, 7, 7, 9
1 0, 0, 0, 0, 0, 0, 3, 4, 4, 6, 6, 7, 7, 9, 9
2 0, 1
3 1

(c) 0 1, 3, 4, 4, 4, 5, 7, 9
1 0, 0, 2, 6, 7, 7, 7, 8, 9, 9
2 1, 2, 5, 9
3 2, 6
4 5

9. (a) 6
(b) 43.75%
(c) 12.5%

11. (a) School B
(b) School A
(c) School A
(d) 5 0, 3

5 5, 7
6 2
6 5, 5, 8, 8, 9, 9
7 0, 2, 3, 4
7 6, 7, 7, 8, 8, 9, 9
8 0, 2, 3, 3
8 5, 5, 6, 6, 6, 7, 7, 8, 8, 9
9 0, 0, 1, 3
9 5, 5, 5, 6, 6, 8, 8

10 0
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Section 2.5

1. (a)

(b) The number of defective parts tends to increase as the temperature
increases.

(c) About 23 or 24
5. (a)

(b) Attention span and IQ are not related.

Chapter 2 Review

1. (a)
Blood type Frequency

A 19

B 8

O 19

AB 4

(b) Blood type Relative frequency

A 0.38

B 0.16

O 0.38

AB 0.08
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(c)

3. (a) 389
(b)

5. (a)
Value Frequency

1 2
2 1
3 4
4 1
5 2

(b) Value Frequency

1 2
2 3
3 3
4 2

(c) 3, 2.5
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7. (a) about 46 percent
(b) about 3 percent

9. (a)

(b) There are relatively few weights near the upper end of the weight range.
11. Weight and blood pressure do not seem related.

13. Yes, high scores on one examination tend to go along with high scores on the
other.

15. (a) 0 0.27, 0.78, 0.93
1 0.19, 0.31, 0.49, 0.53, 0.81
2 0.30, 0.92, 0.93
3 0.07, 0.21, 0.32,0.39, 0.66, 0.68, 0.81
4 0.02, 0.11, 0.43, 0.50
5 0.35, 0.41
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(b)

(c)

Section 3.2

1. 1196/15 = 79.73
3. 429.03/13 = 33.00 inches; 1331/13 = 102.38 days
5. No. It also depends on the proportions of the two town populations that are

women. (For instance, suppose town A has 9 women whose average weight
is 110 and 1 man whose weight is 200, while town B has 10 women whose
average weight is 100 and 10 men whose average weight is 190.)

7. 8.0943 cases
9. 6; 18; 11

11. 78/11
13. 15
15. 1

2 (10) + 1
6 (20) + 1

3 (30) = 18.33
17. $37,120
19. (a) −5, −4, −2, 1, 4, 6

(b) −15, −12, −6, 3, 12, 18
(c) same as (a)

Section 3.3

1. (a) 6580 yards
(b) 6545 yards
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3. 23
5. (a) 22.0

(b) 8.1
(c) 23.68
(d) 9.68

7. 31.5 inches
9. (a) 99.4

(b) 14.9
(c) 204.55

11. (a) 20.74
(b) 20.5
(c) 19.74
(d) 19.5
(e) Mean = 20.21; median = 20.05

13. 0, 0
15. (a) 32.52

(b) 24.25
17. (a) 26.8

(b) 25.0

Section 3.3.1

1. (a) If the data are arranged in increasing order, then the sample 80 percentile
is given by the average of the values in positions 60 and 61.

(b) If the data are arranged in increasing order, then the sample 60 percentile
is given by the average of the values in positions 45 and 46.

(c) If the data are arranged in increasing order, then the sample 30 percentile
is the value in position 23.

3. (a) 95.5
(b) 96

5. (a) 70
(b) 58
(c) 52

7. 230c
11. 25

Section 3.4

1. 1B, 2C, 3A
3. (a) 126

(b) 102, 110, 114
(c) 196

5. 5, 6, 6, 6, 8, 10, 12, 14, 23 is one such data set.
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7. (a) 8 loops

(b) 2 miles

Section 3.5

1. s2 = 0.037; x = 26.22

3. (a) 6.18
(b) 6.77

11. (a) s2 = 2.5, s = 1.58
(b) s2 = 2.5, s = 1.58
(c) s2 = 2.5, s = 1.58
(d) s2 = 10, s = 3.16
(e) s2 = 250, s = 15.81

13. For the first 50 students, s2 = 172.24 and x = 115.80.
For the last 50 students, s2 = 178.96 and x = 120.98.
The values of the statistics for the two data sets are similar. This is not
surprising.

15. 78.56 thousand

17. (a) 0.805
(b) 2.77
(c) 1.22

Section 3.6

1. (a)

(b) 25.75
(c) 26.5
(d) No

5. (a) 168,045
(b) 172,500
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(c)

(d) Yes, if we ignore the data value 82. No, if we use all the data.
7. 95%, 94.85%
9. Sample mean

Section 3.7

1. Let (xi, yi), i = 1, 2, 3 be the middle set of data pairs. Then the first set is
(121xi, 360 + yi) and the third is (xi, 1

2 yi), i = 1, 2, 3.

3. (a)

(b) Almost 1
(c) 0.86
(d) There is a relatively strong linear relationship between them.

5. −0.59; the linear relationship is relatively weak.
7. −0.441202; the linear relationship is relatively weak. But there is an indi-

cation that when one of the variables is high, then the other tends to
be low.

9. 0.99
11. All data = −0.33; first seven countries = −0.046
13. All data = 0.25; first seven countries = −0.3035
15. (d) Correlation is not causation.
17. No, correlation is not causation.
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Chapter 3 Review

1. (a) −2, −1, 1, 2
(b) −2, −1, 0, 1, 2
(c) Part (a): mean = 0, median = 0; part (b): mean = 0, median = 0

3. (a) 29.3
(b) No
(c) First quartile is 27.7; second quartile, 29.3; third quartile, 31.1.
(d) 31.7

9. No
11. No, association is not causation.

13.
mxw + nxm

n + m
15. 0.99846

Section 4.2

1. (a) S = {(R, R), (R, B), (R, Y), (B, R), (B, B), (B, Y), (Y , R), (Y , B), (Y , Y)}
(b) {(Y , R), (Y , B), (Y , Y)}
(c) {(R, R), (B, B), (Y , Y)}

3. (a) {(U of M, OSU), (U of M, SJSC), (RC, OSU), (RC, SJSC), (SJSC, OSU),
(SJSC, SJSC), (Yale, OSU), (Yale, SJSC), (OSU, OSU), (OSU, SJSC)}

(b) {(SJSC, SJSC), (OSU, OSU)}

(c) {(U of M, OSU), (U of M, SJSC), (RC, OSU), (RC, SJSC), (SJSC, OSU),
(Yale, OSU), (Yale, SJSC), (OSU, SJSC)}

(d) {(RC, OSU), (OSU, OSU), (SJSC, SJSC)}
5. S = {(France, fly), (France, boat), (Canada, drive), (Canada, train), (Canada,

fly)}A = {(France, fly), (Canada, fly)}
7. (a) ø

(b) {1, 4, 6}

(c) {1, 3, 4, 5}

(d) {2}
9. (a) {(1, g), (1, f ), (1, s), (1, c), (0, g), (0, f ), (0, s), (0, c)}

(b) {(0, s), (0, c)}
(c) {(1, g), (1, f ), (0, g), (0, f )}
(d) {(1, g), (1, f ), (1, s), (1, c)}

11. (a) Ac is the event that a rolled die lands on an odd number.

(b) (Ac)c is the event a rolled die lands on an even number.

(c) (Ac)c = A.
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13.

Section 4.3

1. (a) P(E) = 0.35; P(E) = 0.65; P(G) = 0.55
(b) P(E ∪ F) = 1
(c) P(E ∪ G) = 0.8
(d) P(F ∪ G) = 0.75
(e) P(E ∪ F ∪ G) = 1
(f) P(E ∩ F) = 0
(g) P(F ∩ G) = 0.45
(h) P(E ∩ G) = 0.1
(i) P(E ∩ F ∩ G) = 0

3. 1/10,000
5. If they are disjoint, it is impossible. If they are not disjoint, it is possible.
7. (a) 1

(b) 0.8
(c) 0.5
(d) 0.1
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9. (a) 0.95
(b) 0.80
(c) 0.20

11. 0.7
13. 0.31%
15. 0.6
17. (a) A ∩ Bc

(b) A ∩ B
(c) B ∩ Ac

(d) P(I) + P(II) + P(III)
(e) P(I) + P(II)
(f) P(II) + P(III)
(g) P(II)

Section 4.4

1. 88/216 ≈ 0.41
3. (a) 4/52 ≈ 0.08

(b) 48/52 ≈ 0.92
(c) 13/52 ≈ 0.25
(d) 1/52 ≈ 0.02

5. 2/3
7. (a) 0.56

(b) 0.1
9. (a) 0.4

(b) 0.1
11. 56
13. 1/19
15. (a) 0.1

(b) 0.1
17. (a) 10/31

(b) 9/31
(c) 1/3
(d) 11/31
(e) 7/31

Section 4.5

1. (a) 0.02/0.3 ≈ 0.067

(b) 0.02/0.03 ≈ 0.667
3. (a) 0.245

(b) 0.293
5. (a) 0.145

(b) 0.176
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(c) 0.215
(d) 0.152

7. (a) 0.46
(b) 0.65

9. (a) 262/682
(b) 262/682
(c) 350/682
(d) 602/682
(e) 598/682
(f) 519/682

11. 1/169 ≈ 0.006
13. 0.6960
15. (a) 19/34 ≈ 0.56

(b) 1 − 19/34 ≈ 0.44
(c) 1/17 ≈ 0.06

17. Since P(B|A) > P(B), P(A ∩ B) > P(B)P(A)

Hence, P(A/B) = P(A ∩ B)

P(B)
>

P(B)P(A)

P(B)
= P(A)

19. 0.24
21. 0.68
23. (a) 7/12 ≈ 0.58

(b) 50
(c) 13/119 ≈ 0.11
(d) 35/204 ≈ 0.17
(e) 0.338

25. (a) 0.79; 0.21
(b) 0.81; 0.27

27. (a) 1/2
(b) 3/8
(c) 2/3

29. 1/16
31. No; the friends do not know each other.
33. P(A) = 1/13; P(B) = 1/4; P(A ∩ B) = 1/52; thus P(A ∩ B) = P(A)P(B).
35. 1/365
37. (a) 0.64

(b) 0.96
(c) 0.8704

39. Yes, P(A)P(B) = P(A ∩ B).
41. (a) 32/4805 ≈ 0.0067

(b) 729/1922 ≈ 0.38
(c) 0.060
(d) 0.045
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(e) 0.006
(f) 0.111

43. (a) 1/4
(b) 2/3

Section 4.6

1. (a) 0.55
(b) 5/9

3. (a) 0.672
(b) 0.893

5. 0.398
7. (a) 0.534

(b) 0.402
9. (a) 0.0103

(b) 0.3046

Chapter 4 Review

1. (a) 3/4

(b) 3/4

(c) 6/11

(d) 1/22

(e) 9/22
3. (a) 0.68

(b) 0.06
(c) 0.12

5. (a) 11/24
(b) 13/23

7. (a) 1/64
(b) 1/64
(c) 1/64

9. (a) S = {(chicken, rice, melon), (chicken, rice, ice cream), (chicken, rice,
gelatin), (chicken, potatoes, melon), (chicken, potatoes, ice cream),
(chicken, potatoes, gelatin), (roast beef, rice, melon), (roast beef, rice,
ice cream), (roast beef, rice, gelatin), (roast beef, potatoes, melon), (roast
beef, potatoes, ice cream), (roast beef, potatoes, gelatin)}

(b) {(chicken, potatoes, ice cream), (chicken, potatoes, gelatin), (roast beef,
potatoes, ice cream), (roast beef, potatoes, gelatin)}

(c) 1/3
(d) 1/12
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11. (a) 1/3
(b) 1/3
(c) 1/3
(d) 1/2

13. 14/33 ≈ 0.424
15. (a) 1/52

(b) 1/52
(c) equally
(d) 1/52

17. (a) 0.42
(b) 0.18
(c) 0.24
(d) 0.58
(e) 0.724

19. No
21. (a) 0.496

(b) 54/252
(c) 36/248
(d) No

23. (a) 4
(b)(i) 4/86
(b)(ii) 1/2
(b)(iii) No

25. (a) 0.077
(b) 0.0494
(c) 0.0285

27. (a) 0.64
(b) 0.06, assuming independence

29. (a) 0.5
(b) 0.44
(c) 0.024
(d) 0

31. 0.28

Section 5.2

1. P{Y = 0} = 1/4
P{Y = 1} = 3/4

3. (a) 5/12
(b) 5/12
(c) 0
(d) 1/4
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5.
i P{Y = i}

1 11/36
2 1/4
3 7/36
4 5/36
5 1/12
6 1/36

7.
i P{X = i}

2 0.58
3 0.42

9.
i P{X = i}

0 1199/1428
1 55/357
2 3/476

11.
i P{X = i}

0 0.075
1 0.325
2 0.6

13. No; P(4) is negative.
15.

i P{X = i}

0 38/223
1 82/223
2 57/223
3 34/223
4 10/223
5 2/223

17. (a) 0.1
(b) 0.5

19.
i P{X = i}

0 0.30
1 0.35
2 0.20
3 0.15
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Section 5.3

1. (a) 2
(b) 5/3
(c) 7/3

3. $8.40
5. 1.9
7. (a) 2.53

(b) 4.47
9. $880

11. (a) 2/3
(b) 4/3
(c) 2

13. (a) Second location
(b) First location

15. −$5
17. (a) No

(b) No
(c) Yes
(d) 4/95 ≈ 0.042

19. −$0.40
21. 2.5
23. $150
25. 0
27. (a) $16,800

(b) $18,000
(c) $18,000

29. 3
31. (a) 7

(b) 7
33. 12
35. 3.6

Section 5.4

1. Var(U) = 0, Var(V) = 1, Var(W) = 100
3. 0
5. 0.49
7. 0.25
9. (b) 0.8

(c) 0.6
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11. (a) 0.5
(b) 0.5

13. (a) 0
(b) $3666

15. (a) 4.06
(b) 1.08

17. 3 SD(X) = 6
19. (a) 2

(b) 2

Section 5.5

1. (a) 24
(b) 120
(c) 5040

3. 3,628,800
5. (a) 0.278692

(b) 0.123863
(c) 0.00786432

7. (a) 0.468559
(b) 0.885735

9. (a) 3 or more
(b) 0.00856

11. 0.144531
13. (a) 0.517747

(b) 0.385802
(c) 0.131944

15. (a) 0.421875
(b) 0.421875
(c) 0.140625
(d) 0.015625

17. (a) 10/3
(b) 20/3
(c) 10
(d) 50/3

19. (a) 0.430467
(b) 0.382638
(c) 7.2
(d) 0.72
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21. (a) 0.037481
(b) 0.098345
(c) 0.592571
(d) 1.76
(e) 0.992774

23. (a) 0.00604662
(b) 0

25. (a) 50; 5
(b) 40; 4.89898
(c) 60; 4.89898
(d) 25; 3.53553
(e) 75; 6.12372
(f) 50; 6.12372

Section 5.6

1. Hypergeometric, n = 20, N = 200, p = 0.09

3. Hypergeometric, n = 6, N = 54, p = 6/54

5. Hypergeometric, n = 20, N = 100, p = 0.05

7. Binomial, n = 10, p = 1/13

Chapter 5 Review

1. (a) 0.4
(b) 0.6

3. (a) 1, 2, 3, 4
(b)

i P(X = i)

1 0.3

2 0.21

3 0.147

4 0.343

(c) 0.7599
(d) 2.53
(e) 1.53

5. (a) 0.723
(b) No, because if she wins then she will win $1, whereas if she loses then

she will lose $3.
(c) −0.108
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7. (a)
i P(X = i)

0 0.7

4000 0.15

6000 0.15

(b) 1500
(c) 5,550,000
(d) 2,355.84

9. The low bid will maximize their expected profit.
11. (a) 1/3

(b) 1/4
(c) 7/24
(d) 1/12
(e) 1/24
(f) $625
(g) $125

13. (a) 0
(b) −68,750
(c) −68,750

17. (a) 0.6
(b) 0.648
(c) 0.68256
(d) 0.710208
(e) 0.733432
(f) 0.813908

19. (a) 0.064
(b) 0.432
(c) 0.820026

21. It is more likely that it does not.

Section 6.2

1. (a) 0.29
(b) 0.56
(c) 0.33
(d) 0.27

3. (a) 2/3
(b) 0.7
(c) 0.6
(d) 0.6



784 Answers to Odd-Numbered Problems

5. (a) 2/3
(b) 1/6
(c) 1/3

7. (a) 1/2
(b) 0
(c) 3/4
(d) 3/8

Section 6.3

1. (a) 108.8 to 148
(b) 89.2 to 167.6
(c) 69.6 to 187.2

3. (b)
5. (d)
7. (c)
9. (a)

11. (b)
13. (d)
15. (b)
17. (a) Y

(b) X
(c) X and Y are equally likely to exceed 100.

19. (a) No
(b) No
(c) No
(d) Yes

Section 6.4

1. (a) 0.9861
(b) 0.1357
(c) 0.4772
(d) 0.7007
(e) 0.975
(f) 0.2358
(g) 0.899
(h) 0.2302
(i) 0.8710

3. 3
7. (a) 1.65

(b) 1.96
(c) 2.58
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(d) 0
(e) 0.41
(f) 2.58
(g) 1.15
(h) 0.13
(i) 0.67

Section 6.6

1. Since x > a, x − u > a − u. It follows that
x − u

σ
>

a − u
σ

since σ is positive.

3. 0.3085

5. (a) 0.6179
(b) 0.8289
(c) 0.4468

7. 0.008

9. (a) 0.1587
(b) 0.2514
(c) 0.4772

11. 0.8664

13. 6.31

15. (a) 0.2660
(b) 0.9890
(c) 0.7230
(d) 0.9991
(e) 0.0384

17. (a) 0.6915
(b) 0.24

Section 6.7

1. (a) 1.48
(b) 1.17
(c) 0.52
(d) 1.88
(e) −0.39
(f) 0
(g) −1.64
(h) 2.41

3. (a) 50
(b) 57.68



786 Answers to Odd-Numbered Problems

(c) 61.76
(d) 40.16
(e) 57.02

5. 464.22
7. 525.6
9. 746

11. (a) True
(b) True

13. 99.28

Chapter 6 Review

1. (a) 0.9236
(b) 0.8515
(c) 0.0324
(d) 0.9676
(e) 0.1423
(f) 0.0007
(g) 75.524
(h) 73.592
(i) 68.3

3. 4.969
5. (a) 0.1587

(b) 0.1587
(c) 0.1886
(d) 576.8

7. (a) 0.881
(b) 0.881
(c) 0.762

9. (a) 0.4483
(b) 0.201
(c) 0.4247

11. (a) 0.6915
(b) 0.3859
(c) 0.1587

13. (a) 1/4
(b) 0.28965

15. (a) 0.8413
(b) 0.042
(c) independence
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Section 7.3

1. (a) SD(X) = 1/2√
3

≈ 0.29

(b) SD(X) = 1/2√
4

= 0.25

1.0000

0.3750

0.2500

0.0625

0 1 1.25 1.5 1.75 2

3. (a) 2
(b)

√
2/3 ≈ 0.82

(c)
i P{X = i}
1 1/9
1.5 2/9
2 3/9
2.5 2/9
3 1/9

(d) E(X) = 2, SD(X) = 1/
√

3 ≈ .58
(e) Yes

5. (a) E(X) = 2.4, SD(X) = 0.2/
√

36 ≈ 0.033
(b) E(X) = 2.4, SD(X) = 0.2/

√
64 ≈ 0.025

(c) E(X) = 2.4, SD(X) = 0.2/
√

100 ≈ 0.02
(d) E(X) = 2.4, SD(X) = 0.2/

√
900 ≈ 0.007

7. Expected value = 15, 500, standard deviation = 2800
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Section 7.4

1. (a) 0.5468
(b) 0.7888
(c) 0.9876

3. 0.7888
5. (a) 0.0062

(b) 0.7888
7. 0.9713
9. 0.1416

11. (a) 0.905
(b) 0.5704

13. (a) 0
(b) 0

15. (a) 0.6826
(b) 0.9544
(c) 1
(d) 1
(e) 1

Section 7.5

1. (a) E(X) = 0.6, SD(X) = 0.15

(b) E(X) = 0.6, SD(X) = 0.049

(c) E(X) = 0.6, SD(X) = 0.015

(d) E(X) = 0.6, SD(X) = 0.0049
3. (a) 0.0122

(b) 0.119

(c) 0.5222
9. (a) 0.0125

(b) 0.8508
11. 0.1949
13. 0.4602
15. (a) 0.9147

(b) 0.0043

(c) 0.5188
17. (a) 0.9599

(b) 0.3121
19. (a) 0.9974

(b) 0.0268
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Section 7.6

1. (a) 5.7; 4 degrees of freedom
(b) 0.018; 5 degrees of freedom
(c) 1.13; 2 degrees of freedom

Chapter 7 Review

1. (a) 0.8413
(b) 0.5
(c) 0.0228
(d) 0.0005

3. E(X) = 3; SD(X) = 1/
√

2 ≈ 0.71
5. (a) Mean = 12, standard deviation = 3.25

(b) 0.5588
7. (a) 300

(b) 7
√

2 ≈ 31.3
(c) 0.5

9. 0.1003
11. (a) 0.3669

(b) 0.9918
(c) 0.9128

Section 8.2

1. 145.5
5. 165.6 hours
7. 12
9. 3.23

11. (a)

Section 8.3

1. 0.3849
3. 0.65; 0.107
5. 0.412; 0.05
7. (a) 0.122

(b) 0.01
9. (a) 0.0233

(b) 0.0375
(c) 0.0867

11. (a) 0.245
(b) 0.022

13. (c); accurate in terms of lowest standard error
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Section 8.3.1

1. 0.28
3. (b) 3.32; 1.73; 1.45

Section 8.4

1. 18.36
3. 799.7; 193.12
5. 21.27
7. 30.5
9. 12.64

11. 1.35
13. 0.0474; 0.2386

Section 8.5

1. (a) (3.06, 3.24)
(b) (3.03, 3.27)

3. (11.43, 11.53)

5. (a) (8852.87, 9147.13)
(b) (8824.69, 9175.31)

7. (72.53, 76.67)

9. (a) (1337.35, 1362.65)
(b) (1334.92, 1365.08)
(c) (1330.18, 1369.82)

11. 13.716

13. 3176

15. (a) 72.99
(b) 72.53
(c) 76.67
(d) 77.53

17. No

Section 8.6

1. (a) (5.15, 5.25)
(b) (5.13, 5.27)

3. (a) (73.82, 93.91)
(b) (71.63, 96.10)
(c) (66.89, 100.84)
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5. (a) (127.71, 163.29)
(b) (119.18, 171.82)

7. (446.28, 482.01)

9. (280.04, 284.96)

11. (1849.4, 2550.6)

13. (a) (4.60, 4.80)
(b) (4.58, 4.82)

15. (1124.95, 1315.05)

17. No

19. (a) (27.59, 38.64)
(b) No

21. 68.897, 98.836

23. The average daily receipts exceed $2857.

Section 8.7

1. (0.548, 0.660)

3. (a) (0.502, 0.519)
(b) (0.498, 0.523)

5. (0.546, 0.734)

7. (0.359, 0.411)

9. (0, 0.306)

11. (0.801, 0.874)

13. (0, 0.45)

15. (a) (0.060, 0.108)
(b) (0.020, 0.052)
(c) (0.448, 0.536)

17. (a) A 95% confidence interval is given by 0.75 ± 0.0346.
(b) Rather than using p̂ to estimate p in the standard error term they used the

upper bound p(1 − p) ≤ 1/4.

19. (a) 1692
(b) Less than 0.04 but greater than 0.02
(c) (0.213, 0.247)

21. 6147

23. 0.868

25. (a) 0.139
(b) 0.101

27. (a) No
(b) No
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Chapter 8 Review

1. (a)
3. (22.35, 26.45)
5. (316.82, 323.18)
7. (a) (44.84, 54.36)

(b) (45.66, 53.54)
9. (1527.47, 2152.53)

11. (a) 88.56
(b) (83.05, 94.06)

13. (a) (34.02, 35.98)
(b) (33.04, 36.96)
(c) (31.08, 38.92)

15. (0.487, 0.549)
17. 0.004
19. (a) (0.373, 0.419)

(b) (0.353, 0.427)
21. Upper

Section 9.2

1. (a) Hypothesis B
3. (d) is most accurate; (b) is more accurate than not.

Section 9.3

1. TS = 1.55; zα/2 = 1.96; do not reject H0.
3. (a) 0.0026

(b) 0.1336
(c) 0.3174
At the 5% level of significance we reject H0 in (a). At the 1% level of
significance we reject H0 in (a).

5. Yes
7. (a) No

(b) 0
9. The data do not support a mean of 13,500 miles.

11. Yes; Yes
13. The p value is 0.281. Thus we reject this hypothesis at a level of significance

of 0.281 or greater.
15. (a) 0.2616

(b) 0.2616
(c) 0.7549
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Section 9.3.1

1. (a) No
(b) No
(c) 0.091

3. (a) 0
(b) 0
(c) 0.0085

5. (a) Yes
(b) No, because the reduction in cavities is so small.

7. Yes, but increase the sample size.
9. The mean amount dispensed is less than 6 ounces; H0: μ ≥ 6; H1: μ < 6;

p value = 0.

Section 9.4

1. The evidence is not strong enough to discredit the manufacturer’s claim at the
5% level of significance.

3. (a) Yes
(b) No

5. (a) No
(b) No
(c) No
(d) The p value is 0.108.

7. Yes
11. H0: μ ≥ 23 versus H1: μ < 23. The judge should rule for the bakery.
13. (a) H0: μ ≥ 31

(b) H1: μ < 31
(c) No
(d) No

15. No, the p value is 0.0068.
17. No; no

Section 9.5

1. p value = 0.0365; normal approximation is 0.0416
3. No
5. (a) H0: p ≤ 0.5; H1: p > 0.5

(b) 0.1356
(c) 0.0519
(d) 0.0042
As n increases, the p value decreases, because we have more confidence in the
estimate for larger n.
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7. (a) No
(b) No
(c) No
(d) Yes

9. No; no
11. No
13. (a) Yes

(b) No
(c) 0.2005

Chapter 9 Review

1. (b)
5. (a) No

(b) Yes
(c) Yes

7. There is insufficient evidence to support the claim at the 5% level of signifi-
cance.

9. One would probably rule against Caputo since the p value of the test H0: p =
1/2 against H1: p 
= 1/2 is 0.000016.

15. (a) 20
(b) 0.4526

Section 10.2

1. (a) No
(b) 0

3. (a) There is evidence to support the hypothesis that the mean lengths of their
cuttings are equal.

(b) 0.8336
5. It suffices to relabel the data sets and use the given test.
7. No

Section 10.3

1. Yes; H0: μx = μy ; H1: μx 
= μy; p value = 0.0206
3. p value = 0.5664
5. Yes; 0
7. No; H0: μx ≤ μy; H1: μx > μy , where x corresponds to rural students and y

corresponds to urban students.
9. H0: μB ≤ μA; H1: μB > μA; p value = 0.0838. At the 5% level of significance

supplier B should be used.
11. (a) H0: μm ≤ μf ; H1: μf < μm
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(c) It indicates that the female average wage is less than the male average
wage.

13. (a) The null hypothesis should be rejected for α = 0.01.
(b) 0.0066
(c) Reduction in mean score

Section 10.4

1. No; yes
3. (a) No

(b) No
5. Yes
7. Reject H0: μx = μy for α = 0.05; p value = 0.0028.
9. (a) Reject H0: μx = μy

(b) Reject H0: μx = μy

(c) Do not reject H0: μx = μy

Section 10.5

1. (a) Reject the hypothesis at α = 0.05.
(b) p value = 0.0015

3. Do not reject H0.
5. (a) Do not reject the hypothesis.

(b) There is not evidence to reject the hypothesis at the 5% level of signifi-
cance.

7. Reject the hypothesis at α = 0.05.
9. (a) H0: μbefore ≤ μafter; H1: μbefore > μafter

(b) No
11. The null hypothesis is not rejected.

Section 10.6

1. (a) No

(b) No
3. (a) Yes

(b) 0.0178
5. (a) No

(b) 0.0856
7. Reject the hypothesis that the proportions were the same in 1983 and 1990;

p value = 0.0017.
9. Reject the hypothesis for α = 0.05; p value = 0.

11. (a) Yes

(b) 0
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13. No
15. Yes; H0: p̂placebo ≤ p̂aspirin (where p̂ is the proportion that suffered

heart attacks); p̂ value = 0.

Chapter 10 Review

1. (a) Reject H0: μx = μy

(b) 0
3. (a) Do not reject the hypothesis that the probabilities are the same.

(b) 0.5222

(c) No

(d) α ≥ 0.2611
5. (a) Reject H0: μx = μy

(b) 0.0497
7. Do not reject the hypothesis that the probabilities are the same.
9. Do not reject the hypothesis (p value = 0.79).

11. Do not reject the hypothesis that the proportions are the same in both
sports.

Section 11.2

1. (a) X1 = 8, X2 = 14, X3 = 11
(b) X = 11

3. Yes
5. No
7. Do not reject the hypothesis for α = 0.05.
9. Reject the hypothesis that death rates do not depend on season for a = 0.05.

11. No

Section 11.3

1. α̂ = 68.8, α̂1 = 14.2, α̂2 = 6.53, α̂3 = −3.47, α̂4 = −3.47, α̂5 = −13.8,
β̂1 = 0.8, β̂2 = −2.4, β̂3 = 1.6

3. α̂ = 28.33, α̂1 = 1, α̂2 = −2, α̂3 = 1, β̂1 = 3.67, β̂2 = −0.67, β̂3 = −3

7. α̂ = 9.585, α̂1 = −1.74, α̂2 = −1.96, α̂3 = 4.915, α̂4 = −1.36,
α̂5 = −3.335, β̂1 = 0.495, β̂2 = −0.405,
β̂3 = 0.795, β̂4 = −0.885

9. (a) 44
(b) 48
(c) 52
(d) 144



Answers to Odd-Numbered Problems 797

Section 11.4

1. (a) Yes
(b) No

3. (a) No
(b) No

5. (a) No (Reject H0)

(b) Yes (Do not reject H0)

7. The p-value in both cases is less than 0.0001.

9. (a) Reject the hypothesis for α = 0.05.
(b) Do not reject the hypothesis for α = 0.05.

Chapter 11 Review

1. Reject the hypothesis for α = 0.05.

3. Yes for α = 0.05.

5. Do not reject the hypothesis for α = 0.05.

7. (a) Do not reject the hypothesis for α = 0.05.
(b) 30.6
(c) Reject the hypothesis for α = 0.05.

9. (a) Do not reject the hypothesis for α = 0.05.
(b) Reject the hypothesis for α = 0.05.

Section 12.2

1. (a)

(b) Yes
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3. (a) Density; speed
(b)

(c) Yes

5. (a)

(b) No

Section 12.3

1. (a)
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(b)

3. (a)

(c) y = 14.79 + 2.43x
7. (a) y = −8.31 + 0.27x

(b) 31.66
(c) y = 31.66 + 3.61x
(d) 147.12

9. At random
11. (a) y = 67.56 + 0.23x

(b) 204.62
(c) 261.73
(d) 296.00

13. 121.85

Section 12.4

1. 2.32
3. (a) 6

(b) 6
(c) 76

5. 0.000156
7. 6970.21
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Section 12.5

1. Do not reject H0: β = 0.
3. Reject the hypothesis.
5. (a)

(b) y = 0.75 + 0.0013x
(c) Reject the hypothesis.
(d) Reject the hypothesis.

7. (a)

(b) y = 2.12 + 0.0003x
(c) Do not reject the hypothesis.
(d) Do not reject the hypothesis.

9. Reject the hypothesis.

Section 12.6

1. (a) α = 10.48, β = 0.325
(b) Yes

7. Not as well as the heights



Answers to Odd-Numbered Problems 801

Section 12.7

1. (a) 12.6
(b) (6.4, 18.8)

3. (a) γ = 44.818 − 0.3138x
(b) 28.814
(c) (25.083, 32.545)
(d) (6026.89, 9520.09)

5. (a) 2.501
(b) (2.493, 2.510)

7. (a) $33,266
(b) (27,263, 39,268)
(c) $42,074; (35,608, 48,541)

Section 12.8

1. (a)

(b) y = 8.885 + 56.32x
(c) 97%
(d) (144,628, 165,929)

3. (a) 0.9996
(b) Yes
(c) 41.975
(d) (40.692, 43.258)

5. 0.149
7. 0.059

Section 12.9

1. (a) 0.9796; 0.9897
(b) 0.9796; 0.9897
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This indicates that the value of the sample correlation coefficient does not
depend on which variable is considered the independent variable.

3. (a) 0.8
(b) 0.8
(c) −0.8
(d) −0.8

5. (a) y = −3.16 + 1.24x
(b) y = 7.25 + 0.66x
(c) 0.818; 0.904
(d) 0.818; 0.904

Section 12.11

3. y = −153.51 + 51.75x1 + 0.077x2 + 20.92x3 + 13.10x4; 183.62
5. 69.99

Chapter 12 Review

1. (a)

(b) y = 177.93 + 6.89x
(c) 522.61
(d) (480.53, 564.68)

3. (a) α = 94.13; β = 0.155
(b) (93.17, 132.34)
(c) 100%

5. Not necessarily, doing well (or poorly) might just be a chance phenomenon
that will tend to regress to the mean on the next attempt.

9. (a) 34.9
(b) (4.34, 23.40)

11. (a) y = 177.41 + 1.07x1 + 11.7x2

(b) 241.90
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15. Alcohol consumption, which is associated with both cigarette consumption
and bladder cancer incidence, might be the primary cause. A multiple linear
regression would be useful.

Section 13.2

1. (a) 15.086
(b) 11.070
(c) 23.209
(d) 18.307
(e) 31.410

3. H0: P1 = 0.52, P2 = 0.32, P3 = 0.16. No, H0 is not rejected.
5. Yes, the null hypothesis is rejected.
7. No, p value = 0.0002.
9. Yes; yes

11. Yes
13. Do not reject the hypothesis.
15. Reject the hypothesis.

Section 13.3

1. (a) 7.08
(b) Yes
(c) No

3. Reject the hypothesis.
5. Do not reject that the characteristics are independent.
7. Reject the hypothesis.
9. No

11. Reject the hypothesis; reject the hypothesis.
13. Do not reject the hypothesis.

Section 13.4

1. No, we cannot conclude that smoking causes lung cancer, but we can conclude
that the per capita lung cancer rate is higher for smokers than for nonsmokers.

3. Do not reject the hypothesis.
5. No
7. Yes; no
9. Do not reject in each case.

Chapter 13 Review

1. Do not reject the hypothesis.
5. Reject the hypothesis.
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7. Do not reject the hypothesis for α = 0.05.
9. Yes

11. No; no
13. (a) Do not reject the hypothesis.

(b) 0.208
15. Do not reject the hypothesis; do not reject the hypothesis.

Section 14.2

1. (a) p value = 0.057. Reject the null hypothesis at any significance level greater
than or equal to 0.057.

(b) p value ≈ 0. Reject the null hypothesis at any significance level.
(c) p value ≈ 0. Reject the null hypothesis at any significance level.

3. We cannot reject the null hypothesis that the two guns are equally effective.
5. Since n is small we use the binomial distribution to calculate the p value =

0.291. Thus we cannot reject the hypothesis that the median score will be at
least 72.

7. Yes, this discredits the hypothesis. p value = 0.0028.

Section 14.3

1. (a) TS = 39
(b) TS = 42
(c) TS = 20

3. (a) p value = 0.2460
(b) p value = 0.8336
(c) p value = 0.1470

5. (a) Yes, how the paper is presented had an effect on the score given.
(b) p value = 0.0102

7. (a) The null hypothesis is rejected at any significance level greater than or
equal to 0.1250.

(b) The null hypothesis is rejected at any significance level greater than or
equal to 0.0348.

9. No, we cannot reject the null hypothesis. Painting does not affect an aircraft’s
cruising speed.

Section 14.4

1. (a) 94
(b) 77

3. p value = 0.8572
5. Since the p value = 0.2112, we cannot reject the null hypothesis that the

starting salary distribution for MBAs from the two schools are the same.
7. p value = 0.4357
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Section 14.5

1. (a) 41
(b) 2

3. Since the p value = 0.0648, we cannot reject the hypothesis that the data
constitutes a random sample.

5. Since the p value = 0.0548, we cannot reject the null hypothesis that the
interviewer interviewed them in a randomly chosen order.

7. (a) Median = 163.5
(b) Seven runs
(c) Since the p value = 0.0016, we must reject the null hypothesis at any sig-

nificance level greater than or equal to 0.0016. The sequence of values do
not constitute a random sample.

Section 14.7

1. The data strongly support the hypothesis that the student improved as the
semester progressed.

Chapter 14 Review

1. Using the rank-sum test with TS = 113, we obtain a p value of 0.0348. So we
cannot reject the null hypothesis at the 1% level of significance, but we must
reject the null hypothesis at the 5% level.

3. Since p value ≈ 0, reject the null hypothesis, the median net worth has
decreased.

5. We do a runs test, with median = 145 and n = m = 20, and r = 21. Since
5 = 21, the p value is 1.0.

9. Using the signed–rank test with TS = 0. The p value = 0.0444. Thus we reject
the null hypothesis that there is no difference in the shoe sales at any level of
significance above 4.44%.

11. Since the p value = 0.5620, we cannot reject the null hypothesis.

Section 15.2

1. (a) LCL = 85, UCL = 115
(b) LCL = 86.58, UCL = 113.42
(c) LCL = 87.75, UCL = 112.25
(d) LCL = 90.51, UCL = 109.49

3. LCL = 66.58, UCL = 93.42. Since subgroup 9 falls outside this range, the
process would have been declared out of control at that point.

5. LCL = −0.00671, UCL = 0.00671. Since all the subgroups are within these
control limits, the process is in control.
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Section 15.3

1. LCL = 0, UCL = 13.23. Since all the subgroups are within the control limits,
the process is in control.

3. (a) Since all the subgroups are within the control limits, the process is in
control.

(b) LCL = 0, UCL = 9.88

Chapter 15 Review

1. LCL = 1.4985, UCL = 1.5015.
3. LCL = 0, UCL = 13.23. Since all the subgroups are within these control limits,

the process is in control.
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basic, 189
generalized basic, 190
notation of, 193
problems for, 195–198

Course of Experimental Agriculture
(Young), 457

Critical region, definition of, 390
Cumulative relative frequency table,

43
Cumulative sum control charts,

722–724
problems for, 725

D
Data

approximately symmetric, 21
collection, 3–4
detected by histograms, 35f
manipulation of, and scientific

fraud, 606
modern approach to, 2–3
paired, 51–54
symmetric, 20–21

Data mining, 408
Data sets, 729–732

approximately normal, 110f
bimodal, 112
biological, 569–570
central limit theorem and, 306
central tendencies of, 84
comparison rankings, 685–688
constructing histograms from, 34
finding sample variance for,

100–102
frequency tables and graphs,

18–32
grouped data and histograms,

32–43
histograms of, 109f, 110f
introduction to, 18
key terms for, 59–60
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normal, 73, 109f, 138
paired data, 51–58
problems for

frequency tables and graphs,
25–32

grouped data and histograms,
39–43

paired data, 54–58
stem-and-leaf plots, 47–51

review problems, 63–70
skewed, 110f, 111f
stem-and-leaf plots, 44–51
summarizing. See Statistics

De Mere, Chevaller, on probability,
157

De Moivre, Abraham, normal
distribution and, 262,
263–264

Degrees of freedom
of chi-squared distributions, 324,

360
definition of, 323
error random variables, 554–555
one-factor ANOVA, 506–508
of random variables, 360
remarks on F random variable,

507–508
values of F and, 507t

Densities
of sample means, 300f
symmetric about zero, 658f

Density curves. See also Probability
density function

of uniform random variables, 265f
Density percentile, in interval

estimations, 361f
Dependent variables, 539
Descartes, René, 58
Descriptive statistics, definition of, 4
Deviations

definition of, 78–79
historical perspective on, 78
i th deviation, 135

Dice, fair, 167
Discrete random variables

binomial, 238–243
concepts, 211–214
definition of, 210, 212
expected value, 218–225
hypergeometric, 248–249
key terms for, 254
Poisson, 250–253
probability distribution and, 215

problems for
binomial random variables,

244–247
expected value, 225–231
hypergeometric random

variables, 249–250
Poisson random variables,

253–254
random variables, 215–217
variance, 236–238

review problems, 256–259
summary of, 254–256
variance of, 231–236

Disjoint events, 149, 150
Distributions

central limit theorem and sample
mean, 306–310

chi-squared, 324, 360
continuous, 262–263
key terms for, 325–326
preview of, 298
review problems, 327–330
of sample variance of normal

populations, 323–325
summary of, 326–327

Doll, R., 72
Don-Hill study, 72
Double-summation notation, 517
Dummy variables for categorical

data, 590–592

E
Empirical frequencies, bell-shaped

curves and, 305
Empirical rule, 109–114

approximation rule and, 268
definition of, 111
historical perspective on, 115
normal data sets and, 114
problems for, 114–120

Equality testing
of equality of means

known variances, 446–450
small-sample, with equal

unknown variances,
463–468

unknown variances and large
sample size, 453–459

of multiple probability
distributions, 683–688

of population proportions,
481–489

Equally likely outcomes, 161–164
random selection, 162

Error random variable, 553–555
multiple linear regression model,

587–588
problems for, 556

Error sum of squares, in two-factor
ANOVA tests, 522

Estimated regression line
definition of, 545
scatter diagram of, 547f

Estimates, definition of, 332
Estimation

interval estimators of mean,
347–371

interval estimators of population
proportion, 371–380

introduction to, 332–333
key terms for, 380–381
point estimator for population

mean, 333–334
point estimator of population

proportion, 336–338
of population variance, 342–344
of probability of sensitive events,

341–342
problems for

interval estimators, known
variance, 357–359

interval estimators of
population proportion,
377–380

interval estimators, unknown
variance, 366–371

point estimator, population
mean, 334–336

point estimator, population
proportion, 336–338

population variance, 344–347
sensitive event probability, 342

review problems, 383–386
summary, 381–383

Estimators
case studies for, 373–374
control charts and unknown mean

and variance, 707–709
definition of, 332
least-square, 544–545
in one-factor ANOVA, 505–506
point, of population mean,

333–334
population variance, 463–464
in two-factor ANOVA, 521, 523
unbiased, definition of, 333

Events, 146–150
complements, 149
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Events (continued)
definition of, 148
disjoint or mutually exclusive,

149, 150
independent, 167–176
intersection/union, 148–150
null, 148–149

EWMA control charts. See
Exponentially weighted
moving-average control
charts

Expectation, definition of, 218
Expected value, 218–225

of binomial random variables,
243–244, 316

center of gravity analogy, 221
of chi-squared random variables,

324
definition of, 218
frequency interpretation of

probabilities, 218, 224
of hypergeometric random

variables, 248
of Poisson random variables, 252
population means and, 301, 302
problems for, 225–231
properties of, 221–225
of sample means, 300
of sums, 222, 224
of sums/products using constants,

221
of zero, 231

Experiment, 146–150
definition of, 146
equally likely outcomes in,

161–164
problems for, 150–153, 164–167

Exponential bell-shaped curve, 291
Exponential distribution, 310
Exponential random variables,

density of average of, 310f
Exponentially weighted

moving-average (EWMA),
719

Exponentially weighted
moving-average control
charts, 717–721

definition of, 718
example of, 721f
problems for, 721–722
standard, definition of, 719

F
F distribution

definition of, 506–507
degrees of freedom, 507–508
example of, 507f
percentiles, 743–748

Factorial notation (!), 191
Fair dice, 167
False-positive results, Bayes’ theorem

and, 187
Fermat, Pierre, 157
Finite populations

problems for, 319–323
proportions in, 314
random variables in, 315
sampling proportions for,

313–319
First quartile, definition of, 93
First-generation hybrids

crossing, 607f
described, 606

Fisher, Ronald A.
analysis of Mendel’s data, 608
ANOVA and, 504, 529
role, in history of statistics, 10
on sample correlation coefficients,

128
significance levels and, 393
t test and, 418

Fixed margins, 631
Fraction defective

control charts for, 715–716
problems for control charts for,

717
Fraud and data manipulation, 606
Freedman test, 688
Frequency histograms, 34

example of, 34f
summary of, 60

Frequency interpretation, of expected
value, 218, 224

Frequency polygons, 19–21, 36–37
example of, 20f
relative, 21, 22f, 37, 38f
summary of, 60, 61f

Frequency, relative, 153, 168. See also
Probabilities

Frequency tables, 18–25
of blood cholesterol levels, 33t
constructing, 22
definition of, 18
problems for, 25–32
sample means and, 75

of sick leave, 19t
summary of, 60
of symmetric data, 21t

Future responses, prediction intervals
for, 573–575

G
Galileo, 157
Galton, Francis

on frequency of error, 307
on heredity, 127
regression and, 115, 538, 564,

570–571
role, in history of statistics, 9–10

Gauss, Karl Friedrich and normal
curves, 291–292

Genes, 606
Geometrically weighted

moving-average, 719
Goodness-of-fit tests, 606–609. See

also Chi-squared
goodness-of-fit tests

Gosset, W.S.
role, in history of statistics, 10
on sample correlation coefficients,

128
t statistic distributions and, 418

Grand mean, in ANOVA, 516
Graphical plotting, of Edmund

Halley, 58–59
Graphs, 18–25

bar, 19–21
frequency polygons, 19–21
line, 19–21
problems for, 25–32
relative frequency, 21–24

Graunt, John
life table, 159
mortality table of, 9t
role, in history of statistics, 7–9

Grouped data, 32–39
problems for, 39–43

Guass, Karl Friedrich, 9, 589–590
Guassian distribution, 291
Guerry, A.M., bar graphs used by, 59

H
Halley, Edmund, 8–9

graphical plotting and, 58–59
Hawthorne effect, 456

historical perspective, 458
Heredity, Galton, Francis, on, 127
Hill, A.B., 72
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Histograms, 32–39
of approximately normal data sets,

110f
of bimodal data sets, 112f
of birth rates, 37f
characteristics of data detected by,

35f
constructing, 34
definition of, 33
importance of, 34
of normal data sets, 109f
Pearson and, 59
problems for, 39–43
of skewed data sets, 110f, 111f
summary of, 60, 62f

Huyghens, Christian, 85
Huyghens, Ludwig, 85, 157
Hybrid genes, 240
Hypergeometric random variables,

248–249
binomial distributions of, 249
definition of, 248
expected value and variance of,

248
problems for, 249–250

Hypothesis
alternative, 389
establishing, 391
null. See Null hypothesis
proving, 391, 405
statistical, 389

Hypothesis tests
analysis of variance. See Analysis

of variance (ANOVA)
of binomial parameters, 423–425
errors, 391
first published (historical

perspective), 430
goodness of fit. See Chi-squared

goodness-of-fit tests
introduction to, 388
key terms for, 433
key terms for, concerning two

populations, 493
linear regression and β equals

zero, 557–560
mean of normal populations,

394–400
misinterpreting rejections, 489
for non-normal distributions, 406
nonparametric. See

Nonparametric hypotheses
tests

observational studies and, 486

one-sided, 403–406
of median, 655

one-sided, defined, 405
p values, 398

of population proportion, 422
pictorial depiction of, 397f, 404f,

411f, 415f
point estimators for, 392
population proportion and,

421–429
population proportion equality

tests, 481–489
problems for, 392–394

normal population with known
variance, 400–403

one-sided tests, 406–409
paired-sample t tests, 476–481
population proportions,

429–433, 490–493
small-sample, with unknown

population variances,
468–471

t tests, 417–421
two normal populations with

known variances, 450–453
two-factor ANOVA, 527–529
unknown variance and large

sample sizes, 459–463
proposed case studies for,

437–442
randomizing sets in, 486
review problems, 437–442
review problems for, concerning

two populations, 498–502
significance levels and, 388–392
summary of, 433–437
summary of, concerning two

populations, 493–498
t tests, 409–417
Three Mile Island case, 407–408
two binomial probabilities, 488t
two population tests

introduction, 444–445
paired-sample t test, 471–476

two population tests of equality of
means

known variances, 446–450
small-sample, with equal

unknown variances,
463–468

unknown variances and large
sample size, 453–459

two-factor ANOVA, 520–527
types of (summary tables), 406t,

417t, 429t, 450t, 459t, 468t,
488t

unknown variance, 409–417
Z test, 396, 397f

I
In control process, 700
Independent events, 167–176

any number of, and probability,
176

definition of, 173–174
problems for, 177–184
testing in contingency tables,

631–634
testing in two characteristics of

populations, 620–626
Independent random variables, 234
Independent trials

Bernoulli, Jacques, and, 244
for binomial random variables,

239
Independent variables, 539
Inferential statistics, overview of, 4–5
Input variables

definition of, 539
in simple linear regression,

540–542
Interquartile range, 103–104
Intersection of events, 148–150
Interval estimators of mean,

347–371
confidence and, 347, 349, 362
confidence bounds in, 355–357
definition of, 347
introduction to, 333
90, 95, 99 percent confidence,

350t, 351f
of normal populations with

known variance, 347–357
of normal populations with

unknown variance, 359–366
for population means, 362
problems for, 357–359, 366–371
sample size for, 353
t random variable, 359–361

Interval estimators of population
proportion, 371–380

case studies for, 373–374
confidence and, 371
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Interval estimators of population
proportion (continued)

length of confidence interval,
373–375

problems for, 377–380
IQ, stem-and-leaf plots for, 52f

K
Kruskal-Wallis test, 684

L
Laplace, Pierre Simon, 9
Law of frequency of error, 307
Least squares method, 589–590, 596
Least-square estimators, 544–545

of regression parameters, 588
Left-end inclusion convention, 32
Legendre, Adrien Marie, 589–590
Levels of significance. See

Significance levels
Life table, 159
Line graphs, 19–21

example of, 19t
summary of, 60, 61f

Linear regression
biological data sets, 569–570
dummy variables for categorical

data, 590–592
estimated regression line, 545,

547f
estimating regression parameters,

544–548
Galton and, 538
introduction, 539–540
key terms for, 595
linear equation, 539
multiple, 586–592
prediction intervals for future

responses, 573–575
problems for

analysis of residuals, 586
β equals zero, 560–564
coefficient of determination,

580–581
error random variable,

553–555
estimating parameters,

548–553
multiple regression model,

592–594
prediction intervals, 575–578
regression to mean, 570–573

sample correlation coefficient,
583

simple model, 542–544
regression to the mean, 539,

564–570
residuals, analysis of, 584–586
review problems, 599–604
simple model for, 540–542
summary of, 595–599
testing β equals zero hypothesis,

560–564
Linear relationships

equation for, 539
sample correlation coefficient,

123, 126
Lower confidence bounds

for interval estimation of means,
355–357, 364–366

for interval estimation of
population proportions,
375–377

Lower control limit (LCL), 700, 702

M
Mann-Whitney test, 669
Margin of error, 383
Marlowe, Christopher, 672
Mathematical preliminaries,

summation of, 733
Mean. See also Population mean;

Sample mean
definition of, 218
detecting shifts in, 700–705
regression to, 564–570
X control charts for detecting

shifts in, 700–705
unknown mean and variance,

707–709
Men of Mathematics (Bell), 292
Mendel, Gregor, 606–608

data manipulation, 608, 613–614
Mendenhall, Thomas (historical

perspective), 671–672
Method of least squares, 589–590,

596
Method of maximum likelihood, 393
Method of movements, 393
Modal values, 97
Mortality tables, history of, 7–9
Mosteller, Frederic, 672
Moving average. See Exponentially

weighted moving-average
control charts

Multiple linear regression model,
586–592

definition of, 587
problems for, 592–594

Multiplication rule of probability,
172

Mutually exclusive events, 149, 150

N
Natural Inheritance (Galton), 307
Negative correlations, 121

in sample correlation coefficients,
122–123

Newton, Isaac, 8–9
Neyman, Jerzy, 10, 393
Nightingale, Florence (historical

perspective), 627
Noise, 349

random, 396
Nonparametric hypotheses tests

comparison rankings, 685–688
definition of, 648
equality of multiple probability

distributions, 683–688
Freedman test, 688
key terms for, 693
Kruskal-Wallis test, 684
normal distribution tests

compared to, 672–673
permutation tests, 689–692
problems for

equality of multiple probability
distributions, 688

permutation tests, 692–693
rank-sum test, 673–675
runs test for randomness,

681–683
sign test, 655–657
signed-rank test, 664–667

rank-sum test, 667–673
review problems, 696–697
runs test for randomness,

676–681
sign test, 648–655

null hypothesis, 650f
p value, 650

signed-rank test, 657–663
summary of, 693–696

Normal approximation, binomial
distribution and, 317–319

Normal curves
approximate areas under, 269f
approximation rule and, 268, 269f
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central limit theorem and, 306
Gauss (historical perspective on),

291–292
standard, 268f

Normal data sets, 109–114
definition of, 109
empirical rule and, 114
historical perspective on, 115
problems for, 114–120
summary of, 138

Normal distribution
biological data sets, 569–570
control and, 704
historical perspective on, 263–264
introduction to, 262
normal random variables,

266–269
Normal populations

interval estimators of, with known
variance, 347–357

interval estimators of, with
unknown variance, 359–366

one-sided tests of, 403–406
problems for distribution in, 325
problems for mean tests of,

400–403
problems for testing two, with

known variances, 450–453
sample variance distribution in,

323–325
tests. See Hypothesis tests

Normal probabilities, finding,
277–279

Normal random variable, 266–269
approximation rule for, 268
key terms for, 290
percentiles of, 284–288
probabilities associated with,

271–276
problems for, 269–271

additive property, 281–284
continuous random variables,

264–266
percentiles of, 289–290
probabilities associated with,

276–277
review problems, 293–296
standard, 267
standard deviation of, 277, 279
standardizing, 277
summary of, 290–293

Null event, 148–149
Null hypothesis

appropriate, 416

classical testing procedure for, 391
definition of, 389
discrediting, 391
not rejecting, 399–400
rejection of, 390
significance levels necessary for

rejection of, 404
statistical test of, 390
testing, in chi-square

goodness-of-fit tests, 610
testing, with unknown variance,

414–415
types of tests (summary tables),

406t, 417t, 429t, 450t, 459t,
468t, 488t. See also
Hypothesis tests

Numerical science, 9

O
Observational studies, for hypothesis

tests, 486
One-factor analysis of variance,

505–510
definition of, 504
problems for, 510–514
summary of, 530–531
summary table, 510t

One-sided tests, 403–406
definition of, 405
problems for, 406–409
sign tests, 653–655
two population tests, 468t, 474,

484, 487
Outcomes

definition of, 146
equally likely, 161–164
problems for equally likely,

164–167
sample space and events of

experiment, 146–150
Outliers, 40, 54, 69

P
p value

of chi-squared test, 612
hypothesis testing, 398
in population proportion

hypothesis tests, 422, 483
in sign tests, 650
of signed-rank tests, 660
summary of, 434
two-sided tests of, 425–429

types of tests (summary tables),
406t, 417t, 429t, 450t, 459t,
468t, 488t

Paired data, 51–54
notation, 51
paired sample t test, 471–476
problems for, 54–58, 476–481

Parallel circuit, 183
Pascal, 157
Pearson, Egon, 393
Pearson, Karl

chi-squared goodness-of-fit test
and, 608, 610, 616

on De Moivre, 264
histograms used by, 59
on Nightingale, 627
product-moment correlation

coefficient of, 128
regression to the mean and, 565
role, in history of statistics, 10,

292, 393
Percent confidence interval

estimator, 350
Percentiles

chi-squared, 611f, 741–742t
confidence levels, 350t
definition of, 285
F distributions, 743–748
finding, by conversion to standard

normal, 287
of normal random variables,

284–288
problems for, of normal random

variables, 289–290
sample, 90–93, 136–137
t distribution, 740–741t

Permutation tests, 689–692
problems for, 692–693

Permutations, 191–192
Philosophical Transactions of the Royal

Society (Arbuthnot), 430
Piazzi, Giuseppe, 589
Pie charts, 24–25

example of, 25f
Placebo effect, 3, 445, 456
Placebos, 4
Plague and history of statistics, 7–9
Playfair, William, pie charts used

by, 59
Poincaré, Henri, 311
Point estimator

hypothesis testing, 392
introduction to, 333
of population mean, 333–334
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Point estimator (continued)
for population proportions,

336–338
problems for, of population

means, 334–336
problems for, of population

proportions, 338–340
standard errors and, 334

Poisson random variables, 250–253
binomial random variables and,

250–251
definition of, 250
expected value and variance of,

252
graphs of, 251f
problems for, 253–254

Poisson, Simeon, 140
Pooled estimator

testing equality of means, 464
testing population proportions,

483
Population distributions

introduction to, 298–299
probability distributions of

sample mean and, 302f
sign test of, 652–653

Population mean
confidence bounds for, 355–357
definition of, 300
hypothesis tests for normal,

394–400
interval estimators for, 362
obtaining, 301, 302
one-sided tests concerning two,

468t
point estimator of, 333–334
problems for point estimation of,

334–336
sample means and, 333
t test for, 409–417

Population proportions
case studies for, 373–374
hypothesis tests concerning,

421–429
interval estimators of, 371–377
one-sided hypothesis and, 487
point estimators for, 336–338
pooled estimators in, 483
problems for hypothesis tests of,

429–433, 490–493
problems for interval estimators

of, 377–380

problems for point estimation of,
338–340

testing equality of, 481–489
Population size, sample size and, 316
Population standard deviation, 302

estimating, 334, 343–344
Population variance

definition of, 300
estimating, 342–344
hypothesis tests for small sample

with equal unknown,
463–468

interval estimators of normal
populations with known,
347–357

interval estimators of normal
populations with unknown,
359–366

obtaining, 301, 302–303
pooled estimators, 464
problems for estimation of,

344–347
standard normal distributions of

equal, 464
Populations

central limit theorem for various,
307

definition of, 5
densities of sample means of, 300f
finite, 313–319
normal, 323–325
numerical values associated with,

299
sampling from correctly, 320

Positive correlations, 121
in sample correlation coefficients,

122–123
Prediction intervals

definition of, 540, 573
for future responses, 573–575
problems for, 575–578

Probabilities
addition rule for, 154–155
Bayes’ theorem, 185–187
binomial, 241f
of binomial random variables,

238–243
conditional, 167–176
counting principles, 189–195
definition of, 5, 146
of equally likely outcomes,

161–164
finding normal, 277–279
historical perspective on, 157

key terms for, 198–199
as long-run relative frequencies,

153, 168
multiplication rule, 172
for negative x, 273
problems for

Bayes’ theorem, 187–189
conditional probability and

independence, 177–184
counting principles, 195–198
equally likely outcomes,

164–167
properties, 156–161
sample space, 150–153

problems for, of sensitive events,
342

properties of, 153–156
review problems, 201–208
sample proportions and, 317–319
sample space and events of

experiment, 146–150
of sensitive events, 341–342
standard normal, 272t, 739–740t
of standard normal random

variables, 271–276
summary of, 200–201

Probability density function
definition of, 262–263
density curves, 263f, 264f, 360f
of sample means from standard

normal populations, 300f
of t random variables, 360f

Probability distribution
discrete random variables and,

213
introduction to, 298–299
population distributions and, 302f
of sample means, 301

Probability mass functions
of binomial random variables,

318f
graph of, 302f

Probability models, overview of, 4–5
Problem of the points, 157
Product-moment correlation

coefficient, Pearson’s, 128
Programs, 755

Program 3-1, 137, 458
Program 3-2, 133
Program 5-1, 242, 243, 319, 422,

423, 424, 426, 437, 651,
655, 694

Program 6-1, 275, 276, 277, 291,
308, 319
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Program 6-2, 286, 292
Program 8-1, 361, 475
Program 8-2, 361, 412, 415, 416,

558
Program 8-3, 362, 363f, 364f, 366
Program 9-1, 413, 414, 415, 417,

473, 474, 476
Program 10-1, 466–467
Program 11-1, 509, 525, 531
Program 11-2, 525, 527, 533
Program 12-1, 546, 555, 566, 568,

575, 598
Program 12-2, 588, 590, 599
Program 14-1, 660–661, 662, 663,

694
Program 14-2, 671, 672, 695
Program 14-3, 677, 679, 680, 681,

696
Program A-1, 314, 736, 737

Proportions, in finite populations,
314

Pure dominance, 240
Pure recessiveness, 240

Q
Quality control methods, 504

cumulative sum control charts,
722–724

exponentially weighted
moving-average control
charts, 717–721

introduction to, 700
key terms for, 725
problems for

cumulative sum control charts,
725

exponentially weighted
moving-average control
charts, 721–722

S control charts, 713–715
X control chart for detecting

mean shifts, 705–706
review problems, 726
S control charts, 710–712
Shewhart control chart, 704
summary of, 725–726
X control charts, 700–705

unknown mean and variance,
707–709

Quartiles
definition of, 93

interquartile range, 103–104
summary of, 136–137

Quetelet, Adolphe, 59, 627
on normal data sets, 115

R
Random error, 539
Random noise, 396
Random numbers, 736
Random samples

algorithms for generating, 736
choosing, 314–315, 735–737
definition of, 6, 314

Random selection, 5
equally likely outcomes, 162

Random variables, 211–214
assigning values to, 211
binomial, 238–243
chi-squared, 323–325, 360
continuous, 262–264
definition of, 211
degrees of freedom, 323, 360
density curves of, 264f, 265f
discrete, definition of, 210, 212
error, 553–555
expected value, 218–225
F, with degrees of freedom, 507f
in finite populations, 315
hypergeometric, 248–249
independent, 234
normal, 266–269
Poisson, 250–253
problems for, 215–217
review problems, 256–259
standard normal, 267
summary of, 254–256
t random variable, 360
uniform, 264
variance of, 231–236
of zero expected value, 231

Random walk model, 440
geometric, 369
linear, 346, 369

Randomization
in hypothesis testing, 486
technique for sensitive events,

341–342
Randomness, runs test for, 676–681
Range, 137
Rankings, comparison, 685–688
Rank-sum test

mean and variance of TS, 668

normal distribution tests
compared to, 672–673

problems for, 673–675
summary of, 695
for two populations, 667–673
two-sample, 669

Referents, 486
Regression fallacy

definition of, 539
regression to the mean and, 569

Regression line
estimated, 545, 547f
standardized residuals, 584, 585f,

586f
Regression parameters

errors and, 544f
estimating, 544–548
least-square estimators of, 588
multiple linear regression model,

587–588
problems for, 548–553

Regression to the mean, 539,
564–570

definition of, 539, 564
Galton’s regression to mediocrity,

538
historical perspective on, 115
regression fallacy, 569
scatter diagram, 564f, 565f

Rejection region, 390
Rejections, misinterpreting, 489
Relative frequency graphs, 21–24

sick leave data, 22t
Relative frequency histograms, 34

summary of, 60
Relative frequency polygons, 21, 37

examples of, 22f, 38f
Residuals, 554

analysis of, 584–586
standardized, 584, 585f, 586f

Response variables
definition of, 539
in simple linear regression,

540–542
Row factors, in ANOVA, 515
Row sum of squares

definition of, 524
two-factor ANOVA tests, 523–524

Runs test for randomness, 676–681
definition of, 677
problems for, 681–683
summary of, 695–696
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S
S control charts, 710–712

examples of, 712f
problems for, 713–715

Salaries, stem-and-leaf plots for, 52f
Sample correlation coefficient,

120–128, 582
absolute values of, 126–127
computational formula for, 124
definition of, 582
definition of (formula), 123
described, 73, 120
example scatter plots, 127f
historical perspectives on,

127–128
linear relationship of data, 123,

126
negative correlations in, 122–123
Pearson’s product-moment, 128
positive correlations in, 122–123
problems for, 128–134, 583
properties of, 123
summary of, 138
variable values in, 122

Sample mean, 73–78, 299–303
central limit theorem and

distribution of, 306–310
central tendencies described by, 84
compared to sample median, 86
definition of (formula), 73
densities of, 300f
deviations and, 78–79
expected values of, 300
frequency tables and, 75
historical perspective on, 78, 85
population means and, 333
probability distribution of, 301
problems for, 79–83, 86–90,

303–304
standard deviation of, 302
summary of, 136
variance of, 300

Sample median, 83–86
central tendencies described by, 84
compared to sample mean, 86
definition of, 83
historical perspective on, 85
as percentile (50th), 90
problems for, 86–90
summary of, 136

Sample mode, 97–98
definition of, 97

problems for, 98–99
summary of, 136

Sample percentiles, 90–93
calculating, 90–91
of data set size n, 91
definition of, 90
problems for, 93–97
quartiles of, 93
summary of, 136–137

Sample proportions
probabilities and, 317–319
problems for, 319–323

Sample size
hypothesis tests for large, 453–459

appropriate sizes for, 455
hypothesis tests for small,

463–468
for interval estimation, 353
population size and, 316
problems for hypothesis tests for

large, 459–463
problems for hypothesis tests for

small, 468–471
Sample space, 146–150

definition of, 146
problems for, 150–153

Sample standard deviation, 99–105
definition of (formula), 102–103
problems for, 105–109
summary of, 137

Sample variance, 99–105
computing by hand, 101, 137
definition of (formula), 100
distribution of, in normal

populations, 323–325
problems for, 105–109
problems for distribution of, in

normal populations, 325
unchanged, when adding

constants to data, 102
Samples

as controls, 457
from correct populations, 320
definition of, 5, 299
key terms for, 325–326
preview of, 298
random, 314–315
representative, 6
review problems, 327–330
sizes of, for central limit theorem,

310–311
summary of, 326–327

Sampling proportions, for finite
populations, 313–319

Scatter diagram
definition of, 51
estimated regression line, 547f
IQ vs. income, 53f
regression to the mean, 564f, 565f
simple linear regression, 540, 541f
standardized residuals and, 585f,

586f
summary of, 63

Second quartile, definition of, 93
Sensitive events

estimating probability of,
341–342

problems for estimation of
probability of, 342

Series circuit, 183
Set notation, 734
Shewhart control chart, 704
Shewhart, Walter, 704
Sign test, 648–655

equality of population
distributions, paired
samples, 652–653

of null hypothesis, 650f
one-sided, 653–655
p value in, 650
problems for, 655–657
summary of, 693–694

Signed-rank test, 657–663
p value, 660
problems for, 664–667
summary of, 694–695
summary table, 663
zero-differences and ties in,

662–663
Significance levels

α test, 391
correct, 397–398
definition of, 391
historical perspective on, 393
hypothesis test concepts, 388–392
hypothesis tests (summary tables),

391, 406t, 417t, 450t, 459t,
468t, 488t

null hypothesis and, 404
p value, 398
in paired-sample t tests, 473
problems for, 392–394
of two-sided t test, 411f

Simon, Pierre, central limit theorem
and, 310

Simple linear regression model
assessing, 584–586
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definition of simple linear
regression, 540

input variable in, 540–542
problems for, 542–544
response variable in, 540–542
scatter diagram and, 540, 541f

Simple random samples, definition
of, 6

Skewed data, 110f, 111f
Standard deviation

of binomial random variables,
316

definition of, 235
of normal random variables, 277,

279
point estimators for population

mean, 334
point estimators for population

proportion, 337
population, estimate, 343
of random variables, 235–236
sample, 99–105
of sample mean, 302

Standard error
for estimating sensitive events,

342
in point estimation of population

mean, 334
in point estimation of population

proportion, 337
Standard exponential weighted

moving-average control
chart, 719

Standard normal
conversion to, 277–279
finding percentiles and, 287
in interval estimations, 360f

Standardized residuals, 584
problems for, 586
regression line and, 584–586
scatter diagrams of, 585f, 586f

Standardizing, normal random
variables, 277

Statistical hypothesis, definition of,
389

Statistical Methods for Research Workers
(Fisher), 418

Statistical test, of null hypothesis,
390

Statistics
changing definition of, 11
definition of, 3, 72
history of, 7–10
key terms for, 10, 134–136

Statistics, sampling
Central limit theorem, 115,

304–311
distribution of sample variance,

323–325
normal data sets and empirical

rule, 109–120
problems for

central limit theorem, 311–313
distribution of sample variance,

325
empirical rule, 114–120
finite populations, 319–323
sample correlation coefficient,

128–134
sample means, 79–83, 86–90,

303–304
sample median, 86–90
sample mode, 98–99
sample variance and standard

deviation, 105–109
sample mean, 73–83, 299–303
sample median, 83–97
sample mode, 97–99
sample standard deviation,

99–109
sample variance, 99–109
sampling proportions, 313–319

Stem-and-leaf plots, 44–47
definition of, 44
examples of, 45–47
introduced by John Tukey, 59
for IQ scores, 52f
problems for, 47–51
for salaries, 52f
summary of, 62
uses of, 46

Stratified random sampling,
definition of, 6–7

Sums, expected value of, 222, 224
Symmetry, 20–21

approximately symmetric, 21
bar graphs and, 21f
histograms, 34–35

T
t distribution, 360f

percentiles, 740–741t
t random variable, 359–361
t test

historical perspective on, 418
for non-normal distributions, 416

for normal population means,
409–417

paired-sample, 471–476
problems for, 417–421
types of, 417t

Test statistic, definition of, 389
Third quartile, definition of, 93
Trials, 238

for hypergeometric random
variables, 248

Tukey, John, stem-and-leaf plots
used by, 59

Two-factor analysis of variance,
514–529

definition of, 504
error sum of squares, 522
estimators, 521
problems for, 518–520
problems for testing hypotheses

and, 527–529
row sum of squares, 523–524
summary of, 531–533
summary table, 525t
testing hypotheses and, 520–527
unbiased estimators in, 523

Two-sample rank-sum test, 669
Two-sided tests

of p value, 425–429
significance level of t tests, 411f
t tests, 410–413
two population tests, 450t, 468t

Type I error, 391
Type II error, 391

U
Unbiased estimator

definition of, 333
in two-factor ANOVA, 523

Uniform random variables, 264
Union of events, 148–150
Upper confidence bounds

for interval estimation of means,
355–357, 364–366

for interval estimation of
population proportions,
375–377

Upper control limit (UCL), 700, 702

V
Variance

of binomial random variables,
243–244

computational formula for, 231
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Variance (continued)
definition of, 231
estimating population, 342–344
of hypergeometric random

variables, 248
hypothesis tests for large sample

sizes with unknown,
453–459

hypothesis tests for unknown,
409–417

of independent random variable
sums, 234

measuring, in response values,
578

of Poisson random variables, 252
population mean tests with

known, 394–400
problems for, 236–238
properties of, 233–236
of random variables, 231–236

reduction of, 344
sample, 99–105
of sample means, 300
standard deviation and, 235–236
two population tests of equality of

means, known variances,
446–450

X control charts and unknown,
707–709

Variation, 73
chance, 700

Venn diagrams, 148, 149f, 150f

W
Wallace, David, 672
Weighted averages, 76
Weiss, A., 76
Wilcoxon sum-of-ranks test, 669
Wright, Sewell, 393

X
X control chart

for detecting shifts in mean,
700–705

unknown mean and variance,
707–709

examples of, 702f, 712f
problems for

detecting shifts in mean,
705–706

fraction defective, 717
S control chart, 713–715

subgroup size in, 702f

Y
Young, Arthur, controls used by, 457

Z
Z test, 396, 397f
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