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Undergraduate textbooks in the social sciences fly high and fast over the 
fields we researchers spend our days carefully cultivating. The typical 
text emphasizes self-reports and other-reports (interviews and question-
naires), perhaps some psychophysiological measures, and case studies 
and other qualitative approaches. Systematic observational methods are 
too often mentioned only in passing. This book, which would be of value 
to serious undergraduates, graduate students, and practicing researchers 
alike—goes far to right the balance.

Observational measurement is presented as an important (and some-
times neglected) yardstick for those of us who want to study behavior in a 
quantifiable, replicable, and scientific way. This book emphasizes careful 
attention to measurement from the first chapter, which nicely locates sys-
tematic observation within its conceptual measurement domain, to the 
last, which returns to a thorough discussion of the foundational concept 
of validation. Throughout, the authors are not only concerned with the 
techniques and mechanics of observational methods. They take pains to 
explain conceptual underpinnings and to place techniques within the 
larger research enterprise.

To illustrate their points the authors use many examples from their 
own and others’ research. In most other texts, discussions of research 
methods are specialized, emphasizing either group-design or single-
 subject studies, but rarely both. Here, reflecting the authors’ long involve-
ment in research on children with disabilities, their examples come from 
both camps. All readers will find the many examples illuminating, but 
readers involved with single-subject studies will enjoy the attention given 
to designs they recognize, here firmly placed in the context of general 
measurement concerns.

In sum, this book will be useful to students and researchers at all lev-
els who want to deepen their understanding of concepts and techniques 
in the observational measurement of behavior. Researchers with diverse 
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xviii Foreword

disciplines and interests in the social sciences have used observational 
measurement—from ethologists and animal behaviorists to developmen-
tal, social, and educational psychologists. But this book may be especially 
appealing to those concerned with typical and atypical development of 
infants and children, whether their research goals are primarily theoreti-
cal or more practical and clinical.

Yoder and Symons bring decades of work to bear, and it shows. 
The topics one might expect are here: developing coding schemes and 
designing coding manuals, determining sampling methods and met-
rics for observational variables, training observers and assessing their 
agreement, and performing sequential analysis on observational data. 
Yet the whole is presented with broad scholarship and conceptual depth. 
A unique strength of this book is its attention to conceptual underpin-
ning and its strong emphasis on fundamental psychometric concerns, 
from measurement theory to validity. Yoder and Symons have explicated 
the technical issues of observational measurement well and have placed 
the whole enterprise in the context of doing science, where it certainly 
belongs. If this book has the influence it should, authors of undergradu-
ate texts will surely take notice of new activity in the field.

Roger Bakeman, PhD
Professor Emeritus

Georgia State University
Atlanta, Georgia



Researchers use many approaches to collect, summarize, and commu-
nicate their observations of behavior. We could have tried to address 
all of these at a superficial level in a moderate-sized book or we could 
have addressed all of them comprehensively in a thick, expensive book. 
Instead, we address a subset of these approaches at a comprehensive 
level to cover a set of approaches we consider important and frequently 
misused while keeping the book a reasonable length for a semester-long 
course. Open-ended approaches to observational measurement will not 
be covered in this book. They are covered well in other sources (e.g., see 
Denzin & Lincoln, 2005). Instead, we focus on a type of observational 
measurement that is particularly well suited to addressing highly speci-
fied, falsifiable research questions.

THE SCOPE OF THIS BOOK

The set of measurement principles we address are particularly well suited 
to falsifying hypotheses using a quantitative approach to the scientific 
method. Such an approach requires that we define in detail our methods 
of observing prior to beginning the study so that the results of our stud-
ies are replicable. We call this approach to observational measurement 
systematic observation (Suen & Ary, 1989). In systematic observation, 
we decide the following before observing:

(a) the key behaviors we are going to mark (i.e., a coding manual; 
see chapter 3),

(b) the context of measurement (i.e., the procedure and setting; see 
chapter 1 and chapter 2),

(c) whether the session will be observed live or from a recorded 
medium (i.e., session recording method; see chapter 4),

Preface
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xx Preface

(d) the method of sampling the behavior from the observation ses-
sion (i.e., behavior sampling; see chapter 4),

(e) the method by which the observer indicates that an instance of 
the behavior has occurred (i.e., behavior recording method; see 
chapter 4), and

(f) the metric used to represent the levels of the behavior (e.g., num-
ber vs. proportion vs. duration, etc.; see chapters 5–7).

Each of the terms and operations will be defined in detail in this book. 
Importantly, decision-making guidelines will be provided to help the 
reader select among the most common options. When possible, empirical 
evidence will be used as the basis for the guidelines. When data is not 
available, logical arguments will be given as rationale for the guidelines. 
When known, the ramifications of each decision will be provided.

A particular type of metric, indices of sequential associations between 
two behaviors observed in the same session, will be treated in greater 
detail than other metrics because of its complexity, frequent misuse, and 
potential value for many who use observational measurement. This topic 
is often referred to as the sequential analysis of behavior (Bakeman & 
Gottman, 1997). Simulation studies have provided empirical guidance 
for the many decisions the investigator must make when using indices 
of sequential association. These decision-making guidelines and their 
empirical support are presented in this book (chapters 6 and 7).

Interobserver agreement and reliability are among the most discussed 
and disagreed upon topics in the field of observational measurement of 
behavior. Chapters 8 and 9 attempt to address these complex topics in an hon-
est, straightforward manner and make sometimes bold recommendations.

Chapter 10 addresses the very important topic of validity of obser-
vational variables. This topic may appear unnecessary from one mea-
surement perspective because accuracy of observation may be all that 
perspective cares about. However, careful consideration to what we 
decide to count as an incidence of the behavior of interest is clearly neces-
sary for all measurement perspectives. Additionally, other measurement 
traditions require much attention to this topic. The primary validation 
methods are covered.

ABOUT THE WEBSITE

The website that accompanies this text (available at www.springerpub
.com/yoder/supplements) includes many experiential exercises that will 

www.springerpub.com/yoder/supplements
www.springerpub.com/yoder/supplements
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help readers understand and apply the techniques discussed in this book. 
Discussions in various chapters refer to the electronic files.

In chapter 2, in the discussion of a sample generalizability study,  ■

sample data are provided in Excel files so that readers can run the 
provided SPSS syntax and compute the g coefficient and the per-
son variance on the sample data. The g calculators make transpar-
ent how results from analyses can be used in planning the number 
of observation sessions or raters required in an observational study 
when measuring generalized characteristics.
In chapter 4, electronic files will help readers attempt to code a  ■

sample observation session. Files include a demonstration version 
of ProcoderDV, a software program that assists in coding, and a 
media file of a session to code.
In chapter 5, raw data and a statistical syntax file for a fictitious  ■

proportion simulation study are provided electronically so read-
ers can confirm the results of the simulation as presented in the 
text. An Excel file containing the arcsine transformation formula 
is also provided.
In chapter 7, the website includes a timed-event data file that will  ■

be used for time-window analysis. Additionally, a demonstration 
version of MOOSES, a software program that assists in sequential 
analysis, is provided.
In chapter 9, readers who would like to understand the relation- ■

ship between chance agreement and kappa are provided formulae 
in an Excel spreadsheet. Data are also provided for an exercise 
demonstrating the effect between-person variance has on the 
intraclass correlation coefficient.
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  1 

1 Introduction and 
Measurement Contexts

OVERVIEW

The purpose of this chapter is to review a number of underlying issues 
that, although not always explicitly articulated in a given research 
report, are critical to understanding the logic behind and the strat-
egies used in the different research approaches to quantify behav-
ior using systematic direct observation. In this chapter, we promote 
hypothesis- driven research as a general approach to improve the 
scientific rigor and the interpretability of any given study. We then 
move to a discussion on measurement issues that concern distinctions 
between behavior as context dependent and behavior as a sign of a 
generalized characteristic. This distinction is then used as the basis 
for considering foundational measurement issues related to operation-
alism and operational definitions, and ultimately, the interpretative 
framework for a given study and its findings. Wherever appropriate, 
we draw distinctions between philosophical and design traditions to 
help readers understand the different ways investigators may think 
about what they are measuring and why. Three key concepts (influen-
tial variables, “structuredness,” and ecological validity) are introduced, 
defined, and discussed in relation to direct observation research meth-
odology. Finally, two measurement decisions (whether to measure in a 



2 Observational Measurement of Behavior

structured procedure and whether to derive a variable score by aver-
aging sessions scores across many sessions) are described and a ratio-
nale is provided for each.

SYSTEMATIC OBSERVATION

The set of measurement principles we address is particularly well suited 
to falsifying hypotheses using a quantitative approach to the scientific 
method. Such an approach requires that we define in detail our methods 
of observing prior to beginning the study so that the results of our stud-
ies are replicable. We call this approach to observational measurement 
systematic observation (Suen & Ary, 1989).

Systematic observation is an alternative to self-report (i.e., ask-
ing the participants what they do) or other report (i.e., behavioral rat-
ings or reports completed by asking others who draw from cumulative 
experience with the participant’s behavior) methods of measurement. 
There are situations in which observational measurement may be more 
scientifically valid than self-report and other report. First, the obser-
vations allow detailed descriptions of behavior and its social and non-
social context. For example, we may be interested in the antecedents 
or consequences of a particular type of social behavior. Some social 
exchanges may occur without conscious knowledge by the participant 
or others who know the participant. Because the exchanges in which 
the antecedent-behavior or behavior-consequence sequences occur 
may be fast moving, asking participants and others to “note and report” 
on such exchanges may be unsuccessful in capturing the phenomenon 
of interest.

Second, observations are often more valid than self-report when the 
participant is preverbal or limited in his or her verbal or cognitive abil-
ity to be aware of or report on the phenomenon. For example, nonverbal 
participants cannot report on their interest in communicating for social 
reasons, but we can directly observe the frequency with which a partici-
pant uses communication that is presumed to have only socially reward-
ing consequences (e.g., declaratives).

Third, other reports of participant behavior (e.g., parental checklists 
for the child’s behavior) may reflect the characteristics of the reporter 
(e.g., socioeconomic status) as well as characteristics of the participant 
(Najman et al., 2000; Yoder, Warren, & Biggar, 1997). The influence 
of reporter characteristics may explain, in part, why it is commonly 
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found that different reporters on the same child often disagree in their 
responses (Smith, 2000).

COUNT CODING SYSTEMS

This book focuses on a class of systematic observational measurement 
called count coding systems. Count coding systems are designed to lead 
the observer to count the number of instances and/or duration of instances 
of the key behaviors. All variable metrics (e.g., rates, proportions, indices 
of sequential associations, latencies) are derivatives of number or dura-
tion of key behaviors or time between key behaviors. In systematic obser-
vational measurement, the primary alternatives to count coding systems 
are checklists and rating scales. The latter are covered in detail in other 
sources (Cairns, 1979; Primavera, Allison, & Alfonso, 1997). 

Rating scales involve the observer rating on a Likert-like scale, his 
or her global judgment about the quality or quantity of a particular class 
of behaviors. For example, after observing a parent and child interacting 
for 20 min, the observer might rate the parent on “parental responsiv-
ity” by indicating where, on a 5- or 7-point scale, the parent fell. The 
behavioral anchors of “almost all of the time” and “almost never” might 
be assigned to the end points of the scale for each item. In contrast, a 
checklist requires that the observer indicate the presence or absence of 
a particular behavior during the key observation period. In this example, 
the observer might indicate whether the parent displayed any instances 
of “responsivity” during the session.

Count coding systems generally provide a larger range of potential 
scores and more steps between values than do rating scales or check-
lists. Such measurement properties provide a potentially more sensi-
tive measure of the key variables than do rating scales and checklists. 
Additionally, count coding systems do not require that the observer “cal-
ibrate” his or her concept of what is meant by each of the values on the 
Likert-like scale. This is particularly useful when it is unclear what the 
optimal levels of the object of measurement look like or when observers’ 
concepts of “optimal” differ. However, it must be said that count coding 
systems tend to require more time to implement than rating scales and 
checklists. Therefore, the gain in precision comes with a cost in resources 
(e.g., personnel time, training, etc.). Putting it all together, we will refer 
to the approach covered in this book as “systematic observational count 
measurement.”
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IMPORTANCE OF FALSIFIABLE RESEARCH QUESTIONS 
OR HYPOTHESES

To implement well the type of observational measurement that we dis-
cuss, it is important that the investigator formulates, prior to collecting 
data, a very specific and falsifiable statement of the prediction. The 
syntax used, whether it is a statement or a question, is not important. 
It is important that the statement specifies (a) the dependent and inde-
pendent variables, (b) the investigator’s expectations of an association 
or a difference, and (c) the investigator’s expectations regarding direc-
tion of the association or difference (e.g., a positive association or that 
the experimental group [or phase] is  greater than the contrast).

The more specific the research question or hypothesis, the more 
guidance it will provide for designing the measurement system used to 
assess the independent and/or dependent variables. Creating such fal-
sifiable research questions is important because findings that confirm 
very specific predictions are more likely to replicate than findings that 
confirm vaguely stated predictions. This is not magic. When extant 
data and theory that support such specificity is sufficiently developed 
to generate confirmation, it suggests a field that is relatively mature. 
Falsifiable predictions are much easier to disconfirm than they are 
to confirm. This is a simplification of the positivist philosophy of sci-
ence. This book assumes that readers understand and are able to for-
mulate falsifiable predictions in the form of hypotheses or research 
questions.

BEHAVIOR AS “BEHAVIOR” VERSUS BEHAVIOR AS 
A SIGN OR INDICANT OF A CONSTRUCT

Investigators may differ either implicitly or explicitly on whether or not 
they believe what they are measuring represents a tendency to behave 
that continues to exist outside the measurement context and measure-
ment period. If the investigator is interested only in what occurs during 
the observation session, he or she is interested in the target behavior for 
its own sake. For example, a participant raising his hand before speaking 
in a class is a behavior that is important for his own sake. Therefore, it 
may not be measured as a sign of some larger concept or psychological 
characteristic (e.g., compliance, self-regulation). It is therefore clear that 
measuring behavior for its own sake can be important because it may 
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help to solve problems that may influence more enduring and general-
ized behavior change.

In contrast, other investigators are interested in measuring the num-
ber or duration of behaviors as signs of psychological characteristics 
called “constructs” (Cronbach & Meehl, 1955). Investigators taking this 
perspective readily accept the notion that the “real” object of measure-
ment is something that cannot be seen directly but must be inferred from 
observables. The general public accepts this approach in other domains. 
For example, the change in mercury level in a mercury-based thermom-
eter is not the same entity known as “temperature.” The rising or falling 
of mercury is only a sign of temperature change. Similarly, behaviors may 
be seen as a reflection of the constructs that generate them. Constructs 
have been divided into states (i.e., temporary behavior levels that are 
highly unstable over time, and context) versus skills/characteristics (i.e., 
more stable behavior levels over short periods of time and contexts that 
are designed to assess the same construct). In the past, the latter used 
to be called “traits.” However, the term “characteristic” will be used in 
this book instead of “trait” because the latter has the connotation that it 
is genetically caused and relatively immalleable. These are unnecessary 
assumptions when thinking about measuring stable characteristics. The 
distinction between “behavior as behavior” and “behavior as an indicant 
of a generalized characteristic” is, in part, related to operationalism.

Operationalism is a historical movement in psychology in which 
observable behaviors are used to define how constructs (i.e., concepts 
created to explain a phenomenon) are measured. Although the history of 
operationalism is beyond the scope of this book, it has a long history in 
the behavioral and social sciences with many different proponents and 
opponents (Rogers, 1989). In the following section, we present two inter-
pretations of operationalism (semantic vs. methodological) that are rele-
vant in our discussion concerning behavior as behavior versus behavior 
as an indicant of a construct.

TWO INTERPRETATIONS OF OPERATIONALISM

Operationalism emerged as an important idea in psychology in the 1930s. 
This approach to defining concepts attempted to reduce the subjectivism 
prevalent in the psychology of the time, and its impact continues today. 
Contemporary accounts of operationalism still value the notion of using 
observable behaviors to define how concepts will be measured. The 
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disagreements regarding operationalism are over whether one considers 
the operations by which one studies a phenomenon as synonymous with 
the concept of interest. We will present two interpretations of the opera-
tionalism movement in psychology: the semantic and the methodological 
interpretations (Feest, 2005).

The semantic interpretation asserts that the meaning of a concept 
can be exhaustively defined by stating particular observable manifesta-
tions of a concept. Viewed from a natural science perspective, psycho-
logical measurement is analogous to physical measurement, with a low 
level of inference regarding psychological characteristics that may cause 
the behaviors (Johnston & Pennypacker, 1993). The semantic interpre-
tation has received four general criticisms (Rogers, 1989). First, it may 
be used to justify an unproductive belief that it is scientifically useful 
to measure without defining the object of our measurement (e.g., intel-
ligence is what intelligence tests measure). Second, there is a need to 
make statements about people even though it is impossible to exhaus-
tively rephrase each concept in terms of observables. Critics making this 
objection claim that concepts can be, at best, confirmed by observables, 
not exhaustively defined by them. Third, the semantic interpretation of 
operationalism can result in an uncritical and uninformed introduction 
of an unnecessarily large number of new concepts, each of which is com-
pletely dependent on the context in which it is measured. Approaching 
all observations in this way would fly in the face of the widely accepted 
notion that the same concept can apply in multiple contexts. It is again 
worth noting that there are divergent views on the problems of opera-
tionalism including the position that operationalism was never meant to 
be interpreted in this manner (Feest, 2005).

In contrast, from a methodological operationalism perspective, oper-
ational definitions of concepts are partial and temporary specifications 
used to study the real concept of importance. For example, in classical 
stimulus–response learning theory, Tolman’s operationalization of “hun-
ger” was “time from last feeding.” He never thought that time from last 
feeding was synonymous with hunger. Nor did he deny the existence of 
the subjective feeling of hunger. He simply thought that the subjective 
feeling of hunger was a poor measure of the concept of “hunger” because 
it is easily confused with other needs (e.g., boredom, need to dull psy-
chological pain via food, etc.). In this sense, time from last feeding was 
a reflection of the real concept of interest: hunger. Those professionals 
who adopt this view of operationalism will be more open to the con-
cept of behavior as a reflection of a construct, but open themselves up 
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to criticism that they are not necessarily measuring what they think they 
are measuring. The latter issues will be covered throughout the book 
with a culminating summary in chapter 10.

DISTINCTION BETWEEN CONTEXT-DEPENDENT 
BEHAVIOR AND GENERALIZED TENDENCIES TO BEHAVE

Because (a) behaviors that are considered important for their own sake 
and (b) behaviors that are thought to be reflections of states are not 
expected to inform us of what occurs outside of the measurement con-
text, we lump these together in this book. We will call these context-
dependent behaviors. Context-dependent behaviors do not require the 
same degree of complex consideration as measuring behaviors that are 
considered reflections of generalized constructs.

In contrast, measured behaviors that are thought to reflect general-
ized constructs are thought to represent stable (in the group design sense 
of the word) skills or characteristics. We refer to these as generalized 
characteristics. Generalized tendencies or characteristics allow individ-
ual differences among people to exist across multiple contexts and over 
time (Cronbach & Meehl, 1955). If we are measuring a generalized char-
acteristic, people with different scores on an observational variable will 
generally hold their rankings within the study sample if measured a brief 
time later or in a different measurement context that is also designed to 
evoke the key behavior. When studied from a group design perspective, 
individual differences in level or change on the behavior are stable over 
time and context (i.e., high positive correlation among the rankings of 
the variable measured in different contexts or at different times). When 
referring to stability over contexts, we mean stable across contexts that 
realistically evoke the key behaviors, and not just any possible context. 
We would not expect stability in measures of aggression from the play-
ground to the movie theater. The movie theater probably inhibits signs 
of aggression, while the playground may elicit them. Finally, we recog-
nize that the term “stability” is used to mean something very different in 
single-subject research (i.e., a flat trend or unchanging variability). It is 
the group design meaning of the term “stability” that we intend to con-
vey here.

Measuring generalized characteristics by observing key behaviors 
requires an inference that what we are observing reflects an ability 
or skill we cannot directly observe. Therefore, measuring generalized 
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characteristics requires more attention to how we define our observa-
tional measure, select a measurement strategy, and interpret studies pur-
porting to examine these than measuring context-dependent behavior.

It is important to note that the same behavior or set of behaviors 
can be measured as (a) a context-dependent behavior in one study and 
(b) a generalized characteristic in another study. For example, “sitting” 
may be measured as a context-dependent behavior when an intervention 
study shows that prompting and reinforcing a child for staying on a pil-
low helps the child do so during times the pillow, prompts, and rewards 
are present. We conclude this is treating sitting as a context-dependent 
behavior because the pillow is never withdrawn to test for generality 
when the pillow is not present. When measuring sitting as a behavior in 
the middle of the generality continuum, the pillow is faded (i.e., system-
atically removed) and sitting is measured in the setting where the pil-
low used to be present (e.g., same classroom, same activity, same peers). 
Finally, sitting could be measured in a way that places it at the far end of 
the generality continuum by fading the pillow and by measuring sitting 
in another classroom and in another group activity.

Behavior change that is readily reversible is considered more con-
text dependent than behavior change that takes a very long time to 
decay after support conditions are no longer present. For example, if 
removing the pillow in the above example results in the child no longer 
sitting (i.e., his behavior returns to pretreatment levels of sitting), then 
such a reversal suggests that the sitting behavior was context dependent. 
On the other hand, assume you know a “good writer” who writes daily. 
If he is prevented from writing for a month, upon returning to writing, 
he will still be able to write as quickly and efficiently as if he were writ-
ing daily. However, if he is prevented from writing for decades, upon 
returning to writing, it will take him longer to write and his sentence 
structure will not be as efficient as it was when he was writing daily. 
Such a pattern describes a generalized characteristic that is not readily 
reversible.

RATIONALE FOR IDENTIFYING HOW WE ARE 
CONCEPTUALIZING OUR OBJECT OF MEASUREMENT

The distinction between context-dependent behaviors and generalized 
characteristics is not trivial or just an academic distinction. Being aware 
and consistent in how we conceptualize our object of measurement helps 
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us make measurement-related choices that are consistent with our con-
ceptualization. In this chapter, we will introduce the guideline that when 
we are intending to measure a generalized characteristic, we should 
(a) measure it in a structured procedure and/or (b) measure it in many 
sessions and average the session scores together to derive our depen-
dent-variable score at the participant level. We do so in this first chapter 
because understanding these concepts helps to understand why direct 
observational measurement is not everyone’s measurement method of 
choice. Before discussing the rationale for these two recommendations, 
we must introduce four other concepts: influential variables of a mea-
surement context, the notion of “structuredness” of a measurement con-
text, the notion of “ecological validity” of a measurement context, and 
the tension between structuredness and ecological validity.

Influential Variables of a Measurement Context

Among the many elements of a measurement context that may affect the 
occurrence of key behaviors are (a) the location or setting, (b) the activi-
ties, (c) the materials, (d) the instructions to the participants (if any), and 
(e) the people involved (e.g., administrator, peers, etc.). It is important 
for the investigator to consciously decide prior to collecting data which 
variables within the measurement context should be kept constant across 
sessions or participants and which should be left to vary across sessions. 
The variables that are likely to affect the occurrence of the key behav-
iors are called influential variables. Variables that are not likely to affect 
the occurrence of the key behaviors are called noninfluential variables. 
Only the former class of variables needs to be considered when selecting 
or designing measurement contexts.

Structuredness

The degree to which we keep influential variables constant across ses-
sions or participants is the degree of structure our measurement context 
possesses. One may wish to control influential variables in the measure-
ment context when measuring generalized characteristics. Individual 
differences or changes in scores over time within a person are assumed 
to reflect something about the participants, not the differences in influ-
ential variables in the measurement contexts.

One may also want to structure the measurement context because 
having many instances of key behaviors in at least some participants 
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across some phases of the design is generally more desirable than observ-
ing only a few instances in all participants and design phases for several 
reasons. First, variability among participants or sessions (i.e., at least 
some participants or sessions yield “high” scores) is necessary for vari-
ables to be stable over time and context. Such stability is the hallmark of 
a generalized characteristic. Second, in single-subject designs address-
ing a dependent variable that occurs in the treatment sessions, one must 
use a procedure that evokes the key behaviors to demonstrate a change 
during the treatment phase. This type of procedure often “structures” 
the session in some way. Third, in AB design variants, such as a multiple-
baseline design, the more immediate the change is after the onset of 
the treatment phase, the more confident the judges tend to be in infer-
ring a functional relation between independent and dependent variables 
(Kazdin, 1981; Lieberman, Yoder, Reichow, & Wolery, in press).

Ecological Validity

The extent to which measurement contexts resemble or take place in 
naturally occurring (unmanipulated) and frequently experienced con-
texts has been called “ecological validity” (Brooks & Baumeister, 1977). 
There is a legitimate societal need to know the extent to which partici-
pants use key behaviors in uncontrolled conditions that the participant 
frequently experiences (Brooks & Baumeister, 1977). When selecting a 
measurement context for a generalized characteristic, there is a tension 
between selecting a structured context and selecting an ecologically valid 
one. To understand this tension, it is necessary to introduce the concept 
of representativeness.

Representativeness

One definition of “representative” is “typical” (Shorter Oxford English 
Dictionary, 2002). The Oxford dictionary definition of “typical” that most 
closely matches the intended meaning for the present context is “usual” 
or “familiar through frequent or regular repetition.” Neither definition is 
scientifically useful because it is not clear how one would test the typi-
cality of a score or the familiarity of a context. A more scientifically use-
ful definition of representativeness is stability (in the group design sense 
of the word) across contexts that evoke the behaviors that are signs of the 
generalized characteristic. Research questions testing stability over con-
texts are more falsifiable than research questions testing familiarity or 
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frequency of exposure. A research question involving stability over con-
texts might be, “Do the rankings of participants’ word use in communi-
cation samples with an examiner have a high and positive (e.g., above .70) 
correlation with the participants’ word use in communication samples 
with their mothers?” It is not clear how one would phrase an analogous 
falsifiable research question that tested the “typicality” of a score, either 
in a group design or in a single-subject design.

Testing representativeness (i.e., stable across contexts) is more eas-
ily falsifiable using a group design than using a single-subject design. A 
similar question phrased in a single-subject design might be, “Are the 
number of words used with the examiner within the range of the number 
of words used with the mother?” In this single-subject design question, 
we are attempting to confirm a null hypothesis. Finding evidence that 
might support a “no difference” hypothesis through chance is easier than 
finding noteworthy differences or associations. Therefore, stability across 
context as an operational definition of representativeness is more scien-
tifically useful in a group design measurement context than in a single-
subject context.

Tension Between Structuredness and Ecological Validity

Because ecologically valid contexts are often unstructured, it is extremely 
important that investigators avoid the reasoning that naturally occurring 
measurement contexts increase the probability that the observational 
variable scores from such contexts are more typical or representative than 
the scores from structured measurement contexts (Schmuckler, 2001). It 
may not be clear why unstructured measurement contexts often produce 
less stable scores across context than do structured ones to all readers, 
but they often do. When we reasonably expect stability (in the group 
design sense of the word) over contexts, we do so because we expect the 
individual differences on the observational variable from the two con-
texts to primarily reflect individual differences on the same generalized 
characteristic. By definition, unstructured measurement contexts pro-
duce variability among sessions or participants in part because they do 
not control many of the variables that influence the scores. In contrast, 
because structured sessions do control influential variables, scores from 
these procedures are less likely to be influenced by variables other than 
what we want to measure.

Figure 1.1 illustrates the covariation between (a) demonstrations 
of generality and reversibility, structuredness of the measurement 
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context, and number of sessions across which session scores are aggre-
gated for each participant’s score and (b) the extent to which the behav-
ior is considered a context-dependent behavior versus a generalized 
characteristic.

RECOMMENDATIONS FOR MEASURING GENERALIZED 
CHARACTERISTICS FROM OBSERVATIONS

When reading published articles, one way to identify the extent to 
which an object of measurement is being studied as a generalized char-
acteristic is to note the extent to which the measurement procedure is 
structured. Unless scores are averaged or summed across several ses-
sions (a rare event), behaviors measured in unstructured procedures are 
more reasonably thought of as measures of potentially context-bound 
behaviors than measures of generalized characteristics. Similarly, if the 
investigator wishes to measure a generalized characteristic and there is 
no cultural value against measuring the behaviors reflecting the char-
acteristic in a structured context, then selecting a structured measure-
ment context for the yet-to-be-conducted study is more efficient (i.e., 
takes fewer sessions) than measuring the behavior in an unstructured 
context. However, if one uses structured procedures, one must restrict 
one’s generalization of what one is measuring to similar contexts as 
those used.

If values or the rationale for the study requires that a general-
ized characteristic be measured in the natural environment, then it is 
extremely likely that the averaging or the summing across many sessions 
will result in a more stable estimate of each participant’s score than would 

Context-dependent behaviors

Not stable over time
or relevant context

Generalized characteristic

Stable over time and
relevant context

Many sessionsOne session

Often structuredStructured or unstructured

Not easily reversedReadily reversible

Figure 1.1 Continuum of degree to which a measured entity is context and time 
 dependent.
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observing a single unstructured observation. Conceptually, this practice 
is understandable from the perspective of domain sampling. It is useful 
to conceptualize the entire set of measurement contexts that evoke the 
key behaviors as the universe, and the mean of the observational variable 
score from all of these contexts as the most representative score. Since 
we cannot exhaustively sample every evocative measurement context, we 
must sample (i.e., observe in) many of the contexts from this universe. 
The more representative this sample is of the universe, the more prob-
able that the mean sample score will approximate the mean universe 
score. The degree to which the sample and the universe mean are simi-
lar is influenced by the selection process and the number of observed 
contexts. Practically speaking, we cannot randomly select our measure-
ment contexts. Instead, investigators who need to derive a single score 
that is “representative” of all potentially valid contexts (an extremely 
demanding challenge) usually systematically sample different measure-
ment contexts in an attempt to include a variety of measurement contexts 
from the universe of evocative measurement context for our generalized 
characteristic of interest. Additionally, all things being equal, the larger 
the sample, the closer our sample mean will be to the universe mean. 
It is often more realistic to restrict the types of measurement contexts 
across which we expect our measure of generalized characteristics to be 
stable. In this context, we can average across many unstructured sessions 
all of which are a certain type (e.g., circle time in a preschool class) and 
restrict our generalizations to similar contexts.

Practically, generalized characteristics vary in the extent to which 
their scores vary among contexts. Chapter 2 will describe a method, deci-
sion studies, for empirically determining how many sessions are needed 
to derive a stable estimate of the generalized characteristics.

POTENTIAL DISADVANTAGES OF SYSTEMATIC 
OBSERVATIONAL COUNT MEASUREMENT

Now that we have covered the reason why single observations are often 
inadequate to reliably measure generalized characteristics (i.e., the 
single observation may produce a variable score that is a poor estimate 
of the universe mean score), it should be clear why other reports (e.g., 
parent reports) have legitimate appeal as alternatives to systematic 
observation. Specifically, other reports about the participant’s behav-
ioral tendencies potentially draw on a wide range of experiences with 
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the participant. If the reporter is able to synthesize across his or her 
experience with the participant while keeping his or her biases from 
influencing his or her report, then other reports have much potential 
for producing valid estimates of generalized characteristics. Because 
sampling many observational sessions and averaging scores to produce 
a single estimate is expensive, and thus rare, many investigators prefer 
other reports over systematic observation when measuring generalized 
characteristics.

On the other hand, if parents or other reporters are not able to keep 
their biases from influencing the report of the participant’s behavior, 
then using the average of many observation sessions may produce a more 
valid estimate of the generalized characteristic than other reports or 
self-reports. Additionally, systematic observation will almost always be 
a more valid way to report on context-dependent behaviors than is other 
report of the participant’s behavior. If one is not aware of the distinc-
tion between context-dependent behaviors and generalized character-
istics, one might mistakenly overgeneralize and believe that systematic 
observation is always more valid than other report. Ultimately, the rela-
tive validity of other report versus systematic observational measures 
of generalized characteristics is an empirical question. Additionally, 
these empirical comparisons of relative validity will need to occur for 
each combination of population and generalized characteristics. This is 
arguably impractical. Therefore, for the foreseeable future, investiga-
tor’s preferences will surely affect the selection of systematic observation 
versus other report when measuring generalized characteristics. Others 
have written about the advantages and disadvantages of systematic 
observation versus other report methods of measuring generalized char-
acteristics (Jacobson, 1985). One approach to this ongoing debate is to 
measure a generalized characteristic using multiple methods (e.g., both 
other report and observational measurement) and aggregate them if they 
are correlated or look for convergence of findings (Cook & Campbell, 
1979).

RECOMMENDATIONS

In this chapter, we defined what we mean by systematic direct obser-
vation and we discussed the distinction between measuring a context-
dependent behavior versus a generalized characteristic. This distinction 
is very important for proper framing and interpretation of a study and for 
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many measurement decisions. Two of these measurement decisions are 
the degree of structure and the number of the measurement contexts 
one needs to average across to derive a participant’s variable score. When 
generalized characteristics are the object of measurement, measurement 
contexts should be structured and/or scores from many observational 
sessions need to be averaged to derive the participant’s variable score.
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2
Improving Measurement of 
Generalized Characteristics 
Through Direct Observation and 
Generalizability Theory

OVERVIEW

This chapter quantitatively defines two critical measurement concepts—
true score and measurement error—through the generalizability theory 
and provides a rationale for their consideration and use in research rely-
ing on direct observation methods. We then present decision studies as a 
method to plan future studies that intend to measure generalized charac-
teristics through observation. We complete the chapter with a discussion 
about issues specific to single-subject design in relation to the study of 
individual differences and generalized characteristics. Before beginning 
our discussion on the application of the generalizability theory for direct 
observation count data, it is useful to introduce two terms (idemnotic 
and vaganotic) that identify different sets of key assumptions underlying 
two different measurement concepts and their respective approaches.

TWO CONCEPTS OF MEASUREMENT

An idemnotic concept of measurement requires that the phenomenon of 
interest is (a) measured along a continuum, (b) has an absolute and often 
preexisting possible minimum, and (c) uses units or steps that are estab-
lished independent of variability in the phenomenon being measured 
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(Johnston & Pennypacker, 1993). Most scales in the physical sciences use 
an idemnotic scale (e.g., weight). The absolute minimum weight on earth 
is zero. The steps in the scale are kilograms or pounds. Of critical impor-
tance is the point that population variability among participants is irrel-
evant to the meaning of idemnotic scales. In this sense, it is a good match 
with single-subject research design. Therefore, an idemnotic conceptu-
alization of measurement underlies the measurement of most dependent 
variables in single-subject experimental research. However, it should be 
noted that much fidelity of treatment or fidelity of procedure measure-
ment in group or single-subject research also uses an idemnotic concept 
of measurement. In the latter case, we frequently want to see nearly uni-
form (e.g., 100%) fidelity, not variability among participants or sessions.

The vaganotic concept of measurement is the dominant implicit or 
explicit concept in studies by investigators who are most interested in 
individual differences. It is the measurement approach used to concep-
tualize the assessment of the predictors and the dependent variables in 
most group designs. The meaning of high and low is relative to a group 
(Johnston & Pennypacker, 1993). The groups can either be the sample of 
participants in the study or another reference group (e.g., a standardiza-
tion sample in a norm-referenced test). However, because most observa-
tional measures are not norm-referenced tests, vaganotic observational 
measurement almost always means that an  individual’s score is inter-
preted in reference to other participants in the study sample.

Observational variables such as number or duration of behavior can 
be conceptualized using either idemnotic or vaganotic approaches. Both 
conceptualizations of observational measurement use physical aspects 
of behavior to assess their objects of measurement. However, we have 
asserted in chapter 1 that when we are measuring generalized charac-
teristics, we assume that we are measuring levels of a characteristic that 
occurs in other contexts, too. That is, we implicitly or explicitly assume 
that individual differences on our measure of a generalized characteristic 
are stable in contexts that occur outside of our measurement context (i.e., 
it is “representative”). Here, we are using “stable” in the group design 
sense of the term. From this perspective, the concept of representative-
ness is a group research design and a vaganotic measurement concept. 
With this in mind, readers are asked to take on a group design perspec-
tive when reading this chapter because the purpose of group design is 
to explain variance among participants (either individuals or aspects of 
distributions of individuals such as means). Similarly, the purpose of 
this chapter is to provide guidance on improving our ability to directly 
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measure generalized characteristics. Some of the issues relevant for sin-
gle-subject research design and generalizability theory are discussed at 
the end of this chapter.

GENERALIZABILITY THEORY AS A MEASUREMENT 
THEORY FOR VAGANOTIC MEASURES

Classical measurement theory was created to communicate systemati-
cally about a vaganotic concept of measurement (Crocker & Algina, 1986). 
This theory states that an observed score = true score + measurement 
error. Similarly, reliability = true score variance/observed score variance. 
These abstract concepts take on a concrete meaning when interpreted 
through the perspective of generalizability theory (Cronbach, 1972; 
Shavelson & Webb, 1991).

To understand generalizability theory conceptually, it helps to imag-
ine that we have observed the key behavior of interest in four differ-
ent contexts each for 10 participants. Classical measurement theory calls 
the observational variable score (e.g., count of a key behavior) from any 
one context and participant, an “observed score.” Theoretically, the “true 
score” is the mean of the observed scores from all valid measurement 
contexts for the generalized characteristic of interest. In generalizability 
theory, we estimate a participant’s true score by averaging all the avail-
able observed scores for that participant. It is assumed that the observed 
scores that are averaged all come from measurement contexts that are 
designed to elicit the key behavior of interest. To help understand how 
accurate the central tendency of a distribution of observed scores is in 
estimating the true score, it is useful to consider an old study by Galton. 
Galton asked a crowd at a county fair to estimate the weight of an ox. 
While no one guessed the correct weight (including experts), the mean of 
all guesses was within 1% of the exact weight (Galton, 1907). This study 
illustrates the principle that each observed score from a single measure-
ment context will probably be a relatively poor estimate of the true score. 
However, averaging across all observed scores serves to cancel out the 
inconsistent aspects of the measurement situation, leaving a better, more 
reliable estimate of the true score than any one observed score provides. 
A classic measurement truism is “Given enough sows’ ears, we can indeed 
make a silk purse” (Green, 1978).

In practice, our estimate of “true” between-person variance comes 
from among-person variance in a set of estimated true scores from a 
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reliability sample (Shavelson & Webb, 1991). Generalizability theory 
calls this true score variance or person variance. In the abstract, it is this 
variance that group researchers care to explain.

Conceptually, measurement error is the portion of the observed 
score variance that is not due to true score variance. At an individual 
level, measurement error within a participant is the average deviation of 
observed scores around the estimated true score for that participant. At 
the group level, measurement error is reflected in different rankings of 
the participants on the dependent variable depending on the measure-
ment context or observer that generated the observed score (Shavelson & 
Webb, 1991). Once again, it is useful to remember that the true score 
measurement of the generalized characteristic at the group level is above 
and beyond any one measurement context or observer. When a single 
number is used to quantify measurement error at the group level, we call 
this error variance.

EXAMPLE: GENERALIZABILITY (G) STUDY WITH MULTIPLE 
SESSIONS AS A SINGLE FACET

As a simple example of a study that provides estimates of participant 
variance and error variance, we provide a spreadsheet in Table 2.1. 
This spreadsheet contains 40 estimates of “number of requesting acts” 
from 10 participants whose number of requesting acts is measured in 
4 interactions (i.e., observation sessions). The data in this example are 
“fully crossed” (i.e., all participants are observed in 4 conversations). 
Generalizability (G) studies can be conducted using partially crossed 
designs, but fully crossed designs provide more information and are thus 
emphasized here (Shavelson & Webb, 1991). These data were arranged 
in repeated measures format. Because there are four sessions per partici-
pant, each participant has four rows devoted to him or her. The columns 
in the spreadsheet are labeled by the factors in the analysis of variance 
(ANOVA) design and by the dependent variable label. In G studies in 
psychology or education, participants are almost always one of the fac-
tors. The values in the participant or person column are the ID numbers. 
Factors in the design that represent “error” are called “facets.” In this 
example, we are only studying differences in the dependent variable due 
to a single source of error (i.e., using different sessions). Therefore, this 
example is a single-faceted study. The values in the session column are 
1–4, representing the four observation sessions. Finally, there is a column 
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STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES SPREADSHEET 
FOR 1-FACETED GENERALIZABILITY STUDY

PERSON SESSION
DEPENDENT 
VARIABLE PERSON SESSION

DEPENDENT 
VARIABLE

1.00 1.00 5.00 6.00 1.00 5.00

1.00 2.00 4.00 6.00 2.00 6.00

1.00 3.00 3.00 6.00 3.00 4.00

1.00 4.00 3.00 6.00 4.00 6.00

2.00 1.00 2.00 7.00 1.00 7.00

2.00 2.00 4.00 7.00 2.00 6.00

2.00 3.00 3.00 7.00 3.00 5.00

2.00 4.00 4.00 7.00 4.00 6.00

3.00 1.00 6.00 8.00 1.00 6.00

3.00 2.00 7.00 8.00 2.00 6.00

3.00 3.00 5.00 8.00 3.00 3.00

3.00 4.00 4.00 8.00 4.00 4.00

4.00 1.00 5.00 9.00 1.00 2.00

4.00 2.00 5.00 9.00 2.00 3.00

4.00 3.00 3.00 9.00 3.00 2.00

4.00 4.00 4.00 9.00 4.00 2.00

5.00 1.00 3.00 10.00 1.00 3.00

5.00 2.00 4.00 10.00 2.00 4.00

5.00 3.00 1.00 10.00 3.00 2.00

5.00 4.00 4.00 10.00 4.00 4.00

Table 2.1
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for the dependent variable scores. G studies can and often do have multi-
ple dependent variable columns. The example data are also contained in 
an Excel file named “1-faceted g study data for SPSS in Excel” that is on 
this book’s website (www.springerpub.com/yoder/supplements) so that 
readers can run the provided Statistical Package for the Social Sciences 
(SPSS)  syntax on the example data.

Table 2.2 presents the SPSS syntax and part of the output from the 
results of the ANOVA applied to the data in Table 2.1. Using a repeated 
measures data arrangement format allows us to use the default settings 
of a univariate ANOVA and to treat participant and session as fixed fac-
tors. The results provide the needed mean squares (MS) and numbers (N) 
that will be used to compute the variance estimates and reliability (i.e., 
generalizability or g) coefficient. The g coefficient is a type of intraclass 
correlation coefficient.

In Table 2.2, we have highlighted the MS and degrees of freedom 
(df) that are needed to compute the g coefficient. It is critical to note 
that only the person (i.e., ID number) and interaction term involving the 
person factor are relevant to computing these variance estimates and g 
coefficient. The reason for this is that G studies in psychology and edu-
cation are usually interested in sources of influence on the ranking of 
participants’ dependent variable scores only. A small person × session 
interaction MS relative to the variance estimate for the person factor 
means that the ranking of the participants on the dependent variable 
did not vary much among the observation sessions used to measure the 
dependent variable.

To compute the g coefficient and the person variance for this exam-
ple, we have provided an Excel file named “1-faceted g calculator” on the 
website (www.springerpub.com/yoder/supplements). Readers may wish to 
input the indicated MS and N (N for session is degrees of freedom for 
session + 1) from the SPSS output in Table 2.2 into the relevant cells in 
the Excel spreadsheet. The 1-faceted g calculator should indicate that the 
variance estimate for the person is 1.35, while the variance estimate for 
the person × session interaction term (i.e., the same as the MS for this 
term) is only .63. The formula in the Excel spreadsheet for person vari-
ance indicates that it is the average difference between person variance 
and error variance (i.e., [person variance—error variance]/number of ses-
sions). The formula in the Excel spreadsheet for the g coefficient indicates 
that g is the person variance on the dependent variable/total variance in 
the reliability sample on the dependent variable. The observed g coef-
ficient for 1 observer and 1 session is .68. Conceptually, this g coefficient 

www.springerpub.com/yoder/supplements
www.springerpub.com/yoder/supplements
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STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES SYNTAX AND OUTPUT OF 
ANALYSIS OF VARIANCE

UNIANOVA
dv BY person session
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA (.05)
/DESIGN = person session person*session

ANOVA Results

TESTS OF BETWEEN-SUBJECTS EFFECTS

SOURCE
TYPE III SUM 
OF SQUARES

DEGREES OF 
FREEDOM

MEAN 
SQUARE F SIG.

Corrected model 88.375 39 2.266 . .

Intercept 680.625 1 680.625 . .

Person 54.125 9 6.014 . .

Session 17.275 3 5.758 . .

Person * Session 16.975 27 0.629 . .

Error 0.000 0 .

Total 769.000 40

Corrected total 88.375 39

dv: dependent variable.

Table 2.2

means that 68% of the measured variance in the dependent variable 
(across all 40 cases) is due to true score variance.

CONSEQUENCES OF A LOW G COEFFICIENT

The lower the g coefficient, the more influence variables other than 
the generalized characteristic of interest have on the observed scores. 
A group correlational study that attempts to account for variance in 
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participants’ aggression during recess play provides an example of the 
issues (Stoolmiller, Eddy, & Reid, 2000). This large study found that 70% 
and 20% of the variance in aggression scores was influenced by vari-
ables that varied among observation sessions and observers, respectively. 
This means that only 10% of the variance in any one estimate of the 
aggression scores was due to factors within the students. Therefore, only 
10% of the variance in the any one set of observed aggression scores 
could be accounted for by student-level predictors such as their achieve-
ment level or their socioeconomic status (SES). Obviously, this made it 
extremely unlikely that such predictors could be identified if only one 
observer in one observation session was used to estimate aggression. In 
other words, the consequences of using a variable with a low g coeffi-
cient is an increased probability of Type II error, assuming that multiple 
significance testing is controlled for or avoided. In fact, low reliability 
usually causes an increase in Type II error. This occurs because mea-
surement error is usually randomly distributed around the true score 
(Thompson & Vacha-Haase, 2000).

One way of increasing the variability due to participants when a single 
estimate of the generalized characteristic is unreliable is to average the 
scores from many sessions and use the average score as the participants’ 
dependent variable score. Therefore, we need a way to indicate how many 
session scores need to be averaged to derive reliable estimates of the gen-
eralized characteristic. Decision (D) studies are designed to provide this 
guidance.

DECISION STUDIES

Decision studies allow us to posit different scenarios (e.g., number of 
sessions and/or number of observers) to estimate how many sessions 
and/or observers we need to achieve a criterion level of g coefficient. 
Just as many group investigators use power analyses to plan future stud-
ies, one can conduct a D study to plan future group-based observation 
studies. Benchmarks for an acceptably reliable measure vary between .6 
and .8, depending on the area of study (Bakeman, McArthur, Quera, & 
Robinson, 1997).

For this example, we selected .8 for our criterion level g coefficient. 
Using the computations provided in the 1-facet g calculator spreadsheet, 
we see that we need to average across at least two interaction sessions 
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(i.e., sessions) to derive a “reliable” (above .8) estimate of the number of 
requesting acts.

It should be noted that one can conduct a D study with only two ses-
sions. However, providing more and a wider sample of types of relevant 
sessions (all of which elicit the key behaviors) provides a more accurate 
estimate of how many sessions one needs to average across to derive reli-
able estimates of the generalized characteristic. Similarly, it is even more 
informative to conduct at least a two-faceted G and D study with ses-
sions and observations as facets than it is to conduct a planning study 
with sessions as the only facet. Next, we turn to a published example of 
such a study.

MCWILLIAM AND WARE AS AN EXAMPLE OF 
A TWO-FACETED DECISION STUDY

In this exemplary study, the investigators wanted to know how many 
observers and sessions were needed to derive reliable (above a g coeffi-
cient of .8) estimates of nine types of “engagement” (McWilliam & Ware, 
1994). In the G study part of the analysis, 47 participants were observed 
in 4 classroom sessions by 3 observers. The design was fully crossed. 
Therefore, there were 564 cases (i.e., 47 * 4 * 3). Every 10 s, observers indi-
cated whether a target child was engaged or not. If engaged, the observer 
indicated which of the three types and which of the five levels of engage-
ment characterized the observed instance. The data were summarized in 
nonmutually exclusive categories such that nine dependent variables were 
derived: three types, five levels, and one unengaged category. The met-
ric of the variable was the proportion of 10-s interval that the observer 
scored a particular type, level, or presence of engagement. Nine separate 
ANOVAs were conducted, one for each dependent variable.

The results of the D studies for a single observer (the number 
of observers most of us use to generate our primary data) indicated 
that it would take forty 15-min sessions to derive a reliable estimate 
of  engagement with materials (i.e., contextually and developmentally 
 appropriate actions on an object). In contrast, it took five 15-min ses-
sions to derive a reliable estimate of encoded engagement (i.e., rule-
governed action or interaction). This is evidence that when assessed 
from unstructured classroom settings in preschoolers with disabilities, 
engagement with materials is much more influenced by variables that 
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vary among classroom sessions than is a generalized tendency to exhibit 
encoded engagement. The general lesson here is that some variables 
are more influenced by contextual variables than  others. For our pur-
poses, G and D studies provide an empirical approach to quantifying 
this reality in relation to planning and executing studies using direct 
observation.

Another lesson from this study is that some variables cannot be 
practically measured in particular participants in unstructured envi-
ronments. For example, using 10 sessions and 6 observers as the prac-
tical limit of what most investigators could afford, their data indicate 
that differentiated engagement (i.e., nonrepetitive behavior directed 
to a person or object) cannot be practically measured to a reliable 
degree in preschoolers with disabilities when measured in unstructured 
environments.

A final lesson from this D study is that if observing more sessions 
is not possible given limited resources, we may be able to derive reli-
able estimates of the generalized characteristic by averaging estimates 
across multiple observers and fewer sessions. For example, McWilliam 
and Ware show that although one could derive a reliable estimate of 
encoded engagement with 5 sessions and 1 observer, one could also 
derive a reliable estimate of encoded engagement with only 3 sessions 
if 4 observers coded all sessions, and the investigator averaged across 
all 12 estimates to derive the estimate of the encoded engagement for a 
particular participant.

PRACTICE USING A G CALCULATOR ON DATA 
FROM A TWO-FACETED G AND D STUDY

On the website (www.springerpub.com/yoder/supplements), we provide 
a spreadsheet called “2-faceted g study data for SPSS in Excel.” These 
data can be imported by SPSS or other statistical programs. One can 
then use SPSS’s “general linear model,” “univariate,” and select “ID,” 
“session,” and “observer” as fixed factors and “DV” as the dependent 
variable. Once run, the output should provide results identical to those 
in Table 2.3. The variance estimates for the measurement error (i.e., the 
sum of the interaction terms’ variance estimates that involve person or 
ID) can be computed using the Excel spreadsheet provided on the web-
site called “2-faceted g calculator.” This calculator has been explained in 
detail in another published work (Taylor, Yoder, & McWilliam, 2006).

www.springerpub.com/yoder/supplements
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RESULTS OF PRACTICE 2-FACETED G STUDY

SPSS ANOVA output

TESTS OF BETWEEN-SUBJECTS EFFECTS

SOURCE
TYPE III SUM 
OF SQUARES

DEGREES OF 
FREEDOM MEAN SQUARE

Corrected model 88.375(a) 39 2.266

Intercept 680.625  1 680.625

Session 5.625  1 5.625

ID 54.125  9 6.014

Observer 11.025  1 11.025

Session * ID 6.125  9 .681

Session * Observer .625  1 .625

ID * Observer 6.725  9 .747

Session * ID * Observer 4.125  9 .458

Error .000  0 .

Total 769.000 40

Corrected total 88.375 39

Input into g calculator

MSID MSIDXOB MS3WAY MSIDXSESSION NSESSION NOBS NID

6.014 0.747 0.458 0.681 2 2 10

Results of g calculator: the variance estimates

VARID VARIDXOBS VARIDXSESSION VARERROR G

1.261 0.1445 0.1115 0.714 0.63848101

 (Continued)

Table 2.3
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RESULTS OF PRACTICE 2-FACETED G STUDY (Continued)
Results of g calculator: D study results

G HYPNSESSION HYPNOBS

0.63848101 1 1

0.74604348 2 1

0.79043042 3 1

0.81466527 4 1

0.75339806 1 2

0.83870968 2 2

0.87160878 3 2

0.88904556 4 2

Table 2.3

Table 2.4 provides the formula for these variance estimates. It 
should be noted that the variance estimate for the three-way interaction 
between person × observer × session is the MS for that term. Table 2.3 
provides the results of the 2-faceted g calculator when the appropriate 
MS and N values are entered from the SPSS ANOVA output.

The relative contribution of the various sources of influence can be 
illustrated in a pie chart (Figure 2.1). As is often the case in 2-faceted g 
studies, the largest source of error is the three-way interaction between 
person × observer × session. Conceptually, when the three-way interac-
tion variance estimate is large, three primary explanations exist. First, 
it may indicate that the consistency with which observers rank partici-
pants on the dependent variable varies by session. Second, it may indi-
cate that the consistency with which sessions rank participants on the 
dependent variable varies by observer. Third, it may mean that influen-
tial facets are not included in the design (Shavelson & Webb, 1991). The 
interaction between person and session quantifies the extent to which 
rankings among participants on the dependent variable vary depending 
on the session from which the observed score is derived. The interaction 
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FORMULAE FOR VARIANCE ESTIMATES FROM A FULLY CROSSED 
2-FACETED ANOVA

SOURCE OF VARIATION

EQUATION FOR CALCULATION OF VARIANCE 
COMPONENT FROM MEAN SQUARES (MS) 
AND NUMBERS (N)

Persons (p) (MSp—MSps—Mspo + MSpso)/(Nr × Ns)

Person × Observer (po) (Mspo—MSpso)/Ns

Person × Session (ps) (MSps—MSpso)/Nr

Person × Observer × Session (pso) MSpso

Source: Shavelson and Webb (1991).

Table 2.4

between person and observer quantifies the extent to which ranking 
among participants on the dependent variable vary depending on the 
observer. The total error variance (i.e., VARerror on the 2-faceted g cal-
culator) is the sum of the variance estimates for the interaction terms 
involving persons. In this example, the person variance is much larger 
than the total error variance. The formula in the 2-faceted g calculator 
makes it clear that the formula for the g coefficient is person variance/
total variance. Total variance is person variance + total error variance. 
Therefore, a g coefficient of .64 means that 64% of the variance in the 

• Largest source of 
 error is the 
   3-way interaction

• Largest source of
  variance is persons
 (this is what we want)

person
person x coder
person x session
3-way interaction

Figure 2.1 Variance estimates for the example 2-faceted g study.
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reliability sample’s dependent variable scores is due to true score var-
iance among participants even if one only uses one observer and one 
session.

In terms of the D study, if one selects .8 as the criterion g coef-
ficient, one would predict that averaging across four sessions from one 
observer would be sufficient to derive a reliable estimate of the general-
ized characteristic. If this is too expensive, then one could average across 
two sessions which are coded by two observers. Anything more than this 
could be argued to be an unnecessary expense (i.e., result in diminishing 
return). Anything less could be argued to be a waste of time (i.e., ele-
vated probability of Type II error).

ACCURACY OF D STUDY PROJECTIONS

One of the criticisms of D studies has been that we rarely meet the 
assumptions of the analysis (Kane, 2002). One assumption is that the 
sampled observers and sessions are representative of the universe of 
observers and sessions for a particular generalized characteristic. The 
representativeness of the observers and sessions sampled vis-à-vis the 
universe of possible observers and sessions is influenced by the number 
of observers and sessions we sample (i.e., sample size) and the method 
by which we sample them. Neither of these is optimal in typical D 
studies.

Despite failing to meet the above set of assumptions, it is worth 
pointing out that we routinely accept the value of power analysis when 
planning studies despite its reliance on unrealistic assumptions. Power 
analysis assumes perfect reliability of measures and known effect sizes 
(Cohen, 1988). We continue to use power analysis because they provide 
information that is better than the alternative: planning without any 
knowledge of the required sample size to detect probable effect sizes. 
Similarly, we assert here that D studies provide guidance that is better 
than the alternative: using single unstructured measurement contexts 
to measure generalized characteristics. The current practice of using 
single sessions to measure generalized characteristics can be shown to 
be a poor use of resources for many characteristics, populations, and 
measurement contexts. However, it should be noted that D studies are 
never a substitute for estimating the reliability of the data used to test a 
research question.
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IMPLICATIONS OF THE LESSONS OF G AND D STUDIES 
FOR SINGLE-SUBJECT RESEARCH

The recommendation that we need to use either structured measurement 
contexts or aggregate scores across multiple sessions to derive reliable 
estimates of generalized characteristics does not always match the logic 
or purpose of single-subject research designs. Applied to single-subject 
research, the recommendation to average across several sessions would 
take the form of averaging the scores across several (e.g., 3) sessions within 
the same design phase and graph the average as the data point for that 
temporal unit (e.g., a week). One would obviously have to observe more 
sessions in each phase to derive sufficient data points per phase. This sug-
gestion may not be feasible (or acceptable to some investigators) when 
using single-subject research designs because within participant variabil-
ity is part of the data that is used to infer a functional relation between 
the independent and dependent variables (Kennedy, 2005).

On the other hand, the recommendation that one use structured mea-
surement contexts to derive single session estimates of generalized charac-
teristics may be amenable to single-subject research designs depending on 
the purpose of the study or project. For example, it has become an indus-
try standard for the study of severe problem behavior to use structured 
sessions as analogs within multielement designs to isolate and test possible 
contingent relations between antecedents (discriminative stimuli), con-
sequences (putative reinforcers), and severe problem behavior (e.g., self-
injury). Before further discussing why structured sessions are particularly 
useful to many single-subject designs when studying generalized charac-
teristics, it is useful to discuss some background information first.

One internally valid single-subject design is the withdrawal design 
(Kennedy, 2005). A withdrawal design demonstrates that the dependent 
variable changes in the expected direction when the independent vari-
able is applied and then returns toward baseline levels when the inde-
pendent variable is withdrawn. However, many, if not most, generalized 
characteristics are not readily reversible. Therefore, withdrawal designs 
are not applicable for many generalized characteristics. In some cases, 
an adapted alternating treatments design can be used to address ques-
tions regarding a functional relation between a treatment and a general-
ized characteristic. For example, one might produce two sets of equally 
learnable vocabulary words and teach only one of these. If the taught 
words are learned and generalized faster than the untaught words, then 
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one might reasonably conclude that the participant acquired a general-
ized understanding of the taught words through the treatment.

Unfortunately, the value of this design is limited to situations in which 
the investigator can persuasively argue or show that the goal sets are 
equally learnable to the study participant(s). Because of the limitations 
of withdrawal and adapted alternating treatments designs in studying 
generalized characteristics, variants of the AB (baseline phase treat-
ment phase) design, such as multiple-baseline across participants, are 
particularly common when studying such dependent variables (Kennedy, 
2005; Lieberman, Yoder, Reichow, & Wolery, in press). Multiple-baseline 
across participants designs use stable, staggered baselines and replicated 
changes in level, trend, or variability only during the treatment phase 
to infer a functional (i.e., causal) relation between the independent and 
dependent variables (Kennedy, 2005).

Using structured measurement contexts might be particularly use-
ful for multiple-baseline across participant designs. Many measures of 
generalized characteristics, especially if measured in unstructured mea-
surement contexts such as many naturally occurring settings, are logi-
cally likely to demonstrate a gradual change that begins many sessions 
after the onset of the treatment phase. This is particularly true in popu-
lations that learn slowly (Zeaman & House, 1977). Experts (i.e., review-
ers on the editorial boards that regularly use multiple-baseline designs in 
their research and regularly review such studies) tend to agree with each 
other about whether a functional relation exists much less often when 
dependent variables change many sessions after the onset of the treat-
ment than when dependent variables change immediately after the onset 
of the treatment phase (Lieberman et al., in press). Because structured 
sessions control for sources of error variance, any influence of the inde-
pendent variable on the dependent variable is more likely to be detected 
rapidly in structured sessions than in unstructured sessions. However, 
some investigators will value generalization to naturally occurring and 
coincidentally unstructured measurement contexts more than to struc-
tured sessions.

A DILEMMA

Putting all these factors together creates a dilemma. On one hand, group 
design logic is generally better suited to testing research questions about 
treatment effects on generalized characteristics. On the other hand, 
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clinicians and teachers often care more about treatment effects on indi-
viduals than they do about treatment effects on groups. Single-subject 
design is the only way we can infer treatment effects on generalized 
characteristics at the individual level. Many applied researchers value 
measuring whether newly learned skills generalize to unstructured natu-
ral contexts more than to structured ones. Demonstrating a functional 
relation for generalized characteristics measured in unstructured natu-
ral contexts is difficult, particularly in the type of single-subject designs 
most suited to measuring effects on generalized characteristics (i.e., mul-
tiple baselines across participants). There is currently no consensus on 
how to resolve this dilemma.

RECOMMENDATIONS

We have stated that a group design approach to measurement allows us 
to think about representativeness, an attribute of generalized character-
istics, in a scientifically testable way (i.e., based on stability over contexts). 
In classical measurement theory, a measurement theory that is most eas-
ily applied to the group design concept of measurement, an observed 
score is composed of a true score plus measurement error. The greater 
the proportion of the observed score that is true score, the more stable 
across contexts the observed score will be.

Generalizability theory provides a way to quantify true score and 
measurement error using the MS and N values from ANOVA. From these 
ANOVA results, we can estimate the variance estimates that can be used 
to compute a reliability coefficient called the g coefficient. Conceptually, 
a g coefficient is the proportion of between-participant variance in 
observed scores that is true score. Decision studies, which use the results 
of generalizability studies, demonstrate that the more session scores one 
averages across, the more reliable the estimate of the generalized charac-
teristic. Decision studies also provide a way to predict how many sessions 
one needs to average scores across to derive an estimate of the general-
ized characteristic with criterion level reliability (e.g., above .8).
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3 Designing or Adapting Coding 
Manuals

OVERVIEW

In this chapter, we cover the definition of a coding manual, the 
important role of the research question for defining the scope of the 
coding manual, and the steps involved in creating a coding manual. 
The steps involved in creating a coding manual can be divided into 
(a) conceptually defining the context-dependent behavior or the gen-
eralized characteristic of interest, (b) deciding the level of detail at 
which to measure the context-dependent behavior or the generalized 
characteristic, (c) deciding whether to define the lowest level catego-
ries by physically based versus socially based definitions, (d) defin-
ing the lowest level categories, (e) defining segmenting rules, and (f) 
defining start and stop coding rules. We also indicate the potential 
value of flowcharts when the coding process is complex. After dis-
cussing how complex modern coding manuals can be, we suggest that 
the old advice, that coding manuals should be sufficiently short to be 
included in method sections, is unrealistic in many current studies. 
We close the chapter with a summary of principles for designing a 
coding manual.
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SELECTING, ADAPTING, OR CREATING A CODING MANUAL

Definition of a Coding Manual

A coding manual is a set of rules, definitions, examples, and near nonex-
amples that guide the observers in counting and/or indicating the dura-
tion of the behaviors of interest. The coding manual consists of at least 
start and stop coding rules and definitions and examples of categories. 
We suggest that including close nonexamples of categories is also very 
useful. In the case of a particular type of behavior sampling (i.e., event 
sampling), a set of rules used to define the onset and offset of events 
(i.e., segmenting rules) is usually needed. In the case of a complex cod-
ing manual, a flowchart providing an overview of the coding process as a 
series of yes/no decisions is valuable.

Relation of the Coding Manual to the Research 
Questions and Predictions

If the coding manual is not selected or created on the basis of observa-
tional variables from each falsifiable research question, there is a risk of 
creating a disconnect between what the investigator wants to know and 
how he or she is measuring the variables (Bakeman & Gottman, 1997). 
The level of distinction or detail at which the observational variables are 
stated in the research questions do not have to be as fine-grained as 
those distinguished in the coding manual. That is, the context- dependent 
behavior or generalized characteristic may be stated as the implied 
independent or dependent variable or as the predictors in the research 
questions.

However, if there are lower level categories, these should be the 
types of the context-dependent behavior or generalized characteristic 
stated in the research question or prediction. For example, one might 
pose a research question as “Does teacher praising of student proso-
cial behavior result in less frequent student antisocial behavior?” The 
question does not specify the types of antisocial behavior that will be 
addressed. The literature indicates that there are certain types of anti-
social behavior that are suppressed when prosocial behavior increases, 
but other types of antisocial behavior that are independent of prosocial 
behavior. The lower level categories should make this distinction.

Whenever an existing coding manual has been shown to be sci-
entifically useful for the purpose and in the population for which the 
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investigator intends to address the research question, it makes sense to 
use or adapt an existing coding manual (Primavera, Allison, & Alfonso, 
1997). Importantly, the research question should not be changed to 
match existing coding manuals. Often, existing coding manuals need to 
be simplified, modified, or expanded to address an investigator’s exact 
research question. To the extent that existing coding manuals need mod-
ification to meet the investigator’s needs, the process may resemble that 
used to design a coding manual. 

Recommended Steps for Modifying or 
Designing Coding Manuals 

Conceptually Defining the Context-Dependent 
Behavior or the Generalized Characteristic

This step is conducted to clarify the meaning of the generalized char-
acteristic or context-dependent behavior that theory, data, or logic sug-
gest is scientifically useful. Because these definitions necessarily vary by 
topic, only guidelines can be provided here for selecting among compet-
ing definitions.

The criteria by which an informed investigator selects conceptual 
definitions for context-dependent behaviors and generalized character-
istics are based on methods of content validation, sensitivity to change, 
or construct validation. More information on these topics will be cov-
ered in chapter 10. Brief coverage of these topics will be provided in this 
chapter.

Observational measurement for all designs needs to meet the crite-
ria for content validation as a method of conceptually defining a behav-
ior class (Haynes & O’Brien, 1999; Primavera et al., 1997). One way to 
define content validation is by majority opinion of experts; another is 
through consensus of a professional group.

Researchers concerned with treatment efficacy should select a con-
ceptual definition for their independent variables that is empirically or 
theoretically consistent with prior reports demonstrating the efficacy 
of the independent variable or theoretical considerations in which the 
independent variable is considered to be a critical treatment compo-
nent. Similarly, the way that dependent variables are conceptualized 
should have a strong empirical and/or theoretical support in relation to 
their sensitivity to change during the time frame needed by the research 
design.
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Group designs that employ measures of generalized character-
istics call for construct validation as a method of judging the rela-
tive scientific value of competing conceptual definitions for variables 
(Haynes & O’Brien, 1999). Briefly, construct validation is a cumulative 
process by which empirical studies test whether particular conceptual 
definitions yield variables that perform as expected by theory and logic. 
Conceptually related variables (e.g., aggression, anger) should be empir-
ically associated with one another whereas conceptually unrelated vari-
ables (e.g., aggression, happiness) should not. Further, our conceptual 
distinctions should discriminate groups of known characteristics in pre-
dictable ways (Cronbach & Meehl, 1955; Primavera et al., 1997).

Deciding the Level of Detail at Which the 
Behaviors Should Be Distinguished

Often, context-dependent behaviors or generalized characteristics can 
be subdivided into subordinate categories or types. The issue here is 
whether subordinate categories are needed, and if so, how many distinc-
tions are scientifically useful. Addressing the issue of category distinc-
tions will also lead to decisions about which subordinate categories are 
grouped under a single superordinate category.

There is a balance between being so specific that the category 
has little social importance or communicative efficiency versus being 
so vague that the class no longer allows falsification of the prediction, 
guides clinical practice, or allows detection of change due to treatments 
(Haynes & O’Brien, 1999). The decision to lump or divide is not one that 
can be made in the abstract in a way that holds uniformly for all inves-
tigators because each substantive area will have different theories and 
empirical literature that guide this decision. However, two principles 
can be stated that warn against making “too many” distinctions. There 
is replicated evidence that the more discriminations observers have to 
make about an event, the lower the interobserver agreement (Jones, 
Reid, & Patterson, 1975; Taplin & Reid, 1973). Additionally, the lowest 
level or most specific subordinate categories must be defined at a high-
enough level that in at least some sessions (in single-subject research) 
or some participants (in group research) there are “many instances” of 
the category. The definition of many instances depends on the size of 
the association, group difference, or single-subject effect. The general 
principle is that when the obtained range of scores is very small, it is 
very difficult to detect expected associations or effects. A guideline from 
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Yoder’s personal research is that using two to five subordinate categories 
within a single superordinate category tends to serve research purposes 
better than using more than five subordinate categories.

In general, investigators should make distinctions only when their 
research questions or predictions call for the distinction. One instance 
in which distinctions should be made is when theory or empirical data 
indicate that a subordinate category has antecedents or consequences 
that are functionally different from others (Haynes & O’Brien, 1999; 
Johnston & Pennypacker, 1993). Another way to decide whether it is 
important to distinguish potential subordinate categories is based on 
whether one subordinate category is developmentally easier, functionally 
simpler, or differentially predictive of later socially important outcomes 
than other subordinate categories in the same superordinate class.

Physically Based Definitions, Socially Based 
Definitions, or Both?

To some readers, it may seem strange to justify the use of conceptual 
definitions of the categories we wish to measure. However, in chapter 1, 
we indicated that an early interpretation of operationalism, the seman-
tic interpretation, seeks to remove subjective interpretations of what 
is observed. Definitions of behaviors that rely only on detection of the 
presence or absence of stated behaviors are called “physically based” cat-
egories (Bakeman & Gottman, 1997). These emphasize only the physical 
dimension of the behavior, not the presumed function or higher order 
inferences about what the form of behavior may reflect in terms of psy-
chological processes (e.g., attention). This type of category is very nar-
rowly defined and is often composed of an exhaustive list of the behaviors 
that the investigator considers the measurable examples of the category.

For example, an investigator wishing to measure communication may 
list three behaviors that are examples of “intentional communication” 
and consider this the complete list of behaviors he will code (e.g., point 
to object, reach to an object, and give object to person). These examples 
might be selected based on what others have coded, what was expected 
to occur in the observation sessions, and what could be easily defined on 
the basis of observable behaviors (i.e., operational definitions).

In contrast, socially based coding manuals differ from physically 
based coding manuals, in that the former tends to have categories with 
more exemplars or behavioral forms and requires observers to make a 
judgment regarding whether the behavior in question has a particular 
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function or meets a series of conceptual criteria. The conceptual defi-
nitions emphasize theoretically important distinctions and attributes of 
examples that discriminate them from near nonexamples, and examples 
given are illustrative rather than exhaustive. Nonexamples are given to 
help observers define the boundaries of the concept. The theoretical 
rationale for the inclusion of particular key phrases is given to observ-
ers to train them to make informed decisions about rare, but legitimate, 
examples of the concept. For example, the conceptual definition of non-
verbal “intentional communication” might be the label given to a class of 
interest. A conceptual definition might be “gestures, nonword vocaliza-
tions, or expressions of emotion combined with evidence of coordinated 
attention to object and person used to convey a message to another per-
son.” Many examples of intentional communication and many near non-
examples provide observers with an idea of the class of behaviors they 
are meant to code. Details about appropriate examples and nonexamples 
will be given in the next section on defining the lowest level categories.

The scientific value of a coding manual is judged by the extent it 
accomplishes the goals for which it was created. Using this criterion, 
there is no empirical evidence that physically based categories are more 
valuable than socially based categories. In fact, it can be convincingly 
argued that too much reliance on what has been already measured or 
what is definable only through a small set of observable behaviors can 
reduce the social importance or the degree to which the category repre-
sents the generalized characteristic of interest (i.e., the content validity). 
One can argue that we cannot exhaustively list all possible exemplars 
of many categories. Attempting to do so can result in an unnecessarily 
long and complicated coding manual. By teaching observers the critical 
concepts underlying the needed distinctions, we are equipping observers 
to make informed decisions regarding the potential inclusion of frequent 
and rare examples of the category. Doing so may enable us to measure 
the generalized characteristic at a level that meets the “grandma rule” 
(i.e., grandmother understands the general concepts and can immedi-
ately see the importance of the concept).

Defining the Lowest Level Categories

We recommend using elements of physically based and socially based 
coding approaches to define the lowest level categories. Observers are 
likely to benefit from both conceptual and operational definitions of 
the categories. There is professional consensus regarding the value of 
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operational definitions (Rogers, 1989). Operational definitions use only 
words with observable referents to define concepts. Conceptual defini-
tions provide the framework observers need to judge whether marginal 
examples fit the rationale for inclusion in the category.

It is recommended here that authors of coding manuals (a) define 
their categories in conceptual terms, (b) underline key ambiguous terms, 
(c) use conceptual and operational definitions to further define the under-
lined ambiguous terms, (d) provide nonexhaustive prototypical (i.e., very 
good or frequently occurring) examples of the category, and (e) provide 
near nonexamples to define the boundary of the category. For example, 
our conceptual definition of intentional communication might be as fol-
lows: “Gestures, nonword vocalizations, or expressions of emotion com-
bined with evidence of coordinated attention to object and person.”

In the coding manual, all underlined phrases would be conceptu-
ally and operationally defined. As an example, the phrase “coordinated 
attention to object and person” can be conceptually defined as any 
behavior that shows attention to the object or event about which the 
child is communicating that occurs within 3 s of behavior that shows 
attention to the person to whom the child is communicating. “Attention 
to object or event” might be operationally defined as the child looking 
at, actively touching with the hand, or talking or signing about at the 
object or event of interest. “Attention to person” might be operation-
ally defined as the child looking at the other’s face, touching any part 
of the other person with the hand, immediately imitating the other’s 
action or vocalization, or immediately and accurately responding to the 
other’s question. These are considered first-level operational definitions. 
If interobserver agreement in using the category definition is poor or 
discrepancy discussions among observers indicate that other terms are 
ambiguous, further breaking down of terms used in the operational 
definition could occur (i.e., second- and third-level operationalizations) 
until an acceptable point-by-point agreement is achieved. Alternatively, 
more examples and near nonexamples could be used to firm up the 
observers’ conceptual definitions of terms. Obviously, the deeper such 
operationalizations occur, the more difficult the coding manual will be 
to follow. Disagreements among observers can be created from having 
so much specification that the content validity of the category is lost. 
Therefore, there is a balance between operational specification and 
 content validity.

Prototypical examples of the category should be provided to help 
the observer relate the operational definitions at a level of analysis that 
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is more commonly used by educated consumers of the research. It is 
recommended that between three and five prototypical examples that 
illustrate different aspects of the conceptual definition be used. For 
example, “giving an object to a person to ask it to be opened” could be 
provided to convey that a nonverbal and nonvocal example for a request-
ing purpose is acceptable. An example like “vocalizing ‘ah’ and pointing 
to an airplane and looking at the mother” could be provided to convey 
that a non-word vocalization for a declarative purpose is acceptable. 
Finally, “smiling while holding a hammer and looking to Mom” could be 
provided to convey that a smile is one way to express emotion and that 
the child’s behavior must show attention to the adult to be coded. It is 
important to state in the manual that these examples are illustrative, not 
exhaustive.

Near nonexamples of the category are provided to help the observer 
define the boundaries of the concept. Near nonexamples are often super-
ficially similar in form or topography to true examples, but differ from 
true examples in an important way. Often the distinguishing attribute 
is pointed out for the readers. For example, a near nonexample of inten-
tional communication is as follows: “The child is looking at a hamster. 
The adult says the child’s name. The child begins to shift her gaze from 
the hamster to the adult’s face after the adult has said the child’s name.” 
This is not an example of intentional communication because the gaze 
shift from object to person was caused by the adult calling the child’s 
name, not the child’s wish to attempt to share her interest in the hamster 
with the adult.

Sources of Conceptual and Operational Definitions

There are three primary sources for conceptual and operational defini-
tions: (a) the scientific literature, (b) the existing coding manuals attained 
from the authors of past studies, and (c) our own qualitative studies of 
“expert” knowledge (i.e., pilot studies). In quantitative studies, the most 
common source is the extant empirical literature. If the subordinate 
category has been sufficiently studied, there are often conceptual and 
operational definitions available in methods section or appendices of 
extant empirical articles. If the definition given in articles is not suffi-
ciently specific for observers to attain criterion levels of interobserver 
agreement, which will be discussed more in chapters 8 and 9, then it is 
perfectly acceptable for readers to request coding manuals from authors 
via e-mail or phone.
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If the subordinate category is relatively new or understudied at the 
time the coding manual is being designed, then one may need to con-
duct his or her own qualitative study to “discover” and generate concep-
tual and operational definitions that enable criterion level interobserver 
agreement. Because a qualitative approach is relatively uncommon in 
quantitative texts, we attempt to strike a middle ground in the level of 
detail at which we describe this interesting process by providing one 
example. Eliciting knowledge from experts is considered one of the most 
challenging aspects of understanding and modeling “expert systems” (i.e., 
software that is designed to simulate the implicit knowledge of human 
experts; Hoffman, Shadbolt, Burton, & Klein, 1995). The complex pro-
cesses involved in expert systems and eliciting knowledge from experts 
is beyond the scope of this chapter but it is important to discuss briefly 
because it represents one of the more important but difficult areas for 
both novice and expert investigators in the development of direct obser-
vational measurement systems.

As an example, a fictitious doctoral student wanted to derive defi-
nitions for varying “levels of saliency” of parental behavior intended 
to direct the attention of their children with autism. The paren-
tal behaviors (i.e., cues) used to direct the children’s attention were 
gestures, words, actions, and noises of toys created when the par-
ent activated the toy. The doctoral student hypothesized that more 
salient cues would be more successful in directing children’s attention 
than would less salient cues. She could not find an operational or suf-
ficiently elaborated conceptual definition of “salience” in the extant 
literature to guide reliable judgments regarding parental attentional 
cues in a free-play session with the parents’ children. However, she 
was confident that “she knew a salient cue when she saw one” and 
that other people who were familiar with young children with autism 
would be able to identify salient cues, too. She wanted a content-valid 
definition of saliency so she thought it was important to rely on more 
than her own judgment of what saliency meant. She needed a panel of 
“experts.”

The first step was to identify the “experts.” The definition of expert 
varies depending on the content area (Hoffman et al., 1995). However, 
it is probably useful to select people with both explicit (those who teach 
others to do the skill) and implicit (those who practice the art or skill 
being studied) knowledge of the context-dependent behavior or gener-
alized characteristic of interest. The doctoral student selected faculty 
members responsible for teaching college students who were training 
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to be early childhood educators of young children with autism. These 
faculty members had also spent at least 100 hr interacting with children 
with autism. Four faculty members were selected to allow evidence of 
convergence without relying on a sole expert.

Although there are many types of materials one can select to elicit 
information, one of the most efficient ways to elicit information is to iden-
tify “test” or “tough” cases (Hoffman et al., 1995). However, such materi-
als tend to elicit an uncomfortable feeling of being evaluated (Hoffman 
et al., 1995). In contrast, “familiar” materials tend to elicit rapid expert 
judgments and do not elicit anxiety from experts (Hoffman et al., 1995). 
Therefore, it has been suggested that a combination of familiar and test 
materials may be useful in eliciting cooperation and information (Hoffman 
et al., 1995). In our example, the doctoral student edited twelve 3–10 s 
video clips of parents directing their children’s attention. The children’s 
responses to the parental behavior were carefully removed. The doctoral 
student located and edited two clear (i.e., familiar) examples, each of 
“high,” “medium,” and “low” saliency categories, based on her own intui-
tive definitions. The doctoral student selected three more “test” examples 
that she judged to be “somewhere between high and medium saliency.” 
Finally, three more test examples were selected that the doctoral student 
considered “somewhere between medium and low saliency.”

Asking experts to sort materials into categories is one informative 
method for eliciting information (Hoffman et al., 1995). In our example, 
the doctoral student independently asked each expert to sort the video 
clips into one of three categories that varied by saliency level. No time 
limit was given and experts could change their minds. This continued 
until each expert said that he or she was finished with the sorting.

The relative value of individual versus group interviews is unknown. 
However, empirical studies indicate that when experts meet as a group, 
they tend to rapidly find and argue over the small number of points on 
which they disagree (Hoffman et al., 1995). It is consensus that we seek. 
Therefore, we prefer that experts be interviewed independently.

The literature on eliciting expert knowledge indicates that struc-
tured interviews are more efficient than unstructured ones (Hoffman 
et al., 1995). In our example, the doctoral student examined the sorted 
materials (a) to identify how the test cases were sorted and (b) to identify 
any familiar cases that were classified in a category that was unexpected. 
Generic probes were asked about these items (Hoffman et al., 1995). The 
questions and answers were audio recorded for later analysis. For exam-
ple, assume clip 2 is a test case for classification to either high or medium 
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and clip 4 is a familiar case for high saliency. The doctoral student might 
ask “Why did you classify clip number 2 as highly salient?” to elicit rules 
that might define high saliency. It should be noted that both the clip and 
the category were indicated in the interviewer’s question. This aids later 
analysis.

Further imagine that clip 4 was unexpectantly classified as medium 
saliency. The doctoral student might say “I noticed you classified clip 2 
as medium and clip 4 as high” to record on the tape how the clips were 
classified. Then the doctoral student might ask the expert, “What is dif-
ferent about clip 2 (i.e., the ‘familiar’ clip that was expected to be clas-
sified as high but was classified as medium) than clip 4 (i.e., the test 
clip that was categorized as high)?” The latter is meant to elicit particu-
larly useful rules that might reveal “conditional rules” (i.e., those that are 
used under some conditions but not others). If such conditional rules are 
uncovered, then the doctoral student might test her understanding of the 
condition of the rule by asking “What if (the condition) were not present, 
would (the rule) apply?” This type of structured interviewing would be 
continued until the interviewer felt she understood the experts’ rationale 
for their sorting.

After interviewing all experts and transcribing (or marking wave files 
of statement via a computer software such as NVivo; Bazeley & Richards, 
2000), commonalities among the experts’ responses to questions are ana-
lyzed. This is sometimes called “theme analysis” or “category analysis” 
(Bazeley, 2007). In our example, the doctoral student identified (a) the 
number of sensory modalities and (b) the number of behaviors as two 
themes that at least three of the four experts used to justify her choices. 
By “behaviors,” we mean actions such as “gesture to,” “moves on,” “talks 
about,” and “operates” referent objects.

To “test” the accuracy with which the abstracted themes classified 
the 12 video clips, clips were assigned 3 through 1 to correspond with 
high through low classification, respectively. Average numerical scores 
were derived across experts to estimate “expert” classification of each 
of the 12 video clips. Using the two themes of number of actions and 
number of sensory modalities, and the average expert sorting of the 12 
video clips, the doctoral student derived the following operational defini-
tions for the three levels of saliency. These definitions classified the 12 
video clips in accordance with the average expert sorting. High saliency 
was defined as using at least three behaviors to draw the child’s attention 
to an object that appealed to at least two sensory modalities. Medium 
saliency was defined as using two behaviors to draw the child’s attention 
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to an object that appealed to two sensory modalities. Low saliency was 
defined as one behavior to draw the child’s attention to an object that 
appealed to at most two sensory modalities. This complex definition clas-
sified all 12 clips reliably by 2 observers. Ultimately, the test of such a 
process is whether a study using a systematic observational measurement 
system relying on its derived definitions results in confirming hypothe-
ses regarding saliency and the child’s correct responses to parents’ atten-
tional directives.

Defining Segmenting Rules

Once it is clear what the lowest level of distinction will be, the onset (and 
if needed the offset) of instances of categories may need to be defined. If 
the number or duration of events will be the metric of interest, then seg-
menting rules are necessary. Interval coding or time sampling behavior 
sampling does not require segmenting rules for reasons indicated in the 
next chapter. Briefly, interval coding means that one indicates whether 
at least one instance of the key behavior has occurred within a fixed 
interval of time (e.g., 10 seconds).

One can see the need for segmenting rules when events occur close 
in time. For example, assume we are measuring the number of commu-
nication acts. The child reaches for a ball and looks at an adult. Then one 
second later, the child says “ah” while looking at the ball and looks at the 
adult. Finally, another second later, the child says “ball” and looks at the 
adult. Segmenting rules are needed to determine whether this cluster 
of child behaviors is 1 versus 3 communication acts. In-seat behavior is 
an example of a behavior for which duration is important. In addition 
to precise definitions of onset, definitions of offset are necessary to dif-
ferentiate examples of in-seat behavior from near nonexamples of offset. 
For example, is the momentary lifting of both buttock cheeks from con-
tact with the chair seat sufficient to end in-seat behavior or does such 
contact need to cease for more than one second?

Segmenting rules almost always involve a certain amount of arbi-
trariness. For example, we may decide to treat the potentially three clus-
ters of behavior in our example above as one act because the onset of 
the first behavior occurred within 3 s of the onset of the last behavior. 
The use of a temporal criterion, the use of “onset” instead of “offset” 
as the boundaries for the temporal criterion, and the decision to call the 
reach and gaze, the vocalization and gaze, and word and gaze, all “parts” 
of the same act are all questionable, but defensible. Our empirical and 
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theoretical knowledge about most social phenomenon of interest is almost 
never sufficiently specific to guide this level of decision making. But, 
these decisions must be made; hence, there is some degree of arbitrari-
ness. Usually, the best we can do is to make sure that our decisions are 
defensible and consistently applied. If they are carried out consistently, 
the potential lack of content validity that may occur from their existence 
will be worth the almost certain gain in reliability due to reduced inter-
observer disagreement on segmenting.

Defining When to Start and Stop Coding

Having clearly defined the lowest level coding distinction and with guid-
ance about how to segment potential events, the next step is to decide 
when observers should begin and end their coding of an observation ses-
sion. This section will include two types of start–stop signals. First, there 
are those at the beginning and end of the observation session. Because 
of the inconsistency of behavior among many observational sessions, it is 
useful to make explicit the signal for beginning and ending coding.

One ill-advised way to do this is to ask the adult administering the 
procedure to say when to start and stop coding. Alternatively, a start sig-
nal might be when the clock of the media file turns from 0 to 1 s. This 
requires that the administrator or cameraperson be consistent in giv-
ing the verbal signal or in beginning the clock relative to the onset of 
the observation procedure. The problem with these approaches is that 
it shifts the responsibility for providing the signal consistently to the 
administrator or cameraperson. Investigators rarely check on the consis-
tency of the timing for such signals.

Instead, it is better to use a behavior that the participant does or 
one that the examiner does in the course of conducting the procedure 
to mark the beginning and ending of coding. For example, one might 
indicate that coding begins when the adult first speaks about the objects 
in the session or first speaks to the child. Similarly, stop signals might 
be when the examiner removes all toys from the table. Whatever the 
signals, they need to be included in the recording of every session and 
occur at times that do not exclude many codeable acts.

Another use of start–stop signals is to define the duration of the 
codeable sections of the observation session. When such start and stop 
coding rules are provided, they are done so as to potentially reduce the 
measurement error due to unexpected events or events that are known 
to inhibit or interfere with the occurrence of key behaviors in a way that 
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does not reflect the phenomenon of interest. For example, the partici-
pant may be off-screen if the session is being recorded for later cod-
ing. Or there may be something unexpected occurring that inhibits the 
occurrence of a codeable behavior (e.g., a fire alarm). Or the participant 
may be engaging in behavior that is incompatible with the coded behav-
ior (e.g., crying hard might be considered incompatible with intentionally 
communicating). Or the participant may not be providing an opportu-
nity for the key behavior (e.g., if the key behavior is parent talk about the 
child’s focus of attention and the child is not attending to anything).

In all cases, the total length of codeable time is measured so that the 
total codeable time might be used to “prorate” the number or duration 
of key behaviors. Prorating in this way is based on an assumption that 
more codeable time is related to more frequent or longer total duration 
of the key behaviors. This testing this assumption and its ramifications 
will be covered in chapter 5. At this point, readers are asked to note that 
if observers do not indicate stop and start coding times within the ses-
sion, then variance in the amount of codeable time among sessions or 
participants cannot be analyzed or used to prorate the number or dura-
tion by codeable session duration.

Examples of start–stop rules that are used in the middle of ses-
sions are usually different from those used at the beginnings and ends 
of sessions. For example, we may decide that the unexpected, inhibit-
ing, or interfering events must occur for a criterion length of time to 
be sufficiently problematic to end the codeable section of the session. 
Similarly, we may decide that the participant needs to return on-screen 
long enough to allow key behaviors to be coded to restart coding. Again, 
such stop and start criteria are usually best if they are participant or 
examiner/tester behaviors rather than determined by the examiner’s or 
cameraperson’s explicit signal to start or stop coding. Although many of 
these criteria may seem arbitrary, they are extremely useful for improv-
ing interobserver agreement.

THE POTENTIAL VALUE OF FLOWCHARTS

Although not necessary for simple coding manuals, a flowchart that 
illustrates a predefined sequence of yes/no decisions can increase inter-
observer agreement. A flowchart is particularly useful when the cod-
ing manual requires several decisions before marking the code for a 
behavior. Without a flowchart, one source of measurement error is the 
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observer forgetting to ask one of the essential questions before coding. 
Therefore, they are particularly useful for observers who have not yet 
learned the coding system well or for reminding experienced observers 
of the sequence and particular decisions that must be made to reliably 
code a behavior. In general, flowcharts ask a series of yes/no questions 
to help the observer decide if a codeable behavior has occurred (i.e., 
unitize), then ask another series of yes/no questions to help the observer 
classify the relevant behavior (i.e., classifying), and so on. An example of 
a flowchart is provided in Figure 3.1. In this example, the underlined 
terms would be conceptually and operationally defined in the coding 
manual. Appropriate examples and near nonexamples would be given 
for underlined phrases when necessary to achieve criterion level interob-
server agreement.

DO CODING MANUALS NEED TO BE SUFFICIENTLY SHORT 
TO BE INCLUDED IN METHODS SECTIONS?

It is reasonable to question whether coding manuals produced with the 
above considerations in mind can really fit into the page limits of many 
journals. The answer is “no.” Additionally, we should not write our meth-
ods sections as if a simplification of our coding manual is what was used 
to generate the data reported in articles. Instead, it is important to rec-
ognize that current observational research can be sufficiently complex to 
require complex coding manuals. Such manuals are simply too long to be 
included in the methods section. Some journal editors will not allow long 
manuals to be put into appendices. However, we can, and should, pro-
vide conceptual definitions and, when necessary, first-level operational 
definitions in the methods section with a notation that the complete cod-
ing manual is available from the author. Such public examination of the 
real coding manual is a necessary part of accountability to professional 
peers and a part of testing whether our coding manual is sufficiently 
complete to allow replication of research findings.

RECOMMENDATIONS

In this chapter, we recommend that investigators find, adapt, or develop 
a coding manual to measure the observational variables stated or 
implied in their research questions. If the investigator needs to develop 
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1.  Is there a nonword vocalization, gesture, or smile present? 

NO YES 

Proceed in tape 
(no code) 

Go to step 2 

2.  Which of 2 classes of act does the act fit? 

Go to step 3 Go to step 4 

3.  Is there coordinated attention to object and person? 
NO YES 

Proceed in tape 
(no code) 

Go to step 4 

4.  Segment the cluster of behaviors into appropriate number of nonverbal 
  intentional communication acts. Regardless of number to go step 5 

5. Does the act request action or object, or to continue halted routine turn? 
NO YES 

Go to step 6 Code request and 
proceed in tape 

6. Does the act convey positive affect or about an object or event?
NO YES 

Go to step 7 Code comment and 
proceed in tape 

7. Does the act direct adult attention or request a label? 

NO YES 

Code other and 
proceed in tape 

Code comment and 
proceed in tape 

Additional evidence of attention 
to adult not needed 
Give
Show
Extend upturned palm to adult 
Move adult hand to object 
Picture exchange communication event 

Additional evidence of attention 
to adult needed 
Nonword vocalization 
Reach
Clap
Smile
Contact point 
Conventional gesture 

Figure 3.1 Illustration of a flowchart for a coding manual on intentional nonverbal 
communication.
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or adapt a coding manual, we recommend that a clear definition of the 
 context-dependent behavior or generalized characteristic be developed. 
Often there is need to distinguish among different types of context-de-
pendent behavior or generalized characteristics. We recommend that the 
phenomenon of interest be subdivided only to the extent that past data or 
theory justifies it. Once the lowest level categories have been selected, we 
recommend using both conceptual definitions, which require social judg-
ments, and operational definitions, which require physical detection, to 
define the lowest level categories. When event sampling is used to derive 
number, duration, or a proportion is needed, developing a set of rules to 
define the onset and offset of the behavior is important. Indicating the 
rules for starting and stopping coding at the margins of the session as well 
as during the session are also frequently useful. Finally, complex coding is 
aided by use of a flowchart that sequences and specifies decisions in the 
form of yes/no questions. A coding manual is only a part of the overall mea-
surement system. It influences and is influenced by behavior sampling and 
session and behavior recording methods: the topics of the next chapter.

REFERENCES

Bakeman, R., & Gottman, J. (1997). Observing interaction: An introduction to sequen-
tial analysis (2nd ed.). New York: Cambridge University Press.

Bazeley, P. (2007). Qualitative data analysis with NVivo. London: Sage.
Bazeley, P., & Richards, L. (2000). The NVivo qualitative project book. London: Sage.
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. 

Psychological Bulletin, 52, 281–302.
Haynes, S. N., & O’Brien, W. H. (1999). Principles and practice of behavioral assess-

ment. New York: Kluwer.
Hoffman, R. R., Shadbolt, N. R., Burton, A. M., & Klein, G. (1995). Eliciting knowl-

edge from experts: A methodological analysis. Organizational Behavior and Human 
Decision Processes, 62, 129–158.

Johnston, J. M., & Pennypacker, H. S. (1993). Strategies and tactics of behavioral 
research (2nd ed.). Hillsdale, NJ: Erlbaum.

Jones, R. R., Reid, J. B., & Patterson, G. R. (1975). Naturalistic observation in clinical 
assessment. In P. McReynolds (Ed.), Advances in psychological assessment (Vol. 3, 
pp. 42–95). San Francisco: Jossey-Bass.

Primavera, L., Allison, D. B., & Alfonso, V. C. (1997). Measurement of dependent vari-
ables. In R. D. Franklin, D. B. Allison, & B. S. Gorman (Eds.), Design and analysis 
of single-case research (pp. 41–90). Mahwah, NJ: Erlbaum.

Rogers, T. B. (1989). Operationism in psychology: A discussion of contextual anteced-
ents and an historical interpretation of its longevity. Journal of the History of the 
Behavioral Sciences, 25, 139–153.

Taplin, P. S., & Reid, J. B. (1973). Effects of instructional set and experimental influ-
ences on observer reliability. Child Development, 44, 547–554.



This page intentionally left blank 



  53 

4 Sampling Methods

OVERVIEW

In this chapter, we define a “measurement system.” We discussed mea-
surement context in chapters 1 and 2 and the coding manual in chapter 3. 
In this chapter, we discuss the rest of the elements of the measurement 
system. We begin by presenting the general options for behavior sam-
pling. Next, we briefly discuss the general options for participant sam-
pling. Then we provide a brief review of the empirical evidence regarding 
the very important issue of participant reactivity to being observed. We 
address the issues regarding whether to code live or tape a session for 
later coding. Then we discuss how the decision to use paper and pencil 
versus computer programs to record coding decisions can affect the rest 
of the measurement system. We provide an exercise that is designed to 
introduce readers to coding and to explore four behavior sampling meth-
ods of the same observation session. Finally, we provide recommenda-
tions regarding these considerations.

THE ELEMENTS OF A MEASUREMENT SYSTEM

We call the process by which we measure our independent and depen-
dent variables and predictors a “system” because it has many elements 
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that influence each other. In addition to the measurement context and a 
coding manual, a measurement system is composed of (a) a behavior sam-
pling method, (b) a participant sampling method, (c) a session recording 
method, and (d) a coding decision recording method.

BEHAVIOR SAMPLING

Because observational measurement is expensive in terms of observer time 
and demanding in terms of observer attention, skill, and judgment, there 
are several options to divide the observation session in order to reduce the 
cost. These options make compromises regarding the amount of informa-
tion and the type of information that is noted from the observation. The 
term “behavior sampling” is used to refer to these different options.

Behavior sampling methods are categorized by whether and how 
they divide the observation session. There are superordinate categories 
including “continuous,” “intermittent,” and “interval” sampling. Each is 
briefly introduced here and described in more detail below.

In continuous behavior sampling, there are no divisions made in the 
observation session and the entire observation session is coded. This is 
the most expensive, yet most complete way to code.

In intermittent behavior sampling, periodic intervals are observed 
and all instances of key behaviors occurring in that interval are coded. 
For example, we might observe 10 min out of every hour of an observa-
tion session per participant (Primavera, Allison, & Alfonso, 1997; Repp, 
Roberts, Slack, Repp, & Berkler, 1976).

In interval sampling or interval coding, the entire observation  session 
is divided into a fixed duration of temporally defined intervals (e.g., 10 s), 
and the presence or absence (not number) of key behaviors in each inter-
val is coded. Alternate versions of interval coding involve (a) coding 
the number of instances of the key behavior in each interval (relatively 
uncommon) and (b) observing for an interval (e.g., 10 s) and recording 
for a following, sometimes briefer, interval (e.g., 5 s). Each general sam-
pling method described above (continuous, intermittent, interval) var-
ies in accuracy depending on the different decisions made and each is 
described in more detail in the following sections.

Continuous Behavior Sampling

There are two types of continuous behavior sampling methods: timed 
event and event. Continuous timed event sampling requires indicating 
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the time of occurrence of the onset (and sometimes, offset) of each 
instance of a key behavior. By onset, we mean the beginning of a behav-
ior. When duration is to be estimated, the offset of each key behavior 
incidence is also recorded. By offset, we mean the end of a behavior. In 
chapter 3, we discussed making sure that one includes definitions for 
onset and offset in the segmenting rules for timed event coding. Unless 
these definitions are precise, it will be difficult to achieve criterion level 
of interobserver agreement for onset/offset times.

Usually, timed event coding is most accurately implemented when 
using a computer that is designed to automatically record the time of 
onsets and offsets for an event occurrence (i.e., observational software). By 
counting the number of seconds between onset and offset, the observa-
tional software computes the duration of each instance of the key behav-
ior. Total or average duration of events can then be derived.

The second type of continuous behavior sampling is called con-
tinuous event sampling, which has also been called the tally method. 
This method requires counting or tallying the number of instances of 
each key behavior that occurs during the observation session. In its 
simplest form, the observer tallies the number of instances under each 
key behavior label without recording the time of onset. Offset is irrel-
evant to event sampling. Because offset is not noted, event sampling 
can be used to quantify number, but not duration. It is worth noting 
for future reference that “number” is also equivalent to the number of 
onsets of the key behavior. Although accurately recording the number 
of instances of a behavior does not necessarily require a precise iden-
tification of the time of onset (e.g., counting the number of tantrums a 
child has), clear thinking about “number” is aided by thinking in terms 
of onset (defining when a tantrum begins will help to differentiate 
between separate instances of tantrums and lead to a more accurate 
estimate of number of tantrums).

Intermittent Behavior Sampling

Intermittent behavior sampling can take the form of intermittent timed 
event and intermittent event sampling. It is among the cheapest methods 
of behavior sampling because the entire observation session is not coded 
but, rather designated time intervals within the session are observed to 
count key behaviors (e.g., 10 min out of 60 min). Like continuous event 
sampling, intermittent event sampling involves recording each occurrence 
of key behaviors that occur during the observed period. If intermittent 
event sampling is timed, the onset and/or offset of the event are recorded 
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as well. This method was used in the 1970s, in part, because live cod-
ing was the most common coding method (perhaps because of concerns 
about reactivity to being recorded or expense and lack of widespread 
availability of recording equipment). However, intermittent sampling, 
whether it is event or timed event, is rarely used currently (Primavera 
et al., 1997). Its infrequent use is likely due to the greater availability of 
recording and computing technology and the greater known accuracy of 
another time-saving method: interval sampling (Repp et al., 1976).

Interval Sampling

There are three primary types of interval sampling methods: whole, 
momentary, and partial. Interval sampling has been and continues to 
be a commonly used method across a variety of disciplines. Thirty-four 
percent of all articles published in the journal Child Development in the 
1980s used interval sampling (Mann, Have, Plunkett, & Meisels, 1991). 
Twenty-one percent of all observational studies published in the Journal 
of Applied Behavior Analysis between 1967 and 1977 used interval sam-
pling methods (Kelly, 1977). There is a body of empirical work examin-
ing and evaluating the relative accuracy of interval sampling methods 
(Rojahn & Kanoy, 1985).

Whole interval coding involves coding the behavior “present” in an 
interval if the key behavior occurs during the entire interval. For exam-
ple, to evaluate whether a student remains seated during whole class 
instruction, a 5-min observation session may be divided into 15-s time 
intervals, in which the focal student is required to maintain a complete 
sitting posture in the chair at his or her desk for the entire 15-s interval 
to be scored. Among the interval sampling family, whole interval coding 
is consistently found to be the least accurate method for estimating either 
duration or number (Powell, Martindale, Kulp, Martindale, & Bauman, 
1977; Primavera et al., 1997; Rojahn & Kanoy, 1985). A related inter-
val sampling method that is sometimes reported is when a key behavior 
is required for one-half or more of the duration of the interval to be 
coded. Although the logic does not perfectly fit into any of the three 
types of behavior sampling, the use of half the duration of the interval as 
a criterion duration for the event to be coded is closest to whole interval 
 coding but the rule has functionally reduced the duration of the interval 
by half.

Momentary interval coding is used when the observer marks a 
behavior as present if and only if the behavior occurs at the boundary of 
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the interval (e.g., the end of the interval). This means observers can only 
note what occurs when the interval boundary occurs. At least eight stud-
ies have tested the relative accuracy of the interval sampling methods to 
estimate duration and have found consistent results (Rojahn & Kanoy, 
1985). Momentary interval sampling is the most accurate method for 
estimating relative duration (the number of intervals with 1 s/total inter-
vals), particularly when interval duration is brief (e.g., 10 s), as compared 
to the known duration. One can show the mathematical relationship 
between the shortest interoccurrence interval and the optimal interval 
duration (Powell et al., 1977; Suen & Ary, 1989). However, a simple way 
to address the fact that momentary interval duration estimates are most 
accurate when the interval duration is brief is to use the shortest interval 
duration one can afford.

Partial interval coding means that the observer marks one and only 
one occurrence of a key behavior when the behavior occurs anytime dur-
ing the interval. Five studies have evaluated the relative accuracy of the 
interval sampling methods to estimate number (Rojahn & Kanoy, 1985). 
Partial interval coding underestimates number when more than one 
event occurs during an interval. Repp et al. (1976) examined the rela-
tive accuracy of estimating number with partial versus momentary inter-
val coding by examining the proportion of 10-s interval that had more 
than one event under six different key behavior conditions: (a) frequent 
(10/min) and clustered, (b) frequent and spread-out evenly, (c) moder-
ate rate (1/min) and clustered, (d) moderate rate and spread-out evenly, 
(e) infrequent (0.1/min) and clustered, and (f) infrequent and spread-
out evenly. Under all conditions, the partial interval coding was more 
accurate in estimating the number than momentary interval coding. The 
clustered versus spread-out condition, as studied, did not appear to affect 
the proportion of intervals with more than one event. However, under 
frequent (as defined by 10 events/min) occurrence conditions, more than 
60% of the 10-s interval contained more than one event, resulting in 
gross underestimation of number in any interval sampling method.

A more complete view is that the accuracy of partial interval coding 
in estimating number is a function of a complex interaction between (a) 
interval duration (shorter intervals are better [in relation to accuracy]), 
(b) rate of key behavior occurrence (relatively low-rate events are better), 
(c) pattern of occurrence (spread-out events are better), and (d) average 
duration of the key behavior (shorter events are better) (Rojahn & Kanoy, 
1985). These findings indicate that the currently available  mathematical 
methods for estimating the error from partial interval coding when 
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estimating number are generally too simplistic or too complex, depend-
ing on the situation (Hartmann & Wood, 1983). If one wants to estimate 
the number using partial interval sampling, one suggestion has been to 
select the interval duration based on the known characteristics of the 
key behavior by referring to empirically derived tables and figures in 
the Rojahn and Kanoy study. The problem with this suggestion is that 
characteristics of behaviors change over time or among participants. 
Importantly, almost all of the error in estimating number in the Rojahn 
and Kanoy study involved underestimating number. If underestimation 
of number occurs more in a particular single-subject design phase (e.g., 
baseline), group design condition (e.g., control) or levels of predictor, 
then using partial interval coding to estimate number can result in an 
increased probability of Type I error. If underestimation of number is 
distributed equally across design phases, groups, of levels of predictors, 
the probability of Type II error is increased.

How Does Interval Sampling Estimate 
Number and Duration?

The relative accuracy with which various types of interval sampling esti-
mates the number or duration of a behavior matters because it affects the 
interval sampling method we select or even whether we select an interval 
sampling method at all. In general, if the behavior of interest is a short-
duration behavior (e.g., under 1 s average duration), the underlying metric 
of interest is number. In contrast, when the behavior is thought to repre-
sent a state (e.g., attention) or behavior that has a long duration (e.g. on 
average 5 s), the underlying metric of interest may be duration. So, as we 
have stated from the beginning, it helps and is important to be clear about 
what your research question is and what it is you want to know in terms 
of your hypothesis and your knowledge of the phenomenon you study 
(tantrums, reading, language development, etc.). If you do not know that 
you implicitly wish to estimate duration, you may mistakenly select partial 
over momentary interval sampling. In contrast, if you are not aware that 
you implicitly wish to estimate number, you may not know that you will 
be fairly accurate in estimating number during a baseline in which the 
behavior of interest occurs infrequently and the interbehavior interval is 
long, but you may grossly underestimate number during the treatment 
phase when the number of the behavior is quite high and the interbe-
havior interval is brief. Such knowledge may lead you to select an entirely 
different sampling method in the first place (e.g., continuous behavior 
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sampling method instead of an interval sampling method). In the follow-
ing paragraph, we discuss briefly how interval sampling estimates num-
ber and duration.

When an interval is coded to show that a key event or behavior is 
present, that interval is coded as “1.” When the interval is coded to show 
that a key event or behavior is absent, then it is coded as “0.” There is no 
agreed-upon standard regarding how number estimates should be derived 
using interval data. Some researchers use the number of intervals with 
1 preceded by intervals with 0 as an estimate of number (Suen & Ary, 
1989). At first glance this seems sensible because number is the number 
of onsets and one cannot directly infer the number of onsets unless it is 
known that the preceding interval did not contain a key event. However, 
for observation sessions in which interoccurrence times are brief, such a 
method of estimating number may seriously underestimate true number 
(Rojahn & Kanoy, 1985). Alternatively, the number of intervals with 1 
has also been thought to be an estimate of number (Rojahn & Kanoy, 
1985). Experience leads us to prefer using the number of intervals with 
1 as the estimation of number. The exercise at the end of this chapter 
illustrates why: using the number of intervals with 1 as the estimation 
of number better matches the number produced by continuous behavior 
sampling than does using the number of intervals with 1 preceded by 
intervals with 0. There is consensus that the number of intervals with 1 
divided by the total number of intervals is the method of choice to repre-
sent relative duration (Powell et al., 1977; Suen & Ary, 1989).

PARTICIPANT SAMPLING

Participant sampling is the type of method used to decide which partici-
pant to code when there is more than one participant to be coded from a 
single observation session. The three most common types of participant 
sampling are as follows: focal, multiple pass, and conspicuous behav-
ior. Multiple pass and conspicuous participant sampling are continuous 
behavior sampling methods. Focal sampling is an intermittent behavior 
sampling method.

Focal Sampling

Focal sampling involves coding one participant for a predetermined 
period, then coding a different participant in the group for the same 
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period of time, and so on, until all selected participants have been 
coded. This can be done live without recording the session (i.e., video-
taping) and also without computer software, but focal sampling reduces 
the length of the observed time for each participant (total observation 
session duration/number of participants observed). As mentioned earlier, 
there are many reasons why it is desirable to maximize the length of the 
observation time per participant when possible.

Multiple Pass Sampling

Multiple pass sampling involves selecting one participant and coding the 
entire session for only that participant. This process is possible when one 
has recorded (i.e., videotaped) the observation session for later coding. 
If the interaction of individuals needs to be analyzed, then one can use 
multiple pass sampling if one also uses a software program designed to 
link the codings of each individual via a time indicator that “resides” 
in the recorded version (e.g., videotape) of the observation session. One 
such computer program will be discussed in this chapter (Tapp, 2003). 
Multiple pass sampling is expensive, but it provides the most complete 
method of sampling multiple participants in the same observation 
session.

Conspicuous Sampling

Conspicuous sampling involves watching the entire group and noting 
which individual engaged in any predefined conspicuous behaviors. For 
example, one might note which participants engage in a sustained fight 
during a recess period. Interobserver agreement is likely to be accept-
ably high in such sampling for infrequent but salient behaviors (Suen & 
Ary, 1989).

REACTIVITY

One of the early criticisms of observational measurement was that the 
participants would act differently when watched than when they were 
not. A related issue is the hypothesis that people’s behavior in the mid-
dle of observation sessions tends to be different from their behavior at 
the beginning (due to self-consciousness) or end (due to fatigue). There 
are studies testing both hypotheses. We bring up the issue of reactivity 
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and studies of it in this chapter because some of the older suggestions in 
the literature regarding designing measurement systems are based on 
assumptions that reactivity is sufficiently important to sacrifice data or 
reliability. Despite reasonable questions about reactivity, the many stud-
ies on this issue indicate it is not nearly as serious an issue as it was first 
thought (Gardner, 2000). To inform our discussion, we briefly review the 
empirical literature from studies with human beings directly addressing 
the reactivity issue. There have been two primary ways to study reactiv-
ity: (a) compare the level of behavior under multiple observational condi-
tions that vary in intrusiveness and (b) compare the level of behavior in 
different parts of the observation period.

Several studies have compared behavior levels under conditions 
of live observation (assumed to be the more intrusive) with conditions 
of unmanned recordings. These studies do not support the reactivity 
hypothesis (Fulton & Rupiper, 1962; Jacob, Tennenbaum, Seilhamer, 
Bargiel, & Sharon, 1994; Johnson & Bolstad, 1975; Kent, O’Leary, 
Dietz, & Diament, 1979). At least three studies have compared behavior 
levels under conditions of live observation with conditions of manned 
video recording. Which of these conditions is most intrusive, however, 
is open to interpretation. Two of the three studies found no difference 
in behavior between conditions (Christensen & Hazzard, 1983; Pett, 
Wampold, Vaughan-Cole, & East, 1992). One study examining many 
dependent variables found that one of their variables, aggression, was 
more frequent when videotaped (Pepler & Craig, 1995). If manned video 
recording is considered more intrusive than live recording, then this 
finding would support the hypothesis of reactivity. However, it should be 
noted that this is only one variable out of many that were tested.

Perhaps a more direct test of the reactivity hypothesis is a compari-
son of behavior levels during live observation versus observation condi-
tions in which the participants did not know they were being observed. 
In one study, the unknown observation condition involved using a hid-
den recorder that was automatically activated over a 6-week period 
(Bernal, Gibson, William, & Pesses, 1971). No differences were found 
on any dependent variable tested. If reactivity does occur, it is probably 
more of a factor for some participants than others. For example, there 
is replicated evidence that fathers are more influenced by knowledge 
of being watched than mothers (Lewis et al., 1996; Russell, Russell, & 
Midwinter, 1992).

Several studies have compared the first part of the session with the 
middle and/or last part of a session. For the vast majority of the variables 
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examined, there were no differences (Hughes, Carmichael, Pinkerton, & 
Tizard, 1979; Johnson & Bolstad, 1975; Kier, 1996). However, one study 
found a single variable, playing alone, to occur more in the first 10 min of 
the session than in the last 10 min of the same session (Kier, 1996).

In general, there is little evidence that reactivity is a large enough 
issue around which broad observational method policies should be made. 
Out of the 12 studies reviewed, all with multiple dependent variables, 
only 4 dependent variables were different between conditions thought 
to allow inferences relevant to testing reactivity. Additionally, in two of 
these four variables, there were condition differences in only a subset 
of participants. These studies lead to the conclusion that there is little 
empirical basis for (a) preferring live over taped observation due to reac-
tivity concerns and (b) using only the middle section of a session due to 
habituation or fatigue.

LIVE CODING VERSUS RECORDING THE OBSERVATION 
FOR LATER CODING

Live or in situ coding occurs when the observer codes the behavior as it 
occurs. The observer is either present in the room with the participants 
or behind a one-way window during the observation session. Taping the 
observation for later coding can take the form of audio recording and 
video (with audio) recording. Audio or videotaped records can be con-
verted to digital format, which in turn, can be used by computer software 
designed to control and “tag” particular segments of the tape (Bazeley & 
Richards, 2000; Noldus, Trienes, Hendriksen, Jansen, & Jansen, 2000; 
Tapp, 2003).

The primary advantage of live coding is the reduced cost of not 
requiring recording equipment or expertise. Another relative advantage 
of live observation over coding from recorded session is that sometimes 
the clarity of visual and audio signal is better from live observation. 
Finally, live observers may be able to move to a more advantageous view-
ing angle than a cameraperson with recording equipment. However, in 
our opinion, live coding does not always result in more “representative” 
records than taping the session for later coding, for reasons we outline 
below.

Not having a record of the observation session prevents a number 
of potentially useful approaches to coding. One cannot recode sessions. 
Recoding might be useful if, for example, the coding manual changes 
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during the study because of problems with the definitions midway in a 
study. Recoding allows post hoc questions to be addressed. Live cod-
ing allows only single-pass sampling methods. In addition to multiple-
pass participant sampling that was covered earlier, multiple passes of 
an observation session can be useful for complex coding systems that 
require the observer to focus on one dimension for one pass (e.g., all 
aggressive acts) and other dimensions for other passes (e.g., all proso-
cial acts). Some questions may require that the observer be blind to 
the audio aspects of the session when coding visual aspects. Multiple 
passes allow such blind coding. If live coding is used to implement 
an interval sampling method, typically every other interval is missed 
because they are reserved for looking at the score sheet or keyboard 
to record that an instance of the behavior occurred. This intermittent 
behavior sampling may be less accurate in estimating number or dura-
tion than continuous interval sampling (i.e., one without record inter-
vals). “Stop-and-go” coding is not possible with live coding. Stop-and-go 
coding is often very helpful for complex coding manuals that require 
social judgment because multiple looks at the behavior may enable the 
observer to notice aspects of the scene that were missed the first time 
around. Finally, interobserver agreement checks are usually not fully 
independent when coding live. Independent coding for interobserver 
agreement checks are an important part of producing accurate data 
(see chapter 8).

The three primary disadvantages of taping observation session are 
(a) the expense of the recording equipment and the time to train person-
nel in using the equipment, (b) the potential loss of data due to technical 
dysfunction or operator error, and (c) the added time in extracting the 
data. However, we believe that the advantages of recording the obser-
vation session far outweigh these disadvantages. The advantages of tap-
ing and later coding are many. Such an approach allows multiple passes, 
stop-and-go coding, recoding many years after recording, and blind 
interobserver checks (i.e., the “primary” observer does not know which 
sessions are being checked for agreement). Additionally, duration can be 
more accurately coded when sessions are recorded because the precise 
onset and offsets are easier to determine with stop-and-go coding or 
slow-motion playback. If one converts the tape to a digital media file, 
the computer software programs can enable interval sampling without 
record intervals. One of the biggest advantages to recording the observa-
tion session is that it enables discrepancy discussions, which can prevent 
or correct observer drift, a topic covered in chapter 8.
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RECORDING CODING DECISIONS

There are two primary ways to record coding decisions: paper and pencil 
or computer assisted. When we use paper and pencil during a live cod-
ing session, we are able to use a continuous event sampling method or an 
interval sampling method. If we are conducting continuous event sam-
pling, we tally each occurrence of the event under appropriately labeled 
columns or boxes. If we are conducting interval sampling, we begin 
observing for an interval of time (e.g., 10 s) after hearing an audio signal 
that marks the onset of the interval. During the observation, we make 
mental notes of what we see. At the next audio signal, we indicate on the 
paper what we have seen by writing a letter or tally under the appro-
priately labeled column or box. With the next audio signal, we begin 
observing again. Alternatively, in the same recording format, the inter-
vals can be scored as the event or behavior occurs without an “observe–
record” interval combination. The choice between these two versions 
will be determined largely by the nature of what is being observed and 
observer skill.

When we use paper and pencil while playing back a taped record 
of the session, we can use any type of behavior or participant sampling 
method, but some are difficult to use without help from a computer. 
For example, we can implement timed event sampling by stopping the 
tape at the onset or offset and writing down the time of occurrence. 
The time of occurrence can be stamped on the tape or we might use a 
stopwatch. The reader has to only imagine stop-and-go coding to find 
precise onsets and offsets to understand why this method results in 
rapid breakage of the playback machine, fatigue in the observer, and 
imprecision in the duration estimates. Similarly, interval sampling with 
paper and pencil using a taped record is conducted as indicated for 
live interval sampling (i.e., observe and record intervals). Attempting 
to use stop-and-go coding for interval coding from a tape will usu-
ally result in slippage of audio and videotapes (i.e., the interval does 
not stop and start at precisely the same time each time it is played). 
Therefore, replaying the exact interval is not really possible without 
computer assistance.

When tapes of observation sessions are converted to digital files 
(i.e., media files), such files can be controlled by computer when used 
with the particular software designed for such purposes (Bazeley & 
Richards, 2000; Tapp, 2003). There are many examples of such  software 
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(Hoch & Symons, 2004; Kahng & Iwata, 2000). Some of these pro-
grams are designed specifically for personal data assistants or pocket 
personal computers (PCs) (Tapp et al., 2006) or laptops (Tapp, 1995). 
These small computers allow live coding. Even when used for live cod-
ing, the computer software improves the accuracy of continuous timed 
event coding because onset and offset times are recorded automatically 
based on the computer’s internal clock. Additionally, even when used 
to implement live coding, computer-assisted coding can improve inter-
val sampling or event sampling because one can use touch typing to 
record differentiated behaviors via the use of different letters. Finding 
the different letters on the keyboard is a simple matter for a skilled 
typist. Computer records of what has been coded enables the subse-
quent use of analysis or counting computer programs, which reduces 
measurement error due to miscounting (Tapp, 1995). For example, we 
compared a software program designed for interval-sampled data with 
paper-and-pencil recording and found that the software program was 
more accurate and more efficient (set-up time, duration of data entry, 
duration of interobserver agreement calculations, and cost) than the 
traditional method (Tapp et al., 2006).

Using computer-assisted coding with a digital record of the obser-
vation session provides the most options for behavior and participant 
sampling and the most accurate implementation of these because it 
enables more accurate marking of onset and offset times, and train-
ing options that are not available from other methods of coding. The 
additional use of computer-controlled media files allows precise con-
trol of interval (i.e., virtually no slippage during replays of the same 
interval). This allows observers to do away with the “record” inter-
val in interval sampling. That is, instead of observing for 10 s and 
recording what was observed for 5 s, the software that allows precise 
control of the media file allows precise stopping and starting at inter-
val boundaries without slippage, thus eliminating the need for the 
record interval. This maximizes the observed time. It allows inde-
pendent observers to see the same exact interval when conducting 
interobserver checks. It also allows precise replay of events on which 
observers disagree, which enables fruitful discussions regarding cod-
ing manual changes or observer training. It enables the rapid collect-
ing of multiple examples that can be played back in succession to help 
an observer-in-training learn or relearn the concepts behind coding 
categories.
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PRACTICE RECORDING SESSION

We have designed a brief exercise to (a) introduce the user to an example 
of a software program designed to assist coding and (b) compare the 
time to code, stress to code, and accuracy of four coding methods. We 
encourage you to try the exercise before moving forward because it will 
“bring to life” many of the issues we have been discussing. The exer-
cise can be found on the book’s website (www.springerpub.com/yoder/
supplements). The file called “Procoder Manual for Exercise” will guide 
the reader through the exercise. A media file of an observation session 
(“smile.wmv”) and a demonstration version of ProcoderDV, a software 
program that is designed to assist coding (“Procoder.exe”), is also on the 
website. Readers who intend to complete the exercise are asked to do so 
before reading the rest of the chapter. The sequence of opening the files 
on the website should be to download and set up the software (“Procoder.
exe”) first. When conducting the exercise, readers are asked to keep the 
 following questions in mind:

1 What is the relative ranking of the four coding methods on time 
to code (1 = shortest)?

2  What is the relative ranking of the four coding methods on stress 
to code (1 = least)?

3 What is the cause of stress for real-time coding?
4  Does stress have anything to do with fuzzy beginnings and ends 

of smiles?

After completing the exercise, consider the following questions by refer-
ring to your data for all questions except for those involving timed event 
duration data. For timed event duration estimates and for readers who 
skipped the exercise (and missed all the fun), the following questions can 
be addressed by referring to the data provided in Table 4.1.

The data in Table 4.1 represent the results of the first author’s cod-
ing and judgment on the coding of the provided media file. The length 
of the coded segment of the session was 2 min. The two behaviors 
coded were smiling (s) and nonsmiling (n). Smiling was chosen because 
it often has indefinite onset and offset. This is the type of behavior that 
can be well suited to interval sampling. In all four coding methods, the 
behaviors were coded as exhaustive categories (i.e., every time unit was 
assigned to either smiling or nonsmiling). A 10-s interval length was 

www.springerpub.com/yoder/supplements
www.springerpub.com/yoder/supplements
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SUMMARY OF RESULTS OF THE BEHAVIOR SAMPLING EXERCISE

CODING 
METHOD

BEHAVIOR 
SAMPLING 
METHOD

RANK FOR 
TIME TO CODE

RANK FOR 
STRESS TO 

CODE

NUMBER OF 
NONSMILE 

PRECEDING SMILES
NUMBER 

OF SMILES PERCENTAGE TIME 
OR INTERVALS WITH 
SMILE (i.e., RELATIVE 

DURATION)

ESTIMATE 
OF RATE 

OF SMILES1 = SHORTEST 1 = LEAST
NUMBER 

ESTIMATE #1
NUMBER 

ESTIMATE #2

Real time Timed 
event

3 4 13 13 53.5 6.5

Stop and go Timed 
event

4 3 13 13 43.3 6.5

Partial 
interval

Interval 
sampling

2 2 0 12 100 6

Momentary 
interval

Interval 
sampling

1 1 3 7 70 3.5

Table 4.1  
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selected to correspond with the method used in the Repp et al. study. 
A 10-s interval is common in many observational studies of humans 
using interval sampling. The “Practice Recording Session” questions are 
as follows:

 1  Why were the interval sampling methods relatively easier (brief 
and relatively lower stress [i.e., less difficult]) when compared to 
timed event methods?

 2  Was there much difference in the estimates of number and 
duration for stop-and-go versus real-time timed event  coding?

 3  With this simple code, was it worthwhile to do the stop-and-go 
timed event coding?

 4  If this had been a more complex code, would it have been worth-
while to do the stop-and-go timed event coding?

 5  What is the rate of smiles per minute using the timed event sam-
pling methods?

 6  How does this rate of occurrence compare with the frequent 
versus moderate rate conditions in the Repp et al. study on the 
accuracy of partial interval coding to estimate number?

 7  When conducting partial interval coding, were there any 
 intervals in which more than one smile occurred?

 8  Would the number of intervals with more than one event been 
lower if the rate of occurrence of smiles had been less frequent 
(assuming they were spread out)?

 9  Which is the better method for estimating number using inter-
val sampling?
a  The number of intervals with 1 preceded by an interval 

with 0.
b The number of intervals with 1?

10  Is the partial or momentary interval coding method better for 
estimating number?

11  How does this finding relate to what Repp et al. found about 
accuracy of estimating number?

12  Is the partial or momentary interval coding method better for 
estimating relative duration (percentage of time or intervals 
with smiles)?

13  How does this finding relate to the findings in the Powell et al. 
study?

14  How could you increase the accuracy of estimating relative 
duration using the superior interval sampling method?
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RECOMMENDATIONS

We can now complete our recommendations regarding designing an 
observational measurement system. As before, these recommendations 
assume that resources are not a limiting factor (see Tapp et al., 2006).

1 We recommend that observers code as much of the session as is 
possible, not just the middle section of the session. Longer ses-
sions tend to produce more stable and sensitive variable scores 
than do shorter sessions. Early concerns that early and late por-
tions of sessions would yield notably different levels of behaviors 
have not been supported by empirical studies.

2 We recommend using taped records of observation sessions rath-
er than live coding. Such a practice allows stop-and-go coding, 
repeated viewings of key scenes, multiple pass coding, and inde-
pendent agreement checks.

3 We recommend converting the taped record to a digital media 
file and using a computer program to assist coding. Such a prac-
tice allows precise coding of onset and offset times, eliminates 
slippage of intervals without skipping intervals for recording cod-
ing decisions, and eases observer training.

4 If the observers are coding discrete events (i.e., those with clear 
beginning and ending), we recommend using timed event behav-
ior sampling to enable the use of discrepancy discussions (see 
chapter 8) that can center about acts on which there is observer 
disagreement.

5 If the observer is coding events with “fuzzy” onsets and/or 
offsets, there is a legitimate argument for using either timed 
event or interval sampling. If the investigator selects interval 
sampling, then we recommend using interval sampling with the 
shortest affordable interval duration. If the investigator selects 
interval sampling with a brief interval, we recommend using 
partial interval coding to estimate number and momentary 
interval sampling to estimate duration. For number estimation, 
the number of intervals with 1 s is the estimate. For duration 
estimation, the proportion of intervals with 1 s is the relative 
duration estimate.

6 If there is more than one participant to be observed during a 
 session, we recommend using multiple passes of the media file 
and coding the entire session.
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5 Common Metrics of Observational 
Variables

OVERVIEW

An observational variable is composed of the object of measurement (i.e., 
behavior or generalized characteristic) and the metric used to quantify 
the object of measurement. This chapter focuses on the most common 
classes of metrics used in direct behavioral observation, including num-
ber, duration, and proportions. These metrics are also referred to as non-
sequential because the sequence of events or behaviors is not reflected 
in the unit of measurement for the variable. Sequential metrics will be 
covered in chapters 6 and 7.

After defining the term metric, we will discuss the concept of quan-
tifiable dimensions of behaviors, including number, duration, and space. 
Much of the remainder of the chapter will cover the special considerations 
required when one uses proportion metrics. Using one metric instead of 
another can change the meaning of the key variables in a research ques-
tion and thus often requires restating the research question. We present the 
rationale behind the common practice of transforming observational vari-
ables before conducting group parametric statistical analyses. We clarify 
that observational variables are not categorical, as is commonly assumed, 
but at least ordinal. Then we discuss that using observational variables in 
parametric analysis is perfectly acceptable. Finally, we conclude with recom-
mendations regarding the selection of metrics for observational variables.
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DEFINITION OF METRIC

A metric is the unit of measurement that indicates the level of a quantifi-
able dimension about a property of behavior or generalized character-
istic. There is an important distinction among the property of an object 
of measurement, its quantifiable dimension, and its metric (Johnston & 
Pennypacker, 1993). A person who is running is displaying the property 
of motion. Speed is a quantifiable dimension of motion. A common met-
ric for speed is distance/time (e.g., miles/hr).

QUANTIFIABLE DIMENSIONS OF BEHAVIOR

The most commonly measured dimensions of behavior in psychology, 
education, and related fields are presence, time, and space. When we 
measure presence or absence of a behavior, we often are interested in 
the number (or count) of instances or occurrences of a behavior or in 
a proportion derived from such counts. Technically, count or number 
is the number of onset–offset cycles of instances of the same category 
of behavior. Time units are typically applied to quantify three aspects 
of behavior: duration, latency or reaction time, and interoccurrence or 
interresponse time. Duration is the time from onset of a behavior to off-
set of the same instance of the behavior. Latency is the time from the 
offset of a behavior or event to the onset of a second, different behavior 
(e.g., the time from the starting shot of a race to the onset of a sprinter is 
the start latency for a sprinter). Interoccurrence or interresponse time is 
the time from the offset of the first occurrence of an event to the onset 
of a second occurrence of the same type of event (e.g., the time between 
communication acts). When applied to behavior, the time units are usu-
ally seconds or minutes but can be longer.

When referring to behavior, space is typically quantified as either 
direction or distance (i.e., proximity). Direction involves the vector of 
movement (e.g., the runner was moving in a southwest direction). The 
metric for direction is usually degrees on a compass (e.g., he was running 
17 degrees north-northwest). Distance or proximity describes how far (or 
near) the entity being measured is from another salient entity (e.g., John 
is physically close to Jim.). The metric for distance can be in either the 
International System of Units (SI) units (e.g., meters) or Imperial units 
(the English or U.S. system; e.g., yards). Almost all scientific literature 
uses SI units.
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PROPORTION METRICS

Proportions can be created to measure behavior and its context by com-
bining the aforementioned metrics. The most common of these is rate 
(i.e., number of events or occurrences of a behavior/unit of time). For 
example, it is sometimes meaningful to know not only that John com-
municated three times but also the duration of the session in which the 
three times were observed (e.g., 3 times/min vs. 3 times/hr). Speed (i.e., 
distance/time) has already been discussed as a common metric quantify-
ing motion. Accuracy or consistency (i.e., number of correct responses or 
occurrences of goal behavior/number of opportunities for correct response 
or attempts at goal behavior) is commonly used in behavioral observa-
tions. For example, one might want to know both that John answered 
4 quiz questions correctly and that 10 questions were asked (4/10 = .4). 
Style (i.e., number of key behaviors directed to another  person/number 
of all coded behaviors directed to another person) is less common than 
the above but is used in studies of naturally occurring individual differ-
ences in how adults speak to children. For example, Betty talked about 
her child’s focus of attention 40 times and talked to her child 100 times 
(40/100 = .4). There are other proportion metrics (e.g., Siller & Sigman, 
2002), but in our experience the above four types are the most com-
monly used in observational measurement.

Proportion Metrics Change the Meaning of 
Observational Variables

When we use proportion metrics, the meaning of the observational vari-
able changes from what it would be if we used number, time, or space 
dimensions alone. Therefore, once we have selected a proportion metric, 
it often increases the precision and clarity of our research question to 
revisit it and, if necessary, rewrite it on the basis of the specific selected 
metric.

Unfortunately, to increase the efficiency of communication, inves-
tigators often omit any consideration of metric when stating research 
questions. For example, an investigator might state her question as “Is 
maternal verbal responsiveness to child communication positively related 
to child productive vocabulary?” The omission of the metric leaves 
important information unspecified and makes the question less falsifi-
able. When reading such a question, many readers might assume that 
the metric involved a single dimension (e.g., number). Thus the implicit 
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research question many readers understand might be “Is the number of 
maternal verbal responses to child communication positively related to 
child productive vocabulary?” However, because mothers cannot ver-
bally respond unless the child communicates, the investigator might 
have meant “Is the proportion of child communication to which a mother 
verbally responds [i.e., consistency] positively related to child productive 
vocabulary?”

Alternatively, because mothers who talk frequently to their children 
may give more verbal responses to child communication, the investigator 
might have meant “Is the proportion of child-directed maternal talk that 
is a verbal response to child communication [i.e., style] positively related 
to child productive vocabulary?” Although these distinctions may seem 
trivial or too nuanced, we think they are actually quite important because 
the specificity of the research question or hypothesis is related directly 
to subsequent analyses and, ultimately, the falsifiability of the hypoth-
esis. When the question is clear, the choice of analysis is facilitated.

When guided by the results of correlational studies, treatments often 
attempt to increase the value of the metric for the positive predictor of 
the desired outcome. The different metrics can have different ramifica-
tions for treatment or intervention approaches designed to increase the 
putative causal variable (e.g., maternal verbal responses). If number were 
the metric, then we could increase maternal verbal responsiveness by 
(a) teaching children to communicate more often and (b) asking moth-
ers to notice and respond to more of their children’s communication. If 
consistency were the metric, then we would increase maternal verbal 
responsiveness only by asking mothers to notice and respond to more of 
their children’s communication. If style were the metric, then we could 
increase maternal responsiveness by (a) asking the mother to reduce the 
“other” talk she directed to her child, (b) teaching the child to communi-
cate more often, and (c) asking the mother to notice and respond to more 
of her child’s communication.

Empirically, the metric can influence the results of a study greatly. 
In a recent study, we examined the relative predictive power of three 
metrics of maternal talk about children’s focus of attention in relation 
to later productive child vocabulary (McDuffie, Yoder, & Krause, 2008). 
The three metrics for the maternal talk variable were number, consis-
tency, and style. The relative predictive relation to later child productive 
vocabulary was 0.44, 0.28, and –0.02 for number, consistency, and style, 
respectively. As the results show, it is important to communicate very 
clearly the metric of observational variables. This clear communication 
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should be reflected in the research question by including the metric of the 
observational variable(s) and in the methods section by indicating explic-
itly the numerator and denominator of any proportion metrics used.

Scrutinizing Proportions

As discussed above and hopefully illustrated by the examples, proportions 
are intended to clarify the meaning of the numerator by equating or con-
trolling a variable that affects the numerator. It has been noted, however, 
that when a proportion variable increases, we do not know whether it is 
because the numerator increased, the denominator decreased, or both 
(Johnston & Pennypacker, 1993). For example, if a style proportion (e.g., 
number of a facilitating maternal behaviors directed to a child/number 
of all coded child-directed behaviors) increases, we do not know whether 
the number of facilitating behaviors increased or whether the other 
child-directed behavior decreased. Thus, it may be worthwhile to con-
sider whether a proportion metric is required, and the remainder of this 
section is devoted to an in-depth examination of proportion metrics.

Rate is a proportion and is often used to equate the duration of the 
observational session. Accuracy or consistency is often used to equate 
the number of opportunities to respond or the attempts at a goal behav-
ior. Individual style is often used to equate total behaviors directed to 
others.

The general issue is whether (and when) it is necessary to convert a 
number based on count data to a proportion as a metric for subsequent 
analysis. Conventional wisdom in many, if not most, areas of behavioral 
research relying on direct observational count data is immediately to 
convert count data to proportions. Although we recognize the value in 
doing so related to the prevailing convention (discussed below), we want 
to draw attention to the idea that there are probably circumstances in 
which an automatic conversion is not necessary or desirable.

For starters, the degree to which proportion metrics are neces-
sary is dependent on the degree to which there is a need to control for 
differences across subjects or sessions in some aspect of the observa-
tional context (e.g., observation time). To illustrate the issues, assume 
two cases. If one student talks out 5 times during 10 min of observa-
tion and another 10 times during 5 min of observation, current conven-
tion leads us automatically to convert number to rate per minute (.5 
talk-outs/min and 2 talks-outs/min, respectively) as a common  metric. 
The reason we feel the need to equate or control the denominator is 
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that we believe it is influential on the numerator. If the property that 
the denominator quantified were irrelevant to interpreting differences 
in the numerator, then there would be no compelling reason to equate 
it. That is, it would be considered a noninfluential variable. When we say 
that the property of the denominator influences the interpretation of the 
numerator, we are saying there is an implicit functional or causal relation 
between that property and the property quantified by the numerator.

An Implicit Assumption of Proportion Metrics

The following quotation indicates an important assumption underlying 
proportion metrics that is not widely recognized by direct observational 
research conventions:

For division by the denominator to be an appropriate method for qualify-
ing the numerator, [there is] an implicit assumption that the correlation of 
the numerator with the denominator is perfectly linear, or nearly so, and 
that the regression line goes through the origin. Otherwise, one is either 
over- or underadjusting or adjusting nonuniformly over the range [of the 
denominator]. (Cohen & Cohen, 1984, p. 265)

In the common proportion metrics used in observational measure-
ment, the assumption is that the numerator has a perfect positive rela-
tion with the denominator. Figure 5.1 illustrates this assumed relation. 
To understand the assumption behind proportion metrics, try replacing 
the word “numerator” with the real number of interest and the word 
“denominator” with the variable that the proportion is designed to equate 
or control. For example, when we compute rate of communication, we 
are assuming that the duration of the observation session is positively 
related in a linear fashion with the number of communication acts.

The notion that an assumption is made when creating a metric may 
be antithetical from an idemnotic measurement perspective. After all, 
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a key rationale underlying the idemnotic measurement framework is to 
avoid unnecessarily complex mathematical manipulations. Such manipu-
lations are avoided wherever possible so that the relation between the 
measure (including the metric) and the thing or phenomenon being mea-
sured is as transparent as possible (Haynes & O’Brien, 1999). Therefore, 
it is worth elaborating this point. The key point of contention is whether 
testing the above-stated assumption is an unnecessary complication or 
whether it is a necessary and warranted condition when using proportion 
metrics.

It is worth considering instances in which the property quantified 
by the denominator either does not influence the property quantified by 
the numerator or does so in a negative direction. Consider a situation in 
which one observation session took twice as long as the next because the 
examiner had to administer 10 probe activities regardless of how long it 
took to do so. It was more difficult to do so in the first than in the sec-
ond session because the child was acting out in the first session but not 
in the second session. Further assume that child compliance with the 
probe activities is negatively associated with acting out. In such a case, 
the number of instances of the key behavior is likely to be negatively 
related to the duration of the session. In this example, it is less clear that 
rate is the best choice for the metric. Equating for duration of the session 
does not clarify the meaning of variability in number of communication 
acts because children who are observed for longer do not communicate 
more, in fact; they communicate less than children observed for shorter 
sessions. 

Testing Whether the Data Fit the Assumption of Proportion 
Metrics

In single-subject and in group research designs, the assumption that there 
is a linear relation between the numerator and the denominator can be 
tested. Assuming there are sufficient data points (e.g., at least five), the 
test can be the Pearson product–moment coefficient for the association 
between denominator (e.g., duration) and numerator (e.g., number). The 
unit of analysis for group designs is the participant. The unit of analysis 
for single-subject designs is the session with each participant. One would 
conduct the test for each participant in a single-subject design and use 
the conclusion from the majority of the participants.

In application, it may be more useful to emphasize effect size, not 
statistical significance, when interpreting the results of such analyses. 
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For example, one might consider a correlation coefficient greater than 
.2 (i.e., between Cohen’s benchmarks for “small” and “moderate” asso-
ciations) as evidence the data fit the assumption. Similarly, a correlation 
coefficient of less than –.2 might be taken as evidence that the count 
represented in the numerator is negatively related to the denominator. A 
relation between .2 and –.2 might be considered evidence that no impor-
tant relation between the numerator and denominator exists.

In single-subject designs in which there are insufficient data or when 
the investigator is uncomfortable with statistical analyses, the test could 
be logical. One could use reason to determine whether it is probable that 
higher denominator scores are likely to produce higher numerator scores 
because the former provide more opportunity for the latter. When con-
ducting this test, it is useful to attempt to produce as good an argument 
as possible for both positive and negative relations. When the two argu-
ments are equally convincing, we might conclude that different relations 
can exist for different sessions and that the assumption has not been met. 
When one argument is more persuasive for more participants, we might 
conclude that the relation is likely consistent with the more plausible 
argument. If greater denominator scores are most likely to produce or 
covary with lower numerator scores, then we might conclude that the 
data do not fit the assumption. If greater denominator scores are most 
likely to produce greater numerator scores, then we might conclude that 
the data are likely to fit the assumption.

Consequences of Using a Proportion When the Data Do Not Fit 
the Assumption

Technically, the stated assumption must be met for within-group and 
across-group data in a group comparison design and for within-phase and 
across-phase data in a single-subject design. The effect size of an experi-
mental versus control group comparison on the proportion metric should 
be more accurate when the assumption is met than when it is incorrect. 
By generating a number of fictitious data sets that vary on the sign of 
the correlation between numerator and denominator (e.g., duration and 
number) within each group, we can compare the effect size when the 
assumption is met with the effect size estimates when the assumption is 
not met. Doing so allows us to demonstrate the consequences of using a 
proportion metric when the assumption is not met.

We used these principles to generate data sets in which the post-
treatment number of the key behavior varies but is on average the same 
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between experimental and control groups and the posttreatment obser-
vational session duration varies but has a shorter mean duration in the 
experimental group. We modeled situations in which the proportion 
variable could be and often was above 1.0 to provide an example that 
simulates rate metrics. We also modeled situations in which the propor-
tion variable had to be between 0 and 1.0 inclusive to provide an example 
that simulates accuracy and style proportion metrics. We recognize that 
this is not a full-fledged simulation study because we have (a) used a 
small sample size within each experiment, (b) generated only one exam-
ple of each condition, (c) investigated only two levels of within-group 
correlation (i.e., –.8 and .8), and (d) generated only three levels of across-
group correlation (i.e., –.55, 0, and .55). However, this demonstration 
study of generated data is offered to illustrate that the relation between 
the numerator and denominator affects rates and other proportions 
equally and to demonstrate the consequence of violating the assumption 
of proportion metrics. We hope that this illustration will stimulate more 
comprehensive investigation into this important area of study.

Table 5.1 presents the results of this fictitious demonstration study. 
The bottom line of the study indicates that when the assumption is met 
within both groups and across groups the standard deviations for rate for 
both groups is relatively small, and the effect size for the between-group 
contrast of rate is relatively large. When the correlation between dura-
tion and number is negative within both groups and across groups, the 
standard deviation for rate is relatively large, and the effect size for the 
between-group contrast of rate is relatively small. When the correlation 
between duration and number is negative for one group and positive in 
the other group, the effect size is in the middle of the other two condi-
tions. To determine whether this pattern holds for proportion metrics 
that can only be between 0 and 1.0 (e.g., accuracy and style), we added 5 
to the numbers in the “duration” column to create a “denominator” col-
umn and divided the “number” column by the “denominator” column to 
create a new proportion variable. The pattern of results was substantively 
identical to that given for rate proportions.

The raw data for this set of experiments are in an Excel spread-
sheet on the book’s website (www.springerpub.com/yoder/supplements) 
entitled “Data used for proportion simulation study.” The SPSS syntax 
for the simulation is provided in another file on the website, entitled 
“SPSS syntax for the proportion simulation.” We encourage readers to 
import these data into SPSS (or some other statistical program) to con-
firm the results of the simulation (i.e., Table 5.1). Doing so is likely to 

www.springerpub.com/yoder/supplements
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RESULTS OF DEMONSTRATION SIMULATION STUDY ON PROPORTION METRICS WHEN MEAN NUMBER IS EQUAL BETWEEN 
GROUPS BUT DURATION IS SHORTER IN THE EXPERIMENTAL GROUP

r FOR ASSOCIATION BETWEEN DURATION AND NUMBER EXPERIMENTAL 
GROUP

CONTROL 
GROUP

CONDITION

WITHIN 
EXPERIMENTAL 

GROUP
WITHIN 

CONTROL GROUP
ACROSS 
GROUPS MEAN SD MEAN SD COHEN’S d

Proportion can be >1 0.8 0.8 0.55 1.1 0.1 0.86 0.07 2.8

Proportion can be >1 −0.8 −0.8 −0.55 1.1 0.29 0.87 0.2 1

Proportion can be >1 0.8 −0.8 0 1.1 0.1 0.87 0.2 1.45

Proportion can be >1 −0.8 0.8 0 1.2 0.29 0.86 0.07 1.61

Max proportion is 1.0 0.8 0.8 0.55 0.75 0.06 0.63 0.05 2.17

Max proportion is 1.0 −0.8 −0.8 −0.55 0.76 0.17 0.64 0.13 0.79

Max proportion is 1.0 0.8 −0.8 0 0.75 0.06 0.64 0.13 1.09

Max proportion is 1.0 −0.8 0.8 0 0.76 0.17 0.63 0.05 1.04  

Table 5.1
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improve readers’ understanding of what was done and the ramifica-
tions of the results.

Because we have shown that the consequences of violating the 
assumptions for rate are identical to those of doing so for other propor-
tions, the next demonstration study was done only for rate. In the first 
demonstration study, there were no count differences between groups. 
This time we created data that would seem to favor one group if number 
was the metric used and would favor the other group if rate was the metric 
used. Specifically, the standardized difference between groups for num-
ber was –1.9, a very large effect size, favoring the control group. But when 
rate was the metric used, the standardized difference between groups 
favors the experimental group because the duration (i.e., the denominator 
for rate) was shorter in the experimental group. When the correlations of 
duration and number were positive (.8) in the control and experimental 
groups, the standardized mean between-group difference in rate was d = 
.42 (a small to moderate effect size). Because of the way we labeled the 
groups, the direction of the difference in rate favors the experimental 
group. Remember that if number is used as the metric, the difference 
favors the control group (by a great deal). Obviously, the computer does 
not understand group labels. We could just as easily have labeled the group 
with the higher mean number metric the experimental group and labeled 
the group with the higher mean rate metric (i.e., the shortest duration) the 
control group. Table 5.2 presents the results. The pattern of the effect sizes 
is similar to that provided in Table 5.1. Again, the effect size for between-
group differences in rate is largest when the assumption for the propor-
tion metric is met for both groups (i.e., the correlation between numerator 
and denominator is positive and strong). The effect size is smaller for rate 
when the assumption is violated in at least one group.

It is clear from these demonstration trials that at least three factors 
influence validity of proportion metrics: (a) which group’s numerator 
(e.g., number) is higher, (b) which group’s denominator (e.g., duration) is 
higher, and (c) whether the within-group correlation between numerator 
and denominator is positive and strong within both groups. The same is 
logically true for between-phase differences in single-subject designs. 
Future simulation studies are needed to specify these conditions in a 
more precise manner. However, it is clear that there are data patterns in 
which both the direction (i.e., which group or phase is superior) and mag-
nitude (i.e., the amount of between-group difference) of group and phase 
differences will be quite different depending on whether rate or number 
is used and depending on whether the assumption for proportions is met. 
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RESULTS OF DEMONSTRATION SIMULATION STUDY ON RATE METRICS WHEN NUMBER IS LARGER IN THE CONTROL GROUP 
(d = 1.9) AND DURATION IS SHORTER IN THE EXPERIMENTAL GROUP (d = 1.9)

r FOR ASSOCIATION BETWEEN DURATION AND NUMBER EXPERIMENTAL 
GROUP CONTROL GROUP

WITHIN EXPERIMENTAL 
GROUP

WITHIN CONTROL 
GROUP

ACROSS 
GROUPS MEAN SD MEAN SD COHEN’S d

0.8 0.8 0.91 1.19 0.11 1.15 0.08 0.42

−0.8 −0.8 .154 1.22 0.31 1.16 0.23 .22

0.8 −0.8 .53 1.19 0.11 1.16 0.23 .17

−0.8 0.8 .53 1.22 0.31 1.15 0.08 .31

Table 5.2  
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On the basis of these initial results, it is our opinion that there are likely 
situations in which it makes more sense to use number than a proportion 
metric, even when the values in the denominator of the proportion vary 
across sessions or participants.

ALTERNATIVE METHODS TO CONTROL NUISANCE VARIABLES

Statistical Control

When using a group research design, an investigator may choose to con-
trol for nuisance influential variables such as duration of the session 
or opportunities to respond using a statistical method (e.g., analysis of 
covariance). Although it is beyond the scope of this book to discuss such 
methods in detail, they generally involve a process that is analogous to a 
two-step analysis: (a) derive the residuals of the association between the 
dependent variable and the covariate and (b) use these residuals as the 
dependent variable in the analysis to test the research question. In this 
context, residuals are equal to the predicted number of instances of the 
key behavior minus the observed number of instances of the key behavior. 
Just as meeting the assumption of the method of control for one group 
but not for another is problematic for proportion metrics, analysis of 
covariance requires that the relation between the nuisance variable and 
dependent variable is not statistically different between groups. If there 
is a significantly stronger relation in one group than in another, we have 
violated an assumption of the statistical procedure that controls for the 
nuisance variable (i.e., the assumption of homogeneity of covariance).

If the assumption of homogeneity of covariance is met, then using 
such a statistical method to control for nuisance variables is a reasonable 
alternative to using proportion metrics. It can be argued that because sta-
tistical methods of control quantify the degree to which there is a linear 
association between the nuisance variable and the dependent variable, 
instead of assuming a perfect relation, they are superior to proportion 
metrics even when the assumption for the proportion metric is generally 
met (i.e., a positive, albeit imperfect, association between duration and 
number in all groups and across groups).

Procedural Control

There are at least two reasons to consider controlling for nuisance vari-
ables using elements of the measurement system other than metric. First, 
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both statistical control and proportion metrics assume a linear relation-
ship between the key behavior and the nuisance variable. Such a simple 
relation is not always present. Controlling for the nuisance variable using 
elements of the measurement system will alleviate the need for either 
statistical control or proportion metrics. Second, the investigator may 
wish to sidestep the controversy regarding whether a proportion metric 
should be used. This controversy can be avoided if the denominator for 
the proportion being considered is constant across analysis units.

Duration and opportunity-to-respond differences can be con-
trolled by structuring the measurement context. For example, the ses-
sion administrator can provide the same number of opportunities to 
respond and keep sessions the same duration across sessions or partici-
pants. In chapters 1 and 2, we weighed the advantages and disadvantages 
of structuring the measurement context and concluded that there are 
situations in which doing so is very useful. Alternatively, the observer 
can be directed to code the same duration of the session for all sessions 
or participants. Practically, this means shortening the coded section of 
the observation session to the length of the shortest session in the study 
sample. In chapter 4, we considered and discarded this option, however. 
Controlling total behavior directed to a participant when attempting to 
measure individual style using various elements of the measurement sys-
tem is generally not feasible.

TRANSFORMING METRICS OF OBSERVATIONAL VARIABLES IN 
GROUP STATISTICAL ANALYSES

Even though using a proportion or number (i.e., count) in a parametric 
analysis is often acceptable in terms of the assumptions underlying the 
statistical analysis method, doing so without transforming can result in 
loss of statistical power (i.e., an increased probability of Type II errors). 
The scores for a proportion are generally not normally distributed. Many 
parametric analyses are more powerful when the distributions of vari-
ables are approximately normal. This can be seen in Figure 5.2, which 
presents a distribution of scores from .002 to .998 incremented by .002 
for each score.

In group statistical analyses, it is common to transform proportion 
metrics into a scale that better approximates the normal curve. This is 
particularly common when a large proportion of the scores are below 
.25 or above .75. The most common transformation for proportions is 
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the arcsine transformation (Cohen & Cohen, 1984). An Excel spread-
sheet entitled “Arcsine transformation” is provided on the book’s website 
(www.springerpub.com/yoder/supplements). The formula used to trans-
form proportions is provided in the cells under the arcsine column label. 
Those less interested in the exact formula should note that the transfor-
mation involves more than simply taking the arcsine of the proportion. 
Figure 5.3 provides the distribution of the arcsine transformation of the 
proportion values illustrated in Figure 5.2. Comparing the two distri-
butions makes it clear that the arcsine transformation provides a much 
better approximation of the normal curve than does the distribution of 
nontransformed proportion scores.

Similarly, number metrics are also frequently skewed. This is par-
ticularly true when we measure infrequent behaviors, as is commonly 
the case in observational research. In such cases, the distribution tends 
to be positively skewed (i.e., there are more cases on the left side of the 
distribution than on the right side of the distribution). One of the most 
commonly used transformations for variables with number metrics is 
the square root transformation (Cohen, Cohen, West, & Aiken, 2002). It 
should be noted that taking the square root of 0 and 1 does not change 
these values. Therefore, to treat 0 and 1 the same as other count values, 
we need to add 2 to each value before taking the square root (i.e., square 
root of [y + 2]). Doing so generally equalizes the variance, reduces skew, 
and linearizes relations with other variables (Cohen et al., 2002).
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Figure 5.2 Illustration of a 
 distribution of proportion scores 
from .002 to .998 incremented 
by .002.
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A discussion of transformations would not be complete without 
acknowledging that some investigators prefer not to transform scores 
because doing so reduces the clarity of communication and complicates 
interpretation of results. Next we discuss the scale of measurement of 
observational metrics, including transformed ones.

SCALES OF MEASUREMENT FOR OBSERVATIONAL VARIABLES

In our opinion, there is a long history of mislabeling observational vari-
ables as “nominal,” probably because the act of coding what we are mea-
suring is a nominal decision (Stevens, 1951). However, the metrics, and 
thus the object to which scales of measurement should be applied, for 
observational variables are most commonly a number metric (i.e., count), 
a time metric, a spatial metric, or a proportion metric. None of these is 
a nominal scale.

Using a modification of the classic questions used to identify scales of 
measurement, one can identify the measurement scale of observational 
variables (Bakeman, 2000). The questions are as follows:

I “Are intervals between values on the scale ordered?”
A If no, then the metric is nominal.
B If yes, then ask, “Are the intervals between values on the scale 

equivalent?”
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1 If no, then the metric is ordinal.
2 If yes, then ask, “Does zero indicate that none of the quan-

tifiable dimension occurred?”
 i If not, then the metric is interval (e.g., zero degrees 

does not indicate no temperature).
ii If yes, then the metric is ratio.

If we use these questions to guide us, it becomes clear that variables with 
any of the metrics we have discussed are at least ordinal scales. Clearly, 
each of the metrics we have discussed has a zero score that indicates none 
of the quantifiable dimension. The key question is whether the inter-
vals between values indicate the same amount of the dimension being 
measured. Regarding the scale of measurement for variables with non-
proportion metrics (e.g., number), the scale depends on whether one is 
measuring a context-dependent behavior or a generalized characteristic.

When context-dependent behaviors are measured, it is easy to argue 
that the answer is yes: The difference between intervals on scales is equal 
regardless of where on the scale one looks. For example, the difference 
between 1 and 2 is the same as the difference between 9 and 10 (i.e., 1). 
This matches the idemnotic concept of measurement because the units 
of measurement have the same meaning regardless of where they occur 
on the scale. Therefore, when nonproportion metrics (e.g., number, dura-
tion) are used to measure context-dependent behaviors, the scale of mea-
surement is a ratio scale.

When nonproportion metrics are applied to quantifying dimensions 
of behavior that are thought to be signs of a generalized characteristic, 
it is doubtful that the amount of generalized characteristic represented 
by the interval between values at the beginning of the scale equals that 
represented by the interval between values at the middle of the scale. 
With regard to whether a child tends to be aggressive, it is more mean-
ingful to note that a child changes from 1 to 0 hits than it is to note that 
a child changes from 50 to 49 hits. Therefore, it is recommended that 
one consider nonproportion metrics for variables intended to represent 
generalized characteristics as ordinal scales.

When we are dealing with proportions, the scale is clearly ordinal. 
The difference between .01 and .05 is “more important” than the differ-
ence between .48 and .52, even though both intervals are separated by 
.04. The former is a 400% increase. The latter is an 8% increase.

Finally, all transformations of observational metrics (e.g., number or 
proportion) should be considered ordinal scales. That is, the intervals 
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between transformed scales of number or proportion are, by defini-
tion, not equal, because the transformation normalizes distributions by 
changing the interval between values on the original scale (i.e., number 
or proportion) at the extreme of the original distribution of scores.

OBSERVATIONAL VARIABLES IN PARAMETRIC ANALYSES

It is useful to discuss the scale of measurement for observational variables 
because of the long history of assertions that group parametric statistical 
procedures should not be used with variables that have ordinal status 
(e.g., Stevens, 1951). This is not necessarily the case. Simulation studies 
have shown that most statistical procedures are robust to violations of 
measurement scale assumptions (Harris, 2001). The reason is that sta-
tistical procedures cannot tell whether the numbers in the data set are 
ordinal, interval, or ratio. If transformations of variables that originally 
had number or proportion metrics results in normalizing the distribution 
of residuals and one simply wants to speak to the statistical significance 
of associations, differences or change, as opposed to some more precise 
prediction of particular values, then parametric statistical results from 
ordinal-scaled data are interpretable.

RECOMMENDATIONS

We recommend using the metric that best fits the theory underlying the 
research question, assuming that the assumptions of the metric are met. 
It should now be clear that there are instances in which automatically 
converting number to proportion may not be necessary. By discussing a 
critical assumption underlying proportion metrics (i.e., a positive linear 
relation between the numerator and denominator), we wanted to make 
readers aware that there are instances in which using proportion met-
rics when this assumption is not met can result in Type I and Type II 
errors. We are not suggesting that proportion metrics should be avoided. 
Instead, we hope that this chapter has demonstrated the value of the 
conditional use of proportion metrics when the key assumption underly-
ing proportions has been met. Regardless of whether the original met-
ric is a proportion, transformations of the original metric may increase 
the statistical power of a group analysis for the observational variable of 
interest. Finally, we see no reason that observational variables cannot 
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generally be used in parametric analyses provided general statements 
about the presence of associations, group differences, or changes are the 
goal of the research.
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6 Introduction to Sequential Analysis

OVERVIEW

Examining the sequence of behaviors within an observation session 
to infer whether the occurrence of one behavior is associated with the 
immediate or subsequent occurrence of another behavior is referred 
to as sequential analysis. Specifically, sequential analysis is concerned 
with the sequential or simultaneous occurrence of coded behaviors or of 
seconds or intervals in which a coded behavior has occurred within an 
observation session. The overall purpose of this chapter is to distinguish 
between sequential and nonsequential variables, to discuss the impor-
tant and frequently misunderstood issue of exhaustive coding spaces 
(which is assumed by sequential analysis), to describe three major types 
of sequential analysis, to review contingency table construction, and to 
discuss issues concerning a common metrics used in sequential analysis 
(transitional probabilities).

We devote two chapters to sequential analyses because although 
it is an intuitively appealing approach, there are many common errors 
that can occur including (a) using event-lag sequential analysis when 
time-window analysis would be better, (b) using sequential analysis 
for sequences in which the target behavior can “only” occur after the 
proposed antecedent behavior, (c) using transitional probabilities when 
another index of sequential association would be better, and (d) trying to 
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use sequential analysis for sequences that do not occur “enough” during 
the session to accurately estimate chance sequencing. This chapter will 
address the first two of these issues and chapter 7 will address the last 
two issues. Chapters 6 and 7 are written for the analysis of two-event 
sequences. Analyzing longer event sequences involve more complicated 
methods and are beyond the scope of the two chapters.

DEFINITIONS OF TERMS USED IN THIS CHAPTER

The following terms will be consistently employed here and in chapter 7 
(see Yoder & Feurer, 2000, for more detailed definitions). To help us 
discuss the sequence of interest, we will call the hypothesized causal 
behavior, the hypothesized prompt, or hypothesized discriminative stim-
ulus the antecedent behavior (sometimes referred to, in other sources, as 
the given behavior). The target behavior is the behavior hypothesized to 
be affected by the antecedent.

For example, when asking whether there is a sequential association 
between student–teacher instruction preceding student topic-continuing 
utterance, teacher instruction is the antecedent behavior and student 
topic-continuing utterance is the target behavior. A certain number of 
antecedent-preceding target behavior sequences will occur by chance. 
Therefore, to correctly interpret an index of sequential association, we 
need some quantification of the chance occurrence of the sequence of 
interest. We will call this value the estimate of chance occurrences of 
the sequence. Conceptually, a sequential association occurs when the 
antecedent precedes target behavior more or less often than would be 
estimated to occur by chance. An index of sequential association is a 
numeric expression for the sign (i.e., positive vs. negative) and magnitude 
of the sequential association.

SEQUENTIAL VERSUS NONSEQUENTIAL VARIABLES

The types of research questions that are appropriately addressed by 
sequential analysis are clarified by understanding the difference between 
nonsequential and sequential variables (Yoder, Short-Meyerson, & Tapp, 
2004). To aid this discussion, suppose we hypothesize that teacher 
instructions have an immediate effect on student topic-continuing utter-
ances. Before conducting an expensive experiment to determine whether 
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increasing instructions results in greater student topic-continuing utter-
ances, we might first want to test whether there is a close temporal 
association between teacher instruction and student topic-continuing 
utterances.

An approach that uses nonsequential variables to address this ques-
tion might test whether there is a positive correlation between the total 
number of teacher instructions and the total number of student topic-
continuing utterances. These two variables are nonsequential variables 
because each concerns only one behavior and neither variable expresses 
anything about the sequence of teacher instruction and student topic-
continuing utterances within a particular session.

Testing the same hypothesis with sequential variables in a group 
design, one might test whether the extent to which a topic-continuing 
utterance occurred immediately after a teacher instruction was greater 
than one would expect by chance for the majority of teachers and stu-
dents. The aspect of our theory that predicts that teacher instruction 
has an immediate effect on topic-continuing utterance is reflected in our 
choice of a sequential level variable.

The main point is that sequential variables reflect a very specific 
and close temporal association within an observation session. That is, 
the sequential variable quantifies the extent to which the target behav-
ior (e.g., topic-continuing utterance) occurs within a specified number 
of coded behaviors or time units from the antecedent behavior (e.g., 
teacher instruction). The reader should note that sequential analysis 
requires specification of the time period (e.g., within 5 s) or the number 
of coded behaviors (e.g., the next coded behavior) from the antecedent 
behavior. Because sequential variables require the investigator to predict 
the number of behaviors after which, or the time window in which, the 
target behavior will occur after the antecedent behavior, very specific 
temporal relations can be tested. The degree of specificity implicit in 
sequential variables reduces the number of alternative explanations for 
the association of interest.

SEQUENTIAL ASSOCIATIONS ARE NOT SUFFICIENT EVIDENCE 
FOR CAUSAL INFERENCES

Statistically significant or large sequential associations do not necessarily 
mean that the antecedent behavior caused the target behavior to occur 
(Yoder et al., 2004). Similar to other indices of association, indices of 
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sequential association can be high because of some previously occurring 
or simultaneously occurring behavior (i.e., a spurious association). For 
example, student topic-continuing utterances may stimulate the teacher 
to provide instructions in an attempt to inquire about the student’s topic 
of interest and the student who has been engaging in topic-continuing 
utterances may continue doing so. Such a pattern would produce a large 
positive sequential association between teacher instruction and student 
topic-continuing utterance, but the direction of effect would be from the 
student to the teacher, not vice versa.

CODED UNITS AND EXHAUSTIVENESS

All sequential analyses require an exhaustive coding space. The con-
cept of a “coded unit” is very helpful to understand when discussing 
an important observational measurement system concept known as 
“exhaustiveness.” By a coded unit, we mean the entity that the observer 
identifies and (perhaps) classifies. When we are deriving number using 
event sampling, the coded unit is the behavior. When we are deriving 
duration using timed-event behavior sampling or we are using an inter-
val sampling method, the coded unit is a time unit that is assigned to a 
behavior’s presence or absence. In the case of duration from timed-event 
behavior sampling, the coded time unit is often seconds. In all interval 
coding methods, the coded time unit is the interval.

Exhaustive coding means that the record includes all “relevant” 
units that occurred in the observation session. Sessions are exhaus-
tively coded when the observer uses a continuous timed-event behavior 
sampling method and duration is the derived metric, or when inter-
val sampling in which all intervals are observed. In the former case, 
all seconds in the observation session are included in the sequential 
analyses and we ask whether observers agree on the coding of all sec-
onds (see chapter 8). Similarly, in the latter case, all intervals in the 
observation session are included in the sequential analyses and we 
ask whether observers agree on the coding of all intervals. When this 
occurs, we say that we have an exhaustively coded observation session. 
Without meeting this assumption, the results of sequential analysis are 
uninterpretable.

In terms of sampling methods, almost all continuous or intermit-
tent event sampling and almost all continuous timed-event sampling 
in which number is derived do not produce exhaustive coding of an 
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observation session. Unfortunately, there is a common, but ill-advised, 
approach to try to create exhaustive sessions from continuous or inter-
mittent event sampling. This is the use of an “other” (i.e., trashcan) cat-
egory and code “all” unanalyzed behaviors in this category to make the 
coding exhaustive.

There are two reasons why, no matter how large the “other” category, 
using an “other” category does not really solve the problem. First, the 
observer will not be a perfect recorder of all occurrences of the behavior 
classes indicated in the coding manual. Second, the coding manual will 
not necessarily include all important behavior classes because present 
knowledge regarding potential members of any given behavior class of 
interest is limited. Determining which behaviors constitute an example 
of a “relevant” behavior is difficult to define because “relevancy” varies 
by topic area. For example, when we are examining the antecedents and 
consequences of aggressive behavior, the relevant behaviors are all poten-
tial antecedents and all potential consequences of all potentially classifi-
able aggressive behavior. If we do not include all potential antecedents, 
consequences, and examples of aggressive behavior, then estimates of 
agreement or sequential association among these classes will be incor-
rect. The math of estimates of chance (such as that used in sequential 
analysis and certain indices of interobserver agreement) requires that we 
quantify the total number of coded units (e.g., events) as a context (e.g., 
denominator) for interpreting the number of other behaviors. When time 
units (e.g., seconds or intervals) are the coded units, the total number of 
time units is the context against which the number of time units with 
the key behavior is interpreted. The same cannot usually be said when 
events are the coded unit.

This is not to say that continuous event coding is never useful as 
the basis for sequential analysis. There are situations in which the class 
of behaviors that are considered “relevant” is not in question and when 
observers are able to code the presence of all relevant behaviors with 
very high accuracy.

For example, transcriptions of conversations can provide a nearly 
exhaustive account of the spoken utterances in the conversation, particu-
larly if the speakers are intelligible, the conversation is recorded, and the 
coding decision recording method allows stop-and-go transcription. In 
this case, the presence of an utterance can be identified with nearly per-
fect reliability. In another type of example, sequential analyses are even 
more likely to be accurate than if the number of events is preplanned and 
the plan is followed exactly. For example, if we are measuring children’s 
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approach behavior after a planned, unfamiliar event and planned adult 
message about the event (i.e., a social referencing task), the adult’s message 
about unfamiliar events and the child’s approach behavior are behaviors 
that can be coded in an exhaustive way using continuous event sampling, 
assuming there is 100% fidelity of administering the instructions.

THREE MAJOR TYPES OF SEQUENTIAL ANALYSIS

The three types of sequential analysis are defined by how the immediate 
temporal relation between potential antecedent and the target behaviors 
is tested (Yoder et al., 2004). Immediacy is usually defined by a specified 
number of coded units between antecedent and target behaviors. The 
type of coded unit varies among the three types of sequential analysis. 
One may ask whether topic-continuing utterances follow teacher instruc-
tion by (a) a specified number of behaviors (event-lag sequential analysis), 
(b) a specified number of time units (e.g., seconds; i.e., time-lag sequen-
tial analysis), or (c) within a specific time window (e.g., within 5 s; time-
window sequential analysis). In addition, finer distinctions can be made 
within each of the above three types by referring to (a) the direction of 
the analysis (i.e., forward, backward, concurrent) and (b) the number of 
coded units from the antecedent that the target is expected to occur 
(i.e., lags). One can designate both by assigning a sign to a lag number. 
For example, lag 1 means that the target is expected to occur exactly 
one behavior after the antecedent (i.e., a positive sign indicates a for-
ward analysis). Lag −1 means that the target is expected to occur exactly 
one coded unit prior to the “antecedent.” Lag 0 means that the target is 
expected to occur during the same coded unit as the “antecedent.” In 
reality, only certain combinations of these types of sequential analyses 
tend to be used or useful. For example, we will posit in this chapter that 
backward sequential analysis is rarely, if ever, a better choice than for-
ward sequential analysis. In our ongoing example of the sequential rela-
tion between “teacher instruction” and “topic-continuing utterances,” the 
following sections review each of the three different sequential analysis 
types.

Event-Lag Sequential Analysis

Event-lag sequential analysis might be used to test whether the extent to 
which student topic-continuing utterances follow teacher instruction is 
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more than expected by chance. The coded units in event-lag sequential 
analyses are behaviors or other events. The behavior sampling methods 
used to generate these coded units are either event or timed-event behav-
ior sampling methods in which only the onset of the behavior is consid-
ered relevant. We have mentioned that very few event behavior sampling 
or timed-event behavior sampling methods using only frequency metrics 
can legitimately claim to include “all relevant behaviors.”

For example, we conducted a sequential analysis of parent and child 
verbal conversations in which each spoken utterance was coded and 
analyzed to determine which type of parent utterance had the strongest 
sequential association with child conversational participation (Yoder, 
Davies, & Bishop, 1994). We implicitly claimed that the relevant behav-
iors were adult and child utterances in the observation session. However, 
because child utterances are not always intelligible, segmenting or sepa-
rating the child utterances in the same conversational turn was not pos-
sible to accomplish with nearly 100% accuracy. Most event sequential 
analyses have an even more difficult problem. For example, it is not 
clear what the complete set of relevant behaviors might be when test-
ing whether teacher instruction elicits student self-injury. Later, it will 
become apparent that our definition of the “relevant” behaviors to code 
is extremely important in estimating the chance sequential occurrence 
of the antecedent and target behaviors. Uncertainty about what consti-
tutes the complete set of relevant behaviors is probably one reason why 
time-lag sequential analysis was created.

Time-Lag Sequential Analysis

A time-lag sequential analysis might test whether the onset of student 
topic-continuing utterance occurs exactly 1 s after the onset of teacher 
instruction more than is expected by chance. Timed-event sampling and 
interval coding behavior sampling methods are used to generate data for 
such analyses and the time unit (e.g., second or interval) is the coded unit. 
These analyses do typically meet the assumption of an exhaustive coding 
space because all relevant units are included in the analysis. Additionally, 
it is quite acceptable to code only the potential antecedent of interest 
and the target behavior of interest. For example, we might code an hour-
long behavior sample for the time of onset of teacher instruction and 
the time of onset of topic-continuing utterance or we might code the 
intervals in which teacher instruction and/or topic-continuing utterance 
occur. Therefore, time-lag sequential analysis enables us to circumvent 
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the problem of having to define all of the behaviors that should be con-
sidered “relevant to code.” Later in the chapter, it will become appar-
ent why all time units within the behavior sample are considered to 
determine whether topic-continuing utterance occurred after teacher 
instruction more than expected by chance. However, time-lag sequential 
analyses using timed-event data are extremely demanding because they 
require precise predictions regarding the exact number of time units 
(e.g., seconds) the investigator expects the target to occur after the ante-
cedent. Therefore, it is more common to see interval data used for time-
lag sequential analysis or to see concurrent analyses using timed-event 
data. Most of our research questions are not supported by sufficiently 
specific theory or knowledge to allow such precise predictions. This is 
probably why time-window sequential analysis was invented.

Time-Window Sequential Analysis

A time-window sequential analysis might test whether the onset of stu-
dent topic-continuing utterance occurs within a specific time window 
(e.g., 5 s) from the onset of teacher instruction. When conducting a 
sequential analysis, timed-event behavior sampling is usually best ana-
lyzed with time-window analysis. The coded unit is the time unit (e.g., 
seconds). As in time-lag sequential analysis, the assumption of an exhaus-
tive coding space is easily met because all time units are included in 
the analysis. That is, because a timed-event behavior sampling method 
is used, each time unit is coded for presence and type of a behavior of 
interest. This circumvents the problem of having to justify that all “rele-
vant behaviors” are included in the analysis because the coded unit is 
a time unit, not behavior. However, the way the data are organized for 
analysis alters how chance is estimated in an important way that will 
become apparent when we discuss “contingency tables.”

Note that the time-window lag sequential analysis allows less preci-
sion than the time or event-lag sequential analysis in the prediction of the 
exact number of coded units that the target (e.g., topic-continuing utter-
ance) is expected to occur after the antecedent (e.g., teacher instruction). 
Therefore, time-window sequential analysis matches the complexity of 
human behavior and our limited state of knowledge of human interac-
tions better than time- or event-lag sequential analysis (Yoder & Tapp, 
2004). The “proper” duration of the time window is an empirical and 
theoretical matter. Because such information is generally unavailable, 
it is presently largely arbitrary. However, shorter windows (e.g., 5 s) are 
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more common than larger windows (e.g., 1 min). The time-window 
sequential analysis was first introduced to the literature by Bakeman and 
Quera in 1995. In our opinion, time-window sequential analysis is likely 
to become the favored of the three methods as it becomes better known 
to investigators.

THE NEED TO “CONTROL FOR CHANCE”

Sequential frequency (i.e., the number of times the target follows the 
antecedent behavior) has been considered and discarded as a measure 
of sequential association because it does not control for chance occur-
rences of the sequence of interest (Bakeman & Gottman, 1997). An 
example of sequential frequency is the number of times the child’s topic-
continuing utterances occurred after the adult’s questions. Suppose that 
two children, Joe and Lisa, continued the topic after the adult questions 
5 times and 10 times, respectively, in a given period. Suppose further 
that the adult interacting with Joe used 10 questions and the adult inter-
acting with Lisa used 20 questions. Even though Lisa’s sequential fre-
quency is twice that of Joe’s, it is not clear what this means in terms of 
a sequential association between child talk and adult questions because 
Lisa’s adult provided twice as many opportunities for the sequence of 
interest. This illustrates that the rate of occurrence of the antecedent, 
in this case adult questions, needs to be taken into account to know 
whether a sequential association between antecedent and target behav-
iors exists. Later in the chapter, we will show that dividing the sequen-
tial frequency by the base rate of the antecedent (i.e., the transitional 
probability) does not allow proper interpretation either because it is also 
influenced by chance.

It should be noted that the notion of “chance” or “probability” is not 
universally accepted as a scientifically useful concept because, as the 
argument goes, chance has multiple definitions (Johnston & Pennypacker, 
1993). Despite this perspective, many have indicated that chance or 
probability is an essential concept for understanding sequential analysis 
(Bakeman & Gottman, 1997). As it applies to sequential analysis, one use-
ful conceptual definition of a chance estimate of the sequential occur-
rence of behaviors is the mean sequential frequency out of a large number 
(e.g., 1,000) random sequencings of several (e.g., 4) types of behaviors (2 
types are the target and the antecedent) that occur a specified number of 
times. At least one simulation study has shown that such a definition for 
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a chance estimate of the sequential frequency is a remarkably accurate 
estimate of chance sequencing (Bakeman, Robinson, & Quera, 1996).

This commonly accepted estimate of chance occurrence of a 
sequence is computed from the base rates of both the antecedent and 
the target behaviors. For example, one index of sequential association 
estimates chance as the following: (simple probability of target) × (sim-
ple probability of antecedent) × (total number of behaviors) (Bakeman & 
Gottman, 1997). The reason simple probability is used for the target and 
antecedent behaviors in the formula is that the number of times a behav-
ior occurs often has more meaning in the context of knowing how long 
the subject is observed or how many instances of other coded behaviors 
occurred in the session.

For example, if a topic-continuing utterance occurs 2 times out of 
1,000 coded child behaviors, it means something quite different from 
2 out of 5 coded child behaviors. Therefore, we quantify the extent to 
which the target behavior occurs in terms of probabilities, not frequency. 
A “simple probability” in event-lag sequential analysis is the number of 
times a behavior occurs divided by the total number of coded behaviors 
in the behavior sample. For example, if we have 100 utterances in a con-
versation and 20 of these are child topic-continuing utterances (i.e., 0.2) 
and 20 are adult questions (i.e., 0.2), the chance estimate of the adult 
question – child continuing utterance sequence is (0.2) × (0.2) × (100) = 4. 
Therefore, a sequential frequency of 5 is greater than one would expect 
by chance, but not by much.

Note the importance of the total number of behaviors in this for-
mula. If this “total of all relevant behaviors” is not accurate, we will 
not compute chance correctly. A 2 × 2 contingency table is useful in 
organizing sequential data because such a table clarifies whether the 
estimate of chance occurrence of the sequence of interest really consid-
ers all of the instances of the antecedent and target behaviors. Before 
discussing contingency tables, however, we introduce and discuss two 
primary ways that data are represented prior to their tallying into con-
tingency tables.

HOW SEQUENTIAL DATA ARE REPRESENTED PRIOR TO 
CONTINGENCY TABLE ORGANIZATION

We have mentioned that behaviors or time units are the coded units that 
are analyzed in sequential analysis. For two-event sequences, these may 
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be represented in a single stream of behaviors (for behaviors that never 
or almost never co-occur) or in two (or more) streams of behaviors (for 
behaviors that co-occur regularly). During the coding phase of data col-
lection, separate streams of coded units may represent the behavior or 
time units for different actors or they may represent different dimensions 
of the situation (e.g., classroom activity type vs. child behavior). Using the 
terms used in the ProcoderDV software (provided at www.springerpub
.com/yoder/supplements), separate streams of behaviors can be repre-
sented as different “groups” in the ProcoderDV “code file” (see the exer-
cise manual in chapter 4).

When considering timed-event sampled data, one must decide 
whether to analyze the duration of behaviors. It is possible to “sample” 
the onset and offset of behavior but still only “analyze” the onset. Imagine 
that “1” represents occurrence of the behavior in a time unit and that “0” 
represents nonoccurrence of the behavior in a time unit. One can ignore 
or not analyze the duration of behavior by converting the nononset time 
units to nonoccurrence values. The ProcoderDV software introduced in 
chapter 4 is one example of software (see Bakeman & Quera, 1995, for 
another) that will do this and its application to sequential analysis will 
be covered briefly in chapter 7. See Table 6.1 for an illustration of how 
the ProcoderDV software transforms timed-event sampled data that 
recorded both onset and offset of behaviors to data where only offset is 
represented for analysis.

CONTINGENCY TABLES

In the sequential analysis literature, a contingency table is frequently 
used to illustrate how raw sequential data are organized to compute the 
index of sequential association (Bakeman & Gottman, 1997). Although 
there are more complex contingency tables, we present the simplest case 
to illustrate the principles used to construct a proper contingency table 
for sequential analysis and to prepare the way to discuss two indices of 
sequential association: transitional probabilities and Yule’s Q. Because 
misconstruction of contingency tables is one of the most common errors 
in published sequential analyses, three methods of proper construction 
of 2 × 2 tables will be covered in detail. The most important thing to 
remember about 2 × 2 contingency table construction is that all instances 
of the antecedent, all instances of the target, and all coded units are rep-
resented exactly once in the table. The method of tallying and labeling of 

www.springerpub.com/yoder/supplements
www.springerpub.com/yoder/supplements
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the columns and rows differ depending on whether the analysis that will 
follow is (a) a concurrent analysis of two streams of data, (b) an event-lag 
sequential of a single stream in which an instance of a behavior type 
can and does occur after another instance of the same behavior type 
(i.e., repeats), or (c) a time-window sequential analysis of two streams 
of data.

ILLUSTRATION OF HOW SOFTWARE CAN CONVERT DURATION TO ONSET IN 
TWO-STREAM DATA

SECONDS

ORIGINAL DATA

DATA REPRESENTATION 
AFTER THE SOFTWARE 
CONVERTS NONONSET 

SECONDS TO ABSENCE OF 
ONSET

TEACHER 
BEHAVIOR

STUDENT 
BEHAVIOR

TEACHER 
BEHAVIOR

STUDENT 
BEHAVIOR

00:01 0 0 0 0

00:02 1 0 1 0

00:03 1a 0 0 0

00:04 1 1 0 1

00:04 0 1 0 0

00:05 0 1 0 0

00:06 0 0 0 0

00:07 1 1 1 1

00:08 1 1 0 0

00:09 1 0 0 0

00:10 0 0 0 0

00:11 0 0 0 0

aWhen “1” occurs immediately after “1,” it represents a continuation of the same instance of 
the key behavior whose onset is indicated by a “1” that is preceded by a “0.”

Table 6.1
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Proper 2 × 2 Contingency Table Construction of Two Streams 
of Data for Concurrent Analysis

The simplest way to conceptualize tallying pairs of coded units into a 
2 ×2 table is to think about two streams of time units (e.g., intervals) that 
represent an exhaustive coding space of two behaviors: an antecedent (or 
not in one stream) and a target (or not in the other stream). The “pair” 
of coded units that is tallied is the presence or absence of two behaviors 
within the same time unit. For example, if there are hundred 10-s inter-
vals in the observation session, then each interval is coded presence (1) 
or absence (0) for the antecedent in one ProcoderDV “group” and pres-
ence (1) or absence (0) for the target in another ProcoderDV “group.” A 
convention in the sequential analysis literature is for columns to be used 
for coded units conceptualized as the target and rows to be used for 
coded units conceptualized as the antecedent. Another convention is for 
the first column to represent the target as present and for the first row 
to represent the antecedent as present. A third convention is for the cells 
to be labeled A, B, C, and D, moving from the upper left to upper right 
and then from the lower left to lower right cells, respectively. Therefore, 
the instances of the sequence of interest are tallied in the A cell. Its total 
(i.e., the number of tallies) is the observed sequential frequency.

Proper 2 × 2 Contingency Table Construction From One Stream 
of Data for Event-Lag Sequential Analysis

This method of 2 × 2 contingency table construction is complex and 
subject to error. Therefore, we cover it in detail. The proper 2 × 2 con-
tingency table for this situation is indicated in Figure 6.1. Readers are 
strongly recommended to carefully read the general procedure by which 
pairs of behaviors are tallied into the cells of the 2 × 2 table.

The convention used in the sequential analysis literature is applied to 
this situation such that the rows are used to categorize each pair of behav-
iors according to whether or not the antecedent behavior is the first behavior 
in the pair and to use the columns to categorize the same pair of behaviors 
according to whether the target behavior is the second behavior in the pair. 
That is, except for the first and last, all coded behaviors are represented 
in both the rows and all the columns. The cell labels (A–D) for the four 
cells in the 2 × 2 table in Figure 6.1 should be noted. Particularly notewor-
thy is cell D (i.e., the cell in which nontarget behaviors follow nonanteced-
ent behaviors). If the definition of “relevant” behavior is not accurate, then 
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Coded Behavior Pair Cell Address

Sequence

B
Other teacher talk

Teacher instruction

D
Student other talk

C
Student topic-continuing

utterances D

Teacher instruction

B
Student other talk

D
Other teacher talk

C
Student topic-continuing utterances

D
Teacher instruction

A
Student topic-continuing utterances

D
Other teacher talk

Time Tally

Thes

Table A

e pairs of behaviors are tallied into a 2 x 2 table as follows:

Behavior II

Student 
topic-continuing
utterances

Not topic-
continuing 
utterances 
(teacher talk or 
other student talk)

Total for rows

Behavior I Teacher
instruction

1 pair 2 pairs 3 pairs
A B

Not teacher 
instruction (other 
teacher talk or 
student behavior)

2 pairs 5 pairs 7 pairs
C D

Total for columns 3 pairs 7 pairs Total of 10 
observed pairs*

*These data are presented for illustrative purposes only.

Figure 6.1 Illustration of tallying behavior pairs into a 2 × 2 table for a forward event-
lag sequential analysis.
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the count in this cell will be “too low” and the estimate of chance occur-
rences of target behaviors after antecedents will be inaccurate. We call this 
the “D-cell problem.” It is specific to event-lag sequential analysis.

In Figure 6.1, each behavior pair is labeled using the label for the cell 
into which it is tallied. It should be noted that behavior pairs are tallied 
into the 2 × 2 table in such a way that one behavior pair “overlaps” with 
the following behavior pair. That is, except for the first and last behaviors, 
each behavior is considered both a “first behavior” and a “second behav-
ior” (i.e., the second behavior in one behavior pair is the first behavior in 
the next behavior pair). It has been demonstrated empirically that there 
are no disadvantages to using overlapping pairs of behavior (Bakeman & 
Dorval, 1989). A happy consequence of using overlapping behavior pairs 
is a doubling of number of tallies in the 2 × 2 table compared to what one 
would have if nonoverlapping pairs were tallied. As will be discussed in 
chapter 7, the number of tallies in the 2 × 2 table has important implica-
tions for the interpretability of sequential associations. We refer to the 2 × 
2 table in Figure 6.1 as “Table A.”

When the antecedent and target behaviors come from different peo-
ple or participants, and the data are analyzed in an event-lag sequen-
tial analysis, a controversy exists concerning how to construct the 2 × 2 
table. Some researchers have constructed 2 × 2 tables in which one per-
son’s behavior is tallied on the rows and the other person’s behavior is 
tallied on the columns (Rocissano, Slade, & Lynch, 1987; Wampold & 
Kim, 1989). This method is illustrated in Table 6.2 and will be called 
“Table B.”

For single-behavior streams in which behaviors cannot follow them-
selves (i.e., repeat) or other coded behaviors from the same actor, the 

ILLUSTRATION OF AN INAPPROPRIATE WAY TO ORGANIZE EVENT-LAG 
SEQUENTIAL DATA FROM A SINGLE DATA STREAM WHEN INSTANCES OF THE 
SAME BEHAVIOR TYPE CAN FOLLOW THEMSELVES

ADULT

STUDENT

TOPIC-CONTINUING UTTERANCE OTHER UTTERANCE TYPE

Teacher instruction A B

Other utterance type C D

Table 6.2
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two types of 2 × 2 tables (represented by Tables A and B) yield exactly 
the same cell tallies. However, in many situations, behaviors can and do 
follow themselves (i.e., repeat). Therefore, to accurately reflect the total 
number of target and antecedent behaviors, not just those that occur in 
the hypothesized position (e.g., B follows A) in the behavior pair, the 
method of tallying behaviors into 2 × 2 tables must provide a cell for all 
instances of the target and antecedent behaviors, including those that 
occur after themselves and after other behaviors from the same actor. 
Failure to do so will result in inaccurate estimates of chance occurrence 
of the sequence of interest because the base rates of the antecedent and 
target behaviors will be inaccurate. For example, in Figure 6.1, the first 
instance of student topic-continuing utterance follows an instance of 
“other student utterances.” In a 2 × 2 table in which only teacher behav-
iors are counted in the first behavior position (as in Table B; Table 6.2), 
there is no place to tally this behavior pair. Next we investigate the con-
sequence of using 2 × 2 tables like Table B when codes can follow them-
selves and other codes from the same actor.

Simulation Study to Compare Results From Two Ways to 
Construct Contingency Tables

We ran a simulation study to illustrate that the type of contingency 
table one constructs matters when instances of the same behavior type 
can follow themselves (Yoder et al., 2004). There were 1,000 streams 
of sequential data in which four behaviors could and did follow them-
selves, all generated from the same set of software commands where the 
true sequential link between behaviors was at chance level (i.e., the null 
condition). The data were tallied into 2 × 2 tables like Tables A and B 
(remember, Table A is based on the behavioral codes whereas Table B 
is based on the person). An index of sequential association (i.e., Yule’s 
Q, which will be covered in chapter 7) was computed for each table for 
each data stream. The range of the difference scores between Yule’s Q 
scores from each table from the same behavior stream was from −.9 to 
1.0, illustrating that the indices of sequential association for Table A were 
sometimes very different from those for Table B (Yule’s Q can take on 
values ranging from −1 to 1).

To determine which table was the best, we focused on those behav-
ior streams for which the difference in sequential association from the 
two different methods of tallying the data into 2 × 2 tables exceeded |.20| 
(n = 505 behavior streams). Chance should produce difference scores in 
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which the recommended table (i.e., A) produces the higher sequential 
association score about half the time. Additionally, because the popu-
lation sequential association was zero, the mean sequential association 
closest to zero is the more accurate way to organize the data. The mean 
sequential association for Table B (mean Yule’s Q = .04; SD = .45) was 
significantly higher than that for Table A (mean Yule’s Q = .0006; SD = 
.24; t = −2.13; p = .03). The mean Yule’s Q for Table A was closer to zero 
than was the mean Q for Table B. Thus, Table A is more accurate than 
Table B.

Contingency Tables for Time-Window Lag Sequential Analysis

One important question in time-window sequential analysis is whether 
the duration of the behavior is to be analyzed. Assuming “enough” coded 
units, empirical results indicate that it does not make a substantive dif-
ference whether duration is analyzed in sequential analysis if the dura-
tions of antecedents and targets are less than 5 s (Yoder & Tapp, 2004). 
When the durations of antecedents or targets are more often more than 
5 s, the following logical decision rules are offered. If longer antecedents 
are thought to have more influence on the target than shorter anteced-
ents, the duration of the antecedent should be analyzed. The duration 
of targets should be analyzed if longer targets are more important than 
shorter targets, and if the antecedent continues to influence the pres-
ence of the target behavior after the target’s onset. Otherwise, analyz-
ing the onset of behaviors better suits the theory behind the research 
question. If one cannot decide because both sides of the argument are 
justifiable, one can do an analysis with and without duration analyzed. 
Analyzing duration does provide more instances of coded units with the 
presence of key behaviors, which in turn increases the base rate for the 
key behaviors, which in turn increases the stability (i.e., replicability) of 
the sequential association.

The reader is referred to Table 6.1 to illustrate how two streams of 
timed-event data in which only onset of the behavior is considered for 
tallying coded units into a 2 × 2 table for time-window analysis. The label 
for the first row of the 2 × 2 table is the primary difference between the 
2 × 2 table in Table 6.3 (onset-only tallying for time- window sequen-
tial analysis) and the table in Figure 6.1 (tallying for event-lag sequential 
analysis). By asking whether a student topic-continuing utterance occurs 
within 5 s of the onset of teacher instruction, we have subtly changed the 
research question to one that is a bit less specific than that which is posed 
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for event- or time-lag sequential analysis. No longer does student topic-
continuing utterance have to occur a specified number of coded behav-
iors or an exact number of seconds after the onset of teacher instruction 
to be tallied in the A cell (i.e., the cell for the sequence of interest).

ILLUSTRATION OF A CONTINGENCY TABLE FOR TIME-WINDOW 
SEQUENTIAL ANALYSIS

TIME OF ONSET TEACHER BEHAVIOR STUDENT BEHAVIOR CELL ADDRESS

00:01 NA NA D

00:02 Instruction NA B

00:03 NA NA B

00:04 NA Topic-continuing 
utterance

A

00:05 NA NA B

00:06 NA NA B

00:07 NA NA D

00:08 NA Topic-continuing 
utterance

C

00:09 Instruction NA B

00:10 NA NA B

00:11 NA NA B

00:12 NA NA B

The Contingency Table

SECOND I

SECOND II

STUDENT TOPIC-CONTINUING 
UTTERANCE OTHER

At or within 5 s of onset 
of teacher instruction 

1 s A B 8 s

Other 1 s C D 2 s

Table 6.3
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It should be noted that the base rate of the antecedent in time- window 
lag sequential analysis is the number of time units within the specified 
time window, not the number of antecedent behaviors. Therefore, the 
larger the time window, the larger the chance estimate of targets in the 
time window. The reduced precision allowed by time-window analysis is 
offset by the reduced sensitivity of the analysis. Simulation studies have 
demonstrated that this method of sequential analysis produces expected 
results (Yoder & Tapp, 2004).

TRANSITIONAL PROBABILITY

Informal observation indicates that the most frequently used index of 
sequential association is the transitional probability of the target follow-
ing the antecedent behavior. This transitional probability is the propor-
tion of instances of the antecedent behavior which are followed by an 
instance of the target behavior. Using the cell labels of the 2 × 2 table, 
the formula for this transitional probability is A/(A + B). In the example 
in Figure 6.1, the transitional probability of student topic-continuing talk 
given teacher instruction is 1/3 or .33.

It is very important to note that a transitional probability is dif-
ferent from an accuracy or consistency proportion metric. The logic 
of sequential analysis requires that the base rate of the target and 
antecedent be free to vary from each other. The difference is that in 
a transitional probability, the target behavior is defined as one that 
can occur after behaviors other than the antecedent, even if this 
never occurs in the observation session. In contrast, in an accuracy 
or consistency proportion, the behavior represented in the numerator 
cannot, by definition, occur under any other conditions except that 
represented by the denominator. For example, a verbal response to 
child communication can only occur after child communication, by 
definition. Therefore, the proportion of child communication that is 
verbally responded to is a consistency proportion, not a transitional 
probability. Questions involving consistency or accuracy proportions 
are not subject to sequential analysis because chance occurrence 
of the sequence cannot be estimated using the math of sequential 
analysis.

Transitional probabilities are frequently used as an index of sequen-
tial association because they appear easy to interpret. Unfortunately, 
transitional probabilities are influenced by the target behavior base 
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rate and thus make poor indices of sequential association in many 
situations.

To illustrate this, we conducted another simulation study. In this 
study, we generated 1,000 single data streams of 100 coded behaviors 
each. Each data stream contained four types of behaviors, each of which 
occurred as a random proportion of the 100 behaviors (i.e., the simple 
probability or “base rate” of each behavior varied). Instances of the four 
types of behavior were randomly sequenced, providing a mean or popu-
lation sequential association of 0.0 (no association). We then computed 
the correlation between the transitional probability of behavior A after 
behavior B and the simple probability of each behavior. In sequential 
analysis, one wants an index of sequential association that is not influ-
enced by the base rate of the behaviors it assesses. The results indicated 
that the association of the transitional probability with base rate of the 
antecedent was only −.15, but the analogous association between tran-
sitional probability and the base rate of the target was .48. The associa-
tion between transitional probabilities and the base rate of the target 
was .7 when the population sequential association is generated to be 
strong (i.e., Yule’s Q of .5). This means that almost half of the variance 
in transitional probabilities was influenced by the base rate of the target 
behavior.

Put conceptually, the higher the simple probability of the target 
behavior, the higher the transitional probability by chance processes 
alone. For example, in an observational session in which the child uses 
topic-continuing talk frequently, such talk will occur after teacher 
instruction very often by chance processes. This example makes it clear 
that an interpretable index of sequential association must be compared 
to an estimate of chance occurrences of the sequence.

In the next chapter, we will show that indices of sequential associa-
tion can be computed for each participant in a group study and used 
as dependent scores in statistical analyses or are computed for each 
session and used as the dependent scores in graphs used to examine 
a potential treatment effect in a single-subject experimental design. 
Assuming that each participant or session has a different simple prob-
ability of the target behavior (a common occurrence), the meaning of 
the two identical transitional probabilities will vary. However, even in 
clinical practice, using the concept behind transitional probabilities as 
the basis for decision making is a real, but largely unrecognized prob-
lem. This will now be discussed in the context of backward sequential 
analyses.
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Transitional Probabilities in Backward Sequential Analysis

In this section, we will use an example first presented in another source 
to discuss why using transitional probabilities as the index of sequen-
tial association in backward sequential analyses tends to result in even 
more miscommunication than using transitional probabilities in forward 
sequential analyses designed to address the same research question 
(Yoder & Feurer, 2000).

By backward sequential analysis, we mean that the investigator tal-
lies the number of times certain behaviors occur before the behavior of 
interest. For example, let us say that we use theory to guide our decision 
to code several teacher behaviors that may increase the probability of 
topic-continuing utterances (e.g., instructions, active ignoring, talking to 
other students, other talk to target student) because we ultimately want 
to increase the instances of the associated teacher instructional behavior 
as part of an intervention. Just as one application of functional analysis 
requires that we ask teachers what tends to occur before a key behav-
ior, we might observe which of these teacher behaviors tends to precede 
topic-continuing talk most often.

In a backward sequential analysis, one tabulates the sequence of 
behaviors into the 2 × 2 table moving backward in time. That is, the 
“first behavior” in the behavior pair (i.e., topic-continuing talk) actually 
occurs after the “second behavior” in the behavior pair. See Figure 6.2 
for an illustration of this process using the same data that were presented 
in Figure 6.1. In accordance with “backward sequential analysis” prin-
ciples, the tabulation of the first and second behaviors is reversed in 
Figure 6.2 when compared to Figure 6.1.

Assume that we decide to use transitional probabilities as the index 
of sequential association (a common practice). It should be noted that the 
transitional probability of continuing utterances (i.e., the first behavior 
in a backward analysis) preceded by teacher instruction is .50 (A/[A + B] 
in Figure 6.2). Note that the transitional probability of continuing utter-
ances following teacher instruction (i.e., the first behavior in a forward 
analysis) is different: .33 (A/[A + B] in Figure 6.1). That is, the transi-
tional probability for a forward sequential analysis is different from that 
for a backward analysis of the same behaviors.

The primary source of the miscommunication about backward 
sequential is the mismatch between the motivating theory for the study, 
the terms used in sequential analysis, and the backward sequential anal-
ysis process. The motivating theory of most studies employing sequential 
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Coded Behavior Pair

Sequence

Teacher instruction
B

Other teacher talk
D

Student other talk

C
Student topic-continuing

utterances D

Teacher instruction

B
Student other talk

D
Other teacher talk

C
Student topic-continuing utterances

D
Teacher instruction

A
Student topic-continuing utterances

D
Other teacher talk

Cell Address Time Tally

Thes

Table B

e pairs of behaviors are tallied into a 2 x 2 table as follows:

Behavior II

Teacher
instruction

Any other 
teacher or 
student behavior

Total for rows

Behavior I Student topic-
continuing talk

1 pair 1 pair  2 pairs
A B

Any other student 
or teacher behavior

2 pairs 4 pairs 6 pairs
C D

Total for columns 3 pairs 5 pairs Total of 8 
observed pairs*

*These data are presented for illustrative purposes only.

Figure 6.2 Illustration of tallying behavior pairs into a 2 × 2 table for a backward event-
lag sequential analysis.
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analysis presumes a causal relation between the antecedent and target 
behaviors. Causality progresses forward in time. The term “target” or 
“second behavior” typically occurs after an “antecedent” or “first behav-
ior.” For example, assume we conduct a backward and forward analysis 
to identify the best candidates for antecedents of continuing utterances. 
The reason to conduct the study is to eventually increase continuing 
utterances by increasing the occurrence of the antecedent behaviors 
for continuing utterances. However, the targets or second behaviors in 
a backward analysis are the possible antecedents. The target or second 
behavior in a forward analysis to address the same question is continuing 
utterances.

Naïve readers may not realize that the target behaviors are typically 
different in the two or more sequences compared in this type of back-
ward sequential analysis. If the target behaviors are different, the simple 
probabilities of the two target behaviors are almost always different. As 
always, differences in the transitional probabilities are not interpretable 
by themselves when we compare transitional probabilities for sequences 
with different simple probabilities of the target behavior.

The issue is not whether backward sequential analysis has a place in 
our armory of research tools. The issue is that many readers (and possibly 
researchers) may be less aware of the greater potential for misinterpret-
ing transitional probabilities as indices of sequential association in the 
context of backward sequential analysis than in the context of forward 
sequential analysis.

Summary of Transitional Probabilities

Unfortunately, using transitional probabilities without reference to an esti-
mate of chance occurrence is still frequently seen in the sequential analy-
sis literature. We recommend not using transitional probabilities even for 
descriptive purposes, because (a) readers frequently make implicit com-
parisons between transitional probabilities of sequences from different 
sessions or groups or with different target behaviors and (b) Yule’s Q pro-
vides a more interpretable descriptive index of sequential association in 
all of these situations. In the final analysis, transitional probabilities are 
only interpretable when they are compared with an estimate of chance 
occurrences of the sequence of interest. However, this practice is cum-
bersome to say the least. Alternatively, Yule’s Q is an index of sequential 
association that reflects a comparison with an  estimate of chance occur-
rence of the sequence. Yule’s Q will be addressed in  chapter 7.
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RECOMMENDATIONS

When collecting data for sequential analysis, we recommend using timed-
event behavior sampling and using the time units as the coded units so 
that the coding space will be exhaustive. For most research questions, we 
recommend using forward time-window analysis because the flexibility 
of the window fits the imprecision of our motivating theories better than 
event-lag or time-lag sequential analysis. Forward analysis almost always 
results in more easily communicated and interpretable results than does 
backward sequential analysis. To plan for sequential analyses, we recom-
mend constructing the intended 2 × 2 table to make sure that the analy-
sis is set up so that all instances of antecedent and target and all coded 
units are included in the table. When writing about sequential analyses, 
we recommend displaying the 2 × 2 table to aid readers in understand-
ing what was done. Finally, we recommend that transitional probabilities 
be supplemented or avoided as the index of sequential association for 
most research questions. Chapter 7 will identify an alternative index of 
sequential association: Yule’s Q.
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7 Analyzing Research Questions 
Involving Sequential Associations

OVERVIEW

This chapter first leads the reader through the use of a software pro-
gram designed to conduct sequential analysis. In doing so, it demon-
strates further the steps involved in using sequential analysis to answer 
“sequential” research questions and confirms that a software program 
is necessary to conduct sequential analysis. Hand computation of the 
data would result in too much error and would be prohibitively time 
consuming.

We then discuss the relative superiority of Yule’s Q over transi-
tional probabilities as an index of sequential association. We also 
discuss the importance of having enough data to produce an interpre-
table Yule’s Q. Then we indicate how research questions that involve 
a sequential association are tested using group and single-subject 
designs. Next, we indicate that when the research question involves 
an attempt to identify probable reinforcers and the putative reinforcer 
is a high probability event, another approach to quantifying sequen-
tial data, contingency space analysis, may be a useful tool. Finally, we 
summarize recommendations for conducting sequential analyses of 
observational data.
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COMPUTER SOFTWARE TO AID SEQUENTIAL ANALYSIS

Computer programs designed to implement sequential analysis are neces-
sary for a competent implementation of sequential analysis (Bakeman & 
Quera, 1995; Tapp, 1995). However, it is important to know what the 
software does to determine if it is doing what is needed. This chapter 
will bring the reader “behind the scenes” of what is seen on the computer 
screen to demonstrate what computer programs do (or some analogy of 
this) when conducting a sequential analysis. For the demonstration, we 
have selected timed-event data because it provides an exhaustive record 
of the observed session. We have selected time-window analysis as a 
type of sequential analysis to demonstrate because it is among the more 
promising analyses for the future, and we have selected a research ques-
tion that lends itself to using onset of the antecedent and duration of the 
target as the objects of analysis to illustrate how such an analysis is per-
formed using specialized observational software.

In this example, we use the software program titled Multiple Option 
Observation Software for Experimental Studies (MOOSES) (Tapp, 
1995). Using this or other sequential analysis software (Bakeman & 
Quera, 1995), the observer does not have to judge whether a target 
occurs within a time window of an antecedent because the software pro-
gram does that. All of the tallying for the 2 × 2 table is done “behind 
the scenes” so the user does not ordinarily get to see this. MOOSES has 
an option that allows the user to see how the tallying is completed and 
retained for analysis, making it an excellent software for demonstration 
purposes.

PRACTICE EXERCISE USING MOOSES SOFTWARE TO 
CONDUCT TIME-WINDOW ANALYSIS

We have copied on the book’s website (www.springerpub.com/yoder/
supplements) an example of timed-event data file that will be used for 
time-window analysis. This file can be opened in ProcoderDV and is 
called “ProcoderDV timed-event data for sequential analysis.” The code 
file for this data is called “Code file for sequential analysis.” A partial 
copy of this file is presented in Figure 7.1.

The code file for this observational data file was set up so that the 
child’s state of engagement with an object (“e” for engaged and “u” for 
unengaged) was coded in “Group 1.” Because we wanted to allow for 

www.springerpub.com/yoder/supplements
www.springerpub.com/yoder/supplements
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maximum precision in coding onset of the two engagement codes, we 
coded child engagement in a separate pass from other codes. A pass sim-
ply refers to coding exclusively within one group of codes for an entire 
session. In another pass, we coded whether the parent used a gesture, 
action, or verbalization to direct or maintain the child’s attention on an 
object in “Group 2.” In Group 2, we indicated whether the object to 
which the parent directed the child’s attention was one the child was 
already attending to (“m” for maintains child’s focus of attention), or was 
a new one. If the parent’s focus of attention was to an object to which 
the child was not currently attending, we indicate whether the new 

Figure 7.1 Example of timed-event data from ProcoderDV that will be analyzed by 
time-window sequential analysis.
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object was introduced at a time the child was not attending to anything 
(“i” for introduce) or whether it was meant to redirect the child’s atten-
tion to a different object (“r” for redirect). The codes in Group 3 were 
not analyzed in this run, but they represent another aspect of parental 
attentional directives. The research question was “Is there a positive and 
noteworthy sized sequential association of parental attentional directive 
that maintains the child’s focus of attention (i.e., Parent Maintains) and 
the child’s continued engagement with objects (i.e., Child Engages)?”

Because we have decided to analyze the duration of the target (engage-
ment with objects), it is important that the codes in the group for the target 
(i.e., Group 1) are mutually exclusive and exhaustive. That is, the time of 
onset of one code is the time of offset for the preceding code and so forth. 
Because we have decided not to analyze the duration of the antecedent 
(coded in Group 2), we are only concerned with onset times of those codes 
and these codes are not exhaustive of all time units. In other words, some 
seconds are not coded for Group 2 but these uncoded seconds will still be 
analyzed in the sequential analysis. The time of occurrence of the onsets 
and offsets is the information that the software program uses to determine 
whether a target occurs within 5 s of the onset of the antecedent.

A manual directing the reader through a keystroke-by-keystroke 
execution of a demonstration version of MOOSES is available at 
www.springerpub.com/yoder/supplements. The manual is called 
“Instructions for using MOOSES to conduct a time-window sequential 
analysis.” Readers are urged to execute the practice session to under-
stand better the analytic consequences of different decisions that were 
reviewed in chapter 6. Before beginning the exercise, readers should 
set up the demonstration version of MOOSES software, which is also 
available at www. springerpub.com/yoder/supplements (the file called 
“Mooses.exe”), then open the other files on the website for the exercise 
in the folder for this chapter.

For those readers who choose not to engage in the exercise, it is 
useful to note that the software allows the investigator to communicate 
what type of sequential analysis is chosen. If the time-window method of 
sequential analysis is selected, then the investigator indicates (a) whether 
the time window begins at the onset (which reflects that the duration 
of the antecedent is not analyzed) or the offset of the antecedent event 
(which reflects that the duration of the antecedent is analyzed), (b) 
whether the target onset or duration is analyzed, and (c) the duration 
of the time window. It is important to note that this analysis is repeated 
for every sequence of interest, every condition within which a sequential 

www.springerpub.com/yoder/supplements
www.springerpub.com/yoder/supplements
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association is derived, and for every participant in the study. As an option, 
one can have the file shown that demonstrates how the computer tallies 
the coded units for the 2 × 2 table.

In Figure 7.2, we present a partial record of how MOOSES keeps 
track of the timed-event data for time-window analysis of two streams of 
data. In this figure, the “Y” stands for “yes” and the “N” stands for “no.” 
The first refers to the first stream of data and is a response to “Does the 
second of interest fall within the 5-s time window.” The second refers to 
the second stream of data and asks, “Is the second of interest coded for 
the target?” MOOSES scores each second (or other time unit indicated) 
in this manner.

In Figure 7.1, note that the child is unengaged in the first 3 s, while 
the mother introduced a new object of attention to the child in the first 
second. Answering the two questions for maintains as an antecedent and 
engaged as a target, MOOSES records “N,N” for the first 3 s because 
none of the first 3 s was coded for the target or for the antecedent time 
window. However, within the fourth completed second, the child initi-
ates an “engaged with object.” The child continues to remain engaged 

Figure 7.2 Example of how MOOSES tallies timed-event data for a 5-s time-window 
sequential analysis.
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until the 21st second. Parent Maintains begins within the fourth com-
pleted second and the 5-s time window begins at the onset of the Parent 
Maintains. So, the answer to the key questions for next 5 s are “Y,Y.” In 
Figure 7.2, the reader can verify this. This process continues until all 
1,200 s in this 20-min session are tallied in this fashion.

In Figure 7.3, we have presented the output that one should get from 
running the exercise. In MOOSES, the “antecedent” is called the “given” 
event. The codes for the antecedent and target events are given near the 
top of the output. MOOSES provides the label for the 2 × 2 cells as (Y,Y) 
for the A cell, (Y,N) for the B cell, (N,Y) for the C cell, and (N,N) for 
the D cell. The observed cell count is listed under “Freq.” For example, 
186 s were (a) included in the 5-s window from the onset of the Parent 
Maintains and (b) coded with child engagement with object. This is the 
“observed sequential frequency” for Parent Maintains followed by Child 
Engages.

Figure 7.3 Example output from time-window analysis of timed-event data from 
MOOSES.
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As mentioned in chapter 6, the “observed sequential frequency” is 
generally not interpretable because it is clearly influenced by the base 
rate of the antecedent. In time-window analysis, the base rate of the 
antecedent is the number of seconds that occurs within the time window 
of the antecedent behavior. In our example, the base rate of the anteced-
ent is the number of seconds that occurs within 5 s of the onset of Parent 
Maintains (i.e., A + B = 191). As indicated in chapter 6, the transitional 
probability controls for the antecedent base rate. On the MOOSES out-
put, the transitional probability of interest is labeled under “conditional 
probabilities” and is the one for (Y,Y)/(Y,Y) + (Y,N). For this example, it is 
.97. This is a very high transitional probability. However, we indicated in 
chapter 6 that even high transitional probabilities can occur by chance 
if the target behavior occurs frequently enough, and child engagement 
occurs for 1,048 s (A + C) out of 1,200. This seems like a lot, but is it 
enough to discount the potential influence of Parent Maintains on Child 
Engages?

YULE’S Q

To answer the question posed above, Yule’s Q is the currently recom-
mended index of sequential association (Bakeman, McArthur, & Quera, 
1996; Yoder, Short-Meyerson, & Tapp, 2004). It is equivalent to the odds 
ratio for the same 2 × 2 table (Reynolds, 1984). The primary difference 
is that, unlike the odds ratio, the Yule’s Q has a potential range from –1.0 
to 1.0. Using the cell addresses of the 2 × 2 table, the formula for Yule’s 
Q is (A × D) − (B × C)/(A × D) + (B × C). The reader can easily see that 
all four cells of the 2 × 2 table are used to compute Yule’s Q. Using the 
data from the output of MOOSES that is presented in Figure 7.3, the Q 
for the example is ([186 × 117] − [5 × 862])/([186 × 117] + [5 × 862]) = 
17,452/26,072 = 0.67. As illustrated in Figure 7.3, the Yule’s Q is the sec-
ond to last number in the output of MOOSES.

There are some similarities in the interpretation of Yule’s Q compared 
to that of Pearson’s Product Moment correlation coefficient (i.e., r). A 
positive Q value means there is a positive sequential association (i.e., the 
observed sequential frequency is greater than expected by chance), 
and a negative Q value means there is a negative sequential association 
(i.e., the observed sequential frequency is less than expected by chance). 
Zero Q values mean that the observed sequential frequency is equal to 
that expected by chance (i.e., there is no association). Yule’s Q values, 



126 Observational Measurement of Behavior

like r, are effect size metrics for categorical data. Unlike r values, the 
benchmarks for large, moderate, and small Yule’s Q values are 0.6, 0.43, 
and 0.2, respectively, and are derived from those given for odds ratio 
(Rosenthal, 1996). Therefore, in the example of sequential analysis, we 
found that the observed number of times Child Engagement fell within 
the 5-s window of the onset of Parent Maintains was much greater than 
expected by chance. In other words, there was a large, positive sequen-
tial association between Parent Maintains and Child Engagement with 
objects for this participant.

Importantly, the results of the simulation study that was described 
in chapter 6 also showed almost no relation of either antecedent or tar-
get base rate with Yule’s Q (i.e., in both cases, r < |.1|). This is impor-
tant because we want a sequential association index that is independent 
from the aspects of the session that are not intrinsic to the concept of 
a sequential association (e.g., base rates of the antecedent and target 
behavior and total number of coded units). Additionally, other simulation 
studies have shown that when the population sequential association is 
generated to be null, the mean Yule’s Q is zero and is normally distrib-
uted (Bakeman, McArthur, et al., 1996). These simulation study results 
indicate that Yule’s Q has attributes that make it a good fit for the types 
of dependent variables that perform best in parametric significance tests 
(e.g., t-tests, ANOVA, regression).

Finally, Yule’s Q for a forward event-lag sequential analysis is iden-
tical to that for a backward event-lag sequential analysis (Yoder et al., 
2004). Therefore, if an investigator uses a backward event-lag sequential 
analysis, it is strongly recommended that Yule’s Q, not transitional prob-
ability, be used as the dependent variable (Yoder et al., 2004). In fact, 
it is generally better to use Yule’s Q scores than it is to use transitional 
probabilities as the dependent variable for most types of research ques-
tions that are appropriate for sequential analysis. However, it should be 
noted that sufficient data is necessary for Yule’s Q to be interpretable.

WHAT IS “ENOUGH DATA” AND HOW DO WE ATTAIN IT?

To determine whether the observed sequential frequency is substan-
tially different from that which is expected by chance, we have to have 
“enough” data to estimate chance sequential frequency. When we do 
not, statisticians say that the contingency table is “sparse” (Reynolds, 
1984). Some readers may recognize this concern as something general to 
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categorical data analysis, not just sequential analysis. At this point, you 
may become confused regarding the measurement scale of observational 
data. In chapter 5, we indicated that observational variable metrics are 
on at least an ordinal scale. Indeed, when considering a group of Yule’s Q 
values (e.g., 20 of them), the scale along which the Q values fall is at least 
ordinal. However, when considering the data in a single 2 × 2 table, the 
scale of measurement is nominal. The latter is the level of analysis that 
we are now addressing.

A sparse table is one in which there is an expected value equal to or 
fewer than 5 in any cell (Wickens, 1993). A 2 × 2 table with adequate 
data has an expected value of greater than 5 in all four cells. Recall from 
chapter 6 that an expected value is computed from three values: The 
two marginal frequencies that correspond to the cell in question and 
the total number of coded units. There are different ways to write the 
formula for expected value, but one way is as follows:

Simple probability of relevant row marginal × frequency of relevant 
column marginal. 

Recall that simple probability is the frequency of the relevant 
row marginal/total number of coded units. In the MOOSES output 
in Figure 7.3, the expected frequencies of the cells are in the column 
marked “ExpFreq.” In our example, all four cells had expected frequen-
cies above 5. This means that the table had sufficient data to interpret 
values computed from it (e.g., Yule’s Q). It is important to note that we 
are not using the observed (i.e., column labeled “Freq”) cell values to 
determine whether we have sufficient data.

There is another way to detect a table with insufficient data. 
Whenever both of the cells in either of the diagonals have observed 
values of 0, Yule’s Q cannot be computed due to the denominator of 
the computational formula being 0. One way that statisticians have 
addressed this problem is to add .5 to all frequency values in all four 
cells, not just the one with 0 (Reynolds, 1984). This is called Yate’s 
correction.

Refer to Table 7.1 for six examples of 2 × 2 table cell values. Note 
what happens to Yule’s Q when there are zeros in any cell (i.e., rows 
1–3). The Yule’s Q values are extreme (i.e., –1. or 1.0). Note what occurs 
when we add .5 to each cell in row 3 (i.e., see row 4). The Yule’s Q is still 
extreme. Yate’s correction did not really address the problem. The reason 
is that there is still insufficient data to compute an interpretable Yule’s Q. 
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EXAMPLES OF 2 × 2 CELL VALUES, EXPECTED VALUE OF A CELL, AND COMPUTED YULE’S Q

CASES

CELLS
TOTAL CODED 

UNITS

BASE RATE OF
EXPECTED VALUE 

OF A CELL YULE’S QA B C D ANTECEDENT TARGET

1 0 0 20 50 70  0 20 0 Not 
defined

2 0 10 10 50 70 10 10  1.4 –1

3 50 10 0 10 70 60 50 42.9 1

4 50.5 10.5 .5 10.5 72 61 51 43.2 .98

5 10 5 5 50 70 15 15  3.2 .90

6 20 10 10 30 70 30 30 12.9 .71

Table 7.1
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It is not indicated in the table, but the expected value for cell D is 3.2 
(i.e., under the minimum acceptable expected value). Row 5 indicates 
a situation where the expected value of a cell (cell A) is under 5 even 
when there is not a 0 in any cell. None of the cases (1–5) contains suf-
ficient data to interpret the Yule’s Q.

In row six of Table 7.1, note that when the simple probabilities of the 
target and antecedent behaviors are high enough, we do not need nearly 
as many coded units as when the simple probability of the target and 
antecedent behaviors are relatively low. Recall that the simple probabil-
ity of a cell is the count of the cell divided by the total number of coded 
units. One reason the expected frequency of a cell, instead of just row and 
column marginal frequencies corresponding to a cell, is used to decide 
whether there are enough data is because all three bits of information 
(i.e., the two marginals and the total number of coded units) need to be 
considered. We need this information for all four cells because Yule’s Q 
is based on all four cells, not just the A cell.

In summary, the consequences of computing Yule’s Q when there 
is insufficient data is to compute uninterpretable Yule’s Q scores that 
will not replicate because they are artifacts of inaccurate estimates of 
chance level sequential frequencies. When we compare sequential asso-
ciations or when sequential associations are needed from multiple par-
ticipants, all analyzed Yule’s Q scores must be based on 2 × 2 tables with 
sufficient data.

Proposed Solutions for Insufficient Data

Ideally, we would address insufficient data problems by having multiple 
sessions for each participant and concatenating the data from multiple 
sessions that were recorded temporally close to each other within each 
participant. By concatenate, we mean copy coded data from session one 
and paste it onto the end of the coded data for session two, and so on. We 
would analyze the resulting “session” as if it were one session. This could 
be done for each participant in a group design or for several sessions 
in a single-subject design. Such an action implicitly assumes that the 
sequential association within each session is nonsignificantly different 
from those in the other sessions. This assumption is called the stationar-
ity assumption. It makes sense that such pooling would assume that the 
sequential association of interest is approximately constant across sessions 
to be pooled. Otherwise, negative sequential associations in some ses-
sions may cancel out positive sequential associations in other sessions.
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In reality, stationarity is difficult to test statistically because 
each session often has insufficient data to compute an interpretable 
Yule’s Q scores. So, we usually have to use logic to determine whether it 
makes sense to assume that the data to be pooled are likely to produce 
similar sequential associations. Logically, stationarity is more likely to be 
met for within-participant pooling, when sessions occur temporally close 
to each other, and when sessions are observed under similar conditions. 
We recognize that this is an expensive solution.

Some older sequential analysis articles have pooled across partici-
pants (Symons & Moran, 1994). This is not generally accepted anymore 
for two primary reasons. First, concatenating data across participants 
into a single file logically violates the stationarity assumption. Logically, 
the sequential associations between events are more likely to vary among 
participants than are the associations from multiple sessions within 
a participant. Second, there is no entity in nature that is modeled by 
the “pseudosubject” that is created from pooling across different par-
ticipants. In contrast, when we concatenate within a participant, it is 
analogous to coding a session that lasts a long time (e.g., seven daily ses-
sions concatenated can be conceived of as a week-long session). In other 
words, there is an entity in reality that the within-participant concate-
nated session models. One incorrect interpretation of sequential associa-
tion from a pseudosubject is that it is similar to the mean of a distribution 
of sequential associations. A pseudosubject is not the same as a mean of 
a distribution of sequential associations because the former weighs more 
heavily data from participants with more coded units than participants 
with fewer coded units. This is not true for means of a distribution.

Another option for dealing with insufficient data is to lump subordi-
nate categories of either the target or the antecedent or both. Recall that 
when the base rates of the antecedent and target are high, the number 
of total coded units does not have to be as high as it does when the base 
rates of antecedents and targets are lower. For example, we had insuffi-
cient data to determine whether one type of adult question had a stronger 
sequential association with child replies than did another type of adult 
question. Therefore, we lumped the question types together to determine 
whether adult questions (as a unitary category) had a stronger sequential 
association with child replies than did adult comments (Yoder, Davies, & 
Bishop, 1994). This, of course, required changing the research question.

Another option for dealing with insufficient data is to drop par-
ticipants from the group design whenever there is inadequate data for 
any condition or sequence of interest. We recognize that this usually 
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means reducing the statistical power of the subsequent group analysis 
(i.e., increases the probability of Type II error). We consider this prefer-
able to analyzing uninterpretable dependent variables, which can pro-
duce Type I errors.

SEQUENTIAL ASSOCIATION INDICES AS DEPENDENT 
VARIABLES IN GROUP DESIGNS

In the following types of research questions, Yule’s Q or transitional 
probabilities are the dependent variable scores for each participant (and 
condition) and asymptotic tests (e.g., t-tests, ANOVA, regression) are 
used to test the research question. In this sense, the index of sequential 
association is an observational variable metric.

Significance testing on a distribution of sequential association scores 
is less controversial than is testing the significance of a sequential asso-
ciation or a difference in sequential associations within a single partic-
ipant. The reason is that all significance tests derive a probability (p) 
value to help interpret whether the observed effect size for the average 
sequential association could have occurred by sampling error. These p 
values are derived assuming that the units of analysis do not influence 
each other (i.e., are independent; Hayes, 1996). In a group analysis, the 
unit of analysis is the participant. As long as each participant’s Yule’s Q 
score is derived on a different session from other participants’ Yule’s Q 
scores, the scores are likely to be independent (i.e., not influence other 
dyads’ or participants’ Yule’s Q scores).

Testing the Significance of a Mean Sequential Association

Even if other research questions are addressed, usually an investigator 
using a group design and a sequential observational variable metric (e.g., 
a Yule’s Q) will need to ask whether the sequential association that is fur-
thest from zero has a confidence interval that includes zero (i.e., is signifi-
cantly different from zero). For example, if we had 20 participants with 
data similar to that presented in Figure 7.1 and conducted a 5-s time-
window analysis for each to quantify the extent to which Parent Maintains 
had a sequential association with Child Engages, we would have 20 Yule’s 
Q scores. This distribution of Q scores has a mean and a standard devia-
tion (SD). One way to test the significance of the mean Q score from this 
distribution is to use a one-sample t-test to derive the p value for whether 
the mean Q score could have been sampled from a population with a 
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mean Q of 0. The effect size for this question is Cohen’s d for a single 
mean (i.e., mean Q score/SD of the Q scores). A Cohen’s d of 0.5 or above 
is considered a moderate effect size (Cohen, 1988). Most people consider 
a moderate effect size noteworthy. It is recognized that using external 
qualitative benchmarks for effect sizes is only a proxy until a field is suffi-
ciently mature to produce its own qualitative benchmarks for effect sizes. 
There have not been a sufficient number of competently executed sequen-
tial analyses to produce such empirically derived benchmarks as of 2009.

Testing the Between-Group Difference in 
Mean Sequential Associations

One might want to know whether the sequential association between 
Parent Maintains and Child Engages is different between children with 
autism than in children with Down syndrome. To address this, one 
would compute Yule’s Q scores for the sequential association in all par-
ticipants (e.g., 20) in each group (e.g., N = 40). The test of significance 
for whether the confidence interval around each group’s mean Q score 
overlaps would be an independent t-test. The Cohen’s d for this contrast 
would be (mean Q for Autism—mean Q for Down syndrome)/(pooled 
SD for Q).

Testing the Within-Subject Difference in 
Sequential Associations

When testing a within-subjects contrast of two sequential associa-
tions using a group design, an index of sequential association would be 
derived for all participants in all conditions. In a within-subjects group 
design, the data from all conditions are collected for all participants. A 
within- subjects contrast tests the significance of mean difference scores. 
Specifically, the significance test for such questions is whether the con-
fidence interval around the mean difference score contains zero. The 
effect size for this contrast is (mean of [sequential association for condi-
tion 1 − same sequential association for condition 2])/([SD of the above 
difference scores]/square root [1 − correlation between the two sequen-
tial associations]; Lipsey & Wilson, 2001).

The particular index of sequential association that is appropriate for 
this type of question varies according to whether the base rate of the 
target varies between conditions that are to be compared. When the 
sequential associations being compared have the same target, different 
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antecedents, and are derived from the same observation session, one 
can use either the transitional probability or the Yule’s Q as the within-
 condition dependent variable. For example, one might want to know 
whether the forward sequential association of Parent Maintains with 
Child Engages is greater than that for Parent Introduces with Child 
Engages. The target is Child Engages for both sequential associations. If 
the data for both sequential associations were from the same observation 
session, the base rate for Child Engages will be the same for both sequen-
tial associations. Therefore, the fact that the base rate of the target influ-
ences the transitional probability is nonproblematic for this situation.

When the sequential associations being compared have different tar-
gets or the target behavior has the same label but is derived from differ-
ent observation sessions, then Yule’s Q should be the index of sequential 
association. This is because the target base rate will be different for the 
two sequential associations being compared and Yule’s Q is not influ-
enced by the base rate of the target (or the antecedent). For example, 
an investigator may want to know whether the sequential association of 
Adult Maintains with Child Engages is greater when interacting with the 
mother than with the teacher.

Testing the Significance of the Summary-Level Association 
Between a Participant Characteristic and a Sequential 
Association Between Behaviors

For example, an investigator may want to know whether children’s recep-
tive language level has a summary-level correlation with the sequential 
association between adult question and child replies. The base rate of 
child replies will be different for each participant. Therefore, we must 
quantify the sequential association of interest with Yule’s Q for each par-
ticipant. We correlate these Yule’s Q scores with the children’s receptive 
language level as tested by a language test. The significance of this corre-
lation coefficient can be tested in the usual way (i.e., a t-test). The effect 
size of this correlation is the r value. Cohen considers an r value of .25 as 
a moderate effect size (Cohen, 1988).

STATISTICAL SIGNIFICANCE TESTING OF SEQUENTIAL 
ASSOCIATIONS IN SINGLE CASES

Any observation session will only compute an estimate of the true 
 sequential association that exists between behaviors. That is, an 
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 observation session is only a sample of behavior. We call such an esti-
mate a “point estimate.” Sometimes, we wish this sample of behavior to 
represent a generalized characteristic (e.g., a tendency for one person 
to affect another using a process that continues to operate outside of 
the observation session). Under such conditions, we would like to know 
whether our observed Yule’s Q could have occurred due to behavioral 
sampling error (e.g., chance sampling of an observation session that hap-
pened to produce an atypically strong sequential association). This is 
what significance testing usually does for us. There are methods for test-
ing the significance of sequential associations within a single participant 
(Bakeman, Robinson, & Quera, 1996) and there are published examples 
of doing so (e.g., Yoder et al., 1994). Despite our own past use of such 
methods, using them is controversial and we now recommend using an 
alternative approach.

Similar to the aforementioned assumption that units of analysis are 
independent, statistical tests that have been applied to testing signifi-
cance of sequential associations within a single case assume that units of 
analysis are exchangeable (Good, 2000). The unit of analysis in single-
subject tests of significance of sequential associations is the unit repre-
sented by the tally in our 2 × 2 tables (e.g., the pair of behaviors or the 
coded time units). When applied to testing the significance of sequential 
associations within a single participant or dyad, one frequently recom-
mended method involves randomly shuffling the events and comput-
ing a sequential association from the postshuffled event sequence and 
repeating this many times (e.g., 1,000) to create an empirical proba-
bility distribution against which one compares the observed (i.e., real) 
sequential association (Bakeman, Robinson, et al., 1996). This method 
is called a permutation test or randomization test (Edgington, 1995; 
Good, 2000).

Shuffling the sequence of events assumes exchangeability (Good, 
2000). For them to be exchangeable, each pair of behaviors or time 
units cannot influence following pairs of behaviors or time units. 
Unfortunately, it is unlikely that the assumption of exchangeability is 
met for most sequential analyses of behavior in observation sessions. The 
problem occurs when an instance of antecedent behavior influencing the 
occurrence of a target behavior within one pair of behaviors influences 
the probability that the target will be influenced by the antecedent later 
in the session. This is clearly the case in sequential analyses of behavior 
because the pairs of behavior come from the same session and are from 
the same participants.
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To make matters worse, pairs of behavior are more likely to influ-
ence following pairs of behavior that are temporally close than they are 
to influence following pairs of behavior that are temporally far but still 
within the session. This is called “nonuniform” dependence. An impor-
tant simulation study has shown that nonuniform dependency causes 
more severe Type I errors (i.e., produces apparent associations even 
when it is known that no association occurs) than does uniform depen-
dency between units of analysis (Hayes, 1996). It is important to note 
that this occurs even when the type of statistical test used is one that 
generates its own empirical probability distribution (i.e., a permutation 
test; Hayes, 1996).

Just as randomization tests (i.e., permutation tests) in single-subject 
experimental significance testing require randomizing the onset of the 
phase change in a way that mirrors the random assignment used in the 
permutations, such tests, when applied to sequential analyses, require 
that the permutations do not alter the structure of the data in a way 
that does not exist in nature (i.e., that they are exchangeable). This is 
a different issue from that of the independence of residuals and serial 
dependency or autocorrelation. Additionally, the problem is not that one 
behavior may influence another behavior within the pair or that one per-
son’s behavior may influence another person’s behavior within the analy-
sis unit (Bakeman & Dorval, 1989).

However, we also recognize that others continue to promote the 
same statistical methods for other situations in which units of analysis 
are dependent and nonuniformly so (Bulte & Onghena, 2008). Perhaps, 
it is best to say that the use of significance tests in single cases is contro-
versial and, if used, should be done so cautiously.

Therefore, we offer an alternative. We recommend using the “moder-
ate” level benchmark for Yule’s Q that was provided earlier to determine 
if the sequential association or difference between sequential associa-
tions is noteworthy. That is, if the Yule’s Q or difference Yule’s Q in ques-
tion is greater than |.43|, then we suggest considering it worthy of further 
investigation (i.e., attempts a replication of the observed effect size or 
larger). We recognize that this is tantamount to interpreting a point esti-
mate, but this is where the field is at present. As in other single-subject 
research, we are dependent on replication of the sequential association to 
help judge the generality of our observed finding within a participant.

For example, if the investigator wants to know whether the sequen-
tial association between Parent Maintains and Child Engages is note-
worthy, he could compare the observed Yule’s Q for this sequential 
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association with the moderate effect size of |.43|. Similarly, if the investi-
gator wants to know whether the sequential association between Parent 
Maintains and Child Engages is different enough to be considered note-
worthy from the sequential association of Parent Introduces and Child 
Engages, he could compare the difference Yule’s Q to |.43|. It is impor-
tant to note that it is critical that each Yule’s Q that is interpreted, even 
at the single case level, has sufficient data as indicated by the previous 
guidelines.

Another way to use Yule’s Q as a dependent variable score in single-
subject research is to graph it for each session (or group of sessions if 
needed to get enough data for each Yule’s Q). In this way, one might test 
whether there is a change in level, trend, or variability of the sequential 
association between two behaviors as a function of some treatment.

A CAVEAT REGARDING THE USE OF YULE’S Q

There are conditions where using Yule’s Q will probably not provide users 
with the information they want. For example, if the user wants to know 
whether a consequence (i.e., target or second) behavior is a probable rein-
forcer of a given (i.e., first) behavior, there are situations where one can 
have a high Yule’s Q but a low “operant contingency.” Behavioral learning 
theory indicates that one characteristic of a reinforcer is that it occurs 
“contingently” after the behavior of interest. Technically, this means that 
the consequence occurs if and only if the behavior of interest occurs. In 
reality, this type of perfect contingency rarely occurs. The term “operant 
contingency” describes a more realistic situation: one in which the prob-
ability of a consequence after a given behavior exceeds the probability 
of the consequence not after the behavior of interest (Hammond, 1980; 
Martens, DiGennaro, Reed, Szczech, & Rosethal, 2008).

A comparison of these two transitional probabilities has been 
called contingency space analysis (Martens et al., 2008). Contingency 
space analysis and Yule’s Q will always provide the same algebraic sign. 
However, when the behavior considered to be the probable reinforcing 
consequence occurs almost all of the time, regardless of whether the 
preceding desired behavior of interest has occurred, Yule’s Q will be 
much higher than the difference between the key transitional probabili-
ties (i.e., the contingency space analysis index). It is the latter, the con-
tingency space analysis, that more closely describes contingent relations 
in which the consequence is likely to function as positive reinforcement 
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(i.e., increases the probability of the preceding behavior). In other words, 
following Q under these conditions would lead clinicians to select a con-
sequence that would be unlikely to function as a reinforcer.

At present, a weakness of contingency space analysis is that we do 
not have benchmarks for how large the difference between transitional 
probabilities needs to be to consider it noteworthy. Additionally, we do 
not have guidelines for how much data is necessary to consider the con-
tingency space analysis informative. Once these details have been pro-
vided, contingency space analysis is likely to be a very useful tool for 
those with an interest in using sequential analysis to discover probable 
reinforcers.

RECOMMENDATIONS

Software is needed to conduct sequential analyses. One such software, 
MOOSES, can be acquired at www.getmooses.com. MOOSES and other 
sequential analysis software compute and output Yule’s Q, which is an 
index of sequential association. Yule’s Q is a superior index of sequential 
association when compared to transitional probability. Yule’s Q is com-
puted (thus a separate 2 × 2 table is constructed) for each sequential 
association, condition, and participant in one’s study. It is critical that one 
conduct sequential analyses with sufficient data to produce interpretable 
Yule’s Q scores. If one must concatenate sessions to attain enough data to 
produce interpretable Yule’s Q scores, then the investigator can concat-
enate sessions that are temporally close within each participant.

If using a group design to address research questions involving a 
sequential association, Yule’s Q is usually the recommended depen-
dent variable. One can then use the common tests of significance to 
test the research question. If using a single-subject design to address a 
research question involving a sequential association, we suggest relying 
on qualitative benchmarks to decide if a single Yule’s Q is noteworthy 
and replication to inform us of the generality of the findings within a 
participant.

Finally, Yule’s Q can be used as a dependent variable that is graphed 
as a function of experimental phases in a single-subject experimental 
design. In these ways, Yule’s Q is a metric for observational variables 
designed to quantify sequential associations among two behaviors. When 
attempting to discover whether a consequence behavior is likely to act as 
a reinforcer and when the consequence behavior occurs very frequently, 

www.getmooses.com
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including in intervals or time units the “given” desired behavior does not 
occur, contingency space analysis offers a superior method to interpret-
ing sequential data over Yule’s Q.
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8
Observer Training, Observer 
Drift Checks, and Discrepancy 
Discussions

OVERVIEW

This chapter is about a process by which observers are trained and 
retrained to maximize the accuracy of their coding. It focuses on agree-
ments and disagreements of coding decisions, not reliability of observa-
tional variables. We discuss the use of point-by-point agreement between 
an observer and a repeatedly and expertly coded example file (i.e., a cri-
terion coding standard), as well as agreement between two observers. 
The most important activity that results from agreement checks is a dis-
cussion among observers or, ideally, between the content expert and the 
observers (i.e., a discrepancy discussion). The results of such a discussion 
may be (a) slight alterations in the coding manual or (b) (re)training of 
observers. We also discuss one method of training observers.

THREE PURPOSES OF POINT-BY-POINT AGREEMENT ON 
CODING DECISIONS

Point-by-point agreement is the extent to which two people categorize 
the same occurrence of a key behavior in the same category. It is in con-
trast to summary level agreement, which is the extent to which two peo-
ple derive the same variable score (i.e., small estimate/large estimate 
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proportion). The three purposes of point-by-point agreement checks that 
are covered in this chapter are (a) to provide a standard for observer 
training, (b) to indicate the degree to which a coding manual is ade-
quate, and (c) to detect observer drift (i.e., the occurrence of an observer 
agreeing less often with a criterion coding standard than was the case 
immediately after he or she reached mastery level accuracy during initial 
training). These are purposes that serve idemnotic and vaganotic mea-
surement concepts and group and single-subject research designs.

All observational measurement experts acknowledge that two observ-
ers can agree, even at a point-by-point level, and still be inaccurate. 
However, point-by-point agreement is a process by which we maximize 
the probability of accurate coding. This result is not magic. For point-by-
point agreement to be high, observers need to be vigilant and the coding 
manual needs to be precise. In addition, the discussions regarding why 
disagreements occur help resolve and keep observers mindful of the dif-
ficult aspects of the coding task.

TWO DEFINITIONS OF AGREEMENT

To conduct a point-by-point agreement check, a definition of point-
by-point agreement is necessary. There are two primary definitions of 
agreement: exact and time window. Exact agreement means that the 
time of and category for a coded unit is coded the same way by both 
observers. For example, both observers record that a smile occurs in 
interval 12. This is applicable when duration is the metric that will be 
derived from timed-event behavior sampling or when interval sampling 
is used (i.e., exhaustive coding spaces). Exact agreement is illustrated in 
Table 8.1.

When one is scoring point-by-point agreement for a nonexhaustive 
coding space (i.e., timed event sampling where number of the behav-
ior is the metric of interest), we typically use time-window agreement. 
Time-window agreement is used when the onset of the behavior coded 
by one observer occurs within a prespecified time of the onset of the 
same behavior as indicated by the other observer (MacLean, Tapp, & 
Johnson, 1985). For example, if the prespecified time is set to 5 s and 
both coders code the behavior in that time frame, then time-window 
agreement has occurred.

There is no consensus on how long the time window should be. 
However, logic suggests that behaviors with brief interoccurrence 
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intervals require smaller time windows than behaviors with longer 
interoccurrence intervals. Time-window agreement is usually conducted 
by software. However, it is important to know what the software is doing 
to make sure the investigator agrees with the method used. Table 8.2 
illustrates a useful method of conducting time-window agreement. 
The accuracy of computer-scored time-window agreement is greatly 
enhanced if humans are willing to aid the software program in deciding 
which coded behaviors “go together.”

Ideally, the software program uses the time of occurrence and 
code for the act to “guess” which acts from Observer 1 “go with” the 
acts from Observer 2 and places its decision on a side-by-side screen 
display. The staff member uses the sequence of events, time of occur-
rence, and coding comments to support a judgment regarding whether 
to change or leave the software program’s guess. A revision of MOOSES 

ILLUSTRATION OF EXACT AGREEMENT ON INTERVAL DATA

INTERVAL OBSERVER 1 OBSERVER 2

AGREEMENT SCORE
(1 = AGREEMENT;

0 = DISAGREEMENT)

TYPE OF 
DISAGREEMENT 
(U = UNITIZING; 

C = CLASSIFYING)

1 1

2 1 0 u

3 3 2 0 c

4 1

5 2 2 1

6 1

7 1 0 u

8 1 0 u

9 1

10 3 0 u

Table 8.1
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(www.getmooses.com), which was introduced in the previous chapter, 
will enable this function. However, if the observer chooses not to use 
this feature or is using software that does not enable such human inter-
face, then a number of observational software programs can score the 
agreements without human intervention regarding agreements.

ILLUSTRATION OF 1-SECOND TIME-WINDOW AGREEMENT METHOD OF 
DEFINING POINT-BY-POINT AGREEMENT OF TIMED-EVENT DATA FOR 
WHICH BEHAVIOR IS THE CODED UNIT

TIME (S) OBSERVER 1 OBSERVER 2

AGREEMENT SCORE
(1 = AGREEMENT; 

0 = DISAGREEMENT)

TYPE OF 
DISAGREEMENT
(U = UNITIZING;

C = CLASSIFYING)

1

2 1 0 c

3 2

4

5 2 1

6 2

7

8 1 0 u

9

10 3 0 u

11

12 3 0 c

13 1

14

15 1 0 u

Table 8.2

www.getmooses.com
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AGREEMENT MATRICES

To use point-by-point agreement checks to their maximum benefit, it is 
extremely useful to construct an agreement matrix for each set of mutu-
ally exclusive codes (i.e., a “group” in ProcoderDV). An agreement matrix 
is a type of symmetrical matrix in which the rows and columns are the 
categories in the, coding group plus a row and column for “no coded 
behavior tallied” for each observer. Recall that a coding group is a set of 
categories for the same behavior dimension or actor. The rows represent 
one observer’s coding, while the columns represent the other observer’s 
coding. The tallies are the result of point-by-point agreement checks. 
Agreements are represented on the diagonal and disagreements are rep-
resented on the off-diagonal cells.

There are two types of disagreements. A unitizing difference occurs 
when one coder recorded an act while the other did not. A classifying 
difference occurs when one coder classified an act as Category A while 
the other classified the same act as Category B (Bakeman & Gottman, 
1997). The purpose of agreement matrices is to identify (a) the times 
of disagreed upon acts, (b) disagreement types (i.e., unitizing vs. clas-
sifying), and (c) categories that tend to be confused in classification dis-
agreement types. Doing so should increase the efficiency and efficacy of 
staff training by aiding discrepancy discussions.

Before discussing the details of agreement matrices, it is important to 
discuss the principles of proper agreement checks. First, it is important 
that all events coded by either observer are counted in the agreement 
matrix. Unfortunately, when examining point-by-point agreement for non-
exhaustive coding spaces, some investigators have ignored disagreements 
caused by the “secondary” observer coding a behavior and the “primary” 
observer not coding it. It becomes clear that this is inappropriate when 
we create agreement matrices for exhaustive coding spaces because the 
number of events of the secondary coder does not equal to the sum of 
rows and it must. In point-by-point agreement checks on both exhaustive 
and nonexhaustive coding spaces, disagreements are counted regardless 
of who “caused” them. Second, it is extremely important to consider unit-
izing and classifying errors as equally important. A misguided approach 
that has occurred in some published articles is to examine agreement 
only on acts that both coders identify as relevant to count when counting 
disagreements. Either misguided practice inflates point-by-point agree-
ment and undermines the discrepancy discussion process, the crux of 
the training and retraining process. For example, if we only count the 



146 Observational Measurement of Behavior

events that both observers record in our record of agreement of classify-
ing events (e.g., when we first create a transcript, have another person 
verify that the utterance is present and transcribed “correctly” and later 
classify the utterances), we inadvertently eliminate from our agreement 
estimate all events that one observer records but the other does not.

There are two types of agreement matrices: (a) one for exhaustive 
coding spaces (i.e., those in which agreement on nonoccurrence of any 
key behavior is defined) and (b) one for nonexhaustive coding spaces 
(i.e., those in which agreement on nonoccurrence of any key behavior is 
not defined). For exhaustive coding spaces, constructing the agreement 
matrix is very straightforward. The process is illustrated in Table 8.3. 
We need an indication of agreement on nonoccurrence of all key behav-
iors because this information is part of what we need to estimate non-
chance agreement, as will be explained in greater detail in chapter 9. 
The numbers in parentheses in Table 8.3 indicate the numbers that label 
the intervals in Table 8.1 that are tallied into the cells of the agreement 
matrix in Table 8.3. The lower right cell is the total number of intervals 
coded and is the sum of the marginals.

AGREEMENT MATRIX FOR DATA IN TABLE 8.1 
(AN EXHAUSTIVE CODING SPACE) WITH INTERVAL NUMBER OF TALLIED 
BEHAVIOR IN PARENTHESES

OBSERVER 2

1 2 3

NO BEHAVIOR CODED 
IN INTERVAL BY 

OBSERVER 2
MARGINAL FOR 
OBSERVER 1

OBSERVER 1 1 (2), (7) 2

2 (5) 1

3 (3) (10) 2

No behavior 
coded in 
interval by 
Observer

(8) (1), (4), (6), (9) 5

MARGINAL FOR
OBSERVER 2

1 2 0 7 10

Table 8.3
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The agreement matrix for nonexhaustive coding spaces is more com-
plicated. Recall that the time-window definition of agreement is usually 
used in such cases. Unlike the agreement matrix for exhaustive coding 
spaces, this type of agreement matrix allows the sum of the marginals for 
Observer 1 to be different from the sum of the marginals for Observer 2. 
In the agreement matrix in Table 8.4, each of the set of values in paren-
theses is the range of seconds for the act(s) indicated in Table 8.2 that 
are tallied into a cell in the agreement matrix in Table 8.4. Note that the 
computer will score some of these events (e.g., 10–12 or 13–15) differently 
than a human might. An observer might decide to override the computer 
scoring and call such pairs of events agreements because he can clearly 
see that the problem is really just marking the onset of the same act at a 
slightly different time (a minor error for most research questions).

AGREEMENT MATRIX FOR AGREEMENT DATA IN TABLE 8.2 (A NONEXHAUSTIVE 
CODING SPACE)

OBSERVER 2

MARGINALS 
FOR 

OBSERVER 11 2 3

NO BEHAVIOR 
CODED BY 

OBSERVER 2

OBSERVER 1 1 (2–3) (12–13)a 2

2 (5–6) 1

3 (10–11) 1

No 
behavior 
coded by 
Observer 1

(8–9)
(15)

Undefined Undefined

MARGINALS 
FOR 
OBSERVER 2

2 2 1 Undefined Potentially 
different sum 
between 
observersb

aRange of seconds of occurence of tallied behaviors shown within parentheses.
bFive behaviors coded for Observer 2; four behaviors coded for Observer 1.

Table 8.4
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DISCREPANCY DISCUSSIONS

A discrepancy discussion occurs when two observers discuss with each 
other or with a content expert the rationale for their coding particular 
coded units that are coded differently across observers. A note of cau-
tion is called for if a content expert is not a part of the discrepancy dis-
cussions. When parties disagree regarding how a discrepancy should be 
settled, the content expert must make the final decision.

The focus of discrepancy discussions is on the reason for the dis-
agreement. This process is considered critical for discovering where in 
the coding process coders need to be retrained, or eventually even fired 
or reassigned to a different task. Without such detailed information, we 
may not be able to prevent two well-known phenomena that result in 
reduced accuracy in coding after initial coding training ends: observer 
drift or consensual drift. Observer drift is used here to refer to a fre-
quently documented occurrence of observers becoming less accurate 
(i.e., agreement with a coding standard) the longer it has been since their 
last training (Romanczyk, Kent, Diament, & O’Leary, 1973; Taplin & 
Reid, 1973). Consensual drift is when two observers agree with each 
other but neither agrees with a coding standard (Johnson & Bolstad, 
1975). Although some have suggested prohibiting observers from discuss-
ing coding disagreements to prevent consensual drift (Repp, Nieminen, 
Olinger, & Brusca, 1988), it has never been shown that discrepancy dis-
cussions result in consensual drift. Indeed, informal experience leads us 
to conclude that such discussions may prevent both types of drift, par-
ticularly if the content expert is a part of many of these discussions.

The person running the discrepancy discussion (the discussion 
leader) shows the video clip of the behavior in question and attempts to 
elicit observers’ rationale for their coding decision. Observational soft-
ware such as ProcoderDV can use the time of occurrence or interval to 
efficiently replay key scenes. However, replaying parts of tapes to guide 
discrepancy discussions can be used without observational software. This 
is one reason why timed-event or interval behavior sampling is necessary 
for discrepancy discussions. Without replaying the scene that evoked the 
disagreement, discussions will be based on differing memories of what 
occurred, not on actual behavior and context. If the type of difference is 
a unitizing one, the discussion leader points out the accurate and inaccu-
rate aspects of the rationale for coding the act and identifies the relevant 
parts of the coding manual that document the correct rules for coding 
the act. Many unitizing errors are due to lack of clarity in or insufficient 
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attention to segmenting rules in the coding manual. If the type of dif-
ference is a classifying difference, the agreement matrix will indicate on 
which categories the trainees differ. The discussion leader talks about 
the relevant aspects of the coding manual and shows relevant videotaped 
examples from the session or from the criterion coding standard (see 
Criterion Coding Standards below) to help clarify the needed concepts. 
When observers fall below the agreement standard, they frequently need 
to recalibrate with a criterion coding standard.

CRITERION CODING STANDARDS

We rarely (some would say never) see or are assured of what is exactly 
true or correct. So, estimating accuracy is almost always the best we can 
do. Practically speaking, our “best estimate” of the true occurrence of 
events in a session is a repeatedly and expertly coded session. We call 
this a “criterion coding standard” (Sharpe & Koperwas, 2003). The pur-
poses of criterion coding standards are to (a) initially train observers and 
(b) retrain observers when agreement is below interobserver agreement 
standards.

One process used to create criterion coding standards is presented 
here. It is an adaptation of a process described by Sharpe and Koperwas 
(2003). The first step is to create a videotape or media file of many 
scenes that illustrate at least four examples of all levels of all categories. 
Ideally, we need at least two criterion coding standards: (a) a demonstra-
tion coding criterion and (b) a training coding criterion. Therefore, as 
one is going through tapes to find training scenes, it is wise to identify 
at least eight examples for each category (four for each standard). A less 
expensive option is to have staff act out scripted scenes and edit these. 
This process will result in oversampling scenes of infrequently occurring 
categories and possibly undersampling scenes of frequently occurring 
categories. More than four examples are recommended for particularly 
difficult categories or aspects of the code (e.g., segmenting).

For example, if experience indicates that observers have difficulty 
segmenting communication acts when they occur rapidly and are inter-
rupted by communication partners, then more than four examples of 
such acts should be provided. Within each criterion coding standard 
file, the scenes should be randomly sequenced. We understand this is an 
expensive process and may not be possible for all projects. However, it is 
useful to have an ideal from which to depart. Even if the first step is not 
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used, one can use steps 2 through 4 on uneditted sessions selected for 
multiple instances of acts. The disadvantage of using real sessions, even 
of hand-selected sessions for training, is that they will frequently have 
insufficient numbers of examples of rare or difficult behaviors to classify 
to serve as optimal training stimuli.

Second, the first half of the criterion coding standard or selected 
 session is repeatedly coded by experts. The experts should be very knowl-
edgeable about the substantive area covered by the coding manual. They 
should code the session independently using timed-event behavior sam-
pling. Timed-event behavior sampling is suggested even if other behavior 
sampling methods will be used by project staff to collect the data for 
the project because timed-event behavior sampling will provide opti-
mal control over the media for discrepancy discussion and play back of 
key scenes for training purposes. Next, the observers identify acts that 
are discrepantly coded, including acts that only one observer coded and 
acts that both coded but coded differently. For each act on which there 
is disagreement, the experts hold a discrepancy discussion to (a) iden-
tify ambiguous terms in the coding manual and (b) decide on the most 
accurate way to code the act. If the problem is that certain terms in the 
coding manual are ambiguous, the coding manual is clarified through 
deeper levels of operational definitions and more examples or near non-
examples. After waiting for a sufficient period to prevent easy recall of 
specific coding decisions (e.g., 2 weeks), the first half of the first crite-
rion coding standard file is recoded by the same two experts using the 
new coding manual. The discrepancy discussion process is repeated for 
any remaining acts on which there is disagreement. If the agreement 
standard (to be discussed in chapter 9) has not been met, this process is 
continued until the agreement standard is achieved, the agreement win-
dow is changed, the agreement standard is changed, or the measurement 
system is changed. The experts may decide to change the measurement 
system in one or more of the following ways: (a) collapse subordinate cat-
egories, (b) use a computer software program to aid coding, and (c) use a 
stop-and-go coding or multiple pass coding method. If so, then this new 
method becomes the coding method used by project staff.

Third, once criterion level agreement is reached, the experts code the 
second half of the first criterion coding standard using the newly revised 
measurement system. The above process is repeated until the agreement 
standard is achieved in the second half of the session. Eventually, the 
experts use discrepancy discussions to decide how discrepantly-coded 
acts should be coded for training the project staff. It is important that 
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the discrepancy discussion process be implemented using logic and 
adherence to the coding manual, not force of personality, to make the 
final decisions.

Fourth, the same process is used to consensus code the second cri-
terion coding standard session. The second one should be easier to code 
because of the alterations to the measurement system.

Fifth, the four segments of criterion coding standards are created: a 
short one for each third of the training criterion coding standard and one 
long one for the demonstration criterion coding standard. These will be 
used during the observers’ training process. A new version of MOOSES 
will soon be available to create accuracy matrices (agreement between 
the trainee and the consensus-coded standard). If the observers will be 
using an interval coding system, then one of the project staff must trans-
form the onset data for the consensus-coded standard data into an inter-
val coded file.

OBSERVER TRAINING

Again, the following is an adaptation of a process outlined by Sharpe and 
Koperwas (2003). First, the lead investigator, presumably one of the con-
tent experts for the coding manual, holds discussions with the observer 
trainees about the coding categories and, if relevant, the generalized 
characteristics being measured. Part of this process is to show the dem-
onstration criterion coding standard. If the project leader is using a pro-
gram such as ProcoderDV, one can use the observation file that contains 
the consensus coding record, sort by the code that the leader is teaching 
about, and show the video scenes coded for that category that is on the 
demonstration coding standard. In this way, the sequence in which the 
first criterion coding standard is viewed does not have to be random but 
may be grouped by category to help staff trainees develop the key con-
cepts. The sequence of delivering this presentation of the categories may 
be such that categories that are particularly likely to be confused can be 
shown back to back. The lead investigator uses questions and answers 
to attempt to draw the trainees into an active processing and discussion 
about the categories they are expected to learn.

The second step is for the project director or technician to demon-
strate the recording method to the trainees. Then, the trainees are asked 
to engage in an exercise designed to get the trainees to use the coding 
recording method with support of the project director and other trainees 



152 Observational Measurement of Behavior

so that questions can be addressed and manuals designed to guide the 
trainee through the use of the coding recording method. As part of this 
step, independent and accurate use of the coding recording method (e.g., 
use of the coding software) must be demonstrated. One hundred percent 
accurate use of the procedure is necessary. This level of accurate use 
is reasonable to ask from most people who will be expected to use the 
procedure while making coding decisions, often under rapid or fatiguing 
conditions.

Third, the observers independently code the first third of the training 
criterion coding standard file. For example, if the entire training criterion 
coding standard session is 30 min long, then the trainees code the seg-
ment for the first 10 min. Afterward, each observer independently uses 
the software to create an agreement matrix on the consensus coding of 
the training criterion as the comparison file to identify the time, number, 
and types of disagreements each observer has with the coding standard. 
The content expert then uses the discrepancy discussion process that is 
indicated above to address the types of errors the trainee displays.

Fourth, each trainee observer independently codes the second third 
of the training criterion coding standard file. The same process that was 
indicated above is repeated.

Fifth, the trainees independently code the last third of the training 
criterion coding standard file. The same process as was indicated above 
is repeated.

Sixth, for each accuracy matrix (i.e., agreement matrix for the train-
ee’s coding with the expert consensus-coded file), compute agreement 
for each category using one of the methods indicated in chapter 9. If 
there is no improvement from the first third to the last third and all 
three training segments produce agreement with the consensus-coded 
file that is under criterion level agreement, the lead investigator needs 
to consider the nature of the disagreements. If the disagreements are 
probably due to the staff not learning the categories, then consider mov-
ing the trainee to a new duty or firing and rehiring staff. There are sim-
ply differences in the verbal facility and observational skills of adults 
who are hired as staff that cannot be easily changed within the resource 
limitations of most research projects. This process should result in some 
increased accuracy if the staff member is well suited to the job. If new 
staff members are hired or moved into observer positions, then the above 
process is repeated for them. If the disagreements are due to human or 
technical limitations (e.g., the observer cannot see participants’ eyes, but 
need to in order to code accurately), then consider further changes in the 
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measurement system to aid coding and repeat the above procedure until 
criterion level agreement is met.

Seventh, once improvement in point-by-point agreement is shown 
in the codings on the criterion coding standard file, the pair of trainees 
independently codes sessions that have not yet been coded by experts. 
During this stage of coding training, each trainee is coding independently 
entire sessions that may represent real data on which the research ques-
tion will be addressed. After coding, the trainees produce an agreement 
matrix using the software indicated above that represents the degree to 
which the trainees agree with each other. The content expert meets with 
both (or more) trainees for a discrepancy discussion. With the expert, 
consensus coding decisions are made and the consensus-coded file is the 
basis for the primary observational variable score for each observational 
variable to be derived from that session. If interobserver agreement is 
above the criterion level for each observational variable, that session is 
counted toward the goal of achieving three consecutive sessions coded 
above criterion agreement level. If not, then this process is repeated until 
this goal is achieved. After establishing the required agreement level, we 
conduct regular agreement checks using the following principles.

METHOD OF SELECTING AND CONDUCTING 
AGREEMENT CHECKS

Agreement checks are generally conducted on a subset of the data 
because it is generally prohibitively expensive to conduct them on all ses-
sions. Therefore, it is important that the process by which we select the 
sessions to be checked for agreement informs us of the level of interob-
server agreement in the unchecked sessions. For this to occur, we need 
to be concerned about (a) agreement sample size (i.e., the number of 
sessions selected for agreement checks), (b) the method by which we 
select the agreement check sessions, (c) when during the study they are 
selected and checked for agreement, and (d) whether the primary coder 
knows which sessions are checked for agreement.

We know from sampling theory that smaller samples (i.e., number 
of sessions) tend to be less representative (i.e., produce estimates that 
are not close to the total sample mean) of the total study data than are 
larger samples. However, like all conventions, there will be disagree-
ment regarding how large an agreement sample is needed for it to yield 
estimates that are representative of total data set. One reason for the 
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controversy is that agreement proportions are only point estimates of 
what occurs in the population of data. That is, there is a confidence 
interval around these agreement estimates. A confidence interval is 
influenced by the size of the reliability sample (not the proportion with 
respect to the total data set) and the average variability of agreement 
estimates from the mean agreement estimate in the reliability sample 
(i.e., the SD of the agreement estimates). However, we do not know 
the SD of the agreement estimates until the study is over. And yet, 
we need to collect agreement checks as the study is being conducted 
to prevent observer and consensual drift. Therefore, conventions for 
reliability sample sizes are needed. We offer the following: For group 
designs, the reliability sample should be at least 20% of the total num-
ber of sessions; for single-subject designs, the reliability sample should 
be at least two sessions per design phase and at least 33% of the total 
data (Kazdin, 1982).

Sampling theory also tells us that randomly selected samples are 
more representative of the total data set than are nonrandomly selected 
samples. However, we want for our reliability sample to represent all 
design phases, groups, and conditions proportionally. Therefore, we gen-
erally, stratify (group according to the design element) prior to randomly 
selecting from each pool of sessions.

Sampling throughout the study and immediately conducting agree-
ment checks and subsequent discrepancy discussions are necessary to 
prevent drift. If we wait to conduct such agreement checks at the end 
of the study, then we cannot retrain if drift is seen. If we do all of our 
agreement checks at the beginning of the study, we cannot test for, and 
retrain in the occurrence of, drift. We have found that doing a random 
agreement check for every fifth session coded is a useful way to deter-
mine whether retraining is necessary prior to doing more coding. If the 
agreement level is below criterion level, then we retrain and recode 
the sessions since the last time agreement was adequate (at most four 
sessions).

Finally, the primary coder should not know which sessions are to be 
checked for agreement. This is difficult to accomplish if live coding is 
conducted. Regardless, there is replicated evidence that primary coders 
are more accurate (Reid, 1970) and produce higher agreement scores 
(Romanczyk et al., 1973) when they believe they are being checked for 
accuracy or agreement than when they do not know whether they are 
being checked for accuracy or agreement.
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It should be stated that several sessions that are double coded for the 
purpose of coder training and retraining are sometimes concatenated 
because there are so few instances of rare behaviors in any one session. 
This approach is useful for checking for observer drift because it is diffi-
cult to judge the seriousness of one or two disagreements on rare behav-
iors. However, this approach is not recommended when testing reliability 
of observational variables for reasons that will be discussed in chapter 9.

RETRAINING WHEN OBSERVER DRIFT IS IDENTIFIED

Retraining is necessary when agreement checks indicate that the inter-
observer agreement is below the criterion agreement level (see chapter 9 
for computation of indices and setting criterion agreement standards). 
The retraining process is composed of (a) recalibrating with the demon-
stration (and perhaps training) criterion coding standard(s) followed by 
(b) consensus coding with another staff member who is still coding with 
acceptable levels of accuracy. Each of these is followed by discrepancy 
discussions with the content expert. After the observer codes the dem-
onstration criterion coding standard, the content expert holds the dis-
crepancy discussion. If the agreement level is below criterion level, then 
the observer codes the training criterion coding standard and another 
discrepancy discussion is held. Agreement with the coding standard is 
computed. If still below the agreement standard, then staffing decisions 
are revisited. If agreement is sufficient, the sessions that were coded by a 
single coder since the time that the agreement criterion level as last met 
(e.g., the other four sessions from the set of the most recently coded five 
sessions) are recoded by a second coder and the software indicated above 
is used to identify a list of times at which coding discrepancies occurred. 
The two, now calibrated observers use the discrepancy discussion process 
to produce consensus scores for the sessions that were recoded. Consensus 
scores replace the initial scores in the spreadsheet for the data that will 
be used to address the primary research question to “correct” the error 
that was detected during the agreement check. However, the scores prior 
to consensus coding are used to compute agreement and reliability for 
observational variable scores (see chapter 9 for details). Once retraining is 
complete, the observer needs to reestablish criterion-level agreement on 
three consecutive sessions before beginning the usual schedule of coding. 
These can be done on sessions that have not yet been coded.
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RECOMMENDATIONS

If resources allow it, we recommend using edited files (i.e., a criterion 
coding standard) to initially train observers and retrain observers after 
drift occurs. If one cannot afford to create edited files as training stim-
uli, then we recommend using sessions selected for frequent use of rare 
behaviors as training stimuli. In either case, we recommend using a con-
sensus coding by a pair of content experts as the best estimate of “accu-
rate coding.” These coding standards can be used to train and retrain 
observers. Retraining is necessary when a representative sampling of the 
sessions indicates subcriterion level agreement between pairs of observ-
ers. The sessions checked for agreement are most likely to represent the 
total sessions coded in the study when a sufficiently large number of ses-
sions are selected in a representative fashion and the primary coder is 
blind to which sessions will be checked for agreement. Point-by-point 
agreement checks using agreement matrices and discrepancy discussions 
are the basis for checking for drift and retraining. It is critical that agree-
ment matrices include (a) all sources of differences in the same matrix 
and (b) the disagreements caused by either observer are considered 
equally.

At the time this chapter was written, a new version of MOOSES was 
being developed to facilitate the agreement matrix and discrepancy dis-
cussion processes described in this chapter. When completed, it will be 
available at www.getmooses.com.
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9
Interobserver Agreement and 
Reliability of Observational 
Variables

OVERVIEW

In contrast to the purposes of training, retraining, and drift checking 
that were discussed in chapter 8, this chapter will focus on using the ses-
sions selected for interobserver agreement checks to estimate the extent 
to which the different observers produce similar observational variable 
scores using the same measurement system. The level at which this simi-
larity must occur and the relevance of whether participants vary on their 
observational variable scores to interpreting interobserver reliability esti-
mates depends, in part, on the study’s research design and the investiga-
tor’s measurement perspective.

ADDITIONAL PURPOSES OF POINT-BY-POINT AGREEMENT

In addition to the purposes of point-by-point agreement checks provided 
in chapter 8, there is an additional purpose of interobserver agreement 
checks. In single-subject design studies and fidelity of treatment (FOT) 
scores assumed to be uniformly high, point-by-point interobserver agree-
ment is often thought of as interobserver reliability. FOT is a coded descrip-
tion of the extent to which persons implementing the treatment do so as 
intended by the investigator. Most investigators want FOT measures to be 
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uniformly high; therefore, variability among participants is not expected. 
Both these purposes of measurement are idemnotic in the sense that the 
investigator is interested in absolute, not relative, values of what occurs. 
Therefore, it is not appropriate that variance among units of analysis (i.e., 
sessions in single-subject experiments and participants in group-design 
FOT scores) affect these reliability estimates. Point-by-point agreement 
estimates do not reflect variance among units of analysis.

Point-by-point agreement in single-subject design and in FOT mea-
sures is arguably the most important evidence of “validity.” Particularly 
when measuring context-dependent behavior, measuring occurrence 
accurately is one of the primary meanings of “validity” (Haynes & 
O’Brien, 1999; Johnston & Pennypacker, 1993). All observational mea-
surement experts agree that agreement is not synonymous with accuracy 
(i.e., the extent to which an observer reports the true occurrence and 
nonoccurrence of behavior). However, observers with high agreement 
are thought to be more accurate than observers with low agreement.

One reason that point-by-point agreement is so important for sin-
gle-subject and FOT variable measurement is the heightened possibility 
or certainty that the behavior of interest will be observed during treat-
ment sessions. By definition, FOT measures always come from the treat-
ment sessions. In many single-subject designs, the dependent variables 
are measured from treatment sessions (Kazdin, 1981). If presence of the 
treatment is apparent to observers, measuring the variable during the 
treatment sessions will inform the observer of the design phase or group 
to which the session belongs. This is a potential problem because it has 
been repeatedly shown that when observers believe the session is from 
the treatment phase or group, scores from these sessions are systemati-
cally inflated (Kent, O’Leary, Diament, & Dietz, 1974; O’Leary & Kent, 
1977). Fortunately, it has also been repeatedly shown that proper training, 
which in part involves point-by-point agreement checks and standards, 
can reduce such expectancy effects on the accuracy and agreement of 
coding (Kent et al., 1974; Redfield & Paul, 1976).

ADDED PRINCIPLES WHEN AGREEMENT CHECKS ARE 
USED TO ESTIMATE INTEROBSERVER “RELIABILITY” OF 
OBSERVATIONAL VARIABLE SCORES

When sessions from which point-by-point agreement is used to estimate 
the reliability of observational variables, both concepts of measurement 
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(idemnotic, vaganotic) and research design types (single -subject, group) 
require that the (a) variable metric and (b) unit of analysis on which reli-
ability is estimated be the same as is used to test the research questions. 
For example, when a proportion metric is used to address the research 
question, it is the interobserver agreement on the proportion that is rel-
evant. A common, but misguided, approach to addressing the reliability 
of proportions is only to indicate the point-by-point agreement of the 
numerator and denominator. Table 9.1 indicates that there are cases 
when agreement on either the numerator or denominator of a proportion 
can be greater than a common agreement criterion value (i.e., .8), while 
agreement on the proportion is below the same criterion value. This is 
true even when we use a “generous” index of agreement: the small/large 
ratio. A small/large agreement proportion is the result of dividing the 
smaller variable score estimate by the larger variable score estimate. The 
small/large proportion is not as stringent as point-by-point agreement 
because the behaviors that one observer counts to derive a variable score 
estimate do not have to be the same behaviors that the other observer 
counts to derive his or her variable score estimate.

A subtle but important point, concerning reliability of scores, occurs 
when investigators concatenate sessions (i.e., combine them) to derive 
a primary variable score (e.g., sessions are combined because of infre-
quent key behaviors). The reliability estimates should be derived from 
the same number of concatenated sessions as is used to derive the pri-
mary variable scores. Although this may seem obvious, it is important 
to discuss this point because, in chapter 8, we indicated that it is rather 
common for investigators to concatenate sessions within participant 
for point-by-point agreement checks on infrequent behaviors. While 
acceptable for training and retraining purposes, such an approach is 
inadvisable for interobserver agreement estimation of observational 
variables if primary data used to address research questions are derived 
on single sessions. In other words, agreement or reliability estimates 
on pooled sessions tell us nothing about agreement or reliability on the 
 single-session level.

Another way that we sometimes see the issue of “pooled” or col-
lapsed data played out is that agreement might be reported over all cat-
egories in the coding manual, even though we want to know whether a 
particular variable that is based on a single category has acceptable inter-
observer agreement. One may have good agreement on a noncollapsed 
agreement matrix without having good agreement on a particular cat-
egory if instances of that category occur infrequently in the observation 
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ILLUSTRATION THAT AGREEMENT ON NUMERATOR AND DENOMINATOR DOES NOT ENSURE AGREEMENT ON PROPORTION

NUMERATOR 
FOR 

OBSERVER 1

NUMERATOR 
FOR 

OBSERVER 2

DENOMINATOR 
FOR 

OBSERVER 1

DENOMINATOR 
FOR 

OBSERVER 2

PROPORTION 
FOR 

OBSERVER 1

PROPORTION 
FOR 

OBSERVER 2

SMALL/
LARGE 

AGREEMENT 
FOR 

NUMERATOR

SMALL/LARGE 
AGREEMENT 

FOR 
DENOMINATOR

SMALL/
LARGE 

AGREEMENT 
FOR 

PROPORTION 
METRIC

10  8 102 122 0.10 0.07 0.80 0.84 0.67

20 16 103 124 0.19 0.13 0.80 0.83 0.66

30 24 104 125 0.29 0.19 0.80 0.83 0.67

40 32 105 126 0.38 0.25 0.80 0.83 0.67

50 40 106 127 0.47 0.31 0.80 0.83 0.67

60 48 107 128 0.56 0.38 0.80 0.84 0.67

70 56 108 130 0.65 0.43 0.80 0.83 0.66

80 64 109 131 0.73 0.49 0.80 0.83 0.67

90 72 110 132 0.82 0.55 0.80 0.83 0.67

100 80 111 133 0.90 0.60 0.80 0.83 0.67

Table 9.1
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session. Therefore, when using interobserver agreement to inform the 
investigator or reader about interobserver reliability of an observational 
variable, we collapse our agreement matrices into 2 × 2 tables in which 
the upper left cell represents agreement on the category of interest 
(Kraemer, Periyakoil, & Noda, 2004).

In addition to reporting point-by-point agreement, we recommend 
that the secondary observer’s data be graphed on the same graph as 
the primary observer’s data in single-subject studies (Cooper, Heron, & 
Heward, 2007). The data graphed should be the metric and unit of analy-
sis used to address the research question (see Figure 9.1). This practice 
allows the reader to judge the following: (a) whether the secondary data 
“tells the same story” as the primary data regarding presence or absence 
of a functional relation, (b) when, relative to design phases, the agreement 
check session occurred, (c) whether there is evidence that the second-
ary and primary observers differ systematically (e.g., whether secondary 
observer’s data is consistently higher than the primary observer’s data).

This simple practice, although uncommon, would allow more trans-
parency than does reporting mean and range percentage agreement and 
could reduce a number of misguided practices (e.g., reporting agreement 
on different metrics or units of analysis than primary data, separate 
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Figure 9.1 Illustrating proportion reliability scores on the same graph that displays 
primary proportion scores.
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reporting on unitizing versus classifying agreement percentages, asym-
metrical counting of secondary observer’s disagreements over primary 
observer’s disagreement). Using this method of displaying reliability data 
makes it clear that large changes between phases can be detected even 
with lower interobserver agreement, while smaller changes between 
phases need higher interobserver agreement to show the same data pat-
tern (Cooper et al., 2007).

EXHAUSTIVE CODING SPACES REVISITED

Table 9.2 illustrates how an agreement matrix for an exhaustive coding 
space can be collapsed into a 2 × 2 table for a particular category. In 
this table, we reprint the agreement matrix from chapter 8 for exhaus-
tive coding spaces and collapse it to highlight occurrence and nonoccur-
rence agreement for Category “2.” Collapsing agreement matrices to 2 × 
2 tables cannot be done properly for nonexhaustive agreement matrices 
because the sums of the marginals for the two observers do not have to 
be equal for properly constructed, noncollapsed, nonexhaustive agree-
ment matrices (see chapter 8 for how to construct these). For 2 × 2 agree-
ment tables, however, the sums of the marginals do have to be equal. The 
2 × 2 table makes it clear how many units are considered agreements and 
how many are considered disagreements (Table 9.2) about the presence 
and absence of Category “2.” The cell (a–d) and marginal (f and g) labels 
are provided for use later in this chapter.

Table 9.3 illustrates why it is not appropriate to collapse nonexhaus-
tive agreement matrices into a 2 × 2 table. Two of the “marginals” for 
this nonexhaustive agreement matrix indicate something quite different 
from the other marginals: the total number of times the observer did not 
record a behavior. While constructing nonexhaustive agreement matrices 
are very useful for training observers and checking observer drift (chap-
ter 8), adding across these different types of marginals produces a sum 
that does not mean what most sums mean (i.e., it violates an assumption 
behind summing scores). Therefore, we do not advise doing so.

Recall that one way to determine whether we have an exhaustive 
coding space is to note that such coding allows agreement on nonoccur-
rence of all key behaviors. We determine this from the full agreement 
matrix, not the collapsed 2 × 2 table. The reason is that the D cell in a 
collapsed 2 × 2 table indicates agreement that the “x category” is absent, 
not whether there is agreement on nonoccurrence of all key behaviors. 
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ILLUSTRATION OF COLLAPSING AN EXHAUSTIVE AGREEMENT MATRIX TO 
A 2 × 2 TABLE FOR CATEGORY “2”

OBSERVER 2

1 2 3

NO BEHAVIOR 
CODED IN INTERVAL 

BY OBSERVER 2

MARGINAL 
FOR 

OBSERVER 1

OBSERVER 1

1 2  2

2 1  1

3 1 1  2

No behavior 
coded in 
interval by 
Observer 1

1 4  5

MARGINAL FOR
OBSERVER 2

1 2 0 7 10

OBSERVER 2
MARGINALS FOR 

OBSERVER 12 PRESENT 2 ABSENT

OBSERVER 1 2 present 1
a

0
b

1
g1

2 absent c
1

d
8

9
g2

MARGINALS FOR 
OBSERVER 2

2
f1

8
f2

10
N

a = instances observers agree “2” was present; b = instances Observer 1 counted a 
behavior as “2” but Observer 2 did not; c = instances Observer 2 counted a behavior as 
“2” but Observer 1 did not; d = instances observers agree “2” was not present. Letters 
are provided to enhance communicating about the cell values.

Table 9.2

When using a time-window definition of agreement and timed-event 
behavior sampling in which frequency is the metric to be derived (a non-
exhaustive agreement matrix), agreement on nonoccurrence of all key 
behaviors is not defined. When agreement on nonoccurrence of all key 



166
 

O
bservational M

easurem
ent of B

ehavior

ILL-ADVISED AGREEMENT MATRIX FOR A NONEXHAUSTIVE CODING SPACE

OBSERVER 2

1 2 3

NO 
BEHAVIOR 
CODED BY 

OBSERVER 2

MARGINALS FOR OBSERVER 
1 CODED BEHAVIOR AND 
INSTANCES OF UNITIZING 

DISAGREEMENTS

OBSERVER 1 1 (2–3) (12–13) 2

2 (5–6) 1

3 (10–11) 1

No behavior 
coded by 
Observer 1

(8–9)
(15)

Assigned 0 2a

MARGINALS FOR OBSERVER 2’S 
CODED BEHAVIOR AND INSTANCES 
UNITIZING DISAGREEMENTS

2 2 1 1a 6

aThese “marginals” are for behaviors the observer did not record, while the marginals for the other rows or columns are for behaviors the observer 
did record. This mixing of the logic of what the marginals measure violates the assumption behind estimating chance agreement.

Table 9.3
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behavior is not computable, nonchance agreement cannot be estimated 
accurately. We will return to this point later in this chapter.

THE EFFECT OF CHANCE ON AGREEMENT

How frequently or, conversely, how infrequently a target behavior occurs 
can affect how much of the agreement estimate is caused by chance 
processes, and not by accurate coding. For high-frequency behaviors, 
even random coding will produce inflated occurrence agreement esti-
mates relative to that which occurs for the same behavior occurring less 
frequently (House, House, & Campbell, 1981). Conversely, when cod-
ing infrequently occurring behaviors, even random coding will produce 
inflated nonoccurrence agreement estimates relative to that which occurs 
for the same behavior occurring more frequently. We call the portion 
of the agreement that could occur even when observers code randomly 
“chance agreement.” Chance agreement can occur for occurrence and 
nonoccurrence of instances of target behavior.

As was discussed in chapter 6, chance is only accurately estimable 
when we have an exhaustive coding space. One direct implication, then, 
is that chance agreement is only estimated accurately when our defini-
tion of point-by-point agreement is exact agreement derived from exhaus-
tive coding spaces (see chapter 8 for elaboration). Chance, however, still 
influences agreement when agreement is estimated on nonexhaustive 
coding spaces and when the definition of point-by-point agreement is 
the time-window agreement definition. This is an important point that is 
easily overlooked or misunderstood.

In exhaustive coding spaces, chance agreement for the A (i.e., occur-
rence) or the D (i.e., nonoccurrence) cells in a 2 × 2 agreement table is 
the product of each observer’s estimate of the base rate of the key behav-
ior × the total number of coded units. When applied to agreement matri-
ces, it is useful to compute base rate as a probability or proportion. This 
probability is the number of times a behavior type occurs/total number 
of coded units. The chance agreement estimates for the A (occurrence) 
and D (nonoccurrence) cells in Table 9.2 are 0.2 (0.1 × 0.2 × 10) and 7.2 
(0.9 × 0.8 × 10), respectively.

Because point-by-point agreement is meant to be an estimate of the 
accuracy of coding, we need an index of interobserver agreement that is 
not influenced by chance (i.e., that is not attributable to random coding). 
We call this “nonchance agreement.” It is sometimes recommended that 
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researchers focus on nonoccurrence agreement (i.e., cell D) when they 
expect the base rate of the key behavior to be “high” and to focus on 
occurrence agreement (i.e., cell A) when they expect the base rate of the 
key behavior to be “low” (Ayres & Gast, 2009), but this suggestion does 
not solve the problem that chance agreement affects our indices of point-
by-point agreement. Additionally, a problem arises when the base rate of 
the behavior is low for some periods or sessions in the study and high for 
other periods or sessions in the study. As discussed in the next section, 
different types of indices of point-by-point agreement have been derived 
to address this problem.

COMMON INDICES OF POINT-BY-POINT AGREEMENT

The following is not an exhaustive list of the many ways to compute point-
by-point agreement. Several others are covered in other sources, but they 
do not solve the problems discussed in this chapter (Ary, Covalt, & Suen, 
1990; Primavera, Allison, & Alfonso, 1997). We have chosen to focus on 
four methods because they are common and make a substantive point 
about the nature of chance agreement and indices of point-by-point agree-
ment. These four methods are occurrence percentage agreement, nonoc-
currence percentage agreement, total percentage agreement, and kappa.

Occurrence Percentage Agreement

Using the cell address for the 2 × 2 table in Table 9.2, the formula for 
occurrence agreement is (a/[a + b + c]) × 100. This is the percentage of 
agreements divided by agreements plus disagreements on the occurrence 
of a particular category. A percentage metric is used to enhance inter-
pretation. This is the most common type of point-by-point agreement 
statistic. One reason for its popularity is that it can be computed from 
nonexhaustive agreement matrices. Its biggest disadvantage is that it does 
not control for chance agreement. However, if the occurrence percent-
age agreement is lower than a criterion level agreement the investigator 
selects, it can still indicate that retraining is necessary. After all, chance 
agreement cannot be the reason why occurrence agreement is low!

Nonoccurrence Percentage Agreement

Nonoccurrence percentage agreement can only be correctly computed 
on exhaustive coding spaces. This occurs because agreement on the 
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absence of a particular category necessarily includes the coding units 
for which both observers code no key behavior. This is a key point that 
is sometimes overlooked. Using the cell addresses for the 2 × 2 table 
in Table 9.2, the formula for nonoccurrence percentage agreement is 
(d/[d + c + b]) × 100. Again, chance agreement is not controlled in the 
nonoccurrence percentage agreement method, but, again, low observed 
nonoccurrence percentage agreement is still indicative that additional 
training is necessary.

Total Percentage Agreement

To compute total percentage agreement for a particular category using 
the cell addresses for the 2 × 2 table in Table 9.2, the formula is ([a + d]/ 
[a + b + c + d]) × 100. Another way to convey this formula is a + d/N, 
where N represents a + b + c + d. Because nonoccurrence of Category 
“2” is included in the formula for total percentage agreement and because 
nonoccurrence agreement can only be computed correctly on exhaustive 
coding spaces, total percentage agreement can only be computed cor-
rectly from exhaustive coding spaces. Although this approach may seem 
to address the problem of the base rate of the behavior changing from 
session to session during the study, it still does not control for chance 
agreement.

Kappa

Kappa was created to control for chance agreement (Cohen, 1960). 
Conceptually, kappa is the proportion of potentially available nonchance 
agreement (i.e., 1—total chance agreement) that is attained (i.e., observed 
total agreement—chance total agreement). As mentioned above, the for-
mula for observed total agreement is (a + d)/N. Again, note that observed 
total agreement includes agreement on occurrence and nonoccurrence. 
The formula for estimated chance total agreement, (f1 × g1 + f2 × g2)/N 
2 is also based on chance occurrence and chance nonoccurrence agree-
ment. Figure 9.2 illustrates the observed kappa for the example data in 
the Excel spreadsheet on the website associated with this text that has an 
observed total agreement of 0.8 (i.e., when transformed from 80%). By 
comparing the total chance agreement and kappa lines, it is apparent that 
observed kappa is lower when total chance agreement is higher. This is 
what we would expect for an index that “controls for chance agreement.”

The formula for kappa includes f2, g2, and N. All three of these val-
ues are based in part on the D cell, the agreement on nonoccurrence of 
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the key behavior. Again, the D cell value in the collapsed 2 × 2 table must 
come from an exhaustive coding space. For example, if nonexhaustive 
agreement matrices were collapsed to 2 × 2 tables, the “D cell” would 
be based on agreement on other behaviors and disagreements on other 
behaviors, but not on coding units in which there is agreement of nonoc-
currence of all coded behavior. Therefore, kappa assumes an exhaustive 
coding space. This assumption can be met when exact agreement is used 
and the coding space is exhaustive (e.g., behavior sampling is time event, 
and duration is the metric of interest or when interval behavior sampling 
is used).

Unfortunately, kappa also assumes that one behavior does not influ-
ence the occurrence of another behavior (i.e., independence of analysis 
units; Cohen, 1960). This is an unrealistic assumption in observational 
agreement data because all the behaviors come from the same session 
and the tallies are from the same two observers. Despite these issues, 
kappa continues to be used frequently in the social sciences. One might 
justify this by pointing to the fact that there are other times that social 
scientists use mathematical functions that are based on unrealistic 
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Figure 9.2 Illustration of the relation between chance agreement and kappa as 
a function of the base rate of the key behavior.
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assumptions (e.g., some applications of inferential statistics in educa-
tion or psychology). We do so because we need the information that the 
mathematical functions are meant to provide. However, there is another 
important issue that further reduces the utility of kappa.

Using an exhaustive 2 × 2 agreement matrix as the context, it 
has been shown many times by experts in many fields that the prob-
able range of kappa varies greatly when the occurrence base rate of 
a target behavior is much less than or much greater than the target 
behavior’s nonoccurrence base rate (Bakeman, McArthur, Quera, & 
Robinson, 1997; Bruckner & Yoder, 2006). Recall that accuracy refers to 
an observer’s agreement with the true occurrence and nonoccurrence 
of the key behavior (i.e., something we cannot know with certainty in 
reality). Therefore, observer accuracy is a higher standard of what we 
want from our observers than is interobserver agreement. Even when 
accuracy of both observers is modeled to be .9 (a “good” accuracy level; 
Bakeman et al., 1997), the kappa is 0.39 when the occurrence base rate 
is 0.1 or 0.9, whereas, the kappa is 0.64 for the same accuracy level 
when the occurrence base rate is 0.5 (Bruckner & Yoder, 2006). To pre-
vent readers incorrectly using Figure 9.2, it is important to note that 
Figure 9.2 is based on 0.80 interobserver’s agreement, not 0.80 accu-
racy. Readers who wish to read more about this issue and to see figures 
of the obtained kappa values as a function of the base rate of the key 
behavior are referred to Bruckner and Yoder (2006).

Thus, the meaning of kappa (i.e., whether observed kappa is “good” 
or “poor”) varies as a function of the base rate of the key behavior. This 
complicated state of affairs is similar to the problem that occurred with 
total percentage agreement. An appropriate criterion level of total per-
centage agreement needs to change as the base rate of the key behavior 
changes.

Base Rate and Chance Agreement Revisited

We turn to a discussion of how base rate of the key behavior affects 
chance agreement and an index that explicitly controls for chance agree-
ment, kappa. Figure 9.2 illustrates the relation between occurrence, 
nonoccurrence, and total chance agreement as a function of the base 
rate of a key behavior when the observed total percentage agreement is 
80%. Note that the relation of the chance occurrence agreement by base 
rate of the behavior is a mirror image of the relation of the chance non-
occurrence agreement by the base rate of the same behavior. The lines 
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that represent these relations cross at the base rate of 0.5. When occur-
rence and nonoccurrence chance agreement are added (as they are in 
kappa), total chance agreement is at its lowest when the base rate is the 
point at which these lines cross. Readers who would like to understand 
(and check!) the math behind this figure are invited to do so by examin-
ing the formulae in the Excel spreadsheet on the website associated with 
this text entitled “chance agreement and kappa by base rate.”

The implications of Figure 9.2 are disturbing if taken seriously. Note 
that many dependent variables of interest will at least sometime dur-
ing the study or for some participants have a low (e.g., communication 
in children with communicative impairments) or high (e.g., challenging 
behavior in children with behavior disorders) base rate. In such cases, 
percentage agreement indices are greatly influenced by chance. For 
example, Figure 9.2 indicates that at the base rate of .15, there is 75% 
chance agreement. This means that 94% of the observed total percentage 
agreement of 80% could have been achieved purely by chance processes! 
Another lesson of this figure is that the observed or reported percentage 
agreement estimate is the upper limit of the potential nonchance agree-
ment. That is, if the reported percentage agreement estimate is “low,” 
then we can know that the nonchance agreement (what we really care 
about) is even lower.

Summary of Point-by-Point Agreement Indices

The fact that achieving a criterion level of point-by-point agreement 
requires more observer vigilance and coding manual adherence than 
does achieving the same level of small/large agreement ratios suggests 
that point-by-point agreement indices are likely to be more useful for 
training and retraining purposes than are small/large agreement ratios. 
At first glance, it may seem that readers, reviewers, or investigators can 
be confident that they know the nonchance point-by-point agreement of 
an observational variable when several conditions exist. First, as discussed 
in chapter 8, an adequate reliability sampling method must be used. This 
includes (a) a sufficient sample size, (b) a random or systematic sampling 
of the total data set, (c) independent agreement checks, and (d) the pri-
mary observer to be blind to when agreement checks occur. Second, the 
variable and unit of analysis used to estimate the index of point-by-point 
agreement should match that used to generate the variable scores which 
are then used to address the research question. Third, the method of 
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estimating point-by-point agreement is more informative regarding accu-
racy if it controls for chance agreement. At first glance, it appeared that 
the latter criterion could be met by using kappa. However, we end up 
being stuck with an index of agreement (kappa) that is still difficult to 
fully interpret because its meaning is influenced by the base rate of the 
key behavior and because it is based on an assumption that is almost 
never true in observational studies (i.e., independence). One option is for 
investigators to use the estimated base rate of the key behavior to select 
the criterion level of kappa that corresponds with a set level of estimated 
accuracy (Bakeman et al., 1997). For those wishing to do so and who have 
the requisite set of conditions allowing reasonable kappa computation, the 
reader is referred to Bruckner and Yoder (2006) for guidance. It should be 
noted, however, there may be opposition philosophically to “correction for 
chance” because, from some perspectives (a) the concept of “chance” has 
little scientific utility due to multiple definitions (Baer, 1977; Johnston & 
Pennypacker, 1993) or (b) observational data rarely meet all requirements 
for precise estimation of chance. For those who prefer not to correct for 
chance agreement, percentage agreement will be the index of choice. It 
is true that when percentage agreement is high, it may be due to chance 
agreement. However, when percentage agreement is low, it cannot be due 
to chance agreement. In the final analysis, percentage agreement can be 
used to indicate when data are not sufficiently accurate, but it provides 
less certainty in judging when data are sufficiently accurate.

At present, many direct observation studies in which single-sub-
ject designs are used tend to rely exclusively on point-by-point agree-
ment indices to judge the “trustworthiness” of data. This is problematic 
because the required level of point-by-point agreement that is necessary 
to trust a demonstrated functional relation (a) varies as a function of the 
size of effect (i.e., the magnitude of the change in the dependent vari-
able among design phrases) and (b) whether observers are blind to design 
phase. The latter point will be addressed later in this chapter.

Fortunately, the graphing of secondary and primary data on the same 
graph has a number of advantages over only reporting mean and range 
of point-by-point agreement indices for a particular variable. At present, 
graphing of secondary and primary data is not common practice. This 
may (or may not) change in the future.

Regardless, there is, and probably will continue to be, a need to use 
an agreement index to guide decision making regarding observer (re)train-
ing. There is an additional need to set a criterion level of agreement below 
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which retraining or continued training will occur. Because we cannot know 
the magnitude of the changes in the dependent variable between phases 
or effect sizes until all data are collected, knowing that the tolerable level 
of agreement varies by the effect size is not helpful in setting a criterion 
level of agreement. For this and other reasons given above, it is extremely 
difficult to set a criterion level of agreement that is informed and mindful. 
This difficulty does not change our need for a criterion level of agreement. 
This continued need for a criterion level of agreement is probably why at 
least one professional consensus group has suggested 0.8 for total percent-
age agreement and 0.6 for kappa as criterion levels (Horner et al., 2005), 
despite multiple warnings against their use in absolute terms. Using 0.8 
agreement or 0.6 kappa is no better, or worse, than any other arguably high 
level of agreement for making (re)training decisions.

An argument can even be made for using a small/large agreement 
ratio as a method of deciding when retraining needs to occur. Point-by-
point agreement is then represented in the form of agreement matrices 
and discrepancy discussions are used for the actual retraining. As we will 
discuss in detail later in this chapter, these recommendations are par-
ticularly defensible when the observers are kept blind to design elements 
such as when the treatment phase begins or which participants belong to 
treatment versus control groups.

At present, it appears there is no satisfactory solution to the dilemma 
of (a) needing a criterion level of agreement to make retraining decisions 
on one hand, but (b) not having a universally reasonable criterion level 
of agreement available on the other hand. This state of affairs should tell 
us (a) to graph primary and secondary observer’s data on the same graph 
in single-subject studies to determine if they follow the same data path, 
(b) to avoid rigidity in our use of any criterion level of agreement, and (c) 
to seriously consider that the primary value of point-by-point agreement 
checks are more likely to be found in the discrepancy discussion process 
than in the “interobserver agreement” index. Ironically, in our opinion, 
the majority of attention has been given to the latter.

INTRACLASS CORRELATION COEFFICIENT AS 
AN INDEX OF INTEROBSERVER RELIABILITY FROM 
THE VAGANOTIC CONCEPT OF MEASUREMENT

In the vaganotic concept of measurement, interobserver reliability 
means that the ranking of participants on a particular variable is very 
similar regardless of the observers used to code the observation sessions 
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(Shavelson & Webb, 1991). Many observational measurement experts rec-
ognize the value of intraclass correlation coefficients (ICC) as an index of 
interobserver reliability for dependent variables and predictors in group 
designs (Bakeman & Gottman, 1997; Mitchell, 1979; Primavera, Allison, 
& Alfonso, 1997; Suen & Ary, 1989).

The ICC is identical to the g coefficient in a single-facet generalizabil-
ity study with only two observers (see chapter 2 of this book; Shavelson 
& Webb, 1991). Like the g coefficient, the conceptual meaning of the 
ICC when measuring interobserver reliability is the proportion of the 
variability in the reliability sample that is due to between-participant 
variance in true score estimates of the behavior of interest (Shavelson & 
Webb, 1991). As a group-design statistic, ICC cannot be run on a single 
agreement check session. It takes at least five agreement check sessions 
that are coded by at least two observers to derive a reasonable ICC sta-
tistic. As will be seen, the larger the number of sessions on which reli-
ability is estimated, the more confident we can be that the reliability 
estimate represents what occurs in the total data set.

Options for Running ICC with SPSS

SPSS and other statistical software programs that use ICC to estimate 
interobserver reliability have various options for running the software. 
The command statements provided in Table 9.4 indicate how to run ICC 
using SPSS to estimate interobserver reliability. We have selected (a) a 
mixed model in which the participant factor is treated as random and the 
observer factor is treated as fixed, (b) the ICC as the reliability coefficient, 
and (c) “absolute” as the agreement measure. These are in accordance with 
the recommendations of McGraw and Wong (1996) and Nichols (1998). 
Briefly, these guidelines indicate that it is appropriate to treat observ-
ers as a fixed factor because observers are not randomly selected from a 
population and that doing so means one should restrict one’s generaliza-
tion about the reliability of scores to those particular observers (Nichols, 
1998). The absolute agreement measure is selected to detect whether one 
observer consistently scores more than the other across participants.

Between-Participant Variance on the Variable of 
Interest Affects ICC

An important attribute of ICC is that it reflects the variance among 
participants, unlike agreement indices. The latter are based on single 
sessions; therefore, they cannot reflect the among-participant variability 
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on the variable of interest. On the website that is associated with this 
textbook, there is an Excel spreadsheet entitled “Data for exercise dem-
onstrating the variance effect on ICC in Excel.” The reader is invited 
to import these data into SPSS or other statistical software and run an 
ICC on the two pairs of dependent variables. The scores for each mem-
ber within the pair are estimates from a different observer. The SPSS 
commands for ICC and a summary of the results for this example are 
provided in Table 9.4. The primary difference between the two variables 
is that one has about twice as much variance between participants as 
the other. Note that the two variables are very similar on (a) the means 
within observer, (b) the mean difference between observers, and (c) the 
mean small/large agreement proportion. Despite these similarities, the 
ICC for the variable with small variance is less than half that of the var-
iable with larger variance.

SPSS SYNTAX AND RESULTS FOR THE PRACTICE EXERCISE THAT 
ILLUSTRATES THE EFFECT OF VARIABILITY ON ICC EVEN WHEN MEAN 
DIFFERENCE AND SMALL/LARGE AGREEMENT IS RELATIVELY STABLE

SPSS syntax for exercise:

RELIABILITY
/VARIABLES=DVwsmallvariance1 DVwsmallvariance2
/SCALE(‘small variance DV’) ALL/MODEL=ALPHA
/ICC=MODEL(MIXED) TYPE(ABSOLUTE) CIN=95 TESTVAL=0.
RELIABILITY
/VARIABLES=DVwlargevariance1 DVwlargevariance2
/SCALE(‘large variance DV’) ALL/MODEL=ALPHA
/ICC=MODEL(MIXED) TYPE(ABSOLUTE) CIN=95 TESTVAL=0.

SUMMARY OF RESULTS

OBSERVER 1 OBSERVER 2 MEAN
SMALL/LARGE 
AGREEMENTMEAN (SD) MEAN (SD) ICC

DV WITH SMALL 
VARIANCE

4.3 
(0.95)

3.5 
(1.3)

0.69 0.37

DV WITH LARGER 
VARIANCE

4.4 (2.4) 3.5 (2.2) 0.70 0.84

Table 9.4
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Using ICC as a Measure of Interobserver Reliability for 
Predictors and Dependent Variables in Group Designs

The inclusion of variance between participants in the formula for ICC is 
important because it is much more difficult to show a relation or mean 
difference on a variable when the true score variance among people on 
the variable is very limited. In other words, the smaller the variance 
among participants in their true scores, the higher the interobserver 
agreement must be to detect the true differences among participants. 
Conversely, even when interobserver agreement between observers is 
low, we can still detect differences among participants as long as the 
variance among participants in their true scores is large enough.

This is just another way to say that we can detect the signal even when 
there is a lot of noise if the signal is clear enough. The signal in group 
designs is the association or difference indicated in our research question. 
The clarity of that signal is the effect size. The effect size of the expected 
association or difference is greatly influenced by the variance in the vari-
able of interest. This is easiest to explain for associations. Part of the defi-
nition of an association is the degree to which we can predict the ranking 
of participants on a variable given knowledge of their ranking on another 
variable. To understand the concept that the variance of the variable should 
influence the reliability estimate, imagine a variable with a normal distri-
bution and another variable with a distribution of scores with very little 
variance (i.e., a sharp peak with many scores clustered closely around the 
mean). All things being equal, we have lower confidence in the measured 
ranking of the participants on the variable with the sharply peaked distri-
bution than on the variable with the normal distribution because there is 
much less difference between participants in the former variable.

The Interpretation of SPSS Output for ICC

In the SPSS output for the ICC, the “single measure” ICC is the inter-
observer reliability estimate for a single observer for the relevant vari-
able. In SPSS output, the “average measure” ICC is that for the average 
of the observers’ estimates for the variable. It is only appropriate to use 
the latter when the investigator has all sessions coded by more than one 
observer and uses the average score across observers as the variable 
score to answer the research question. The 95% confidence interval for 
the ICC point estimate means that the actual ICC in the total data set 
is somewhere between the lower and upper bound of the given interval. 
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One can tighten the confidence interval around the estimated ICC by 
increasing the size of the reliability sample. The probability value (i.e., 
under “sig” in SPSS output) of the ICC is associated with a significance 
test whether the confidence interval around the ICC includes zero. This 
probability value is only minimally relevant. The more important infor-
mation is the absolute magnitude of the point estimate for ICC. The 
minimally acceptable ICC is relative to the area of study and the effect 
size for the expected association or group difference. As a benchmark, 
some consider an ICC of 0.7 as “very good” (Mitchell, 1979).

The SPSS output for the exercise (see Table 9.4) indicates the single 
measure ICC to be 0.84, which means that 84% of the variance in the 
variable in the reliability sample is due to between-participant variance. 
On the expanded SPSS output (not shown), the 95% confidence interval 
for this ICC point estimate is 0.48–0.96. This means that the ICC in the 
total data set is somewhere between 0.48 (some would interpret this as 
“poor”) to 0.96 (outstanding).

THE CONCEPTUAL RELATION BETWEEN INTEROBSERVER 
AGREEMENT AND ICC

The “noise” in variable scores is measurement error. In group designs, 
measurement error due to observers is the extent to which observers dis-
agree on the mean and ranking of participants on the variable of interest. 
Disagreement on the “proper” mean and ranking of participants on a vari-
able is influenced by agreement between observers within a participant. 
More agreement will result in better ICCs, all things being equal. The 
group design concept of reliability requires only summary level agreement 
(e.g., small/large proportion agreement). However, we improve our sum-
mary level agreement by maximizing our point-by-point agreement and 
by reducing our observer drift. Additionally, if observers are not blind to 
group membership status, then the discrepancy discussions that point-by-
point agreement checks stimulate are particularly important because they 
may reduce the probability of Type I error by maximizing accuracy.

CONSEQUENCES OF LOW OR UNKNOWN 
INTEROBSERVER RELIABILITY

The two types of scientific error are Type I and Type II. Type I error is 
detecting a difference or relation, when one does not really exist. Type 
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II error is failing to detect a difference or relation that is present. When 
interobserver agreement or reliability of an observational variable is 
unknown because one or more of the principles of conducting sound 
reliability checks has not been followed, it is most conservative to assume 
interobserver reliability or agreement on the observational variable to be 
“low” (meaning below the investigator’s or reader’s standards of mini-
mally desirable). To evaluate the consequences of “low” interobserver 
agreement or reliability, we must know whether the observers are blind 
to when the design phase changes (e.g., from baseline to treatment phase) 
or to membership of participants to groups (e.g., control vs. experimental 
groups) or to participants’ scores on other variables listed in the research 
question.

“Blindness” to these design elements is important information 
because not being blind is the primary source of “correlated measure-
ment error” in observational variables. In observational research, this 
occurs when the observer systematically overestimates the true score in 
the predicted superior group or phase while systematically underestimat-
ing the true score for those in the predicted inferior group or phase. For 
example, assume the observer knows that Participants A, B, and C are 
from the experimental group, Participants D, E, and F are from the con-
trol group, and the observer systematically overestimates the true score 
for those in the experimental group and systematically underestimate 
the true score for those in the control group. This would create a group 
difference even if there were not one in reality. An analogous process 
can occur in single-subject designs or group correlational designs. No 
one is accusing the observers in such a situation of being dishonest. Such 
bias can and does occur even when observers are competent and well 
intentioned (Reid, 1970). The consequence of correlation measurement 
error is an elevated probability of Type I error.

One way to test for whether the primary observer’s data has cor-
related measurement error is to examine whether one observer’s data is 
consistently higher than the other observer’s data in the group or design 
phases. This can be seen in by the graphing of secondary and primary 
data as suggested earlier. A similar process can be used for group data. 
Unless both secondary and primary observers are biased in the same 
way (an unlikely event), such a pattern is consistent with the finding that 
correlated measurement error occurs. If this type of pattern does not 
occur, then the “reliability data” is not consistent with the hypothesis 
of correlated measurement error and can thus probably not explain any 
apparent functional relations in single-subject experiments or significant 
differences or relations in group designs.
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If observers are blind to these design elements or if examination of 
consistently higher scores by one observer over another indicates no sys-
tematic bias, then the extent to which observers overestimate and under-
estimate true score is likely to be randomly distributed across design 
groups or phases (Thompson & Vacha-Haase, 2000). We call this type of 
measurement error “uncorrelated measurement error.” The consequence 
of “high uncorrelated measurement error” is an elevated probability of 
Type II error (Thompson & Vacha-Haase, 2000).

When coders are not blind to treatment phase or group, high point-by-
point agreement does not ensure that measurement error is uncorrelated 
with design phase but it does increase the probability that it is. Additionally, 
as indicated above, it is quite difficult to show with confidence that non-
chance point-by-point agreement is high. If point-by-point agreement is 
low, however this is defined, and observers are unblind to design phase 
or group, then the probability that measurement error is correlated with 
design phase is higher than if point-by-point agreement is high.

High ICCs are also insufficient to ensure that correlated measure-
ment error has not occurred when observers are not blind to design fea-
tures. This is because ICCs do not tell us about point-by-point agreement, 
much less accuracy. It is the more detailed level of agreement and sub-
sequent discrepancy discussions that are relevant for reducing the prob-
ability of correlated measurement error when observers are not blind. 
Therefore, group designs should (a) include point-by-point agreement 
checks with their accompanying discrepancy discussions (chapter 8) to 
maximize the accuracy of observers, (b) use ICC to estimate reliability 
of summary level observational variables in a way that reflects variability 
among participants, and, whenever possible, (c) keep observers blind to 
design features. If observers cannot be blind, then secondary and pri-
mary observers’ scores should be reported or tested for systematic bias to 
enable readers to judge the probability of correlated measurement error.

RECOMMENDATIONS

Ironically, most of the emphasis related to reliability in observational 
measurement has been on point-by-point agreement indices. This is 
unfortunate because such indices are largely uninterpretable with regard 
to the real topic of interest: accuracy. In contrast, almost no discussion 
has been provided about a very useful process: discrepancy discussions 
(i.e., the topic of chapter 8). Discrepancy discussions have been largely 
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ignored in large part due to the lack of computer software programs 
enabling them. The software features indicated in chapter 8 will be avail-
able in new observational software (e.g., the 2010 version of MOOSES). 
However, even with software-enabled discrepancy discussions, investi-
gators need a criterion agreement level to guide (re)training decisions. 
Unfortunately, there are no universally accepted criterion agreement lev-
els. Investigators must decide on an agreement index and criterion level 
value based on their design and specific area of study.

In both designs (group and single-subject experiments), observ-
ers should be kept blind to design features when possible, and discrep-
ancy discussions from regular point-by-point agreement checks should 
be used to maximize the accuracy of coding decisions. When using the 
idemnotic measurement perspective (e.g., single-subject experiments and 
FOT measures), we recommend graphing primary and secondary data 
on the same graph to allow readers to judge whether both observers’ data 
show the same general pattern (e.g., support an inference of a functional 
relation). When using the vaganotic measurement perspective (e.g., when 
measuring dependent and predictor variables in group design studies), 
we recommend reporting ICCs on each observational variable indicated 
in the research questions. If observers are blind to design elements, low 
point-by-point agreement and low ICCs should lead us to expect height-
ened probability of Type II errors. If observers are not blind to design 
elements, we should test whether the relation of primary to secondary 
observers’ data shows evidence of correlated measurement error. If so, 
then we should be cautious about accepting the causal or even corre-
lational nature of the study findings. Additionally, low point-by-point 
agreement and unblinded observers increase the probability that mea-
surement error could be correlated with design phase or group and thus 
should lead us to be cautious about accepting causal or relational claims.
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10 Validation of Observational 
Variables

OVERVIEW

Generally speaking, “validity” means scientifically useful. From one 
perspective, it has been said that when it comes to behavioral obser-
vation, one only needs to be concerned with accuracy (Johnston & 
Pennypacker, 1993). Alternatively, most researchers who use observa-
tional variables acknowledge that because of disagreements regarding 
what constitutes a “legitimate” instance of the behavior class of inter-
est, validation is also important even when we are measuring context-
dependent behavior from an idemnotic perspective (Haynes & O’Brien, 
1999; Primavera, Allison, & Alfonso, 1997). In this, our last chapter, 
we (a) suggest that the relevant validation evidence varies by research 
design, object of measurement, and purpose of the research, (b) indi-
cate the primary purposes of observational variables that organize the 
common types of validation evidence, and (c) summarize the five types 
of validation evidence that are especially relevant for observational 
variables.
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THE CHANGING CONCEPT OF VALIDATION

Since 1954, the year of the first published standards of psychological 
and educational measurement, the concept of validity has been for-
mally revised four times (Goodwin & Leech, 2003). Each revision has 
made it increasingly clear that the concept of “validity” does not refer 
to a measure or test but to a particular variable, use, and population. 
An observational variable score is the end product of all of the decisions 
and procedures made to produce the score (i.e., measurement context, 
number of sessions averaged, coding manual, behavior sampling method, 
coding decision recording method, observational session recording 
method, and metric). The principle that the object of validation is spe-
cific to a variable, use, and population means that providing support for 
one purpose or one population does not necessarily provide support for 
using the same observational variable for other purposes or with other 
populations. Finally, validation support for one aspect of the measure-
ment system (e.g., a variable derived from one behavior sampling method 
or quantified with one metric) does not provide evidence of the scien-
tific value for the variable using a different set of decisions about the 
measurement system (e.g., a variable derived from a different behav-
ior sampling method or quantified by a different metric). In summary, 
validation evidence is conditional and highly contextualized (Haynes & 
O’Brien, 1999).

There are different types of validation processes. These differing pro-
cesses used to be called “types of validity,” but that terminology has been 
revised to reflect the modern concept of validation as a (a) purpose-spe-
cific, (b) ongoing, and (c) cumulative process. In this chapter, we cover five 
types of validation evidence that are relevant to the most common uses 
of observational variables. These five types of validation evidence are (a) 
content, (b) sensitivity to change, (c) treatment utility, (d) criterion related, 
and (e) construct. Although some taxonomists have combined sensitivity to 
change and treatment utility under one category (clinical utility; Haynes & 
O’Brien, 1999), we discuss them separately because sensitivity to change 
has relevance for all objects of measurement, whereas treatment utility 
has relevance only for generalized characteristics. Before describing each 
type of validation method, we present an organizational framework that 
is designed to help readers recognize that some aspects of validation are 
emphasized more than others for different research designs, objects of 
measurement, and purposes.
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ILLUSTRATION OF TYPES OF VALIDATION BY RESEARCH DESIGN AND OBJECT 
OF MEASUREMENT (AND VARIABLE TYPE)

OBJECT OF MEASUREMENT 

CONTEXT-DEPENDENT 
BEHAVIORS 
(VARIABLE TYPE)

GENERALIZED CHARACTERISTIC 
(VARIABLE TYPE)

Research 
design

Single 
subject

Content (all)
Sensitivity to change 
(all)

Content (dependent)
Sensitivity to change 
 (dependent)
Treatment utility (participant 
  characteristic or treatment 
context variable)

Criterion related (dependent)
Construct (dependent)

Group Content (FOT) Content (predictor and 
 dependent)
Sensitivity to change 
 (dependent)
Treatment utility (participant 
  characteristic or treatment 
context variable)

Criterion related (predictor and 
 dependent)
Construct (predictor and 
 dependent)

FOT: fidelity of treatment.

Table 10.1

UNDERSTANDING WHICH TYPES OF VALIDATION EVIDENCE 
ARE MOST RELEVANT FOR DIFFERENT RESEARCH DESIGNS, 
OBJECTS OF MEASUREMENT, AND RESEARCH PURPOSES

Table 10.1 illustrates a crossing of two factors: type of research design 
(single subject vs. group) and object of measurement (context-dependent 
behavior vs. generalized characteristic). The cells of the resulting 2 × 2 
matrix indicate the types of validation evidence that are most relevant 
to the object of measurement when studied through a particular type of 
research design. Table 10.2 illustrates the types of validation evidence that 
are most relevant to four of the purposes of observational research. We 
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Table 10.2
ILLUSTRATION OF FIVE TYPES OF VALIDATION EVIDENCE BY PURPOSES OF 
OBSERVATIONAL RESEARCH

TYPES OF VALIDATION EVIDENCE

CONTENT
SENSITIVITY 
TO CHANGE

TREATMENT 
UTILITY

CRITERION 
RELATED CONSTRUCT

PURPOSES

Describing x

Understanding 
Variability

x x x

Demonstrating 
that Treatment 
Affects Change 
in Dependent 
Variable 
(Treatment 
Effect)

x x x x

Predicting 
Differential 
Treatment 
Response

x x x x x

begin our discussion with one type of validation evidence that is important 
to all objects of measurement and all research designs: content validation.

CONTENT VALIDATION

Definition of Content Validation

As applied to a coding manual, content validation is the expert rating 
of the relevance and representativeness of the examples and instances 
identified by the definitions in the coding manual to the stated object 
of measurement. The coding manual is part of the measurement sys-
tem. Content validation can also include expert judgment regarding the 
adequacy of the measurement context, the number of sessions averaged, 
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behavior sampling method, the coding decision recording method, the 
observation session recording method, and the metric with regard to 
measuring what the investigator says she wants to measure (Messick, 
1989; Primavera et al., 1997).

Different Traditions Vary on the Levels of 
Importance Placed on Content Validation

Interestingly, content validation is the only type of validation that does 
not involve empirical examination of the participants’ variable scores. 
Instead, it focuses exclusively on the measurement system (Geisinger, 
1992). Because of this, measurement experts in the vaganotic and thus 
group design traditions have questioned whether content validation is 
really a validation process at all (Cronbach, 1988; Guion, 1977). Even 
when combined with accuracy information, these critics do not consider 
content validation sufficient to support a measurement system for any use 
to which vaganotic measurement approaches are applied (Messick, 1989).

In contrast, some single-subject research measurement experts con-
sider content validation the only necessary companion of accuracy to 
support the scientific value of observational measurement for some pur-
poses. Quoting one of the texts on behavioral measurement for single-
subject research,

Content validity . . . for a particular assessment purpose is one of the most 
important psychometric evaluative dimensions in behavioral assessment. 
(Haynes and O’Brien, 1999, p. 201)

To understand this perspective, it is important to recall that much 
single-subject research is focused on describing what occurs in certain 
contexts (stimulus–response/response–stimulus relations) or after cer-
tain behaviors (response–response relations). There may be no need to 
generalize past the measurement context. Therefore, accurately coding 
and classifying a behavior by the correct name is paramount. Using an 
example from Primavera et al. (1997) to illustrate why content validation 
is so important, we might ask, “Are all movements of the head toward a 
solid surface ‘head banging’? Or is cranial contact necessary?” (p. 50). 
One might add, “Is cranial contact that is sufficiently hard to produce an 
audible sound necessary for the instance to be ‘head banging’?”
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Weaknesses of Content Validation

One of the main weaknesses of content validation is that the definition of 
who is considered an expert is somewhat subjective and varies by content 
area (Johnston & Pennypacker, 1993). For example, if we are studying 
“challenging behaviors” because we want to reduce these to address the 
concern of a consumer of clinical services, we might consider the experts 
to be parents or teachers. If we are studying “hyperactivity” because we 
want to understand what behaviors covary because of a presumed com-
mon genetic or neurological cause, we might consider the experts to be 
particular professionals who are highly knowledgeable about a substan-
tive area. Even within a particular group of experts, there is likely to 
be some disagreement. Such disagreement is often addressed through 
consensus or majority vote. The process by which a consensus or vote 
is called often involves discussion of differences. Experts differ in their 
ability to communicate effectively, however. Therefore, the outcome of 
such discussions may reflect dominant experts’ communication skills 
more than, or in addition to, content expertise and knowledge. Finally, 
expert knowledge changes over time. What seems “true” today is not 
necessarily considered “true” tomorrow.

SENSITIVITY TO CHANGE

Definition of Sensitivity to Change

Sensitivity to change is the degree to which a measure changes in a ther-
apeutic direction after participation in treatment (Vermeersch, Lambert, 
& Burlingame, 2000). As this definition implies, sensitivity to change is not 
just about measuring change in any direction or measuring change when 
no formal treatment occurs. The concept is explicitly linked to a formal 
treatment, implying that a portion of the change is thought to be due to a 
treatment. Therefore, the aspects of the research design (e.g., differences 
between control and experimental group or differences between design 
phases or conditions) that are controls over nontreatment influences on 
change are an essential aspect of testing sensitivity to change. One of 
the reasons one might consider observational variables worth the effort 
is that observational variables are often more sensitive to change than 
more global measures (Haynes & O’Brien, 1999). Sensitivity to change 
has been called a type of construct validity (Vermeersch et al., 2000), 
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but we do not classify it as such because the general concept is relevant 
for context-dependent behaviors (which are not constructs) as well as 
generalized characteristics.

Influences on Sensitivity to Change

As mentioned in chapters 1 and 2 of this book, measures of generalized 
characteristics will be more difficult to change after a brief treatment 
than will be context-dependent behaviors. This is due, in part, to the 
fact that measures of generalized characteristics are relatively stable over 
contexts, by definition. Because the internal validity of single-subject 
experiments that use comparison between a baseline and a treatment 
phase (AB variants) benefits from a rapid shift in the dependent vari-
able immediately after the onset of the treatment phase (Kazdin, 1981), 
group designs, which do not require immediate changes in the dependent 
variable to show treatment effects, are often used to address treatment 
effects on generalized characteristics. This covariation of research design 
with object of measurement influences how measurement systems are 
designed, which in turn influences the sensitivity to change for many 
observational variables.

When different types of behaviors are lumped into a single category, 
they may be less likely to show sensitivity to change than when the dif-
ferent types of behavior are measured separately. The lower sensitivity 
to change in lumped categories occurs, in part, because participants in 
the control group may also change on some of the behavior types lumped 
into the same category with the types of behavior the treatment affects. 
However, categories that lump behavior types are used when changes 
due to a treatment are measured in a group because the behaviors that 
change in some members of the group are often different from the 
behaviors that change in other members of the group. That is, the cat-
egory may change as a whole by incrementing any of a number of behav-
iors that are affected in different individuals. Thus, there is a balance 
between making the category in the coding manual sensitive to change 
and yet inclusive of the different ways that members of a group are likely 
to show change on different manifestations of the category.

When considering sensitivity to change, it is also important to select 
measurement systems that avoid floor (i.e., most sessions’ or participants’ 
scores are near the empirical minimum) or ceiling (i.e., most sessions’ 
or participants’ scores are near the empirical maximum of the variable) 
effects. Floor or ceiling effects can mask changes that would otherwise 
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have been detectable. When we are measuring generalized characteris-
tics as the dependent variable for treatment efficacy studies, the mea-
surement context must remain constant in all design phases or groups. 
Because of this requirement, we have a need to show variance in the 
observational dependent variable’s scores in all design groups or phases 
at all periods in a study.

We can inadvertently create a floor effect if (a) the measurement con-
text is not evocative of the key behaviors, (b) the observation sessions are 
too short or there are not a sufficient number of sessions concatenated 
within participants, (c) the coding manual is too restrictive about the 
allowable instances of behavior into the behavioral category, (d) the par-
ticipant sampling method does not allow the observer to note the behav-
iors of all key participants, (e) the behavior sampling method does not 
detect legitimate instances of the key behavior, and (f) the coding deci-
sion or observation session recording methods leaves observers doubtful 
about what they have observed. The latter can lead observers not to score 
legitimate instances of the key behavior due to the conservative ethic in 
science. We can inadvertently create a ceiling effect by using a measure-
ment activity that is “too easy” for many participants or in many sessions.

Weakness of Sensitivity to Change

The more specific the definition, the more sensitive the observational 
variable will be to contextual differences and thus environmental manip-
ulation. This is fine for context-dependent behavior. When wanting to 
measure generalized characteristics that change in a therapeutic direc-
tion while being stable over relevant contexts, there is a tension between 
being too specific to be socially important and being specific enough to 
achieve adequate interobserver agreement.

TREATMENT UTILITY

Definition of Treatment Utility

Another clinically related validation process is treatment utility. 
Treatment utility has been defined as the degree to which assessment 
is shown to contribute to beneficial treatment outcome (Nelson-Gray, 
2003). We can break down the methods of examining treatment utility 
into two categories defined by the research questions they address.



 Chapter 10  Validation of Observational Variables 191 

The first question is “Does a treatment produce better outcomes 
when it is based on a particular assessment outcome (i.e., the variable 
of interest) than when it is based on a different assessment outcome?” 
One example of such a study comes from the functional assessment liter-
ature (Carr & Durand, 1985). In this study, functional assessment infor-
mation (the variable of interest) was used to identify two small groups 
of children: (a) those whose challenging behavior was identified as sup-
ported by “escaping a difficult task” (i.e., negatively reinforced challeng-
ing behavior) and (b) those whose challenging behavior was identified 
as supported by “seeking positive attention” (i.e., positively reinforced 
challenging behavior).

The two treatments involved teaching the children to say either of 
the following phrases: (a) “Help me” or (b) “Am I doing good work?” 
depending on the design phase and identified function of the challeng-
ing behavior for the child. The former phrase was hypothesized to match 
the escape function, and the latter phrase was hypothesized to match 
the attention-seeking function. Design phases in which the hypothe-
sized function of challenging behavior matched the taught replacement 
phrase resulted in the most reduction in challenging behavior. This is an 
example of seeking to examine whether the functional assessment infor-
mation had treatment utility validation evidence by testing whether the 
function–treatment match condition resulted in better outcomes than 
the function–treatment mismatch conditions in both types of children. 
This single-subject design approach to testing treatment utility can be 
effective when the participant characteristic-treatment match produces 
almost perfectly predictable results, as was the case in the Carr and 
Durand study.

A similar research question posed by treatment utility validation 
is “Does pretreatment level on a particular participant characteristic 
predict which of two treatments is most effective in facilitating post-
treatment scores on the dependent variable?” The participant charac-
teristic variable is the variable whose treatment utility is being tested. 
This type of question is most frequently tested in a group experimental 
design using random assignment to groups with a pretreatment mea-
sure of the participant characteristic and is most appropriate when the 
participant characteristic-treatment match relation is less than perfect. 
These participant characteristics can be measured using observational 
methods.

An example of such a study asked whether pretreatment level of 
joint attention predict which of two communication treatments are 
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most effective in facilitating post-treatment joint attention (Yoder & 
Stone, 2006). The results of this randomized experiment found that 
children with autism learned to use joint attention more frequently 
through a particular treatment better than through an alternative treat-
ment if they already used about seven joint attention acts during the 
pooled pretreatment communication samples designed to elicit joint 
attention. These results provided treatment utility support for the pre-
treatment measure of joint attention because the results corresponded 
to the predicted pattern of results.

Another type of research question that is sometimes posed by the 
treatment utility validation process is “Does therapy produce better 
results when the therapist is supplied with feedback and client pro-
gress data than when the therapist is not provided such feedback and 
client progress data?” The feedback and client progress data are the 
variables whose treatment utility is being tested. This is a subtle variant 
on the above example in the sense that an explicit match versus mis-
match between treatment types and participant characteristics is not 
being tested. Therapist feedback and client progress data could be, and 
often is, measured through observational means. An example of a study 
examining this type of question is a group design examining the amount 
of change in depressive symptoms following therapy sessions designed 
to treat depression (Lambert, Hansen, & Finch, 2001). Two randomly 
assigned groups varied in terms of whether the therapists received cli-
ent progress data and therapist feedback or not. In clients who showed 
initially no change, the group whose therapist received feedback and cli-
ent progress data made more therapeutic change than the group whose 
therapist received no feedback or client progress data.

Weaknesses of Treatment Utility

This type of validation information is only relevant for a small propor-
tion of the observational research conducted at present. Treatment 
utility validation is highlighted here because we wish to stimulate 
more such applications of observational research in the future. At 
present, many treatments used to address observational variables do 
not have a sufficiently rich or specific theory to make prior predic-
tions regarding which participant characteristics should predict dif-
ferential treatment efficacy for particular treatments. Another issue is 
that it is likely that participant characteristics relevant for predicting 
differential treatment efficacy are specific to the treatments being 
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compared (Yoder & Compton, 2004). This makes using extant studies 
less useful for posing predictions for future studies using different 
treatments.

CRITERION-RELATED VALIDATION

Definition of Criterion-Related Validation

Perhaps the most commonly used method of validation is criterion-re-
lated validation. Such a process involves examining the magnitude of 
the association between the variable of interest with “gold standard” 
measures of the same generalized characteristic of interest. Ideally, a 
gold standard has much evidence that it is a scientifically useful mea-
sure of the generalized characteristic of interest for particular purposes 
and populations (Cronbach & Meehl, 1955). In practice, measures 
used as gold standards are often ones that have been on the scene for 
a long time or are used by many professionals to measure the general-
ized characteristic of interest (Haynes & O’Brien, 1999). One might be 
interested in a new measure because it is shorter or less expensive than 
the gold standard. However, is seldom the case for observational vari-
ables. Criterion-related validation can be implemented between two 
variables that are measured at the same measurement period (i.e., con-
current) or at different measurement periods (i.e., predictive). A more 
likely application of criterion-related validation is when the investigator 
asks whether an indirect and earlier measure of a process is related 
to a later more direct and more widely accepted measure of the same 
process. For example, one might ask whether the presence of a single 
declarative intentional communication act in a newly designed screen-
ing instrument predicts later number of declarative intentional com-
munication acts in a gold standard communication assessment given 
several months later.

Primary Appeal of Criterion-Related Validation

Criterion-related validation is by far the most frequently used method of 
validation for observational variables. This may be because it does not 
require direct appeal to a particular theory. An atheoretical approach to 
validation may be attractive to some because any given theory is likely to 
be unattractive to some professionals (Geisinger, 1992). Another possible 
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reason that criterion-related validation is a popular approach to valida-
tion of observational variables may be that some researchers question the 
accuracy of other- or self-report measures and wish to convince readers 
that observational measures provide some of the same information as the 
more widely used self- or other-report measures. However, it appears that 
both measures, the proposed gold standard and the new measure, are 
under scrutiny in such cases. Technically, these are not really criterion-
related tests of validation, even if the investigator thinks of them as such.

Weaknesses of Criterion-Related Validation

The overreliance on criterion-related validation has been much maligned 
(Geisinger, 1992). An association between two questionable measures is 
not the logic of criterion-related validation. However, this misapplication 
of the criterion-related validation logic is quite common. The major issue 
is that the presence of a true gold standard is rare. Most measures have 
small or equivocal records of validation. In addition, many people who 
have attempted to weave arguments that a particular measure is a gold 
standard have fallen prey to the logical error that one type of validation 
evidence supports the validity of the measurement system for a different 
purpose (Geisinger, 1992). More importantly, at some point in history, 
every generalized construct lacked a gold standard measure, including 
general intelligence. This obvious point begs the question, “How do we 
examine the validity of any measure when no gold standard exists?”

CONSTRUCT VALIDATION

Definition of Construct Validation

Construct validation methods use correlational, group, or experimen-
tal studies to test hypotheses regarding whether the measure of the 
construct of interest has theoretically predictable associations or group 
differences (Cronbach & Meehl, 1955). Confirmation of predictions pro-
vides support for the particular use of the score tested in the study. When 
predicted findings are tested, but are not found, the study weakens the 
evidence regarding the value of the proposed use of the test score.

In response to the growing concern that many psychologists of 
the day were settling for circular logic when asked to define the words 
they were using (e.g., “intelligence is what intelligence tests measure”), 
Cronbach and Meehl (1955) elaborated on the principles set forth by 
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the American Psychological Association’s (APA) first set of officially 
endorsed recommendations for judging the soundness of psycholog-
ical measurement (American Psychological Association, 1954). Among 
other points, Cronbach and Meehl pointed out that a new measure can 
be better than what is considered a criterion measure. As an example, 
the authors pointed out that prior to the invention of the mercury-based 
thermometer, human-based judgment was the criterion by which other 
measures of temperature were judged. After inventing the mercury-
based thermometer, it was easily shown that the new “test” was a better 
measure of temperature (i.e., the construct of interest) than the “gold 
standard.” The majority of the members of the APA embraced Cronbach 
and Meehl’s ideas about construct validity (Waller, Yonce, Grove, 
Faust, & Lenzenweger, 2006). Construct validation is applicable to gen-
eralized characteristics and vaganotic concepts of measurement but less 
relevant for context-dependent behaviors and idemnotic concepts of 
measurement.

The collection of predicted links between a measure of interest to 
(a) measures of other constructs and (b) group memberships is called the 
nomological net (Cronbach & Meehl, 1955). The general idea behind 
this important concept is that if the scores of the observational variable 
correlate with variables they are predicted to correlate with and discrim-
inate membership in groups they are predicted to discriminate, then this 
is an evidence that we have measured what we have intended to measure. 
In addition to the same subtypes applied to criterion-related validation 
(concurrent vs. predictive), construct validation has been subdivided into 
types according to whether group differences (discriminative) or associa-
tions (nomological) are expected.

Discriminative Validation

Discriminative validation should not be confused with discriminant 
validity (see the discussion of multitrait, multimethod validation 
[MTMM] theory later in this chapter for a definition of the latter). 
An example may help to understand the former. One study attempted 
to identify the accuracy with which children could be identified as 
having Fetal Alcohol Syndrome Disorder (FASD) from a particular 
language feature (nominal reference errors in oral story telling) in 
preschoolers (Thome & Coggins, 2008). There were two groups with 
known diagnostic status: FASD (n = 16) and typically developing 
(n = 16) matched on several important variables. As hypothesized, 
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the language feature discriminated membership to diagnostic groups 
with 88% accuracy.

In some contexts, one problem with such research is that diagnosis 
is a dichotomous variable, whereas, the construct of interest may be con-
tinuous. Additionally, the method by which many observational variables 
will be used to predict group membership is an exploratory one (i.e., 
response optimization curves) that maximizes accuracy through an iter-
ative process. Such a process maximizes the probability of identifying 
cut-off scores that are sample specific (i.e., do not replicate in other sam-
ples of the population). Finally, there is only a single outcome (i.e., group 
membership) that is being predicted. These issues make discriminative 
tests of construct validation less falsifiable than other approaches. For 
purposes other than diagnostic ones, discriminative tests of construct 
validity are often less convincing than other approaches.

Nomological Validation

Nomological validation involves testing whether the variable of inter-
est is associated with multiple, continuously measured constructs that 
are theoretically related to the construct of interest. As an example of 
nomological validation, we asked whether a new measure of “breadth 
of interests” in children with autism was predictive of the three latter-
measured abilities that theory suggests breadth of interest should predict 
in nonverbal children (Bruckner & Yoder, 2007).

In this situation, there was no gold standard measure of breadth of 
interest or its opposite—“restricted interest”—for our population. All 
of the proposed measures of restricted interest in the extant literature 
were developmentally inappropriate for our population (i.e., nonverbal 
children with autism). We reasoned that the “interests” of nonverbal 
children are demonstrated through children’s play. Without going into 
detail about the particular play variable, suffice it to say that we reasoned 
the number of objects on which children used a particular type of play 
was a potential measure of breadth of interest. Because the opposite of 
broad interests, restricted interests, has been claimed to result in ignor-
ing social input about objects, we reasoned that broad interests in objects 
should be related positively to other child skills that require attention to 
an object and to a person: (a) responding to other’s attentional directives 
about objects, (b) imitating other’s actions on objects, and (c) directing 
gaze or gestures to both objects and the message recipient during com-
munication. The results supported the predictions.
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Some may be dissatisfied with nomological validation evidence 
because of the tendency in nature for positive variables to covary and 
for negative variables to covary. Adding hypotheses about variables that 
should not be associated with the variable of interest improves the falsifi-
ability of the set of predictions and may increase the persuasiveness of 
the validation evidence.

Multitrait, Multimethod Validation

One attempt to improve the falsifiability of construct validation is the 
MTMM approach. The MTMM approach involves testing whether the 
measure of interest correlates more strongly in a positive direction with 
(a) other measures of the same construct that use a different method of 
assessment than (b) measures of another construct that use the same 
method of assessment (Campbell & Fiske, 1959). The “multitrait” part of 
this approach involves using the same general methods of assessment to 
measure two or more different generalized characteristics.

For example, we might wish to measure children’s expressive vocab-
ulary and children’s pragmatic language skills (e.g., extent to which chil-
dren use language in socially appropriate ways). The “multimethod” part 
of this approach involves using two different methods of assessing the 
same construct. For example, we might use parent report and direct 
observation to measure these two constructs. The use of two measures 
of the same trait in the MTMM method is somewhat similar to the 
logic used in criterion-related validation. The difference between the 
two validation approaches is that the MTMM method does not require 
claiming one method to be a gold standard. In this sense, the MTMM 
approach fits reality better than the criterion-related validation approach. 
Additionally, the MTMM approach acknowledges that one can get high 
correlations between two measures of different constructs because they 
share a method of assessment. This issue is not addressed in the tradi-
tional nomological net approach to construct validation and is the “multi-
trait” part of the approach. To complete the MTMM matrix, we cross all 
methods and all constructs being tested. Table 10.3 provides a fictitious 
example of the type of results one would expect if direct observation 
measures of expressive vocabulary and pragmatics showed MTMM vali-
dation. This pattern of findings would also support the MTMM valida-
tion of parent-report measure of vocabulary and pragmatics.

Because the MTMM matrix is a square and (mostly) symmetrical 
correlation matrix, we only have to examine one (e.g., the bottom) triangle 
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ILLUSTRATION OF FICTITIOUS EXAMPLE OF EXPECTED ASSOCIATIONS IN A MULTITRAIT, MULTIMETHOD (MTMM) MATRIX FOR 
TWO METHODS OF ASSESSING EXPRESSIVE VOCABULARY AND PRAGMATICS

OBSERVATION PARENT REPORT

VOCABULARY PRAGMATICS VOCABULARY PRAGMATICS

Observation Vocabulary .89 (Reliability)

Pragmatics .38 (Method-related 
error)

.70 (Reliability) 

Parent report Vocabulary .57 (Validity) .08 (Different-trait, 
different-method)

.65 (Reliability)

Pragmatics .10 (Different-trait, 
different-method)

.51 (Validity) .43 (Method-related 
error)

.68 (Reliability)

Table 10.3
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of the square matrix. The exception to the symmetry of the MTMM cor-
relation matrix is that the same-trait, same-method diagonal contains 
the reliability coefficients instead of perfect correlations (i.e., 1.0). For 
example, it might contain the intraclass correlation coefficients (ICCs) 
for the variable from different measurement contexts or different report-
ers. Alternatively, it could contain the ICCs for the variable from dif-
ferent time periods. These should be the highest in the matrix because 
generalized characteristics are expected to be stable over contexts and 
reporters. Such reliability coefficients are seen as evidence of the extent 
to which a measure is related to itself.

The same-trait, different-method diagonal contains the correlation 
between two different measures of the same construct. Because our 
example has two “traits,” it has two validity coefficients: one for vocab-
ulary and one for pragmatics. If our measures have “strong MTMM 
validation evidence,” these coefficients will be the next highest of the 
four types of correlation coefficients (after the reliability coefficients). 
We also expect them to be positive and statistically significant (i.e., the 
confidence interval does not include zero). These are called “convergent 
validity coefficients.”

By having predictions of both high and low associations, the 
MTMM provides more convincing evidence of construct validation 
than the nomological network approach because there are more pre-
dictions to verify (i.e., it is more falsifiable than the nomological net-
work approach). The other two types of coefficients in the MTMM 
matrix represent examples of discriminant validity (i.e., variables that 
are predicted to have lower correlations with the variables of inter-
est). The different-trait, same-method triangle contains the measure 
of “methods-related variance” (i.e., the extent to which using the same 
way to assess different constructs has an effect on scores). From a con-
struct validation perspective, methods-related variance is considered 
measurement error.

For our example, if the variables we consider measures of vocabu-
lary are both construct valid measures of vocabulary, their correlation 
with each other should be greater than the two within-method corre-
lations between pragmatics and vocabulary. Similarly, if our measures 
of vocabulary have strong MTMM validation evidence, we expect the 
convergent validity coefficients to be higher than the two different-trait, 
different-method coefficients. In Table 10.3, the measures of vocabu-
lary have strong MTMM validation evidence because the validity coef-
ficient exceeds the two methods-related variance (.57 > .38 and .43) and 
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the validity coefficient exceeds the two different-trait, different-methods 
coefficients (.57 > .08 and .10). A similar pattern supports the validity of 
the pragmatic measures. Note that one measure of each construct does 
not have more support for validity than the other because neither mea-
sure is considered a “gold standard” measure of the construct.

AN IMPLICIT “WEAKNESS” OF SCIENCE?

Figure 10.1 is an illustration of the iterative observational research 
process. We have adapted this from a figure presented for the general 
psychological measurement process (Whitley, 1996). The scientific enter-
prise requires an iterative process in which all of the decisions discussed 
in this book are applied to create variable scores to test highly falsifi-
able a priori hypotheses. Ultimately, theories and constructs are neither 
“true” nor “false.” Either they are scientifically useful or they are not 
(Waller et al., 2006). When we confirm falsifiable a priori hypotheses, 
we conclude that the theory generating the hypotheses is scientifically 
useful.

When a priori predictions are not confirmed (i.e., the null hypotheses 
are not rejected), it is usually the case that we have multiple explanations 
for the results. These explanations can be divided into two main classes: 
(a) the theory generating the hypotheses is in need of modification and 
(b) the measurement system did not quantify the context-dependent 
behavior or generalized characteristic in a reliable or scientifically useful 
manner. Immediately after the study, we are often left with guesses as to 
which explanation is more likely.

Often, it is not until years of tweaking measurement systems, minor 
elaboration of the theory, and continued failures to confirm theoreti-
cally motivated predictions that theories are discarded. Usually, theo-
ries are not discarded until a more scientifically useful theory (i.e., one 
that requires fewer assumptions about unmeasured variables that also 
accounts for more or the same amount of empirical data) is put forth. 
This is what occurred when Einstein’s theory of relativity replaced 
Aristotle’s theory that a fictitious substance called “ether” was necessary 
to transmit the stars’ light to earth.

Some will find this state of affairs unsatisfying because it seems some-
what circular, slow, and nondefinitive regarding an externally defined 
“truth.” Scientists believe that centuries of nonscientific alternatives to 
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Figure 10.1 Illustration of flowchart of the scientific process in observational studies.

knowledge development have proven even more dissatisfying from the 
perspective of generating a replicable knowledge base. We believe that 
the scientific method, even if not completely satisfying to some, is the 
best we have to offer.
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RECOMMENDATIONS

Readers should seek and investigators should provide psychometric evi-
dence regarding the degree to which observational variable scores are 
scientifically useful for a particular purpose and population. Part of 
this psychometric evidence is validation evidence. Validation evidence 
is important for all variables, including observational variables. The 
amount and types of validation evidence that are relevant vary by the 
research design, the object of measurement, and the research purpose of 
the study. This is particularly true for the object of measurement. When 
the object of measurement is abstract (i.e., a construct) and is thought to 
represent a generalized characteristic, the critical reader should demand 
greater validation evidence than when the object of measurement is a 
context-dependent behavior.

Sufficient validation evidence will not be provided in a single study. 
The validation process is an ongoing one that occurs across many stud-
ies. It is the job of the investigator who aims to assess an object of mea-
surement as a generalized characteristic to contribute to this evidence. 
Occasionally, a professional or professional group will summarize and 
critically analyze the validation information for a particular observational 
variable for a particular purpose and population, but this is rare. Most 
often, it will fall to the critical reader to accrue and assess the cumulative 
validation evidence. Ultimately, measurement systems are reflections of 
motivating theories for the studies. When theoretically motivated predic-
tions are not confirmed, we are left with two primary explanations: the 
theory needs modification; the measurement system needs modification. 
Each observational study is part of the noble enterprise to improve both.
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Accuracy: When applied to coding, agreement between an observer with 
an expert consensus-coded file (criterion-coding standard).

Accuracy matrix: Agreement matrix for the trainee’s coding with the 
experts (criterion-coding standard).

Accuracy proportion: The number of correct responses/number of 
opportunities for correct responding.

Agreement matrix: A type of symmetrical matrix in which the rows and 
columns are the categories in the coding manual for the same dimen-
sion plus a row and column for “no coded behavior tallied.” The rows 
represent one observer’s coding, while the columns represent the other 
observer’s coding. The tallies are the result of point-by-point agreement 
checks. Agreements are represented on the diagonal and disagreements 
are represented on the off-diagonal cells.

Antecedent: A term used in sequential analysis to refer to the hypoth-
esized causal behavior, the hypothesized prompt, or hypothesized 
 discriminative stimulus. Sometimes referred to in other sources as the 
“given” behavior.

Backward sequential analysis: A type of sequential analysis in which the 
investigator tallies the number of times certain behaviors occur before the 
behavior of interest. One tabulates the sequence of behaviors into the 2 × 2 
table moving backward in time. That is, the “first behavior” in the behav-
ior pair actually occurs after the “second behavior” in the behavior pair.

Behavior sampling methods: A set of methods by which observers decide 
how to code an observation session. There are several types of behavior 
sampling methods including continuous and intermittent behavior sam-
pling and interval sampling with two or more subtypes under each of 
these.

Glossary
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Ceiling effects: A situation in which most sessions’ or participants’ score 
are near the empirical maximum of the variable.

Chance agreement: The type of agreement that could occur when both 
or one of the observers records every instance of key behaviors at ran-
dom. Chance agreement is only estimable when we have an exhaustive 
coding space. Total chance agreement is the sum of the chance agree-
ment for the occurrence of a behavior plus chance agreement for the 
nonoccurrence of a behavior.

Chance occurrences of the sequence: A term used in sequential analy-
sis to mean an estimate of the random occurrence of the sequence of 
interest. It is computed as follows: (simple probability of target) × (simple 
probability of antecedent) × (total number of coded units).

Classifying error: Disagreement among observers on which type of rel-
evant behavior occurred.

Coded unit: The entity that the observer identifies and (perhaps) classi-
fies. When we are deriving number (i.e., count) using event sampling, the 
coded unit is the behavior. When we are deriving duration using timed-
event behavior sampling or when we use an interval sampling method, 
the coded unit is a time unit that is assigned to a behavior’s presence or 
absence. In the case of duration from timed-event sampling, the coded 
time unit is often seconds. In all interval coding methods, the coded time 
unit is the interval.

Coding manual: The set of rules, definitions, examples, and near exam-
ples that guide the observers in counting and/or indicating the duration 
of the behaviors of interest.

Concatenating sessions: To copy coded data from session one and paste 
it onto the end of the coded data for session two, and so on, to create a 
single session for analysis.

Conceptual definitions: Meanings for coding terms that provide the the-
oretical framework observers need to judge whether marginal examples 
fit the rationale for inclusion in the category.

Consensual drift: When two observers agree with each other but neither 
agrees with a criterion coding standard.

Consensus coding: A process by which observers discuss each disagreed-
upon act and decide through discussion and application of the manual 
how the act “should be coded.”
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Consistency proportion: The number of responses to an eliciting stimu-
lus/number of opportunities for the response.

Conspicuous participant sampling: The observer watches the entire 
group and notes which individual is engaged in any predefined, conspic-
uous, and rarely occurring behaviors.

Construct validation: A cumulative process by which empirical studies 
test whether particular measurement systems yield variables that per-
form as expected by theory and logic. Expected performance is tested 
via testing a prior prediction regarding associations, group differences, 
and changes overtime.

Content validation: As applied to a coding manual, content validation is 
the expert rating of the relevance and representativeness of the examples 
and instances identified by the definitions in the coding manual to the 
stated object of measurement. Content validation can also include expert 
judgment regarding the adequacy of the measurement context, the num-
ber of sessions averaged, behavior sampling method, the coding decision 
recording method, the observation session recording method, and the 
metric with regard to measuring what the investigator says she wants to 
measure.

Context-dependent behaviors: Behaviors that are considered important 
for their own sake and behaviors that are thought to be reflections of 
states. These are not expected to inform us of what occurs outside of the 
measurement context.

Contingency space analysis: A method of sequential analysis in which 
(a) the transitional probability of a behavior that is hypothesized to act 
as a reinforcer after a target behavior is compared with (b) the transi-
tional probability of the hypothesized reinforcer occurring after behav-
ior other than the desired behavior. To the extent this difference is 
positive, there is a heighted probability that the consequence will func-
tion as a reinforcer for the target behavior. To the extent this difference 
is negative, there is a heighted probability that the consequence will 
function as a reinforcer for not using the target behavior (differential 
reinforcement for other behavior). This logic has also been called “oper-
ant contingency.”

Contingency table: In sequential analysis, a method of organizing the 
sequence of pairs of coded units when all relevant events are included in 
the coded data.
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Continuous event sampling: This behavior sampling method requires 
counting or tallying the number of instances of each key behavior that 
occurs during the observation session.

Continuous timed-event sampling: This behavior sampling method 
requires observing the entire observation session; it also requires indi-
cating the time of occurrence of the onset (and sometimes, offset) of 
each instance of a key behavior.

Correlated measurement error: In observational research, this occurs 
when the observer systematically overestimates the true score in one 
group or phase, while systematically underestimating the true score for 
those in the contrasting group or phase.

Count coding systems: Methods of quantifying variables that are 
designed to lead the observer to count the number of instances and/or 
duration of instances of the key behaviors.

Criterion coding standard: A repeatedly and expertly coded session. Our 
best estimate of the true occurrence of events in a session.

Criterion-related validation: A process that involves examining the mag-
nitude of the association between the variable of interest with a “gold 
standard” measure of the same generalized characteristic of interest. 
Ideally, a gold standard has much evidence that it is a scientifically useful 
measure of the generalized characteristic of interest for particular pur-
poses and populations.

D cell problem: In event-lag sequential analysis and 2 × 2 interobserver 
agreement matrices, this is the issue of what is considered a “relevant” 
behavior to code. If this definition is not accurate and complete, then the 
count in this cell (e.g., nonantecedent and nontarget cell in sequential 
analysis or point-by-point interobserver agreement on nonoccurrence in 
agreement matrices) will be “too low” and the estimate of chance will be 
inaccurate.

Decision studies: A group design, statistical method that allows us to 
posit different scenarios (e.g., number of sessions and/or number of 
observers) to estimate how many sessions and/or observers we need to 
achieve a criterion level of group design reliability (i.e., g or intraclass 
correlation) coefficient.

Discrepancy discussions: These occur when two observers discuss with 
each other or with a content expert the rationale for their coding par-
ticular coded units that are coded differently across observers.
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Discrete events: Events or behaviors with clearly perceptible beginnings 
and endings.

Discriminant validation: Associations within a multitrait, multimethod 
(MTMM) approach matrix that are predicted to have lower correlations 
(e.g., measures of different traits) than associations predicted to have 
high association (e.g., measures of same trait).

Discriminative validation: A type of construct validation in which 
members of known groups are shown to be different on the variable of 
interest.

Duration: The time from onset of a behavior to offset of the same 
instance of the behavior.

Ecological validity: The extent to which measurement contexts resem-
ble or take place in naturally occurring (unmanipulated) and frequently 
experienced contexts.

Event-lag sequential analysis: A type of sequential analysis in which one 
measures the extent to which a target behavior occurs a specified num-
ber of behaviors from an antecedent.

Exchangeability assumption in single case significance testing: Each 
pair of behaviors or time unit cannot influence the following pairs of 
behaviors or time units.

Exhaustive coding: The record includes all “relevant” coded units that 
occurred in the observation session. These occur when agreement on 
nonoccurrence of any key behavior is defined in the interobserver point-
by-point agreement matrix. It is most common when time or interval is 
the coded unit.

Expected value of a cell: In the context of sequential analysis and kappa, 
this is the value expected by chance. As a count value, it is computed as 
(simple probability of relevant row marginal) × (count of relevant column 
marginal). In terms of probability, it is computed as (simple probability of 
relevant row marginal) × (simple probability of relevant column marginal).

Experts: People with both explicit (those who teach others to do the skill) 
and implicit (those who practice the art or skill being studied) knowl-
edge of the context-dependent behavior or generalized characteristic of 
interest.

Facets: Factors in a generalizability study that represent measurement 
error.
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Falsifiable research question: A prediction or question that specifies (a) 
the dependent and independent variables, (b) the investigator’s expecta-
tions of an association or a difference, and (c) the investigator’s expecta-
tions regarding direction of the association or difference (e.g., positive 
association, experimental group [or phase] as superior [i.e., greater]) prior 
to analyzing the data.

Fidelity of treatment: A measurement of the extent to which persons 
implementing the treatment do so as intended by the investigator.

Floor effects: A situation where most sessions’ or participants’ scores are 
near zero or the empirical minimum on the scale.

Focal participant sampling: Coding one participant for a predeter-
mined period, then coding a different participant in the group for the 
same period of time, and so on, until all selected participants have been 
coded.

Frequency: When used in the context of sequential analysis, it means 
“number of instances.”

Generalizability (g) coefficient: Conceptually, a g coefficient is the pro-
portion of between-participant variance in observed scores that is true 
score. It is computed as the person variance on the variable of interest/
total variance in the reliability sample on the same variable. It is an intra-
class correlation coefficient.

Generalizability (G) studies: A group design, statistical approach to 
quantifying reliability of predictors and outcomes. It focuses on quantify-
ing sources of measurement error and reliability of between- participant 
variance.

Generalized characteristics: These are the psychological constructs (e.g., 
skills or attributes) that are assumed to be stable (in the group design 
sense of the word) over relevant contexts and time. Behaviors we observe 
are mere signs of levels on such constructs.

Gold standard: A measure that has much evidence that it is a scientifi-
cally useful measure of the generalized characteristic of interest for par-
ticular purposes and populations.

Homogeneity of covariance assumption: An assumption of statistical 
control methods in which the association between the controlled vari-
able (i.e., covariate) and the outcome is assumed to be nonsignificantly 
different among groups in the research design.
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Idemnotic: A concept of measurement that requires that the phenom-
enon of interest is (a) measured along a continuum, (b) has an absolute 
and often preexisting possible minimum, and (c) uses units or steps 
whose existence is established independently of variability in the phe-
nomenon being measured. This concept of measurement is particu-
larly common when measuring dependent variables in single-subject 
designs and fidelity of treatment measures in group and single-subject 
designs.

Influential variables: Variables that affect the occurrence of the key 
behaviors in an observation session.

Interobserver reliability: When referring to reliability of predictors and 
dependent variables in a group design predictors or dependent variables, 
this means that the ranking of participants on a particular variable is 
very similar regardless of the observers used to code the observation ses-
sions. It is often quantified by the intraclass correlation coefficient. In a 
single-subject design measuring dependent variables or in single-subject 
and group designs measuring fidelity of treatment, this means point-by-
point agreement on the variable of interest at the level of analysis used to 
address the research question.

Interoccurrence or interresponse time: The time from the offset of an 
event to the onset of a second occurrence of an event from the same class 
of behavior (e.g., the time between communication acts).

Interval scale of measurement: An ordinal scale of measurement in which 
the intervals between values on the scale indicate the same amount of 
the dimension being measured at the extremes of the scale as at the 
middle of the scale.

Intraclass correlation coefficient (ICC): In the context of group design 
interobserver reliability, it is also a g coefficient in a single facet gen-
eralizability study with only two observers. Conceptually, it is the pro-
portion of total variance in a reliability sample due to between-person 
variance in the true score.

Kappa: An index of point-by-point agreement that is designed to control 
for chance agreement. Conceptually, it is the proportion of potentially 
available nonchance agreement (i.e., 1 − total chance agreement) that is 
attained (i.e., observed total agreement − chance total agreement).

Lags: A way of specifying within sequential analysis (a) the direction of 
the analysis (i.e., forward, backward, concurrent) and (b) the number of 
coded units from the antecedent that the target is expected.
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Latency: The time from the offset of a behavior or event to the onset of 
a second, different behavior (e.g., time from the start shot of a race to 
onset of a sprinter’s run).

Live (in situ) coding: The observer codes the behavior while it is 
occurring.

Measurement error: Conceptually, this is the portion of the observed 
score variance that is not due to true score variance (e.g., differences 
among observers or measurement contexts). At an individual level, mea-
surement error within a participant is the average deviation of observed 
scores around the estimated true score for that participant. At the group 
level, measurement error is reflected in different rankings of the partici-
pants on the dependent variable depending on the measurement context 
or observer that generated the observed score.

Measurement system: This is comprised of (a) a measurement context, 
(b) a coding manual, (c) a behavior sampling method, (d) a participant 
sampling method, (e) a session recording method, and (f) a coding deci-
sion recording method.

Methodological operationalism: An interpretation of operationalism that 
asserts that operational definitions of concepts are partial and temporary 
specifications used to study the real concept of importance.

Metric: The unit of measurement or type of number that indicates the 
level of a quantifiable dimension about a property of behavior or general-
ized characteristic.

Momentary interval coding: A method of interval sampling in which the 
observer marks a behavior as present if and only if the behavior occurs at 
the boundary of the interval (e.g., the end of the interval).

Multiple pass participant sampling: When the observer selects one partici-
pant and codes the entire session for only that one participant, then repeats 
the procedure for another participant by watching the recorded observation 
session again. This is repeated until all relevant participants are coded.

Multitrait, multimethod (MTMM) approach: A type of construct valida-
tion that attempts to improve the falsifiability of the construct valida-
tion method by testing whether the measure of interest correlates more 
strongly in a positive direction with (a) other measures of the same con-
struct that use different methods of assessment (convergent validation) 
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than (b) measures of another construct that use the same method of 
assessment (discriminant validation).

Near nonexamples of a category: In a coding manual, these are behaviors 
that are provided to help the observer define the boundaries of the cod-
ing concept. These are typically superficially similar in form or topogra-
phy to true examples, but differ from true examples in an important way.

Nominal scale: A scale of measurement in which values are not ordered 
or ranked.

Nomological net: The collection of predicted links between a measure of 
interest to (a) measures of other constructs and (b) group memberships.

Nomological validation: This involves testing the extent to which the 
variable of interest is consistently associated in the predicted direction 
(i.e., positive vs. negative) with multiple, continuously measured con-
structs that are theoretically related to the construct of interest.

Nonexhaustive coding spaces: Coded records for which point-by-point 
interobserver agreement on nonoccurrence of any key behavior is not 
defined. Often occurs in event behavior sampled data.

Noninfluential variables: Variables that do not affect the occurrence of 
the key behaviors in an observation session.

Nonoccurrence chance agreement: Conceptually, this is the estimated 
agreement between observers’ coding of the same session on the nonoc-
currence of a key behavior that could occur through a random process. Its 
formula is the probability base rate of nonoccurrence of the key behavior 
as estimated by Observer 1 × the probability base rate of nonoccurrence 
of the key behavior as estimated by Observer 2. Using the cell addresses 
of an exhaustive 2 × 2 agreement matrix, the formula is ([b + d]/N) × 
([c + d]/N). Nonoccurrence chance agreement can only be computed on 
an exhaustive agreement matrix.

Nonoccurrence percentage agreement: Using the cell addresses for an 
exhaustive 2 × 2 agreement matrix, the formula for nonoccurrence per-
centage agreement is (d/[d + c + b]) × 100. Nonoccurrence percentage 
agreement can only be correctly computed on exhaustive coding spaces.

Nonsequential metric: A number scale used to quantify the object of 
measurement that does not reflect the sequence of behaviors within an 
observation session.



214 Glossary

Number: In the context of nonsequential metrics, this is the count of 
instances of a key behavior within an observation session. Technically, it 
is the number of onset–offset cycles of instances of the same category of 
behavior.

Observational variable score: The end product of all of the decisions and 
procedures made to produce the score (i.e., measurement context, num-
ber of sessions averaged, coding manual, behavior sampling method, cod-
ing decision recording method, observational session recording method, 
and metric selection). It is labeled by stating the object of measurement 
and metric (e.g., rate of hand raising).

Observer drift: The occurrence of an observer agreeing less often with a 
criterion coding standard than was the case immediately after he reached 
mastery level accuracy during initial training.

Occurrence chance agreement. Conceptually, this is the estimated 
agreement between observers’ coding of the same session on the 
occurrence of a key behavior that could occur through a random pro-
cess. In probability form, this is the base rate probability of the key 
behavior as estimated by Observer 1 × the base rate probability of 
the key behavior as estimated by Observer 2. Using the cell labels in 
an exhaustive 2 × 2 agreement table, the formula is ([a + b]/N) × 
([a + c]/N).

Occurrence percentage agreement: This is the percentage of agree-
ments divided by agreements plus disagreements on the occurrence of 
a particular category. Using the cell addresses for the 2 × 2 agreement 
matrix, the formula for occurrence agreement is (a/[a + b + c]) × 100. 
This index of point-by-point agreement can be computed on a nonex-
haustive agreement matrix because it does not consider chance occur-
rence agreement.

Offset: The end of a behavior.

Onset: The beginning of a behavior.

Operant contingency: See contingency space analysis.

Operational definitions: In the context of coding manuals, these are the 
meanings for coding terms that use only words with observable referents 
to define concepts.

Ordinal scale of measurement: A scale in which values are ordered, 
but the intervals between values do not represent equal amounts of the 
object of measurement.
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Other report: Behavioral ratings or reports completed by asking oth-
ers who know what the participant does (and often how often or 
consistently). 

Partial interval coding: A type of interval sampling in which the observer 
marks one and only one occurrence of a key behavior when the behavior 
occurs anytime during the interval.

Participant sampling: A method used to decide which participant to 
code when there is more than one participant to be coded from a sin-
gle observation session. There are several types of participant sampling, 
including focal, multiple pass, and conspicuous.

Permutation test: A type of statistical significance test that generates its 
own empirical probability distribution.

Physically based categories: Definitions of behaviors that rely only on 
detection of the presence or absence of stated behaviors. This type of 
category is very narrowly defined and is often composed of an exhaustive 
list of the behaviors that constitute the whole of the category. There is a 
greater emphasis on operational definitions than on conceptual defini-
tions in physically based categories.

Point-by-point agreement: The extent to which two people see the same 
occurrence of the same example of the same category.

Proportion metrics: These are metrics that result from dividing one 
number by another. Three commonly used proportion metrics are rate 
style, accuracy, and consistency. For example, accuracy or consistency 
is the number of correct responses/number of opportunities for correct 
responses.

Prototypical examples of a category: These are examples of a category 
that share all critical attributes of the category and are quite common. 
They are provided to help the observer relate the operational definitions 
at a level of analysis that is more commonly used by educated consumers 
of the research.

Rate: The number of acts/duration of codeable portion of the observation 
session.

Ratio scale of measurement: An interval scale of measurement with a 
meaningful zero value.

Reactivity: Participants acting differently when watched than when not.



216 Glossary

Reliability: In classical measurement theory: True score variance/
observed score variance.

Representativeness: Stable (in the group design sense of the word) across 
contexts that evoke behaviors of interest.

Segmenting rules: A set of rules used to define the onset and offset of 
events.

Self-report: Asking the participant what they do, feel, or think.

Semantic operationalism: An interpretation of operationalism that 
asserts that the meaning of a concept can be exhaustively defined by 
stating particular observable manifestations of a concept.

Sensitivity to change: As a validation concept, this is the degree to 
which a measure changes in a therapeutic direction after participation 
in treatment.

Sequential analysis: A method of quantifying the sequential or simulta-
neous occurrence of coded behaviors or of seconds or intervals in which 
a coded behavior has occurred within an observation session.

Sequential association: Such associations occur when the antecedent 
and target behaviors occur more or less often than would be estimated 
to occur by chance.

Sequential frequency: In the context of sequential analysis, the number 
of times the target follows the antecedent behavior.

Sequential variable: A variable that quantifies the extent to which the 
target behavior occurs within a specified number of coded behaviors or 
time units from the antecedent behavior.

Significance testing of a sequential association within a single case: 
The testing of whether the observed Yule’s Q could have occurred 
due to behavioral sampling error (i.e., chance sampling of an observa-
tion session that happened to produce an atypically strong sequential 
association).

Simple probability: In event-lag sequential analysis, it is the number of 
times a behavior occurs divided by the total number of coded behaviors 
in the behavior sample. In time-lag sequential analysis, simple probabil-
ity is the number of time units (e.g., second) a behavior is coded divided 
by the total number of time units coded in the total behavior session.
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Socially based categories: This categories of behavior differ from phys-
ically based categories in that the former tends to have categories with 
more exemplars or behavioral forms and requires observers to make a 
judgment regarding whether the behavior in question has a particu-
lar function or meets a series of conceptual criteria. There is a greater 
emphasis on conceptual definitions in socially based categories than in 
physically based categories.

Sparse table: A contingency table in which there is an expected value 
equal to or fewer than five in any cell.

Stationarity: An assumption made when sessions are concatenated for 
sequential analysis. It is an assumption that the sequential association 
within each session is nonsignificantly different from those in other 
sessions.

Structuredness: An adjective applied to measurement context that refers 
to the degree to which we keep influential variables constant across ses-
sions or participants.

Summary level agreement: The extent to which two people derive the 
same variable score (i.e., small estimate/large estimate proportion).

Systematic observation: A method of quantifying variables in which a 
coding manual, context of measurement, sampling methods, and metric 
are decided prior to collecting data.

Target: A term used in sequential analysis to refer to the behavior that is 
hypothesized to be affected by the antecedent.

Time-lag sequential analysis: This type of sequential analysis quantifies 
the extent to which the onset of a target behavior occurs exactly at a 
prespecified number of time units from the antecedent at a rate that is 
different from chance.

Time-window sequential analysis: This type of sequential analysis quanti-
fies the extent to which a target behavior occurs within a specific time win-
dow (e.g., 5 s) from an antecedent at a rate that is different from chance.

Total percentage agreement: The total percentage of occurrence plus 
nonoccurrence agreement. Using a 2 × 2 agreement matrix, the formula 
for total percentage agreement for a particular category is ([a + d]/[a + b + 
c + d]) × 100. Total percentage agreement can only be computed from 
exhaustive coding spaces.
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Transitional probability: In sequential analysis, it is the proportion of 
instances of the antecedent behavior which is followed by an instance 
of the target behavior. Using the cell labels of the 2 × 2 contingency 
table that follows the conventions for sequential analysis, the formula for 
this transitional probability is A/(A + B). Transitional probabilities are 
different from accuracy or consistency proportions in that in a transi-
tional probability the target behavior can, by definition, occur after other 
behaviors than that represented by the denominator.

Treatment utility: A method of validation that means the degree to which 
assessment is shown to contribute to beneficial treatment outcome.

True score: Theoretically, this is the mean of the observed scores from all 
valid measurement contexts for the generalized characteristic of interest. 
In generalizability theory, we estimate a participant’s true score by aver-
aging all available observed scores for that participant.

Type I error: Detecting a difference or relation when one does not really 
exist.

Type II error: Failing to detect a difference or relation that is present.

Uncorrelated measurement error: In observational research, the extent 
to which observers over- and underestimate true score is randomly dis-
tributed across design groups or phases.

Unitizing: A part of the coding process that indicates when and how 
many coded units are present during the observation session.

Unitizing error: Disagreement among observers regarding whether a 
relevant behavior occurred.

Vaganotic: A concept of measurement that is the dominant implicit or 
explicit concept in studies by investigators who are most interested in 
individual differences and developmental changes. It is the measure-
ment approach used to conceptualize the assessment of the predictors 
and dependent variables in most group designs. The meaning of high 
and low is relative to a group. The group can either be the sample of par-
ticipants in the study or another reference group (e.g., a standardization 
sample in a norm-referenced test).

Whole interval coding: A type of interval sampling in which the key 
behavior must occur during the entire interval for it to be coded as 
“present.”
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Yate’s correction: One way that statisticians have addressed the sparse 
contingency table problem: adding .5 to all frequency values in all con-
tingency table cells.

Yule’s Q: The most widely appropriate index of sequential association. 
Using the cell addresses of the 2 × 2 contingency table, the formula for 
Yule’s Q is (A × D—B × C)/(A × D + B × C). It is equivalent to the odds 
ratio for the same 2 × 2 table, with the primary difference being that 
Yule’s Q has a potential range from –1.0 to 1.0.
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Accuracy matrix, 151
Agreement,

on coding decisions,
agreement matrix, 145–147
definitions of point-by-point agreement, 

142
point-by-point vs. summary level, 141–142
purposes of, 142
see also exact agreement; time-window 

agreement
on variable scores, 161–164, 179

agreement estimates, 161;
chance agreement, 167
estimation principles, 160–161
problem with setting criterion 

levels of, 180–181
Agreement matrix, 145, 149, 152, 161, 

164, 173
disagreement types, 145
discrepancy discussion, 148
principles of, 145
types, 146
see also classifying difference; unitizing 

difference
Antecedent, 124
Arcsine transformation, 87

Base rate, 171
Behavior sampling, 54

continuous, 54–55
continuous event sampling, 55
continuous timed sampling, 54–55

intermittent, 54, 55–56
intermittent event sampling, 55
intermittent timed sampling, 55

interval sampling, 56–59
estimation of behavior number/duration, 

58–59
types, 56–58

“Chance agreement,” 167
Classical measurement theory, 19
Classifying difference, 145

see also agreement matrix
Codeable time, 47–48
Coded unit, 96, 97, 99, 127, 148, 169, 170
Coding manual, 97, 142, 149, 150, 186

definition, 36
importance of flowcharts, 48–49
operational vs. conceptual definitions, 

40–41
relation with research question and 

predictions, 36–37
sequential steps in creation of, 35
behavioral distinctions, issues with level of 

detail, 38–39
conceptual and operational definitions, 

sources for, 42
conceptual definition and validation, 

37–38
lowest level categories, 40–42
physically based vs. socially based 

categories, 39–40
segmenting rules, 46–47
start-stop signals, 47–48

Coding space, 142, 145, 146
and chance, 167
exhaustive, 145, 146
nonexhaustive, 145, 146
see also agreement matrix

Conceptual definition, 37, 40
sources for, 42

Consensual drift, 148, 154
see also discrepancy discussion

Concensus coding record, 151
“Constructs”, behavior as, 5
Construct validation, 38, 188

application, 195
definition, 194–195

Index
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Construct validation (continued)
types

discriminative, 195–196
nomological, 196–197

Content validation
definition, 186–187
importance of, 187
weaknesses of, 188

Context-dependent behavior, 7–8, 36, 89, 
160, 183

Contingency space analysis, 136
Contingency tables, 103–111

construction of
for concurrent analysis, 105
for event-lag sequential analysis, 105–108
for time-window lag sequential anslysis, 

109–111
Continuous sampling, 54–55, 96
Convergent validity coefficients, 199
Count coding systems, 3
Criteria coding standards, 149–151

changing measurement system, 150
criteria and creation of, 149–150
discussing discrepancies during, 150
purpose of, 149

Criterion-related validation
applications, 193
definition, 193
importance of, 193–194
types, 193
weaknesses of, 194

Decision (D) studies, 24–26
accuracy issues, 30
and g coefficient, 24
implications for single-subject research, 31–32

Demonstration coding criterion, 149
Discrepancy discussion, 148–149

consensual drift, 148
focus of, 148
observer drift, 148
see also consensual drift; observer drift

Discriminant validity, 195, 199

“Ecological validity,” 10, 39
Error variance, 20
Exact agreement, 142

see also agreement, on coding decisions
Exhaustive coding space, 164–167

and chance, 167
and nonoccurrence percentage agreement, 

168–169
and occurrence percentage agreement, 168
and total percentage agreement, 169

“Exhaustiveness,” 96
“Expert systems,” 43–46
Event-lag sequential analysis, 98–99

Fidelity of treatment (FOT) scores, 159

G coefficient, 22, 23, 175
and decision studies, 24
g calculator, 26

Generalizability (G) studies, 20–23
g coefficient, 22

and low g coefficient values, 23–24
implications for single-subject research, 

31–32
Generalizability theory, 19–20

measurement error, 20
observed score vs. true score, 19
true score variance, 20

G calculator, 26

Idemnotic measurement concept, 17–18, 78, 
142, 160, 161, 183

and fidelity of treatment, 18
and single subject design, 18

Influential variables, 9
In situ coding. See live coding vs. recording 

and later coding under measurement 
system

Intermittent sampling, 54, 55–56, 96
Interobserver reliability, 161–179

estimation principles, 160–161
in single subject designs, 159–160
and agreement estimates, 161
in group designs, 175 - 180

Interval coding, 46, 54
see also interval sampling

Interval sampling, 54, 56–59, 96, 148, 170
alternatives, 54
estimation of behavior number/duration, 

58–59
types, 56–58
see also interval coding

Intraclass correlation coefficients (ICC), 
175, 199

atrributes of, 175
criteria for group designs, 180
importance of variance, 177
as a measure of interobserver reliability, 177
relation with interobserver agreement, 178

Kappa, 169–171
and accuracy level, 171
and chance agreement, 171
independence of analysis units, 170
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influence of behavior base rate, 173
and nonchance agreement, 169

Likert-like scale, 3
Lowest level categories, 40–42

Measurement, concepts of, 17–19
see also idemnotic measurement concept; 

vaganotic measurement concept
Measurement context

degree of structure, 9–10
ecological validity, 10
influential variables, 9
structuredness vs. ecological validity, 11
structured vs. unstructured procedures, 

12–13, 32
Measurement error, 20

and error variance, 20
Measurement system

elements of, 54
coding decisions, recording, 64–65
session recording, 62–63

live coding vs. recording and later 
coding, 62

Metric, 74
methods of controlling nuisance variables, 

75, 85–86
proportions, 75

assumptions regarding proportions, 78–79
rate as a proportion, 77–78
proportion vs. nonproportion metrics, 89

quantifiable dimensions, 74
transforming variables, 86–88
see also sequential analysis

Multitrait, multimethod (MTMM) validation
concept, 197
vs. criterion-related validation, 197
validity coefficients in, 199

Multiple Option Observation Software for 
Experimental Studies (MOOSES), 
120, 143

Nomological net, 195
Nomological validation, 196
“Nonchance agreement,” 167
Nonoccurrence percentage agreement, 

168–169
Noninfluential variables, 9
“Nonuniform” dependence, 135
Nuisance variables. See metric

Observational measurement, 2, 4–5, 18, 48, 
74, 96, 201

advantages of, 2

disadvantages in systematic observations, 
13–14

measurement concepts, 17–19
and operationalism, 5
of context-dependent vs. generalized 

tendencies, 4, 7–8, 36
as signs of “constructs,” 5
see also coding manuals; metric

Observational variable, 73, 86, 160, 188
measurement scales, 88–90
in parametric analyses, 90

Observed score vs. true score, 19
Observed sequential frequency, 124
Observer drift, 142, 148, 154, 155, 164

see also discrepancy discussion
Observer training, 151–153, 174

agreement checks, 153–155
observer drift and retraining, 155

components of, 155
Occurrence percentage agreement, 168
Operational definitions, 40

sources for, 42
Operationalism, 5–7, 41

semantic vs. methodological 
interpretations, 6

Participant sampling, 59–62
conspicuous sampling, 60
focal sampling, 59–60
multiple pass sampling, 60
types, 59–60

Permutation test, 134
“Physically based” categories, 39
Point-by-point agreement, 141, 159

base rate, 171–172
effect of chance, 167–168
exhaustive coding space, 164–167
of fidelity of treatment (FOT) scores, 160
indices of, 168–171
purpose of, 159–160
in single-subject experiments, 160

Person variance. See true score variance
Power analysis, 30
“Pseudosubject,” 130

Randomization test. See permutation test
Reactivity hypothesis, 60–62
Representativeness, 10–11, 18

testing, 11

Self-report
problems associated with, 2

Sensitivity to change
definition, 188–189
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Sensitivity to change (Continued)
influencing factors, 189–190
weakness of, 190

Sequential analysis
antecedent behavior, 94
coded units, 96–97
contingency tables, 103–111
“exhaustiveness,” 96–98

exhaustive coding, 96
sequential frequency and “chance,” 101–102
sequential variables and target behavior, 95
sequential vs. nonsequential variables, 94–95
target behavior, 94
transitional probability, 111–112

in backward sequential analysis, 113–115
backward vs. forward sequential 

analyses, 115
types

event-lag sequential analysis, 98–99
time-lag sequential analysis, 99–100
time-window sequential analysis, 100–101

significance analysis of sequential 
association indices, 131–136

use of computer software and advantages, 120
see also observational measurement; 

Yule’s Q
Sequential frequency, 101
“Socially based” categories, 39
Sparse table, 127
Square root transformation, 87
Stationarity assumption, 129
Statistical package for the social sciences 

(SPSS), 22
Summary level agreement, 141
Systematic observation, 2–3

count coding system, 3
as an observational measurement, 2
as opposed to other reports, 2
as opposed to self-report, 2

Systematic observational count measurement, 3
disadvantages of, 13–14

Tally method. See behavior sampling, 
continuous

Target behavior, 167
Timed-event behavior sampling, 148, 150
Time-lag sequential analysis, 99–100
Time-window agreement, 142

see also coding decisions, agreement on
Time-window sequential analysis, 100–101, 167
Total error variance, 29
Total percentage agreement, 169
Training coding criterion, 149

Transitional probability, 103, 111–112, 125
in backward sequential analysis, 113–115

Treatment utility, 190
definition, 190
methods of examining, 191
weaknesses of, 192

True score variance, 20, 177
Type I error, 178–179
Type II error, 178–179

Unitizing difference, 145
see also agreement matrix

Vaganotic measurement concept, 18, 142, 161
definition, 18
and interobserver reliability, 174
representativeness concept, 18

Validation processes. See construct validation; 
content validation; criterion-related 
validation; multitrait, multimethod 
(MTMM) validation; sensitivity to 
change; treatment utility

“Validity,” 183
concept of, 184
process types, 184
validation evidence types, 184

Withdrawal design, 31

Yule’s Q, 103, 125–126
vs.contingency space analysis, 136
and data insufficiency, 126–129
forward vs. backward event-lag sequential 

analysis, 126
issues with usage, 136–137
negative Q, 125
vs. odds ratio, 125
positive Q, 125
significance testing

between-group difference in mean 
sequential association, 132

mean sequential association, 131–132
single case sequential associations, 

134–136
summary-level correlation vs. sequential 

association, 133
within-subject difference in sequential 

associations, 132
similarities with Pearson’s product moment 

correlation coefficient, 125
solution for data insufficiency, 129–131
zero Q, 125
see also sequential analysis
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