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SERIES EDITOR’S INTRODUCTION

Over the past three decades, logit type models have become the most
popular statistical methods in the social sciences. In response to the need
for understanding such models and showing how to correctly use them in
various contexts, the Sage QASS (Quantitative Applications in the Social
Sciences) series has given considerable attention to their exposition: The
coverage includes No. 45 in the series, Linear Probability, Logit, and Probit
Models, by Aldrich and Nelson; No. 86, Logit Modeling, by DeMaris;
No. 101, Interpreting Probability Models: Logit, Probit, and Other
Generalized Linear Models, by Liao; No. 106, Applied Logistic Regression,
by Menard; No. 132, Logistic Regression: A Primer, by Pampel; No. 134,
Generalized Linear Models: A Unified Approach, by Gill; No. 135,
Interaction Effects in Logistic Regression, by Jaccard; and No. 138, Logit
and Probit: Ordered and Multinomial Models, by Borooah. Why did my
predecessor, Michael Lewis-Beck, who reviewed the prospectus and earlier
drafts, put in the good work of editing another book on logit models for the
series?

Since Rensis Likert’s 1932 publication of A Technique for the
Measurement of Attitudes, surveying human attitudes has never been the
same. Indeed, any social surveys today will include the Likert-type scale as
a staple means for asking questions. A typical Likert-type scale has five cat-
egories (e.g., strongly disagree, disagree, undecided, agree, strongly agree)
to gauge one’s response to a question, though it may have anywhere
between three and seven or more response categories. If we code the five
categories 1 to 5, we could estimate a linear regression model of a Likert-
type scale, and that was the choice of method in the early days for analyz-
ing such data. There are, however, some obvious problems. First and
foremost, classical linear regression assumes a continuous dependent vari-
able with equally spaced, ordered response categories. A Likert-type scale,
or any other ordinal scale, is, albeit ordered, not necessarily equally spaced
between categories. Second, and perhaps more important, such a scale
would not give the normal distribution that the classical linear regression
assumes the data to display.

To analyze ordinal data of this nature, there are other methods available,
most often in the form of contingency tables and log-linear models. The
Sage QASS series has also given attention to the topic, with the titles
related to the topic including: No. 8, Analysis of Ordinal Data, by
Hildebrand, Laing, and Rosenthal; No. 20, Log-Linear Models, by Knoke
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and Burke; No. 94, Loglinear Models With Latent Variables, by Hagenaars;
No. 97, Ordinal Log-Linear Models, by Ishii-Kuntz; and No. 119, Odds
Ratios in the Analysis of Contingency Tables, by Rudas. However, these
methods are not in the regression framework, which is the most widely
known and applied quantitative method in the social sciences.

Ann A. O’Connell’s book fills the void. Even though Nos. 86, 101, and
138 in the series also treat ordered response variable in a logit model, the
current book focuses entirely on such logit models by presenting three
forms of the dependent variables that capture the ordinal nature of the
response. The book begins by presenting an empirical example from the
Early Childhood Longitudinal Study, for which the main dependent vari-
able, although not a Likert scale, is nevertheless ordinal and measures pro-
ficiency in early literacy and numeracy. The author then reviews the logistic
regression before presenting the core of the book in three topical chapters
on the cumulative or proportional odds model, the continuation ratio model,
and the adjacent categories model. Along the way, SAS® and SPSS® exam-
ples are given. Although the proportional odds model is perhaps the more
widely applied of the three, the reader will appreciate the alternatives and
especially the tips on when to use which, given in the concluding chapter.

—Tim Futing Liao
Series Editor
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LOGISTIC REGRESSION
MODELS FOR ORDINAL
RESPONSE VARIABLES

Ann A. O’Connell
University of Connecticut

1. INTRODUCTION

For many response variables in education and the social sciences, ordinal
scales provide a simple and convenient way to distinguish between possi-
ble outcomes that can best be considered as rank-ordered. The primary
characteristic of ordinal data is that the numbers assigned to successive
categories of the variable being measured represent differences in magni-
tude, or a “greater than” or “less than” quality (Stevens, 1946, 1951). Some
examples of ordinal data include rubrics for scaling open-ended writing
responses or essays and the solutions to arithmetic problems for which
responses are scored based on improving levels of quality (e.g., 0 = poor,
1 = acceptable, 2 = excellent). In contrast, nominal-level data occur when
the numeric values used to measure a variable simply identify distinct qual-
itative differences between categories (i.e., gender as 1 = male or 2 =
female; geographic description of school attended as 1 = rural, 2 = urban,
3 = suburban, etc.); nominal data do not possess the directional character-
istics of ordinal data. On the other hand, variables measured on an interval-
level or ratio-level scale do use scale values to indicate the “greater than”
or “less than” quality of ordinal variables but in addition maintain a prop-
erty of equal-distance or equal-interval length between adjacent values
across the scale. Temperature measured on the Celsius scale is a familiar
example of an interval-level variable. However, interval-level variables
have an arbitrary rather than an absolute zero-point. Variables that possess
all the properties of interval scales but that also have a genuine zero-point
are referred to as ratio-level; reaction time to a task, weight, and distance
are familiar ratio-level variables.1

Ordinal categories are common in research situations where the assign-
ment of numbers representing successive categories of an attribute, con-
struct, or behavior coincides with meaningful directional differences.
Knapp (1999) used ordinal ratings to assess severity of illness with scale

1
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categories such as mild (1), moderate (2), and severe (3). In Knapp’s
research, the numbers ascribed to the severity of illness categories represent
increasing severity, in the sense that “moderate” is more critical than
“mild,” and “severe” is more critical than “moderate.” The numerical rating
given to the “severe” case does not imply that “severe” is three times as crit-
ical than “mild,” only that the severity of illness in the “severe” category is
greater than the severity of illness for those in the “mild” category, and
greater still than those in the “moderate” category.

The choice of numbers used to represent the progressively more severe
categories conveniently preserves the “greater than” or “less than” quality of
the underlying attribute defining the categories themselves. The numbers
model the attribute under study, such as severity of illness, and are chosen to
preserve the transitivity of the categories: If the value of 3 represents a state
that is more critical than the state represented by the value 2, and the value
2 represents a state more critical than the condition represented by the value
1, then the property of transitivity implies that the condition represented by
the value of 3 is also more critical than the condition represented by the
value of 1 (Cliff & Keats, 2003; Krantz, Luce, Suppes, & Tversky, 1971).

The measurement of variables on an ordinal scale is familiar. Ordinal
scales have been used to categorize subjective probability or likelihood judg-
ments in counseling and psychotherapy research (e.g., ratings from 1 = very
unlikely to 5 = very likely) (Ness, 1995). A client’s clinical condition after
therapy can be characterized as deteriorated (1), unchanged (2), or improved
(3) (Grissom, 1994). Health researchers frequently use five successive levels
to characterize “stages of change” in health-related behavior such as smok-
ing cessation, use of condoms, exercise behavior, and weight loss efforts
(Hedeker & Mermelstein, 1998; Plotnikoff, Blanchard, Hotz, & Rhodes,
2001; Prochaska & DiClemente, 1983, 1986; Prochaska, DiClemente, &
Norcross, 1992). In the stages-of-change model, disposition or activity
toward behavior change typically is measured as precontemplation (1), con-
templation (2), preparation (3), action (4), and maintenance (5). The experi-
ence of teachers’ stages of concern for implementation of educational
innovations in their classrooms has also been measured through an ordinal
scale, one representing change in focus of concern from self = 1 to other = 7
(Hall & Hord, 1984; van den Berg, Sleegers, Geijsel, & Vandenberghe,
2000). In early-childhood education, indicators of mastery for the hierarchy
of early literacy skills leading toward literacy proficiency in young children
can be characterized as ordinal in nature: phonemic awareness (1), phonics
(2), fluency (3), vocabulary (4), and text comprehension (5) (Center for the
Improvement of Early Reading Achievement [CIERA], 2001).

Although ordinal outcomes can be simple and meaningful, their optimal
statistical treatment remains challenging to many applied researchers (Cliff,

2
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1996a; Clogg & Shihadeh, 1994; Ishii-Kuntz, 1994). Historically, researchers
have relied on two very different approaches for the analysis of ordinal out-
comes. Some researchers choose to apply parametric models for ordinal
outcomes, such as through multiple linear regression with the outcome
treated as at least an interval-level variable, assuming that the robustness of
these techniques overcomes any potential interpretation problems. Other
researchers choose to treat the ordinal variable as strictly categorical and apply
log-linear or nonparametric approaches to understand the data. Although both
strategies may be informative, depending on the research question, neither of
these approaches is optimal for developing explanatory models of ordinal
outcomes (Agresti, 1989; Cliff, 1996a; Clogg & Shihadeh, 1994; O’Connell,
2000), particularly when the focus of analysis is on the distinction between
the ordinal scores.

Purpose of This Book

The purpose of this book is to familiarize applied researchers, particularly
those within the fields of education and social and behavioral science,
with alternatives for the analysis of ordinal response variables that are
faithful to the actual level of measure of the outcome. The methods I dis-
cuss are examples of ordinal regression models, and they are extensions
to logistic models for binary response data. Logistic regression methods
are firmly established within epidemiology, medicine, and related fields,
and in fact, much of the recent literature on application and development
of ordinal regression techniques is found within the research of the larger
public health community. Results of many of these statistical or compar-
ative studies are mentioned here. Educational and social scientists may
not typically focus on variables similar to those studied by epidemiolo-
gists or medical researchers, but both fields struggle with issues surround-
ing the aptness of models, and much can be learned about applications of
different approaches to statistical dilemmas from the broader statistical
literature.

In this book, three different methods for analyzing ordinal outcome data
will be reviewed and illustrated through examples. These include the pro-
portional or cumulative odds model (CO) (Agresti, 1996; Armstrong &
Sloan, 1989; Long, 1997; McCullagh, 1980), the continuation ratio model
(CR) (Armstrong & Sloan, 1989; D. R. Cox, 1972; Greenland, 1994), and
the adjacent categories model (AC) (Agresti, 1989; Goodman, 1983). In
addition, I present examples of partial proportional odds (Peterson & Harrell,
1990) and discuss the partial proportional hazards or unconstrained continu-
ation ratio models (Bender & Benner, 2000; Cole & Ananth, 2001) as

3

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 3



analysis alternatives for situations in which assumptions of the proportional
odds or continuation ratio model are violated.

Ordinal logit models can be viewed as extensions of logistic regression for
dichotomous outcomes, and consequently these models closely follow the
approaches and model building strategies of both logistic and ordinary least
squares regression analysis. I have chosen to focus on logit models for ordi-
nal outcomes because the interpretations of probability and odds that derive
from these models are somewhat intuitive. Alternatives to the methods pre-
sented here include, for example, Anderson’s (1984) stereotype model, pro-
bit regression models, and the use of polychoric correlations for structural
equation modeling of ordinal outcome variables. These and other strategies
for analysis of ordinal data are discussed in Huynh (2002), Borooah (2002),
Ishii-Kuntz (1994), Liao (1994), Menard (1995), and Jöreskog and Sörbom
(1996); valuable references on the treatment of ordinal variables in general
include Long (1997), Clogg and Shihadeh (1994), and Agresti (1989, 1996).

The cumulative odds model is the most frequently used ordinal regres-
sion model, although all of the models examined here are still relatively
unfamiliar to many applied researchers, particularly in the educational sci-
ences. Each of the models I review can address questions that are unique to
the study of ordinal outcomes and that may not be satisfactorily answered
by treating the data as either interval/ratio or strictly categorical.

Software and Syntax

The SAS® and SPSS® software packages are used for the examples pre-
sented here. Within each of these statistical packages, I used SAS PROC
LOGISTIC (ascending and descending options), SAS PROC GENMOD,
SAS PROC CATMOD, SPSS LOGISTIC REGRESSION, and SPSS PLUM
to run the different models. Appendices in this book include the syntax used
for each analysis presented, and both this syntax and the data can be found
at my Web site (http://faculty.education.uconn.edu/epsy/aoconnell/index
.htm). Limitations of, as well as similarities and differences between, the
statistical packages will be noted as needed throughout this book. All analy-
ses presented here assume independence across children. In the final chap-
ter of this book, I briefly discuss the treatment of ordinal response variables
for multilevel data, a rapidly building field that logically extends from work
on the proportional odds model for single-level data and the fitting of mul-
tilevel models in general.

I focus on SAS and SPSS to illustrate the concepts and procedures
for ordinal logit models included in this book. Another comprehensive

4
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statistical package for the analysis of categorical data in general, one that
contains excellent modules for analysis of ordinal data, is Stata (Long &
Freese, 2003). Stata also includes graphical capabilities that can facilitate
further understanding of the models presented here. The descriptions of the
models included in this book are appropriate regardless of choice of statis-
tical package.

Organization of the Chapters

Chapter 2 describes the data set used for the analyses presented here.
Chapter 3 includes a brief review of logistic regression analysis, clarifying
terminology important to the understanding of logit type ordinal regression
models including odds, odd ratios, logits, and model fit. Each of the three
ordinal models (CO, CR, AC) will then be described and illustrated in
Chapters 4–6, building on their conceptual similarity to logistic regression
models. For each of the ordinal models presented, model and variable
effects will be explained, and assessment of model fit and predictive effi-
ciency will be discussed. Chapter 4 provides a comparison with ordinary
least squares multiple regression. Finally, Chapter 7 reviews and summarizes
the analyses studied here and discusses some extensions to these models.
Selected computer output will be included for each of the analyses
presented.

The data for the examples contained in this book were drawn from
the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K),
which tracks the reading and arithmetic progress of a nationally represen-
tative sample of kindergarten children through the completion of first
grade (third-grade data were released in March, 2004). Data from first-
grade entry are analyzed here. The ECLS-K is conducted by the U.S.
National Center for Education Statistics (NCES) and, in part, assesses
student proficiency for early literacy, mathematics, and general knowledge
as a series of “stepping-stones,” which reflect the ordinal skills that form
the foundation for further learning (West, Denton, & Germino-Hausken,
2000). All of the data are available on the first-grade public-use databases
that can be obtained from NCES.2 The examples illustrated here were
derived solely for the purpose of explicating the technical and method-
ological use of ordinal regression models; although they are informative,
they are not meant to provide a complete picture of early reading achieve-
ment for first-grade children. See, for example, Snow, Burns, and Griffin
(1998) for further information about factors affecting early-childhood
reading.

5
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2. CONTEXT: EARLY CHILDHOOD
LONGITUDINAL STUDY

Overview of the Early Childhood Longitudinal Study

The Early Childhood Longitudinal Study provides a comprehensive picture
of first-grade children, their kindergarten and early home experiences, their
teachers, and their schools. The ECLS-K investigates early literacy, read-
ing, and arithmetic skills. It includes a battery of IRT (item-response the-
ory)-scaled cognitive assessments collected on a nationally representative
sample of approximately 20,000 children within sampled schools. In addi-
tion to the norm-referenced continuous IRT measures, the ECLS-K assesses
criterion-referenced student proficiency for literacy and numeracy through
responses to a series of five 4-item clusters that, as a set, reflect the skills
that serve as stepping-stones for subsequent learning in reading and math-
ematics. The resulting scores can be used individually for student-level
diagnosis and to identify directions for individualized interventions, as well
as being used at a group level to suggest possible interventions for groups
of students functioning at different levels of mastery. The analyses discussed
in this book will focus on the criterion-referenced scores for literacy
proficiency.

The categorization of early literacy proficiencies represented in the
ECLS-K assessment instrument is consistent with the skills that have been
identified as the building blocks of reading mastery: phonemic awareness
(the understanding that letters represent spoken sounds), phonics (under-
standing the sounds of letters in combination), fluency, vocabulary, and text
comprehension (CIERA, 2001). The skills underlying literacy development
are hierarchical and interdependent; the later skills cannot realistically
be expected to emerge without the development of the former. Table 2.1
describes the proficiency categories utilized by the ECLS-K.

The ability to respond sufficiently to the cluster of items represented by
each category is assumed to follow the Guttman model (Guttman, 1954;
NCES, 2000, 2002); that is, mastery at one level assumes mastery at all pre-
vious levels. On the ECLS-K assessments, a pass/fail score was obtained
for each child in the sample on each cluster of items representing a profi-
ciency level (1 through 5) until the child failed to pass three out of the four
items in a cluster.3 Mastery of one cluster indicates mastery of all previous
clusters; testing was stopped once a child was unable to successfully pass
a cluster of items.4 Consequently, there are five dichotomous variables for
literacy proficiency (C3RRPRF1 to C3RRPRF5) in the ECLS-K database.
For example, if a child passes three out of four items in literacy level 1 and

6
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three out of four items in literacy level 2, that child would receive a value
of 1 for both C3RRPRF1 and C3RRPRF2. If this same child does not pass
three out of four items in the next cluster (literacy level 3), a score of 0 is
recorded for C3RRPRF3 as well as for all subsequent levels. For the analy-
ses presented here, the series of five dichotomous proficiency values was
used to create a single variable that reflects mastery of the content areas on
an ordinal scale. After recoding to achieve a single ordinal variable, the
hypothetical student above would receive a value of 2 as his or her profi-
ciency score, representing mastery of material up to and including level 2.
In this manner, a single variable (profread) with six possible outcome cat-
egories (levels 0 through 5) for the assessment of literacy proficiency was
derived for each child in the ECLS-K sample. A score of 0 on this ordinal
scale implies that the child did not attain mastery for the cluster of items
representing proficiency level 1.5

Practical Relevance of Ordinal Outcomes

Ordinal proficiency scores can reveal to researchers and educators how far
along children are on the path to becoming fully literate as they continue
through their primary school education. Analyzing the ordinal proficiency
scores rather than the continuous IRT-scaled scores as the variables of inter-
est highlights the role that proficiency assessments can play in the identifi-
cation and selection of students for early intervention programs. These
analyses can suggest concrete areas in the hierarchy where interventions
might be tailored to meet particular student needs. Ordinal proficiency out-
comes, and indeed ordinal variables in general, have a great deal of prag-
matic utility in the degree to which they can direct intervention to specific
levels of proficiency. For the classroom teacher or reading specialist,

7

TABLE 2.1

Proficiency Categories for the ECLS-K
Measures for Early Literacy

Proficiency Category Description

0 Did not pass level 1
1 Can identify upper/lowercase letters
2 Can associate letters with sounds at the beginnings of words
3 Can associate letters with sounds at the ends of words
4 Can recognize sight words
5 Can read words in context

SOURCE: National Center for Education Statistics (2002).
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proficiency scores may be far more valuable, and interpretable, than
knowing that a child’s IRT-scaled score on a cognitive assessment is “55.”
Interventions tailored to the classroom, or school practices or policies
found to be associated with the stepping-stones to successful acquisition of
literacy skills, may be far more effective for individual students than strate-
gies based on attempts to improve a global cognitive test score (obtained at
the classroom, school, or district level).

Variables in the Models

The variables selected as predictors in the analyses presented here have
been found to be associated with early reading skill among young children.
Initial data summaries of the ECLS kindergarten cohort indicate that some
children do enter kindergarten with greater preparedness and “readiness” to
learn than that exhibited by other children, perhaps putting them a step
ahead of their peers for the important early grades at school (NCES, 2000).
ECLS-K studies have shown that children entering kindergarten who have
particular characteristics (living in a single-parent household, living in a
family that receives welfare payments or food stamps, having a mother with
less than a high school education, or having parents whose primary lan-
guage is not English) tended to be at risk for low reading skills (Zill &
West, 2001). Pre-kindergarten experiences related to family life (e.g., being
read to by parents), attendance at preschool or day care, and personal char-
acteristics (e.g., gender) may relate to children’s initial proficiency in read-
ing as well as to their potential growth in skills and abilities across the
kindergarten year and beyond. For example, girls typically enter kinder-
garten with slightly greater early literacy ability than boys. Child-focused
predictors of success and failure in early reading are helpful for under-
standing how individual children may be at risk for reading difficulties.
From a policy and practice perspective, it is clearly desirable that teachers,
school administrators, parents, and other stakeholders be aware of these
individual factors related to early proficiency so that these stakeholders can
develop and support curriculum and instructional practices that can pro-
mote achievement for all students relative to their first-grade and kinder-
garten entry skills.

Descriptive statistics for the explanatory variables across the six profi-
ciency categories are presented in Table 2.2. These include gender, shown
here as % male (0 = female, 1 = male), risknum (number of family risk
characteristics, ranging from 0 to 4, based on parent characteristics includ-
ing living in a single-parent household, living in a family that receives
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welfare payments or food stamps, having a mother with less than a high
school education, or having parents whose primary language is not
English), famrisk (dichotomous variable indicating whether or not any
family risk was present, coded 0 = no, 1 = yes [or risknum greater than or
equal to 1]), p1readbo (frequency with which parents read books to
children prior to kindergarten entry, rated as 1 to 4 with 1 = never and 4 =
every day), noreadbo (dichotomized variable indicating 0 = parent reads
books to child three or more times a week to every day and 1 = parent reads
books to child less than once or twice per week), halfdayK (child attended
half-day versus full-day kindergarten, coded 0 = no [attended full-day K],
1 = yes [attended half-day K]), center (whether or not child ever received
center-based day care prior to attending kindergarten; 0 = no, 1 = yes),
minority (0 = white/Caucasian background; 1 = minority [any other] back-
ground), wksesl (family SES assessed prior to kindergarten entry, continu-
ous scaled score with mean of 0), and p1ageent (age of child in months at
kindergarten entry). An additional variable, included for descriptive pur-
poses but not included in the models because of design concerns, is public
(type of school child attended, rated as 0 = private, 1 = public).

9

Total
(N = 3,365)

100%
49.7%

.47
(0.75)
34.3%
16.7%
45.3%
76.9%
38.8%

.1235
(0.76)

66.1
(4.06)
77.7%

5
(n = 357)

10.6%
42.3%

.25
(0.53)
20.7%
7.6%
43.7%
84.9%
33.9%

.6148
(0.75)

67.1
(3.86)
61.9%

4
(n = 587)

17.4%
43.6%

.32
(0.61)
25.9%
13.1%
40.7%
78.7%
34.2%

.2807
(0.70)

66.5
(4.07)
70.9%

3
(n = 1,482)

44.0%
49.6%

.44
(0.71)
32.5%
15.5%
48.0%
77.5%
33.3%

.1490
(0.75)

66.1
(4.00)
76.7%

2
(n = 594)

17.7%
53.9%

.65
(0.88)
43.8%
21.7%
46.3%
71.0%
48.5%

−.1234
(0.71)

65.5
(3.97)
86.9%

1
(n = 278)

8.3%
58.6%

.77
(0.88)
52.9%
27.0%
41.7%
73.7%
58.3%

−.2705
(0.64)

65.1
(4.34)
93.5%

0
(n = 67)

2.0%
71.6%

.97
(1.04)
58.2%
38.8%
43.3%
71.6%
59.7%

−.6133
(0.67)

65.6
(4.40)
98.5%

% profread
% male
risknum

M
(SD)

% famrisk
% noreadbo
% halfdayK
% center
% minority
wksesl 

M
(SD)

p1ageent
M
(SD)

% public

Reading Proficiency Level (profread)

TABLE 2.2

Descriptive Statistics at First-Grade Entry, N = 3,365
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The design of the ECLS-K sampling plan called for oversampling of
children with Asian and Pacific Islander backgrounds, and it currently
includes three waves of data, collected at kindergarten entry, at the end of
the kindergarten year, and at the end of the first-grade year. Third-grade
data were released in the spring of 2004. Data also were collected on a 30%
subsample of children at first-grade entry. All data used for the examples
presented here were contained in the 30% first-grade subsample; the
children had no missing data on the variables of interest, were first-time
kindergarteners (no repeaters), and remained in the same school for first
grade that they attended in kindergarten. Given the focus of this book and
the oversampling of Asian/Pacific Islanders, coupled with sparse cells for
other minority groups, a dichotomous variable for race/ethnicity was cre-
ated with a classification of 1 = minority group and 0 = white/Caucasian for
these illustrative models. With this criteria, there were n = 3,365 children
from 255 schools (57 private and 198 public), with an average of 13
students per school. Incorporating the nested design into the analysis of
ordinal outcome data is addressed in Chapter 7; all other analyses assume
independence of children across schools.

3. BACKGROUND: LOGISTIC REGRESSION

Overview of Logistic Regression

Ordinal regression models are closely related to logistic models for
dichotomous outcomes, so I begin with a brief review of logistic regression
analysis in order to highlight similarities and differences in later chapters.
Other authors in the QASS series and elsewhere (e.g., Cizek & Fitzgerald,
1999; Hosmer & Lemeshow, 1989, 2000; Menard, 1995, 2000; Pampel,
2000) have covered logistic regression in depth, so only those concepts
important to the discussion later in this book are included here.

The terminology and estimation strategies for fitting ordinal regression
models are fairly straightforward extensions of those used for logistic
regression. These models are collectively defined as a class of generalized
linear models, consisting of three components:

• A random component, where the dependent variable Y follows one of the
distributions from the exponential family such as the normal, binomial, or
inverse Gaussian
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• A linear component, which describes how a function, Y′ , of the dependent
variable Y depends on a collection of predictors

• A link function, which describes the transformation of the dependent variable
Y to Y′ (Fox, 1997).

The identity link function does not alter the dependent variable, leading
to the general linear model for continuous outcomes, for which multiple
linear regression is the familiar case. The logit link function transforms the
outcome variable to the natural log of the odds (explained below), which
leads to the logistic regression model.

Logistic analyses for binary outcomes attempt to model the odds of an
event’s occurrence and to estimate the effects of independent variables on
these odds. The odds for an event is a quotient that conveniently compares
the probability that an event occurs (referred to as “success”) to the proba-
bility that it does not occur (referred to as “failure,” or the complement of
success). When the probability of success is greater than the probability of
failure, the odds are greater than 1.0; if the two outcomes are equally likely,
the odds are 1.0; and if the probability of success is less than the probabil-
ity of failure, the odds are less than 1.0.

For the ECLS-K example described above, suppose we are interested in
studying the attainment of reading proficiency category 5 (sight words)
among children at first-grade entry. The outcome can be described as
binary: A child attains proficiency in category 5 (success) or not (failure).
The odds of reaching category 5 are computed from the sample data by
dividing the probability of reaching category 5 (scored as Y = 1) by the
probability of not reaching category 5 (scored as Y = 0):

To examine the impact on the odds of an independent variable, such as
gender or age, we construct the odds ratio (OR), which compares the odds
for different values of the explanatory variable. For example, if we want to
compare the odds of reaching proficiency category 5 between males (coded
x = 1) and females (coded x = 0), we would compute the following ratio:

OR =
P(Y = 1|x = 1)

1 − P(Y = 1|x = 1)

P (Y = 1|x = 0)
1 − P(Y = 1|x = 0)

.

Odds = P(Y = 1)

P (Y = 0)
= P(Y = 1)

1 − P(Y = 1)
.
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Odds ratios are bounded below by 0 but have no upper bound; that is,
they can range from 0 to infinity. An OR of 1.0 indicates that an explana-
tory variable has no effect on the odds of success; that is, the odds of suc-
cess for males is the same as the odds of success for females. Small values
of the OR (< 1.0) indicate that the odds of success for the persons with the
value of x used in the denominator (0 = females) are greater than the odds
of success for the persons with the higher value of x used in the numerator
(1 = males). The opposite is true for values of the OR that exceed 1.0; that
is that the odds for males of being in proficiency category 5 is greater
than the odds for females. The nature and type of coding used for the
independent variables become important in interpretation; in this example
and throughout this text, I used simple dummy or referent coding. Other
approaches to coding categorical independent variables can change the
interpretation of that variable’s effect in the model; discussions of alter-
native approaches to categorizing qualitative data in logistic regression
models can be found in Hosmer and Lemeshow (2000).

The OR is a measure of association between the binary outcome and
an independent variable that provides “a clear indication of how the risk of
the outcome being present changes with the variable in question” (Hosmer
& Lemeshow, 1989, p. 57). Although the probability of an event could be
modeled directly through the linear probability model (i.e., using ordinary
linear regression on the dichotomous [0, 1] dependent variable), such an
approach leads to some serious interpretation problems. The linear proba-
bility model can yield implausible predictions outside the 0, 1 bounds for
probability, particularly if the independent variable is continuous. In addi-
tion, the typical assumptions of homoscedasticity and normality of errors
from the ordinary linear regression model are violated when the outcome
is dichotomous, calling the validity of results from such an approach into
question (Cizek & Fitzgerald, 1999; Ishii-Kuntz, 1994; O’Connell, 2000).
Instead, when the outcome is dichotomous, we model the odds, or more
specifically, we model the natural (base e) log of the odds, referred to as the
logit of a distribution.

This simple transformation of the odds has many desirable properties.
First, it eliminates the skewness inherent in estimates of the OR (Agresti,
1996), which can range from 0 to infinity, with a value of 1.0 indicating the
null case of no change in the odds. The logit ranges from negative infinity
to infinity, which eliminates the boundary problems of both the OR and
probability. The transformed model is linear in the parameters, which
means that the effects of explanatory variables on the log of the odds are
additive. Thus, the model is easy to work with and allows for interpretation
of variable effects that are exceptionally straightforward, and for model-
building strategies that mirror those of ordinary linear regression.

12
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This process can be extended to include more than one independent
variable. If we let π(Y = 1|X1, X2, . . . Xp) = π(x) represent the probability of
“success,” or the outcome of interest (e.g., a child being in proficiency cat-
egory 5), for a given set of p independent variables, then the logistic model
can be written as

In this expression, Y′ is simply a convenient way to refer to the odds in
the transformed outcome variable; rather than predicting Y directly, we are
predicting the (log of the) odds of Y = 1. The link function describes the
process of “linking” the original Y to the transformed outcome: f(y) = ln(Y′ )
= ln[π(x)/(1 – π(x))], which is referred to as the logit link. Solving for π(x)
gives us the familiar expression for the logistic regression model for the
probability of success:

Statistical packages such as SPSS and SAS provide maximum likeli-
hood (ML) estimates of the intercept and regression weights for the vari-
ables in the model. Maximum likelihood estimates are derived using an
iterative method that returns the “values for the population parameters
that ‘best’ explain the observed data” (Johnson & Wichern, 1998, p. 178).
These ML estimates maximize the likelihood of obtaining the original
data, and because the logistic model is developed through a nonlinear
transformation of the outcome, the method does not require a normal dis-
tribution of the error terms, as does ordinary least squares estimation. The
likelihood represents the probability that the observed outcomes can be
predicted from the set of independent variables. Likelihood can vary
between 0 and 1; the log-likelihood (LL) varies from negative infinity to
0. Multiplying the LL by –2 creates a quantity that can be used for
hypothesis testing purposes to compare different models (Hosmer &
Lemeshow, 2000).

13

ln(Y ′) = logit [π(x)] = ln

(
π(x)

1 − π(x)

)

= α + β1X1 + β2X2 + . . . βpXp.

π(x) = exp(α + β1X1 + β2X2 + . . . βpXp)

1 + exp(α + β1X1 + β2X2 + . . . βpXp)

= 1

1 + exp[−(α + β1X1 + β2X2 + . . . βpXp)]
.
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Assessing Model Fit

One way to assess how well a fitted model reproduces the observed data
is to compute the “deviance” for the fitted model. The deviance represents
how poorly the model reproduces the observed data, and it is found by com-
paring the likelihood of the fitted model to a model that has a perfect fit,
called the saturated model.6 The saturated model has as many parameters as
there are values of the independent variable; the likelihood of the saturated
model is 1.0, and –2LL(saturated model) = 0. The “deviance” of any model,
Dm, is thus the quantity –2LL (see Hosmer & Lemeshow, 2000). We would
expect the “poorness” of fit to decrease (toward 0) with better-fitting
models. The fit of two nested models, with variables in Model 1 a subset of
those in Model 2, can be compared by considering the difference of their
deviances: G = Dm1 – Dm2. The quantity G represents “goodness” of fit, and
for large samples, G follows an approximate chi-square distribution with
degrees of freedom equal to the difference in number of parameters esti-
mated between Model 1 and Model 2. A statistically significant G indicates
that Model 2 has less “poorness” of fit than Model 1.

When Model 1 is the null model, this comparison provides an omnibus
test (assuming large-sample properties and non-sparse cells) for whether
or not the fitted model reproduces the observed data better than the null, or
intercept only, model. However, it does not tell us how well the model per-
forms relative to the saturated, or perfect, model. With categorical predic-
tors, SAS tests Dm (which compares the fitted to the saturated model) using
the Pearson χ2 criteria or the Deviance χ2 criteria. Neither of these is appro-
priate when continuous explanatory variables are included (see Allison,
1999; Hosmer & Lemeshow, 2000). When explanatory variables are cate-
gorical, these tests can be generated in SAS using the “/aggregate scale=none”
option in the model statement.

With small samples or when sparse cells are present in the data (which
nearly always will occur with the inclusion of continuous independent vari-
ables in the model), alternative methods for assessing model fit should be
considered; a common strategy is known as the Hosmer-Lemeshow (H-L)
test (1989, 2000). The H-L test is obtained through SAS by requesting the
“/lackfit” option in the model statement; in SPSS, the test is provided when
“goodfit” is included in the print statement.

The H-L test works well when independent variables (IVs) are continu-
ous, because it deals directly with the number of covariate patterns within
the data. When IVs are continuous, there is essentially a different possible
covariate pattern for each observation in the data set. Briefly, the H-L test
forms several groups referred to as “deciles of risk” based on the estimated
probabilities for the sample. In most situations, g = 10 groups are formed,
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but there may be fewer depending on similarity of estimated probabilities
across different covariate patterns. The cases within these deciles are then
used to create a g × 2 table of observed to expected frequencies, and a
Pearson χ2 statistic is calculated for this table (Hosmer & Lemeshow, 1989,
2000). If the model fits well, agreement is expected between the observed
and expected frequencies, so that the null hypothesis of a good fit between
observed and expected frequencies from the model would be retained. The
H-L test has been criticized in the literature for lack of power (Allison,
1999; Demaris, 1992), but reliance on a single test to indicate model
adequacy is in itself discouraged (Hosmer & Lemeshow, 2000).7 Supple-
mental strategies include measures of association and predicative efficiency,
discussed later in this chapter.

Interpreting the Model

Typically, SPSS models the log of the odds for the dependent variable
coded with the higher value (the 1, if the outcome is coded as 0 or 1), but
SAS by default models the response coded with the lower value. With
binary outcomes, the interpretation of results and effects of independent
variables on the odds is not affected by decisions of how “success” versus
“failure” are coded, because these two events are complements of each
other. For example, let the probability of “success” as defined by P(reach-
ing proficiency category 5) = .2. Then, the probability of “failure” or P(not
reaching proficiency category 5) = 1 – .2 = .8. The odds of success would
then be .25 (.2/.8). The odds for the complement of the event, which is not
reaching proficiency category 5, would be 1/.25 or 4.0 (.8/.2). Because
there are only two possible outcomes for the dependent variable, the odds
for the complement of an event is simply the inverse of the odds for that
event. When the logistic transformation is applied, we see that taking the
log of the odds of an event (ln(.25) = –1.3863) has the opposite sign, but the
same magnitude, of the log of the odds for the complement of the event
(ln(4) = +1.3863). In the logistic regression model, reversing the coding for
the outcome being modeled amounts to the same probability predictions
and interpretations once the direction of the regression coefficients and the
intercept are taken into account. With dichotomous outcomes, use of the
“descending” option in the model statement for SAS changes the default
approach and asks the computer to model the odds for the higher-valued
outcome category, which would be the category labeled Y = 1 if the out-
comes are coded as 0 or 1 (or category 2 if the outcomes are labeled as 1
and 2). However, with more than two ordinal response categories, applying
the “descending” option can change the model dramatically and must be
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used with care. Use of this option for ordinal outcomes will be explained
fully in Chapter 4.

For j = 1 to p independent variables, the regression weights in the multi-
variate logistic model represent the change in the logit for each one-unit
increase in Xj, controlling or adjusting for the effects of the other indepen-
dent variables in the model. Because it is more intuitive to consider variable
effects in terms of the odds rather than the log-odds (the regression weights
are in log-odds), information about the odds themselves is found by expo-
nentiating the weights for the variables in the model (i.e., exp(bj)). The
exponentiations of the regression weights are the ORs and are routinely
reported in computer runs. The ORs can be interpreted directly to indicate
the effect of an independent variable on the odds of success, and the per-
centage change in the odds also can be calculated using the following
formula: (100 × [OR – 1]).

Strong associations between independent variables and the outcome
typically are represented by ORs farther from 1.0, in either direction. Long
(1997) refers to the ORs as “factor change” estimates (p. 79). For a unit
change in the independent variable, the corresponding OR is the factor
by which the odds of “success” are expected to change, controlling for all
other independent variables in the model. Statistical significance of an OR
typically is assessed by testing if the regression coefficient, βj, is statisti-
cally different from zero through one of three approaches: a Wald, score, or
likelihood ratio test. In the Wald test, the parameter estimate for the effect
of each independent variable in a logistic model is divided by its respective
standard error, and the results are squared to represent a value from the chi-
square distribution with one degree of freedom under the null hypothesis of
no effect. However, the Wald statistics can be problematic in small samples;
in samples with many different data patterns, such as when an independent
variable is continuous rather than categorical; or in samples with sparse
cells for categorical IVs (Jennings, 1986; Menard, 1995). Both SPSS and
SAS report Wald chi-square statistics for each variable in the fitted model.

The score test for the contribution of an independent variable in the
model relies on derivatives of the likelihood function and is not directly
available in either SPSS or SAS; however, SPSS does use a score test in
stepwise procedures to determine when variables enter or exit a developing
model (Hosmer & Lemeshow, 2000). The likelihood ratio test has been
advocated as the most reliable test for contribution of an independent vari-
able to a model, but it is not directly available in either SPSS or SAS. The
test can be obtained easily through some simple but possibly time-consuming
programming, and it involves comparing the deviances for nested models,
that is, the deviance from a model that does not contain the independent
variable of interest to the deviance of a model that does. The difference in
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deviances approximates a chi-square distribution with one degree of freedom.
Because the focus of this book is on development and overall interpretation
of ordinal models, I chose to rely on the Wald test for assessing effects of
explanatory variables. However, researchers do need to be aware that alter-
natives to this test exist.

Measures of Association

There are several logistic regression analogs to the familiar model R2 from
ordinary least squares regression that may be useful for informing about
strength of association between the collection of independent variables and
the outcome, although Menard (2000) and others (Borooah, 2002; Demaris,
1992; Long, 1997) point out that there is some disagreement among research-
ers as to which proportion reduction in error measure is most meaningful.
For logit type models, the likelihood ratio R2 value, RL

2, seems to provide
the most intuitive measure of improvement of fit for a multivariate model
relative to the null (intercept only) model. RL

2 is found by comparing two
log-likelihoods: RL

2 = 1 – (log-likelihood(model)/log-likelihood(null))
(Hosmer & Lemeshow, 2000; Long, 1997; McFadden, 1973; Menard, 2000).
It measures the proportion reduction of error (log-likelihood) achieved
from the use of the set of independent variables (relative to the null model).
Other alternatives for measuring strength of association exist, but only a
few will be discussed in the examples to follow. Long (1997) states that
“While measures of fit provide some information, it is only partial infor-
mation that must be assessed within the context of the theory motivating the
analysis, past research, and the estimated parameters of the model being
considered” (p. 102). The interested reader should consult Menard’s (2000)
discussion on the use of various R2 analogs in logistic regression, as well
as Borooah (2002, pp. 19–23). Huynh (2002) provides a discussion of
extensions of these situations in which the outcome is ordinal rather than
dichotomous.

EXAMPLE 3.1: Logistic Regression

A simple example will be used to illustrate the concepts above, as well as
to provide an extension for developing an ordinal regression model. I chose
a subset of the original ECLS-K data described above: n = 702 children
who fell into proficiency categories 0, 1, or 5 when they were tested at the
beginning of first grade. Table 3.1 provides the frequency breakdown for
this subsample according to gender. The subsample is fairly balanced

17

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 17



across the two outcomes. In the data analysis to follow, males were coded
as “x = 1” and females as “x = 0,” with the outcome of being in category 5
coded as “Y = 1” and being in either category 0 or 1 coded as “Y = 0.”

The odds for a male being in the higher proficiency category can be
found by dividing the probability of being in category 5 by the probability
of not being in category 5:

Similarly for females, the odds of being in proficiency category 5 are
determined as

From these two values, we see that for this subsample, boys have a
greater probability of being in categories 0 or 1 rather than in category 5
(the numerator is less than .5), and for girls, the opposite is true (the numer-
ator is greater than .5). Thus, the odds for a boy of being in category 5 is
less than the odds for a girl of being in category 5. The odds ratio (OR)
compares these two odds and provides a measure of the association
between gender and the odds of being in category 5:

The OR of .466 informs us that, for this subsample, the odds for boys
being in the higher proficiency category is .466 times the odds for girls of
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TABLE 3.1

Cross-Tabulation of Proficiency (0, 1 versus 5) by Gender, N = 702

Y = 0 Y = 1 
(profread (profread

Gender category 0 or 1) category 5) Totals

Males (x = 1) 211 151 362
Females (x = 0) 134 206 340
Totals 345 357 702

Odds (category 5|male) = 151/362

211/362
= .4171

1 − .4171
= .7156.

Odds (category 5|female) = 206/340

134/340
= .6059

1 − .6059
= 1.537.

OR = Odds (category 5|male)

Odds (category 5|female)
= .7156

1.537
= .466.
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being in category 5, or less than half. Put another way, being a boy
decreases the odds of being in category 5 by 53.4% (100 × [OR – 1] =
–53.4). Conversely, the odds for a girl of being in category 5 is 2.146 times
the odds for boys, or more than twice the odds for boys (1/.466 = 2.146).

In a logistic regression model, as discussed earlier, probability is trans-
formed to the odds, and the odds are transformed to logits by taking the nat-
ural log. Selected output from fitting the logistic regression model for the
above example using SPSS LOGISTIC REGRESSION is shown in Figure
3.1 (syntax in Appendix A, section A1). In this model, Y is coded 1 for being
in proficiency category 5, and 0 if not. The explanatory variable, “gender,”
is coded 1 if the child is a boy, and 0 if the child is a girl. We will let
ln(Y′ ) represent the logit, or log-odds. The prediction model is ln(Y

^′ ) = .430
+ (–.765) gender. Parameter estimates are found in the last section of
Figure 3.1, “Variables in the Equation.”

When the child is female (gender = 0), the constant represents the pre-
diction for the log of the odds; it is .430. Exponentiating this back to the
odds, we have exp(.430) = 1.537, which is, as solved for above, the odds of
being in proficiency category 5 for a girl. For boys (coded gender = 1), our
model’s prediction becomes .430 + (–.765 × 1) = –.335. Exponentiating this
result, we have exp(–.335) = .7153, which is (within rounding error) the
odds of being in proficiency category 5 for a boy. Finally, the OR (taking
rounding into consideration) can be found by exponentiating the regression
weight for gender, exp(–.765) = .466. This value appears in the final col-
umn of the “Variables in the Equation” table, and it is precisely the OR
determined from the frequency data. It tells us that the odds of being in
proficiency category 5 for a boy is .466 times the odds for a girl.

For many researchers, it is easier to interpret the OR than to interpret the
logits, but the logits can also be interpreted directly. The effect for gender
in the logistic regression model tells us how much the logit is expected to
change when the value for gender changes by one unit, in this case from
0 (female) to 1 (male). Based on the Wald criteria, the effect of gender is
statistically significant in the logit model: Wald’s χ2

1
= 24.690, p =.000.

This implies that the estimated slope for gender is –.765 and is statistically
different from 0, and that the OR = exp(–.765) = .466 is therefore statisti-
cally different from 1.0.

In this SPSS example, the deviance of the null model is found in the sec-
tion for Block 1, “Iteration History,” footnote c of Figure 3.1: D0 = –2LL0 =
972.974. The deviance of the fitted model containing only the variable gen-
der is Dm = –2LLm = 947.825. The difference between these two deviances
is Gm = 25.149, df = 1, p = .000. For this example, with only one indepen-
dent variable included in the model, the omnibus test is also the likelihood
ratio test (an alternative to the Wald χ2 test) for the effect of gender. The

19
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Logistic Regression

Case Processing Summary

Unweighted Casesa N Percent

Selected Cases Included in Analysis 702 100.0
Missing Cases 0 .0
Total 702 100.0

Unselected Cases 0 .0
Total 702 100.0

a. If weight is in effect, see classification table for the total number of cases.

Dependent Variable Encoding

Original Value Internal Value

.00 0
1.00 1

Block 1: Method = Enter

Iteration Historya,b,c,d

Coefficients

Iteration −2 Log-likelihood Constant gender

Step 1 947.829 .424 −.755
1 2 947.825 .430 −.765

3 947.825 .430 −.765

a. Method: Enter
b. Constant is included in the model.
c. Initial −2 Log-Likelihood: 972.974
d. Estimation terminated at iteration number 3 because

parameter estimates changed by less than .001.

Omnibus Tests of Model Coefficients

Chi-Square df Sig.

Step 1 Step 25.149 1 .000
Block 25.149 1 .000
Model 25.149 1 .000

20

Figure 3.1 Selected Output: SPSS Logistic Regression Example
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omnibus test, found in “Omnibus Tests of Model Coefficients,” means that
we find a statistically significant decrease in the –2LL when gender is
included in the model. This reduction represents a proportionate reduction
in deviance that can be expressed through the likelihood ratio R2

L: 1 –
(Dm/D0) = .0258. For this model, the inclusion of gender in the model
reduces the deviance of the null model (D0 = –2LL0) by 2.58%.

Neither SPSS nor SAS reports R2
L in their logistic regression procedures,

but as shown above, it can be calculated easily from the available statistics
provided in either package. Both statistical packages report two variations
on the R2 statistic for logit analysis: the Cox and Snell R2, which SAS
reports as the (generalized) R2, and the Nagelkerke R2, which SAS refers to
as the “max-rescaled R2.” The Nagelkerke R2 rescales the Cox and Snell R2

value to obtain a bound of 1.0. For these data, the “Model Summary” table

21

Figure 3.1 (Continued)

Model Summary

−2 Log- Cox & Snell Nagelkerke
Step likelihood R Square R Square

1 947.825 .035 .047

Classification Tablea

Predicted

CUMSP2
Percentage

Observed .00 1.00 Correct

Step 1 CUMSP2 .00 211 134 61.2
1.00 151 206 57.7

Overall Percentage 59.4

a. The cut value is .500.

Variables in the Equation

95.0% C.I.
for EXP(B)

B S.E. Wald df Sig. Exp(B) Lower Upper

Step gender −.765 .154 24.690 1 .000 .466 .344 .629
1a Constant .430 .111 15.014 1 .000 1.537

a. Variable(s) entered on step 1: gender.
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of Figure 3.1 reports R2
CS = .035 and R2

N = .047. Although the omnibus test
is statistically significant, none of the R2 statistics is very large, suggesting
that other explanatory variables in addition to gender may be helpful in
understanding the likelihood of a child being in proficiency category 5.
Menard (2000) discusses several attempts to generalize the familiar R2 from
ordinary linear regression, but he advocates R2

L as the most useful of the
available pseudo R2’s.

Attempting to reduce the fit assessment to a single value, as the collec-
tion of pseudo R2’s do, may have value in terms of comparing across com-
peting (nested) models, but this provides only a “rough index of whether
a model is adequate” (Long, 1997, p. 102). An investigation of model
adequacy can be augmented by assessing how well the observed categori-
cal outcomes are reproduced, based on whether or not an individual is
predicted to fall into his or her original outcome of Y = 0 or Y = 1. This
assessment of predictive efficiency supplements the information available
from the tests for model fit and the reduction in deviance statistics. Some
measures of fit or correspondence between observed and predicted out-
comes are strongly influenced by data that are highly unbalanced in terms
of distribution of frequency of the outcome, so an informed decision is best
made by computing and comparing across several different measures rather
than relying on one single measure.

To consider the ability of a model to correctly classify cases, classifica-
tion is based on the probabilities estimated from the model, and the results
are compared with the observed frequencies for each category. For any
child, if the probability of “success” based on the logistic model is greater
than .5, the predicted outcome would be 1; or else the predicted outcome
would be 0 (Hosmer & Lemeshow, 2000; Long, 1997). SPSS produces a
classification table directly, shown under Block 1: “Classification Table.”
The predicted probabilities can be requested in SAS (as well as in SPSS) to
construct the classification table; review the syntax in Appendix A, sections
A1 and A2, for how to save these predicted probabilities. Although many
different kinds of classification statistics are available (Allison, 1999;
Gibbons, 1993; Hosmer & Lemeshow, 2000; Huynh, 2002; Liebetrau,
1983; Long, 1997; Menard, 1995, 2000), several seem to be reported in the
literature in preference to others and can be used with ordinal dependent
variables. These include τp, which “adjusts the expected number of errors
for the base rate of the classification” (Menard, 1995, p. 29), and the
adjusted count R2 or R2

adjCount, which is similar to the Goodman-Kruskal λ in
its asymmetric form (that is, when one variable is being predicted from a
set of other variables); R2

adjCount adjusts the raw percentage correct measure
for the likely probability of a case being assigned to the modal category of

22
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the observed dependent variable (DV) by chance (Liebetrau, 1983; Long,
1997). Unfortunately, there are often several different names for the same
measures within the literature, and the reader of multiple articles or texts
should pay close attention to the nomenclature that each author uses. For
example, Menard (1995, 2000) refers to R2

adjCount as λp.
Hosmer and Lemeshow (2000) point out that model fit in terms of

correspondence between observed and estimated probabilities is often
more reliable and meaningful than an assessment of fit based on classifica-
tion. They suggest that classification statistics be used as an adjunct to
other measures, rather than as a sole indicator of quality of the model. As
mentioned above, multiple criteria for investigating adequacy of fit of the
models are demonstrated and reported in the examples covered here.

Neither SAS nor SPSS provides τp or λp (R2
adjCount) directly, but they can

be calculated once the classification table is obtained. To find τp, the
expected number of errors must first be determined, and for 2 × 2 tables,
this is

The desired measure of association can then be calculated from

The observed errors are the off-diagonal elements of the classification
table. A different expression for τp can be found in Menard (2000); it is also
appropriate for ordinal response models:

where i represents the index for each category of the outcome variable, n =
sample size, fii = sum of the correctly predicted categories (on the diagonal
of the classification table), and fi = the observed frequency for category i.
For these data, τp = .1878, indicating that after adjustment for the base rate,
classification error is reduced by approximately 19% using the model with
gender as the only predictor.

23

E(errors) = 2 × f (Y = 0) × f (Y = 1)

n
.

τp = E(errors) × O(errors)

E(errors)
.

τp = 1 −

(
n − ∑

i

fii

)

∑
i

fi(n − fi)
n

,
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To find the R2
adjCount or λp for the classification table, following Long

(1997) and Menard (2000), the following calculation is used:

where nmode is the frequency of observed responses in the modal category
of the outcome (maximum row marginal). For these data, λp = .1739
with the observed categories treated as the dependent variable. For
the model constructed in the above example, predicting proficiency
category membership (0, 1 versus 5) based on gender reduces the pre-
diction error by 17.4%, once the marginal distribution of the DV is taken
into account.

SAS produces several ordinal measures of association within the
LOGISTIC procedure that can supplement the pseudo R2’s and the statis-
tics for predictive efficiency determined from the classification table, such
as Somers’ D, a rank order correlation statistic (Cliff, 1996a; Liebetrau,
1983). Most of the rank order statistics are based on the notion of concor-
dant versus discordant pairs. The term “pair” refers to pairing of each case
(individual) with every other case in the data set (not including itself). For
a sample of size n, there are n(n – 1)/2 possible pairings of individuals. Of
interest are pairs of individuals that do not have the same observed
response; we ignore pairings for which both cases are 0 or both cases are
1 on the outcome of interest. If the two cases have dissimilar responses, the
pair is called concordant when the predicted probability (of being classi-
fied as “success” based on the model) for the case with the observed value
of 1 is higher than the case with the observed value of 0; otherwise, the
pair is termed discordant. A pair (with dissimilar response) is tied if it can-
not be classified as either concordant or discordant (this would happen if
the predicted probabilities were very close; SAS categorizes predicted
probabilities into interval lengths of .002 (SAS, 1997). The effect is to
count the number of times the direction of prediction is accurate for
each pair of individuals with different outcomes. Somers’ D is probably
the most widely used of the available rank order correlation statistics:
Somers’ D = (nc – nd)/t; where nc = number of concordant pairs, nd =
number of discordant pairs, and t = number of pairs with different
responses. Using SAS, Somers’ D for this example is .189, which repre-
sents the strength of the correspondence between observed outcomes and
predicted probabilities.8
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λp = 1 −
n − ∑

i

fii

n − nmode
=

∑
i

fii − nmode

n − nmode
,
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Comparing Results Across Statistical Programs

To facilitate use and interpretation of logistic analysis across different
statistical packages, as well as to lead into our discussion of the treatment
of ordinal outcomes, the previous model was also fit using SAS PROC
LOGISTIC (both descending and ascending approaches) and SPSS PLUM
(for ordinal outcomes). A summary of results is shown in Table 3.2 (syntax
for these models appears in Appendix A, sections A1–A4). All models used
the logit link function.

25

SPSS PLUM

P(Y ≤ 0)
.335

0
.765**

972.974b

947.825
25.149 (< .0001)

.583

.394

SAS (ascending)

P(Y = 0)
−.430
.765**

972.974
947.825

25.149 (< .0001)

.583

.394

SPSS Logistic and
SAS (descending)

P(Y = 1)
.430

−.765**

972.94
947.825

25.149 (< .0001)

.417

.606

Probability estimated 
Intercept
gender = 1 (male)
gender = 0 (female)

Model fit
−2LL (intercept only)
−2LL (model)
χ2

1 ( p)

Model predictions ( p̂)
Male
Female

TABLE 3.2

Comparison of Results for SPSS, SAS, and SPSS PLUM for a
Dichotomous Outcome: Proficiency (0, 1 versus 5)a by Gender, N = 702

a. Y = 0 if response proficiency is 0 or 1; Y = 1 if response proficiency is 5.
b. Use “kernel” in the print command for SPSS PLUM to request the full value of the likelihoods.
**p < .01.

Reviewing the results in the first column of Table 3.2, note that SPSS
LOGISTIC REGRESSION and SAS PROC LOGISTIC (descending) are
fitting the same model based around estimating P(Y = 1), which is the
probability that a child has a response in proficiency category 5. The prob-
ability predictions for these two identical models can be found by first
calculating the logit for boys and girls using the estimates provided,
exponentiating these logits to determine the odds for each group, and then
transforming these odds back into probability for the response identified as
“success” (p = [odds(success)/(1 + odds(success))].
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The results for the second model, shown in Column 3 of Table 3.2, using
SAS with the ascending option, simply model the probability that a child
has a response in proficiency category 0 or 1, rather than the probability
that a child has a response in category 5. Notice that the signs on the
intercept and the effect for gender are reversed from those in Column 2,
yet they are of the same magnitude. Also note that the sum of the probabil-
ity estimates for boys in Columns 2 and 3 is equal to 1.0, and similarly for
girls. SAS with the descending option (Column 2) models the complement
of the event from the default approach (ascending, in Column 3). Thus, the
probabilities derived from the ascending approach are the complementary
probabilities to those found when using SAS with the descending option.

The model parameter estimates using SPSS PLUM look very different
from those obtained using the earlier approaches, but in fact the probability
estimates are identical to those in Column 3 (and therefore, by the rule of
complements, can be used to find the probability estimates in Column 2).
SPSS PLUM is a program specifically designed for analyzing ordinal
response variables, and the resulting parameter estimates will not exactly
correspond to those found under SPSS Logistic Regression. In particular,
the probability being estimated in SPSS PLUM is the probability of a
response being at or below a particular outcome value, that is, the lower
category codes; in contrast, SPSS LOGISTIC models the probability of
the category with the higher outcome value. Additionally, whereas SAS
handles both dichotomous and ordinal responses through its LOGISTIC
procedure, the SPSS PLUM procedure uses a slightly different formulation
of the generalized linear model that looks like: ln(Yj′) = θj − β1X1. In this
expression, the subscript j refers to the response category, and X1 refers to
the single independent variable, gender. The estimate for the effect of gen-
der is subtracted from the intercept. Another important distinction between
PLUM results and those from logistic regression programs under SPSS or
SAS is that PLUM internally sets up the coding for categorical predictors.
In Column 4, the estimate provided for the gender effect corresponds to
when gender = 0, that is, for females. The coding system used is clearly dis-
played on the printout (examples of PLUM and SAS printouts for ordinal
models will be included in the next chapters). To find the estimated prob-
ability for a girl being (at most) in proficiency categories 0 or 1—that is,
P(Y ≤ 0)—which is equivalent in this case to P(Y = 0) because there are no
responses less than 0, we use the estimates to find the predicted logit for
girls (.335 – .765 = –.43), exponentiate the result to find the odds for girls
of being at (or below) Y = 0 (exp(–.43) = .65), and then solve for the esti-
mated probability (.65/(1 + .65) = .394). The same process is used to find
the estimated probability for boys of being at (or below) categories 0 or 1,
or P(Y = 0).

26
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SPSS PLUM provides R2
L, referred to as McFadden’s pseudo R2 (Long,

1997; Menard, 2000), in addition to R2
CS and R2

N. In order to obtain the
necessary values for the –2LL deviance statistics, the “kernel” option must
be specified in the SPSS PLUM “/print” statement, as shown in syntax A4
in Appendix A.

The previous discussion and simple comparison of how SAS and SPSS
treat binary outcomes illustrate that although model parameter estimates
may vary on the surface, the resulting predicted probabilities computed
from the model estimates, as well as model fit statistics, are consistent
across packages and approaches. These simple examples also illustrate that
it is important for an analyst to be aware of the outcome being predicted
as well as how categorical independent variables are incorporated into the
models, once a statistical package is selected. Distinctions across approaches
and packages become even more critical as the number of categories for an
ordinal response variable increases beyond the binary case.

4. THE CUMULATIVE (PROPORTIONAL)
ODDS MODEL FOR ORDINAL OUTCOMES

Overview of the Cumulative Odds Model

With only two categories for an outcome variable, logistic regression is used
to model the likelihood of one of the outcomes, usually termed the “suc-
cess,” as a function of a set of independent variables. The estimated proba-
bilities for the response of interest, P(success), as well as for its complement,
1 – P(success), can be determined using the prediction model for the logits,
as shown in the example in Chapter 3. When the possible responses for an
outcome variable consist of more than two categories and are ordinal in
nature, the notion of “success” can be conceived of in many different ways.
Regression models for ordinal response variables are designed for just this
situation and are extensions of the logistic regression model for dichotomous
data. The complexity in fitting ordinal regression models arises in part
because there are so many different possibilities for how “success,” and the
consequent probability of “success,” might be modeled.

For example, given a K-level ordinal response variable, such as profi-
ciency in early literacy with K = 6 as in the ECLS-K study (Table 2.1), we
could derive several different representations of “success” depending on
how we view the data. In general, K-level ordinal data can be partitioned by
K – 1 “success” cutpoints (Fox, 1997; McCullagh & Nelder, 1983). Success

27
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is, of course, a relative term; generally, it designates an event of interest. For
example, “success” might be defined as having a child score in category 0
on the mastery test, that is, those children who were not able to recognize
upper- and/or lowercase letters. Under this partitioning of the data, our
interest would be in identifying factors associated with increased likelihood
of being in this lowest category, rather than being beyond category 0, in
categories 1 through 5. Perhaps there are harmful child, family, or school
characteristics associated with increased probability of being in this lowest
category. For these explanatory variables, we would calculate the odds of
being at (or below) category 0.

We could next conceive of “success” as being at or below category 1; our
interest in this partitioning of the data would be in identifying factors asso-
ciated with greater likelihood of being in categories 0 or 1 relative to the
likelihood of being beyond the lowest stages, in categories 2 through 5. We
could continue to describe the data in this cumulative fashion, with the final
conceptualization of “success” as being at or below the Kth category, which
of course will always occur. Hence, the last split or partitioning of the data
becomes unnecessary. Using this cumulative progression, we would have
K – 1, or 5, distinct possible “success” characterizations of the data, given
K = 6 ordinal response categories.

The analysis that mimics this method of dichotomizing the outcome, in
which the successive dichotomizations form cumulative “splits” to the data,
is referred to as proportional or cumulative odds (CO) (Agresti, 1996;
Armstrong & Sloan, 1989; Long, 1997; McCullagh, 1980; McCullagh &
Nelder, 1983). It is one way to conceptualize how the data might be sequen-
tially partitioned into dichotomous groups, while still taking advantage of
the order of the response categories. The ordinal nature of this approach
is so appealing because of its similarity to logistic regression. If a single
model could be used to estimate the odds of being at or below a given
category across all cumulative splits, that model would offer far greater par-
simony over the fitting of K – 1 different logistic regression models corre-
sponding to the sequential partitioning of the data, as described above. The
goal of the cumulative odds model is to simultaneously consider the effects
of a set of independent variables across these possible consecutive cumula-
tive splits to the data. There are other approaches, however, to defining
“success.” Each different method for performing ordinal regression charac-
terizes the partitioning of the data in a very distinct way, and therefore they
address very different research questions. The conceptualizations of how
the data may be split to correspond to the cumulative odds (CO) model, as
well as for the two other methods to fitting ordinal regression models that I
will discuss in this book, the continuation ratio (CR) model and the adja-
cent categories (AC) model, are provided in the indicated columns of
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Table 4.1. The latter two approaches will be discussed fully in later chapters.
This chapter focuses on the CO model.

A simplifying assumption is made of the data when applying ordinal regres-
sion models, and that is the assumption of proportional, or parallel, odds. This
assumption implies that the explanatory variables have the same effect on the
odds, regardless of the different consecutive splits to the data, for each cate-
gory of model (CO, CR, AC), as shown in Table 4.1. For example, if the set of
separate binary logistic regressions corresponding to the CO model described
above were fit to the data, the assumption of parallelism implies that a com-
mon odds ratio (or effect) for a variable would be observed across all the
regressions; the effect of an IV on the odds is assumed to be invariant across
the corresponding splits (Agresti, 1989; Brant, 1990; Menard, 1995; Peterson
& Harrell, 1990). Thus, one model would be sufficient to describe the rela-
tionship between the ordinal response variable and a set of predictors.

Both SAS and SPSS provide a score test for the proportional odds
assumption within their ordinal regression procedures, but this omnibus test
for proportionality is not a powerful test and is anticonservative (Peterson
& Harrell, 1990); the test nearly always results in very small p values,
particularly when the number of explanatory variables is large (Brant,
1990), the sample size is large (Allison, 1999; Clogg & Shihadeh, 1994), or
continuous explanatory variables are included in the model (Allison, 1999).
Therefore, conclusions about rejecting the null hypothesis of proportional-
ity of the odds based solely on the score test should be made cautiously.
Rejection of the assumption of parallelism (proportional odds) for the
particular ordinal model being investigated implies that at least one of the
explanatory variables may be having a differential effect across the out-
come levels, that is, that there is an interaction between one or more of
the independent variables and the derived splits to the data (Armstrong &
Sloan, 1989; Peterson & Harrell, 1990). The key is to be able to identify
which variable(s) may be contributing to rejection of this overall test.

A reasonable strategy for investigating whether the effects of the inde-
pendent variables are relatively stable or not across the cumulative logits is
through comparison of variable effects across the separate logistic regres-
sion models that correspond to the ordinal model being considered, as in
Table 4.1. Although the simplifying assumption of proportionality may be
useful in terms of fitting an overall model to the data, it has been recom-
mended that researchers examine the underlying binary models in order to
supplement decisions about the aptness of an ordinal approach (Brant,
1990; Clogg & Shihadeh, 1994; Long, 1997; O’Connell, 2000). Informal
comparison of the slopes across the corresponding separate logistic fits for
a model can provide supportive information regarding the plausibility of
parallelism for the data. Later in this chapter, an approach that relaxes the
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proportional odds assumption for some explanatory variables, the partial
proportional odds (PPO) model (Ananth & Kleinbaum, 1997; Koch, Amara,
& Singer, 1985; Peterson & Harrell, 1990), is presented.

EXAMPLE 4.1: Cumulative Odds Model
With a Single Explanatory Variable

To illustrate the use of the cumulative odds model, I begin by fitting a
simple model with just one categorical explanatory variable: gender.
Table 4.2 provides the frequency of each of the five early-reading
proficiency categories for boys and girls. The data are unbalanced across
proficiency categories, with most children, regardless of gender, falling
into proficiency category 3. This characteristic of the data can be an impor-
tant consideration when deciding among models (CO, CR, AC, or others)
that might best represent the data; however, for pedagogical purposes we
will ignore this characteristic of the data for now, then reexamine its impact
after the different ordinal models have been presented.

30

Adjacent Categories
P(Y = j + 1|Y = j

or Y = j + 1)

Category 1 versus
category 0

Category 2 versus
category 1

Category 3 versus
category 2

Category 4 versus
category 3

Category 5 versus
category 4

Continuation Ratio
P(Y > j|Y ≥ j)

Categories 1 through
5 versus category 0

Categories 2 through
5 versus category 1

Categories 3 through
5 versus category 2

Categories 4 and 5
versus category 3

Category 5 versus
category 4

Cumulative Odds
(descending)

P(Y ≥ j)

Category 5 versus
all below

Categories 5 and 4
versus all below

Categories 5, 4, and
3 versus all below

Categories 5, 4, 3,
and 2 versus all
below

Categories 5, 4, 3,
2, and 1 versus
category 0

Cumulative Odds
(ascending)
P(Y ≤ j)

Category 0 versus
all above

Categories 0 and 1
combined versus
all above

Categories 0, 1, and
2 combined  versus
all above

Categories 0, 1, 2,
and 3 combined
versus all above

Categories 0, 1, 2, 3
and 4 combined
versus category 5

TABLE 4.1

Category Comparisons Associated With
Three Different Ordinal Regression Model Approaches,

Based on a 6-Level Ordinal Outcome ( j = 0, 1, 2, 3, 4, 5)
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The cumulative odds model is used to predict the odds of being at or
below a particular category. Because there are K possible ordinal outcomes,
the model actually makes K – 1 predictions, each corresponding to the
accumulation of probability across successive categories. If we let
π(Y ≤ j|x1, x2, . . . xp) = πj(x) represent the probability that a response falls
in a category less than or equal to the jth category ( j = 1, 2, . . . K – 1), then
we have a collection of cumulative probabilities for each case. The final
category will always have a cumulative probability of 1.0. (Note that in the
ECLS-K data, I use category 0 to refer to the first category, and the K = 6th
category is proficiency category 5.) With an extension from the general
logistic regression model, the predictions are logits for the cumulative
probabilities, which are referred to as cumulative logits:

The cumulative logits associated with being at or below a particular cate-
gory j can be exponentiated to arrive at the estimated cumulative odds and
then used to find the estimated cumulative probabilities associated with
being at or below category j.

Table 4.2 also contains the cross-tabulation of the ECLS-K data in terms
of actual probabilities (p), cumulative probabilities (cp), and cumulative
odds (co) for boys and girls of being in category j or below. The bold row
contains the associated odds ratios (boys:girls) for these data. The last two
rows of the table provide the category totals and the cumulative proportion
(P(Yi < category j) regardless of gender. From the table, we see that the odds
of being at or below any specific category increases as the response value
increases, for both boys and girls. This makes intuitive sense, as within the
sample there are fewer children who are in the highest categories; children
are more likely to be at or below a given category than beyond that category.
In general, the odds for boys are always greater than the odds for girls,
as proportionately fewer boys than girls in the sample reached the higher
proficiency categories when tested at the beginning of first grade. The odds
ratios make this pattern clear. The odds that boys are at or below a specific
category are about 1.72 (on average) times the odds for girls of being at or
below that category. The likelihood is that girls tend to exceed boys on this
ordinal measure of proficiency at the beginning of first grade.

Similar to the example in Chapter 3, I am going to present results for
this simple one-variable CO model using three different approaches:
SAS PROC LOGISTIC, SAS PROC LOGISTIC with a “descending”
option, and SPSS PLUM (syntax for all models is provided in the

ln(Y ′
j ) = ln

(
πj (x)

1 − πj (x)

)
= αj + (β1X1 + β2X2 + . . . βpXp).
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Appendix, section B). Figure 4.1 displays the SAS output (with the default
“ascending” approach) for this simple one-variable cumulative odds model.
The appropriate link function for the cumulative odds model is the logit
link. To run this model, I used the SAS syntax in section B1 of the appen-
dix. The syntax for the other two approaches to the CO model is in sec-
tions B2 and B3. Although these approaches are essentially identical in
terms of prediction when the CO model is desired, such is not necessarily
the case with the CR and AC ordinal regression models. It is important to
be clear on the similarities and differences among programs and
approaches, beginning with the simplest case of the CO model.

Using SAS (ascending), the odds are accumulated over the lower-ordered
categories. That is, the associated predicted cumulative probabilities corre-
spond to the pattern shown in the first column of Table 4.1. SAS is esti-
mating the P(Y ≤ category j), which for these data are P(Y ≤ 0), P(Y ≤ 1),
P(Y ≤ 2), P(Y ≤ 3), P(Y ≤ 4), and of course P(Y ≤ 5) = 1.0 for the final cat-
egory (which typically is not included on printouts of these analyses). A
reliable CO model would reproduce the cumulative odds and cumulative
probabilities found from the data in Table 4.2.

In the models presented here, gender is coded as 0 for girls and 1 for
boys. Reviewing the output provided in Figure 4.1, we see that the propor-
tional odds assumption is upheld for these data (“Score Test for the
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Totals (f)

1673
1.000

—
—

1692
1.000

—
—

—
3,365

—

5

151
.0903
1.000

—

206
.1217
.9999

—

—
357

1.000

4

256
.1530
.9097
10.074

331
.1956
.8782
7.210

1.3972
587

.8939

3

735
.4393
.7567
3.110

747
.4415
.6826
2.1506

1.446
1482
.7195

2

320
.1913
.3174
.4650

274
.1619
.2411
.3177

1.4636
594

.2790

1

163
.0974
.1261
.1443

115
.0680
.0792
.0860

1.6779
278

.1025

0

48
.0278
.0278
.0295

19
.0112
.0112
.0113

2.6106
67

.0199

Category

Males
f
p
cp
co

Females
f
p
cp
co

OR
Totals ( f )
cptotal

TABLE 4.2

Observed Data Cross-Classification of Gender by Five Proficiency
Categories: Frequency ( f ), Proportion (p), Cumulative Proportion (cp),

Cumulative Oddsa (co), and Odds Ratios (OR)

a. Cumulative odds = Odds(Yi ≤ category j).
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The LOGISTIC Procedure

Model Information

Data Set WORK.GONOMISS
Response Variable PROFREAD
Number of Response Levels 6
Number of Observations 3365
Model cumulative logit
Optimization Technique Fisher’s scoring

Response Profile

Ordered Total 
Value PROFREAD Frequency

1 0.00 67
2 1.00 278
3 2.00 594
4 3.00 1482
5 4.00 587
6 5.00 357

Probabilities modeled are cumulated
over the lower Ordered Values.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq
5.3956 4 0.2491

Model Fit Statistics

Intercept Intercept
Criterion OnlY and Covariates
AIC 10063.980 10028.591
SC 10094.586 10065.319
-2 Log L 10053.980 10016.591

The LOGISTIC Procedure

R-Square 0.0110 Max-rescaled R-Square 0.0116

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 37.3884 1 <.0001
Score 37.2553 1 <.0001
Wald 37.2060 1 <.0001

Figure 4.1 SAS Cumulative Odds Model Example: Gender
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Proportional Odds Assumption”), χ2
4 = 5.3956, p = .2491. We can conclude

that the effect of gender is not statistically different across the five cumula-
tive splits for the data; this implies that if five separate binary logistic mod-
els were fit corresponding to the pattern in Table 4.1, the slopes (and odds
ratios) for gender in each of these models would be similar. Thus, the gen-
der ORs could be estimated simultaneously using only one model. Because
gender is the only variable included here, this result also tells us that the
five ORs in Table 4.2 are not statistically different, and that one common
OR could be used to summarize the effect of gender on proficiency.

The pseudo R2 statistics are found in the “Model Fit Statistics” section of
the printout (Figure 4.1), in the line under “The LOGISTIC Procedure,”
with the Cox and Snell R2

CS = .0110 and the Nagelkerke (which SAS refers
to as Max-rescaled R-Square) R2

N = .0116. The likelihood ratio R2
L = .0037

can be calculated using the –2loglikelihood statistics for the intercepts-only
model and the intercepts plus covariates model information contained in the
“Model Fit Statistics” summary table. Collectively, these R2 statistics sug-
gest that the relationship between the response and predictor variables is a

34

Analysis of Maximum Likelihood Estimates

Standard Wald Pr >
Parameter DF Estimate Error Chi-Square ChiSq

Intercept 0.00 1 -4.1049 0.1284 1022.2632 <.0001
Intercept 1.00 1 -2.3739 0.0667 1266.5201 <.0001
Intercept 2.00 1 -1.1474 0.0510 505.4293 <.0001
Intercept 3.00 1 0.7590 0.0485 245.3247 <.0001
Intercept 4.00 1 1.9545 0.0627 971.9783 <.0001
GENDER 1 0.3859 0.0633 37.2060 <.0001

Odds Ratio Estimates

Point   95% Wald

Effect Estimate Confidence Limits
GENDER 1.471 1.299 1.665

Association of Predicted Probabilities
and Observed Responses

Percent Concordant 29.0 Somers’ D 0.079
Percent Discordant 21.1 Gamma 0.159
Percent Tied 49.9 Tau-a 0.058
Pairs 4110137 c 0.540

Figure 4.1 (Continued)
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weak one. However, the tests for overall model fit (“Testing Global Null
Hypothesis”), which assess whether the fitted model improves predictions
over those presented by the null (intercepts-only) model, are all statistically
significant, so we reject the null model in favor of the model that includes
gender as a predictor. Despite the low pseudo R2 values, the likelihood ratio
test suggests that the pattern of cumulative proportions for boys and girls as
predicted from the model (see Table 4.3; entries explained later) provides a
better match to the actual cumulative proportions for boys and girls (shown
in Table 4.2) than what would be expected disregarding gender (last row of
Table 4.2). This simple CO model makes clear how these proportions are
different for boys versus girls.

The next section of the printout (Figure 4.1) contains “Analysis of
Maximum Likelihood Estimates,” a table with five intercepts, referred to
as threshold parameters: one for each of the K – 1 cutpoints. It is useful to
think of these thresholds as marking the point (in terms of a logit) at which
children might be predicted into the higher categories, but they are not
usually interpreted individually, similar to how the intercept functions in an
ordinary multiple regression model. However, with dummy coding for gender
(gender = 0 for girls), these threshold estimates represent the predicted logits
corresponding to Y ≤ category j for girls. The effect of gender on the logit
is .3859, with an associated odds ratio of 1.471 (exp(.3859) = 1.471). The
model informs us that the odds for boys of being at or below category j are
about 1.471 times the odds for girls, regardless of which cumulative
split we are considering. This result can be compared with the pattern we
saw using the observed data in Table 4.2, where the average OR across

TABLE 4.3

Predicted Cumulative Logits, Estimated Odds of
Being at or Below Category j for Boys and Girls,

Estimated Cumulative Probabilities (cp), and Estimated
Odds Ratios From the CO Model (SAS With Ascending Option)

Comparison (Y ≤ 0) (Y ≤ 1) (Y ≤ 2) (Y ≤ 3) (Y ≤ 4)

Boys
Cumulative logit −3.719 −1.988 −.7615 1.1449 2.3404
Cumulative odds .02427 .13696 .4670 3.1421 10.385
cp̂b .0237 .1205 .3183 .7586 .9122

Girls
Cumulative logit −4.1049 −2.3739 −1.1474 .7590 1.9545
Cumulative odds .0165 .0931 .3175 2.1363 7.0604
cp̂g .0162 .0852 .2410 .6811 .8760

OR 1.4711 1.4711 1.4709 1.4708 1.4709
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categories was 1.72. According to the model, boys are less likely to be beyond
a particular category relative to girls, which is consistent with the actual data.
Recall that this model assumes that the effect of gender is constant across
the separate cumulative splits. Because we did not reject the assumption of
proportional odds when gender was included as a predictor, the CO model
suggests that the separate ORs for the cumulative splits (Table 4.2) are not
statistically different from the OR of 1.471 found for the CO model.

Turning to a direct interpretation of the parameter estimates for the
model, the intercepts and the effect of gender can be used to estimate the
cumulative odds, that is, the odds of being at or below a given category for
boys and for girls. These also can be used to estimate the ORs at each split,
although we already know from our analysis that this is set at 1.471. The
cumulative odds estimated for boys and girls can be compared back to those
derived from the original data (Table 4.2). Predictions for girls, when
gender = 0, correspond to the intercepts for each cumulative category,
which when exponentiated provide the odds for girls of having a response
at or below category j. Predictions for boys are found by substituting the
value of gender = 1 into the cumulative odds model for each respective
equation and exponentiating to find the odds: ln(Y′j) = αj + .3859(gender).
For example, for the logit representing Y ≤ 0, the predicted logit for girls is
–4.1049; for boys, the predicted logit is –3.719. Table 4.3 provides these
estimated cumulative logits based on the model as well as the estimated
cumulative odds (co) for boys and girls (exp(cum. logit)). From these pre-
dicted cumulative odds, odds ratios comparing boys to girls can be found
easily for each category, and these are shown in the last row of Table 4.3
(e.g., coboys/cogirls). Within rounding error, the ORs are all approximately
1.47. The estimated cumulative odds are transformed into the estimated
cumulative probabilities (cp) using cp = (co/[1 + co]), which yields P(Y ≤ cat-
egory j). The results are shown in Table 4.3 and can be compared with the
observed cumulative probabilities presented in Table 4.2. Overall, the esti-
mates seem to match the data well; recall that the likelihood ratio test was
statistically significant for this model.

The model predictions make it clear what the assumption of proportional
odds means for these data. The OR is fixed, and therefore remains constant
across all cumulative categories, implying that overall, the odds for boys of
being at or below any category j are about 1.47 times the odds for girls of
being at or below category j. For this sample, boys are more likely than girls
to be at or below any given category; girls are more likely than boys to be
in higher categories. Gender (male = 1) has a positive effect (b = .3859) on
the cumulative logit, corresponding to larger odds of being at or below cat-
egory j for boys relative to girls. This last interpretation is consistent with
the transformed outcome being modeled in this approach (response at

36
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or below category j), and hence the interpretation of the direction of the
logit and the effects of explanatory variables hinge on how the outcome is
characterized.

Differences between estimated and actual cumulative probabilities
are due to the fact that the CO model is imposing a very specific structure
on the data. This structure is evidenced through the behavior of the ORs,
and thus it affects the cumulative proportions estimated from the model as
well. The estimates for the cumulative probabilities are derived under the
assumption of proportional odds. Although we saw earlier that this assump-
tion is valid for our data across gender, it is important to recognize that the
model estimates and the predicted probabilities are driven by this assump-
tion. In situations where the assumption does not hold or seems empirically
or theoretically implausible, these predicted probabilities could be grossly
inaccurate. Unfortunately, when models become more complex, such as
those that include additional explanatory variables, either categorical or
continuous, it can become quite challenging to have confidence in the
assumption of proportional odds. I will return to this topic toward the end
of this chapter.

Somers’ D for this analysis was .079 (see last section of Figure 4.1),
which is quite low. With only one predictor, we are getting very weak con-
cordance for the ordinal direction of predicted probabilities among pairs of
children. To construct the classification table for the measures of predictive
efficiency, τp and λp, we can use the collection of cumulative predicted prob-
abilities for each child to assess where individual probability of category
membership is at its maximum. With the “predprobs = cumulative” option
specified in the output subcommand, SAS creates a data file containing the
cumulative probabilities for the ith child at each level, cp0i = P(at or below
level 0), cp1i = P(at or below level 1), and so on. Thus, each child has K
new observations in the data set, with cp5i = P(at or below level 5) = 1.0
for all children. Category probabilities can be found by using the relation-
ship P(Y = category j) = P(Y < category j) – P(Y < category [j – 1]). That is,
Pi(Y = 0) = cp0i; Pi(Y = 1) = cp1i – cp0i; Pi(Y = 2) = cp2i – cp1i; and so on.
The maximum category probability for an individual child corresponds to
his or her best prediction for proficiency level. In the gender-only, ascend-
ing model, all children are predicted into category 3, which is not surprising
given that the model has weak fit and category 3 represents 44% of the
children in this sample. Following the methods outlined in Chapter 3, the
classification estimates can be tabled to the observed proficiency categories
to calculate measures of predictive efficiency. For this analysis, τp and λp are
.23 and 0, respectively. These results underscore the need to consider several
different measures of association in conjunction with the likelihood ratio
tests when assessing the reasonableness of a model.
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Table 4.4 provides a comparison of the results for the SAS model just
described, based on the “ascending” default option in the ordering of the
ordinal dependent variable, with the results from SAS “descending,” SPSS
PLUM, and a multiple regression model with gender as the only predictor.
Although the CO models are essentially the same and provide the same
interpretation of the effect of gender, some important similarities and dif-
ferences in the presentation of the results for these models should be
pointed out.

First, similar to the results using the ascending and descending options in
SAS PROC LOGISTIC with a dichotomous outcome, the estimates for the
threshold (intercept) parameters are reversed in sign but not in magnitude;
they also appear in reverse order on the printout. This is simply due to the
fact that the descending and ascending options predict complementary
events. With the descending option in place, the model is estimating the
(reversed) cumulative odds, that is, P(Y > 5), P(Y > 4), P(Y > 3), P(Y > 2),
and P(Y > 1), and of course P(Y > 0) will always equal 1.0.

38

TABLE 4.4

Results for Cumulative Odds Model Using
SAS (Ascending), SAS (Descending), SPSS PLUM, and

Multiple Linear Regression on an Ordinal Response Scale:
Proficiency ( j = 0, 1, 2, 3, 4, 5) by Gender, N = 3,365

SAS SAS SPSS SPSS
(ascending) (descending) PLUM REGRESSION

Model estimates P(Y ≤ cat. j) P(Y ≥ cat. j) P(Y ≤ cat. j) E(Y|X)
Intercept α 3.108
Thresholds α0 = −4.105 α5 = −1.955 θ0 = −3.719

α1 = −2.374 α4 = −0.759 θ1 = −1.988
α2 = −1.147 α3 = 1.147 θ2 = −.762
α3 = 0.759 α2 = −2.374 θ3 = 1.145
α4 = 1.955 α1 = 4.105 θ4 = 2.340

gender = 1 (male) .386** −.386** 0 −.246**
gender = 0 (female) .386**
R2 .004a .004a .004a .012
Score testb χ2

4 = 5.3956 χ2
4 = 5.3956 χ2

4 = 5.590
(p = .2491) (p = .2491) (p = .232)

Model fitc χ2
1 = 37.388 χ2

1 = 37.388 χ2
1 = 37.388 F1, 3363 =

(p < .001) (p < .001) (p < .001) 40.151
(p < .001)

a. R2
L = likelihood ratio R2.

b. For the proportional odds assumption.
c. Likelihood ratio test for ordinal models; F test for ordinary least squares (OLS) regression.
**p < .01.
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Second, the score test for the proportional odds assumption indicates that
the assumption of proportionality is upheld across the analyses, χ2

4 =
5.3956, p > .05, as would be expected, although SPSS refers to this as the
“Test of Parallel Lines.”9 For all three models, the omnibus likelihood ratio
tests indicate that the ordinal gender model fits better than the null, χ2

1 =
37.388, p < .001.

Third, predictions of the cumulative odds and cumulative proportions
using SAS ascending and SPSS PLUM are exactly the same; and the pre-
dictions for the cumulative odds for SAS descending yield the comple-
ments of these probabilities. Recall that for SPSS PLUM, the model
predictions are found by subtracting the effect of gender from the threshold
estimates. SPSS PLUM also uses an internal coding system for the cate-
gorical predictors. For example, to estimate the cumulative probability for
a girl having a proficiency response less than or equal to 2 using the PLUM
model, we would (a) find ln(odds(Y ≤ 2) = θ 2 – β(gender = 0) = –.762 – (.386)
= –1.148; (b) exponentiate to find the odds, exp(–1.148) = .3173; and
(c) use these odds to find the cumulative probability for a girl, P(Y < 2) =
.3173/(1 + .3173) = .2409, consistent with the SAS ascending results used
for Table 4.3. To clarify the approach of SAS with the descending option,
consider the complement of Y < 2girls, that is, Y > 3girls. Using the parameter
estimates for the descending model in Table 4.4, we have cumulative
loggirls, Y > 3 = α3 + (–.386) × gender = +1.147 (because gender = 0 for girls).
Then the cumulative oddsgirls, Y > 3 = exp(1.147) = 3.149. The estimated
probability is P(Y > 3)girls = 3.149/(1 + 3.149) = .759. This is the comple-
mentary probability to P(Y < 2) using either SAS ascending or SPSS
PLUM; from Table 4.3, 1 – .2410 = .759.

Fourth, as mentioned previously, all these programs can be asked to save
estimated probabilities, which then can be compared easily (at least for
models with a small number of predictors) with those for the original data.
When running a CO model, SAS will calculate and save the cumulative
probabilities, according to how you requested them (ascending or descend-
ing). SPSS PLUM, however, does not make the cumulative probabilities
available directly, but instead calculates and saves the individual’s category
membership probabilities. As shown just above, the cumulative probabili-
ties can be determined readily from the parameter estimate information
provided for any of the three models.

Interpretations across the three models are identical, although the
actual values of the thresholds and slopes are not similar between SPSS
PLUM and SAS (ascending or descending). This is simply due to how the
two packages parameterize the model being fit. Differences between the
SAS ascending and descending approaches are seen readily in the rever-
sal of signs and subscripts marking the thresholds. The cumulative odds
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for the descending approach are the odds of being at or beyond a particular
proficiency level; the cumulative odds for the ascending approach and for
PLUM are the odds of being at or below a particular proficiency level. The
thresholds appear in reverse order on the output between the two SAS
approaches, but once the predicted logits are transformed to cumulative
probabilities, the results are essentially equivalent. The effect of gender is
reversed in sign for the two SAS models, and in PLUM the gender effect
corresponds to the case gender = 0, but the interested reader is urged to use
these simple models to verify equivalence in predicted probabilities once
the characterization of the model and the cumulative probabilities being
derived are accounted for. An example of the treatment of gender across
the three models is provided in the paragraphs to follow.

In SPSS PLUM, the threshold estimates are for the case when gender =
1 (males), whereas in SAS, the threshold estimates are for the case when
gender = 0 (females). Regardless of the analysis used, the effect of gender
is constant across all cumulative splits, b = ±.386. For example, using SAS
(ascending), the logit prediction for boys being in proficiency level 2 or
lower is α2 + bgender(boys) = –1.147 + .386 = –.761. This is equivalent to the
prediction for boys following the SPSS PLUM analysis: θ2 – bgender(boys) =
–.762 – 0 = –.762. Exponentiating to find the cumulative odds and trans-
forming the results to find predicted probability for boys of being at or
below proficiency level 2, we have P(Y < 2) = .318 (see Table 4.3). The
odds ratios for boys:girls across all cumulative splits are assumed constant
based on the proportional odds model and are equivalent for SAS (ascend-
ing) and SPSS PLUM: exp(.386) = 1.47; this indicates that the odds for
boys of being at or below any category j are 1.47 times the odds for girls of
being at or below any category j.

Using the SAS (descending) approach, we can say that the odds for boys
being in category j or beyond relative to girls are constant across all cumu-
lative splits: exp(–.386) = .680, which implies that boys are less likely than
girls to be at or beyond a given proficiency level. Interpreted slightly differ-
ently, this result shows that the odds for boys are .68 times the odds for girls
of being at or beyond any category j. Girls are more likely to be in higher
proficiency categories. Note that the odds ratios for either approach (ascend-
ing or descending) are inverses of each other: 1/.68 = 1.47. Note also that the
probability predictions for boys being at or below category j, for example,
can be determined from the SAS (descending) model as well, because P(Y <
j) = 1 – P(Y > j + 1). As another example of this process, to find P(Y < 2)
for boys, we can use the descending model to find the cumulative logit for
Y > 3 for boys, α3 + bgender(boys) = 1.147 + (–.386) = .761; exponentiating
and solving for cumulative probability, we find P(Y > 3) = .682; finally,
1 – .682 = P(Y < 2) = .318, consistent with results shown in Table 4.3.

40
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When results of these models are compared to the multiple regression
(MR) analysis, we see a similar pattern in terms of boys being below girls
in proficiency. The dependent variable of proficiency in this MR analysis is
coded to be increasing in value from 0 to 5. The slope for the gender vari-
able (boys = 1) is negative, –.246. On average, girls are predicted to be at a
proficiency level of 3.109, whereas boys are predicted to be at a lower pro-
ficiency level of (3.109 – .246) = 2.863. Although globally there are simi-
larities between the ordinal models and the MR model in terms of direction
of the effect of gender, the predicted outcomes from the MR model are not
consistent with the data we are analyzing. A mean proficiency score is not
the value we wish to predict when our response values are strictly ordinal;
furthermore, the MR model does not allow us to make classification state-
ments where we might compare across the different proficiency levels.

EXAMPLE 4.2: Full-Model Analysis of Cumulative Odds

The analyses thus far indicate that the one-variable model could be impro-
ved upon. The predicted probabilities for the gender-only model under the
proportional odds assumption are very similar to the actual cumulative pro-
portions, and the likelihood ratio test results indicate that the cumulative
probabilities when gender is included in the model are more consistent with
the actual data than the null model (without gender). The R2 statistics were
very small, as were Somers’ D and the measures of predictive efficiency. We
now turn to the derivation of a more complex cumulative odds model to
determine the relationship between additional explanatory variables and the
cumulative probabilities across the six proficiency levels. Table 4.5 provides
a summary of results for the fitting of the CO model with eight explanatory
variables from Table 2.2 (recall that public is a school-level variable and will
not be used in these single-level models). The results in Table 4.5 were
obtained using SAS with the descending option; the probabilities being
modeled are P(Y > category j). This approach was taken to facilitate later
comparison with the CR and AC ordinal models. The syntax for the full CO
model is contained in Appendix B, section B4.

The proportional odds assumption for this model is not upheld, as can be
seen in the row of Table 4.5 labeled “score test.” This suggests that the
pattern of effects for one or more of the independent variables is likely to be
different across separate binary models fit according to the pattern
indicated earlier for the CO model in Table 4.1. Unfortunately, with continu-
ous predictors and large sample sizes, the score test will nearly always indi-
cate rejection of the assumption of proportional odds, and therefore should be
interpreted cautiously (Allison, 1999; Greenland, 1994; Peterson & Harrell,
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1990). We will return to an examination of this assumption later; for now, let
us interpret what the model estimates and fit statistics mean for this analysis.

The model fit chi-square indicates that this full model is performing
better than the null model (no independent variables) at predicting cumula-
tive probability for proficiency. We see some improvement in the likelihood
ratio and pseudo R2 statistics, but not much more than what was obtained
using the gender-only model. Somers’ D is .333, which is markedly better
than what was obtained through the gender-only model.

Recall that proficiency was measured through six categories with
outcomes as 0, 1, 2, 3, 4, or 5. With the descending option, the threshold
estimates in Table 4.5 correspond to predictions of the cumulative logits
for students who have a score of 0 on the complete set of independent
variables; α5 corresponds to the cumulative logit for Y > 5, α4 corresponds
to the cumulative logit for Y > 4, and so on, until α1 corresponds to the
cumulative logit for Y > 1. Because all students will have Y > 0, this first
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TABLE 4.5

Full-Model Analysis of Cumulative
Odds (CO), SAS (Descending) (Y ≥ cat. j), N = 3,365

Variable b (se(b)) OR

α5 −6.01 (.54)
α4 −4.73 (.53)
α3 −2.62 (.53)
α2 −1.30 (.53)
α1 .50 (.54)
gender −.50 (.06)** .607
famrisk −.26 (.08)** .771
center .09 (.08) 1.089
noreadbo −.32 (.09)** .729
minority −.15 (.07)* .862
halfdayK −.17 (.07)* .847
wksesl .71 (.05)** 2.042
p1ageent .06 (.01)** 1.063
R2

L .05
Cox & Snell R2 .14
Nagelkerke R2 .15
Somers’ D .33
τp .21
λp .00
Model fita χ2

8 = 524.17 (p < .0001)
Score testc χ2

32 = 75.47 (p < .0001)

a. Likelihood ratio test.
b. For the proportional odds assumption.
*p < .05; **p < .01.
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threshold is not included in the descending cumulative logit model (note
that the same is true for Y < 5 for the ascending cumulative logit model).

The effects of the independent variables within the full CO model shed
some important light on how variables contribute to the probability of being
at or beyond a particular category. Consistent with the earlier gender-only
model, boys are less likely than girls to be beyond a particular category
(OR = .607). The presence of any family risk factor (famrisk, OR = .771),
having parents who do not read to their children (noreadbo, OR = .729),
being in a minority category (minority, OR = .862), and attending half-day
kindergarten rather than full-day kindergarten (haldayK, OR = .847) all
have negative coefficients in the model and corresponding ORs that are
significantly less than 1.0. These characteristics are associated with a child
being in lower proficiency categories rather than in higher categories. On
the other hand, age at kindergarten entry (p1ageent, OR = 1.063) and
family SES (wksesl, OR = 2.042) are positively associated with higher
proficiency categories. The slopes for both variables are positive and
significantly different from zero in the multivariable model. Attending
center-based day care prior to kindergarten (center) is not associated with
proficiency in this model; the slope is small, and the OR is close to 1.0.
These findings are consistent with the literature on factors affecting early
literacy, and as such the full model provides a reasonable perspective of the
way in which these selected variables affect proficiency in this domain.

In terms of predictive efficiency, neither τp or λp offers better category
predictions relative to the gender-only model, which classified all children
into category 3. For the full-model CO analysis, the cumulative probabili-
ties can be used to determine individual category probabilities as described
in the gender-only analysis, with the maximum category probability corre-
sponding to the best proficiency level prediction for each child. Table 4.6
provides the results of the classification scheme based on the full CO
model. Most of the children are still classified into proficiency level 3,
and we can determine from the classification table (using the formulas
presented in Chapter 3) that τp = .23 and λp = 0, indicating no overall
improvement in predictions from the gender-only analysis. This would be
discouraging if category prediction was the sole goal of the model.
However, as mentioned in the binary logistic regression example, these
measures tell us very little as to how the explanatory variables are affecting
estimates of cumulative probability across the proficiency levels. Hosmer
and Lemeshow (2000) remark that classification is very sensitive to group
size and “always favors classification into the larger group, a fact that is
independent of the fit of the model” (p. 157). For model fit, the results
of the omnibus likelihood ratio test and the Wald tests for contribution of
each IV in the model should be preferred. Nonetheless, in some research
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situations, reliability in classification may be an important component of
model selection criteria; this example demonstrates how these statistics are
calculated, as well as how much they can be influenced by group sample size.

Assumption of Proportional
Odds and Linearity in the Logit

Within an ordinal model, linearity in the logit cannot be assessed directly,
and “only if linear relations between the logits and the covariates are estab-
lished in the separate binary logistic models [is] a check of the proportional
odds assumption . . . meaningful” (Bender & Grouven, 1998, p. 814). Thus,
this assumption was investigated for each of the five binary models to pro-
vide support for the ordinal model. Linearity in the logit was examined for
the continuous variables using the Box-Tidwell method (Hosmer &
Lemeshow, 1989; Menard, 1995) and by graphical methods (Bender &
Grouven, 1998). For Box-Tidwell, multiplicative terms of the form X × ln(X)
are created for the continuous explanatory variables and added to the main
effects models. Statistically significant interaction terms are an indication
that linearity may not be a reasonable assumption for that variable. To look
at linearity graphically, deciles can be created for the continuous explanatory
variables, then plotted against the proportion of children in the “success”
category for each binary logit (at or beyond category j). Both approaches
were taken for the two continuous variables in the models looked at here:
age at kindergarten entry (p1ageent) and family SES (wksesl). The graphs
revealed a linear trend, but the Box-Tidwell method indicated nonlinearity
for the two continuous variables in all five binary logits. Given the graphical
pattern, large sample size, and sensitivity of the statistical tests, linearity in
the logit was assumed plausible for both continuous variables.
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TABLE 4.6

Classification Table for Full CO Model, N = 3,365

Predcat0 Predcat1 Predcat2 Predcat3 Predcat4 Predcat5 Totals

profread

0 0 1 9 57 0 0 67
1 1 2 12 262 0 1 278
2 0 3 24 565 0 2 594
3 1 3 24 1,428 0 26 1,482
4 0 1 1 577 0 8 587
5 0 0 0 332 0 25 357

Totals 2 10 70 3,221 0 62 3,365
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For the full CO model, the score test for the assumption of proportional
or parallel odds was rejected. This means that there are some independent
variables for which the odds of being at or beyond category j are not stable
across proficiency levels as j changes. Table 4.7 (values have been rounded
to save space) provides the results of five separate binary logistic regres-
sions, where the data were dichotomized and analyzed according to the pat-
tern in the second CO column of Table 4.1. That is, each logistic model looks
at the probability of being at or beyond proficiency level j. For these logis-
tic models (using SPSS), the grouping of categories coded 1 corresponds to
children who were at or beyond each successive category, and the code of 0
is used for children below each successive category.

Reviewing the results of the separate logistic models in Table 4.7, rela-
tive to the results of the CO model in Table 4.5, we see that all five binary
models fit the data well. The model χ2’s are all statistically significant, indi-
cating that each model fits better relative to its corresponding null model;
and the H-L tests are all not statistically significant, indicating that
observed to predicted probabilities are consistent.

Now let us look at the patterns of slopes and ORs for each explanatory
variable across these five models. The effect of gender, after adjusting for
the other independent variables, does seem to have a dissimilar pattern
across the five separate logistic regression splits. Although the average gen-
der slope for these five regressions is –.604, which is somewhat close to the
gender slope from the multivariable CO model (–.500), the odds ratio for
boys to girls of being at or beyond proficiency level 1 (.354) are somewhat
lower relative to the other four comparisons (.552, .625, .631, and .635,
respectively). Note, however, that if we compare the OR for the averaged
gender slopes from these binary models, exp(–.604) = .547, to the single
gender OR from the CO model of .607, we see little difference, on average.
Directionally and on average, the effect of gender is similar across the five
logistic regressions. This is true for all the explanatory variables in the
model, with the exception of the effect of minority. Notice that the direc-
tion of the effect of minority changes between the first three analyses and
the last two. In the first three analyses, the odds are less than 1.0, suggest-
ing that minority children, relative to nonminority children, are more likely
to be in the lower proficiency categories. However, there is no difference in
the likelihood of being at or beyond proficiency category 4, because the OR
is not statistically different from 1.0. The last analysis compares children in
categories 0 through 4 with children in category 5. Here we see that minor-
ity children are more likely than nonminority children to be in category 5
(b = .238, OR = 1.268) after adjusting for the presence of the other explana-
tory variables in the model. This result was not apparent through the cumu-
lative odds model. The CO model provides summary estimates of the effect
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Score Testa

p value

.249

.450

.219

.095

.000

.033

.000

.645

CUMSP5

b
(se(b))

OR

−7.34**
(.99)

−.46
(.12)
.64*

−.28
(.15)
.76

.26
(.16)
1.30

−.50
(.21)
.61*

.24
(.13)
1.27*

−.11
(.12)
.89

.87
(.08)
2.39*

.08
(.02)
1.08*

.096

.128
217.92**

9.16

CUMSP4

b
(se(b))

OR

−4.67**
(.68)

−.46
(.08)
.63*

−.33
(.10)
.72*

.10
(.10)
1.10

−.28
(.12)
.76*

.09
(.09)
1.09

−.26
(.08)
.77*

.64
(.06)
1.89*

.06
(.01)
1.06*

.070

.115
280.39**

.74

CUMSP3

b
(se(b))

OR

−2.15**
(.68)

−.47
(.08)
.63*

−.21
(.09)
.81*

.10
(.09)
1.10

−.28
(.10)
.75*

−.39
(.09)
.68*

−.11
(.08)
.89

.73
(.07)
2.07*

.06
(.01)
1.06*

.092

.149
366.40**

13.41

CUMSP2

b
(se(b))

OR

−.55
(.99)

−.60
(.12)
.55*

−.25
(.13)
.78

−.10
(.14)
.91

−.36
(.14)
.70*

−.42
(.13)
.66*

−.00
(.12)
1.00

.77
(.10)
2.17*

.05
(.02)
1.06*

.097

.128
215.49**

10.43

CUMSP1

b
(se(b))

OR

3.53
(2.11)

−1.04
(.28)
.35*

−.15
(.29)
.87

−.03
(.28)
.97

−.65
(.27)
.52*

−.23
(.29)
.80

.07
(.26)
.93

1.00
(.17)
2.73*

.02
(.03)
1.03

.125

.136
82.11**

7.80

Variable

Constant

gender

famrisk

center

noreadbo

minority

halfdayK

wksesl

p1ageent

R2
L

R2
N

Model χ2
8

H-Lb χ2
8

TABLE 4.7

Associated Cumulative Binary Models for the CO Analysis (Descending),
Where CUMSPj Compares Y < cat. j to Y > cat. j, N = 3,365

a. Score test for each IV, unadjusted (no other covariates in the model).
b. Hosmer-Lemeshow test, all n.s.
*p < .05; **p < .01.

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 46



47

of a variable across all cumulative proficiency-level dichotomizations or
splits to the data. The imposition of the assumption of proportionality of the
odds across these splits does not seem to be valid for the minority variable.
For all other explanatory variables in the model, the direction and average
magnitude of the slopes and the ORs corresponds well to the CO results.

Unfortunately, the score test for the proportional odds assumption is very
sensitive to sample size and the number of different possible covariate pat-
terns, which will always be very large when continuous explanatory variables
are used. If the assumption is not rejected, the researcher should feel confi-
dent that the overall CO model represents the pattern of ORs across the sep-
arate cumulative splits very well. If the assumption is not upheld, however,
good practice dictates that the separate models be fit and compared with the
CO results to check for discrepancies or deviations from the general pattern
suggested by the CO model (e.g., Allison, 1999; Bender & Grouven, 1998;
Brant, 1990; Clogg & Shihadeh, 1994; Long, 1997; O’Connell, 2000).

To provide an additional check on the plausibility of the proportionality
assumption, separate score tests unadjusted for the presence of the other
covariates in the cumulative odds model can be reviewed for each of the
explanatory variables. In light of the large sample size, a .01 level of sig-
nificance was used to guide decisions regarding nonproportionality. For
each of the single binary models, the score test for the assumption of pro-
portional odds was upheld, with the exception of minority and family SES
(wksesl). The p values for these unadjusted tests are presented in the final
column of Table 4.7. Across the five binary logit models, the ORs for
wksesl are approximately 1.9 or larger, indicating that higher-SES children
are at least twice as likely as lower-SES children to be in the higher profi-
ciency categories. Given the fact that SES is continuous, the magnitude of
the difference in ORs across the binary splits seems to be negligible and as
such, a common OR may be a reasonable assumption for this variable. As
mentioned above, however, the pattern of change in the ORs for the minor-
ity variable may clearly be relevant to the study of proficiency, and the
effects of this variable should be examined more closely. Although not pro-
vided here, follow-up analyses including interactions among the predictors
or using a variable for separate categories of race/ethnicity rather than an
overall assignment to a minority category could be used to better explain
the effects seen in the five binary logit models.

Alternatives to the Cumulative Odds Model

Recall that the best use of the cumulative odds model is to provide for a
single parsimonious prediction model for the data. However, if the restriction
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of equal slopes is not realistic, it is incumbent upon the researcher to work
toward explaining how the data are behaving rather than forcing the data to
conform to a particular model. There are several alternatives available
if, after review of the separate logistic regression analyses and checks on
linearity and proportionality, the overall assumption of proportionality in
the multivariate ordinal model is deemed suspect.

If variable effects are of primary importance, the researcher may decide
to work with the separate logistic regressions to explore and explain diver-
gent explanatory variable patterns across the different cumulative models
(Bender & Grouven, 1998). This decision depends on the researcher’s
overall goals for the analysis and clearly may not be appropriate for every
situation or research question. If a parsimonious model or a single set of
predicted probabilities is desired, these separate binary logits will not
provide it. Alternatively, the researcher may decide to forfeit the ordinal
nature of the DV altogether and to fit a multinomial model to the data. This
approach may provide some meaningful information in terms of overall
variable effects and classification, but it neglects the ordinal nature of the
outcome and thus disregards an important aspect of the data. This option,
too, may not be optimal for the researcher’s goal, but it should be consid-
ered if the researcher believes that the majority of the explanatory variables
are contributing to the violation of the proportional odds assumption. See
Borooah (2002), Ishii-Kuntz (1994), and Agresti (1990, 1996) for examples
and discussion of these alternative multinomial approaches.

A third option, and the focus of later chapters in this book, is to consider
other types of ordinal regression analyses, such as the continuation ratio
method or the adjacent categories method, to try and obtain a single well-
fitting and parsimonious model that would aid in our understanding of the
data at hand. Chapter 5 demonstrates the use of the CR or continuation ratio
model, and Chapter 6 presents the AC or adjacent categories model.

Before turning to a discussion of these additional strategies for analyzing
ordered outcomes, one additional method will be presented. In situations
where proportionality is questionable based on the behavior of only a
subset of the explanatory variables, researchers may opt to fit what are
called partial proportional odds (PPO) models (Ananth & Kleinbaum,
1997; Koch et al., 1985; Peterson & Harrell, 1990). In essence, PPO mod-
els allow for an interaction between an independent variable and the differ-
ent logit comparisons, which clarifies how the odds for an IV may change
across the levels of the outcomes being compared. SAS currently estimates
PPO models using PROC GENMOD. The analysis requires data restructuring
to reflect whether or not an individual is at or beyond a particular response
level (Stokes, Davis, & Koch, 2000). In the restructured data set, a new
binary response for each person for each ordered logit comparison is
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created to indicate whether or not that person is at or beyond each particular
response level. For example, with a K-category ordinal response variable,
each person would have K – 1 lines in the restructured data set. The new
outcome variable of interest is derived to indicate, for each of the K – 1 log-
its, whether or not the person was at or beyond category K (excluding the
lowest category (Y = 0), which all children are at or beyond). Because the
data are now correlated (repeated observations among persons), generalized
estimating equations (GEE) are used to fit the nonproportional model and
then the partial proportional odds model. The use of the GEE approach
(Liang & Zeger, 1986) is particularly well suited to the study of repeated
measurements over time when the outcomes of interest are categorical
(nominal or ordinal). It is based on large-sample properties, which means
that the sample size has to be sufficient enough to produce reliable
estimates. Stokes et al. (2000) suggest that two-way cross-classifications
of the data should yield observed counts of at least five. With continuous
explanatory variables, this typically will not be the case, so the sample size
should be considered carefully.

EXAMPLE 4.3: Partial Proportional Odds

Using the ECLS-K example to demonstrate, we can release the assumption
of proportional odds for the minority variable and refit the model in an
attempt to better reflect the pattern seen in Table 4.7. That is, the assumption
of proportional odds is retained for all variables in the model except for
minority. The syntax for the PPO model, including the restructuring of the
data set, is included in Appendix B5, following the process outlined by
Stokes et al. (2000). Figure 4.2 presents the (edited) printout for this analy-
sis. GENMOD models the probability that a child is at or beyond category j,
but because the odds ratios are kept constant across all splits for each vari-
able except minority, the results include only one intercept parameter. The
threshold values are found by adding the estimates for each correspond-
ing split, which are included toward the middle of the “Analysis of GEE
Parameter Estimates” table in Figure 4.2. When reviewing this table, note
that the explanatory variable coding scheme uses the “0” category for the
categorical variables as the referent. For example, the slope for gender, b =
.5002, is provided for girls (gender = 0) rather than for boys (gender = 1).

The intercept (–6.9805) is the log-odds that a child would be at or beyond
proficiency category 5 (Y ≥ 5) if all his or her covariate scores were 1, or 0
if continuous; note that the coding of categorical variables follows an inter-
nally constructed pattern and that the estimate for split 5 is 0.00. To find the
log-odds for Y ≥ 4, the threshold would be the intercept plus the effect for
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split 4 (–6.9805 + 1.2670 = –5.7135). The other threshold estimates may be
found similarly.

The GEE analysis provides a score statistic for testing the contribution of
each explanatory variable to the model; these are found at the end of the
output. Results of the score tests indicate that the effect of minority for the
fifth logit comparison is just marginally statistically significant, χ2

1 = 4.04,
p = .0445, yet its interaction with the split variable is strongly significant
overall, χ2

4 = 28.80, p < .0001. This result suggests that there are reliable
differences in the effect of minority depending on split. For the other
explanatory variables in the model, all effects are statistically significant
except attendance at a daycare center (center), consistent with what was
found in the full cumulative odds model. GENMOD also provides z tests
(the normal distribution version of the Wald statistic) for the contribution of
explanatory variables in the model; these are found in the “Analysis of GEE
Parameter Estimates” table of Figure 4.2. Results of the z tests are consis-
tent with the score tests, with the exception of minority.

Given the interaction between minority and split, the effect for minority
is interpreted via the score test that specifically examines its contribution
for the fifth cumulative comparison. For each of the other splits, the z tests
for the minority × split interactions contained in the model suggest that
there is no difference in the odds for minority versus nonminority children
for the first cumulative comparison (Y ≥ 1), bint.1 = .5077, p = .0677, nor for
the fourth (Y ≥ 4), bint.4 = .0282, p = .7884. Substantively, these findings are
consistent with those of the separate binary models in Table 4.7. There,
minority had no statistical effect on the individual cumulative logits either
for the first binary model (p > .05) or for the fourth (p > .05).

The minority × split interactions inform us as to how much change occurs
in the effect of minority across the thresholds of the response variable. With
the assumption of proportional odds relaxed for minority, the results shown
in the printout tell us how much the log-odds are expected to change for non-
minority children relative to minority children, across the different logistic
regression splits. For example, after adjusting for the other covariates in the
model, the odds ratio for a nonminority child relative to a minority child for
a proficiency score at or beyond category 5 is exp(–.1560) = .855; the odds
ratio for a minority child relative to a nonminority child for a proficiency
score at or beyond category 5 is then exp(+.1560) = 1.169. This OR can be
compared with Table 4.7 for the fifth cumulative logistic regression split
(where OR = 1.268). Further, this OR is statistically different from 1.0 in the
PPO model (p = .0445 in “Score Statistics For Type 3 GEE Analysis” table),
as it is in the fifth cumulative comparison based on the separate binary mod-
els (p < .05 for last split in Table 4.7).

50

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 50



51

The GENMOD Procedure

Model Information

Data Set WORK.PPOM
Distribution Binomial
Link Function Logit
Dependent Variable beyond
Observations Used 16825

Class Level Information

Class Levels Values

split 5 1 2 3 4 5
GENDER 2 0 1
FAMRISK 2 0.00 1.00
CENTER 2 0.00 1.00
NOREADBO 2 0.00 1.00
MINORITY 2 0.00 1.00
HALFDAYK 2 0.00 1.00
CHILDID 3365 0212014C 0294004C 3035008C 3042008C 3042023C

0044007C 0195025C 0243009C 0621012C 0748011C
0832023C 3041005C 0028009C 0028014C 0052003C
0052007C 0195020C 0196007C 0196016C 0196017C
0196018C 0212002C 0212012C 0216006C 0220005C
0220020C 0301002C 0301004C ...

Response Profile

Ordered Total
Value beyond Frequency

1 1 10045
2 0 6780

PROC GENMOD is modeling the probability that beyond=’1’.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 17E3 12003.9325 0.7142
Scaled Deviance 17E3 12003.9325 0.7142
Pearson Chi-Square 17E3 16074.6352 0.9564
Scaled Pearson X2 17E3 16074.6352 0.9564
Log Likelihood −6001.9662

Figure 4.2 Partial Proportional Odds for Minority: GEE Analysis
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Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -6.9805 0.5753 -8.1081 -5.8528 −12.13 <.0001
GENDER 0 0.5002 0.0663 0.3703 0.6301 7.55 <.0001
GENDER 1 0.0000 0.0000 0.0000 0.0000 . .

FAMRISK 0.00 0.2596 0.0778 0.1071 0.4120 3.34 0.0008

FAMRISK 1.00 0.0000 0.0000 0.0000 0.0000 . .

CENTER 0.00 -0.0759 0.0770 -0.2268 0.0750 −0.99 0.3240

CENTER 1.00 0.0000 0.0000 0.0000 0.0000 . .

NOREADBO 0.00 0.3366 0.0913 0.1575 0.5156 3.68 0.0002

NOREADBO 1.00 0.0000 0.0000 0.0000 0.0000 .

MINORITY 0.00 -0.1560 0.1240 -0.3989 0.0870 −1.26 0.2083

MINORITY 1.00 0.0000 0.0000 0.0000 0.0000 . .

HALFDAYK 0.00 0.1451 0.0666 0.0145 0.2757 2.18 0.0295

HALFDAYK 1.00 0.0000 0.0000 0.0000 0.0000 . .

WKSESL 0.7450 0.0514 0.6442 0.8457 14.49 <.0001
P1AGEENT 0.0588 0.0084 0.0423 0.0753 7.00 <.0001
split 1 6.2595 0.1851 5.8968 6.6223 33.82 <.0001
split 2 4.4067 0.1204 4.1707 4.6428 36.59 <.0001
split 3 3.0966 0.1043 2.8923 3.3010 29.70 <.0001
split 4 1.2670 0.0846 1.1012 1.4328 14.98 <.0001
split 5 0.0000 0.0000 0.0000 0.0000 . .

split*MINORITY 1 0.00 0.5077 0.2779 -0.0370 1.0523 1.83 0.0677

split*MINORITY 1 1.00 0.0000 0.0000 0.0000 0.0000 . .

split*MINORITY 2 0.00 0.6021 0.1621 0.2843 0.9198 3.71 0.0002

split*MINORITY 2 1.00 0.0000 0.0000 0.0000 0.0000 . .

split*MINORITY 3 0.00 0.5230 0.1334 0.2615 0.7844 3.92 <.0001

split*MINORITY 3 1.00 0.0000 0.0000 0.0000 0.0000 . .

split*MINORITY 4 0.00 0.0282 0.1050 -0.1777 0.2340 0.27 0.7884

split*MINORITY 4 1.00 0.0000 0.0000 0.0000 0.0000 . .

split*MINORITY 5 0.00 0.0000 0.0000 0.0000 0.0000 . .

split*MINORITY 5 1.00 0.0000 0.0000 0.0000 0.0000 . .

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

GENDER 1 57.02 <.0001
FAMRISK 1 11.10 0.0009
CENTER 1 0.97 0.3243
NOREADBO 1 13.30 0.0003
MINORITY 1 4.04 0.0445
HALFDAYK 1 4.75 0.0294
WKSESL 1 195.03 <.0001
P1AGEENT 1 49.02 <.0001
split 4 2447.16 <.0001
split*MINORITY 4 28.80 <.0001

Figure 4.2 (Continued)
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To find the effect of minority for the fourth cumulative logit, (Y ≥ 4),
the interaction terms are added to the main effect. That is, for the odds of
a nonminority child being at or beyond category 4, exp(–.1560 + .0282) =
exp(–.1278) = .880; for minority children, this corresponds to exp(+.1278)
= 1.136. Minority children are 1.136 times as likely to be at or beyond
category 4, although this effect is not statistically different from 1.0
(p = .7884). This effect is consistent with the OR for the fourth cumulative
logit in Table 4.7, which also was not statistically significant (OR = 1.092,
not significant). For the first logit, (Y > 1), the effect for nonminority
children is exp(–.1560 + .5077) = exp(.3517) = 1.42; for minority children,
the effect is exp(–.3517) = .7035. According to the PPO model, this effect
is not significant (p = .0677), consistent with the result for the effect of
minority at this first split in Table 4.7 (OR = .796, not significant). Overall,
minority children are less likely than their nonminority peers to advance
beyond proficiency levels 2 and 3, but given that they have attained at least
proficiency level 4, they are more likely than their nonminority peers to
then achieve mastery in proficiency level 5.

To examine the effects of the explanatory variables for which the pro-
portional odds assumption was retained, the slope estimates can be inter-
preted directly. For the effect of gender, girls (gender = 0) are exp(+.5002) =
1.65 times as likely as boys to be at or beyond level 1, after adjusting for other
covariates in the model, and this OR remains constant across all underlying
cumulative logits. Because the events for this explanatory variable with only
two levels are complementary, we can easily interpret the effect for boys as
well: boys are exp(–.5002) = .606 times as likely as girls to be at or beyond
a given proficiency category j, after adjusting for other covariates. For all
explanatory variables with the exception of minority, the effects are equiva-
lent to those presented for the full CO model in Table 4.5, once the coding of
IVs is taken into account. For example, in the full CO model the gender slope
is –.500 with OR = .607. Variable effects in the PPO model for those variables
for which the proportional odds assumption was retained are of the same
magnitude and statistical significance as those in the CO model. The direc-
tion has changed because SAS PROC GENMOD provides the estimates for
the values of the explanatory variable coded as 0 rather than 1. Note that the
nature of the coding for the categorical IVs does not affect the results for the
continuous variables in the model between the CO and PPO models.

To summarize the PPO analysis, this approach does resolve some of the
issues surrounding the full proportional odds model, particularly for the
minority variable. The GEE estimates correspond quite well with the sepa-
rate effects for minority that were examined across the binary logit models
in terms of both magnitude and statistical significance. In the study of
early reading achievement, this result bears further investigation. Creating
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a variable that categorizes groupings of children based on race/ethnicity for
inclusion in these models rather than including all “nonwhite” children
together in a dichotomous arrangement should be further examined, but this
is not the focus of the current demonstration. The effects for the variables
that were constrained to follow the proportional odds assumption were
found to be consistent with the earlier CO analysis. There is currently no
overall summary measure of goodness of fit for a GEE analysis provided
through GENMOD (Stokes et al., 2000), but the criteria included in the out-
put under the “Criteria for Assessing Goodness of Fit” heading indicate that
the deviance (found through a comparison between the fitted model and the
perfect, or saturated, model) is less than its degrees of freedom (value/df) <
1.0), suggestive of adequate model fit (Allison, 1999). Recall that there
is no reliable test of the model deviance when continuous variables are
present. However, these statistics can be useful for comparisons of compet-
ing models. Overall, the PPO model seems to be more informative than the
CO model, particularly with regard to the explanatory variable of minority.

5. THE CONTINUATION RATIO MODEL

Overview of the Continuation Ratio Model

As we saw in Chapter 4, the cumulative odds model uses all the data
available to assess the effect of independent variables on the log-odds of
being at or beyond (or the reverse, at or below) a particular category. The
odds are found by considering the probability of being at or beyond a cat-
egory relative to the probability of being below that category. A restrictive
assumption made in the CO analysis is that across all cumulative logit com-
parisons, the effect of any independent variable is similar; that is, the odds
of being in higher categories relative to being in any category below it
remains constant across the categories. However, these logit comparisons
for the cumulative odds may not be theoretically appropriate in every
research situation. If interest lies in determining the effects of independent
variables on the event of being in a higher stage or category, then a com-
parison group that includes all people who failed to make it to a category
may not lead us to the best conclusions or understanding of the data in
terms of differences between people at a low stage versus all higher stages.
Rather than grouping together all people who failed to make it to a cate-
gory at any point, an alternative ordinal approach involves comparisons
between respondents in any given category versus all those who achieved a
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higher category score. This approach forms the class of models known as
continuation ratio (CR) models. The focus of a CR analysis is to understand
the factors that distinguish between those persons who have reached a
particular response level but do not move on from those persons who do
advance to a higher level. Fox (1997) refers to this process as the analysis
of a series of “nested dichotomies” (p. 472).

A continuation ratio is a conditional probability. The discussion to
follow explains how these continuation ratios can be formed in different
ways, depending on the researcher’s goals. The examples presented are
based on continuation ratios that take the form δj = P(response beyond
cat. j|response in at least cat. j), or its complement, 1 – δj = P(response in
cat. j|response in at least cat. j).

Armstrong and Sloan (1989), McCullagh and Nelder (1983), Greenland
(1994), and Agresti (1990, 1996) have discussed the continuation ratio
model in depth and have highlighted the relationship between the CR
model and the proportional hazards model proposed by D. R. Cox (1972).
The proportional hazards model is a familiar one in epidemiological con-
texts and in the survival analysis research literature, but its value can be
extended to other contexts as well.

The CR models can be fit using a suitably restructured data set with either
a logit link function or a complementary log-log (clog-log) link function. The
restructuring is explained in greater detail later, but essentially, a new data set
is created from K – 1 smaller data sets, in which each person has as many data
lines as his or her outcome score allows. The process is similar to how the
concatenated data set was created for the partial proportional odds analysis,
with the very important exception that inclusion in a data set is conditional on
whether or not mastery was attained at a particular level. The resulting data
sets then correspond to the specific comparisons contained in Table 4.1 for
the continuation ratio analyses. Once the data set is concatenated, the out-
come of interest is on whether or not a child advances beyond a particular cat-
egory, given that at least mastery in that category was attained. The data sets
formed in this fashion are conditionally independent (Armstrong & Sloan,
1989; Clogg & Shihadeh, 1994; Fox, 1997); thus, the restructured data set
can be analyzed using statistical methods for binary outcomes.

The restructuring is necessary in order to derive the desired conditional
probabilities, or, in the case of the clog-log link, the hazards. In the epi-
demiological literature, the hazard ratio is also known as relative risk; it is
a ratio of two hazards, where the hazard is an explicit conditional probabil-
ity. The odds ratio, on the other hand, is a ratio of two odds, where the odds
are a quotient of complementary probabilities, p/(1 – p). Of course, the
probability of interest in a logit model could be a conditional probability,
which clarifies the usefulness of the logit link for continuation ratio
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models. As we shall see in the examples to follow, the two link functions
share some important similarities, but structurally they are very different.

The first approach, using the logit link, has been called the “logistic
continuation ratio model” (Greenland, 1994, p. 1668). The model treats
time to an event as a discrete quantity. It is not necessary for the ordinal
outcome Y to be a timed variable, as the following discussion will make
clear. For the ECLS-K first-grade data, this “time” can be conceptualized
as measured for each person at each of the six levels of the outcome. Let
the K = 6 response categories represent the possible “times” for the event
of being beyond category j to occur. Then each person has at most K –1 =
5 opportunities for the event to occur (because no one in the sample based
on a discrete ordinal outcome is observed to be beyond the final category).
At each time and for each person, either the event of interest, being beyond
category j, has occurred or it has not occurred. Two new variables are
created: time, which can also be called “level” or “stage”, and the out-
come, which in the discussion below is called “beyond”: Either the child
advances beyond a specific level (1), or the child does not advance beyond
a specific level (0). With a simple restructuring of the data set (presented
below) and the use of the logit link, the results of this approach are
conceptually similar to, and thus an approximation for, the discrete pro-
portional hazards model. The CR model using the logit link provides the
odds for a child of being beyond a particular category, conditional on
being at or beyond that category. Similar to the cumulative odds model,
the logistic CR model assumes that the slopes are homogeneous across
the separate nested binary models that could be used to represent the data
(as in Table 4.1). In this context, the restriction is referred to as the equal
slopes or parallel odds assumption.

The second approach considers time to the event as a continuous
quantity. In this case, the complementary log-log link is used on the restruc-
tured data set, and the model provides “estimates of an underlying pro-
portional hazards model in continuous time” (Allison, 1995, p. 212). The
model assumes that the hazards, rather than the odds, are parallel across the
levels of the outcome variable. Similar to the proportional odds assumption,
the parallel slopes (or hazards) assumption implies that the effect of an
explanatory variable is assumed constant across the outcome categories.

The proportional hazards model is particularly useful when the response
variable is ordinal, because the variable effects estimated from a grouped
continuous model, for which the previously reviewed cumulative odds
model is an example, are equivalent to the estimated effects in a continua-
tion ratio model when the complementary log-log link is used (Läärä &
Matthews, 1985; McCullagh & Nelder, 1989). Bender and Benner (2000)
define the class of grouped continuous models as follows:
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The name “grouped continuous model” can be explained by the view that Y
is a discretized variable of an underlying latent continuous trait defined by
cut-off points j. It is then natural to formulate a model by means of the cumu-
lative probabilities gj. It is, however, not essentially necessary to suppose the
existence of an underlying continuous variable in order to use the cumulative
probabilities for the description of the ordinal categories. (p. 680)

Link Functions

Chapter 3 described the link function in terms of the process of “linking” a
transformation of the observed responses to the original data. For the logit
link, we first considered the outcomes in terms of probability of one of the
categories, which we called “success.” Next, we formed the odds of suc-
cess, and our final transformation involved taking the log of these odds.
Letting π(x) represent the probability of success given a set of covariates x,
the logit link function can be written as g(y) = ln[(π(x)/(1 – π(x))]. We fit a
linear model based on this link function such that the logits for the success
response are predicted: g(y) = α + β1 Xi1 + β 2 Xi2 + . . . βp Xip. The logistic
distribution is the inverse of this process if the logit link is used, so that
π(x) = exp(g(y))/[1 + exp(g(y))], and thus the logistic regression model
provides the estimates for the original probabilities of success or failure.
The logit link is often favored over other link functions because of its
simplicity in interpretation of results in terms of odds and odds ratios.

The logistic distribution function provides a reasonable assessment of
the relationship between the independent variables and the dichotomous
outcome, but it is not the only distribution that can be used. For binomial
data, other equally valid link functions and corresponding distributions
include the probit link function and its inverse, the cumulative standard
normal distribution, and the complementary log-log function and its
inverse, the extreme value distribution. Fox (1997) provides a brief descrip-
tion of these transformations, but the interested reader should also consult
Borooah (2002) and McCullagh and Nelder (1989) for detailed information
about these and other link options.

The complementary log-log link function models the transformed
response in the following way: g(y) = log(–log(1 – π(x))), where π(x) rep-
resents a “success” probability for a given set of covariates. In a continua-
tion ratio model, π(x) is a conditional probability; that is, π(x) represents
the probability that a person moves beyond a stage once a particular stage
has been reached, or its complement, the probability that a person does not
move beyond a stage once a particular stage has been reached. The linear
model based on this transformation is g(y) = α + β1 Xi1+ β2 Xi2 + . . . βp Xip.
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The inverse of this process, if the clog-log link is used, is the extreme value
distribution, so that π(x) = 1 – exp(–exp(g(y))).

Probabilities of Interest

The probabilities of interest for the CR model are the probabilities of being
beyond any category, given that a person has already attained at least that
specific category, δj = P(Yi > cat. j|Yi > cat. j). These continuation ratios are
conditional probabilities, rather than cumulative probabilities, and the
process of predicting the conditional probabilities is different in form from
the process used in the CO model. In particular, as j increases, all cases with
responses less than j are dropped out of the model for each logit compari-
son. Note that the complement of δj ,1 – δj, is equal to 1 – P(Yi > cat. j|Yi >
cat. j) = P(Yi = cat. j|Yi > cat. j). This is essentially the probability being
sought through the proportional hazards model. If time is continuous and we
are interested in modeling the time to the occurrence of an event, denoted by
T, the hazard rate describes the probability of T occurring in any interval
(which can be quite small), given that T has not yet occurred. As presented
by Allison (1995), the hazard is found by taking the limit of this probability:

In a sense, this limit converges on P(T = t|T > t), which is why the hazard
is sometimes referred to as a failure rate. Tabachnick and Fidell (2001)
describe the hazard, or failure, rate as “the rate of not surviving to the mid-
point of an interval, given survival to the start of the interval” (p. 779). In the
context of an ordinal outcome, survival implies moving beyond a particular
level j given that level j was reached; not surviving implies that the person
stops at a particular response category j and therefore does not advance,
given that level j was reached. Instead of survival times, we have survival
events—either the person advances beyond category j or the person doesn’t,
given that category j was reached. Those individuals not reaching category j
would have failed earlier and thus would not be included in the probability
calculations beyond their last stage attained. These estimated probabilities
can be found directly using the continuation ratio model.

To develop continuation ratio models, the data must be restructured to
reflect, for each person, whether or not there is survival at each of the lev-
els of the response variable. Consequently, the development of CR models
using the logit link or the clog-log link is consistent with the approach of

h(t) = lim
�t→0

P(t ≤ T ≤ t + �t |T ≥ t)

�t
.
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the proportional hazards model. The probabilities obtained through the
logit link model estimate the conditional probability of “surviving,” that is,
advancing to a higher stage on the early reading continuum, given that at
least that particular mastery level has been attained. When the clog-log link
function is applied on the same restructured data set, the analysis is equiv-
alent to the discrete-time proportional hazards model (Allison, 1999). For
the ECLS-K data, probabilities obtained through the clog-log link model on
the restructured data set are also conditional probabilities, estimating the
probability of not advancing to a higher stage along the early reading skills
continuum level, given that mastery at least at a given level was attained.
As the examples to follow will illustrate, model slope estimates using the
clog-log link are also equivalent to the slope estimates when the clog-log
link is used on the original data set for the cumulative odds analysis (Läärä
& Matthews, 1985).

Directionality of Responses and
Formation of the Continuation Ratios

Before considering some examples, it is important to be aware of the
selected directional coding of the ordinal outcome, as this decision
becomes critical in the continuation ratio approach. The coding itself is
completely up to the researcher, and in that regard it is arbitrary as long as
consistency in direction is maintained. For example, the numbers 0, 1,
2, . . . 5 have been used to indicate whether or not mastery of early read-
ing skills (Table 2.1) was obtained. The reverse also could have been used,
with 0 representing attainment of mastery at level 5, and 5 representing
inability to master the level 1 skills. Earlier, we saw that with the cumula-
tive odds model, the interpretation of results remains exactly the same
under a reversal of the coding scheme, although the direction of the slopes
representing each effect is reversed within the model (e.g., instead of gen-
der having a slope of –.500 in the full CO logit model (Table 4.5), it would
have had a slope of +.500 if the outcome values were used in reverse
order). The use of the ascending versus descending option in SAS changes
only the outcome of interest being modeled (e.g., in the CO model we
would have P( Y > cat. j) rather than P(Y < cat. j) if the descending option
is used). In the CO model, variable effects are invariant as to how the out-
come is coded. However, when we start to consider the estimation of con-
ditional probabilities, the models we derive and their interpretations
explicitly depend on the manner in which the ordinal outcome is coded—
either increasing or decreasing. As long as the careful analyst is aware of
the questions he or she wants to ask of the data, and correctly sets up the
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coding of the ordinal outcome to correspond to those questions, there
should be no confusion. In the examples that follow, this correspondence
should be made clear.

There are several unique ways that continuation ratio models might be
constructed. Typically, these are referred to as “forward CR” or “back-
ward CR” (Bender & Benner, 2000; Clogg & Shihadeh, 1994; Hosmer &
Lemeshow, 2000). These characterizations are not obtained by simply
reversing the order of the outcome categories, because the CR models are
not invariant to reversal of the outcome codes (Allison, 1999; Greenland,
1994). The models presented here use the forward approach, which corre-
sponds naturally to the process of progression through the six hierarchically
structured early reading skill categories. In particular, interest lies in mod-
eling the probability that the ith child would advance beyond a particular
category, given that he or she achieved mastery at least for that category.
For a collection of explanatory variables, x, the probabilities of interest are
P(Yi > cat. j|Yi > cat. j, x). Note that the complement of this event for each
category is 1 – P(Yi > cat. j|Yi > cat. j, x) = P(Yi = cat. j|Yi > cat. j, x). Later,
it will be shown how this particular construction of the forward continua-
tion ratios is consistent with the results of an analysis using the clog-log
link on the original data.

EXAMPLE 5.1: Continuation Ratio Model
With Logit Link and Restructuring the Data

For the ECLS-K first-grade example, we will first reconsider the original
data in terms of these conditional probabilities, provided in Table 5.1, for
the single explanatory variable of gender. I will let the desired probabil-
ity, P(Yi > cat. j|Yi > cat. j, x_), be denoted by δj , where j = 0, 1, . . . 5. The
odds of being beyond a particular category, given proficiency in that cat-
egory or higher, are found by calculating δj /(1 – δj ). From Table 5.1, we
see that for both boys and girls, the conditional probability, δj , of advanc-
ing beyond any particular proficiency level generally decreases across
categories, although δj increases slightly for boys between categories 3
and 4. Overall, as greater mastery for early literacy skills is achieved,
children are less likely to advance to higher categories. For boys, the like-
lihood of advancing is always less than that for girls. The odds for boys
and girls, shown in Table 5.1, correspond to these observed conditional
probability patterns. For these data, the odds that a girl advances, condi-
tional on the event that she has attained a given level of proficiency, are
always greater than the corresponding odds for boys. The OR (boys to
girls) for these data across the categories do not appear to be similar. The
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odds of advancement for boys range from .3833 to .7705 times the odds
for girls, until the final stage (category 4 versus 5), where the likelihood
of advancing for both genders is about the same (OR = .9477).

As mentioned earlier, the process of fitting a CR model to these data
involves restructuring the data set so that each child has as many lines as his
or her outcome score allows (Allison, 1999; Bender & Benner, 2000; Clogg
& Shihadeh, 1994). Basically, this restructured data set contains five con-
catenated but different data sets representing outcomes for the six profi-
ciency levels in terms of whether or not a child is beyond each category. The
first data set contains all observations, and children who have a proficiency
score beyond 0 are given a value of 1 on a new variable called “beyond”; oth-
erwise, they are given a value of 0 on “beyond.” The second data set drops
any child who did not attain at least level 1, and the process is repeated. That
is, children who have a proficiency score beyond 1 receive a score of 1 on
“beyond,” otherwise a 0. For the next data set, children in proficiency level 1
are dropped (along with the children who were dropped earlier), and children
with proficiency beyond 2 are given a score of 1 on “beyond,” else a 0. The
final stage of the process contains only children who reached at least level 4,
who would then receive a 1 on “beyond” if they continue on to mastery of
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Totals (f)

1673
1.000

—
—

1692
1.000

—
—

—

5

151
.0903

—
—

206
.1217

—
—

—

4

256
.1530
.3710
.6290

331
.1956
.3836
.6164

.5898

.6223

.9477

3

735
.4393
.3564
.6436

747
.4415
.4182
.5818

.5538

.7188

.7705

2

320
.1913
.7811
.2189

274
.1619
.8241
.1759

3.568
4.685

.7616

1

163
.0974
.8997
.1003

115
.0680
.9313
.0687

8.970
13.556

.6617

0

48
.0278
.9713
.0287

19
.0112
.9888
.0112

33.84
88.286

.3833

Males
f
p
δj

1 – δj

Females 
f
p
δj

1 – δj

Odds
Males
Females

OR

TABLE 5.1

Observed ECLS-K Gender Frequency (f ), Category
Probability ( p), and Conditional Probabilities

P(Beyond Category j Given at Least Category j) (δj)

Category 
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level 5, otherwise a 0. In this example, children who stopped out (stopped
being tested) at proficiency category 3 would contribute four lines of infor-
mation to the concatenated data set, with “beyond” scores of 1, 1, 1, and 0
representing their progress in categories 0 through 3, respectively. Syntax C1
in the appendix shows how to create this restructured data set in SAS; an
equivalent process can be followed in SPSS. Overall, the total sample size in
the restructured data set will correspond to the number of persons included
at each step. For the ECLS-K example, this becomes n = 1 × f(0) + 2 × f(1)
+ 3 × f(2) + 4 × f(3) + 5 × (f(4) + f(5)) = 13,053.

The variable “beyond” is now the new outcome variable of interest. We
are interested in modeling P(beyond) = 1, controlling for stage (or data set
or conditional logit comparison), which can be done in SAS PROC LOGIS-
TIC using the descending option and the logit link (syntax C2). In the
restructuring syntax, the term “crcp” (an acronym for continuation ratio
cutpoints) indicates which logit comparison or data set or stage (category) is
being referred to. These variables were then dummy coded for the analysis
(dumcr0 to dumcr3) using the final comparison as the referent. The results
for this binary logistic model with gender as the only predictor are summa-
rized in Table 5.2, which also includes the results for the five separate
gender-only binary logistic regressions that correspond to each of the nested
continuation ratio splits presented earlier in Table 4.1. Because this model
is inherently different from the CO model presented in Chapter 4, slopes
should not be compared between the CO and CR logit-link analyses. The CR
and CO logit-link models predict very different sets of probabilities.

In interpreting the results of the CR analysis, the first question that
should be addressed is whether or not the model fits. There are two com-
ponents to this: (1) overall model fit, which can be assessed by comparing
the likelihood of the fitted model with the likelihood of the null, or inter-
cept-only, model; and (2) investigating the assumption of parallel odds,
or equal slopes in the logit model across the different response-level
comparisons being conducted.

As seen in Table 5.2, the fitted model reproduces the data better than the
null model, χ2

5 = 4,070.84, p < .0001. This is true as well for each of the
separate underlying conditional logit models, with the exception of the last
comparison, between children in categories 4 versus 5. Thus, it would be
reasonable to investigate whether the parsimony of the global logistic CR
model represents the data well enough relative to a simultaneously fitting
of the separate models. This investigation would also provide an overall test
of the parallel odds assumption.

Similar to the partial proportional odds model, interaction terms can
be created between the independent variable of gender and each of the
dummy-coded variables that represent the continuation ratio cutpoints. If
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the assumption of equal slopes holds, then it would be expected that the
interaction terms are not necessary to improve the fit of the model. If there
is an interaction between the IV and the cutpoints, this suggests that the
effect of the IV is not homogeneous across the cutpoints of the analysis. In
general, interactions between explanatory variables and the indicator codes
for the cutpoints can be used to create unconstrained CR models where
effects for all explanatory variables are allowed to vary across cutpoints, or
partial CR models where the assumption of parallelism is relaxed for just a
subset of the explanatory variables. This approach mirrors the development
of the non- and partial-proportional odds models presented in Chapter 4.

Four interaction terms were added to the six-parameter additive model.
The resulting −2LLint for the interaction model is 10,011.002 (analysis not
shown), and for the equal slopes model is –2LLno-int = 10,021.534. Their
difference is 10.532, on four degrees of freedom (number of interaction
terms added to the model). This difference exceeds the critical χ2

4, .05 =
9.49, but not at χ2

4, .01 = 13.28. Given the large sample size, we might rea-
sonably assume that the slopes for the interaction terms as a set are not sta-
tistically different from zero. However, the slope estimates and ORs for the
separate binary logistic regressions provide useful information regarding
possible differential effects of gender across the response levels that is not
apparent through the global and more parsimonious CR (non-interaction)
method. Perhaps additional explanatory variables are needed, or the assump-
tion of parallel odds is inappropriate for the data. Despite the marginal
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TABLE 5.2

CR Model (Logit Link) Using Restructured Data Set, N = 13,053; and
Logistic Regression Results for Each of the Five Conditional Binary

Logistic Models (P(Beyond Category j|Response in at Least Category j ))

a. Likelihood ratio chi-square.
b. This test is based on n = 13,053 observations.
**p < .01.

4 vs. above

−.474**

−.054
(.948)

1,251.899
.157 (1)
p = .692

3 vs. above

−.330**

−.261**
(.770)

3,233.103
9.740 (1)
p = .002

2 vs. above

1.545**

−.272**
(.762)

2,985.667
8.830 (1)
p = .003

1 vs. above

2.606**

−.412**
(.662)

1,896.434
10.683 (1)
p = .001

0 vs. above

4.478**

−.956**
(.384)

643.899
13.568 (1)
p < .001

CR

−.3763**
4.4248**
2.9113**
1.9283**

.0578
−.2865**

(.751)

10,021.534
4,070.84b (5)

p < .0001

Intercept
dumcr0
dumcr1
dumcr2
dumcr3
gender
(OR)
Model fit

–2LL (model)
χ2 (df)a
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statistical significance of the parallel odds assumption at α = .05, for
pedagogical purposes we will continue to explore the statistics and results
associated with the CR model under the assumption of equal slopes.

Note that the sum of the model deviances (–2LL(model)) for the separate
binary logistic regressions in Table 5.2 is equal to the model deviance for
the interaction CR analysis described above (Σ[–2LL(model)] = 10,011.002).
The nested dichotomies are independent (Fox, 1997), and thus, the “sum
of the separate G2 [deviance] statistics is an overall goodness-of-fit statistic
pertaining to the simultaneous fitting of the models” (Agresti, 1996, p. 219).

To investigate the assumption of parallel odds further, the slopes and
ORs from the separate binary logistic regressions can be reviewed and
compared informally with the CR results. Alternatively, a process similar
to that of summing the multiple model deviances can be conducted for each
variable in the model, by summing the Wald test statistics across the series
of CR splits (Fox, 1997). Regardless of which approach is favored, it is
always wise to look at the logistic regression results for the separate splits;
that is the approach taken here.

Returning to the estimates in Table 5.2, the effect for gender in the logis-
tic CR model is –.2865 (p < .01), with a corresponding OR = exp(–.2865) =
.751. This OR summarizes the general trend seen earlier, in the original data
(Table 5.1): Boys are less likely to advance beyond a given mastery level
relative to girls. To calculate the estimated odds ratios for the conditional
comparisons, the CR model can be used to calculate the logits. With the ref-
erent as the final comparison in the dummy-coding scheme employed, the
intercept is used to find the logit for being beyond proficiency level 4, that
is, for (Y > 4|Y > 4): logitcr4 = –.3763 + (–.2865 × gender). For boys, log-
itcr4 = –.6628; for girls, logitcr4 = –.3763. From these values, estimated con-
ditional probabilities are found. For boys, δ^4 = [exp(–.6628)/(1 +
exp(–.6628)] = .3401; similarly, δ^4 for girls is .4070. Finally, the odds for
boys and girls can be determined and used to calculate the estimated OR4,
which is .7509. Predictions for all comparisons are summarized in Table 5.3.
Using the CR model, the odds ratios across all continuation ratio cutpoints
are equivalent and approximately .75. The CR model constrains these odds
to be equal across all sequential conditional category comparisons.

Comparing the estimated ORs from the CR model to the actual ORs for
gender, both in Table 5.3, we see there is more similarity toward the mid-
dle of the ordinal proficiency scale than there is at either end. Although the
common odds ratio is in the right direction and the overall model can be
interpreted to indicate that boys are less likely than girls to be beyond any
given category, this lack of homogeneity deserves some further attention in
order to make a wise decision regarding balance between model parsimony
and clarification of evident variable effects.

64

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 64



Reviewing the binary logistic regression models formed from the condi-
tional data sets in Table 5.2, we see additional evidence of heterogeneity in
the slope estimates for gender across the separate splits, in terms of both
magnitude and statistical significance. For the binary models, the effects of
gender on the log-odds range from –.054 to –.956, with an average slope of
–.391. This average slope corresponds to an OR of .676. For the last binary
logit comparison (Y > 4|Y > 4), the effect of gender is not statistically
significant, and its OR is close to 1.0. Although the CR model gives a par-
simonious view of the effect of gender across all the separate logit com-
parisons, and on average it seems to correspond with the separate fits, there
is some justified apprehension in using the CR model fitted here. In some
research situations, presenting and discussing the results for the separate
comparisons may be a more reasonable and informative option than focus-
ing solely on the more global results of the CR model.

Recall that the purpose of the CR model is to investigate the probabilities
of being beyond a given proficiency level, given a response at or beyond that
proficiency level. The predictions from the model provided in Table 5.3
should reasonably replicate the observed conditional probabilities associated
with each continuation ratio, P(Y > j|Y > j). Based on the results of the CR
analysis, which constrains the gender effect to be equivalent across the con-
tinuation ratio cutpoints, the model’s predictions seem to be quite close
to the observed conditional probabilities for both boys and girls. For future
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5

—
—

—
—

—

4

.3710
−.6628

.3401
(.6599)

.3836
−.3763

.4070
(.5930)

.9477

.7509

3

.3564
−.6050

.3532
(.6468)

.4182
−.3185

.4211
(.5789)

.7705

.7508

2

.7811
1.2655
.7798

(.2202)

.8241
1.552
.8252

(.1748)

.7616

.7501

1

.8997
2.2485
.9045

(.0955)

.9313
2.535
.9266

(.0734)

.6617

.7502

0

.9713
3.762
.9773

(.0227)

.9888
4.0485
.9829

(.0171)

.3833

.7490

Males
δj

logits
δ^ j

(1 − δ^ j)

Females
δj

logits
δ^ j

(1 − δ^ j)

OR (obs.)
OR (est.)

TABLE 5.3

Observed Proportions (δj) for P(Y > j|Y ≥ j), Predictions, and Observed
and Estimated ORs for Gender Model, CR Analysis With Logit Link

Category
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reference, the estimated complementary probabilities are provided in Table 5.3
as well. These complementary probabilities are P(Y = j|Y > j), which from our
earlier discussion represent estimates of the hazard, or failure rate, that is, the
probability of not advancing beyond proficiency category j.

Somers’ D for these data was .691, indicating good correspondence
between observed and predicted probabilities for being beyond a given
category, although this rank-order correlation coefficient is for the
restructured binary-outcome data and not the original ordinal responses.
The likelihood ratio R2

L = .289, indicating moderate reduction in deviance
for the CR model, relative to the null or intercept-only model; again, this
coefficient is for the restructured binary-outcome data set.

To investigate predictive efficiency via τp and λp, the classification table
can be constructed using estimated conditional probabilities. SAS will save
the P(beyond = 1) for each of the N = 13,053 cases in the restructured data
set. Aggregating this data set back to the original size sample, however, can
be problematic, because only people who were included in each conditional
comparison will have predictions for that split. Therefore, a convenient way
to create the classification table is to enter the model estimates into a sta-
tistical program and use these estimates on the original data set (N = 3,365)
to compute the logits based on gender. The logits can then be transformed
to the conditional probabilities, δj = exp(logitj)/(1 + exp(logitj), so that each
child has an estimate for each conditional comparison, P(Y > cat. j|Y >
cat. j). This process yields the same estimates as those provided in Table 5.3.

The category probabilities can then be found using the following rela-
tionship (Läärä & Matthews, 1985):

where δj(x) = P(Y > cat. j|Y > cat. j, x), πj(x) = P(Y = cat. j|x), and γj(x) =
P(Y < cat. j|x) = π0(x) + π1(x) + . . . πj(x). Rearranging terms to solve for
the category probabilities, πj(x), we have πj(x) = (1 – δj(x)) × (1 – γj-1(x)).
This results in six category probabilities, one for each level of the response.
Individual category membership is assigned to the category with the great-
est probability for that child. The syntax for this process is provided in the
appendix as syntax C8.

For the gender-only model, the logistic CR model predicts all children
into category 3. Similar to the CO model in Chapter 4, τp = .23 and λp = 0.
Although the pattern of estimated probabilities may be informative, the
one-variable model does not seem to be very useful in terms of accuracy of
proficiency classifications. Nonetheless, the approach outlined here could

(1 − δj (x)) = πj (x)

1 − γj−1(x)
,
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easily be followed for CR analysis of more complex models as well as other
ordinal data sets.

EXAMPLE 5.2: Continuation Ratio
Model With Complementary Log-Log Link

As a result of its straightforward correspondence with the underlying
binary logistic regression models, the logit-link function is often used in
research studies where continuation ratio models are desired. An alternative
link function is the complementary log-log (clog-log) link, which provides
an interpretation of the results in terms of a hazard ratio rather than an odds
ratio. Example syntax for a CR analysis using the restructured data set with
the clog-log link is contained in Appendix C3, with two changes from the
previous logit-link analysis. First, the link requested was clog-log. Second,
the ascending approach rather than the descending approach was used, in
order to correspond to an interpretation of (transformed) model estimates as
predicted hazards. That is, for the restructured data set, we wish to predict
P(beyond = 0) rather than P(beyond = 1).

Recall that the conditional probability, P(Yi = cat. j|Yi > cat. j), provides an
estimate of the hazard. Using the ascending option with the clog-log link,
this estimated probability is the complement of that predicted by the logit-
link model; that is, the logit model estimated the conditional probability of
being beyond category j, or P(Yi > cat. j|Yi > cat. j), whereas the clog-log
model as constructed here estimates the conditional probability of stopping
out in category j, P(Yi = cat. j|Yi > cat. j). This correspondence allows the
estimated continuation ratios and/or their complements for the two link
functions to be directly compared. Without the ascending option, the fitted
clog-log model would be estimating an entirely different set of conditional
probabilities, namely, P(Yi < cat. j|Yi < cat. j). Caution must be taken to
ensure that the appropriate event of interest (here, Y = cat. j|Y > cat. j) as well
as its desired complement (here, Y > cat. j|Y > cat. j) matches the predictions
of interest to the researcher. The first two columns of Table 5.4 provide the
results of this analysis using the Logistic Regression procedure in SAS.

The clog-log link function transforms the observed probabilities quite
differently than does the method used with the logit link. The values formed
via the clog-log link function are not the logs of the odds, but the logs of
the hazards, thus representing the proportional hazards model. Similar to
the logit link of the previous section, discussing Example 5.1, the response
variable is transformed based on the conditional probabilities: p = P(Yi =
cat. j|Yi > cat. j). However, where the logit was defined as the log of
the odds, the clog-log is defined as the log of the negative log of the
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complementary probability: clog-log = log(–log(1 – p)). To use the clog-log
predictions to return the data to conditional probabilities, the inverse of this
process is used: p-hat = 1 – exp(–exp(clog-log)). As with the proportional
odds model, a restrictive assumption is placed on the data: proportional
hazards. This assumption, also referred to as the parallel or equal slopes
assumption, requires the hazards (where hazard = exp(clog-log)) to main-
tain homogeneous proportionality across all levels of the response variable.
A demonstration of this assumption follows.

Based on syntax C3 in the appendix, we see from the summary of results
in Table 5.4 that the model fits better than the null, χ2

5 = 4,066.173, p < .0001.
In this analysis, the effect of gender on the clog-logs is +.1976, which is
statistically different from zero (p < .01). Singer and Willett (2003) point out
that regardless of choice of link function, we exponentiate the estimates from
the model for interpretation purposes: “Whereas an antilogged coefficient from
a model with a logit link is an odds ratio, an antilogged coefficient from a model
with a clog-log link is a hazard ratio” (p. 424). Exponentiating the gender effect
for our current model, we find the hazards ratio, HR = exp(.1976) = 1.218.
Across all response levels for the proficiency categories 0 through 5, the haz-
ard for boys of being at a particular level j rather than beyond, relative to girls,
is assumed constant at 1.28. To understand what this means for our data, the
model estimates and predicted probabilities for the clog-log model are pro-
vided in Table 5.5a. The notation hδ^j is used to indicate predicted conditional
probabilities based on the clog-log link model to distinguish between the con-
tinuation ratios estimated through the logit-link analysis.

Probability predictions for boys versus girls can best be understood in
terms of their corresponding hazards, as determined through the fitted

68

−4.0091**
−2.3257**
−1.2173**

.1444**

.7155**

.1976**

10,026.201
10,053.980

27.7511** (1)

Intercept 0 
Intercept 1
Intercept 2
Intercept 3
Intercept 4

gender

−.1166*
−3.8924**
−2.4146**
−1.5013**

−.0350
.1976**

10,026.201
14,092.374

4,066.173** (5)

Intercept
dumcr0
dumcr1
dumcr2
dumcr3
gender
Model fit

–2LL (model)
–2LL (null)
χ2 (df)

TABLE 5.4

Parameter Estimates for CR Models With Clog-Log Link on
Restructured Data Set, N = 13,053; and on Original Data Set, N = 3,365

*p < .05; **p < .01.

Restructured Original
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model. With the ascending option in place, the predictions are for hδ^j =
P(Y = j|Y > j); this is complementary to the predictions found in the logit-
link CR analysis. Complementary probabilities derived from the clog-log
model, 1 – hδ^j = P(Y > j|Y > j), are also presented in Table 5.5a.

Recall that in these models, boys have a coded value of gender = 1,
whereas girls have a coded value of gender = 0; the dummy coding used
for the cutpoints implies that the intercept corresponds to the final com-
parison of Y = 4 to Y = 5. To find the clog-log estimates for boys for the
first continuation ratio (which compares Y = 0 to Y > 0), we find that (using
Table 5.4) clog-logboys, 0 = –.1166 + (–3.8924) × dumcr0 + (.1976) × gen-
der = −3.8114. For girls, the model estimate corresponds to clog-loggirls, 0 =
–.1166 + (–3.8924) × dumcr0 = –4.009. Exponentiating each clog-log and
taking the ratio of boys to girls, we have the hazards ratio, HR =
exp(–3.8114)/ exp(–4.009) = 1.218. It is this ratio that the model con-
strains to be constant across all continuation ratio comparisons. The HRs
calculated based on the clog-log estimates in Table 5.5a for each continu-
ation ratio comparison are all, within rounding error, equal to 1.218. The
hazard for boys of not advancing is assumed to be greater than that for
girls and constant across the conditional continuation ratio cutpoints. This
implies that boys are more likely than girls not to attain the higher reading
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5

—

—
—

—

4

.3710

.081

.6619

.3381

.3836
–.1166
.5893
.4107

1.218

3

.3564

.046

.6490

.3510

.4182
–.1516
.5766
.4234

1.218

2

.7811
–1.4203

.2147

.7853

.8241
–1.6179

.1780

.8220

1.218

1

.8997
–2.3336

.0924

.9076

.9313
–2.5312

.0765

.9235

1.218

0

.9713
–3.8114

.0219

.9781

.9888
–4.009

.0180

.9820

1.218

Males
δj (obs)

clog-log
hδ^ j

1 – hδ^ j

Females
δj (obs)

clog-log
hδ^ j

1 – hδ^ j

HRa (est.)

TABLE 5.5a

Observed Proportions (δj) for P(Y > j|Y > j), Predictions, Estimated
Hazards and Complements, and Estimated HRs for Gender Models,

CR Analyses With Clog-Log Link (Using Restructured Data Set)

Category

NOTE: hδ̂ j = p-hat = P(Y = cat. j|Y ≥ cat. j).
a. Hazard = exp(clog-log); HR = (hazard(boys))/(hazard(girls)).
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proficiency levels, which is consistent with the results of the logistic CR
model.

To investigate the assumption of equal slopes, four interaction terms
representing the interaction between gender and each split were added to
the model. The –2LLint = 10,011.002 (analysis not shown), and when com-
pared to the –2LLnon-int = 10,026.201, the difference is χ2

4 = 15.20, which
exceeds χ2

4, .005 = 14.86. This suggests that the hazards are not parallel
across outcome categories for the single explanatory variable of gender.
For demonstration purposes, however, we will continue to explore the inter-
pretation of parameter estimates and predicted probabilities for the parallel
slopes model.

The estimated conditional probabilities, notated by hδ^j, are found by tak-
ing the inverse of the link function for the predicted clog-logs in the gender
model. That is, p-hat = hδ^j = 1 – exp(–exp(clog-log)). We can compare the
predictions for the complements, 1 – hδ^j, to the observed continuation
ratios in the first row of Table 5.5a, and their close correspondence to the
actual data is clear.

Are the predictions based on the clog-log link more accurate than those
obtained through the logit link? For the clog-log link, R2

L = .289, and
Somers’ D = .691, which are the same (within rounding) for the logit-link
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NOTE: cδ̂ j = cumulative probabilities
a. Hazard = exp(clog-log); HR = (hazard(boys))/(hazard(girls)).

5

—
—

—
—

—

4

.3710

.9131

.9173

.0827

.3836

.7155

.8707

.1293

1.218

3

.3564

.3420

.7553

.2447

.4182

.1444

.6850

.3150

1.218

2

.7811
−1.020

.3028

.6972

.8241
−1.217

.2562

.7438

1.218

1

.8997
−2.122

.1123

.8877

.9313
−2.323

.0931

.9069

1.218

0

.9713
−3.812

.0219

.9781

.9888
−4.009

.0180

.9820

1.218

Males
δj

clog-log
cδ^ j

1 − cδ^ j

Females
δj

clog-log
cδ^ j

1 − cδ^ j

HRa (est.)

TABLE 5.5b

Observed Proportions (δj) for P(Y > j|Y > j), Predictions, Estimated
Probabilities and Complements, and Estimated HRs for Gender Models,

CR Analyses With Clog-Log Link (Using Original Data Set)

Category
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model. The two link functions seem to be performing equally well. In terms
of predictive efficiency, we see the same pattern of predicted probabilities
under both link functions; with gender as the only predictor in this simple
model, the estimated proficiency level for both boys and girls would be
category 3; as a result, τp = .23 and λp = 0. The classification table was
derived using a process similar to that followed in the logistic CR analysis
and solving for p-hat from the predicted clog-logs, rather than logits.
Further, the complementary probabilities do not need to be solved for when
creating the classification table (if modifying the syntax in Appendix C8),
because the predicted probabilities for the ascending clog-log model are
already hδj = P(Y = cat. j|Y > cat. j). Based on the predictive efficiency sta-
tistics, no preference is obvious for either the logit or the clog-log link. The
logit model, however, did meet the assumption of equal slopes more
strongly than did the clog-log model.

Choice of Link and Equivalence
of Two Clog-Log Models

In general, fit statistics for the CR model under either the logit or clog-log
link function should be comparable, as we have seen here. The choice
between link functions comes down to a matter of preference for the advan-
tages of either approach, and to a conceptual understanding of how the data
were generated. Advantages of the logit link include its simplicity of inter-
pretation in terms of odds and odds ratios. Advantages of the clog-log link
include its interpretation in terms of hazards and hazards ratios, and its
direct connection to the proportional hazards model. For the analyses pre-
sented here, “time” is not a structural component of how the data were gen-
erated, so a stronger argument could be made in favor of the logit approach.
However, with either link function, stage-specific interactions can be
directly included and tested in the models, so investigation of the equal
slopes assumption can easily be assessed.

Computationally, however, restructuring a large data set to fit the con-
tinuation ratio model can begin to get cumbersome, particularly as the
number of response levels increases. With the clog-log link, the original
data set can be used and the proportional odds model of the previous
chapter applied. As shown by Läärä and Matthews (1985), the results of
this approach are directly comparable to the continuation ratio model
obtained through the clog-log link applied to the restructured data set.
Both models yield the same variable effects, which can be used to provide
a direct interpretation of the patterns in the data in terms of hazards ratios.
Further, with this approach, a test of the equal slopes assumption is
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provided in either SAS or SPSS. However, whereas the CR model provides
estimates of conditional probabilities when the restructured data set is
used, the cumulative CR model provides estimates of cumulative proba-
bilities. Syntax C4 in the appendix shows how to fit this model in SAS
using the ascending option; thus, the model is predicting P(Y < cat. j). The
equivalent SPSS syntax is shown in Syntax C5. SAS results using the
original data set for the single explanatory variable of gender are shown
in the second half of Table 5.4.

Note first that the effect of gender, b = .1976 (p < .01), is equivalent
between the two clog-log link models. That is, in terms of effects of
explanatory variables, using the clog-log link on the restructured data set
for a binary outcome is equivalent to the use of the clog-log link in a cumu-
lative odds model. Parameter estimates from either approach are interpreted
in terms of hazards. As we saw earlier, the hazard for boys of not achieving
beyond a given proficiency level is exp(.1976) = 1.28 times the hazard for
girls. The intercept values between the two clog-log link models, however,
are not equivalent, and in general this is due to the very different structures
of the two models. There is no expectation that the intercepts would be
comparable, because one model predicts conditional probabilities (clog-log
link on the restructured data) and the other predicts cumulative probabili-
ties (clog-log link on the original ordinal data). The predictions in terms of
probabilities are not equivalent.

Predictions from the clog-log link on the restructured data were provided
in Table 5.5a; predictions from the cumulative CR model where the
clog-log link was applied to the original data set are shown in Table 5.5b.
Recall that the predicted probabilities are found by p-hat = 1 –
exp(–exp(clog-log)). Here, the notation cδ̂ j is used to distinguish these pre-
dicted probabilities from those in the previous analysis. The predictions for
the cumulative CR model can be compared back to the actual cumulative
probabilities (cp) in Table 4.2. In terms of cumulative probabilities, the
model seems to reflect the actual data well. Evidence of fit, however, for
this one-variable model is small. Somers’ D for this analysis is .079, and
R2

L = .003. For the pseudo R2’s, we find R2
CS = .008 and R2

N = .009. Further,
τp = .23 and λp = 0, as the gender-only cumulative model predicts all
children into category 3 regardless of link function.

The score test for the equal slopes assumption yields a χ2
4 = 14.95, with

p = .0048, suggesting that the parameter estimates are not equivalent across
categories. Brant (1990) identifies several problems with the score test
regardless of link function. Large samples tend to yield small p values, so
conclusions based on the score test may be flawed; that is, decisions to
reject the assumption of proportional odds may not coincide with substan-
tively meaningful differences across the category comparisons for any or all
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of the explanatory variables. Additionally, the score test provides only a
global assessment of lack of fit to the assumption of parallel slopes, with no
information about the nature of the departure from the assumption. As was
emphasized in Chapter 4, Brant’s recommendation is to investigate the
underlying binary models that accompany the approach to the ordinal
analysis, in order to “evaluate the aptness of the model while gaining added
insight into the complexities of the data” (1990, p. 1176). Although for
space considerations the gender-only binary models under the clog-log link
function are not examined, it would be quite reasonable to do so, in order
to augment the information obtained from the global score test.

Choice of Approach for Continuation Ratio Models

As we saw in Chapter 4, the logit link was used to fit the proportional odds
model when the outcome variable was ordinal. The proportional odds
model with the logit link is probably the most common choice among com-
peting models for research in the social sciences, but for ordinal outcomes,
there are compelling reasons to consider fitting continuation ratio models.
As we have seen here, there are several different ways that the CR model
can be developed. Substantively, when the dependent responses represent
an ordinal progression through sequential stages, a stronger understanding
of factors affecting this progression can be obtained if variable effects on
the conditional probabilities (i.e., conditional on reaching a particular stage
or not), rather than cumulative probabilities, are estimated. Further, due to
its relationship with an underlying proportional hazards model, the clog-
log link can provide a parsimonious analysis that explicitly models these
variable effects sequentially for each conditional dichotomy.

The logistic CR model is “precisely the proportional ‘logit hazard’ model
considered by [D. R.] Cox (1972) for discrete survival distributions”
(C. Cox, 1988, p. 436), providing hazards in discrete time. When the clog-
log link is used, the fitted model is the proportional hazards model (Ananth
& Kleinbaum, 1997). The choice between the link functions should hinge
on the usefulness of results that are obtained under either transformation.
Given that many applied researchers in the educational and social sciences
are becoming more familiar with logit models, odds, and odds ratios, it is
reasonable to expect that the logistic CR approach may be best suited to the
study of ordinal outcomes in this domain. The use of the restructured data
set to fit these models, regardless of link function, probably is a very wise
strategy, in comparison with using the cumulative CR clog-log model. The
restructured data set allows for straightforward creation and inclusion of
interaction terms, much the same as was done for the PPO example in
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Chapter 4. In situations where the assumption of parallel odds doesn’t hold
for explanatory variables, fitting a partial CR model (Cole & Ananth, 2001)
may provide better explanations of effects within the data.

EXAMPLE 5.3: Full-Model Continuation
Ratio Analyses for the ECLS-K Data

In this final section, an example of the multivariable logistic CR model
is provided for the ECLS-K data. The analysis follows syntax C6 in the
appendix, SAS with the descending option. The conditional probabilities of
interest are P(Y > cat. j|Y > cat. j) for the eight-variable model. Table 5.6
provides the results of the analysis; also included in Table 5.6 are the results
of the corresponding binary logit analyses for comparison purposes. The
final column of Table 5.6 includes the clog-log CR model (hazards) fitted
through SPSS PLUM. For illustrative purposes, focus is on the results of
the logistic CR analysis.

Overall, boys (gender; OR = .688), children with any family risk charac-
teristics (famrisk; OR = .808), children who are not read to frequently by
their parents or guardians (noreadbo; OR = .763), and children who attended
only half-day kindergarten (halfdayK; OR = .894) are less likely to be
beyond a given proficiency level. Family SES (wksesl; OR = 1.78) and the
child’s age (p1ageent; OR = 1.05) are positively associated with having a
greater likelihood of being beyond a given proficiency level.

For the most part, these effects are consistent in size and pattern across
the corresponding binary models. Some differences are evident, however.
The effects of minority, as coded here, change dramatically across the
binary splits; the global effect of minority as estimated through the logistic
CR model (OR = .918, n.s.) does not adequately capture the unique effects
across all CR comparisons. Additionally, the effect of attending a half-day
kindergarten program rather than a full-day program in the logistic CR
model (OR = .894, sig.) also does not seem to adequately reflect the poten-
tial contribution of length of kindergarten day, as evidenced through the
binary CR comparisons.

Despite the irregularities noted, however, the model fit statistic for the
logistic CR analysis indicates that the model does provide a good fit to the
data. Measures of association for this analysis are Somers’ D = .739, τp =
.23, and λp = 002. Reasonable adjustments to this logistic CR model would
include calculation and inclusion of interactions for the minority and
halfdayK explanatory variables, as well as the deletion of the center effect
(whether or not the child had attended center-based care prior to kinder-
garten) from the model.
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6. THE ADJACENT CATEGORIES MODEL

Overview of the Adjacent Categories Model

A third option for the analysis of ordinal response variables (along with
CO and CR models) involves simultaneous estimates of the effects of
explanatory variables in pairs of adjacent categories. Adjacent category (AC)
models are a specific form of generalized logit models for multinomial
outcomes (Clogg & Shihadeh, 1994; Goodman, 1983; Hosmer & Lemeshow,
2000). In the multinomial approach, comparisons are made between each
response outcome and a base category, generally taken as the last response
category. The multinomial model is unconstrained, in that effects of explana-
tory variables are allowed to vary for each specific comparison. In AC
models, these effects are constrained to be constant or homogeneous for
comparisons of adjacent categories, mirroring the assumptions of propor-
tionality and parallelism that were described previously for the CO and CR
models. Goodman (1979) refers to this assumption as “uniform association.”

SAS estimates the AC model through PROC CATMOD, although the
analysis is not optimal for models that contain continuous explanatory vari-
ables. PROC CATMOD estimates the model through weighted least squares,
which requires that the data be grouped as in a contingency table (Allison,
1999; SAS, 1999). Continuous variables can be categorized for inclusion
in the AC model, a strategy used by Clogg and Shihadeh (1994), but this
approach may have implications for model fit if the effects of the continuous
variables are not linear across the response levels. Further, the sample sizes
within each profile of individuals in the sample sharing similar values for the
explanatory variables need to be large enough for reliable estimation across
the AC comparisons (Stokes et al., 2000). Despite the shortcomings of cur-
rent software designed to fit AC models, this approach does offer a reason-
able alternative to either the CO or the CR method for research situations in
which comparisons across adjacent categories makes strong theoretical sense.

In AC models, the logit transformation compares πi,j, the probability of the
ith person’s response being in category j, to the probability of response in the
next successive category, πi, j+1. The purpose of this approach is to simulta-
neously determine the odds of response in the next highest category for each
pair of adjacent categories. A series of logits is constructed, and the analysis
corresponds to the comparisons provided in the last section of Table 4.1. We
take the log of the two adjacent probabilities to create the logit:

Y ′
j = ln

(
πi,j+1

πi,j

)
= αj + βXi
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where J = number of response levels and j = 1, . . . J – 1. In this equation,
the probabilities represented by the numerator and the denominator refer to
the probabilities for the two adjacent categories being compared. The inter-
cepts in the J – 1 logit equations may vary across adjacent category com-
parisons, but the effects of the explanatory variables are assumed to be
constant across these comparisons. The slope effect, β, is homogeneous
across all AC comparisons.

The odds ratios for the AC model are referred to as local odds ratios
because the association they describe is from a localized region in the over-
all table (Agresti, 1989, 1996). For a single categorical explanatory variable
with two levels, 0 and 1, J – 1 odds ratio are formed for each specific pair
of adjacent categories (j = 1 to J – 1).

The investigation of parallelism for the AC model can proceed much the
same way as in the previous analyses, but no formal test for the constraint
is available. If the AC model does not fit, a multinomial approach can be
formed; or the specific logistic regression splits corresponding to each AC
comparison can be reviewed for plausibility of the constraint.

Similar to the previous chapters, in the discussion to follow, the gender-
only model is fit first in order to describe the methodology, approach, and
results of a simple AC analysis. Next, a more complex model is fit, and the
results are explained. Syntax for the two models presented here (simple and
complex) is included in the appendix, section D.

EXAMPLE 6.1: Gender-Only Model

The syntax shown in the appendix, section D1, was used for the simple
gender-only AC model. In this syntax as well as in the more complex
model, the effects of explanatory variables are treated as quantitative and
thus are included in the “direct” subcommand within PROC CATMOD.
Because the coding for gender was done externally to SAS (0 = females,
1 = males), this approach allows for ease of interpretation of the effects
and keeps the interpretation consistent with those of the previous logit
models. (See Stokes et al. [2000] for an alternative but equivalent approach
to the treatment of categorical predictors in PROC CATMOD.) The
“response” statement specifies the adjacent categories model (“alogit”),

ORj+1 = P(Y = j + 1 | x = 1)/P (Yi = j | x = 1)

P (Y = j + 1 | x = 0)/P (Yi = j | x = 0)
.
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and the syntax asks for the predicted logits and estimated AC probabilities
to be written to a file called “acgender.” Finally, the model specification
uses a term on the right side of the equation called “_response_.” This term
imposes the constraint of one common effect of gender across the AC
response functions. The estimation process is specified as weighted least
squares (“wls”), and a table containing the models’ predicted logits is
requested (“pred”).

The outcome of proficiency in early reading has six possible responses
(0, 1, 2, 3, 4, 5); thus, there are 6 – 1 = 5 response functions representing
the adjacent category comparisons. Figure 6.1 provides a subset of the
major results of the statistical analysis through PROC CATMOD. First, the
“Population Profiles” report the sample sizes for each unique covariate
pattern. With gender as the only explanatory variable in this model, the
sample sizes here refer to the sample size for each of the gender groups,
referred to as “samples.” As the number of explanatory variables increases,
this table can be useful in identifying sparse samples for particular covari-
ate patterns.

The “Analysis of Variance” section provides a test for the effect of gen-
der across the J – 1 = 5 AC response functions. According to this analy-
sis, the effect of gender is statistically significant, χ2

1 = 38.38, p < .0001.
The residual chi-square test indicates that the model fits, χ2

4 = 2.96, p =
.5647. This chi-square test-statistic is a goodness-of-fit test similar to the
Pearson chi-square test comparing a fitted model to a perfect or saturated
model.

The weighted least squares estimates are shown in the next section of
the printout. There are five terms that are used collectively to determine
the intercept for each of the response functions, along with one term that
represents the effect of gender across all the AC comparisons. The inter-
cept for each successive response function is found by adding the inter-
cept term to the corresponding _response_ value. Table 6.1 illustrates this
process for the intercepts of the J – 1 = 5 response functions. Based on
the results shown in Table 6.1, the five response models for this simple
analysis are

Ŷ ′(1, 0) = 1.5725 + (−.1928) × gender

Ŷ ′(2, 1) = .8688 + (−.1928) × gender

Ŷ ′(3, 2) = 1.0146 + (−.1928) × gender

Ŷ ′(4, 3) = −.8347 + (−.1928) × gender

Ŷ ′(5, 4) = −.4147 + (−.1928) × gender
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79

Population Profiles

Sample GENDER Sample Size

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

1 0 1692

2 1 1673

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

Intercept 1 176.21 <.0001

_RESPONSE_ 4 1550.56 <.0001

GENDER 1 38.38 <.0001

Residual 4 2.96 0.5647

Analysis of Weighted Least Squares Estimates

Standard Chi-

Parameter Estimate Error Square Pr > ChiSq

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

Intercept 0.4323 0.0326 176.21 <.0001

_RESPONSE_ 1 1.0952 0.1158 89.48 <.0001

2 0.4365 0.0774 31.81 <.0001

3 0.5823 0.0554 110.40 <.0001

4 -1.2670 0.0558 515.67 <.0001

GENDER -0.1928 0.0311 38.38 <.0001

Predicted Values for Response Functions

------Observed------ ------Predicted-----

Function Standard Standard

GENDER Number Function Error Function Error Residual

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

0 1 1.800493 0.247643 1.527445 0.139517 0.273048

2 0.868196 0.111109 0.868796 0.075314 -0.0006

3 1.002937 0.070628 1.014531 0.051393 -0.01159

4 -0.81395 0.066029 -0.83477 0.050661 0.020819

5 -0.47424 0.088744 -0.41475 0.068319 -0.0595

1 1 1.222549 0.16422 1.334673 0.136174 -0.11212

2 0.674571 0.096229 0.676024 0.073575 -0.00145

3 0.83155 0.066974 0.82176 0.050663 0.00979

4 -1.05469 0.072573 -1.02754 0.051874 -0.02716

5 -0.5279 0.10261 -0.60752 0.069586 0.079621

Figure 6.1 PROC CATMOD Results: Simple Gender Model
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In these expressions, the values in parentheses on the left side of the
equations indicate the two adjacent categories being compared. These mod-
els can be used to find the predicted logits depending on gender for each
response function; the predicted logits can then be transformed to estimate
the odds and probability of being in the higher category out of the two adja-
cent categories indicated. The estimated response logits are provided in the
final section of the printout, “Predicted Values for Response Functions.”
The observed logits are included in the first half of the table, so the esti-
mated values can be compared easily to the actual values. For example, to
calculate the predicted logit for males (gender = 1) in the 4th AC compari-
son (function 4 represents category 4 compared to category 3), we use the
associated response model above: Y

^′(4,3) = –.8347 + (–.1928) × gender =
–.8347 + (–.1928) = –1.0275. We can use this same process to find the
corresponding predicted logit for girls (gender = 0): Y

^′ = –.8347 + (–.1928)
× gender = –.8347. If the predicted logits are exponentiated, the result is the
odds of being in category 4 rather than category 3 for each gender. For
boys, this is exp(–1.0275) = .3579, and for girls this is exp(–.8347) = .4340.
Both boys and girls are less likely to be in category 4 rather than in cate-
gory 3, similar to the findings of the CO and CR analyses. To calculate
the odds ratio for boys to girls, we take .3579/.4340 = .8246, which is the
exponentiated value for the effect of gender in the AC models, that is,
exp(–.1928 ) = .8246. For all five AC response functions, the effect of gen-
der is held constant with a corresponding common OR of .8246. Thus,
according to the model, the odds for boys of being in the higher of two adja-
cent categories is .8246 times the odds for girls; boys are less likely to be
in the higher proficiency categories for reading.

Actual frequencies and category probabilities for the proficiency by gen-
der analysis were shown earlier in Chapter 4, Table 4.2 (first and second
rows for the male and female sections of that table). The AC model does not
predict the category probabilities; rather, the predictions obtained from the
AC logit models can be used to estimate conditional probabilities for the
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TABLE 6.1

Intercepts for the J − 1 = 5 AC Response Functions

AC Intercept Calculation Result

α1 .4323 + 1.0952 1.5275
α2 .4323 + .4365 .8688
α3 .4323 + .5823 1.0146
α4 .4323 + (–1.2670) −.8347
α5 .4323 – [1.0952 + .4365 + .5823 + (–1.2670)] −.4147
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higher response value of the two adjacent categories being compared.
However, the predicted logits can be transformed to odds, and the odds can
be transformed to predicted probabilities in the usual way: p-hat =
odds/(1 + odds).

Using the data from Table 4.2 and the results of the AC model,
observed and predicted AC probabilities were calculated and are provided
in Table 6.2. Observed and estimated ORs also are included in Table 6.2.
The probabilities are conditional on the specific adjacent categories
being compared. For example, the first entry for males, .7725, represents
the observed probability of a boy being in proficiency category 1 rather
than the (next lower) adjacent category, proficiency level 0. This value
is determined from the entries in Table 4.2 for these two adjacent cate-
gories: .7725 = 163/(48 + 163). The same value can be obtained by
using the specific category probabilities from Table 4.2: .7725 = .0974/
(.0287 + .0974).

The predicted conditional probabilities from the AC model are shown
in the bottom portion of Table 6.2. To determine the predicted probabili-
ties from the logit models, we use the familiar expression p̂ =
exp(logit)/(1 + exp(logit)). For boys in comparison (4, 3), this becomes
p̂4, males = .3579/(1 + .3579) = .2636, as shown in the fourth column,
bottom portion, of Table 6.2. Similarly, for girls we have p̂4, females = .3026.
These probabilities are conditional in the sense that they correspond only
to the probability of being in the higher category, given response in either
of two adjacent categories. Finally, it is evident from a visual comparison
of observed to estimated odds ratios that a single value for the effect of
gender across the AC categories seems to provide a parsimonious descrip-
tion of the data.

Overall, the model indicates that gender helps to explain differences
in probability across adjacent proficiency categories. The gender-only
model is an improvement over the null model, which does not fit the data:
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TABLE 6.2

Observed (π*j ) and Predicted (p̂*j ) Conditional AC Probabilities

AC Comparison (1, 0) (2, 1) (3, 2) (4, 3) (5, 4)

π*j , males .7725 .6625 .6967 .2580 .3710
π*j , females .8582 .7043 .7316 .3071 .3836
OR (observed) .5588 .8245 .8428 .7858 .9474

p̂*j , males .7916 .6629 .6946 .2636 .3526
p̂*j , females .8216 .7045 .7339 .3026 .3978
OR (estimated) .8246 .8246 .8246 .8246 .8246
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Residual chi-square for the empty model is χ2
5 = 41.33, p < .0001 (syntax D2,

output not shown). Based on the gender model, we can conclude that boys
are less likely than girls to be in the higher reading proficiency level of two
adjacent categories.

Because the probabilities estimated from the model are conditional, and
because each has a different base for comparison, there is no straightfor-
ward approach to estimating specific category probabilities for the AC
model. Measures of association such as the τp and λp require these category
probabilities for construction of the classification table. Agresti (1989) pro-
vides syntax and an example for calculating category frequencies based on
adjustments to the baseline categories (multinomial) logit model and con-
struction of a specific design matrix to constrain the slopes for an explana-
tory variable to be equal across AC response functions. This approach
becomes quite complex as the number of explanatory variables increases
and thus is not pursued here. However, there is a strong association between
the actual and predicted probabilities from the AC model, Pearson’s r =
.997. This correlation is calculated for the two profiles (gender) across the
five response models, so it is not surprising that the association is so high.
As mentioned earlier, CATMOD uses weighted least squares rather than
maximum likelihood to estimate the AC model; therefore, a likelihood ratio
R2 is not available for comparison with the previous two ordinal regression
methods.

EXAMPLE 6.2: Adjacent Categories
Model With Two Explanatory Variables

The CATMOD procedure is not designed to handle continuous explanatory
variables, and estimation becomes problematic when unique covariate
patterns have a small sample size within a data set. The full-model AC
equivalent of the CO and CR models discussed previously was not
estimable because of this limitation. The AC model can be fit through
PROC GENMOD or SPSS GENLOG with adjustments from an uncon-
strained multinomial model, but those procedures differ somewhat from the
regression approach presented in this book and thus are not considered
here. Details on analysis of multinomial outcomes can be found in Agresti
(1990, 1996), Allison (1999), Borooah (2002), Ishii-Kuntz (1994), and
Tabachnick and Fidell (2001).

To illustrate a regression approach to AC analysis for a slightly more
complex design, one of the continuous variables was selected, age at
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kindergarten entry (p1ageent), and a two-variable model (p1ageent
together with gender) was developed. Following the method used by Clogg
and Shihadeh (1994) for AC models with continuous predictors, age was
grouped into four levels (agecat) representing a range of about 6 months
each, starting at 57 months (4.75 years). Each of the explanatory variables
(gender and agecat) was treated as quantitative through the “direct” sub-
command (syntax D3).

The analysis generated eight covariate profiles, one for each of the 2 × 4
cross-classifications of the two explanatory variables. The sample sizes
within the profiles ranged from 18 to 850. The residual chi-square test indi-
cated a good fit for the model, χ2

33 = 30.49, p = .5929. The slightly larger
p value for the analysis suggests a small improvement over the gender-only
model. Both gender (χ2

1 = 42.06, p < .0001) and agecat (χ2
1 = 60.43, p <

.0001) were statistically significant in the model.
The five AC models are shown below. Intercepts for each model were

determined following the same pattern as outlined in Table 6.1. The odds
ratio for the gender effect is exp(–.2043 ) = .8152, which is very similar to
its effect in the previous gender-only analysis. Thus, controlling for age at
kindergarten entry, boys are less likely than girls to be in the higher profi-
ciency level of two adjacent proficiency categories. The odds ratio for the
effect of age on proficiency is exp(.1607) = 1.1743. Controlling for gender,
older children are more likely to be in the higher proficiency categories for
reading than younger children.

The assumption of parallelism in the effects of gender and agecat were
verified through review of the underlying AC models corresponding to
each response function (analysis not shown). For both explanatory vari-
ables, this assumption was plausible, given the logits and odds ratios
derived for each model. The association between observed and predicted
values was strong, with r = .903 for the eight profiles across the five
response functions.

Ŷ ′(1, 0) = 1.1373 + (−.2043) × gender + (.1607) × agecat

Ŷ ′(2, 1) = .5544 + (−.2043) × gender + (.1607) × agecat

Ŷ ′(3, 2) = .6871 + (−.2043) × gender + (.1607) × agecat

Ŷ ′(4, 3) = −1.1718 + (−.2043) × gender + (.1607) × agecat

Ŷ ′(5, 4) = −.767 + (−.2043) × gender + (.1607) × agecat
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(5, 4)
b (se(b))

OR

−3.71** (1.21)
−.12 (.14)

.89
−.02 (.18)

.98
.20 (.19)

1.22
−.34 (.25)

.72
.16 (.16)

1.17
.13 (.14)

1.14
.60 (.10)
1.82**

.04 (.02)
1.04*

56.58** (8)

9.40 (8)

(4, 3)
b (se(b))

OR

−2.85** (.84)
−.29 (.10)

.75**
−.26 (.12)

.77*
.00 (.12)

1.00
−.07 (.15)

.93
.17 (.11)

1.19
−.30 (.10)

.74*
.25 (.07)
1.28**

.03 (.01)
1.03**

44.27** (8)

5.40 (8)

(3, 2)
b (se(b))

OR

−1.18 (.84)
−.26 (.10)

.77**
−.09 (.11)

.91
.18 (.11)

1.20
−.14 (.13)

.87
−.41 (.11)

.67**
−.07 (.10)

.94
.40 (.08)
1.50**

.036 (.01)
1.04**

97.61** (8)

12.70 (8)

(2, 1)
b (se(b))

OR

−.34 (1.20)
−.23 (.15)

.80
−.18 (.17)

.83
−.24 (.17)

.78
−.13 (.18)

.88
−.18 (.17)

.84
.10 (.15)

1.11
.24 (.12)

1.27
.03 (.02)

1.03

20.17** (8)

7.25 (8)

(1, 0)
b (se(b))

OR

4.10 (2.15)
−.64 (.31)

.53*
.19 (.33)

1.21
.05 (.32)

1.06
−.36 (.30)

.70
.28 (.33)

1.32
−.07 (.30)

.94
.92 (.27)
2.51**

−.03 (.03)
.97

22.75** (8)

7.36 (8)

Comparison

Intercept
gender

famrisk

center

noreadbo

minority

halfdayK

wksesl

p1ageent

Model χ2(df )

H-L χ2(df )

TABLE 6.3

Adjacent Category Binary Logits for the Full Models

*p < .05; **p < .01.

EXAMPLE 6.3: Full Adjacent Categories Model Analysis

To provide a comparison with results of the previous two chapters, the cor-
responding AC binary logistic regressions were run using the full set of pre-
dictors. Results are shown in Table 6.3. The odds ratios in bold print were
found to be statistically different from 1.0. Results are fairly consistent with
the findings of the CO and CR models in terms of direction of effects. In
general, older children and children from higher SES families tend to be
in higher proficiency categories for reading. Boys, children from families
with defined risk factors (see Chapter 2), and, to some extent, children who
attended only half-day rather than full-day kindergarten tend to be in the
lower proficiency categories. Children who do not have books read to them
frequently tend to be in lower proficiency categories, and the odds ratios for
this variable are always less than 1.0, although this effect is not statistically
significant in any of the AC models.
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7. CONCLUSION

The purpose of this book is to illustrate the application of statistical
techniques for the analysis of ordinal response variables and to familiar-
ize applied researchers with methods for the analysis of ordinal data that
are faithful to the actual level of measure of the outcome. Using data
from the NCES’s Early Childhood Longitudinal Study—Kindergarten
Cohort (ECLS-K), three ordinal regression approaches were demon-
strated: proportional or cumulative odds, continuation ratio, and adjacent
categories models. In addition, variations on these models also were
presented that allow for relaxed restrictions on the proportionality or par-
allelism assumption for some of the explanatory variables. The methods
and examples illustrated here should enable researchers to apply similar
models to their research data when their outcomes are in the form of
ordinal responses.

The analysis of ordinal response variables requires a thoughtful and
sensible strategy that should be guided more by the research question than
by a desire to “fit” a particular model. There are many choices for analysis,
and the most frequently used ordinal regression methods are covered here.
The models identified above differ in terms of model predictions and inter-
pretation of the effects of explanatory variables; thus, the choice between
modeling approaches should always be guided by theory, either of how
explanatory variables might affect the ordinal outcome or of how the ordi-
nal scores were derived. Further, the choice should be guided by the
purpose of a particular study as well as by the expected meaningfulness of
results that would be obtained through application of a particular statistical
model.

Cliff (1993, 1994, 1996b; Cliff & Keats, 2003) has been a consistent and
strong proponent of the need to treat ordinal variables as ordinal, that is, to
consider analyses of ordinal data that honor and preserve the processes
through which those variables were actualized. His work has guided much
of my own critical thinking regarding the use and analysis of ordinal out-
come data. However, the goal of this work is not to advocate for a rigid
adherence to methodologies based simply on the scale of a response vari-
able. Rather, the goal is to further the understanding and use of ordinal tech-
niques when the ordinal interpretation of the scores is of primary
importance.

The analysis of ordinal mastery-type scores, such as the proficiency
scale for early literacy developed from the ECLS-K data, holds great
promise for attempts to understand why some children succeed at particu-
lar early-reading skills while others do not, and it can help researchers
identify or develop interventions that are targeted toward improving
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individual proficiency depending on where the child is along the proficiency
continuum. That is, the same intervention intended to move children from
the lowest proficiency category to any higher proficiency may not be
reasonable for children already in the two or three highest proficiency
categories. The analysis of ordinal scores is similarly useful in other
domains as well. For example, risk-reduction interventions, such as those
developed to promote the consistent use of condoms, often have differen-
tial intervention messages that are targeted to people at a particular stage
of readiness to change (Prochaska, DiClemente, et al., 1992; Stark et al.,
1998). Thus, one size does not necessarily fit all in the context of ordinal
outcome variables.

In the examples presented here, many similarities in direction of effects
were observed. For example, first-grade children who have any family risk
factors or who are not read to frequently by their parents or guardians
are less likely than their peers to be in higher proficiency levels. Older
first-grade children and those from families of higher socioeconomic sta-
tus are more likely than their peers to be in higher proficiency categories.
Reviewing the tables for the full-model CO and CR analyses, the odds
ratios for all effects are directionally similar, but the interpretation of the
odds ratio depends on the specific model constructed. Cumulative odds are
designed to represent the odds of a child being at or beyond any particular
proficiency category. Continuation ratios are designed to represent the
odds of a child advancing beyond a particular category, given that the child
has reached mastery in that category. Finally, the AC model is designed to
estimate the odds of a child being in the higher category of two adjacent
proficiency levels. An important question is “Which of these models is
‘best’?”

The answer is simple: It depends on the research question. The CO
model is useful if the focus of the study is on clarifying trends in the
outcome, either upward or downward, for different values of the explana-
tory variables (Agresti, 1996). The CR model may be most useful in
developmental-type studies, where identification of factors associated with
being farther along on the response continuum, given that a certain stage
has been reached, is of greatest interest to the researcher (O’Connell, 2000).
The AC model can clarify which explanatory variables might best predict
a response being in the next-highest response category, thus helping to
identify differences between AC pairs of responses.

However, the “best” ordinal model will also be one for which
assumptions of proportionality or parallelism are reasonable. Fitting and
reviewing the corresponding binary models for each method, as was done
here, can supplement available tests of these assumptions. Both the CO
and the CR models can be adjusted to allow for interactions between the
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underlying cutpoints or divisions between categories; these are the partial
proportional odds model and what can be called the partial proportional
hazards model. Although both of these interaction models require a
restructuring of the data set, these methods are enormously valuable in
understanding differential effects of explanatory variables along the
response continuum. For the ECLS-K study, the partial proportional haz-
ards model might best represent the process of mastery and the factors
associated with the likelihood that a child would actually attain mastery
in a higher category.

Although the objective of the analysis of ordinal proficiency scores from
the ECLS-K may support my preference in this particular case for continu-
ation ratio models, no attempt is made here to position one ordinal regres-
sion alternative as more or less appropriate than another alternative. Each
model imposes a different set of assumptions on the data and addresses a
different kind of research question. It is incumbent on the researcher to
fully understand the nature of these assumptions and how the decision to
apply one model as opposed to another may affect the usefulness of a
study’s findings.

Assuming stronger measurement properties of the data than truly exist,
such as treating ordinal outcome values as equal-interval scales, threatens
to obscure the richness of patterns in the data that can be better brought
to light through methods specifically designed for ordinal outcomes.
Chapter 4 included a comparison of results for the cumulative odds model
and the multiple linear regression model, and the results of that straight-
forward comparison should signal to researchers that a reliance on the
familiar, such as a multiple regression analysis, can mask interpretation of
important effects and lead to nonsensical predictions. On the other hand,
ignoring the ordinality of the data completely and treating the outcome
data as strictly nominal in nature hinders the ability to assess directional-
ity and progression, which would seemingly have been the point of con-
structing an ordinal response measure in the first place. My hope is that
using the work presented in this book, researchers will consider ordinal
regression techniques among their analysis options, particularly when
the research questions and the data indicate that such an approach is
warranted.

Considerations for Further Study

In many ways, use of ordinal regression models is still an evolving method-
ology. I offer the following points of interest for those who wish to take the
development and application of ordinal models further.
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• The measures of association presented here, including τp, λp, and the
likelihood ratio R2 statistics, were very weak. This may be an artifact of the
data; the distribution of proficiency was not balanced, and a large propor-
tion of children at the beginning of first grade (44%) had attained mastery
in proficiency level 3. Long (1997) points out that although summary mea-
sures of fit are desirable, “in practice they are problematic” (p. 102), as they
provide only partial information about the quality of a model. Hosmer and
Lemeshow (2000) present a compelling argument for why classification
statistics from a logistic regression model are often inappropriate; one of
these reasons is the tendency for classification to be driven strongly by the
distribution of probabilities in the sample. Although their remark is specific
to binary models, an extension to similar problems in classification for ordi-
nal models is obvious. Nonetheless, studies that investigate the behavior of
various measures of association for ordinal responses in different samples
would provide valuable information to the field.

• Graphical methods for investigating the assumptions of proportional-
ity or parallelism, as well as for residual diagnostics, are not well devel-
oped for ordinal methods. Neither SAS nor SPSS includes residual
diagnostics embedded in its programs for ordinal regression (although
both do for logistic regression). Although graphical and diagnostic tech-
niques were not reviewed here, Bender and Benner (2000) present several
diagnostic and graphical approaches for the subset of ordinal models that
they consider.

• The analyses presented here assumed independence across individu-
als, and single-level models were fit to the data. However, the ECLS-K
study is based on a multistage cluster sampling strategy, with children sam-
pled from within sampled schools. Because the purpose of this study was
to explicate the application of ordinal regression models, no adjustments
for the multilevel structure of the data were included. Multilevel models for
ordinal data are available through the major multilevel software packages,
including HLM (Raudenbush, Bryk, Cheong, & Congdon, 2000), MLwiN
(Goldstein et al., 1998), and MIXOR (Hedeker & Gibbons, 1996). HLM
has capabilities to fit proportional odds models for multilevel data. MLwiN
can fit proportional odds models and, with data restructuring, will estimate
multilevel logistic continuation ratio models and logistic partial or nonpro-
portional hazard models. MIXOR is designed specifically for multilevel
analysis of ordinal outcomes, and it has more flexibility than either HLM
or MLwiN. Link functions include logit, probit, and clog-log. Examples of
multilevel ordinal models using the early literacy proficiency data from the
ECLS-K study can be found in O’Connell, McCoach, Levitt, and Horner
(2003).
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NOTES

1. For further review of levels of measurement, refer to Cliff (1996b,
chap. 1) and Agresti and Finlay (1997).

2. Information on access to the public-use ECLS-K data is available
online at http://nces.ed.gov/ecls.

3. Revised proficiency scores were used (C1RRPRF1 to C1RRPRF5, etc.).
4. Proficiency levels in ECLS-K follow a Guttman model, such that

students passing a particular skill level are assumed to have mastered all the
lower skill levels. In the fall and spring first-grade data, only 5.5% of the
children did not follow this pattern for reading and 6.6% did not follow this
pattern for math. NCES (2002) reports that these patterns are probably
more indicative of guessing than of a different order of skill acquisition for
these students. In Grade 3 releases of the ECLS-K data, the highest profi-
ciency score for each child as determined by NCES is now included directly
on the database; earlier databases, including the one used in this book,
contained only the dichotomous proficiency variables. For the small per-
centage of children whose response patterns do not follow the Guttman
model, NCES reports their highest proficiency as “missing.” However, for
the data used here, I based the assignment of the ordinal proficiency score
on a child’s mastery (or not) of the highest skill level recorded in which
three out of four items were answered correctly.

5. As one reviewer pointed out, it may be possible to conceptualize the
ordinal scores derived through the ECLS-K as representing a count process,
that is, a count of the number of proficiency categories passed by the
student (0 to 5, for the first-grade ECLS-K data). Models for count data,
such as the Poisson or the negative binomial, may be an alternative
approach to the ordinal logistic models discussed in this book. There are,
however, some limitations to those strategies for the ECLS-K data analyzed
in this book, including the assumption of independence of events for a
Poisson process, heterogeneity in the rate of mastery across students, and
the upper limit on possible counts for the first-grade data. With the release
of the third-grade data set, which expands the number of proficiency cate-
gories to 13 (including the original 0 to 5 proficiency categories), applica-
tion of Poisson regression procedures may be an additional option toward
understanding factors that affect children’s learning. Those readers working
with ordinal data that may be conceptualized better as resulting from a dis-
tinct counting process are referred to Long (1997), Allison (1999), or Liao
(1994) for information on the development and application of Poisson
regression procedures.

89

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 89



90

6. The discussion of deviance and the saturated model is somewhat
simplified here. There are, in fact, several approaches to defining the
saturated model, resulting in different values for the deviance. Interested
readers are directed to Simonoff (1998) for details.

7. See Hosmer and Lemeshow (2000, pp. 147–156) for additional
information related to the power of the H-L test, as well as for discussions
of other tests of model fit.

8. As a measure of association, Somers’ D has both asymmetric and
symmetric forms. SAS PROC LOGISTIC computes and displays Dx.y
rather than Dy.x; that is, the predicted probabilities are treated as the depen-
dent variable in the calculation of Somers’ D. Space does not allow for
detailed review of differences across forms of this statistic. Refer to
Demaris (1992), Liebetrau (1983), Peng and Nichols (2003), and Peng and
So (1998) for details.

9. SPSS performs a full likelihood ratio test rather than a score test for the
assumption of proportional odds; the score test actually is an approximation
to the full likelihood ratio test (D. Nichols, personal communication, 2004).
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A1. SPSS LOGISTIC (for Proficiency Outcome 0, 1 Versus 5)

** (cumsp2=0 if profread=0,1; else cumsp2=1 if profread=5).
temporary.
select if (profread le 1 OR profread eq 5).
logistic regression CUMSP2

with GENDER
/print=all
/save=pred.

A2. SAS PROC LOGISTIC (Descending Option; Additional Options Shown)

**  data “go” contains only children with values of 0, 1, or 5 on
profread;
**  cumsp2 = 0 if profread=0,1 _ else cumsp2=1 if profread=5;
proc logistic data=go order=internal descending;

model cumsp2=gender /link=logit lackfit ctable pprob=.5001 
rsquare;

output out=dataprobs pred=phat;
run;

A3. SAS PROC LOGISTIC (Default Is Ascending Option; Basic Options)

**  data “go” contains only children with values of 0, 1, or 5 on
profread;
**  cumsp2 = 0 if profread=0,1 _ else cumsp2=1 if profread=5;
proc logistic data=go order=internal;  
model cumsp2=gender /link=logit rsquare;

run;

A4. SPSS PLUM

temporary.
select if (profread le 1 OR profread eq 5).
PLUM

cumsp2 BY gender 
/LINK = logit
/PRINT = FIT PARAMETER SUMMARY TPARALLEL HISTORY(1) KERNEL
/SAVE = ESTPROB PREDCAT PCPROB ACPROB.

91

APPENDIX A: CHAPTER 3

The data and syntax for all analyses are available from the author and also
can be located at the author’s Web site at http://faculty.education.uconn
.edu/epsy/aoconnell/index.htm. “Gonomiss” is the SAS data set with no
missing observations for the subsample on the explanatory variables of
interest. “ECLSFGsub” is the SPSS data set with no missing observations
for the subsample on the explanatory variables of interest.
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B1. SAS Ascending (CO Model), X1 = Gender

proc logistic data=sagebook.gonomiss;   
model profread =gender /link=logit rsquare;
output out=propodds predprobs=cumulative;
run;

B2. SAS Descending Option (CO Model), X1 = Gender

proc logistic data=gonomiss descending;   
model profread =gender /rsquare;
output out=proppred predprobs=cumulative;
run;

B3. SPSS PLUM (CO Model), X1 = Gender

filter by filt_$$. ** filters out cases with missing data **.

PLUM
profread  BY gender 
/LINK = LOGIT
/PRINT = FIT PARAMETER SUMMARY TPARALLEL HISTORY(1) KERNEL
/SAVE = ESTPROB PREDCAT PCPROB ACPROB .

B4. SAS Full-Model Cumulative Odds Model (Descending)

proc logistic data=sagebook.gonomiss descending; 
model profread =gender famrisk center noreadbo minority 
halfdayK 

wksesl p1ageent 
/link=logit rsquare;

output out=proppred predprobs=cumulative;
run;

APPENDIX B: CHAPTER 4
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B5. Partial Proportional Odds via SAS PROC GENMOD

**** CREATING RESTUCTURED DATA SET FOR THE PARTIAL PROPORTIONAL
ODDS ***;

data ppom; set gonomiss;
do; if profread=5 then beyond=1;
else beyond=0; split=5; output; end;
do; if profread ge 4 then beyond=1;
else beyond=0; split=4; output; end;
do; if profread ge 3 then beyond =1;
else beyond=0; split=3; output; end;
do; if profread ge 2 then beyond=1;
else beyond=0; split=2; output; end;
do; if profread ge 1 then beyond=1;
else beyond=0; split=1; output; end;

run;

proc freq data=ppom; 
tables split*profread*beyond;
run;

proc sort data=ppom;
by split gender famrisk center noreadbo minority halfdayK;

run;

** use INDEP structure, most similar to separate logit analyses;
** pg 541, Stokes, Davis, Koch (2000);

proc genmod descending order=data data=ppom;
class split gender famrisk center noreadbo minority 
halfdayK childid;

model beyond =gender famrisk center noreadbo minority 
halfdayK wksesl 

p1ageent split split*minority
/link=logit d=b type3;

repeated subject=childid /type=indep;
run;
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C1. SAS: Restructuring the Data Set for Modeling P(beyond)

data cr1;
set gonomiss;
if profread ge 0;  crcp=0;      ** cont ratio cutpoint **;
beyond=profread ge 1;     ** else = 0 **;
run;

data cr2;
set gonomiss;
if profread ge 1;  crcp=1;
beyond=profread ge 2;
run;

data cr3;
set gonomiss;
if profread ge 2;  crcp=2;
beyond=profread ge 3;

run;

data cr4;
set gonomiss;
if profread ge 3;  crcp=3;
beyond=profread ge 4;

data cr5;
set gonomiss;
if profread ge 4;  crcp=4;
beyond=profread ge 5;
run;

data concat;
set cr1 cr2 cr3 cr4 cr5;
if crcp=0 then dumcr0=1; else dumcr0=0;
if crcp=1 then dumcr1=1; else dumcr1=0;
if crcp=2 then dumcr2=1; else dumcr2=0;
if crcp=3 then dumcr3=1; else dumcr3=0;
run;

APPENDIX C: CHAPTER 5
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C2. SAS: Logit-Link CR Model With Descending Option

proc logistic data=concat descending;
model beyond=dumcr0 dumcr1 dumcr2 dumcr3 gender /link=logit 

rsquare;
output out=modC2 pred=phat;

run;

C3. SAS: Clog-Log Link CR Model With Ascending (Default) Option

proc logistic data=concat;
model beyond=dumcr0 dumcr1 dumcr2 dumcr3 gender /link=cloglog

rsquare;
output out=modC3 pred=phat;

run;

C4. SAS: Clog-Log Link Cumulative CR Model With Ascending (Default) Option

proc logistic data=gonomiss;
model profread=gender /link=cloglog rsquare;
output out=modC4 pred=phat;

run;

C5. SPSS: Clog-Log Link Cumulative CR Model

PLUM
profread  BY male 
/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 
MXSTEP(5)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)

/LINK = cloglog
/PRINT = FIT PARAMETER SUMMARY TPARALLEL HISTORY(1) KERNEL
/SAVE = ESTPROB PREDCAT PCPROB ACPROB .

C6. SAS: Logistic CR, Full Model

**CR1 logit link;
proc logistic data=sagebook.concat descending;

model beyond=dumcr0 dumcr1 dumcr2 dumcr3 
gender famrisk center noreadbo minority halfdayK 
wksesl p1ageent

/link=logit rsquare;
output out=modC6 pred=phat;

run;
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C7. SPSS: Cumulative CR, Full Model

PLUM
profread  BY male famrisk center noreadbo minority halfdayk
WITH
p1ageent wksesl
/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100)

MXSTEP(5)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
/LINK = cloglog
/PRINT = FIT PARAMETER SUMMARY TPARALLEL HISTORY(1) KERNEL
/SAVE = ESTPROB PREDCAT (CRpred)PCPROB ACPROB .

C8. Creating a Classification Table in SPSS for Logistic CR Analysis Based on
Model Estimates Obtained From Syntax C2 (SAS Descending)

*CR Logit Model P(Beyond=1) (Table 5.2) gender only
***********.
*Using Original Data set, n=3365 ******************.

compute int = −.3763.
compute dumcr0 = 4.4248.
compute dumcr1 = 2.9113.
compute dumcr2 = 1.9283.
compute dumcr3 = .0578.
compute slopegen = −.2865.

compute logit4 = int + slopegen*gender.
compute logit3 = int + dumcr3 + slopegen*gender.
compute logit2 = int + dumcr2 + slopegen*gender.
compute logit1 = int + dumcr1 + slopegen*gender.
compute logit0 = int + dumcr0 + slopegen*gender.

compute delta0=exp(logit0)/(1 + exp(logit0)).
compute delta1=exp(logit1)/(1 + exp(logit1)).
compute delta2=exp(logit2)/(1 + exp(logit2)).
compute delta3=exp(logit3)/(1 + exp(logit3)).
compute delta4=exp(logit4)/(1 + exp(logit4)).

*freq /var=delta0 delta1 delta2 delta3 delta4.

**  Now need complements of the deltas for the descending
logit link  ****.
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compute compd0 = 1 - delta0.
compute compd1 = 1 - delta1.
compute compd2 = 1 - delta2.
compute compd3 = 1 - delta3.
compute compd4 = 1 - delta4.
compute compd5 = 1.0.

*freq /var=compd0 to compd5.

compute p0=compd0.
compute p1=compd1*(1-p0).
compute p2=compd2*(1-p0-p1).
compute p3=compd3*(1-p0-p1-p2).
compute p4=compd4*(1-p0-p1-p2-p3).
compute p5=compd5*(1-p0-p1-p2-p3-p4).

*freq /var=p0 to p5.

*****  now, take max category prob as choice for predicted
category.

compute maxphat=max(p0,p1,p2,p3,p4,p5).

compute predcls=99.
if (maxphat = p0) predcls=0.
if (maxphat = p1) predcls=1.
if (maxphat = p2) predcls=2.
if (maxphat = p3) predcls=3.
if (maxphat = p4) predcls=4.
if (maxphat = p5) predcls=5.

freq /var=predcls.

CROSSTABS
/TABLES=profread BY predcls
/cells=count expected
/FORMAT=AVALUE TABLES.

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 97



D1. AC Models

libname sagebook “C:\My Documents\research\ordinal new\
sagebook\ordinal sas stuff";

proc freq data=sagebook.gonomiss;
tables p1ageent profread*gender;

run;

proc catmod data=sagebook.gonomiss;
direct gender;
response alogit out=acgender;
model profread=_response_ gender /wls pred;

run;

proc contents data=acgender;
run;

data go; set acgender;
odds=exp(_pred_);
predprob=odds/(1 + odds);
run;

proc freq data=go;
tables gender*_number_*predprob;
run;

D2. Null Model

proc catmod data=sagebook.gonomiss;
population gender;
response alogit out=nogender;
model profread=_response_ /wls pred;

run;
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D3. Two-Variable Model

data go2; set sagebook.gonomiss;
if p1ageent le 62 then agecat=1;
if p1ageent gt 62 AND p1ageent le 68 then agecat=2;
if p1ageent gt 68 AND p1ageent le 74 then agecat=3;
if p1ageent gt 74 then agecat=4;

run;

proc catmod data=go2;
direct gender agecat;
response alogit out=acfull;
model profread=_response_ gender agecat /wls pred;

run;

proc contents data=acfull;
run;

data go3; set acfull;
odds=exp(_pred_);
predprob=odds/(1 + odds);
obsodds=exp(_obs_);
obsprob=obsodds/(1 + obsodds); 

run;

proc corr data=go3;
var obsprob predprob;
var _obs_ _pred_;

run;

99

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 99



100

REFERENCES

AGRESTI, A. (1989). Tutorial on modeling ordered categorical response data. Psychological
Bulletin, 105(2), 290–301.

AGRESTI, A. (1990). Categorical data analysis. New York: John Wiley & Sons.
AGRESTI, A. (1996). An introduction to categorical data analysis. New York: John Wiley &

Sons.
AGRESTI, A., & FINLAY, B. (1997). Statistical methods for the social sciences (3rd ed.).

Upper Saddle River, NJ: Prentice Hall.
ALLISON, P. D. (1995). Survival analysis using SAS: A practical guide. Cary, NC: SAS Institute.
ALLISON, P. D. (1999). Logistic regression using the SAS system: Theory and application.

Cary, NC: SAS Institute.
ANANTH, C. V., & KLEINBAUM, D. G. (1997). Regression models for ordinal responses:

A review of methods and applications. International Journal of Epidemiology, 26(6),
1323–1333.

ANDERSON, J. A. (1984). Regression and ordered categorical variables [with discussion].
Journal of the Royal Statistical Society, Series B, 46, 1–40.

ARMSTRONG, B. G., & SLOAN, M. (1989). Ordinal regression models for epidemiological
data. American Journal of Epidemiology, 129(1), 191–204.

BENDER, R., & BENNER, A. (2000). Calculating ordinal regression models in SAS and
S-Plus. Biometrical Journal, 42(6), 677–699.

BENDER, R., & GROUVEN, U. (1998). Using binary logistic regression models for ordinal
data with non-proportional odds. Journal of Clinical Epidemiology, 51(10), 809–816.

BOROOAH, V. K. (2002). Logit and probit: Ordered and multinomial models. Thousand
Oaks, CA: Sage.

BRANT, R. (1990). Assessing proportionality in the proportional odds model for ordinal logis-
tic regression. Biometrics, 46, 1171–1178.

Center for the Improvement of Early Reading Achievement. (2001). Put reading first:
The research building blocks for teaching children to read, Kindergarten through grade 3.
Washington, DC: Government Printing Office.

CIZEK, G. J., & FITZGERALD, S. M. (1999). An introduction to logistic regression.
Measurement and Evaluation in Counseling and Development, 31, 223–245.

CLIFF, N. (1993). What is and isn’t measurement. In G. Keren & C. Lewis (Eds.), A hand-
book for data analysis in the social and behavioral sciences: Methodological issues
(pp. 59–93). Hillsdale, NJ: Lawrence Erlbaum Associates.

CLIFF, N. (1994). Predicting ordinal relations. British Journal of Mathematical and Statistical
Psychology, 47, 127–150.

CLIFF, N. (1996a). Answering ordinal questions with ordinal data using ordinal statistics.
Multivariate Behavioral Research, 3(3), 331–350.

CLIFF, N. (1996b). Ordinal methods for behavioral data analysis. Mahwah, NJ: Lawrence
Erlbaum Associates.

CLIFF, N., & KEATS, J. A. (2003). Ordinal measurement in the behavioral sciences.
Mahwah, NJ: Lawrence Erlbaum Associates.

CLOGG, C. C., & SHIHADEH, E. S. (1994). Statistical models for ordinal variables.
Thousand Oaks, CA: Sage.

COLE, S. R., & ANANTH, C. V. (2001). Regression models for unconstrained, partially or fully
constrained continuation odds ratios. International Journal of Epidemiology, 30, 1379–1382.

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 100



101

COX, C. (1988). Multinomial regression models based on continuation ratios. Statistics in
Medicine, 7, 435–441.

COX, D. R. (1972). Regression models and life tables [with discussion]. Journal of the Royal
Statistical Society B, 74, 187–220.

DEMARIS, A. (1992). Logit modeling (Quantitative Applications in the Social Sciences,
No. 86). Newbury Park, CA: Sage.

FOX, J. (1997). Applied regression analysis, linear models, and related methods. Thousand
Oaks, CA: Sage.

GIBBONS, J. D. (1993). Nonparametric measures of association (Quantitative Applications
in the Social Sciences, No. 91). Newbury Park, CA: Sage.

GOLDSTEIN, H., RASBASH, J., PLEWIS, I., DRAPER, D., BROWNE, W., YANG, M.,
et al. (1998). A user’s guide to MLwiN. London: Multilevel Models Project, Institute of
Education, University of London.

GOODMAN, L. A. (1979). Simple models for the analysis of association in cross-classifications
having ordered categories. Journal of the American Statistical Association, 74, 537–552.

GOODMAN, L. A. (1983). The analysis of dependence in cross-classifications having ordered
categories, using loglinear models for frequencies and log-linear models for odds. Biometrics,
39, 149–160.

GREENLAND, S. (1994). Alternative models for ordinal logistic regression. Statistics in
Medicine, 13, 1665–1677.

GRISSOM, R. J. (1994). Statistical analysis of ordinal categorical status after therapy. Journal
of Consulting and Clinical Psychology, 62(2), 281–284.

GUTTMAN, L. A. (1954). A new approach to factor analysis: The radix. In P. F. Lazarsfeld
(Ed.), Mathematical thinking in the social sciences (pp. 258–348). New York: Columbia
University Press.

HALL, G. E., & HORD, S. M. (1984). Change in schools: Facilitating the process. Albany:
State University of New York Press.

HEDEKER, D., & GIBBONS, R. D. (1996). MIXOR: A computer program for mixed-
effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49,
57–176.

HEDEKER, D., & MERMELSTEIN, R. J. (1998). A multilevel thresholds of change
model for analysis of stages of change data. Multivariate Behavioral Research, 33(4),
427–455.

HOSMER, D. W., & LEMESHOW, S. (1989). Applied logistic regression. New York: John
Wiley & Sons.

HOSMER, D. W., & LEMESHOW, S. (2000). Applied logistic regression (2nd ed.). New
York: John Wiley & Sons.

HUYNH, C. L. (2002, April). Regression models of ordinal response data: Analytic methods
and goodness-of-fit tests. Paper presented at the annual meeting of the American
Educational Research Association, New Orleans, LA.

ISHII-KUNTZ, M. (1994). Ordinal log-linear models (Quantitative Applications in the Social
Sciences, No. 97). Thousand Oaks, CA: Sage.

JENNINGS, D. E. (1986). Judging inference adequacy in logistic regression. Journal of the
American Statistical Association, 81, 471–476.

JOHNSON, R. A., & WICHERN, D. W. (1998). Applied multivariate statistical analysis
(4th ed.). Upper Saddle River, NJ: Prentice Hall.

JÖRESKOG, K. G., & SÖRBOM, D. (1996). LISREL 8 user’s reference guide. Chicago:
Scientific Software International.

KNAPP, T. R. (1999). Focus on quantitative methods: The analysis of the data for two-way
contingency tables. Research in Nursing and Health, 22, 263–268.

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 101



KOCH, G. G., AMARA, I. A., & SINGER, J. M. (1985). A two-stage procedure for the
analysis of ordinal categorical data. In P. K. Sen (Ed.), Biostatistics: Statistics in bio-
medical, public health and environmental sciences (pp. 357–387). Amsterdam: North
Holland.

KRANTZ, D. H., LUCE, R. D., SUPPES, P., & TVERSKY, A. (1971). Foundations of
measurement: Vol. I. Additive and polynomial representations. New York: Academic Press.

LÄÄRÄ, E., & MATTHEWS, J. N. S. (1985). The equivalence of two models for ordinal data.
Biometrika, 72(1), 206–207.

LIANG, K. Y., & ZEGER, S. L. (1986). Longitudinal data analysis using generalized linear
models. Biometrika, 73, 13–22.

LIAO, T. F. (1994). Interpreting probability models (Quantitative Applications in the Social
Sciences, No. 101). Thousand Oaks, CA: Sage.

LIEBETRAU, A. M. (1983). Measures of association (Quantitative Applications in the Social
Sciences, No. 32). Beverly Hills, CA: Sage.

LONG, J. S. (1997). Regression models for categorical and limited dependent variables.
Thousand Oaks, CA: Sage.

LONG, J. S., & FREESE, J. (2003). Regression models for categorical dependent variables
using STATA (rev. ed.). College Station, TX: Stata.

MCCULLAGH, P. (1980). Regression models with ordinal data [with discussion]. Journal of
the Royal Statistical Society, B, 42, 109–142.

MCCULLAGH, P., & NELDER, J. A. (1983). Generalized linear models. London: Chapman
and Hall.

MCCULLAGH, P., & NELDER, J. A. (1989). Generalized linear models (2nd ed.). London:
Chapman and Hall/CRC Press.

MCFADDEN, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka
(Ed.), Frontiers of econometrics (pp. 105–142). New York: Academic Press.

MENARD, S. (1995). Applied logistic regression analysis. Thousand Oaks, CA: Sage.
MENARD, S. (2000). Coefficients of determination for multiple logistic regression analysis.

The American Statistician, 54(1), 17–24.
National Center for Education Statistics. (2000). America’s kindergarteners. Retrieved from

www.nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2000070
National Center for Education Statistics. (2002). User’s manual for the ECLS-K first grade

public-use data files and electronic codebook. Retrieved from www.nces.ed.gov/pub-
search/pubsinfo.asp?pubid=2002135

NESS, M. E. (1995). Methods, plainly speaking: Ordinal positions and scale values of proba-
bility terms as estimated by three methods. Measurement and Evaluation in Counseling
and Development, 28, 152–161.

O’CONNELL, A. A. (2000). Methods for modeling ordinal outcome variables. Measurement
and Evaluation in Counseling and Development, 33(3), 170–193.

O’CONNELL, A. A., McCOACH, D. B., LEVITT, H., & HORNER, S. (2003, April). Modeling
longitudinal ordinal response variables for educational data. Paper presented at the 84th
annual meeting of the American Educational Research Association, Chicago, IL.

PAMPEL, F. C. (2000). Logistic regression: A primer. Thousand Oaks, CA: Sage.
PENG, C. Y .J., & NICHOLS, R. N. (2003). Using multinomial logistic models to predict ado-

lescent behavioral risk. Journal of Modern Applied Statistical Methods, 2(1), 1–13.
PENG, C. Y. J., & SO, T. S. H. (1998). If there is a will, there is a way: Getting around the defaults

of PROC LOGISTIC. In Proceedings of the MidWest SAS Users Group 1998 Conference
(pp. 243–252). Retrieved from http://php.indiana.edu/~tso/articles/mwsug98.pdf

PETERSON, B. L., & HARRELL, F. E. (1990). Partial proportional odds models for ordinal
response variables. Applied Statistics, 39(3), 205–217.

102

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 102



103

PLOTNIKOFF, R., BLANCHARD, C., HOTZ, S., & RHODES, R. (2001). Validation of the
decisional balance scales in the exercise domain from the transtheoretical model. Measurement
in Physical Education and Exercise Science, 5(4), 191–206.

PROCHASKA, J. O., & DICLEMENTE, C. C. (1983). Stages and processes of self-change
of smoking: Toward an integrative model. Journal of Consulting and Clinical Psychology,
51(3), 390–395.

PROCHASKA, J.O., & DICLEMENTE, C. C. (1986). Towards a comprehensive model of
change. In W. R. Miller & N. Heather (Eds.), Treating addictive behaviors: Processes of
change (pp. 3–27). New York: Plenum.

PROCHASKA, J. O., DICLEMENTE, C. C., & NORCROSS, J. C. (1992). In search of
how people change: Applications to addictive behavior. American Psychologist, 47(9),
1102–1114.

RAUDENBUSH, S., BRYK, A., CHEONG,Y. F., & CONGDON, R. (2000). HLM 5: Hierarchi-
cal linear and nonlinear modeling. Lincolnwood, IL: Scientific Software International.

SIMONOFF, J. S. (1998). Logistic regression, categorical predictors, and goodness of fit: It
depends on who you ask. American Statistician, 52(1), 10–14.

SINGER, J. D., & WILLETT, J. B. (2003). Applied longitudinal data analysis: Modeling
change and event occurrence. New York: Oxford University Press.

SNOW, C. E., BURNS, M. S., & GRIFFIN, P. (Eds.). (1998). Preventing reading difficulties
in young children. Washington, DC: National Academy Press.

STARK, M. J., TESSELAAR, H. M., O’CONNELL, A. A., PERSON, B., GALAVOTTI, C.,
COHEN, A., et al. (1998). Psychosocial factors associated with the stages of change for
condom use among women at risk for HIV/STDs: Implications for intervention develop-
ment. Journal of Consulting and Clinical Psychology, 66(6), 967–978.

Statistical Analysis System. (1997). SAS/STAT software: Changes and enhancements through
release 6.12. Cary, NC: Author.

Statistical Analysis System. (1999). SAS Onlinedoc Version 8. Retrieved from http://v8doc.sas
.com/sashtml/

STEVENS, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680.
STEVENS, S. S. (1951). Mathematics, measurement, and psychophysics. In S. S. Stevens

(Ed.), Handbook of experimental psychology (pp. 1–49). New York: Wiley.
STOKES, M. E., DAVIS, C. S., & KOCH, G. G. (2000). Categorical analysis using the SAS

System (2nd ed.). Cary, NC: SAS Institute.
TABACHNICK, B. G., & FIDELL, L. S. (2001). Using multivariate statistics (4th ed).

Boston: Allyn & Bacon.
VAN DEN BERG, R., SLEEGERS, P., GEIJSEL, F., & VANDENBERGHE, R. (2000).

Implementation of an innovation: Meeting the concerns of teachers. Studies in Educational
Evaluation, 26, 331–350.

WEST, J., DENTON, K., & GERMINO-HAUSKEN, E. (2000). America’s kindergarteners:
Findings from the early childhood longitudinal study, kindergarten class of 1998-99: Fall
1998 (NCES 2000-070). Washington, DC: U.S. Department of Education, National Center
for Education Statistics.

ZILL, N., & WEST, J. (2001). Entering kindergarten: A portrait of American children when
they begin school (NCES 2001-035). Washington, DC: National Center for Education
Statistics.

01-O’Connell.qxd  10/4/2005  12:28 PM  Page 103



104

INDEX

Adjacent categories (AC) model, 28–29,
86–87

analysis, full, 83, 84
conditional probability predictions

using, 80–81
data and syntax, 98–99
gender-only model, 77–82
odds ratios, 77
overview, 76–77
with two explanatory variables, 82–83

Agresti, A., 48, 55, 81–82, 82, 89n1
Allison, P. D., 82
Analysis

full adjacent categories (AC) model,
83, 84

measures of association, 17–24, 87
of ordinal data, 3–4
residual diagnostic, 87–88
of variance, 78

Armstrong, B. G., 55
Assessment, model fit, 14–15
Assumption of parallelism, 29

Bender, R., 56
Benner, A., 56
Borooah, V. K., 17, 48, 57, 82
Box-Tidwell method, 44
Brant, R., 73

CATMOD models, 76, 77–82
Chi-square statistics, 16–17, 78, 82–83
Cliff, N., 85, 89n1
Clogg, C. C., 81–82
Clog-log link function, 67–71
Conditional probabilities, 55, 67–68, 80–81
Continuation ratio (CR) model, 29, 86–87

choice of approach for, 73–74
choice of link and equivalence of two

clog-log models, 71–73
with complementary log-log link, 67–71
data and syntax, 94–97
directionality of responses and

formation of, 58–60
full-model analyses, 74–75
link functions, 57–58
logistic, 55–56

with logit link and restructuring data,
60–67

overview, 54–57
probabilities of interest, 58–59

Cox, D. R., 21, 34, 55, 73
Cox and Snell R2, 21, 34–35
Cumulative odds (CO) model, 86–87

alternatives to, 47–49
assumption of proportional odds and

linearity in logit of, 44–47
compared to logistic continuation ratio

model, 56–57
data and syntax, 92–93
full-model analysis for, 41–43
overview, 27–30
with a single explanatory variable,

30–41

Data
adjacent categories (AC), 98–99
analysis of ordinal, 3–4
conditionally independent, 56
continuation ratio (CR), 94–97
cumulative odds (CO), 92–93
interval-level, 1
logistic regression, 91
multilevel structured, 88
nominal-level, 1
ordinal, 1–3, 8–10, 85
ratio-level, 1
restructuring in continuation ratio

model, 60–67, 94–97
Davis, C. S., 48
Demaris, A., 90n8
Dependent variables (DV), 23–24
Directionality of responses and formation

of continuation ratios, 59–60

Early Childhood Longitudinal Study
adjacent categories (AC) model for,

77–83
continuation ratio (CR) model for,

60–67
cumulative odds (CO) model for, 30–41
full-model continuation ratio analyses

for, 74–75

Index-O’Connell.qxd  10/4/2005  1:11 PM  Page 104



logistic regression and, 17–27
model variables, 8–10, 86–87, 89n4,

89n5
odds-ratio (OR) and, 11–13
ordinal outcomes, 7–8
overview, 5, 6–7
partial proportional odds (PPO) method

and, 49–54
proportional odds and linearity in,

45–47
Equal slopes assumption, 71–73

Fidell, L. S., 58, 82
Finlay, B., 89n1
Fluency, vocabulary, and text

comprehension, 6
Fox, J., 55, 57
Full-model analysis for cumulative odds,

41–43
Full-model continuation ratio analyses,

74–75

Generalized estimating equations (GEE),
48–49, 49–54

GENMOD models, 48–54
Gonomiss, 91
Goodman-Kruskal D, 22–23
Goodness of fit, 14, 53–54, 62–63, 75
Graphical methods, 87–88
Greenland, S., 55
Guttman, L. A., 6, 89n4

Hazard(s)
clog-log link model, 71–72
estimation with conditional probability,

67–68
model, proportional, 56–57
probability predictions and

corresponding, 69–71
ratio, 55–56, 68

Hosmer, D. W., 23, 43, 90n7
Hosmer-Lemeshow (H-L) test,

14–15, 90n7
Huynh, C. L., 17

Illness severity categories, 1–2
Independent variables

association between outcomes
and, 16–24

assumption of proportional or parallel
odds and, 44–45

continuation ratio model and, 62–63

full-model analysis for cumulative odds,
42–44

stability of, 29–30
Interval-level data, 1
Ishii-Kuntz, M., 48, 82

Knapp, T. R., 1–2
Koch, G. G., 49

Läärä, E., 71
Lemeshow, S., 23, 43, 88, 90n7
Liebetrau, A. M., 90n8
Linearity and proportional odds, 44–47
Linear models, 10–11
Literacy proficiency, 6–7
Logistic regression

assessing model fit using, 14–15
and comparing results across statistical

programs, 25–27
considerations for further study, 87–88
data and syntax, 91
dependent variables (DV) and, 23–24
interpreting models using, 15–17
measures of association, 17–24, 88
odds-ratio (OR) and, 11–13, 16, 17–19
overview, 10–13
residual diagnostics and, 87–88

Log-likelihood (LL), 13
Long, J. S., 17, 88

Matthews, J. N. S., 71
Maximum likelihood (ML) estimates,

13, 33, 35–36
McCullagh, P., 55, 57
McFadden’s pseudo R2, 27
Measures of association, 17–24, 88
Menard, S., 17, 22, 23
Model fit statistics, 33–34
Multilevel structured data, 88
Multinomial models, 47–48, 76
Multiple regression (MR) analysis,

40–41

Nagelkerke R2, 21
Nelder, J. A., 55, 57
Nichols, R. N., 90n8
Nominal-level data, 1
Null models, 14, 19–21, 98–99

Odds
linearity and proportional, 44–47
link functions, 57–58

105

Index-O’Connell.qxd  10/4/2005  1:11 PM  Page 105



106

proportional, 30–31, 48–49
ratio (OR), 11–13, 16, 17–19, 31, 77

Ordinal data, 1–3
analysis methods, 3–4, 85
considerations for further study, 87–88
model variables and, 8–10
multilevel structured, 88
multinomial models for analysis of,

47–48
proficiency scores, 7–8, 86–87

Parallel slopes assumption, 56–57
Partial proportional odds (PPO) model,

30, 48–54
Peng, C. Y. J., 90n8
Phonemic awareness, 6
Phonics, 6
Poorness of fit, 14
Probability

adjacent categories (AC) model, 76
beyond given levels, 61–67
conditional, 55, 67–68, 80–81
of interest, 58–59
observed responses and predicted,

35–40, 67–69
predictions and corresponding hazards,

68–71
Proficiency scores, ordinal, 7–8, 17–19,

86–87, 89n4
representation of success in, 27–29

Proportional hazards model, 56–57
Proportional odds, 28–29, 90n9

and linearity in logits, 44–47
partial (PPO), 30, 48–49

Ratio-level data, 1
Residual diagnostics, 88

SAS software, 4–5, 14, 15
adjacent categories (AC) model

and, 76
CATMOD model, 76, 77–82
classification table produced by, 21
comparing results across SPSS and,

25–27
continuation ratio (CR) model and,

61–64
cumulative odds (CO) model and,

31–41
dependent variables and, 23–24

equal slopes assumption test, 71
GENMOD model, 48–54
partial proportional odds (PPO) model

and, 92–93
proportional odds assumption and,

28–29, 48
Shihadeh, E. S., 80–82
Simonoff, J. S., 90n6
Singer, J. D., 68
Sloan, M., 55
So, T. S. H., 90n8
Software and syntax, 4–5, 87–88.

See also SAS software; SPSS
software

Somers’ D, 24, 37, 41, 66, 90n8
SPSS software, 4–5, 14, 15

classification table produce by, 22
comparing results across SAS and,

25–27
cumulative odds model and, 31–41
equal slopes assumption test, 71
null model and, 19–21
proportional odds assumption and,

28–29, 90n9
Stages-of-change models, 2
Stokes, M. E., 49

Tabachnick, B. G., 58, 82
Temperature measurements, 1

Variables
adjacent categories (AC) model with

two explanatory, 82–83
associations between outcomes and

independent, 16–24
assumption of proportional or parallel

odds and independent, 44–45
continuation ratio (CR) model, 62–63
cumulative odds (CO) model with single

explanatory, 30–41
dependent (DV), 23–24
in the Early Childhood Longitudinal

Study, 8–10, 89n5
independent, 16–24, 29–30, 43–45,

62–63
odds-ratio (OR) and, 11–13

Willett, J. B., 68

Zero-points, absolute, 1

Index-O’Connell.qxd  10/4/2005  1:11 PM  Page 106



107

ABOUT THE AUTHOR

Ann A. O’Connell is Associate Professor of Educational Psychology at the
University of Connecticut, Storrs, where she is also the coordinator of the
graduate program in measurement, evaluation, and assessment. She teaches
graduate-level statistics and educational research methods including multi-
level modeling, logistic regression, sampling and survey research methods,
multivariate analysis, and introductory statistics. Her collection of pub-
lished work focuses, in general, on research applications using these and
other advanced statistical/research techniques, primarily in the areas of
HIV prevention, program evaluation, and the analysis of large-scale data-
bases such as the ECLS-K. She has also published on methods of teaching
to improve learning in applied statistics courses. Her work has appeared
in journals including Women and Health, Evaluation and the Health
Professions, Measurement and Research in Counseling and Development,
Morbidity and Mortality Weekly Report (MMWR), and Journal of
Educational Research.

Index-O’Connell.qxd  10/4/2005  1:11 PM  Page 107



Index-O’Connell.qxd  10/4/2005  1:11 PM  Page 108


	CONTENTS
	LIST OF TABLES AND FIGURES
	SERIES EDITOR’S INTRODUCTION
	ACKNOWLEDGMENTS
	1. INTRODUCTION
	2. CONTEXT: EARLY CHILDHOOD LONGITUDINAL STUDY
	3. BACKGROUND: LOGISTIC REGRESSION
	4. THE CUMULATIVE (PROPORTIONAL) ODDS MODEL FOR ORDINAL OUTCOMES
	5. THE CONTINUATION RATIO MODEL
	6. THE ADJACENT CATEGORIES MODEL
	7. CONCLUSION
	NOTES
	APPENDIX A: CHAPTER 3
	APPENDIX B: CHAPTER 4
	APPENDIX C: CHAPTER 5
	APPENDIX D: CHAPTER 6
	REFERENCES
	INDEX



