


Regression Analysis



This Page Intentionally Left Blank



Regression Analysis
Statistical Modeling of a Response Variable

Second Edition

Rudolf J. Freund
Department of Statistics
Texas A & M University

William J. Wilson
Department of Mathematics and Statistics

University of North Florida

Ping Sa
Department of Mathematics and Statistics

University of North Florida

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEWYORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier



Acquisitions Editor Tom Singer
Project Manager Jeff Freeland
Marketing Manager Linda Beattie
Cover Design Direction Cate Rickard Barr
Text Design Julio Esperas
Composition diacriTech
Cover Printer Phoenix Color Corp.
Interior Printer The Maple-Vail Book Manufacturing Group

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper. ©∞
Copyright c© 2006, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier home page (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Freund, Rudolf Jakob, 1927–
Regression analysis: statistical modeling of a response variable.—2nd ed./

Rudolf J. Freund, William J. Wilson, Ping Sa.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-12-088597-8 (acid-free paper)
ISBN-10: 0-12-088597-2 (acid-free paper)
1. Regression analysis. 2. Linear models (Statistics) I. Wilson, William J.,

1940– II. Sa, Ping. III. Title.

QA278.2.F698 2006
519.5′36–dc22

2005057182

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN 13: 978-0-12-088597-8
ISBN 10: 0-12-088597-2

For information on all Academic Press publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America
06 07 08 09 10 9 7 6 5 4 3 2 1



Contents

Preface xiii

An Overview xix

PART I THE BASICS 1

1 THE ANALYSIS OF MEANS: A REVIEW OF BASICS

AND AN INTRODUCTION TO LINEAR MODELS 5

1.1 Introduction 5
1.2 Sampling Distributions 5

Sampling Distribution of the Sample Mean 6
Sampling Distribution of the Variance 7
Sampling Distribution of the Ratio of Two Variances 8
Relationships among the Distributions 9

1.3 Inferences on a Single Population Mean 9
Inferences Using the Sampling Distribution of the Mean 9
Inferences Using the Linear Model 11
Hypothesis Testing 12

1.4 Inferences on Two Means Using Independent

Samples 17
Inferences Using the Sampling Distribution 17
Inference for Two-Population Means Using the Linear Model 19

1.5 Inferences on Several Means 23
Reparameterized Model 27

v



vi Contents

1.6 Summary 28
1.7 Chapter Exercises 30

2 SIMPLE LINEAR REGRESSION: LINEAR REGRESSION

WITH ONE INDEPENDENT VARIABLE 35

2.1 Introduction 35
2.2 The Linear Regression Model 37
2.3 Inferences on the Parameters β0 and β1 40

Estimating the Parameters β0 and β1 40
Inferences on β1 Using the Sampling Distribution 42
Inferences on β1 Using the Linear Model 45

2.4 Inferences on the Response Variable 49
2.5 Correlation and the Coefficient of Determination 52
2.6 Regression through the Origin 56

Regression through the Origin Using the Sampling Distribution 57
Regression through the Origin Using Linear Models 58

2.7 Assumptions on the Simple Linear Regression Model 62
2.8 Uses and Misuses of Regression 65
2.9 Inverse Predictions 65
2.10 Summary 67
2.11 Chapter Exercises 68

3 MULTIPLE LINEAR REGRESSION 73

3.1 Introduction 73
3.2 The Multiple Linear Regression Model 74
3.3 Estimation of Coefficients 76
3.4 Interpreting the Partial Regression Coefficients 81

Estimating Partial Coefficients Using Residuals 82
3.5 Inferences on the Parameters 85

Computing the Hypothesis SS 89
The Hypothesis Test 89
Commonly Used Tests 89
The Test for the “Model” 90
Tests for Individual Coefficients 91
Simultaneous Inference 93
The Test for a Coefficient Using Residuals 94

3.6 Testing a General Linear Hypothesis (Optional Topic) 97
3.7 Inferences on the Response Variable in Multiple Regression 100



Contents vii

3.8 Correlation and the Coefficient of Determination 102

Multiple Correlation 102

Partial Correlation 104

3.9 Getting Results 105

3.10 Summary and a Look Ahead 106

Uses and Misuses of Regression Analysis 106

Data Problems 108

Model Problems 108

3.11 Chapter Exercises 108

PART II PROBLEMS AND REMEDIES 117

4 PROBLEMS WITH OBSERVATIONS 119

4.1 Introduction 119

Part One: Outliers 120

4.2 Outliers and Influential Observations 120

Statistics Based on Residuals 124

Statistics Measuring Leverage 125

Statistics Measuring Influence on the Estimated Response 126

Using the DFBETAS Statistics 128

Leverage Plots 129

Statistics Measuring Influence on the Precision of Estimated

Coefficients 130

Comments 141

Remedial Methods 142

Part Two: Violations of Assumptions 143

4.3 Unequal Variances 143

General Formulation 143

Weights Based on Relationships 151

4.4 Robust Estimation 156

4.5 Correlated Errors 160

Autoregressive Models 161

Diagnostics for Autocorrelation 165

Remedial Methods 167

Alternative Estimation Technique 167

Model Modification 170

4.6 Summary 172

4.7 Chapter Exercises 173



viii Contents

5 MULTICOLLINEARITY 177

5.1 Introduction 177

5.2 The Effects of Multicollinearity 179

5.3 Diagnosing Multicollinearity 190

Variance Inflation Factors 190

Variance Proportions 192

Principal Components 192

5.4 Remedial Methods 198

Redefining Variables 199

Methods Based on Knowledge of the Variables 200

Methods Based on Statistical Analyses 203

Principal Component Regression 205

Biased Estimation 214

Ridge Regression 216

Incomplete Principal Component Regression 218

5.5 Summary 221

5.6 Chapter Exercises 222

6 PROBLEMS WITH THE MODEL 227

6.1 Introduction 227

6.2 Specification Error 228

6.3 Lack of Fit Test 232

Comments 234

6.4 Overspecification: Too Many Variables 238

6.5 Variable Selection Procedures 240

Size of Subset 241

The Cp Statistic 246

Other Selection Methods 248

6.6 Reliability of Variable Selection 250

Cross Validation 251

Resampling 253

6.7 Usefulness of Variable Selection 256

6.8 Variable Selection and Influential Observations 259

Comments 261



Contents ix

6.9 Summary 262
6.10 Chapter Exercises 262

PART III ADDITIONAL USES OF REGRESSION 267

7 CURVE FITTING 269

7.1 Introduction 269
7.2 Polynomial Models with One Independent Variable 270

Interactive Analysis 277
7.3 Segmented Polynomials with Known Knots 279

Segmented Straight Lines 279
Segmented Polynomials 280

7.4 Polynomial Regression in Several Variables; Response

Surfaces 283
7.5 Curve Fitting without a Model 292

The Moving Average 294
The Loess Method 295

7.6 Summary 297
7.7 Chapter Exercises 297

8 INTRODUCTION TO NONLINEAR MODELS 303

8.1 Introduction 303
8.2 Intrinsically Linear Models 305

The Multiplicative Model 312
8.3 Intrinsically Nonlinear Models 320

Growth Models 327
8.4 Summary 332
8.5 Chapter Exercises 333

9 INDICATOR VARIABLES 337

9.1 Introduction 337
9.2 The Dummy Variable Model 339

Mean and Variance of a Linear Function of

Correlated Variables 345
9.3 Unequal Cell Frequencies 346



x Contents

9.4 Empty Cells 351
9.5 Models with Dummy and Continuous Variables 354
9.6 A Special Application: The Analysis of Covariance 359
9.7 Heterogeneous Slopes in the Analysis of Covariance 363
9.8 Summary 368
9.9 Chapter Exercises 368

10 CATEGORICAL RESPONSE VARIABLES 371

10.1 Introduction 371
10.2 Binary Response Variables 371

The Linear Model with a Dichotomous Dependent Variable 373
10.3 Weighted Least Squares 374
10.4 Simple Logistic Regression 379
10.5 Multiple Logistic Regression 385
10.6 Loglinear Model 388
10.7 Summary 395
10.8 Chapter Exercises 396

11 GENERALIZED LINEAR MODELS 401

11.1 Introduction 401
11.2 The Link Function 403

Logistic Regression Link 403
Poisson Regression Link 403

11.3 The Logistic Model 404
11.4 Other Models 406
11.5 Summary 410

APPENDIX A: STATISTICAL TABLES 413

A.1 The Standard Normal Distribution—Probabilities

Exceeding Z 414
A.2 The T Distribution—Values of T Exceeded with Given

Probability 419
A.3 The χ2 Distribution—χ2 Values Exceeded with Given

Probability 420



Contents xi

A.4 The F Distribution p= 0.1 421
A.5 The Durbin–Watson Test Bounds 431

APPENDIX B: A BRIEF INTRODUCTION TO MATRICES 433

B.1 Matrix Algebra 434
B.2 Solving Linear Equations 437

APPENDIX C: ESTIMATION PROCEDURES 439

C.1 Least Squares Estimation 439
C.2 Maximum Likelihood Estimation 441

REFERENCES 445

INDEX 449



This Page Intentionally Left Blank



Preface

The objective of Regression Analysis: Statistical Modeling of a Response

Variable, Second Edition, is to provide tools necessary for using the mod-
eling approach for the intelligent statistical analysis of a response variable.
Although there is strong emphasis on regression analysis, there is coverage
of other linear models such as the analysis of variance, the analysis of covari-
ance, and the analysis of a binary response variable, as well as an introduction
to nonlinear regression.

The common theme is that we have observed sample or experimental
data on a response variable and want to perform a statistical analysis to
explain the behavior of that variable. The analysis is based on the proposi-
tion that the behavior of the variable can be explained by: a model that (usu-
ally) takes the form of an algebraic equation that involves other variables
that describe experimental conditions; parameters that describe how these
conditions affect the response variable; and the error, a catchall expression,
which simply says that the model does not completely explain the behavior
of the response variable. The statistical analysis includes the estimation of
the parameters, inferences (hypothesis tests and confidence intervals), and
assessing the nature (magnitude) of the error. In addition, there must be
investigations of things that may have gone wrong: errors in the data, poor
choice of model, and other violations of assumptions underlying the inference
procedures.

Data for such analyses can arise from experiments, sample surveys, obser-
vations of processes (operational data) or aggregated or secondary data. In
all cases, but especially when operational and secondary data are used, the
statistical analysis requires more than plugging numbers into formulas or run-
ning data sets through a computer program. Often, an analysis will consist of
a poorly defined sequence of steps, which include problem definition, model
formulation, data screening, selecting appropriate computer programs, proper
interpretation of computer output, diagnosing results for data anomalies and

xiii
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model inadequacies, and interpreting the results and making recommenda-
tions within the framework of the purpose for which the data were collected.

Note that none of these steps includes plugging numbers into formulas. That
is because this aspect of statistical analysis is performed by computers. There-
fore, all presentations assume that computations will have been performed
by computers, and we can therefore concentrate on all the other aspects of
a proper analysis. This means that there will not be many formulas, and those
that are presented are used to indicate how the computer performs the analysis
and occasionally to show the rationale for some analysis procedures.

In order to present the various topics covered in this text in a coherent
manner, we chose the following sequencing:

1. A review of prerequisites. After a brief introduction and review of terminol-
ogy, the basic statistical methods are reviewed in the context of the linear
model. These methods include one- and two-sample analysis of means and
the analysis of variance.

2. A thorough review of simple linear regression. This section is largely for-
mula based, since the formulas are simple, have practical interpretations,
and provide principles that have implications for multiple regression.

3. A thorough coverage of multiple regression, assuming that the model is
correct and there are no data anomalies. This section also includes for-
mulas and uses matrices, for which a brief introduction is provided in the
Appendix B. However, the greater emphasis is placed on model formula-
tion, interpretation of results with special emphasis on the derivation and
interpretation of partial coefficients, inferences on parameters using full
and reduced or restricted models, and the relationships among the various
statistics describing the fit of the model.

4. Methods for identifying what can go wrong with either data or the model.
This section shows how to diagnose potential problems and what remedial
methods may help. We begin with row diagnostics (outliers and problems
with the assumptions on the error) and continue with column diagnostics
(multicollinearity). Emphasis here is on both descriptive and inferential
tools and includes warnings on the use of standard inferential methods
in exploratory analyses. Although there is thorough coverage of variable
selection procedures, considerable attention is given to alternatives to vari-
able selection as a remedy to multicollinearity. Also included is discussion
of the interplay between row and column problems.

5. Presentation of nonlinear models. This includes models that can be ana-
lyzed by adaptations of linear models, such as polynomial models,
log linear models, dichotomous dependent and independent variables, as
well as strictly nonlinear models and curve-fitting procedures, where we
only want to fit a smooth curve without regard to a specific model.

6. The “general linear model.” This model is used to make the connection
between analysis of variance (ANOVA) and regression, and for unbalanced
data and the analysis of covariance.
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7. Methods for analyzing categorical response variables using categorical inde-
pendent variables.

8. The systematic approach to using linear model methods to analyze non-
normal data called Generalized Linear Models. The material presented in
this section is slightly more advanced than the rest of the text. Since all the
examples are worked using SAS, an excellent companion for this section
is SAS c© for Linear Models (Littell et al., 2002).

Examples

Good examples are, of course, of utmost importance in a book on regression.
Such examples should do the following:

Be understandable by students from all disciplines
Have a reasonable number of variables and observations
Have some interesting features

The examples in this book are largely “real” and thus usually have some
interesting features. In order to be understandable and interesting, data may
have been modified, abbreviated, or redefined. Occasionally, example data
may be artificially generated. We assume that in courses designed for spe-
cial audiences, additional examples will be supplied by the instructor or by
students in the form of term projects.

In order to maintain consistency, most examples are illustrated with output
from the SAS System, although a few examples of other output are provided
for comparison and to make the point that most computer output gives almost
identical information. Computer output is occasionally abbreviated to save
space and avoid confusion. However, this book is intended to be usable with
any computer package since all discussion of computer usage is generic and
software-specific instruction is left to the instructor.

Exercises

Exercises are a very important part of learning about statistical methods.
However, because of the computer, the purpose of exercises has been dras-
tically altered. No longer do students need to plug numbers into formulas and
insure numerical accuracy, and when that has been achieved, go to the next
exercise. Instead, because numerical accuracy is essentially guaranteed, the
emphasis now is on choosing the appropriate computer programs and subse-
quently using these programs to obtain the desired results. Also important is
to properly interpret the results of these analyses to determine if additional
analysis are needed. Finally, students now have the opportunity to study the
results and consequently discuss the usefulness of the results. Because stu-
dents’ performance on exercises is related to proper usage and interpretation,
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it will probably take students rather long to do exercises, especially the rather
open-ended ones in Chapter 4 and beyond.

Because proper use of computer programs is not a trivial aspect of an
exercise, we strongly urge that instructors formally require students to do
the examples, and for that reason we have included the example data sets in
the CD. Not only will this give students more confidence when they embark
on the exercises but their conclusions may not match the ones we present!

We have included a reasonable set of exercises. Many exercises, especially
in the later chapters, often have no universally correct answer: hence, the
choice of methods and associated computer programs is of prime importance.
For this reason, we chose to give only limited or sometimes no guidance as to
the appropriate analysis. Finally, we expect that both the instructor and stu-
dents will supply exercises that are challenging and of interest to the variety
of students that are usually found in such a course.

We assume the reader has taken at least one introductory statistics course
covering hypothesis testing and confidence intervals using the normal, t, F ,
and χ2 distributions. An introductory matrix algebra course would be helpful;
however, a brief introduction to matrices is provided in Appendix B. Although
calculus is not required, a brief development of the least squares procedure of
estimation using calculus is presented in Appendix C. No specific knowledge
of statistical software is assumed, but most of the examples have been worked
using SAS. A good companion to this text is SAS c© System for Regression

(Freund and Littell, 2000).
The cover illustrations for this book show the 1986 Challenger shuttle

launch prior to the catastrophic failure due to burn-through of an O-ring
seal at a joint in one of the solid fuel rocket boosters. Subsequently to this
disaster, scientists and engineers examined closely the relationship between
temperature at launch and O-ring failure. This analysis included modeling
the probability of failure as a function of the temperature at launch using
a logistic model, based on data obtained from prior launches of the space
shuttle. The logistic model is examined in detail in Chapters 10 and 11.
The data from 23 shuttle launches and a complete analysis using logistic
regression in SAS can be found in Litell, et al. (2002).

Data Sets

Virtually all data sets for both examples and exercises are available on the
enclosed CD. A README file provides the nomenclature for the files.
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An Overview

This book is divided into three parts:
Part I, consisting of the first three chapters, starts with a review of elemen-

tary statistical methods recast as applications of linear models and continues
with the methodology of simple linear and multiple regression analyses. All
presentations include the methods of statistical inference necessary to evalu-
ate the models.

Part II, consisting of Chapters 4 through 6, contains comprehensive dis-
cussions of the many practical problems most often encountered in regression
analyses and presents some suggested remedies.

Part III, consisting of Chapters 7 through 11, contains presentations of
additional uses of the regression model, including polynomial models, models
using transformations of both dependent and independent variables, strictly
nonlinear models, and models with a categorical response variable. This sec-
tion contains a chapter entitled “Indicator Variables” that provides a unified
approach to regression, analysis of variance, and analysis of covariance as
well as a chapter entitled “Generalized Linear Models” that introduces the pro-
cedure of using linear model methods to analyze nonnormal data.

xix
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Part I

The Basics

The use of mathematical models to solve problems in the physical and biolog-
ical sciences dates back to the first development of the scientific principle of
discovery. The use of a theoretical model to explain natural phenomena has
present-day applications in virtually all disciplines, including business, eco-
nomics, engineering, the physical sciences, and the social, health, and biolog-
ical sciences. Successful use of these models requires understanding of the
theoretical underpinnings of the phenomena, the mathematical or statistical
characteristics of the model, and the practical problems that may be encoun-
tered when using these models in real-life situations.

There are basically two approaches to using mathematical models to explain
natural phenomena. The first attempts to use complex models to completely
explain a phenomenon. In this case, models can result that defy solution. Even
in many of the very simple cases, solutions can be obtained only through sophis-
ticated mathematics. A model that completely explains the action of a response
to a natural phenomenon is often called a deterministic model. A deterministic
model, when it can be solved, yields an exact solution. The second approach
to using models to solve problems involves using a simple model to obtain a
solution that approximates the exact solution. This model is referred to as a
statistical model, or often, a stochastic model. The statistical model usually has
a simple solution that can be evaluated using probability distributions. That is,
solutions to a statistical model are most useful when presented as a confidence
interval or when the solutions can be supported by the results of a hypothesis
test. It is this second approach that defines the discipline of statistics and is
therefore the approach used in this book. For a complete discussion of how
statistics revolutionized science in the Twentieth Century, see D. Salsburg (The

lady tasting tea, 2001).
A statistical model contains two parts: (1) a deterministic or functional

relationship among the variables, and (2) a stochastic or statistical part.
1



2 Part I The Basics

The deterministic part may be simple or complex, and it is often the result
of applications of mathematics to the underlying principles of the phe-
nomenon. The model is expressed as a function, usually algebraic in nature,
and parameters that specify the nature of the function. For example, the
relationship between the circumference of a circle and its radius is an
example of a deterministic relationship. The model C = br, where C =
circumference, b = 2π, and r = radius, will give the exact circumference
of a circle for a given radius. Written in this form, b is the parameter of
the model, and in introductory geometry classes, an exercise might be con-
ducted to determine a value of the parameter by measuring the radius and
the circumference of a circle and solving for b.

On the other hand, if each student in the class were asked to draw a circle
freehand, this deterministic model would not adequately describe the relation-
ship between the radius and circumference of the figures drawn by students
because the deterministic relationship assumes a perfect circle. The devia-
tions from the deterministic model displayed by each student’s figure would
make up the statistical part of the model. The statistical portion of the model
is usually considered to be of a random nature and is often referred to as
the random error component of the model. We can explain the relationship
between the circumference and the radius of the figures drawn by the students
as C = 2πr + ε, where ε is the statistical part of the model. It is easy to see
that ε = C−2πr, the difference between the circumference of the hand-drawn
figure and a perfect circle of the same radius. We would expect the value of
this difference to vary from student to student, and we could even make some
reasonable assumptions as to the distribution of this difference.

This is the basic idea for the use of statistical models to solve problems.
We first hypothesize about the functional portion of the model. For example,
the first part of this book deals strictly with linear models. Once the form of
the function is identified, we then specify what parameters of this function
need to be estimated. For example, in a simple linear relationship between two
variables x and y (written in slope-intercept form, this would be y = ax+b), we
need two parameters, a and b, to uniquely define the line. If the line represents
a process that is truly linear, then a deterministic model would be appropriate.
In this case, we would only need two points (a sample of size 2) to determine
the values of the slope and the y-intercept. If the line is only an approximation
to the process, or if a stochastic model is appropriate, we would write it in the
form: y = ax + b + ε. In this case, we would need a larger sample and would
have to use the estimation procedures used in Chapter 2 to estimate a and b.

The random error component of a model is usually assumed to behave
according to some probability distribution, usually the normal distribution.
In fact, the standard assumption for most statistical models is that the error
component is normal with mean zero and a constant variance. With this
assumption it can be seen that the deterministic portion of the model is in
fact the expected value of the response variable. For example, in the student
circle example the expected value of the circumference of the figures would
be 2πr.
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All of the models considered in Part I of this book are called linear models.
This definition really means that the models are linear in the model param-
eters. It turns out that the most frequently used statistical methods involv-
ing a quantitative response variable are special cases of a linear model. This
includes the one- and two-sample t tests, the analysis of variance, and simple
linear regression. Because these topics are presumed to be prerequisite knowl-
edge for those reading this book, they will be reviewed very briefly as they are
normally presented, and then recast as linear models followed by the statisti-
cal analysis suggested by that model.
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Chapter 1

The Analysis of Means

A Review of Basics and an
Introduction to Linear Models

1.1 Introduction

In this chapter we review the statistical methods for inferences on means using
samples from one, two, and several populations. These methods are initially
reviewed as they are presented in most basic textbooks, that is, using the prin-
ciples of sampling distributions. Then these methods are recast as analyses of
a linear model, using the concept of a linear model for making inferences.
These methods also use sampling distributions but in a different manner.

The purpose of this order of presentation is to introduce the linear-model
approach for performing statistical analyses for situations where concepts are
already familiar and formulas are easy to understand. Since these topics have
been covered in prerequisite materials, there is no discussion of applications,
and numerical examples are presented only to show the mechanics of the
methods.

1.2 Sampling Distributions

In the usual approach to statistical inference, one or more parameters are
identifiedthatwillcharacterizeordescribeapopulation.Thenasampleofobser-
vations is taken from that population, one or more sample statistics are com-
puted from the resulting data, and the statistics are used to make inferences on
the unknown population parameter(s). There are several methods of obtaining
appropriate statistics, called point estimators of the parameter. The standard
methods of statistical analysis of data obtained as a random sample use the
method of maximum likelihood (see Appendix C) to obtain estimates, called
sample statistics, of the unknown parameters, and the sampling distributions
associated with these estimates are used to make inferences on the parameters.

5



6 Chapter 1 The Analysis of Means

A sampling distribution describes the long-run behavior of all possible
values of a sample statistic. The concept of a sampling distribution is based on
the proposition that a statistic computed from a random sample is a random
variable whose distribution has a known relationship to the population from
which the sample is drawn. We review here the sampling distributions we will
use in this book.

Sampling Distribution of the Sample Mean
Assume that a random sample of size n is drawn from a normal population
with mean μ and standard deviation σ. Then the sample mean, y, is a normally
distributed random variable with mean μ and variance σ2/n. The standard
deviation, σ/

√
n, is known as the standard error of the mean.

If the distribution of the sampled population is not normal, we can still
use this sampling distribution, provided the sample size is sufficiently large.
This is possible because the central limit theorem states that the sampling
distribution of the mean can be closely approximated by the normal distribu-
tion, regardless of the distribution of the population from which the sample is
drawn, provided that the sample size is large. Although the theorem itself is
an asymptotic result (being exactly true only if n goes to infinity), the approx-
imation is usually very good for moderate sample sizes.

The definition of the sampling distribution of the mean is used to construct
the statistic,

z =
y − μ√
σ2/n

,

which is normally distributed with mean of zero and unit variance. Probabil-
ities associated with this distribution can be found in Appendix Table A.1 or
can be obtained with computer programs.

Notice that this statistic has two parameters, as does the normal distribu-
tion. If we know σ2, then we can use this statistic to make inferences on μ. If
we do not know the population variance, then we use a statistic of the same
form as the z, but with an estimate of σ2 in its place. This distribution is known
as the t distribution.

The estimated variance is computed by the familiar formula:1

s2 =
Σ(yi − y)2

n− 1
.

For future reference it is important to note that this formula is evaluated using
two distinct steps:

1. Calculating the sum of squares. The numerator of this equation, Σ(y − y)2,
is the sum of squared deviations of the observed values from the point

1Formulas for more convenient computation exist but will not be presented.
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estimate of the mean. This quantity is called the sum of squares2 and is
denoted by SS or Syy .

2. Calculating the mean square. The mean square is an “average” squared
deviation and is calculated by dividing the sum of squares by the degrees
of freedom and is denoted by MS. The degrees of freedom are the number
of elements in the sum of squares minus the number of point estimates of
parameters used in that sum. In this case there is only one such estimate,
y (the estimate of μ); hence the degrees of freedom are (n − 1). We will
frequently use the notation MS instead of s2.

We now substitute the mean square for σ2 in the statistic, resulting in the
expression

t(v) =
y − μ√
MS/n

.

This statistic has the Student t or simply the t distribution. This sampling
“distribution” depends on the degrees of freedom used in computing the
mean square, which is denoted by ν in the equation. The necessary values
for doing statistical inference can be obtained from Appendix Table A.2 and
are automatically provided in most computer outputs. When the variance is
computed as shown, the degrees of freedom are (n−1), but we will see that
this is not applicable in all situations. Therefore, the appropriate degrees of
freedom must always be specified when computing probabilities. As we will
see in Section 1.4, the normal or the t distribution is also used to describe
sampling distributions for the difference between two sample means.

Sampling Distribution of the Variance
Consider a sample of n independently drawn sample values from the Z (stan-
dard normal) distribution. Call these values zi, i = 1, 2, . . . , n. The sample
statistic,

X2 = Σz2i ,

is also a random variable whose distribution we callχ2 (the Greek letter “chi”).
Like the t distribution, the chi-square distribution depends on its degrees

of freedom, the number of z-values in the sum of squares. Thus, the variable
X2 described earlier would have a χ2 distribution with degrees of freedom
equal to n. As in the t distribution, the degrees of freedom are denoted by
the Greek letter ν, and the distribution is usually denoted by χ2(ν). A few
important characteristics of the χ2 distribution are as follows:

1. χ2 values cannot be negative since they are sums of squares.
2. The shape of the χ2 distribution is different for each value of ν; hence, a

separate table is needed for each value of ν. For this reason, tables giving

2We will use the second notation in formulas, as it conveniently describes the variable(s) involved
in the computations. Thus, for example, Sxy = Σ(x− x)(y − y).
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probabilities for the χ2 distribution give values for only a selected set of
probabilities. Appendix Table A.3 gives probabilities for the χ2 distribu-
tion. However, tables are not often needed because probability values are
available in most computer outputs.

3. The χ2 distribution is not symmetric; however, the distribution approaches
normality as the degrees of freedom get large.

The χ2 distribution is used to describe the distribution of the sample vari-
ance. Let y1, y2, . . . , yn be a random sample from a normally distributed pop-
ulation with mean μ and variance σ2. Then the quantity

Σ(yi − y)2

σ2 =
SS

σ2

is a random variable whose distribution is described by a χ2 distribution with
(n− 1) degrees of freedom. Notice that the sample variance, s2, is the sum of
squares divided by n − 1. Therefore, the χ2 distribution is readily useful for
describing the sampling distribution of s2.

Sampling Distribution of the Ratio of Two Variances
A sampling distribution that occurs frequently in statistical methods is one
that describes the distribution of the ratio of two estimates of σ2. Assume two
independent samples of size n1 and n2 from normally distributed populations
with variances σ2

1 and σ2
2 , respectively. The statistic

F =
s21/σ

2
1

s22/σ
2
2

,

where s21 and s22 represent the usual variance estimates, is a random variable
having the F distribution. The F distribution has two parameters, ν1 and ν2,
called degrees of freedom, and is denoted by F (ν1, ν2). If the variances are
estimated in the usual manner, the degrees of freedom are (n1−1) and (n2−1),
respectively, but this is not always the case. Also, if both populations have
equal variance, that is, σ2

1 = σ2
2 , the F statistic is simply the ratio s21/s

2
2. A few

important characteristics of the F distribution are as follows:

1. The F distribution is defined only for nonnegative values.
2. The F distribution is not symmetric.
3. A different table is needed for each combination of degrees of freedom.

Fortunately, for most practical problems only a relatively few probability
values are needed.

4. The choice of which variance estimate to place in the numerator is some-
what arbitrary; hence, the table of probabilities of the F distribution always
gives the right tail value; that is, it assumes that the larger variance estimate
is in the numerator.

Appendix Table A.4 gives probability values of theF distribution for selected
degrees of freedom combinations for right-tail areas.
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Relationships among the Distributions
All of the sampling distributions presented in this section start with normally
distributed random variables; hence, they are naturally related. The following
relationships are not difficult to verify and have implications for many of the
methods presented later in this book:

(1) t(∞) = z
(2) z2 = χ2(1)
(3) F (1, ν2) = t2(ν2)
(4) F (ν1, ∞) = χ2(ν1)/ν1.

1.3 Inferences on a Single Population Mean

If we take a random sample of size n from a population described by a normal
distribution with mean μ and standard deviation σ, then we can use the result-
ing data to make inferences on the unknown population mean μ in two ways.
The first method uses the standard approach using the sampling distribution
of an estimate of μ; the second uses the concept of a linear model. As we shall
see, both give exactly the same result.

Inferences Using the Sampling Distribution of the Mean
The best single-valued or point estimate of the population mean is the sample
mean. Denote the sample observations by yi, i = 1, 2, . . . , n, where n is the
sample size. Then the sample mean is defined as

y =
Σyi
n

.

For the purpose of making inferences on the population mean, the sample
mean is the maximum likelihood estimator. We have already noted that the
sampling distribution of y has mean μ and standard deviation σ/

√
n.

We use the sampling distribution of the sample mean to make inferences
on the unknown value μ. Usually, inferences on the mean take two forms.
One form consists of establishing the reliability of our estimation procedure
by constructing a confidence interval. The other is to test hypotheses on the
unknown mean, μ.

The (1 − α) confidence interval on the unknown value μ is the interval
contained by the endpoints defined by the formula

y ± zα/2

√
σ2

n
,

where zα/2 is the α/2 percentage point of the standard normal distribution.
This interval includes the true value of the population mean with reliability (1−
α). In other words, we say that we are (1− α) confident that the true value of
the population mean is inside the computed interval. The level of confidence is
often expressed as a percentage. That is, we often say that we are (1−α)×100%
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confident that the true value of the population mean is inside the computed
interval.

Usually, the population variance used in the preceding inference proce-
dures is not known, so we estimate it and use the tdistribution. The endpoints of
the (1− α) confidence interval using the estimated variance are computed by

y ± tα/2(n− 1)

√
MS

n
,

where tα/2(n−1) is the α/2 percentage point of the t distribution with (n−1)
degrees of freedom. The interpretation is, of course, the same as if the variance
were known.

A hypothesis test can be conducted to determine if a hypothesized value
of the unknown mean is reasonable given the particular set of data obtained
from the sample. A statistical hypothesis test on the mean takes the following
form. We test the null hypothesis

H0:μ = μ0

against the alternative hypothesis,

H1:μ=/ μ0,

where μ0 is a specified value.3 To test this hypothesis we use the sampling
distribution of the mean to obtain the probability of getting a sample mean
as far (or farther) away from the null hypothesis value as the one obtained
in the sample. If the probability is smaller than some specified value, called
the significance level, the evidence against the null hypothesis is deemed suffi-
ciently strong to reject it. If the probability is larger than the significance level,
there is said to be insufficient evidence to reject. A significance level of 0.05 is
frequently used, but other levels may be used.

The hypothesis test is performed by computing the test statistic

z =
y − μ0√
σ2/n

.

If the null hypothesis is true, this test statistic has the standard normal distri-
bution and can be used to find the probability of obtaining this sample mean
or one farther away from the null hypothesis value. This probability is called
the p-value. If the p-value is less than the significance level, the null hypothesis
is rejected.

Again, if the variance is not known, we use the t distribution with the test
statistic

t =
y − μ0√
MS/n

and compare it with values from the t distribution with (n−1) degrees of
freedom.

3One-sided alternatives, such as H0:μ > μ0, are possible but will not be explicitly covered here.
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Inferences Using the Linear Model
In order to explain the behavior of a random variable, y, we can construct a
model in the form of an algebraic equation that involves the parameter(s) of
the distribution of that variable (in this case, μ). If the model is a statistical
model, it also contains a component that represents the variation of an indi-
vidual observation on y from the parameter(s). We will use a linear model

where the model is a linear or additive function of the parameters.
For inferences on the mean from a single population, we use the linear

model

yi = μ+ εi,

where

yi is the ith observed value4 of the response or dependent variable in the
sample, i = 1, 2, . . . , n,

μ is the population mean of the response variable, and
εi, i = 1, 2, . . . , n, are a set of n independently and normally distributed

random variables with mean zero and standard deviation σ.

This model effectively describes the n observed values of a random sample
from a normally distributed population having a mean of μ and standard
deviation of σ.

The portion, μ, of the right-hand side of the model equation is the deter-

ministic portion of the model. That is, if there were no variation (σ = 0),
all observed values would be μ, and any one observation would exactly
describe or determine the value of μ. Because the mean of ε is zero, it is
readily seen that the mean or expected value of y is the deterministic portion
of the model.

The εi make up the stochastic or random component of the model. It can
be seen that these are deviations from the mean and can be expressed as
(yi − μ). That is, they describe the variability of the individual values of the
population about the mean. It can be said that this term, often referred to as
the “error” term, describes how well the deterministic portion of the model
describes the population. The population parameter, σ2, is the variance of the
ε and is a measure of the magnitude of the dispersion of the error terms. A
small variance implies that most of the error terms are near zero and the popu-
lation mean is “close” to the observed value yi, and is therefore a measure of
the “fit” of the model. A small variance implies a “good fit.”

Using this model, we can perform statistical inferences using sample
observations. The first task of the statistical analysis is to find a single-point
estimate of the parameter μ, which is the deterministic portion of the model.
The idea is to find an estimate of μ, call it μ̂, that causes the model to best
“fit” the observed data. A very convenient, and indeed the most popular, cri-
terion for goodness of fit is the magnitude of the sum of squared differences,

4The subscript, i, is usually omitted unless it is necessary for clarification.
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called deviations, between the observed values and the estimated mean.
Consequently, the estimate that best fits the data is found by using the prin-
ciple of least squares, which results in the estimate for which the sum of
squared deviations is minimized.

Define

ε̂i = yi − μ̂

as the ith deviation (often called the ith residual). That is, the deviation is the
difference between the ith observed sample value and the estimated mean.
The least squares criterion requires that the value of μ̂ minimize the sum of
squared deviations; that is, it minimizes

SS = Σε̂2 = Σ(yi − μ̂)2.

The estimate is obtained by using calculus to minimize SS. (See Appendix C
for a discussion of this procedure.) Notice that this estimate actually mini-
mizes the variance of the error terms. This procedure results in the following
equation

Σy − nμ̂ = 0.

The solution to this equation, obviously, is

μ̂ =
Σy
n

= y,

which is the same estimate we obtained using the sampling distribution
approach.

If we substitute this estimate for μ̂ in the formula for SS above, we obtain
the minimum SS

SS = Σ(y − y)2,

which is the numerator portion of s2, the estimate of the variance we used in
the previous section. Now the variance is simply the sum of squares divided
by degrees of freedom; hence the sample mean, y, is that estimate of the mean
that minimizes the variation about the model. In other words, the least squares
estimate provides the estimated model that best fits the sample data.

Hypothesis Testing
As before, we test the null hypothesis,

H0:μ = μ0,

against the alternative hypothesis,

H1:μ=/ μ0.

We have noted that the variance is an indicator of the effectiveness of the
model in describing the population. It then follows that if we have a choice
among models, we can use the relative magnitudes of variances of the different
models as a criterion for choice.
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The hypothesis test statements above actually define two competitive
models as follows:

1. The null hypothesis specifies a model where the mean is μ0; that is,

yi = μ0 + εi.

Thismodel is referredtoastherestrictedmodel, sincethemeanisrestricted
to the value specified by the null hypothesis.

2. The alternate hypothesis specifies a model where the mean may take any
value. This is referred to as the unrestricted model, which allows any
value of the unknown parameter μ.

The sum of squares using the restricted model,

SSErestricted = Σ(y − μ0)
2,

is called the restricted error sum of squares, since it is the sum of squares of
the random error when the mean is restricted by the null hypothesis. This sum
of squares has n degrees of freedom because it is computed from deviations
from a quantity (μ0) that is not computed from the data.5

The sum of squares for the unrestricted model is

SSEunrestricted = Σ(y − y)2

and represents the variability of observations from the best-fitting estimate of
the model parameter. It is called the error sum of squares for the unrestricted
model. As we have seen, it has (n−1) degrees of freedom and is the numerator
of the formula for the estimated variance. Since the parameter is estimated by
least squares, we know that this sum of squares is as small as it can get. This
result ensures that

SSErestricted ≥ SSEunrestricted.

The magnitude of this difference is used as the basis of the hypothesis
test.

It would now appear logical to base the hypothesis test on a comparison
between these two sums of squares. However, it turns out that a test based on a
partitioning of sums of squares works better. An exercise in algebra provides
the following relationship

Σ(y − μ0)
2 = Σ(y − y)2 + n(y − μ0)

2.

This formula shows that Σ(y−μ0)
2 = SSErestricted, the restricted error sum of

squares, can be partitioned into two parts:

1. Σ(y − y)2, the unrestricted model error sum of squares (SSEunrestricted),
which has (n− 1) degrees of freedom and

2. n(y−μ0)
2, which is the increase in error sum of squares due to the restric-

tion imposed by the null hypothesis. In other words, it is the increase in

5The corresponding mean square is rarely calculated.
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the error sum of squares due to imposing the restriction that the null
hypothesis is true, and is denoted by SShypothesis. This sum of squares has
one degree of freedom because it shows the decrease in the error sum of
squares when going from a model with no parameters estimated from the
data (the restricted model) to a model with one parameter, μ, estimated
from the data. Equivalently, it is the sum of squares due to estimating one
parameter.

Thus, the relationship can be written

SSErestricted = SSEunrestricted + SShypothesis;

that is, the restricted sum of squares is partitioned into two parts. This parti-

tioning of sums of squares is the key element in performing hypothesis tests
using linear models.

Just as the preceding expression shows a partitioning of sums of squares,
there is an equivalent partitioning of the degrees of freedom

dfrestricted = dfunrestricted + dfhypothesis,

that is,

n = (n− 1) + 1.

Furthermore, we can now compute mean squares

MShypothesis = SShypothesis/1, and

MSEunrestricted = SSEunrestricted/(n− 1).

It stands to reason that as SShypothesis increases relative to the other sums
of squares, the hypothesis is more likely to be rejected. However, in order to
use these quantities for formal inferences, we need to know what they repre-
sent in terms of the model parameters.

Remember that the mean of the sampling distribution of a sample statistic,
called its expected value, tells us what the statistic estimates. It is, in fact, pos-
sible to derive formulas for the means of the sampling distributions of mean
squares. These are called expected mean squares and are denoted by E(MS).
The expected mean squares of MShypothesis and MSEunrestricted are as follows

E(MShypothesis) = σ2 + n(μ− μ0)
2,

and

E(MSEunrestricted) = σ2.

Recall that in the discussion of sampling distributions the F distribution
describes the distribution of the ratio of two independent estimates of the
same variance. If the null hypothesis is true, that is, μ = μ0, or, equivalently
(μ − μ0) = 0, the expected mean squares6 show that both mean squares are
estimates of σ2. Therefore, if the null hypothesis is true, then

6The fact that these estimates are independent is not proved here.
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F =
MShypothesis

MSEunrestricted

will follow the F distribution with 1 and (n− 1) degrees of freedom.
However, if the null hypothesis is not true, then (μ− μ0)

2 will be a positive
quantity;7 hence, the numerator of the sample F statistic will tend to become
larger. This means that calculated values of this ratio falling in the right-hand tail
of the F distribution will favor rejection of the null hypothesis. The test of the
hypothesis thatμ = μ0 is thus performed by calculating these mean squares and
rejecting that hypothesis if the calculated value of the ratio exceeds the (1−α)
right-tail value of the F distribution with 1 and (n− 1) degrees of freedom.

In Section 1.2 under the listing of the relationship among the distributions,
we noted that F (1, ν) = t2(ν), and an exercise in algebra will show that the
square root for the formula for MShypothesis/MSEunrestricted is indeed the for-
mula for the t statistic, remembering that both positive and negative tails of the
t distribution go to the right tail of the F distribution. Therefore, the t and F
tests provide identical results.

If both tests give the same answer, then why use the F test? Actually, for
one-parameter models, t tests are preferred, and they also have the advantage
that they are easily converted to confidence intervals and may be used for
one-sided alternative hypotheses. The purpose of presenting this method is to
illustrate the principle for a situation where the derivations of the formulas for
the linear model approach are easily understood.

EXAMPLE 1.1 Consider the following set of 10 observations shown in Table 1.1. The response
variable is y. We will use the variable DEV later in the example.

Table 1.1

Data for Example 1.1

OBS y DEV

1 13.9 3.9
2 10.8 0.8
3 13.9 3.9
4 9.3 −0.7
5 11.7 1.7
6 9.1 −0.9
7 12.0 2.0
8 10.4 0.4
9 13.3 3.3

10 11.1 1.1

Inferences using the sampling distribution. The quantities needed can
easily be calculated

y = 11.55

s2 = 27.485/9 = 3.0539,

7Note that this occurs without regard to the sign of (μ− μ0). Hence, this method is not directly
useful for one-sided alternative hypotheses.
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and the estimated standard error of the mean,√
s2/n,

is 0.55262.

The 0.95 confidence interval can now be calculated

11.55 ± (2.262)(0.55262),

where 2.262 is the two-sided 0.05 tail value of the t distribution with nine
degrees of freedom from Table A.2. The resulting interval contains the
values from 10.30 to 12.80. That is, based on this sample, we are 95% confi-
dent that the interval (10.30 to 12.80) contains the true value of the mean.

Assume we want to test the null hypothesis

H0:μ = 10

against the alternative hypothesis

H1:μ=/ 10.

The test statistic is

t =
11.55− 10

0.55262
= 2.805.

The 0.05 two-sided tail value for the t distribution is 2.262; hence, we reject the
null hypothesis at the 0.05 significance level. A computer program will provide
a p-value of 0.0206.

Inferences using the linear model. For the linear model test of H0:μ =
10, we need the following quantities:

1. The restricted model sum of squares: Σ(y − 10)2. The individual values of
these differences are the variable DEV in Table 1.1, and the sum of squares
of this variable is 51.51.

2. The unrestricted model error sum of squares, 27.485, was obtained as an
intermediate step in computing the estimated standard error of the mean
for the t test earlier. The corresponding mean square is 3.054 with nine
degrees of freedom.

3. The difference 51.51−27.485 = 24.025, which can also be calculated directly
as 10(y − 10)2, is the SShypothesis. Then the F ratio is 24.025/3.054 = 7.867.
From Appendix Table A.4, the 0.05 tail value of the F distribution with
(1, 9) degrees of freedom is 5.12; hence, the null hypothesis should be
rejected. Note that the square root of 7.867 is 2.805, the quantity obtained
from the t test, and the square root of 5.12 is 2.262, the value from the
t distribution needed to reject for that test.

Although a confidence interval can be constructed using the linear model
approach, the procedure is quite cumbersome. Recall that a confidence
interval and the rejection region for a hypothesis test are related. That is, if
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the hypothesized value of the mean, μ0, is not in the 1−α confidence inter-
val, then we will reject the null hypothesis with a level of significance α. We
could use this concept to go from the hypothesis test just given to a con-
fidence interval on the mean, and that interval would be identical to that
given using the sampling distribution of the mean.

1.4 Inferences on Two Means Using Independent Samples

Assume we have two populations of a variable y with meansμ1 andμ2 and vari-
ances σ2

1 and σ2
2 , respectively, and with distributions that are approximately

normal. Independent random samples of n1 and n2, respectively, are drawn
from the two populations from which the observed values of the variable are
denoted yij , where i = 1, 2 and j = 1, 2, . . . , ni. The sample means are y1 and
y2. We are interested in inferences on the means, specifically on the difference
between the two means, that is (μ1−μ2) = δ, say. Note that although we have
two means, the focus of inference is really on the single parameter, δ. As in the
previous section, we first present inferences using the sampling distribution
of the means and then using a linear model and the partitioning of sums of
squares.

Inferences Using the Sampling Distribution
Since the point estimates of μ1 and μ2 are y1 and y2, the point estimate of δ is
(y1−y2). A generalization of the sampling distribution of the mean shows that
the sampling distribution of (y1 − y2) tends to be normally distributed with a
mean of (μ1 − μ2) and a variance of (σ2

1/n1 + σ2
2/n2).

The statistic

z =
(y1 − y2)− δ√

σ2
1

n1
+

σ2
2

n2

has a standard normal distribution. If the variances are known, this statistic is
used for confidence intervals and hypothesis tests on the difference between
the two unknown population means.

The (1 − α) confidence interval for δ is the interval between endpoints
defined as

(y1 − y2) ± zα/2

√
σ2
1

n1
+

σ2
2

n2
,

which states that we are (1 − α) confident that the true mean difference is
within the interval defined by these endpoints.

For hypothesis testing, the null hypothesis is

H0: (μ1 − μ2) = δ0.
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In most applications, δ0 is zero for testing the hypothesis that μ1 = μ2. The
alternative hypothesis is

H1: (μ1 − μ2)=/ δ0.

The test is performed by computing the test statistic

z =
(y1 − y2)− δ0√

σ2
1

n1
+

σ2
2

n2

and comparing the resulting value with the appropriate percentage point of
the standard normal distribution.

As for the one-population case, this statistic is not overly useful, since it
requires the values of the two usually unknown population variances. Simply
substituting estimated variances is not useful, since the resulting statistic does
not have the t distribution because the denominator contains independent esti-
mates of two variances. One way to adjust the test statistic so that it does have
the t distribution is to assume that the two population variances are equal and
find a mean square that serves as an estimate of that common variance. That
mean square, called the pooled variance, is computed as follows:

s2p =
Σ1(y − y1)

2 + Σ2(y − y2)
2

(n1 − 1) + (n2 − 1)
,

where Σ1 and Σ2 represent the summation over samples 1 and 2. Using the
convention of denoting sums of squares by SS, we can write the pooled
variance as

s2p =
SS1 + SS2
n1 + n2 − 2

,

where SS1 and SS2 are the sum of squares calculated separately for each
sample. This formula explicitly shows that the estimate of the variance is of
the form

Sum of squares

Degrees of freedom
,

and the degrees of freedom are (n1 + n2 − 2) because two estimated parame-
ters, y1 and y2, are used in computing the sum of squares.8

Substituting the pooled variance for both population variances in the test
statistic provides

t(n1 + n2 − 2) =
(y1 − y2)− δ√
s2p

( 1

n1
+

1

n2

) ,

which is called the “pooled t” statistic.

8Many references show the numerator as (n1−1)s21+(n2−1)s22. However, this expression does
not convey the fact that this is indeed a sum of squares.
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The (1−α) confidence interval for δ is the interval between the endpoints
defined by

(y1 − y2) ± tα/2(n1 + n2 − 2)

√
s2p

(
1

n1
+

1

n2

)
,

where tα/2(n1 + n2 − 2) is the notation for the α/2 percentage point of the
t distribution with (n1 + n2 − 2) degrees of freedom.

For hypothesis testing, the null hypothesis is

H0: (μ1 − μ2) = δ0,

against the alternative hypothesis

H1: (μ1 − μ2)=/ δ0.

As noted, usually δ0 = 0 for testing the null hypothesis, H0:μ1 = μ2.
To perform the test, compute the test statistic

t(n1 + n2 − 2) =
(y1 − y2)− δ0√
s2p

(
1

n1
+

1

n2

)
and reject the null hypothesis if the computed statistic falls in the rejection
region defined by the appropriate significance level for the t distribution with
(n1 + n2 − 2) degrees of freedom.

If the variances cannot be assumed equal for the two populations, approx-
imate methods must be used. A discussion of this problem can be found in
several texts, including Freund and Wilson (2003).

Inference for Two-Population Means Using the Linear Model
For inferences on the means from two populations, we use the linear model

yij = μi + εij ,

where

yij represents the jth observed value from population i, i=1, 2, and
j = 1, 2, . . . , ni,

μi represents the mean of population i,
εij represents a normally distributed random variable with mean zero and

variance σ2.

This model describes n1 sample observations from population 1 with mean
μ1 and variance σ2 and n2 observations from population 2 with mean μ2 and
variance σ2. Note that this model specifies that the variance is the same for
both populations. As in the methods using sampling distributions, violations
of this assumption are treated by special methods.

The null hypotheses to be tested is

H0:μ1 = μ2,
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against the alternative9 hypothesis

H1:μ1 =/ μ2.

Using the least squares procedures involves finding the values of μ̂1 and μ̂2

that minimize

Σall(yij − μ̂i)
2

where Σall denotes the summation over all sample observations. This proce-
dure yields the following equations (called the normal equations)

Σjyij − nμ̂i = 0, for i = 1, 2.

The solutions to these equations are μ̂1 = y1 and μ̂2 = y2.
The unrestricted model error variance is computed from the sum of squared

deviations from the respective sample means:

SSEunrestricted = Σ1(y − y1)
2 + Σ2(y − y2)

2 = SS1 + SS2.

As already noted, the computation of this sum of squares requires the use of
two estimated parameters, y1 and y2; hence, the degrees of freedom for this
sum of squares are (n1 + n2 − 2). The resulting mean square is indeed the
pooled variance used for the pooled t statistic.

The null hypothesis is μ1 = μ2 = μ, say. The restricted model, then, is

yij = μ+ εij .

The least squares estimate of μ is the overall mean of the total sample,

y = Σall
yij

n1 + n2
.

The restricted model error sum of squares is the sum of squared deviations
from this estimate; that is,

SSErestricted = Σall(y − y)2.

Since only one parameter estimate is used to compute this sum of squares, it
has (n1 + n2 − 1) degrees of freedom.

As before, the test of the hypothesis is based on the difference between the
restricted model and unrestricted model error sums of squares. The partition-
ing of sums of squares is

SSErestricted = SShypothesis + SSEunrestricted.

An exercise in algebra provides the formula

SShypothesis = n1(y1 − y)2 + n2(y2 − y)2.

The degrees of freedom for the hypothesis sum of squares is the difference bet-
ween the restricted and unrestricted model degrees of freedom. That difference
is one because the unrestricted model has two parameters and the restricted

9The linear model approach is not typically used for the more general null hypothesis
(μ1 − μ2) = δ for nonzero δ nor, as previously noted, for one-sided alternative hypotheses.
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model has only one, and the basis for the hypothesis test is to determine if the
modelwithtwoparametersfitssignificantlybetter thanthemodelwithonlyone.

It is again useful to examine the expected mean squares to determine an
appropriate test statistic

E(MShypothesis) = σ2 +
n1n2

n1 + n2
(μ1 − μ2)

2

E(MSEunrestricted) = σ2 .

The ratio of the resulting mean squares,

F =

(
SShypothesis

1

)
(
SSunrestricted
n1 + n2 − 2

) =
MShypothesis

MSEunrestricted
,

has the following properties:

1. If the null hypothesis is true, it is the ratio of two mean squares estimating
the same variance and therefore has the F distribution with (1, n1+n2−2)
degrees of freedom.

2. If the null hypothesis is not true, (μ1 − μ2) �= 0, which means that
(μ1 − μ2)

2 > 0. In this case, the numerator of the F statistic will tend to
become large, again indicating rejection for large values of this statistic.

Another exercise in algebra gives the relationship

SShypothesis = n1(y1 − y)2 + n2(y2 − y)2

= (y1 − y2)
2 n1n2

n1 + n2
.

This shows that the F statistic can be expressed as

F =
(y1 − y2)

2 n1n2

n1 + n2

MSEunrestricted

=
(y1 − y2)

2

MSEunrestricted

(
1

n1
+

1

n2

) .

As we have seen, MSEunrestricted is the pooled variance; hence, the F statis-
tic is the square of the t statistic. In other words, the pooled t test and the linear
model F test are equivalent.

EXAMPLE 1.2 As before, we use some artificially generated data, consisting of 10 sample
observations from population 1 and 15 from population 2. The data are shown
in Table 1.2.
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Table 1.2

Data for Example 1.2
Population 1: 25.0 17.9 21.4 26.6 29.1 27.5 30.6 25.1 21.8 26.7
Population 2: 31.5 27.3 26.9 31.2 27.8 24.1 33.5 29.6 28.3 29.3

34.4 27.3 31.5 35.3 22.9

Inferences using the sampling distribution. For the pooled t test we
compute the following quantities:

y1 = 25.1700, y2 = 29.3933,

SS1 = 133.2010, SS2 = 177.9093; hence,

s2p = (133.2010 + 177.9093)/23 = 311.1103/23 = 13.5265.

We want to test the hypothesis

H0:μ1 = μ2

against the hypothesis

H1:μ1 =/ μ2.

The pooled t statistic, then, is

t =
25.1700− 29.3933√√√√13.5265

(
1

10
+

1

15

)
= 2.8128.

The 0.05 two-sided tail value for the t distribution with (n1 + n2 − 2) = 23
degrees of freedom is 2.069, and the null hypothesis is rejected at the 0.05
level. A computer program gives the p-value as 0.0099.

Inferences using linear models. For the linear models partitioning of sums
of squares, we need the following quantities:

SSEunrestricted = SS1 + SS2 = 311.1103

SSErestricted = Σall(y − 27.704)2 = 418.1296,

where 27.704 is the mean of all observations. The difference is 107.0193, which
can also be calculated directly using the means:

SShypothesis = 10(25.1700− 27.704)2 + 15(29.3933− 27.704)2 = 107.0193.

The F statistic, then, is

F =
107.0193(
311.1103

23

) = 7.9118,

which is larger than 4.28, the 0.05 upper-tail value of the F distribution with
(1, 23) degrees of freedom; hence, the null hypothesis is rejected. A computer
program gives the p-value of 0.0099, which is, of course, the same as for the
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t test. We can also see that the square of both the computed and table value
for the t test is the same as the F-values for the partitioning of sums of squares
test.

As in the one-sample case, the t test is more appropriately used for this appli-
cation, not only because a confidence interval is more easily computed, but
also because the t test allows for a hypothesis test other than that of
μ1 = μ2.

1.5 Inferences on Several Means

The extrapolation from two populations to more than two populations might,
at first, seem straightforward. However, recall that in comparing two popu-
lation means, we used the simple difference as a comparison between the
two. If the difference was zero, the two means were the same. Unfortunately,
we cannot use this procedure to compare more than two means. Therefore,
there is no simple method of using sampling distributions to do inferences
on more than two population means. Instead, the procedure is to use the
linear model approach. This approach has wide applicability in comparing
means from more than two populations in many different configurations.

The linear model for the analysis of any number of means is simply a gen-
eralization of the model we have used for two means. Assuming data from
independent samples of ni from each of t populations, the model is

yij = μi + εij , i = 1, 2, . . . , t, j = 1, 2, . . . , ni,

where yij is the jth sample observation from population i, μi is the mean of the
ith population, and εij is a random variable with mean zero and variance σ2.
This model is one of many that are referred to as an analysis of variance or
ANOVA model. This form of the ANOVA model is called the cell means model.
As we shall see later, the model is often written in another form. Note that, as
before, the linear model automatically assumes that all populations have the
same variance. Inferences are to be made about the μi, usually in the form of
a hypothesis test

H0 : μi = μj , for all i=/ j

H1 : μi =/ μj , for one or more pairs.

The least square estimates for the unknown parametersμi are those values
that minimize

Σj(yij − μ̂i)
2, i = 1, . . . , t.

The values that fit this criterion are the solutions to the t normal equations:

Σj yij = niμ̂i, i = 1, . . . , t.

The solutions to these equations are μ̂i = yi, for i = 1, . . . , t.
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Then the unrestricted model error sum of squares is

SSEunrestricted = Σ1(y − y1)
2 + Σ2(y − y2)

2 + · · ·+ Σt(y − yt)
2,

which, because t sample means are used for computation, has (N− t) degrees
of freedom, where N is the total number of observations, N = Σni.

The restricted model is

yij = μ+ εij ,

and the estimate of μ is the grand or overall mean of all observations:

y = Σallyij/N .

Hence, the restricted error sum of squares is

SSErestricted = Σall(yij − y)2,

which has (N − 1) degrees of freedom because only one parameter estimate,
y, is used.

The partitioning of sums of squares results in

SSErestricted = SShypothesis + SSEunrestricted.

This means that computing any two (usually SSErestricted and SShypothesis)
allows the third to be computed by subtraction.10

The basis for the test is the difference

SShypothesis = SSErestricted − SSEunrestricted,

which, using some algebra, can be computed directly by

SShypothesis = Σni(yi − y)2

and has

(N − 1)− (N − t) = (t− 1)

degrees of freedom. This is because the unrestricted model estimates t para-
meters while the restricted model has only one.

As before, the expected mean squares provide information on the use of
these mean squares. In order to make the formulas easier to understand, we
will now assume that the samples from the populations are equal, that is, all
ni = n, say.11 Then,

E(MShypothesis) = σ2 + n
t− 1Σ(μi − μ)2

E(MSEunrestricted) = σ2.

Now, if the null hypothesis of equal population means is true, then
Σ(μi−μ)2 = 0 and both mean squares are estimates of σ2. If the null hypothesis

10Shortcut computational formulas are available but are not of interest here.
11If the sample sizes are not all equal, the expression for E(MShypothesis) is more complicated in
that it contains a weighted function of the (μi−μ)2, with the weights being rather messy functions
of the sample sizes, but the basic results are the same.
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is not true, the expected mean square for the hypothesis and consequently the
F statistic will tend to become larger. Hence, the ratio of these mean squares
provides the appropriate test statistic.

We now compute the mean squares:

MShypothesis = SShypothesis/(t− 1),

MSEunrestricted = SSEunrestricted/(N − t),

and the test statistic is

F = MShypothesis/MSEunrestricted,

which is to be compared to the F distribution with [(t − 1), (N − t)] degrees
of freedom.

EXAMPLE 1.3 The data for this example consist of weights of samples of six tubers of four
varieties of potatoes grown under specific laboratory conditions. The data and
some summary statistics are given in Table 1.3.

Table 1.3

Data for Example 1.3

Variety

BUR KEN NOR RLS

0.19 0.35 0.27 0.08
0.00 0.36 0.33 0.29
0.17 0.33 0.35 0.70
0.10 0.55 0.27 0.25
0.21 0.38 0.40 0.19
0.25 0.38 0.36 0.19

Mean 0.1533 0.3197 0.3300 0.2833
SS 0.0405 0.0319 0.0134 0.2335

The computations

y = 0.2896, then Σall (yij − y)2 = 0.5033,

which is SSErestricted with 23 degrees of freedom.

SSEunrestricted = 0.0405 + 0.0319 + 0.0134 + 0.2335 = 0.3193,

with 20 degrees of freedom

SShypothesis = 0.5033− 0.3193 = 0.1840,

or

SShypothesis = 6(0.1533− 0.2896)2 + · · ·+ 6(0.2833− 0.2896)2,

with three degrees of freedom.
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The F statistic is

F =

(
0.1840

3

)
(
0.3193

20

) =
0.0613

0.01597
= 3.84.

The 0.05 upper-tail percentage point of the F distribution with (3, 20) degrees
of freedom is 3.10; hence, the hypothesis of equal mean weights of the four
varieties may be rejected at the 0.05 level. Of course, this does not specify
anything more about these means; this may be done with multiple compari-
son methods, which are another matter and are not presented here.

Table 1.4 gives the output of a computer program (PROC ANOVA of the SAS
System) for the analysis of variance of this data set. Note that the nomen-
clature of the various statistics is somewhat different from what we have
presented, but is probably closer to what has been presented in prerequisite
courses. The equivalences are as follows:

Table 1.4

Computer Output for
ANOVA

Analysis of Variance Procedure

Dependent Variable: WEIGHT

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 0.18394583 0.06131528 3.84 0.0254
Error 20 0.31935000 0.01596750
Corrected Total 23 0.50329583

Level of WEIGHT

VAR N Mean SD

BUR 6 0.15333333 0.09003703
KEN 6 0.39166667 0.07985403
NOR 6 0.33000000 0.05176872
RLS 6 0.28333333 0.21611725

What we have called SSErestricted is denoted Corrected Total. This is the
sum of squares “corrected” for the mean, and since a model containing
only a single mean is usually considered as having no model, this is the
total variation if there is no model.

What we have called SSEunrestricted is simply called Error, since this is the
error sum of squares for the model specified for the analysis.

What we have called SShypothesis is called Model, since this is the decrease
in the error sum of squares for fitting the model.

The nomenclature used in the computer output is quite natural and easy to
understand. However, it is not adequate for all inferences in more complicated
models that we will encounter later.
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As seen in the output, the computer program presents the sums of squares,
mean squares, and F statistics and gives the p-value of 0.0254, which is, of
course, less than 0.05, leading to the same conclusion reached earlier.

Below these statistics are the four variety means and the standard deviations
of the observations for each variety.

Reparameterized Model
Another version of this model that reflects the partitioning of the sums of
squares is obtained by a redefinition of the parameters, usually referred to
as a reparameterization of the model. The reparameterization in this model
consists of redefining each population mean as being conceptually composed
of two parts: an overall or common mean plus a component due to the indi-
vidual population. In the common application of a designed experiment with
treatments randomly applied to experimental units, we are interested in the
effects of the individual treatments. We can rewrite the model to represent this
interest. The model is written

yij = μ+ αi + εij , i = 1, 2, . . . , t, j = 1, 2, . . . , ni,

where

ni is the number of observations in each sample or treatment group,
t is the number of such populations, often referred to as levels of experi-

mental factors or treatments,
μ is the overall mean, and
αi are the specific factor levels or treatment effects.

In other words, this model has simply defined

μi = μ+ αi.

The interpretation of the random error is as before. For more effective use of
this model we add the restriction

Σαi = 0,

which means that the “average” population effect is zero.12

The model written in this form is often called the single-factor ANOVA
model, or the one-way classification ANOVA model.

For the reparameterized model, the equivalent hypotheses are

H0:αi = 0, for all i

H1:αi =/ 0, for one or more i.

In other words, the hypothesis of equal means translates to one of no factor
effects.

12The restriction Σαi = 0 is not absolutely necessary. See Chapter 10.
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1.6 Summary

In this chapter we have briefly and without much detail reviewed the familiar
one-sample and pooled t statistics and the analysis of variance procedures for
inferences on means from one, two, or more populations. The important mes-
sage of this chapter is that each of these methods is simply an application of
the linear model and that inferences are made by comparing an unrestricted
and restricted model. Although this principle may appear cumbersome for
these applications, it will become more useful and, in fact, imperative to use in
the more complicated models to be used later. This fact is amply illustrated by
most books, which first introduce linear models for use in regression analysis
where inferences cannot be made without using this approach.

EXAMPLE 1.4 Freund and Wilson (2003, p. 465) report data from an experiment done to com-
pare the yield of three varieties of wheat tested over five subdivisions of a
field. The experiment was performed in the randomized complete block design
(RCBD), since the variation in subdivisions of the field was not of interest to
the experimenters, but needed to be removed from the analysis of the results.
The results are given in Table 1.5.

Table 1.5

Wheat Yields

Subdivisions (Blocks)

1 2 3 4 5

A 31.0 39.5 30.5 35.5 37.0
Variety B 28.0 34.0 24.5 31.5 31.5

C 25.5 31.0 25.0 33.0 29.5

Since this experiment actually has two factors, the variety and the subdivision,
we will use the “two-factor ANOVA model” with one factor considered as a
block. The general model for the RCBD (with t treatments and b blocks) is
written

yij = μ+ αi + βj + εij , i = 1, 2, . . . , t, j = 1, 2, . . . , b,

where:

yij = the response from the ith treatment and the jth block,
μ = the overall mean,
αi = the effect of the ith treatment,
βj = the effect of the jth block, and
εij = the random error term.

We are interested in testing the hypothesis

H0:αi = 0, for all i,

H1:αi =/ 0, for one or more i.
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This means that the restricted model can be written

yij = μ+ βj + εij .

Notice that this is simply the one-way ANOVA model considered previously.
Using PROC GLM in SAS, we can analyze the data using both unrestricted
and restricted models, yielding the results shown in Table 1.6. Notice that the
needed sums of squares are

SSEunrestricted = 14.4,

and

SSErestricted = 112.83333,

providing the appropriate sums of squares for testing the hypothesis

SShypothesis = 112.833− 14.400 = 98.433,

with 10− 8 = 2 degrees of freedom. The F test then becomes

F =
98.433/2

1.800
= 27.34.

This test statistic has a p-value of 0.0003 (as can be seen in Table 1.7). We
therefore reject the null hypothesis and conclude that there is a difference in
varieties.

Of course, this analysis would probably have been done using a two-way
ANOVA table. Table 1.7 shows such an analysis done on PROC ANOVA in SAS.
Notice that the sums of squares for VARIETY, the F value, and the Pr > F all
agree with the previous analysis.

Table 1.6

Analysis of Example 1.4

ANOVA for Unrestricted Model:

Dependent Variable: YIELD

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 247.333333 41.222222 22.90 0.0001
Error 8 14.400000 1.800000
Corrected Total 14 261.733333

ANOVA for restricted model:

Dependent Variable: YIELD

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 148.900000 37.225000 3.30 0.0572
Error 10 112.833333 11.283333
Corrected Total 14 261.733333



30 Chapter 1 The Analysis of Means

Table 1.7

Analysis of Variance for
Example 1.4

Analysis of Variance Procedure

Dependent Variable: YIELD

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 247.333333 41.222222 22.90 0.0001
Error 8 14.400000 1.800000
Corrected Total 14 261.733333

Analysis of Variance Procedure

Dependent Variable: YIELD

Mean

Source DF ANOVA SS Square F Value Pr > F

BLOCK 4 148.900000 37.225000 20.68 0.0003
VARIETY 2 98.433333 49.216667 27.34 0.0003

1.7 CHAPTER EXERCISES

In addition to the exercises presented in this chapter, we suggest a review of
exercises from prerequisite courses, redoing some of them using the linear
model approach.

1. From extensive research it is known that the population of a particular
freshwater species of fish has a mean length of μ = 171 mm. The lengths
are known to have a normal distribution. A sample of 100 fish suspected
to come from this species is taken from a local lake. This sample yielded a
mean length of y = 167 mm with a sample standard deviation of 44 mm. Use
the linear models approach and test the hypothesis that the mean length of
the population of fish from the local lake is the same as that of the suspected
species. Use a level of significance of 0.05.

2. M. Fogiel (The Statistics Problem Solver, 1978) describes an experiment
in which a reading test is given to an elementary school class that con-
sists of 12 Anglo-American children and 10 Mexican-American children.
The results of the test are given in Table 1.8.
(a) Write out an appropriate linear model to explain the data. List the

assumptions made on the model. Estimate the components of the
model.

(b) Using the linear models approach, test for differences between the two
groups. Use a level of significance of 0.05.

Table 1.8

Data for Exercise 2

Group Mean Standard Deviation

Mexican-American 70 10
Anglo-American 74 8
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3. Table 1.9 gives the results of a study of the effect of diet on the weights of
laboratory rats. The data are weights in ounces of rats taken before the diet
and again after the diet.
(a) Define an appropriate linear model to explain the data. Estimate the

components of the model from the data.
(b) Using the linear models approach and α = 0.01, test whether the diet

changed the weight of the laboratory rats.

Table 1.9

Data for Exercise 3

Rat 1 2 3 4 5 6 7 8 9 10

Before 14 27 19 17 19 12 15 15 21 19
After 16 18 17 16 16 11 15 12 21 18

4. The shelf life of packaged fresh meat in a supermarket cooler is considered
to be about 20 days. To determine if the meat in a local market meets this
standard, a sample of 10 packages of meat were selected and tested. The
data are as follows:

8, 24, 24, 6, 15, 38, 63, 59, 34, 39

(a) Define an appropriate linear model to describe this data. What assump-
tions would be made on this model? Estimate the components of the
model.

(b) Using the linear models approach, test the hypothesis that the super-
market is in compliance. Use a level of significance of 0.05.

5. Wright and Wilson (1979) reported on a study designed to compare soil-
mapping points on the basis of several properties. The study used eight
contiguous sites near Albudeite in the province of Murcia, Spain. One of the
properties of interest was clay content. Data from five randomly selected
locations within each of the mapping points are given in Table 1.10.

Table 1.10

Data for Exercise 5

Site Clay Content

1 30.3 27.6 40.9 32.2 33.7
2 35.9 32.8 36.5 37.7 34.3
3 34.0 36.6 40.0 30.1 38.6
4 48.3 49.6 40.4 43.0 49.0
5 44.3 45.1 44.4 44.7 52.1
6 37.0 31.3 34.1 29.7 39.1
7 38.3 35.4 42.6 38.3 45.4
8 40.1 38.6 38.1 39.8 46.0

(a) Define an appropriate linear model for the data. What assumptions are
made on this model? Estimate the components of the model.

(b) Completely analyze the data. Assume the points are going from east to
west in order of numbering. Completely explain the results.

6. A large bank has three branch offices located in a small Midwestern
town. The bank has a liberal sick leave policy, and officers of the bank
are concerned that employees might be taking advantage of this policy.
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To determine if there is a problem, employees were sampled randomly
from each bank and the number of sick leave days in 1990 was recorded.
The data are given in Table 1.11. Use the linear models approach to test
for differences between branch offices. Use a level of significance of 0.05.

Table 1.11

Data for Exercise 6

Branch 1 Branch 2 Branch 3

15 11 18
20 15 19
19 11 23
14

7. Three different laundry detergents are being tested for their ability to get
clothes white. An experiment was conducted by choosing three brands
of washing machines and testing each detergent in each machine. The
measure used was a whiteness scale, with high values indicating more
“whiteness.” The results are given in Table 1.12.

Table 1.12

Data for Exercise 7

Machine

Solution 1 2 3

1 13 22 18
2 26 24 17
3 4 5 1

(a) Define an appropriate model for this experiment. Consider the differ-
ence between washing machines a nuisance variation and not of inter-
est to the experimenters.

(b) Find SSEunrestricted and SSErestricted.
(c) Test the hypothesis that there is no difference between detergents.

8. An experiment was conducted using two factors, A with two levels and
B with two levels, in a factorial arrangement. That is, each combination
of both factors received the same number of experimental units. The data
from this experiment are given in Table 1.13.

Table 1.13

Data from a Factorial
Experiment

Factor A

1 2

5.3 8.8
1 3.6 8.9

Factor B 2.5 6.8

4.8 3.6
2 3.9 4.1

3.4 3.8
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The ANOVA model for this 2 × 2 factorial design is

yijk = μ+ αi + βj + (αβ)ij + εijk, i = 1, 2, j = 1, 2, and k = 1, 2, 3

where
yijk = the kth response from the ith level of

factor A and the jth level of factor B
μ = the overall mean
αi = the effect of factor A
βj = the effect of factor B
(αβ)ij = the interaction effect between A and B
εijk = the random error term

(a) The first step in the analysis is to test for interaction. Define the restricted
model for testing H0 : (αβ)ij = 0. Test the hypothesis using the linear
models method.

(b) The next step is to test for main effects.
(i) Define the restricted model for testing H0:βj =0. Test the hypothesis

using the linear models method.
(ii) Define the restricted model for testing H0:αi =0. Test the hypothesis

using the linear models method.
(c) Do a conventional ANOVA for the data and compare your results in parts

(a) through (c).
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Chapter 2

Simple Linear
Regression

Linear Regression with One
Independent Variable

2.1 Introduction

In Chapter 1 we introduced the linear model as an alternative for making
inferences on means of one or more arbitrarily labeled populations of a quan-
titative variable. For example, suppose we have weights of a sample of dogs of
three different breeds resulting in the plot shown in Figure 2.1. The appropri-
ate analysis to study weight differences among breeds would be the analysis of
variance. Notice that the mean weight for Cocker Spaniels is about 31 pounds,
for Poodles about 12 pounds, and for Schnauzers about 21 pounds.

Figure 2.1
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On the other hand, suppose we have weights of samples of dogs with three
different heights (measured at the shoulder), resulting in the plot shown in
Figure 2.2. Again we can use the analysis of variance to study the weight differ-
ence, which would reveal the rather uninteresting result that dogs of different
heights have different weights. In fact, it would be more useful to see if we can
determine a relationship between height and weight as suggested by the line
in that plot. This is the basis for a regression model.

Figure 2.2
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A regression model is an application of the linear model where the response
(dependent) variable is identified with numeric values of one or more quan-
titative variables called factor or independent variables. The example illus-
trated in Figure 2.2 shows a straight-line relationship between the mean weight
and the height of the dogs in the study. This relationship can be quantified by
the equation E(y) = −21 + 3x, where E(y) is the mean weight and x is the
height. Since the height of a dog may take on any one of a large number of val-
ues, it makes sense that the mean weight of any dog with height between 10
and 16 inches would probably fall on (or very near) the value predicted by this
straight line. For example, dogs with shoulder height of 12 inches would have a
mean height of 15 inches. This linear relationship represents the deterministic
portion of the linear model.

The stochastic or statistical portion of the model specifies that the indi-
vidual observations of the populations are distributed normally about these
means. Note that although in Figure 2.2 the distribution is shown only for pop-
ulations defined by three values of x, the regression model states that for any
value of x, whether or not observed in the data, there exists a population of
the dependent variable that has a mean

E(y) = −21 + 3x.

The purpose of a statistical analysis of a regression model is not primarily
to make inferences on differences among the means of these populations, but
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rather to make inferences about the relationship of the mean of the response
variable to the independent variables. These inferences are made through the
parameters of the model, in this case the intercept of −21 and slope of 3. The
resulting relationship can then be used to predict or explain the behavior of
the response variable.

Some examples of analyses using regression models include the following:

• Estimating weight gain by the addition to children’s diet of different
amounts of various dietary supplements

• Predicting scholastic success (grade point ratio) based on students’ scores
on an aptitude or entrance test

• Estimating amounts of sales associated with levels of expenditures for var-
ious types of advertising

• Predicting fuel consumption for home heating based on daily temperatures
and other weather factors

• Estimating changes in interest rates associated with the amount of deficit
spending

2.2 The Linear Regression Model

The simplest regression model is the simple linear regression model, which
is written

y = β0 + β1x+ ε.

This model is similar to those discussed in Chapter 1 in that it consists of a
deterministic part and a random part. The deterministic portion of the model,

β0 + β1x,

specifies that for any value of the independent variable, x,1 the population
mean of the dependent or response variable, y, is described by the straight-
line function (β0 + β1x). Following the usual notation for the general expres-
sion for a straight line, the parameter β0, the intercept, is the value of the
mean of the dependent variable when x is zero, and the parameter β1, the
slope, is the change in the mean of the dependent variable associated with
a unit change in x. These parameters are often referred to as the regression

coefficients. Note that the intercept may not have a practical interpretation
in cases where x cannot take a zero value.

As in the previously discussed linear models, the random part of the model,
ε, explains the variability of the responses about the mean. We again assume
that the terms (known as the error terms) have a mean zero and a constant
variance, σ2. In order to do statistical inferences we also make the assumption
that the errors have a normal distribution.

1In many presentations of this model, the subscript i is associated with x and y, indicating that
the model applies to the ith sample observation. For simplicity, we will not specify this subscript
unless it is needed for clarity.
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The fact that the regression line represents a set of means is often
overlooked, a fact that often clouds the interpretation of the results of a regres-
sion analysis. This fact is demonstrated by providing a formal notation for a
two-stage definition of the regression model. First, we define a linear model

y = μ+ ε,

where the standard assumptions are made on ε. This model states that the
observed value, y, comes from a population with mean μ and variance σ2.

For the regression model, we now specify that the mean is related to the
independent variable x by the model equation

μ = μy|x = β0 + β1x,

which shows that the mean of the dependent variable is linearly related to
values of the independent variable. The notation μy|x indicates that the mean
of the variable y depends on a given value of x.

A regression analysis is a set of procedures, based on a sample of n ordered
pairs, (xi, yi), i = 1, 2, . . . , n, for estimating and making inferences on the
parameters, β0 and β1. These estimates can then be used to estimate mean
values of the dependent variable for specified values of x.

EXAMPLE 2.1 One task assigned to foresters is to estimate the potential lumber harvest of
a forest. This is typically done by selecting a sample of trees, making some
nondestructive measures of these trees, and then using a prediction formula to
estimate lumber yield. The prediction formula is obtained from a study using
a sample of trees for which actual lumber yields were obtained by harvest-
ing. The variable definitions along with brief mnemonic descriptors commonly
used in computers are as follows

HT, the height, in feet
DBH, the diameter of the trunk at breast height (about 4 feet), in inches
D16, the diameter of the trunk at 16 feet of height, in inches

and the measure obtained by harvesting the trees:

VOL, the volume of lumber (a measure of the yield), in cubic feet

Table 2.1 shows data for a sample of 20 trees.

Table 2.1

Data for Estimating Tree
Volumes

Observation Diameter at Breast Height Height Diameter at 16 Feet Volume

(OBS) (DBH) (HT) (D16) (VOL)

1 10.20 89.00 9.3 25.93
2 13.72 90.07 12.1 45.87
3 15.43 95.08 13.3 56.20
4 14.37 98.03 13.4 58.60
5 15.00 99.00 14.2 63.36

(Continued)
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Table 2.1

(Continued)

Observation Diameter at Breast Height Height Diameter at 16 Feet Volume

(OBS) (DBH) (HT) (D16) (VOL)

6 15.02 91.05 12.8 46.35
7 15.12 105.60 14.0 68.99
8 15.24 100.80 13.5 62.91
9 15.24 94.00 14.0 58.13

10 15.28 93.09 13.8 59.79
11 13.78 89.00 13.6 56.20
12 15.67 102.00 14.0 66.16
13 15.67 99.00 13.7 62.18
14 15.98 89.02 13.9 57.01
15 16.50 95.09 14.9 65.62
16 16.87 95.02 14.9 65.03
17 17.26 91.02 14.3 66.74
18 17.28 98.06 14.3 73.38
19 17.87 96.01 16.9 82.87
20 19.13 101.00 17.3 95.71

Because DBH is the most easily measured nondestructive variable, it is logical
first to see how well this measure can be used to estimate lumber yield. That
is, we propose a regression model that uses DBH to estimate the mean lumber
yield. The scatter plot shown in Figure 2.3 indicates that the two variables
are indeed related and that it may be possible that a simple linear regression
model can be used to estimate VOL using DBH. The deterministic portion of
the model is

μVOL|DBH = β0 + β1DBH,

where μVOL|DBH is the mean of a population of trees for a specified value of
DBH; β0 is the mean volume of the population of trees having zero DBH (in this
example this parameter has no practical meaning); and β1 is the increase in
the mean height of trees as DBH increases by 1 inch. The complete regression
model, including the error, is

VOL = β0 + β1DBH + ε.

Figure 2.3

Scatter Plot of
Volume and DBH
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First we will use the data to estimate the parameters, β0 and β1, the regression
coefficients that describe the model, and then we will employ statistical infer-
ence methods to ascertain the significance and precision of these estimates as
well as the precision of estimated values of VOL obtained by this model.

2.3 Inferences on the Parameters β0 and β1

We have defined the simple linear regression model

y = β0 + β1x+ ε,

where y is the dependent variable, β0 the intercept, β1 the slope, x the inde-
pendent variable, and ε the random error term. A sample of size n is taken
that consists of measurements on the ordered pairs (x, y). The data from this
sample is used to construct estimates of the coefficients, which are used in the
following equation for estimating the mean of y:

μ̂y|x = β̂0 + β̂1x.

This is the equation of a line that is the locus of all values of μ̂y|x, the esti-
mate of the mean of the dependent variable, y, for any specified value of x,
the independent variable. We now illustrate the method of estimating these
parameters from the sample data.

Estimating the Parameters β0 and β1

In Section 1.3 we introduced the principle of least squares to provide an esti-
mate for the mean. We use the same principle to estimate the coefficients in a
regression equation. That is, we find those values of β̂0 and β̂1 that minimize
the sum of squared deviations:

SS = Σ(y − μ̂y|x)2 = Σ(y − β̂0 − β̂1x)
2.

The values of the coefficients that minimize the sum of squared deviations
for any particular set of sample data are given by the solutions of the following
equations, which are called the normal equations2

β̂0n+ β̂1Σx = Σy
β̂0Σx+ β̂1Σx2 = Σxy.

The solution for two linear equations in two unknowns is readily obtained and
provides the estimators of these parameters as follows

β̂1 =
Σxy − (Σx)(Σy)

n

Σx2 − (Σx)2

n
β̂0 = y − β̂1x.

2As in Chapter 1, these are obtained through an exercise in calculus; see Appendix C.
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The estimator of β1 can also be written

β̂1 =
Σ(x− x)(y − y)

Σ(x− x)2
.

This last formula more clearly shows the structure of the estimate: It is the
sum of cross products of the deviations of observed values from the means of
x and y divided by the sum of squared deviations of the x values. Commonly,
we call Σ(x− x)2 and Σ(x− x)(y− y) the corrected, or means centered, sums
of squares and cross products. Since these quantities occur frequently, we will
use the following notation and computational formulas

Sxx = Σ(x− x)2 = Σx2 − (Σx)2/n,

which is the corrected sum of squares for the independent variable x, and

Sxy = Σ(x− x)(y − y) = Σxy − ΣxΣy/n,

which is the corrected sum of products of x and y. Later, we will need

Syy = Σ(y − y)2 = Σy2 − (Σy)2/n,

the corrected sum of squares of the dependent variable, y. Using this notation,
we can write

β̂1 = Sxy/Sxx.

EXAMPLE 2.1 Estimating the Parameters WeillustratethecomputationsforExample2.1
using the computational formulas. The preliminary computations are

n = 20.

Σx = 310.63, and x = 15.532.

Σx2 = 4889.0619.

We then compute

Sxx = 4889.0619− (310.63)2/20 = 64.5121.

Σy = 1237.03, and y = 61.852.

Σy2 = 80256.52, and we compute

Syy = 80256.52− (1237.03)2/20 = 3744.36 (which we will need later).

Σxy = 19659.10, and we compute

Sxy = 19659.10− (310.63)(1237.03)/20 = 446.17.

The estimates of the parameters are

β̂1 = Sxy/Sxx = 446.17/64.5121 = 6.9161, and

β̂0 = y − β̂1x = 61.852− (6.9161)(15.532) = −45.566,

which provides the estimating equation

μ̂VOL|DBH = −45.566 + 6.9161(DBH).
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The interpretation of β̂1 is that the mean volume of trees increases by 6.91
cubic feet for each one inch increase in DBH. The estimate β̂0 implies that the
mean volume of trees having zero DBH is −45.66. This is obviously an impos-
sible value and reinforces the fact that for practical purposes this parameter
cannot be literally interpreted in cases where a zero value of the indepen-
dent variable cannot occur or is beyond the range of available data. A plot
of the data points and estimated line is shown in Figure 2.4 and shows how
the regression line fits the data.

Figure 2.4

Plot of Data and
Regression Line

Inferences on β1 Using the Sampling Distribution
Although the regression model has two parameters, the primary focus of
inference is on β1, the slope of the regression line. This is because if β1 = 0,
there is no regression and the model is simply that of a single population (Sec-
tion 1.3). Inferences on β0 will be presented later.

An adaptation of the central limit theorem states that the sampling distri-
bution of the estimated parameter β̂1 is approximately normal with mean β1
and variance σ2/Sxx, where σ2 is the variance of the random component of the
model. Consequently, the standard error of the estimated parameter isσ/

√
Sxx.

The standard error is a measure of the precision of the estimated para-
meter. We can more easily see how this is affected by the data by noting that
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Sxx = (n−1)s2x, where s2x is the estimated variance computed from the values
of the independent variable. Using this relationship, we can see the following:

1. The precision decreases as the standard deviation of the random error, σ,
increases.

2. Holding constant s2x, the precision increases with larger sample size.
3. Holding constant the sample size, the precision increases with a higher

degree of dispersion of the observed values of the independent variable
(as s2x gets larger).

The first two characteristics are the same that we observed for the sampling
distribution of the mean. The third embodies a new concept that states that a
regression relationship is more precisely estimated when values of the inde-
pendent variable are observed over a wide range. This does make intuitive
sense and will become increasingly clear (see especially Section 4.1).

We can now state that

z =
β̂1 − β1(

σ√
Sxx

)

has the standard normal distribution. If the variance is known, this statistic
can be used for hypothesis tests and confidence intervals.

Because the variance is typically not known, we must first obtain an esti-
mate of that variance and use that estimate in the statistic. We have seen that
estimates of variance are mean squares defined as

Mean square =
Sum of squared deviations from the estimated mean

Degrees of freedom
.

When we are using a regression model, the deviations, often called residuals,
are measured from the values of μ̂y|x obtained for each observed value of x.
The degrees of freedom are defined as the number of elements in the sum of
squares minus the number of parameters in the model used to estimate the
means. For the simple linear regression model there are n terms in the sum
of squares, and the μ̂y|x are calculated with a model having two estimated
parameters, β̂0 and β̂1; hence, the degrees of freedom are (n−2). The resulting
mean square is the estimated variance and is denoted by s2y|x, indicating that
it is the variance of the dependent variable, y, after fitting a regression model
involving the independent variable, x. Thus,

s2y|x = MSE =
SSE

n− 2
=

Σ(y − μ̂y|x)2

n− 2
.

A shortcut formula that does not require the calculation of individual values
of μ̂y|x is developed later in this section.
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The statistic now becomes

t =
β̂1 − β1√

s2y|x
Sxx

,

which has the t distribution with (n−2) degrees of freedom. The denominator
in this formula is the estimate of the standard error of the parameter estimate.
For testing the hypotheses

H0:β1 = β∗
1

H1:β1 �= β∗
1 ,

where β∗
1 is any desired null hypothesis value, compute the statistic

t =
β̂1 − β∗

1√
s2y|x
Sxx

and reject H0 if the p-value for that statistic is less than or equal to the desired
significance level. The most common hypothesis is that β∗

1 = 0.
The (1− α) confidence interval is calculated by

β̂1 ± tα/2(n− 2)

√
s2y|x
Sxx

,

where tα/2(n− 2) denotes the (α/2) 100 percentage point of the t distribution
with (n− 2) degrees of freedom.

EXAMPLE 2.1 CONTINUED Inferences on β1 Using the Sampling Distribution The
first step is to compute the estimated variance. The necessary information is
provided in Table 2.2.

Table 2.2

Data for Calculating the
Variance

OBS

Dependent Variable VOL

(cub. ft)
y

Predicted Value

(cub. ft)
μ̂y|x

Residual

(cub. ft)
(y− μ̂y|x)

1 25.9300 24.9782 0.9518
2 45.8700 49.3229 −3.4529
3 56.2000 49.7379 6.4621
4 58.6000 53.8184 4.7816
5 63.3600 58.1756 5.1844
6 46.3500 58.3139 −11.9639
7 68.9900 59.0055 9.9845
8 62.9100 59.8355 3.0745
9 58.1300 59.8355 −1.7055

10 59.7900 60.1121 −0.3221
11 56.2000 61.1495 −4.9495
12 66.1600 62.8094 3.3506
13 62.1800 62.8094 −0.6294

(Continued)
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Table 2.2

(Continued)
OBS

Dependent Variable VOL

(cub. ft)
y

Predicted Value

(cub. ft)
μ̂y|x

Residual

(cub. ft)
(y− μ̂y|x)

14 57.0100 64.9534 −7.9434
15 65.6200 68.5498 −2.9298
16 65.0300 71.1087 −6.0787
17 66.7400 73.8060 −7.0660
18 73.3800 73.9443 −0.5643
19 82.8700 78.0249 4.8451
20 95.7000 86.7392 8.9708

The last column contains the residuals (deviations from the estimated means),
which are squared and summed

SSE = 0.95182 + (−3.4529)2 + · · ·+ 8.97082 = 658.570.

Dividing by the degrees of freedom:

s2y|x = 658.570/18 = 36.587.

The estimated standard error of β̂1 is

Standard error (β̂1) =

√
s2y|x
Sxx

=

√
36.587

64.512
= 0.7531.

A common application is to test the hypothesis of no regression, that is,

H0:β1 = 0

H1:β1 �= 0,

for which the test statistic becomes

t =
β̂1

standard error
=

6.9161

0.7531
= 9.184.

The rejection criterion for a two-tailed t test with α = 0.01 is 2.5758. The value
of 9.184 exceeds this value, so the hypothesis is rejected. (The actual p-value
obtained from a computer program is 0.0001.)

For the 0.95 confidence interval on β, we find t0.025(18) = 2.101, and the
interval is

6.916± 2.101(0.7531), or

6.916± 1.582,

resulting in the interval from 5.334 to 8.498. In other words, we are 0.95 (or
95%) confident that the population mean increase in volume is between 5.334
and 8.498 cubic feet per 1-inch increase in DBH.

Inferences on β1 Using the Linear Model
The unrestricted model for simple linear regression is

y = β0 + β1x+ ε.
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The least squares estimates of the parameters are obtained as before and are
used to compute the conditional means, μ̂y|x. These are then used to compute
the unrestricted model error sum of squares:

SSEunrestricted = Σ(y − μ̂y|x)2.

This is indeed the estimate we obtained earlier, and the degrees of freedom
are (n− 2).

The null hypothesis is

H0:β1 = 0;

hence, the restricted model is
y = β0 + ε,

which is equivalent to the model for a single population

y = μ+ ε.

From Section 1.2, we know that the point estimate of the parameter μ is y.
The restricted model error sum of squares is now the error sum of squares for
that model, that is,

SSErestricted = Σ(y − y)2,

which has (n− 1) degrees of freedom.
The hypothesis test is based on the difference between the restricted and

unrestricted model error sums of squares, that is,

SShypothesis = SSErestricted − SSEunrestricted,

which has [n−1− (n−2)] = 1 (one) degree of freedom. That is, we have gone
from a restricted model with one parameter, μ, to the unrestricted model with
two parameters, β0 and β1.

Note that we again have a partitioning of sums of squares, which in this
case also provides a shortcut for computing SSEunrestricted. We already know
that

SSEunrestricted = Σ(y − μ̂y|x)2, and

SSErestricted = Σ(y − y)2.

Now,

SShypothesis = Σ(y − μ̂y|x)2

= Σ(y − β̂0 − β̂1x)
2.

Substituting the least squares estimators for β̂0 and β̂1 results in some
cancellation of terms and in a simplified form

SS hypothesis = β̂1Sxy .

This quantity can also be computed by using the equivalent formulas: β̂2
1Sxx

or S 2
xy /Sxx. The most convenient procedure is to compute SSErestricted and

SShypothesis and obtain SSEunrestricted by subtraction.
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As before, it is useful to examine the expected mean squares to establish
the test statistic. For the regression model

E(MShypothesis) = σ2 + β2
1Sxx,

E(MSEunrestricted) = σ2.

If the null hypothesis, H0:β1 = 0, is true, both mean squares are estimators
of σ2, and the ratio

F =

(
SShypothesis

1

)
(
SSEunrestricted

n− 2

) =
MShypothesis

MSEunrestricted

is indeed distributed as F with [1, (n − 2)] degrees of freedom. If the null
hypothesis is not true, the numerator will tend to increase, leading to rejec-
tion in the right tail.

Remembering that Sxx = (n − 1)s2x, we find it interesting to note that the
numerator will become larger as

β1 becomes larger,
n becomes larger,
the dispersion of x increases, and/or
s2y|x becomes smaller.

Note that these are the same conditions we noted for the t test. In fact, the two
tests are identical, since t2(n − 2) = F (1, n − 2). For this case, the t statistic
may be preferable because it can be used for both one- and two-tailed tests,
as well as for tests of other hypotheses, and it can be used for a confidence
interval. However, as we will see later, the t statistic is not directly applicable
to more complex models.

EXAMPLE 2.1 CONTINUED Inferences on β1 Using the Linear Model The prelim-
inary calculations we have already used for obtaining the estimates of the
parameters provide the quantities required for this test. We have

SSErestricted = Syy = 3744.36,

SShypothesis = S2
xy/Sxx = 3085.74,

then by subtraction,

SSEunrestricted = SSErestricted − SShypothesis = 3744.36− 3085.74

= 658.62.

The small difference from the result obtained directly from the residuals is
due to roundoff. We can now compute

MSEunrestricted = 658.62/18 = 36.59,

and the F statistic:

F =
MShypothesis

MSEunrestricted
=

3085.74

36.59
= 84.333.
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The p-value of less than 0.0001 can be obtained from a computer and leads to
rejection of the hypothesis of no regression. The square of the t test obtained
using the sampling distribution is 84.346; again, the slight difference is due to
roundoff.

Most statistical calculations, especially those for regression analyses, are
performed on computers using preprogrammed computing software packages.
Virtually all such packages for regression analysis are written for a wide vari-
ety of analyses of which simple linear regression is only a special case. This
means that these programs provide options and output statistics that may not
be useful for this simple case.

EXAMPLE 2.1 CONTINUED Computer Output We will illustrate a typical computer
output with PROC REG of the SAS System. We will perform the regression
for estimating tree volumes (VOL) using the diameter at breast height (DBH).
The results are shown in Table 2.3. All of the quantities we have presented
are available in this output. However, the nomenclature is somewhat different
from what we have used and corresponds to the more conventional usage in
statistical computer packages.

Table 2.3

Computer Output for
Tree-Volume Regression

Dependent Variable: VOL

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3085.78875 3085.78875 84.34 <.0001
Error 18 658.56971 36.58721
Corrected Total 19 3744.35846

Root MSE 6.04874 R-Square 0.8241
Dependent Mean 61.85150 Adj R-Sq 0.8143
Coeff Var 9.77945

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −45.56625 11.77449 −3.87 0.0011
DBH 1 6.91612 0.75309 9.18 <.0001

There are three sections of this output. The first portion of the output refers
to the partitioning of the sums of squares and the test for the effect of the
model, which for the simple linear regression model is equivalent to testing
H0:β1 = 0. The column headings are self-explanatory.

The first line, labeled “Model,” lists the sums of squares, mean squares,
the F -value, and the p-value associated with the F test for testing the
effect of the overall regression. The sum of squares, mean square, and
F statistics correspond to those we computed previously, except for
roundoff error. Because these can also be interpreted as the reduc-
tion in the error sum of squares due to fitting a regression, these are
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commonly referred to as the regression sum of squares (SSR), regres-

sion mean square (MSR), and the F test for regression.
The second line, labeled “Error,” refers to the unrestricted model error

statistics, which are generally referred to simply as the error statistics
(SSE and MSE). The mean square from this line is used as the denomi-
nator for the F statistic.

The third line, labeled “Corrected Total,” corresponds to what we have
called the restricted error sum of squares (the corresponding mean
square is not given as it is rarely used) and is the sum of squared devia-
tions from the mean, also called “corrected” for the mean. This quantity
is often simply called the total sum of squares (TSS), as it is a measure
of the total variability of observations from the overall mean.

The second section contains some miscellaneous descriptive statistics:

“Root MSE” is the square root of the error mean square. The value of 6.05
is the standard deviation of the residuals, which we called sy|x.

“Dependent Mean” is simply y.
“Coeff Var” the coefficient of variation, is the standard deviation divided

by y, expressed as a percentage.
R-square and Adj R-sq will be discussed later.

The last portion of the output contains statistics associated with the regres-
sion coefficients. The entries under the heading “Variable” identify the para-
meters. Intercept refers to β̂0, the intercept, and DBH is the mnemonic
computer name for the independent variable x and identifies β̂1, the esti-
mated regression parameter for that variable. The output gives the estimates
of the standard errors and the test for zero values of both the slope and
the intercept. Note that the square of the t statistic is indeed equal to the F
statistic in the top portion.

2.4 Inferences on the Response Variable

In addition to the inferences about the parameters of the regression model,
we are also interested in how well the model estimates the behavior of the
dependent variable. In other words, we want information on the reliability of
the regression estimate of the dependent variable. In this context there are
two different, but related, inferences:

1. Inferences on the mean response. In this case, we are concerned with how
well the model estimates μy|x, the conditional mean of the population for
any specified x value.

2. Inferences for prediction. In this case, we are interested in how well the
model predicts the value of the response variable, y, for a single randomly
chosen future observation having a specified value of the independent vari-
able, x.
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The point estimate for both of these inferences is the value of μ̂y|x for
the specified value of x. However, because the point estimate represents two
different inferences, we denote them by two different symbols. Specifically,
we denote the estimated mean response by μ̂y|x, and predicted single value
by ŷy|x. And because these estimates have different implications, each has a
different variance (and standard error).

For a specified value of x, say x∗, the variance for the estimated mean is

var(μ̂y|x∗) = σ2

[
1

n
+

(x∗ − x)2

Sxx

]
,

and the variance for a single predicted value is

var(ŷy|x∗) = σ2

[
1 +

1

n
+

(x∗ − x)2

Sxx

]
.

Both of these variances vary with different values of x∗, and both are at their
minimum value when x∗ = x. In other words, the response is estimated with
greatest precision when the independent variable is at its mean, with the vari-
ance of both estimates increasing as x∗ deviates from x. It is also seen that
var (ŷy|x∗) > var (μ̂y|x∗) because a mean is estimated with greater precision
than is a single value. Finally, it is of interest to note that when x∗ takes the
value x, the estimated conditional mean is y and the variance of the estimated
mean is indeed σ2/n, the familiar variance of the mean.

Substituting the mean square error, MSE, for σ2 provides the estimated
variance. The square root is the corresponding standard error used in hypothe-
sis testing or (more commonly) interval estimation using the appropriate value
from the t distribution with (n− 2) degrees of freedom.

The variance of the intercept, β̂0, can be found by letting x∗ = 0 in the
variance of μ̂y|x. Thus, the variance of β̂0 is

var(β̂0) = σ2

[
1

n
+

(x)2

Sxx

]
= σ2

[
Σx2

nSxx

]
.

Substituting MSE for σ2 and taking the square root provide the estimated stan-
dard error, which can be used for hypothesis tests and confidence intervals.
As we have noted, in most applications β0 represents an extrapolation and is
thus not a proper candidate for inferences. However, since a computer does
not know if the intercept is a useful statistic for any specific problem, most
computer programs do provide that standard error as well as the test for the
null hypothesis that β0 = 0.

EXAMPLE 2.1 CONTINUED Inferences for the Response We illustrate the calcula-
tions for the confidence interval for the mean volume (VOL) for x = DBH =
10.20 inches in Example 2.1. Putting the value x = 10.20 in the regression
equation, we get μ̂y|x = 24.978 cubic feet. From previous calculations we have
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x = mean DBH = 15.5315,

Sxx = 64.5121,

MSEunrestricted = 36.5872.

Using these quantities, we have

var(μ̂y|x) = 36.5872 [0.05 + (10.20− 15.5315)2/64.5121]

= 36.5872 (0.05 + 0.4406)

= 17.950.

The square root of 17.950 = 4.237 is the standard error of the estimated mean.
The 95% confidence interval for the estimated mean, using t = 2.101 for α =
0.05 and 18 degrees of freedom, is

24.978± (2.101) (4.237),

or from 16.077 to 33.879 cubic feet. This interval means that, using the regres-
sion model, we are 95% confident that the true mean height of the population
of trees with DBH = 10.20 inches is between 16.077 and 33.879 cubic feet. The
width of this interval may be taken as evidence that the estimated model may
not have sufficient precision to be very useful. A plot of the actual values, the
estimated regression line, and the locus of all 0.95 confidence intervals are
shown in Figure 2.5. The minimum width of the intervals at the mean of the
independent variable is evident.

Figure 2.5

Plot of Confidence
Intervals

The computations for the prediction interval are similar and will, of course,
produce wider intervals. This is to be expected since we are predicting
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individual observations rather than estimating means. Figure 2.6 shows the
0.95 prediction intervals along with the original observations and the regres-
sion line. Comparison with Figure 2.4 shows that the intervals are indeed much
wider, but both do have the feature of being narrowest at the mean. In any
case, the width of these intervals may suggest that the model is not adequate
for very reliable prediction.

Figure 2.6

Plot of Prediction
Intervals

At this point it is important to emphasize that both estimation and pre-
diction are valid only within the range of the sample data. In other words,
extrapolation is typically not valid. Extrapolation and other potential misuses
of regression will be discussed in Section 2.8.

2.5 Correlation and the Coefficient of Determination

The purpose of a regression analysis is to estimate or explain a response
variable (y) for a specified value of a factor variable (x). This purpose implies
that the variable x is chosen or “fixed” by the experimenter (hence, the term
independent or factor variable) and the primary interest of a regression
analysis is to make inferences about the dependent variable using
information from the independent variable. However, this is not always the
case. For example, suppose that we have measurements on the height and
weight of a sample of adult males. In this particular study, instead of wanting
to estimate weight as a function of height (or vice versa), we simply want an
indicator of the strength of the relationship between these measurements.
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A correlation model describes the strength of the relationship between
two variables. In a correlation model, both variables are random variables,
and the model specifies a joint distribution of both variables instead of the
conditional distribution of y for a fixed value of x.

The correlation model most often used is the normal correlation model.
This model specifies that the two variables (x, y) have what is known as the
bivariate normal distribution. This distribution is defined by five parameters:
the means of x and y, the variances of x and y, and the correlation coeffi-

cient, ρ. The correlation coefficient measures the strength of a linear
(straight-line) relationship between the two variables. The correlation coef-
ficient has the following properties:

1. Its value is between +1 and −1 inclusively. A positive correlation coefficient
implies a direct relationship, while a negative coefficient implies an inverse
relationship.

2. Values of +1 and −1 signify an exact direct and inverse relationship, respec-
tively, between the variables. That is, a plot of the values of x and y exactly
describe a straight line with a positive or negative slope.

3. A correlation of zero indicates there is no linear relationship between the
two variables. This condition does not necessarily imply that there is no
relationship, because correlation only measures the strength of a straight
line relationship.

4. The correlation coefficient is symmetric with respect to the two variables.
It is thus a measure of the strength of a linear relationship between any
two variables, even if one is an independent variable in a regression set-
ting.

5. The value of the correlation coefficient does not depend on the unit of mea-
surement for either variable.

Because correlation and regression are related concepts, they are often
confused, and it is useful to repeat the basic definitions of the two
concepts:

DEFINITION 2.1
The regression model describes a linear relationship where an indepen-
dent or factor variable is used to estimate or explain the behavior of the
dependent or response variable. In this analysis, one of the variables, x,
is “fixed,” or chosen at particular values. The other, y, is the only variable
subject to a random error.

DEFINITION 2.2
The correlation model describes the strength of a linear relationship
between two variables, where both are random variables.
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The parameter ρ of the normal correlation model can be estimated from
a sample of n pairs of observed values of two variables x and y using the
following estimator3

ρ̂ = r =
Σ(x− x)(y − y)√

Σ(x− x)2Σ(y − y)2
=

Sxy√
SxxSyy

.

The value r, called the Pearson product moment correlation coefficient, is
the sample correlation between x and y and is a random variable. The sam-
ple correlation coefficient has the same five properties as the population cor-
relation coefficient. Since we will be interested in making inferences about
the population correlation coefficient, it seems logical to use this sample
correlation.

The hypothesis that is usually of interest is

H0: ρ = 0, vs

H1: ρ �= 0.

The appropriate test statistic is

t(n− 2) = r

√
n− 2√
1− r2

,

where t(n− 2) is the t distribution with n− 2 degrees of freedom.
To construct a confidence interval on ρ is not so simple. The problem is

that the sampling distribution of r is very complex for nonzero values of ρ
and therefore does not lend itself to standard confidence interval construction
techniques. Instead, this task is performed by an approximate procedure. The
Fisher z transformation states that the random variable

z′ = ½ loge

[
1 + r

1− r

]
is an approximately normally distributed variable with

Mean = ½ loge

[
1 + ρ

1− ρ

]
, and

Variance =
1

n− 3
.

The use of this transformation for hypothesis testing is quite straight-
forward: the computed z′ statistic is compared to percentage points of the
normal distribution. A confidence interval is obtained by first computing the
interval for z′

z′ ± zα/2

√
1

n− 3
.

3These estimators are obtained by using maximum likelihood methods (discussed in Appendix C).
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Note that this formula provides a confidence interval in terms of z′, which is
not a function of ρ, and must be converted to an interval for ρ. This conversion
requires the solution of a nonlinear equation and is therefore more efficiently
performed with the aid of a table. An example of such a table can be found in
Kutner et al. (2004).

EXAMPLE 2.2 A study is being performed to examine the correlation between scores on a
traditional aptitude test and scores on a final exam given in a statistics course.
A random sample of 100 students is given the aptitude test and, upon com-
pleting the statistics course, given a final exam. The data resulted in a sample
correlation coefficient value of 0.65. We first test to see if the correlation coef-
ficient is significant. If so, we will then construct a 95% confidence interval
on ρ.

The hypotheses of interest are

H0: ρ = 0, vs

H1: ρ �= 0.

The test statistic is

t =
(0.65)

√
98√

1− (0.65)2
= 20.04.

The p-value for this statistic is less than 0.0001, indicating that the correlation
is significantly different from zero.

For the confidence interval, substituting 0.65 for r in the formula for z′ gives
the value 0.775. The variance of z′ is given by 1/97 = 0.0103; the standard devi-
ation is 0.101. Since we want a 95% confidence interval, zα/2 = 1.96. Substitut-
ing into the formula for the confidence interval on z′ gives us 0.576 to 0.973.
Using the table in Kutner et al. (2004), we obtain the corresponding values
of ρ, which are 0.52 and 0.75. Thus, we are 0.95 confident that the true correla-
tion between the scores on the aptitude test and the final exam is between
0.52 and 0.75.

Although statistical inferences on the correlation coefficient are strictly valid
only when the correlation model fits (that is, when the two variables have
the bivariate normal distribution), the concept of correlation also has appli-
cation in the traditional regression context. Since the correlation coefficient
measures the strength of the linear relationship between the two variables,
it follows that the correlation coefficient between the two variables in a
regression equation should be related to the “goodness of fit” of the linear
regression equation to the sample data points. In fact, this is true. The sam-
ple correlation coefficient is often used as an estimate of the “goodness of
fit” of the regression model. More often, however, the square of the corre-
lation coefficient, called the coefficient of determination, is used for this
effort.
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It is not difficult to show that

r2 = SSR/TSS,

where SSR is the sum of squares due to regression, and TSS is the cor-
rected total sum of squares in a simple regression analysis. The coefficient
of determination, or “r-square,” is a descriptive measure of the relative
strength of the corresponding regression. In fact, as can be seen from the
foregoing relationship, r2 is the proportional reduction of total variation
associated with the regression of y on x and is therefore widely used to
describe the effectiveness of a linear regression model. This is the statis-
tic labeled R-SQUARE in the computer output (Table 2.3). It can also be
shown that

F =
MSR

MSE
=

(n− 2)r2

1− r2
,

where F is the computed F statistic from the test for the hypothesis that
β1 = 0. This relationship shows that large values of the correlation coefficient
generate large values of the F statistic, both of which imply a strong linear
relationship. This relationship also shows that the test for a zero correlation
is identical to the test for no regression, that is, the hypothesis test of β1 = 0.
{Remember that [t(ν)]2 = F (1, ν).}

We illustrate the use of r2 using the data in Example 2.1. The correlation coeffi-
cient is computed using the quantities available from the regression
analysis

r=
Sxy√
SxxSyy

=
446.17√

(64.5121)(3744.36)

=
446.17

491.484
= 0.908.

Equivalently, from Table 2.3, the ratio of SSR to TSS is 0.8241, the square
root is 0.908, which is the same result. Furthermore, r2 = 0.8241, as indi-
cated by R-SQUARE in Table 2.3, which means that approximately 82% of
the variation in tree volumes can be attributed to the linear relationship of
volume to DBH.

2.6 Regression through the Origin

In some applications it is logical to assume that the regression line goes through
the origin, that is, μ̂y|x = 0 when x = 0. For example, in Example 2.1, it can
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be argued that when DBH = 0, there is no tree and therefore the volume must
be zero. If this is the case, the model becomes

y = β1x+ ε,

where y is the response variable, β1 is the slope, and ε is a random variable
with mean zero and variance σ2. However, extreme caution should be used
when forcing the regression line through the origin, especially when the sam-
ple observations do not include values near x = 0, as is the case in Exam-
ple 2.1. In many cases, the relationship between y and x is vastly different
around the origin from that in the range of the observed data. This is illus-
trated in Example 2.1 Revisited and in Example 2.3.

Regression through the Origin Using the Sampling Distribution
The least squares principle is used to obtain the estimator for the coefficient

β̂1 =
Σxy
Σx2 .

The resulting estimate β̂1 has a sampling distribution with mean β1 and
variance

Variance (β̂1) =
σ2

Σx2 .

The error sum of squares and the corresponding mean square can be calcu-
lated directly4:

MSE =
Σ(y − μ̂y|x)2

n− 1
.

Notice that the degrees of freedom are (n − 1) because the model contains
only one parameter to be estimated. This mean square can be used for the
t test of the hypothesis H0:β1 = 0

t =
β̂1√
MSE

Σx2

,

which is compared to the t distribution with (n− 1) degrees of freedom.

EXAMPLE 2.1 REVISITED Regression through the Origin We will use the data from
Example 2.1 and assume that the regression line goes through the origin. The
preliminary calculations have already been presented and provide

β̂1 =
Σxy
Σx2

=
19659.1

4889.06
= 4.02104.

4The computational form is presented in the next section.
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In other words, our estimated regression equation is

Estimated volume = 4.02104(DBH).

Using this equation, we compute the individual values of μ̂y|x and the residuals
(y−μ̂y|x) (computations not shown). These are used to compute the error sum
of squares and the error mean square, which is our estimate of σ2:

s2y|x = MSE =
Σ(y − μ̂x|y)2

n− 1
=

1206.51

19
= 63.500.

The variance of the sampling distribution of β̂1 is σ2/Σx2. Using the estimated
variance, we compute the estimated variance of β̂1

Variance β̂1 =
MSE

Σx2 =
63.500

4889.06
= 0.01299.

Finally, the t statistic for testing the hypothesis β1 = 0 is

t =
β̂1√
MSE

Σx2

=
4.02104

0.11397
= 35.283.

The hypothesis that there is no regression is easily rejected.

Regression through the Origin Using Linear Models
The least squares estimator is the same we have just obtained. The restricted
model for H0:β1 = 0 is

y = ε.

In other words, the restricted model specifies μy|x = 0; hence, the restricted,
or total, sum of squares is Σy2, which has n degrees of freedom since its for-
mula does not require any sample estimates.

For this model, the shortcut formula for the hypothesis sum of squares is

SShypothesis =
[Σxy]2

Σx2 = β̂1Σxy,

and the unrestricted model error sum of squares is obtained by subtraction
from the restricted model error sum of squares, Σy2.

We now compute the required sums of squares

SSErestricted = TSS = Σy2 = 80256.52

SShypothesis = β̂1Σxy = 4.02104 · 19659.1 = 79050.03

SSEunrestricted = SSErestricted − SShypothesis = 1206.49.

The unrestricted error sum of squares has 19 degrees of freedom; hence, the
mean square is 63.500, which is the same we obtained directly. The F ratio for
the test of β1 = 0 is

F =
79050.03

63.500
= 1244.89,
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which leads to rejection. Again, note that the F value is the square of the
t statistic obtained previously.

It is of interest to compare the results of the models estimated with and
without the intercept as shown by abbreviated computer outputs in Table 2.4.
We can immediately see that the coefficient for DBH is smaller when there is
no intercept and the error mean square is considerably larger, implying that
the no-intercept model provides a poorer fit.

Table 2.4

Regression with and
without Intercept

REGRESSION WITH INTERCEPT

Dependent Variable: VOL

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3085.78875 3085.78875 84.34 <.0001
Error 18 658.56971 36.58721
Corrected Total 19 3744.35846

Root MSE 6.04874 R-Square 0.8241
Dependent Mean 61.85150 Adj R-Sq 0.8143
Coeff Var 9.77945

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −45.56625 11.77449 −3.87 0.0011
DBH 1 6.91612 0.75309 9.18 <.0001

Dependent Variable: VOL

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 79050 79050 1244.87 <.0001
Error 19 1206.50837 63.50044
Uncorrected Total 20 80257

Root MSE 7.96872 R-Square 0.9850
Dependent Mean 61.85150 Adj R-Sq 0.9842
Coeff Var 12.88363

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

DBH 1 4.02104 0.11397 35.28 <.0001

The reason for this can be seen by a plot of the actual values and both
regression lines as shown in Figure 2.7. It is apparent that the no-intercept
regression line (dotted line) does not fit the data as well as the with-intercept
line (solid line).
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Figure 2.7

Regressions with
and without
Intercept

However, the statistics for the significance tests suggest that the
no-intercept regression is “stronger,” since the F (or t) statistics as well as
R-square are larger in value than they are for the with-intercept regression. We
can readily understand the reason for these apparently contradictory results
by reviewing the unrestricted and restricted models for the two tests.

In the with-intercept regression, the test compares the error sum of squares
for the model

μ̂y|x = β̂0 + β̂1x,

which is 658.6, with the error sum of squares for the line

μ̂ = y,

which is 3744.4. On the other hand, the test for the no-intercept regression
compares the error sum of squares for the line

μ̂y|x = β̂1x,

which is 1206.5, to that for the line represented by

μ̂ = 0,

which is 80257. Now the error sum of squares for the intercept model is indeed
the smaller of the two, but the restricted or total sum of squares is very much
larger for the no-intercept model; hence, the larger value of the test statistic
and R-square.

In fact, completely unreasonable results can be obtained if the no-intercept
model is inappropriate. This is illustrated with an example.

EXAMPLE 2.3 Table 2.5 shows a small data set for which the estimated model with
intercept is

μ̂y|x = 9.3167− 0.830x,
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with an error sum of squares of 0.606 and a t statistic for the test of no regres-
sion of −21.851.

Table 2.5

Data for which a
No-Intercept Regression
Model Is Inappropriate

OBS x y

1 1 8.5
2 2 7.8
3 3 6.9
4 4 5.5
5 5 5.1
6 6 4.8
7 7 3.3
8 8 2.9
9 9 1.7

The estimated regression line for the no-intercept regression is

μ̂y|x = 0.6411x,

with an error sum of squares of 165.07 and a t statistic of 2.382 (p = 0.0444).
Not only does the coefficient have the wrong sign, but in spite of an apparently
significant regression, the error sum of squares is larger than the total sum of
squares used for the model with intercept.

The reason for these unusual results is shown by the plot of actual data and
the no-intercept model predictions shown in Figure 2.8. The positively sloping
line does indeed fit better than the line

μ̂y|x = 0,

which is the line with β1 = 0 in the no-intercept model (which explains why
the t test rejected that hypothesis). However, it does fit as well as the line

μ̂y|x = y,

which is the line with β1 = 0 in the regression model with intercept.

Figure 2.8

Plot of
Inappropriate
No-Intercept Model
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This is an extreme example that is unlikely to be proposed by anyone famil-
iar with the process that gave rise to the data. However, it does illustrate the
problems that occur when the regression is forced through the intercept. For
this reason, we strongly recommend that the results of any no-intercept regres-
sion be examined very critically and that the diagnostic methods discussed in
the next chapter be done any time a no-intercept model is applied.5

When using the no-intercept model, care must be used in interpreting the
residuals because they do not sum to zero. Another important caution when
using regression through the origin is, as Example 2.3 illustrated, the fact that
the sums of squares due to error may be larger than the total sums of squares
(as typically defined). This means that the coefficient of determination,
R-SQUARE, may turn out to be negative!

Finally, it should be stated that the regression through the origin model is
not often used in practical applications and should be used only when it is
appropriate. Even though many processes have zero-valued response when
the value of the independent variable is zero, that does not necessarily mean
that the regression line that best fits the data will go through the origin. There-
fore, it is usually recommended that the intercept term be included in the
analysis, if only as a “placeholder.”

2.7 Assumptions on the Simple Linear Regression Model

In Section 2.2 we briefly listed the assumptions underlying the regression
model. Obviously, the validity of the results of a regression analysis requires
that these assumptions be satisfied. We can summarize these assumptions as
follows:

1. The model adequately describes the behavior of the data.
2. The random error, ε, is an independently and normally distributed random

variable, with mean zero and variance σ2.

These assumptions may look familiar,6 as they should, since virtually all
statistical methods presented in statistical methodology courses are based on
linear models. Therefore, in a regression analysis it is advisable to try to deter-
mine if violations of assumptions may have occurred.

In this section we discuss the following:

How these violations may occur
How existence of these violations may affect the results
Some tools for detecting violations

5Another way of evaluating a no-intercept regression is to perform the restricted regression that
is illustrated in Freund and Littell, 2000, The SAS System for Regression, 3rd ed., Section 2.4.
6Not discussed here is the assumption that x is fixed and measured without error. Although this is
an important assumption, it is not very frequently violated to the extent as to greatly influence the
results of the analysis. Also, diagnostic and remedial methods for violations of this assumption
are beyond the scope of this book (cf. Seber and Lee, 2003).
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If the model is not correctly specified, the analysis is said to be subject to
specification error. This error most often occurs when the model should con-
tain additional parameters and/or additional independent variables. It can be
shown that a specification error causes coefficient and variance estimates to
be biased, and since the bias is a function of the unknown additional para-
meters, the magnitude of the bias is not known. A common example of a spec-
ification error is for the model to describe a straight line when a curved line
should be used.

Assumption 2 just listed actually contains three conditions that may
occur independently or in any combination. These three are (a) independence
of the random errors, (b) normality of the random errors, and (c) constant vari-
ance of the random errors. The assumption of independence is often related
to the specification of the model in the sense that if an important independent
variable is omitted, the responses, and hence the errors, may be related to that
variable. This relationship will often result in correlated error terms. An exam-
ple is when responses are measured over time and changes in the response are
a result of time. A remedial measure for this violation is to use the variable time
in a model that allows for correlated errors.

The assumption of equal variances is frequently violated in practice, and
unequal variances often come in conjunction with nonnormality. When the
error variance varies in a systematic fashion, we can use the method of weigh-
ted least squares discussed in Chapter 4 to obtain the estimators of the regres-
sion parameters. Frequently, nonnormality and unequal variances take the form
of increasing skewness and increasing variability as the mean of the response
variable increases (or decreases). In other words, the size of the variance and/or
the amount of skewness will be related to the mean of the response variable.
Fortunately, it is often the case that one transformation on the response vari-
able will correct both violations. Transformations are discussed in detail in
Chapters 4 and 8.

Outliers or unusual observations may be considered a special case of
unequal variances. The existence of outliers can cause biased estimates of
coefficients as well as incorrect estimates of the variance. It is, however, very
important to emphasize that simply discarding observations that appear to
be outliers is not good statistical practice. Since any of these violations of
assumptions may cast doubt on estimates and inferences, it is important to
see if such violations may have occurred (see Chapter 4).

A popular tool for detecting violation of assumptions is an analysis of the
residuals. Recall that the residuals are the differences between the observed
y-values and the estimated conditional means, μ̂y|x, that is, (y − μ̂y|x). An
important part of an analysis of residuals is a residual plot, which is a
scatter plot featuring the individual residual values (y − μ̂y|x) on the verti-
cal axis and either the predicted values (μ̂y|x) or x values on the horizontal
axis. Occasionally, residuals may also be plotted against possible candidates
for additional independent variables.

Aregressionmodel thathasnoviolationsofassumptionswillhavearesidual
plot that appears as a roughly horizontal band around zero. This band will have
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about the same width for all values on the horizontal axis. Specification errors
will show up as a distinct, recognizable pattern other than the horizontal band.
Violations of the common variance assumption may show up as a fanshaped
pattern. The most frequently occurring pattern is for the point of the fan facing
left; that is, the larger residuals occur with the larger values of μ̂y|x. Outliers may
show up as points that lie far beyond the scatter of the remaining residuals. The
key word here is “may,” because violations are not always easily detected by
residual plots and may have occurred even when plots look quite well behaved.

Additional analyses of residuals consist of using descriptive methods, espe-
cially the exploratory data analysis techniques such as stem and leaf or box
plots. Virtually all computer programs for regression provide for the relatively
easy implementation of such analyses.

Residual Plots for Example 2.1 Figure 2.9 contains two residual plots.
The left plot is the plot of the residuals from the model using the intercept,
while the right one contains the residual plot using the no-intercept model. In
both cases, the residuals are plotted against the independent variable (DBH).

Figure 2.9 Residual Plots
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The residuals from the model with the intercept appear to be randomly
scattered in both directions, suggesting that there are no serious violations of
assumptions. The residuals from the no-intercept model show a definite trend,
suggesting a model deficiency and reinforcing the inadequacy of the model we
have already noted.

The examination of residuals using residual plots is a very subjective
method. We will see later that, in spite of the residual plot looking as if the
model is perfectly adequate, simply using DBH is not good enough. That is,
adding the other variables shown in Table 2.1 does indeed provide a better
model, as we will see in Chapter 3. In other words, the apparent lack of recog-
nizable patterns in the residual plot is no guarantee that there are no violations
of assumptions.

The detection of violations of assumptions can be a very technical exercise,
and although it usually becomes more difficult as the complexity of the model
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increases, the general strategy is the same. For this reason, the complete pre-
sentation of this topic is postponed until Chapter 4, following the coverage of
multiple regression.

2.8 Uses and Misuses of Regression

As we have noted, the validity of the results of the statistical analysis requires
fulfillment of certain assumptions about the data. However, even if all assump-
tions are fulfilled, there are some limitations of regression analysis:

• The fact that a regression relationship has been found to exist does not, by
itself, imply that x causes y. For example, it has been clearly demonstrated
that smokers have more lung cancer (and other diseases) than nonsmok-
ers, but this relationship does not by itself prove that smoking causes lung
cancer. Basically, to prove cause and effect, it must also be demonstrated
that no other factor could cause that result.

• It is not advisable to use an estimated regression relationship for extra-
polation. That is, the estimated model should not be used to make
inferences on values of the dependent variable beyond the range of ob-
served x-values. Such extrapolation is dangerous, because although the
model may fit the data quite well, there is no evidence that the model is
appropriate outside the range of the existing data.

2.9 Inverse Predictions

At times, it is desirable to use a regression of y on x to make predictions of the
value of x that resulted in a new observation of y. This procedure is known
as inverse prediction or the calibration problem. This method has applica-
tion when inexpensive, quick, or approximate measurements (y) are related
to precise, often expensive, or time-consuming measurements (x). A sample
of n observations can be used to determine the estimated regression equation

μ̂y|x = β̂0 + β̂1x,

and the equation solved for x:

x =
μ̂y|x − β̂0

β̂1

.

Suppose that we had a new observation, ŷ
y|x(new)’ and we want to estimate

the value of x that gave rise to this new observation, say x̂(new). We then get
an estimate for this value as

x̂(new) =
ŷy|x(new) − β̂0

β̂1

.

A 95% confidence interval on x̂(new) is given by

x̂(new) ± tα/2s(x̂new),
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where

s2(x̂new) =
MSE

β̂2
1

[
1 +

1

n
+

(x̂(new) − x)2

Σ(xi − x)2

]
,

and tα/2 has n− 2 degrees of freedom.

EXAMPLE 2.4 Pricesofhomesforsaleareusuallybasedonseveralcharacteristicsofthehome,
including theamountof livingspace.Acertainrealestateagentwantedtoexam-
ine the relationship between the asking price of homes and the
living space. To establish an estimate of this relationship, a sample of 15 homes
listed for sale in the agent’s home town was obtained. The asking price (y) was
recorded in thousands of dollars, and the living space (x) was determined in
thousands of square feet. The data are given in Table 2.6. Since the determi-
nation of the actual living space is quite tedious, the agent wanted to be able
to estimate the living space based on the asking price for the next house to be
listed for sale.

Table 2.6

Sample of Houses for
Sale

Home Space Price Home Space Price

1 0.951 30.00 9 2.260 119.50
2 0.676 46.50 10 2.370 147.60
3 1.456 48.60 11 2.921 149.99
4 1.216 69.00 12 2.553 179.90
5 1.524 82.90 13 3.253 285.00
6 1.624 89.90 14 3.055 349.90
7 1.532 93.50 15 3.472 395.00
8 1.636 106.00

The scatter plot, shown in Figure 2.10, indicates a linear regression line will fit
the data well.

Figure 2.10

Scatter Plot for
Example 2.4
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The least squares equation for predicting price on living space is

μ̂y|x = −87.837 + 115.113x.

Using this equation, the agent wanted to estimate the living space for a house
being offered for sale at $180,000 with 95% confidence.

Using the data in Table 2.6, we computed the following values

1. MSE = 2581.969
2. Σ(xi − x)2 = 10.6752
3. x = 2.0333

Using x̂(new) = [180− (−87.837)]/115.113 = 2.3267, we can estimate the living
space for the $180,000 house as about 2330 square feet. We get the following
value

s2(x̂new) =
2581.969

(115.113)2

[
1 +

1

15
+

(2.3267− 2.03330)2

10.6752

]
= 0.2094

From Table A.2 we get t.025(13) = 2.160. Therefore, the desired 95% confi-
dence interval will be

2.3267± 2.160
√
0.2094 = 2.3267± 0.989, or

1.3381 to 3.3153.

This interval may be too wide to be very meaningful to the real estate agent.
This is to be expected given that only 15 houses were sampled and given the
large MSE from the regression analysis.

2.10 Summary

This chapter provides a detailed description of the simple linear regression
model,

y = β0 + β1x+ ε,

which is used as a basis for establishing the nature of a relationship between
the values of an independent or factor variable x and the values of a depen-
dent or response variable y. The chapter begins with the presentation and
interpretation of the model and continues with the estimation of the model
parameters, based on a sample of n pairs of observations. We next discuss
statistical inferences on these parameters and the estimated or predicted val-
ues of the response variable.

This is followed by the related concept of correlation, which establishes
the strength of the relationship between two variables. The correlation model
is based on the linear correlation coefficient. Next is a short introduction to
the use of restricted models, specifically the presentation of what happens
when the model does not include the intercept. Final sections cover possible
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violations of assumptions and misuses of regression methods and inverse
prediction.

2.11 CHAPTER EXERCISES

1. For those who want to exercise their calculators, use the following small
data set for practice.

x 1 2 3 4 5 6 7 8
y 2 5 5 8 9 7 9 10

(a) Calculate the least squares estimates of the coefficients of the regres-
sion line that predicts y from x.

(b) Test the hypothesis that β1 = 0. Construct a 95% confidence interval on
β1.

(c) Calculate R2. Explain it.
(d) Construct a 95% prediction interval on the value of y when x = 5.
(e) Calculate the residuals and plot them against x. Explain the plot.
(f) Completely explain the relation between x and y.

2. A sample of 22 bass were caught by a fisheries scientist who measured
length (TL) in mm and weight (WT) in grams. The data are shown in
Table 2.7 and are available as File REG02P02 on the data diskette.

Table 2.7

Bass Data for Exercise 2

TL WT

387 720
366 680
421 1060
329 480
293 330
273 270
268 220
294 380
198 108
185 89
169 68
102 28
376 764
375 864
374 718
349 648
412 1110
268 244
243 180
191 84
204 108
183 72

(a) Use a regression model to see how well weight can be estimated by
length.

(b) Use the residuals to check for violations of assumptions.
(c) Calculate a 95% confidence interval on the mean weight of a 300-mm

bass.

3. Table 2.8 gives data on gas mileage (MPG) and size of car (WT in pounds)
for a selection of 32 different cars. The data are also available as file
REG02P03 on the data diskette.
(a) Calculate the linear regression equation that relates MPG (y) to

WT (x).
(b) Use the inverse prediction method of Section 2.9 to predict the weight

of a car that gets 25 mpg with 95% confidence.

4. The data in Table 2.9 show the grades for 15 students on the midterm
examination and the final average in a statistics course.

Table 2.9

Data for Exercise 4

Student Midterm Final Average

1 82 76
2 73 83
3 95 89
4 66 76

(Continued)
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Table 2.9

(Continued)

Student Midterm Final Average

5 84 79
6 89 73
7 51 62
8 82 89
9 75 77

10 90 85
11 60 48
12 81 69
13 34 51
14 49 25
15 87 74

(a) Do the regression analysis to predict the final average based on the
midterm examination score.

(b) Estimate, using a 90% confidence interval, the value of a midterm score
for a student whose final average will be 70.

(c) Fit a regression through the origin and compare it with part (a). Which
model seems best?

Table 2.8

Mileage Data for
Exercise 3

WT MPG

2620 21.0
2875 21.0
2320 22.8
3215 21.4
3440 18.7
3460 18.1
3570 14.3
3190 24.4
3150 22.8
3440 19.2
3440 17.8
4070 16.4
3730 17.3
3780 15.2
5250 10.4
5424 10.4
5345 14.7
2200 32.4
1615 30.4
1835 33.9
2465 21.5
3520 15.5
3435 15.2
3840 13.3
3845 19.2
1935 27.3
2140 26.0
1513 30.4
3170 15.8
2770 19.7
3570 15.0
2780 21.4

5. The 1995 Statistical Abstract of the United States lists the breakdown of
the Consumer Price Index by major groups for the years 1960 to 1994. The
Consumer Price Index reflects the buying patterns of all urban consumers.
Table 2.10 and file REG02P05 on the CD list the major groups energy and
transportation.

Table 2.10

Data for Exercise 5

Year Energy Transportation

60 22.4 29.8
61 22.5 30.1
62 22.6 30.8
63 22.6 30.9
64 22.5 31.4
65 22.9 31.9
66 23.3 32.3
67 23.8 33.3
68 24.2 34.3
69 24.8 35.7
70 25.5 37.5
71 26.5 39.5
72 27.2 39.9
73 29.4 41.2
74 38.1 45.8
75 42.1 50.1
76 45.1 55.1
77 49.4 59.0
78 52.5 61.7
79 65.7 70.5
80 86.0 83.1
81 97.7 93.2
82 99.2 97.0
83 99.9 99.3

(Continued)
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Table 2.10

(Continued)

Year Energy Transportation

84 100.9 103.7
85 101.6 106.4
86 88.2 102.3
87 88.6 105.4
88 89.3 108.7
89 94.3 114.1
90 102.1 120.5
91 102.5 123.8
92 103.0 126.5
93 104.2 130.4
94 104.6 134.3

(a) Perform a correlation analysis to determine the relationship between
transportation and energy. Calculate the confidence interval on the cor-
relation coefficient. Explain the results.

(b) Perform separate regression analyses using year as the independent
variable and transportation and energy, respectively, as dependent
variables. Use residual plots to check assumptions. Explain the results.

6. A political scientist suspects that there is a relationship between the num-
ber of promises a political candidate makes and the number of promises
that are fulfilled once the candidate is elected. Table 2.11 lists the “track
record” of 10 politicians.

Table 2.11

Data for Exercise 6

Politician Promises Made Promises Kept

1 21 7
2 40 5
3 31 6
4 62 1
5 28 5
6 50 3
7 55 2
8 43 6
9 61 3

10 30 5

(a) Calculate the correlation coefficient between promises made and kept.
(b) Test the hypothesis that ρ = 0.
(c) Interpret the results.

7. One way of evaluating a testing instrument is to do what is called an item
analysis of the exam. One part of the item analysis is to examine individ-
ual questions relative to how they affect the score made on the test. This is
done by correlating the score with “right” or “wrong” on each question. The
resulting correlation coefficient is known as a point biserial correlation coef-
ficient. It is calculated by correlating the score on the test with a variable that
has a value 0 for “wrong” and 1 for “right.” The higher the correlation, the
more the question contributes toward the score. Use the equation given in
Section 2.5 to calculate the point biserial correlation coefficient between the
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score and the variable x (which has 1 for “right” and 0 for “wrong”) for the
data on 30 students given in Table 2.12. Test it for significance and explain
the results. (This is for one question only; in evaluating a testing instrument,
this would be done for all questions.)

Table 2.12

Data for Exercise 7

Score x Score x Score x

75 1 60 0 79 1
60 0 51 0 69 1
89 1 77 1 70 0
90 1 70 1 68 1
94 1 76 1 63 0
55 0 65 1 66 0
22 0 32 0 45 1
25 0 43 0 69 1
54 0 64 1 72 1
65 1 63 0 77 1

8. In Exercise 6 we attempted to quantify the strength of the relationship
between promises made and promises kept by politicians.
(a) Use the data in Table 2.11 to construct a regression equation that pre-

dicts the number of promises kept based on the number made.
(b) Do the inferences on the coefficients, including a 95% confident interval

on β1. Explain the results. Do they agree with the results of
Exercise 6?

(c) Predict the number of promises kept for a politician making 45
promises. Use 0.95.

9. It has been argued that many cases of infant mortality are caused by teenage
mothers who, for various reasons, do not receive proper prenatal care.
Table 2.13 lists data from the Statistical Abstract of the United States

(1995) on the teenage birth rate per 1000 (TEEN) and the infant
mortality rate per 1000 live births (MORT) for the 48 contiguous states.

Table 2.13

Data for Exercise 9

STATE TEEN MORT

AL 17.4 13.3
AR 19.0 10.3
AZ 13.8 9.4
CA 10.9 8.9
CO 10.2 8.6
CT 8.8 9.1
DE 13.2 11.5
FL 13.8 11.0
GA 17.0 12.5
IA 9.2 8.5
ID 10.8 11.3
IL 12.5 12.1
IN 14.0 11.3
KS 11.5 8.9
KY 17.4 9.8

(Continued)
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Table 2.13

(Continued)

STATE TEEN MORT

LA 16.8 11.9
MA 8.3 8.5
MD 11.7 11.7
ME 11.6 8.8
MI 12.3 11.4
MN 7.3 9.2
MO 13.4 10.7
MS 20.5 12.4
MT 10.1 9.6
NB 8.9 10.1
NC 15.9 11.5
ND 8.0 8.4
NH 7.7 9.1
NJ 9.4 9.8
NM 15.3 9.5
NV 11.9 9.1
NY 9.7 10.7
OH 13.3 10.6
OK 15.6 10.4
OR 10.9 9.4
PA 11.3 10.2
RI 10.3 9.4
SC 16.6 13.2
SD 9.7 13.3
TN 17.0 11.0
TX 15.2 9.5
UT 9.3 8.6
VA 12.0 11.1
VT 9.2 10.0
WA 10.4 9.8
WI 9.9 9.2
WV 17.1 10.2
WY 10.7 10.8

(a) Perform a regression to estimate MORT using TEEN as the indepen-
dent variable. Do the results confirm the stated hypothesis?

(b) Is the regression model significant at the 0.05 level?
(c) Construct a 95% confidence interval on β1. Explain the result.
(d) Use residual plots to verify all assumptions on the model.

10. An engineer is interested in calibrating a pressure gauge using a set of stan-
dard pressure tanks. The gauge is used to measure pressure in five tanks
with known pressure ranging from 50 psi to 250 psi. Each tank is measured
three times using the gauge. The results are given in Table 2.14.

Table 2.14

Calibration Data for
Exercise 10

Pressure in Tank 50 100 150 200 250

Gauge readings 48 100 154 200 247
44 100 154 201 245
46 106 154 205 146

(a) Use the inverse regression procedures of Section 2.9 to determine a
calibration equation for the new gauge.

(b) Find a 95% confidence interval on the true pressure if the gauge reads 175.



Chapter 3

Multiple Linear
Regression

3.1 Introduction

Multiple linear regression is in some ways a relatively straightforward
extension of simple linear regression that allows for more than one indepen-
dent variable. The objective of multiple regression is the same as that of sim-
ple regression; that is, we want to use the relationship between a response
(dependent) variable and factor (independent) variables to predict or explain
the behavior of the response variable. However, the computations are consid-
erably more complicated and must be performed by computers, and the infer-
ential procedures may be more difficult to interpret, primarily because there
may be relationships among the independent variables. This chapter will illus-
trate the similarities and the differences between simple and multiple linear
regression, as well as develop the methodology necessary to use the multiple
regression model.

Some examples of analyses using the multiple regression model include
the following:

• Estimating weight gain of children using various levels of a dietary supple-
ment, exercise, and behavior modification

• Predicting scholastic success (GPA) of college freshmen based on scores
on an aptitude test, high school grades, and IQ level

• Estimating changes in sales associated with increased expenditures on
advertising, increased number of sales personnel, increased number of man-
agement personnel, and various types of sales strategies

• Predicting daily fuel consumption for home heating based on daily temper-
ature, daily humidity, daily wind velocity, and previous day’s temperature

73
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• Estimating changes in interest rates associated with the amount of deficit
spending, value of the GNP, value of the CPI, and inflation rate

3.2 The Multiple Linear Regression Model

The multiple linear regression model is written as a straightforward extension
of the simple linear model given in Section 2.2. The model is specified as

y = β0 + β1x1 + β2x2 + · · · + βmxm + ε,

where

y is the dependent variable
xj , j = 1, 2, . . . , m, represent m different independent variables
β0 is the intercept (value when all the independent variables are 0)
βj , j = 1, 2, . . . , m, represent the corresponding m regression coefficients
ε is the random error, usually assumed to be normally distributed with

mean zero and variance σ2

Although the model formulation appears to be a simple generalization of
the model with one independent variable, the inclusion of several independent
variables creates a new concept in the interpretation of the regression coeffi-
cients. For example, if multiple regression is to be used in estimating weight
gain of children, the effect of each independent variable—dietary supplement,
exercise, and behavior modification—depends on what is occurring with the
other independent variables. In multiple regression we are interested in what
happenswheneachvariableisvariedoneatatime,whilenotchangingthevalues
of any others. This is in contrast to performing several simple linear regressions,
using each of these variables in turn, but where each regression ignores what
may be occurring with the other variables. Therefore, in multiple regression, the
coefficient attached to each independent variable should measure the average
change in the response variable associated with changes in that independent
variable,whileallother independentvariablesremainfixed.This is thestandard
interpretation for a regression coefficient in a multiple regression model.

DEFINITION 3.1
Formally, a coefficient, βj , in a multiple regression model is defined as
a partial regression coefficient, whose interpretation is the change
in the mean response, μy|x, associated with a unit change in xj , holding

constant all other variables.
In contrast, if m separate simple regressions are performed, the

regression coefficient for the simple linear regression involving, say, xj ,
is called the total regression coefficient and is interpreted as the
change in the mean response, μy|x, associated with a unit change in xj ,
ignoring the effect of any other variables.
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For example, if we use a multiple regression model to relate weight gain of
children to amounts of a dietary supplement, exercise, and behavior modifi-
cation, the coefficients will be partial regression coefficients. This means that
the partial coefficient for the dietary supplement estimates the weight gain
due to a one-unit increase in the supplement, holding constant the other two
variables. This would be equivalent to performing regression for a population
for which the other two variables have the same values. But, if we perform
separate simple regressions using these variables, the coefficient for dietary
supplement estimates the corresponding effect, ignoring the possible effects
of the other variables.

In most regression analyses, the partial and total regression coefficients
will have different values, and, as we will see, obtaining partial coefficients is
sometimes hampered by the lack of relevant data. For example, in the illustra-
tion where we want to predict scholastic success of college freshmen, most
high school students who have high IQs and high scores on an aptitude test
tend also to have high grades. The resulting lack of such students with low
grades makes it difficult to estimate the partial coefficient due to grade.1

But, if we perform a regression using only students’ grades, say, we imply
that the other variables do not affect scholastic success. Therefore, it is not
appropriate to use simple linear regressions when there exist other variables
that should be included in a model. We will, in fact, see that the two types of
coefficients may provide vastly different estimates and inferences.

EXAMPLE 3.1 To illustrate the differences between total and partial coefficients, we return
to the forestry problem used for Example 2.1, as shown in Table 2.1. We will
use three easily measured tree characteristics, DBH, D16, and HT, to estimate
tree volume, VOL.

We first perform the three simple linear regressions for which the estimated
total regression coefficients are shown in the first portion of Table 3.1. We
then perform the multiple regression using all three independent variables,2

resulting in the partial regression coefficients.

Table 3.1

Total and Partial
Regression Coefficients

VARIABLE

DBH HT D16

Total Coefficients

Coefficient 6.916 1.744 8.288

Partial Coefficients

Coefficient 1.626 0.694 5.671

1This is extensively discussed in Chapter 5.
2Procedures for obtaining these estimates will be presented in the next section.
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It is readily seen that the total coefficients are not the same as the partial
coefficients. For example, the total coefficient for DBH is 6.916, whereas the
partial coefficient is 1.626. The difference becomes clearer if we again review
the interpretation of these coefficients:

The total coefficient says that the estimated mean volume increases
6.916 units for each unit increase in DBH, ignoring the possible effect of
other independent variables.

The partial coefficient says that in a subpopulation containing trees
of a specified value of HT and a specified value of D16, the estimated
volume will increase 1.626 units for each unit increase in DBH.

One feature of the independent variables in this example is that they vary
together. That is, as DBH gets larger, so does D16, and to some lesser degree
so does HT. In statistical terms, pairwise correlations among these variables
are strong and positive. This means, for example, that the total coefficient for
DBH also indirectly measures the effects of D16 and HT, whereas the partial
coefficient measures only the effect of DBH for a population of trees having
constant values of HT and D16. In other words the total and partial coefficients
are really quite different; each is useful in its own way, and we must therefore
be careful when interpreting them.

From this discussion we may infer that if the independent variables do
not vary together; that is, if they are uncorrelated, the partial and total coeffi-
cient will be the same. This is indeed true, but such a situation rarely occurs
in practice. However, it is true that when the relationships among indepen-
dent variables are weak, then differences between partial and total regression
coefficients are small and their interpretation becomes easier. The existence of
correlations among independent variables is called multicollinearity, which
is extensively discussed in Chapter 5.

We will return to the interpretation of the regression coefficients in
Section 3.4 after we have discussed the estimation procedures for the mul-
tiple regression model.

3.3 Estimation of Coefficients

The multiple regression model presented in Section 3.2 has the form

y = β0 + β1x1 + β2x2 + · · · + βmxm + ε,

where the terms in the model were defined in that section. To estimate the
regression coefficients, we use a set of n observed values on the (m + 1)-
tuple (x1, . . . , xm, y) and use the least squares principle to obtain the following
equation for estimating the mean of y

μ̂y|x = β̂0 + β̂1x1 + · · · + β̂mxm.
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The least squares principle specifies that the estimates, β̂i, minimize the
error sum of squares

SSE = Σ(y − β̂0 − β̂1x1 − β̂2x2 − · · · − β̂mxm)2.

For convenience we redefine the model

y = β0x0 + β1x1 + β2x2 + · · · + βmxm + ε,

where x0 is a variable that has the value 1 for all observations. Obviously, the
model is not changed by this definition, but the redefinition makes β0 look
like any other coefficient, which simplifies the computations in the estimation
procedure.3 The error sum of squares to be minimized is now written

SSE = Σ(y − β̂0x0 − β̂1x1 − β̂2x2 − · · · − β̂mxm)2.

The least squares estimates are provided by the solution to the follow-
ing set of (m + 1) linear equations in the (m + 1) unknown parameters, β0,
β1, . . . , βm (see Appendix C for details). The solutions to these normal equa-

tions provide the least squares estimates of the coefficients, which we have
already denoted by β̂0, β̂1, . . . , β̂m.

β0n + β1Σx1 + β2Σx2 + · · · + βmΣxm = Σy
β0Σx1 + β1Σx2

1 + β2Σx1x2 + · · · + βmΣx1xm = Σx1y
β0Σx2 + β1Σx2x1 + β2Σx2

2 + · · · + βmΣx2xm = Σx2y

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

β0Σxm + β1Σxmx1 + β2Σxmx2 + · · · + βmΣx2
m = Σxmy

Because of the large number of equations and variables, it is not possible to
obtain simple formulas that directly compute the estimates of the coefficients
as we did for the simple linear regression model in Chapter 2. In other words,
the system of equations must be specifically solved for each application of
this method. Although procedures are available for performing this task with
handheld or desk calculators, the solution is almost always obtained by com-
puters. We will, however, need to represent symbolically the solutions to the
set of equations. This is done with matrices and matrix notation.4

In this and the following sections, we present various formulas for statis-
tics used in making inferences in a multiple regression analysis. Because com-
puter programs automatically calculate these statistics, the reader will likely

3A model that does not include the x0 variable as defined here will fit a regression through the
origin. This is not commonly done with multiple regression models, because situations where
there exist zero values for all independent variables rarely occur. Comments made in Section 2.6
regarding the interpretations of such models apply equally to multiple regression.
4Appendix B contains a brief introduction to matrix algebra. This appendix may also serve as a
refresher for those who have had some exposure to matrices.
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never use the formulas. However, a familiarity with these formulas should help
in understanding the processes that underlie the analyses.

We now show the solution procedure using matrix notation for the general
case and numerically for Example 3.1.

Define the matrices X , Y , E, and B as follows:5

X =

⎡⎢⎢⎢⎢⎣
1 x11 x12 · · · x1m

1 x21 x22 · · · x2m

· · · · · · ·
· · · · · · ·
1 xn1 xn2 · · · xnm

⎤⎥⎥⎥⎥⎦, Y =

⎡⎢⎢⎢⎢⎣
y1
y2
·
·
yn

⎤⎥⎥⎥⎥⎦, E =

⎡⎢⎢⎢⎢⎣
ε1
ε2
·
·
εn

⎤⎥⎥⎥⎥⎦, and B =

⎡⎢⎢⎢⎢⎢⎢⎣
β0

β1
β2
·
·

βm

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where xij represents the ith observation of the jth independent variable,
i = 1, . . . , n, and j = 1, . . . , m.

Using these matrices, the model equation for all observations,

y = β0 + β1x1 + β2x2 + · · · + βmxm + ε,

can be expressed as

Y = XB + E.

For the data for Example 3.1, the matrices X and Y are

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 10.20 89.00 9.3
1 19.13 101.00 17.3
1 15.12 105.60 14.0
1 17.28 98.06 14.3
1 15.67 102.00 14.0
1 17.26 91.02 14.3
1 15.28 93.09 13.8
1 14.37 98.03 13.4
1 15.43 95.08 13.3
1 15.24 100.80 13.5
1 17.87 96.01 16.9
1 16.50 95.09 14.9
1 15.67 99.00 13.7
1 15.98 89.02 13.9
1 15.02 91.05 12.8
1 16.87 95.02 14.9
1 13.72 90.07 12.1
1 13.78 89.00 13.6
1 15.24 94.00 14.0
1 15.00 99.00 14.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

25.93
95.71
68.99
73.38
66.16
66.74
59.79
58.60
56.20
62.91
82.87
65.62
62.18
57.01
46.35
65.03
45.87
56.20
58.13
63.36

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5We use the convention that matrices are denoted by the capital letters of the elements of the
matrix. Unfortunately, the capital letters corresponding to β, ε, and μ are B, E, and M, respectively.
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Note that the first column of the matrix X is a column of ones, used as the
“variable” corresponding to the intercept. Using matrix notation, we can
express the normal equations as

(X ′X)B̂ = X ′Y ,

where B̂ is a vector of least squares estimates of B.
The solution to the matrix equation is written

B̂ = (X ′X)−1X ′Y .

Note that these expressions are valid for a multiple regression with any num-
ber of independent variables. That is, for a regression with m independent
variables, the X matrix has n rows and (m + 1) columns. Consequently, the
matrices B and X ′Y are of order {(m+1)× 1}, and X ′X and (X ′X)−1 are of
order {(m+ 1)× (m+ 1)}.

The procedure for obtaining the estimates of the parameters of a multiple
regression model is a straightforward application of matrix algebra for the
solution of a set of linear equations. To apply the procedure, first compute the
X ′X matrix

X ′X =

⎡⎢⎢⎢⎢⎣
n Σx1 Σx2 . . . Σxm

Σx1 Σx2
1 Σx1x2 . . . Σx1xm

Σx2 Σx2x1 Σx2
2 . . . Σx2xm

· · · . . . ·
Σxm Σxmx1 Σxmx2 . . . Σx2

m

⎤⎥⎥⎥⎥⎦ ,

that is, the matrix of sums of squares and cross products of all the independent
variables. Next, compute the X ′Y vector

X ′Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σy
Σx1y
Σx2y
·
·
·

Σxmy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For Example 3.1, using the output from PROC IML of the SAS System, X ′X
and X ′Y are6

(X ′X) (X ′Y )

20 310.63 1910.94 278.2 1237.03
310.63 4889.0619 29743.659 4373.225 19659.105

1910.94 29743.659 183029.34 26645.225 118970.19
278.2 4373.225 26645.225 3919.28 17617.487

6Most computer programs have options to print many of these matrices.
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Note that for this example, the first element in the first row is 20, which
is the sum of squares of the 20 ones in the first column of X corresponding
to the intercept variable, and is simply n, the number of observations. Some
of the other quantities may be verified by the reader.

The next step is to compute the inverse of X ′X . As we have indicated ear-
lier, we do not present here a procedure for this task. The inverse, obtained by
PROC IML in SAS is

(X ′X)−1

20.874129 −0.180628 −0.216209 0.1897516
−0.180628 0.109857 0.0011637 −0.117671
−0.216209 0.0011637 0.0027755 −0.004821

0.1897516 −0.117671 −0.004821 0.1508584

Again the reader may wish to manually calculate some of the elements of
the multiplication of this matrix with X ′X to verify that the resulting elements
make up the identity matrix. Finally, the vector of estimated regression coef-
ficients is obtained by

B̂ = (X ′X)−1X ′Y .

As we will frequently refer to the X ′X matrix and its elements, we define
C = (X ′X)−1; hence we can write

B̂ = CX ′Y .

For Example 3.1, the result is

B̂

−108.5758
1.6257654
0.6937702
5.6713954

Again, the reader may verify some elements of this result.
These results provide the estimated regression response equation

VÔL = −108.58 + 1.6258(DBH) + 0.6938(HT) + 5.6714(D16).

These are indeed the partial coefficients shown in Table 3.1. Thus, the coeffi-
cient for DBH, 1.6258, estimates an increase of 1.6258 in the average volume
associated with a unit increase in DBH, holding constant all other variables.
This means that for a subpopulation with a specified height and the diame-
ter of the trunk at 16 feet constant, increasing DBH by 1 inch increases the
average yield by 1.6258 cubic feet. Note also that the intercept is negative, an
apparently impossible result. Actually, this is a meaningless number, because
it estimates the volume for an impossible “tree” having zero DBH, HT, and D16.
This example illustrates the problem with extrapolating beyond the range of
the observed data: There are no observations of trees with even remotely near
these zero values. However, that apparently impossible coefficient does not
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affect the ability of the model to estimate timber volume for observed ranges
of the values of the independent variables.

3.4 Interpreting the Partial Regression Coefficients

We have emphasized that the partial regression coefficients in a multiple regres-
sion model have a unique interpretation that differs from that of the total
regression coefficients for a given set of independent variables. This can often
be a problem when interpreting the results of a least squares analysis in regres-
sion, especially when it is desired to provide some useful interpretations for
individual coefficients. In order to explore this difference and to try to under-
stand the interpretation of the partial regression coefficients, we will examine
the following

1. A contrived example where the reason for the different partial and total
coefficients is readily apparent

2. An alternative approach to computing partial regression coefficients that,
although not useful in practice, may help to explain the nature of the
coefficients

EXAMPLE 3.2 Table 3.2 presents contrived data for 12 observations on two independent vari-
ables x1, x2, and the response variable y (ignore the last column for now).

Table 3.2

Data for Example of
Different Partial and
Total Coefficients

OBS x1 x2 y RX2

1 0 2 2 −0.73585
2 2 6 3 0.60377
3 2 7 2 1.60377
4 2 5 7 −0.39623
5 4 9 6 0.94340
6 4 8 8 −0.05660
7 4 7 10 −1.05660
8 6 10 7 −0.71698
9 6 11 8 0.28302

10 6 9 12 −1.71698
11 8 15 11 1.62264
12 8 13 14 −0.37736

The estimated total regression coefficients for x1 and x2 as well as the partial
coefficients for the model involving both variables are shown in Table 3.3. The
simple regression involving only y and x1 is MODEL1, and so forth.

Table 3.3

Estimates for Total and
Partial Coefficients

MODEL INTERCEP X1 X2

TOTAL COEFFICIENTS

MODEL1 1.85849 1.30189 .
MODEL2 0.86131 . 0.78102

PARTIAL COEFFICIENTS

MODEL3 5.37539 3.01183 −1.28549
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The differences between the partial and the total coefficients are more pro-
nounced than they were for Example 3.1. The most interesting difference
occurs for x2, where the total coefficient is 0.7810, whereas the partial coeffi-
cient is −1.2855. In other words, the total coefficient implies a positively slop-
ing relationship, whereas the partial coefficient implies a negatively sloping
one. At first glance, these two results seem to contradict one another. A closer
look, however, explains this apparent contradiction.

The scatter plot of y against x2 is shown in Figure 3.1. The initial impression
reinforces the positive value of the total regression coefficient for x2. How-
ever, at this point we have ignored the effect of x1, which is what we do when
we estimate a total regression coefficient. We can show the effect of x1 in this
plot by using the values of x1 as the plotting symbol. That is, data points repre-
sented by the symbol “2” in Figure 3.1 indicate observations for which x1 = 2,
and so forth.

Figure 3.1

Plot Showing Total
and Partial
Coefficient

Remember that the partial coefficient is the relationship of y tox2, for constant

values of x1. That means that data points for constant values of x1 are the basis
for the partial regression coefficient. The negative relationship now becomes
more obvious: For example, the three data points for x1 = 4 definitely show
the negatively sloping relationship between y and x2, and similar relationships
hold for the other values of x1.

Estimating Partial Coefficients Using Residuals
In standard practice, the estimates of the partial regression coefficients are
obtained through the solution of the normal equations as shown in Section 3.3.
An alternative procedure for obtaining these estimates, which is computation-
ally cumbersome and therefore not used in practice, may provide additional
insight into the properties of the partial regression coefficients.
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Assume the usual regression model

y = β0 + β1x1 + β2x2 + · · · + βmxm + ε.

We can estimate the partial regression coefficient for, say, xj , using this alter-
native method by following these three steps:

1. Perform a least squares “regression” using the variable xj as the dependent
variable and all other x’s as independent variables.

2. Compute the predicted values μ̂xj , and the residuals dxj = (xj−μ̂xj). These
residuals measure that portion of the variability in xj not explained by the
variability among the other variables. Notice that we have used the letter d
to denote these residuals to avoid confusion with the residuals discussed
in Section 2.7.

3. Performasimple linearregressionwiththeobservedvaluesofyasthedepen-
dent variable and the residuals,dxj , as the independent variable. This regres-
sion measures the relationship of the response to the variation in xj not
explained by a linear regression involving the other variables. The resulting
estimated coefficient is indeed the estimate of the partial regression coeffi-
cient βj in the original model involving all m independent variables.7

EXAMPLE 3.2 REVISITED To illustrate this method, we will calculate estimates of the
regression coefficients for x2 from Example 3.2. Since there are only two inde-
pendent variables, “all other” x-variables consist of x1. Then the “regression”
of x2 on x1 provides the estimated equation

x̂2 = 2.7358 + 1.3302x1.

The predicted values, the x̂2, from this regression are used to obtain residu-
als that are given under the column labeled RX2 in Table 3.2. The difference
between the total and partial regressions involving x2 can be seen in the plots
of x2 and RX2 (labeled residual) against y, and the respective regression lines
as shown in Figure 3.2.

Figure 3.2

Plots Showing Total and
Partial Regression
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7The sum of squares for the coefficient is also the same as that for the partial coefficient.
However, the error sum of squares is not useful, since it does not reflect the contribution of
the other variables. See Section 3.5.
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The plot of Y against X2 is the same as in Figure 3.1 and shows the positively
sloping relationship between Y and X2 when X1 is ignored, whereas the plot
of Y against RX2 indicates the negative relationship between Y and X2 when
X1 is held fixed. Using the values of Y and RX2 in a simple linear regression
will indeed provide the same value of −1.28549 as an estimate of β2.

EXAMPLE 3.1 REVISITED We will again illustrate regression with residuals by obtaining
the partial coefficient for DBH in Example 3.1. The data are reproduced in
Table 3.4. Recall from Table 3.1 that the total coefficient was 6.9161, whereas
the partial coefficient was 1.6258.

Table 3.4

Obtaining Residual
Values

OBS DBH HT D16 VOL RDBH RVOL

1 10.20 89.00 9.3 25.93 −0.46295 2.68087
2 13.72 90.07 12.1 45.87 0.06923 1.14112
3 13.78 89.00 13.6 56.20 −1.48880 1.07583
4 14.37 98.03 13.4 58.60 −0.58892 −1.15084
5 15.00 99.00 14.2 63.36 −0.80555 −2.97733
6 15.02 91.05 12.8 46.35 0.62982 −4.23085
7 15.12 105.60 14.0 68.99 −0.40141 −0.33000
8 15.24 100.80 13.5 62.91 0.20331 0.54384
9 15.24 94.00 14.0 58.13 −0.40429 −3.34203

10 15.28 93.09 13.8 59.79 −0.15970 0.41619
11 15.43 95.08 13.3 56.20 0.54694 −0.81374
12 15.67 102.00 14.0 66.16 0.11045 −0.72442
13 15.67 99.00 13.7 62.18 0.40001 −0.45093
14 15.98 89.02 13.9 57.01 0.39007 −0.35154
15 16.50 95.09 14.9 65.62 −0.09676 −3.26099
16 16.87 95.02 14.9 65.03 0.27250 −3.80363
17 17.26 91.02 14.3 66.74 1.26281 5.06024
18 17.28 98.06 14.3 73.38 1.35738 6.93734
19 17.87 96.01 16.9 82.87 −0.85927 −1.45901
20 19.13 101.00 17.3 95.71 0.02514 5.03989

We perform the regressions of both VOL and DBH on HT and D16 and get the
residuals, labeled RVOL and RDBH in Table 3.4. We then perform the regres-
sion of RVOL on RDBH. The actual values (•) and the estimated lines for
the total regression of VOL on DBH and the regression of RVOL on RDBH
are shown in Figure 3.3. We first perform the regression using DBH as the

Figure 3.3

Total and Partial
Regression Using
Residuals
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dependent and HT and D16 as independent variables. The estimated model
equation is

DB̂H = PDBH = 1.6442− 0.01059(HT) + 1.0711(D16).

This equation is used to obtain the predicted and residual values for DBH.
In Table 3.4 the predicted values are given in the column labeled PDBH and
the residual values under RDBH. We then estimate the simple linear regres-
sion equation using VOL and RDBH, which provides the partial regression
coefficient.

The plots of the actual values (•) and the estimated regression line for the
regressions of VOL on DBH (the total regression) and VOL on residual (the
partial regression) are shown in Figure 3.3. The steeper slope of the total
regression is evident. The reader may want to verify that performing the
regression of VOL on DBH will provide the total regression coefficient, and
that the regression of RVOL on RDBH does provide the partial regression
coefficient.

3.5 Inferences on the Parameters

It should now be obvious that in general we do not get the correct estimates of
the partial coefficients in multiple parameter models by performing individual
simple linear regressions using the individual independent variables. Similarly,
we cannot obtain the appropriate inferences for the partial coefficients by
direct application of the procedures for making inferences for simple linear
regression coefficients.

However, inference procedures based on the comparison of unrestricted
and restricted models do provide the proper framework for inferences on
partial coefficients. The most common inferences consist of tests of the null
hypothesis that one or more coefficients are zero. That is, the null hypothesis
is that the corresponding variables are not needed in the model.

For a test on the null hypothesis that one or more coefficients are zero,
we compare the unrestricted model that contains all coefficients to the
restricted model that does not contain the coefficient(s) being tested.

Note that both the unrestricted and restricted models contain all of the
other coefficients; this corresponds to holding all other variables constant. The
tests are based on reduced effectiveness of the restricted model as measured
by the increase in the error sum of squares (or equivalently, the decrease in
the regression sum of squares) due to imposing the restriction.
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Formally, the testing procedure is implemented as follows:

1. Divide the full set of coefficients, denoted by B, into two sets represented
by submatrices B1 and B2 as follows

B =

⎡⎣B1

. . .
B2

⎤⎦ .

Since the ordering of elements in the matrix of coefficients is arbitrary,
either submatrix may contain any desired subset of the entire set of coeffi-
cients. We want to test the hypotheses

H0:B2 = 0,

H1 : At least one element in B2 is not zero.8

Denote the number of coefficients in B1 by q and the number of coefficients
in B2 by p. Note that p + q = m + 1. Since we rarely consider hypotheses
concerning β0, this coefficient is typically included in B1.

2. Perform the regression using all coefficients, that is, using the unre-
stricted model Y = XB + Eunrestricted. The error sum of squares for
this model is SSEunrestricted. This sum of squares has (n−m− 1) degrees
of freedom.

3. Perform the regression containing only the coefficients in B1. The model is
Y = X1B1+Erestricted, which is the result of imposing the restriction B2 =
0 as specified by H0. The error sum of squares for this model is SSErestricted

and has (n− q) degrees of freedom.
4. The difference SSErestricted−SSEunrestricted is the increase in the error sum

of squares due to the deletion of B2. As we did in Chapter 2, we will refer to
this as SShypothesis. The degrees of freedom are (m+1)− q = p, which cor-
responds to the fact that there are p coefficients in B2. Dividing SShypothesis

by its degrees of freedom provides the mean square that can be used as the
numerator in the test statistic.9

5. The ratio of the hypothesis mean square to the error mean square of the
unrestricted model is the test statistic that, under the null hypothesis, will
have the F distribution with (p, n−m− 1) degrees of freedom.

Obviously, to do the hypothesis test discussed earlier, we need to calculate
error sums of squares for various multiple regression models. For the unre-
stricted model,

y = β0 + β1x1 + β2x2 + · · · + βmxm + ε,

8Since there is no “capital” zero, we must understand that the zero here represents a p× 1 matrix
of zeros.
9A formula for computing SShypothesis directly will be presented later.
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the error sums of squares is defined as

SSEunrestricted = Σ(y − μ̂y|x)2,

where the values of μ̂y|x are obtained by using the least squares estimates of
the regression coefficients. As was the case for simple linear regression, the
procedure for the partitioning of sums of squares provides for computational
formulas. The partitioning of sums of squares used for this model is

Σy2 = Σμ̂2
y|x + Σ(y − μ̂y|x)2.

Note that, unlike the partitioning of sums of squares for simple linear regres-
sion, the left-hand side is the uncorrected sum of squares for the dependent
variable.10 Consequently, the term corresponding to the regression sum of
squares includes the contribution of the intercept and is therefore not nor-
mally used for inferences. As in simple linear regression, the shortcut formula
is the one for the sum of squares due to regression, which can be computed
by any of three equivalent formulas

Σμ̂2
y|x = B̂′X ′Y = Y ′X(X ′X)−1X ′Y = B̂′X ′XB̂.

The first one is the most convenient formula for manual computation and rep-
resents the following algebraic expression

Σμ̂2
y|x = β̂0Σy + β̂1Σx1y + · · · + β̂mΣxmy.

Note that the individual terms appear to be similar to the formula for SSR for
the simple linear regression model; however, these individual terms have no

practical interpretation. The error sum of squares is obtained by subtracting
the regression sum of squares from the total sum of squares, Σy2.

The restricted error sum of squares is computed in the same manner by
using B1 instead of B and denoting by X1 the columns of X corresponding to
those in B1.

EXAMPLE 3.1 REVISITED We illustrate the procedure by testing the null hypothesis

H0:βHT = 0, and βD16 = 0.

Computing the Unrestricted SSE The actual, predicted, and residual val-
ues for the unrestricted model, labeled VOL, PVOL, and RVOL, respectively,
are shown in Table 3.5.

10This way of defining these quantities corresponds to the way most current computer programs
for regression are written. References that do not rely heavily on the use of such programs may
define TSS and consequently SSR in a manner analogous to that presented in Section 1.3. These
different definitions cause minor modifications in computational procedures, but the ultimate
results are the same.
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Table 3.5

Computing SSE Directly

OBS VOL PVOL RVOL

1 25.93 22.4965 3.43351
2 95.71 90.7110 4.99902
3 68.99 68.6674 0.32261
4 73.38 68.6494 4.73056
5 66.16 67.0640 −0.90399
6 66.74 63.7328 3.00722
7 59.79 59.1142 0.67583
8 58.60 58.7934 −0.19339
9 56.20 57.9029 −1.70294

10 62.91 62.6967 0.21331
11 82.87 82.9320 −0.06204
12 65.62 68.7237 −3.10368
13 62.18 63.2813 −1.10126
14 57.01 57.9957 −0.98570
15 46.35 51.6048 −5.25479
16 65.03 69.2767 −4.24665
17 45.87 44.8414 1.02858
18 56.20 52.7037 3.49627
19 58.13 60.8148 −2.68475
20 63.36 65.0277 −1.66770

The sum of squares of the RVOL values is the SSEunrestricted and has a value
of 153.3007. The corresponding error degrees of freedom is (20− 3− 1) = 16;
hence, the error mean square is 9.581.

The quantities required to compute this quantity by the partitioning of sums
of squares are available from the computations for the regression coefficients
that were given in Example 3.1. For our purposes we need X ′Y and B̂. Using
the output from PROC IML of the SAS System:

X′Y B̂

1237.030 −108.5758
19659.105 1.6257654

118970.190 0.6937702
17617.487 5.6713954

SSR
80103.219

Multiplying B̂′ by X ′Y :

(1237.03)(−108.5758) + · · · + (17617.487)(5.6713954),
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gives SSR = 80103.219 as shown. From the initial matrix computations we
have Y ′Y = Σy2 = 80256.52, and by subtraction,

SSE= 80256.52− 80103.219

= 153.301.

The result agrees with the directly calculated error sum of squares, as it
must.

Computing the Hypothesis SS
We illustrate the procedure by testing the following hypothesis

H0:βHT = 0, and βD16 = 0.
For this test the unrestricted model includes the variables DBH, HT, and D16,
whereas the restricted model includes only DBH.

We have already calculated the error sums of squares for the unrestricted
model to be 153.30 with 16 degrees of freedom. The restricted model is the one
that was used to illustrate simple linear regression in Example 2.1, where the
error sum of squares was calculated to be 658.62 with 18 degrees of freedom.
We now compute the hypothesis sum of squares

SShypothesis = SSErestricted − SSEunrestricted

SShypothesis = 658.62− 153.30 = 505.32,

with 18− 16 = 2 degrees of freedom, and the resulting mean square is 252.66.

The Hypothesis Test
Using the error mean square from the unrestricted model gives the F statistic

F =
252.66

9.581
= 26.371,

with 2 and 16 degrees of freedom, which is to be compared with the tabled
value of 6.23 for rejection at the 0.01 significance level. Thus, we conclude that
these two variables contribute significantly to the model over and above the
effect of DBH. This test does not, however, give any indication of the relative
contributions of the two individual parameters.

Commonly Used Tests
The above procedure can be used to test hypotheses for any subset of coeffi-
cients to be zero. It is, however, not generally desirable to perform all possible
tests. There are two sets of tests commonly performed in the initial inference
stage of a regression analysis

1. The test that all coefficients (except β0) are zero. The hypothesis
statement is

H0:β1 = 0, β2 = 0, . . . , βm = 0.

This test is referred to as the test for the model.
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2. m separate tests:

H0j:βj = 0,

that is, a set of separate tests that each individual partial coefficient is zero.

Because these tests are performed and presented automatically in com-
puter programs for multiple regression, we will present them in some detail.

The Test for the “Model”
This test compares the unrestricted model with the restricted model,

y = β0 + ε,

which is equivalent to

y = μ+ ε,

that is, the model for the mean of a single population (Section 1.2). The esti-
mate of μ is y, and the error sum of squares is the familiar

SSErestricted = (n− 1)s2 = Σ(y − y)2 = Σy2 − (Σy)2

n
,

which has (n− 1) degrees of freedom.
The hypothesis sum of squares for this test is referred to as the model sums

of squares and is SSErestricted minus SSEunrestricted

SSmodel = SSErestricted − SSEunrestricted

=

[
Σy2 − (Σy)2

n

]
− [Σy2 − B̂′X ′Y ]

= B̂′X ′Y − (Σy)2

n
,

which has m degrees of freedom. The resulting mean square provides the
numerator for the F statistic, with the usual unrestricted model error mean
square as the denominator.

For Example 3.1 we have already computed

B̂′X ′Y = 80103.219

Σy = 1237.03,

hence,

(Σy)2/n = 76512.161.

The sum of squares due to the model

SSmodel = 80103.219− 76512.161 = 3591.058,

and the mean square

MSmodel = 3591.058/3 = 1197.019.
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We have previously computed MSEunrestricted = 9.581, hence the test statistic

F = 1197.019/9.581 = 124.937,

with (3, 16) dfy which obviously leads to rejection of the hypothesis that the
model does not fit the data better than the mean. This result was to be expected
since the test for the model with only DBH was highly significant, and it would
be highly unusual for a model containing a variable whose total coefficient was
significant not to also be significant.

Tests for Individual Coefficients
The restricted model for each test of a coefficient (or variable) is the error sum
of squares for an (m − 1) parameter model excluding that variable. This pro-
cedure requires the computation of m such regressions to get all the required
tests. Fortunately, there exists a shortcut11 formula. Remembering that we
have previously defined C = (X ′X)−1, then it can be shown that the partial
sum of squares for βj is

SSβj
=

β̂2
j

cjj
,

where cjj is the jth diagonal element of C. These sums of squares are com-
puted for each βj , and have one degree of freedom each. The unrestricted
model error mean square is used for the denominator of the F statistic.

The parameter estimates and elements of C are available in the PROC IML
output in Section 3.3. Using these quantities, we have

SSβDBH
=

β̂2
DBH

cDBH, DBH
=

1.62582

0.1099
= 24.0512, and F =

24.0512

9.5813
= 2.510

SSβHT
=

β̂2
HT

cHT, HT
=

0.69382

0.002776
= 173.400, and F =

173.400

9.5813
= 18.0978

SSβD16
=

β̂2
D16

cD16, D16
=

5.67142

0.1508
= 213.2943, and F =

213.2943

9.5813
= 22.262.

The 0.05 right-tail value for the F distribution for (1,16) degrees of freedom is
4.49; hence, we can conclude that HT contributes significantly to the regres-
sion model when DBH and D16 are fixed and that D16 contributes significantly
to the regression model when DBH and HT are fixed. We cannot say that DBH
is a significant contributor when HT and D16 are fixed.

Recall from the discussion of sampling distributions that the square root
of any F statistic with one degree of freedom in the numerator is equal to a t
statistic with the corresponding denominator degrees of freedom. Taking the

11See Section 3.6, “Testing a General Linear Hypothesis (Optional Topic).”
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square root of the F ratio for, say, βj , and rearranging some elements, produce

√
F = t =

β̂j√
cjj(MSEunrestricted)

.

Recall also that the standard formulation for a t statistic has the parameter
estimate (minus the null hypothesis value) in the numerator and the estimated
standard error of that estimate in the denominator. Hence, we see that the
estimated standard error of β̂j is

Standard error (β̂j) =
√
cjj(MSEunrestricted)

For Example 3.1, the standard error for the DBH coefficient is

Standard error (β̂DBH) =
√
(9.5813)(0.10986)

= 1.0259,

which can be used for hypothesis tests and confidence intervals.
To test the hypothesis of a zero coefficient for DBH, calculate

t =
1.6258

1.0259
= 1.585,

which is less than 2.120, the 0.05 two-tail value for t with 16 degrees of free-
dom; hence, the hypothesis is not rejected, as was expected. Note that t2 =
1.5852 = 2.512, which, except for rounding error, is theF -value obtained using
the partial sum of squares computed from the partitioning of sums of squares.

It can be shown that the sampling distribution of an estimated partial
regression coefficient, β̂j is a random variable that is normally distributed with

Mean (β̂j) = βj , and

Variance (β̂j) = σ2 cjj .

Furthermore, the estimated coefficients are typically not independent. In
fact, the covariance between two estimated coefficients, say, β̂i and β̂j , is

cov (β̂i, β̂j) = σ2 cij .

Although we will not directly use this definition in this chapter, we will use it
in Section 9.2.

Substituting MSE for σ2 provides the statistic

t =
β̂j − βj√
cjjMSE

,

which has the t distribution with (n −m − 1) degrees of freedom. Using this
statistic we can test hypotheses that the coefficients are some specified value
other than zero and construct confidence intervals.

The 0.95 confidence interval for DBH uses the t value of 2.120 (α/2 = 0.025,
df = 16) to obtain

β̂DBH ± tα/2(Standard error (β̂DBH)), or

1.6258± (2.120)(1.0259),
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which provides the interval from −0.5491 to 3.8007. This interval does include
zero, confirming the failure to reject the zero value with the hypothesis test.

Simultaneous Inference
In performing the analysis of a multiple regression equation, we sometimes
require a series of estimates or tests where we are concerned about the
correctness of the entire set of estimates or tests. We call this set of esti-
mates the family of estimates. To evaluate a family of estimates we must use
what is called joint or simultaneous inference. For example, a family confi-
dence coefficient indicates the level of confidence for all the estimates in the
family. If we constructed a 95% confidence interval on one parameter, using
the methods previously discussed, we would expect 95% of all intervals con-
structed in the same manner to contain the single unknown parameter. On
the other hand, if we constructed a 95% confidence interval on a collection
of four unknown parameters, we would expect 95% of intervals constructed
this way to contain all four of the parameters. For 5% of these intervals, one
or more of the four would not be in the interval. The problem of the cor-
rect confidence (or significance) levels for simultaneous inferences requires
special methodology (see Kutner, et al., 2004). One such method is to use
what is known as a Bonferroni procedure. The Bonferroni approach gives
confidence limits as follows

β̂i ± tα/2r(Standard error(β̂i)),

where r is the number of intervals to be computed. In other words, the
Bonferroni approach simply adjusts the confidence coefficient for the simul-
taneous inferences. If in our example we wish to make simultaneous 90%
intervals for the three coefficients, we would use t0.0167(16). Since few tables
have such percentage points, the value may be obtained with a computer pro-
gram or by interpolation. Interpolating gives us a value of t0.0167(16) ≈ 2.327.
The three confidence intervals that make up the family of confidence inter-
vals are:

1.6258 ± (2.327)(1.0259), or (−0.761, 4.013)
0.6938 ± (2.327)(0.1631), or (0.314, 1.073)
5.6714 ± (2.327)(1.2020), or (2.874, 8.468)

We conclude that β1 is between −0.761 and 4.013, and β2 is between 0.314
and 1.073, and β3 is between 2.874 and 8.468, with a family confidence coeffi-
cient of 90%. The Bonferroni approach is a conservative procedure and gives
a lower bound on the true (but usually unknown) confidence level for the
family of estimates.

EXAMPLE 3.1 REVISITED Computer Output The tests for the model and individual
coefficients are the ones printed by default by virtually all regression computer
outputs. Table 3.6 reproduces the output for Example 3.1 as provided by PROC
REG of the SAS System.
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Table 3.6

Computer Output for
Example 3.1

Dependent Variable: VOL

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 3591.05774 1197.01925 124.93 <.0001
Error 16 153.30071 9.58129
Corrected Total 19 3744.35846

Root MSE 3.09537 R-Square 0.9591
Dependent Mean 61.85150 Adj R-Sq 0.9514
Coeff Var 5.00451

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −108.57585 14.14218 −7.68 <.0001
DBH 1 1.62577 1.02595 1.58 0.1326
HT 1 0.69377 0.16307 4.25 0.0006
D16 1 5.67140 1.20226 4.72 0.0002

The format of this output is virtually the same as that presented in Table 2.3,
because computer programs for regression treat all models alike and consider
simple linear regression as just a special case of the multiple regression model.
The top portion of the output contains the test for the model, giving the results
we have already obtained. The descriptive statistics presented in the next
portion of the printout are the same ones given in Table 2.3 and described
in Section 2.3. The only statistic not yet discussed is the one called R-square
(and Adj R-sq). These values play an important role in evaluating the adequacy
of the model and are discussed in some detail in Section 3.8.

Finally, the section of the printout under the heading Parameter Estimates
gives the information about the regression coefficients. Each estimate of a
regression coefficient is identified by its corresponding variable name. Notice
that all the coefficient estimates show a positive relation between the
independent variable and VOL, while, as previously noted, the negative value
of the intercept has no meaning.

The estimates are followed by their standard errors and the results of the t
test for H0:βj = 0. The results are identical to those obtained earlier in this
section. We again see the apparent contradiction between the test for DBH in
the simple linear model and the test for DBH when HT and D16 are included
in the model.

The Test for a Coefficient Using Residuals
In Section 3.4 we saw that a partial regression coefficient can be computed
as a total coefficient using residuals. The test for a coefficient, say βj , can be
computed by the same principles as follows
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1. Perform the regression of xj on all other independent variables in the unre-
stricted model and compute the residuals, rxj .

2. Perform the regression of y on all other independent variables in the unre-
stricted model and compute the residuals, ry, xj .

3. Then the simple linear regression of ry, xj on rxj will provide the partial
regression coefficient and the test for the hypothesis that the coefficient is
zero.

Remember that in Section 3.4 we showed that the partial regression coef-
ficient can be estimated by regressing y, the observed values of the dependent
variable, on the rxj . However, the test for the partial coefficient also involves
the use of rxj but requires the use of the residuals ry, xj . This is because the
test must reflect the partial effect on y after accounting for the relationship
with the other independent variables.

EXAMPLE 3.1 REVISITED Testing a Coefficient by Residuals Table 3.7 shows the
quantities required to obtain the various sums of squares for performing the
test on the partial coefficient for DBH. The variables VOL and DBH are
the originally observed data, whereas RVOL and RDBH are the residuals from
the regressions using HT and D16.

Table 3.7

Residuals for Inference
on the DBH Coefficient

OBS VOL DBH RVOL RDBH

1 25.93 10.20 2.68087 −0.46295
2 95.71 19.13 5.03989 0.02514
3 68.99 15.12 −0.33000 −0.40141
4 73.38 17.28 6.93734 1.35738
5 66.16 15.67 −0.72442 0.11045
6 66.74 17.26 5.06024 1.26281
7 59.79 15.28 0.41619 −0.15970
8 58.60 14.37 −1.15084 −0.58892
9 56.20 15.43 −0.81374 0.54694

10 62.91 15.24 0.54384 0.20331
11 82.87 17.87 −1.45901 −0.85927
12 65.62 16.50 −3.26099 −0.09676
13 62.18 15.67 −0.45093 0.40001
14 57.01 15.98 −0.35154 0.39007
15 46.35 15.02 −4.23085 0.62982
16 65.03 16.87 −3.80363 0.27250
17 45.87 13.72 1.14112 0.06923
18 56.20 13.78 1.07583 −1.48880
19 58.13 15.24 −3.34203 −0.40429
20 63.36 15.00 −2.97733 −0.80555

The reader may verify that

β̂DBH = SRVOL, RDBH/SRDBH, RDBH = 14.7989/9.1027 = 1.6258,

and further, the sums of squares for the test of the coefficient

SSRDBH = (SRVOL, RDBH)
2/SRDBH, RDBH = 24.0595,

TSS = SRVOL, RVOL = 177.3601, and

SSE = TSS − SSR = 153.3005,
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which is indeed the error sum of squares for the unrestricted model. Dividing
by the appropriate degrees of freedom provides the mean squares for the test.
The standard error of the partial coefficient is obtained by using SRDBH, RDBH

as Sxx in the formula for the standard error of the simple linear regression
coefficient.12

Figure 3.4 shows the plot of the original variables and residuals. The plot
readily shows the strength of both the total and partial relationship between
VOL and DBH. It is important to note the difference in the scales of the
plots: The residuals show a much smaller range of values, showing how much
of the variability on both variables is accounted for by the other variables. It
is apparent that the total relationship appears strong, while the partial one
is not.

Figure 3.4 Orginal and Partial Residuals Regression

The plot using residuals is called the partial residual or leverage plot and
will be reintroduced later as a useful tool for diagnosing problems with the
data.

12Using the variables RVOL and RDBH in a computer program for regression produces the correct
sums of squares. However, the program will assume that these are actual variables rather than
residuals; hence, the degrees of freedom and consequently all mean squares will not be correct.
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3.6 Testing a General Linear Hypothesis (Optional Topic)

In the preceding sections we have limited our discussion to hypotheses of the
form H0:B2 = 0, where B2 is some subset of the regression coefficients in
B. Occasionally, however, there is a need for a more general type of hypothe-
sis. For example, it may be desired to test hypotheses such as

H0:βi = βj
or

H0:Σβi = 1.

Such hypotheses imply a more general type of restricted model. (Recall that
if any coefficients are assumed zero, the corresponding independent vari-
able is simply removed from the model.) The implementation of tests on a
more general class of restrictions is provided by the test for a general linear
hypothesis.

The general linear hypothesis is stated in matrix form,

H0:HB −K = 0,

where

H is a k×(m+1) matrix of coefficients for a specified set of k restrictions.
Each row of this matrix describes one set of restrictions.

B is the vector of (m+ 1) coefficients of the unrestricted model.
K is a matrix of constants. In many applications, K is a null matrix (having

all elements equal zero).

For example, assume a four-variable model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

and we want to test

H0:β1 = 0.

Remembering that the first element of B is β0, then for this hypothesis,

H = [0 1 0 0 0], and K = [0].

The hypothesis

H0:β1 + β2 − 2β3 = 1

is restated as

H0:β1 + β2 − 2β3 − 1 = 0,

then

H = [0 1 1 −2 0], and K = [1].
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For the composite hypothesis:

H0: (β1, β2, β3, β4) = 0,

H =

⎡⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎦ and K =

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦ .

Using matrix notation, the hypothesis sum of squares, SShypothesis, is
obtained by

SShypothesis = [HB̂ −K]′ [H(X ′X)−1H ′]−1 [HB̂ −K],

where B̂ is the set of estimated regression coefficients.
The fact that the entire (X ′X)−1 matrix is involved in this equation results

from the existence of correlations among the estimated coefficients.
Although not often done in this manner, we can also obtain the estimates

of the regression coefficients directly for any model subject to the restriction
HB = K. Denoting such a set of coefficients by B̂H, they can be obtained by

B̂H = B̂ − (X ′X)−1H ′(HX ′XH ′)−1 (HB̂ −K),

where B̂ is the vector of unrestricted model parameter estimates.
All of the tests previously presented in this section are simply special cases

of this general linear hypothesis-testing procedure. For example, to test the
hypothesis H0:β1 = 0 in a multiple regression model with m independent
variables, H = [0 1 0 · · · 0] and K = [0]. For this case:

HB̂ = β̂1 and

H(X ′X)−1H ′ = c11,

the second13 diagonal element of (X ′X)−1.
The inverse of the scalar, c11, is its reciprocal; hence,

SShypothesis = β̂2
1/c11,

which is the previously obtained result.

EXAMPLE 3.1 REVISITED The two independent variables, DBH and D16, are rather
similar measures of trunk diameter; yet the estimates of the coefficients of
these two variables have different magnitudes: β̂DBH = 1.626, whereas β̂D16 =
5.671. It may be interesting to speculate what would happen if we restricted
the two coefficients to have the same value. This is obtained by implementing
the restriction

β̂DBH − β̂D16 = 0.

13Remember that the first row and column correspond to the intercept.
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We perform the analysis by using the RESTRICT option in PROC REG of the
SAS System, which performs the computations with the formulas given above.
The results are shown in Table 3.8, and we can compare them with those of
Table 3.6.

Table 3.8

Estimating a Restricted
Model

Dependent Variable: VOL

NOTE: Restrictions have been applied to parameter estimates.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 3558.06335 1779.03167 162.34 <.0001
Error 17 186.29511 10.95854
Corrected Total 19 3744.35846

Root MSE 3.31037 R-Square 0.9502
Dependent Mean 61.85150 Adj R-Sq 0.9444
Coeff Var 5.35212

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −111.59650 15.02396 −7.43 <.0001
DBH 1 3.48139 0.24542 14.19 <.0001
HT 1 0.74257 0.17212 4.31 0.0005
D16 1 3.48139 0.24542 14.19 <.0001
RESTRICT −1 −8.15556 4.70013 −1.74 0.0820∗

∗The t statistic reported for the restriction does not have the Student’s t distribution, but its square
has a beta distribution. Therefore the p-value of the test is computed using the beta distribution.

The analysis of variance portion now shows only two degrees of freedom
for the model, since with the restriction there are effectively only two
parameters.

The error mean square of 10.958 is not much larger than the unrestricted model
error mean square of 9.581 found in Table 3.6, indicating that the restriction
does not have much effect on the fit of the model.

The parameter estimates show the same value for the DBH and D16 coeffi-
cients (that was the restriction applied to the model). The last line is the test
for the statistical significance of the restriction; the p-value of 0.0820 confirms
our impression that the restriction does not seriously impair the effectiveness
of the model.14

14The RESTRICT option uses the restricted model error mean square as the denominator in the
F test, resulting in a more conservative test. However, as previously noted, the restricted and the
unrestricted mean squares were almost identical.
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The results of the test may at first appear surprising. The estimated values of
the coefficients of DBH and D16 in the unrestricted model were quite different,
yet this difference was found not to be significant when tested. The reason for
this result is that the two variables DBH and D16 are highly correlated, and
therefore a linear function of the two will provide nearly equivalent predic-
tion. In fact, the model that omits DBH entirely actually fits about as well as
the model with the restriction. We will thoroughly investigate the effect of cor-
relation among the independent variables in Chapter 5.

3.7 Inferences on the Response Variable in Multiple Regression

As in simple linear regression (Section 2.4), we can make two types of infer-
ences on the response variable:

1. Inferences on the estimated conditional mean
2. Inferences on the predicted value of a single observation

For multiple regression, computing the standard errors of estimated means or
predicted values is not a simple task and is normally performed with comput-
ers. The formulas for these computations are given here in matrix format for
completeness and for presenting the general concepts for these inferences.

We have previously denoted by μ̂y|X the (n × 1) matrix of the estimated
mean of the response variable for each observation. The variances and covari-
ances of these estimated means are given by the elements of the matrix

Variance (μ̂y|X) = σ2X(X ′X)−1X ′.

This is an n × n matrix; its diagonal elements contain the variances for the
estimated mean for each observation, and its off-diagonal elements the covari-
ances of all pairs of observations. The matrix X(X ′X)−1X ′ is called the hat

matrix, which will be seen later to have additional uses.
Since our primary focus is on the response for a specified set of values of

the independent variables, we need the variance at that value. Denote by Xi

a 1× (m+ 1) matrix of values of the independent variables corresponding to
that set (which may correspond to one of the observations). Then the variance
of the corresponding estimated mean is

Variance (μ̂y|Xi
) = σ2[Xi(X

′X)−1X ′
i].

Similarly, the variance of a single predicted value at Xi is

Variance (ŷy|Xi
) = σ2[1 +Xi(X

′X)−1X ′
i].

Substituting the unrestricted model error mean square for σ2, we can use the
t distribution with (n − m − 1) degrees of freedom to calculate confidence
or prediction intervals following the procedures discussed in Section 2.4. We
illustrate this procedure by again referring to Example 3.1.



3.7 Inferences on the Response Variable in Multiple Regression 101

EXAMPLE 3.1 REVISITED Confidence and Prediction Intervals We use the data
from Example 3.1 to show the confidence and prediction intervals using PROC
REG of the SAS System. The results of the CLI (Confidence Limits on the Indi-
vidual) and CLM (Confidence Limits on the Mean) options are presented in
Table 3.9.

Table 3.9

Confidence and
Prediction Intervals

Dep Var Predicted Std Error

OBS VOL Value Mean 95% CL Mean 95% CL Predict Residual

1 25.9300 22.4965 2.1968 17.8396 27.1534 14.4500 30.5429 3.4335
2 95.7100 90.7110 1.6533 87.2060 94.2159 83.2717 98.1503 4.9990
3 68.9900 68.6674 1.8067 64.8373 72.4975 61.0695 76.2653 0.3226
4 73.3800 68.6494 1.5983 65.2611 72.0377 61.2644 76.0345 4.7306
5 66.1600 67.0640 1.2476 64.4192 69.7088 59.9892 74.1388 −0.9040
6 66.7400 63.7328 1.6903 60.1494 67.3161 56.2562 71.2093 3.0072
7 59.7900 59.1142 0.8063 57.4049 60.8234 52.3333 65.8950 0.6758
8 58.6000 58.7934 1.0751 56.5142 61.0726 51.8470 65.7398 −0.1934
9 56.2000 57.9029 0.9320 55.9271 59.8788 51.0500 64.7558 −1.7029

10 62.9100 62.6967 1.2002 60.1523 65.2411 55.6588 69.7346 0.2133
11 82.8700 82.9320 1.8146 79.0852 86.7789 75.3257 90.5384 −0.0620
12 65.6200 68.7237 0.8709 66.8774 70.5699 61.9070 75.5403 −3.1037
13 62.1800 63.2813 1.0116 61.1368 65.4257 56.3779 70.1847 −1.1013
14 57.0100 57.9957 1.3276 55.1812 60.8102 50.8557 65.1357 −0.9857
15 46.3500 51.6048 1.1760 49.1117 54.0979 44.5852 58.6243 −5.2548
16 65.0300 69.2767 0.9129 67.3414 71.2119 62.4353 76.1180 −4.2467
17 45.8700 44.8414 1.1740 42.3526 47.3302 37.8234 51.8594 1.0286
18 56.2000 52.7037 1.9572 48.5546 56.8529 44.9401 60.4673 3.4963
19 58.1300 60.8148 0.8520 59.0086 62.6209 54.0088 67.6207 −2.6848
20 63.3600 65.0277 1.1955 62.4934 67.5620 57.9934 72.0620 −1.6677

Sum of Residuals 0
Sum of Squared Residuals 153.30071
Predicted Residual SS (PRESS) 283.65365

The first two columns in Table 3.9 list the actual and estimated values for
the dependent variable, VOL. The next column contains the estimated stan-
dard error of the estimated mean. The next two columns contain the output
from the CLM option—the lower and upper 0.95 confidence intervals on the
mean. The next two lines present the results of the CLI option—the lower and
upper 0.95 prediction intervals. The last column lists the residuals for each
data point, that is, (y − μ̂y|x). Notice that both intervals are given for every
observed value of the independent variables in the data set, allowing the user
to pick the desired value(s).15

15PROC REG as well as most computer programs also have options for computing intervals for
arbitrarily chosen values of the independent variables. These variables should, however, be within
the range of the values in the data.
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The interpretation of the confidence interval is that we are 95% confident that
the true mean of the population of trees having the dimensions of the first tree
(DBH = 1020, HT = 89.00, and D16 = 9.3) is between 17.84 and 27.15 cubic
feet. Similarly, we are 95% confident that a single tree, picked at random from
that population, will have a volume between 14.45 and 30.54 cubic feet. These
intervals may be too wide to be practically useful.

3.8 Correlation and the Coefficient of Determination

In Section 2.5 we defined the correlation coefficient as a convenient index
of the strength of the linear relationship between two variables. We further
showed how the square of the correlation coefficient, called the coefficient of
determination, provided a useful measure of the strength of a linear regression.
Equivalent statistics are available for multiple regression. Two types of corre-
lations describe strengths of linear relationships among more than two
variables:

1. Multiple correlation, which describes the strength of the linear
relationship between one variable (usually the dependent variable)
with a set of variables (usually the independent variables).

2. Partial correlation, which describes the strength of the linear rela-
tionship between two variables when all other variables are held con-
stant or fixed. If one of these variables is the dependent variable, the
partial correlation describes the strength of the linear relationship
corresponding to that partial regression coefficient.

Other types of correlations not presented here are multiple-partial and part
(or semipartial) correlations (Kleinbaum, et al., 1998, Chapter 10).

Multiple Correlation
In the multiple linear regression setting, the multiple correlation coefficient,
denoted by R, is the correlation between the observed values of the response
variable, Y , and the least squares estimated values, μ̂y|x, obtained by the linear
regression. Because the μ̂y|x are least squares estimates, it can be shown that
R is also the maximum correlation obtainable between the response variable
and a linear function of the set of independent variables. In the more general
setting, a multiple correlation coefficient is the maximum correlation between
a linear function of a set of variables and a single variable.

Because μ̂y|x is the least squares estimate of the response, it follows that
the multiple correlation coefficient measures the strength of the linear rela-
tionship between the response variable y and its least squares estimate, μ̂y|x.



3.8 Correlation and the Coefficient of Determination 103

Then, as in simple linear regression, the square of the correlation coefficient,
R2, is the ratio of the model over total sum of squares, that is, SSR/TSS.

Although the multiple correlation coefficient can be calculated by comput-
ing the μ̂y|x values and then calculating the correlation coefficient between
μ̂y|x and y, it is more convenient to compute R2 directly from the results of a
regression analysis:

R2 =
SS due to regression model

Total SS for y, corrected for the mean
,

and then R is the positive square root. Actually, R2 is provided by all com-
puter programs for multiple regression; in the outputs we have shown, it
is denoted by “R-square.” As in simple linear regression, R2 is known as
the coefficient of multiple determination and has an interpretation similar
to that given r2 in Section 2.5. That is, R2 is the proportionate reduction
in the variation of y that is directly attributable to the regression model.
As in simple linear regression, the coefficient of determination must take
values between and including 0 and 1, where the value 0 indicates that the
regression is nonexistent while the value of 1 indicates a “perfect” linear
relationship. In other words, the coefficient of determination measures the
proportional reduction in variability about the mean resulting from the fitting
of the multiple regression model.

Also, as in simple linear regression, there is a correspondence between the
coefficient of determination and the F statistic for testing for the existence of
the model:

F =
(n−m− 1)R2

m(1−R2)

The apparent simplicity of the coefficient of determination, which is often
referred to as “R-square,” makes it a popular and convenient descriptor of the
effectiveness of a multiple regression model. This very simplicity has, how-
ever, made the coefficient of determination an often abused statistic. There is
no rule or guideline as to what value of this statistic signifies a “good” regres-
sion. For some data, especially those from the social and behavioral sciences,
coefficients of determination of 0.3 are often considered quite “good,” whereas
in fields where random fluctuations are of smaller magnitudes, as for example
in engineering, coefficients of determination of less than 0.95 may imply an
unsatisfactory fit. For the model analyzed in the output shown in Table 3.6,
the R2 value is given as 0.9591. Therefore, we can say that almost 96% of the
variation in yield of timber (VOL) can be explained by the regression on DBH,
HT, and D16. That means that only about 4% of the variation can be attributed
to extraneous factors not included in the regression. However, the residual
standard deviation (Root MSE in Table 3.06) of 3.10 implies that approximately
5% of observed volumes will lie more than 6.20 cubic feet (twice the standard
deviation) from the estimated value, an error that may be too large for practical
purposes. Furthermore, we noted that the prediction intervals were probably
too wide to be useful.
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An additional feature of the coefficient of determination is that when a
small number of observations are used to estimate an equation, the coeffi-
cient of determination may be inflated by having a relatively large number
of independent variables. In fact, if n observations are used for an (n − 1)
variable equation, the coefficient of determination is, by definition, unity.
Therefore, the coefficient of determination can be driven to any desired
value simply by adding variables! To overcome this effect, there is available
an alternate statistic, called an adjusted R-square statistic, which indicates
the proportional reduction in the mean square (rather than in the sum of
squares). This quantity is also often produced automatically in computer
outputs; in Table 3.6 it is denoted by “Adj R-sq.” In that example, it dif-
fers little from the ordinary R-square because the number of independent
variables is small compared to the sample size, which illustrates the recom-
mendation that this statistic, though usually available in computer printouts,
is primarily useful if its value differs greatly from the ordinary R-square. The
adjusted R-square statistic also has an interpretive problem because it can
assume negative values, which will occur if the F -value for the model is less
than unity (and the p-value > 0.5).

Partial Correlation
The partial correlation coefficient describes the strength of a linear
relationship between two variables holding constant other variables. In a
sense, a partial correlation is to a simple correlation as a partial regression
is to a total (or simple linear) regression.

One way to define partial correlation is to show how it can be computed
from residuals. Given a set of p variables, x1, x2, . . . , xp, then rxi, xj|all others,
the partial correlation between xi and xj holding constant all other variables
can be computed as follows:

1. Define ei, j|all others as the residuals from the regression of xi on all other
variables except xj .

2. Define ej, i|all others as the residuals from the regression of xj on all other
variables except xi.

Then the simple correlation between ei, j|all others and ej, i|all others is the
partial correlation between xi and xj .

Because the partial correlation can be expressed as a simple correlation
between two variables, it has the properties of a simple correlation: it takes
a value from −1 to +1, with a value of 0 indicating no linear relationship
and values of −1 and +1 indicating perfect linear relationship.

In the context of a regression model, the partial correlation of the depen-
dent variable and an independent variable holding constant all other inde-
pendent variables has the following characteristics:

• There is an exact relationship between the test for the null hypothesis
of a zero partial correlation and the test of the null hypothesis of a zero
value for the corresponding partial regression coefficient. In this case the
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equivalence to the t statistic for testing whether a regression coefficient
is zero is

|t| = |β̂j |√
cjjMSE

=

√
(n−m− 1)r2

(1− r2)

where r = ry, xj|all other x’s.
• The square of the partial correlation between y and a particular inde-

pendent variable, xj , is known as the coefficient of partial determination.
The coefficient of partial determination measures the marginal contribu-
tion of adding xj to a model containing all other independent variables.
Its square indicates the portion of the variability explained by that vari-
able after all the other variables have been included in the model.

For example, suppose that X1 is the age of a child, X2 is the number of
hours spent watching television, and Y is the child’s score on an achieve-
ment test. The simple correlation between Y and X2 would include the indi-
rect effect of age on the test score and could easily cause that correlation
to be positive. However, the partial correlation between Y and X2, holding
constant X1, is the “age-adjusted” correlation between the number of hours
spent watching TV and the achievement test score.

As noted, the test for the null hypothesis of no partial correlation is the
same as that for the corresponding partial regression coefficient. Other infer-
ences are made by an adaptation of the Fisher z transformations (Section
2.5), where the variance of z is [1/(n − q − 3)], where q is the number of
variables being held constant (usually (m− 2)).

Although partial correlations can be computed by residuals, there are a
number of more efficient procedures for calculating these quantities. For
example, using the elements of the C matrix,

cij√
ciicjj

is the partial cor-

relation of xi and xj holding constant all other variables in that matrix.
Other methods exist, but are not presented here (see, e.g., Kleinbaum, et al.,
1998, Section 10-5). The partial correlation coefficient is not widely used but
has application in special situations, such as path analysis (Loehlin, 2004).
Finally, a partial correlation indicates the strength of a linear relationship
between any two variables, holding constant a number of other variables,
without any variables being specified as independent or dependent.

3.9 Getting Results

As stated in Section 3.3 and emphasized throughout this text, virtually all
regression analyses are done using statistical software packages. Data entry
and the method of selecting the user’s choice of statistical analyses vary from
package to package. Most of the packages require some form of simple pro-
gramming statements or use drop-down menus to access the analysis proce-
dures and present the output in a “static” format. Other packages offer the
user an “interactive” option that allows for changing various characteristics
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of the output instantaneously, usually on a graph or chart and with some sort
of a “button” or “moving hand” on the output. There are many easy-to-use
general-purpose programs for doing regression within these packages, rang-
ing from the very simple to the extremely complex, and it matters little which
one is chosen (although some of the more elementary ones may not have all
the desired capabilities).

The most common statistical software packages used for regression anal-
ysis are windows-based, run on a standard desktop PC, and offer both static
and dynamic options. For example, SAS offers static regression analysis
through several procedures, such as GLM and REG, and interactive analysis
through PROC INSIGHT. SPSS offers static regression analysis through drop-
down menus entitled Regression and General Linear Models, and interactive
graphics through drop-down menus entitled Interactive Graphs. Minitab uses
the command REGRESS to do static regression analysis, and Microsoft
EXCEL has several regression options in the Data Analysis section. There is
very little difference between the static and interactive options in most soft-
ware packages because of the speed in obtaining the output. Several varia-
tions of the analyses can be done in a very short period of time, even with
large data sets, allowing the user to look a various options. Individual data
points in different types of graphs can be identified in most graphic options,
even in the static analyses, allowing for outlier identification and spurious
data point identification, or finding data recording errors. Most of the exam-
ples in this book use the static options in SAS, a few the static options in
SPSS, and occasionally an interactive option will be used as an illustration.

3.10 Summary and a Look Ahead

Uses and Misuses of Regression Analysis
This chapter has revolved around the use of a set of independent or factor
variables to predict and/or explain the behavior of a dependent response
variable. The appropriate inferences about parameters were presented under
the normality assumption of Section 3.2. As in simple linear regression, there
are some limitations on the uses of the results of a regression analysis. Two
limitations were mentioned in Section 2.8:

1. Extrapolation is not recommended.
2. The existence of a regression relationship does not, by itself, imply cause

and effect.

In multiple regression, these limitations have some additional features.
In avoiding extrapolation in the multiple regression setting there is the

additional problem of hidden extrapolation. This condition occurs when
values of individual independent variables are within the range of the
observed values, but a combination of two or more variables does not occur.
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For example, in the data set given in Table 2.1, the range of the values of DBH
is seen to be from 10 to 19, while the range of D16 is from 9 to 17. However,
as shown by the data points plotted by (.) in Figure 3.5, a hypothetical tree
with DBH = 14 and D16 = 18 (shown by the plotting symbol “X”) is within
the range of these two variables singly, but is definitely beyond the range of
observed combinations of these two variables. Estimating the volume for a
tree with these dimensions is an example of hidden extrapolation.

Figure 3.5

Relationship of
DBH and D16

TREE VOLUMES

Plot of DBH*D16

As in simple linear regression, the existence of a partial regression coeffi-
cient does not, by itself, imply that the corresponding variable causes a change
in the response. As noted earlier, the reason is that other variables may be,
causing the change. Now in multiple regression, the partial regression coeffi-
cient does indeed account for possible effects of other variables in the model,
but this is no guarantee that one or more variables not in the model may still
be the true cause. Of course, the more variables in the model, the greater the
possibility of establishing a cause–effect relationship. However, as we will see,
too many variables in a model may cause other problems.

In addition to these two obvious problems, many more considerations are
involved in the use of multiple regression. In fact, regression analyses are often
afflicted by Murphy’s Law: “If anything can go wrong, it will.” For this reason,
the majority of the remainder of this text addresses possible problems and the
strategies used to solve them. For convenience, we have divided these potential
problems into two groups—data problems and model problems.
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Data Problems
Regression is used mostly with secondary data or data collected in a
relatively random or haphazard manner, in contrast to the analysis of vari-
ance, which is primarily used for data resulting from planned experiments.
This means that the results of such an analysis may be adversely affected by
problems with the data. For example, outliers or unusual observations can
badly bias regression model estimates. The “random” error may not be strictly
random, independent, or normally distributed with variance σ2, again causing
biased estimates, incorrect standard errors, or incorrect significance levels. It
is therefore advisable to make an effort to check for data problems that may
cause unreliable results, and if they are found to exist, implement remedial
actions. Methods to assist in these efforts are covered starting in Chapter 4.

Model Problems
Regression is a statistical method frequently used in exploratory analyses,
that is, in situations where the true model is not known. Therefore, there is
often a serious question as to whether the model specified is appropriate.

One problem is overspecification of the model—that is, including too many
independent variables in the model. This does not cause biased estimates but
instead is a major cause of strong correlations among the independent vari-
ables. This phenomenon is called multicollinearity and causes estimated
regression coefficients to have inflated standard errors. A common result when
multicollinearity exists is for a regression model to be highly significant
(p-value < 0.05), while none of the regression coefficients approaches signifi-
cance (e.g., p-value > 0.05). In other words, the regression does a good job of
estimating the behavior of the response, but it is impossible to tell which of the
independent variables are responsible. Methods for diagnosing multicollinear-
ity and some remedial methods are presented in Chapter 5.

On the other hand, specifying an inadequate model is known as spec-

ification error and may include the omission of important independent
variables and/or specifying straight-line relationships when curvilinear rela-
tionships are appropriate. Making a specification error is known to cause
biased estimates of model parameters. Diagnostics for specification error
are presented in the text starting in Chapter 6.

Sometimes when a model appears to be overspecified, a commonly applied
but not necessarily appropriate remedial method is that of discarding vari-
ables. This method, called variable selection, is presented in Chapter 6.

3.11 CHAPTER EXERCISES

The computational procedures for estimating coefficients and doing infer-
ences on a multiple regression obviously do not lend themselves to hand
calculations. Thus, it is assumed that all the exercises presented here will
be analyzed using computers. Therefore, the exercises do not focus on the
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mechanics for obtaining the correct numerical results. This task is best
reinforced by redoing the examples in the text. Instead the emphasis in the
exercises should be on the appropriate approach to the problem and the
explanation of the results. For this reason we do not, in general, pose spe-
cific tasks for exercises. In general, we expect the reader to do the following:

(a) Estimate all relevant parameters and evaluate the fit and the appro-
priateness of the model.

(b) Interpret the coefficients, and their statistical and practical significance.
(c) Examine residuals for possible violations of assumptions.
(d) Examine the predicted values and their standard errors.
(e) Summarize the results, including possible recommendations for addi-

tional analyses.
Also, for one or two selected exercises, the reader should do the following:

(f) Compute one or two coefficients and their test statistics by using
residuals.

1. In Exercise 3 of Chapter 2, we related gasoline mileage to the weight of
some cars. The full data set included data on other variables, as follows:

WT: The weight in pounds
ESIZE: Engine power rating in cubic inches
HP: Engine horsepower
BARR: Number of barrels in the carburetor

Use a linear regression model to estimate MPG. The data are shown in
Table 3.10 and are available as file REG03P01.

Table 3.10

Mileage Data

WT ESIZE HP BARR MPG

2620 160.0 110 4 21.0
2875 160.0 110 4 21.0
2320 108.0 93 1 22.8
3215 258.0 110 1 21.4
3440 360.0 175 2 18.7
3460 225.0 105 1 18.1
3570 360.0 245 4 14.3
3190 146.7 62 2 24.4
3150 140.8 95 2 22.8
3440 167.6 123 4 19.2
3440 167.6 123 4 17.8
4070 275.8 180 3 16.4
3730 275.8 180 3 17.3
3780 275.8 180 3 15.2
5250 472.0 205 4 10.4
5424 460.0 215 4 10.4
5345 440.0 230 4 14.7
2200 78.7 66 1 32.4
1615 75.7 52 2 30.4
1835 71.1 65 1 33.9
2465 120.1 97 1 21.5
3520 318.0 150 2 15.5

(Continued)
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Table 3.10

(Continued)

WT ESIZE HP BARR MPG

3435 304.0 150 2 15.2
3840 350.0 245 4 13.3
3845 400.0 175 2 19.2
1935 79.0 66 1 27.3
2140 120.3 91 2 26.0
1513 95.1 113 2 30.4
3170 351.0 264 4 15.8
2770 145.0 175 6 19.7
3570 301.0 335 8 15.0
2780 121.0 109 2 21.4

2. One of many organized sporting events is a “putting tour,” a set of tour-
naments featuring professional miniature golf putters. As with all such
events, there are extensive records of performances of the participants.
We have such records for 32 individuals in a particular tour. The data
are not reproduced here but are available on the data diskette as File
REG03P02. The statistics recorded for this exercise are:

TNMT: The number of tournaments in which the player participates
WINS: The number of tournaments won
AVGMON: Average money won per tournament
ASA: The player’s “adjusted” point average; the adjustment reflects

the difficulties of the courses played

At the end of the season each player is given a “POINT” score by the
professional organization, which is supposed to indicate how good the
player is considered to be.

Perform a regression to investigate how the points are related to the
individual player’s statistics.

3. The purpose of this study is to see how individuals’ attitudes are influ-
enced by a specific message as well as their previous knowledge and
attitudes. In this study the subject is the preservation of the environ-
ment. Respondents were initially tested on their knowledge of the sub-
ject (FACT) and were given a test on their attitude (PRE): A high score
indicates a pro preservation attitude. The sex (SEX) of respondents was
also recorded; “1” is female and “2” is male.

The respondents were then exposed to an antipreservation mes-
sage. After viewing the message, they recorded the number of positive

(NUMPOS) and negative (NUMNEG) reactions they had to the message.
It was believed that a number of positive reactions implied an antipreser-
vation attitude and vice versa. The response variable is POST, a test on
preservation attitude, where a high score indicates a propreservation atti-
tude. The data are not shown here and are available in File REG03P03.

Perform a regression to see how the POST score is related to the
other variables.
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4. It is generally perceived that military retirees like to retire in areas that
are close to military bases and also have a pleasant climate. State data
were collected to attempt to determine factors that affect the choice of
states for military retirees. The variables are:

RTD: Total military retirement pay, a proxy for number of retirees
(the response variable)

ACT: Total active military pay, a proxy for total military population
DOD: Total defense spending in state
POP: Total population of state
CLI: Cost of living index
LAT: Latitude (north in degrees)
PCP: Days of precipitation

The data are in File REG03P04. Find a model that explains the decision
process for the location of military retirees.

5. The data in Table 3.11 (also in file REG03P05) are Consumer Price Index
values for various commodity groups from the 1995 Statistical Abstract

of the United States. The two groups, energy (ENERGY) and transporta-
tion (TRANS), were used in Exercise 5 of Chapter 2. Added to these two
groups for this exercise are the index for medical care (MED) and the
average for all items (ALL).

Table 3.11

Data for Exercise 5

Year ENERGY TRANS MED ALL

60 22.4 29.8 22.3 29.6
61 22.5 30.1 22.9 29.9
62 22.6 30.8 23.5 30.2
63 22.6 30.9 24.1 30.6
64 22.5 31.4 24.6 31.0
65 22.9 31.9 25.2 31.5
66 23.3 32.3 26.3 32.4
67 23.8 33.3 28.2 33.4
68 24.2 34.3 29.9 34.8
69 24.8 35.7 31.9 36.7
70 25.5 37.5 34.0 38.8
71 26.5 39.5 36.1 40.5
72 27.2 39.9 37.3 41.8
73 29.4 41.2 38.8 44.4
74 38.1 45.8 42.4 49.3
75 42.1 50.1 47.5 53.8
76 45.1 55.1 52.0 56.9
77 49.4 59.0 57.0 60.6
78 52.5 61.7 61.8 65.2
79 65.7 70.5 67.5 72.6
80 86.0 83.1 74.9 82.4
81 97.7 93.2 82.9 90.9
82 99.2 97.0 92.5 96.5
83 99.9 99.3 100.6 99.6
84 100.9 103.7 106.8 103.9
85 101.6 106.4 113.5 107.6

(Continued)
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Table 3.11

(Continued)

Year ENERGY TRANS MED ALL

86 88.2 102.3 122.0 109.6
87 88.6 105.4 130.1 113.6
88 89.3 108.7 138.6 118.3
89 94.3 114.1 149.3 124.0
90 102.1 120.5 162.8 130.7
91 102.5 123.8 177.0 136.2
92 103.0 126.5 190.1 140.3
93 104.2 130.4 201.4 144.5
94 104.6 134.3 211.0 148.2

(a) Do the multiple regression using ALL as the dependent variable and
the three others as independent variables. The interpretation of the
coefficients is quite important here. What do the residuals imply here?

(b) Do separate simple regressions using ALL as the dependent variable
and the other three separately as independent variables. Compare
with (a). Explain.

(c) Find a simultaneous confidence region on all three coefficients in
part (a) using the Bonferroni method.

(d) Find the individual confidence intervals in part (b) and compare with
the results of (c).

6. A marketing research team has conducted a controlled price experiment
for the purpose of studying demand relationships for three types of oranges:

1. Florida Indian River oranges, a premium Florida orange
2. Florida Interior oranges, a standard Florida orange
3. California oranges, considered superior to all Florida oranges

A total of 31 price combinations (P1, P2, and P3, respectively) were
selected according to an experimental design and randomly assigned to
31 consecutive days (excluding Sundays) in several supermarkets. Daily
sales of the three types of oranges were recorded and are labeled as vari-
ables Q1, Q2, and Q3, respectively. For this exercise we have selected
data for only one store. The data are shown in Table 3.12 and are avail-
able as File REG03P06.

Table 3.12

Data on Orange Sales

Day P1 P2 P3 Q1 Q2 Q3

1 37 61 47 11.32 0.00 25.47
2 37 37 71 12.92 0.00 11.07
3 45 53 63 18.89 7.54 39.06
4 41 41 51 14.67 7.07 50.54
5 57 41 51 8.65 21.21 47.27
6 49 33 59 9.52 16.67 32.64
1 37 61 71 16.03 0.00 0.00
2 45 45 63 1.37 5.15 4.12
3 41 57 51 22.52 6.04 68.49
4 45 53 55 19.76 8.71 30.35
5 65 49 59 12.55 13.08 37.03

(Continued)
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Table 3.12

(Continued)

Day P1 P2 P3 Q1 Q2 Q3

6 61 61 71 10.40 8.88 22.50
1 41 57 67 13.57 0.00 0.00
2 49 49 59 34.88 6.98 10.70
3 49 49 43 15.63 10.45 77.24
4 61 37 71 13.91 15.65 11.01
5 57 41 67 0.71 18.58 25.09
6 41 41 67 15.60 12.57 29.53
1 57 57 67 5.88 2.26 20.36
2 45 45 55 6.65 6.01 30.38
3 53 45 55 4.72 22.05 60.63
4 57 57 51 6.14 7.62 26.78
5 49 49 75 15.95 14.36 14.36
6 53 53 63 8.07 7.02 17.19
1 53 45 63 1.45 10.87 3.26
2 53 53 55 6.50 0.00 19.49
3 61 37 47 7.06 30.88 48.58
4 49 65 59 10.29 1.20 19.86
5 37 37 47 16.34 22.99 49.24
6 33 49 59 27.05 7.79 32.79
1 61 61 47 11.43 4.29 18.57

Perform the three separate regressions relating the sales quantities to
the three prices. Ignore the “Day” variable in the regression model, but
consider it as a factor in examining the residuals. In addition to the usual
interpretations, a comparison of the coefficient for the three orange types
is of interest.

7. Data on factors that may affect water consumption for the 48 contiguous
states are available in File REG03P07. The water consumption data are from
Van der Leeden et al. (1990), and data on factors are obtained from the Sta-

tistical Abstract of the United States (1988) and an atlas. The variables are:

LAT: Approximate latitude of the center of the state, in degrees
INCOME: Per capita income, $1000
GAL: Per capita consumption of water, in gallons per day
RAIN: Average annual rainfall, in inches
COST: The average cost per 1000 gallons, in dollars

Perform the regression to estimate water consumption as a function of
these variables.

8. The data for this exercise concern factors considered to be influential
in determining the cost of providing air service. It is desired to develop
a model for estimating the cost per passenger mile so that the major
factors in determining that cost can be isolated.

The data source is from a CAB report “Aircraft Operation Costs and
Performance Report,” August 1972 (prior to deregulation), and is quoted
in Freund and Littel (2000). The variables are:

CPM: Cost per passenger mile (cents)
UTL: Average hours per day use of aircraft
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ASL: Average length of nonstop legs of flights (1000 miles)
SPA: Average number of seats per aircraft (100 seats)
ALF: Average load factor (% of seats occupied by passengers)

Data have been collected for 33 U.S. airlines with average nonstop lengths
of flights greater than 800 miles. The data are available in File REG03P08.
Perform the regression that estimates the cost per passenger mile.

9. The data for this exercise may be useful to ascertain factors related to
gasoline consumption. The data have been extracted from a special study
by Drysdale and Calef (1977). Variables are related to gasoline consump-
tion for the 48 contiguous states with District of Columbia data incorpo-
rated into Maryland.
The variables are:

STATE: Two-character abbreviation
GAS: Total gasoline and auto diesel consumption in 1012 BTU
AREA: Of state in 1000 miles
POP: Population, 1970, in millions
MV: Estimated number of registered vehicles in millions
INC: Personal income in billions of dollars
VAL: Value added by manufactures in billions of dollars
Region: Codes EAST and WEST of the Mississippi river

The data are available as File REG03P09.
Find a model that explains the factors affecting gasoline consumption.

Ignore the region variable.

10. This is another contrived example of completely different total and
partial regression coefficients similar to Example 3.2. Using data in
Table 3.13 perform the simple linear and the two variable multiple regres-
sions and construct the necessary plots and/or calculations to show that
these results are indeed correct.

Table 3.13

Data for Exercise 3.10

OBS x1 x2 y

1 3.8 3.8 3.1
2 7.9 7.4 6.9
3 4.1 3.9 3.8
4 7.2 5.2 7.5
5 4.6 3.9 3.9
6 8.8 7.8 5.4
7 1.1 2.9 0.0
8 8.4 8.5 3.4
9 8.0 7.5 3.8

10 3.4 2.5 5.4
11 3.6 4.1 3.0
12 10.0 9.0 5.1
13 5.6 6.3 1.4
14 6.4 7.2 0.5

(Continued)
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Table 3.13

(Continued)

OBS x1 x2 y

15 1.5 1.2 4.0
16 5.9 6.2 2.0
17 1.2 3.7 −2.0
18 0.6 1.0 2.4
19 9.2 9.4 2.4
20 7.3 5.2 6.5

11. In an effort to determine the cost of electricity, a resident in College
Station, Texas, recorded the following daily readings for the period from
September 19 through November 4:

MO: month
DAY: day of the month
TMAX: maximum daily temperature
TMIN: minimum daily temperature
WNDSPD: windspeed, coded “0” if less than 6 knots and “1” if 6

knots or more
CLDCVR: cloud cover coded as follows:

0 – clear
1 – less than 60% coverage
2 – 60% to 90% coverage
3 – cloudy
increments of 0.5 are used to denote variable cloud cover between
indicated codes

KWH: electricity consumption

The data are available as File REG03P11.
Perform a regression analysis to determine how the factors affect elec-

tric usage. Does the model make sense? (Take into account the geograph-
ical location of the city from which the data derive and the time of year.)

12. To determine the effect of environmental factors on health standards,
a sample of cities ranging in size from 100,000 people to over 2.5 mil-
lion people were taken, and the following variables were measured:

POP: population (in thousands)
VALUE: value of all residential housing (in millions of dollars); this

is the proxy for economic conditions
DOCT: the number of doctors
NURSE: the number of nurses
VN: the number of vocational nurses
DEATHS: the number of deaths due to health-related causes (i.e., not

accidents); this is the proxy for health standards

The data are available as File REG03P12.
Perform a regression relating DEATHS to all other variables except

POP. Should POP be included? If so, how would you suggest it be used?
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Part II

Problems and
Remedies

Part I of this book is concerned with the use of linear models to analyze the
behavior of a response variable with the primary emphasis on use of the linear
regression model. Statistical analyses based on such models can provide useful
results if the correct model has been chosen and other assumptions underlying
the model are satisfied. In many applications these assumptions do hold, at least
to a sufficient degree to ensure that the results can be used with confidence.

However, if violations of these assumptions are more substantial, the
results may not reflect the true population relationships, therefore providing
incorrect conclusions that may lead to recommendations or actions that do
more harm than good. Unfortunately, such results are rather likely to occur
in regression analyses because these are frequently used on data that are not

the result of carefully designed experiments. For this reason it is important
to scrutinize the results of regression analyses to determine if problems exist
that may compromise the validity of the results, and if such problems are
deemed to exist, to search for remedial measures or modify the inferences.

Part II of this book, consisting of Chapters 4, 5, and 6, addresses methods
for detecting possible problems with either data or model specification and sug-
gests possible remedies. For the purpose of this book we have divided these
problems into three categories that are the basis for these three chapters.

Chapter 4 deals with how individual observations affect the results of an
analysis. Because individual observations are the rows of the X and Y matri-
ces, diagnostic tools for detecting possible problems with observations are
called row diagnostics. We present three aspects of row diagnostics:

Outliers and influential observations are observations that in some man-
ner appear not to “belong” and consequently may affect estimates of
model parameters.
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Unequal variances among observations of the response variable violate
the equal variance assumption and may result in biased estimates of
parameters, but more importantly, cause incorrect standard errors of
estimated responses.

Correlated errors among observations of the response violate the assump-
tion of independent errors and may cause biases in estimated standard
errors of parameter as well as response estimates.

Chapter 5 deals with correlations among the independent variables. This
condition, called multicollinearity, is not a violation of assumptions and there-
fore does not invalidate parameter and response estimates. However, multi-
collinearity does create difficulties in estimating and interpreting the partial
regression coefficients. Multicollinearity is not difficult to detect; however,
effective and useful remedial methods are not easy to implement and, in fact,
are sometimes impossible to find.

Chapter 6 deals with variable selection. Inferences on linear models assume
a correctly specified model in the sense that the model used for analysis con-
tains the “correct” selection of independent variables. However, a regression
analysis is often used to determine the “correct” set of independent variables
by starting with an initial model that contains a large number of independent
variables and then using statistical methods to select the “correct” set. By
definition, this procedure is a violation of assumptions and would usually be
avoided. (It has been argued that this methodology should not be presented
in a textbook.) However, because these methods are intuitively attractive and
readily available in all statistical software packages, they are indeed widely
used (and often misused) and are, therefore, presented in this chapter.

These chapters may leave the reader somewhat frustrated, because they
provide no universally “correct” procedures with “clean” answers. However,
we must remember that we are here dealing largely with data and model prob-
lems, and unfortunately there is no way to make good data from bad, nor is
it possible to produce a “correct” model from thin air. These are, after all,
exploratory rather than confirmatory analysis procedures whose results are
largely useful to guide further studies.



Chapter 4

Problems with
Observations

4.1 Introduction

We start the discussion of possible problems encountered with regression
analyses with a look at the effect a few “extreme” observations have on the
results of a statistical analysis, present some statistics that may be useful in
identifying such observations, and provide some guidelines for possible reme-
dies for dealing with such observations. We then explore the diagnostic tools
necessary to detect violations of assumptions on homoscedasticity and inde-
pendence of the error term. At the end of this discussion we again look at some
suggested remedial action. As will be pointed out, one method of correcting
for violations of assumptions is to make some form of transformation on the
data. Because this topic is also important for a number of other situations, we
treat transformations in a separate section in Chapter 8.

Because problems with observations involve both the independent and
response variables and can occur in so many ways, this chapter is not only
long but may be overwhelming. However, much of the data that we subject to
statistical analysis does present us with these problems, so it is important that
we cover as many of them in as comprehensive a manner as possible. To make
this chapter manageable, we have divided it into two parts. The exercises at
the end of the chapter are also divided in a similar manner.

Part One consists of Section 4.2 and deals with the possible existence of
unusual or extreme observations, often referred to as outliers. This part is quite
long because, as we will see, outliers can occur in many different disguises,
especially since they may exist among the independent variables as well as the
response variable. For this reason there exist a number of different statistics for
detection of such observations, none of which claim to be the best.
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Part Two examines situations where violations of the assumptions about
the variance and independence of the random errors may exist. Sections 4.3
and 4.4 address the detection of unequal variances and some suggested reme-
dies. Section 4.5 presents a situation that often results in correlated error
terms, a response variable measured over time. This type of a regression model
is known as a time series and allows us to model the responses when we have
time-dependent errors.

With the possible exception of time series data, we usually have no way
of knowing if any one data set exhibits one or possibly more of the problems
discussed in this chapter. The diagnostics presented in this chapter need not
all be performed, nor do they need to be performed in the order presented. In
fact, a thorough knowledge of the nature and source of the data under study
may indicate that none of these techniques are needed.

PART ONE: OUTLIERS

4.2 Outliers and Influential Observations

An observation that is markedly different from, or atypical of, the rest of the
observations of a data set is known as an outlier. An observation may be an
outlier with respect to the response variable and/or the independent variables.
Specifically, an extreme observation in the response variable is called an out-

lier, while extreme value(s) in the x’s (independent variables) are said to have
high leverage and are often called leverage points.

An observation that causes the regression estimates to be substantially dif-
ferent from what they would be if the observation were removed from the
data set is called an influential observation. Observations that are outliers
or have high leverage are not necessarily influential, whereas influential obser-
vations usually are outliers and have high leverage.

In this section we start the presentation with a very simple example of a
single outlier that will also show why outliers may sometimes be difficult to
detect. We continue with the presentation of statistics designed to detect out-
liers, leverage points, and influential observations. These are illustrated with
an example. Finally, we briefly discuss remedial methods that, unfortunately,
do not always provide satisfactory results.

EXAMPLE 4.1 This artificial example consists of 10 observations generated from a simple
linear regression model. The values of the observations of the independent
variable, x, have the values from 1 to 10. The model is

y = 3 + 1.5x+ ε,
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where ε is a normally distributed random variable with mean zero and standard
deviation of three and with no outliers. The data are shown in Table 4.1.

Table 4.1

Example to Illustrate
Outlier

OBS x y

1 1 6.2814
2 2 5.1908
3 3 8.6543
4 4 14.3411
5 5 13.8374
6 6 11.1229
7 7 16.5987
8 8 19.1997
9 9 20.0782

10 10 19.7193

The results of the regression analysis performed by PROC REG of the SAS
System are shown in Table 4.2. The results are reasonable. The regression is
certainly significant, the parameter estimates are within one standard error of
the true values, and although the error mean square appears to be low, the 0.9
confidence interval does include the true value of 9.

Table 4.2

Regression Results

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 240.87621 240.87621 56.23 <.0001
Error 8 34.26836 4.28354
Corrected Total 9 275.14456

Root MSE 2.06967 R-Square 0.8755
Dependent Mean 13.50238 Adj R-Sq 0.8599
Coeff Var 15.32821

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 4.10444 1.41386 2.90 0.0198
x 1 1.70872 0.22786 7.50 <.0001

For purposes of illustration, we have constructed two different outlier
scenarios

Scenario 1: When x = 5, y has been increased by 10 units

Scenario 2: When x = 10, y has been increased by 10 units

Note that in each scenario the observed value of the dependent variable
has been increased by over three standard deviations, certainly a result that we
would not expect to occur that thus qualifies the value as an outlier. The differ-
ence between the scenarios is in the location of the outlier: The first occurs in
the “middle” of the range of x-values, whereas the second occurs at the (high)
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end. Table 4.3 gives a brief summary of results for the regression results for
the original data and two outlier scenarios.

Table 4.3

Summary of Regressions

β̂0 β̂1
Scenario std error std error MSE

Original data 4.104 1.709 4.284
1.414 0.228

Scenario 1 5.438 1.648 18.469
2.936 0.473

Scenario 2 2.104 2.254 8.784
2.024 0.326

The results show a definite biasing of estimates due to the outliers, but the
biases are quite different for the two scenarios. For scenario 1, β̂1 has changed
little, β̂0 has increased somewhat, and the error mean square and consequently
the standard errors of both coefficients are much larger. For scenario 2, β̂1 has
changedratherdramatically,whilethechangesin β̂0 andMSEarenotsomarked.
These results are seen in Figure 4.1, which shows the observed values and fitted
lines for the three cases. These plots show that the most visible effect on the
estimated response line is due to the outlier at the upper end of the x-values.

Figure 4.1 Effects of Outlier on Regression

These results are a direct consequence of the least squares estimating proce-
dure.Remember, theregression line is that line forwhichthesumofsquareddis-
tances to the data points are minimized. A physical analogue, which makes this
process more understandable, is afforded by a law of physics called Hooke’s
law, which states: “The energy in a coil spring is proportional to the square of



4.2 Outliers and Influential Observations 123

the distance the spring is stretched.” This means that if a coil spring1 is stretched
from each point to a rigid rod representing the regression line, the least squares
line will be achieved by the equilibrium position of the rod.

This physical analogue allows us to visualize how the outlier in the middle
exerts a balanced pull on the rod, lifting it slightly (the increase in β̂0) but
leaving the slope (β̂1) essentially unchanged. On the other hand, the outlier
at the upper end tends to pull the rod only on one end, which provides more
leverage than the outlier in the middle; hence, the estimate of the slope (β̂1)
is much more affected by that outlier. This is also the reason why the error
mean square was not increased as much in scenario 2. In other words, the
location of the outlier has affected the nature of the bias of the parameter
estimates. This combination of outlier and leverage defines an influential

observation.

Now that we have seen the damage that can be caused by an outlier, we need
to find methods for detecting outliers. We will see that even for this very simple
example it is not as easy as it may seem.

The standard tool for detecting outliers in the response variable is the residual

plot. This is a scatter plot of the residuals (y−μ̂y|x) on the vertical axis and the
estimated values μ̂y|x on the horizontal axis.2 If all is well, such a plot should
reveal a random scattering of points around the zero value on the vertical axis.
In such a plot outliers should be identified as points definitely not adhering to
this pattern. Figure 4.2 shows the residual plots for the original data and the
two outlier scenarios. In later discussions we will use various modifications
of this standard residual plot to investigate other potential problems.

Figure 4.2 Effects of Outlier on Residuals

1Of course, we assume a “perfect” spring and no gravity.
2For one-variable regressions it may also be useful to use the x-values on the horizontal axis.
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The residuals for the original data appear to satisfy the random patterns
requirement. For scenario 1, the outlier definitely stands out. However, for
scenario 2, the residual, though having the largest magnitude, is not much
larger than at least one of the others and therefore does not provide strong
evidence of being an outlier. The reason for this result is that the high degree
of leverage for this observation tends to pull the line toward itself; hence,
the residual is not very large.

Additional information is needed to help detect such an outlier. Such infor-
mation, in the form of a number of statistics for detecting outliers, is indeed
available and is described in the rest of this section. As we will see, several dif-
ferent statistics will be needed because having an outlier present in the data
may have several different ramifications. Because of the number of different
statistics used in detection of outliers and measuring the effect, we present
the diagnostic tools in four contexts:

1. Statistics based on residuals

2. Statistics designed to detect leverage

3. Statistics that measure the influence of an observation on the estimated

response, which is a combination of residuals and leverage
4. Statistics that measure the influence on the precision of parameter

estimates.

Statistics Based on Residuals
We have already noted that the actual residuals from the fitted model,

ri = yi − μ̂y|x,

when plotted against the predicted value, can be used in detecting outliers,
especially when the observation does not have high leverage. Obviously, this
is a very subjective method of identifying outliers. We can construct a slightly
more rigorous method by first standardizing the residuals by dividing by their
standard errors. The standard error of the residual, ri, is√

σ2(1− hi),

where hi is the ith diagonal element of the matrix [X(X ′X)−1X ′], the so-called
hat matrix.3 Standardized residuals have two useful properties:

1. They have zero mean and unit standard deviation. Therefore, we can
determine how far an observation is from the mean in terms of standard

3As noted in Chapter 3, these elements were used to compute the standard error of the conditional
mean. Actually,

vâr(μ̂y|x) = MSE(hi), and

vâr(y − μ̂y|x) = MSE(1− hi).
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deviation units, and, using the empirical rule, determine approximately how
likely it is to obtain a suspected outlier strictly by chance.

2. By standardizing the residuals, we compensate for the leverage; therefore,
they should reveal outliers regardless of the leverage of the observations.

Because we rarely know the value of σ2, we estimate it with MSE, the mean
square error introduced in Section 3.3. The studentized residuals4 are com-
puted as follows:

Stud. Res =
(yi − μ̂y|x)√
MSE(1− hi)

.

The residuals (Residual) and studentized residuals (Stud. Res) values for the
original and two outlier scenarios in Example 4.1, as produced with PROC
REG of the SAS System, are shown in Table 4.4.

Table 4.4

Residuals and
Studentized Residuals

Original Data Scenario 1 Scenario 2

x Residual Stud. Res Residual Stud. Res Residual Stud. Res

1 0.47 0.28 −0.80 −0.23 1.92 0.80
2 −2.33 −1.30 −3.54 −0.95 −1.42 −0.55
3 −0.58 −0.31 −1.73 −0.44 −0.21 −0.08
4 3.40 1.76 2.31 0.58 3.22 1.16
5 1.19 0.61 10.16 2.50 0.46 0.16
6 −3.23 −1.65 −4.20 −1.03 −4.51 −1.61
7 0.53 0.28 −0.38 −0.09 −1.28 −0.46
8 1.43 0.76 0.58 0.15 −0.94 −0.35
9 0.60 0.33 −0.19 −0.05 −2.31 −0.90

10 −1.47 −0.88 −2.20 −0.63 5.07 2.12

Under the assumption of no outliers, the studentized residuals should be
distributed as Student’s t with the degrees of freedom of MSE, usually
(n−m−1). Unless the degrees of freedom are extremely small, values exceed-
ing 2.5 should rarely occur,5 and we see that the studentized residuals do
indeed point to the outliers we created. However, the outlier for scenario 2
is still not as clearly defined as that for scenario 1. Hence, the studentized
residuals have helped but are still not as sensitive as we may like them to be,
so we will have to look further.

Statistics Measuring Leverage
In Example 4.1 we saw that the degree of leverage is an important element
in studying the effect of extreme values. In order to assess the effect of
leverage, we need a way to measure this effect. The most common measure
of leverage is the diagonal element of the hat matrix, hi, described earlier,

4The standard error uses the estimated variance (MSE), so the appropriate distribution of that
statistic is the Student’s t distribution—hence, the nomenclature “studentized” residuals.
5The degrees of freedom in this example are 8, and the 0.05 two-tailed t-value is 2.306.
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which is a standardized measure of the distance between the x-values for the
ith observation and the means of the x-values for all observations. An obser-
vation with high leverage measured in this way may be considered an outlier
in the independent variable set. Obviously, an observation may exhibit high
leverage without exerting a large influence on the model, which will gener-
ally occur when the high-leverage observation fits the model. In fact, one
interpretation of an observation with high leverage is that it has the poten-

tial of causing a problem. In any case, it is useful to identify observations
with high leverage and then determine the influence these observations have
on the model.

It now remains to specify what values of hi imply a high degree of leverage.
It can be shown that

Σhi = m+ 1;

hence, the average value of the hi,

h =
m+ 1

n
.

As a rule of thumb, a value exceeding twice the average, that is, hi > 2h, is con-
sidered to indicate a high degree of leverage. This rule is somewhat arbitrary
and works only when the data set is large relative to the number of parameters
in the model.

In Example 4.1, as in any one-variable regression,

hi =
(xi − x)2

Σ(xj − x)2
,

which is indeed a measure of the relative magnitude of the squared distance of
x from x for the ith observation. In Example 4.1, the two scenarios had their
outlier at x = 5 and x = 10, respectively. The leverage for x = 5 is 0.003; for
x = 10 it is 0.245. Although the leverage for x = 10 (the second scenario) is
much higher than that for x = 5, it does not exceed twice the value 2/10 = 0.2,
and so it is not considered a large leverage. We will illustrate leverage for more
interesting examples later.

Statistics Measuring Influence on the Estimated Response
We saw for Example 4.1 that the studentized residuals were quite effective for
scenario 1, but not as effective for scenario 2 where it can be argued that the
outlier had the more serious effect on the parameter estimates. In fact, the
effect of the outlier for scenario 2 is due to a combination of the magnitude of
the outlier and the leverage of the independent variable. This combined effect
is called the influence and is a measure of the effect the outlier has on the
parameter estimates and hence on the estimated response, μ̂y|x.

Recall that we previously defined an observation that causes the regression
estimates to be substantially different from what they would be if the obser-
vation were removed from the data set as an influential observation. We can
identify observations having a high degree of influence as follows:
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1. Compute, for each observation, the differences in the parameter estimates
and response values obtained by using all observations and by leaving out
that observation. This is sometimes referred to as the “leave one out” or
“deleted residual” principle.

2. Examine or plot these values and designate as influential those observa-
tions for which these values, either collectively or individually, are judged
to be large.

The most popular influence statistic is denoted by DFFITS, which is a
mnemonic for the DiFference in FIT, Standardized. Define μ̂y|x, −i as the esti-
mated mean of the response variable using the model estimated from all other

observations, that is, with observation i left out, and MSE−i as the error mean
square obtained by this regression. Then

DFFITS =
μ̂y|x − μ̂y|x, −i

Standard error
,

where “standard error” is the standard error of the numerator. Normally, a
DFFITS value is calculated for each observation used in a regression. The
DFFITS statistics are rarely calculated manually; however, the following for-
mulas do give insight into what they measure.

DFFITSi =

(
yi − μ̂y|x√

MSE−i(1− hi)

)√
hi

1− hi
,

and further,

MSE−i =
SSE − (yi − μ̂y|x)2

1− hi

n−m− 2
.

These formulas show that the statistics are computed with quantities that
are already available from the regression analysis, and are a combination of
leverage and studentized residuals. We can also see that the DFFITS statistics
will increase in magnitude with increases in both residuals (yi − μ̂y|x) and
leverage (hi).

Although this statistic is advertised as “standardized,” the standard error
of its distribution is not unity and is approximated by

Standard error of DFFITS ≈
√

m+ 1

n
,

where m is the number of independent variables in the model.6 It is suggested
that observations with the absolute value of DFFITS statistics exceeding twice

6The original proponents of these statistics (Belsley et al., 1980) consider the intercept as simply
another regression coefficient. In their notation, the total number of parameters (including β0)
is p, and various formulas in their and some other books will use p rather than (m+1). Although
that consideration appears to simplify some notation, it can produce misleading results (see Sec-
tion 2.6 [regression through the origin]).
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that standard error may be considered influential, but as we will see, this
criterion is arbitrary.

When the DFFITS statistic has identified an influential observation, it is of
interest to know which coefficients (or independent variables) are the cause
of the influence. This information can be obtained by:

Using the DFBETAS Statistics
The DFBETAS statistics (for which the formula is not presented) measure
how much the regression coefficient changes, in standard deviation units, if
the ith observation is omitted.

Belsley et al. (1980) suggest that absolute values of DFBETAS exceeding
2/

√
n may be considered “large,” and all we need to do is find those values that

are large. However, since a value for DFBETAS is calculated for each obser-
vation and for each independent variable, there are n(m + 1) such statistics,
and it would be an insurmountable task to look for “large” values among this
vast array of numbers. Fortunately, the magnitude of this task can be greatly
reduced by using the following strategy:

1. Examine the DFBETAS only for observations already identified as having
large DFFITS.

2. Then find the coefficients corresponding to relatively large DFBETAS.

Table 4.5 presents the DFFITS and DFBETAS for the original data and
two outlier scenarios of Example 4.1. Each set of three columns contain
DFFITS and two DFBETAS (for β0 and β1, labeled DFB0 and DFB1) for the
original and two outlier scenarios, with the statistics for the outliers under-
lined. Using the suggested guidelines, we would look for an absolute value
of DFFITS larger than 0.89 and then examine the corresponding DFBETAS
to see if any absolute value exceeds 0.63. The DFFITS values for the out-
liers of both scenarios clearly exceed the value suggested by the guidelines.
Furthermore, the DFBETAS clearly show that β0 is the coefficient affected
by the outlier in scenario 1, whereas both coefficients are almost equally
affected by the outlier in scenario 2.

Table 4.5

DFFITS and DFBETAS
for Example 4.1

ORIGINAL DATA SCENARIO 1 SCENARIO 2

OBS DFFITS DFB0 DFB1 DFFITS DFB0 DFB1 DFFITS DFB0 DFB1

1 0.19 0.19 −0.16 −0.16 −0.16 0.13 0.57 0.57 −0.48
2 −0.79 −0.77 0.61 −0.54 −0.53 0.42 −0.30 −0.30 0.23
3 −0.13 −0.12 0.09 −0.19 −0.18 0.13 −0.03 −0.03 0.02
4 0.80 0.66 −0.37 0.21 0.17 −0.10 0.46 0.37 −0.21
5 0.20 0.12 −0.03 1.68 1.02 −0.29 0.05 0.03 −0.01
6 −0.64 −0.20 −0.11 −0.35 −0.11 −0.06 −0.62 −0.19 −0.11
7 0.10 0.00 0.05 −0.03 0.00 −0.02 −0.17 0.00 −0.08
8 0.34 −0.08 0.22 0.06 −0.01 0.04 −0.15 0.04 −0.10
9 0.18 −0.07 0.14 −0.03 0.01 −0.02 −0.51 0.20 −0.40

10 −0.63 0.31 −0.53 −0.44 0.22 −0.37 2.17 −1.08 1.83
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Leverage Plots
In Section 3.4 we showed that a partial regression, say βi, coefficient can be
computed as a simple linear regression coefficient using the residuals result-
ing from the two regressions of y and xi on all other independent variables. In
other words, these residuals are the “data” for computing that partial regres-
sion coefficient. Now, as we have seen, finding outliers and/or influential points
for a simple linear regression is usually just a matter of plotting the residuals
against the estimated value of y. We can do the same thing for a specified inde-
pendent variable in a multiple regression by plotting the residuals as defined
earlier. Such plots are called partial residual or leverage plots. The leverage
plot gives a two-dimensional look at the hypothesis test H0:βi = 0. Therefore,
this plot does the following:

It directly illustrates the partial correlation of xi and y, thus indicating the
effect of removing xi from the model.

It indicates the effect of the individual observations on the estimate of that
parameter. Thus, the leverage plot allows data points with large DFBE-
TAS values to be readily spotted.

One problem with leverage plots is that in most leverage plots, individual
observations are usually not easily identified. Hence, the plots may be useful
for showing that there are influential observations, but they may not be readily
identified. We will see in Example 4.3 that these plots have other uses and will
illustrate leverage plots at that time.7

Two other related statistics that are effective in identifying influential
observations are Cook’s D and the PRESS statistic.

Cook’s D, short for Cook’s distance, is an overall measure of the impact
of the ith observation on the set of estimated regression coefficients, and it is
thus comparable to the DFFITS statistic. Since most of these analyses are done
using computer programs, we don’t need the formula for calculating Cook’s D
(it is essentially (DFFITS)2/(m + 1)). We do note that it is not quite as sensi-
tive as DFFITS; however, since the values are squared, the potential influential
observations do tend to stand out more clearly.

The PRESS statistic is a measure of the influence of a single observation
on the residuals. First residuals are calculated from the model by the leave-
one-out principle, then PRESS, a mnemonic for P rediction Error Sum of
Squares:

PRESS = Σ(yi − μ̂y|x,−i)
2.

The individual residuals are obviously related to the DFFITS statistic, but
because they are not standardized, they are not as effective for detecting influ-
ential observations and are therefore not often calculated.

The PRESS statistic has been found to be very useful for indicating if influ-
ential observations are a major factor in a regression analysis. Specifically,

7Leverage plots are, of course, not useful for one-variable regressions.
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when PRESS is considerably larger than the ordinary SSE, there is reason to
suspect the existence of influential observations. As with most of these statis-
tics, “considerably larger” is an arbitrary criterion; over twice as large may be
used as a start. The comparisons of SSE and PRESS for the original data and
the two scenarios in Example 4.1 are below:

SCENARIO SSE PRESS

ORIGINAL 34.26 49.62
SCENARIO 1 147.80 192.42
SCENARIO 2 70.27 124.41

In this example, the PRESS statistics reveal a somewhat greater indicator of
the influential observations8 in scenario 2.

Statistics Measuring Influence on the Precision of Estimated Coefficients
One measure of the precision of a statistic is provided by the estimated vari-
ance of that statistic, with a large variance implying an imprecise estimate. In
Section 3.5 we noted that the estimated variance of an estimated regression
coefficient was

ˆvar(β̂i) = ciiMSE,

where cii is the ith diagonal element of (X ′X)−1. This means that the preci-
sion of an estimated regression coefficient improves with smaller cii and/or
smaller MSE and gets worse with a larger value of either of these terms. We
can summarize the total precision of the set of coefficient estimates with the
generalized variance, which is given by

Generalized variance (B̂) = MSE|(X ′X)−1|,
where |(X ′X)−1| is the determinant of the inverse of theX ′X matrix. The form
of this generalized variance is similar to that for the variance of an individual
coefficient in that a reduction in MSE and/or in the determinant of (X ′X)−1 will
result in an increase in the precision. Although the determinant of a matrix is a
complicated function, two characteristics of this determinant are of particular
interest:

1. As the elements of X ′X become larger, the determinant of the inverse will
tend to decrease. In other words, the generalized variance of the estimated
coefficients will decrease with larger sample sizes and wider dispersions of
the independent variables.

2. As correlations among the independent variables increase, the determinant
of the inverse will tend to increase. Thus, the generalized variance of the

8The PRESS sum of squares is also sometimes used to see what effect influential observations
have on a variable selection process (see Chapter 6).
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estimated coefficients will tend to increase with the degree of correlation
among the independent variables.9

A statistic that is an overall measure of how the ith observation affects
the precision of the regression coefficient estimates is known as the COV-

RATIO. This statistic is the ratio of the generalized variance leaving out each
observation to the generalized variance using all data. In other words, the COV-
RATIO statistic indicates how the generalized variance is affected by leaving
out an observation.

COVRATIO > 1, observation increases precision
COVRATIO < 1, observation decreases precision

and

values outside the interval 1±
(
3(m+ 1)

n

)
may be considered

“significant”

This statistic is defined as follows

COVRATIO =
MSEm+1

−i

MSEm+1

(
1

1− hi

)
,

which shows that the magnitude of COVRATIO increases with leverage (hi)
and the relative magnitude of the deleted residual mean square.

In other words, if an observation has high leverage and leaving it out
increases the error mean square, its presence has increased the precision of
the parameter estimates (and vice versa). Of course, these two factors may
tend to cancel each other to produce an “average” value of that statistic!

For Example 4.1, the COVRATIO values are 0.0713 and 0.3872 for the
outliers in scenarios 1 and 2, respectively. These statistics confirm that both
outliers caused the standard errors of the coefficients to increase (and the
precision decrease), but the increase was more marked for scenario 1.

Before continuing, it is useful to discuss the implications of the arbi-
trary values we have used to describe “large.” These criteria assume that
when there are no outliers or influential observations, the various statis-
tics are random variables having a somewhat normal distribution, and thus
values more than two standard errors from the center are indications of
“large.” However, with so many statistics, there may very well be some
“large” values even when there are no outliers or influential observations.
Actually, a more realistic approach, especially for moderate-sized data sets,
is to visually peruse the plots and look for “obviously” large values, using
the suggested limits as rough guidelines.

9This condition is called multicollinearity and is discussed extensively in Chapter 5.
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The following brief summary of the more frequently used statistics may
provide a useful reference:

Studentized residuals are the actual residuals divided by their standard
errors. Values exceeding 2.5 in magnitude may be used to indicate
outliers.

Diagonals of the hat matrix, hi, are measures of leverage in the space of
the independent variables. Values exceeding 2(m + 1)/n may be used
to identify observations with high leverage.

DFFITS are standardized differences between a predicted value estimated
with and without the observation in question. Values exceeding
2
√

(m+ 1)/n in magnitude may be considered “large.”
DFBETAS are used to indicate which of the independent variables con-

tribute to large DFFITS. Therefore, these statistics are primarily useful
for observations with large DFFITS values, where DFBETAS exceeding
2/

√
n in magnitude may be considered “large.”

COVRATIO statistics indicate how leaving out an observation affects the
precision of the estimates of the regression coefficients. Values outside
the bounds computed as 1 ± 3(m + 1)/n may be considered “large,”
with values above the limit indicating less precision when leaving the
observation out and vice versa for values less than the lower limit.

EXAMPLE 4.2 We again resort to some artificially generated data where we construct vari-
ous scenarios and see how the various statistics identify the situations. This
example has two independent variables, x1 and x2. We specify the model with
β0 = 0, β1 = 1, and β2 = 1; hence, the model for the response variable y is

y = x1 + x2 + ε,

where ε is normally distributed with a mean of 0 and a standard deviation of 4.
Using a set of arbitrarily chosen but correlated values of x1 and x2, we gener-
ate a sample of 20 observations. These are shown in Table 4.6.10 The relation-
ship between the two independent variables creates the condition known as

Table 4.6

Data for Example 4.2

OBS X1 X2 Y

1 0.6 −0.6 −4.4
2 2.0 −1.7 4.1
3 3.4 2.8 4.0
4 4.0 7.0 17.8

(Continued)

10The data in Table 4.6 were generated using SAS. The resulting values contain all digits produced
by the computer but are rounded to one decimal for presentation in Table 4.6. The analyses shown
in subsequent tables were performed with the original values and may differ slightly from analyses
performed on the data as shown in Table 4.6. Similar differences will occur for all computer-
generated data sets.
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Table 4.6

(Continued)

OBS X1 X2 Y

5 5.1 4.0 10.0
6 6.4 7.2 16.2
7 7.3 5.1 12.7
8 7.9 7.3 16.8
9 9.3 8.3 16.4

10 10.2 9.9 18.5
11 10.9 6.4 18.5
12 12.3 14.5 24.2
13 12.7 14.7 21.9
14 13.7 12.0 30.8
15 15.2 13.5 28.1
16 16.1 11.3 25.2
17 17.2 15.3 29.9
18 17.5 19.7 34.3
19 18.9 21.0 39.0
20 19.7 21.7 45.0

multicollinearity, which we present in detail in Chapter 5, but already know to
produce relatively unstable (large standard errors) estimates of the regression
coefficients.

The results of the regression, produced by PROC REG of the SAS System, are
shown in Table 4.7. The results are indeed consistent with the model; however,
because of the multicollinearity, the two regression coefficients have p-values
that are much larger than those for the entire regression (see Chapter 5).

Table 4.7

Regression Results

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 2629.12617 1314.56309 116.78 <.0001
Error 17 191.37251 11.25721
Corrected Total 19 2820.49868

Root MSE 3.35518 R-Square 0.9321
Dependent Mean 20.44379 Adj R-Sq 0.9242
Coeff Var 16.41171

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.03498 1.63889 0.63 0.5361
x1 1 0.86346 0.38717 2.23 0.0395
x2 1 1.03503 0.33959 3.05 0.0073

The various outlier and influence statistics are shown in Table 4.8. As expected,
no values stand out; however, a few may be deemed “large” according to the
suggested limits. This reinforces the argument that the suggested limits may
be too sensitive.
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Table 4.8

Outlier Statistics

OBS RESID STUD R HAT DIAG DFFITS DFBETA1 DFBETA2

1 −5.401 −1.803 0.203 −0.9825 0.3220 −0.034
2 3.032 1.028 0.228 0.5600 0.1522 −0.303
3 −2.878 0.919 0.129 −0.3515 0.1275 −0.037
4 6.113 2.142 0.277 1.5045 −1.3292 1.149
5 0.479 0.150 0.096 0.0473 −0.0081 −0.003
6 2.262 0.712 0.103 0.2381 −0.1553 0.122
7 0.106 0.033 0.085 0.0098 0.0029 −0.005
8 1.434 0.441 0.061 0.1099 −0.0227 0.007
9 −1.292 −0.396 0.053 −0.0915 −0.0047 0.012

10 −1.693 −0.518 0.051 −0.1172 0.0147 −0.014
11 1.406 0.473 0.215 0.2417 0.2017 −0.212
12 −2.392 −0.762 0.125 −0.2839 0.1812 −0.213
13 −5.280 −1.673 0.115 −0.6407 0.3716 −0.454
14 5.433 1.693 0.085 0.5508 0.3287 −0.264
15 −0.138 −0.043 0.107 −0.0146 −0.0092 0.007
16 −1.487 −0.537 0.319 −0.3592 −0.3285 0.299
17 −1.742 −0.563 0.151 −0.2326 −0.1556 0.109
18 −2.263 −0.743 0.175 −0.3375 0.0927 −0.179
19 −0.158 −0.053 0.203 −0.0258 0.0049 −0.012
20 4.461 1.504 0.219 0.8293 −0.1151 0.353

We now create three scenarios by modifying observation 10. The statistics in
Table 4.8 show that this is a rather typical observation with slightly elevated
leverage. The outlier scenarios are created as follows:

Scenario 1: We increase x1 by 8 units. Although the resulting value of x1

is not very large, this change increases the leverage of that observation
because this single change decreases the correlation between the two
independent variables. However, the model is used to produce the value
of y; hence, this is not an outlier in the response variable.

Scenario 2: We create an outlier by increasing y by 20. Since the values
of the independent variables are not changed, there is no change in
leverage.

Scenario 3: We create an influential outlier by increasing y by 20 for the
high-leverage observation produced in scenario 1. In other words, we
have a high-leverage observation that is also an outlier, which should
become an influential observation.

We now perform a regression using the data for the three scenarios. Since the
resulting output is quite voluminous, we provide in Table 4.9 only the most
relevant results as follows:

1. The overall model statistics, F , and the residual standard deviation
2. The estimated coefficients, β̂1 and β̂2, and their standard errors
3. For observation 10 only, the studentized residual, hi, COVRATIO, and

DFFITS
4. SSE and PRESS
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Table 4.9

Estimates and Statistics
for the Scenarios

REGRESSION STATISTICS

Original Data Scenario 1 Scenario 2 Scenario 3

MODEL F 116.77 119.93 44.20 53.71
ROOT MSE 3.36 3.33 5.44 5.47
β1 0.86 0.82 0.79 2.21
STD ERROR 0.39 0.29 0.63 0.48
β2 1.03 1.06 1.09 −0.08
STD ERROR 0.34 0.26 0.55 0.45

OUTLIER STATISTICS

Stud. Resid. − 0.518 −0.142 3.262 3.272
hi 0.051 0.460 0.051 0.460
COVRATIO 1.204 2.213 0.066 0.113
DFFITS −0.117 −0.128 1.197 4.814
SSE 191.4 188.6 503.3 508.7
PRESS 286.5 268.3 632.2 1083.5

Scenario 1: The overall model estimates remain essentially unchanged;
however, the standard errors of the coefficient estimates are smaller
because the multicollinearity has been reduced, thus providing more
stable parameter estimates. Note further that for observation 10 the hi

and COVRATIO may be considered “large.”
Scenario 2: The outlier has decreased the overall significance of the

model (smaller F ) and increased the error mean square. Both
coefficients have changed and their standard errors increased, pri-
marily due to the larger error mean square. The small COVRATIO
reflects the larger standard errors of the coefficients, and the large
DFFITS is due to the changes in the coefficients. Note, however, that
the ratio of PRESS to SSE has not increased markedly, because the
outlier is not influential.

Scenario 3: The overall model statistics are approximately the same as
those for the noninfluential outlier. However, the estimated coefficients
are now very different. The standard errors of the coefficients have
decreased from those in scenario 2 because the multicollinearity has
deceased and are actually not much different from those with the orig-
inal data. This is why the COVRATIO is not “large.” Of course, DFFITS
is very large and so is the ratio of PRESS to MSE.

This very structured example should provide some insight into how the
various statistics react to outliers and influential observation. Note also that
in each case, the relevant statistics far exceed the guidelines for “large.” Obvi-
ously, real-world applications will not be so straightforward.

EXAMPLE 4.3 Table 4.10 contains some census data on the 50 states and Washington, D.C. We
want to see if the average lifespan (LIFE) is related to the following
characteristics:

MALE: Ratio of males to females in percent
BIRTH: Birth rate per 1000 population
DIVO: Divorce rate per 1000 population
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BEDS: Hospital beds per 100,000 population
EDUC: Percentage of population 25 years or older having completed

16 years of school
INCO: Per capita income, in dollars

Table 4.10

Data for Example 4.3

STATE MALE BIRTH DIVO BEDS EDUC INCO LIFE

AK 119.1 24.8 5.6 603.3 14.1 4638 69.31
AL 93.3 19.4 4.4 840.9 7.8 2892 69.05
AR 94.1 18.5 4.8 569.6 6.7 2791 70.66
AZ 96.8 21.2 7.2 536.0 12.6 3614 70.55
CA 96.8 18.2 5.7 649.5 13.4 4423 71.71
CO 97.5 18.8 4.7 717.7 14.9 3838 72.06
CT 94.2 16.7 1.9 791.6 13.7 4871 72.48
DC 86.8 20.1 3.0 1859.4 17.8 4644 65.71
DE 95.2 19.2 3.2 926.8 13.1 4468 70.06
FL 93.2 16.9 5.5 668.2 10.3 3698 70.66
GA 94.6 21.1 4.1 705.4 9.2 3300 68.54
HI 108.1 21.3 3.4 794.3 14.0 4599 73.60
IA 94.6 17.1 2.5 773.9 9.1 3643 72.56
ID 99.7 20.3 5.1 541.5 10.0 3243 71.87
IL 94.2 18.5 3.3 871.0 10.3 4446 70.14
IN 95.1 19.1 2.9 736.1 8.3 3709 70.88
KS 96.2 17.0 3.9 854.6 11.4 3725 72.58
KY 96.3 18.7 3.3 661.9 7.2 3076 70.10
LA 94.7 20.4 1.4 724.0 9.0 3023 68.76
MA 91.6 16.6 1.9 1103.8 12.6 4276 71.83
MD 95.5 17.5 2.4 841.3 13.9 4267 70.22
ME 94.8 17.9 3.9 919.5 8.4 3250 70.93
MI 96.1 19.4 3.4 754.7 9.4 4041 70.63
MN 96.0 18.0 2.2 905.4 11.1 3819 72.96
MO 93.2 17.3 3.8 801.6 9.0 3654 70.69
MS 94.0 22.1 3.7 763.1 8.1 2547 68.09
MT 99.9 18.2 4.4 668.7 11.0 3395 70.56
NC 95.9 19.3 2.7 658.8 8.5 3200 69.21
ND 101.8 17.6 1.6 959.9 8.4 3077 72.79
NE 95.4 17.3 2.5 866.1 9.6 3657 72.60
NH 95.7 17.9 3.3 878.2 10.9 3720 71.23
NJ 93.7 16.8 1.5 713.1 11.8 4684 70.93
NM 97.2 21.7 4.3 560.9 12.7 3045 70.32
NV 102.8 19.6 18.7 560.7 10.8 4583 69.03
NY 91.5 17.4 1.4 1056.2 11.9 4605 70.55
OH 94.1 18.7 3.7 751.0 9.3 3949 70.82
OK 94.9 17.5 6.6 664.6 10.0 3341 71.42
OR 95.9 16.8 4.6 607.1 11.8 3677 72.13
PA 92.4 16.3 1.9 948.9 8.7 3879 70.43
RI 96.2 16.5 1.8 960.5 9.4 3878 71.90
SC 96.5 20.1 2.2 739.9 9.0 2951 67.96
SD 98.4 17.6 2.0 984.7 8.6 3108 72.08
TN 93.7 18.4 4.2 831.6 7.9 3079 70.11
TX 95.9 20.6 4.6 674.0 10.9 3507 70.90
UT 97.6 25.5 3.7 470.5 14.0 3169 72.90
VA 97.7 18.6 2.6 835.8 12.3 3677 70.08
VT 95.6 18.8 2.3 1026.1 11.5 3447 71.64
WA 98.7 17.8 5.2 556.4 12.7 3997 71.72
WI 96.3 17.6 2.0 814.7 9.8 3712 72.48
WV 93.9 17.8 3.2 950.4 6.8 3038 69.48
WY 100.7 19.6 5.4 925.9 11.8 3672 70.29

The data are from Barabba (1979).
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The first step is to perform the ordinary linear regression analysis using LIFE
as the dependent and the others as independent variables. The results are
shown in Table 4.11.

Table 4.11

Regression for
Estimating Life
Expectancy

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 53.59425 8.93238 6.46 <.0001
Error 44 60.80295 1.38189
Corrected Total 50 114.39720

Root MSE 1.17554 R-Square 0.4685
Dependent Mean 70.78804 Adj R-Sq 0.3960
Coeff Var 1.66064

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 70.55778 4.28975 16.45 <.0001
MALE 1 0.12610 0.04723 2.67 0.0106
BIRTH 1 −0.51606 0.11728 −4.40 <.0001
DIVO 1 −0.19654 0.07395 −2.66 0.0109
BEDS 1 −0.00334 0.00097953 −3.41 0.0014
EDUC 1 0.23682 0.11102 2.13 0.0385
INCO 1 −0.00036120 0.00045979 −0.79 0.4363

The regression relationship is statistically significant but not very strong, which
is not unusual for this type of data and size of data set. The strongest coefficient
shows a negative relationship with birth rate. This is an expected relationship
since that variable may be considered a proxy for low income and other low
socioeconomic factors. Note, however, that the income coefficient itself is not
significant. The second strongest relationship is the negative relationship with
the number of hospital beds. This is an unexpected result since that variable
should be a proxy for the availability of medical care. The somewhat weaker
(α = 0.01) relationships with the proportion of males (positive) and divorce
rate (negative) are interesting.

Table 4.12 gives the studentized residuals, hat matrix diagonals, COVRATIO,
and DFFITS statistics as well as the predicted values resulting from the regres-
sion analysis.

Table 4.12

Listing of Various
Statistics

OBS STATE PREDICT RESIDUAL STUDENTR HAT COVRATIO DFFITS

1 AK 71.3271 −2.0171 −2.75935 0.61330 0.80331 −3.77764
2 AL 69.4415 −0.3915 −0.34865 0.08744 1.26246 −0.10683
3 AR 70.6101 0.0499 0.04474 0.10114 1.30634 0.01483

(Continued)
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Table 4.12

(Continued)

OBS STATE PREDICT RESIDUAL STUDENTR HAT COVRATIO DFFITS

4 AZ 70.2978 0.2522 0.22878 0.12027 1.32411 0.08367
5 CA 71.6590 0.0510 0.04563 0.09499 1.29745 0.01461
6 CO 71.9730 0.0870 0.08109 0.16606 1.40702 0.03577
7 CT 72.2868 0.1932 0.18019 0.16778 1.40413 0.08001
8 DC 66.8702 −1.1602 −1.92429 0.73694 2.41318 −3.32707
9 DE 70.4192 −0.3592 −0.31749 0.07353 1.24763 −0.08852

10 FL 71.3805 −0.7205 −0.63860 0.07890 1.19475 −0.18563
11 GA 69.4238 −0.8838 −0.78960 0.09346 1.17251 −0.25243
12 HI 71.5312 2.0688 1.98759 0.21600 0.77551 1.08103
13 IA 71.4261 1.1339 0.98744 0.04583 1.05230 0.21635
14 ID 71.0405 0.8295 0.72725 0.05862 1.14647 0.18050
15 IL 70.1659 −0.0259 −0.02361 0.12984 1.34974 −0.00902
16 IN 70.2914 0.5886 0.52556 0.09229 1.23821 0.16618
17 KS 71.6500 0.9300 0.81864 0.06598 1.12947 0.21675
18 KY 70.7864 −0.6864 −0.60494 0.06827 1.18908 −0.16256
19 LA 70.3188 −1.5588 −1.38664 0.08545 0.93938 −0.42847
20 MA 70.9224 0.9076 0.80903 0.08992 1.16203 0.25337
21 MD 72.0392 −1.8192 −1.62551 0.09367 0.84010 −0.53284
22 ME 70.2533 0.6767 0.59436 0.06209 1.18364 0.15178
23 MI 70.2429 0.3871 0.34718 0.10029 1.28070 0.11474
24 MN 71.1682 1.7918 1.55052 0.03357 0.82017 0.29380
25 MO 70.7707 −0.0807 −0.07026 0.04456 1.22842 −0.01500
26 MS 68.7295 −0.6395 −0.59755 0.17127 1.33876 −0.26964
27 MT 72.0442 −1.4842 −1.32327 0.08961 0.97097 −0.41884
28 NC 70.8177 −1.6077 −1.40504 0.05253 0.89903 −0.33466
29 ND 71.6705 1.1195 1.07650 0.21739 1.24510 0.56842
30 NE 71.2293 1.3707 1.18900 0.03826 0.97174 0.23830
31 NH 71.0450 0.1850 0.15973 0.02893 1.20469 0.02726
32 NJ 72.1304 −1.2004 −1.12678 0.17866 1.16507 −0.52718
33 NM 70.8062 −0.4862 −0.45122 0.15985 1.35341 −0.19502
34 NV 68.7611 0.2689 0.49160 0.78351 5.22034 0.92706
35 NY 70.4696 0.0804 0.07336 0.13017 1.34921 0.02806
36 OH 70.3149 0.5051 0.44811 0.08043 1.23708 0.13131
37 OK 71.1389 0.2811 0.25138 0.09538 1.28545 0.08075
38 OR 72.5163 −0.3863 −0.35172 0.12715 1.31945 −0.13289
39 PA 70.9151 −0.4851 −0.43064 0.08158 1.24168 −0.12715
40 RI 71.4382 0.4618 0.40908 0.07772 1.24006 0.11762
41 SC 70.5163 −2.5563 −2.24879 0.06489 0.53439 −0.62248
42 SD 71.1165 0.9635 0.88105 0.13455 1.19823 0.34650
43 TN 70.0345 0.0755 0.06631 0.06244 1.25194 0.01692
44 TX 70.1801 0.7199 0.62837 0.05028 1.16116 0.14358
45 UT 69.5785 3.3215 3.58440 0.37861 0.16856 3.28714
46 VA 71.5622 −1.4822 −1.29871 0.05746 0.94790 −0.32325
47 VT 70.5113 1.1287 0.99678 0.07209 1.07882 0.27782
48 WA 72.5022 −0.7822 −0.70606 0.11177 1.22103 −0.24902
49 WI 71.4854 0.9946 0.86395 0.04086 1.08641 0.17779
50 WV 69.9235 −0.4435 −0.39886 0.10523 1.27987 −0.13546
51 WY 70.4566 −0.1666 −0.14854 0.08921 1.28513 −0.04597

Although Table 4.12 provides the necessary information for finding outliers
and influential observations, a plot of these statistics is more useful for the
preliminary screening. Figure 4.3 shows plots of various statistics from Table
4.12, with the most extreme states identified by their two-letter abbreviations.
The rapid development of computer and printer hardware and software has
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Figure 4.3 Plots of Various Statistics
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generated considerable research in methods for creating more informative
graphics. Many offer data identification procedures, such as listing the entire
name of the state and color-coding observations, either presented on the graph
or with point-and-click identification methods. The objective is to provide as
much information as possible while not creating an overly busy or confusing
picture. In this example, we need only identify which states have the most
extreme outlier statistics (as is done in Figure 4.3) to come to the following
conclusions:

1. Utah and, to a lesser degree, Alaska are outliers, with Utah having higher
and Alaska having lower lifetimes than those estimated by the model.

2. Alaska, the District of Columbia, and Nevada have high leverage.
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3. The COVRATIO statistic shows that Nevada and, to a lesser degree, the
District of Columbia cause the coefficients to be estimated with greater
precision.

4. Utah, the District of Columbia, and Alaska are very influential.

Note that these conclusions were quite obvious, with no need to rely on the
more formal suggestions for identifying “large” values. Obviously, we will con-
centrate on Alaska, the District of Columbia, Nevada, and Utah and thus repro-
duce in Table 4.13 the DFBETAS as well as DFFITS for these states.

Table 4.13 DFBETAS for Selected States

STATE DFFITS MALE BIRTH DIVO BEDS EDUC INCO

AK −3.778 −2.496 −1.028 0.590 −0.550 0.662 −0.917
DC −3.327 0.741 −0.792 −0.821 −2.294 −0.735 0.244
NV 0.927 0.003 0.012 0.821 0.151 −0.239 0.281
UT 3.287 −1.289 1.967 −0.683 −1.218 0.897 −0.282

We can now diagnose what is unusual about these states:
Alaska: The DFBETAS for MALE is obviously very large and negative. That

state has the highest proportion of males (see Table 4.10), which is the
variable that produces the high leverage. The life expectancy in Alaska is
quite low, hence the large DFFITS. If Alaska is omitted from the data, the
coefficient for MALE will decrease. However, the high degree of leverage
causes the studentized residual to be only marginally “large.”

The District of Columbia: This “state” is unusual in many respects. For
our model it is important to note that it has the lowest male ratio and
the highest number of hospital beds, which are the reasons for the
high leverage. The high leverage causes the studentized residual not to
be very large in spite of the fact that it has the lowest life expectancy.
The DFFITS value is very large and appears to be caused largely by
the number of hospital beds. The COVRATIO is very large, suggesting
decreased precision of the estimated coefficients if that observation
is deleted. We can see the meaning of these results by examining the
output of the regression omitting the District of Columbia, data which
is shown in Table 4.14.

Table 4.14

Regression Results,
Omitting D.C.

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 32.40901 5.40150 4.17 0.0022
Error 43 55.68598 1.29502
Corrected Total 49 88.09499

Root MSE 1.13799 R-Square 0.3679
Dependent Mean 70.88960 Adj R-Sq 0.2797
Coeff Var 1.60530

(Continued)
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Table 4.14

(Continued)
Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 69.82076 4.16926 16.75 <.0001
MALE 1 0.09221 0.04880 1.89 0.0656
BIRTH 1 −0.42614 0.12221 −3.49 0.0011
DIVO 1 −0.13778 0.07745 −1.78 0.0823
BEDS 1 −0.00116 0.00145 −0.80 0.4260
EDUC 1 0.31577 0.11458 2.76 0.0086
INCO 1 −0.00046983 0.00044845 −1.05 0.3006

First we note that the overall model has a slightly smaller R-square while the
error mean square has decreased. This apparent contradiction is due to delet-
ing the observation with the lowest value of the dependent variable, which
also reduces the total sum of squares.

Looking at the coefficients we see that the major change is that the coefficient
for hospital beds, whose negative sign was unexpected, is no longer statisti-
cally significant. In other words, the highly significant negative coefficient for
that variable is entirely due to that observation!

Without going into much detail, the unusual aspect of Nevada is due to the high
divorce rate, while Utah has a number of unusual features with the result that
the overall model fits much better when that state is deleted.

Comments
In this section we have presented methods for detecting outliers, that is, obser-
vations that have unusual features that may unduly affect the results of a
regression analysis. Because outliers may occur in various ways with different
effects, a number of statistics have been developed for their detection. Briefly,
the types of outliers and detection statistics are as follows:

1. Outliers in the response variable, detected by residuals or preferably by
studentized residuals

2. Outliers in the independent variables, called leverage, detected by the diag-
onals of the hat matrix

3. Observations for which a combination of leverage and outliers in the
response cause a shift in the estimation of the response, measured by the
DFFITS statistics for overall effect and DFBETAS for identifying individual
coefficients

4. Observations for which a combination of leverage and outliers in the
response cause a change in the precision of the estimated coefficients mea-
sured by the COVRATIO statistic

We have also briefly discussed the PRESS statistic, which, if substantially
larger than SSE, indicates that outliers may be a problem in the data being
analyzed.
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Other statistics are available and may be included in some computer
software packages. In addition, the rapid advances in computer hardware and
software are responsible for a considerable amount of ongoing research in
computer-intensive methods for outlier detection, although at the present time
few of these are sufficiently developed to be routinely included in currently
available computer software. Because of these possibilities, any user of a
particular statistical software should scrutinize its documentation to ascertain
the availability and applicability of the outlier detection methods.

We have presented various suggested statistics and guidelines for evaluat-
ing the effect of these statistics on the regression model. However, as we saw
in Example 4.2, these guidelines are often somewhat “generous” in that they
identify outliers that may not really be very unusual. Therefore these guide-
lines should be used as a preliminary screening procedure, with plots or other
devices used to make a final judgment.

Furthermore, the techniques discussed thus far are largely designed to detect
single outliers. For example, if there are duplicates—or near duplicates—of
influential observations, the “leave-one-out” statistics will completely fail to
identify any of these. Current research efforts are addressing this problem and
may result in methods that will detect duplicate influential observations.

Remedial Methods
We have presented methods for detecting outliers but have not mentioned any
statistical approach to finding remedial methods to counteract their effects.
Actually, remedying the effects of outliers is not strictly a statistical problem.
Obviously, we would not simply discard an outlier without further investiga-
tion. A logical, common-sense approach is desired in handling outliers, and we
offer the following guidelines only as suggestions.

• Outliers may be simple recording errors—for example, incorrect recording,
sloppy editing, or other sources of human error. Often the source of such
errors can be found and corrections made. Unless the outlier is an obvious
recording error, it should not simply be discarded.

• The observation may be an outlier because it is subject to a factor that
was not included in the model. Examples include students who were
sick the day before a test, unusual weather on one or more days of
an experiment, patients in a medical experiment who were exposed to
another disease just before the experiment, or, as in Example 4.3, the
District of Columbia, which is not really a state. A logical remedy in this
case is to reanalyze that data with a revised model. Remember that this
factor may exist in other observations that may not be outliers. Another
option is to eliminate that observation along with any others that may be
subject to that factor and restrict all inferences to observations that do
not have that factor.

• Outliers may be due to unequal variances. That is, the response for some
units is simply measured with less precision than others. This phenomenon
is discussed in the next section.



4.3 Unequal Variances 143

• Finally, it may be necessary to leave the observation alone. After all, it
occurred in the sample and may thus occur in the population for which
inferences are being made. A quest for a better fitting model is not a reason
for modifying data.

PART TWO: VIOLATIONS OF ASSUMPTIONS

4.3 Unequal Variances

Another violation of the assumptions for the analysis of the linear model is
the lack of constant variance of the error across all values of the data. This
violation is called heteroscedasticity, as it is the violation of the assump-
tion of homoscedasticity briefly discussed in the introduction to this chapter.
Although heteroscedasticity may introduce bias in the estimates of the regres-
sion coefficients, its main effect is to cause incorrect estimates of variances of
the estimated mean of the response variable.

Nonconstant variances are inherent when the responses follow nonnor-
mal distributions for which the variance is functionally related to the mean.
The Poisson and binomial distributions are examples of such probability
distributions.

General Formulation
Recall that in Section 3.3 we expressed the multiple regression model in matrix
terms as

Y = XB + E,

where the E was an n × 1 matrix of the error terms εi. We now define V as
an n × n matrix in which the diagonal elements represent the variances of
the n individual errors while the off-diagonal elements represent all their pair-
wise covariances. The matrix V is known as the variance-covariance matrix.
If the error terms are independent and have a common variance σ2, this can
be expressed as

V = σ2In,

where In is an n×n identity matrix. That is, the variances of εi are all equal to
σ2, and all their pairwise covariances are zero. This is, of course, the “usual”
assumption leading to the “usual” estimates.

The least squares estimates of the coefficients were given by

B̂ = (X ′X)−1X ′Y .
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Suppose that the error terms are neither independent nor have the same
variance. Then the variance covariance matrix, V , will not be of this simple
form. The diagonal elements will still represent the variances of the individual
error terms but will not all have the same value. The off-diagonal elements will
not be zero, as the individual error terms are not independent and hence have
a nonzero covariance. The only restriction is that V is positive definite.

The normal equations become

(X ′V −1X)B̂g = X ′V −1Y ,

where B̂g is the estimated value of B. Using this notation, we obtain the gen-

eralized least squares estimates by

B̂g = (X ′V −1X)−1X ′V −1Y .

Note that if V = σ2In the formula reverts to the familiar (X ′X)−1X ′Y .
This formula serves as the basis for the partitioning of sums of squares and
all other inferential procedures. Although this procedure provides unbiased
estimates and appropriate inference procedures with all desirable properties,
it assumes that the elements of V are known, which they normally are not. In
fact, there is insufficient data even to estimate the n(n+1)/2 distinct elements
of V required for implementing this method (there are only n observations).

If the error terms are independent but do not have constant variances, the
diagonal elements of V will contain the variances of the individual errors, but
the off-diagonal elements will be zero. The inverse of V contains the recipro-
cals of the variances on the diagonal with zeroes elsewhere, that is

ν−1
ii =

1

σ2
i

, i = 1, 2, . . . , n, and ν−1
ij = 0, i �= j.

Then the (i, j) element of the X ′V −1X matrix is calculated as

Σk xikxkj/σ
2
k,

where the summation is over the k subscript. The elements ofX ′V −1Y are cal-
culated in a similar manner, and all other calculations are done in the usual way
using these matrices. The effect of these formulas is that in the computation
of sums of squares and cross products, the individual terms of the summation
are weighted by the reciprocals of the variances of the individual observations.
Therefore, the resulting method is described as weighted regression.11 It is
not difficult to show that these weights need only be proportional to the actual
variance.

The values of these variances are, of course, not normally known, but a
process of assigning values to these elements is often a manageable problem.
Weighted regression can be performed with all computer programs but does
require that the individual values of the weights be supplied. We will illustrate
this procedure with a simple artificial example.

11Weighted regression may use weights other than the reciprocals of the variances; see
Section 4.4.
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EXAMPLE 4.4 We have 10 observations with x-values taking the integer values from 1 to 10.
The dependent variable, y, is generated using the model

y = x + ε,

where ε is normally distributed with a known standard deviation of 0.25x. In
other words, the variance of the error of the first observation is [(1)(0.25)]2 =
0.0625, whereas it is [(10)(0.25)]2 = 6.25 for the last observation. The data are
shown in Table 4.15.

Table 4.15

Data for Regression with
Unequal Variances

OBS x y

1 1 1.1
2 2 2.2
3 3 3.5
4 4 1.6
5 5 3.7
6 6 6.8
7 7 10.0
8 8 7.1
9 9 6.3

10 10 11.7

The “usual” unweighted regression using PROC REG and requesting the 0.95
confidence intervals for the mean response provide the results in Table 4.16.

Table 4.16

Results with Unweighted
Regression

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 87.98836 87.98836 24.97 0.0011
Error 8 28.19164 3.52395
Corrected Total 9 116.18000

Root MSE 1.87722 R-Square 0.7573
Dependent Mean 5.40000 Adj R-Sq 0.7270
Coeff Var 34.76333

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −0.28000 1.28239 −0.22 0.8326
x 1 1.03273 0.20668 5.00 0.0011

Output Statistics

Dep Var Predicted Std Error

OBS y Value Mean Predict 95% CL Mean Residual

1 1.1000 0.7527 1.1033 −1.7916 3.2970 0.3473
2 2.2000 1.7855 0.9358 −0.3724 3.9433 0.4145
3 3.5000 2.8182 0.7870 1.0034 4.6330 0.6818
4 1.6000 3.8509 0.6697 2.3066 5.3952 −2.2509
5 3.7000 4.8836 0.6026 3.4941 6.2731 −1.1836
6 6.8000 5.9164 0.6026 4.5269 7.3059 0.8836
7 10.0000 6.9491 0.6697 5.4048 8.4934 3.0509
8 7.1000 7.9818 0.7870 6.1670 9.7966 −0.8818
9 6.3000 9.0145 0.9358 6.8567 11.1724 −2.7145

10 11.7000 10.0473 1.1033 7.5030 12.5916 1.6527
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At first glance the results appear to be fine: The 0.95 confidence intervals
easily include the true values of the coefficients. This type of result occurs
quite often: The violation of the equal-variance assumption often has little
effect on the estimated coefficients. However, the error mean square has no
real meaning since there is no single variance to estimate. Furthermore, the
standard errors and the widths of the 95% confidence intervals for the esti-
mated conditional means are relatively constant for all observations, which
is illogical since one would expect observations with smaller variances to be
more precisely estimated. In other words, the unweighted analysis does not
take into account the unequal variances.

We now perform a weighted regression using the (known) weights of 1/x2.
Remember that the weights need only be proportional to the true variances,
which are (0.25x)2. The results are shown in Table 4.17.

Table 4.17 Results with Weighted Regression

Dependent Variable: y

Weight: w

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3.92028 3.92028 39.77 0.0002
Error 8 0.78864 0.09858
Corrected Total 9 4.70892

Root MSE 0.31397 R-Square 0.8325
Dependent Mean 1.92647 Adj R-Sq 0.8116
Coeff Var 16.29798

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.15544 0.37747 0.41 0.6913
x 1 0.93708 0.14860 6.31 0.0002

Output Statistics

OBS

Weight

Variable
Dep Var

y

Predicted

Value

Std Error

Mean Predict 95% CL Mean Residual

1 1.0000 1.1000 1.0925 0.2848 0.4358 1.7492 0.007477
2 0.2500 2.2000 2.0296 0.2527 1.4468 2.6124 0.1704
3 0.1111 3.5000 2.9667 0.3014 2.2717 3.6616 0.5333
4 0.0625 1.6000 3.9038 0.4024 2.9758 4.8317 −2.3038
5 0.0400 3.7000 4.8408 0.5265 3.6267 6.0549 −1.1408
6 0.0278 6.8000 5.7779 0.6608 4.2542 7.3017 1.0221
7 0.0204 10.0000 6.7150 0.8001 4.8699 8.5601 3.2850
8 0.0156 7.1000 7.6521 0.9423 5.4791 9.8251 −0.5521
9 0.0123 6.3000 8.5891 1.0862 6.0843 11.0940 −2.2891

10 0.0100 11.7000 9.5262 1.2312 6.6870 12.3655 2.1738
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The header for the weighted regression reads “Weight: w.” In the SAS System,
a weighted regression is performed by defining a new variable that is to be
used as the weight; in this case, we defined the variable w to be 1/x2. The
estimated coefficients are not really very different from those of the
unweighted regression, and the error mean square has even less meaning here
as it also reflects the magnitudes of the weights.

The real difference between the two analyses is in the precision of the
estimated conditional means. These are shown in the two plots in Figure 4.4,
which show the actual observations (•) and the 0.95 confidence bands (lines
with no symbols) for the conditional mean.

Figure 4.4 Confidence Intervals Using Unweighted and Weighted Regression
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We can see that the two estimated regression lines are almost the same. The
real difference is in the confidence bands, which show the much wider inter-
vals for larger values of x, where the variances are larger.

Of course, we do not normally know the true variances, and therefore must
use some form of approximating the necessary weights. In general, there are
two alternative methods for implementing weighted regression:

1. Estimating variances. This method can only be used if there are multiple
observations at each combination level of the independent variables.

2. Using relationships. This method uses information on the relative magni-
tudes of the variances based on values of the observations.

We will illustrate both methods in Example 4.5.

EXAMPLE 4.5 A block and tackle consists of a set of pulleys arranged in a manner to allow
the lifting of an object with less pull than the weight of the object. Figure 4.5
illustrates such an arrangement.
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Figure 4.5

Illustration of a Block
and Tackle

The force is applied at the drum to lift the weight. The force necessary to lift the
weight will be less than the actual weight; however, the friction of the pulleys
will diminish this advantage, and an experiment is conducted to ascertain the
loss in efficiency due to this friction.

A measurement on the load at each line is taken as the drum is repeatedly
rotated to lift (UP) and release (DOWN) the weight. There are 10 independent
measurements for each line for each lift and release; that is, only one line is
measured at each rotation. The data are shown in Table 4.18. At this time we
will only use the UP data.

Table 4.18 Loads on Lines in a Block and Tackle

LINE

1 2 3 4 5 6

UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN UP DOWN

310 478 358 411 383 410 415 380 474 349 526 303
314 482 351 414 390 418 408 373 481 360 519 292
313 484 352 410 384 423 422 375 461 362 539 291
310 479 358 410 377 414 437 381 445 356 555 300
311 471 355 413 381 404 427 392 456 350 544 313
312 475 361 409 374 412 438 387 444 362 556 305
310 477 359 411 376 423 428 387 455 359 545 295
310 478 358 410 379 404 429 405 456 337 544 313
310 473 352 409 388 395 420 408 468 341 532 321
309 471 351 409 391 401 425 406 466 341 534 318

If friction is present, the load on the lines should increase from line 1 to line
6 and, as a first approximation, should increase uniformly, suggesting a lin-
ear regression of LOAD on LINE. However, as we shall see in Example 6.3, a
straightforward linear model is not appropriate for this problem. Instead, we
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use a linear regression with an added indicator variable, denoted by C1, that
allows line 6 to deviate from the linear regression. The model is

LOAD = β0 + β1(LINE) + β2(C1) + ε,

where C1 = 1 if LINE = 6 and C1 = 0 otherwise. This variable allows the
response to deviate from the straight line for pulley number 6. The results of
the regression are given in Table 4.19.

Table 4.19

Regression to Estimate
Line Loads

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 329968 164984 2160.03 <.0001
Error 57 4353.68000 76.38035
Corrected Total 59 334322

Root MSE 8.73959 R-Square 0.9870
Dependent Mean 412.26667 Adj R-Sq 0.9865
Coeff Var 2.11989

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 276.20000 2.89859 95.29 <.0001
LINE 1 36.88000 0.87396 42.20 <.0001
C1 1 41.92000 4.00498 10.47 <.0001

The regression is certainly significant. The loads are estimated to increase
36.88 units for each line, except that the increase from line 5 to line 6 is 38.88+
41.92 = 78.80 units. A plot of the residuals is given in Figure 4.6. Notice that
the residuals seem to “fan out” as the line number increases, indicating the
possibility that the variances are larger for higher line numbers.

Figure 4.6

Residuals from
Regression
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Weighted Regression by Estimating the Variances In this example we
have multiple observations for each line number, so we can estimate these
variances by calculating the sample variance for each value of the variable
LINE. These are shown in Table 4.20 as an optional output from PROC ANOVA
of the SAS System. The increase in variability with line numbers is quite
evident.12 We need only square the standard deviations to get the estimates of
the variances to construct the appropriate weights. That is, wi = 1/(st dev)2.

Table 4.20

Means and Variances for
Different Lines

Level of LOAD

LINE N Mean SD

1 10 310.900000 1.5951315
2 10 355.500000 3.7490740
3 10 382.300000 5.9637796
4 10 424.900000 9.2189419
5 10 460.600000 11.8902388
6 10 539.400000 11.8902388

The reciprocals of these variances are now used in a weighted regression using
PROC REG with a WEIGHT statement. The results of the regression, as well as
the estimated values and standard errors for the estimated means, are shown
in Table 4.21.13

Table 4.21

Weighted Regression on
Load

Weight: w

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 7988.34494 3994.17247 2551.10 <.0001
Error 57 89.24287 1.56566
Corrected Total 59 8077.58782

Root MSE 1.25127 R-Square 0.9890
Dependent Mean 328.64905 Adj R-Sq 0.9886
Coeff Var 0.38073

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 273.43098 1.09451 249.82 <.0001
LINE 1 38.07497 0.68741 55.39 <.0001
C1 1 37.51922 5.70578 6.58 <.0001

(Continued)

12The standard deviations for lines 5 and 6 are identical, a result that is certainly suspicious. How-
ever, there is no obviously suspicious feature in the numbers for these two lines.
13The results presented at the bottom of the table are not directly available with PROC REG.
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Table 4.21

(Continued)

PREDICTED

MEAN

S.D. ERROR

OF MEAN

LINE UNWEIGHTED WEIGHTED UNWEIGHTED WEIGHTED

1 313.08 311.506 2.14075 0.61012
2 349.96 349.581 1.51374 0.70123
3 386.84 387.656 1.23596 1.24751
4 423.72 425.731 1.51374 1.88837
5 460.60 463.805 2.14075 2.55357
6 539.40 539.400 2.76370 4.70476

Notice that the predicted means for each value of LINE for the unweighted and
the weighted regressions are very similar. This is expected, as the
estimation is not affected by the different variances. The standard errors of
the predicted means for the weighted regression reflect the decrease in preci-
sion as line number increases. This result is, of course, more in line with the
larger dispersion of weights.

The use of estimated variances has one drawback: even if there are multiple
observations at each value of the independent variables, there usually are
not many. Therefore, the estimates of the variances are likely to be unstable.
For example, the estimated standard deviation for line 3 (above) has a 0.95
confidence interval from 6.723 to 15.17, which overlaps the estimated stan-
dard deviations of lines 5 and 6. Care should be taken before using weights
based on estimated variances. In this case, the consistency of the increases
in variances provides additional evidence that the estimated variances are
reasonable.

Weights Based on Relationships
In Example 4.4, the variance was generated to be proportional to x; hence,
using the reciprocal of x did provide correct weights. If in Example 4.5
we make the assumption that the pulleys have essentially equivalent fric-
tion, the readings are independent, and the variances increase uniformly
across line numbers, then the reciprocal of the line number may be used
instead of the estimated variances. The reader may want to verify that
using these weights does indeed provide almost identical results to those
obtained above.

Knowledge about the underlying distribution of the error often provides
a theoretical relationship between the mean and variance. For example,
for many applications ranging from biological organisms to economic data,
variability is proportional to the mean, which is equivalent to the standard
deviation being proportional to the mean. In this case, a weighted regres-
sion with weights of 1/y2 or 1/μ̂2 would be appropriate. Alternatively, if
the response is a frequency, the underlying distribution may be related to
the Poisson distribution, for which the variance is identical to the mean,
and appropriate weights would be 1/y or 1/μ̂. And finally, if the response
is in the form of a proportion, the underlying distribution is likely to be
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the binomial where the variance is p(1 − p)/n, where p is the proportion
of successes.14 Although these are the most common distributions with a
relationship between the mean and the variance, others do exist.

Obviously, if the error term of a regression model has a distribution
in which the mean and variance are related, it does not have a normal
distribution. One of the assumptions necessary to carry out inferences on
the parameters of the model was that the error terms were approximately
normally distributed. Fortunately, the lack of constant variance and the lack
of normality can usually be corrected by the same remedial action. That
is, when we attempt to correct one problem, we also correct the other. A
standard approach for a regression analysis where the error terms do not
have constant variance is to perform a transformation on the dependent
variable as follows:

• When the standard deviation is proportional to the mean, use the
logarithm (either base e or base 10).

• If the distribution is related to the Poisson, use the square root.
• If the distribution is related to the binomial, use the arcsine of the

square root of the proportion.

Unfortunately, the use of such transformations often makes interpretation
of the results difficult. Transformations on the dependent variable may also
change the character of the model, and in particular the error term. For exam-
ple, the logarithmic transformation would require that the error term be multi-
plicative rather than additive. These transformations and others are discussed
at length in Chapter 8.

Knowledge of the distribution of the error term can, however, be very
beneficial in doing weighted regression. That is, the theoretical distribution
might give a form for the variance of the error term that can be used in con-
structing weights. We will examine an example of the use of weighted regres-
sion in which the error can be considered to have the Poisson
distribution.

EXAMPLE 4.6 There is considerable variation among individuals in their perception of what
specific acts constitute a crime. To get an idea of factors that influence this per-
ception, a sample of 45 college students were given the following list of acts
and asked how many of these they perceived as constituting a crime:

Aggravated assault Armed robbery Arson
Atheism Auto theft Burglary

14Regression with a binomial response is presented in detail in Chapter 10.
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Civil disobedience Communism Drug addiction
Embezzlement Forcible rape Gambling
Homosexuality Land fraud Nazism
Payola Price fixing Prostitution
Sexual abuse of child Sex discrimination Shoplifting
Striking Strip mining Treason
Vandalism

The response variable, CRIMES, is the number of these activites perceived by
the individual students as a crime. Variables describing personal information
that may influence perceptions are:

AGE: Age of interviewee
SEX: Coded 0: female, 1: male
INCOME: Income of parents ($1000)

The data are given in Table 4.22, and the results of a regression using number
of items considered a crime (CRIMES) as the dependent variable are shown in
Table 4.23.

Table 4.22

Data on Perceptions of
Crime

AGE SEX INCOME CRIMES

19 0 56 13
19 1 59 16
20 0 55 13
21 0 60 13
20 0 52 14
24 0 54 14
25 0 55 13
25 0 59 16
27 1 56 16
28 1 52 14
38 0 59 20
29 1 63 25
30 1 55 19
21 1 29 8
21 1 35 11
20 0 33 10
19 0 27 6
21 0 24 7
21 1 53 15
16 1 63 23
18 1 72 25
18 1 75 22
18 0 61 16
19 1 65 19

(Continued)
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Table 4.22

(Continued)

AGE SEX INCOME CRIMES

19 1 70 19
20 1 78 18
19 0 76 16
18 0 53 12
31 0 59 23
32 1 62 25
32 1 55 22
31 0 57 25
30 1 46 17
29 0 35 14
29 0 32 12
28 0 30 10
27 0 29 8
26 0 28 7
25 0 25 5
24 0 33 9
23 0 26 7
23 1 28 9
22 0 38 10
22 0 24 4
22 0 28 6

Table 4.23

Regression for
Perceptions of Crime

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 1319.63143 439.87714 71.37 <.0001
Error 41 252.67968 6.16292
Corrected Total 44 1572.31111

Root MSE 2.48252 R-Square 0.8393
Dependent Mean 14.35556 Adj R-Sq 0.8275
Coeff Var 17.29311

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −10.31963 2.24825 −4.59 <.0001
AGE 1 0.40529 0.07518 5.39 <.0001
SEX 1 2.31808 0.82435 2.81 0.0075
INCOME 1 0.29093 0.02516 11.56 <.0001

The regression is quite significant and indicates that, within this group of
students, the number of activities considered a crime is higher for males and
also increases with age and income. The residual plot shown in Figure 4.7
indicates larger residuals for the higher predicted values. This is because the
response is a frequency (number of activities) whose distribution is related to
the Poisson, where the variance is identical to the mean.
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Figure 4.7

Residual Plot
8

6

4

2

0

–2

–4

–6

4 6 8 10 12 14 16 18 20 22 24

CRIMES = –10.32 +0.4059 AGE +2.3181 SEX +0.2909 INCOME

N
45
Rsq
0.8393
AdjRsq
0.8275
RMSE
2.4825

R
e
s
i
d
u
a
l

Predicted Value

The relationship between the mean and variance implies that we should use the
response means as weights. Of course, we do not know the weights, but we can
use the reciprocals of the estimated responses as weights. To do this, we first
perform the unweighted regression, compute the estimated (predicted) values,
and use the reciprocals of these values as weights in the second weighted
regression. This can be done with virtually any computer package, although
it will be easier with some than with others. The results of this method, using
PROC REG and a listing of estimated means and their standard errors for some
selected observations, are shown in Table 4.24.

Table 4.24 Results of Weighted Regression

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 108.65190 36.21730 94.144 0.0001
Error 41 15.77279 0.38470
C Total 44 124.42469

Root MSE 0.62024 R-Square 0.8732
Dependent Mean 11.92761 Adj R-Sq 0.8640
Coeff Var 5.20007

Parameter Estimates

Variable DF

Parameter

Estimate

Standard

Error

t for H0:

Parameter = 0 Pr > |t|

Intercept 1 −9.753598 2.00466905 −4.865 0.0001
AGE 1 0.379488 0.07515332 5.050 0.0001
SEX 1 2.178195 0.77587317 2.807 0.0076
INCOME 1 0.293055 0.02187276 13.398 0.0001

(Continued)
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Table 4.24 (Continued)

PREDICTED VALUES STANDARD ERRORS

OBS CRIMES UNWEIGHTED WEIGHTED UNWEIGHTED WEIGHTED

1 4 5.5792 5.6285 0.70616 0.49228
2 5 7.0860 7.0600 0.66198 0.48031
3 6 5.2361 5.3692 0.75115 0.55408
5 7 5.1739 5.2490 0.73051 0.51454
8 8 8.9467 8.8924 0.93894 0.80415

10 9 9.0082 9.0249 0.54281 0.39358
12 10 7.3870 7.5070 0.63073 0.46508
15 11 10.6923 10.6508 0.83064 0.72668
16 12 12.3951 12.6091 0.68129 0.63510
18 13 13.6732 13.8677 0.66600 0.63118
22 14 12.9148 13.0750 0.59185 0.54530
26 15 15.9291 15.9258 0.62338 0.61558
27 16 16.8641 16.9251 0.67561 0.68251
32 17 17.5402 17.2898 0.78969 0.79759
33 18 22.7972 22.8726 0.82235 0.84340
36 19 20.0644 20.1487 0.74112 0.76615
37 20 22.2466 21.9572 1.26156 1.27875
38 22 21.1138 21.2345 0.83147 0.85358
40 23 16.8120 16.9589 0.81744 0.82514
42 25 22.0808 21.8922 0.74478 0.78496

As before, weighting has little effect on the overall fit of the model and the esti-
mated regression parameters. Also, the predicted values are quite similar for
both methods, but the standard errors are larger for larger values of the pre-
dicted response when weighting is used. The differences are not large, but do
more nearly represent the nature of the underlying distribution of the response
variable.

4.4 Robust Estimation

We have seen how violations of assumptions, such as outliers and nonnormal
distributions of errors, can adversely affect the results of a regression analysis
based on the least squares method. We have also presented some methods for
detecting such violations and have suggested some remedial methods, not all
of which are universally useful. Another approach is to use methods whose
validity is assured in the presence of such violations. Two types of analyses
are used in this context:

1. Nonparametric methods, whose results are not given in terms of parameters
such as means and variances

2. Robust methods that make inferences on the usual parameters, but whose
results are not seriously affected by violations of assumptions
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Because the usual objective of a regression analysis is to estimate the parame-
ters of the regression model and to do statistical inferences on these estimates,
the use of nonparametric methods is usually not effective.15 Instead, we intro-
duce a principle of robust estimation called the iteratively reweighted least
square (IWLS) procedure, which yields something called the M-estimator.
The IWLS procedure is an adaptation of least squares and is, in fact, imple-
mented as a weighted regression.

As we have seen, parameters estimated by the least squares method may
be extensively influenced by observations with large residuals. This can be
demonstrated by the influence function, which is illustrated in Figure 4.8.
In this plot the vertical axis represents a standardized measure of influence
and the horizontal axis a standardized measure of the residual, (y− μ̂y|x). The
left-hand graph illustrates the influence function for least squares and shows
that with this method, the influence increases linearly with the magnitude of
the residuals.

Figure 4.8 Influence Functions

Since violations of assumptions often result in large residuals, a robust
method should attempt to reduce the influence of observations with large
residuals. One method for doing this is to use Huber’s influence function,
which is illustrated in the right-hand portion of Figure 4.8. It can be seen
that this function gives the same influence as least squares up to some arbi-
trarily chosen value of the residual (usually denoted by r, which is arbitrar-
ily set to 1 in this plot), beyond which all observations will have the same
influence. In other words, the procedure ignores information about magni-
tudes of residuals greater than r. The larger the chosen value of r, the closer

15There is a body of methodology called nonparametric regression that is used to fit curves to data
where the curves are not based on models containing the usual regression parameters. These
methods do, however, generally use least squares and do require the usual assumptions on the
error.
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the results are to those of least squares and the less robust are the results.
On the other hand, smaller values of r reduce the influence of extreme
observations, thus resulting in greater robustness. However, because more
information from the data is down-weighted, there is greater bias of esti-
mates and less power for inferences.

Commonly used values of r are one to one and one-half times some mea-
sure of variability. The standard deviation is such a measure of variability, but
because its value is also influenced by the extreme observations we may wish
to downplay an alternative estimator, such as the median of the absolute val-
ues of the residuals is often used.

Other measures of variability and methods for determining r may be used.
In addition, other influence functions may be useful. For example, an influence
function that specifies zero influence for observations with residuals greater
than r is equivalent to eliminating those observations. Other robust estimators
are given in Montgomery et al. (2001), Chapter 11. Another consideration is
that we know the residuals of outliers for observations having high leverage
may not be large, and thus it may be worthwhile to use an influence function
based on the magnitudes of the DFFITS statistic.

It turns out that the use of influence functions is equivalent to weighted
regression where the weights are determined by the residuals. Since the
residuals depend on the estimated regression, the method is implemented
by performing a sequence of weighted least squares regressions in a method
known as iteratively reweighted least squares. The method proceeds as
follows:

1. Perform an ordinary (unweighted) least squares regression and obtain an
initial set of residuals, e = (y − μ̂y|x). Compute the desired measure of
variation of residuals and determine a value of r.

2. Generate weights according to the rule

If e > r, then w = r/e.

If e < −r, then w = −r/e.

Else w = 1.

3. Perform a weighted regression using the weights obtained in step 2, and
obtain a new set of residuals.

4. Compute the desired measure of variation of residuals obtained by the
weighted regression and compare with those obtained from the unweighted
regression or a previous iteration. If the differences in estimates are large,
say in the second digit, use the new measure of variation to compute a new
value of r and go to step 2; else stop.

A few comments on the results of this procedure are in order:

• The estimated coefficients are biased estimates of the “true” least squares
coefficients. However, their robustness may make them more useful.

• The error mean square from the partitioning of sums of squares is a func-
tion of the weights, which are on the average less than unity; hence, that
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value will be smaller than that for ordinary least squares. In other words,
the “true” residual mean square will be larger.

• The same iterated procedure can be used for down-weighting observations
with large values of some other statistic, such as DFFITS.

EXAMPLE 4.3 REVISITED In Example 4.3 we investigated the factors influencing the
expected lifetimes of individuals in the various states of the United States.
We noted that there were a number of states that could be considered
unusual, and it may be of interest to examine the results of a robust regres-
sion that down-weights the data from some of these states. The data are
shown in Table 4.10 and the residuals are shown in Table 4.12. One and
one-half times the median of the absolute values of the residuals is 1.029
(compare with the residual standard deviation of 1.175 in Table 4.11). We
generate a set of weights using r = 1.029 and the rule in step 2 above, and
then perform a weighted regression.

This regression produces an estimated residual standard deviation of 0.913,
which is sufficiently different from the original 1.175 that we perform another
iteration. This second iteration produces an estimated standard deviation of
0.902, and although performing another iteration may be worthwhile, we will
not do so here.

The estimated coefficients from the three regressions (OLS is the unweighted
regression) and the computed residual standard deviation (RMSE, which is
affected by the weights) are shown in Table 4.25. The changes in the estimated
coefficients are not large, although the changes for MALE and BIRTH may be
considered of interest.

Table 4.25 Regression Coefficients for M-estimator

ITER INTERCEP MALE BIRTH DIVO BEDS EDUC INCO RMSE

OLS 70.557 0.12610 −0.51606 −0.19654 −0.00334 0.23682 −0.00036 1.17554
1 68.708 0.16262 −0.60073 −0.19025 −0.00292 0.20064 −0.00037 0.91263
2 68.567 0.16563 −0.60499 −0.19271 −0.00296 0.19820 −0.00037 0.90198

An examination of residuals and weights provides an indication of how the
M-estimator works. The residuals for observations whose weights were
decreased, shown in order of the magnitudes of the weights obtained in the
second iteration, are shown in Table 4.26. Here we see that the largest change
is the weight for Utah (from 1 to 0.29836) and we can also see that the results
of the M-estimator are somewhat similar to what the DFBETAS (Table 4.13)
indicate would occur if that state were omitted. Note, however, that the weight
for Nevada, a state with high leverage, age, was not reduced, and the second
largest weight change (from 1 to 0.38767) was for South Carolina, which was
not identified as an influential or outlying observation.
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Table 4.26

Selected Residual from
Second Iteration

STATE

OLS

RESID

FIRST

WEIGHT

ITER 1

RESID

SECOND

WEIGHT

ITER 2

RESID

UT 3.32152 0.30980 4.08335 0.29836 4.10023
SC −2.55633 0.40253 −2.49943 0.38767 −2.50562
HW 2.06880 0.49739 1.97114 0.47902 1.95080
AK −2.01712 0.51013 −2.14899 0.49129 −2.19056
MD −1.81916 0.56565 −1.79916 0.54476 −1.79797
MN 1.79184 0.57427 1.70406 0.55306 1.70201
NC −1.60770 0.64004 −1.58095 0.61641 −1.59269
LA −1.55884 0.66010 −1.39831 0.63573 −1.40058
MT −1.48422 0.69329 −1.61906 0.66769 −1.63704
VA −1.48217 0.69425 −1.51230 0.66861 −1.51599
NE 1.37071 0.75070 1.20437 0.72298 1.19665
NJ −1.20043 0.85719 −1.18570 0.82553 −1.19569
IA 1.13386 0.90752 1.00061 0.87400 0.98907
VT 1.12873 0.91165 1.08216 0.87798 1.09185
DC −1.16019 0.88692 −0.89235 1.00000 −0.79724
ND 1.11950 0.91916 0.66137 1.00000 0.63547

In summary, then, there is no magic bullet! It is fair to say that all
diagnostic statistics and remedial methods, including others not presented
here, should be considered exploratory in nature, intended to diagnose data
problems and suggest how statistical results may be affected by these data
problems.

4.5 Correlated Errors

In all of the regression models considered so far, we have assumed that the
random error terms are uncorrelated random variables. In some instances
this assumption may be violated for reasons beyond the control of the inves-
tigator, which occurs primarily when the selection of sample units is not
strictly random. The most frequent violation of this assumption occurs in
time series data where observations are collected in successive time periods.
Examples of time series include monthly observations of economic variables
such as unemployment or gross national product, or weather data collected
daily at a weather station. Such time dependencies may be in the form of
seasonal trends or cycles, as well as dependence on what has occurred in
previous time periods. Less frequent examples of dependent errors occur
when sample observations are “neighbors” in some physical sense, such as
adjacent plants in a seeded plot.

Models of time-dependent errors are usually linear; hence, the lack of inde-
pendence among errors is measured by correlations, and nonindependent
errors are usually referred to as correlated errors. Such time-dependent errors
are said to be autocorrelated or serially correlated.
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As indicated in Section 4.3, the effects of correlated errors can best be
examined in terms of the variance matrix used for generalized least squares.
If the errors have the same variance but are correlated, we can write the vari-
ances as

V = Variance(E) = Rσ2,

where R has ones on the diagonal and there are at least some nonzero off-
diagonal elements. These nonzero elements reflect the correlations of the error
terms. Because there may be as many as (n)(n−1)/2 correlations inR, we can-
not estimate them using sample data. Instead we formulate alternative models
that incorporate certain types of correlated error structure.

Autoregressive Models
In time series, the most popular model for correlated errors is the autore-

gressive model, in which the error of any period t is linearly dependent on
previous errors. That is, the error at time t can be expressed as

εt = ρ1εt−1 + ρ2εt−2 + · · ·+ δt,

where the εt−i refer to the errors for the ith previous period, and ρi is the
correlation between the tth and (t− i)th error. We assume the δt, called the
disturbances, are independent normal random variables with mean zero and
variance σ2. We will concentrate here on the first-order autoregressive

model, which describes the special case where the error in period t is
directly correlated only with the error in period (t − 1), the error of the
previous period; that is,

εt = ρεt−1 + δt.

It can be shown that this model results in a simplified form of the V matrix,

V =
σ2

1− ρ2

⎡⎢⎢⎢⎢⎢⎢⎣
1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

. . . . . . .

. . . . . . .
ρn−1 ρn−2 ρn−3 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ρ is the first-order autocorrelation, that is, the correlation of the error
in period t to the error of period (t− 1). The matrix V now contains only two
parameters (σ and ρ), and although the generalized least squares procedure
requires that ρ be known, it can be estimated from the data.

EXAMPLE 4.7 To illustrate the effects of a first-order autoregressive model, we generate data
for two “time series.” In both models, the mean response increases one unit for
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each 10 units of time t, starting with 1. This means that a regression model of
the form

y = 0.1t+ ε

is used to generate the data. Table 4.27 presents 30 simulated observations
where the two models have response variables Y and YT, respectively. For Y
the error terms are specified as

εt,

which are N(μ = 0, σ = 0.5), and independent, and for YT,

εt = ρεt−1 + δt,

where ρ = 0.9, and the δt are independent and normally distributed with mean
0, standard deviation 0.5. In other words, the model for Y assumes independent
errors, while YT assumes a first-order autocorrelation model with a correla-
tion of 0.9. The effect of the autocorrelation can be seen in the two plots of
response against T in Figure 4.9, where the dots are the observed values of the
response and the line shows the population regression line. The differences or
deviations from the line to the data points are thus the actual errors produced
by the simulation.

Table 4.27

Artificial Time-Series
Data

T YT Y

1 −0.12499 0.52224
2 0.60074 0.66059
3 0.80179 0.25997
4 1.03658 0.31918
5 1.39957 0.78767
6 1.49094 0.42381
7 0.76655 0.64343
8 0.30919 1.39242
9 0.60969 1.38809

10 0.08809 1.18023
11 0.87986 1.17237
12 1.58868 1.45426
13 1.52735 −0.38802
14 1.43925 0.68786
15 2.22734 2.78510
16 2.72746 1.93701
17 2.58607 1.88173
18 2.68645 1.95345
19 2.72953 1.91513
20 3.12057 2.53743
21 3.74449 2.10365
22 3.77030 2.55224
23 3.60392 2.04799
24 3.26780 2.74687
25 2.71947 3.12419
26 2.52793 2.30578
27 2.71606 2.63007
28 2.81094 2.00981
29 2.21310 2.82975
30 2.99849 2.66082
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Figure 4.9 Data with and without Autocorrelation

Now if the errors are independent and normally distributed, the probabil-
ity of a positive residual should be 0.5; the probability of two successive
positive residuals should be (0.5)(0.5) = 0.25; for three, the probability
should be 0.0125, and so forth, and equivalently for successive negative
residuals. In other words, observations should switch from above to below
the line quite frequently, and there should not be long runs of observa-
tions above or below the line. We can see that this is the case for the
uncorrelated errors response, but definitely not for the correlated errors
response.

We now perform regression of Y and YT on T using ordinary least squares;
that is, we ignore the possible effects due to correlated errors. The results are
shown in Table 4.28. There doesn’t seem to be much difference in the results of
the regression analysis. All estimated coefficients appear to be quite close to
what theory says they should be. The residual mean square for the correlated
errors is larger than it should be; the χ2 test for the hypothesis that σ2 = 0.25
gives a value of 48.57, which with 28 degrees of freedom indicated that it is
significantly too large (α = 0.05).



164 Chapter 4 Problems with Observations

Table 4.28

Regressions for Time-
Series Data

Correlated Errors

Root MSE 0.65854 R-Square 0.6796

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.30298 0.24660 1.23 0.2295
t 1 0.10704 0.01389 7.71 <.0001

Uncorrelated Errors

Root MSE 0.52830 R-Square 0.6965

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.23300 0.19783 1.18 0.2488
t 1 0.08932 0.01114 8.02 <.0001

We can get further insight into the validity of the results by performing a simu-
lation. We simulate 1000 samples according to the autoregressive model. The
distribution of the estimated coefficients has a mean of 0.0939 and a standard
deviation of 0.051. So it appears that the estimates are reasonably unbiased.
However, the mean of the standard errors computed in the usual manner is
0.014, which means that the “usual” analysis has greatly underestimated σ (by
a factor of 3) the true standard error of the estimated coefficient. The mean of
the residual standard deviations is 0.677, confirming that these overstate the
magnitude of the true error.

This example illustrates the problems associated with using least squares
procedures when we have correlated errors, particularly positive autocorre-
lated errors. If the data result from a time series that has positively autocor-
related errors and a regular regression analysis is performed, the following
important consequences must be addressed:

1. Confidence intervals and hypothesis tests using the t and F distributions
are not strictly applicable.

2. The estimated regression coefficients are still unbiased estimators of the
regression parameters, but they no longer have the property of being the
best linear unbiased estimators.

3. The value MSE may seriously underestimate the variance of the error terms.
The fact that our example showed a value higher is likely an anomaly due to
sampling fluctuations. The fact that normally MSE will underestimate the
variance can be shown by

Var(εt) =
σ2

1− ρ2
.
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For a nonzero correlation the actual variance of the error terms will be
higher than σ2. Since MSE estimates σ2, it follows that it will underestimate
the variance of the error terms in proportion to the value of ρ.

4. As a result of 3, the standard error of the coefficients computed from the
least squares analysis may also seriously underestimate the true standard
error of these coefficients.

This example has shown that the use of ordinary least squares estima-
tion on data having autocorrelated errors can give misleading results. For this
reason it is important to ascertain the degree of autocorrelation and, if it is
found to exist, to employ alternative methodology.

Diagnostics for Autocorrelation

We noted earlier that positively correlated errors16 tend to create long series of
residuals with the same sign. This pattern is usually evident in a residual plot
where the residuals are plotted against the time variable. Such a plot for the
simulated time-series data is shown for both the correlated and uncorrelated
errors data in Figure 4.10.

Figure 4.10 Residual Plots with and without Autocorrelation
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The larger magnitudes of errors in the correlated errors case are quite
evident. Also, we have previously noted that autocorrelated errors produce
a tendency for longer series of residuals above or below zero, and this
phenomenon is quite obvious in this example. A test for trends of this type
is furnished by the runs test (Ostle and Malone, 1988), which can be used
for any nonrandom pattern.

Because at this time we are only interested in nonrandomness caused
by a first-order autocorrelation, we use the Durbin–Watson test, which is

16Although autocorrelations can be of any sign, positive autocorrelations are most common.
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more specifically designed to test for this type of correlated errors. This
test uses the residuals from the ordinary least squares regression. Let et be
the residual from the tth observation. Then the Durbin–Watson test statistic,
denoted by D, is calculated as follows:

D =
Σt≥2(et − et−1)

2

Σt≥1e2t

Because et−1 cannot be computed for the first observation, the numerator sum
starts with observation 2.

The sampling distribution of this statistic is somewhat unusual. The range
of the distribution is from 0 to 4, and under the null hypothesis of no
autocorrelation, the mean of that distribution is close to 2. Positive autocorre-
lation makes adjacent differences small, hence tending to reduce the numer-
ator. Therefore, the rejection region for positive correlations is in the lower
tail of the distribution. In addition, the computations of critical values for the
distribution depend not only on sample size, but also on the number of inde-
pendent variables and the pattern of the independent variables. Therefore, the
critical values are not exact, but are only good approximations.

Critical values for the Durbin–Watson statistic for selected sample sizes
and numbers of independent variables are given in Appendix A, Table A.5. Two
values, labeled DL and DU, are given for each significance level for various
combinations of sample size and number of independent variables. For testing
the null hypothesis of no first-order autocorrelation, the computed statistic D
is compared to the values in the table. If the calculated value is less than DL,
reject the hypothesis of no first-order autocorrelation; if it is greater than DU,
fail to reject; otherwise, defer judgment.17

When the Durbin–Watson test gives indeterminate results, a reasonable
procedure would be to treat the inconclusive results as suggesting the pres-
ence of autocorrelation and employ one of the remedial measures suggested in
the following section. If such an action does not lead to substantially different
results, the assumption of no autocorrelation would appear to be valid, and the
ordinary least squares procedure should be valid. If the remedial action does
lead to substantially different results, the analysis using the remedial method
should be used.

For Example 4.7, the value of the Durbin–Watson statistic is 1.82 for Y and
0.402 for YT. From the table of critical values, for n = 30 and one independent
variable, DL = 1.13 and DU = 1.26 for α = 0.01; hence, we fail to reject the
hypothesis of no first-order autocorrelation for Y, while we readily reject that
hypothesis for YT.

A preliminary estimate of the first-order autocorrelation coefficient, ρ, can
be obtained by calculating the simple correlation between et and et−1. In
Example 4.7, the estimates of the autocorrelation coefficients are 0.077 and
0.796 for Y and YT, respectively.

17For a test of negative autocorrelation, subtract tabled critical values from 4.
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Remedial Methods
The autoregressive model is only one of a large number of statistical models
used for analyzing data with time-dependent error structures. Data with time-
ordered effects are commonly called time series. The analyses used on time
series may be used to do the following:

• Study the nature of the time-dependent error structure.
• Study the nature of the underlying regression model.
• Provide for prediction of the response variable.

We present here two methods that generally work well with the first-order
autoregressive model:

• A method for analyzing the underlying structure and providing for limited
prediction for the autoregressive model using a transformation incorporat-
ing estimates of the autocorrelation coefficients

• A method for studying the underlying model for a first-order autoregressive
model that uses a simple redefinition of the model (also a transformation)

Details on these as well as additional methods for a wide spectrum of applica-
tions are described in books and references on the general topic of time series
(e.g., Fuller, 1996).

Alternative Estimation Technique
We present here the results of the Yule–Walker procedure as implemented by
PROC AUTOREG of the SAS/ETS software. This method first estimates the
model using ordinary least squares methods. It then computes the autocor-
relations using the residuals from the least squares regression. It then solves
the Yule–Walker equations (see Gallant and Goebel, 1976) to obtain initial esti-
mates of the regression parameters, which are referred to as the autoregres-
sive parameters. The procedure then transforms the observations using the
solutions to the Yule–Walker equations and reestimates the regression coef-
ficients with the transformed data. This is equivalent to a generalized least
squares with the appropriate weights.

EXAMPLE 4.7 REVISITED PROC AUTOREG can be instructed to either select the order
of the autocorrelation or use an order specified by the user. Because the data
for YT in Example 4.7 were generated with a first-order process, we will spec-
ify a first-order model. The results are shown in Table 4.29.

Table 4.29

Results of Estimation
with Autoregression

Ordinary Least Squares Estimates

SSE 12.1427617 DFE 28
MSE 0.43367 Root MSE 0.65854 .
SBC 64.8047827 AIC 62.0023879
Regress R-Square 0.6796 Total R-Square 0.6796
Durbin–Watson 0.4617

(Continued)



168 Chapter 4 Problems with Observations

Table 4.29

(Continued)

Standard Approx

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.3030 0.2466 1.23 0.2295
t 1 0.1070 0.0139 7.71 <.0001

Estimates of Autocorrelations

Lag Covariance Correlation
0 0.4048 1.000000
1 0.3021 0.746437

Estimates of Autocorrelations

Lag −1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 | | ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗|
1 | | ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ |

Preliminary MSE 0.1792

Estimates of Autoregressive Parameters

Lag Coefficient Standard Error t Value

1 −0.746437 0.128067 −5.83
The SAS System

The AUTOREG Procedure

Yule–Walker Estimates

SSE 5.05238979 DFE 27
MSE 0.18713 Root MSE 0.43258
SBC 42.7143874 AIC 38.5107952
Regress R-Square 0.3590 Total R-Square 0.8667
Durbin–Watson 1.5904

Standard Approx

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.2125 0.5139 0.41 0.6824
t 1 0.1073 0.0276 3.89 0.0006

The top portion of the output reproduces the results of the ordinary least
squares estimation as shown in Table 4.28. (SBC and AIC are two measures
of the effectiveness of a regression that we have not yet discussed.)

The next portion contains the estimated autocorrelations and autoregressive
parameters. For a higher-order process, the autoregressive parameters are
equivalent to partial regression estimates. The “T-ratio” is equivalent to the
t test for regression coefficients, but since the sampling distribution is only
approximately a t distribution the p-value for the test of the regression coeffi-
cient is noted as “approximate.”

The last portion provides the statistics for the estimated regression using the
estimated autoregressive parameters. Note that the coefficient for T is not
very different from the ordinary least squares one, but the stated standard
error is larger and now approaches the value suggested by the simulation
results. In fact, the 0.95 confidence interval (using the stated standard error
and t distribution with 27 degrees of freedom) does include the true value.
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One feature of this estimation process is that it provides two estimates of the
response variable:

1. The estimated response based only on the regression, called the structural

portion of the model

μ̂y|x = 0.2125 + 0.1073t

2. The estimated responses based on both the structural and autoregressive
portions of the model. These estimates are those obtained by the structural
portion plus an estimate of the effect of the autocorrelation.

These two estimates are shown in Figure 4.11, where the dots show the actual
values of the response, the dashed line indicates the estimated structural model,
and the solid line represents the estimated model including both portions.

Figure 4.11
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The relative effectiveness of the two models is shown in the computer output,
where “Regress R-Square” and “Total R-Square” give the coefficients of deter-
mination for the structural and full models, respectively. In this example, the
values of 0.359 for the structural model and 0.867 for the full model clearly
show the importance of the autocorrelation.

The relevance of the two models depends on the purpose of the analysis. If
the purpose is to estimate the structural relationship, the structural model pro-
vides the appropriate estimates and the autocorrelation is simply a nuisance
that must be accounted for. On the other hand, if the purpose is to provide
the best predictor of the response, the full model, which uses all available
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parameter estimates, is the one to use, and the regression coefficient may be
considered to be of secondary importance.

Model Modification
Another method of analysis is to redefine the model to account for the auto-
correlation. The first-order autoregressive model essentially states that the
observed response in any period t depends on the response at period (t− 1).
If we now assume that the first-order autocorrelation is close to unity, it is
logical to model the change in the period-to-period responses, called the first

differences. In other words, the dependent variable is the difference

dt = yt − yt−1.

The use of this model may also suggest the use of first differences for some or all
of the independent variables to provide a more interpretable mode, especially
when these variables are also subject to autocorrelation. In any case, the model
using first differences provides a different model than that using the actually
observed variables, and often the two do not provide comparable results.

EXAMPLE 4.8 In recent years there has been some argument as to whether the inflation
rates in the 1970s and 1980s were due to changes in energy prices or to fed-
eral government deficits. Table 4.30 shows the data on the Consumer Price

Table 4.30

Inflation Data

OBS YEAR CPI ENERGY PDEF

1 1960 29.6 22.4 0.0
2 1961 29.9 22.5 0.2
3 1962 30.2 22.6 0.4
4 1963 30.6 22.6 0.3
5 1964 31.0 22.5 0.4
6 1965 31.5 22.9 0.1
7 1966 32.4 23.3 0.2
8 1967 33.4 23.8 0.5
9 1968 34.8 24.2 1.4

10 1969 36.7 24.8 −0.2
11 1970 38.8 25.5 0.1
12 1971 40.5 26.5 1.1
13 1972 41.8 27.2 1.1
14 1973 44.4 29.4 0.6
15 1974 49.3 38.1 0.2
16 1975 53.8 42.1 2.1
17 1976 56.9 45.1 2.6
18 1977 60.6 49.4 1.6
19 1978 65.2 52.5 1.6
20 1979 72.6 65.7 1.0
21 1980 82.4 86.0 1.8
22 1981 90.9 97.7 1.8
23 1982 96.5 99.2 2.7
24 1983 99.6 99.9 3.7
25 1984 103.9 100.9 2.7
26 1985 107.6 101.6 2.8
27 1986 109.6 88.2 2.5
28 1987 113.6 88.6 1.5
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Index (CPI), the index of energy prices (ENERGY), and the federal deficit in
percentage of gross national product (PDEF) for the years 1960 through 1984
(Statistical Abstract of the United States, 1988).

The least squares regression analysis, using CPI as the dependent and ENERGY
and PDEF as independent variables, as produced by PROC REG of the SAS
System is given in Table 4.31. The highly significant (p < 0.0001) coefficient
for ENERGY and the nonsignificant coefficient for PDEF (p = 0.6752) appear
to strongly support the contention that inflation rates are primarily affected by
energy prices. However, the Durbin–Watson statistic clearly indicates a first-
order autocorrelation (DL = 1.84, forα = 0.01); hence, the use of an alternative
analysis is indicated.

Table 4.31

Regression for Inflation
Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 22400 11200 258.68 <.0001
Error 25 1082.43634 43.29745
Corrected Total 27 23483

Root MSE 6.58008 R-Square 0.9539
Dependent Mean 58.86071 Adj R-Sq 0.9502
Coeff Var 11.17907

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 13.16979 2.39024 5.51 <.0001
ENERGY 1 0.89481 0.07135 12.54 <.0001
PDEF 1 0.88828 2.09485 0.42 0.6752

Durbin–Watson D 0.360
Number of Observations 28
1st Order Autocorrelation 0.633

A logical model for this analysis consists of using the first differences in CPI
as the dependent variable. It is also logical to use the first differences of
energy prices as one independent variable. It is not logical to use the first dif-
ferences of the deficit rates, since it is the actual deficit that creates additional
money supply. Denoting DCPI and DENERGY as the first differences in CPI
and ENERGY and using PDEF as is, the results of the regression, using out-
put from PROC REG, are shown in Table 4.32. For this model, coefficients for
both DENERGY and PDEF are positive and significant (P < 0.0001); hence,
the use of this model indicates that both factors appear to contribute posi-
tively to inflation.18 In addition, the Durbin–Watson statistic is barely in the

18Before we can claim to have discovered an important result, it must be noted that this
model is quite incomplete and subject to valid criticism. Its primary use here is to illustrate
the method.
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“no decision” region, indicating only limited evidence of the existence of a
first-order autocorrelation.

Table 4.32

First-Difference Model
Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 133.93363 66.96682 47.93 <.0001
Error 24 33.53303 1.39721
Corrected Total 26 167.46667

Root MSE 1.18204 R-Square 0.7998
Dependent Mean 3.11111 Adj R-Sq 0.7831
Coeff Var 37.99402

Parameter Estimates

Variable DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Intercept 1 0.86642 0.37658 2.30 0.0304
DENERGY 1 0.33750 0.03981 8.48 <.0001
PDEF 1 1.09955 0.21912 5.02 <.0001

Durbin–Watson D 1.511
Number of Observations 27
1st Order Autocorrelation 0.207

Some additional comments on this model:

• There are only 27 observations because the first difference cannot be com-
puted for the first observation.

• The coefficient of determination is only 0.7998, compared to 0.9539 for
the observed variables model. On the other hand, the residual standard
deviation is 1.182, compared to 6.580 for the observed variables model.
These results illustrate the fact that the two models are not compara-
ble because the two response variables are measured in entirely different
scales.

• The estimated coefficient for DENERGY estimates the annual change in
CPI associated with a one-unit increase in annual change in the energy price
index, whereas the coefficient for PDEF estimates the annual change in CPI
associated with a unit change in the deficit percentage (holding the other
variable constant). These coefficients are also not necessarily comparable
to those of the observed variables model. This is especially true for this
example because the first-differences model uses first-differences for one
independent variable and observed values for the other.

4.6 Summary

In this chapter we have discussed problems that arise when the observed
values of the response variable fail to fulfill the assumptions underlying
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regression analyses based on least squares estimation. We have presented three
major areas of concern:

• The existence of outliers that may bias estimates of both coefficients and
error variance

• The existence of nonconstant variance of the residuals
• The existence of correlated errors

In each case we have used simulations to illustrate some possible effects of
these violations of assumptions, provided tools to help diagnose the nature of
possible violations, and suggested some remedial methods. As is often the case
with such exploratory analyses, the diagnostic tools are not always useful, and
the remedies may not provide the desired results. In any case, the analyst’s
awareness of these types of problems should help to provide more valid and
useful analyses.

4.7 CHAPTER EXERCISES

Exercises 1 through 4 can be worked with only material from the first part of
this chapter. The remaining exercises deal with topics from the second part.

1. The data in Table 4.33 resulted from a small sample taken in an old urban
neighborhood. The variable INCOME represents the monthly income of the
head of the household, and the variable AGE represents the age of that
person.

Table 4.33

Income Data

AGE INCOME AGE INCOME

25 1200 33 1340
32 1290 22 1000
43 1400 44 1330
26 1000 25 1390
33 1370 39 1400
48 1500 55 2000
39 6500 34 1600
59 1900 58 1680
62 1500 61 2100
51 2100 55 2000

(a) Perform the regression of income on age and plot the residuals. Do the
residuals indicate the presence of an outlier?

(b) Calculate the studentized residuals for the regression. Do these indi-
cate any problems?

(c) Calculate the DFFITS and DFBETAS for the data. Discuss the results.

2. It is a well-known fact that differences between summer and winter tem-
peratures, called the temperature ranges, increase with latitude, that is, as
you go north. In Table 4.34 are temperature ranges (RANGE) and latitudes
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(LAT) of some selected U.S. cities. The data are available in File REG04P02.
Investigate the relationship between range and latitude and check for
outliers. Determine a reason for outliers (an atlas may help).

Table 4.34

Temperatures and
Latitude

City State LAT RANGE

Montgomery AL 32.3 18.6
Tucson AZ 32.1 19.7
Bishop CA 37.4 21.9
Eureka CA 40.8 5.4
San Diego CA 32.7 9.0
San Francisco CA 37.6 8.7
Denver CO 39.8 24.0
Washington DC 39.0 24.0
Miami FL 25.8 8.7
Talahassee FL 30.4 15.9
Tampa FL 28.0 12.1
Atlanta GA 33.6 19.8
Boise ID 43.6 25.3
Moline IL 41.4 29.4
Ft. Wayne IN 41.0 26.5
Topeka KS 39.1 27.9
Louisville KY 38.2 24.2
New Orleans LA 30.0 16.1
Caribou ME 46.9 30.1
Portland ME 43.6 25.8
Alpena MI 45.1 26.5
St. Cloud MN 45.6 34.0
Jackson MS 32.3 19.2
St. Louis MO 38.8 26.3
Billings MT 45.8 27.7
N. Platte NB 41.1 28.3
Las Vegas NV 36.1 25.2
Albuquerque NM 35.0 24.1
Buffalo NY 42.9 25.8
NYC NY 40.6 24.2
Cape Hatteras NC 35.3 18.2
Bismark ND 46.8 34.8
Eugene OR 44.1 15.3
Charleston SC 32.9 17.6
Huron SD 44.4 34.0
Knoxville TN 35.8 22.9
Memphis TN 35.0 22.9
Amarillo TX 35.2 23.7
Brownsville TX 25.9 13.4
Dallas TX 32.8 22.3
SLCity UT 40.8 27.0
Roanoke VA 37.3 21.6
Seattle WA 47.4 14.7
Green Bay WI 44.5 29.9
Casper WY 42.9 26.6

3. The Galapagos Islands off the coast of Ecuador are a well-known source
of data for various types of biological studies. Such a study, reported by
Hamilton and Rubinoff in Science in 1963, attempts to relate the number
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of plant species on an island to various characteristics of the island. The
variables used are:

AREA: Area in square miles
HEIGHT: Maximum elevation in feet above mean sea level
DSNEAR: Distance to nearest island in miles
DCENT: Distance to the center of the archipelago
ARNEAR: Area of nearest island in square miles
SPECIES: Number of plant species found

The data are shown in Table 4.35 and are available in File REG04P03. Per-
form a regression to estimate the number of species. Look for outliers and
influential observation(s). A map will be helpful.

Table 4.35

Plant Species

OBS Island AREA HEIGHT DSNEAR DCENT ARNEAR SPECIES

1 Culpepper 0.9 650 21.7 162 1.8 7
2 Wenman 1.8 830 21.7 139 0.9 14
3 Tower 4.4 210 31.1 58 45.0 22
4 Jervis 1.9 700 4.4 15 203.9 42
5 Bindloe 45.0 1125 14.3 54 20.0 47
6 Barrington 7.5 899 10.9 10 389.0 48
7 Gardiner 0.2 300 1.0 55 18.0 48
8 Seymour 1.0 500 0.5 1 389.0 52
9 Hood 18.0 650 30.1 55 0.2 79

10 Narborough 245.0 4902 3.0 59 2249.0 80
11 Duncan 7.1 1502 6.4 6 389.0 103
12 Abingdon 20.0 2500 14.1 75 45.0 119
13 Indefatigable 389.0 2835 0.5 1 1.0 193
14 James 203.0 2900 4.4 12 1.9 224
15 Chatham 195.0 2490 28.6 42 7.5 306
16 Charles 64.0 2100 31.1 31 389.0 319
17 Albemarle 2249.0 5600 3.0 17 245.0 325

4. Data were obtained from the 1988 Statistical Abstract of the United States

to determine factors related to state expenditures on criminal activities
(courts, police, etc). The variables are:

STATE: The standard two-letter abbreviation (DC is included)
EXPEND: State expenditures on criminal activities ($1000)
BAD: The number of persons under criminal supervision
CRIME: Crime rate per 100,000
LAWYERS: The number of lawyers in the state
EMPLOY: The number of persons employed in the state
POP: The population of the state (1000)

The data are available in File REG04P04.
Perform the regression of EXPEND on the other variables. Interpret

and comment on the usefulness of the results. Look for outliers and
influential observations. Can omitting some of these be justified? If so, redo
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the regression without deleted observations. Are the results more
reasonable?

5. File REG04P05 contains monthly sorghum grain prices received by farmers
in a South Texas county from 1980 through 1987. The variables are:

N: Sequential month number from 1 through 96
Year: Actual year
Month: Labeled 1 through 12
Price: Dollars per bushel

Fit a linear trend using Price as the dependent variable and N as the inde-
pendent variable. Check for autocorrelation. Redo the analysis if necessary.

6. In Chapter 2, Exercise 5, CPI data for the years 1960 to 1994 were given
with instructions to perform simple linear regression using years as the
independent variable. Repeat part (b) of Exercise 5 assuming the first-
order autoregressive model. Compare the results with those obtained in
Chapter 2.

7. Pecan production in the United States is believed to be subject to a bien-
nial fluctuation; that is, a “good” year is followed by a “bad” year. Table 4.36
presents production data for native (USQN) and improved (USQI) pecan
production, in millions of pounds, for the years 1970–1991 as provided by
the U.S. Department of Agriculture’s Fruit and Tree-nut Situation Year-

book. The data are available in File REG04P07. Estimate the trend in pro-
duction over the years and perform an analysis to determine if the biennial
production cycle exists.

Table 4.36

Pecan Production

Year USQN USQI

1970 73.08 81.52
1971 104.10 143.10
1972 94.11 88.99
1973 131.70 144.00
1974 51.50 85.60
1975 136.70 110.10
1976 25.80 77.30
1977 98.70 137.90
1978 86.20 164.50
1979 109.50 101.10
1980 55.00 128.50
1981 164.55 174.55
1982 46.90 168.20
1983 102.75 167.25
1984 63.17 169.23
1985 91.90 152.50
1986 90.05 182.65
1987 82.55 179.65
1988 122.70 185.30
1989 73.20 161.00
1990 41.20 143.50
1991 82.80 145.00



Chapter 5

Multicollinearity

5.1 Introduction

In previous chapters we briefly mentioned a phenomenon called
multicollinearity, which was defined as the existence of strong correlations
among the independent variables. The most frequent result of having multi-
collinearity when doing a regression analysis is obtaining a very significant
overall regression (small p-value for the F statistic), while the partial coeffi-
cients are much less so (much larger p-values for the t statistics). In fact, some
of the coefficients may have signs that contradict expectations. Such results
are obviously of concern because the response variable is strongly related to
the independent variables, but we cannot specify the nature of that relation-
ship. That is the reason we devote this long chapter to that topic.

Multicollinearity arises in a multiple regression analysis in several ways.
One way is a result of collecting data in an incomplete manner, usually by
collecting only a limited range of data on one or more of the independent vari-
ables. The result is an artificially created correlation between two or more
of the independent variables. For example, to predict the cost of a house we
might use the number of square feet of living space and the number of bed-
rooms as independent variables. If there a only large houses with many bed-
rooms and small houses with few bedrooms (and no small houses with many
bedrooms or large houses with few bedrooms, which is not impossible), there
will be a correlation between these two variables that is a function of the way
the data are collected. Another way multicollinearity can arise is to use inde-
pendent variables that are naturally correlated. For example, the age of a child
and his or her height would be positively correlated as children tend to grow
as they get older.

So far all of our examples of regression analyses have been based on a
specified model for describing the behavior of the response variable, and the

177
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regression analyses were performed to confirm the validity of that model.
Such analyses are referred to as confirmatory analyses. However, in many
statistical analyses, and especially in regression analyses, the specification of
the model is somewhat nebulous and a large part of the statistical analysis is
devoted to a search for an appropriate model. Such analyses are referred to
as exploratory analyses.

In a regression setting, an exploratory analysis often consists of specifying
an initial model that contains a large number of variables. Because computing
considerations are no longer a major consideration, the number of variables is
often limited only by data availability, and it is hoped that the statistical analy-
sis will magically reveal the correct model. One result of using a large number
of variables is that many of the variables in such a model will be correlated
because they may be measuring similar factors.

Now we need to see why multicollinearity creates these difficulties. Mul-
ticollinearity is not a violation of assumptions; hence, all statistics obtained
by the analysis are valid. Instead, the problem is that the data are in a sense
inadequate to properly estimate the partial coefficients. A partial coefficient
is defined as the effect of changing one variable, holding all other variables
constant. Now, if there is an exact linear relationship between two vari-
ables (correlation coefficient, r = 1.0), it is impossible to vary one holding
the other variable constant, which results in the X′X matrix being singular
and so a regression cannot be performed. A correlation of 0.90 is not very
different, and although a regression can now be performed, there is very
limited information available of the result of varying one while holding the
other constant. As a result, estimates of the coefficients are unreliable or
“unstable.”

We can see this difficulty geometrically in Figure 5.1, which shows two
cases of data measured on a response variable y and two independent vari-
ables x1 and x2. The regression equation would be represented by a plane that
best fits the data points. Obviously, the plane that fits the data points in (b),
the uncorrelated independent variables, would be much more stable over the
range of x1 and x2 than would the plane that fits the data points in (a).

Figure 5.1

(a) Correlated
Independent Variables
(b) Uncorrelated
Independent Variables

y

x1
x2

y

x1 x2
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Because multicollinearity is so often encountered, we will devote this entire
chapter to this topic. In Section 5.2 we use some artificially generated data to
show how multicollinearity affects the results of a regression analysis. Then,
in Section 5.3, we provide some tools to study the existence and nature of the
multicollinearity, and in Section 5.4 we present some remedial methods that
may help to provide useful results.

One very popular method used to combat multicollinearity is the use of
variable selection, a statistically based method for selecting a subset of the
initially chosen set of independent variables that, ideally, will produce a model
that has lost very little in precision while being subject to lesser multicollinear-
ity. Because this methodology is so often used (and misused) and because it
is also used when multicollinearity is not a serious problem, it is presented in
Chapter 6.

5.2 The Effects of Multicollinearity

We have defined multicollinearity as the existence of correlated independent
variables. The study of multicollinearity in an m variable regression involves
not only the m(m − 1)/2 pairwise correlations but also the various multiple
correlations among these variables. In order to provide an introduction to this
obviously messy problem, we start with some simulation studies involving
relatively simple multicollinearity patterns. We generate data sets of 100 obser-
vations using the model:

y = 4.0x1 + 3.5x2 + 3.0x3 + 2.5x4 + 2.0x5 + 1.5x6 + 1.0x7 + ε,

where ε is the random error. Each of the independent variables has values
from −0.5 to 0.5 generated from the uniform distribution, standardized to have
mean of 0 and range of 1. Because all the independent variables have approx-
imately equal dispersion, the magnitudes of the coefficients provide an easy
visual guide to the relative importance (degree of statistical significance) of
each independent variable, with x1 being the most important, x2 the next most
important, and so forth.

Three data sets are generated according to these specifications and differ
only in the degree and nature of the multicollinearity among independent
variables. In order to provide for easier comparisons among the three sets,
the magnitude of the random error is generated to provide an R-square of
approximately 0.85 for each case.

EXAMPLE 5.1 No Multicollinearity The independent variables in this example are gen-
erated with zero population correlations. The purpose of this example is to
provide a basis for comparison with results using data sets having
multicollinearity. The results of the regression analysis, using PROC REG of
the SAS System, are shown in Table 5.1.
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Table 5.1

Results of Regression
with no Multicollinearity,
Example 5.1

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 399.05014 57.00716 67.25 <.0001
Error 92 77.98936 0.84771
Corrected Total 99 477.03951

Root MSE 0.92071 R-Square 0.8365
Dependent Mean 0.11929 Adj R-Sq 0.8241
Coeff Var 771.81354

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.09419 0.09863 0.95 0.3421
X1 1 3.72526 0.32194 11.57 <.0001
X2 1 3.78979 0.33785 11.22 <.0001
X3 1 3.27429 0.35684 9.18 <.0001
X4 1 2.59937 0.32238 8.06 <.0001
X5 1 2.04749 0.31101 6.58 <.0001
X6 1 1.90056 0.33569 5.66 <.0001
X7 1 0.82986 0.34515 2.40 0.0182

The results conform to expectations: the regression is significant (p < 0.0001)
and the R-square value is 0.84. The 0.95 confidence intervals for all coefficients
include the true parameter values, and the magnitude of the t statistics for test-
ing that the coefficients are 0 decrease consistently from x1 to x7. For six of the
seven coefficients the p-values suggest a high degree of statistical significance,
whereas β7 though significant has by far the largest p-value.

Another feature of regression when there is no multicollinearity is that the
total and partial regression coefficients are nearly the same. This is shown
in Table 5.2, where the first two lines are the partial coefficients and their
standard errors and the second two lines are the total coefficients and their
standard errors. Although the partial and total coefficients are not identical,
the differences are quite minor. Furthermore, the residual standard deviations
(RMSE) of all one-variable models are much larger than those of the multiple
regression, indicating that at least several variables are needed.

Table 5.2

Partial and Total
Regression Coefficients
with No Multicollinearity

Variable X1 X2 X3 X4 X5 X6 X7

Partial Coefficient 3.73 3.79 3.27 2.60 2.05 1.90 0.83
Standard Error 0.32 0.34 0.36 0.32 0.31 0.34 0.35

Total Coefficient 3.81 2.95 2.87 2.33 1.88 1.57 0.87
Standard Error 0.63 0.72 0.78 0.71 0.69 0.76 0.78

EXAMPLE 5.2 “Uniform” Multicollinearity For this example, the independent vari-
ables are generated so that correlations between all “adjacent” variables,
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that is, between xj and xj+1, are 0.98. Figure 5.2 is a matrix of scatter
plots for all pairs of independent variables. The existence of high correla-
tions is evident.1 The numbers in the diagonal cells represent the minimum
and the maximum value of the variable (recall that the variables all have
the uniform distribution from −0.5 to 0.5). The nature of the correlations
is apparent from these scatter plots.

Figure 5.2

Correlation Matrix of
Independent Variables,
Example 5.2
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X6
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The results of the regression using these data are shown in Table 5.3. The
R-square value is very close to that of the no-multicollinearity case.2 There
is, however, a big change in the estimated coefficients, and only β6 and β7 are
statistically significant (α = 0.05); this is a surprising result because these
two should be the least “important” ones. Furthermore, the estimate of β6 has
a negative sign that does not agree with the true model. Actually, these results
are a direct consequence of the large standard errors of the estimates of the
coefficients. In general, they are ten to twenty times larger than those result-
ing from the no-multicollinearity data. We will see later that a multicollinearity
assessment statistic is based on the difference in standard errors.

1Population correlations between xj and xj+2 are 0.982, between xj and xj+3 are 0.983,
and so forth.
2Because all coefficients are positive, multicollinearity causes the response variable to span a
larger range; hence, with a constant R-square, the residual mean square is also larger.
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Table 5.3

Results of Regression
with Multicollinearity,
Example 5.2

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 3019.40422 431.34346 78.26 <.0001
Error 92 507.06535 5.51158
Corrected Total 99 3526.46958

Root MSE 2.34768 R-Square 0.8562
Dependent Mean 0.06761 Adj R-Sq 0.8453
Coeff Var 3472.48945

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −0.08714 0.24900 −0.35 0.7272
X1 1 4.87355 3.85464 1.26 0.2093
X2 1 3.79018 5.89466 0.64 0.5218
X3 1 2.97162 5.85504 0.51 0.6130
X4 1 4.96380 5.72319 0.87 0.3880
X5 1 0.92972 6.71427 0.14 0.8902
X6 1 −12.53227 6.13637 −2.04 0.0440
X7 1 13.15390 4.47867 2.94 0.0042

What we have here is the main feature of regression analyses when multi-
collinearity is present:

Although the model may fit the data very well, the individual coefficients
may not be very useful.

In other words, multicollinearity does not affect the overall fit of the model
and therefore does not affect the model’s ability to obtain point estimates of
the response variable or to estimate the residual variation. However, multi-
collinearity does reduce the effectiveness of a regression analysis if its
primary purpose is to determine the specific effects of the various independent
factor variables. Furthermore, the large standard errors of the coefficients also
increase the standard errors of the estimated conditional means and predicted
values.

When multicollinearity is present, the values of the partial regression coeffi-
cients may be quite different from the total regression coefficients as shown
in Table 5.4. Here we can see, for example, that the partial coefficient for X1 is
4.87, whereas the total coefficient is 17.19! The comparisons of the other coef-
ficients show similar results. This is the direct consequence of the definitions
of partial and total regression coefficients: The partial coefficient is the change
in μ̂y|x associated with a unit change in the respective x holding constant
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all other independent variables, whereas the total coefficient is that change
ignoring all other variables. One interesting feature that can be observed here
is that all the estimated total coefficients are very close to 17.5, which is the
sum of the seven coefficients in the true model. This is due to the strong corre-
lations among all the independent variables. As a result, the model with all vari-
ables may not fit the data any better than models with fewer variables if strong
multicollinearity is present.

Table 5.4

Total and Partial
Regression Coefficients
with Multicollinearity,
Example 5.2

Variables X1 X2 X3 X4 X5 X6 X7

Partial Coefficients 4.87 3.79 2.97 4.96 0.93 −12.5 13.15
Standard Errors 3.85 5.89 5.86 5.72 6.71 6.14 4.48

Total Coefficients 17.19 17.86 17.49 17.41 17.20 17.00 17.26
Standard Errors 0.82 0.82 0.81 0.81 0.84 0.92 0.90

This is another feature of multicollinearity that is a direct consequence of mul-
ticollinearity: correlated variables may be considered as largely measuring the
same phenomenon, therefore one variable may do almost as well as combina-
tions of several variables. In this example, the model with all seven variables
has a residual standard deviation (not shown in table) of 2.348, while the indi-
vidual single variable regressions have residual mean squares ranging from
2.479 to 2.838. Actually, this makes sense, because highly correlated variables
tend to provide almost identical information.

In Section 3.4 we presented a method of obtaining partial regression coeffi-
cients from residuals, where the coefficients are obtained by performing
simple linear regressions using the residuals from the regression on all other
independent variables. Multicollinearity implies strong relationships among
the independent variables that will cause the variance of the residuals from
these regressions to have small magnitudes. Now the precision of the esti-
mated regression coefficient in a simple linear regression (Section 2.3) is
inversely related to the dispersion of the independent variable. Since multi-
collinearity reduces the dispersion of the residuals, which are the independent
variables in these regressions, the precision of a partial regression coefficient
will be poor in the presence of multicollinearity. We will see later that a multi-
collinearity assessment statistic is based on this argument.

Finally, the poor performance of the individual partial coefficients has a
very practical explanation. Recall that partial regression coefficients are the
effect due to one variable while holding constant all other variables. But when
variables are correlated, the data contain very little or no information on what
happens if one variable changes while all others remain constant. In fact, it
may be impossible to change one while keeping others fixed. Hence, the partial
coefficients are trying to estimate something for which there is only limited
information at best.
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EXAMPLE 5.3 Several Multicollinearities In this example, the population correlation
patterns are more complicated, as follows:

Correlations among x1, x2, and x3 are as in Example 5.2; that is, correla-
tions among adjacent variables are 0.98.

Correlations among x4, x5, and x6 are similar to those of Example 5.2,
except correlations among adjacent variables are 0.95, but they are
uncorrelated with x1, x2, and x3.

Correlations of x7 with all other variables are zero.

The matrix of scatter plots for these data is shown in Figure 5.3 and clearly
shows the high correlations among X1, X2, and X3, somewhat smaller cor-
relations among X4, X5, and X6, and the lack of correlation among the rest,
particularly X7.

Figure 5.3
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The results of the regression using these data are shown in Table 5.5.
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Table 5.5

Regression Results for
Example 5.3

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 1464.34484 209.19212 77.44 <.0001
Error 92 248.53079 2.70142
Corrected Total 99 1712.87563

Root MSE 1.64360 R-Square 0.8549
Dependent Mean −0.23544 Adj R-Sq 0.8439
Coeff Var −698.10234

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.40158 0.16862 2.38 0.0193
X1 1 6.26419 2.92282 2.14 0.0347
X2 1 −0.83206 4.22064 −0.20 0.8442
X3 1 4.99533 2.84205 1.76 0.0821
X4 1 5.03588 1.74862 2.88 0.0049
X5 1 −1.36616 2.35952 −0.58 0.5640
X6 1 1.95366 1.86944 1.05 0.2987
X7 1 2.15221 0.58533 3.68 0.0004

The results are somewhat similar to those of Example 5.2. The statistics for
the model are virtually unchanged: The entire regression is highly significant3

and the standard errors for the coefficients of x1, x2, and x3 are only a little
smaller than those of Example 5.2. The standard errors for the coefficients
x4, x5, and x6 are significantly smaller than those of Example 5.2 because
the correlations among these variables are not quite as high. Note, however,
that the standard error for the coefficient of x7 is about the same as for the
no-multicollinearity case. This result shows that, regardless of the degree
of multicollinearity among variables in the model, the standard error of the
coefficient for a variable not correlated with other variables is not affected
by the multicollinearity among the other variables.

Now that we have seen what multicollinearity can do in a “controlled”
situation, we will see what it does in a “real” example.

EXAMPLE 5.4 Basketball Statistics The data are NBA team statistics published by the
World Almanac and Book of Facts for the 1976/77 through 1978/79 seasons.
The following variables are used here:

FGAT Attempted field goals
FGM Field goals made
FTAT Attempted free throws
FTM Free throws made
OFGAT Attempted field goals by opponents

3Again the difference in the magnitudes of the error mean square is due to the larger variation
in the values of the response variable.
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OFGAL Opponent field goals allowed
OFTAT Attempted free throws by opponents
OFTAL Opponent free throws allowed
DR Defensive rebounds
DRA Defensive rebounds allowed
OR Offensive rebounds
ORA Offensive rebounds allowed
WINS Season wins

The data are shown in Table 5.6.

Table 5.6 NBA Data

OBS Region FGAT FGM FTAT FTM OFGAT OFGAL OFTAT OFTAL DR DRA OR ORA WINS

1 1 7322 3511 2732 2012 7920 3575 2074 1561 2752 2448 1293 1416 50
2 1 7530 3659 2078 1587 7610 3577 2327 1752 2680 2716 974 1163 40
3 1 7475 3366 2492 1880 7917 3786 1859 1404 2623 2721 1213 1268 30
4 1 7775 3462 2181 1648 7904 3559 2180 1616 2966 2753 1241 1110 44
5 1 7222 3096 2274 1673 7074 3279 2488 1863 2547 2937 1157 1149 22
6 1 7471 3628 2863 2153 7788 3592 2435 1803 2694 2473 1299 1363 55
7 1 7822 3815 2225 1670 7742 3658 2785 2029 2689 2623 1180 1254 43
8 1 8004 3547 2304 1652 7620 3544 2830 2135 2595 2996 1306 1312 24
9 1 7635 3494 2159 1682 7761 3539 2278 1752 2850 2575 1235 1142 32

10 1 7323 3413 2314 1808 7609 3623 2250 1695 2538 2587 1083 1178 27
11 1 7873 3819 2428 1785 8011 3804 1897 1406 2768 2541 1309 1178 54
12 1 7338 3584 2411 1815 7626 3542 2331 1747 2712 2506 1149 1252 47
13 1 7347 3527 2321 1820 7593 3855 2079 1578 2396 2453 1119 1122 29
14 1 7523 3464 2613 1904 7306 3507 2861 2160 2370 2667 1241 1234 37
15 1 7554 3676 2111 1478 7457 3600 2506 1907 2430 2489 1200 1225 31
16 2 7657 3711 2522 2010 8075 3935 2059 1512 2550 2687 1110 1329 44
17 2 7325 3535 2103 1656 7356 3424 2252 1746 2632 2232 1254 1121 49
18 2 7479 3514 2264 1622 7751 3552 1943 1462 2758 2565 1185 1167 48
19 2 7602 3443 2183 1688 7712 3486 2448 1833 2828 2781 1249 1318 35
20 2 7176 3279 2451 1836 7137 3409 2527 1909 2512 2533 1244 1121 31
21 2 7688 3451 1993 1468 7268 3265 2325 1748 2563 2711 1312 1202 43
22 2 7594 3794 2234 1797 8063 3808 1996 1494 2594 2576 1030 1345 52
23 2 7772 3580 2655 1887 8065 3767 1895 1437 2815 2683 1349 1166 44
24 2 7717 3568 2331 1690 7938 3659 2213 1661 2907 2747 1309 1273 39
25 2 7707 3496 2116 1569 7620 3474 2113 1574 2676 2779 1187 1214 43
26 2 7691 3523 1896 1467 7404 3571 2238 1699 2421 2525 1301 1195 28
27 2 7253 3335 2316 1836 6671 3162 2930 2193 2359 2606 1160 1160 41
28 2 7760 3927 2423 1926 7970 3798 2343 1759 2619 2531 1096 1297 48
29 2 7498 3726 2330 1845 7625 3795 2211 1627 2504 2315 1256 1186 47
30 2 7802 3708 2242 1607 7623 3755 2295 1732 2380 2628 1303 1301 30
31 2 7410 3505 2534 1904 6886 3367 2727 2045 2341 2440 1381 1176 46
32 2 7511 3517 2409 1848 8039 3864 2246 1666 2676 2664 1234 1486 26
33 2 7602 3556 2103 1620 7150 3600 2423 1837 2256 2587 1229 1123 30
34 3 7471 3590 2783 2053 7743 3585 2231 1635 2700 2481 1288 1269 50
35 3 7792 3764 1960 1442 7539 3561 2543 1933 2495 2637 1169 1317 44
36 3 7840 3668 2072 1553 7753 3712 2330 1721 2519 2613 1220 1265 30
37 3 7733 3561 2140 1706 7244 3422 2513 1912 2593 2739 1222 1097 40
38 3 7840 3522 2297 1714 7629 3599 2252 1705 2584 2770 1409 1378 36
39 3 7186 3249 2159 1613 7095 3306 1907 1425 2705 2559 1292 1055 44
40 3 7883 3801 2220 1612 7728 3715 2404 1832 2480 2617 1239 1234 44

(Continued)
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Table 5.6 (Continued)

OBS Region FGAT FGM FTAT FTM OFGAT OFGAL OFTAT OFTAL DR DRA OR ORA WINS

41 3 7441 3548 2705 2068 7799 3678 2365 1740 2736 2546 1177 1267 48
42 3 7731 3601 2262 1775 7521 3564 2635 2004 2632 2684 1208 1232 31
43 3 7424 3552 2490 1832 7706 3688 2177 1662 2601 2494 1229 1244 38
44 3 7783 3500 2564 1904 7663 3634 2455 1841 2624 2793 1386 1350 31
45 3 7041 3330 2471 1863 7273 3565 1980 1466 2577 2367 1248 1065 40
46 3 7773 3906 2021 1541 7505 3676 2415 1819 2370 2437 1157 1229 38
47 3 7644 3764 2392 1746 7061 3434 2897 2170 2404 2547 1191 1156 48
48 3 7311 3517 2841 2046 7616 3631 2277 1713 2596 2429 1307 1218 47
49 3 7525 3575 2317 1759 7499 3586 2416 1868 2530 2605 1225 1299 38
50 3 7108 3478 2184 1632 7408 3682 2029 1549 2544 2377 1224 1095 31
51 4 7537 3623 2515 1917 7404 3408 2514 1889 2703 2510 1260 1197 49
52 4 7832 3724 2172 1649 7584 3567 2282 1699 2639 2640 1300 1256 46
53 4 7657 3663 1941 1437 7781 3515 1990 1510 2628 2625 1177 1348 53
54 4 7249 3406 2345 1791 7192 3320 2525 1903 2493 2594 1059 1180 34
55 4 7639 3439 2386 1646 7339 3394 2474 1863 2433 2651 1355 1257 40
56 4 7836 3731 2329 1749 7622 3578 2319 1749 2579 2743 1166 1202 49
57 4 7672 3734 2095 1576 7880 3648 2050 1529 2647 2599 1136 1365 45
58 4 7367 3556 2259 1717 7318 3289 2282 1747 2686 2523 1187 1187 58
59 4 7654 3574 2081 1550 7368 3425 2408 1820 2629 2794 1183 1185 43
60 4 7715 3445 2352 1675 7377 3384 2203 1670 2601 2600 1456 1121 47
61 4 7516 3847 2299 1765 7626 3775 2127 1606 2379 2424 1083 1238 50
62 4 7706 3721 2471 1836 7801 3832 2295 1760 2413 2322 1392 1294 43
63 4 7397 3827 2088 1606 7848 3797 1931 1415 2557 2486 949 1288 47
64 4 7338 3541 2362 1806 7059 3448 2501 1889 2435 2350 1256 1080 45
65 4 7484 3504 2298 1732 7509 3475 2108 1567 2591 2453 1310 1156 52
66 4 7453 3627 1872 1367 7255 3493 2155 1604 2513 2533 1169 1147 38

We perform a regression of WINS on the other variables for the purpose of
determining what aspects of team performance lead to increased wins.

The matrix of scatter plots is shown in Figure 5.4. (Because of space limita-
tions, all variable names are truncated to three characters) and the correlation

Figure 5.4
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coefficients listed in Table 5.7. Note that not all variables are significantly
correlated. The highest correlations are the obvious ones, between free
throws attempted and made, and somewhat lower correlations are between
field goals attempted and made. A few other modest correlations exist, while
many variables do not appear to be correlated. However, as we will see, there
are indeed other sources of multicollinearity, indicating that absence of high
pairwise correlations does not necessarily imply that multicollinearity is not
present.

Table 5.7 Correlations for NBA Data

FGAT FGM FTAT FTM OFGAT OFGAL OFTAT OFTAL DR DRA OR ORA WINS

FGAT 1 .561** −.238 −.296* .421** .290* .138 .134 .107 .484** .227 .373** .012
FGM .561** 1 −.150 −.106 .465** .574** −.038 −.052 −.103 −.222 −.275* .363** .409*
FTAT −.238 −.150 1 .941** .191 .174 .058 .033 .152 −.167 .307* .200 .216
FTM −.296* −.106 .941** 1 .195 .224 .051 .023 .137 −.229 .138 .185 .221
OFGAT .421** .465** .191 .195 1 .786** −.536** −.554** .543** .105 −.102 .604** .157
OFGAL .290* .574** .174 .224 .786** 1 −.441** −.455** .033 −.160 −.172 .438** −.057
OFTAT .138 −.038 .058 .051 −.536** −.441** 1 .993** −.374** .211 .075 −.011 −.225
OFTAL .134 −.052 .033 .023 −.554** −.455** .993** 1 −.392** .200 .091 −.032 −.245*
DR .107 −.103 .152 .137 .543** .033 −.374** −.392** 1 .263* .076 .125 .260*
DRA .484** −.222 −.167 −.229 .105 −.160 .211 .200 .263* 1 −.001 .232 −.386*
OR .227 −.275* .307* .138 −.102 −.172 .075 .091 .076 −.001 1 .002 −.012
ORA .373** .363** .200 .185 .604** .438** −.011 −.032 .125 .232 .002 1 .028
WINS .012 .409** .216 .221 .157 −.057 −.225 −.245* .260* −.386** −.012 .028 1

∗∗Correlation is significant at the 0.01 level (2-tailed).
∗Correlation is significant at the 0.05 level (2-tailed).

The results of the regression using WINS as the dependent variable and all
12 performance statistics are shown in Table 5.8. The F -value for the test for
the model as well as the coefficient of determination suggest a rather well-
fitting model. However, only two coefficients (FGM and OFGAL) have p-values
less than 0.01, and one other (FTM) has a p-value less than 0.05. These results
would suggest that only field goals made by the team and opposition are

Table 5.8

Results of Regression for
NBA Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 12 3968.07768 330.67314 26.64 <.0001
Error 53 657.92232 12.41363
Corrected Total 65 4626.00000

Root MSE 3.52330 R-Square 0.8578
Dependent Mean 41.00000 Adj R-Sq 0.8256
Coeff Var 8.59341

(Continued)
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Table 5.8

(Continued)

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 36.17379 22.39379 1.62 0.1122
FGAT 1 −0.01778 0.01387 −1.28 0.2053
FGM 1 0.06980 0.01316 5.31 <.0001
FTAT 1 −0.00357 0.01045 −0.34 0.7339
FTM 1 0.02767 0.01142 2.42 0.0188
OFGAT 1 0.02202 0.01217 1.81 0.0761
OFGAL 1 −0.07508 0.01139 −6.59 <.0001
OFTAT 1 0.01645 0.01757 0.94 0.3533
OFTAL 1 −0.04364 0.02207 −1.98 0.0533
DR 1 −0.01376 0.01138 −1.21 0.2317
DRA 1 0.00735 0.01274 0.58 0.5667
OR 1 0.02654 0.01854 1.43 0.1581
ORA 1 −0.02140 0.01393 −1.54 0.1305

important and the coefficients do have the expected sign, while the number
of free throws made by the team has a marginal positive effect.

Results of this nature are, of course, what we expect if multicollinearity is
present, although these apparent contradictions between model and coeffi-
cient statistics are not as severe as those of the artificial examples. Also, we
have seen that another result of multicollinearity is that the partial and total
coefficients tend to be different. The partial and total coefficients for the NBA
data are shown in Table 5.9. The differences are indeed quite marked, although
again not as much as in the artificial data. For example, the three largest
t-values in the multiple regression are for field goals and free throws made and
opponents field goals allowed, while the three strongest simple regressions
involve field goals made, defensive rebounds allowed, defensive rebounds,
and opponents, free throws allowed. Also, in this example, single-
variable regressions do not fit as well as the multiple regression. However,
note that many single-variable regressions have nearly equal residual mean
squares.

Table 5.9 Partial and Total Coefficients, NBA Data

Variable FGAT FGM FTAT FTM OFGAT OFGAL OFTAT OFTAL DR DRA OR ORA

Partial Coeff. −.018 0.070 −.004 0.028 0.022 −.075 0.016 −.044 −.014 0.007 0.027 −.021
Std. Error 0.014 0.013 0.010 0.011 0.012 0.011 0.018 0.022 0.011 0.013 0.019 0.014
|t| 1.282 5.305 0.342 2.424 1.809 6.590 0.936 1.977 1.210 0.576 1.432 1.536

Total Coeff. 0.000 0.022 0.008 0.011 0.004 −.003 −.008 −.011 0.015 −.023 −.001 0.003
Std. Error 0.005 0.006 0.005 0.006 0.003 0.006 0.004 0.005 0.007 0.007 0.011 0.012
|t| 0.095 3.589 1.767 1.814 1.273 0.457 1.848 2.020 2.150 3.342 0.094 0.223
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5.3 Diagnosing Multicollinearity

We have seen the effects of multicollinearity, and if these effects are seen
in an analysis, we may conclude that multicollinearity exists. It is use-
ful, however, to have additional tools that can indicate the magnitude of
(and assist in identifying) the variables involved in the multicollinearity.
Two frequently used tools are the variance inflation factor and variance

proportions.

Variance Inflation Factors
In Section 3.4 we noted that the variance of an estimated partial regression
coefficient,

Var(β̂j) = MSE cjj ,

where MSE is the error mean square and cjj is the jth diagonal element of
(X ′X)−1. We have already seen that multicollinearity has no effect on the
residual mean square; hence, the large variances of the coefficients must be
associated with large values of the cjj . It can be shown that

cjj =
1

(1−R2
j )Σi(xj − xj)2

,

where R2
j is the coefficient of determination of the “regression” of xj on all

other independent variables in the model. In Chapter 2 we saw that Σt(xj−xj)
2

is the denominator of the formula for the variance of the regression coeffi-
cient in a simple linear regression. If there is no multicollinearity R2

j = 0,
then the variance as well as the estimated coefficient is the same for the total
and partial regression coefficients. However, correlations among any indepen-
dent variables causeR2

j to increase, effectively increasing the magnitude of cjj
and consequently increasing the variance of the estimated coefficient. In other
words, the variance of β̂j is increased or inflated by the quantity [1/(1−R2

j )].
This statistic is computed for each coefficient, and the statistics [1/(1−R2

j )],
j = 1, 2, . . . , m are known as the variance inflation factors, often simply
denoted by VIF.

We have previously noted that when multicollinearity exists, it is difficult
to vary one variable while holding the others constant, thus providing little
information on a partial regression coefficient. The variance inflation factor
quantifies this effect by stating that the effective dispersion of that indepen-
dent variable is reduced by (1−R2

j ), which then increases the variance of that
estimated coefficient.

Table 5.10 shows the variance inflation factors for the three artificial data
sets (Examples 5.1, 5.2, and 5.3). From this table we can see the following:
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Table 5.10

Variance Inflation
Factors for Examples
5.1, 5.2, and 5.3

Variable Example 5.1 Example 5.2 Example 5.3

X1 1.20860 26.2567 28.5832
X2 1.14540 57.7682 60.9170
X3 1.03382 59.3147 28.6561
X4 1.06381 57.1509 9.0335
X5 1.21691 79.0206 16.1551
X6 1.26091 64.6862 10.9426
X7 1.16042 33.9787 1.0970

Example 5.1: Because there is no multicollinearity, we would expect vari-
ance inflation factors to be unity. Actually, the VIF are all slightly larger
than 1, because although the population correlations are zero, the
sample coefficients are not exactly zero.

Example 5.2: Variance inflation factors range from 26 to 79, indicating
that the variances of the partial coefficients are vastly inflated by
the existence of multicollinearity. No wonder that none of the esti-
mated coefficients was statistically significant. Note also that all of
the VIF are of the same order of magnitude because all variables
are uniformly correlated.

Example 5.3: The VIF values for X1, X2, and X3 have similar magnitudes
as those of Example 5.2, because the correlations among these are the
same as those in Example 5.2. The VIF values for X4, X5, and X6 are
smaller than those for the first three coefficients, because the correla-
tions among these are smaller. The VIF value for X7 is close to unity
because X7 was generated to have zero (population) correlation with
any of the other variables. Thus, the variance inflation factors illustrate
the fact that although extreme multicollinearity may be present, vari-
ances of coefficients of uncorrelated variables are not affected by cor-
relations among the other variables.

Before continuing we will want to know how large a VIF must be before
the degree of multicollinearity is considered to seriously affect the estimation
of the corresponding coefficient. Because we are working with exploratory
analyses, there is no “significance” test; hence, any cutoff value must be based
on practical considerations. A popular cutoff value is 10. This value has no
theoretical basis but is convenient as it is easy to spot in a listing of VIF values.
For example, we can easily see that all variables in Example 5.2 and all but one
in Example 5.3 are involved in “serious” multicollinearity.

VIF values must also be evaluated relative to the overall fit of the model
under study. For example, if the model R2 is 0.9999, then VIF values of 10
will not be large enough to seriously affect the estimates of the coefficients,
whereas if the model R2 is 0.25, then VIF values of only 7 may cause poor esti-
mates. It may therefore be useful to compare the VIF values with the equivalent
statistic for the regression model: 1/(1 − R2

model). Any VIF values larger than
this quantity imply stronger relationships among the independent variables
than their relationship to the response.
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Finally, the effect of sample size is not affected by multicollinearity; hence,
variances of regression coefficients based on very large samples may still be
quite reliable in spite of multicollinearity.

Table 5.11 shows the variance inflation factors for Example 5.4. All but one
of the VIF values exceeds 10, indicating that multicollinearity definitely exists.
The regression model R2 is 0.8578; hence, 1/(1 − R2

model) = 7.03, indicat-
ing that many of the correlations among the independent variables are indeed
stronger than the regression relationship.

Table 5.11

VIF Values for NBA Data

Variance

Variable Inflation

INTERCEP 0.00000000
FGAT 46.16283766
FGM 23.02705631
FTAT 27.83995306
FTM 18.98467286
OFGAT 71.80453440
OFGAL 18.54001592
OFTAT 102.80792238
OFTAL 94.38613969
DR 13.88371365
DRA 17.65046315
OR 17.17856425
ORA 8.14903188

Looking closer, we can see that the largest VIF values occur with the scor-
ing variables; that is, for the field goal and free throws. The source of the mul-
ticollinearity can be diagnosed as coming from high correlations among the
total number of attempts and the number of attempts made. That is, the more
attempts made, the more scores are achieved. Similar but weaker correlations
apparently also exist between rebounds and rebounds allowed.

Variance Proportions
We have defined multicollinearity as the existence of one or more linear func-
tions of variables that sum to “almost” zero. A set of statistics called variance

proportions can provide information on the existence and structure of such
functions.

Variance proportions are a by-product of principal components analy-
sis, which is the simplest of many multivariate procedures for analyzing the
structure of a set of correlated variables that are commonly grouped under
the heading of factor analysis. We will see later that principal components
are also useful as a possible remedial method for overcoming the effects of
multicollinearity.

Principal Components
Because principal components are intended to study correlation patterns, the
analysis is based on standardized variables to avoid confusion introduced by
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differing variances among the variables.4 Thus, if X is an n × m matrix of
observed standardized variables, then X ′X is the correlation matrix.

Principal component analysis is a procedure that creates a set of new vari-
ables, zi, i = 1, 2, . . . , m, which are linearly related to the original set of stan-
dardized variables, xi, i = 1, 2, . . . , m. The equations relating the zi to the xi

are of the form

zi = νi1x1 + νi2x2 + · · ·+ νimxm, i = 1, 2, . . . , m,

which can be represented by the matrix equation

Z = XV ,

where V is an m × m matrix of coefficients (νij) that describe the relation-
ships between the two sets of variables. The Z variables are called a linear

transformation of the X variables.
There exists an infinite number of such transformations. However, the prin-

cipal components transformation creates a unique set of variables, zi, which
have the following properties:

1. The variables are uncorrelated; that is, Z ′Z is a diagonal matrix with diag-
onal elements, λi.

2. z1 has the largest possible variance, z2 the second largest, and so forth.

The principal components transformation is obtained by finding the eigen-

values and eigenvectors5 (sometimes called characteristic values and vectors)
of the correlation matrix, where the eigenvalues, denoted by λ1, λ2, . . . , λm,
are the variances of the corresponding zi, and the matrix of eigenvectors are
the columns of V , the so-called transformation matrix that relates the z vari-
ables to the x variables. That is, the first column of V provides the coefficients
for the equation

z1 = ν11x1 + ν21x2 + · · ·+ νm1xm,

and so forth.
We illustrate with the principal components for a sample of 100 observa-

tions from a bivariate population with a correlation of 0.9 between the two
variables. The sample correlation matrix is

X ′X =

[
1 0.922

0.922 1

]
.

The principal component analysis provides the transformation

z1 = 0.707x1 + 0.707x2

z2 = 0.707x1 − 0.707x2,

4In this application, we standardize by subtracting the mean and dividing by the standard devia-
tion. In some applications, variables need not be standardized. For simplicity we will not discuss
that option.
5The theoretical derivation and computation of eigenvalues and eigenvectors are beyond the
scope of this book. However, procedures for these computations are readily available in many
statistical software packages.
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and the eigenvalues provide the estimated variances of the components:

σ̂2
z1

= 1.922

σ̂2
z2

= 0.078.

The left portion of Figure 5.5 shows a scatter plot of the original variables
(labeled X1 and X2), and the right portion shows the scatter plot of the princi-
pal component variables (labeled PRIN1 and PRIN2).

Figure 5.5 Two-Variable Principal Components

The plot of the original variables is typical for a pair of highly correlated
standardized variables. The plot of the principal components is typical of a
pair of uncorrelated variables, where one variable (PRIN1 in this case) has a
much larger variance. A close inspection shows that the pattern of the data
points is identical in both plots, illustrating the fact that the principal compo-
nent transformation is simply a rigid rotation of axes such that the resulting
variables have zero correlation and, further, that this first component variable
has the largest variance, and so forth.

Note further that the sum of the variances for both sets of variables is 2.0.
This result illustrates the fact that the principal component transformation has
not altered the total variability of the set of variables (as measured by the sum
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of variances) but has simply apportioned them differently among the principal
component variables.

The eigenvectors show that the first principal component variable consists
of the sum of the two original variables, whereas the second consists of the
difference. This is an expected result: for any two variables, regardless of their
correlation, the sum provides the most information on their variability, and the
difference explains the rest.

This structure of the principal component variables shows what happens
for different correlation patterns. If the correlation is unity, the sum explains
all of the variability; that is, the variance of the first component is 2.0. The
variance of the second component is zero because there are no differences
between the two variables. If there is little or no correlation, both components
will have variances near unity.

For larger number of variables, the results are more complex but will have
the following features:

1. The more severe the multicollinearity, the larger the differences in
magnitudes among the variances (eigenvalues) of the components.
However, the sum of eigenvalues is always equal to the number of
variables.

2. The coefficients for the transformation (the eigenvectors) show how
the principal component variables relate to the original variables.

We will see later that the principal component variables with large vari-
ances may help to interpret results of a regression where multicollinearity
exists. However, when trying to diagnose the reasons for multicollinearity, the
focus is on the principal components with very small variances.

Remember that linear dependencies are defined by the existence of a linear
function of variables being equal to zero, which will result in one or more prin-
cipal components having zero variance. Multicollinearity is a result of “near”
linear dependencies among the independent variables that will consequently
result in principal components with near zero variances. The coefficients of
the transformation for those components provide some information on the
nature of that multicollinearity. However, a set of related statistics called the
variance proportions are more useful.

Without going into the mathematical details (which are not very instruc-
tive), variance proportions indicate the relative contribution from each
principal component to the variance of each regression coefficient. Con-
sequently, the existence of a relatively large contribution to the variances
of several coefficients by a component with a small eigenvalue (a “near”
collinearity) may indicate which variables contribute to the overall multi-
collinearity. For easier comparison among coefficients, the variance
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proportions are standardized to sum to 1, so that the individual elements
represent the proportions of the variance of the coefficient attributable
to each component.

The variance proportions for a hypothetical regression using the two cor-
related variables we have used to illustrate principal components are shown
in Table 5.12 as provided by PROC REG of the SAS System.6

Table 5.12

Variance Proportions

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop

Number Eigenvalue Index X1 X2

1 1.90119 1.00000 0.0494 0.0494
2 0.09881 4.38647 0.9506 0.9506

The first column reproduces the eigenvalues and the second the condi-
tion indices, which are an indicator of possible roundoff error in computing
the inverse that may occur when there are many variables and multicollinear-
ity is extreme. Condition numbers must be very large (usually at least in the
hundreds) for roundoff error to be considered a problem.

The columns headed by the names of the independent variables (X1 and
X2 in this example) are the variance proportions. We examine these propor-
tions looking for components with small eigenvalues, which in this case is
component 2 (the variance proportions are 0.9506 for both coefficients). The
second principal component consists of the difference between the two vari-
ables. The small variance of this component shows that differences between
these variables cannot be very large; hence, it is logical that the second com-
ponent contributes to the instability of the regression coefficients. In other
words, the sum of the two variables (the first component) provides almost all
the information needed for the regression.

EXAMPLE 5.3 REVISITED Variance Proportions Table 5.13 shows the eigenvalues
and variance proportions for Example 5.3, which was constructed with two
separate groups of correlated variables. We can immediately see that there
are three large and four relatively small eigenvalues, indicating rather severe
multicollinearity.

6In some references (e.g., Belsley et al., 1980), the variance proportions are obtained by com-
puting eigenvalues and eigenvectors from the standardized matrix of uncorrected (raw) sums of
squares and cross products of the m independent variables and the dummy variable represent-
ing the intercept. This procedure implies that the intercept is simply another coefficient that may
be subject to multicollinearity. In most applications, especially where the intercept is beyond the
range of the data, the results will be misleading. The subheading “(Intercept adjusted)” in this
output shows that the intercept is not included in these statistics.
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Table 5.13 Variance Proportions for Example 5.3

Collinearity Diagnostics (intercept adjusted)

Condition

Number Eigenvalue Index

1 3.25507 1.00000
2 2.63944 1.11051
3 0.92499 1.87590
4 0.08948 6.03139
5 0.04440 8.56247
6 0.03574 9.54293
7 0.01088 17.29953

Dependent Variable: Y

Collinearity Diagnostics (intercept adjusted)

Proportion of Variation

No. X1 X2 X3 X4 X5 X6 X7

1 0.00202 0.00095234 0.00211 0.00433 0.00268 0.00353 0.00919
2 0.00180 0.00087220 0.00167 0.00831 0.00454 0.00711 0.00024907
3 0.00041184 0.00015092 0.0002104 0.00111 0.0001271 0.0000592 0.94927
4 0.00016890 0.00023135 0.0004611 0.68888 0.00582 0.43838 0.02685
5 0.12381 0.00000792 0.14381 0.17955 0.60991 0.30963 0.00023570
6 0.33377 0.00002554 0.31138 0.11100 0.37663 0.22020 0.01421
7 0.53803 0.99776 0.54037 0.00682 0.0002887 0.02109 4.683773E-7

Remember that variables involved in multicollinearities are identified by
relatively large variance proportions in principal components with small
eigenvalues (variances). In this example, these are components 5 through 7.
We have underlined the larger proportions for these components for eas-
ier identification. We can see that variables x1, x2, and x3 have relatively
large variance proportions in component 7, revealing the strong correlations
among these three variables. Furthermore, variables x1, x3, x5, and x6 in
component 6 and x5 and x6 in component 5 show somewhat large propor-
tions, and although they do not mirror the built-in correlation pattern, they
do show that these variables are involved in multicollinearities. Variable
x7 shows very small proportions in all of these components because it is
not correlated with any other variables but is seen to be primarily involved
with component 3.

EXAMPLE 5.4 REVISITED Variance Proportions Table 5.14 shows the eigenvalues
and variance proportions for Example 5.4, the NBA data.

Table 5.14 Variance Proportions for NBA Data

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop Var Prop Var Prop Var Prop

Number Eigenvalue Index FGAT FGM FTAT FTM OFGAT

1 3.54673 1.00000 0.0002 0.0009 0.0001 0.0002 0.0010
2 2.39231 1.21760 0.0021 0.0018 0.0035 0.0053 0.0000

(Continued)
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Table 5.14 (Continued)

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop Var Prop Var Prop Var Prop

Number Eigenvalue Index FGAT FGM FTAT FTM OFGAT

3 2.09991 1.29961 0.0007 0.0002 0.0030 0.0037 0.0001
4 1.63382 1.47337 0.0003 0.0052 0.0000 0.0002 0.0001
5 0.97823 1.90412 0.0021 0.0005 0.0000 0.0011 0.0001
6 0.59592 2.43962 0.0010 0.0120 0.0001 0.0008 0.0001
7 0.44689 2.81719 0.0030 0.0010 0.0021 0.0038 0.0000
8 0.20082 4.20249 0.0054 0.0338 0.0113 0.0095 0.0051
9 0.05138 8.30854 0.0727 0.1004 0.1756 0.3290 0.0041

10 0.04365 9.01395 0.0204 0.0677 0.1253 0.1563 0.1055
11 0.00632 23.68160 0.3279 0.3543 0.2128 0.2052 0.2157
12 0.00403 29.67069 0.5642 0.4221 0.4663 0.2849 0.6682

Var Prop Var Prop Var Prop Var Prop Var Prop Var Prop Var Prop

Number OFGAL OFTAT OFTAL DR DRA OR ORA

1 0.0030 0.0004 0.0004 0.0012 0.0000 0.0001 0.0030
2 0.0000 0.0001 0.0001 0.0003 0.0023 0.0004 0.0009
3 0.0001 0.0009 0.0009 0.0000 0.0009 0.0016 0.0076
4 0.0026 0.0001 0.0001 0.0126 0.0096 0.0035 0.0000
5 0.0001 0.0002 0.0001 0.0023 0.0065 0.0393 0.0035
6 0.0026 0.0005 0.0004 0.0438 0.0064 0.0013 0.0546
7 0.0197 0.0001 0.0001 0.0134 0.0235 0.0014 0.1157
8 0.0877 0.0040 0.0054 0.0158 0.0116 0.0049 0.0044
9 0.0285 0.0004 0.0000 0.0122 0.0733 0.0177 0.0032

10 0.1370 0.0000 0.0022 0.1040 0.0636 0.0448 0.0358
11 0.1796 0.3960 0.5324 0.1723 0.3571 0.2832 0.2041
12 0.5390 0.5974 0.4578 0.6220 0.4452 0.6019 0.5672

There are two very small eigenvalues, indicating two sets of almost linear
dependencies. However, the variance proportions associated with these
eigenvalues appear to involve almost all variables, and hence, no sets of corre-
lated variables can be determined. Eigenvectors 9 and 10 may also be
considered small, but there are also no large variance proportions for these
components. In other words, the multicollinearities in this data set appear to
involve almost all variables.

Inconclusive results from the analysis of variance proportions are quite
common. However, this analysis is generally available with most computer
programs for regression at small cost in computer resources. Therefore, if
multicollinearity is suspected, the analysis is worth doing.

5.4 Remedial Methods

We have shown two sets of statistics that may be useful in diagnosing the
extent and nature of multicollinearity, and we will now explore various reme-
dial methods for lessening the effects of this multicollinearity. The choice of
remedial methods to be employed depends to a large degree on the purpose
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of the regression analysis. In this context we distinguish between two related
but different purposes:

1. Estimation. The purpose of the analysis is to obtain the best estimate of
the mean of the response variable for a given set of values of the indepen-
dent variables without being very concerned with the contribution of the
individual independent variables. That is, we are not particularly interested
in the partial regression coefficients.

2. Analysis of structure. The purpose of the analysis is to determine the
effects of the individual independent variables—that is, the magnitudes and
significances of the individual partial regression coefficients. We are, of
course, also interested in good estimates of the response, because if the
overall estimation is poor, the coefficients may be useless.

If the primary focus of the regression analysis is simply estimating the
response, then a procedure to delete unnecessary variables from the model,
called variable selection, may very well provide the optimum strategy. And
because variable selection is used in many applications that do not involve
multicollinearity, it is presented in Chapter 6.

If the purpose of the analysis is to examine structure, however, variable
selection is not a good idea because this procedure may arbitrarily delete vari-
ables that are important aspects of that structure. Instead we present here two
other remedial methods:

1. Redefining variables
2. Biased estimation

Redefining Variables
We have already shown that one remedy for multicollinearity is to redefine the
independent variables. For example, it is well known that if two variables, say,
x1 and x2, are correlated, then the redefined variables

z1 = x1 + x2 and z2 = x1 − x2

may be uncorrelated. In fact, this redefinition (with a change in scale) was
obtained by a principal component analysis for two correlated variables. Now,
if these new variables have some useful meaning in the context of the data,
their use in the regression provides a model with no multicollinearity. Analy-
sis of this model will, however, yield the same overall statistics because the
linear transformation does not affect the overall model. This is easily shown
as follows. Given a model with two independent variables

y = β0 + β1x1 + β2x2 + ε,

and a model using the z variables

y = α0 + α1z1 + α2z2 + ε,

then, using the definitions of the z variables

y = α0 + α1(x1 + x2) + α2(x1 − x2) + ε

y = α0 + (α1 + α2)x1 + (α1 − α2)x2 + ε.
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Thus,

β0 = α0,

β1 = α1 + α2, and

β2 = α1 − α2.

Of course, things are not as simple when there are more than two variables.
Two distinct procedures can be used for creating variable redefinitions:

1. Methods based on knowledge of the variables
2. Method based on a statistical analysis

Methods Based on Knowledge of the Variables
The use of linear functions and/or ratios involving the independent varibles
can often be employed in providing useful models with reduced multicollinear-
ity. For example, the independent variables may be measures of different char-
acteristics of, say, a biological organism. In this case, as the total size of the
organism increases, so do the other measurements. Now, if x1 is a measure of
overall size and the other variables are measurements of width, height, girth,
and the like, then using x1 as is and redefining all others as xj /x1 or xj − x1,
the resulting variables will exhibit much less multicollinearity. Of course, using
ratios will cause some change in the fit of the model, whereas the use of dif-
ferences will not.

In other applications the variables may be data from economic time series,
where all variables are subject to inflation and increased population and there-
fore are correlated. Converting these variables to a deflated and/or per capita
basis will reduce multicollinearity.

EXAMPLE 5.2 REVISITED In this example all adjacent variables are equally correlated.
Because the variables in this example may take negative values, ratios are not
useful. Instead we will usex1 as is and definexjD = xj−x1, j = 2, 3, . . . , 7. The
results of the regression using these redefined variables are shown in Table 5.15.

Table 5.15

Regression for
Example 5.2 with
Redefined Variables

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 7 3019.40422 431.34346 78.26 <.0001
Error 92 507.06535 5.51158
Corrected Total 99 3526.46958

Root MSE 2.34768 R-Square 0.8562
Dependent Mean 0.06761 Adj R-Sq 0.8453
Coeff Var 3472.48945

(Continued)
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Table 5.15

(Continued)

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 −0.08714 0.24900 −0.35 0.7272 0
X1 1 18.15049 0.79712 22.77 <.0001 1.12284
X2D 1 13.27694 3.97434 3.34 0.0012 1.08797
X3D 1 9.48677 4.37921 2.17 0.0329 1.03267
X4D 1 6.51515 4.27750 1.52 0.1312 1.05345
X5D 1 1.55135 4.48257 0.35 0.7301 1.07297
X6D 1 0.62163 4.42548 0.14 0.8886 1.06063
X7D 1 13.15390 4.47867 2.94 0.0042 1.03417

A number of features of this analysis are of interest:

1. The overall model statistics are the same because the redefinitions are
linear transformations.

2. The variance inflation factors have been dramatically decreased; the max-
imum VIF is now 1.12.

3. The coefficient for X1 now dominates the regression with X2D, X3D, and
X7D having some effect (they are significant at the 0.05 level and positive).
The rest are not significant. In other words, because the variables are so
highly correlated, the one variable almost does the whole job.

Of course, in this example, as well as in Example 5.3, we know how the vari-
ables were constructed. Therefore we have information that allows us to spec-
ify appropriate redefinitions needed to reduce the multicollinearity. In most
practical applications we must use our knowledge of expected relationships
among the variables to specify redefinitions.

EXAMPLE 5.4 REVISITED Looking at Figure 5.3 and Table 5.7, we can see that four pairs
of variables exhibit a strong bivariate correlation. These are the attempted
and made field goals and free throws for both sides. This correlation seems
reasonable as the more goals a team attempts, the more are made, although
not necessarily by the same percentage. Now we know that we can make each
pair of variables uncorrelated by using their sum and difference, but these
variables make no real sense. Instead, for each pair we will use the number
of attempted goals and the percentages made. The resulting model thus uses
the original four attempted goal numbers, and the rebound numbers and four
new variables:

FGPC, percent of field goals made,
FTPC, percent of free throws made,
OFGPC, percent of opponent’s field goals made, and
OFTPC, percent of opponent’s free throws made.

The matrix of scatter plots for this set of variables is given in Figure 5.6, which
shows that the more serious causes of multicollinearity have been eliminated.
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Figure 5.6

Correlation of
Independent Variables,
Example 5.4 Revisited
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The results of the regression of WINS on these variables are shown in
Table 5.16.

Table 5.16

NBA Regression with
Redefined Variables

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 12 3949.87658 329.15638 25.80 <.0001
Error 53 676.12342 12.75705
Corrected Total 65 4626.00000

Root MSE 3.57170 R-Square 0.8538
Dependent Mean 41.00000 Adj R-Sq 0.8208
Coeff Var 8.71147

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 91.57717 74.63143 1.23 0.2252 0
FGAT 1 0.01639 0.00844 1.94 0.0573 16.62678
FGPC 1 5.10633 0.99900 5.11 <.0001 15.57358
FTAT 1 0.01743 0.00402 4.33 <.0001 4.01398
FTPC 1 0.57673 0.26382 2.19 0.0332 2.16569
OFGAT 1 −0.01488 0.00766 −1.94 0.0573 27.65005
OFGPC 1 −5.47576 0.85624 −6.40 <.0001 6.98286
OFTAT 1 −0.01635 0.00397 −4.12 0.0001 5.11302
OFTPC 1 −1.04379 0.51818 −2.01 0.0491 1.26447
DR 1 −0.01124 0.01136 −0.99 0.3269 13.46184
DRA 1 0.00486 0.01280 0.38 0.7056 17.32192
OR 1 0.02288 0.01854 1.23 0.2226 16.71826
ORA 1 −0.01916 0.01399 −1.37 0.1765 7.99412
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Because we are using ratios rather than linear functions, the overall model
statistics are not exactly the same as those of the original model; however, the
fit of the model is essentially unchanged. The variance inflation factors of most
variables have decreased markedly, although some are still large enough to
suggest that additional multicollinearity exists. However, the decreased mul-
ticollinearity has increased the number of statistically significant coefficients,
with three (instead of two) having p-values less than 0.0001 and two others
(rather than one) having p-values less than 0.05.

An interesting result is that for both teams, the percentage of field goals and
the attempted free throws are the most important factors affecting the score.
This is presumably because the percentages of free throws are more consis-
tent than the percentages of field goals. Of more marginal importance are the
number of attempted field goals of both teams and the percentage of attempted
free throws by the opposing team. Also, all significant coefficients have the
expected signs.

Methods Based on Statistical Analyses
When practical or intuitive redefinitions are not readily available, statistical
analyses may reveal some useful redefinitions. Statistical analyses of relation-
ships among a set of variables are a subset of the field of multivariate

analysis. One of the simplest multivariate methods is principal component

analysis, which has already been presented as a basis for variance proportions.
In our study of variance proportions, we focused on the components having
small variances. However, in principal component analysis per se, we focus
on those principal components having large eigenvalues.

Remember that principal components consist of a set of uncorrelated
variables produced by a linear transformation of the original standardized vari-
ables, that is,

Z = XV ,

where Z is the matrix of principal component variables, X is the matrix of
standardized original variables, and V , the matrix of eigenvectors, is the matrix
of coefficients for the transformation. Because the original variables have been
standardized, each has variance 1, and therefore each variable contributes
equally to the total variability of the set of variables. The principal compo-
nents, however, do not have equal variances. In fact, by construction, the first
component has the maximum possible variance, the second has the second
largest variance, and so forth. Therefore, principal components with large vari-
ances contribute more to the total variability of the model than those with
smaller variances.

The columns of V are coefficients that show how the principal compo-
nent variables are related to the original variables. These coefficients may
allow useful interpretations, and if they do, a regression using these uncor-
related variables may provide a useful regression with independent variables
that have no multicollinearity.
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Remember that the bivariate sample with correlation of 0.9 produced
principal components with sample variances of 1.922 and 0.078. This means
that the first component, zi, accounts for 1.922/2.0 = 0.961 or 96.1% of the
total variability of the two variables. This is interpreted as saying that virtu-
ally all of the variability is contained in one dimension. The variable zi is often
called a factor. In situations where there are several variables, it is of interest
to do the following:

1. See how many factors account for most of the variability. This generally
(but not always) consists of principal components having variances of 1 or
greater.

2. Examine the coefficients of the transformations (the eigenvectors) to see
if the components with large variances have any interpretations relative to
the definitions of the original variables.

EXAMPLE 5.3 REVISITED Principal Components The results of performing a princi-
pal component analysis on the data for Example 5.3 are shown in Table 5.17 as
produced by PROC PRINCOMP of the SAS System. The “factors” are labeled
PRIN1 through PRIN7 in decreasing order of the eigenvalues. The column
labeled “Difference” is the difference between the current and next largest
eigenvalue; the column labeled “Proportion” is the proportion of total varia-
tion (which is m = 7, because each variable has unit variance) accounted for
by the current component, and the column labeled “Cumulative” is the sum of
proportions up to the current one.

Table 5.17 Principal Components for Example 5.3

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

1 3.25506883 0.61562926 0.4650 0.4650
2 2.63943957 1.71444566 0.3771 0.8421
3 0.92499391 0.83551409 0.1321 0.9742
4 0.08947982 0.04508195 0.0128 0.9870
5 0.04439787 0.00865444 0.0063 0.9933
6 0.03574343 0.02486687 0.0051 0.9984
7 0.01087656 0.0016 1.0000

Eigenvectors

PRIN1 PRIN2 PRIN3 PRIN4 PRIN5 PRIN6 PRIN7

X1 0.433300 −.368169 −.104350 −.020784 −.396375 0.583956 −.408981
X2 0.434555 −.374483 −.092218 0.035511 −.004628 −.007457 0.813070
X3 0.443407 −.355409 −.074687 −.034386 0.427738 −.564742 −.410391
X4 0.356707 0.445110 −.096324 0.746215 0.268351 0.189315 −.025891
X5 0.375671 0.439963 −.043578 −.091719 −.661406 −.466351 −.007122
X6 0.354420 0.453307 −.024470 −.655164 0.387846 0.293472 0.050098
X7 0.181168 −.026855 0.981454 0.051339 −.003388 0.023601 0.000075

The results show that the first three eigenvalues are much larger than the
rest. In fact, the cumulative proportions (last column) show that these three
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components account for over 97% of the total variation, implying that this set
of seven variables essentially has only three dimensions or factors. This result
confirms that the data were generated to have three uncorrelated sets
of variables.

The eigenvectors are the coefficients of the linear equations relating the
components to the original variables. These show the following:

1. The first component is an almost equally weighted function of the first six
variables, with slightly larger coefficients for the first three.

2. The second component consists of the differences between the first and
second set of three variables.

3. The third component is almost entirely a function of variable seven.

These results do indeed identify three factors:

1. Factor 1 is an overall score that implies that the first six variables are cor-
related.

2. Factor 2 is the difference between the two sets of correlated variables.
3. Factor 3 is variable 7.

Among these factors, factor 1 by itself does not correspond to the pattern that
generated the variables, although it may be argued that in combination with
factor 2 it does. This result illustrates the fact that principal components are
not guaranteed to have useful interpretation.

Because principal components do not always present results that are easily
interpreted, additional methods have been developed to provide more
useful results. These methods fall under the topic generally called factor anal-

ysis. Most of these methods start with principal components and use various
geometric rotations to provide for better interpretation. Presentation of these
methods is beyond the scope of this book. A good discussion of factor analysis
can be found in Johnson and Wichern (2002).

Principal Component Regression
If a set of principal components has some useful interpretation, it may be pos-
sible to use the component variables as independent variables in a regression.
That is, we use the model

Y = Zγ + ε,

where γ is the vector of regression coefficients.7 The coefficients are estimated
by least squares:

γ̂ = (Z ′Z)−1Z ′Y .

7The principal component variables have zero mean; hence, the intercept is μ and is separately
estimated by y. If the principal component regression also uses the standardized dependent vari-
able, then the intercept is zero.
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Since the principal components are uncorrelated, Z′Z is a diagonal matrix,
and the variances of the regression coefficients are not affected by multicollinear-
ity.8 Table 5.18 shows the results of using the principal components for
Example 5.3 in such a regression.

Table 5.18

Principal Component
Regression, Example 5.3

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob > F

Model 7 790.72444 112.96063 44.035 0.0001
Error 42 107.74148 2.56527
Corrected Total 49 898.46592

Root MSE 1.60165 R-Square 0.8801
Dependent Mean 0.46520 Adj R-sq 0.8601
Coeff Var 344.29440

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Prob > |t|

INTERCEP 1 0.465197 0.22650710 2.054 0.0463
PRIN1 1 2.086977 0.12277745 16.998 0.0001
PRIN2 1 −0.499585 0.14730379 −3.392 0.0015
PRIN3 1 0.185078 0.23492198 0.788 0.4352
PRIN4 1 0.828500 0.77582791 1.068 0.2917
PRIN5 1 −1.630063 1.20927168 −1.348 0.1849
PRIN6 1 1.754242 1.31667683 1.332 0.1899
PRIN7 1 −3.178606 2.02969950 −1.566 0.1248

The results have the following features:

1. The model statistics are identical to those of the original regression because
the principal components are simply a linear transformation using all of the
information from the original variables.

2. The only clearly significant coefficients are for components 1 and 2, which
together correspond to the structure of the variables. Notice that the coef-
ficient for component 3 (which corresponds to the “lone” variable X7) is
not significant.

EXAMPLE 5.4 REVISITED NBA Data, Principal Component Regression Table 5.19
shows the results of the principal component analysis of the NBA data, again
provided by PROC PRINCOMP.

8Alternatively, we can compute γ̂ = VB̂, where B̂ is the vector of regression coefficients using
the standardized independent variables.
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Table 5.19 Principal Component Analysis

Principal Component Analysis

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

PRIN1 3.54673 1.15442 0.295561 0.29556
PRIN2 2.39231 0.29241 0.199359 0.49492
PRIN3 2.09991 0.46609 0.174992 0.66991
PRIN4 1.63382 0.65559 0.136151 0.80606
PRIN5 0.97823 0.38231 0.081519 0.88758
PRIN6 0.59592 0.14903 0.049660 0.93724
PRIN7 0.44689 0.24606 0.037240 0.97448
PRIN8 0.20082 0.14945 0.016735 0.99122
PRIN9 0.05138 0.00773 0.004282 0.99550
PRIN10 0.04365 0.03733 0.003638 0.99914
PRIN11 0.00632 0.00230 0.000527 0.99966
PRIN12 0.00403 0.000336 1.00000

Eigenvectors

PRIN1 PRIN2 PRIN3 PRIN4 PRIN5 PRIN6

FGAT 0.180742 0.476854 0.266317 0.139942 0.307784 0.169881
FGM 0.277100 0.310574 0.106548 −.440931 0.109505 0.405798
FTAT 0.090892 −.483628 0.417400 −.003158 −.013379 0.039545
FTM 0.101335 −.489356 0.382850 −.087789 −.144502 0.098000
OFGAT 0.510884 0.040398 0.090635 0.089731 −.079677 0.062453
OFGAL 0.443168 0.020078 0.066332 −.281097 0.045099 −.170165
OFTAT −.358807 0.169955 0.434395 −.116152 −.135725 0.171628
OFTAL −.369109 0.175132 0.419559 −.116617 −.109270 0.157648
DR 0.242131 −.102177 −.029127 0.535598 −.178294 0.602160
DRA −.018575 0.309761 0.180227 0.526906 −.335944 −.258506
OR −.063989 −.129132 0.236684 0.315635 0.812732 −.116822
ORA 0.294223 0.134651 0.360877 0.001297 −.168208 −.514845

PRIN7 PRIN8 PRIN9 PRIN10 PRIN11 PRIN12

FGAT 0.248934 −.222913 −.415273 −.202644 −.309409 −.323937
FGM −.101451 −.395466 0.344674 0.260927 0.227146 0.197888
FTAT 0.160719 −.250823 0.501105 −.390179 −.193585 −.228698
FTM 0.180189 −.190206 −.566482 0.359895 0.156944 0.147620
OFGAT −.008903 0.271516 −.123055 −.575011 0.312988 0.439669
OFGAL 0.403500 0.571521 0.164850 0.332933 −.145131 −.200655
OFTAT −.049914 0.287093 0.048670 0.011021 −.507408 0.497431
OFTAL −.054739 0.320340 0.001115 −.095745 0.563739 −.417231
DR −.288428 0.209786 0.093180 0.251060 −.123006 −.186518
DRA 0.430931 −.203078 0.257780 0.221353 0.199654 0.177923
OR −.104360 0.130140 0.124897 0.183196 0.175397 0.204092
ORA −.649060 −.085094 −.036331 0.112823 −.102560 −.136459

Because this is a “real” data set, the results are not as obvious as those for
the artificially generated Example 5.3. It appears that the first six components
are of importance, as they account for almost 94% of the variability. The coef-
ficients of these components do not allow very clear interpretation, but the
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following tendencies are of interest:

1. The first component is largely a positive function of opponents’ field goals
and a negative function of opponents’ free throws. This may be considered
as a factor describing opponent teams’ prowess on the court rather than on
the free-throw line.

2. The second component is similarly related to the team’s activities on the
court as opposed to on the free-throw line.

3. The third component stresses team and opponents’ free throws, with some
additional influence of offensive rebounds allowed. This could describe the
variation in total penalties in games.

4. The fourth component is a function of defensive rebounds and a negative
function of field goals made, and may describe the quality of the defense.

5. The fifth component is almost entirely a function of offensive rebounds.

If we are willing to accept that these components have some useful interpre-
tation, we can perform a regression using them. The results are shown in
Table 5.20. We first examine the coefficients for the components with large
variances.

Table 5.20

Principal Component
Regression, NBA Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 12 3968.07768 330.67314 26.64 <.0001
Error 53 657.92232 12.41363
Corrected Total 65 4626.00000

Root MSE 3.52330 R-Square 0.8578
Dependent Mean 41.00000 Adj R-Sq 0.8256
Coeff Var 8.59341

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 41.00000 0.43369 94.54 <.0001
PRIN1 1 1.10060 0.23205 4.74 <.0001
PRIN2 1 −1.04485 0.28254 −3.70 0.0005
PRIN3 1 −0.15427 0.30157 −0.51 0.6111
PRIN4 1 −0.93915 0.34189 −2.75 0.0082
PRIN5 1 1.07634 0.44185 2.44 0.0182
PRIN6 1 5.43027 0.56611 9.59 <.0001
PRIN7 1 −4.18489 0.65372 −6.40 <.0001
PRIN8 1 −11.12468 0.97518 −11.41 <.0001
PRIN9 1 0.21312 1.92798 0.11 0.9124
PRIN10 1 −1.48905 2.09167 −0.71 0.4797
PRIN11 1 2.74644 5.49528 0.50 0.6193
PRIN12 1 16.64253 6.88504 2.42 0.0191

An interesting feature of this regression is that the three most important coef-
ficients (having the smallest p-values) relate to components 6, 7, and 8, which
have quite small variances and would normally be regarded as relatively
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“unimportant” components. This type of result is not overly common, as usu-
ally the most important components tend to produce the most important regre-
ssion coefficients. However, because of this result, we will need to examine
these components and interpret the corresponding coefficients.

1. Component 6 is a positive function of field goals made and defensive
rebounds, and a negative function of offensive rebounds allowed. Its posi-
tive and strong contribution to the number of wins appears to make sense.

2. Component 7 is a positive function of opponents’ field goals allowed and
defensive rebounds allowed, and a negative function of offensive rebounds
allowed. The negative regression coefficient does make sense.

3. Component 8, which results in the most significant and negative coefficient,
is a negative function of all home-team scoring efforts and a positive func-
tion of all opponent scoring efforts. Remembering that a double negative is
positive, this one seems obvious.
We now continue with the most important components.

4. The first component, which measures the opponent team’s field activity
as against its free-throw activity, has a significant and positive coefficient
(p < 0.005). When considered in light of the effects of component 8, it
may indicate that when opponents have greater on-court productivity as
opposed to free-throw productivity, it helps the “home” team.

5. The second component, which is similar to the first component as applied
to the “home” team, has a significant negative coefficient. It appears that
these two components mirror each other.

6. Component 3, which relates to free throws by both teams, does not produce
a significant coefficient.

7. Component 4 indicates that defensive rebounds, both made and allowed,
as well as fewer field goals made, contribute positively to the number of
wins. Fortunately, the small value of the coefficient indicates this puzzler
is not too important.

8. Component 5, associated with offensive rebounds, is positive.

It is fair to say that although the results do make sense, especially in light of the
apparent interplay of component 8 with 1 and 2, the results certainly are not
clear-cut. This type of result often occurs with principal component analyses
and is the reason for the existence of other factor analysis methods. However,
it is recommended that these methods be used with caution as many of them
involve subjective choices of transformations (or rotations), and therefore
p-values must be used carefully.

EXAMPLE 5.5 Mesquite Data Mesquite is a thorny bush that grows in the Southwestern
U.S. Great Plains. Although the use of mesquite chips enhances the flavor of
barbecue, its presence is very detrimental to livestock pastures. Eliminating
mesquite is very expensive, so it is necessary to have a method to estimate
the total biomass of mesquite in a pasture. One way to do this is to obtain
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certain easily measured characteristics of mesquite in a sample of bushes and
use these to estimate biomass:

DIAM1: The wider diameter
DIAM2: The narrower diameter
TOTHT: The total height
CANHT: The height of the canopy
DENS: A measure of the density of the bush

The response is:

LEAFWT: A measure of biomass

Table5.21containsdataonthesemeasuresfromasampleof19mesquitebushes.
Figure 5.7 contains the matrix of scatter plots among the five independent
variables, which reveals moderate correlations among all the size variables.

Table 5.21

Mesquite Data

OBS DIAM1 DIAM2 TOTHT CANHT DENS LEAFWT

1 2.50 2.3 1.70 1.40 5 723.0
2 2.00 1.6 1.70 1.40 1 345.0
3 1.60 1.6 1.60 1.30 1 330.9
4 1.40 1.0 1.40 1.10 1 163.5
5 3.20 1.9 1.90 1.50 3 1160.0
6 1.90 1.8 1.10 0.80 1 386.6
7 2.40 2.4 1.60 1.10 3 693.5
8 2.50 1.8 2.00 1.30 7 674.4
9 2.10 1.5 1.25 0.85 1 217.5

10 2.40 2.2 2.00 1.50 2 771.3
11 2.40 1.7 1.30 1.20 2 341.7
12 1.90 1.2 1.45 1.15 2 125.7
13 2.70 2.5 2.20 1.50 3 462.5
14 1.30 1.1 0.70 0.70 1 64.5
15 2.90 2.7 1.90 1.90 1 850.6
16 2.10 1.0 1.80 1.50 2 226.0
17 4.10 3.8 2.00 1.50 2 1745.1
18 2.80 2.5 2.20 1.50 1 908.0
19 1.27 1.0 0.92 0.62 1 213.5

Figure 5.7

Correlation of
Independent
Variables,
Example 5.5
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The linear regression of leaf weight on the five measurements produces the
results shown in Table 5.22. The regression is significant, with a p-value of less
than 0.0001, and the coefficient of determination is reasonably large. However,
the residual standard deviation of 180 is quite large compared with the mean
leaf weight of 548; hence, there is considerable variability about the estimated
conditional means. When we turn to the coefficients, we see that the variance
inflation factors are not extremely large, yet the smallest p-value for any coef-
ficient is 0.014, indicating that the multicollinearity is affecting the precision
of the estimated coefficients. This result is due to the fact that the largest vari-
ance inflation factor of 6.0 implies a coefficient of determination of 0.83 for
the relationship of TOTHT to the other variables, which is about the same as
the coefficient of determination for the regression model. In other words, the
relationships among the independent variables are essentially as strong as the
regression relationship. As we have noted, the effect of multicollinearity is
to some degree relative to the strength of the regression; hence, it does have
some effect in this example.

Table 5.22

Regression for Mesquite
Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 2774583 554917 17.14 <.0001
Error 13 420823 32371
Corrected Total 18 3195406

Root MSE 179.91945 R-Square 0.8683
Dependent Mean 547.54211 Adj R-Sq 0.8177
Coeff Var 32.85947

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 −633.94472 174.89405 −3.62 0.0031 0
DIAM1 1 421.21444 147.45417 2.86 0.0135 5.89602
DIAM2 1 179.01994 125.43117 1.43 0.1771 4.57678
TOTHT 1 13.11688 245.54251 0.05 0.9582 6.01963
CANHT 1 −110.42797 287.77344 −0.38 0.7074 5.03119
DENS 1 −0.19021 31.07269 −0.01 0.9952 1.36574

If the purpose of the analysis is simply to assess the feasibility of estimating
leaf weight, the lack of useful coefficient estimates is not of great concern.
However, if we also wish to study how the various measurements affect leaf
weight, the results of the regression are not particularly useful, and we will
want to try some remedial methods.

We start with a principal component regression. The results of the principal
component analysis are shown in Table 5.23, which also includes the correla-
tion matrix for the independent variables.
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Table 5.23

Principal Components
for the Mesquite Data

Principal Component Analysis

Correlation Matrix

DIAM1 DIAM2 TOTHT CANHT DENS

DIAM1 1.0000 0.8767 0.7255 0.6835 0.3219
DIAM2 0.8767 1.0000 0.6354 0.5795 0.2000
TOTHT 0.7255 0.6354 1.0000 0.8794 0.3943
CANHT 0.6835 0.5795 0.8794 1.0000 0.2237
DENS 0.3219 0.2000 0.3943 0.2237 1.0000

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative

PRIN1 3.33309 2.44433 0.666619 0.66662
PRIN2 0.88877 0.31655 0.177753 0.84437
PRIN3 0.57221 0.45672 0.114443 0.95881
PRIN4 0.11550 0.02507 0.023100 0.98191
PRIN5 0.09043 . 0.018086 1.00000

Eigenvectors

PRIN1 PRIN2 PRIN3 PRIN4 PRIN5

DIAM1 0.501921 −.124201 0.382765 −.624045 −.443517
DIAM2 0.463408 −.261479 0.563632 0.471797 0.420247
TOTHT 0.501393 0.045730 −.422215 0.521831 −.544004
CANHT 0.474064 −.138510 −.580993 −.339074 0.550957
DENS 0.239157 0.946006 0.141387 −.026396 0.164894

The correlation matrix shows high correlations among the two diameter and
two height variables and somewhat lower correlations between the diameter
and height variables. Density appears to be uncorrelated with all other vari-
ables. The eigenvalues show one very large eigenvalue and two others that
may have some importance. The eigenvectors allow the following interpreta-
tions of the principal components:

1. The first component is a function of all size variables. This is the size fac-
tor and simply shows that larger bushes have larger dimensions. This very
obvious factor also accounts for about two-thirds of the total variability.

2. The second component represents the density, which the correlations
showed to be an independent factor.

3. The third component has positive coefficients for the diameters and neg-
ative coefficients for the heights. Values of this component variable will
increase with diameters and decrease with height; thus, it may be called a
“fatness” component.

The results of the principal component regression are shown in Table 5.24. The
regression statistics show that the size component is by far the strongest, but
the fatness component is also important and indicates that short, fat bushes
have more leaf weight. Density has no effect, as was seen in the original
regression.
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Table 5.24

Principal Component
Regression for Mesquite
Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 2774583 554917 17.14 <.0001
Error 13 420823 32371
Corrected Total 18 3195406

Root MSE 179.91945 R-Square 0.8683
Dependent Mean 547.54211 Adj R-Sq 0.8177
Coeff Var 32.85947

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 547.54211 41.27635 13.27 <.0001
PRIN1 1 193.05433 23.22834 8.31 <.0001
PRIN2 1 −65.36819 44.98294 −1.45 0.1699
PRIN3 1 204.38904 56.06126 3.65 0.0030
PRIN4 1 −107.18697 124.78284 −0.86 0.4059
PRIN5 1 −99.22897 141.02248 −0.70 0.4941

The principal component regression suggests that we may have limited suc-
cess with a set of redefined variables. Redefined variables based on know-
ledge are usually preferred, as they are more easily interpretable functions of
specific variables, in contrast to the principal components, which involve all
variables, albeit sometimes with small coefficients. We will try the following
variables:

SIZE = DIAM1 + DIAM2 + TOTHT + CANHT, a measure of overall size
FAT = DIAM1 + DIAM2 − TOTHT − CANHT, a measure of fatness
OBLONG = DIAMI − DIAM2, a measure of how oblong, as opposed to

circular, is the shape of the bush
HIGH = TOTHT − CANHT, a measure of the size of the stem portion of the

bush9

The results of the regression using these four variables and DENS are shown
in Table 5.25.

Table 5.25

Regression with
Redefined Variables for
Mesquite Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 2774583 554917 17.14 <.0001
Error 13 420823 32371
Corrected Total 18 3195406

Root MSE 179.91945 R-Square 0.8683
Dependent Mean 547.54211 Adj R-Sq 0.8177
Coeff Var 32.85947

(Continued)

9Products and ratios could easily have been used and may be more easily justified.
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Table 5.25

(Continued)

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 −633.94472 174.89405 −3.62 0.0031 0
SIZE 1 125.73082 34.06429 3.69 0.0027 2.47971
FAT 1 174.38637 61.35209 2.84 0.0139 2.13528
OBLONG 1 121.09725 129.28960 0.94 0.3660 1.16344
HIGH 1 61.77243 252.43907 0.24 0.8105 1.50442
DENS 1 −0.19021 31.07269 −0.01 0.9952 1.36574

Because we have used a complete set of linear transformations, the model
statistics are identical. The variance inflations show that there is still some
multicollinearity, but it is weaker. The results agree with those of the principal
component regression, although the coefficients are not as strong in terms
of statistical significance. In other words, the principal component regression
produced stronger coefficients, which, however, are not as readily
interpretable.

Biased Estimation
The sampling distribution of a statistic is used to assess the usefulness of a
statistic as an estimate of a parameter. The mean of the sampling distribution
of the statistic, called the expected value, indicates how well, on the average,
the statistic approximates the parameter. The standard deviation of that distri-
bution, called the standard error of the estimate, indicates the precision of the
estimate. If the expected value is the same as the value of the parameter, the
estimate is said to be unbiased, and the smaller the standard error, the more
precise it is.

In many cases there exist several alternative procedures, called estima-

tors, for obtaining an estimate of a parameter. The effectiveness of different
estimators is evaluated on the basis of the expected values and standard errors
of their sampling distributions.

We have made almost exclusive use of the least squares estimator, which
is known to produce unbiased estimates, and among unbiased estimators, it
can be shown to produce the smallest standard errors. Thus, least squares is
known as the best unbiased estimator.10 However, other estimators may be
used. For example, the median can be used as an alternative to the mean as
a measure of central tendency. In Section 4.4 we introduced the M estimator
as an alternative to the least squares estimator to reduce the effect of outliers.
The reason for using alternative estimators is that their sampling distributions
may have some attractive features.

10Actually, it is known as the best linear unbiased estimator (BLUE) because it is a linear function
of the response variable. The distinction is of no importance here.
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For example, suppose that we want to estimate a parameter whose value is
100. Two estimators are proposed; one is least squares and the other is some-
thing else. Their respective sampling distributions appear in Figure 5.8.

Figure 5.8

Unbiased and Biased
Estimators

The sampling distribution of the least squares estimator is shown by the
solid line. It is seen to be unbiased because its mean is indeed 100, and the
standard error is 10. The alternative estimator is seen to be biased; its mean
is 104, but its standard error is smaller: it is 4. The question is, which of these
estimates is “better”?

A widely used statistic for comparing estimators is their mean squared

error, which is defined as the variance plus the square of the bias. In the
example illustrated in Figure 5.8, the least squares estimator has a variance
of 102 = 100 and there is no bias; hence,

Mean squared error = 100 + 0 = 100.

For the alternative estimator the variance is 42 = 16, and the bias is 4; hence,

Mean squared error = 16 + 16 = 32.

Therefore, we may conclude that the biased estimator is “better,” although
the usefulness of this result may depend on different penalties for incorrect
answers.

Recent research in remedial methods for combating the effects of mul-
ticollinearity has resulted in developing biased estimators for partial regres-
sion coefficients that have smaller standard errors. The reduction is obtained
by artificially reducing multicollinearity. Such a procedure, which effectively
alters the data, results in estimates that are biased. However, this research
has also found that some of these estimators do have smaller mean squared
errors than does the least squares estimator. Unfortunately, the magnitudes
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of the mean squared errors of these estimators are functions of the unknown
parameters; hence, it is not possible to know if a particular biased estima-
tor does indeed provide that smaller mean squared error. Therefore, results
obtained by these biased estimation methods should be viewed as exploratory
rather than confirmatory.

Two popular biased estimation methods for multiple regression are ridge

regression and incomplete principal component regression. We present
thebasic formulationforbothof these,butsincetheytendtogivesimilar results,
we present an example of only the incomplete principal component estimator.

Ridge Regression

Define X and Y as the matrices of standardized independent and dependent
variables. The least squares estimator of the regression coefficients is

B̂ = (X ′X)−1X ′Y .

Note that we do not need the dummy variable for the intercept, which is 0 for
the model with standardized variables. The ridge regression estimator is

B̂k = (X ′X + kI)−1X ′Y ,

where kI is a diagonal matrix with all elements consisting of an arbitrary small
constant k. All other statistics are calculated as usual, with the exception that
the inverse (X ′X + kI)−1 is used in place of (X ′X)−1.

Remember that when all variables are standardized, X ′X is the correlation
matrix with the diagonal elements 1 and the off-diagonal elements the simple
correlations, rij . However, for the ridge regression estimator, the diagonal ele-
ments of X ′X are (1+k), and hence the “effective” correlation between xi and
xj now becomes

rij
1 + k

,

where rij is the sample correlation between xi and xj . In other words, all cor-
relations are artificially reduced by the factor, 1/(1 + k), thereby reducing the
multicollinearity. Larger values of k reduce multicollinearity, but increase the
bias, whereas a k of zero reproduces the least squares estimates. The question
becomes one of determining what value of k should be used.

The formulas for calculating the value of k that minimizes the total mean
squared error of the set of regression coefficients are functions of the unknown
values of the population coefficients. Using the least squares coefficients in
these formulas is not advised because multicollinearity makes these estimates
unreliable. The most commonly used procedure is to calculate the ridge regres-
sion coefficients for a set of values of k and plot the resulting regression
coefficients against k. These plots, called ridge plots, often show large changes
in the estimated coefficients for smaller values of k, which, as k increases,
ultimately “settle down” to a steady progression toward zero. An optimum
value for k is said to occur when these estimates appear to “settle down.”
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EXAMPLE 5.5 REVISITED To illustrate the use of ridge regression, we use the mesquite
data given in Example 5.5.11 A plot of the ridge regression coefficients is shown
in Figure 5.9; the plotting symbols 1, 2, T, C, and D represent DIAM1, DIAM2,
TOTHT, CANHT, and DENS, respectively. As we noted, determining when these
coefficients “settle down” is somewhat arbitrary, but a logical choice seems to
be the value 0.75.

Figure 5.9 Ridge Plots for Example 5.5
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Using a k of 0.75, the resulting model has a residual standard deviation of 228.6,
compared with 179.9 for the least squares regression, a moderate increase that
may be justified if the coefficients are more useful. The coefficients, their stan-
dard errors and t-values are as follows:

VARIABLE COEFF. STD. ERROR T -VALUE

DIAM1 215.5 39.8 5.416
DIAM2 185.7 41.1 4.514
TOTHT 80.2 65.5 1.223
CANHT 61.9 88.7 0.698
DENS 8.8 20.9 0.420

11Programs for performing various biased regression analyses are available in many statistical
computer packages. In the SAS System they are available as options in PROC REG.
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Only the two diameters (DIAM1 and DIAM2) are significant which is certainly
a more definitive result.

Incomplete Principal Component Regression
We have already seen that we can use principal components to provide a regres-
sion that may furnish insight into the structure of the regression model. When
the regression uses all of the principal components, which we have done, the
overall model is the same as that using the original variables; that is, it pro-
duces the same estimates of the response.

We already know that the principal components corresponding to very
small eigenvalues describe linear combinations of the independent variables
that are “almost” linearly dependent. In many, but not all, cases, these compo-
nents do not contribute to the overall fit of the model. Hence, a model without
these components could be useful. However, since the components do not
correspond to the original variables, the resulting regression is not useful for
inferences about the role of the various independent variables. It would, how-
ever, be useful to see what this reduced model implies about the regression
coefficients for the original variables.

Principal components are obtained through a linear transformation of the
standardized independent variables,

Z = XV ,

where Z is the matrix of principal components and V is the matrix of eigen-
vectors that are the coefficients of the linear transformation. In principal com-
ponent regression, we obtain the estimated model equation

Ŷ = Zγ̂,

where γ̂ is the set of principal component regression coefficients. Because this
regression is the same as when the original variables have been used, it can be
seen that

Ŷ = Zγ̂ = XB̂,

and

B̂ = V γ̂.

Incomplete principal component regression uses the above relationship,
omitting columns of V corresponding to principal components with very small
variances that also do not contribute to the regression. That is, if these criteria
suggest keeping only the first p coefficients, then the estimated coefficients for
the original variables can be calculated as

B̂p = Vpγ̂p,

where Vp is the matrix containing the first p columns of V and γ̂p is the matrix
containing the first p principal component regression coefficients. The vari-
ances of the estimated coefficients are the diagonal elements of

Var(B̂p) = σ2[Vp(Z
′
pZp)

−1V ′
p ],



5.4 Remedial Methods 219

where Zp is the matrix containing the first p principal component variables.
Normally the mean square from the full regression is used as the estimate
of σ2, and the square root of the resulting variance is used as a standard error
to provide t statistics. For comparison and interpretive purposes, the coeffi-
cients can be converted back to reflect the original units by multiplying the
coefficients by the ratios of the respective standard deviations.

EXAMPLE 5.3 REVISITED A Sampling Experiment In order to provide some ideas
on the results to be expected from an incomplete principal component regres-
sion, we have computed both the ordinary least squares and the incomplete
principal component regressions, deleting the last four principal components
for 250 samples from the population specified for Example 5.3. We delete four
(keeping three) because in this example the eigenvalues reflect the known fact
that there are three distinct sets of variables. Table 5.26 gives population coef-
ficients (BETA) and the means, standard deviations, and standard errors of
the mean of the resulting empirical sampling distributions of both estimates.

Table 5.26

Sampling Distributions
of Regression
Coefficients,
Example 5.3

LEAST SQUARES INCOMPLETE PRINC. COMP.

VARIABLE BETA MEAN STD STD ERR MEAN STD STD ERR

X1 4.0 4.01 5.10 0.32 3.46 0.32 0.020
X2 3.5 3.21 7.47 0.47 3.49 0.33 0.021
X3 3.0 3.20 5.36 0.34 3.46 0.34 0.021
X4 2.5 2.43 2.85 0.18 1.99 0.40 0.025
X5 2.0 2.22 4.23 0.26 2.02 0.40 0.025
X6 1.5 1.31 3.56 0.23 1.98 0.41 0.026
X7 1.0 1.12 1.10 0.07 1.13 1.02 0.064

Using the standard errors, we can see that the means of the least squares coef-
ficients are all within the 0.95 confidence intervals of the population values,
and the standard deviations clearly show the effects of the high correlations
among X1, X2, and X3, the more moderate correlations among X4, X5, and X6,
and the lack of correlations with X7. This confirms the unbiasedness and large
variances of the least squares estimates.

The incomplete principal components coefficients show an interesting pattern.
Therearenowthreedistinctgroups: thefirst three, thesecondthree,andX7.The
coefficients within the two groups of correlated variables are equivalent in all
respects,andthat forX7 isessentially the leastsquaresestimate. Inotherwords,
this method of estimation recognizes the three groups of distinct variables but
cannot distinguish among those within a group of correlated variables.

These results are, of course, due to our knowledge of the structure of the data
helping us to choose the number of components to be deleted. In fact, deleting
only three does not provide nearly as informative results. Because the num-
ber of “effective” components is rarely known in practical cases, the question
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of how many components to delete is not as easily answered. In fact, some
authorities (e.g., Rawlings, 1998, p. 348) caution against eliminating too many
components.12 For example, there are no very small eigenvalues in the princi-
pal components obtained for Example 5.5, and therefore an incomplete prin-
cipal component regression may not be suitable for this data set.

EXAMPLE 5.4 REVISITED Incomplete Principal Component Regression (IPC) on

NBA Data The results of the principal component regression would seem
to indicate that incomplete principal component regression may not be useful
as some of the components with small variances appeared to be useful in the
regression. Because IPC regressions are relatively easy to do, we requested
PROC REG to compute such regressions leaving out 1, 2, . . . ,7 principal com-
ponents and the plotted residual standard deviation (root mean squared error)
against the number of components omitted, which is shown in Figure 5.10.

Figure 5.10

Plot of RMSE vs Number
of Principal Components
Dropped for Example 5.4
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This plot clearly shows that four components can be deleted without affecting
the fit of the regression. Table 5.27 shows the resulting coefficients and related
statistics for that regression as well as the ordinary least squares results. Note
that now virtually all coefficients may be considered statistically significant,
and all have the expected signs and appear to conform to expectations. Thus, it
appears that the incomplete principal component regression has provided use-
ful information on the importance of the individual independent variables.

12Considering the relatively low cost of computing, it may not be unreasonable to examine the
results of different numbers of deleted components.
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Table 5.27 Incomplete Principal Component Regression for NBA Data

Least Squares Incomplete P.C. Regression

Variable Coefficient Std.Err. t Coefficient Std.Err. t

Intercept 36.1738 22.3938 1.61535 35.3140 21.2638 1.6608
FGAT −0.0178 0.0139 −1.28238 0.0104 0.0017 6.0178
FGM 0.0698 0.0132 5.30537 0.0472 0.0032 14.8988
FTAT −0.0036 0.0104 −0.34174 0.0130 0.0015 8.5811
FTM 0.0277 0.0114 2.42418 0.0143 0.0018 7.8020
OFGAT 0.0220 0.0122 1.80894 −0.0076 0.0010 −7.5865
OFGAL −0.0751 0.0114 −6.58993 −0.0497 0.0040 −12.5231
OFTAT 0.0165 0.0176 0.93645 −0.0108 0.0014 −7.6900
OFTAL −0.0436 0.0221 −1.97690 −0.0163 0.0020 −8.3107
DR −0.0138 0.0114 −1.20982 0.0128 0.0035 3.6644
DRA 0.0073 0.0127 0.57649 −0.0151 0.0032 −4.6989
OR 0.0265 0.0185 1.43163 −0.0106 0.0043 −2.4472
ORA −0.0214 0.0139 −1.53594 0.0091 0.0062 1.4616

5.5 Summary

This chapter considers a data condition called multicollinearity, which is
defined as the existence of strong correlations among the independent vari-
ables of a regression model. Although multicollinearity is not strictly a viola-
tion of assumptions, its presence does decrease the precision of the estimated
regression coefficients, thereby making interpretations more difficult.

The existence and nature of multicollinearity are studied by using
variance inflation factors and variance proportions. Additional information
can be obtained through the use of principal components, as well as other
multivariate analyses that are not covered in this book.

Because multicollinearity is often caused by having too many independent
variables in the model, it is tempting to “solve” the multicollinearity prob-
lem by using a statistically based variable selection procedure. Although this
method will usually provide models with less multicollinearity, it may not pro-
vide insight into the structure of the regression relationships. And because
variable selection is actually more useful when multicollinearities are not pre-
sent, its presentation is deferred to Chapter 6.

In this chapter we presented several remedial methods that may be used to
provide additional information about the structure of the regression
relationships:

1. The use of information about known relationships to redefine variables in
the model.

2. The use of the results of principal components to create a new set of inde-
pendent variables. Similar procedures are available using other multivari-
ate methods.
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3. The use of biased estimation methods. The methods discussed here include
the incomplete principal component regression and the ridge regression.

The reader may be frustrated by the lack of definitive results of the use of
these methods on the “real” data examples in this chapter. Unfortunately, this
will be an almost universal occurrence, because we are dealing with situations
where the data are simply inadequate to obtain the desired results.

5.6 CHAPTER EXERCISES

In each of these exercises there is some degree of multicollinearity. For each
exercise:

1. Determine the extent and nature of the multicollinearity.
2. Discuss possible practical reasons why the multicollinearity exists.
3. Implement at least one form of remedial action and determine if these

methods provided more useful results.

1. In Exercise 2 of Chapter 3 we used data from a set of tournaments featur-
ing professional putters. In that exercise we related players’ “Player of the
Year” point scores to various variables characterizing the players’ perfor-
mances. At the end of the tour there is an “auction” that places a “price” on
the players. In this exercise we will estimate the price using a regression
with the following independent variables:

TNMT: The number of tournaments in which the player participated
WINS: The number of tournaments won
AVGMON: Average money won per tournament
PNTS: The number of “Player of the Year” points accumulated by the

player
ASA: The player’s “adjusted” point average; the adjustment reflects the

difficulties of the courses played

The data set is in File REG05P01.

2. In Exercise 1 of Chapter 3 we related gasoline mileage (MPG) to several
characteristics of cars:

WT: Weight in pounds
ESIZE: Engine piston displacement in cubic inches
HP: Engine horsepower rating
BARR: Number of barrels in carburetor

There is already a modest amount of multicollinearity among these vari-
ables. For this exercise we add another variable:

TIME: Time taken to a quarter mile from a dead stop (in seconds)

This additional variable creates somewhat greater multicollinearity. The
data set is in File REG05P02.
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3. Pork bellies are a surprisingly valuable portion of a pig, as indicated by the
fact that prices of pork bellies are frequently quoted in the media. This means
that their price is a factor in the price of the pig carcass. Unfortunately, the
weight of this item is not readily discerned from an examination of the whole
carcass as it is in the process of being sold, and there is interest in being
able to estimate pork-belly weight based on some more readily available car-
cass dimensions. We will therefore investigate a regression to estimate belly
weight (BELWT) from the following measurements:

AVBF: Average of three measures of back fat thickness
MUS: A muscling score for the carcass; higher numbers mean relatively

more muscle
LEA: The loin area
DEP: Average of three measures of fat opposite the tenth rib
LWT: Live weight of the carcass
CWT: Weight of the slaughtered carcass
WTWAT: A measure of specific gravity of the carcass
DPSL: Average of three determinations of the depth of the belly
LESL: Average of three measures of leanness of belly cross-sections

Obviously, many of these variables are correlated. The data on 48 carcasses
are available in File REG05P03.

4. Water evaporation is a major concern in planning irrigation. Data are col-
lected daily from June 6 through July 21 in a central Texas location on the
following variables that may affect the amount of evaporation:

MAXAT: Maximum daily air temperature
MINAT: Minimum daily air temperature
AVAT: The integrated area under the daily air temperature curve, a

measure of average air temperature
MAXST: Maximum daily soil temperature
MINST: Minimum daily soil temperature
AVST: The integrated area under the daily soil temperature curve, a

measure of average soil temperature
MAXH: Maximum daily humidity
MINH: Minimum daily humidity
AVH: The integrated area under the daily humidity curve, a measure of

average humidity
WIND: Total wind, measured in miles per day

The response is:

EVAP: Daily total evaporation from soil

The data are in File REG05P04. The natural grouping of variables (MAX,
MIN, AV) of three factors would appear to provide for redefining variables,
either by using common sense or principal components.
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5. Data on the following variables are obtained from the U.S. Bureau of the
Census State and Metropolitan Area Data Book, 1986 (A Statistical

Abstract Supplement) and given in File REG05P05. A set of 53 primary
metropolitan areas (PMSAs) are selected for this data set. The variables
are as follows:

PMSA: Identification of PMSA
AREA: Land area in square miles
POP: Total population, 1980, in thousands
YOUNG: 1980 population ages 18–24 in thousands
DIV: Total number of divorces in 1982 in thousands
OLD: 1982 total number of Social Security benefit recipients in

thousands
EDUC: Number of adults, 25 years or older, having completed 12 or

more years of school
POV: Total number of persons below poverty level in 1979
UNEMP: Total number unemployed, 1980
CRIME: Total number of serious crimes in 1980

The purpose of the analysis is to determine factors affecting crime. The
independent variables as presented have a high degree of multicollinearity.
There is, however, a good reason for this and determining the reason before
performing any analyses should be helpful in developing remedial action.

6. Exercise 4 of Chapter 4 dealt with factors affecting state expenditures on
criminal activities (courts, police, etc.):

STATE: The standard two-letter abbreviation (DC is included)
EXPEND: State expenditures on criminal activities ($1000)
BAD: The number of persons under criminal supervision
CRIME: Crime rate per 100,000
LAWYERS: The number of lawyers in the state
EMPLOY: The number of persons employed in the state
POP: The population of the state (1000)

The data are available in File REG04P04. Examine for multicollinearity
and, if necessary, implement remedial procedures both with and without
possible outliers and/or influential observations found in that data set.
Comment on results.

7. Freund and Wilson (2003) give an example where the size of squid eaten
by sharks and tuna is to be estimated based on dimensions of the beaks
(mouth). The beaks are indigestible and can be recovered and used to esti-
mate the weight of the squid. To do this, a sample of 22 specimens was
taken and the following measurements were taken:

WT: Weight (response variable)
RL: Rostral length
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WL: Wing length
RNL: Rostral to notch length
NWL: Notch to wing length
W: Width

Because of the nature of the response variable, it was decided that natural
logarithm of the original data would be appropriate for the analysis. The
data are given in Table 5.28 and File REG05P07.

Table 5.28

Data for Exercise 7

OBS RL WL RNL NWL W WT

1 0.27003 0.06766 −0.82098 −0.28768 −1.04982 0.66783
2 0.43825 0.39878 −0.63488 −0.10536 −0.75502 1.06471
3 −0.01005 −0.17435 −1.07881 −0.56212 −1.13943 −0.32850
4 −0.01005 −0.18633 −1.07881 −0.61619 −1.30933 −0.21072
5 0.04879 −0.10536 −1.02165 −0.44629 −1.20397 0.08618
6 0.08618 −0.07257 −0.86750 −0.49430 −1.17118 0.19885
7 0.07696 −0.10536 −0.91629 −0.67334 −1.17118 0.01980
8 0.23902 0.07696 −0.82098 −0.26136 −1.07881 0.65752
9 −0.01005 −0.16252 −1.02165 −0.57982 −1.23787 −0.44629

10 0.29267 0.12222 −0.79851 −0.26136 −0.99425 0.73237
11 0.26236 0.09531 −0.79851 −0.27444 −0.96758 0.68310
12 0.28518 0.09531 −0.73397 −0.26136 −0.96758 0.64185
13 0.62058 0.38526 −0.51083 0.00995 −0.43078 2.14710
14 0.45742 0.29267 −0.65393 −0.05129 −0.69315 1.50185
15 0.67803 0.46373 −0.40048 0.18232 −0.52763 2.13889
16 0.58779 0.44469 −0.41552 0.01980 −0.52763 1.81970
17 0.55962 0.45742 −0.46204 0.08618 −0.52763 2.02022
18 0.54232 0.35767 −0.44629 0.01980 −0.46204 1.85003
19 0.51879 0.45108 −0.32850 −0.04082 −0.38566 2.03209
20 0.55962 0.46373 −0.38566 0.07696 −0.47804 2.05156
21 0.78390 0.62058 −0.28768 0.21511 −0.32850 2.31747
22 0.54812 0.51282 −0.44629 0.13103 −0.59784 1.92862

(a) Use the data as is and perform the regression.
(b) Retain the variable W and express the rest as ratios of this value. Per-

form the regression. Compare it to the results in (a).
(c) Perform a principal component analysis and evaluate it.
(d) Perform the regression on the principal components found in (c).
(e) Can any of the principal components be omitted from the analysis? If

so, perform the regression without them. Explain the results.
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Chapter 6

Problems with the
Model

6.1 Introduction

As we have noted, regression analysis is often used as an exploratory tool.
An initial model may therefore be based on a combination of educated
guesses and availability of data. We may then use statistical analyses to
evaluate this model, and we usually attempt to build a “correct” model
starting with the initial one. The initial model may not be optimal for sev-
eral reasons. First, the model may contain too many variables (something
that often occurs in exploratory studies) and is said to be overspecified.
Second, the model may not contain the right variables; that is, one or more
important independent variables may be omitted. Third, the model may not
have the correct mathematical relationship. For example, we may specify
a linear relationship when a curvilinear relationship is more appropriate. If
the model is inadequate for either or both of the last two reasons, we say
the model exhibits specification error. In fact, however, a model may suf-
fer from any combination of these specification errors, including all three
of them. An incorrectly specified model, as noted in Section 3.9, may cause
biased estimates of the parameters.

We discuss the problem of specification error and present some tools for
detecting it in Sections 6.2 and 6.3; the problem of overspecification and a
method of sorting through a large group of independent variables called vari-

able selection in Sections 6.4 and 6.5; discuss the efficacy of the various
variable selection methods in Sections 6.6 and 6.7; and how influential obser-
vations may affect variable selection in Section 6.8.

227
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6.2 Specification Error

Specification error occurs when the model used for a regression analysis does
not contain sufficient parameters to adequately describe the behavior of the
data. Two primary causes of specification error are as follows:

1. Omitting independent variables that should be in the model
2. Failing to account for relationships that are not strictly linear, that is, where

the relationships need to be described by curves, which often requires the
use of additional parameters

These two causes are not mutually exclusive.
There are two main effects of specification error:

1. Because the error mean square contains the effects of omitted
parameters, it is inflated. That is, the estimate of the random error is biased
upward.

2. The resulting estimated coefficients are biased estimates of the population
parameters. We have already noted this result in Sections 3.2 and 3.4.

The omission of important independent variables may be detected by a resid-
ual plot but, as we will see, is not always straightforward. The existence of
curved responses is more easily detected by residual or partial residual plots
and if adequate data are available, by a formal lack-of-fit test. We will illustrate
with two simple artificially generated examples.

EXAMPLE 6.1 Ignoring a Variable We return to Example 3.2 to illustrate the effect of
ignoring a variable. The data are reproduced in Table 6.1.

Table 6.1

Specification Errors

OBS X1 X2 Y

1 0 2 2
2 2 6 3
3 2 7 2
4 2 5 7
5 4 9 6
6 4 8 8
7 4 7 10
8 6 10 7
9 6 11 8

10 6 9 12
11 8 15 11
12 8 13 14

The results of performing regressions with the underspecified models using
only X1 and X2, as well as the correctly specified model using both variables,
are summarized in Table 6.2.
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Table 6.2

Regressions with
Different Models

CONTRADICTORY PARTIAL AND TOTAL REGRESSIONS

MODEL RMSE INTERCEPT X1 X2

Using X1 only 2.12665 1.85849 1.30189 .
Using X2 only 2.85361 0.86131 . 0.78102
Using X1 and X2 1.68190 5.37539 3.01183 −1.28549

Obviously, the coefficients of the two underspecified models are biased, and
their residual mean squares are larger. Of course, we do not normally know
that we have not specified the correct model. If we look at either of the two
inadequate models, there is little hint of trouble, since both models produce
statistically significant regressions. Unless we have some prior knowledge of
the magnitude of the variance, the fit of each of the models appears adequate.

We have already discussed the use of residual plots to investigate data and
model problems. The residual plot for the incorrectly specified model using
only X2, using values of X1 as the plotting symbol, is shown in Figure 6.1. Note
that the values of X1 increase from lower left to upper right. Of course, this
procedure is useful only if we have suspicions that X1 belongs in the model
and have observations on this variable.

Figure 6.1

Residual Plot for
Incorrect Model

These results suggest that when we do not have knowledge of the speci-
fication error. A study of other factors for observations corresponding to the
“corners” or other extreme points of the residual plot may help to discover
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other variables that may lead to a more correctly specified model. However,
this is a rather subjective process and, in general, we can see that without
other knowledge it is not easy to detect the omission of independent variables
from a regression model.

Table 6.3

Data for Example 6.2

X1 Y

0 8.3
0 7.1
1 12.4
9 3.7
9 2.7
3 20.9
3 10.3
2 13.2
9 4.1
4 10.6
7 8.1
0 8.8
7 9.5
0 12.1
9 4.8
2 12.9

EXAMPLE 6.2 Ignoring a Curved Response We again use an artificial data set containing
16 observations generated using the model

y = 10 + 2x1 − 0.3x2
1 + ε,

where ε is normally distributed with mean 0 and a standard deviation of 3. This
model describes a curved line that has a positive slope for the small values of
x and becomes negative for the larger values of x. This is called a polynomial
model, and its use is presented in detail in Chapter 7. The data are shown in
Table 6.3, and the plot of the data and the population regression in Figure 6.2.

Figure 6.2

Data and Plot of
Regression Line

Assume for now that we do not know that the response is curved and that we
use the simple linear model

y = β0 + β1x1 + ε.

The results of the analysis produced by PROC REG of the SAS System are
shown in Table 6.4.
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Table 6.4

Results with Incorrect
Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 105.85580 105.85580 7.17 0.0180
Error 14 206.76358 14.76883
Corrected Total 15 312.61938

Root MSE 3.84302 R-Square 0.3386
Dependent Mean 9.34375 Adj R-Sq 0.2914
Coeff Var 41.12934

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 12.29238 1.46153 8.41 <.0001
X1 1 −0.72582 0.27111 −2.68 0.0180

Since we know the correct model, it is easy to see that the residual standard
deviation of 3.8 is moderately larger than the true standard deviation of 3.0,
and furthermore, the regression line has a negative slope, whereas the true
line starts with a positive slope. Thus, we can see that the misspecified model
can lead to incorrect conclusions.

We again turn to the residual plot, that is, the plot of residuals against the
predicted values. The residual plot for this model is shown in Figure 6.3. The
pattern of the residuals is typical of this type of misspecification: Residuals of
one sign (positive in this example) are located largely in the middle, while the

Figure 6.3

Residual Plot
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residuals with the opposite sign are at the ends. Such a pattern suggests that
the model should be modified to include some sort of curved response.

Residual plots are also useful for models with more than one independent
variable, although the patterns may not be as obvious. Identification of vari-
ables having a curved relationship may also be provided by the partial residual
plots (Section 4.2).

6.3 Lack of Fit Test

We have already seen that one effect of an inadequately specified model is
that the error mean square becomes large, but “large” is only relevant to some
knowledge about the magnitude of true or “normal” variation. If we have some
knowledge as to what the true standard deviation is, or should be, we can use
the χ2 test (e.g., Freund and Wilson [2003], Section 4.4); if the test finds that
the estimated variance is larger than the hypothesized variance, a specification
error has most likely occurred.

In some cases, the data may provide information on the true error variance.
Remember that the random error measures unassigned variability, which is
equivalent to the variability, among units treated alike, often referred to as
“pure” error. In a regression situation, this is the variability among observa-
tions having the same value of the independent variable(s). Thus, for data
containing multiple observations for one or more values of the independent
variables, a variance computed from such observations will provide an esti-
mate of this variance. This quantity is obtained from the within (often called
error) mean square from an analysis of variance, using values of the indepen-
dent variable(s) as factor levels.

EXAMPLE 6.2 REVISITED An examination of Table 6.3 shows that there are indeed mul-
tiple observations for some of the values of x1. The use of PROC ANOVA of
the SAS System, using the individual values of x1 as the factor levels, produces
the results shown in Table 6.5.

Table 6.5

Analysis of Variance
Using X1 as Factor
Levels

Dependent Variable: Y

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 239.3793750 39.8965625 4.90 0.0171
Error 9 73.2400000 8.1377778
Corrected Total 15 312.6193750

R-Square Coeff Var Root MSE Y Mean
0.765721 30.53034 2.852679 9.343750

Source DF Anova SS Mean Square F Value Pr > F

X1 6 239.3793750 39.8965625 4.90 0.0171
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The results do show that the error mean square (8.138) is smaller than that for
the straight-line model (14.769) and quite similar to that for the true quadratic
model (9.0). However, because all three estimates are based on the same
observations, they are not independent and cannot be directly used for an
F test for the equality of variances.

The formal test for comparing these estimates is obtained by the comparison
of unrestricted and restricted models presented in Chapter 1. The analysis of
variance is the unrestricted model and has six degrees of freedom, accounting
for all possible variation among the seven means. The regression model is the
restricted model where the variation among the means is described by only
one (linear regression) parameter and has one degree of freedom. The differ-
ence between the sums of squares of the unrestricted and restricted models
is due to other parameters that may be needed to describe the relationship
among means. As shown in Chapter 1, the resulting mean square is used to
test the hypothesis that no other parameters are needed.

The quantities required for the test are available from Tables 6.4 and 6.5:

Unrestricted model Table 6.5 df = 6 SS = 239.38
Restricted model Table 6.4 df = 1 SS = 105.86
Difference df = 5 SS = 133.52

This difference is referred to as the sum of squares for the lack of fit, since it
measures how well or poorly the regression fits the data. The lack of fit mean
square is obtained by dividing by degrees of freedom,

MS(lack of fit) = 133.52/5 = 26.70,

which is divided by the unrestricted model error mean square (Table 6.5) to
provide the F ratio:

F = 26.70/8.14 = 3.28.

The p-value for this test is 0.058. Although this is greater than the commonly
used value of 0.05, it may be considered sufficiently small to justify the search
for a better, in this case quadratic, model.

Using the data from Table 6.3 and a quadratic model, we get

μ̂x = 9.482 + 2.389x1 − 0.339x2
1,

with a residual standard deviation of 2.790. This estimated regression equa-
tion, as well as the estimated standard deviation, is consistent with the model
used to generate the data.

The same procedure can now be used to determine if the quadratic model is
adequate. Notice, however, that the error mean square for the quadratic model
is (2.790)2 = 7.78, which is almost identical to the unrestricted model error
mean square of 8.14. Therefore, the formal test is not needed to determine that
the quadratic model fits well.
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Comments
The objective lack of fit test is, of course, more powerful than the subjective
examination of residuals. Unfortunately, it can only be used if there exist mul-
tiple observations for some values of the independent variables.1 Finding such
observations obviously becomes more difficult as the number of independent
variables increases. Of course, multiple observations may be created as the
result of an experiment, where it may often be more efficient to replicate only
at selected combinations of the independent variables.

Unfortunately, the lack of fit test is not typically used for determining the
need for additional factor or independent variables, since observations with
identical values for the included variables may not have identical values for
the not-included variables.

EXAMPLE 6.3 EXAMPLE 4.5 REVISITED This example concerned the loads on the indi-
vidual lines in a block and tackle. The picture of the assembly and resulting
data are shown in Figure 4.5 and Table 4.18. This example was used in Section
4.3 to show how multiple observations for individual values of line numbers
can be used to implement a weighted regression that is being done as a remedy
for unequal variances. In this section we will ignore the unequal variances and
show how the correct model is obtained using residual plots and a lack of fit
test. We again only use those observations with the direction UP.

If friction is present, the load on the lines should increase from line 1 to line 6,
and as a first approximation, should increase uniformly, suggesting a linear
regression of LOAD on LINE. The results of the regression are given in Table 6.6.

Table 6.6

Regression of Load on
Line

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 321600 321600 1466.22 <.0001
Error 58 12722 219.33984
Corrected Total 59 334322

Root MSE 14.81013 R-Square 0.9619
Dependent Mean 412.26667 Adj R-Sq 0.9613
Coeff Var 3.59237

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 262.22667 4.35998 60.14 <.0001
LINE 1 42.86857 1.11954 38.29 <.0001

1It has been suggested that the “pure” error can be estimated using “near neighbors” as repeated
observations (Montgomery et al., 2001).
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The regression is significant, indicating an increase of almost 43 units of force
with each line. However, the residual plot, shown in Figure 6.4, indicates that
the relationship is not well described by a straight line, but that some sort of
curved line may be needed.

Figure 6.4

Residual Plot for
Linear Regression

Since in this example we do have repeated observations, we can perform a
lack of fit test. The unrestricted model sums of squares are obtained by the
analysis of variance, with results shown in Table 6.7.

Table 6.7

Analysis of Variance for
the Full Model

The ANOVA Procedure

Dependent Variable: LOAD

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 330542.5333 66108.5067 944.61 <.0001
Error 54 3779.2000 69.9852
Corrected Total 59 334321.7333

R-Square Coeff Var Root MSE LOAD Mean
0.988696 2.029200 8.365715 412.2667

Source DF Anova SS Mean Square F Value Pr > F

LINE 5 330542.5333 66108.5067 944.61 <.0001

Since the regression was significant, the overall results are not surprising. The
primary feature of interest is that the unrestricted model error mean square,
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the “pure” error, is 69.99, as compared with 219.3 for the restricted regression
model, indicating that the regression model may be inadequate. We compute
the lack of fit test using the model sums of squares as follows:

Unrestricted model df = 5 SS = 330, 542.5
Restricted model df = 1 SS = 321, 600.0
Lack of fit df = 4 SS = 8, 942.5

The lack of fit mean square is 8942.5/4 = 2235.6, which is divided by the unre-
stricted model error mean square to provide an F ratio of 31.94 with (4, 54)
degrees of freedom, giving overwhelming evidence that the linear regression
is not adequate.

The simplest curved line regression is obtained by adding a quadratic term2 to
provide for a curved line. This model provides the estimated curve as

μ̂y|x = 296.66 + 17.04x+ 3.689x2,

which describes an upward-sloping convex curve. The added quadratic term
is indeed significant, and the regression has a residual mean square of 134.04,
which is smaller than that for the linear regression but is still considerably
larger than the pure error mean square, indicating that this model may also
not be satisfactory. In fact, the lack of fit test for this model (as the reader may
verify) produces anF ratio of 18.39 with (3, 54) degrees of freedom, confirming
that suspicion.

Now the quadratic regression is often chosen for convenience, as it was here,
but usually does not have any basis in theory. Actually, as we noted, a linear
regression is logical here, assuming that the pulleys are equivalent. However,
there is some reason to believe that line 6, which is the one being pulled by
the drum, may behave differently. We can check this idea by using a linear
regression and adding an indicator variable3 that allows line 6 to deviate from
the linear regression. This variable, which is labeled C1, has the value of zero
for lines 1 through 5 and one for line 6. The addition of this variable produces
the following models:

LÔAD= β̂0 + β̂1LINE + β̂2C1, or:

LÔAD= β̂0 + β̂1LINE

for lines 1 through 5, and

LÔAD= β̂0 + β̂1LINE + β̂2

= (β̂0 + β̂2) + β̂1 LINE

2A complete coverage of this type of model is provided in Chapter 7.
3A more complete discussion of the use of such variables as slope and intercept shifters is
presented in Chapter 9.
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for line 6. The results of fitting this model are shown in Table 6.8.

Table 6.8

Regression with Dummy
Variable

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 329968 164984 2160.03 <.0001
Error 57 4353.68000 76.38035
Corrected Total 59 334322

Root MSE 8.73959 R-Square 0.9870
Dependent Mean 412.26667 Adj R-Sq 0.9865
Coeff Var 2.11989

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 276.20000 2.89859 95.29 <.0001
LINE 1 36.88000 0.87396 42.20 <.0001
C1 1 41.92000 4.00498 10.47 <.0001

This model fits better than the quadratic, and the error mean square is now
only slightly larger than the pure error mean square. The reader may verify
that the lack of fit test produces an F ratio of 2.74, which has a p-value of
0.054. This result indicates some evidence of lack of fit, but considering the
small increase in the error mean square for the restricted model, it is probably
not worth investigating. This analysis is, in fact, the one used to determine the
model in Example 4.5, Table 4.19.

The regression coefficient for LINE estimates an increase of 36.88 units of load
for each line number, with an additional increase of 41.92 units for line 6. The
plots of these regression equations are shown in Figure 6.5, where the points

Figure 6.5

Plot of Models for
Line Loads
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represent the data, the solid line shows the linear regression, and the dashed
line shows the final model with the indicator variable.

In Section 4.3 we fitted this model using weighted regression because of the
unequal variances, which are quite evident in Figure 6.5. The plots and lack
of fit tests we have presented here can be performed with weighted regres-
sion and analysis of variance, and the results would be equivalent. However,
as we have noted, the estimates of the coefficients change very little with the
weighted regression. Therefore, using the more easily implemented
unweighted analyses will produce the form of the correct final model, which
can then be reestimated using weighted regression.

6.4 Overspecification: Too Many Variables

We have seen that underspecification, that is, leaving out variables that should
be in the model, results in inflation of the error variance. Since this is a rather
well-known result, one common practice for avoiding such results is to put
into an initial model all conceivably relevant variables, with the number of
variables often restricted only by the availability of data.

When this procedure is followed, it usually happens that the initial model
contains too many variables; that is, some of these variables are not needed
in the sense that they do not contribute to the fit of the model. Such a model
is said to be overspecified. Now it is indeed true that an overspecified model
does not lead to biased estimates of either the variance or the regression param-
eters; however, such overspecification has two adverse effects:

1. Because overspecified models tend to exhibit increased multicollinearity,
the variances of the coefficients tend to become large.

2. Estimated mean responses or predicted values tend to have large variances.
This result occurs even when there is little or no multicollinearity.

Remedial methods to counteract the effects of multicollinearity were
presented in Chapter 5, where we noted that these methods were not always
successful. One reason for this lack of success is that all remedial methods
use initial models, which are in many cases subject to overspecification,
and analyses based on overspecified models are more likely to provide
unsatisfactory analyses and interpretation.

It then seems natural to ask: Why not reduce the overspecification by delet-
ing unnecessary variables from the model? Now if we knew which variables
were not needed, such deletions would be easy to make, but then we would
not put these variables into the model to begin with. Therefore, if we do not
know which variables are not needed, any selection of variables must be based
on the data. In other words, variables are chosen or deleted based on statistics
such as p-values of coefficients estimated by the data being analyzed. Because
these methods use statistics from the analysis of the data, we will call these
data-driven procedures.
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Several procedures for this type of data-driven variable selection are
described in Section 6.5. These methods have become increasingly sophisti-
cated and are universally available with today’s computing hardware and soft-
ware, which has led to widespread misuse and abuse of these procedures.
Therefore, it is important to discuss some practical aspects associated with
data-driven variable selection procedures.

Three primary cautions must be noted when using data-driven variable
selection procedures:

1. p-values for statistical tests on coefficients of the finally chosen model do
not have their intended interpretation. This is because the p-values are
strictly valid only for a single analysis of a set of data. When the data are
then used for further analyses, the p-values may still be printed on the com-
puter output but are no longer valid. That does not mean that they are
useless, but they must be used with caution.

2. Because sample data are used to drive these procedures, any finally chosen
model is, strictly speaking, valid only for that sample. Unfortunately, there
are no statistics that indicate how good the final model is for inferences on
the population.

3. If data-driven procedures are driven to the extreme, it may be possible to pro-
duceanydesiredresult. It is forthisreasonthatdata-drivenvariableselection
is often called “data dredging,” which has led to the famous quote4

If you torture the data enough, it will confess.

One criterion for deciding on the appropriateness of variable selection
is related to the purpose of the regression analysis. For this discussion, we
restate the two distinct purposes for performing a regression analysis:

1. To provide a vehicle for estimating the behavior of the response. That is, we
want to estimate values of the conditional mean or predict future values of
the response variable.

2. To provide information on the structure of the regression relationship. That
is, we want to specify the effect of the individual independent variables on
the behavior of the response variable.

These two purposes are not mutually exclusive and in many analyses there
is some interest in both. However, one or the other of these purposes is often
of primary importance. For example, when we want to estimate the potential
lumber harvest of a forest (Example 2.1), the primary purpose is to use the
model equation to predict tree volumes from some easily measured tree char-
acteristics. On the other hand, in the NBA data (Example 5.4), a coach may
want to use the model to decide if it is better to concentrate on attempting
more field goals or on increasing the success ratio of such attempts.

4We have not been able to find a reliable source for the origin of this quote.
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Now if estimation or prediction is the primary purpose, variable selec-
tion is justified: When there are fewer variables, the data collection process
is less burdensome, and, furthermore, the variances of the estimated means
do indeed tend to be smaller (assuming little or no increase in the residual
mean square). Of course, we have already noted that the model selected from
a sample applies only to that sample, but some help is available in this area
(Section 6.6).

On the other hand, if we are primarily interested in the structure of the
model, variable selection can indeed become counterproductive: Because of
sampling fluctuations and multicollinearity, we may delete variables that could
provide the very information we seek.

In conclusion, then, data-driven model selection should be used as a last
resort—that is, if no other information can be used to select a model. Even
then, it must be used and its results interpreted with great care and caution.

6.5 Variable Selection Procedures

In this section we will assume that each coefficient corresponds to a specific
variable. This condition does not occur, for example, in polynomial models,
where one coefficient corresponds to, say, x1, another to x2

1, and so forth. As
we will see in Chapter 7, selection of variables and the appropriate powers of
variables to use in a polynomial regression is also important, but the selection
procedures are done in a different manner.

We start with an initial model with m variables and want to select a model
with a subset of p ≤ m variables. The selection process consists of two related
questions:

1. What is the magnitude of p? That is, how many variables should we select?
2. Given a value of p, which combination of variables should be selected?

Of these two, finding the combination of variables is the more difficult. What
we want is an optimum subset, which is defined as follows.

DEFINITION 6.1
An optimum subset is that variable combination which, for a given
value of p, gives the maximum R-square, which is, of course, the same
as the minimum error mean square.

Although the criterion for an optimum combination is obvious, the mechan-
ics of obtaining that combination are not easy. For all practical purposes, it is
necessary to examine all possible combinations to guarantee finding that opti-
mum combination.5 This is not a trivial task; for example, with an initial model

5Recent research has developed algorithms that allow some shortcuts. However, even with these
methods, a large number of combinations must be examined.
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containing only 10 variables, 210 = 1024 regressions will need to be computed
for optimum combinations for all subset sizes. Fortunately, vast increases in
computing power and the development of efficient algorithms have made this
method readily available for moderate-sized models with that many or more
variables. However, for very large models, such as those used for weather fore-
casting, this procedure is still not directly available. Later we will present some
computationally less demanding methods that will often perform quite well.
However, not only do these methods not guarantee finding optimum subsets,
but they also do not reveal if the resulting combination is optimal.

One benefit from examining all possible variable combinations is that this
procedure also provides the second-best combination, and so forth. Being able
to examine near-optimum variable combinations provides additional insight
into the model as follows:

• A near-optimum model may contain a more attractive variable combina-
tion. For example, a near-optimal set may contain variables for which data
are easier to collect, or the variable combination may contain variables
whose existence in the model more nearly conforms to prior knowledge,
or may exhibit less multicollinearity. Remember that the optimum combi-
nation applies only to the particular data set being analyzed and there is no
guarantee that it is optimum for the population. Therefore, there may be
little or no loss in using a near-optimum set.

• The existence of a number of near-optimum subsets with almost identical
R-square values is a clear indication of multicollinearity and usually indi-
cates that additional variables may be deleted without serious loss
in precision.

Size of Subset
There is no objective criterion for the choice of the optimum subset size. Intu-
itively, one would choose the optimum subset size to be the minimum size that
does not cause a meaningful decrease in R-square, residual mean square, or
some other statistic describing the predictive quality of the model. However,
because this is an exploratory analysis, there are no formal statistical tests for
significant or meaningful changes. For these reasons, a common practice for
choosing the subset size is as follows:

1. Obtain the optimum and several near-optimum subsets for each subset size
and compute a goodness of fit statistic.

2. Then graph the statistic against the number of variables, and choose that
subset size to be (a) the minimum size before the statistic shows a tendency
for a poorer fit and (b) one where the second-best model is demonstrably
poorer.

Various goodness of fit statistics will be discussed later.



242 Chapter 6 Problems with the Model

EXAMPLE 6.4 Baseball Data Table 6.9 gives data on some team performance variables for
major league baseball teams for the 1975 through 1980 seasons. A regression
analysis is performed to ascertain the effect of these performance variables
on the percentage of games a team wins (PER).

Table 6.9 Baseball Data

OBS Year LEAGUE PER RUNS DOUBLE TRIPLE HR BA ERROR DP WLK SO

1 1976 EAST 62.3 770 259 45 110 272 115 148 397 918
2 1976 EAST 56.8 708 249 56 110 267 163 142 460 762
3 1976 EAST 53.1 615 198 34 102 246 131 116 419 1025
4 1976 EAST 46.3 611 216 24 105 251 140 145 490 850
5 1976 EAST 44.4 629 243 57 63 260 174 163 581 731
6 1976 EAST 34.0 531 243 32 94 235 155 179 659 783
7 1976 WEST 63.0 857 271 63 141 280 102 157 491 790
8 1976 WEST 56.8 608 200 34 91 251 128 154 479 747
9 1976 WEST 49.4 625 195 50 66 256 140 155 662 780

10 1976 WEST 45.7 595 211 37 85 246 186 153 518 746
11 1976 WEST 45.1 570 216 37 64 247 141 148 543 652
12 1976 WEST 43.2 620 170 30 82 245 167 151 564 818
13 1977 EAST 62.3 847 266 56 186 279 120 168 482 856
14 1977 EAST 59.3 734 278 57 133 274 145 137 485 890
15 1977 EAST 51.2 737 252 56 96 270 139 174 532 768
16 1977 EAST 50.0 692 271 37 111 266 153 147 489 942
17 1977 EAST 46.3 665 294 50 138 260 129 128 579 856
18 1977 EAST 39.5 587 227 30 88 244 134 132 490 911
19 1977 WEST 60.5 769 223 28 191 266 124 160 438 930
20 1977 WEST 54.3 802 269 42 181 274 95 154 544 868
21 1977 WEST 50.0 680 263 60 114 254 142 136 545 871
22 1977 WEST 46.3 673 227 41 134 253 179 136 529 854
23 1977 WEST 42.6 692 245 49 120 249 189 142 673 827
24 1977 WEST 37.7 678 218 20 139 254 175 127 701 915
25 1978 EAST 55.6 708 248 32 133 258 104 155 393 813
26 1978 EAST 54.7 684 239 54 115 257 167 133 499 880
27 1978 EAST 48.8 664 224 48 72 264 144 154 539 768
28 1978 EAST 46.9 633 269 31 121 254 234 150 572 740
29 1978 EAST 42.6 600 263 44 79 249 136 155 600 859
30 1978 EAST 40.7 607 227 47 86 245 132 159 531 775
31 1978 WEST 58.6 727 251 27 149 264 140 138 440 800
32 1978 WEST 57.1 710 270 32 136 256 134 120 567 908
33 1978 WEST 54.9 613 240 41 117 248 146 118 453 840
34 1978 WEST 51.9 591 208 42 75 252 160 171 483 744
35 1978 WEST 45.7 605 231 45 70 258 133 109 578 930
36 1978 WEST 42.6 600 191 39 123 244 153 126 624 848
37 1979 EAST 60.5 775 264 52 148 272 134 163 504 904
38 1979 EAST 59.4 701 273 42 143 264 131 123 450 813
39 1979 EAST 53.1 731 279 63 100 278 132 166 501 788
40 1979 EAST 51.9 683 250 53 119 266 106 148 477 787
41 1979 EAST 49.4 706 250 43 135 269 159 163 521 933
42 1979 EAST 38.9 593 255 41 74 250 140 168 607 819
43 1979 WEST 55.9 731 266 31 132 264 124 152 485 773
44 1979 WEST 54.9 583 224 52 49 256 138 146 504 854
45 1979 WEST 48.8 739 220 24 183 263 118 123 555 811
46 1979 WEST 43.8 672 192 36 125 246 163 138 577 880

(Continued)
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Table 6.9 (Continued)

OBS Year LEAGUE PER RUNS DOUBLE TRIPLE HR BA ERROR DP WLK SO

47 1979 WEST 42.2 603 193 53 93 242 141 154 513 779
48 1979 WEST 41.3 669 220 28 126 256 183 139 494 779
49 1980 EAST 56.2 728 272 54 117 270 136 136 530 889
50 1980 EAST 55.6 694 250 61 114 257 144 126 460 823
51 1980 EAST 51.2 666 249 38 116 266 137 154 451 832
52 1980 EAST 45.7 738 300 49 101 275 122 174 495 664
53 1980 EAST 41.4 611 218 41 61 257 154 132 510 886
54 1980 EAST 39.5 614 251 35 107 251 174 149 589 923
55 1980 WEST 57.1 637 231 67 75 261 140 145 466 929
56 1980 WEST 56.4 663 209 24 148 263 123 149 480 835
57 1980 WEST 54.9 707 256 45 113 262 106 144 506 833
58 1980 WEST 50.3 630 226 22 144 250 162 156 454 696
59 1980 WEST 46.6 573 199 44 80 244 159 124 492 811
60 1980 WEST 45.1 591 195 43 67 255 132 157 536 728

The variables6 are as follows:

LEAGUE: East or West (not used as a variable at this point)
RUNS: Number of runs scored
DOUBLE: Number of doubles
TRIPLE: Number of triples
HR: Number of home runs
BA: Batting average
ERROR: Number of fielding errors
DP: Number of double plays (defensive)
WLK: Number of walks given to opposing team
SO: Number of strikeouts for opposing team

The results of the linear regression using these variables are given in Table 6.10.

Table 6.10

Regression for Baseball
Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 9 2177.73127 241.97014 15.65 <.0001
Error 50 773.03723 15.46074
Corrected Total 59 2950.76850

Root MSE 3.93202 R-Square 0.7380
Dependent Mean 50.00500 Adj R-Sq 0.6909
Coeff Var 7.86324

(Continued)

6In order to provide a manageable presentation, these variables were subjectively chosen from a
larger set.
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Table 6.10

(Continued)

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 24.67698 24.00041 1.03 0.3088 0
RUNS 1 0.02156 0.02287 0.94 0.3504 9.70576
DOUBLE 1 −0.02705 0.02409 −1.12 0.2667 1.84098
TRIPLE 1 0.11957 0.06249 1.91 0.0614 1.99296
HR 1 0.03193 0.03331 0.96 0.3424 4.53083
BA 1 0.17172 0.12084 1.42 0.1615 6.07178
ERROR 1 −0.02006 0.02451 −0.82 0.4169 1.36210
DP 1 −0.04725 0.03861 −1.22 0.2268 1.43214
WLK 1 −0.04941 0.00893 −5.53 <.0001 1.29376
SO 1 −0.00013970 0.00813 −0.02 0.9864 1.36068

The regression is significant (P < 0.0001) and the coefficient of determina-
tion shows a reasonable fit, although the residual standard deviation of 3.9
indicates that about one-third of the estimated winning percentages will be
off by as much as four percentage points. Only the coefficient for walks is
significant and has the expected negative sign. However, multicollinearity is
not serious, with only moderate VIF values for runs, home runs, and batting
average, a result that appears to be reasonable.

Somehow, one would expect somewhat better indications on the effects of the
individual performance variables. Because multicollinearity is not very seri-
ous, remedial measures suggested for that problem would not be very help-
ful.7 Therefore, it seems reasonable that if we had fewer variables, we could
have a more useful model. We therefore perform an all-possible variable com-
binations procedure (R-SQUARE selection using PROC REG of the SAS Sys-
tem), requesting that the four best models be printed for each subset size. The
results are shown in Table 6.11.

Table 6.11 Variable Selection for Baseball Data

N=60 Regression Models for Dependent Variable: PER

Number in

Model R-square C(p) Variables in Model

1 0.45826324 47.39345 BA
1 0.45451468 48.10889 RUNS
1 0.44046161 50.79099 WLK
1 0.22525896 91.86361 ERROR
2 0.69030270 5.10744 RUNS WLK

(Continued)

7However, investigating multicollinearity for this example would be a good exercise.



6.5 Variable Selection Procedures 245

Table 6.11 (Continued)

N=60 Regression Models for Dependent Variable: PER

Number in

Model R-square C(p) Variables in Model

2 0.66330564 10.25998 BA WLK
2 0.54107373 33.58861 HR WLK
2 0.51488356 38.58715 DOUBLE WLK
3 0.70982875 3.38079 RUNS TRIPLE WLK
3 0.69977858 5.29892 RUNS BA WLK
3 0.69674469 5.87795 RUNS DP WLK
3 0.69608770 6.00334 RUNS ERROR WLK
4 0.71942898 3.54853 RUNS TRIPLE DP WLK
4 0.71393040 4.59796 RUNS TRIPLE ERROR WLK
4 0.71270881 4.83111 RUNS TRIPLE WLK SO
4 0.71264668 4.84297 RUNS DOUBLE TRIPLE WLK
5 0.72472666 4.53744 RUNS TRIPLE BA DP WLK
5 0.72406640 4.66345 RUNS TRIPLE ERROR DP WLK
5 0.72169243 5.11654 RUNS DOUBLE TRIPLE DP WLK
5 0.72100271 5.24817 TRIPLE HR BA DP WLK
6 0.72990371 5.54937 RUNS DOUBLE TRIPLE BA DP WLK
6 0.72914230 5.69469 DOUBLE TRIPLE HR BA DP WLK
6 0.72839207 5.83787 RUNS TRIPLE BA ERROR DP WLK
6 0.72750286 6.00758 RUNS TRIPLE HR BA DP WLK
7 0.73449478 6.67314 RUNS DOUBLE TRIPLE HR BA DP WLK
7 0.73336343 6.88906 DOUBLE TRIPLE HR BA ERROR DP WLK
7 0.73319937 6.92037 RUNS DOUBLE TRIPLE BA ERROR DP WLK
7 0.73141090 7.26171 RUNS TRIPLE HR BA ERROR DP WLK
8 0.73802018 8.00030 RUNS DOUBLE TRIPLE HR BA ERROR DP WLK
8 0.73451106 8.67003 RUNS DOUBLE TRIPLE HR BA DP WLK SO
8 0.73336536 8.88869 DOUBLE TRIPLE HR BA ERROR DP WLK SO
8 0.73320840 8.91865 RUNS DOUBLE TRIPLE BA ERROR DP WLK SO
9 0.73802173 10.00000 RUNS DOUBLE TRIPLE HR BA ERROR DP WLK SO

The output gives the four best (highest R-square) models in order of decreas-
ing fit, for all subset sizes (Number in Model). Given for each model is the
R-square value; Cp, an assessment statistic we discuss later; and a listing of
the variables in the model. Thus, for example, the best one-variable model is a
function of batting average and produces an R-square value of 0.458; the best
two-variable model uses runs and walks and has an R-square value of 0.690;
and so forth. Looking at the R-square values, we can see that this statistic
increases rather rapidly going from one to three variables, increases some-
what when a fourth variable is added, and then changes very little as further
variables are added. Therefore, we may argue that a three- or four-variable
model may be adequate.

A number of statistics, such as R-square, the error mean square, or residual
standard deviation, may be used to help decide how many variables to retain.
For example, the documentation for PROC REG from the SAS System lists
13 such statistics. Most of these are related to the residual mean square, and
although arguments favoring each can be made, we will present only one of
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these here—the Mallows Cp statistic, which is given under the heading C(p)
in Table 6.11.

One slightly different statistic sometimes used for assessing variable
selection is the PRESS statistic (Section 4.2), which is a function of both
the residual mean square and the existence of influential observations. This
statistic may be useful for finding variable combinations that are less
affected by influential observations. We will, however, not use this statis-
tic here.

The Cp Statistic
The Cp statistic, proposed by Mallows (1973), is a measure of total squared
error for a subset model containing p independent variables. As we noted
in Chapter 5, the effectiveness of a biased estimator is measured by a total
squared error that is a measure of the error variance plus the bias introduced
by not including important variables in a model. Such a measure may there-
fore indicate when variable selection is deleting too many variables. The Cp

statistic is computed as follows:

Cp =
SSE(p)

MSE
− (n− 2p) + 2,

where

MSE is the error mean square for the full model (or some other estimate
of pure error)

SSE(p) is the error sum of squares for the subset model containing p inde-
pendent variables8

n is the sample size

For any given number of selected variables, largerCp values indicate equations
with larger error mean squares. By definition, Cp = (m+1) for the full model.
When for any subset model Cp > (p + 1), there is evidence of bias due to an
incompletely specified model. On the other hand, if there are values of Cp <
(p + 1), that model is said to be overspecified; that is, it contains too many
variables.

Mallows recommends thatCp be plotted against p, and further recommends
selecting that subset size where the minimum Cp first approaches (p+1) start-
ing from the full model. Also of interest are differences in the Cp statistic
between the optimum and near-optimum models for each subset size. The Cp

plot for the best four models for each subset size of the baseball data is shown
in Figure 6.6.9

8In the original presentation of the Cp statistic (Mallows, 1973), the intercept coefficient is also
considered as a candidate for selection; hence, in that presentation the number of variables in the
model is one more than what is defined here.
9In this plot, the horizontal axis shows the number of variables in the model, not including the
intercept.
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Figure 6.6

Cp Plot for Baseball
Data

In this plot we can see that models near the full model are indeed overspec-
ified because several Cp values are less than (p + 1), while the two-variable
model is clearly underspecified (Cp > 3). According to Mallow’s criterion, the
optimum subset model should contain three variables. Furthermore, for three
variables there is a relatively large difference in the Cp values between the best
and second-best model, indicating that the model using RUNS, TRIPLE, and
WLK should be most useful. The results for this model are shown in Table 6.12.

Table 6.12

Optimum Subset Model
for Baseball Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 2094.54032 698.18011 45.66 <.0001
Error 56 856.22818 15.28979
Corrected Total 59 2950.76850

Root MSE 3.91022 R-Square 0.7098
Dependent Mean 50.00500 Adj R-Sq 0.6943
Coeff Var 7.81965

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 42.30842 7.58098 5.58 <.0001 0
RUNS 1 0.04916 0.00791 6.22 <.0001 1.17315
TRIPLE 1 0.08850 0.04559 1.94 0.0573 1.07274
WLK 1 −0.05560 0.00818 −6.80 <.0001 1.09731
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The model statistics show that the R-square value has decreased only
slightly from that of the full model. However, the error mean square has been
reduced, which is confirmed by the virtual lack of change in the adjusted
R-square value. Looking at the coefficients, we see that in spite of the fact
that p-values should not be taken literally, the coefficients for RUNS and WLK
appear to be important and do have the expected sign. The coefficient for
TRIPLE, with a listed p-value of 0.0573, may not be very useful, but with the
lack of multicollinearity, little is lost by retaining that variable in the model.

Other Selection Methods
Recent developments in computer algorithms and increased speed of comput-
ers have made it possible to use the all-possible-models procedure for most
applications. However, in some applications an initial model may contain 100
or even 200 variables. Such large models arise, for example, in weather fore-
casting models, where it is desired to predict a weather variable at one weather
station using as predictors various weather variables at a previous time period
at a large number of other stations. In such situations, the all-possible-models
selection requires too much computer time.

When the all-possible-subset selection is not feasible, other less compu-
tationally demanding methods may be useful. The two most frequently used
methods are as follows:

Backward elimination: This method starts by considering the full model,
which includes all candidate variables. The single variable contributing
least to this model, as evidenced by the t or F statistics for testing each
partial coefficient, is deleted. The coefficients for the resulting (m− 1)
variable model are then examined, and the variable contributing least
is eliminated. The process is then repeated, and deletion is terminated
when all remaining variables are “significant” at some specified p-value.
Useful information may be obtained by continuing the process until
only one variable remains and by using the Cp plot to evaluate subset
sizes. Highly efficient matrix algorithms make this procedure very fast
for models with many variables. The important feature of this model is
that once a variable has been dropped, it can never reenter the model.

Forward selection: In this procedure we start with the “best” one-variable
model, which is that variable having the highest simple correlation with
the response variable. The second variable is picked that gives the max-
imum improvement in fit, which is revealed by the maximum of the par-
tial correlations of all independent variables with the response variable,
holding constant the already-chosen variable. Variables are added in the
same manner, one at a time, until no additions provide adequate reduc-
tion in the error mean square as evidenced by a stated p-value, or the
process can be continued until all variables are included and a Cp plot
used to evaluate subset sizes. This method is also computationally effi-
cient, and especially so if selection is discontinued when no additions are
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deemed “significant.” As in the backward elimination procedure, once
a variable is chosen, it can never be deleted from the model.

Other selection methods are indeed available. For example, the stepwise

procedure starts like forward selection but allows deletion of a single vari-
able at any stage before another variable is added. The success of this method
is highly dependent on the “p-values” for deciding on addition and elimina-
tion. Although this method has intuitive appeal, it usually does not provide
appreciably more nearly optimum models than are obtained by the backward
elimination and forward selection methods.

To save space, we will not present full results of these methods, but instead
compare the selection processes with the results of the all-possible-regressions
procedure for the baseball data.

• The backward elimination procedure does indeed select the optimum
model for models with eight down to two variables, but for the one-variable
model it selects the second-best model (Table 6.11) using RUNS, which has
a Cp value of 48.1, compared with the optimum model with BA, which has a
Cp value of 47.4. However, since a three-variable model appears to be most
suitable, this procedure will indeed select the “best” model.

• The forward selection procedure (obviously) selects the optimum one-
variable model. At this point the selection proceeds as follows:

Two variables: BA, WLK, the second-best model with Cp = 10.26,
compared with the optimum subset model Cp = 5.11.

Three variables: RUNS, TRIPLE, WLK, the second-best model with Cp =
5.30, compared with the optimum subset Cp = 3.38.

Four variables: RUNS, TRIPLE, BA, WLK, the fifth-best model with Cp =
4.94, compared with the optimum subset Cp = 3.55.

For five or more variables, the procedure selects the optimum subsets.

Looking at the Cp plot, the forward selection procedure would suggest
using its four-variable choice, which is actually the fifth best. The result-
ing model is shown in Table 6.13 as produced as a portion of the forward
selection option of the PROC REG procedure in the SAS System. We can

Table 6.13 Model Chosen by Forward Selection

Step 4 Variable TRIPLE Entered R-Square = 0.71212847 C(p) = 4.94187165

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 2101.32625 525.33156 34.01 <.0001
Error 55 849.44225 15.44440
Corrected Total 59 2950.76850

Root MSE 3.92994 R-Square 0.7121
Dependent Mean 50.00500 Adj R-Sq 0.6912
Coeff Var 7.85909

(Continued)
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Table 6.13 (Continued)

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 29.67133 20.53076 1.45 0.1541 0
RUNS 1 0.04125 0.01434 2.88 0.0057 3.81658
TRIPLE 1 0.07606 0.04952 1.54 0.1303 1.25274
BA 1 0.06887 0.10390 0.66 0.5102 4.49345
WLK 1 −0.05430 0.00845 −6.43 <.0001 1.15927

readily see that this model contains two variables that may not be consid-
ered useful.

6.6 Reliability of Variable Selection

We have already noted that the results of data-based variable selection proce-
dures are optimal only for the data set being used, and there are no statistics
that tell us about the reliability of the variable selection processes. We there-
fore use simulations to illustrate the nature of the variability of results of these
procedures. The simulations are based on Examples 5.1 and 5.2, which were
used to illustrate multicollinearity.

The model has been modified to be

y = 3.0x1 + 3.0x2 + 3.0x3 + 2.0x4 + 2.0x5 + 2.0x6 + 2.0x7 + ε,

where ε is the random error. Because the independent variables are all gener-
ated to have equal dispersion, the choice of coefficients provides a convenient
visual guide to the relative importance of the variables, with x1 to x3 being
more important, and the remainder somewhat less so. Because we will inves-
tigate how well the selection procedure chooses models with three variables,
this choice of coefficients dictates that choosing x1 to x3 is optimum, although
not overwhelmingly so.

Because selection effectiveness is influenced by multicollinearity and the
fit of the model, we will perform variable selections under two multicollinear-
ity scenarios:

1. No multicollinearity, as in Example 5.1
2. The correlation pattern of Example 5.2, with correlations among adjacent

variables being 0.9

For each multicollinearity scenario we will generate samples with full-model
R-square values of approximately 0.95, 0.75, and 0.50, respectively.

The optimum three-variable model is selected from each of the samples
from the six multicollinearity patterns and R-square combinations. Table 6.14
shows how many times (or percent, since there are 100 samples) each variable
occurs among the three picked for the selected model; the last line shows how
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many times the selected model contains the three most important variables,
x1, x2, and x3.

Table 6.14

Simulation of Variable
Selection

Variable No multicollinearity With multicollinearity

Selected R2 = 0.95 R2 = 0.75 R2 = 0.5 R2 = 0.95 R2 = 0.75 R2 = 0.5

x1 77 68 58 39 43 40
x2 80 72 62 48 48 54
x3 77 66 57 51 48 46
x4 22 28 38 41 38 40
x5 15 20 28 36 32 35
x6 19 27 31 42 44 42
x7 10 19 26 43 47 43

x1, x2, x3 43 23 10 1 5 5

No multicollinearity: We would expect that the procedure will pick the
three more important variables with greater frequency. This is indeed
true, but the number of times one or more “wrong” variables are
selected is not trivial and increases with decreasing R2. Also, the cor-
rect selection occurs less than 50% of the time, even when the model
R2 is 0.95.

With multicollinearity: As expected, the results are not very encouraging.
There is almost no tendency to pick the more important variables, but
the results do not appear to get worse as R2 gets smaller. Note also that
in only 11 cases in 300 does the procedure pick the three most important
variables.

These results are not encouraging. Admittedly, the first three variables are
not much more important than the last four, and if we had included one or
more very large coefficients, the results would have been “better.”

Cross Validation
Even though there are no reliable statistics for evaluating the validity of a
variable selection, some tools exist that may be used to provide information
on the usefulness of the selected model. Generally, these methods involve
data splitting, where the data are divided into two parts. One set is used
for the variable selection process, and the results of that selection are eval-
uated on the second set. In other words, this type of analysis shows how
well a variable selection based on one set of data performs when applied
to another equivalent set of data. Most frequently the data are divided in
some random fashion, but other divisions may be appropriate. Of course,
this procedure depends on having sufficient observations so that each por-
tion is large enough to provide reasonably definitive results. We illustrate
this method with the baseball data.

EXAMPLE 6.4 REVISITED Data Splitting The baseball data naturally divide into two
portions: the East and West leagues. One may argue that although the two
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leagues are different, the rules are the same; hence, the division should not be
of major concern. In this example, we will actually perform the selection for
each league and see how well it works on the data for the other.

Table 6.15 shows the optimum selection for each subset size for the data from
each league. It can be seen that for the East league the clear choice is the
three-variable model using RUNS, DP, WLK, whereas for the West league the
choice is the three-variable model using DOUBLE, ERROR, WLK. Both are
three-variable models, and both use WLK, but there the similarity ends. Not
only are the other two variable choices different, but we also see that for other
subset sizes the choices are quite different. Also, the R-square values for the
East league are considerably higher than those for the West league.

Table 6.15 Variable Selections for East and West Leagues

East League

N = 30 Regression Models for Dependent Variable: PER

Number in

Model R-square C(p) Variables in Model

1 0.73714983 27.23227 RUNS
2 0.85715486 4.92892 RUNS DP
3 0.87777124 2.75370 RUNS DP WLK
4 0.88253161 3.78963 RUNS HR DP WLK
5 0.88940145 4.39836 RUNS TRIPLE HR DP WLK
6 0.89622276 5.01691 RUNS TRIPLE HR ERROR DP WLK
7 0.90067754 6.11473 RUNS DOUBLE TRIPLE HR ERROR DP WLK
8 0.90101293 8.04680 RUNS DOUBLE TRIPLE HR BA ERROR DP WLK
9 0.90124404 10.00000 RUNS DOUBLE TRIPLE HR BA ERROR DP WLK SO

West League

Number in

Model R-square C(p) Variables in Model

1 0.46493698 25.91413 ERROR
2 0.69526415 5.56679 BA WLK
3 0.73992927 3.23319 DOUBLE ERROR WLK
4 0.75755861 3.52271 DOUBLE BA ERROR WLK
5 0.78443458 2.91509 DOUBLE ERROR DP WLK SO
6 0.78624470 4.73946 DOUBLE HR ERROR DP WLK SO
7 0.78989459 6.38534 DOUBLE HR BA ERROR DP WLK SO
8 0.79328633 8.05625 RUNS DOUBLE TRIPLE HR ERROR DP WLK SO
9 0.79386613 10.00000 RUNS DOUBLE TRIPLE HR BA ERROR DP WLK SO

One way of comparing selections is to use the coefficients of the selected mod-
els to predict the responses and compute the resulting error sums of squares.
For observations in the East league, the chosen model gives coefficients and
p-values (given below the coefficients):

PÊR = 21.318 + 0.0868 ∗RUNS − 0.1164 ∗DP − 0.0249 ∗WLK,

(0.0001) (0.0053) (0.0461)
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with a residual standard deviation of 2.816. The model chosen for the West
league data gives coefficients and p-values:

PÊR = 73.992 + 0.0713 ∗DOUBLE − 0.1131 ∗ERROR − 0.0445 ∗WLK,

(0.0123) (0.0010) (0.0002)

with a residual standard deviation of 3.556.

We now use each of these equations to predict values, that is, μ̂y|x, for both
leagues, and compute the error sum of squares, Σ(y − μ̂y|x)2, for the data for
each league. The results are as follows:

Using data from

East West

Using model estimated from East 206.11 1272.01
West 1132.48 328.75

Obviously, the models selected from data of one league do not provide a good
model for estimating winning percentages for the other.

Another way of comparing the selections is to see how the selected variables
from one set work with the data from the other set. Using the selected model
variables based on the West league data on the data from the East league,
we have

PÊREast = 64.530 + 0.1240 ∗DOUBLE + 0.032 ∗ERROR − 0.0990 ∗WLK,

(0.0038) (0.4455) (0.0001)

with a residual standard deviation of 4.751. Using the East league selection on
the West league data,

PÊRWest = 51.029 + 0.041 ∗RUNS + 0.019 ∗DP − 0.058 ∗WLK,

(0.0001) (0.750) (0.0001)

with residual standard deviations of 4.394. The equations are obviously quite
different and the fit much poorer. It is of interest to note that the East league
choice provides the third-best and the West league choice the 13th-best model
for the entire data set.

One might argue that better results would be obtained by a splitting at ran-
dom rather than by league, but this is not necessarily the case, as we will see.

Resampling
Current research in statistics is focusing on the use of computers to develop
new procedures to aid in obtaining sampling distributions of results of sta-
tistical analyses. One such method employs repeated sampling of the data,



254 Chapter 6 Problems with the Model

obtaining various estimates or other results, and using these results to
generate empirical sampling distributions. We will employ a simple resam-
pling procedure here to investigate the behavior of variable selection for the
baseball data.

To select a random sample from the data set, we generate for each obser-
vation a random number from the uniform distribution with range from 0 to 1.
If the random number is less than some specified value, say, r, the observation
is sampled; otherwise, it is not. If r = 0.5, the total sample will contain, on
the average, half of the observations. There are conflicting consequences in
choosing r: If it is small, the sample sizes may be inadequate, whereas if r is
too large, the samples will be too similar.

We generate 100 samples from Example 6.4 using r = 0.7, and subject each
sample to the all-possible-combinations procedure for subset sizes from 1 to 5.
For each subset size, we count how many times each variable is selected, and
since there are 100 samples, this is also the percentage of models containing
each variable. The last line in the table is the mean of the Cp values for the
selections. The results are shown in Table 6.16.

Table 6.16

Variable Selections for
Repeated Samples

Variables in Model

One Two Three Four Five

Variable Number of Times Variable Selected

RUNS 36 77 77 74 61
DOUBLE 0 0 3 17 46
TRIPLE 0 0 51 69 80
HR 0 0 6 22 42
BA 36 23 27 44 69
ERROR 0 2 9 27 37
DP 0 2 20 41 52
WLK 28 100 100 100 100
SO 0 0 7 6 13

Mean Cp 30.6 5.02 2.34 3.34 3.69

Looking first at the average Cp values, we see that the optimum subset
size is indeed 3. In most samples the number of walks, triples, and runs are
chosen, but batting averages and double plays are used quite often. The picture
becomes muddier as more variables are chosen; the only consistent choices
are to include walks and exclude strikeouts. It appears that multicollinearity
is doing more harm than we thought.

The results do suggest that we should choose models with RUNS, WLK,
and either BA or TRIPLE, which are indeed the two best three-variable mod-
els selected, as seen in Table 6.11. Abbreviated outputs for these models are
shown in Table 6.17.

In terms of overall fit, there is not much difference, but the model with
TRIPLE has less multicollinearity; hence, the p-values for coefficients are
smaller, although, as we have noted, these statistics should not be taken too
seriously.
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Table 6.17 Best Three-Variable Models

Model with RUNS, BA, WLK

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 2064.88459 688.29486 43.51 <.0001
Error 56 885.88391 15.81936
Corrected Total 59 2950.76850

Root MSE 3.97736 R-Square 0.6998
Dependent Mean 50.00500 Adj R-Sq 0.6837
Coeff Var 7.95392

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 19.23582 19.60796 0.98 0.3308 0
RUNS 1 0.03719 0.01426 2.61 0.0116 3.68700
BA 1 0.12937 0.09731 1.33 0.1891 3.84782
WLK 1 −0.05283 0.00850 −6.22 <.0001 1.14446

Model with RUNS, TRIPLE, WLK

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 2094.54032 698.18011 45.66 <.0001
Error 56 856.22818 15.28979
Corrected Total 59 2950.76850

Root MSE 3.91022 R-Square 0.7098
Dependent Mean 50.00500 Adj R-Sq 0.6943
Coeff Var 7.81965

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 42.30842 7.58098 5.58 <.0001 0
RUNS 1 0.04916 0.00791 6.22 <.0001 1.17315
TRIPLE 1 0.08850 0.04559 1.94 0.0573 1.07274
WLK 1 −0.05560 0.00818 −6.80 <.0001 1.09731
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6.7 Usefulness of Variable Selection

We have noted that the usefulness of variable selection depends on the pur-
pose of the statistical analysis. That is, if the primary purpose of the analysis
is to provide for the estimation of values of the response variable, then vari-
able selection may be appropriate, whereas if the purpose is to determine the
structure of the relationship of the response variable and the independent vari-
ables, variable selection may not be useful as the primary analytic tool. We will
illustrate this principle with the NBA data originally presented as Example 5.4
(data in Table 5.8).

EXAMPLE 6.5 EXAMPLE 5.4, REVISITED Variable selection using the originally obser-
ved variables is performed by the all-possible-subsets procedure with results
shown in the top portion of Table 6.18. The results are quite obvious: The four-
variable model using FGM, FTM, FGAL, and FTAL is clearly optimum. The
final equation is shown in the bottom portion of Table 6.18.

Table 6.18 Variable Selection and Optimum Subset Model for NBA Data

NBA STATISTICS

N = 66 Regression Models for Dependent Variable: WINS

Number in

Model R-square C(p) Variables in Model

1 0.16754535 248.21833 FGM
1 0.14862208 255.27018 DRA
2 0.29474832 202.81552 FGM OFGAL
2 0.28878493 205.03781 DR DRA
3 0.52468768 119.12748 FGM OFGAL OFTAL
3 0.50302502 127.20018 FGM OFGAL OFTAT
4 0.83142420 6.82060 FGM FTM OFGAL OFTAL
4 0.82511898 9.17027 FGM FTM OFGAL OFTAT
5 0.83874450 6.09266 FGM FTAT FTM OFGAL OFTAL
5 0.83752115 6.54854 FGM FTM OFGAL OFTAL OR
6 0.84430335 6.02113 FGM FTM OFGAT OFGAL OFTAL DRA
6 0.84179912 6.95434 FGM FTAT FTM OFGAL OFTAL DRA
7 0.84992103 5.92767 FGM FTAT FTM OFGAT OFGAL OFTAL DRA
7 0.84816601 6.58169 FGAT FGM FTM OFGAT OFGAL OFTAL OR
8 0.85203476 7.13998 FGAT FGM FTM OFGAT OFGAL OFTAL OR ORA
8 0.85123320 7.43868 FGM FTAT FTM OFGAT OFGAL OFTAL DRA ORA
9 0.85470683 8.14422 FGAT FGM FTM OFGAT OFGAL OFTAL DR OR ORA
9 0.85290669 8.81505 FGAT FGM FTM OFGAT OFGAL OFTAT OFTAL OR ORA

10 0.85686915 9.33842 FGAT FGM FTM OFGAT OFGAL OFTAT OFTAL DR OR ORA
10 0.85538290 9.89228 FGAT FGM FTM OFGAT OFGAL OFTAL DR DRA OR ORA
11 0.85746389 11.11678 FGAT FGM FTM OFGAT OFGAL OFTAT OFTAL DR DRA OR ORA
11 0.85688545 11.33234 FGAT FGM FTAT FTM OFGAT OFGAL OFTAT OFTAL DR OR ORA
12 0.85777728 13.00000 FGAT FGM FTAT FTM OFGAT OFGAL OFTAT OFTAL DR DRA OR ORA

(Continued)
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Table 6.18 (Continued)

Selected Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 3846.16835 961.54209 75.214 0.0001
Error 61 779.83165 12.78413
Corrected Total 65 4626.00000

Root MSE 3.57549 R-square 0.8314
Dependent Mean 41.00000 Adj R-sq 0.8204
Coeff Var 8.72071

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Pr > |t|

INTERCEPT 1 45.881271 13.94537817 3.290 0.0017
FGM 1 0.058313 0.00379236 15.377 0.0001
FTM 1 0.031047 0.00294690 10.535 0.0001
OFGAL 1 −0.059212 0.00423221 −13.991 0.0001
OFTAL 1 −0.031998 0.00279179 −11.461 0.0001

The results indicate that wins are a function of field goals and free throws
made by the team and allowed by the other team. The coefficients show
almost identical effects for goals made and allowed, with higher coefficients
for field goals and with expected opposite signs for those made and those
allowed.

Now this model is indeed quite “good,” but it is extremely uninteresting. After
all, scores are an exact function of goals made, and it should not take a sophis-
ticated statistical analysis to discover this well-known fact. In other words, the
model can be effectively used to estimate the number of wins for a team, but
does not tell us anything about what various team performance statistics may
be contributing to the number of wins.

In Section 5.4 we showed how we could reduce the multicollinearity in this
example by redefining variables into attempts and percentage of attempts
made. In that model we saw, for example, that for field goals, the success
percentages were important, whereas for free throws the number of attempts
was important. Because there are a number of nonsignificant variables in that
model, a variable selection may now be used to obtain a clearer picture of the
effects of these variables. The results of this selection are shown in the top
portion of Table 6.19.
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Table 6.19 Variable Selection and Selected Model Using Derived Variables

Number in

Model R-square C(p) Variables in Model

1 0.23430809 215.65761 FGPC
1 0.14862208 246.72934 DRA
2 0.55019583 103.10940 FGPC OFGPC
2 0.40911445 154.26877 OFGPC DRA
3 0.65561600 66.88161 FGPC OFGPC OR
3 0.59963741 87.18074 FGPC FTAT OFGPC
4 0.70670198 50.35665 FGPC OFGPC OR ORA
4 0.67444183 62.05493 FGPC OFGAT OFGPC OR
5 0.73167424 43.30113 FGPC FTAT OFGPC OR ORA
5 0.73123141 43.46171 FGPC OFGPC OFTPC OR ORA
6 0.82167231 12.66575 FGAT FGPC FTAT OFGAT OFGPC OFTAT
6 0.74676576 39.82860 FGPC FTAT OFGPC OFTPC OR ORA
7 0.83328370 10.45519 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT
7 0.82834987 12.24431 FGAT FGPC FTAT OFGAT OFGPC OFTAT OFTPC
8 0.83882391 10.44618 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT DRA
8 0.83881947 10.44779 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC
9 0.84817827 9.05407 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC DRA
9 0.84600978 9.84042 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC OR

10 0.85064271 10.16041 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC OR ORA
10 0.84961420 10.53337 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC DRA ORA
11 0.85344503 11.14422 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC DR OR ORA
11 0.85114245 11.97919 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC DRA OR ORA
12 0.85384275 13.00000 FGAT FGPC FTAT FTPC OFGAT OFGPC OFTAT OFTPC DR DRA OR ORA

Selected Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 9 3923.67267 435.96363 34.762 0.0001
Error 56 702.32733 12.54156
Corrected Total 65 4626.00000

Root MSE 3.54141 R-square 0.8482
Dependent Mean 41.00000 Adj R-sq 0.8238
Coeff Var 8.63758

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Pr > |t|

INTERCEP 1 124.737567 57.12689848 2.184 0.0332
FGAT 1 0.026205 0.00336783 7.781 0.0001
FGPC 1 3.954196 0.42716042 9.257 0.0001
FTAT 1 0.020938 0.00277240 7.552 0.0001
FTPC 1 0.378898 0.19783733 1.915 0.0606
OFGAT 1 −0.024017 0.00299845 −8.010 0.0001
OFGPC 1 −4.696650 0.37789280 −12.429 0.0001
OFTAT 1 −0.020164 0.00289705 −6.960 0.0001
OFTPC 1 −0.923071 0.49693658 −1.858 0.0685
DRA 1 −0.010064 0.00541687 −1.858 0.0684
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The results are quite different: instead of a model with only four variables, the
optimum model appears to require nine. The results of using that model are
shown in the bottom portion of Table 6.19. We can see that this model contains
all goal variables and defensive rebounds allowed. The very small p-values for
all the variables but opponents’ free-throw percentage and defensive rebounds
and their “correct” signs suggest that these are indeed important. Also, as in
the full model, the percentages, especially for field goals, are more important
than the number of attempts. In other words, teams may profit by focusing on
accuracy of field goal attempts—which may very well be obvious, but it is nice
to know that a statistical analysis agrees.

6.8 Variable Selection and Influential Observations

We noted in Chapter 4 that outliers and influential observations can affect the
degree of multicollinearity as well as the estimates and standard errors of coef-
ficients. Thus, we can expect that the existence of such observations could
affect the results of a variable selection. We illustrate with the data on average
lifespan used in Example 4.3.

EXAMPLE 6.8 EXAMPLE 4.3 REVISITED The original model contained six variables, of
which only one had a p-value exceeding 0.05. The variable selection, shown
in the first portion of Table 6.20, confirms this by pointing to the five-variable
model as being optimum. The estimates for this five-variable model are shown
in the bottom of Table 6.20. The estimated coefficients and their standard error
have not changed much in the selected model.

Table 6.20 Variable Selection for Life Expectancy Data

Variable Selection

Number in

Model R-square C(p) Variables in Model

1 0.09657506 27.78862 BIRTH
1 0.06944192 30.03479 BEDS
2 0.25326742 16.81708 MALE BIRTH
2 0.23287541 18.50520 BIRTH BEDS
3 0.31881552 13.39079 MALE BIRTH BEDS
3 0.30324604 14.67968 BIRTH BEDS EDUC
4 0.40110986 8.57818 MALE BIRTH DIVO BEDS
4 0.38238339 10.12842 BIRTH DIVO BEDS EDUC
5 0.46103802 5.61712 MALE BIRTH DIVO BEDS EDUC
5 0.41352849 9.55012 MALE BIRTH DIVO BEDS INCO
6 0.46849267 7.00000 MALE BIRTH DIVO BEDS EDUC INCO

(Continued)
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Table 6.20 (Continued)

Selected Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 52.74146 10.54829 7.699 0.0001
Error 45 61.65574 1.37013
Corrected Total 50 114.39720

Root MSE 1.17052 R-square 0.4610
Dependent Mean 70.78804 Adj R-sq 0.4012
Coeff Var 1.65356

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Pr > |t|

INTERCEP 1 70.158910 4.24143214 16.541 0.0001
MALE 1 0.115416 0.04503775 2.563 0.0138
BIRTH 1 −0.468656 0.10013612 −4.680 0.0001
DIVO 1 −0.207270 0.07237049 −2.864 0.0063
BEDS 1 −0.003465 0.00096213 −3.602 0.0008
EDUC 1 0.175312 0.07837350 2.237 0.0303

In Chapter 4 we noted that the District of Columbia was an influential out-
lier, largely because this “state” is atypical in many respects and especially so
because of the large number of hospital beds that exist in federal institutions.
It may therefore be argued that an analysis omitting this observation may be
useful. To illustrate the effect of omitting this influential outlier, we perform a
variable selection on the data, omitting the District of Columbia. The results
of the variable selection are shown in the top portion of Table 6.21. It now
appears that we only need four variables in the model and that the model does

Table 6.21 Variable Selection Omitting the District of Columbia

Variable Selection

Number in

Model R-square C(p) Variables in Model

1 0.11477202 14.21836 EDUC
1 0.09263914 15.72397 BIRTH
2 0.26745938 5.83168 BIRTH EDUC
2 0.18095644 11.71611 DIVO EDUC
3 0.29862181 5.71183 BIRTH DIVO EDUC
3 0.28962796 6.32364 MALE BIRTH EDUC
4 0.33608169 5.16359 MALE BIRTH DIVO EDUC
4 0.32129451 6.16950 MALE BIRTH EDUC INCO
5 0.35839370 5.64580 MALE BIRTH DIVO EDUC INCO
5 0.35175187 6.09761 MALE BIRTH DIVO BEDS EDUC
6 0.36788711 7.00000 MALE BIRTH DIVO BEDS EDUC INCO

(Continued)
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Table 6.21 (Continued)

Selected Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 29.60711 7.40178 5.695 0.0009
Error 45 58.48788 1.29973
Corrected Total 49 88.09499

Root MSE 1.14006 R-square 0.3361
Dependent Mean 70.88960 Adj R-sq 0.2771
Coeff Var 1.60822

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Pr > |t|

INTERCEP 1 67.574126 3.77578704 17.897 0.0001
MALE 1 0.075467 0.04736153 1.593 0.1181
BIRTH 1 −0.319672 0.09864082 −3.241 0.0022
DIVO 1 −0.119141 0.06714336 −1.774 0.0828
EDUC 1 0.236254 0.08199487 2.881 0.0060

not include BEDS, whose coefficient had the second smallest p-value in the
model using all observations. In fact, BEDS is the first variable to be deleted.
The estimates for that model are shown in the bottom portion of Table 6.21.

The coefficients retain their original signs, but now education and birth rates are
the dominant coefficients while the percentage of males and the divorce rates
appear to contribute very little. This model does appear to be more useful.

Comments
The interplay between outliers or influential observations and multicollinear-
ity and variable selection poses an obvious question: Which problem do we
tackle first? As is true with virtually any exploratory analysis, there is no intrin-
sically correct procedure. It can be argued that one should investigate outliers
and influential observations first, and then analyze for multicollinearity and
also possibly perform variable selection. But it may not be wise to do this with
outliers and/or influential observations deleted, unless there are good reasons
to do so, as in the previous example.

As we have noted, one tool that has been found useful in this connection is
the PRESS sum of squares; that is, Σ(yi − μ̂y|x−i)

2. Remember that the differ-
ence between that statistic and the error sum of squares is an indicator of the
effect of influential outliers. Now if there are several competing models from a
variable selection, one can see which are more affected by such observations.

In Example 6.8 (life expectancy data), the selected five-variable model that
was obtained with the use of DC, the PRESS statistic, is 126.02 and the error
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mean square is 61.66, whereas for the optimum four-variable model obtained
when DC is deleted, the PRESS statistic is 104.36 and the error mean square is
58.48. Thus, in both models the PRESS statistic is about twice the error sum of
squares, and it seems that deleting DC has not materially reduced the effects of
influential outliers. Actually, a PRESS statistic that is only twice the error mean
squareusuallydoesnotindicateaveryseriousoutlierproblem;hence,theremay
not be much outlier effect to cure, although deleting DC did produce a different
model. Also, it should be added that the R-squares for all of these models are
quite low; hence, we do not really have a very good model in any case.

6.9 Summary

Not many years ago, before computers expanded the horizons of statistical
data analysis, the emphasis in discussions of variable selection was on the
mechanics; that is, how close to an optimum model can we get with available
computer resources? Now that this problem has become essentially irrelevant
for all but very large models, we can concentrate our efforts on more mean-
ingful topics. Of particular interest are the following questions:

1. Under what circumstance is variable selection a useful procedure?
2. How reliable are the results of variable selection; that is, how good is the

selected model for the population?
3. How is variable selection affected by outliers and influential observations?
4. Finally, we know that the p-values obtained by variable selection are not

valid. How can we evaluate the effectiveness of the coefficients of a selected
model?

For these reasons we have only briefly covered the mechanics of vari-
able selection, especially since they are easily implemented by most statis-
tical software packages. Instead, we have spent more effort in addressing the
foregoing concerns. Unfortunately, as is the case for most statistical methods
employed in exploratory analyses, there are no unique and correct procedures
and answers. We can only hope that this chapter will cause those who employ
these methods to do so carefully, bearing in mind that any results must be
carefully evaluated.

6.10 CHAPTER EXERCISES

Several of these exercises use data from exercises in Chapter 5, where vari-
able selection was not an option. For this chapter, perform variable selection
and compare results with those obtained in Chapter 5. In some cases, vari-
able selection using derived variables may be useful. We should note that
because principal components are uncorrelated, variable selection for prin-
cipal component regression will indeed proceed according to the t statistics
of the coefficients. Outlier detection and other diagnostics may also be useful
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for some of these. As a final exercise, suggest the most appropriate model
and detail its usefulness.

1. The gas mileage data for a selection of cars (Chapter 5, Exercise 2) pro-
vide a compact data set with reasonably few variables. The data are in File
REG05P02. The obvious multicollinearity is that bigger cars have more of
everything.

2. The pork-belly data (Chapter 5, Exercise 3, File REG05P03) is an interest-
ing example even if the interpretation of variables is somewhat obscure.
Because the focus is on estimation, variable selection may be more
useful here.

3. The purpose of collecting the evaporation data (Chapter 5, Exercise 4, File
REG05P04) was to determine what factors influence evaporation of water
from soil. Therefore, variable selection is not normally recommended. How-
ever, because of the extreme multicollinearity, it may be useful to elimi-
nate some redundant variables. After eliminating some variables, a study
of structure may still be useful.

4. The purpose of Exercise 5 of Chapter 5 (File REG05P05) was to determine
factors associated with crime; hence, variable selection may not be use-
ful. Furthermore, remedies for the multicollinearity may have produced a
better model. Nevertheless, variable selection, either on the original or the
modified model, may help to clarify the relationships.

5. In Exercise 5 of Chapter 3 the overall CPI was related to some of its com-
ponents using data for the years 1960 through 1994. Using this data and a
variable selection procedure, determine the best model to predict the ALL
variable. What condition might affect the results of this analysis?

6. These data from Draper and Smith (1998, p. 374) provide an excellent exer-
cise for comparing several approaches for the analysis of a very small data
set. A parcel packing crew consists of five workers identified by numbers 1
through 5, plus a foreman who works at all times. For each day we record:

Xj = 1 if worker j is on duty, and 0 otherwise

Y = number of parcels dispatched

The data are shown in Table 6.22 and are available in File REG06P06.

Table 6.22

Packing Data

X1 X2 X3 X4 X5 Y

1 1 1 0 1 246
1 0 1 0 1 252
1 1 1 0 1 253
0 1 1 1 0 164
1 1 0 0 1 203
0 1 1 1 0 173
1 1 0 0 1 210

(Continued)
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Table 6.22

(Continued)

X1 X2 X3 X4 X5 Y

1 0 1 0 1 247
0 1 0 1 0 120
0 1 1 1 0 171
0 1 1 1 0 167
0 0 1 1 0 172
1 1 1 0 1 247
1 1 1 0 1 252
1 0 1 0 1 248
0 1 1 1 0 169
0 1 0 0 0 104
0 1 1 1 0 166
0 1 1 1 0 168
0 1 1 0 0 148

(a) State some purposes for collecting and analyzing this data set.
(b) Perform regression of Y on X1 − X5. The computer output may have

some unexpected results. Explain the reasons for this.
(c) Perform a regression of Y on X1, X2, X3, and X4. Why do we not use

X5? Interpret results. Is the intercept of any value? Be careful in any
interpretations.

(d) Create a new variable NUMBER = X1 +X2 +X3 +X4 +X5, and per-
form the regression of Y on NUMBER. Make a formal (hypothesis test)
comparison of the results with those of part (c). What do the results
suggest?

(e) Would variable selection be useful here? Explain your answer.

7. Myers (1990) uses an example (Example 5.2) that attempts to estimate the
manpower needs for operating Bachelor Officers Quarters (BOQ) for the
U.S. Navy. Data for 25 such installations are given in Table 6.23 and are
available in File REG06P07.
The variables are

OCCUP: Average daily occupancy
CHECKIN: Monthly average number of check-ins
HOURS: Weekly hours of service desk operation
COMMON: Square feet of common-use area
WINGS: Number of building wings
CAP: Operational berthing capacity
ROOMS: Number of rooms

and the response variable,

MANH: Monthly man-hours required to operate

(a) Perform the regression to estimate MANH.
(b) Perform variable selection. Is the resulting model useful?
(c) The existence of multicollinearity is obvious. Determine its nature and

try to remedy it. You may want to use more than one method. If suitable,
perform variable selection on an alternative set of variables.
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(d) After all of this, there is an outlier. Identify it and suggest additional
analyses.

Table 6.23 BOQ Data

OCCUP CHECKIN HOURS COMMON WINGS CAP ROOMS MANH

2.00 4.00 4.0 1.26 1 6 6 180.23
3.00 1.58 40.0 1.25 1 5 5 182.61

16.60 23.78 40.0 1.00 1 13 13 164.38
7.00 2.37 168.0 1.00 1 7 8 284.55
5.30 1.67 42.5 7.79 3 25 25 199.92

16.50 8.25 168.0 1.12 2 19 19 267.38
25.89 3.00 40.0 0.00 3 36 36 999.09
44.42 159.75 168.0 0.60 18 48 48 1103.24
39.63 50.86 40.0 27.37 10 77 77 944.21
31.92 40.08 168.0 5.52 6 47 47 931.84
97.33 255.08 168.0 19.00 6 165 130 2268.06
56.63 373.42 168.0 6.03 4 36 37 1489.50
96.67 206.67 168.0 17.86 14 120 120 1891.70
54.58 207.08 168.0 7.77 6 66 66 1387.82

113.88 981.00 168.0 24.48 6 166 179 3559.92
149.58 233.83 168.0 31.07 14 185 202 3115.29
134.32 145.82 168.0 25.99 12 192 192 2227.76
188.74 937.00 168.0 45.44 26 237 237 4804.24
110.24 410.00 168.0 20.05 12 115 115 2628.32
96.83 677.33 168.0 20.31 10 302 210 1880.84

102.33 288.83 168.0 21.01 14 131 131 3036.63
274.92 695.25 168.0 46.63 58 363 363 5539.98
811.08 714.33 168.0 22.76 17 242 242 3534.49
384.50 1473.66 168.0 7.36 24 540 453 8266.77
95.00 368.00 168.0 30.26 9 292 196 1845.89

8. The 2000 presidential election between Al Gore and George Bush raised
many questions about the voting patterns in the state of Florida. The data set
REG06P08 contains the county-by-county results of this election, along with
demographic statistics for each county. The variables in the data set are:

County = the name of the county
Bush = Total votes for Bush
Gore = Total votes for Gore
pop = Population, 2000
White = Percent of white persons, 2000
Over 65 = Percent of persons 65 years old and over, 2000
Females = Percent of female persons, 2000
Hispanic = Percent of persons of Hispanic or Latino origin, 2000
Black = Percent of black or African American persons, 2000
HS = Percent of high school graduates age 25+, 2000
BS = Percent of bachelor’s degree or higher persons age 25+, 2000
Home = Home ownership rate, 2000
income = Median household income, 1999
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(a) Based on these data, use all variables in a model to estimate the proportion
of votes for Bush (or Gore). Identify one important source of multi-
collinearity and adjust the model to remedy that source.

(b) Use variable selection to determine the most useful model and interpret
the final results. Are they reasonable?

(c) Check for outlier(s).



Part III

Additional Uses of
Regression

The final section of this book presents additional applications of the regres-
sion model. The primary emphasis is on models that do not describe a
straight-line relationship of the response to the independent or factor vari-
ables. In this part we must distinguish between linear models that are linear
in the parameters but may describe relationships that are not described by
straight lines and nonlinear models that are not linear in the parameters.
Also included is the use of models where the response variable is not a
continuous variable. Finally, use of the generalized linear model will be
introduced to provide a unified methodology to handle models that do not
satisfy the assumptions of normality and constant variance.

Chapter 7 presents polynomial models as well as methods that do not use
parametric models for fitting curved responses. Polynomial models include
one or more independent variables as well as segmented polynomials. Curve
fitting without parametric models include the moving averages method and
the loess method. Visual presentations of results are important aspects in both
methods of curve fitting and are aided by interactive software.

Chapter 8 deals with intrinsically linear models, which are nonlinear mod-
els that can be linearized through transformations, as well as with intrinsically
nonlinear models for which different methodology must be used. Examples of
nonlinear models include exponential decay and growth models and the logis-
tic growth model.

Chapter 9 presents the general linear model that is used to show the
equivalence of regression, which normally relates the response to continu-
ous factor variables, and the analysis of variance, which relates the response
to categorical factors. Being able to pose an analysis of variance as a regres-
sion is essential when dealing with unbalanced data in a factorial data

267
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structure. This methodology is also required when a model must contain
both quantitative and qualitative factors.

Chapter 10 introduces the special case when the response variable is cate-
gorical. Standard linear models methodology may be adapted for the situation
where the response is binary, but special methodology is required when the
response has more than two categories.

Chapter 11 introduces the generalized linear model approach, a procedure
that provides a common methodology for both linear and nonlinear models.
This methodology works for a wide variety of problems whose underlying
probability distribution is not normal and/or does not have constant variance.



Chapter 7

Curve Fitting

7.1 Introduction

Up to now, the regression models discussed have all been linear with resulting
graphs either straight lines or planes. Obviously, not all physical phenomena
can be modeled with a straight line. Therefore, it is important to be able to
use models that are graphically described with curved lines. For example, if
we were modeling the sales of ice cream using the month of the year as an
independent variable (labeled 1 through 12), we would notice a distinct rise in
sales through the first half of the year, say up until August, and then a decrease
in sales toward December. The scatter plot of the data would indicate that a
straight line would furnish a very poor fit. When faced with this type of data
we have two choices for the analysis. First, we could try to model the relation-
ship exactly, probably using a theoretical model, and attempt to use complex
mathematics to solve for the parameter estimates. Hopefully, this would yield
estimates that have a physical interpretation. We discuss such procedures in
Chapter 8. The second approach would be to graphically fit a curve to the data,
without having a specific physically meaningful model result from the analy-
sis. This chapter discusses this methodology, known as curve fitting.

Curve fitting, also called smoothing, is a statistical procedure whose pur-
pose is to define a relatively smooth curve or surface that describes the behav-
ior of the response variable usually without any reference to a meaningful
model. The most frequent application of curve fitting is for time series data
(discussed in Section 4.5), but there are many other applications. Curve-fitting
methods are also used to fit responses involving several factors.

The most obvious way to fit a curve to a scatter plot with one independent
variable would be to simply draw a freehand line that looks like it best fits the
scatter diagram, a method that has been used for centuries and even today

269



270 Chapter 7 Curve Fitting

is done frequently. In fact, there are drawing aids, such as a “French Curve,”
that can be used to aid in this effort. However, statistical procedures using
regression methods can be used to provide a more objective approach, espe-
cially as such methods also provide descriptive and inferential methods to
assess the appropriateness of the curve.

A very popular and easily implemented method for curve fitting is the use
of a polynomial model, which is readily handled by ordinary linear regression
methods. The ice cream example is one in which a quadratic polynomial would
likely provide an excellent estimate to the true relationship between sales and
month of the year. Polynomial regression is readily expanded to problems
with several independent variables. Various polynomial models are covered in
Sections 7.2 through 7.4.

As we will see, polynomial models are somewhat restricted in the types
of curves that they can fit. Recent advances in computer power have allowed
statisticians to develop sophisticated computer-intensive methods that mimic
freehand drawing, and yet retain objectivity and allow the computation of
meaningful descriptive and inferential statistics. We present several of these
methods in Section 7.5.

7.2 Polynomial Models with One Independent Variable

A polynomial model with one independent variable, x, is written

y = β0 + β1x+ β2x
2 + β3x

3 + · · · + βmxm + ε,

where

y is the response variable
x is the independent variable
βi, i = 0, 1, 2, . . . , m, are the coefficients for the ith power of x
ε is the random error, defined as usual

The model as written is called an mth-order polynomial,1 and m may take any
value, although values less than 3 or 4 are most commonly used in practice.

Reasons for the popularity of the polynomial model are as follows:

• It is easy to implement because it can be performed as a linear regression.
• According to various series expansions, any continuous function can be

approximated over a limited range by a polynomial function.

Another reason why the polynomial model is popular is that it allows
for a sequential fitting of increasingly complex curves. Figure 7.1 shows the
basic shapes of the linear, quadratic, cubic, and fourth-order (often called
quartic) polynomial curves. As we can see, the linear function is a straight
line, the quadratic is a parabola with one “hump,” the cubic has two humps

1Polynomial models as used in this chapter are restricted to having integer-valued exponents.
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and one inflection point, and the quartic has three humps and two inflection
points. Adding more terms simply increases the number of humps and inflec-
tion points.

Figure 7.1 Polynomial Shapes

The actual shape of a polynomial response curve depends on the relative
magnitudes of the coefficients of the various polynomial terms. For example,
a hump may look more like a shoulder; however, there will still be the correct
number of inflection points, although in some cases, some humps and inflec-
tion points are outside the range of the data.

The polynomial model is easy to implement. Simply define wi as xi and
specify the model

y = β0 + β1w1 + β2w2 + β3w3 + · · · + βmwm + ε,

and proceed as with any linear regression model. Although a few computer
programs are specifically designed for fitting polynomial models, most pro-
grams require that the powers of the independent variable, that is, the wi, be
computed before executing the regression.

As we have noted, an important issue in fitting polynomial models is the
specification ofm, the degree of polynomial. Obviously, the greater the value of
m, the better the fit. In fact, if m = n− 1, the regression will fit perfectly! How-
ever, as with most regressions, models with fewer parameters are preferred.
One solution is to fit a model with arbitrarily largemand use a variable selection
procedure to determine the appropriate number of parameters. Unfortunately,
such a procedure is not recommended because in virtually all polynomial mod-
els it is customary to include all lower powers2 of x less than m.

2Exceptions may occur if one is fitting a function for which the series expansion specifies that
either even or odd powers be included.
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This means that polynomial models are built sequentially. An initial model
with an arbitrary number of terms is computed as usual. However, instead of
computing partial sums of squares for the coefficients, we compute sequen-

tial sums of squares, which show the sum of squares obtained by adding each
term to a model containing all lower-order terms. Thus, the sequential sum of
squares for the linear term shows the reduction in the error sum of squares
as the linear term is added to the intercept. The sequential sum of squares for
the quadratic is that obtained by adding that term to the model containing the
intercept and linear term, and so forth. Terms are normally included in the
model as they are significant (at some predetermined level) until two succes-
sive terms are deemed not significant. Because the Type I error of including a
term when it is not needed is not of great consequence, a larger level of signif-
icance may be used.

Before continuing with some examples, a few words of caution:

• Because polynomial models are simply a curve-fitting process and normally
do not correspond to some physical model, the usual warning about extra-
polation is extremely relevant.

• Values of powers of a variable tend to be highly correlated. These corre-
lations tend to become very high (i) as the range of the variable is small
compared to the mean and (ii) as higher powers are used. In other words,
there may be extreme multicollinearity among the variables in a polynomial
regression. Because with polynomial regression we are usually interested
in estimation of the response rather than interpreting coefficients, this mul-
ticollinearity poses no real problem. However, extreme multicollinearity
does tend to cause roundoff error in computing the inverse of X ′X . This
effect can be ameliorated by linear transformations of the independent vari-
ables. For example, if the independent variable is calendar years, roundoff
error problems will be reduced by transforming that variable to start with
the year 1.

EXAMPLE 7.1 Fitting a Normal Curve We will illustrate the method of curve fitting by
using a polynomial equation to approximate the standard normal distribution.
The model we wish to fit is

y =
1√
2π

e−x2/2 + ε.

The deterministic portion of the model is the equation for the normal distribu-
tion with mean 0 and unit variance. For data, we generate values of the normal
function for 31 values of x from −3 to +3 in increments of 0.2 and add a nor-
mally distributed random error with mean 0 and standard deviation of 0.05.
The data points are shown in Figure 7.2 along with the actual normal curve.3

Note that the actual normal curve does extend beyond the generated data.

3The actual data are available on the CD in File REG07X01.
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Figure 7.2

Data for Fitting Normal
Curve

We begin by fitting a sixth-degree polynomial, that is,

y = β0 + β1x+ β2x
2 + β3x

3 + β4x
4 + β5x

5 + β6x
6 + ε.

We use PROC GLM of the SAS System, which directly allows the use of powers
of variables and also provides the sequential (labeled Type I) sums of squares
and the corresponding F values. Because the coefficients and other results are
of no interest at this point, only the sequential sums of squares are shown in
Table 7.1.

Table 7.1

Sixth-Degree Polynomial

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 0.62713235 0.10452206 41.25 0.0001
Error 24 0.06081401 0.00253392
Corrected Total 30 0.68794636

R-Square Coeff Var Root MSE Y Mean
0.911601 30.87710 0.050338 0.16302708

Source DF Type I SS Mean Square F Value Pr > F

X 1 0.00595140 0.00595140 2.35 0.1385
X*X 1 0.48130767 0.48130767 189.95 0.0001
X*X*X 1 0.00263020 0.00263020 1.04 0.3184
X*X*X*X 1 0.12736637 0.12736637 50.26 0.0001
X*X*X*X*X 1 0.00155382 0.00155382 0.61 0.4412
X*X*X*X*X*X 1 0.00832288 0.00832288 3.28 0.0825
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The model is certainly significant, and the error mean square is very close to
the true error variance. The sequential (Type I) sums of squares are used to
determine the minimum degree of polynomial model required. We can imme-
diately see that the fifth- and sixth-degree terms are not needed; hence, we will
use the fourth-degree polynomial. The results are shown in Table 7.2.

Table 7.2

Fourth-Degree
Polynomial

Dependent Variable: Y

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 0.61725565 0.15431391 56.76 0.0001
Error 26 0.07069071 0.00271887
Corrected Total 30 0.68794636

R-Square Coeff Var Root MSE Y Mean
0.897244 31.98415 0.052143 0.16302708

T for H0: Std Error of

Parameter Estimate Parameter = 0 Pr > |t| Estimate

INTERCEPT 0.3750468415 21.31 0.0001 0.01760274
X 0.0195953922 1.49 0.1478 0.01313621
X*X −.1194840059 −10.34 0.0001 0.01156088
X*X*X −.0020601205 −0.98 0.3344 0.00209456
X*X*X*X 0.0092537953 6.84 0.0001 0.00135203

Again, the model is significant, and the residual mean square is close to the true
value of 0.0025. Although the coefficients in a polynomial model are usually of
little interest, an interesting result here is that coefficients of the odd powers are
not significant. This is because the normal curve is symmetric about 0 and the
odd powers reflect lack of symmetry about 0. This, then, is one example where
one may be justified in using only even powers in the model; however, it gains
us very little. Actually, in most applications such symmetry does not exist.

The predicted curve (solid line) is shown in Figure 7.3 along with the normal
curve (solid line with dots). The curves have been extrapolated beyond the

Figure 7.3

Polynomial Model for
Normal Curve
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range of the data (−3 to +3) to show why extrapolation is not justified for
polynomial models.

In the previous example we used sequential tests using the residual mean
square to determine the degree of polynomial model required. If multiple obser-
vations exist for individual values of the independent variable, a lack of fit test
(Section 6.3) may be used.

EXAMPLE 7.2 Cooling Degree Days Suppliers of energy use climatic data to estimate
how much energy may be needed for heating or cooling. Cooling degree days,
defined as the sum of the excess of mean daily temperatures above 75◦F for
a period, such as a month, is used as a measure to ascertain air conditioning
requirements. Table 7.3 shows monthly cooling degree days for a Texas city
for the five years 1983 through 1987. We will use these data to fit a curve to
describe the pattern of cooling degree days over the months.

Table 7.3

Cooling Degree Days

Month No. 1983 1984 1985 1986 1987

January 1 1 2 1 4 4
February 2 1 13 10 47 1
March 3 19 70 93 36 14
April 4 78 154 160 197 146
May 5 230 368 305 274 360
June 6 387 462 498 514 471
July 7 484 579 578 634 581
August 8 508 594 673 571 664
September 9 395 411 464 518 424
October 10 215 255 233 149 162
November 11 65 47 92 79 62
December 12 8 47 5 3 15

The first step of the analysis is to fit the unrestricted model. In this case the
analysis of variance, using month as the source of variation, is the unrestricted
model, which provides 48 degrees of freedom for the pure error. The results
are shown in Table 7.4.

Table 7.4

Analysis of Variance for
Cooling Degree Days

Dependent Variable: CDD

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 11 2859790.583 259980.962 142.10 <.0001
Error 48 87818.000 1829.542
Corrected Total 59 2947608.583

R-Square Coeff Var Root MSE CDD Mean
0.970207 17.77893 42.77314 240.5833

Source DF Anova SS Mean Square F Value Pr > F

MONTH 11 2859790.583 259980.962 142.10 <.0001
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Although the model is significant, the results are not very interesting. The
important number here is the error variance, 1829.5, which is the pure error for
the lack of fit test. We will compare this value with the residual mean squares
from a polynomial fit.

As before, we start with a sixth-degree polynomial. This time we will use SAS
PROC REG, where the variables M, M2, and so forth are the computer names
for MONTH, MONTH2, and so forth. We have requested the sequential (Type I)
sums of squares and also the coefficients of each step in the polynomial build-
ing process (Sequential Parameter Estimates). The results are shown in
Table 7.5.

Table 7.5 Polynomial Regression for Cooling Degree Days

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 2846194 474366 247.91 <.0001
Error 53 101415 1913.49160
Corrected Total 59 2947609

Root MSE 43.74347 R-Square 0.9656
Dependent Mean 240.58333 Adj R-Sq 0.9617
Coeff Var 18.18225

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Type I SS

Intercept 1 −265.30000 154.80644 −1.71 0.0924 3472820
m 1 520.60175 258.76375 2.01 0.0493 153976
m2 1 −343.09632 148.58310 −2.31 0.0249 2003899
m3 1 100.02400 39.49812 2.53 0.0143 271801
m4 1 −12.70664 5.30268 −2.40 0.0201 313902
m5 1 0.70436 0.34876 2.02 0.0485 98045
m6 1 −0.01379 0.00892 −1.55 0.1282 4571.14014

Sequential Parameter Estimates

Intercept m m2 m3 m4 m5 m6

240.583333 0 0 0 0 0 0
145.196970 14.674825 0 0 0 0 0

−380.440909 239.948202 −17.328721 0 0 0 0
−84.733333 11.397658 24.915218 −2.166356 0 0 0
424.857576 −567.958673 207.495294 −23.399310 0.816652 0 0
−65.809091 161.029160 −126.230196 40.616778 −4.595113 0.166516 0
−265.300001 520.601746 −343.096323 100.023998 −12.706640 0.704359 −0.013791

The lack of fit test is performed using the ANOVA sum of squares for MONTH
as the unrestricted model and the regression as the restricted model:
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Unrestricted SS = 2,859,790, df = 11
Restricted SS = 2,846,194, df = 6
Lack of fit SS = 13,596, df = 5

MS = 2719.2, F = 2719.2/1829.5 = 1.486, df = (5, 48);
not significant. The sixth-degree model is adequate.

The next step is to see if the sixth-degree term is needed. From the sequential
sums of squares we obtain

F = 4571.1/1829.5 = 2.50, df = (1, 48), not significant at the 0.05 level.

The fifth-degree term has a sequential sum of squares of 98,045, which will
obviously lead to rejection; hence, the fifth-degree polynomial model is
required. The equation is obtained from the fifth line of the sequential para-
meter estimates:

μ̂y|x = −65.809− 161.03M − 126.23M2 + 40.62M3 − 4.595M4 + 0.1655M5.

The fifth-degree curve and the original data are plotted in Figure 7.4, which
also includes the fourth-degree curve. This does indeed show that adding the
fifth-degree term improves the fit, especially for February.

Interactive Analysis
Because all we want is a curve that best compromises between a visual smooth-
ness and fit, the formal statistical analysis seems unnecessary. Interactive
programs that allow for more flexible graphics provide a convenient way to
examine a number of different options. We will illustrate with PROC INSIGHT,
an interactive option available through the SAS System.

Figure 7.4 shows a partial output from the fit(y,x) option of PROC
INSIGHT. The graph is that for the fourth-degree curve and agrees with

Figure 7.4 Fourth-Degree Fit Using PROC INSIGHT

2

0

200

400

600

4 6 8 10 12

C
D
D

MONTH

Curve Degree(Polynomial) DF DF
Model Error
Parametric Regression Fit

Mean Square R-Square F   Stat
184.89 <.00010.93083709.649455685894.46644

Pr > F Mean Square



278 Chapter 7 Curve Fitting

Figure 7.5. The second portion provides various statistics, including the test
for overall significance of the model. We did not request that the model para-
meters be output.

Figure 7.5

Polynomial Fit for
Cooling Degree Days
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This approach allows for immediate displays of any desired degree of poly-
nomial. Clicking the down arrow next to the shaded block with arrows at
each end under “Degree (Polynomial)” changes the plot and statistics for
decreasing orders of the polynomial; clicking the up arrow does the converse.
For example, clicking the up arrow once fits the fifth-degree polynomial, as
illustrated in Figure 7.6.

Figure 7.6 Fifth-Degree Fit Using PROC INSIGHT
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Dragging the slider in the shaded area to the left and right produces a
dynamic picture of the effect of increasing (drag right) and decreasing (drag
left) the degree of polynomial, making it easy to choose the most visually
appropriate model.
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7.3 Segmented Polynomials with Known Knots

In example 4.5 we used an indicator variable to allow a break in an otherwise
straight-line regression. This was a simple example of segmented polynomial
regression, sometimes called spline regression, where different polynomial
models are used for different ranges of a single independent variable. A spline
must join at points where the model specification changes. These points where
the different models join are known as knots.4 Before we proceed to imple-
ment such a model, some comments are in order:

• It is sometimes important to know if the response curve is continuous at a
knot (Smith, 1979). We will not concern ourselves with this problem.

• If the location of knots is known, the model can be fitted using linear regres-
sion; if not, it is a nonlinear regression problem. We will only consider the
case for known knots in this chapter.

Segmented Straight Lines
We want to fit the following model:

y = β01 + β1x1 + ε, for x1 ≤ c

y = β02 + β2x1 + ε, for x1 > c.

The single knot occurs at x1 = c, where μ̂y|x has the same value for both
functions. Note that β2 may take any value. If it is equal to β1, we have a
straight-line regression over the entire range of x1. This model is readily fit-
ted by defining a new variable:

x2 = 0, for x1 ≤ c

x2 = (x1 − c), for x1 > c,

and using the model y = γ0+γ1x1+γ2x2+ ε. This results in fitting the models

y = γ0 + γ1x1 + ε, for x1 ≤ c

y = (γ0 − γ2c) + (γ1 + γ2)x1 + ε, for x1 > c.

In other words:

β01 = γ0

β1 = γ1

β02 = γ0 − γ2c

β2 = γ1 + γ2.

Note that the test for γ2 = 0 is the test for a straight-line regression.

4Segmented polynomials are hypothetically possible with more than one independent variable
but are very difficult to implement.
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Segmented Polynomials
The foregoing procedure is readily extended to polynomial models. For spline
regression applications, quadratic polynomials are most frequently used. The
quadratic spline regression with a single knot at x1 = c has the model

y = β01 + β1x1 + β2x
2
1 + ε for x1 ≤ c

y = β02 + β3x1 + β4x
2
1 + ε for x1 > c.

Defining x2 as before,

x2 = 0, for x1 ≤ c

x2 = (x1 − c), for x1 > c,

we fit the model

y = γ0 + γ1x1 + γ2x
2
1 + γ3x2 + γ4x

2
2 + ε,

which results in fitting the models

y = γ0 + γ1x+ γ2x
2 + ε, for x ≤ c

y = (γ0 − γ3c+ γ4c
2) + (γ1 + γ3 − 2cγ4)x+ (γ2 + γ4)x

2 + ε, for x > c.

In other words:

β01 = γ0

β1 = γ1

β2 = γ2

β02 = γ0 − γ3c+ γ4c
2

β3 = γ1 + γ3 − 2cγ4

β4 = γ2 + γ4.

Furthermore, tests of the hypotheses

H01 : (γ3 − 2cγ4) = 0

and

H02 : γ4 = 0

provide information on the differences between the linear and quadratic
regression coefficients for the two segments. Many computer programs for
multiple regression provide the preceding estimates, as well as standard errors
and tests.

EXAMPLE 7.3 Simulated Data Forty-one observations are generated for values of x from
0 to 10 in steps of 0.25, according to the model

y = x− 0.1x2 + ε for x ≤ 5

y = 2.5 + ε for x > 5.

Note that μ̂y|x has the value 2.5 at x = 5 for both functions. The variable ε is a
normally distributed random variable with mean 0 and standard deviation 0.2.
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This curve may actually be useful for describing the growth of animals that
reach a mature size and then grow no more. The resulting data are shown in
Table 7.6.

Table 7.6

Data for Segmented
Polynomial

x y x y x y x y

0.00 −.06 2.50 1.72 5.00 2.51 7.50 2.59
0.25 0.18 2.75 2.10 5.25 2.84 7.75 2.37
0.50 0.12 3.00 2.04 5.50 2.75 8.00 2.64
0.75 1.12 3.25 2.35 5.75 2.64 8.25 2.51
1.00 0.61 3.50 2.21 6.00 2.64 8.50 2.26
1.25 1.17 3.75 2.49 6.25 2.93 8.75 2.37
1.50 1.53 4.00 2.40 6.50 2.62 9.00 2.61
1.75 1.32 4.25 2.51 6.75 2.43 9.25 2.73
2.00 1.66 4.50 2.54 7.00 2.27 9.50 2.74
2.25 1.81 4.75 2.61 7.25 2.40 9.75 2.51

10.00 2.16

We define

x1 = x,

x2 = 0 for x ≤ 5

= (x− 5) for x > 5,

and fit the model

y = γ0 + γ1x1 + γ2x
2
1 + γ3x2 + γ4x

2
2 + ε.

Remember that we want to make inferences on the coefficients of the seg-
mented regression that are linear functions of the coefficients of the model we
are actually fitting. Therefore, we use PROC GLM of the SAS System because
it has provisions for providing estimates and standard errors for estimates of
linear functions of parameters and also gives the F values for the sequential
sums of squares. The output is shown in Table 7.7.

Table 7.7

Results for Segmented
Polynomial

Sum of

Source DF Squares Mean Square F Value Pr >F

Model 4 22.38294832 5.59573708 161.18 <.0001
Error 36 1.24980290 0.03471675
Corrected Total 40 23.63275122

R-Square Coeff Var Root MSE Y Mean
0.947116 8.888070 0.186324 2.096341

Source DF Type I SS Mean Square F Value Pr > F

x1 1 13.39349354 13.39349354 385.79 <.0001
x1sq 1 8.08757947 8.08757947 232.96 <.0001
x2 1 0.03349468 0.03349468 0.96 0.3325
x2sq 1 0.86838063 0.86838063 25.01 <.0001

(Continued)
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Table 7.7

(Continued)

Standard

Parameter Estimate Error t Value Pr > |t|

int2 3.21389881 0.93829556 3.43 0.0015
lin2 −0.14424725 0.26373184 −0.55 0.5878
quad2 0.00697230 0.01784157 0.39 0.6987
testlin −1.14742581 0.25295096 −4.54 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept −0.039124139 0.10960695 −0.36 0.7232
x1 1.003178558 0.09732360 10.31 <.0001
x1sq −0.092391941 0.01784157 −5.18 <.0001
x2 −0.153783370 0.15656367 −0.98 0.3325
x2sq 0.099364244 0.01986756 5.00 <.0001

The model is obviously significant. The sequential (SAS Type I) sums of squares
indicate that both quadratic coefficients are needed; normally, this means all
terms should be kept. The parameter estimates, which are denoted by γi in the
text, are labeled by the variable names (x1 for x1 and so forth). From our equiv-
alences, we know that INTERCEPT, x1, and x1sq are the estimated parameters
for the function when x ≤ 5 resulting in the equation:

μ̂y|x = −0.0391 + 1.003x− 0.092x2

which essentially agrees with the true model.

The estimates of the parameters for x > 5 are found in the next to last section,
which provides the estimates and tests for specified linear functions of the
model parameters. The parameters int2, lin2, and quad2 provide the equation
for the second segment:

μ̂y|x = 3.212− 0.144x+ 0.007x2.

All coefficients are compatible with the model. Finally, the parameter
“testlin” is the estimate for the difference in the linear coefficients and indi-
cates that they are significantly different. The test for the differences in the
quadratics is obtained directly from the coefficient x2sq, which is clearly
rejected.

The plot of the estimated curve and the data points is shown in Figure 7.7.
It is seen that the curve is reasonably close to what was specified. It is left
to the reader to see if a simple quadratic or possibly cubic polynomial would
fit as well.
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Figure 7.7
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7.4 Polynomial Regression in Several Variables; Response Surfaces

When a polynomial model contains several independent variables, the model
may include products of variables in addition to the powers of the individual
variables. For example, the so-called quadratic polynomial response surface
model with two variables x1 and x2 is

y = β00 + β10x1 + β20x
2
1 + β01x2 + β02x

2
2 + β11x1x2 + ε.

Note that the subscripts for the coefficients mirror the powers of the indepen-
dent variables; this notation is especially useful if the model includes many
variables and higher powers.

The interpretation of the terms that involve only one variable is the same as
for the one-variable case. The interpretation of the cross-product term β11x1x2

is aided by rewriting the model:

y = β00 + (β10 + β11x2)x1 + β20x
2
1 + β01x2 + β02x

2
2 + ε.

We can now see that the coefficient β11 shows that the response to x1 is not
constant: it increases linearly with x2. For example, given the model

y1 = x1 + x2 − 0.2x1x2,
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(we have omitted the quadratic terms and the error for simplicity), the
response to x1 is (1 − 0.2) = 0.8 units when x2 has the value 1, while
response is (1 − 9 × 0.2) = −0.8 units when x2 has the value 9. In the
same fashion the response to x2 changes linearly with changes in x1. The
response curve is illustrated in the left portion of Figure 7.8 where we can
see that the slope in the x1 direction changes from negative to positive as
x2 increases and vice versa for x2. However, note that any cross-section of
the section of the surface in either direction is still strictly linear.

Figure 7.8 Interpretation of Cross-Product Terms

Interpretation of products involving quadratic terms is done in a similar
manner. For example, in the function

y2 = x1 − 0.5x2
1 + 0.15x2

1x2,

we recombine terms,

y2 = x1 + (−0.5 + 0.15x2)x
2
1,

where we can see that the coefficient for the quadratic terms in x1 goes from
−0.35 when x2 is equal to unity to +0.86 when x2 is equal to 9. This is illus-
trated in the right portion of Figure 7.8. In this case, however, the interpreta-
tion for the response to x2 is not so straightforward: it indicates that the linear
response to x2 changes with the square of x1. In fact, note that the response
to x2 is indeed linear for all values of x1.
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One problem with polynomial models with several variables is that of
model building, that is, deciding how many terms should be included in a spe-
cific model. Because there are several variables, powers of variables as well
as cross products, simple sequential model building is obviously not possi-
ble. Generally, one starts with a simple linear model, adds quadratics, then
products of linear variables, and so forth. Some computer programs, such as
PROC RSREG of the SAS System, provide information useful for such a pro-
cess, but even these programs have some limitations, as we will see.

EXAMPLE 7.4 A Two-Factor Response Surface Model (Freund and Wilson, 2003). A
quality of steel called elasticity is affected by two operating conditions: quan-
tity of a cleaning agent and the temperature used in the process. A 5 × 5 fac-
torial experiment is conducted, for which all 25 combinations of 5 levels of
the 2 operating conditions are each observed 3 times. The levels of the clean-
ing agent (CLEAN) are 0.0, 0.5, 1.0, 1.5, and 2.0 units, and levels of tempera-
ture (TEMPR) are 0.20, 0.93, 1.65, 2.38, and 3.10 (coded) units. The data are
not reproduced here but are available on the data diskette under the filename
REG07X04.

We first perform the analysis of variance for the factorial experiment in order
to obtain the estimate of the pure error for the lack of fit test and also to
see how important the factors are. The results of that analysis are shown in
Table 7.8.

Table 7.8

Analysis of Variance

Dependent Variable: ELAST

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 24 132690.7904 5528.7829 316.77 <.0001
Error 50 872.6904 17.4538
Corrected Total 74 133563.4808

R-Square Coeff Var Root MSE ELAST Mean
0.993466 10.80087 4.177775 38.68000

Source DF Anova SS Mean Square F Value Pr > F

TEMPR 4 22554.07993 5638.51998 323.05 <.0001
CLEAN 4 86093.77441 21523.44360 1233.17 <.0001
TEMPR*CLEAN 16 24042.93605 1502.68350 86.09 <.0001

All factors are highly significant, and the estimated pure error variance is 17.45.
We will first fit the standard quadratic response surface model,

y = β00 + β10x1 + β20x
2
1 + β01x2 + β02x

2
2 + β11x1x2 + ε,

where x1 is TEMPR and x2 is CLEAN. We use PROC REG of the SAS System,
using mnemonic variable names TEMPR and T2 and so forth. The output is
shown in Table 7.9.



286 Chapter 7 Curve Fitting

Table 7.9

Quadratic Response
Surface Model

Analysis of Variance

Sum of Mean

Source DF Squares Squares F Value Pr > F

Model 5 120250 24050 124.64 <.0001
Error 69 13314 192.95034
Corrected Total 74 133563

Root MSE 13.89066 R-Square 0.9003
Dependent Mean 38.68000 Adj R-Sq 0.8931
Coeff Var 35.91173

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Type I SS

Intercept 1 −8.03515 6.38251 −1.26 0.2123 112211
TEMPR 1 36.27533 6.60147 5.50 <.0001 12913
T2 1 −12.46042 1.82362 −6.83 <.0001 9008.28614
CLEAN 1 −30.95195 8.79243 −3.52 0.0008 78616
C2 1 23.78724 3.83419 6.20 <.0001 7426.55414
TC 1 17.65392 2.21235 7.98 <.0001 12286

The regression is obviously significant, and it appears that all terms in the
model are needed. However, we can immediately see that the error mean
square of 192.95 is so much larger than the pure error of 17.45 that a formal
lack of fit test is not really necessary, and we will need to fit a model with more
terms. Often residual plots may be useful in determining what additional terms
to add, but in this case they are of little help (the plots are not reproduced
here; the reader may wish to verify). Lacking any other information, we will
add terms for quadratic interactions; that is, TEMPR2× CLEAN, TEMPR ×
CLEAN2, and TEMPR2× CLEAN2. The results are shown in Table 7.10.

Table 7.10

Full Quadratic
Polynomial Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 8 130741 16343 382.08 <.0001
Error 66 2822.97482 42.77235
Corrected Total 74 133563

Root MSE 6.54006 R-Square 0.9789
Dependent Mean 38.68000 Adj R-Sq 0.9763
Coeff Var 16.90811

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr >|t| Type I SS

Intercept 1 8.12166 4.26835 1.90 0.0614 112211
TEMPR 1 −3.29974 6.16256 −0.54 0.5941 12913
T2 1 0.55982 1.80686 0.31 0.7577 9008.28614
CLEAN 1 −7.20421 10.11239 −0.71 0.4787 78616
C2 1 −2.81579 4.84852 −0.58 0.5634 7426.55414
TC 1 1.57014 14.60007 0.11 0.9147 12286
T2C 1 0.74666 4.28074 0.17 0.8621 8995.53014
TC2 1 37.10590 7.00020 5.30 <.0001 639.79470
T2C2 1 −9.17794 2.05246 −4.47 <.0001 855.27377
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We can see that the residual mean square is indeed much smaller, yet it is still
sufficiently large that a formal lack of fit test is not needed. The sequential (SAS
Type I) sums of squares are obviously significant for all higher-order terms, so
all terms are needed. Again the residuals show very little, except possibly a
cubic trend in TEMPR. We will leave it to the reader to try it.

Figure 7.9 shows the response surfaces for the quadratic response surface
model on the left and that for the full quadratic polynomial model on the right.
From these we can see that the biggest difference between the two is that the
full quadratic shows an almost flat response to TEMPR at low levels of CLEAN,
whereas that response is quite dramatic for high levels of CLEAN. The stan-
dard quadratic response model simply does not have terms to describe this
type of effect.

Figure 7.9 Comparison of Response Surfaces

How are these results to be interpreted? Obviously, if we want to maximize
the response, we would need to investigate higher levels of CLEAN. However,
this may not be possible to do because of cost or other negative effects of too
much CLEAN. Thus, the highest reasonable levels of CLEAN with TEMPR at
about 2.0 would seem to provide maximum response.

The number of factors need not be restricted to two. However, as the num-
ber of terms increases, model building and interpretation become more diffi-
cult. Fortunately, the problems may be alleviated by good computer programs,
flexible graphics, and a little common sense. Normally, we avoid using three
variable products because three-factor interactions are difficult to interpret.
We illustrate with a three-factor experiment.
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EXAMPLE 7.5 A Three-Factor Experiment The data for this example are from an
experiment concerning a device for automatically shelling peanuts, reported
in Dickens and Mason (1962). In the experiment, peanuts flow through sta-
tionary sheller bars and rest on a grid that has perforations just large enough
to pass shelled kernels. The grid is reciprocated, and the resulting forces
on the peanuts between the moving grid and the stationary bars break open
the hulls. The problem becomes one of determining the combination of bar
grid spacing (SPACE), length of stroke (LENGTH), and frequency of stroke
(FREQ) that would produce the most satisfactory performance. The perfor-
mance criteria are (i) percent of kernel damage, (ii) shelling time, and (iii)
the number of unshelled peanuts.

The paper just cited describes three separate experiments, one for each per-
formance criterion. For this illustration we use the first experiment and kernel
damage as the response variable. The experimental design is a three-factor
composite design consisting of 15 factor level combinations, with five addi-
tional observations at the center point (Myers, 1990). Figure 7.10 gives a three-
dimensional representation of this design. We can see that the design consists
of eight data points in a 2 × 2 × 2 factorial (the box), one point at the cen-
ter (SPACE = 0.86, LENGTH = 1.75, and FREQ = 175) that is replicated six
times, and one point beyond the range of the factorial at each of six “spokes”
radiating in each direction from the center. This design has been specifically

Figure 7.10 Schematic of the Composite Design
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developed for efficient estimation of the quadratic response surface model. It
requires only 15 individual data points as compared with 27 for the 3 × 3 × 3
factorial experiment that is often used for this purpose. The six replications at
the center are used to estimate the pure error for a lack of fit test. Of course,
the validity of this test rests on the assumption that the error variance is the
same for all points of the experiment. Finally, this design does not allow for
the usual factorial analysis of variance.

The data consist of responses resulting from the shelling of 1000 grams of
peanuts. As previously noted, the factors of the experiment are:

LENGTH: Length of stroke (inches)
FREQ: Frequency of stroke (strokes/minute)
SPACE: Bar grid spacing (inches)

The response variable is:

DAMG: Percentage of damaged peanuts

The data are presented in Table 7.11 and are available on the data diskette
as File REG07X05, which also contains the data for the other two response
variables, labeled TIME and UNSHL.

Table 7.11

Peanut Sheller Data

OBS LENGTH FREQ SPACE DAMG

1 1.00 175 0.86 3.55
2 1.25 130 0.63 8.23
3 1.25 130 1.09 3.15
4 1.25 220 0.63 5.26
5 1.25 220 1.09 4.23
6 1.75 100 0.86 3.54
7 1.75 175 0.48 8.16
8 1.75 175 0.86 3.27
9 1.75 175 0.86 4.38

10 1.75 175 0.86 3.26
11 1.75 175 0.86 3.57
12 1.75 175 0.86 4.65
13 1.75 175 0.86 4.02
14 1.75 175 1.23 3.80
15 1.75 250 0.86 4.05
16 2.25 130 0.63 9.02
17 2.25 130 1.09 3.00
18 2.25 220 0.63 7.41
19 2.25 220 1.09 3.78
20 2.50 175 0.86 3.72

We will use PROC RSREG of the SAS System for performing the regression for
the response surface analysis. This program fits the quadratic response sur-
face model, which includes linear, quadratic, and pairwise linear products. It
also provides some results that are useful for determining the suitability of the
model. The results are shown in Table 7.12.
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Table 7.12

Response Surface
Regression Analysis

(1) Response Mean 4.702500
Root MSE 0.846225
R-Square 0.8946
Coeff. of Variation 17.9952

Degrees

(2) of Type I Sum

Regression Freedom of Squares R-Square F-Ratio Pr > F

Linear 3 40.257647 0.5926 18.739 0.0002
Quadratic 3 13.626260 0.2006 6.343 0.0111
Cross product 3 6.891100 0.1014 3.208 0.0704
Total Regress 9 60.775007 0.8946 9.430 0.0008

Degrees

(3) of Sum of

Residual Freedom Squares Mean Square F-Ratio Pr > F

Lack of Fit 5 5.448685 1.089737 3.182 0.1148
Pure Error 5 1.712283 0.342457
Total Error 10 7.160968 0.716097

Degrees

(4) of Parameter Standard T for H0:

Parameter Freedom Estimate Error Parameter = 0 Pr > |t|

INTERCEPT 1 36.895279 9.249104 3.989 0.0026
LENGTH 1 −0.172967 4.928866 −0.0351 0.9727
FREQ 1 −0.111699 0.051946 −2.150 0.0570
SPACE 1 −46.763375 10.216756 −4.577 0.0010
LENGTH*LENGTH 1 0.819069 1.055355 0.776 0.4556
FREQ*LENGTH 1 0.005889 0.013297 0.443 0.6673
FREQ*FREQ 1 0.000089827 0.000111 0.808 0.4377
SPACE*LENGTH 1 −3.847826 2.601615 −1.479 0.1699
SPACE*FREQ 1 0.077778 0.028907 2.691 0.0227
SPACE*SPACE 1 18.896464 4.405168 4.290 0.0016

Degrees

(5) of Sum of

Factor Freedom Squares Mean Square F-Ratio Pr > F

LENGTH 4 2.676958 0.669240 0.935 0.4823
FREQ 4 6.050509 1.512627 2.112 0.1539
SPACE 4 59.414893 14.853723 20.743 0.0001

(6) Canonical Analysis of Response Surface

Critical

Factor Value

LENGTH 0.702776
FREQ 293.906908
SPACE 0.704050

Predicted value at stationary point 3.958022
Stationary point is a saddle point.
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The output addresses several aspects of the suitability of the model. The order
of topics in this description is not the same as the order of relevant parts of
the computer output, some of which have been manually labeled.

• Is the model adequate? This can only be answered if there are replications;
in this case we have the six replicated observations at the center of the
design providing a five degree-of-freedom estimate of the pure error. The
lack of fit test is portion (3), and it shows that the p-value for the lack of fit
is 0.1148. Thus, we can be reasonably satisfied that the model is adequate. It
is of interest to note that if the model had not been adequate, the composite
design would allow only a very limited set of additional terms.

• Do we need all three factors? This question is answered by portion (5) of
the output. Here are given the tests for the elimination of all terms involving
each factor. In other words, the test for LENGTH is the test for the deletion
of LENGTH, LENGTH2, LENGTH * FREQ, and LENGTH * SPACE, leaving
a model with only the other two factors. In this output we can see that
LENGTH may be omitted and that FREQ is only marginally important.

• Do we need quadratic and cross-product terms? This question is answered
by portion (2) of the output, which gives sequential (SAS Type I) sums of
squares for using first only the three linear terms, then adding the three
quadratics, and finally adding the three cross-product terms. Here we see
that the linear terms are definitely needed and the quadratics are also
needed, but the need for product terms is not definitely established. The
final line shows that the overall model is definitely significant.

In addition, portion (1) of the output gives some overall statistics, and portion
(4) gives the coefficients and their statistics. Here we can see that one product
term (SPACE*FREQ) is indeed significant at the 0.05 level; hence, a decision
to omit all product terms would be a mistake.

Often response surface experiments are performed to find some optimum level
of the response. In this application, for example, we would like to see what lev-
els of the factors produce the minimum amount of damaged kernels. Portion
(6) attempts to answer that question. The first statistics identify the “critical
values,” which give the factor levels and estimated response at a “stationary
point,” that is, a point at which the response surface has no slope. Now, by
laws of geometry, there is for a quadratic response function only one station-
ary point, which can either be a maximum, minimum, or saddle point (where
the surface increases along one axis and decreases at another, it looks like a
saddle). For this experiment the output shows that the stationary point is a
saddle point,5 which is not useful for our purposes. Furthermore, it is outside
the range of the experiment, and hence, it is of little use.

5This analysis is a relatively straightforward exercise in calculus. The stationary point occurs
when all partial derivatives are 0. The nature of the stationary point is determined by the matrix
of second partial derivatives; if it is positive definite, we have a minimum; if negative definite, a
maximum; and if indefinite, a saddle point.
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Althoughtheexperimentdidnotprovideuswiththedesiredminimumresponse,
it is of interest to examine the nature of the response surface. This is, of course,
somewhat difficult for a three-factor experiment. Basically, we need to examine
all two-factor response curves for various levels of the third. However, in this
example we have an easy way out. Since the factor LENGTH was seen to be of
little importance, we can examine the response to the two other factors. How-
ever, just in case LENGTH has some effect, we will examine that response curve
for two levels of LENGTH: 1.20 and 2.20. These plots are shown in Figure 7.11.

Figure 7.11

Response Surface Plots

The graphs show that we were correct in not ignoring the effects of LENGTH,
although obviously its effects are not very great. Both response surfaces have
the same basic shape (a trough), but it is shifted somewhat for the higher value
of LENGTH. Remember, we want to minimize the response; hence, it would
seem that we should be in the neighborhood of 1.1 units of SPACE and FREQ
of 100. Of course, the findings of the other responses would probably modify
that recommendation.

7.5 Curve Fitting without a Model

In the last three sections, we discussed the use of polynomial models for curve
fitting, a method that yields an approximate regression equation (the lowest
order polynomial needed). The choice of the degree of the polynomial to be
used was based on the shape of the scatter plot of the data, supported by
goodness of fit statistics. However, when the scatter plot is complex, it may
not be beneficial to fit a polynomial model to the data. Instead, we may prefer
to find a smooth curve that graphically fits the data but does not impose the
constraint of a parametric model to describe the curve.

In this section we present two methods used to obtain a smooth curve with-
out having to find a model. First we discuss the moving average procedure,
a rather simple method that has been used for many years and still enjoys
wide use, and second, a newer method, called loess, which is one of several
computer-intensive methods available in most statistical packages.
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We illustrate these methods with data on monthly Canadian oil prices from
January 2001 through September 2004. The data are shown in Table 7.13 where
the variable n is the sequential observation number used for curve fitting. It is
unlikely that a low-order polynomial would adequately fit the data, especially
in the 2002 to 2003 interval (n of around 15 to 35).

Table 7.13

Canadian Oil Prices

n year Month price n year Month price

1 2001 1 44.08 24 2002 12 45.27
2 2001 2 44.52 25 2003 1 50.51
3 2001 3 41.31 26 2003 2 54.34
4 2001 4 42.04 27 2003 3 49.89
5 2001 5 43.04 28 2003 4 42.69
6 2001 6 47.72 29 2003 5 41.12
7 2001 7 40.91 30 2003 6 42.92
8 2001 8 42.08 31 2003 7 42.43
9 2001 9 39.99 32 2003 8 43.65

10 2001 10 34.13 33 2003 9 37.86
11 2001 11 30.57 34 2003 10 38.95
12 2001 12 29.83 35 2003 11 39.74
13 2002 1 30.89 36 2003 12 41.19
14 2002 2 32.57 37 2004 1 43.44
15 2002 3 38.35 38 2004 2 45.22
16 2002 4 40.97 39 2004 3 48.63
17 2002 5 41.45 40 2004 4 48.96
18 2002 6 39.30 41 2004 5 52.79
19 2002 7 41.97 42 2004 6 50.72
20 2002 8 43.70 43 2004 7 52.54
21 2002 9 45.67 44 2004 8 57.95
22 2002 10 44.40 45 2004 9 59.00
23 2002 11 40.39

We first use the moving average procedure and then the loess method to
fit a curve to the scatter plot given in Figure 7.12.

Figure 7.12

Scatter Plot of Canadian
Oil Prices
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The Moving Average
The moving average procedure requires equally spaced observations and esti-
mates each data point by the mean of a number of adjacent observations. For
example, the formula for a 5-point moving average is:

MAt = (yt−2 + yt−1 + yt + yt+1 + yt+2)/5.

Special definitions are needed for the first and last two observations in the
sequence. The simplest definition is to simply use the available observations.

The number of observations used in each mean determines the goodness
of fit and the degree of smoothing. A small number of points provides a more
jagged line with a better fit, with the converse true for a large number of obser-
vations in each mean.

EXAMPLE 7.6 We will use a 5-point moving average to fit a curve to the Canadian oil price
data given in Table 7.13. We use the value 44.08 for the first point and the value
of the 45th observation, 59.00 for the last. The data points and the 5-point
moving average for the Canadian oil price data are plotted in Figure 7.13.

Figure 7.13

Moving Average Fit for
Canada Oil Prices
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Note that the curve is somewhat jagged, and although increasing the number of
points will smooth the line somewhat, moving average lines tend not to look
smooth. We do see an apparent cyclical behavior of oil prices, with about a
24-month cycle. While there is not much evidence to support it, it does appear
that there may be a downward trend in prices starting in 2005. Unfortunately,
there are no statistical inference tools to indicate how well the curve fits, and
certainly there is danger in extrapolating into the future.
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The Loess Method
The loess method, developed by Cleveland (1979), is one of several nonpa-
rameteric smoothing techniques used in curve fitting. The name loess stands
for locally weighted regression or locally weighted regression scatter plot

smoothing. This method is attractive because it uses the familiar polynomial
regression and allows a great deal of flexibility in choosing a best fit.

In the loess method, weighted least squares is used to fit linear or quadratic
functions of the predictor variable in neighborhoods, with the weights being
a smooth decreasing function of the distance from the center of each neigh-
borhood. The final response curve is a blending of these individual curves.
The number of neighborhoods, specified by the smoothing parameter (usu-
ally defined as the fraction of the total number of observations in each neigh-
borhood), determines the smoothness of the curve. Larger fractions generate
fewer neighborhoods and hence smoother curves.

A number of specifications need to be made to fit a curve using the loess
method. First, we need to decide whether to use a linear or a quadratic regres-
sion in each neighborhood. Second, we need to specify the nature of the weight-
ing function. And, finally, we need to specify the number of iterations neces-
sary to make the procedure sufficiently robust. Fortunately, most programs
offer some kind of optimal values as default. We will normally use the defaults
provided by the program we use. Although the loess method can be used to
fit multidimensional surfaces, we will restrict ourselves to fitting a curve for a
single independent variable.

EXAMPLE 7.7 We will use the loess method to fit the Canadian oil price data given in
Table 7.13. Many computer systems offer the loess method in an interactive
mode, thus enabling choices to be made by looking at several scatter plots with
the loess curve superimposed. PROC INSIGHT in SAS offers such an option,
using specifications that are optimum as the default value for the smoothing
parameter. Figure 7.14 shows the plot and various statistics for loess fit of the
data. We see the cyclical behavior identified by the moving average method,
along with a number of what might be called spikes occurring every three
months or so.

Figure 7.14

Loess Fit of the
Canadian Oil Price Data
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Note that thedefaultvalue for thepolynomialused ineachneighborhood(Type)
is linear, the weight technique is called Tri-cube (see Montgomery et al., 2001,
for a definition of the Tri-cube), and the smoothing function (Alpha) is 0.1234,
which corresponds to neighborhoods of size 5 (K). The loess method allows
an approximate calculation of degrees of freedom resulting in a familiar resid-
ual mean square (MSE) that shows how the fit changes with different values of
the smoothing function. Since the procedure is interactive, we can change the
smoothing function by clicking on the arrows in the box under “Alpha.” If we
increase the value of Alpha, the curve becomes progressively smoother, reduc-
ing the goodness of the fit and increasing the value of MSE. If we decrease the
value of Alpha, the curve becomes increasingly jagged making the smoothing
less effective. The fit of the curve can also be affected by the choice of the weight
functionandwhethertousealinearorquadraticfunctionineachneighborhood.

One way to decide on the optimal choice for these specifications is to examine
all possible combinations—something easily done with interactive programs.
The results of all the possibilities of Type and Weight are given in Table 7.14. The

Table 7.14 Loess of Canadian Oil Prices

apparent best fit, based on MSE values, would be obtained using the quadratic
regression, and the normal weighting. The results are presented in Figure 7.15.

Figure 7.15

Optimal Loess Fit of the
Canadian Oil Price Data
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Even though the curve in Figure 7.15 is optimal in the sense that it yields the
lowest MSE, there is not much difference from that obtained using the default
specifications. Furthermore, the fact that this analysis uses a quadratic equa-
tion in neighborhoods of size two may make it too jagged for use, especially if
we want to identify outliers in the data.

7.6 Summary

Curve fitting, often referred to as nonparametric regression, offers an attrac-
tive alternative to parametric regression. However, curve fitting does not have
a basis in theory; instead it reflects the empirical nature of the data itself, and
as we have seen, it requires a certain amount of subjectivity in determining
the final fit. Therefore, we should try to use a simple parametric model when
it provides a reasonable fit to the data. Parametric models provide an easy
and convenient basis for prediction, and the coefficients of these models pro-
vide important information on the relationship between the response variable
and the independent variables. In some cases, there is not a simple paramet-
ric model that provides an acceptable fit to the data. In these cases, it is more
desirable to use the curve-fitting methods discussed in this chapter, recogniz-
ing the limitations on the procedures.

7.7 CHAPTER EXERCISES

1. Six beds containing 24 pine seedlings of drought-resistant pines were
subjected to drought over a period of 12 days. The average weights of the
seedlings in each bed were recorded each day. The data are available in File
REG07P01. Fit a polynomial curve relating weight to day. Because there are
six beds, a lack of fit may be performed, but it must be remembered that
the data are means of 24 seedlings!

2. This exercise concerns an experiment on the effect of certain soil nutri-
ents on the yield of ryegrass. The experimental unit is a pot with 20 rye-
grass plants, and the response variable is dry matter (YIELD) in grams. The
nutrients in this study are calcium (CA), aluminum (AL), and phosphorus
(P) in parts per million. The experimental design is a composite design, as
shown in Figure 7.10 with eight replications at the center point. The data
are shown in Table 7.15 and are available in File REG07P02. Fit a quadratic
response surface and produce plots to interpret results.

Table 7.15

Ryegrass Data

CA AL P YIELD

0 50 40 1.6273
120 30 24 1.4360
120 30 56 1.9227

(Continued)
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Table 7.15

(Continued)

CA AL P YIELD

120 70 24 0.3411
120 70 56 0.7790
200 0 40 2.5924
200 50 0 0.1502
200 50 40 0.9675
200 50 40 0.6115
200 50 40 0.3759
200 50 40 0.7094
200 50 40 0.6058
200 50 40 1.0180
200 50 40 0.8200
200 50 40 0.8077
200 50 80 1.3965
200 100 40 0.2221
280 30 24 0.6536
280 30 56 1.2839
280 70 24 0.2279
280 70 56 0.5592
400 50 40 0.4950

3. The data for this exercise consist of mean weekly temperatures for 14 U.S.
cities that lie roughly on a latitude/longitude grid coded 1–4 from south
to north and 1–4 from east to west, for weeks 1 (early January), 13 (early
April), and 25 (early June) for three successive years. The data are shown
in Table 7.16 and a data file in a format more suitable for computer use is
available in File REG07P03.

Table 7.16 Temperature Data

YEAR 1 2 3 1 2 3 1 2 3

WEEK 1 WEEK 2 WEEK 3

CITY LAT LONG

Fargo, ND 1 1 10 9 −5 25 35 29 66 66 55
Marquette, MI 1 2 25 22 9 26 34 31 61 61 57
Burlington, VT 1 4 30 12 16 35 39 38 66 68 61
Lincoln, NE 2 1 34 18 18 34 53 39 69 73 70
Peoria, IL 2 2 35 23 16 41 47 39 69 73 70
Columbus, OH 2 3 42 29 22 41 42 44 69 77 71
Atlantic City, NJ 2 4 39 31 27 41 37 48 69 75 68
Oklahoma City, OK 3 1 51 31 30 51 60 44 75 79 77
Memphis, TN 3 2 52 37 32 53 59 46 76 81 81
Asheville, NC 3 3 42 34 34 45 51 50 66 70 70
Hatteras, NC 3 4 54 44 47 52 45 55 73 73 75
Austin, TX 4 1 60 45 43 60 69 55 81 84 84
New Orleans, LA 4 2 60 53 46 59 67 55 79 84 82
Talahassee, FL 4 3 60 53 49 60 63 56 78 81 84

(a) Fit a response surface to show the trends of temperatures across lati-
tude and longitude and week. The quadratic response surface is a good
start, but that model may need to be modified. A final model should
reveal several well-known climatological features.
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(b) Check for outliers and determine what their cause may be. A good atlas
will be useful.

4. These data result from an experiment to determine the effect of dietary
supplements of calcium and phosphorus on the presence of these miner-
als and total ash content of the carapace (bony shell at head) of shrimp.
The experiment consisted of two replications of a 4 × 4 factorial experi-
ment with levels of calcium supplement at 0, 1, 2, and 4% and phosphorus
supplement at 0, 0.5, 1, and 2%. Chemical analyses for percent ash and cal-
cium and phosphorus percentages were performed for four shrimp from
each factor-level combination. The data, consisting of 128 observations, are
in File REG07P04. Perform response surface analyses on at least one of
the response variables, remembering that because we have data from an
experiment there are estimates of pure error for lack of fit tests.

5. The Annual Statistical Digest of the Central Bank of Barbados (1994) gives
data on various exports from that island nation. Table 7.17 gives annual
total exports (EXPORT, in million BDS) for the years 1967 through 1993.
The data are available in File REG07P05.

Table 7.17

Barbados Exports

N Year EXPORT

1 1967 53.518
2 1968 59.649
3 1969 57.357
4 1970 62.106
5 1971 53.182
6 1972 63.103
7 1973 83.700
8 1974 125.555
9 1975 178.218

10 1976 137.638
11 1977 151.055
12 1978 186.450
13 1979 232.684
14 1980 337.291
15 1981 297.004
16 1982 372.627
17 1983 510.165
18 1984 583.668
19 1985 496.471
20 1986 420.614
21 1987 214.511
22 1988 248.029
23 1989 250.350
24 1990 244.820
25 1991 241.420
26 1992 271.384
27 1993 272.242

(a) Fit a polynomial curve over time. Plot residuals and determine if there
are outliers.

(b) Use the loess method and fit a curve to the scatter plot. Describe the
curve and compare the results to the polynomial fit in (a).
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6. An experiment was conducted to ascertain the effect of speed and accele-
ration on excessive carbon monoxide emissions from a truck. A truck was
driven over a measured stretch with various combinations of initial speed
(BSP), in 5-mph increments from 0 to 65, and amount of acceleration
(ACCEL), which was computed as ending speed (ESP) minus beginning
speed, in 5-mph increments from 5 to 65 mph with the restriction that the
maximum ending speed is 70 mph. No combinations were replicated. A mea-
sure of excess carbon monoxide (TRCO) was recorded for each drive. The
data are in File REG07P06. Perform a response surface analysis to describe
therelationshipofexcessemissionstothespeedfactors. Interprettheresults.
Note that the model may use either BSP and ESP or BSP and ACCEL. Which
is the more reasonable model? Use whichever appears more reasonable. Do
the results make sense?

Table 7.18

Removing Iron

PHOS IRON

0.05 0.33
0.10 0.19
0.15 0.10
0.20 0.25
0.25 0.17
0.30 0.12
0.35 0.12
0.40 0.12
0.50 0.12
0.60 0.12
0.80 0.12
0.90 0.07
1.00 0.18
1.50 0.14
2.00 0.17

7. Removing iron from vegetable oil increases its shelf life. One method of
reducing the amount of iron is to add some phosphoric acid in a water
solution; iron will then precipitate out. Table 7.18 gives the amount of iron
(IRON) remaining after adding various amounts of phosphoric acid (PHOS)
in a fixed amount of water. Fit a polynomial curve to estimate the relation-
ship between iron (the dependent variable) and phosphoric acid.
Determine the amount of phosphoric acid that will give the maximum pre-
cipitation of the iron.

8. To illustrate the use of a polynomial to approximate a nonlinear function,
we generate 20 observations from the model

y = 5e0.1t + ε,

where t takes on the values 0 through 19 and ε is normally distributed with
mean 0 and standard deviation 0.5. Notice that the exponent is positive,
making this a “growth” model rather than a decay model. The data are pre-
sented in Table 7.19.

Table 7.19

Exponential Growth

t y

0 5.1574
1 5.3057
2 6.7819
3 6.0239
4 7.2973
5 8.7392
6 9.4176
7 10.1920
8 11.5018
9 12.7548

10 13.4655
11 14.5894
12 16.8593
13 17.7358
14 19.1340
15 22.6170
16 24.4586
17 26.8496
18 30.0659
19 32.4246

(a) Use a polynomial to estimate the curve. Plot the curve.
(b) Compute the residuals from the true known function and compare the

sum of squares of these residual to those of the polynomial. Does the
polynomial appear to provide an adequate fit?

(c) Extrapolate the estimated curve to t = 25 and t = 30 and compare with
the values from the known true function. Comment.

9. Example 7.5 illustrates a three-factor experiment using the percent of
kernal damage (DAMG) as the response variable. Using the data given in
REG07X05, do a similar analysis for each of the other response variables,
TIME and UNSHL. Compare the results.

10. Biologists are interested in the characteristics of growth curves and typi-
cally will observe physical characteristics of animals at various ages.
Freund and Wilson (2003) report data obtained from 30 rabbits. Measure-
ments were made on the length of the jawbone for various ages of rabbits.
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The data are shown in Table 7.20 and given in REG07P10. It is of interest to
model the length of the jawbone using age.

(a) Use a 5-point moving average to fit a curve to the data.
(b) Use the loess method to fit a curve to the data.
(c) Use a fourth-degree polynomial to fit a curve to the data.
(d) Compare the three curves obtained.

Table 7.20

Rabbit Jawbone Length

AGE LENGTH AGE LENGTH AGE LENGTH

0.01 15.5 0.41 29.7 2.52 49.0
0.20 26.1 0.83 37.7 2.61 45.9
0.20 26.3 1.09 41.5 2.64 49.8
0.21 26.7 1.17 41.9 2.87 49.4
0.23 27.5 1.39 48.9 3.39 51.4
0.24 27.0 1.53 45.4 3.41 49.7
0.24 27.0 1.74 48.3 3.52 49.8
0.25 26.0 2.01 50.7 3.65 49.9
0.26 28.6 2.12 50.6 5.66 50.3
0.34 29.8 2.29 49.2 6.00 48.5
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Chapter 8

Introduction to
Nonlinear Models

8.1 Introduction

In Chapter 7 we examined procedures for handling nonlinear relationships
that simply fit a smooth line (or response plane) to the data, using polyno-
mial or nonparametric regression methods. The emphasis was on finding a
good compromise between goodness of fit and smoothness of the curve, and
in which the model itself was of little or no concern. We now turn to meth-
ods for fitting curved response lines or planes where the underlying model is
a known nonlinear function and estimates of the parameters have practical
importance. In this chapter, we define two classes of nonlinear models.

The first, which we will call intrinsically linear models, can be recast as
linear models by the use of transformations, either on the dependent variable,
the independent variables, or both. Once the transformation has been accom-
plished; linear regression methods can be used, although interpretations of
coefficients and results are not always straightforward. We discuss these in
Section 8.2.

The second is the class of nonlinear models that cannot be made linear by
transformation. We call such models intrinsically nonlinear or simply non-
linear models. Least squares principles can still be used and result in normal
equations whose solution will provide least squares estimates. Unfortunately,
solving these equations is not a simple matter, but thanks to computers, can
now be accomplished with relative ease. However, unlike the linear case, the
solution may not allow for all of the usual inferential statistics. We discuss
these in Section 8.3.

In most cases, theory will dictate which of the two classes would be appro-
priate. In those instances where there is not a clear choice, we can often look

303
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at a scatter plot for guidance. In cases where the transformation is to be on the
independent variable(s), the scatter plot may have a distinct shape (as illus-
trated in Example 8.1). In cases where the transformation is to be made on
the dependent variable, not only the shape, but also the dispersion of the data
shows a distinct pattern. This pattern is a result of the nature of the error term.
As an example, consider a process that has the response variable, y, propor-
tional to xθ, where θ is an unknown parameter. In this case, we consider two
possibilities for the nonlinear regression model:

(1) y = β0x
β1ε, which is intrinsically linear, or

(2) y = β0x
β1 + ε, which is intrinsically nonlinear.

β0 is an unknown constant of proportionality, β1 is the unknown parameter θ,
and ε is a random error term with mean 0 and unknown variance σ2.

Scatter plots for both models with the value of β0 = 1.5 and β1 = 2, and
σ2 = 0.25, are shown in Figure 8.1.

Figure 8.1 Scatter Plots for Nonlinear Models
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Notice that the scatter plot for model (1) shows a noticeable lack of homo-
geneity of variances, increasing as x gets larger. This is a result of the fact that
the error in model (1) is “multiplicative,” while the one in model (2) is “addi-
tive.” A simple log transformation of the response variable in model (1) yields:

log(y) = log(β0) + β1log(x) + log(ε).

This is in the form of a simple linear regression, with log(y) as the dependent
variable, log(β0) as the intercept, log(x) as the independent variable, and log(ε)
as the error term. We can use ordinary least squares to obtain an estimate of
the unknown parameter β1. However, we cannot be sure that the new error
term, log(ε), will satisfy the assumptions necessary to do statistical inference
on this estimate. This model in a more general form is discussed in Section 8.2.

We cannot transform any of the variables in model (2) to get a linear model.
Therefore, we need to use the methods discussed in Section 8.3 to obtain
estimates of the unknown coefficients. As indicated previously, this method
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involves creating the sums of squares of the error terms and solving the
nonlinear equations numerically for estimates of the parameters. The ques-
tion to be resolved is whether the standard assumptions on the error term are
satisfied by the original nonlinear model or the transformed one. Often this
can be determined by an examination of the scatter plot.

We should point out here that if the scatter plot alone were used to deter-
mine a method of analysis, the example given for model (2) would suggest that
a simple polynomial model is appropriate. However, knowing the theoretical
nature of the relationship, we should use the more sophisticated model.

Most physical processes cannot be modeled with a simple mathematical
expression. In fact, many processes are so complex that the true relationships
among the variables of the process may never be known. However, experience
has shown that the nature of the responses can usually be reasonably well
explained with readily implemented approximate models, such as the polyno-
mial model. Therefore, it is usually a good idea to first try simple models to get
ideas on the nature of the response. The information obtained by such prelim-
inary analyses can then be used to evaluate results of fitting more complex
models for which the validity is not always easily verified.

8.2 Intrinsically Linear Models

Our definition of an intrinsically linear model is one that can be made to look like
the standard linear model of Chapter 3 by the use of one or more transforma-
tions. These transformations may involve one or more independent variables,
the response variable, or all variables. For example, the multiplicative model,

y = β0x
β1

1 x β2
2 · · ·x βm

m ε,

has many uses in economics and the physical sciences. This model can be made
linear by taking the logarithm1 of both sides of the equality. This results in the
model

log(y) = log(β0) + β1 log(x1) + β2 log(x2) + · · ·+ βm log(xm) + log(ε),

which is indeed linear in the parameters and can be analyzed by the methods
we have been using. Properties and uses of this model are presented later in this
section.

Not all transforms involve all the variables. For example, the polynomial
models covered in Chapter 7 used a transformation only on the independent
variable.Othersuchtransformationsmay involvesquareroots, reciprocals, log-
arithms, or other functions of the independent variables while leaving the
response variable alone. Other transformations, such as the so-called power

transformation, discussed later in this section, only involve the dependent vari-
able. Other situations, such as the multiplicative model discussed earlier,
require that both independent and response variables be transformed.

1Usually the natural logarithm system is used; however, any base logarithm may be used.
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Sometimes simple plots of the dependent variable against the independent
variables one at a time can be very informative. Certain patterns indicate a cer-
tain type of nonlinearity that can be corrected by the appropriate transforma-
tion. For example, Figure 8.2 shows several patterns that indicate a need for
a transformation on the independent variable and the appropriate transforma-
tion. Notice that these patterns do not identify any violations of the assumption
of equal variance, but do identify model specification problems.

Often, the nonlinearity of the relationship betweenx and y in a linear regres-
sion is accompanied by a violation of the equal variance assumption. In that
case, a transformation on the dependent variable may be indicated. Figure 8.3
shows several patterns that indicate a need for a simple transformation on the
y variable and what that transformation should be. Notice that these patterns
also identify violations of the equal variances assumption.

Figure 8.2

Patterns Suggesting
Transformations on the x
Variable
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Figure 8.3

Patterns Suggesting
Transformations on the
Response Variable

y log(y) 1/y

EXAMPLE 8.1 A large grocery chain conducted an experiment to determine the effect of the
size of shelf display on the sale of canned spinach. The independent variable—
shelf size (WIDTH) in feet—was varied in several of their stores, and the
response—sales in cases of canned spinach (SALES)—was recorded for the
month. The monthly sales was used as the response variable, and the width of
the shelf was used as the independent variable. The data and the results of a
linear regression analysis are shown in Table 8.1.

Table 8.1

Sales of Canned Spinach

DATA

Width Sales Width Sales

0.5 42 1.5 100
0.5 50 2.0 105
1.0 68 2.0 112
1.0 80 2.5 112
1.5 89 2.5 128

(Continued)
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Table 8.1

(Continued)

ANALYSIS

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 6661.25000 6661.25000 97.75 <.0001
Error 8 545.15000 68.14375
Corrected Total 9 7206.40000

Root MSE 8.25492 R-Square 0.9244
Dependent Mean 88.60000 Adj R-Sq 0.9149
Coeff Var 9.31707

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 33.85000 6.12201 5.53 0.0006
width 1 36.50000 3.69171 9.89 <.0001

Figure 8.4 shows a plot of the response variable shelf width. The nature of this
plot shows that the effect of increasing shelf size diminishes with size. In this
case, relating sales to the square root of shelf space may be justified by the fact
that the visible portion of the display will be proportional to the square root of
total space.

Figure 8.4

Sales of Canned Spinach

We now do the regression analysis using the square root of shelf space as the
independent variable. The results of a simple linear regression using SALES as
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the dependent variable and the square root of shelf size (SQW) as the
independent variable are shown in Table 8.2.

Table 8.2

Regression Using Square
Root of Shelf Space

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 6855.66658 6855.66658 156.37 <.0001
Error 8 350.73342 43.84168
Corrected Total 9 7206.40000

Root MSE 6.62130 R-Square 0.9513
Dependent Mean 88.60000 Adj R-Sq 0.9452
Coeff Var 7.47326

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −12.24648 8.33192 −1.47 0.1798
sqw 1 85.07087 6.80299 12.50 <.0001

The linear regression obviously fits very well. Notice that the MSE using the
transformed variable is smaller than that shown in Table 8.1, and the R-square
is larger. And because the transformation is very straightforward, the interpre-
tation of the results is also very straightforward. The estimated response is

SAL̂ES = −12.25 + 85.07(SQW).

Therefore, for a shelf 2 feet wide, the estimated expected sales become
−12.25 + 85.07(1.414) or 108.04 cases.

It is often not a simple matter to determine what an appropriate transfor-
mation should be. Although trial-and-error methods work, they can be time-
consuming. Examination of plots of the residuals can identify certain
assumption violations, and an examination of the scatter plot can be enlighten-
ing. Other methods exist for identifying appropriate transformations. We will
examine one of the most popular and flexible methods that can be used to iden-
tify which transformation of the response variable is most appropriate for
correcting skewness of the distributions of the error terms, unequal error vari-
ances, and nonlinearity of the regression function.

Assume that the transformation to be used is a power of the response vari-
able. Then we define a family of transformations as yλ, whereλ can take on any
positive or negative value as the power transformation.

The problem now becomes one of identifying the appropriate value of λ.
One way of doing this uses the fact that, most often, violations of the equal
variance assumption result when there is a relationship between the variance
and the mean value of the response. If the standard deviation is proportional
to a power of the mean of y such that σ ∝ μα, then the appropriate
transformation will depend on the value of α. Furthermore, once we
determine α, then λ = 1− α. Several of the common transformations are sum-
marized as follows:
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α = −1, λ = 2, ynew = y2

α = 0.5, λ = 0.5, ynew =
√
y

α = 0, λ = 1, No transformation is needed

α = 1, λ = 0, ynew = loge(y), by definition
α = 1.5, λ = −0.5, ynew = 1/

√
y

α = 2, λ = −1, ynew = 1/y

If multiple observations exist for individual values of the independent vari-
able, we can empirically estimate α from the data. At the ith level of the inde-
pendent variable σyi ∝ μα

i = ξμα
i , where ξ is a constant of proportionality. We

can take the log of both sides and get:

logσyi = log ξ + α logμi.

Therefore, a plot of log σyi vs log μi would be a straight line with slope α. Since
we do not know σyi or μi, we substitute reasonable estimates. An estimate of
σyi can be obtained by calculating the sample standard deviation, si, of all
responses at xi. Similarly, an estimate of μi can be obtained by calculating the
sample mean, yi, at each value of xi. Once these estimates are obtained, then
we can plot log si vs log yi and use the slope of the resulting straight-line fit as
an estimate of α.

EXAMPLE 8.2 An experiment was done to examine the relationship between calcium and
strength of fingernails. A sample of 8 college students were given calcium sup-
plements in the amount of 10 mg, 20 mg, 30 mg, and 40 mg. At the end of the test
period, fingernail strength was measured. The results, along with the means and
standard deviations of each level of supplement, are presented in Table 8.3. The
regression of strength on calcium is given in Table 8.4.

Table 8.3

Calcium Data

Calcium Fingernail Strength Mean Standard Deviation

10 14 46 24 14 65 59 30 31 35.375 19.42
20 116 74 27 135 99 82 57 31 77.625 38.57
30 44 70 109 133 55 115 85 66 84.625 31.50
40 77 311 79 107 89 174 106 72 126.875 81.22

Table 8.4

Regression of Strength
on Calcium

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 31697 31697 13.95 0.0008
Error 30 68169 2272.28667
Corrected Total 31 99866

Root MSE 47.66851 R-Square 0.3174
Dependent Mean 81.12500 Adj R-Sq 0.2946
Coeff Var 58.75933

(Continued)
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Table 8.4

(Continued)

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 10.75000 20.64107 0.52 0.6063
calcium 1 2.81500 0.75371 3.73 0.0008

The regression is significant but does not seem to be very strong (R-square
of only 0.3174). An examination of the residuals indicates that there may be a
problem with constant variance. A plot of the residuals against the predicted
values is given in Figure 8.5.

Figure 8.5
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These residuals indicate a problem with the equal variance assumption.
Furthermore, it seems that the amount of variation depends on the predicted
values of y. To determine if a transformation will help, the logs of the standard
deviations and the logs of the means are plotted in Figure 8.6.

Figure 8.6
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Figure 8.6 indicates that a line with slope about 1.0 would fit best. Therefore,
we will transform the response variable using natural logarithms. The resulting
regression is given in Table 8.5 and the residuals in Figure 8.7. The residuals
now indicate a constant variance. Furthermore, the regression in Table 8.5
seems to indicate a much better fit.

Table 8.5

Regression of log
(Strength) on Calcium

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 6.51514 6.51514 23.36 <.0001
Error 30 8.36677 0.27889
Corrected Total 31 14.88191

Root MSE 0.52810 R-Square 0.4378
Dependent Mean 4.18194 Adj R-Sq 0.1190
Coeff Var 12.62816

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 3.17299 0.22868 13.88 <.0001
calcium 1 0.04036 0.00835 4.83 <.0001

Figure 8.7 Residuals from Table 8.5
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If multiple observations are not available for any values of the independent
variable, or if the variances are not proportional to the mean, the power trans-
formation may still be useful. Identifying the value for λ is still a problem.
Box and Cox (1964) have shown how the transformation parameter λ can be
estimated simultaneously with the other model parameters. This procedure
is called the Box–Cox method and uses maximum likelihood estimation. For
example, consider the simple linear regression model written to represent an
arbitrary member of the family of the power transformations:

yλ = β0 + β1x+ ε.

Notice that this model has an extra parameter, λ. The Box–Cox procedure
assumes a normal error term and uses the method of maximum likelihood
to estimate the value of λ along with the estimates of the regression parame-
ters. Many statistical software packages offer this option. A discussion of the
Box–Cox procedure can be found in Draper and Smith (1998).

The Multiplicative Model
We now examine the multiplicative model in greater detail. The model is

y = β0x
β1

1 x β2
2 · · ·x βm

m ε,

which when transformed becomes

log(y) = log(β0) + β1 log(x1) + β2 log(x2) + · · ·+ βm log(xm) + log(ε),

where the logarithms are base e, although any base may be used with equiva-
lent results. The features of this model are as follows:

• The model is multiplicative;2 that is, when an independent variable x1, say,
has the value x∗

1, then the model implies that the estimated response is mul-
tiplied by (x∗

1)
β1 , holding constant all other variables. For example, if the

weight of an object is to be estimated by its dimensions (length, width, and
height), the weight is logically a product of the dimensions. If the object is
a cube, the exponents would all be unity, that is,

Weight = Intercept × Length × Width × Height,

where the intercept relates to the specific weight of the material of the cube.
In other words, the βi would all be unity. However, if the shape of the object
is irregular, the coefficients could differ from that value.

• Another way to describe the model is to state that the coefficients repre-
sent proportional effects. That is, effects are proportional to the size or
magnitude of the response variable. The coefficients represent the percent
change in the response associated with a 1% change in the independent

2The linear model using logarithms could logically be called a log-linear model; however, that
nomenclature has been reserved for an analysis of a model for a categorical dependent variable
(Chapter 10). We will therefore refer to it as the linear-in-logs model, as opposed to the multiplica-
tive model in the original variables.
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variable, holding constant all other variables. Economists call these
coefficients elasticities.

• The random error is also multiplicative. In other words, the magnitudes of
the errors are proportional to values of the response variable.

• If the distribution of the error in the linear in logs model is normal, the dis-
tribution of the error in the multiplicative model is lognormal. This distri-
bution is only defined for positive values and is highly skewed to the right.
The equivalent of a zero error in the linear model is the value of unity in the
multiplicative model. This means that the multiplicative deviations greater
than unity will tend to be larger in absolute value than those less than unity.
Again, this is a logical consequence of a multiplicative model.

• Although the estimates of the response in the linear in logs model are
unbiased, the estimates of the conditional mean or predicted values in the
multiplicative model are not. That is, if one performs the inverse log trans-
formation on the estimates from the model, the residuals from the originally
observed values will not sum to zero. This is a result of the skewness of the
lognormal distribution.

Applications of the linear in logs model are quite numerous. They include
those that estimate some function of size related to individual component sizes
or dimensions, which is the property of Example 8.3. The model is also applied
to many economic models where effects are proportional. The Cobb Douglas
production function is a multiplicative model used to describe the relationship
of product output to various inputs (labor, capital, etc.). In some engineering
applications, this model is called a learning curve. Also frequently used are
models involving variables that tend to vary by proportions or percentages,
which are illustrated by Example 8.4.

EXAMPLE 8.3 Estimating the Price of Diamonds We all know that prices of diamonds
increase with weight, which is measured in carats. We will use data on the
price and weight of a sample of diamonds sold at an auction. The data are
shown in Table 8.6 and are available in File REG08X03 on the data disk.

Table 8.6

Diamond Prices

Carats Price Carats Price Carats Price

0.50 1918 0.75 5055 1.24 18095
0.52 2055 0.77 3951 1.25 19757
0.52 1976 0.79 4131 1.29 36161
0.53 1976 0.79 4184 1.35 15297
0.54 2134 0.91 4816 1.36 17432
0.60 2499 1.02 27264 1.41 19176
0.63 2324 1.02 12684 1.46 16596
0.63 2747 1.03 11372 1.66 16321
0.68 2324 1.06 13181 1.90 28473
0.73 3719 1.23 17958 1.92 100411

We first use a linear model. The results of the analysis are shown in Table 8.7
and the residual plot in Figure 8.8. The results are not very satisfactory: the
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Table 8.7

Linear Regression
Analysis

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 5614124208 5614124208 33.65 <.0001
Error 28 4670941238 166819330
Corrected Total 29 10285065445

Root MSE 12916 R-Square 0.5459
Dependent Mean 13866 Adj R-Sq 0.5296
Coeff Var 93.14610

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −19912 6282.02373 −3.17 0.0037
CARATS 1 33677 5805.22786 5.80 <.0001

coefficient of determination is only 0.55, and the residual plot suggests that
the straight-line fit is not satisfactory. In addition, the distribution of residu-
als strongly suggests that variance increases with price, and, as we have seen
(Section 4.3), this condition results in incorrect confidence intervals for esti-
mation and prediction. The results are, however, not surprising.

Figure 8.8 Residual Plot for Linear Regression
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The residual plot suggests that unequal variances need to be dealt with first
and that we transform the response variable to stabilize the variance. Then, if
necessary, use a polynomial or other transformation on the independent vari-
able to describe the apparent curvilinear response or at least approximate it.
We will leave it to the reader to perform the polynomial regression analysis.
Instead we will use the linear in logs model:

log (Price) = β0 + β1 log (Carats) + ε.

With most computer programs, such a model is implemented by creating new
variables that are the logarithmic values of the variables and specifying these
variablesfortheregression.ThenewvariablenamesinthisexampleareLPRICE
and LCARATS. The results of this regression and the residual plot are shown in
Table 8.8 and Figure 8.9, respectively.

Table 8.8

Analysis of Model Using
Logarithms

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 30.86768 30.86768 219.75 <.0001
Error 28 3.93303 0.14047
Corrected Total 29 34.80072

Root MSE 0.37479 R-Square 0.8870
Dependent Mean 8.94591 Adj R-Sq 0.8829
Coeff Var 4.18948

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 9.14221 0.06970 131.17 <.0001
logcarats 1 2.51217 0.16947 14.82 <.0001

Figure 8.9

Residuals for
Logarithmic Model
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The results indicate that the transformed model fits the data quite well. The
coefficient of determination is much larger, although strict comparison is not
advisable because of the different scales of measurement. The residual plot
still indicates somewhat larger variances of residuals with higher predicted
values, but the evidence of nonlinearity is no longer there. The regression
coefficient estimates a 2.5% increase (see later discussion of this model) in
price associated with a 1% increase in weight (carats). This result reinforces
the apparent nonlinearity of the relationship and is, of course, a well-known
feature of diamond prices.

The problem with this analysis is that we are not really interested in estimating
the logarithms of price; we want to see how this model describes the relation-
ship of price to weight. We can do this by performing the reverse transforma-
tion on predicted values as well as various prediction intervals. The reverse
transformation is simply performed by exponentiating. That is,

Predicted value = eEstimated value from logarithmic model.

Figure 8.10 shows the actual prices along with the predicted values and the
0.95 prediction intervals obtained in this manner.

Figure 8.10

Statistics for the
Retransformed
Model

The results appear to be quite reasonable. However, as was pointed out ear-
lier, the estimated curve is not unbiased: The mean of the predicted values
is 15,283 as compared to a mean of 13,866. Because this is a multiplicative
model, the bias is also multiplicative; that is, the bias is 15,283/13,866 = 1.10,
or 10%. The magnitude of the bias is known to be related to the coefficient of
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determination; it has been suggested that it is approximately (1− R2), which
in this example would be 11.3%. Dividing all predicted values by the bias (1.10
in this example) will, of course produce ad hoc unbiased estimates.

As suggested previously, a weighted least squares quadratic polynomial may
do as well and would be a good exercise for the reader. Such a model will,
however, not provide useful regression coefficients.

EXAMPLE 8.4 Airline Passenger Demand The CAB (1972) (the airline-regulating body
prior to deregulation) collected data relating to commercial airline passen-
ger loads in 1966. For this example, data on number of passengers and num-
ber of airlines involved were arbitrarily selected for 74 pairs of cities from
this database. Additional information that may relate to passenger loads was
obtained from a standard atlas. The variables chosen for this study are:

PASS: Number of passengers (in thousands) flying between cities in a
sample week

This is the dependent variable. The following were used as independent
variables:

MILES: Air distance between the pair of cities
INM: Median per capita income of the larger city
INS: Median per capita income of the smaller city
POPM: Population of the larger city (in thousands)
POPS: Population of the smaller city (in thousands)
AIRL: Number of airlines serving that route

The variables CITY1 and CITY2 (abbreviations for the pair of cities) are given
for information only. They will not be used in the analysis. The object is to
estimate the number of passengers. Table 8.9 gives selected observations from
the data set; the entire data set is available as REG08X04 in the data file.

Table 8.9

Airline Passenger Data
(Selected Observations)

CITY1 CITY2 PASS MILES INM INS POPM POPS AIRL

ATL AGST 3.546 141 3.246 2.606 1270 279 3
ATL TPA 7.463 413 3.246 2.586 1270 881 5
DC NYC 150.970 205 3.962 2.524 11698 2637 12
LA BOSTN 16.397 2591 3.759 3.423 7079 3516 4
LA NYC 79.450 2446 3.962 3.759 11698 7079 5
MIA DETR 18.537 1155 3.695 3.024 4063 1142 5
MIA NYC 126.134 1094 3.962 3.024 11698 1142 7
MIA PHIL 21.117 1021 3.243 3.024 4690 1142 7
MIA TPA 18.674 205 3.024 2.586 1142 881 7
NYC BOSTN 189.506 188 3.962 3.423 11698 3516 8
NYC BUF 43.179 291 3.962 3.155 11698 1325 4
SANDG CHIC 6.162 1731 3.982 3.149 6587 1173 3
SANDG NYC 6.304 2429 3.962 3.149 11698 1173 4



318 Chapter 8 Introduction to Nonlinear Models

We first implement the linear model. Results are shown in Table 8.10 and the
residual plot in Figure 8.11. The model is certainly significant and fits the data
as well as one might expect. The significance and signs of coefficients of dis-
tance and number of airlines are much as expected. It is somewhat

Table 8.10

Analysis of Linear Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 72129 12022 25.19 <.0001
Error 67 31979 477.29520
Corrected Total 73 104108

Root MSE 21.84709 R-Square 0.6928
Dependent Mean 27.36491 Adj R-Sq 0.6653
Coeff Var 79.83615

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −81.17793 41.81503 −1.94 0.0564
miles 1 −0.01639 0.00427 −3.84 0.0003
inm 1 13.74491 12.49268 1.10 0.2752
ins 1 3.63629 8.21722 0.44 0.6595
popm 1 0.00223 0.00110 2.02 0.0474
pops 1 0.00969 0.00275 3.52 0.0008
airl 1 7.87593 1.80917 4.35 <.0001

Figure 8.11 Residuals for Linear Model
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surprising that population of the smaller city is significant but that of the larger
city is barely so (α = 0.05). Also somewhat surprising is the nonsignificance
of income.

Although these coefficients appear reasonable, they are not very useful. For
example, the coefficient for AIRL estimates that for an increase of one airline,
the number of passengers should increase by 7.88 (thousand) for any pair of
cities. The data in Table 8.9 show wide dispersions in the number of passen-
gers. For a high-volume route such as Miami to New York (126,134 passen-
gers), a change of 7880 would be negligible, whereas for a low-volume route
like Atlanta to Augusta (3546 passengers), such a change would be unrealis-
tic and unmanageable if it occurred. A more likely scenario is that the per-

centage of passengers changes with the number of airlines. A similar argu-
ment applies to the other coefficients. In other words, we need a multiplicative
model, which is provided by the linear in logs model.

The residual plot shows the typical pattern of increasing variances for larger
values of the response variable, also suggesting that the logarithmic transfor-
mation may be advisable.

We next implement the model using the logarithms. We do this by creating new
variables that are the logarithms, using the same variable names plus the prefix
log. Thus, the logarithm of PASS is logpass, etc. The results of the analysis are
shown in Table 8.11 and the residuals in Figure 8.12.

Table 8.11

Analysis of the Linear in
Logs Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 6 67.65374 11.27562 36.54 <.0001
Error 67 20.67414 0.30857
Corrected Total 73 88.32789

Root MSE 0.55549 R-Square 0.7659
Dependent Mean 2.67511 Adj R-Sq 0.7450
Coeff Var 20.76512

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 −6.47352 1.00488 −6.44 <.0001
logmiles 1 −0.43617 0.10091 −4.32 <.0001
loginm 1 2.91417 1.26730 2.30 0.0246
logins 1 0.77848 0.63182 1.23 0.2222
logpopm 1 0.42970 0.15249 2.82 0.0063
logpops 1 0.39270 0.11964 3.28 0.0016
logairl 1 0.71213 0.19455 3.66 0.0005
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Figure 8.12

Residuals Using
Linear in Logs Model
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The overall model statistics are not too different from those of the linear model.
Again, distance and number of airlines seem to be the most important fac-
tors. However, for this model the coefficients for populations of both cities
are roughly equivalent. And in this model, income of the larger city is signifi-
cant, although with a larger p-value than those of the other factors.

Furthermore, the coefficients now have a more reasonable interpretation. For
example, the logmiles coefficient now states that the number of passengers
should decrease by 4.4% with a 10% increase in distance.

8.3 Intrinsically Nonlinear Models

In Section 8.1 we noted that some models that are not linear in the parameters
cannot be made so by the use of transformations. We called these intrinsically

nonlinear models. Before we examine some methods that allow us to estimate
coefficients in nonlinear models, we need to examine the general statistical
model,

y = f(x1, . . . , xm, β1, . . . , βp) + ε,

where f is some function of the m independent variables, x1, . . . , xm, and p
coefficients, β1, . . . , βp. The value of m does not have to equal p. As usual, the
error term ε is assumed to be normal with mean 0 and variance σ2. Notice that
if we define

f(x1, . . . , xm, β0, . . . , βm) = β0 + β1x1 + · · ·+ βmxm,

we have described the linear regression model.
The procedure we used to estimate the unknown coefficients in the regres-

sion model was called the least squares principle and involved minimizing the
SSE using calculus. This minimizing involved solving a set of linear equations.
(See Appendix C.) We can use an analogous procedure to solve for unknown
coefficients in almost any function f . That is, we can minimize the following:

SSE = Σ [y − f(x1, . . . , xm; β1, . . . , βp)]
2.
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The problem arises from the fact that there may be at least as many
coefficients in the model than independent variables (p ≥ m), or the minimiz-
ing procedure does not yield linear equations, thereby making closed forms or
exact solutions impossible. Therefore, solutions are obtained by means of an
iterative search process.

An iterative search process starts with some preliminary estimates of the
parameters. These estimates are used to calculate a residual sum of squares
and give an indication of what modifications of the parameter estimates may
result in reducing this residual sum of squares. This process is repeated until no
further changes in estimates result in a reduction, and we use these estimates.

Alternatively, we could use maximum likelihood methods to estimate the
coefficients (see Appendix C for a brief discussion of maximum likelihood
estimation). It can be shown that for many models, the two procedures give
identical results as long as error terms are independent, normal, and have con-
stant variances. (See, for example, Kutner et al., 2004.) Furthermore, maxi-
mum likelihood methods often require iterative numerical search methods to
obtain solutions as well.

Researchers have developed a multitude of different iterative methods to
solve the equations needed to fit nonlinear models. Considerations of
efficiency, accuracy, and trying to avoid finding so-called local minima are
importantinchoosingaspecificmethod.Mostcomputersoftwareproductsoffer
several methods; for example, PROC NLIN in SAS offers five different methods.

We will illustrate the procedure with several examples. The first will look at
the exponential decay model; the second will look at a growth curve using the
logistic growth model; and the third will use a segmented polynomial similar
to that covered in Section 7.3, but with an unknown knot.

EXAMPLE 8.5 Radiation Decay Table 8.12 lists the radiation count (y) taken at various
times (t) immediately after exposure to a certain radioactive isotope. Theory
indicates that these data should fit an exponential model known as the decay
model. This model is of the form

Table 8.12

Radiation Data

Time (t) Count (y)

0 540
5 501
5 496

10 255
10 242
15 221
20 205
25 210
30 165
35 156
40 137
45 119
50 109
55 100
60 53
65 41

y = β0e
β1t + ε,

where β0 is the initial count at t = 0, and β1 is the exponential decay rate.
The ε are assumed to be independent normal errors. Notice that this model is
intrinsically nonlinear because the error is not multiplicative.

In order to do the nonlinear regression, we need starting values for the iterative
process that will estimate the coefficients. Fortunately, for this model we are
able to obtain reasonable starting values. To get a starting value for β0, we
observe that the first piece of data has a value of time = 0, thereby giving us
a good estimate for β0 of 540. To get a starting value for β1, we choose the
time = 30 where count = 165. This gives us the following equation:

165 = 540eβ1(30).

Taking natural logarithms and solving gives us an estimate of β1 = −0.0395.
This gives us the necessary starting points of 540 and 0.0395. Table 8.13 gives
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a partial output using these starting values and the PROC NLIN nonlinear
regression option in SAS.

Table 8.13

Nonlinear Regression

Nonlinear Least Squares Summary Statistics Dependent Variable COUNT

Source DF Sum of Squares Mean Square

Regression 2 1115336.3338 557668.1669
Residual 14 42697.6662 3049.8333
Uncorrected Total 16 1158034.0000
(Corrected Total) 15 370377.7500

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

B0 517.3141078 36.425800343 439.18872007 595.43949555
B1 −0.0396592 0.005129728 −0.05066130 −0.02865700

We have omitted the summary of the iterative search procedure, which
includes a statement that the search procedure did converge. The procedure
used in PROC NLIN produces a sequence of parameter estimates that yield
ever-decreasing residual sums of squares. The sequence converges when no
further decrease appears possible. That means the procedure stops when it
has found what it considers to be a minimum value for the residual sums of
squares. The parameter values are given in the last two rows of Table 8.13.
The estimates are β̂1 = −0.0397 and β̂0 = 517.314.

The first section of Table 8.13 gives the partitioning of the sum of squares that
corresponds to the analysis of variance portion of the standard linear regres-
sion analysis. However, note that the partitioning starts with the uncorrected
total sum of squares. This more closely resembled the analysis for the regres-
sion through the origin presented in Section 2.6. This is because in most non-
linear models there is no natural mean or intercept; hence, the corrected sum
of squares may have no meaning. However, the corrected total sum of squares
is provided in case the more “usual” analysis is desired.

No test statistics are presented in the output for either the model or the parame-
ters. This is because exact inference procedures are not available for nonlinear
regressionmodelswithnormalerror termsduetothefact that leastsquaresesti-
mators for small sample sizes are not normally distributed, are not unbiased,
and do not have minimum variance. Consequently, inferences about the regres-
sion parameters in nonlinear regression are usually based on large-sample or
asymptotic theory. This theory tells us that the estimators are approximately
normally distributed, almost unbiased, and at almost minimum variance when
the sample size is large. As a result, inferences for nonlinear regression parame-
ters are carried out in the same fashion as for linear regression when the sample
size is reasonably large. These inference procedures, when applied to nonlin-
ear regression,areonlyapproximate.However, thisapproximation isoftenvery
good, and for some nonlinear regression models, the sample size can be quite
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small for the asymptotic inferences to be quite good. Unfortunately, for other
nonlinear regression models, the sample size may need to be quite large. For
a good discussion of when large-sample theory is applicable, see Kutner et al.
(2004).

The equivalent to the usual F test for the overall regression model can be cal-
culated by using the corrected total sums of squares, subtracting the residual
sums of squares, and taking the ratio of mean squares. This value will be approx-
imately distributed as theF distribution for large samples. The standard errors
of the estimated coefficients and the confidence intervals are also asymptotic
(as indicated in Table 8.13). Therefore, we can be approximately 95% confident
that the true value of β0 is between 439.2 and 595.4, and the true value of β1 is
between −0.05 and −0.03. Notice that neither confidence interval contains 0,
so we can conclude that both coefficients are significantly different from 0.

The estimated coefficients can be used to provide an estimated model:

μ̂y|t = 517.3e−0.04t.

The estimated initial count is 517.3, and the estimated exponential decay rate
is 0.04. This means that the expected count at time t is e−0.04 = 0.96 times the
count at time (t − 1). In other words, the estimated rate of decay is
(1 − 0.96) = 0.04, or approximately 4% per time period. We can obtain the
estimated half-life, the time at which one-half of the radiation has occurred,
by t = ln(2)/0.04 = 17.3 time periods.

The difference between this approach to solving the exponential model and
that used in Example 8.2 is the assumption on the nature of the error term. If
the error is multiplicative, we can treat the decay model as intrinsically linear
and use the log transformation. That is, we define the model:

log(COUNT) = β0 + β1(TIME) + ε.

The result of using the transformed model in a linear regression on the data of
Example 8.5 is given in Table 8.14.

Table 8.14

Log Model for Decay
Data

Dependent Variable: LOG

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 7.45418 7.45418 157.61 <.0001
Error 14 0.66214 0.04730
Corrected Total 15 8.11632

Root MSE 0.21748 R-Square 0.9184
Dependent Mean 5.16553 Adj R-Sq 0.9126
Coeff Var 4.21012

(Continued)
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Table 8.14

(Continued)

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 6.13856 0.09467 64.84 <.0001
time 1 −0.03312 0.00264 −12.55 <.0001

Exponentiating both sides of the transformed model yields the following:

COUNT = eβ0eβ1teε.

Using the results from Table 8.14 we get the following estimated model:

COÛNT = e6.139e−0.033t = 463.6e−0.033t.

Notice that the estimates do not differ that much from those found using the
nonlinear model. Remember that the intrinsically linear model does make dif-
ferent assumptions about the random error.

Finally, we can use a polynomial model to “fit” the data. This model was con-
sidered in Section 7.2, where it was determined that a cubic polynomial best
fits the data. The results of such a regression are given in Table 8.15.

Table 8.15

Polynomial Regression
for Radiation Data

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 343681.1073 114560.3691 51.49 <.0001
Error 12 26696.6427 2224.7202
Corrected Total 15 370377.7500

R-Square 0.927921 Root MSE 47.16694
Coeff Var 21.25834 Count Mean 221.8750

Source DF Type I SS Mean Square F Value Pr > F

time 1 280082.9368 280082.9368 125.90 <.0001
time∗time 1 39009.1398 39009.1398 17.53 0.0013
time∗time∗time 1 24589.0307 24589.0307 11.05 0.0061

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 566.8147957 36.11788755 15.69 <.0001
time −31.5637828 5.33436752 −5.92 <.0001
time∗time 0.7825509 0.19553224 4.00 0.0018
time∗time∗time −0.0065666 0.00197517 −3.32 0.0061

All three of these approaches seem to do a creditable job of predicting the
radioactive count over time, as is illustrated in Figure 8.13, where line 1 rep-
resents the nonlinear model, 2 the exponentiated log model, and 3 the poly-
nomial model, and the dots are the data. However, the polynomial regression
shows an increase in count toward the end, a result that is impossible, and the
log model assumes a multiplicative error. Therefore, the only strictly correct
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Figure 8.13

Comparison of
Models

analysis is the nonlinear model. By using this model, we can account for the
fact that the error term is probably additive, and we can estimate the needed
parameters.

A more general form of the decay model is

y = β0 + β1e
β2t + ε,

where

(β0 + β1) is the initial count when t = 0
β0 is the final count, when t = ∞
β2 is the decay rate
ε is the normally distributed random error

Note that the only difference is that this model does not require the curve to go
to 0 as t gets large. Also, this model is intrinsically nonlinear even if we allow
a multiplicative error.

Again, we need starting values for the iterative process that will estimate the
coefficients. For this model, we are able to obtain reasonable starting values
for the process using the same strategy as before. For example, we can use the
value for t = 0 to estimate β0 + β1 by 540. Because the counts are decreasing
up to the last time measured, it is reasonable to estimate β0 by 0. This gives us
a starting value for β1 of 540.
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We will use the observation for TIME = 30 and COUNT = 165 to solve for our
estimate of β2.

165 = 0 + 540e30β2

ln(165) = ln(540) + 30β2

5.10 = 6.29 + 30β2,

which is solved to provide the estimate β2 = −0.04.

Table 8.16 gives a partial output from PROC NLIN of SAS using these starting
values.

Table 8.16

Nonlinear Regression

Nonlinear Least Squares Summary Statistics Dependent Variable COUNT

Source DF Sum of Squares Mean Square

Regression 3 1126004.0106 375334.6702
Residual 13 32029.9894 2463.8453
Uncorrected Total 16 1158034.0000

(Corrected Total) 15 370377.7500

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

B0 83.2811078 26.205957197 26.66661319 139.89560248
B1 486.7398763 41.963485999 396.08333074 577.39642192
B2 −0.0701384 0.015400632 −0.10343320 −0.03684362

The parameter estimates provide the model

μ̂y|x = 83.28 + 486.74e−0.070t.

Using these coefficients, we find that the estimated initial count is (83.28 +
486.74) = 570.02, the estimated final count is 83.28, and the estimated expo-
nential decay rate is −0.070. This means that the expected count at time t is
e−0.07 = 0.93 times the count at time (t−1). In other words, the estimated loss
per time period is (1− 0.93) = 0.07, or approximately 7% per time period. We
can obtain the estimated half-life, the time at which one-half of the radiation
has occurred, by t = ln(2)/0.07 = 9.9 time periods.

The partitioning of sums of squares indicates that this model fits better than
the two-parameter model. The standard error of the decay coefficient is three
times as large as that for the two-parameter model. Using the formula for the
variance of a sum of random variables provides the standard error of the start-
ing value, (β̂0+ β̂1) of 40.121, which compares favorably. The confidence inter-
val for the asymptote is quite wide, but does not include 0.

Figure 8.14 shows a plot of the estimated model (line) and the observed values
(dots). The model does appear to fit quite well.
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Figure 8.14

Decay Curve

Growth Models
Growth models are applied in many areas of research. In biology, botany,
forestry, zoology, and ecology, growth occurs in many different organisms,
including humans. This growth is a function of the time the organism is alive.
In chemistry, growth occurs as a result of chemical reactions. This growth is a
function of the time the reaction has been taking place. In economics and polit-
ical science, growth of organizations, supplies of commodities, manufactured
goods, and even nations occurs as a function of time. Therefore, it is important
to be able to model growth behavior over time. And because we need a model
with parameters that can be interpreted, we will be using a nonlinear model.

The exponential model can be used for exponential growth as well as decay.
The difference is in the sign of the coefficient β1: if it is positive, the model
describes a process that is growing; if negative, the model describes decay.
The problem with using an exponential model as a growth model is that the
expected value of y continues upward. Such a model usually does not fit data
that are collected over a long period of time because most biological organisms
stop growing when they reach maturity. Instead, most growth models allow
for several different rates of growth at various time intervals and are usually
S-shaped.

We will illustrate the application of a nonlinear growth model with an exam-
ple. The model used will be one of the most commonly used growth models,
the logistic or autocatalytic model,

y =
β2

1 + [(β2 − β0)/β0]eβ1t
+ ε,
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where

β0 is the expected value of y at time (t) = 0 (initial value)
β1 is a measure of the growth rate
β2 is the expected value of y for very large values of time, often called the

limiting value of y
ε is the random error, assumed to have mean 0 and variance σ2

EXAMPLE 8.6 Growth Model Table 8.17 lists data from an experiment attempting to
raise Florida lobster in a controlled environment. The data show the overall
length (LENGTH) of a certain species of lobster and the age (TIME) of the
lobster.

Table 8.17

Lobster Data

TIME (mo) LENGTH (mm)

14 59
22 92
28 131
35 175
40 215
50 275
56 289
63 269
71 395
77 434
84 441
91 450
98 454

105 448
112 452
119 455
126 453
133 456
140 460
147 464
154 460

We will use PROC NLIN in SAS to estimate the values of the parameters. Again,
we need starting values for the estimation process. Although in this data set
TIME does not start at 0, we will use the length at 14 months (59 mm) to esti-
mate the starting value, and the length at the last value of time (460 mm) to
estimate the limiting value. Because we really have no prior knowledge about
the growth rate except that it is positive, we will arbitraily choose a starting
value for β1 of 0.1.3 A partial listing of the output is given in Table 8.18.

3Most nonlinear regression programs allow the use of a grid search, which can provide better
preliminary initial values.
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Table 8.18

Nonlinear Regression

Nonlinear Least Squares Summary Statistics Dependent Variable COUNT

Source DF Sum of Squares Mean Square

Regression 3 1126004.0106 375334.6702
Residual 13 32029.9894 2463.8453
Uncorrected Total 16 1158034.0000

(Corrected Total) 15 370377.7500

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

B0 83.2811078 26.205957197 26.66661319 139.89560248
B1 −0.0701384 0.015411632 −0.10343320 −0.03684362
B2 486.7398763 41.963485999 396.08333074 577.39642192

The initial portion of the output gives the usual partitioning of sums of squares.
The model does appear to fit reasonably well.

The asymptotic 95% confidence intervals do not include zero; hence, for all
coefficients we reject the hypothesis of no effect. Notice that the estimate
of the limiting value of length is about 486.7. This implies that this species
of lobster very rarely gets longer than 19 inches. The estimated initial value of
83.3 has little meaning. Figure 8.15 shows the predicted values (solid line) and
the observed values (dots connected by broken line). Not only does the plot
indicate quite a good fit to the data, but it illustrates the characteristic shape
of the growth curve.

Figure 8.15

Plot of Growth Curve

We now consider a segmented polynomial model, in which the location
of the knot is unknown, for which the estimation of the parameters is more
difficult.
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EXAMPLE 8.7 EXAMPLE 7.3 REVISITED This example consists of simulated data for a
segmented polynomial with a knot at x = 5, presented in Table 7.6. The data
were generated from the model

y = x− 0.1x2 + ε for x ≤ 5

y = 2.5 + ε for x > 5.

The random error is normally distributed with mean 0 and standard deviation
of 0.2.

If the location of the knot is known (which is x = 5 in this case), then the
model parameters can be estimated with linear regression methodology. When
the location of the knot is not known, the knot is a parameter of the model,
and we must use nonlinear regression procedures to estimate its value.

We begin by using PROC NLIN and using the known population parameters as
starting values. In terms of the computer names, and the name of the coeffi-
cient in PROC NLIN, these are as follows:

Parameter Coefficient Starting Value

INTERCEPT B0 0.0
X1 B1 1.0
XSQ B2 −0.1
X2 B3 0.0
X2SQ B4 0.1
KNOT KNOT 5.0

The results are shown in Table 8.19.

Table 8.19

Estimating the Knot in a
Segmented Regression

Nonlinear Least Squares Summary Statistics Dependent Variable Y

Source DF Sum of Squares Mean Square

Regression 6 202.35346116 33.72557686
Residual 35 1.44361369 0.04124611
Uncorrected Total 41 203.79707485

(Corrected Total) 40 23.65025485

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

B0 0.000006779 0.1062984 −0.2157891 0.2158027
B1 0.999994860 0.0655954 0.8668299 1.1331598
B2 −0.099999442 0.0097208 −0.1197336 −0.0802653
B3 −0.000055793 559.9346085 −1136.7209967 1136.7208851
B4 0.099996471 0.0272701 0.0446355 0.1553574
KNOT 4.999616707 2799.5095454 −5678.2731726 5688.2724060
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We begin to see that we may have a problem when we note that the error mean
square (0.0412) is larger than that obtained with the linear regression (0.03455).
The estimated coefficients are, however, quite close to the known population
values; in fact, they are closer than those from the linear regression used when
the location of the knot was known (Example 7.3). Finally, we see that the stan-
dard errors of two coefficients, B3 and KNOT, are so large as to make those
estimates useless. Apparently the minimum error mean square here is what is
known as a “local” minimum, as opposed to the “global” minimum that defines
the true least squares estimate.

As we have noted, this model is linear in all parameters except for the knot.
In order to get an idea of what the problem may be, we can estimate the linear
portion for several values of the knot, and by inspection have a better idea of
the least squares estimate. Figure 8.16 shows a plot of the error mean squares
for a selected set of values for the knot.

Figure 8.16

Plot of MSE and
Knot

We can now see that for this sample, the least squares estimate of the knot
is not near the true value of 5; it is actually around 7.15. In fact, the peculiar
shape of the curve may be an indication of the problem; for linear models such
a curve is always smooth. At this point we could readily use the estimates
from the linear regression for that value. Instead, we will use these values as
the initial values for a nonlinear regression. The initial values from the linear
regression (output not reproduced here) are as follows:
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Parameter Coefficient Starting Value

INTERCEPT: B0 −0.041
X1 B1 1.000
XSQ B2 −0.092
X2 B3 0.535
X2SQ B4 0.023
KNOT KNOT 5.0

The results of the nonlinear regression are shown in Table 8.20.

Table 8.20

Second Nonlinear
Regression for
Segmented Polynomial

Nonlinear Least Squares Summary Statistics Dependent Variable Y

Source DF Sum of Squares Mean Square

Regression 6 202.68968437 33.78161406
Residual 35 1.10739048 0.03163973
Uncorrected Total 41 203.79707485

(Corrected Total) 40 23.65025485

Asymptotic 95 %

Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

B0 −0.046178393 0.09263036506 −0.2342269149 0.1418701297
B1 1.009182408 0.06126312962 0.8848123810 1.1335524348
B2 −0.093408118 0.00845612190 −0.1105748566 −0.0762413801
B3 0.543113672 0.25310989219 0.0292763227 1.0569510204
B4 0.020336709 0.07835984316 −0.1387412855 0.1794147037
KNOT 7.166514178 0.35198257416 6.4519558046 7.8810725506

The estimated parameters are quite similar to the initial values, and the confi-
dence intervals now look reasonable. However, the error mean square is still
somewhat larger than that obtained by the linear regression estimates. Note
also that the estimated coefficients for X2 and X2SQ, as well as the knot, are
quite different from the true values of the parameters.

8.4 Summary

In general, nonlinear models fall into two categories. In the first category are
those models that can be made linear through a transformation. This transfor-
mation may be made on the independent variables, the dependent variable, or
a combination of the variables. The purpose of a transformation is to allow
us to use the methods of linear regression to obtain estimates of the unknown
parameters in the model. Unfortunately, this method only allows us to estimate
the parameters of the relationship involving the transformed parameters. Of
course, in some cases these relationships may be quite useful. Even so, it is as
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important to check assumptions when using intrinsically linear models as it is
when using ordinary linear models.

The second category, intrinsically nonlinear models, cannot be made linear
by transformations. This category of model can be handled using least squares
methodology or maximum likelihood methodology. In either case, estimation
of the unknown parameters is usually done by using iterative numerical meth-
ods. In previous chapters we have discussed the desirable properties of the
regression model. For example, we have noted that the estimates of the coef-
ficients are unbiased and have minimum variance. In this category of nonlin-
ear models, these properties of the estimators can only be verified in the limit.
That is, the estimators are only unbiased and have minimum variance if the
sample size is very large. As a result, for a specific nonlinear model and a spe-
cific sample size, very little can truly be stated regarding the properties of the
estimates. Therefore, only asymptotic confidence intervals can be computed.

8.5 CHAPTER EXERCISES

1. Exercise 1 of Chapter 7 concerned the effect of drought conditions on the
weight of pine seedlings. Six beds containing 24 pine seedlings of drought-
resistant pines were subjected to drought over a period of 12 days. The
average weight of the seedlings in each bed was recorded each day. The
data are available in File REG07P01. Use a nonlinear regression to see if
the decay models used in Example 8.4 are appropriate for these data.

2. In planning irrigation systems it is important to know how fast the water
advances in a furrow. File REG08P02 gives the distance covered (in feet)
at various times (in minutes). It may be appropriate to consider this as a
growth curve, since eventually the water may all be absorbed and no further
advance is possible. Fit a growth curve to these data. Compare the fit with
a polynomial.

3. The data in Table 8.21 and in data file REG08P03 resulted from a kinetics
study in which the velocity of a reaction (y) was expected to be related to
the concentration (x) with the following equation:

y =
β0x

β1 + x
+ ε.

Table 8.21

Data for Exercise 3

Velocity (y) Concentration (x)

1.92 1.0
2.13 1.0
2.77 1.5
2.48 1.5
4.63 2.0
5.05 2.0
5.50 3.0

(Continued)
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Table 8.21

(Continued)

Velocity (y) Concentration (x)

5.46 3.0
7.30 4.0
6.34 4.0
8.23 5.0
8.56 5.0
9.59 6.0
9.62 6.0

12.15 10.0
12.60 10.0
16.78 20.0
17.91 20.0
19.55 30.0
19.70 30.0
21.71 40.0
21.6 40.0

(a) Obtain starting values for β0 and β1. To do this, we can ignore the error
term and note that we can transform the model into z = γ0 + γ1w,
where z = 1/y, γ0 = 1/β0, γ1 = β1/β0, and w = 1/x. The initial values
can be obtained from a linear regression of z on w and using β0 = 1/γ0
and β1 = γ1/γ0.

(b) Using the starting values obtained in part (a), use nonlinear regression
to estimate the parameters β0 and β1.

4. The data in Table 8.22 and in File REG08PO4 resulted from a study to deter-
mine the death rate of a certain strain of bacteria when exposed to air. The
experimenter placed approximately equal samples of the bacteria on plates
and exposed them to air. The measures taken were t = time in minutes, and

Table 8.22

Data for Exercise 4

Percent Viable (y) Time (t)

0.92 1.0
0.93 1.0
0.77 2.5
0.80 2.5
0.63 5.0
0.65 5.0
0.50 10.0
0.46 10.0
0.30 20.0
0.34 20.0
0.23 30.0
0.26 30.0
0.19 40.0
0.17 40.0
0.15 50.0
0.12 50.0
0.06 75.0
0.08 75.0
0.04 100.0
0.05 100.0
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y = percent of bacteria still viable. It is desired to fit the general form of
the decay model,

y = β0 + β1e
β2t + ε,

where the terms of the model are defined in Example 8.4.
(a) To obtain starting values for the coefficients, we note that as time incre-

ases, the percentage of deaths increases. It is logical, then, to use an
estimate of β0 = 0. To obtain starting values of the other parame-
ters, note that if we ignore the error term in the model and make a
logarithmic transformation, we obtain a simple linear model: log(y) =
log(β1)+(β2)t. Fit this simple linear regression model and solve for the
initial estimates.

(b) Using the starting values obtained in (a), use nonlinear regression to fit
the general decay model.

(c) Fit a polynomial model to the data and compare with (b).

5. To examine the growth rate of Atlantic salmon, a study was done in a con-
trolled environment. The length of a sample of 10 fish was recorded every
7 days for a period of 21 weeks (starting with the second week). The aver-
age length of the 10 fish (LENGTH) and the age (AGE) of the fish are
recorded in File REG08P05. Fit the logistic growth model illustrated in
Example 8.6 to explain the growth of the Atlantic salmon.
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Chapter 9

Indicator Variables

9.1 Introduction

In Chapter 1 we showed how the various statistical procedures involving the
estimation and comparison among means could be stated in terms of a
linear model. In all subsequent chapters, all models have been “regression”
models where the response variable is related to quantitative independent
variables. In these models the parameters of the model are called regression
coefficients, which measure the effect of independent variables on the values
of the response variable.

In Example 6.3 we introduced the use of an indicator variable that allowed
the response to differ from the regression line for a specific value of the inde-
pendent variable. In this chapter we show how the use of several indicator
variables, often called dummy variables, can be used in a regression model to
perform the analysis of variance for comparing means. Although this method
is more cumbersome to use than the standard analysis of variance procedure,
it can be used where the standard method is not appropriate. In addition, this
method can be used for models that combine the features of the analysis of
variance and regression.

As indicated in the beginning of Part III, the use of indicator variables with
or without quantitative variables in a regression equation is often referred to
as the general linear model approach, a subset of the generalized linear model
approach discussed in Chapter 11. Therefore, most analyses of these types
of models using SAS will be done using PROC GLM (General Linear Model)
rather than PROC ANOVA or PROC REG.

As an introduction, we will show how the two-sample “pooled” t test can
be performed as a regression analysis. Assume two samples of n each,1 with

1Equal sample sizes are used for algebraic simplicity.
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means y1 and y2, respectively. The total sample size is n. = 2n. To describe
this population we propose a regression model,

y = β0 + β1x+ ε,

where the independent variable, x, takes on the following values:

x= 0 for observations in sample 1

x= 1 for observations in sample 2.

Substituting the values for x produces the model

y1 = β0 + ε, for observations in sample 1

y2 = β0 + β1 + ε, for sample 2.

Define β0 as μ1 and (β0 + β1) as μ2, and the model describes two populations
with meansμ1 andμ2, which is appropriately analyzed by the two-sample t test.

Because of the nature of the independent variable, some of the elements
of the formulas for the regression are simplified:

Σx = n, x = 1/2, Σx2 = n, Σxy = n y2,

and we will define

y = (y1 + y2)/2.

The quantities needed for the regression are

Sxx = Σx2 − 2nx2 =
n

2

Sxy = Σxy − 2nxy =
ny2 − y1

2
.

Then

β̂1 =
Sxy

Sxx
= (y2 − y1)

β̂0 = y1.

Note that for the sample from the first population where x=0, μ̂y|x = y1, and
for the second population μ̂y|x = y2, which are the values we would expect.

Using the relationships between the regression coefficients and the means
of the two populations, we see that the test for β1 =0 is the test for μ1 =μ2.
The value of MSE is given by

MSE =
SSE

2n− 2
=

Σ(y − μy|x)2

2n− 2
=

Σ(y1 − y1)
2 + Σ(y2 − y2)

2

2n− 2
,

which is identical to the pooled variance estimate for the pooled t test. Finally,
the formula for the test statistic is

t =
β̂1√
MSE

Sxx

=
y2 − y1√
MSE

2

n

,

which is, of course, the formula for the t test.
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Note that we have used a regression with an indicator variable: It indicates

that when x = 1 the observation belongs in the second sample, while when it
is 0 the observation is not, or equivalently, it is in sample 1. Indicator variables,
which are also called dummy variables, are not restricted to having values of
0 or 1, although these values are most commonly used. The reader may wish
to verify that using values of −1 and +1 will give the equivalent results for the
t test. In fact, any two unique values will give equivalent results.

9.2 The Dummy Variable Model

We illustrate the dummy variable approach with the one-way analysis of vari-
ance or completely randomized design model.2 Assuming data from indepen-
dent samples of ni from each of t populations or factor levels, we can write
the analysis of variance model as

yij = μ+ αi + εij , i = 1, 2, . . . , t, j = 1, 2, . . . , ni,

where

ni is the number of observations in each factor level
t is the number of such factor levels
μ is the overall mean
αi are the specific factor-level effects, subject to the restriction Σαi = 0,

which means that the “average” factor-level effect is zero

The hypotheses to be tested are

H0:αi = 0, for all i,

H1:αi �= 0, for one or more i.

The obvious difference between this model and a regression model is the
absence of independent variables. This is where indicator or dummy variables
come in. The model using dummy variables is

yij = μz0 + α1z1 + α2z2 + · · ·+ αtzt + εij ,

where the zi are the dummy variables indicating the presence or absence of
certain conditions for observations as follows:

z0 = 1 for all observations

z1 = 1 for all observations occurring in factor level 1, and

= 0 otherwise

z2 = 1 for all observations occurring in factor level 2, and

= 0 otherwise,

2For a more complete discussion see Section 1.5, or any statistical methods textbook.
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and so forth for all t factor levels. The definitions of μ, αi, and εij are as before.
Note that substituting the actual values of the dummy variables for any obser-
vation does indeed produce the analysis of variance model:

yij = μ+ αi + εij .

In other words, the dummy variable model has the appearance of a regres-
sion model but, by using the actual values of the independent variables for
any observation, exactly duplicates the analysis of variance model. Admit-
tedly, these independent variables are not the usual quantitative variables that
we have become accustomed to, but since the regression model makes no
assumptions about any distribution of the independent variables, no assump-
tions are violated.

We now perform an analysis according to this model, for which we will use
the procedures described in Chapter 3. The X and Y matrices3 for a set of data
described by this model are

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0
· · · . . . ·
· · · . . . ·
1 1 0 . . . 0
1 0 1 . . . 0
· · · . . . ·
· · · . . . ·
1 0 1 . . . 0
· · · . . . ·
· · · . . . ·
1 0 0 . . . 1
· · · . . . ·
· · · . . . ·
1 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11
·
·
·

y1n1

y21
·
·
·

y2n2

·
·
·
yt1
·
·
·

ytnt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is not difficult to compute the X ′X and X ′Y matrices that specify the
set of normal equations:

X ′XB = X ′Y .

3Although we have called the variables zi, we will denote the corresponding matrix X to conform
with the notation of Chapter 3.
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The resulting matrices are

X ′X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n. n1 n2 . . . nt

n1 n1 0 . . . 0
n2 0 n2 . . . 0
· · · . . . ·
· · · . . . ·
· · · . . . ·
nt 0 0 . . . nt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ
α1

α2

·
·
·
αt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X ′Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y ..
Y1.
Y2.
·
·
·
Yt.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where n. = Σni, Y .. = Σall yij , and Yi. = Σj yij . The X ′X matrix is often
referred to as the incidence matrix, as it is a matrix of frequencies or inci-

dences of observations occurring in the various factor levels.
An inspection of X ′X and X ′Y shows that the sum of elements of rows 2

through (t + 1) are equal to the elements of row 1. Remembering that each
row corresponds to the coefficients of one equation, we see that the equation
represented by the first row contributes no information over and above that
provided by the other equations. For this reason, the X ′X matrix is singular;
hence, it is not possible to immediately solve the set of normal equation to
produce a set of unique parameter estimates.

The normal equations corresponding to the second and all subsequent rows
represent equations of the form

μ+ αi = yi.,

which reveal the obvious: each factor level mean, yi., estimates the mean, μ,
plus the corresponding factor-level effect, αi. We can solve each of these equa-
tions for αi, producing the estimate

α̂i = yi. − μ.

However, if we now want a numerical estimate of α̂i, we need to have a value
for μ. It would appear reasonable to use the equation corresponding to the
first row to estimate μ, but this equation requires values for the α̂i, which we
have not yet obtained. This is the result of the singularity of X ′X : there are
really only t equations for solving for the (t+ 1) parameters of the model.

Obviously, there must be a way to obtain estimates, because we do get esti-
mates from the supposedly equivalent analysis of variance calculations. Now if
we look closely at statements of the analysis of variance models we presented
earlier, they were followed by the statement “subject to the restriction that
Σαi = 0.” Note that implementing this restriction requires that only (t− 1) of
the α̂i need be estimated because any one parameter is simply the negative of
the sum of all the others. As we will see, this is only one of a number of restric-
tions we can use, and because all will ultimately produce the same answers,
the restrictions pose no loss of generality.

One way to implement this restriction is to omit αt from the model, from
which we obtain estimates of the first (t−1)parameters (αi, i = 1, 2, . . . , t−1)
and then

α̂t = −α̂1 − α̂2 − · · · − α̂t−1.
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Using this restriction in the X matrix, we may define the dummy variables for
α̂1, α̂2, . . . , α̂t−1 as usual, but for observations in factor level t, all zi are set
to −1. Using these variables in the normal equations produces the following
estimates:

μ̂ = (1/t) Σyi. = Y ../t,

α̂i = yi. − μ̂, i = 1, 2, . . . , (t− 1),

and α̂t is computed by applying the restriction, that is,

α̂t = −α̂1 − α̂2 − · · · − α̂t−1.

It is interesting to note that the resulting estimate of μ is not the weighted
mean of factor-level means we would normally use when sample sizes are
unequal.4 Of course, the so-called overall mean is usually of little practical
interest.

The inability to directly estimate all parameters and the necessity of
applying restrictions are related to the degrees of freedom concept encoun-
tered in computing the sample variance in the first chapter of most introduc-
tory textbooks. There it is argued that, having to first obtain y to compute the
sum of squared deviations for calculating the variance, we have lost one degree
of freedom. The loss of that degree of freedom was supported by noting that
Σ(y − y) = 0, which is equivalent to the restriction we have just used. In the
dummy variable model we start with t sample statistics, y1., y2., . . . , yt.. If we
first estimate the overall mean (μ) from these statistics, there are only (t− 1)
degrees of freedom left for computing the estimates of the factor-level effect
parameters (the t values of the αi).

Other sets of restrictions may be used in the process of obtaining estimates,
each of which may result in different numerical values of parameter estimates.
For this reason, any set of estimates based on implementing a specific set of
restrictions is said to be biased. However, the existence of this bias is not in
itself a serious detriment to the use of this method, since these parameters are
by themselves not overly useful. As we have seen, we are usually interested
in functions of these parameters, such as contrasts or factor-level means, and
numerical values for estimates of these functions, called estimable functions,
are not affected by the specific restrictions applied.

A simple example illustrates this property. Assume a four-factor-level
experiment with equal sample sizes for factor levels. The means are 4, 6, 7,
and 7, respectively. Using the restriction Σαi = 0, that is, the sum of factor-
level effects is zero, provides factor-level effect estimates α̂1 = −2, 0, 1, 1,
respectively, and μ̂ = 6. Another popular restriction is to set the last factor
level effect to 0, that is, α̂4 = 0. The resulting estimates of factor-level effects
are −3, −1, 0, 0, respectively, and μ̂ = 7. One additional restriction lets μ̂ = 0,
and then the factor-level effects are 4, 6, 7, and 7, which are the factor-level
means.

4The usual estimate of the mean is obtained by using the restriction Σniαi = 0. However, we do
not normally want sample frequencies to influence parameter estimates.
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These sets of estimates are not the same. However, for example, the esti-
mate of the mean response for factor level 1, (μ̂ + α̂1) = 4, and likewise the
estimate of the contrast (α̂1 − α̂2) = −2 for all sets of parameter estimates.

Another feature of the implementation of the dummy variable model is that
numerical results for the partitioning of sums of squares are not affected by the
particular restriction applied. This means that any hypothesis tests based on
F ratios using the partitioning of sums of squares are valid tests for the asso-
ciated hypotheses regardless of the specific restriction applied. We illustrate
this method with a simple example.

EXAMPLE 9.1 Sleep-Inducing Drugs In an experiment to determine the effectiveness of
sleep-inducing drugs, eighteen insomniacs were randomly assigned to three
factor levels:

1. Placebo (no drug)
2. Standard drug
3. New experimental drug

Table 9.1

Data for Example 9.1

Factor Level

1 2 3

5.6 8.4 10.6
5.7 8.2 6.6
5.1 8.8 8.0
3.8 7.1 8.0
4.6 7.2 6.8
5.1 8.0 6.6

The response as shown in Table 9.1 is hours of sleep. We follow the procedure
as implemented by PROC GLM of the SAS System, using selected portions of
the output.

The first step is to construct the X and X ′X matrices. We will leave the con-
struction of the X matrix to the reader, who can verify that the X ′X matrix as
produced by PROC GLM of the SAS System is

INTERCEPT TRT 1 TRT 2 TRT 3 HOURS

INTERCEPT 18 6 6 6 124.2

TRT 1 6 6 0 0 29.9

TRT 2 6 0 6 0 47.7

TRT 3 6 0 0 6 46.6

HOURS 124.2 29.2 47.7 46.6 906.68

The output uses the mnemonic computer names INTERCEPT for μ and TRT
1, 2, and 3 for what we have called αi. The response variable is HOURS. Note
that the column labeled with the response variable is X ′Y and, equivalently,
the corresponding row is Y ′X . The last element in each of these is Y ′Y = Σy2.
The next step is to obtain estimates of the parameters, which are normally
obtained from the inverse.

Now we know the X ′X matrix is singular and therefore no unique inverse
can be obtained. However, because problems with singular matrices occur
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quite frequently, mathematicians have come up with so-called generalized

or pseudo inverses to deal with singular matrices. But because there is no
unique generalized inverse, any generalized inverse for our linear model will
correspond to a particular restriction on the resulting parameter estimates.
And just as there is no “correct” set of restrictions, there is no universally
“correct” generalized inverse. The particular one employed by PROC GLM,
sometimes called a G2 inverse, uses a sequential scheme for obtaining a solu-
tion: it essentially obtains rows (and corresponding columns) of the inverse,
until it comes to one that, because of a singularity, it cannot obtain, and
then it arbitrarily assigns a zero value to all elements of that row (and col-
umn) as well as to the corresponding parameter estimate. Thus, the solution
obtained at this stage corresponds to the restriction that the last factor-level
effect is 0. The generalized inverse and solution obtained by PROC GLM are
as follows:

INTERCEPT TRT 1 TRT 2 TRT 3 HOURS

INTERCEPT 0.166666667 −0.166666667 −0.166666667 0 7.766666667
TRT 1 −0.166666667 0.333333333 0.166666667 0 −2.783333333
TRT 2 −0.166666667 0.166666667 0.333333333 0 0.183333333
TRT 3 0 0 0 0 0
HOURS 7.766666667 −2.783333333 0.183333333 0 16.536666667

As in the output of the X ′X matrix, the row and column labeled with the name
of the response variable contain the parameter estimates; the very last element
is the residual sum of squares. We can see that the last row and column of the
generalized inverse as well as the corresponding parameter estimate all have
zero values. However, the reader may verify that multiplying the inverse by
the X ′X matrix will produce the identity matrix, except for zeroes in the last
row and column. Also, multiplying the inverse by X ′Y will result in the given
parameter estimates. However, as we have noted, these parameter values have
very little practical use, and therefore the GLM procedure will not print them
unless specifically requested.

The generalized inverse can, however, be used to compute sums of squares.
Remember, the regression sum of squares is B̂′X ′Y , which in this example is

SSR = (7.76667)(124.2) + (−2.78333)(29.9) + (0.18333)(47.7) + (0)(46.6)

= 890.14.

Then

SSE = Σy2 − SSR = 906.68− 890.14 = 16.54,

which is indeed what is given in the output (except for roundoff). The estimates
of the factor-level means, defined as μ̂i = μ̂ + α̂i, are obtained directly from
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the solution of the normal equations. Thus, μ̂1 = 7.7667−2.7833 = 4.9834, and
so forth. Note that μ̂3 is the “intercept.” Contrasts are computed using these
estmates.

The variances of these estimates are somewhat more difficult to compute
because the components of these estimates are correlated. Hence, we need a
formula for the variance of a sum of correlated variables.

Mean and Variance of a Linear Function of Correlated Variables
We have a set of random variables y1, y2, . . . , yn, with means μ1, μ2, . . . , μn,
and variances and covariances given by the variance–covariance matrix Σ,
which has the variances (denoted by σii) on the diagonal and the covariances
between yi and yj (denoted by σij) in the ith row and jth column.

Define

L = Σ aiyi = A′Y , where A is a matrix of constants.

Then

the mean of L is Σ aiμi = A′M ,

and

the variance ΣΣai ajσij = A′ΣA.

For the special case of n = 2, the variance of (yi + yj) is

Var(yi + yj) = Var(yi) + Var(yj) + 2Cov(yi, yj),

where Cov(yi, yj) is the covariance between yi and yj . Now in Section 3.5 we
showed that

Mean (β̂j) = βj

Variance (β̂j) = σ2cjj

Covariance (β̂i, β̂j) = σ2cij .

Then

Variance (β̂i + β̂j) = (cii + cjj + 2cij)σ
2.

For any inferences, the appropriate error mean square is substituted for σ2. In
the computer output for the dummy variable model the coefficients are labeled
differently; however, the same principle applies. For example, using the ele-
ments of the inverse given earlier, the estimated variance of μ̂1 = μ̂+ α̂1 is V̂ar
(μ̂+ α̂1) = (0.16667 + 0.3333 + 2(−0.1667)) 1.10244 = 0.18377; hence, the stan-
dard error is 0.4287. The output from PROC GLM gives
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TRT HOURS Std Err Pr > |t|

LSMEAN LSMEAN H0:LSMEAN = 0

1 4.98333333 0.42864990 0.0001

2 7.95000000 0.42864990 0.0001

3 7.76666667 0.42864990 0.0001

Except for roundoff, the results agree. PROC GLM also provides the test of the
hypothesis that the least squares means are zero; in most cases this is not a
useful test. Options do exist for more meaningful statistics, such as contrasts
or other estimates.

We have illustrated the implementation of the dummy variable model for
the analysis of variance with output from PROC GLM, which uses one particu-
lar method for dealing with the singular X ′X matrix. However, other methods
will provide the same results. Rare exceptions occur in nonstandard cases that
are of little interest at this stage. The GLM procedure does, however, have fea-
tures that allow for the study of special data structures. A special case is given
in Section 9.3. For additional information, see Littell et al. (2002).

It is quite obvious that the dummy variable method is considerably more
difficult to implement than the standard analysis of variance. However, the
standard method cannot be used in all applications, and it becomes necessary
to analyze the data using the dummy variable or general linear model analysis.
Such applications include the following:

• The analysis of data involving two or more factors in a factorial structure
with unequal frequencies in the cells.

• Models that include both qualitative and quantitative factors. An important
model of this type is called the analysis of covariance.

These applications are presented in the remainder of this chapter.

9.3 Unequal Cell Frequencies

The standard analysis of variance calculations for multifactor designs can only
be used if we have balanced data, which occur if the number of observa-
tions for all factor-level combinations, usually called cells, are all equal. We
now show why this is so, and we subsequently show how the dummy variable
approach can be used to provide correct answers.

EXAMPLE 9.2 Unequal Cell Frequencies We begin by showing why the “usual” formulas
for the analysis of variance produce incorrect results in the case of unequal
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cell frequencies. Table 9.2 gives data for a 2 × 3 factorial with unequal cell
frequencies. The factors are labeled A (row) and B (column). The cell entries
are the responses and cell means. The marginal and grand means are shown
in the last row and column. The lack of balance is obvious.

Table 9.2

Unbalanced Data

B Factor Levels
Marginal

A Factor Levels 1 2 3 Means

1 3 6, 4 7, 8, 6, 7 5.857
Mean = 3.0 Mean = 5.0 Mean = 7.0

2 2, 3, 4, 3 3, 7 7
Mean = 3.0 Mean = 5.0 Mean = 7.0 4.143

Marginal
Means 3.0 5.0 7.0 5.00

We will concentrate on the effect of factor A. If we examine the cell means,
we see that there appears to be no effect due to factor A. That is, for level 1 of
factor B, the cell means for the two levels of factor A are both 3.0; there is no
difference. The same result occurs for levels 2 and 3 of factor B. However, the
marginal means for the two levels of factor A are 5.857 and 4.143, implying a
difference due to factor A. Using the means as calculated in Table 9.2, we find
that the usual calculations for the sum of squares due to factor A would be

Σni(yi. − y..)2 = 7(5.86− 5.00)2 + 7(4.14− 5.00)2 = 10.282,

which is certainly not 0. In fact, using the usual analysis of variance calcula-
tions, presented in Table 9.3, produces a significant (α = 0.05) effect due to
factor A.5 Furthermore, notice that using this method the total of the A and B
sum of squares is greater than the model sum of squares, implying a negative
sum of squares for the interaction (which PROC ANOVA converts to 0!).

Table 9.3

Analysis of Variance
[PROC ANOVA]

Dependent Variable: Y

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 40.00000000 8.00000000 4.57 0.0288
Error 8 14.00000000 1.75000000
Corrected Total 13 54.00000000

Source DF ANOVA SS Mean Square F Value Pr > F

A 1 10.28571429 10.28571429 5.88 0.0416
B 2 40.00000000 20.00000000 11.43 0.0045
A∗B 2 0.00000000 0.00000000 0.00 1.0000

A closer examination of the data shows a possible reason for the apparently
contradictory results. There does seem to be an effect due to factor B: the

5The log for PROC ANOVA does note that the data are unbalanced and suggests the use of PROC
GLM. Not all computer programs have this feature.
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means increase from level 1 to level 2 and again to level 3. Now the marginal
mean for level 1 of factor A is heavily influenced by the four observations hav-
ing large values resulting from level 3 of factor B, while the marginal mean
for level 2 of factor A is heavily influenced by the low values from the four
observations for level 1 of factor B. In other words, the apparent differences
between the marginal means of A are apparently due to factor B, which is, of
course not what we want. We can understand this effect more precisely by
showing the marginal means estimate in terms of the model parameters.

For simplicity, we will use the model without interaction, that is,

yijk = μ+ αi + βj + εijk.

Using this model we know, for example, that y11 = 3, the mean of the A1, B1
cell, is an estimate of μ+ α1 + β1. The “usual” formulas give us the following
marginal means for factor A in terms of the model parameters:

y1. =
y11 + 2(y12) + 4(y13)

7

y1.
.
=

1

7
[(μ+ α1 + β1) + 2(μ+ α1 + β2) + 4(μ+ α1 + β3)]

.
=

1

7
(7μ+ 7α1 + β1 + 2β2 + 4β3)

.
= (μ+ α1) +

1

7
(β1 + 2β2 + 4β3)

and

y2.
.
= (μ+ α2) +

1

7
(4β1 + 2β2 + β3).

The difference between these two means is:

y1. − y2.
.
= (α1 − α2) +

3

7
(β3 − β1).

Normally we would expect this difference to estimate (α1−α2), but because of
the unequal cell frequencies it additionally estimates 3/7(β3−β1). This supports
the argument we noted previously.

Now if we had estimates of β1 and β3, we could obtain the needed estimate
of (α1 − α2). However, if the data are unbalanced, obtaining these estimates
would require the estimates of the αi. This means that we need to simultane-
ously estimate all of the parameters. This is, of course, what is accomplished
by solving the normal equations for a regression model to obtain the partial
regression coefficients. Therefore, using the dummy variable model in a regres-
sion setting provides the correct estimates. In other words, the estimates of the
partial regression coefficients provide for the appropriate estimates as well as
inferences.

Actually, unbalanced data are somewhat similar to having correlated variables
in a regression. Remember that if the independent variables in a regression are



9.3 Unequal Cell Frequencies 349

uncorrelated, we can separately estimate the individual regression coefficients
as if they were simple linear regressions. Similarly, in the balanced analysis of
variance case we can compute the means and sums of squares independently
for each factor. And just as correlations among independent variables (mul-
ticollinearity) reduce the effectiveness of individual partial regression coef-
ficients, unbalanced data do not provide as efficient estimates and tests as
are provided by balanced data. In other words: good experimental designs are
indeed optimal.

We illustrate by showing the analysis of variance, including the interaction,
produced by PROC GLM for this example (Table 9.4).

Table 9.4

Analysis of Variance by
GLM

Dependent Variable: Y

Sum of Mean

Source DF Squares Squares F Value Pr > F

Model 5 40.00000000 8.00000000 4.57 0.0288
Error 8 14.00000000 1.75000000
Corrected Total 13 54.00000000

Source DF Type III SS Mean Square F Value Pr > F

A 1 0.00000000 0.00000000 0.00 1.0000
B 2 25.60000000 12.80000000 7.31 0.0156
A*B 2 0.00000000 0.00000000 0.00 1.0000

Least Squares Means

Y Std Err Pr > |t|

A LSMEAN LSMEAN H0:LSMEAN = 0

1 5.00000000 0.58333333 0.0001
2 5.00000000 0.58333333 0.0001

Y Std Err Pr > |t|

B LSMEAN LSMEAN H0:LSMEAN = 0

1 3.00000000 0.73950997 0.0036
2 5.00000000 0.66143783 0.0001
3 7.00000000 0.73950997 0.0001

For reasons that do not concern us, PROC GLM calls the partial sums of squares
Type III sums of squares. We can see that the sum of squares due to factor A
is indeed 0 and that the least squares means (LSMEAN) for factor A are also
equal. Note also that the total of the factor sums of squares do not add to
the model sum of squares, as is usual for most regression analyses. Also, the
interaction sum of squares is indeed 0, as the data were constructed. Thus,
this analysis of variance based on the dummy variable model agrees with the
apparent nonexistence of the effect due to factor A.

EXAMPLE 9.3 Senility and Brain Characteristics In this example we will investigate
how the size of the ventricle (a component of the brain) labeled VENTRIC is
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related to senility and EEG. Senility is coded as follows:

1: Not senile
2: Mildly senile
3: Moderately senile
4: Severely senile

The alpha EEG (electroencephalogram) readings, which measure electrical
activity, are coded as follows:

1: High
2: Medium
3: Low

The data, available as File REG09X03, provide measurements of these vari-
ables on 88 elderly patients. The results of the analysis, using PROC GLM,
are shown in Table 9.5. Here we see that although the model is significant
(p < 0.05), none of the factors are. Hence, we may conclude that ventricle
size is not related to senility or the EEG reading.

Table 9.5

Analysis of Senility Data

Dependent Variable: VENTRIC

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 11 3428.692852 311.699350 2.25 0.0198
Error 76 10530.761693 138.562654

Corrected Total 87 13959.454545

Source DF Type III SS Mean Square F Value Pr > F

EEG 2 530.958274 265.479137 1.92 0.1542
SENILITY 3 686.825037 228.941679 1.65 0.1844
EEG*SENILITY 6 1585.321680 264.220280 1.91 0.0905

However, if we had performed the analysis using the “usual” analysis of vari-
ance calculations (results not shown), we would conclude that both main
effects are significant (p < 0.05). The reasons for the different results can be
explained by examining various statistics based on the cell frequencies (first
value) and mean values of VENTRIC (second value in parentheses) shown in
Table 9.6.

Table 9.6

Frequencies and Means

EEG SENILITY

Frequency 1 2 3 4

1 23(57) 11(55) 5(64) 6(60)
2 5(59) 4(76) 5(61) 12(67)
3 2(57) 4(53) 3(65) 8(72)

MEAN 57.3 58.7 63.2 66.8
LSMEAN 57.5 61.0 63.5 66.3
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We concentrate on differences due to senility. Here we see that the differences
among the “ordinary” means are somewhat larger that those among the least
squares means. The largest discrepancy occurs for the senility = 2 class, where
the ordinary mean is dominated by the relatively large number of observations
in the EEG = 1 cell, which has a low cell mean, while the least squares mean is
not affected by the cell frequencies. Similar but not so large differences occur
in the senility = 1 and senility = 4 classes. The differences we see are not very
large but do account for the differences in the p-values.

Large differences in inferences do not always occur between the two
methods. However, since the dummy variable approach is the correct one,
and since computer programs for this correct method are readily available,
it should be used when data are unbalanced. Admittedly, the computer out-
put from programs using the dummy variable approach is often more difficult
to interpret,6 and some other inference procedures, such as multiple compar-
isons, are not as easily performed (e.g., Montgomery, 2001). However, difficul-
ties in execution should not affect the decision to use the correct method.

Although we have illustrated the dummy variable approach for a two-factor
analysis, it can be used to analyze any data structure properly analyzed by
the analysis of variance. This includes special designs such as split plots and
models having nested effects (hierarchical structure). Models can, of course,
become unwieldy in terms of the number of parameters, but with the comput-
ing power available today, most can be handled without much difficulty. The
method is not, however, a panacea that provides results that are not supported
with data. In other words, the method will not rescue a poorly executed data-
gathering effort, whether experiment, survey, or use of secondary data. And,
as we will see in the next section, it cannot obtain estimates for data that do
not exist.

Finally, since the method is a regression analysis, virtually all of the ana-
lytic procedures presented in this book may be applicable. Multicollinearity
(extremely unbalanced data) and influential observations are, however, not
very common phenomena, but outliers and nonnormal distribution of residu-
als may occur. Transformations of the response variable may be used, and the
logarithmic transformation can be very useful. Of course, no transformation is
made on the dummy variables; hence, the exponentiated parameter estimates
become multiplier effects due to factor levels.

9.4 Empty Cells

As we have seen, the dummy variable approach allows us to perform the anal-
ysis of variance for unbalanced data. Unfortunately, there are some special
cases of unbalanced data where even this method fails. One such situation

6We have abbreviated the output from PROC GLM to avoid confusion.
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occurs when there are empty or missing cells; that is, there are some
factor-level combinations that contain no observations.

The problem with empty cells is that the model contains more parame-
ters than there are observations to provide estimates. We already know that
the dummy variable formulation produces more parameters than equations;
hence, the X ′X matrix is singular, and we have to impose restrictions on
the parameters in order to provide useful estimates. And because the rea-
son for the singularity is known, it is possible to specify restrictions that
will provide useful estimates and inferences. However, the additional sin-
gularities produced by the existence of empty cells are a different matter.
Because empty cells can occur anywhere, the resulting singularities cannot
be specified; hence, there are no universally acceptable restrictions that pro-
vide useful estimates. That is, any attempt to provide parameter estimates
must impose arbitrary restrictions, and different restrictions might provide
different results!

Computer programs for the general linear model are constructed to deal
with the singularities that normally occur from the formulation of the model.
Unfortunately, these programs cannot generally distinguish between the nor-
mally expected singularities and those that occur due to empty cells. We have
seen that using different restrictions for dealing with the normal singularities
does not affect useful estimates and effects. However, when there are empty
cells, these different restrictions may affect estimates and effects. In other
words, because various computer programs might implement different restric-
tions, they may provide different results. Furthermore, there is often little or
no indication of what the resulting answers may mean. For a more extensive
discussion, see Freund (1980).

EXAMPLE 9.4 EXAMPLE 9.2 REVISITED [optional] We will illustrate the problem of
empty cells using the data from Example 9.2 where we delete the single obser-
vation in the A = 1, B = 1 cell. We now include the interaction term and use
PROC GLM in the SAS System, requesting some options specifically available
for this type of problem. The results are shown in Table 9.7.

Table 9.7

Analysis for Empty Cell
Data

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 35.69230769 8.92307692 5.10 0.0244
Error 8 14.00000000 1.75000000
Corrected Total 12 49.69230769

Source DF Type III SS Mean Square F Value Pr > F

A 1 0.00000000 0.00000000 0.00 1.0000
B 2 18.04651163 9.02325581 5.16 0.0364
A∗B 1 0.00000000 0.00000000 0.00 1.0000

(Continued)
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Table 9.7

(Continued)

Source DF Type IV SS Mean Square F Value Pr > F

A 1∗ 0.00000000 0.00000000 0.00 1.0000
B 2∗ 13.24137931 6.62068966 3.78 0.0698
A∗B 1 0.00000000 0.00000000 0.00 1.0000
∗NOTE: Other Type IV Testable Hypotheses exist which may yield different SS.

Least Squares Means

Y Std Err Pr > |t|

A LSMEAN LSMEAN H0:LSMEAN=0

1 Non-est . .
2 5.00000000 0.58333333 0.0001

Y Std Err Pr > |t|

B LSMEAN LSMEAN H0:LSMEAN=0

1 Non-est . .
2 5.00000000 0.66143783 0.0001
3 7.00000000 0.73950997 0.0001

The analysis of variance shows only four degrees of freedom for the model.
If there were no empty cell, there would be five degrees of freedom. When
we turn to the Type III sum of squares, which we have seen to be the same
as the partial sums of squares, we see that the interaction now has only
one degree of freedom. This result is, in fact, the only sign that we have
an empty cell in this example, because the sums of squares for A and A*B
are 0, as they were with the complete data. However, this will not usually
occur.7 It is therefore very important to check that the degrees of freedom
conform to expectations to ascertain the possibility of a potential empty cell
problem.

We now turn to the TYPE IV sums of squares. These are calculated in a
different manner and were developed by the author of PROC GLM for this type
of situation. For “typical” situations, the Type III and Type IV sums of squares
will be identical. However, as we can see in this instance, the results are differ-
ent. Now there is no claim that the Type IV sums of squares are more “correct”
than any other, and, in fact, many authorities prefer Type III. The only reason
the Type IV sums of squares are calculated in PROC GLM is to demonstrate
that there may be more than one solution, and no one set of estimates can
be considered to be better than the other. This is the reason for the footnote
“Other Type IV Testable Hypotheses exist which may yield different SS,” and
the existence of this footnote is a good reason for requesting the Type IV sums
of squares if empty cells are suspected to exist.

Finally, the listing of the least squares means also shows that we have a prob-
lem. Remember that so-called estimable functions provide estimates that are

7The reason for this result is that there is no A or interaction effect in this example.
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not affected by the specific restrictions applied to solve the normal equations.
Note that least squares means in Table 9.7 that involve the empty cell give the
notation “Non-est,” meaning they are not estimable. That is, the mathematical
requirements for an “estimable function” do not exist for these estimates. In
other words, unique estimates cannot be computed for these means. These
statements will be printed by PROC GLM whether or not the Type IV sums of
squares have been requested.

The question is what to do if we have empty cells? As we have noted, there
is no unique correct answer. Omitting the interaction from the model is one
restriction and will generally eliminate the problem, but omitting the inter-
action implies a possibly unwarranted assumption. Other restrictions may be
applied, but are usually no less arbitrary and equally difficult to justify. Another
possibility is to restrict the scope of the model by omitting or combining fac-
tor levels involved in empty cells. None of these alternatives are attractive,
but the problem is that there is simply insufficient data to perform the desired
analysis.

When there are more than two factors, the empty cell problem gets more
complicated. For example, it may happen that there are complete data for all
two-factor interactions, and if the higher-order interactions are considered of
no interest, they can be omitted and the remaining results used. Of course,
we must remember that this course of action involves an arbitrary restriction.

9.5 Models with Dummy and Continuous Variables

In this section we consider linear models that include parameters describing
effects due to factor levels, as well as others describing regression relation-
ships. In other words, these models include dummy variables representing
factor levels, as well as quantitative variables associated with regression anal-
yses. We illustrate with the simplest of these models, which has parameters
representing levels of a single factor and a regression coefficient for one inde-
pendent interval variable. The model is

yij = β0 + αi + β1xij + εij ,

where

yij , i = 1, 2, . . . , t, and j = 1, 2, . . . , ni, are values of the response vari-
able for the jth observation of factor level i

xij , i = 1, 2, . . . , t, and j = 1, 2, . . . , ni, are values of the independent
variable for the jth observation of factor level i

αi, i = 1, 2, . . . , t, are the parameters for factor-level effects
β0 and β1 are the parameters of the regression relationship
εij are the random error values.

If in this model we delete the term β1xij , the model is

yij = β0 + αi + εij ,
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which describes the one-way analysis of variance model (replacing β0 with μ).
On the other hand, if we delete the term αi, the model is

yij = β0 + β1xij + εij ,

which is that for a simple linear (one-variable) regression. Thus, the entire
model describes a set of data consisting of pairs of values of variables x and y,
arranged in a one-way structure or completely randomized design. The inter-
pretation of the model may be aided by redefining parameters:

β0i = β0 + αi, i = 1, 2, . . . , t,

which produces the model

yij = β0i + β1xij + εij .

This model describes a set of t parallel regression lines, one for each factor
level. Each has the same slope (β1) but a different intercept (β0i). A plot of a
typical data set and estimated response lines with three factor levels is given
in Figure 9.1, where the data points are identified by the factor levels (1, 2,
or 3) and the three lines are the three parallel regression lines.

Of interest in this model are

1. The regression coefficient
2. Differences due to the factor levels

The interpretation of the regression coefficient is the same as in ordinary
regression. Differences due to factor levels show in the degree of separation
among the regression lines and, because they are parallel, are the same for any
value of the independent variable. As a matter of convenience, the effects of the
factor levels are usually given by the so-called adjusted or least squares means.
These are defined as the points on the estimated regression lines (μ̂y|x) at the
overall mean of the independent variable, that is, at x. The least squares mean
may therefore be denoted by (μ̂y|x). In Figure 9.1, x = 5, which is represented

Figure 9.1

Data and Model
Estimates
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by the vertical line, and the least squares means (from computer output, not
reproduced here) are 8.8, 10.5, and 12.6.

The statistical analysis of this model starts with the dummy variable model:

yij = μz0 + α1z1 + α2z2 + · · ·+ αtzt + β1x+ εij .

This produces an X matrix that contains columns for the dummy variables
for the factor levels and a column of values of the independent variable. The
X ′X matrix is singular, and standard restrictions must be used to solve the
normal equations. However, the singularity does not affect the estimate of
the regression coefficient.

As was the case for models with only dummy variables, models with
quantitative and qualitative independent variables can take virtually any form,
including dummy variables for design factors such as blocks, and linear and
polynomial terms for one or more quantitative variables. As we will see later,
we may have interactions between factor-level effects and interval indepen-
dent variables. Problems of multicollinearity and influential observations may,
of course, occur with the interval independent variables, and may be more
difficult to detect and remedy because of the complexity of the overall model.
Furthermore, computer programs for such models often do not have extensive
diagnostic tools for some of these data problems. Therefore, it is of utmost
importance to become familiar with the computer program used and thor-
oughly understand what a particular program does and does not do.

EXAMPLE 9.5 Counting Grubs Grubs are larval stages of beetles and often cause injury to
crops. In a study of the distribution of grubs, a random location was picked 24
times during a 2-month period in a city park known to be infested with grubs.
In each location a pit was dug in 4 separate 3-inch depth increments, and the
number of grubs of 2 species counted. Also measured for each sample were
soil temperature and moisture content. We want to relate grub count to time
of day and soil conditions. The data are available as REG09X05. The model is

yij = μ+ δi + λj + (δλ)ij + β1(DEPTH) + β2(TEMP) + β3(MOIST) + εij ,

where

yij is the response (COUNT) in the jth species, j = 1, 2, in the ith time,
i = 1, 2, . . . , 12

μ is the mean (or intercept)
δi is the effect of the ith time
λj is the effect of the jth species8

(δλ)ij is the interaction between time and species9

8Instead of using species as a factor, one could specify a separate analysis for the two species.
This is left as an exercise for the reader.
9For those familiar with experimental design, time may be considered a block effect, and this
interaction is the error for testing the species effect. Because some students may not be aware of
this distinction, we will ignore it in the discussion of results.
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β1, β2, β3 are the regression coefficients for DEPTH, TEMP, and MOIST,
respectively (we should note that DEPTH is not strictly an interval vari-
able, although it does represent one that is roughly measured)

εij is the random error, normally distributed with mean zero and
variance σ2

Note that μ, δi, and λj are parameters describing factor levels, whereas the βi

are regression coefficients.

We will use PROC GLM. There are, however, some uncertainties about this
model:

• The response variable is a frequency or count variable, which may have a
distinctly nonnormal distribution.

• As we noted, depth is not strictly an interval variable.

For this reason we first show the residual plot from the preceding model in
Figure 9.2. Here we can see that we do indeed have a nonnormal distribution,
and there seems to be evidence of a possible curvilinear effect. The complete
absence of residuals in the lower left is due to the fact that there cannot be
negative counts, which restricts residuals from that area.

Figure 9.2

Residuals from Initial
Model

Count data are known to have a Poisson distribution, for which the square root
transformation is considered useful. We therefore perform this transformation
on the response variable denoted by SQCOUNT and also add a quadratic term
to DEPTH, which is denoted by DEPTH*DEPTH. The results of this analysis
are shown in Table 9.8.
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Table 9.8 Analysis of Grub Data

Dependent Variable: SQCOUNT

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 51 1974.955210 38.724612 13.97 0.0001
Error 140 388.139445 2.772425
Corrected Total 191 2363.094655

Source DF Type III SS Mean Square F Value Pr > F

TIME 23 70.9201718 3.0834857 1.11 0.3397
SPEC 1 3.8211817 3.8211817 1.38 0.2424
TIME*SPEC 23 174.5548913 7.5893431 2.74 0.0002
DEPTH 1 254.2976701 254.2976701 91.72 0.0001
DEPTH*DEPTH 1 149.0124852 149.0124852 53.75 0.0001
TEMP 1 6.0954685 6.0954685 2.20 0.1404
MOIST 1 3.9673560 3.9673560 1.43 0.2336

T for H0: Std Error of

Parameter Estimate Parameter = 0 Pr >|t| Estimate

DEPTH −7.52190840 −9.58 0.0001 0.78539245
DEPTH*DEPTH 1.04155075 7.33 0.0001 0.14206889
TEMP −0.21253537 −1.48 0.1404 0.14333675
MOIST 0.09796414 1.20 0.2336 0.08189293

The model is obviously significant. The times or species appear to have no
effect, but there is an interaction between time and species. Among the regres-
sion coefficients, only depth and the square of depth are significant. A plot of
the least squares means for the time–species interactions shows no discernible
pattern and is therefore not reproduced here.

The coefficients for DEPTH and DEPTH*DEPTH indicate a negatively sloping
concave curve. The quadratic curve is shown in Figure 9.3. Note, however that
this vertical scale is the square root of COUNT. Also, the quadratic appears to
show an upward trend at the extreme end, which is an unlikely scenario.

Figure 9.3

Response to Depth
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Another method for plotting the response to depth is to declare DEPTH as a
factor and obtain the least squares means, which may then be plotted. A lack
of fit test may be used to see if the quadratic curve is adequate. This is left as
an exercise for the reader.

9.6 A Special Application: The Analysis of Covariance

A general principle in any data-collecting effort is to minimize the error vari-
ance, which will, in turn, provide for higher power for hypothesis tests and
narrower confidence intervals. This is usually accomplished by identifying
and accounting for known sources of variation. For example, in experimen-
tal design, blocking is used to obtain more homogeneous experimental units,
which in turn provides for a smaller error variance.

In some cases, a response variable might be affected by measured variables
that have nothing to do with the factors in an experiment. For example, in an
experiment on methods for inducing weight loss, the final weight of subjects
will be affected by their initial weight, as well as the effect of the weight reduc-
tion method. Now if an analysis is based on only the final weights of the subjects,
the error variance will include the possible effect of the initial weights. On the
other hand, if we can somehow “adjust” for the initial weights, it follows that
the resulting error variance will only measure the variation in weight losses.

One way to do this is to simply analyze the weight losses, and this is indeed
an acceptable method. However, this simple subtraction only works if the two
variables are measured in the same scale. For example, if we want to adjust
the results of a chemical experiment for variations in ambient temperature,
no simple subtraction is possible. In other words, we need an analysis pro-
cedure that will account for variation due to factors that are not part of the
experimental factors.

The analysis of covariance is such a method. The model for the analysis of
covariance is indeed the one we have been discussing. That is, for a one-factor
experiment and one variable, the model is

yij = β0 + αi + β1xij + εij ,

where the parameters and variables are as previously described. However, in
the analysis of covariance the independent (regression) variable is known as
the covariate. Furthermore, in the analysis of covariance the focus of infer-
ence is on the least squares of adjusted factor means, whereas the nature of
the effect of the covariate is of secondary importance.

Two assumptions for the model are critical to ensure the proper inferences:

1. The covariate is not affected by the experimental factors. If this is not
true, then the inferences of the factor effects are compromised because
they must take into account the values of the covariate. Therefore, covari-
ates are often measures of conditions that exist prior to the conduct of an
experiment.
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2. The regression relationship as measured by β1 must be the same for all
factor levels. If this assumption does not hold, the least squares means would
depend on the value of the covariate. In other words, any inference on dif-
ferences due to the factor will only be valid for a specific value of x. This
would not be a useful inference. A test for the existence of unequal slopes
is given in the next section.

EXAMPLE 9.6 Teaching Methods The data result from an experiment to determine the
effect of three methods of teaching history. Method 1 uses the standard lec-
ture format, method 2 uses short movie clips at the beginning of each period,
and method 3 uses a short interactive computer module at the end of the
period. Three classes of 20 students are randomly assigned to the methods.10

The response variable is the students’ scores on a uniform final exam.

It is, of course, well known that not all students learn at the same rate:
Some students learn better than others, regardless of teaching method. An
intelligence test, such as the standard IQ test, may be used as a predictor
of learning ability. For these students, this IQ test was administered before
the experiment; hence, the IQ scores make an ideal covariate. The data are
shown in Table 9.9.

Table 9.9

Teaching Methods Data

Method 1 Method 2 Method 3

IQ Score IQ Score IQ Score

91 76 102 75 103 91
90 75 91 78 110 89

102 75 90 79 91 89
102 73 80 72 96 94
98 77 94 78 114 91
94 71 104 76 100 94

105 73 107 81 112 95
102 77 96 79 94 90
89 69 109 82 92 85
88 71 100 76 93 90
96 78 105 84 93 92
89 71 112 86 100 94

122 86 94 81 114 95
101 73 97 79 107 92
123 88 97 76 89 87
109 74 80 71 112 100
103 80 101 73 111 95
92 67 97 78 89 85
86 71 101 84 82 82

102 74 94 76 98 90

10A preferred design would have at least two sections per method, since classes rather than stu-
dents are appropriate experimental units for such an experiment.
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The model is

yij = β0 + αi + β1xij + εij ,

where

yij , i = 1, 2, 3, j = 1, 2, . . . , 20, are scores on the final exam
xij , i = 1, 2, 3, j = 1, 2, . . . , 20, are scores of the IQ test
αi, i, = 1, 2, 3, are the parameters for the factor teaching method
β0 and β1 are the parameters of the regression relationship
εij are the random error values

The output from PROC GLM from the SAS System is shown in Table 9.10.

Table 9.10

Analysis of Covariance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 3512.745262 1170.915087 125.27 0.0001
Error 56 523.438072 9.347108
Corrected Total 59 4036.183333

Source DF Type III SS Mean Square F Value Pr > F

METHOD 2 2695.816947 1347.908474 144.21 0.0001
IQ 1 632.711928 632.711928 67.69 0.0001

T for H0: Std Error of

Parameter Estimate Parameter = 0 Pr > |t| Estimate

IQ 0.34975784 8.23 0.0001 0.04251117

Least Squares Means

SCORE Std Err Pr >|t|

METHOD LSMEAN LSMEAN H0:LSMEAN=0

1 74.8509019 0.6837401 0.0001
2 78.6780024 0.6860983 0.0001
3 90.6210957 0.6851835 0.0001

The model is obviously significant. We first look at the effect of the covari-
ate because if it is not significant, the analysis of variance would suffice
and the results of that analysis are easier to interpret. The sum of squares
due to IQ is significant, and the coefficient indicates a 0.35 unit increase in
final exam score associated with a unit increase in IQ. The method is also
significant, and the least squares means of 74.85, 78.68, and 90.62, with stan-
dard errors of about 0.68, obviously all differ. Tests for paired differences
may be made but do not adjust for the experimentwise error. Contrasts
may be computed, but even if they are constructed to be orthogonal, they
are also somewhat correlated. Paired comparisons (such as Duncan’s or
Tukey’s) are difficult to perform because the estimated means are corre-
lated and have different standard errors. Be sure to check program speci-
fications and instructions.
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The data and regression lines are shown in Figure 9.4, where the plotting
symbol indicates the teaching method. The least squares means occur at the
intersection of the vertical line at x and agree with the printed results.

Figure 9.4

Data and Response
Estimates

It is of interest to see the results of an analysis of variance without the covari-
ate. The major difference is that the error standard deviation is 4.58, compared
to 3.06 for the analysis of covariance. In other words, the widths of confi-
dence intervals for means are reduced about one-third by using the covari-
ate. Because the differences among means of the teaching methods are quite
large, significances are only minimally affected. The means and least squares
means are

Mean LS Mean
Method 1 74.95 74.85
Method 2 78.20 78.68
Method 3 91.00 90.62

We can see that the differences are minor. This is because the means of the
covariate differ very little among the three classes. If the mean of the covariate
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differs among factor levels, least squares means will differ from the ordinary
means.

Use of the analysis of covariance is not restricted to the completely random-
ized design or to a single covariate. For complex designs, such as split plots,
care must be taken to use appropriate error terms. And if there are several
covariates, multicollinearity might be a problem, although the fact that we are
not usually interested in the coefficients themselves alleviates difficulties.

9.7 Heterogeneous Slopes in the Analysis of Covariance

In all analyses of covariance models we have presented thus far, the regression
coefficient is common for all factor levels. This condition is indeed necessary
for the validity of the analysis of covariance. Therefore, if we are using the
analysis of covariance, we need a test to ascertain that this condition holds. Of
course, other models where regression coefficients vary among factor levels
may occur, and it is therefore useful to be able to implement analyses for such
models.

The existence of variability of the regression coefficients among factor
levels is, in fact, an interaction between factors and the regression variable(s).
That is, the effect of one factor, say the regression coefficient, is different
across levels of the other factor levels.

The dummy variable model for a single factor and a single regression
variable is

yij = μz0 + α1z1 + α2z2 + · · ·+ αtzt + βmx+ εij ,

where the zi are the dummy variables as previously defined. We have added an
“m” subscript to the regression coefficient to distinguish it from those we will
need to describe the coefficients for the individual factor levels. Remember that
in factor level i, for example, zi = 1 and all other zi are 0, resulting in the model

yij = μ+ αi + βmx+ εij .

Now interactions are constructed as products of the main effect variables.
Thus, the model that includes the interactions is

yij = μz0+α1z1+α2z2+ · · ·+αtzt+βmx+β1z1x+β2z2x+ · · ·+βtztx+ εij .

Using the definition of the dummy variables, the model becomes

yij = μ+ αi + βmx+ βix+ εij

= μ+ αi + (βm + βi)x+ εij ,

which defines a model with different intercepts, αi, and slopes, (βm + βi), for
each factor level. Note that as was the case for the dummy variables, there
are (t + 1) regression coefficients to be estimated from t factor levels. This
introduces another singularity into the model; however, the same principles
used for the solution with the dummy variables will also work here.



364 Chapter 9 Indicator Variables

The test for equality of regression coefficients is now the test for

H0:βi = 0, for all i,

which is the test for the interaction coefficients.
Some computer programs, such as PROC GLM of the SAS System, have

provisions for this test, as we will illustrate next. However, if such a program is
not available, the test is readily performed as a restricted/unrestricted model
test. The unrestricted model simply estimates a separate regression for each
factor level, and the error sum of squares is simply the sum of error SS for all
models. The restricted model is the analysis of covariance that is restricted
to having one regression coefficient. Subtracting the error sum of squares and
degrees of freedom as outlined in Chapter 1 provides for the test.

EXAMPLE 9.7 Livestock Prices From a larger data set, we have extracted data on sales of
heifers at an auction market. The response variable is price (PRICE) in dollars
per hundred weight. The factors are

GRADE: Coded PRIME, CHOICE, and GOOD
WGT: Weight in hundreds of pounds

The data are shown in Table 9.11 and are available as File REG09X07.

Table 9.11

Livestock Marketing
Data

OBS GRADE WGT PRICE

1 PRIME 2.55 58.00
2 PRIME 2.55 57.75
3 PRIME 2.70 42.00
4 PRIME 2.90 42.25
5 PRIME 2.65 60.00
6 PRIME 2.90 48.75
7 PRIME 2.50 63.00
8 PRIME 2.50 62.25
9 PRIME 2.50 56.50

10 CHOICE 2.55 48.00
11 CHOICE 3.05 38.25
12 CHOICE 2.60 40.50
13 CHOICE 3.35 40.75
14 CHOICE 4.23 32.25
15 CHOICE 3.10 37.75
16 CHOICE 3.75 36.75
17 CHOICE 3.60 37.00
18 CHOICE 2.70 44.25
19 CHOICE 2.70 40.50
20 CHOICE 3.05 39.75
21 CHOICE 3.65 34.50
22 GOOD 2.50 39.00
23 GOOD 2.55 44.00
24 GOOD 2.60 45.00
25 GOOD 2.55 44.00
26 GOOD 2.90 41.25
27 GOOD 3.40 34.25
28 GOOD 2.02 33.25
29 GOOD 3.95 33.00
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Because weight effect may not be the same for all grades, we propose a
model that allows the weight coefficient to vary among grades. This model is
implemented with PROC GLM of the SAS System with a model that includes
the interaction of weight and class. The results are shown in Table 9.12.

Table 9.12

Analysis of Livestock
Marketing Data

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 1963.156520 392.631304 22.91 0.0001
Error 23 394.140894 17.136561
Corrected Total 28 2357.297414

R-Square Coeff Var Root MSE PRICE Mean
0.832800 9.419329 4.139633 43.94828

Source DF Type III SS Mean Square F Value Pr > F

GRADE 2 343.8817604 171.9408802 10.03 0.0007
WGT 1 464.9348084 464.9348084 27.13 0.0001
WGT*GRADE 2 263.1206149 131.5603074 7.68 0.0028

T for H0: Std Error of

Parameter Estimate Parameter = 0 Pr >|t| Estimate

wgt/choice −6.7215787 −2.85 0.0090 2.35667471
wgt/good −3.4263512 −1.32 0.1988 2.58965521
wgt/prime −39.9155844 −4.46 0.0002 8.95092088

The model has five degrees of freedom: two for GRADE, one for WGT, and
two for the interaction that allows for the different slopes. The interaction
is significant (p = 0.0028). The estimated coefficients for weight, labeled
wgt/[grade], are shown at the bottom of the table. The outstanding feature
is that for the prime grade: increased weight has a much more negative
effect on price than it does for the other grades. Therefore, as in any
factorial structure, the main effects of grade and weight may not have
a useful interpretation. The plot of the data, with points labeled by the
first letter of GRADE, is shown in Figure 9.5 and clearly demonstrates

Figure 9.5

Plot of Livestock
Marketing Data
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the different slopes and reinforces the result that the main effects are not
readily meaningful.

EXAMPLE 9.8 EXAMPLE 9.6 REVISITED In Example 9.6 the IQ scores had approxi-
mately the same effect on test scores for all three methods and, in fact, the
test for heterogeneous slopes (not shown) is not rejected. We have altered the
data so that the effect of IQ increases from method 1 to method 2 and again
for method 3. This would be the result if methods 2 and 3 appealed more to
students with higher aptitudes. The data are not shown but are available as
File REG09X08.

We implement PROC GLM, including in the model statement the interaction
between METHOD and IQ. We do not request the printing of the least squares
means, as they are not useful, but do request the printing of the estimated coef-
ficients (beta1, beta2, and beta3) for the three methods. The results are shown
in Table 9.13. The model now has five parameters (plus the intercept): two
for the factors, one for the overall regression, and two for the additional two
regressions. Again, we first check the interaction; it is significant (p = 0.0074),
and hence, we conclude that the effect of the covariate is not the same for the
three methods. An analysis of covariance is not appropriate. At this point, none
of the other tests are useful, as they represent parameters that are not mean-
ingful. That is, if regressions are different, the overall or “mean” coefficient

Table 9.13 Analysis with Different Slopes

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 5 3581.530397 716.306079 75.42 0.0001
Error 54 512.869603 9.497585
Corrected Total 59 4094.4000000

Source DF Type III SS Mean Square F Value Pr > F

METHOD 2 26.6406241 13.3203121 1.40 0.2548
IQ 1 574.5357250 574.5357250 60.49 0.0001
IQ*METHOD 2 102.2348437 51.1174219 5.38 0.0074

T for H0: Std Error of

Parameter Estimate Parameter = 0 Pr > |t| Estimate

beta1 0.18618499 2.71 0.0090 0.06865110
beta2 0.31719119 3.76 0.0004 0.08441112
beta3 0.51206140 7.10 0.0001 0.07215961

has no meaning, and differences among response means depend on specific
values of the covariate (IQ score). The last portion of the output shows the
estimated coefficients and their standard errors. We see that it indeed appears
that β1 < β2 < β3. The data and estimated lines are shown in Figure 9.6.
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Figure 9.6

Illustration of
Unequal Slopes

Remember that in a factorial experiment the effect of an interaction was that
it prevented making useful inferences on main effects. This is exactly what
happens here: the effect of the teaching methods depends on the IQ scores
of students. As we can see in Figure 9.6, method 3 is indeed superior to the
others for all students, although the difference is most marked for students
with higher IQs. Method 2 is virtually no better than method 1 for students
with lower IQs.

As before, differences in slopes may occur with other data structures and/or
several covariates. Of course, interpretations become more complicated. For
example, if we have a factorial experiment, the regressions may differ across
levels of any one or more main effects, or even across all factor-level combina-
tions. For such situations a sequential analysis procedure must be used, starting
withthemostcomplicated(unrestricted)modelandreducingthescope(adding
restrictions) when nonsignificances are found. Thus, for a two-factor factorial,
the model will start with different coefficients for all cells; if these are found
to differ, no simplification is possible. However, if these are found to be non-
significant, continue with testing for differences among levels of factor B, and
so forth.

For models with several independent variables, there will be a sum of
squares for interaction with each variable, and variable selection may be used.
However, programs for models with dummy and interval variables usually do
not provide for variable selection. Hence, such a program must be rerun after
any variable is deleted.
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9.8 Summary

In this chapter we have introduced the use of “dummy” variables to perform
analysis of variance using regression methodology. The method is more cum-
bersome than the usual analysis of variance calculations but must be used
when analyzing factorial data with unequal cell frequencies. However, even
the dummy variable method fails if there are empty cells.

Models including both dummy and interval independent variables are a
simple extension. The analysis of covariance is a special application where
the focus is on the analysis of the effect of the factor levels, holding constant
the independent interval variable, called the covariate. However, if the effect
due to the covariate is not the same for all levels of the factors, the analysis of
covariance may not be appropriate.

9.9 CHAPTER EXERCISES

1. A psychology student obtained data on a study of aggressive behavior in
nursery-school children, shown in Table 9.14. His analysis used the cell
and marginal means shown in the table. The p-values of that analysis, using
standard ANOVA computations gave STATUS, p = 0.0225; GENDER, p =
0.0001; and interaction, p = 0.0450. His analysis was incorrect in two ways.
Perform the correct analysis and see if results are different. The data are
available as File REG09P01.

Table 9.14

Number of Aggressive
Behaviors by Sex and
Sociability Status

Sociable Shy Means

Female 0,1,2,1,0,1,2,4,0,0,1 0,1,2,1,0,0,1 0.9444
Male 3,7,8,6,6,7,2,0 2,1,3,1,2 3.692
Means 2.6842 1.1667 2.097

2. It is of interest to determine if the existence of a particular gene, called the
TG gene, affects the weaning weight of mice. A sample of 97 mice of two
strains (A and B) are randomly assigned to five cages. Variables recorded
are the response, weight at weaning (WGT, in grams), the presence of TG
(TG: coded Y or N), and sex (SEX: coded M or F). Because the age at wean-
ing also affects weight, this variable was also recorded (AGE, in days). The
data are available in File REG09P02. Perform an analysis to determine if
the existence of the gene affects weaning weight. Discuss and, if possible,
analyze for violations of assumptions.

3. The pay of basketball players is obviously related to performance, but it
may also be a function of the position they play. Data for the 1984–1985 sea-
son on pay (SAL, in thousands of dollars) and performance, as measured by
scoring average (AVG, in points per game), are obtained for eight randomly
selected players from each of the following positions (POS): (1) scoring
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forward, (2) power forward, (3) center, (4) off guard, and (5) point guard.
The data are given in File REG09P03. Perform the analysis to ascertain
whether position affects pay over and above the effect of scoring. Plotting
the data may be useful.

4. It is desired to estimate the weights of five items using a scale that is not
completely accurate. Obviously, randomly replicated weighings are needed,
but that would require too much time. Instead, all 10 combinations of three
items are weighed. The results are shown in Table 9.15. Construct the data
and set up the model to estimate the individual weights. (Hint: Use a model
without intercept.)

Table 9.15

Weights

Combination Weight

123 5
124 7
125 8
134 9
135 9
145 12
234 8
235 8
245 11
345 13

5. We have quarterly data for the years 1955–1968 on the number of feeder
cattle (PLACE) in feedlots for fattening. We want to estimate this number as
a function of the price of range cattle (PRANGE), which are the cattle that
enter the feedlots for fattening; the price of slaughter cattle (PSLTR), which
are the products of the fattening process; and the price of corn (PCORN),
the main ingredient of the feed for the fattening process. It is well known
that there is a seasonal pattern of feeder placement as well as a possibility
of a long-term trend. The data are available in File REG09P05.

Perform an analysis for estimating feeder placement. (Hint: There are
a number of issues to be faced in developing this model.)

6. Exercise 6 of Chapter 3 (data in File REG03P06) concerned the relationship
of the sales of three types of oranges to their prices. Because purchasing
patterns may differ among the days of the week, the variable DAY is the
day of the week (Sunday was not included). Reanalyze the data to see the
effect of the day of the week. Check assumptions.

7. From the Statistical Abstract of the United States, 1995, we have data on
college enrollment by sex from 1975 through 1993. The data are available in
File REG09P07, which identifies the sex and enrollment by year. Perform a
regression to estimate the trend in enrollment for both males and females
and perform a test to see if the trends differ.

8. Table 7.3 shows climate data over the 12 months of the year for each of
5 years. The data is in REG07X02. A polynomial using months as the inde-
pendent variable and CDD as the dependent variable was fit to the data in
Example 7.2. Evaluate the data using year as blocking variable and months
as the treatment and CDD as the dependent variable. Find the appropriate
polynomial in months to fit the data and compare with the results given in
Example 7.2. Repeat the exercise for HDD as the dependent variable.
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Chapter 10

Categorical Response
Variables

10.1 Introduction

The primary emphasis of this text up to this point has been on modeling a
continuous response variable. We have seen how this response can be mod-
eled using continuous or categorical independent or factor variables, or even a
combination of both. Obviously, situations arise where it is desirable to be able
to construct a statistical model using a categorical response variable. Basic
courses in statistical methods do present methodology for analyzing relation-
ships involving categorical variables. However, the analyses usually involve
relationships between only two categorical variables, which are analyzed with
the use of contingency tables and the chi-square test for independence. This
analysis rarely involves the construction of a model. In this chapter we will
consider analyses of categorical response variables in the form of regression
models. We first examine models with a binary response variable and contin-
uous independent variable(s), followed by the more general case of response
variables with any number of categories. We then consider models where a
categorical response variable is related to any number of categorical indepen-
dent variables.

10.2 Binary Response Variables

In a variety of applications we may have a response variable that has only
two possible outcomes. As in the case of a dichotomous independent variable,
we can represent such a variable by a dummy variable. In this context, such a

371
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variable is often called a quantal or binary response. It is often useful to study
the behavior of such a variable as related to one or more numeric independent
or factor variables. In other words, we may want to do a regression analysis
where the dependent variable is a dummy variable and the independent vari-
able or variables may be interval variables.

For example:

• An economist may investigate the incidence of failure of savings and loan
banks as related to the size of their deposits. The independent variable is
the average size of deposits at the end of the first year of business, and the
dependent variable can be coded as

y = 1 if the bank succeeded for 5 years
y = 0 if it failed within the 5-year period

• A biologist is investigating the effect of pollution on the survival of a cer-
tain species of organism. The independent variable is the level of pollution
as measured in the habitat of this particular species, and the dependent
variable is

y = 1 if an individual of the species survived to adulthood
y = 0 if it died prior to adulthood

• A study to determine the effect of an insecticide on insects will use as the
independent variable the strength of the insecticide and a dependent vari-
able defined as

y = 1 if an individual insect exposed to the insecticide dies
y = 0 if the individual does not die

Because many applications of such models are concerned with response
to medical drugs, the independent variable is often called the “dose” and the
dependent variable the “response.” In fact, this approach to modeling furnishes
the foundation for a branch of statistics called bioassay. We will briefly dis-
cuss some methods used in bioassay later in this section. The reader is referred
to Finney (1971) for a complete discussion of this subject.

A number of statistical methods have been developed for analyzing models
with a dichotomous response variable. We will present two such methods in
some detail:

1. The standard linear regression model,

y = β0 + β1x+ ε

2. The logistic regression model,

y =
exp(β0 + β1x)

1 + exp(β0 + β1x)
+ ε

The first model is a straight-line fit of the data, whereas the second model
provides a special curved line. Both have practical applications and have been



10.2 Binary Response Variables 373

found appropriate in a wide variety of situations. Both models may also be
used with more than one independent variable.

Before discussing the procedures for using sample data to estimate the
regression coefficients for either model, we will examine the effect of using a
dummy response variable.

The Linear Model with a Dichotomous Dependent Variable
To illustrate a linear model with a response variable that has values of 0 or 1,
consider the following example. A medical researcher is interested in deter-
mining whether the amount of a certain antibiotic given to mothers after
Caesarean delivery affects the incidence of infection. The researcher proposes
a simple linear regression model,

y = β0 + β1x+ ε

where

y = 1 if infection occurs within 2 weeks
y = 0 if not
x = amount of the antibiotic in ml/hr
ε = random error, a random variable with mean 0 and variance σ2

The researcher is to control values of x at specified levels for a sample of
patients.

In this model, the expected response has a special meaning. Since the error
term has mean 0, the expected response is

μy|x = β0 + β1x.

The response variable has the properties of a binomial random variable with
the following discrete probability distribution:

y p(y)

0 1 − p
1 p

where p is the probability that y takes the value 1. What this is saying is that
the regression model actually provides a mechanism for estimating the prob-
ability that y = 1, that is, the probability of a patient suffering a postoperative
infection. In other words, the researcher is modeling how the probability of
postoperative infection is affected by different strengths of the antibiotic.

Unfortunately, special problems arise with the regression process when
the response variable is dichotomous. Recall that the error terms in a regres-
sion model are assumed to have a normal distribution with a constant variance
for all observations. In the model that uses a dummy variable for a dependent
variable, the error terms are not normal, nor do they have a constant variance.
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According to the definition of the dependent variable, the error terms will
have the values

ε = 1− β0 − β1x, when y = 1,

and

ε = −β0 − β1x, when y = 0.

Obviously, the assumption of normality does not hold for this model. In addi-
tion, since y is a binomial variable, the variance of y is

σ2 = p(1− p).

But p = μy|x = β0 + β1x; hence,

σ2 = (β0 + β1x)(1− β0 − β1x).

Clearly, the variance depends on x, which is a violation of the equal variance
assumptions.

Finally, since μy|x is really a probability, its values are bounded by 0 and 1.
This imposes a constraint on the regression model that limits the estimation of
the regression parameters. In fact, ordinary least squares may predict values
for the dependent variable that are negative or larger than 1 even for values of
the independent variable that are within the range of the sample data.

Although these violations of the assumptions cause a certain amount of
difficulty, solutions are available:

• The problem of nonnormality is mitigated by recalling that the central limit
theorem indicates that for most distributions, the sampling distribution of
the mean will be approximately normal for reasonably large samples. Fur-
thermore, even in the case of a small sample, the estimates of the regression
coefficients, and consequently the estimated responses, are unbiased point
estimates.

• The problem of unequal variances is solved by the use of weighted least

squares, which was presented in Section 4.3.
• If the linear model predicts values for μy|x that are outside the interval, we

choose a curvilinear model that does not. The logistic regression model is
one such choice.

10.3 Weighted Least Squares

In Section 4.3 we noted that in the case of nonconstant variances, the appro-
priate weight to be assigned to the ith observation is

wi = 1/σ2
i ,

where σ2
i is the variance of the ith observation. This procedure gives smaller

weights to observations with large variances and vice versa. In other words,
more “reliable” observations provide more information and vice versa. After
weighting, all other estimation and inference procedures are performed in the
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usual manner, except that the actual values of sums of squares as well as mean
squares reflect the numerical values of the weights.

In a model with a dichotomous response variable, σ2
i is equal to pi(1− pi),

where pi is the probability that the ith observation is 1. We do not know this
probability, but according to our model,

pi = β0 + β1xi.

Therefore, a logical procedure for doing weighted least squares to obtain esti-
mates of the regression coefficients is as follows:

1. Use the desired model and perform an ordinary least squares regression to
compute the predicted value of y for all xi. Call these μ̂i.

2. Estimate the weights by

ŵi =
1

μ̂i(1− μ̂i)
.

3. Use these weights in a weighted least squares and obtain estimates of the
regression coefficients.

4. This procedure may be iterated until the estimates of the coefficients sta-
bilize. That is, repetition is stopped when estimates change very little from
iteration to iteration.

Usually, the estimates obtained in this way will stabilize very quickly, mak-
ing step 4 unnecessary. In fact, in many cases, the estimates obtained from
the first weighted least squares will differ very little from those obtained from
the ordinary least squares procedure. Thus, ordinary least squares does give
satisfactory results in many cases.

As we noted in Section 4.3, the estimates of coefficients usually change
little due to weighting, but the confidence and prediction intervals for the
response will reflect the relative degrees of precision based on the appropri-
ate variances. That is, intervals for observations having small variances will be
smaller than those for observations with large variances. However, even here
the differences due to weighting may not be very large.

EXAMPLE 10.1 In a recent study of urban planning in Florida, a survey was taken of 50 cities,
24 of which used tax increment funding (TIF) and 26 of which did not. One
part of the study was to investigate the relationship between the presence or
absence of TIF and the median family income of the city. The data are given
in Table 10.1.

Table 10.1

Data on Urban Planning
Study

y Income y Income

0 9.2 0 12.9
0 9.2 1 9.6
0 9.3 1 10.1
0 9.4 1 10.3
0 9.5 1 10.9
0 9.5 1 10.9

(Continued)
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Table 10.1

(Continued)

y Income y Income

0 9.5 1 11.1
0 9.6 1 11.1
0 9.7 1 11.1
0 9.7 1 11.5
0 9.8 1 11.8
0 9.8 1 11.9
0 9.9 1 12.1
0 10.5 1 12.2
0 10.5 1 12.5
0 10.9 1 12.6
0 11.0 1 12.6
0 11.2 1 12.6
0 11.2 1 12.9
0 11.5 1 12.9
0 11.7 1 12.9
0 11.8 1 12.9
0 12.1 1 13.1
0 12.3 1 13.2
0 12.5 1 13.5

The linear model is

y = β0 + β1x+ ε,

where

y = 0 if the city did not use TIF
y = 1 if it did
x = median income of the city
ε = random error

The first step in obtaining the desired estimates of the regression coefficients
is to perform an ordinary least squares regression. The results are given in
Table 10.2. The values of the estimated coefficients are used to obtain the

Table 10.2

Regression of Income on
TIF

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 3.53957 3.53957 19.003 0.0001
Error 48 8.94043 0.18626
Corrected Total 49 12.48000

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Pr > |t|

INTERCEPT 1 −1.818872 0.53086972 −3.426 0.0013
INCOME 1 0.205073 0.04704277 4.359 0.0001
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estimated values, μ̂i, of y for each x, which are then used to calculate weights
for estimation by weighted least squares. Caution: The linear model can pro-
duce μ̂i values less than 0 or greater than 1. If this has occurred, the weights
will be undefined, and an alternative model, such as the logistic model (des-
cribed later in this chapter), must be considered. The predicted values and
weights are given in Table 10.3.

Table 10.3

Estimation of Weights

Predicted Predicted

y Income Value Weight y Income Value Weight

0 9.2 0.068 15.821 0 12.9 0.827 6.976
0 9.2 0.068 15.821 1 9.6 0.150 7.850
0 9.3 0.088 12.421 1 10.1 0.252 5.300
0 9.4 0.109 10.312 1 10.3 0.293 4.824
0 9.5 0.129 8.881 1 10.9 0.416 4.115
0 9.5 0.129 8.881 1 10.9 0.416 4.115
0 9.5 0.129 8.881 1 11.1 0.457 4.029
0 9.6 0.150 7.850 1 11.1 0.457 4.029
0 9.7 0.170 7.076 1 11.1 0.457 4.029
0 9.7 0.170 7.076 1 11.5 0.539 4.025
0 9.8 0.191 6.476 1 11.8 0.601 4.170
0 9.8 0.191 6.476 1 11.9 0.622 4.251
0 9.9 0.211 5.999 1 12.1 0.663 4.472
0 10.5 0.334 4.493 1 12.2 0.683 4.619
0 10.5 0.334 4.493 1 12.5 0.745 5.258
0 10.9 0.416 4.115 1 12.6 0.765 5.563
0 11.0 0.437 4.065 1 12.6 0.765 5.563
0 11.2 0.478 4.008 1 12.6 0.765 5.563
0 11.2 0.478 4.008 1 12.9 0.827 6.976
0 11.5 0.539 4.025 1 12.9 0.827 6.976
0 11.7 0.580 4.106 1 12.9 0.827 6.976
0 11.8 0.601 4.170 1 12.9 0.827 6.976
0 12.1 0.663 4.472 1 13.1 0.868 8.705
0 12.3 0.704 4.794 1 13.2 0.888 10.062
0 12.5 0.745 5.258 1 13.5 0.950 20.901

The computer output of the weighted least squares regression is given in
Table 10.4. Note that these estimates differ very little from the ordinary least

Table 10.4

Weighted Regression

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 36.49604 36.49604 38.651 0.0001
Error 48 45.32389 0.94425
Corrected Total 49 81.81993

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Pr > |t|

INTERCEPT 1 −1.979665 0.39479503 −5.014 0.0001
INCOME 1 0.219126 0.03524632 6.217 0.0001
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squares estimates in Table 10.2. Rounding the parameter estimates in the
output, we get the desired regression equation:

μ̂y|x = −1.980 + 0.21913(INCOME).

The data and estimated line are shown in Figure 10.1. The plot suggests a
rather poor fit, which is supported by an R-square value of 0.45, but the
p-value of 0.0001 suggests that median income does have some bearing on the
participation in TIF. Thus, for example, the estimated probability of a city with
median income of $10,000 using TIF is −1.980 + 0.21913(10) = 0.2113. That
is, there is about a 21% chance that a city with median income of $10,000 is
participating in tax increment funding.

Figure 10.1

Linear Regression

To illustrate the fact that the weighted least squares estimate stabilizes quite
rapidly, two more iterations were performed. The results are

Iteration 2: μ̂y|x = −1.992 + 0.2200(INCOME)

and

Iteration 3: μ̂y|x = −2.015 + 0.2218(INCOME).

The regression estimates change very little, and virtually no benefit in the stan-
dard error of the estimates is realized by the additional iterations.
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Notice that the regression equation does not predict negative values or values
greater than 1 as long as we consider only median incomes within the range
of the data. Thus, the equation satisfies the constraints discussed previously.
In addition, the sample size of 50 is sufficiently large to overcome the nonnor-
mality of the distribution of the residuals.

10.4 Simple Logistic Regression

If a simple linear regression equation model using weighted least squares
violates the constraints on the model or does not properly fit the data, we
may need to use a curvilinear model. One such model with a wide range of
applicability is the logistic regression model:

μy|x =
exp(β0 + β1x)

1 + exp(β0 + β1x)
.

The curve described by the logistic model has the following properties:

• As x becomes large, μy|x approaches 1 if β1 > 0, and approaches 0 if β1 < 0.
Similarly, as x becomes small, μy|x approaches 0 if β1 > 0, and approaches
1 if β1 < 0.

• μy|x = ½ when x = −(β0/β1).
• The curve describing μy|x is monotone, that is, it either increases

(or decreases) everywhere.

A typical simple logistic regression function for β1 > 0 is shown in
Figure 10.2. Notice that the graph is sigmoidal or “S”-shaped. This feature
makes it more useful when there are observations for which the response
probability is near 0 or 1, since the curve can never go below 0 or above 1,
which is not true of the strictly linear model.

Figure 10.2

Typical Logistic
Curve
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Although the function itself is certainly not linear and appears very
complex, it is, in fact, relatively easy to use. The model has two unknown para-
meters, β0 and β1. It is not coincidental that these parameters have the same
symbols as those of the simple linear regression model. Estimating the two
parameters from sample data is reasonably straightforward. We first make a
logit transformation of the form

μp = log

[
μy|x

1− μy|x

]
,

where log is the natural logarithm. Substituting this transformation for μy|x in
the logistic model results in a model of the form

μp = β0 + β1x+ ε,

which is a simple linear regression model. Of course, the values of the μp

are usually not known; hence, preliminary estimates must be used. If multi-
ple observations exist for each x, preliminary estimates of the μy|x are simply
the sample proportions. If such multiples are not available, an alternative pro-
cedure using the maximum likelihood method is recommended and discussed
later in this section.

The logit transformation linearizes the model but does not eliminate the
problem of nonconstant variance. Therefore, the regression coefficients in
this simple linear regression model should be estimated using weighted least
squares. We will illustrate the procedure with an example where multiple obser-
vations for each value of x are used as preliminary estimates of μp.

EXAMPLE 10.2 A toxicologist is interested in the effect of a toxic substance on tumor
incidence in laboratory animals. A sample of animals is exposed to various
concentrations of the substance and subsequently examined for the presence
or absence of tumors. The response variable for an individual animal is then
either 1 if a tumor is present or 0 if not. The independent variable is the
concentration of the toxic substance (CONC). The number of animals at each
concentration (N) and the number of individuals with the value 1, that is, the
number having tumors (NUMBER), make up the results, which are shown in
Table 10.5.

Table 10.5

Data for Toxicology
Study

CONC N NUMBER

0.0 50 2
2.1 54 5
5.4 46 5
8.0 51 10

15.0 50 40
19.5 52 42

The first step is to use the logit transformation to “linearize” the model. The
second step consists of the use of weighted least squares to obtain estimates
of the unknown parameters. Because the experiment was conducted at only
six distinct values of the independent variable, concentration of the substance,
the task is not difficult.

We calculate p̂, the proportion of 1’s at each value of CONC. These are given
in Table 10.6 under the column PHAT. We then make the logit transformation
on the resulting values:

μ̂p = ln [p̂/(1− p̂)].

These are given in Table 10.6 under the column LOG.
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Table 10.6

Calculations for Logistic
Regression

CONC N NUMBER PHAT LOG W

0.0 50 2 0.04000 −3.17805 1.92000
2.1 54 5 0.09259 −2.28238 4.53704
5.4 46 5 0.10870 −2.10413 4.45652
8.0 51 10 0.19608 −1.41099 8.03922

15.0 50 40 0.80000 1.38629 8.00000
19.5 52 42 0.80769 1.43508 8.07692

Becausethevariancesarestillnotconstant,wehavetouseweightedregression.
The weights are computed as

ŵi = nip̂i(1− p̂i),

where

ni = total number of animals at concentration xi

p̂i = sample proportion of animals with tumors at concentration xi.

These values are listed in Table 10.6 under the column W. We now perform the
weighted least squares regression, using LOG as the dependent variable and
concentration as the independent variable.

The results of the weighted least squares estimation are given in Table 10.7.
The model is certainly significant, with a p-value of 0.0017, and the coefficient
of determination is a respectable 0.93. The residual variation is somewhat
difficult to interpret since we are using the log scale.

Table 10.7

Logistic Regression
Estimates

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 97.79495 97.79495 56.063 0.0017
Error 4 6.97750 1.74437
Corrected Total 5 104.77245

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Pr > |t|

INTERCEPT 1 −3.138831 0.42690670 −7.352 0.0018
CONC 1 0.254274 0.03395972 7.488 0.0017

The coefficients of the estimated simple linear regression model are rounded
to give:

LÔG = −3.139 + 0.254(CONC).

This can be transformed back into the original units using the transformation:

ESTPROP = exp(LÔG)/{1 + exp(LÔG)},
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which for CONC = 10 gives the value 0.355. This means that, on the average,
there is a 35.5% chance that exposure to concentrations of 10 units results in
tumors in laboratory animals.

The response curve for this example is shown in Figure 10.3, which also shows
the original values. From this plot we can verify that the estimated probability
of a tumor when the concentration is 10 units is approximately 0.355.

Figure 10.3

Plot of Logistics Curve

Another feature of the simple logistic regression function is the interpretation
of the coefficient β1. Recall that we defined μp as

μp = log

[
μy|x

1− μy|x

]
.

The quantity {μy|x/(1 − μy|x)} is called the odds in favor of the event, in this
case, having a tumor. Then μp, the log of the odds at x, is denoted as log {Odds
at x}. Suppose we consider the same value at (x+ 1). Then

μp = log

[
μy|x+1

1− μy|(x+1)

]
,

would be log {Odds at (x + 1)}. According to the linear model, log {Odds at
x} = β0 + β1x and log{Odds at {x + 1} = β0 + β1(x + 1). It follows that the
difference between the odds at (x+ 1) and at x is

log{Odds at (x+ 1)} − log{Odds at x} = β1,
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which is equivalent to

log{(Odds at x+ 1)/(Odds at x)} = β1.

Taking exponentials of both sides gives the relationship

Odds at x+ 1

Odds at x
= eβ1 .

The estimate of this quantity is known as the odds ratio and is interpreted as
the increase in the odds, or the proportional increase in the response propor-
tion, for a unit increase in the independent variable. In our example, β̂1 = 0.25;
hence, the estimated odds ratio is e0.25 = 1.28. Therefore, the odds of getting
a tumor are estimated to increase by 28% with a unit increase in concentration
of the toxin.

The logistic model can also be used to find certain critical values of the inde-
pendent variable. For example, suppose that the toxicologist in Example 10.2
wants to estimate the concentration of the substance at which 75% of the
animals exposed would be expected to develop a tumor. In other words, we
are looking for a value of the independent variable for a given value of the
response. A rough approximation can be obtained from Figure 10.3 by locat-
ing the value of CONC corresponding to a PHAT of 0.75. From that graph, the
value would appear to be approximately 17. We can use the estimated logistic
regression to solve for this value.

We start with the assumption that μy|x = 0.75, and then:

μp = log

[
μy|x

1− μy|x

]
= log

[
0.75

1− 0.75

]
= 1.099.

Using the estimated coefficients from Table 10.7 provides the equation

1.099 = −3.139 + 0.254x,

which is solved for x to provide the estimate of 16.69. This agrees with the
approximation found from the graph.

The procedure presented in this section will not work for data in which one
or more of the distinct x values has a p̂ of 0 or 1, because the logit is undefined
for these values. Modifications in the definition of these extreme values can
be made that remedy this problem. One procedure is to define p̂i to be 1/2ni if
the sample proportion is 0 and p̂i to be (1− 1/[2ni]) if the sample proportion
is 1, where ni is the number of observations in each factor level.

This procedure for calculating estimates of the regression coefficients can be
very cumbersome and in fact cannot be done if multiple observations are not
available at all values of the independent variable. Therefore, most logistic
regression is performed by estimating the regression coefficients using the
method known as maximum likelihood estimation. This method uses
the logistic function and an assumed distribution of y to obtain estimates
for the coefficients that are most consistent with the sample data. A discussion
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of the maximum likelihood method of estimation is given in Appendix C. The
procedure is complex and usually requires numerical search methods; hence,
maximum likelihood estimation of a logistic regression is done on a computer.
Most computer packages equipped to do logistic regression offer this option.
The result of using the maximum likelihood method using PROC CATMOD in
SAS on the data from Example 10.2 is given in Table 10.8. Notice that the esti-
mates are very similar to those given in Table 10.7.

Table 10.8

Maximum Likelihood
Estimates

STANDARD

EFFECT PARAMETER ESTIMATE ERROR

INTERCEPT 1 −3.20423 0.33125
X 2 .262767 0.0273256

As an example of a logistic regression where multiple observations are not
available, let us return to Example 10.1. Recall that the response variable,
y, was denoted as 0 if the city did not use tax increment funding and 1 if it
did, and the independent variable was the median family income of the city.
Because there are no multiple observations, we will use the maximum likeli-
hood method of estimation. Table 10.9 gives a portion of the output from PROC
LOGISTIC in SAS.1 Notice that the table lists the parameter estimates and a
test on the parameters called the Wald chi-square. This test plays the part of
the t test for regression coefficients in the standard regression model.

Table 10.9

Logistic Regression for
Example 10.1

Parameter Standard Wald Pr > Odds

Variable DF Estimate Error Chi-Square Chi-Square Ratio

INTERCEPT 1 −11.3487 3.3513 11.4673 0.0007 0.000
INCOME 1 1.0019 0.2954 11.5027 0.0007 2.723

Standard errors of the estimates and the p-values associated with the tests for
significance are also presented. Notice that both coefficients are highly
significant. The odds ratio is given as 2.723. Recall that the odds increase multi-
plicatively by the value of the odds ratio for a unit increase in the independent
variable, x. In other words, the odds will increase by a multiple of 2.723 for an
increaseinmedianincomeof$1000.Thismeansthat theoddsofacityparticipat-
ing in TIF increase by about 172% for every increase in median income of $1000.
Furthermore, using the estimates of the coefficients in the logistic model, we
can determine that for a city with median income of $10,000 (INCOME = 10),
the estimated probability is about 0.22. This compares favorably with the esti-
mate of 21% we got using the weighted regression in Example 10.1.

1Because PROC LOGISTIC uses y = 1 if the characteristic of interest is present and y = 2
otherwise, the data were recoded prior to running the program to ensure that the signs of the
coefficients fit the problem. As always, it is recommended that documentation relating to any
computer program used be consulted prior to doing any analysis.
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Figure 10.4

Logistic Regression for
Example 10.1

Figure 10.4 shows the graph of the estimated logistic regression model.
Compare this graph with the one in Figure 10.1.

10.5 Multiple Logistic Regression

The simple logistic regression model can easily be extended to two or more
independent variables. Of course, the more variables, the harder it is to get
multiple observations at all levels of all variables. Therefore, most logistic
regressions with more than one independent variable are done using the max-
imum likelihood method. The extension from a single independent variable to
m independent variables simply involves replacing β0 + β1x with β0 + β1x1 +
β2x2 + · · ·+ βmxm in the simple logistic regression equation given in Section
10.4. The corresponding logistic regression equation then becomes

μy|x =
exp(β0 + β1x1 + β2x2 + · · ·βmxm)

1 + exp(β0 + β1x1 + β2x2 + · · ·βmxm)
.

Making the same logit transformation as before,

μp = log

[
μy|x

1− μy|x

]
,

we obtain the multiple linear regression model:

μp = β0 + β1x1 + β2x2 + · · ·+ βmxm.

We then estimate the coefficients of this model using maximum likelihood
methods, similar to those used in the simple logistic regression problem.
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EXAMPLE 10.3 As an illustration of the multiple logistic regression model, suppose that the
toxicology study of Example 10.2 involved two types of substances. The logis-
tic regression model used to analyze the effect of concentration now involves a
second independent variable, type of substance. The data given in Table 10.10
show the results. Again, the response variable is either 1 if a tumor is present
or 0 if not. The concentration of toxic substance is again CONC, and the type
of substance (TYPE) is either 1 or 2. The number of animals at each combina-
tion of concentration and type is N , and the number of animals having tumors
is labeled NUMBER.

Table 10.10

Data for Toxicology
Study

OBS CONC TYPE N NUMBER

1 0.0 1 25 2
2 0.0 2 25 0
3 2.1 1 27 4
4 2.1 2 27 1
5 5.4 1 23 3
6 5.4 2 23 2
7 8.0 1 26 6
8 8.0 2 25 4
9 15.0 1 25 25

10 15.0 2 25 15
11 19.5 1 27 25
12 19.5 2 25 17

To analyze the data, we will use the multiple logistic regression model, with
two independent variables, CONC and TYPE. Even though we have multi-
ple observations at each combination of levels of the independent variables,
we will use the maximum likelihood method to do the analysis. Using PROC
LOGISTIC in SAS, we obtain the results given in Table 10.11. The presented
results are only a portion of the output.

Table 10.11 Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds

Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCEPT 1 −1.3856 0.5346 6.7176 0.0095 0.250
CONC 1 0.2853 0.0305 87.2364 0.0001 1.096480 1.330
TYPE 1 −1.3974 0.3697 14.2823 0.0002 −0.385820 0.247

This output resembles that of a multiple linear regression analysis using ordi-
nary least squares. The differences lie in the test statistic used to evaluate
the significance of the coefficients. The maximum likelihood method uses the
Wald chi-square statistic rather than the t distribution. The output also gives
us standardized estimates and the odds ratio.

The interpretation of the estimated regression coefficients in the multiple
logistic regression model parallels that for the simple logistic regression, with
the exception that the coefficients are the partial coefficients of the multiple
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linear regression model (see Section 3.4). From Table 10.11 we can see that
both the independent variables are significant; therefore, there is an effect due
to the concentration of the toxic substance on incidence of tumors with type
fixed, and there is a difference in type of toxic substance with concentration
fixed. The interpretation of the estimated odds ratio for one independent vari-
able assumes all other independent variables are held constant. From Table
10.11 we see that the odds ratio for concentration is 1.33. Therefore, we can
say that the odds of getting a tumor increase by 33% for a unit increase in con-
centration of the toxin for a fixed type. That is, the risk increases by approxi-
mately 33% as long as the type of toxin does not change. Furthermore, we can
see from the table that the estimated odds ratio for type is 0.247. From this we
can conclude that the risk of tumors for type 1 toxin is about ¼ or 25% that of
type 2.

As in all regression analyses, it is important to justify the necessary assump-
tions on the model. In the case of logistic regression, we need to be sure that
the estimated response function, μy|x, is monotonic and sigmoidal in shape.
This can usually be determined by plotting the estimated response function.
Detecting outliers and influential observations and determining whether the
logistic regression is appropriate are much more difficult to do for binary
response variables. Some procedures for this are given in Kutner et al. (2004).

Several other curvilinear models can be used to model binary response
variables. Long (1997) discusses four such models, one of which is known as
the probit model. The probit model has almost the same shape as the logistic
model and is obtained by transforming the μy|x by means of the cumulative
normal distribution. The probit transformation is less flexible than the logistic
regression model because it cannot be readily extended to more than one pre-
dictor variable. Also, formal inference procedures are more difficult to carry
out with the probit regression model. In many cases, the two models agree
closely except near the endpoints. Long (1997) refers to both the probit and
logit jointly as the binary response model.

To demonstrate the use of the probit model, we reanalyze the data from
Table 10.5 using PROC PROBIT in SAS. The results are shown in Table 10.12,
along with comparative results from the logistic regression shown in Table
10.8. Notice that there is very little difference in the predicted values.

Table 10.12

Comparison of Observed,
Logistic, and Probit
models for Example 10.2

OBS CONC PHAT PROBIT LOGISTIC

1 0.0 0.04000 0.03333 0.03901
2 2.1 0.09259 0.06451 0.06584
3 5.4 0.10870 0.15351 0.14365
4 8.0 0.19608 0.26423 0.24935
5 15.0 0.80000 0.66377 0.67640
6 19.5 0.80769 0.86429 0.87211

On occasion we may have a response variable that has more than two lev-
els. For example, in the toxin study described earlier, we may have animals
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that are unaffected, pretumor lesions, or defined tumors. Therefore, we would
have a response variable that had three categories. Logistic regression can still
be employed to analyze this type of data by means of a polytomous logistic

regression model.
Polytomous logistic regression is simply an extension of the binary logistic

regression model. Various complexities arise from this extension, but the basic
ideas used are the same. Hosmer and Lemeshow (2000) provide details for the
polytomous logistic regression analysis.

An approximate method of handling three or more response categories in
a logistic regression is to carry out the analysis using several individual binary
logistic regression models. For example, if the toxin study had three outcomes,
we could construct three separate binary logistic models. One would use two
categories: no tumor and pretumor lesion; the second would use no tumor
and tumor; and the third would use pretumor lesion and tumor. This type of
analysis is easier to do than a single polytomous logistic regression and often
results in only a moderate loss of efficiency. See Begg and Gray (1984) for a
discussion of the two methods.

10.6 Loglinear Model

When both the response variable and the independent variables are categori-
cal, the logit model becomes very cumbersome to use. Instead of using logistic
regression to analyze such a process, we usually use what is known as the log-

linear model,2 which is designed for categorical data analysis. A complete
discussion of this model and its wide range of applications can be found in
Agresti (2002). We will discuss the use of the loglinear model to describe the
relationship between a categorical response variable and one or more cate-
gorical independent variables.

A convenient way to present data collected on two or more categorical
variables simultaneously is in the form of a contingency table. If the data are
measured only on two variables, one independent variable and the response
variable, the contingency table is simply a two-way frequency table. If the
study involves more than one independent variable, the contingency table
takes the form of a multiway frequency table. Furthermore, since the cat-
egorical variables may not have any ordering (relative magnitude) of the
levels, the sequencing of the levels is often arbitrary, so there is not one
unique table.

A general strategy for the analysis of contingency tables involves testing
several models, including models that represent various associations or inter-
actions among the variables. Each model generates expected cell frequencies
that are compared with the observed frequencies. The model that best fits the

2Notice that we use the terminology loglinear to describe this model. This is to differentiate it
from the “linear in log” model of Chapter 8.
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observed data is chosen. This allows for the analysis of problems with more
than two variables and for identification of simple and complex associations
among these variables.

One such way of analyzing contingency tables is known as loglinear mod-

eling. In the loglinear modeling approach, the expected frequencies are com-
puted under the assumption that a certain specified model is appropriate to
explain the relationship among variables. The complexity of this model usually
results in computational problems obtaining the expected frequencies. These
problems can be resolved only through the use of iterative methods. As a con-
sequence of this, most analyses are done with computers.

As an example of a loglinear model, consider the following example.

EXAMPLE 10.4 A random sample of 102 registered voters was taken from the Supervisor of
Elections’ roll. Each of the registered voters was asked the following two
questions:

1. What is your political party affiliation?
2. Are you in favor of increased arms spending?

The results are given in Table 10.13.

Table 10.13

Frequencies of Opinion
by Party

PARTY

OPINION DEM REP NONE TOTAL

FAVOR 16 21 11 48
NOFAVOR 24 17 13 54

TOTAL 40 38 24 102

The variables are “party affiliation” and “opinion.” We will designate the proba-
bility of an individual belonging to the ijth cell as pij , the marginal probability
of belonging to the ith row (opinion) as pi, and the marginal probability of
belonging to the jth column (party) as pj . If the two variables are statistically
independent, then

pij = pipj .

Under this condition the expected frequencies are

Eij = npij = npipj .

Taking natural logs of both sides results in the relationship

log(Eij) = log(n) + log(pi) + log(pj).

Therefore, if the two variables are independent, the log of the expected fre-
quencies is a linear function of the marginal probabilities. We turn this around
and see that a test for independence is really a test to see if the log of the
expected frequencies is a linear function of the marginal probabilities.
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Define μij = log(Eij), log(n) = μ, log(pi) = λA
i , and log(pj) = λB

j . Then the
model3 can be written as

μij = μ+ λA
i + λB

j .

This model closely resembles a linear model with two categorical independent
variables, which is the two-factor ANOVA model. In fact, the analysis closely
resembles that of a two-way analysis of variance model. The terms λA repre-
sent the effects of variable A designated as “rows” (opinion), and the terms λB

represent the effects of the variable B, or “columns” (party affiliation).

Notice that the model is constructed under the assumption that rows and
columns of the contingency table are independent. If they are not independent,
this model requires an additional term, which can be called an “association” or
interaction factor. Using consistent notation, we may designate this term λAB

ij .
This term is analogous to the interaction term in the ANOVA model and has a
similar interpretation. The test for independence then becomes one of deter-
mining whether the association factor should be in the model. This is done by
what is called a “lack of fit” test, usually using the likelihood ratio statistic.

This test follows the same pattern as the test for interaction in the factorial
ANOVA model, and the results are usually displayed in a table very similar
to the ANOVA table. Instead of using sums of squares and the F distribution
to test hypotheses about the parameters in the model, we use the likelihood
ratio statistic and the chi-square distribution. The likelihood ratio test statistic
is used because it can be subdivided corresponding to the various terms in the
model.

We first perform the test of independence using a loglinear model. If we specify
the model as outlined previously, the hypothesis of independence becomes:

H0: λ
AB
ij = 0, for all i and j

H1: λ
AB
ij �= 0, for some i and j.

The analysis is performed by PROC CATMOD from the SAS System with results
shown in Table 10.14.

Table 10.14

Loglinear Analysis for
Example 10.4

SOURCE DF CHI-SQUARE PROB

PARTY 2 4.38 0.1117
OPINION 1 0.35 0.5527

LIKELIHOOD RATIO 2 1.85 0.3972

3A and B are not exponents; they are identifiers and are used in a superscript mode to avoid
complicated subscripts.
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As in the analysis of a factorial experiment, we start by examining the interac-
tion, here called association. The last item in that output is the likelihood-ratio
test for goodness of fit and has a value of 1.85 and a p-value of 0.3972. Thus,
we cannot reject H0, and we conclude the independence model fits.

The other items in the printout are the tests on the “main effects,” which are a
feature of the use of this type of analysis. It is interesting to note that neither
the opinion nor the party likelihood ratio statistics are significant. Although the
exact hypotheses tested by these statistics are expressed in terms of means of
logarithms of expected frequencies, the general interpretation is that there is no
difference in the marginal values for opinion nor in party. By looking at the data
in Table 10.13, we see that the total favoring the issue is 48, whereas the total
not favoring it is 54. Furthermore, the proportions of the number of Democrats,
Republicans, and “none” listed in the margin of the table are quite close. In con-
clusion, there is nothing about this table that differs significantly!4

EXAMPLE 10.5 A study by Aylward et al. (1984) and reported in Green (1988) examines the
relationship between neurological status and gestational age. The researchers
were interested in determining whether knowing an infant’s gestational age can
provide additional information regarding the infant’s neurological status. For
this study a total of 505 newborn infants were cross-classified on two variables:
overall neurological status, as measured by the Prechtl examination, and gesta-
tional age. The data are shown in Table 10.15. Notice that the age of the infant is
recorded by intervals and can therefore be considered a categorical variable.

Table 10.15

Number of Infants

Gestational Age (in weeks)

Prechtl Status 31 or less 32–33 34–36 37 or More All Infants

Normal 46 111 169 103 429
Dubious 11 15 19 11 56
Abnormal 8 5 4 3 20

All Infants 65 131 192 117 505

We will analyze these data using the loglinear modeling approach. That is, we
will develop a set of hierarchical models, starting with the simplest, which
may be of little interest, and going to the most complex, testing each model
for goodness of fit. The model that best fits the data will be adopted. Some of
the computations will be done by hand for illustrative purposes only, but the
resulting statistics were provided by computer output.

We start with the simplest model, one that contains only the overall mean. This
model has the form

log(Eij) = μij = μ.

4In some applications, these main effects may not be of interest.
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The expected frequencies under this model are given in Table 10.16.

Table 10.16

Expected Frequencies,
No Effects

Age Group

Prechtl Status 1 2 3 4 Total

Normal 42 42 42 42 168
Dubious 42 42 42 42 168
Abnormal 42 42 42 42 168

Notice that all the expected frequencies are the same, 42. This is because the
model assumes that all the cells have the same value, μ. The expected fre-
quencies are then the total divided by the number of cells, or 505/12 = 42
(rounded to integers). The likelihood ratio statistic for testing the lack of fit
of this model, obtained by PROC CATMOD from the SAS System, has a huge
value of 252.7. This value obviously exceeds the 0.05 tabled value of 19.675 for
the χ2 distribution with eleven degrees of freedom; hence, we readily reject
the model and go to the next.

The next model has only one term in addition to the mean. We can choose a
model that has only the grand mean and a row effect, or we can choose a model
with only the grand mean and a column effect. For the purposes of this example,
we choose the model with a grand mean and a row effect. This model is

log(Eij) = μij = μ+ λA
i .

The term λA
i represents the effect due to Prechtl scores. Note that there is no

effect due to age groups. The expected frequencies are listed in Table 10.17.
They are obtained by dividing each row total by 4, the number of columns.

Table 10.17

Expected Frequencies
with Row Effect

Age Group

Prechtl Status 1 2 3 4 Total

Normal 107 107 107 107 429
Dubious 14 14 14 14 56
Abnormal 5 5 5 5 20

For example, the first row is obtained by dividing 429 by 4 (rounded to inte-
gers). The likelihood ratio test for lack of fit has a value of 80.85, which is
compared to the value χ2

0.05(9) = 16.919. Again, the model does not fit, so we
must go to the next model. The next model has both age and Prechtl as factors.
That is, the model is

log(Eij) = μij = μ+ λP
i + λA

i .

We will be testing the goodness of fit of the model, but actually we will be
testing for independence. This is because this is a lack of fit test against the
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hierarchical scheme that uses the “saturated” model, or the model that
contained the terms above as well as the “interaction” term, λAB

ij .

The rounded expected frequencies are given in Table 10.18. The values are
calculated by multiplying row totals by column totals and dividing by the
total. The likelihood ratio test statistic for testing the goodness of fit of this
model has a value of 14.30. This exceeds the critical value of X2

0.05(6) =
12.592, so this model does not fit either. That is, there is a significant rela-
tionship between the gestational age of newborn infants and their neuro-
logical status. Examination of Table 10.15 indicates that 40% of abnormal
infants were less than 31 weeks of age and that the percentage of abnormal
infants decreases across age.

Table 10.18

Expected Frequencies,
Row and Column Effect

Age Group

Prechtl Status 1 2 3 4 Total

Normal 55 111 163 99 428
Dubious 7 15 21 13 56
Abnormal 3 5 8 5 21

The extension of the loglinear model to more than two categorical vari-
ables is relatively straightforward, and most computer packages offer this
option. The procedure for extending this type of analysis to three categori-
cal variables simply follows the preceding pattern. As an illustration of the
procedure, consider the following example.

EXAMPLE 10.6 A school psychologist was interested in determining a relationship between
socioeconomic status, race, and the ability to pass a standardized reading
exam of students in the sixth grade. The data in Table 10.19 resulted from
a review of one sixth-grade class. The variable Race has two levels, White and
Nonwhite. The variable School Lunch, a measure of socioeconomic status,
also has two levels, Yes and No. The variable Passed Test indicates whether
the student passed or did not pass the standardized test. The table lists the
frequency of occurrence of each combination of the three variables. The total
sample size is 471 students.

Table 10.19

Student Data

Passed Test

Race School Lunch No Yes

White No 25 150
Yes 43 143

Nonwhite No 23 29
Yes 36 22
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We want to obtain the best model to fit this data and consequently explain
the relationship between these three variables. To do so, we will employ a
hierarchical approach to loglinear modeling.

Starting with the model with no interactions,

μijk = μ+ λR
i + λL

j + λP
k ,

we perform the analysis using PROC CATMOD from the SAS System, with the
results shown in Table 10.20. Notice that the likelihood ratio test for lack of
fit is significant, indicating that the model with no interactions is not sufficient
to explain the relationship between the three variables. We next try a model
with only the two-way interactions. That is, we fit the model

μijk = μ+ λR
i + λL

j + λp
k + λRL

ij + λRP
ik + λLP

jk .

Table 10.20

Model with no
Interaction

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob

RACE 1 119.07 0.0000
LUNCH 1 0.61 0.4335
PASS 1 92.10 0.0000

LIKELIHOOD RATIO 4 56.07 0.0000

Again, the model is fit using PROC CATMOD, and the results are presented in
Table 10.21.

Table 10.21

Analysis with
Interactions

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob

RACE 1 63.94 0.0000
LUNCH 1 2.31 0.1283
RACE*LUNCH 1 0.55 0.4596
PASS 1 33.07 0.0000
RACE*PASS 1 47.35 0.0000
LUNCH*PASS 1 7.90 0.0049

LIKELIHOOD RATIO 1 0.08 0.7787

Now the likelihood ratio test for lack of fit is not significant, indicating a rea-
sonable fit of the model. No three-way interaction is present. Notice that the
two-way interaction between race and lunch is not significant. Therefore, we
may try a model without that term. Even though the “main effect” Lunch is not
significant, its interaction with Pass is, so we will use the convention that main
effects involved in significant interactions remain in the model. The model
without the interaction between Race and Lunch is then tested, with the results
given in Table 10.22.
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Table 10.22

Analysis without
Race-Lunch Interactions

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob

RACE 1 65.35 0.0000
LUNCH 1 3.85 0.0498
PASS 1 33.34 0.0000
LUNCH*PASS 1 7.44 0.0064
RACE*PASS 1 47.20 0.0000

LIKELIHOOD RATIO 2 0.63 0.7308

The model fits very well. The likelihood ratio test for the goodness of fit indi-
cates the model fits adequately. The individual terms are all significant at the
0.05 level.

To interpret the results, Table 10.23 gives the proportion of students of each
race in the other two categories. For example, 18% of the White students did
not pass the test, whereas 54% of the Nonwhite students did not pass.

Table 10.23

Proportions

Passed Test

Race School Lunch No Yes

White Yes 0.07 0.42
No 0.11 0.40

0.18 0.82

Nonwhite Yes 0.21 0.26
No 0.33 0.20

0.54 0.46

10.7 Summary

In this chapter we briefly examined the problems of modeling a categorical
response variable. The use of a binary response variable led to yet another
nonlinear model, the logistic regression model. We examined two strategies
to handle responses that had more than two categories but had continuous
independent variables. We then briefly looked at how we could model cate-
gorical responses with categorical independent variables through the use of
the loglinear model.

There are many variations of the modeling approach to the analysis of cate-
gorical data. These topics are discussed in various texts, including Bishop et al.
(1995) and Upton (1978). A discussion of categorical data with ordered cate-
gories is given in Agresti (1984). A methodology that clearly distinguishes
between independent and dependent variables is given in Grizzle et al. (1969).
Thismethodologyisoftencalledthelinearmodelapproachandemphasizesesti-
mation and hypothesis testing of the model parameters. Therefore, it is easily
used to test for differences among probabilities but is awkward to use for tests
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of independence. Conversely, the loglinear model is relatively easy to use to test
independence but not so easily used to test for differences among probabilities.
Mostcomputerpackagesoffer theuserachoiceofapproaches.As inallmethod-
ology that relies heavily on computer calculations, the user should make sure
that the analysis is what is expected by carefully reading documentation on the
particular program used.

10.8 CHAPTER EXERCISES

1. In a study to determine the effectiveness of a new insecticide on common
cockroaches, samples of 100 roaches were exposed to five levels of the
insecticide. After 20 minutes the number of dead roaches was counted.
Table 10.24 gives the results.

Table 10.24

Data for Exercise 1

Level (% concentration) Number of Roaches Number of Dead Roaches

5 100 15
10 100 27
15 100 35
20 100 50
30 100 69

(a) Calculate the estimated logistic response curve.
(b) Find the estimated probability of death when the concentration is 17%.
(c) Find the odds ratio.
(d) Estimate the concentration for which 50% of the roaches treated are

expected to die.

2. Using the results of Exercise 1, plot the estimated logistic curve and the
observed values. Does the regression appear to fit?

3. A recent heart disease study examined the effect of blood pressure on the
incident of heart disease. The average blood pressure of a sample of adult
males was taken over a 6-year period. At the end of the period the subjects
were classified as having coronary heart disease or not having it. The results
are in Table 10.25.

Table 10.25

Data for Exercise 3

Average Blood Number of Number with

Pressure Subjects Heart Disease

117 156 3
126 252 17
136 285 13
146 271 16
156 140 13
166 85 8
176 100 17
186 43 8
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(a) Calculate the estimated logistic response curve.
(b) What is the probability of heart disease for an adult male with average

blood pressure of 150?
(c) At what value of the average blood pressure would we expect the chance

of heart disease to be 75%?

4. Reaven and Miller (1979) examined the relationship between chemical
subclinical and overt nonketotic diabetes in nonobese adult subjects. The
three primary variables used in the analysis are glucose intolerance
(GLUCOS), insulin response to oral glucose (RESP), and insulin resistance
(RESIST). The patients were then classified as “normal” (N), “chemical dia-
betic” (C), or “overt diabetic” (O). Table 10.26 and File REG10P04 give the
results for a sample of 50 patients from the study.

Table 10.26

Data for Exercise 4

SUBJ GLUCOS RESP RESIST CLASS

1 56 24 55 N
2 289 117 76 N
3 319 143 105 N
4 356 199 108 N
5 323 240 143 N
6 381 157 165 N
7 350 221 119 N
8 301 186 105 N
9 379 142 98 N

10 296 131 94 N
11 353 221 53 N
12 306 178 66 N
13 290 136 142 N
14 371 200 93 N
15 312 208 68 N
16 393 202 102 N
17 425 143 204 C
18 465 237 111 C
19 558 748 122 C
20 503 320 253 C
21 540 188 211 C
22 469 607 271 C
23 486 297 220 C
24 568 232 276 C
25 527 480 233 C
26 537 622 264 C
27 466 287 231 C
28 599 266 268 C
29 477 124 60 C
30 472 297 272 C
31 456 326 235 C
32 517 564 206 C
33 503 408 300 C
34 522 325 286 C
35 1468 28 455 O
36 1487 23 327 O

(Continued)
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Table 10.26

(Continued)

SUBJ GLUCOS RESP RESIST CLASS

37 714 232 279 O
38 1470 54 382 O
39 1113 81 378 O
40 972 87 374 O
41 854 76 260 O
42 1364 42 346 O
43 832 102 319 O
44 967 138 351 O
45 920 160 357 O
46 613 131 248 O
47 857 145 324 O
48 1373 45 300 O
49 1133 118 300 O
50 849 159 310 O

Use the classification as a response variable and the other three as inde-
pendent variables to perform three separate binary logistic regressions.
Explain the results.

5. Using the data in Table 10.26 or File REG10P04, do the following:
(a) Use the classification as a response variable and GLUCOS as an inde-

pendent variable to perform three separate binary logistic regressions.
(b) Use the classification as a response variable and RESP as an indepen-

dent variable to perform three separate binary logistic regressions.
(c) Use the classification as a response variable and RESIST as an inde-

pendent variable to perform three separate binary logistic regressions.
(d) Compare the results in (a) through (c) with the results in Exercise 4.

6. The market research department for a large department store conducted
a survey of credit card customers to determine if they thought that buying
with a credit card was quicker than paying cash. The customers were from
three different metropolitan areas. The results are given in Table 10.27. Use
the hierarchical approach to loglinear modeling to determine which model
best fits the data. Explain the results.

Table 10.27

Data for Exercise 6

Rating City 1 City 2 City 3

Easier 62 51 45
Same 28 30 35
Harder 10 19 20

7. Table 10.28 gives the results of a political poll of registered voters in Florida
that indicated the relationship between political party, race, and support for
a tax on sugar to be used in restoration of the Everglades in South Florida.
Use the hierarchical approach to loglinear modeling to determine which
model best fits the data. Explain the results.
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Table 10.28

Data for Exercise 7

Support the Sugar Tax

Race Political Party Yes No

White Republican 15 125
Democrat 75 40
Independent 44 26

Nonwhite Republican 21 32
Democrat 66 28
Independent 36 22

8. Miller and Halpern (1982) report data from the Stanford Heart Transplant
Program that began in 1967. Table 10.29 gives a sample of the data. The
variable STATUS is coded 1 if the patient was reported dead by the end
of the study or 0 if still alive; the variable AGE is the age of the patient at
transplant. Do a logistic regression to determine the relationship between
age and status. Calculate the odds ratio and explain it. If the appropriate
computer program is available, fit the probit model and compare the two.

Table 10.29

Data for Exercise 8

Status Age Status Age

1 54 1 40
1 42 1 51
1 52 1 44
0 50 1 32
1 46 1 41
1 18 1 42
0 46 1 38
0 41 0 41
1 31 1 33
0 50 1 19
0 52 0 34
0 47 1 36
0 24 1 53
0 14 0 18
0 39 1 39
1 34 0 43
0 30 0 46
1 49 1 45
1 48 0 48
0 49 0 19
0 20 0 43
0 41 0 20
1 51 1 51
0 24 0 38
0 27 1 50
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Chapter 11

Generalized Linear
Models

11.1 Introduction

Beginning in Chapter 8, we discussed the use of transformations when the
assumptions of a normal response variable with constant variance were not
appropriate. Obviously, the use of transformations can be an effective way of
dealing with these situations; however, problems often arise from this method
of data analysis. First, most commonly used transformations are intended to
stabilize the variance and do not address the problem of skewness in the dis-
tribution of the response variable. Second, the interpretation of the results
becomes difficult because the transformation changes the scale of the output.
In Example 9.5 we analyzed the number of grubs found in a city park. Because
the dependent variable was count data, we indicated that it probably followed
the Poisson distribution and made a square root transformation. There we
pointed out that the means were actually the means of the square root of the
response. We could “un-transform” the means by squaring the results. How-
ever, that gives considerably larger values (and hence differences) for the
mean numbers and calls into question the validity of confidence intervals and
hypothesis tests. (Neither the mean nor the standard deviation of x2 is the
square mean or standard deviation of x).

So far, virtually all the models we have considered have assumed that
the random error is normally distributed and has constant variance.
However, we have presented some specific exceptions. For example, in
Section 4.3 we used weighted regression when we had specific information
on the magnitude of the variances; in Section 8.2 we used the multiplica-
tive (or logarithmic) model when the standard deviation is proportional to

401
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the mean; and in Section 10.4 we presented an analysis for the situation
where the response was dichotomous and the error term had a binomial
distribution.

In this chapter, we present an alternative method of transformation based
on a class of models called generalized linear models (cf. Nelder and
Wadderburn, 1972). This presentation assumes a familiarity with a number
of nonnormal distributions not required in previous chapters. The reader
may want to review the material in an elementary probability and statistics
resource (such as Chapters 2 and 3 of Hogg and Tanis, 2006). Generalized
linear models allow the use of linear model methods to analyze nonnormal
data that follow any probability distribution in the exponential family of
distributions. The exponential family includes such useful distributions as
the Normal, Binomial, Poisson, Multinomial, Gamma, Negative Binomial, and
others (see Definition 6.3-1 in Hogg and Tanis, 2006, for a complete definition
of the exponential family). Statistical inferences applied to the generalized
linear model do not require normality of the response variable, nor do they
require homogeneity of variances. Hence, generalized linear models can be
used when response variables follow distributions other than the Normal
distribution, and when variances are not constant.

The class of generalized linear models can be categorized by the
following:

1. The dependent variable, y, has a probability distribution that belongs to the
exponential family of distributions.

2. A linear relationship involving a set of independent variables, x1, . . . , xm,
and unknown parameters, βi, is utilized. Specifically, the relationship is of
the form:

β0 + β1x1 + · · ·+ βmxm.

3. A (usually) nonlinear link function specifies the relationship between
E(Y) = μy|x and the independent variable(s). The link function (specified
as g(μy|x) below) serves to link the probability distribution of the response
variable to the linear relationship:

g(μy|x) = β0 + β1x1 + · · ·+ βmxm.

Therefore, the main features of the generalized linear model are the link
function and the probability distribution of the response variable.

4. Except for the normal distribution, the variance of the dependent variable
is related to the mean.

In the generalized linear model, the maximum likelihood estimators of the
model parameters, β0, β1, . . . , βm, are obtained by the interatively reweighted
least squares method. The Wald statistic (cf. Lindsey, 1997) is used to test the
significance of and construct confidence intervals on individual parameters.
The relationship between the mean, μy|x, and the linear relationship can be
obtained by taking the inverse of the link function.
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11.2 The Link Function

The link function links the stochastic or statistical portion of the model to
the deterministic portion as highlighted in (3) above. The standard regression
model is written as:

E(y) = μy|x = β0 + β1x1 + · · ·+ βmxm,

where the dependent variable, y, is normally distributed with constant
variance.

For this model, the link function is called the identity or unity link. The
identity link specifies that the expected mean of the response variable is iden-
tical to the linear predictor, rather than to a nonlinear function of the linear
predictor. In other words:

g(μy|x) = μy|x.

Logistic Regression Link
Consider the simple logistic model discussed in Section 10.4 where we made
the logit transformation:

log

[
μy|x

1− μy|x

]
= β0 + β1x.

The logistic model therefore has the link function:

g(μy|x) = log

[
μy|x

1− μy|x

]
.

Poisson Regression Link
Historically, count data has been put in a framework that assumed it can be
modeled using the Poisson distribution. For example, if an engineer wanted to
relate the number of defects to a physical characteristic of an assembly line,
the engineer would probably use the Poisson distribution. This distribution
has the form:

p(y) =
e−μμy

y!
, y = 0, 1, . . . ,

and can be shown to have mean and variance both equal to the value μ. The
link function would be:

g(μy|x) = loge(μy|x).

Most links that follow naturally from a particular probability distribution
are called canonical links. The canonical link functions for a variety of
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probability distributions are as follows:

Probability Distribution Canonical Link Function

Normal Identity = μ

Binomial Logit = log
(

μ
1− μ

)
Poisson Log = log (μ)

Gamma Reciprocal = 1
μ

Obviously, the link function can be other than the canonical function, and
most computer programs offer various options for combinations of probability
distributions and link functions. For example, in the discussion in Section 10.4,
we also considered the probit model, one often used in the analysis of bioas-
say data. In that case, the link function is the inverse normal function. We
will illustrate the use of both of these link functions using the data from
Example 10.2 with the procedure GENMOD in SAS. There may be a big impact
due to link misspecification on the estimation of the mean response, so care
must be used in its choice, just as not using an appropriate transformation can
result in problems with fitting a regression model to the data.

11.3 The Logistic Model

In Sections 10.4 and 10.5, we discussed a model in which the response
variable was dichotomous and whose distribution was binomial. The trans-
formation that made sense was the logit transformation. The binomial distri-
bution belongs to the exponential family of distributions, and as indicated in
Section 10.4, the variance of the response variable depends on the indepen-
dent variable. Therefore, we can use the generalized linear model method to
do logistic models. The following examples were originally worked using the
logistic model transformation in Chapter 10 and will be revisited here using
the generalized linear model approach.

EXAMPLE 11.1 Consider the urban planning study in Example 10.1 in which the logistic regres-
sion model was used to analyze the data. This is an example of a generalized
linear model whose link function is the logit and whose probability distri-
bution is the binomial. The data are analyzed using PROC GENMOD in SAS
(a procedure in SAS specifically designed for doing generalized linear model
analysis). The link function is specified as the logit and the probability dis-
tribution as the binomial. If we did not specify the link function in PROC
GENMOD, SAS would automatically use the canonical link function for the
binomial which is the logit. The output is slightly different from that of PROC
LOGISTIC used to produce Table 10.9, but the results are the same. The Wald
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statistic has an approximate chi-square distribution. Table 11.1 gives a portion
of the output from PROC GENMOD.

Table 11.1 Logistic Regression for Example 10.1 Using PROC GENMOD

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 −11.3487 3.3513 −17.9171 −4.7802 11.47 0.0007
INCOME 1 1.0019 0.2954 0.4229 1.5809 11.50 0.0007

Notice that the values of the parameters are the same as those in Table 10.9,
as are the statistics. This output gives us 95% confidence intervals on the
parameters.

In addition, the output from PROC GENMOD also includes several statistics
that are useful in assessing the goodness of fit of the model to the data. One
such statistic is called the Deviance and can be compared with the χ2 with
48 degrees of freedom. The value in the output from PROC GENMOD for this
statistic is 53.6660. From Table A.3, in Appendix A, we see that this value does
not exceed the 0.05 level of approximately 65.17 (using interpolation) indicat-
ing a reasonable goodness of fit of the model.

EXAMPLE 11.2 In Example 10.2, we discussed a toxicology problem involving incidence of
tumors in laboratory animals. This is an example of a class of problems often
referred to as bioassay or dose-response problems. Although the logistic model
worked fairly well, this type of problem is usually addressed with a probit

model rather than a logit model. The difference in the two is that the probit
model uses an inverse normal link function (see the discussion at the end of
Section 10.5). We illustrate this method using the data from Table 10.5 given in
file REG10X02. The results are given in Table 11.2, which contains partial out-
put from PROC GENMOD. The table shows confidence intervals at the same
levels of concentration given in Table 10.12.

Table 11.2 Probit Regression for Example 10.2 Using PROC GENMOD

Analysis of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 −1.8339 0.1679 −2.1630 −1.5048 119.29 <.0001
CONC 1 0.1504 0.0140 0.1229 0.1780 114.85 <.0001

Label phat prb lcl prb ucl

probit at 0 conc 0.03333 0.01527 0.06618
probit at 2.1 conc 0.06451 0.03591 0.10828
probit at 5.4 conc 0.15351 0.10731 0.21126
probit at 8 conc 0.26423 0.20688 0.32873
probit at 15 conc 0.66377 0.57872 0.74116
probit at 19.5 conc 0.86429 0.78370 0.92144
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Notice that the estimates in the lower portion of the table agree with those
given in Table 10.12. We again use the deviance statistic to evaluate the
goodness of fit, which has a value of 8.5945 with 4 degrees of freedom and
is not significant at the 0.05 level, indicating an acceptable goodness of fit
of the model.

11.4 Other Models

In this section, we will look at examples using the generalized linear model
in which the response variable has a distribution other than normal or bino-
mial. The first example measures the time between arrivals of automobiles at
a parking garage. Time between arrivals in most processes follows some form
of the exponential distribution, which is a special case of the Gamma distribu-
tion (cf. Wackerly et al., 2002). Next we will look at an example in which the
response variable is a count variable, working it first using a Poisson proba-
bility distribution, then when the goodness of fit turns out to be questionable,
using the negative binomial distribution.

To model the time between arrivals of automobiles, we assume that the
time follows the exponential distribution:

f(y) =
1

θ
e−y/θ, for positive θ and y ≥ 0.

The characteristics of this distribution are: (1) the mean of y is θ and the vari-
ance is θ2 and (2) the distribution is skewed to the right.

EXAMPLE 11.3 In an effort to better handle traffic entering a parking garage on a university
campus, the university police conducted a survey of the time between cars
arriving at the garage during a typical day in the middle of a semester. The
study recorded three periods: the morning, the afternoon, and the evening.
The data from the survey are presented in Table 11.3.

Table 11.3

Time Between Arrivals of
Cars in a Parking Garage

Time of Day (Time) Car Number Time Between Arrivals (Timebet)

1 2.00
2 34.00
3 22.00
4 24.00
5 27.00
6 33.00
7 8.00
8 33.00

Morning 9 94.00
10 14.00

(Continued)
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Table 11.3

(Continued)

Time of Day (Time) Car Number Time Between Arrivals (Timebet)

11 12.00
12 18.00
13 20.00
14 22.00
15 30.00
16 22.00

1 1.00
2 1.00
3 8.00
4 18.00
5 110.00

Afternoon 6 3.00
7 57.00
8 108.00
9 9.00

10 97.00
11 3.00

1 8.00
2 4.00
3 10.00
4 25.00
5 21.00
6 20.00
7 7.00
8 19.00
9 21.00

10 3.00
11 43.00
12 22.00
13 47.00

Evening 14 11.00
15 5.00
16 5.00
17 9.00
18 6.00
19 9.00
20 12.00
21 6.00
22 30.00
23 49.00
24 5.00
25 10.00
26 8.00

Several interesting facts can be observed from the data. First, there are the
fewest number of cars arriving during the afternoon and the most during the
evening. This reflects the nature of the student body and the course scheduling.
The students attending afternoon classes are normally students residing on
campus while the evening classes are geared more to working students living
off campus. Second, as can be seen from the box plots in Figure 11.1, the time
between arrivals is skewed for each time period.
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Figure 11.1

Time Between Arrivals
for Example 11.3
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The response variable of interest is the time between arrivals labeled Timbet.
The independent variable is the time of day, labeled time with three levels. The
objective is to determine whether there is a difference in the time between
arrivals over the three time periods. This looks like a one-way ANOVA except
for the fact that the response variable is not normally distributed. To do the
analysis, we can use generalized linear model procedures using the gamma
probability distribution and the reciprocal link function.

A portion of the output from PROC GENMOD of the SAS system is given in
Table 11.4.

Table 11.4

Partial Output from
PROC GENMOD for
Example 11.3

Chi-

Source DF Square Pr > ChiSq

time 2 7.48 0.0237

Least Squares Means

Standard Chi-

Effect time Estimate Error DF Square Pr > ChiSq

time afternoon 0.0265 0.0072 1 13.40 0.0003
time evening 0.0627 0.0111 1 31.68 <.0001
time morning 0.0386 0.0087 1 19.50 <.0001

Contrast Results

Chi-

Contrast DF Square Pr > ChiSq Type

0 vs 1 1 7.22 0.0072 LR
0 vs 2 1 1.13 0.2888 LR
1 vs 2 1 2.87 0.0905 LR

Notice that the chi-square statistic for testing equality of time periods has a
p-value of 0.0237, indicating there is a difference somewhere among the three
time periods. Anticipating that there might be a difference, and wanting to
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know the nature of these differences, the researcher defined three contrasts
to test pairwise differences (cf. Freund and Wilson, 2003). The results are given
in the bottom portion of Table 11.4.

Apparently, there are significant differences between the evening and after-
noon but not between the morning and evening, nor the afternoon and morn-
ing. To determine the relative magnitude of the differences, we calculate the
least square means, given in the middle portion of Table 11.4. These are the
transformed means, and to get the actual means in the original metric, which
is seconds, we use the inverse of the link function. To get estimates of the mean
time between arrivals for the three time periods, we simply take the reciprocal
of the least square means given in Table 11.4. These are 37.7, 15.9, and 25.9,
respectively. Therefore, the average time between arrivals is the shortest in
the evening, next shortest in the morning, and longest in the afternoon.

Finally, to check the goodness of fit, we again use the Deviance output from
PROC GENMOD. For this example, the deviance has a value of 49.1287 with
50 degrees of freedom. From Table A.3, in Appendix A, and interpolation, we
see that this is not significant at the 0.05 level, indicating a reasonable good-
ness of fit of the model.

EXAMPLE 11.4 In Example 9.5, we analyzed the number of grubs found in a city park. Because
the dependent variable was count data, we indicated that it probably followed
the Poisson distribution and made a square root transformation. The inde-
pendent variables were TIME, SPECIES, DEPTH, TEMP, and MOIST. We fit
a model that had a quadratic term in DEPTH and included the interaction of
TIME and SPECIES. We can do the equivalent analysis using the generalized
linear model with the Poisson distribution and the log link. The results are
given in Table 11.5, which shows partial output from PROC GENMOD in SAS.

Table 11.5

Partial Output from
PROC GENMOD for
Example 11.4 Using the
Poisson Distribution

Chi-

Source DF Square Pr > ChiSq

TIME 23 565.48 <.0001
SPEC 1 73.18 <.0001
TIME*SPEC 23 1166.60 <.0001
DEPTH 1 207.14 <.0001
DEPTH*DEPTH 1 29.95 <.0001
TEMP 1 0.19 0.6612
MOIST 1 9.53 0.0020

When the results from this analysis are compared with those of the trans-
formed count variable given in Table 9.8, several differences can be noted.
For example, in Table 11.5 only the TEMP variable is not significant. In Table
9.8 the TIME and the SPEC variables are not significant as well as the TEMP
and MOIST variables. Furthermore, when we look at the goodness of fit of
the generalized linear model using the Poisson distribution and the log link
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function, the Deviance = 478.1906 with 140 degrees of freedom. This is highly
significant using an α of 0.05 indicating a less than desirable fit.

A number of possible reasons may account for the lack of fit in this model. One,
the model may not be adequate for explaining the COUNT variable. This can
be checked by using a plot of the residuals vs the predicted values. Second, the
link function or the choice of probability distributions might not be correct.
This can be checked by plotting the predicted values vs the estimated link
function. Third, the Poisson model assumes that the mean and variance are
approximately equal. In biological counting processes, the variance is typically
much larger than the mean, and in fact in Example 11.4 the mean is around 22
while the variance is over 1800. However, in many biological settings, the data
tend to be more clustered around a few values than the Poisson probability
distribution would predict. This results in the variance being much larger than
the mean, resulting in what is called overdispersion.

One approach would be to adjust for this condition by adding an overdis-
persion parameter to the model and estimate it from the data. This would
adjust the estimates and test statistics for the overdispersion. This procedure
is discussed in McCullagh and Nelder (1999).

Another approach is to use the negative binomial distribution, one that is
known to fit count data from agricultural or ecological experiments. We will
use the negative binomial distribution and the log link function rather than the
Poisson and reanalyze the data. The results are given in Table 11.6.

Table 11.6

Partial Output from
PROC GENMOD for
Example 11.4 Using the
Negative Binomial
Distribution

Chi-

Source DF Square Pr > ChiSq

TIME 23 70.44 <.0001
SPEC 1 39.80 <.0001
TIME*SPEC 23 125.03 <.0001
DEPTH 1 80.49 <.0001
DEPTH*DEPTH 1 21.38 <.0001
TEMP 1 0.06 0.8080
MOIST 1 5.16 0.0231

These results basically agree with those when using the Poisson; only the
TEMP variable is not significant. The difference is that the Deviance statis-
tic for this model has a value of 206.626 with 140 degrees of freedom. This
statistic is highly significant, also indicating a lack of fit.

11.5 Summary

This chapter provides a brief introduction to the use of generalized linear
models to do regression analyses when the distribution of the response
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variable does not have a normal distribution and/or the variance is not con-
stant. The procedure allows use of the standard regression approach, through
use of a link function, for response variables belonging to a large class of prob-
ability distributions.

We have chosen not to include a set of exercises for this chapter mainly
because the material presented is introductory in nature and does not give spe-
cific guides to identifying the underlying distribution of the response variable.
Practice using the generalized linear model to analyze data using the logistic
model can be obtained by reworking Exercises 2 through 4 in Chapter 10. For
additional exercises in the logistic and Poisson models, readers might look at
Chapter 13 of Montgomery et al. (2001).
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Appendix A

Statistical Tables

A.1 The Standard Normal Distribution—Table A.1 and Table A.1a in Statistical
Methods

A.2 The t Distribution—Table A.2 in Statistical Methods
A.3 The χ2 Distribution—Table A.3 in Statistical Methods
A.4 The F Distribution—Tables A.4, A.4a, A.4b, A.4c, and A.4d
A.5 The Durbin–Watson Test Bounds
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Table A.1 The Normal Distribution—Probabilities Exceeding Z

Z PROB > Z Z PROB > Z Z PROB > Z Z PROB > Z

−3.99 1.0000 −3.49 0.9998 −2.99 0.9986 −2.49 0.9936
−3.98 1.0000 −3.48 0.9997 −2.98 0.9986 −2.48 0.9934
−3.97 1.0000 −3.47 0.9997 −2.97 0.9985 −2.47 0.9932
−3.96 1.0000 −3.46 0.9997 −2.96 0.9985 −2.46 0.9931
−3.95 1.0000 −3.45 0.9997 −2.95 0.9984 −2.45 0.9929
−3.94 1.0000 −3.44 0.9997 −2.94 0.9984 −2.44 0.9927
−3.93 1.0000 −3.43 0.9997 −2.93 0.9983 −2.43 0.9925
−3.92 1.0000 −3.42 0.9997 −2.92 0.9982 −2.42 0.9922
−3.91 1.0000 −3.41 0.9997 −2.91 0.9982 −2.41 0.9920
−3.90 1.0000 −3.40 0.9997 −2.90 0.9981 −2.40 0.9918
−3.89 0.9999 −3.39 0.9997 −2.89 0.9981 −2.39 0.9916
−3.88 0.9999 −3.38 0.9996 −2.88 0.9980 −2.38 0.9913
−3.87 0.9999 −3.37 0.9996 −2.87 0.9979 −2.37 0.9911
−3.86 0.9999 −3.36 0.9996 −2.86 0.9979 −2.36 0.9909
−3.85 0.9999 −3.35 0.9996 −2.85 0.9978 −2.35 0.9906
−3.84 0.9999 −3.34 0.9996 −2.84 0.9977 −2.34 0.9904
−3.83 0.9999 −3.33 0.9996 −2.83 0.9977 −2.33 0.9901
−3.82 0.9999 −3.32 0.9995 −2.82 0.9976 −2.32 0.9898
−3.81 0.9999 −3.31 0.9995 −2.81 0.9975 −2.31 0.9896
−3.80 0.9999 −3.30 0.9995 −2.80 0.9974 −2.30 0.9893
−3.79 0.9999 −3.29 0.9995 −2.79 0.9974 −2.29 0.9890
−3.78 0.9999 −3.28 0.9995 −2.78 0.9973 −2.28 0.9887
−3.77 0.9999 −3.27 0.9995 −2.77 0.9972 −2.27 0.9884
−3.76 0.9999 −3.26 0.9994 −2.76 0.9971 −2.26 0.9881
−3.75 0.9999 −3.25 0.9994 −2.75 0.9970 −2.25 0.9878
−3.74 0.9999 −3.24 0.9994 −2.74 0.9969 −2.24 0.9875
−3.73 0.9999 −3.23 0.9994 −2.73 0.9968 −2.23 0.9871
−3.72 0.9999 −3.22 0.9994 −2.72 0.9967 −2.22 0.9868
−3.71 0.9999 −3.21 0.9993 −2.71 0.9966 −2.21 0.9864
−3.70 0.9999 −3.20 0.9993 −2.70 0.9965 −2.20 0.9861
−3.69 0.9999 −3.19 0.9993 −2.69 0.9964 −2.19 0.9857
−3.68 0.9999 −3.18 0.9993 −2.68 0.9963 −2.18 0.9854
−3.67 0.9999 −3.17 0.9992 −2.67 0.9962 −2.17 0.9850
−3.66 0.9999 −3.16 0.9992 −2.66 0.9961 −2.16 0.9846
−3.65 0.9999 −3.15 0.9992 −2.65 0.9960 −2.15 0.9842
−3.64 0.9999 −3.14 0.9992 −2.64 0.9959 −2.14 0.9838
−3.63 0.9999 −3.13 0.9991 −2.63 0.9957 −2.13 0.9834
−3.62 0.9999 −3.12 0.9991 −2.62 0.9956 −2.12 0.9830
−3.61 0.9998 −3.11 0.9991 −2.61 0.9955 −2.11 0.9826
−3.60 0.9998 −3.10 0.9990 −2.60 0.9953 −2.10 0.9821
−3.59 0.9998 −3.09 0.9990 −2.59 0.9952 −2.09 0.9817
−3.58 0.9998 −3.08 0.9990 −2.58 0.9951 −2.08 0.9812
−3.57 0.9998 −3.07 0.9989 −2.57 0.9949 −2.07 0.9808
−3.56 0.9998 −3.06 0.9989 −2.56 0.9948 −2.06 0.9803
−3.55 0.9998 −3.05 0.9989 −2.55 0.9946 −2.05 0.9798
−3.54 0.9998 −3.04 0.9988 −2.54 0.9945 −2.04 0.9793
−3.53 0.9998 −3.03 0.9988 −2.53 0.9943 −2.03 0.9788
−3.52 0.9998 −3.02 0.9987 −2.52 0.9941 −2.02 0.9783
−3.51 0.9998 −3.01 0.9987 −2.51 0.9940 −2.01 0.9778
−3.50 0.9998 −3.00 0.9987 −2.50 0.9938 −2.00 0.9772

(Continued)
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Table A.1 (Continued)

Z PROB > Z Z PROB > Z Z PROB > Z Z PROB > Z

−1.99 0.9767 −1.49 0.9319 −0.99 0.8389 −0.49 0.6879
−1.98 0.9761 −1.48 0.9306 −0.98 0.8365 −0.48 0.6844
−1.97 0.9756 −1.47 0.9292 −0.97 0.8340 −0.47 0.6808
−1.96 0.9750 −1.46 0.9279 −0.96 0.8315 −0.46 0.6772
−1.95 0.9744 −1.45 0.9265 −0.95 0.8289 −0.45 0.6736
−1.94 0.9738 −1.44 0.9251 −0.94 0.8264 −0.44 0.6700
−1.93 0.9732 −1.43 0.9236 −0.93 0.8238 −0.43 0.6664
−1.92 0.9726 −1.42 0.9222 −0.92 0.8212 −0.42 0.6628
−1.91 0.9719 −1.41 0.9207 −0.91 0.8186 −0.41 0.6591
−1.90 0.9713 −1.40 0.9192 −0.90 0.8159 −0.40 0.6554
−1.89 0.9706 −1.39 0.9177 −0.89 0.8133 −0.39 0.6517
−1.88 0.9699 −1.38 0.9162 −0.88 0.8106 −0.38 0.6480
−1.87 0.9693 −1.37 0.9147 −0.87 0.8078 −0.37 0.6443
−1.86 0.9686 −1.36 0.9131 −0.86 0.8051 −0.36 0.6406
−1.85 0.9678 −1.35 0.9115 −0.85 0.8023 −0.35 0.6368
−1.84 0.9671 −1.34 0.9099 −0.84 0.7995 −0.34 0.6331
−1.83 0.9664 −1.33 0.9082 −0.83 0.7967 −0.33 0.6293
−1.82 0.9656 −1.32 0.9066 −0.82 0.7939 −0.32 0.6255
−1.81 0.9649 −1.31 0.9049 −0.81 0.7910 −0.31 0.6217
−1.80 0.9641 −1.30 0.9032 −0.80 0.7881 −0.30 0.6179
−1.79 0.9633 −1.29 0.9015 −0.79 0.7852 −0.29 0.6141
−1.78 0.9625 −1.28 0.8997 −0.78 0.7823 −0.28 0.6103
−1.77 0.9616 −1.27 0.8980 −0.77 0.7794 −0.27 0.6064
−1.76 0.9608 −1.26 0.8962 −0.76 0.7764 −0.26 0.6026
−1.75 0.9599 −1.25 0.8944 −0.75 0.7734 −0.25 0.5987
−1.74 0.9591 −1.24 0.8925 −0.74 0.7704 −0.24 0.5948
−1.73 0.9582 −1.23 0.8907 −0.73 0.7673 −0.23 0.5910
−1.72 0.9573 −1.22 0.8888 −0.72 0.7642 −0.22 0.5871
−1.71 0.9564 −1.21 0.8869 −0.71 0.7611 −0.21 0.5832
−1.70 0.9554 −1.20 0.8849 −0.70 0.7580 −0.20 0.5793
−1.69 0.9545 −1.19 0.8830 −0.69 0.7549 −0.19 0.5753
−1.68 0.9535 −1.18 0.8810 −0.68 0.7517 −0.18 0.5714
−1.67 0.9525 −1.17 0.8790 −0.67 0.7486 −0.17 0.5675
−1.66 0.9515 −1.16 0.8770 −0.66 0.7454 −0.16 0.5636
−1.65 0.9505 −1.15 0.8749 −0.65 0.7422 −0.15 0.5596
−1.64 0.9495 −1.14 0.8729 −0.64 0.7389 −0.14 0.5557
−1.63 0.9484 −1.13 0.8708 −0.63 0.7357 −0.13 0.5517
−1.62 0.9474 −1.12 0.8686 −0.62 0.7324 −0.12 0.5478
−1.61 0.9463 −1.11 0.8665 −0.61 0.7291 −0.11 0.5438
−1.60 0.9452 −1.10 0.8643 −0.60 0.7257 −0.10 0.5398
−1.59 0.9441 −1.09 0.8621 −0.59 0.7224 −0.09 0.5359
−1.58 0.9429 −1.08 0.8599 −0.58 0.7190 −0.08 0.5319
−1.57 0.9418 −1.07 0.8577 −0.57 0.7157 −0.07 0.5279
−1.56 0.9406 −1.06 0.8554 −0.56 0.7123 −0.06 0.5239
−1.55 0.9394 −1.05 0.8531 −0.55 0.7088 −0.05 0.5199
−1.54 0.9382 −1.04 0.8508 −0.54 0.7054 −0.04 0.5160
−1.53 0.9370 −1.03 0.8485 −0.53 0.7019 −0.03 0.5120
−1.52 0.9357 −1.02 0.8461 −0.52 0.6985 −0.02 0.5080
−1.51 0.9345 −1.01 0.8438 −0.51 0.6950 −0.01 0.5040
−1.50 0.9332 −1.00 0.8413 −0.50 0.6915 0.00 0.5000

(Continued)
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Table A.1 (Continued)

Z PROB > Z Z PROB > Z Z PROB > Z Z PROB > Z

0.01 0.4960 0.51 0.3050 1.01 0.1562 1.51 0.0655
0.02 0.4920 0.52 0.3015 1.02 0.1539 1.52 0.0643
0.03 0.4880 0.53 0.2981 1.03 0.1515 1.53 0.0630
0.04 0.4840 0.54 0.2946 1.04 0.1492 1.54 0.0618
0.05 0.4801 0.55 0.2912 1.05 0.1469 1.55 0.0606
0.06 0.4761 0.56 0.2877 1.06 0.1446 1.56 0.0594
0.07 0.4721 0.57 0.2843 1.07 0.1423 1.57 0.0582
0.08 0.4681 0.58 0.2810 1.08 0.1401 1.58 0.0571
0.09 0.4641 0.59 0.2776 1.09 0.1379 1.59 0.0559
0.10 0.4602 0.60 0.2743 1.10 0.1357 1.60 0.0548
0.11 0.4562 0.61 0.2709 1.11 0.1335 1.61 0.0537
0.12 0.4522 0.62 0.2676 1.12 0.1314 1.62 0.0526
0.13 0.4483 0.63 0.2643 1.13 0.1292 1.63 0.0516
0.14 0.4443 0.64 0.2611 1.14 0.1271 1.64 0.0505
0.15 0.4404 0.65 0.2578 1.15 0.1251 1.65 0.0495
0.16 0.4364 0.66 0.2546 1.16 0.1230 1.66 0.0485
0.17 0.4325 0.67 0.2514 1.17 0.1210 1.67 0.0475
0.18 0.4286 0.68 0.2483 1.18 0.1190 1.68 0.0465
0.19 0.4247 0.69 0.2451 1.19 0.1170 1.69 0.0455
0.20 0.4207 0.70 0.2420 1.20 0.1151 1.70 0.0446
0.21 0.4168 0.71 0.2389 1.21 0.1131 1.71 0.0436
0.22 0.4129 0.72 0.2358 1.22 0.1112 1.72 0.0427
0.23 0.4090 0.73 0.2327 1.23 0.1093 1.73 0.0418
0.24 0.4052 0.74 0.2296 1.24 0.1075 1.74 0.0409
0.25 0.4013 0.75 0.2266 1.25 0.1056 1.75 0.0401
0.26 0.3974 0.76 0.2236 1.26 0.1038 1.76 0.0392
0.27 0.3936 0.77 0.2206 1.27 0.1020 1.77 0.0384
0.28 0.3897 0.78 0.2177 1.28 0.1003 1.78 0.0375
0.29 0.3859 0.79 0.2148 1.29 0.0985 1.79 0.0367
0.30 0.3821 0.80 0.2119 1.30 0.0968 1.80 0.0359
0.31 0.3783 0.81 0.2090 1.31 0.0951 1.81 0.0351
0.32 0.3745 0.82 0.2061 1.32 0.0934 1.82 0.0344
0.33 0.3707 0.83 0.2033 1.33 0.0918 1.83 0.0336
0.34 0.3669 0.84 0.2005 1.34 0.0901 1.84 0.0329
0.35 0.3632 0.85 0.1977 1.35 0.0885 1.85 0.0322
0.36 0.3594 0.86 0.1949 1.36 0.0869 1.86 0.0314
0.37 0.3557 0.87 0.1922 1.37 0.0853 1.87 0.0307
0.38 0.3520 0.88 0.1894 1.38 0.0838 1.88 0.0301
0.39 0.3483 0.89 0.1867 1.39 0.0823 1.89 0.0294
0.40 0.3446 0.90 0.1841 1.40 0.0808 1.90 0.0287
0.41 0.3409 0.91 0.1814 1.41 0.0793 1.91 0.0281
0.42 0.3372 0.92 0.1788 1.42 0.0778 1.92 0.0274
0.43 0.3336 0.93 0.1762 1.43 0.0764 1.93 0.0268
0.44 0.3300 0.94 0.1736 1.44 0.0749 1.94 0.0262
0.45 0.3264 0.95 0.1711 1.45 0.0735 1.95 0.0256
0.46 0.3228 0.96 0.1685 1.46 0.0721 1.96 0.0250
0.47 0.3192 0.97 0.1660 1.47 0.0708 1.97 0.0244
0.48 0.3156 0.98 0.1635 1.48 0.0694 1.98 0.0239
0.49 0.3121 0.99 0.1611 1.49 0.0681 1.99 0.0233
0.50 0.3085 1.00 0.1587 1.50 0.0668 2.00 0.0228

(Continued)
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Table A.1 (Continued)

Z PROB > Z Z PROB > Z Z PROB > Z Z PROB > Z

2.01 0.0222 2.51 0.0060 3.01 0.0013 3.51 0.0002
2.02 0.0217 2.52 0.0059 3.02 0.0013 3.52 0.0002
2.03 0.0212 2.53 0.0057 3.03 0.0012 3.53 0.0002
2.04 0.0207 2.54 0.0055 3.04 0.0012 3.54 0.0002
2.05 0.0202 2.55 0.0054 3.05 0.0011 3.55 0.0002
2.06 0.0197 2.56 0.0052 3.06 0.0011 3.56 0.0002
2.07 0.0192 2.57 0.0051 3.07 0.0011 3.57 0.0002
2.08 0.0188 2.58 0.0049 3.08 0.0010 3.58 0.0002
2.09 0.0183 2.59 0.0048 3.09 0.0010 3.59 0.0002
2.10 0.0179 2.60 0.0047 3.10 0.0010 3.60 0.0002
2.11 0.0174 2.61 0.0045 3.11 0.0009 3.61 0.0002
2.12 0.0170 2.62 0.0044 3.12 0.0009 3.62 0.0001
2.13 0.0166 2.63 0.0043 3.13 0.0009 3.63 0.0001
2.14 0.0162 2.64 0.0041 3.14 0.0008 3.64 0.0001
2.15 0.0158 2.65 0.0040 3.15 0.0008 3.65 0.0001
2.16 0.0154 2.66 0.0039 3.16 0.0008 3.66 0.0001
2.17 0.0150 2.67 0.0038 3.17 0.0008 3.67 0.0001
2.18 0.0146 2.68 0.0037 3.18 0.0007 3.68 0.0001
2.19 0.0143 2.69 0.0036 3.19 0.0007 3.69 0.0001
2.20 0.0139 2.70 0.0035 3.20 0.0007 3.70 0.0001
2.21 0.0136 2.71 0.0034 3.21 0.0007 3.71 0.0001
2.22 0.0132 2.72 0.0033 3.22 0.0006 3.72 0.0001
2.23 0.0129 2.73 0.0032 3.23 0.0006 3.73 0.0001
2.24 0.0125 2.74 0.0031 3.24 0.0006 3.74 0.0001
2.25 0.0122 2.75 0.0030 3.25 0.0006 3.75 0.0001
2.26 0.0119 2.76 0.0029 3.26 0.0006 3.76 0.0001
2.27 0.0116 2.77 0.0028 3.27 0.0005 3.77 0.0001
2.28 0.0113 2.78 0.0027 3.28 0.0005 3.78 0.0001
2.29 0.0110 2.79 0.0026 3.29 0.0005 3.79 0.0001
2.30 0.0107 2.80 0.0026 3.30 0.0005 3.80 0.0001
2.31 0.0104 2.81 0.0025 3.31 0.0005 3.81 0.0001
2.32 0.0102 2.82 0.0024 3.32 0.0005 3.82 0.0001
2.33 0.0099 2.83 0.0023 3.33 0.0004 3.83 0.0001
2.34 0.0096 2.84 0.0023 3.34 0.0004 3.84 0.0001
2.35 0.0094 2.85 0.0022 3.35 0.0004 3.85 0.0001
2.36 0.0091 2.86 0.0021 3.36 0.0004 3.86 0.0001
2.37 0.0089 2.87 0.0021 3.37 0.0004 3.87 0.0001
2.38 0.0087 2.88 0.0020 3.38 0.0004 3.88 0.0001
2.39 0.0084 2.89 0.0019 3.39 0.0003 3.89 0.0001
2.40 0.0082 2.90 0.0019 3.40 0.0003 3.90 0.0000
2.41 0.0080 2.91 0.0018 3.41 0.0003 3.91 0.0000
2.42 0.0078 2.92 0.0018 3.42 0.0003 3.92 0.0000
2.43 0.0075 2.93 0.0017 3.43 0.0003 3.93 0.0000
2.44 0.0073 2.94 0.0016 3.44 0.0003 3.94 0.0000
2.45 0.0071 2.95 0.0016 3.45 0.0003 3.95 0.0000
2.46 0.0069 2.96 0.0015 3.46 0.0003 3.96 0.0000
2.47 0.0068 2.97 0.0015 3.47 0.0003 3.97 0.0000
2.48 0.0066 2.98 0.0014 3.48 0.0003 3.98 0.0000
2.49 0.0064 2.99 0.0014 3.49 0.0002 3.99 0.0000
2.50 0.0062 3.00 0.0013 3.50 0.0002 4.00 0.0000
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Table A.1A Selected Probability Values for the Normal Distribution Values of Z Exceeded with Given Probability

PROB Z

0.5000 0.00000
0.4000 0.25335
0.3000 0.52440
0.2000 0.84162
0.1000 1.28155
0.0500 1.64485
0.0250 1.95996
0.0100 2.32635
0.0050 2.57583
0.0020 2.87816
0.0010 3.09023
0.0005 3.29053
0.0001 3.71902
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Table A.2 The T Distribution—Values of T Exceeded with Given Probability

df P = 0.25 P = 0.10 P = 0.05 P = 0.025 P = 0.01 P = 0.005 P = 0.001 P = 0.0005 df

1 1.0000 3.0777 6.3138 12.706 31.821 63.657 318.31 636.62 1
2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 22.327 31.599 2
3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409 10.215 12.924 3
4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 7.1732 8.6103 4
5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 5.8934 6.8688 5
6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076 5.9588 6
7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853 5.4079 7
8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0413 8
9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 4.2968 4.7809 9

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5869 10
11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247 4.4370 11
12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178 12
13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2208 13
14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1405 14
15 0.6912 1.3406 1.7531 2.1314 2.6025 2.9467 3.7329 4.0728 15
16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862 4.0150 16
17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9652 17
18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9217 18
19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794 3.8834 19
20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.8495 20
21 0.6864 1.3232 1.7207 2.0796 2.5176 2.8314 3.5272 3.8193 21
22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050 3.7922 22
23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 3.4850 3.7677 23
24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969 3.4668 3.7454 24
25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 3.4502 3.7252 25
26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7066 26
27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6896 27
28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082 3.6739 28
29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564 3.3963 3.6594 29
30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460 30
35 0.6816 1.3062 1.6896 2.0301 2.4377 2.7238 3.3401 3.5912 35
40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510 40
45 0.6800 1.3006 1.6794 2.0141 2.4121 2.6896 3.2815 3.5203 45
50 0.6794 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960 50
55 0.6790 1.2971 1.6730 2.0040 2.3961 2.6682 3.2452 3.4764 55
60 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317 3.4602 60
65 0.6783 1.2947 1.6686 1.9971 2.3851 2.6536 3.2204 3.4466 65
70 0.6780 1.2938 1.6669 1.9944 2.3808 2.6479 3.2108 3.4350 70
75 0.6778 1.2929 1.6654 1.9921 2.3771 2.6430 3.2025 3.4250 75
90 0.6772 1.2910 1.6620 1.9867 2.3685 2.6316 3.1833 3.4019 90

105 0.6768 1.2897 1.6595 1.9828 2.3624 2.6235 3.1697 3.3856 105
120 0.6765 1.2886 1.6577 1.9799 2.3578 2.6174 3.1595 3.3735 120
INF 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905 INF
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Table A.3 χ2 Distribution—χ2 Values Exceeded with Given Probability

df 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005

1 0.000 0.000 0.001 0.004 0.016 0.102 0.455 1.323 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 0.575 1.386 2.773 4.605 5.991 7.378 9.210 10.579
3 0.072 0.115 0.216 0.352 0.584 1.213 2.366 4.108 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 1.923 3.357 5.385 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 2.675 4.351 6.626 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 3.455 5.348 7.841 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 4.255 6.346 9.037 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 5.071 7.344 10.219 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 5.899 8.343 11.389 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 6.737 9.342 12.549 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 7.584 10.341 13.701 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 8.438 11.340 14.845 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 9.299 12.340 15.984 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 10.165 13.339 17.117 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 11.037 14.339 18.245 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 11.912 15.338 19.369 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 12.792 16.338 20.489 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 13.675 17.338 21.605 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 14.562 18.338 22.718 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 15.452 19.337 23.828 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 16.344 20.337 24.935 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 17.240 21.337 26.039 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 18.137 22.337 27.141 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 19.037 23.337 28.241 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 19.939 24.337 29.339 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 20.843 25.336 30.435 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 21.749 26.336 31.528 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 22.657 27.336 32.620 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 23.567 28.336 33.711 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 24.478 29.336 34.800 40.256 43.773 46.979 50.892 53.672
35 17.192 18.509 20.569 22.465 24.797 29.054 34.336 40.223 46.059 49.802 53.203 57.342 60.275
40 20.707 22.164 24.433 26.509 29.051 33.660 39.335 45.616 51.805 55.758 59.342 63.691 66.766
45 24.311 25.901 28.366 30.612 33.350 38.291 44.335 50.985 57.505 61.656 65.410 69.957 73.166
50 27.991 29.707 32.357 34.764 37.689 42.942 49.335 56.334 63.167 67.505 71.420 76.154 79.490
55 31.735 33.570 36.398 38.958 42.060 47.610 54.335 61.665 68.796 73.311 77.380 82.292 85.749
60 35.534 37.485 40.482 43.188 46.459 52.294 59.335 66.981 74.397 79.082 83.298 88.379 91.952
65 39.383 41.444 44.603 47.450 50.883 56.990 64.335 72.285 79.973 84.821 89.177 94.422 98.105
70 43.275 45.442 48.758 51.739 55.329 61.698 69.334 77.577 85.527 90.531 95.023 100.425 104.215
75 47.206 49.475 52.942 56.054 59.795 66.417 74.334 82.858 91.061 96.217 100.839 106.393 110.286
80 51.172 53.540 57.153 60.391 64.278 71.145 79.334 88.130 96.578 101.879 106.629 112.329 116.321
85 55.170 57.634 61.389 64.749 68.777 75.881 84.334 93.394 102.079 107.522 112.393 118.236 122.325
90 59.196 61.754 65.647 69.126 73.291 80.625 89.334 98.650 107.565 113.145 118.136 124.116 128.299
95 63.250 65.898 69.925 73.520 77.818 85.376 94.334 103.899 113.038 118.752 123.858 129.973 134.247

100 67.328 70.065 74.222 77.929 82.358 90.133 99.334 109.141 118.498 124.342 129.561 135.807 140.169
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Table A.4 The F Distribution p = 0.1

Numerator df
Denominator 1 2 3 4 5 6 7 8 9 10 11

df

1 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.5
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.68
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.07
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.95
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.93
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.91
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.90
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.87
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.84
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79
35 2.85 2.46 2.25 2.11 2.02 1.95 1.90 1.85 1.82 1.79 1.76
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.74
45 2.82 2.42 2.21 2.07 1.98 1.91 1.85 1.81 1.77 1.74 1.72
50 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73 1.70
55 2.80 2.40 2.19 2.05 1.95 1.88 1.83 1.78 1.75 1.72 1.69
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68
75 2.77 2.37 2.16 2.02 1.93 1.85 1.80 1.75 1.72 1.69 1.66

100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66 1.64
INF 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57

(Continued)
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Table A.4 (Continued)

Numerator df
Denominator 12 13 14 15 16 20 24 30 45 60 120

df

1 60.7 60.9 61.1 61.2 61.3 61.7 62 62.3 62.6 62.8 63.1
2 9.41 9.41 9.42 9.42 9.43 9.44 9.45 9.46 9.47 9.47 9.48
3 5.22 5.21 5.20 5.20 5.20 5.18 5.18 5.17 5.16 5.15 5.14
4 3.90 3.89 3.88 3.87 3.86 3.84 3.83 3.82 3.80 3.79 3.78
5 3.27 3.26 3.25 3.24 3.23 3.21 3.19 3.17 3.15 3.14 3.12
6 2.90 2.89 2.88 2.87 2.86 2.84 2.82 2.80 2.77 2.76 2.74
7 2.67 2.65 2.64 2.63 2.62 2.59 2.58 2.56 2.53 2.51 2.49
8 2.50 2.49 2.48 2.46 2.45 2.42 2.40 2.38 2.35 2.34 2.32
9 2.38 2.36 2.35 2.34 2.33 2.30 2.28 2.25 2.22 2.21 2.18

10 2.28 2.27 2.26 2.24 2.23 2.20 2.18 2.16 2.12 2.11 2.08
11 2.21 2.19 2.18 2.17 2.16 2.12 2.10 2.08 2.04 2.03 2.00
12 2.15 2.13 2.12 2.10 2.09 2.06 2.04 2.01 1.98 1.96 1.93
13 2.10 2.08 2.07 2.05 2.04 2.01 1.98 1.96 1.92 1.90 1.88
14 2.05 2.04 2.02 2.01 2.00 1.96 1.94 1.91 1.88 1.86 1.83
15 2.02 2.00 1.99 1.97 1.96 1.92 1.90 1.87 1.84 1.82 1.79
16 1.99 1.97 1.95 1.94 1.93 1.89 1.87 1.84 1.80 1.78 1.75
17 1.96 1.94 1.93 1.91 1.90 1.86 1.84 1.81 1.77 1.75 1.72
18 1.93 1.92 1.90 1.89 1.87 1.84 1.81 1.78 1.74 1.72 1.69
19 1.91 1.89 1.88 1.86 1.85 1.81 1.79 1.76 1.72 1.70 1.67
20 1.89 1.87 1.86 1.84 1.83 1.79 1.77 1.74 1.70 1.68 1.64
21 1.87 1.86 1.84 1.83 1.81 1.78 1.75 1.72 1.68 1.66 1.62
22 1.86 1.84 1.83 1.81 1.80 1.76 1.73 1.70 1.66 1.64 1.60
23 1.84 1.83 1.81 1.80 1.78 1.74 1.72 1.69 1.64 1.62 1.59
24 1.83 1.81 1.80 1.78 1.77 1.73 1.70 1.67 1.63 1.61 1.57
25 1.82 1.80 1.79 1.77 1.76 1.72 1.69 1.66 1.62 1.59 1.56
30 1.77 1.75 1.74 1.72 1.71 1.67 1.64 1.61 1.56 1.54 1.50
35 1.74 1.72 1.70 1.69 1.67 1.63 1.60 1.57 1.52 1.50 1.46
40 1.71 1.70 1.68 1.66 1.65 1.61 1.57 1.54 1.49 1.47 1.42
45 1.70 1.68 1.66 1.64 1.63 1.58 1.55 1.52 1.47 1.44 1.40
50 1.68 1.66 1.64 1.63 1.61 1.57 1.54 1.50 1.45 1.42 1.38
55 1.67 1.65 1.63 1.61 1.60 1.55 1.52 1.49 1.44 1.41 1.36
60 1.66 1.64 1.62 1.60 1.59 1.54 1.51 1.48 1.42 1.40 1.35
75 1.63 1.61 1.60 1.58 1.57 1.52 1.49 1.45 1.40 1.37 1.32

100 1.61 1.59 1.57 1.56 1.54 1.49 1.46 1.42 1.37 1.34 1.28
INF 1.55 1.52 1.50 1.49 1.47 1.42 1.38 1.34 1.28 1.24 1.17
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Table A.4A The F Distribution p = 0.05

Numerator df
Denominator 1 2 3 4 5 6 7 8 9 10 11

df

1 161 199 216 225 230 234 237 239 241 242 243
2 18.5 19 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.07
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 2.01
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99
55 4.02 3.16 2.77 2.54 2.38 2.27 2.18 2.11 2.06 2.01 1.97
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95
75 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96 1.92

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89
INF 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79

(Continued)
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Table A.4A (Continued)

Numerator df
Denominator 12 13 14 15 16 20 24 30 45 60 120

df

1 244 245 245 246 246 248 249 250 251 252 253
2 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5
3 8.74 8.73 8.71 8.70 8.69 8.66 8.64 8.62 8.59 8.57 8.55
4 5.91 5.89 5.87 5.86 5.84 5.80 5.77 5.75 5.71 5.69 5.66
5 4.68 4.66 4.64 4.62 4.60 4.56 4.53 4.50 4.45 4.43 4.40
6 4.00 3.98 3.96 3.94 3.92 3.87 3.84 3.81 3.76 3.74 3.70
7 3.57 3.55 3.53 3.51 3.49 3.44 3.41 3.38 3.33 3.30 3.27
8 3.28 3.26 3.24 3.22 3.20 3.15 3.12 3.08 3.03 3.01 2.97
9 3.07 3.05 3.03 3.01 2.99 2.94 2.90 2.86 2.81 2.79 2.75

10 2.91 2.89 2.86 2.85 2.83 2.77 2.74 2.70 2.65 2.62 2.58
11 2.79 2.76 2.74 2.72 2.70 2.65 2.61 2.57 2.52 2.49 2.45
12 2.69 2.66 2.64 2.62 2.60 2.54 2.51 2.47 2.41 2.38 2.34
13 2.60 2.58 2.55 2.53 2.51 2.46 2.42 2.38 2.33 2.30 2.25
14 2.53 2.51 2.48 2.46 2.44 2.39 2.35 2.31 2.25 2.22 2.18
15 2.48 2.45 2.42 2.40 2.38 2.33 2.29 2.25 2.19 2.16 2.11
16 2.42 2.40 2.37 2.35 2.33 2.28 2.24 2.19 2.14 2.11 2.06
17 2.38 2.35 2.33 2.31 2.29 2.23 2.19 2.15 2.09 2.06 2.01
18 2.34 2.31 2.29 2.27 2.25 2.19 2.15 2.11 2.05 2.02 1.97
19 2.31 2.28 2.26 2.23 2.21 2.16 2.11 2.07 2.01 1.98 1.93
20 2.28 2.25 2.22 2.20 2.18 2.12 2.08 2.04 1.98 1.95 1.90
21 2.25 2.22 2.20 2.18 2.16 2.10 2.05 2.01 1.95 1.92 1.87
22 2.23 2.20 2.17 2.15 2.13 2.07 2.03 1.98 1.92 1.89 1.84
23 2.20 2.18 2.15 2.13 2.11 2.05 2.01 1.96 1.90 1.86 1.81
24 2.18 2.15 2.13 2.11 2.09 2.03 1.98 1.94 1.88 1.84 1.79
25 2.16 2.14 2.11 2.09 2.07 2.01 1.96 1.92 1.86 1.82 1.77
30 2.09 2.06 2.04 2.01 1.99 1.93 1.89 1.84 1.77 1.74 1.68
35 2.04 2.01 1.99 1.96 1.94 1.88 1.83 1.79 1.72 1.68 1.62
40 2.00 1.97 1.95 1.92 1.90 1.84 1.79 1.74 1.67 1.64 1.58
45 1.97 1.94 1.92 1.89 1.87 1.81 1.76 1.71 1.64 1.60 1.54
50 1.95 1.92 1.89 1.87 1.85 1.78 1.74 1.69 1.61 1.58 1.51
55 1.93 1.90 1.88 1.85 1.83 1.76 1.72 1.67 1.59 1.55 1.49
60 1.92 1.89 1.86 1.84 1.82 1.75 1.70 1.65 1.57 1.53 1.47
75 1.88 1.85 1.83 1.80 1.78 1.71 1.66 1.61 1.53 1.49 1.42

100 1.85 1.82 1.79 1.77 1.75 1.68 1.63 1.57 1.49 1.45 1.38
INF 1.75 1.72 1.69 1.67 1.64 1.57 1.52 1.46 1.37 1.32 1.22
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Table A.4B The F Distribution p = 0.025

Numerator df
Denominator 1 2 3 4 5 6 7 8 9 10 11

df

1 648 800 864 900 922 937 948 957 963 969 973
2 38.5 39 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4
3 17.4 16 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.4
4 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79
5 10 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.71
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.24
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.91

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.66
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.20
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.09
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 3.01
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.93
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.87
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.81
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.76
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.72
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.68
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.65
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.62
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.59
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.56
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.46
35 5.48 4.11 3.52 3.18 2.96 2.80 2.68 2.58 2.50 2.44 2.39
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.33
45 5.38 4.01 3.42 3.09 2.86 2.70 2.58 2.49 2.41 2.35 2.29
50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.26
55 5.31 3.95 3.36 3.03 2.81 2.65 2.53 2.43 2.36 2.29 2.24
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.22
75 5.23 3.88 3.30 2.96 2.74 2.58 2.46 2.37 2.29 2.22 2.17

100 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 2.12
INF 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.99

(Continued)
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Table A.4B (Continued)

Numerator df
Denominator 12 13 14 15 16 20 24 30 45 60 120

df

1 977 980 983 985 987 993 997 1001 1007 1010 1014
2 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5 39.5 39.5
3 14.3 14.3 14.3 14.3 14.2 14.2 14.1 14.1 14 14 13.9
4 8.75 8.71 8.68 8.66 8.63 8.56 8.51 8.46 8.39 8.36 8.31
5 6.52 6.49 6.46 6.43 6.40 6.33 6.28 6.23 6.16 6.12 6.07
6 5.37 5.33 5.30 5.27 5.24 5.17 5.12 5.07 4.99 4.96 4.90
7 4.67 4.63 4.60 4.57 4.54 4.47 4.41 4.36 4.29 4.25 4.20
8 4.20 4.16 4.13 4.10 4.08 4.00 3.95 3.89 3.82 3.78 3.73
9 3.87 3.83 3.80 3.77 3.74 3.67 3.61 3.56 3.49 3.45 3.39

10 3.62 3.58 3.55 3.52 3.50 3.42 3.37 3.31 3.24 3.20 3.14
11 3.43 3.39 3.36 3.33 3.30 3.23 3.17 3.12 3.04 3.00 2.94
12 3.28 3.24 3.21 3.18 3.15 3.07 3.02 2.96 2.89 2.85 2.79
13 3.15 3.12 3.08 3.05 3.03 2.95 2.89 2.84 2.76 2.72 2.66
14 3.05 3.01 2.98 2.95 2.92 2.84 2.79 2.73 2.65 2.61 2.55
15 2.96 2.92 2.89 2.86 2.84 2.76 2.70 2.64 2.56 2.52 2.46
16 2.89 2.85 2.82 2.79 2.76 2.68 2.63 2.57 2.49 2.45 2.38
17 2.82 2.79 2.75 2.72 2.70 2.62 2.56 2.50 2.42 2.38 2.32
18 2.77 2.73 2.70 2.67 2.64 2.56 2.50 2.44 2.36 2.32 2.26
19 2.72 2.68 2.65 2.62 2.59 2.51 2.45 2.39 2.31 2.27 2.20
20 2.68 2.64 2.60 2.57 2.55 2.46 2.41 2.35 2.27 2.22 2.16
21 2.64 2.60 2.56 2.53 2.51 2.42 2.37 2.31 2.23 2.18 2.11
22 2.60 2.56 2.53 2.50 2.47 2.39 2.33 2.27 2.19 2.14 2.08
23 2.57 2.53 2.50 2.47 2.44 2.36 2.30 2.24 2.15 2.11 2.04
24 2.54 2.50 2.47 2.44 2.41 2.33 2.27 2.21 2.12 2.08 2.01
25 2.51 2.48 2.44 2.41 2.38 2.30 2.24 2.18 2.10 2.05 1.98
30 2.41 2.37 2.34 2.31 2.28 2.20 2.14 2.07 1.99 1.94 1.87
35 2.34 2.30 2.27 2.23 2.21 2.12 2.06 2.00 1.91 1.86 1.79
40 2.29 2.25 2.21 2.18 2.15 2.07 2.01 1.94 1.85 1.80 1.72
45 2.25 2.21 2.17 2.14 2.11 2.03 1.96 1.90 1.81 1.76 1.68
50 2.22 2.18 2.14 2.11 2.08 1.99 1.93 1.87 1.77 1.72 1.64
55 2.19 2.15 2.11 2.08 2.05 1.97 1.90 1.84 1.74 1.69 1.61
60 2.17 2.13 2.09 2.06 2.03 1.94 1.88 1.82 1.72 1.67 1.58
75 2.12 2.08 2.05 2.01 1.99 1.90 1.83 1.76 1.67 1.61 1.52

100 2.08 2.04 2.00 1.97 1.94 1.85 1.78 1.71 1.61 1.56 1.46
INF 1.94 1.90 1.87 1.83 1.80 1.71 1.64 1.57 1.45 1.39 1.27
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Table A.4C The F Distribution p = 0.01

Numerator df
Denominator 1 2 3 4 5 6 7 8 9 10 11

df

1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6083
2 98.5 99 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1
4 21.2 18 16.7 16 15.5 15.2 15 14.8 14.7 14.5 14.5
5 16.3 13.3 12.1 11.4 11 10.7 10.5 10.3 10.2 10.1 9.96
6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18

10 10 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.86
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.24
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 3.06
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91
35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.80
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73
45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.67
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.63
55 7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56
75 6.99 4.90 4.05 3.58 3.27 3.05 2.89 2.76 2.65 2.57 2.49

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.43
INF 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25

(Continued)
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Table A.4C (Continued)

Numerator df
Denominator 12 13 14 15 16 20 24 30 45 60 120

df

1 6106 6126 6143 6157 6170 6209 6235 6261 6296 6313 6339
2 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5
3 27.1 27 26.9 26.9 26.8 26.7 26.6 26.5 26.4 26.3 26.2
4 14.4 14.3 14.2 14.2 14.2 14 13.9 13.8 13.7 13.7 13.6
5 9.89 9.82 9.77 9.72 9.68 9.55 9.47 9.38 9.26 9.20 9.11
6 7.72 7.66 7.60 7.56 7.52 7.40 7.31 7.23 7.11 7.06 6.97
7 6.47 6.41 6.36 6.31 6.28 6.16 6.07 5.99 5.88 5.82 5.74
8 5.67 5.61 5.56 5.52 5.48 5.36 5.28 5.20 5.09 5.03 4.95
9 5.11 5.05 5.01 4.96 4.92 4.81 4.73 4.65 4.54 4.48 4.40

10 4.71 4.65 4.60 4.56 4.52 4.41 4.33 4.25 4.14 4.08 4.00
11 4.40 4.34 4.29 4.25 4.21 4.10 4.02 3.94 3.83 3.78 3.69
12 4.16 4.10 4.05 4.01 3.97 3.86 3.78 3.70 3.59 3.54 3.45
13 3.96 3.91 3.86 3.82 3.78 3.66 3.59 3.51 3.40 3.34 3.25
14 3.80 3.75 3.70 3.66 3.62 3.51 3.43 3.35 3.24 3.18 3.09
15 3.67 3.61 3.56 3.52 3.49 3.37 3.29 3.21 3.10 3.05 3.96
16 3.55 3.50 3.45 3.41 3.37 3.26 3.18 3.10 2.99 2.93 2.84
17 3.46 3.40 3.35 3.31 3.27 3.16 3.08 3.00 2.89 2.83 2.75
18 3.37 3.32 3.27 3.23 3.19 3.08 3.00 2.92 2.81 2.75 2.66
19 3.30 3.24 3.19 3.15 3.12 3.00 2.92 2.84 2.73 2.67 2.58
20 3.23 3.18 3.13 3.09 3.05 2.94 2.86 2.78 2.67 2.61 2.52
21 3.17 3.12 3.07 3.03 2.99 2.88 2.80 2.72 2.61 2.55 2.46
22 3.12 3.07 3.02 2.98 2.94 2.83 2.75 2.67 2.55 2.50 2.40
23 3.07 3.02 2.97 2.93 2.89 2.78 2.70 2.62 2.51 2.45 2.35
24 3.03 2.98 2.93 2.89 2.85 2.74 2.66 2.58 2.46 2.40 2.31
25 2.99 2.94 2.89 2.85 2.81 2.70 2.62 2.54 2.42 2.36 2.27
30 2.84 2.79 2.74 2.70 2.66 2.55 2.47 2.39 2.27 2.21 2.11
35 2.74 2.69 2.64 2.60 2.56 2.44 2.36 2.28 2.16 2.10 2.00
40 2.66 2.61 2.56 2.52 2.48 2.37 2.29 2.20 2.08 2.02 1.92
45 2.61 2.55 2.51 2.46 2.43 2.31 2.23 2.14 2.02 1.96 1.85
50 2.56 2.51 2.46 2.42 2.38 2.27 2.18 2.10 1.97 1.91 1.80
55 2.53 2.47 2.42 2.38 2.34 2.23 2.15 2.06 1.94 1.87 1.76
60 2.50 2.44 2.39 2.35 2.31 2.20 2.12 2.03 1.90 1.84 1.73
75 2.43 2.38 2.33 2.29 2.25 2.13 2.05 1.96 1.83 1.76 1.65

100 2.37 2.31 2.27 2.22 2.19 2.07 1.98 1.89 1.76 1.69 1.57
INF 2.18 2.13 2.08 2.04 2.00 1.88 1.79 1.70 1.55 1.47 1.32
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Table A.4D The F Distribution p = 0.005

Numerator df

Denominator
1 2 3 4 5 6 7 8 9 10 11

df

1 6,000 20,000 22,000 22,000 23,000 23,000 24,000 24,000 24,000 24,000 24,000
2 199 199 199 199 199 199 199 199 199 199 199
3 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.9 43.7 43.5
4 31.3 26.3 24.3 23.2 22.5 22 21.6 21.4 21.1 21 20.8
5 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14 13.8 13.6 13.5
6 18.6 14.5 12.9 12 11.5 11.1 10.8 10.6 10.4 10.3 10.1
7 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 8.38 8.27
8 14.7 11 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.10
9 13.6 10.1 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.31

10 12.8 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.75
11 12.2 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.32
12 11.8 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.99
13 11.4 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 4.72
14 11.1 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.51
15 10.8 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.33
16 10.6 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.18
17 10.4 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 4.05
18 10.2 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.94
19 10.1 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.84
20 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.76
21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 3.68
22 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.61
23 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64 3.55
24 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 3.50
25 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64 3.54 3.45
30 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.25
35 8.98 6.19 5.09 4.48 4.09 3.81 3.61 3.45 3.32 3.21 3.12
40 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22 3.12 3.03
45 8.71 5.97 4.89 4.29 3.91 3.64 3.43 3.28 3.15 3.04 2.96
50 8.63 5.90 4.83 4.23 3.85 3.58 3.38 3.22 3.09 2.99 2.90
55 8.55 5.84 4.77 4.18 3.80 3.53 3.33 3.17 3.05 2.94 2.85
60 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.82
75 8.37 5.69 4.63 4.05 3.67 3.41 3.21 3.05 2.93 2.82 2.74

100 8.24 5.59 4.54 3.96 3.59 3.33 3.13 2.97 2.85 2.74 2.66
INF 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.43

(Continued)



430 Appendix A Statistical Tables

Table A.4D (Continued)

Numerator df
Denominator

12 13 14 15 16 20 24 30 45 60 120
df

1 24,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000
2 199 199 199 199 199 199 199 199 199 199 199
3 43.4 43.3 43.2 43.1 43 42.8 42.6 42.5 42.3 42.1 42
4 20.7 20.6 20.5 20.4 20.4 20.2 20 19.9 19.7 19.6 19.5
5 13.4 13.3 13.2 13.1 13.1 12.9 12.8 12.7 12.5 12.4 12.3
6 10 9.95 9.88 9.81 9.76 9.59 9.47 9.36 9.20 9.12 9.00
7 8.18 8.10 8.03 7.97 7.91 7.75 7.64 7.53 7.38 7.31 7.19
8 7.01 6.94 6.87 6.81 6.76 6.61 6.50 6.40 6.25 6.18 6.06
9 6.23 6.15 6.09 6.03 5.98 5.83 5.73 5.62 5.48 5.41 5.30

10 5.66 5.59 5.53 5.47 5.42 5.27 5.17 5.07 4.93 4.86 4.75
11 5.24 5.16 5.10 5.05 5.00 4.86 4.76 4.65 4.52 4.45 4.34
12 4.91 4.84 4.77 4.72 4.67 4.53 4.43 4.33 4.19 4.12 4.01
13 4.64 4.57 4.51 4.46 4.41 4.27 4.17 4.07 3.94 3.87 3.76
14 4.43 4.36 4.30 4.25 4.20 4.06 3.96 3.86 3.73 3.66 3.55
15 4.25 4.18 4.12 4.07 4.02 3.88 3.79 3.69 3.55 3.48 3.37
16 4.10 4.03 3.97 3.92 3.87 3.73 3.64 3.54 3.40 3.33 3.22
17 3.97 3.90 3.84 3.79 3.75 3.61 3.51 3.41 3.28 3.21 3.10
18 3.86 3.79 3.73 3.68 3.64 3.50 3.40 3.30 3.17 3.10 2.99
19 3.76 3.70 3.64 3.59 3.54 3.40 3.31 3.21 3.07 3.00 2.89
20 3.68 3.61 3.55 3.50 3.46 3.32 3.22 3.12 2.99 2.92 2.81
21 3.60 3.54 3.48 3.43 3.38 3.24 3.15 3.05 2.91 2.84 2.73
22 3.54 3.47 3.41 3.36 3.31 3.18 3.08 2.98 2.84 2.77 2.66
23 3.47 3.41 3.35 3.30 3.25 3.12 3.02 2.92 2.78 2.71 2.60
24 3.42 3.35 3.30 3.25 3.20 3.06 2.97 2.87 2.73 2.66 2.55
25 3.37 3.30 3.25 3.20 3.15 3.01 2.92 2.82 2.68 2.61 2.50
30 3.18 3.11 3.06 3.01 2.96 2.82 2.73 2.63 2.49 2.42 2.30
35 3.05 2.98 2.93 2.88 2.83 2.69 2.60 2.50 2.36 2.28 2.16
40 2.95 2.89 2.83 2.78 2.74 2.60 2.50 2.40 2.26 2.18 2.06
45 2.88 2.82 2.76 2.71 2.66 2.53 2.43 2.33 2.19 2.11 1.99
50 2.82 2.76 2.70 2.65 2.61 2.47 2.37 2.27 2.13 2.05 1.93
55 2.78 2.71 2.66 2.61 2.56 2.42 2.33 2.23 2.08 2.00 1.88
60 2.74 2.68 2.62 2.57 2.53 2.39 2.29 2.19 2.04 1.96 1.83
75 2.66 2.60 2.54 2.49 2.45 2.31 2.21 2.10 1.96 1.88 1.74

100 2.58 2.52 2.46 2.41 2.37 2.23 2.13 2.02 1.87 1.79 1.65
INF 2.36 2.29 2.24 2.19 2.14 2.00 1.90 1.79 1.63 1.53 1.36
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Table A.5 Durbin–Watson Test Bounds

Level of significance α = .05

m = 1 m = 2 m = 3 m = 4 m = 5

n DL DU DL DU DL DU DL DU DL DU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

Source: Reprinted, with permission, from J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares Regression.
II,” Biometrika 38 (1951), pp. 159–178.

(Continued)
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Table A.5 (Continued)

Level of significance α = .01

m = 1 m = 2 m = 3 m = 4 m = 5

n DL DU DL DU DL DU DL DU DL DU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90
17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85
18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80
19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74
21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71
22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67
24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65
26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61
31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59
36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65



Appendix B

A Brief Introduction
to Matrices

Matrix algebra is widely used for mathematical and statistical analysis. The use
of the matrix approach is practically a necessity in multiple regression analy-
sis, since it permits extensive systems of equations and large arrays of data to
be denoted compactly and operated upon efficiently. This appendix provides a
brief introduction to matrix notation and the use of matrices for representing
operations involving systems of linear equations. The purpose here is not to
provide a manual for performing matrix calculations, but rather to promote
an understanding and appreciation of the various matrix operations as they
apply to regression analysis.

DEFINITION
A matrix is a rectangular array of elements arranged in rows and
columns.

A matrix is much like a table and can be thought of as a multidimensional
number. Matrix algebra consists of a set of operations or algebraic rules that
allow the manipulation of matrices. In this section, we present those oper-
ations that will enable the reader to understand the fundamental building
blocks of a multiple regression analysis. Additional information is available
in a number of texts (such as Graybill, 1983).

The elements of a matrix usually consist of numbers or symbols repre-
senting numbers. Each element is indexed by its location within the matrix,
which is identified by its row and column in that order. For example, the matrix
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A shown below has 3 rows and 4 columns. The element aij identifies the
element in the ith row and jth column. Thus, the element a21 identifies the
element in the second row and first column:

A =

⎡⎣ a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎤⎦ .

The notation for this matrix follows the usual convention of denoting a
matrix by a capital letter and its elements by the same lowercase letter with
the appropriate row and column subscripts.

An example of a matrix with three rows and columns is

B =

⎡⎣ 3 7 9
1 4 −2
9 15 3

⎤⎦ .

In this matrix, b22 = 4 and b23 = −2.
A matrix is characterized by its order, which is the number of rows and

columns it contains. The matrix B just shown is a 3×3matrix, since it contains
3 rows and 3 columns. A matrix with equal numbers of rows and columns, such
as B, is called a square matrix. A 1× 1 matrix is known as a scalar.

In a matrix, the elements whose row and column indicators are equal, say,
aii, are known as diagonal elements and lie on the main diagonal of the
matrix. For example, in matrix B, the main diagonal consists of the elements
b11 = 3, b22 = 4, and b33 = 3.

A matrix that contains nonzero elements only on the main diagonal is a
diagonal matrix. A diagonal matrix whose nonzero elements are all unity is
an identity matrix. It has the same function as the scalar 1 in that if a matrix
is multiplied by an identity matrix, it is unchanged.

B.1 Matrix Algebra

Two matrices A and B are equal if and only if all corresponding elements of
A are the same as those of B. Thus, A = B implies aij = bij for all i and j. It
follows that two equal matrices must be of the same order.

The transpose of a matrix A of order (r × c) is defined as a matrix A′ of
order (c× r) such that

a′ij = aji.

For example, if

A =

⎡⎣ 1 −5
2 2
4 1

⎤⎦ , then A′ =
[

1 2 4
−5 2 1

]
.

In other words, the rows of A are the columns of A′ and vice versa. This is
one matrix operation that is not relevant to scalars.
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A matrix A for which A = A′ is said to be symmetric. A symmetric
matrix must obviously be square, and each row has the same elements as the
corresponding column. For example, the following matrix is symmetric:

C =

⎡⎣ 5 4 2
4 6 1
2 1 8

⎤⎦ .

The operation of matrix addition is defined as follows:

A+B = C

if aij + bij = cij , for all i and j. Thus, addition of matrices is accomplished by
the addition of corresponding elements. As an example, let

A =

⎡⎣ 1 2
4 9

−5 4

⎤⎦ and B =

⎡⎣ 4 −2
1 2
5 −6

⎤⎦ .

Then

C = A+B =

⎡⎣ 5 0
5 11
0 −2

⎤⎦ .

In order for two matrices to be added, that is, to be conformable for addi-
tion, they must have the same order. Subtraction of matrices follows the same
rules.

The process of matrix multiplication is more complicated. The definition
of matrix multiplication is as follows:

C = A ·B,

if

cij = Σkaikbkj .

The operation may be better understood when expressed in words:

The element of the ith row and jth column of the product matrix C(cij)
is the pairwise sum of products of the corresponding elements of the
ith row of A and the jth column of B.

In order forA andB to be conformable for multiplication, then, the number
of columns of A must be equal to the number of rows of B. The order of the
product matrix C will be equal to the number of rows of A by the number of
columns of B.

As an example, let

A =

[
2 1 6
4 2 1

]
and B =

⎡⎣ 4 1 −2
1 5 4
1 2 6

⎤⎦ .

Note that the matrix A has three columns and that B has three rows; hence,
these matrices are conformable for multiplication. Also, since A has two rows
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and B has three columns, the product matrix C will have two rows and three
columns. The elements of C = AB are obtained as follows:

c11 = a11b11 + a12b21 + a13b31

= (2)(4) + (1)(1) + (6)(1) = 15

c12 = a11b12 + a12b22 + a13b32

= (2)(1) + (1)(5) + (6)(2) = 19

. . .

c23 = a21b13 + a22b23 + a23b33

= (4)(−2) + (2)(4) + (1)(6) = 6.

The entire matrix C is

C =

[
15 19 36
19 16 6

]
.

Note that even if A and B are conformable for the multiplication AB, it may
not be possible to perform the operation BA. However, even if the matrices
are conformable for both operations, usually

AB=/BA,

although exceptions occur for special cases.
An interesting corollary of the rules for matrix multiplication is that

(AB)′ = B′A′;

that is, the transpose of a product is the product of the individual transposed
matrices in reverse order.

There is no matrix division as such. If we require that matrix A is to be
“divided” by matrix B, we first obtain the inverse (sometimes called recipro-
cal) of B. Denoting that matrix by C, we then multiply A by C to obtain the
desired result.

The inverse of a matrix A, denoted A−1, is defined by the property

AA−1 = I ,

where I is the identity matrix which, as defined earlier, has the role of the
number “1.” Inverses are defined only for square matrices. However, not all
square matrices are invertible (see later discussion).

Unfortunately, the definition of the inverse of a matrix does not suggest
a procedure for computing it. In fact, the computations required to obtain
the inverse of a matrix are quite tedious. Procedures for inverting matri-
ces using hand or desk calculators are available but will not be presented
here. Instead, we will always present inverses that have been obtained by
a computer.
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The following will serve as an illustration of the inverse of a matrix.
Consider the two matrices A and B, where A−1 = B:

A =

⎡⎣ 9 27 45
27 93 143
45 143 245

⎤⎦ , B =

⎡⎣ 1.47475 −0.113636 −0.204545
−0.113636 0.113636 −0.045455
−0.204545 −0.0454545 0.068182

⎤⎦ .

The fact that B is the inverse of A is verified by multiplying the two matri-
ces. The first element of the productAB is the sum of products of the elements
of the first row of A with the elements of the first column of B:

(9)(1.47475) + (27)(−0.113636) + (45)(−0.2054545) = 1.000053.

This element should be unity; the difference is due to roundoff error, which
is a persistent feature of matrix calculations. Most modern computers carry
sufficient precision to make roundoff error insignificant, but this is not
always guaranteed. The reader is encouraged to verify the correctness of
the preceding inverse for at least a few other elements.

Other properties of matrix inverses are as follows:

(1) AA−1 = A−1A.
(2) If C = AB (all square), then C−1 = B−1A−1. Note the reversal of the

ordering, just as for transposes.
(3) If B = A−1, then B′ = (A′)−1.
(4) If A is symmetric, then A−1 is also symmetric.
(5) If an inverse exists, it is unique.

Certain matrices do not have inverses; such matrices are called singular.
For example, the matrix

A =

[
2 1
4 2

]
cannot be inverted.

B.2 Solving Linear Equations

Matrix algebra is of interest in performing regression analyses because it
provides a shorthand description for the solution to a set of linear equations.
For example, assume we want to solve the following set of equations:

5x1 + 10x2 + 20x3 = 40

14x1 + 24x2 + 2x3 = 12

5x1 − 10x2 = 4.

This set of equations can be represented by the matrix equation

A ·X = B,
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where

A =

⎡⎣ 5 10 20
14 24 2
5 −10 0

⎤⎦ , X =

⎡⎣ x1

x2
x3

⎤⎦ , and B =

⎡⎣ 40
12
4

⎤⎦ .

The solution to this set of equations can be represented by matrix opera-
tions. Premultiply both sides of the matrix equation by A−1 as follows:

A−1 ·A ·X = A−1 ·B.

Now A ·A−1 = I , the identity matrix; hence, the equation can be written

X = A−1 ·B,

which is a matrix equation representing the solution.
We can now see the implications of the singular matrix shown earlier.

Using that matrix for the coefficients and adding a right-hand side produces
the equations:

2x1 + x2 = 3

4x1 + 2x2 = 6.

Note that these two equations are really equivalent; therefore, any of an infinite
number of combinations of x1 and x2 satisfying the first equation are also a
solution to the second equation. On the other hand, changing the right-hand
side produces the equations

2x1 + x2 = 3

4x1 + 2x2 = 10,

which are inconsistent and have no solution. In regression applications it is
usually not possible to have inconsistent sets of equations.

It must be noted that the matrix operations presented here are but a small
subset of the field of knowledge about and uses of matrices. Furthermore, we
will not actually be performing many matrix calculations. However, an under-
standing and appreciation of this material will make more understandable the
material in this book.



Appendix C

Estimation
Procedures

This appendix discusses two commonly used methods of estimation: the least
squares procedure and the maximum likelihood procedure. In many cases,
the two yield the same estimators and have the same properties. In other
cases, they will be different. This appendix is not intended to be a manual
for doing these estimation procedures, but rather to provide an understand-
ing and appreciation of the estimation procedures as they apply to regression
analysis. Good presentations and discussions of these estimation procedures
can be found in many references, including Kutner et al. (2004), Draper and
Smith (1998), and Wackerly et al. (2002).

C.1 Least Squares Estimation

Least squares estimation is introduced in Chapter 2 as an alternative method
of estimating the mean of a single population and is used throughout the
book for estimating parameters in both linear and nonlinear models. In fact,
least squares is probably the most often used method of estimating unknown
parameters in the general statistical model. The form of the general statis-
tical model is

y = f(x1, . . . , xm, β1, . . . , βp) + ε,

where the xi are independent variables and the βi are the unknown para-
meters. The function f constitutes the deterministic portion of the model and
the ε terms, called random errors, are the stochastic or statistical portion.
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We are interested in obtaining estimates of the unknown parameters based on
a sample of size n (m+1)-tuples, (yi, x1i, . . . , xmi). The procedure minimizes
the following sums of squares (hence the name “least squares”):

Σε2 = Σ[(y − f(x1, . . . , xm, β1, . . . , βp)]
2.

This quantity is considered a function of the unknown parameters, βi, and is
minimized with respect to them. Depending on the nature of the function, this
is often accomplished through calculus.

As an example, let us find the least squares estimate for a single mean, μ,
based on a random sample of y1, . . . , yn. As in Section 1.3, we will assume the
model:

yi = μ+ ei, i = 1, . . . , n.

We want to minimize the sums of squares of the errors:

Σε2i = Σ(yi − μ)2 = Σ(y2i − 2μyi + μ2).

We will use differential calculus to obtain this minimum. By taking the deriva-
tive with respect to μ, we get

d(Σε2i )
dμ

= −2Σyi + 2nμ.

Setting equal to zero yields

Σyi = nμ̂.

Note that convention requires the value of the unknown quantity, μ in this
case, to be replaced by its estimate, μ̂ in this equation, known as the normal
equation.

Solving this equation yields

μ̂ =
Σyi
n

= y.

It is easy to show that this estimate results in the minimum sum of squares.
This, of course, is the solution given in Section 1.3.

We now find the least squares estimates for the two unknown parameters
in the simple linear regression model. We assume a regression model of

yi = β0 + β1xi + εi, i = 1, . . . , n.

The sums of squares is

Σε2i = Σ(yi − β0 − β1xi)
2.

To minimize this function, we will use partial derivatives:

∂(Σε2i )
∂β0

= −2Σ(yi − β0 − β1xi)

∂(Σε2i )
∂β1

= −2Σxi(yi − β0 − β1xi).
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Equating these derivatives to zero gives us

Σyi − nβ̂0 − β̂1Σxi = 0

Σxiyi − β̂0Σxi − β̂1Σx2
i = 0.

The solutions to these equations are the least squares estimators given in
Section 2.3:

β̂1 =
Σxy − (Σx)(Σy)

n
Σx2 − (Σx)2/n

β̂0 = y − β̂1x.

The general regression model has more than two parameters and is very
cumbersome to handle without using matrix notation. Therefore, the least
squares estimates can be best obtained using matrix calculus. Since this topic
is beyond the scope of this book, we will simply give the results, in matrix
form. The general regression model is written in matrix form in Section 3.3 as

Y = XB + E,

where Y is an n× 1 matrix of observed values, X is an n× (m+ 1) matrix of
independent variables, B is an (m+1)×1 matrix of the unknown parameters,
and E is an n× 1 matrix of error terms. The sums of squares to be minimized
is written in matrix form as

E′E = (Y − XB)′(Y − XB) = Y ′Y − 2B′X ′Y +B′X ′XB.

To minimize this function, we take the derivative with respect to the matrix B
and get the following:

∂(E′E)

∂B
= −2X ′Y + 2X ′XB.

Equating to zero yields the matrix form of the normal equations given in
Section 3.3:

(X ′X)B̂ = X ′Y .

The solutions to this matrix equation are

B̂ = (X ′X)−1X ′Y .

C.2 Maximum Likelihood Estimation

The maximum likelihood estimation procedure is one of several estimation
procedures that use the underlying probability distribution of the random vari-
able. For example, in our earlier illustration from Chapter 2, we considered the
variable y as having a normal distribution with mean μ and standard deviation
σ. The maximum likelihood procedure maximizes what is called the likelihood
function. Suppose we sample from a population with one unknown param-
eter θ. The probability distribution of that population is denoted by f(y; θ).
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If we consider a sample of size n as n independent realizations of the random
variable, y, then the likelihood function of the sample is simply the joint dis-
tribution of the y1, y2, . . . , yn, denoted as

L(θ) =
∏
f(y; θ).

Note that the likelihood can be expressed as a function of the parameter θ.
As an illustration of the logic behind the maximum likelihood method,

consider the following example. Suppose we have a box that contains three
balls, the colors of which we do not know. We do know that there are either
one or two red balls in the box, and we would like to estimate the number
of red balls in the box. We sample one ball from the box and observe that
it is red. We replace the ball and randomly draw another and observe that
it is red also.

Obviously, at least one ball is red. If only one of the balls in the box is red
and the others are some other color, then the probability of drawing a red ball
on one try is 1/3. The probability of getting two red balls is then (1/3)(1/3) =
1/9. If two of the balls in the box are red and the other is some other color, the
probability of drawing a red ball on one try is 2/3. The probability of getting two
red balls is then (2/3)(2/3) = 4/9. It should seem reasonable to choose two as
our estimate of the number of red balls because that estimate maximizes the
probability of the observed sample. Of course, it is possible to have only one
red ball in the box, but the observed outcome gives more credence to two.

Returning to our example from Chapter 2, we consider a sample of size n
from a normal distribution with mean μ and known standard deviation σ. The
form of the probability distribution is

f(y;μ) =
1

σ
√
2π

e−(y−μ)2/(2σ2).

The likelihood function is then

L(μ) =
1

(σ
√
2π)n

e−Σ(yi −μ)2/(2σ2).

Notice that we express the likelihood as a function of the unknown parameter
μ only, since we know the value of σ. To maximize the likelihood, we take
advantage of the fact that the optimum of this function occurs at the same
place as the natural log of the function. So taking the log of the likelihood
function gives us

log(L) = −n

2
log(σ2)− n

2
log(2π)− Σ(yi − μ)2

2σ2 .

To obtain the maximum likelihood estimate of the unknown parameter μ, we
use calculus. Taking the derivative with respect to μ gives us

d log(L)

dμ
=

Σ(yi − μ)

σ2 .
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Equating to zero gives us

Σ(yi − μ)

σ2 = 0

Σyi − nμ̂ = 0

μ̂ =
Σyi
n

= y.

This is the same estimate we obtained using least squares.
We use the same procedure to obtain the maximum likelihood estimator

for β0 and β1 in the simple linear regression model with normal error terms.
The likelihood now has three unknown parameters, β0, β1, and σ2, and is
given by

L(β0, β1, σ
2) =

1

(σ
√
2π)n

e−Σ(yi−β0−β1xi)
2/(2σ2).

We again take advantage of the correspondence between the function and the
natural log of the function and maximize the following equation:

log(L) = −n

2
log(σ2)− n

2
log(2π)− Σ(yi − β0 − β1xi)

2

2σ2 .

Taking partial derivatives with respect to the parameters gives

∂ log(L)
∂β0

= 1
σ2 Σ(yi − β0 − β1xi)

∂ log(L)
∂β1

= 1
σ2 Σxi(yi − β0 − β1xi)

∂ log(L)

∂σ2
= − n

2σ2 + 1
2σ4 Σ(yi − β0 − β1xi)

2.

Equating to zero and simplifying yields

Σyi − nβ̂0 − β̂1Σxi = 0

Σxiyi − β̂0Σxi − β̂1Σx2
i = 0

σ̂2 = 1
nΣ(yi − β̂0 − β̂1xi)

2.

Notice that these are exactly the same estimates for β0 and β1 as we obtained
using least squares. The result is exactly the same for the multiple regres-
sion equation. The maximum likelihood estimates and the least squares esti-
mates for the coefficients are identical for the regression model as long as
the assumption of normality holds. Note that MSE = n

n− 2
σ̂2; therefore, the

maximum likelihood estimate differs from the least squares estimate by only
a constant.
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Index

A
addition, matrix, 435
adjusted R-square, 104
algebra, matrix, 434–437
alternate hypotheses, 12–13
analysis of covariance, 359–363

heterogeneous slopes, 363–367
analysis of means, 5–29

sampling distributions, 5–9
analysis of variance (ANOVA). See ANOVA
ANCOVA (analysis of covariance), 359–363
ANOVA models, 23–27

one-way, with indicator variables, 339–346
single-factor (one-way classification), 27
two-factor, 28–29

ANOVA procedure, 150, 347f
lack of fit test, 232

assumptions for simple linear regression,
62–65. See also specification error

autocatalytic models. See logistic regression
autocorrelated errors, 160

diagnosing and remedial methods,
165–167

model modification, 170–172
AUTOREG procedure, 167–170
autoregressive models, 161–165

remedial methods, 167
Yule–Walker procedure, 167–170

B
backward elimination, 248–250
balanced data, 346
biased estimation, 214–221, 342
biasing of estimates. See outliers and unusual

observations
binary response variables, 371–374

multiple logistic regression, 385–388
simple logistic regression, 379–385

bioassays, 372
Bonferroni approach, 93
Box–Cox method, 312

C
C matrix, 105
calibration problems (inverse predictions),

65–67
canonical link functions, 403–404
categorical response variables, 371–396

binary, 371–374
contingency tables and loglinear

regression, 388–395
multiple logistic regression, 385–388
simple logistic regression, 379–385

CATMOD procedure, 390, 392, 393
causation, regression and, 65
cell frequencies, unequal, 346
cell means model, 23
cells, defined, 346
central limit theorem, 6
characteristic values and vectors. See

principal components analysis
chi-square distribution, 7–8

lack of fit test, 232–238, 390–393
statistical table for, 420

CLI option (REG procedure), 101
CLM option (REG procedure), 101
Cobb Douglas production function, 313
Coeff. Var. (SAS output), defined, 49
coefficient of determination (R-square), 56

adjusted, 104
helping with variable selection, 245
maximum (variable selection), 240
multiple correlation, 103–104
no-intercept regression, 62

coefficients. See regression coefficients
completely randomized design model,

339–346
confidence intervals, 9, 16–17

correlation models, 54–56
response variable, multiple regression,

101–102
simple linear regression models, 44,

51–52
simultaneous inference, 93–94

449
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confirmatory analyses, 178
conformable matrices, defined, 435
contingency table analysis, 388–395
continuous response variables, 371
Cook’s D statistic, 129
corrected sums of cross products, 41
corrected sums of squares, 41
Corrected total (SAS output), defined, 26, 49
correlated errors, 118, 160–172. See also row

diagnostics
autoregressive models, 161–165

remedial methods, 167
Yule–Walker procedure, 167–170

model modification, 170–172
correlation coefficient, 53–56

square of. See coefficient of determination
correlation models, 52–56

defined, 53
multiple linear regression, 102–105

covariance, 92
COVRATIO statistic, 131, 132

example of outlier detection, 135, 137–141
Cp statistic, 246–248
cross validation (to verify variable selection),

251–253
cubic polynomials, 270–271
curve fitting (nonparametric regression), 157,

269–297
polynomial regression, 270–292

curve fitting without models, 292–297
interactive analysis, 277–278
multicollinearity, 272
one independent variable, 270–278
segmented polynomials with known

knots, 279–283
several independent variables, 283–292

without model, 292–297
curved response, treating as linear, 230–232.

See also specification error

D
data dredging, 239
data-driven variable selection procedures. See

variable selection
data problems with regression analyses, 108
data sets for book exercises, xvi
data splitting, 251–253
decay models, 321–327
degree of polynomials, 270–271
degrees of freedom, 7

partitioning, 14
regression models, 43

Dependent Mean (SAS output), defined, 49
dependent variable (response variable)

categorical, 371–396
binary, 371–374

contingency tables and loglinear
regression, 388–395

multiple logistic regression, 385–388
simple logistic regression, 379–385

curved response, treating as linear,
230–232. See also specification error

detecting outliers with residuals. See

residuals
influence of observation on, measuring,

126–128
multiple linear regression models,

100–102
outliers in. See leverage
simple linear regression models, 37,

49–52
detecting outliers. See outliers and unusual

observations
deterministic component of linear models,

2, 11
deterministic component of linear

regression models, 37
deterministic models, defined, 1
Deviance output (GENMOD procedure),

409
deviations, 12. See also residuals
DFBETAS statistics, 128, 132, 140

example of outlier detection, 140
DFFITS statistic, 127–128, 132, 140

example of outlier detection, 135, 137–141
influence functions based on, 158

diagonal elements of matrices, defined, 434
diagonals of hat matrix, 124–125, 132
dichotomous response variables, 371–374

multiple logistic regression, 385–388
simple logistic regression, 379–385

distribution of error in regression models,
151–152

dummy variable approach, 337–368
analysis of covariance, 359–363

heterogeneous slopes, 363–367
empty or missing cells, 351–354
models with dummy and continuous

variables, 354–359
one-way analysis of variance, 339–346
unequal cell frequencies, 346–351

Durbin–Watson statistic, 165–166, 171
test bounds (statistical table), 431–432

E
eigenvalues and eigenvectors. See principal

components analysis
elements of matrices, defined, 433–434
empty cells, 351–354
equal variance assumption. See unequal

variances
equality of matrices, defined, 434
Error (SAS output), defined, 26, 49
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error sum of squares, 13–14, 20
ANOVA models, 24, 25
multiple linear regression, 85–91
prediction (PRESS), 129–130, 140

example of outlier detection, 135
helping with variable selection, 246,

261–262
simple linear regression models, 46

errors
correlated, 118, 160–172. See also row

diagnostics
autoregressive models, 161–170
model modification, 170–172

human (recording), 142
linear models with dichotomous response

variable, 373–374
nonconstant variance of. See unequal

variances
estimable functions, 342
estimate bias. See outliers and unusual

observations
estimated variance, 6

implementing weighted regression,
147–151

simple linear regression models, 50
estimating coefficients. See regression

coefficients
estimation procedures, 439–443

least squares, 12, 214, 439–441
correlated errors and, 164
dichotomous response variables,

376–379
outliers and, 122–123

maximum likelihood estimation, 441–443
multiple logistic regression, 385–387
simple logistic regression, 383–385

estimators. See biased estimation
examples in this book, about, xv
exercises in this book, about, xv–xvi
expected mean squares, 14, 21

ANOVA models, 24
simple linear regression models, 47

exploratory analyses, 178
exponential models

decay models, 321–327
growth models, 327–332

extrapolation, regression and, 65
extreme observations. See outliers and

unusual observations

F
F distribution, 8
F statistic, 14–15, 21

ANOVA models, 25, 26
correlation models, 56
multiple linear regression, 89
statistical table for, 421–430

F test for regression, 49
factor analysis, 192, 205
factorial ANOVA models, 390
families of estimates (multiple regression), 93
finding outliers. See outliers and unusual

observations
first differences, 170
first-order autoregressive models, 161–165

model modification, 170–172
remedial methods, 167
Yule–Walker procedure, 167–170

Fisher z transformation, 54
fit of model, 11–12

lack of fit test, 232–238
loglinear models, 390, 392, 393

multicollinearity and, 182
fitting nonlinear models. See nonlinear

models
fitting polynomial models. See polynomial

regression
forward selection, 248–250
fourth-order (quartic) polynomials,

270–271

G
G2 inverse, 344
general linear hypotheses, testing,

97–100
general linear models. See indicator

variables
generalized inverses, 344
generalized least squares, 144
generalized linear models, 401–411

link functions, 402–404
for logistic models, 404–406

generalized variance, 130
GENMOD procedure, 404–405
GLM procedure, 273, 281, 337, 344–346, 357

analysis of covariance, 361, 364, 366
Types III and IV sums of squares,

352–353
unbalanced data, 349

goodness of fit, 11–12
lack of fit test, 232–238

loglinear models, 390, 392, 393
multicollinearity and, 182

growth models, 327–332

H
hat matrix, 100, 124, 132
heterogeneous slopes in analysis of

covariance, 363–367
heteroscedasticity. See unequal variances
hidden extrapolation, 106–107
Hooke’s law, 122–123
Huber’s influence function, 157
hypothesis sum of squares, 97
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hypothesis tests, 10, 12–17
general linear hypotheses, testing, 97–100

I
identity link function, 403
identity matrix, defined, 436
ignoring variables, effects of, 228–229. See also

specification error
IML procedure, 79–80
impact of observations. See leverage;

outliers and unusual observations
incidence matrix, 341
incomplete principal component regression,

218–221
independent variables

absence of (dummy variable model), 339
covariates, 360
omitted. See specification error
outliers in. See leverage
polynomial models with one, 270–278
polynomial models with several, 279–283
strong correlations among. See

multicollinearity
indicator variables, 337–368

analysis of covariance, 359–363
heterogeneous slopes, 363–367

empty or missing cells, 351–354
models with dummy and continuous

variables, 354–359
one-way analysis of variance, 339–346
unequal cell frequencies, 346–351

influence functions, 157
influence, measuring, 126–128
influential observations. See outliers and

unusual observations
INSIGHT procedure, 277–278, 295
interactive analysis of polynomial regression,

277–278
intercept (linear regression model), 37

estimating, 40–42
regression with and without, 59–60

intrinsically linear models, 303–320
equal variance assumption, 306, 308–310
multiplicative model, 304, 312–320
power transformation, 305–306, 308–312

intrinsically nonlinear models, 303–304
decay models, 321–327
growth models, 327–332

inverse matrix, defined, 436
inverse predictions, 65–67
IPC regression, 218–221
iterative search process, 321–323
iteratively reweighted least squares, 158–159,

402
IWLS procedure. See robust estimation

J
joint inference (simultaneous inference),

93–94

K
knots (polynomial regression), 279

L
lack of fit test, 232–238

loglinear models, 390, 392, 393
least squares estimation, 12, 214, 439–441

correlated errors and, 164
dichotomous response variables,

376–379
outliers and, 122–123

leverage, 120, 122–123
measuring, 125–126

leverage plots, 96, 129–130
linear equations, solving with matrices,

437–438
linear functions with correlated

variables, 345–346
linear in logs models, 312–320
linear models. See also linear regression

models
applied to nonlinear relationships. See

specification error
defined, 2
inferences on single mean, 11–12, 16–17
inferences on slope, 45–49
inferences on two population means,

19–23
intrinsically linear models, 303–320.

See also nonlinear models
equal variance assumption, 306,

308–310
multiplicative model, 304, 312–320
power transformation, 305–306,

308–312
observations problems. See observations,

problems with
regression through the origin, 58–62

linear polynomials, 270–271
linear regression models

applied to nonlinear relationships. See

specification error
for binary response variables, 372–374
intrinsically linear models, 303–320

equal variance assumption, 306,
308–310

multiplicative model, 304, 312–320
power transformation, 305–306,

308–312
multiple, 73–108

correlation models, 102–105
estimating coefficients, 76–81
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general linear hypotheses, testing,
97–100

inferences on parameters, 85–96
inferences on response variable,

100–102
multicollinearity in. See

multicollinearity
observations problems. See

observations,
problems with

partial and total regression coefficients,
74–76

uses and misuses of, 106–107
weighted regression, 150–155, 158, 238

observations problems. See observations,
problems with

simple, 35–68
assumptions on, 62–65
for binary response variables, 372–374
correlation models, 52–56
inferences on regression coefficients,

40–49
inferences on response variable,

49–52
inverse predictions, 65–67
regression through the origin, 56–62
uses and misuses of, 65

weighted regression, 144–155, 238
estimating variances, 150–151
influence functions vs., 158

linear transformation, 193
link functions, 402–404
loess method. See weighted least squares
LOGISTIC procedure, 384, 386
logistic regression, 327–329

for binary response variables, 372
generalized linear models for, 404–406
loglinear models, 312f, 388–395
multiple logistic regression, 385–388
polytomous logistic regression models, 388
simple logistic regression, 379–385

logistic regression link function, 403
logit transformation, 380, 385
loglinear models, 312f, 388–395

M
M -estimator, 157, 159, 214
main diagonal, matrix, 434
main effects (loglinear models), 390–391
Mallows Cp statistic, 246–248
matrices, introduction to, 433–438
maximum likelihood estimation, 321–322,

441–443
multiple logistic regression, 385–387
simple logistic regression, 383–385

maximum R-square, 240
mean squared error

comparing biased and unbiased
estimators, 215

multiple linear regression, 92
studentized residuals, 124–125

mean squares, 7
mean squares, expected, 14, 21

ANOVA models, 24
simple linear regression models, 47

means, 9
analysis of, 5–29

sampling distributions, 5–9
linear functions with correlated variables,

345–346
sample mean, 6–7, 9
several, inferences on, 23–27
single, inferences on, 9–17
two, inferences on, 17–23

missing cells, 351–354
MLE (maximum likelihood estimation),

441–443
multiple logistic regression, 385–387
simple logistic regression, 383–385

model fit, 11–12
lack of fit test, 232–238

loglinear models, 390, 392, 393
multicollinearity and, 182

model problems
correcting with variable selection, 108,

118, 178, 240–261
backward elimination and forward

selection, 248–250
influential observations and, 259–262
Mallows Cp statistic, 246–248
multicollinearity and, 199, 261–262
reliability of, 250–255
size of subset, 241–246
usefulness of, 256–259

correlated errors, 118, 160–172
autoregressive models, 161–170
model modification, 170–172

overspecification. See multicollinearity;
variable selection

row diagnostics, 117–118
specification error, 143–173, 227–232.

See also overspecification
regression analyses, 108
simple linear regression models, 63
violations of. See specification error

unequal variances, 118, 143–156
as cause of outliers, 142
nonlinear relationships in linear

regressions, 306, 308–310
Model (SAS output), defined, 26, 49
models, linear. See linear models
models, regression. See regression models
moving average procedure, 294
MSR. See regression mean square
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multicollinearity, 76, 108, 118, 177–222
diagnosing, 190–198

variance inflation factors (VIF),
190–192

variance proportions, 195–198
effects of, 179–190

example (no multicollinearity),
179–180

example (several multicollinearities),
184–185

example (uniform multicollinearity),
180–183

overspecification and, 238
polynomial regression, 272
remedial methods, 198–221

biased estimation (to reduce
multicollinearity), 214–221

variable redefinition, 199–214
variable selection. See variable

selection
variable selection and, 199, 250–251

influential observations and, 261–262
multiple correlation, 102–104
multiple linear regression, 73–108

correlation models, 102–105
estimating coefficients, 76–81
general linear hypotheses, testing, 97–100
inferences on parameters, 85–96

simultaneous inference, 93–94
inferences on response variable, 100–102
multicollinearity in. See multicollinearity
observations problems. See observations,

problems with
partial and total regression coefficients,

74–76
uses and misuses of, 106–107
weighted regression, 144–155, 238

estimating variances, 150–151
influence functions vs., 158

multiple logistic regression, 385–388
multiplication, matrix, 435
multiplicative model, 304, 312–320
multivariate analysis, 203. See also principal

components analysis

N
near-optimum variable combinations, 241
NLIN procedure, 321–322, 326, 328, 330
no-intercept regression, 59–60
nonlinear models, 303–333
nonrandom sample selection. See correlated

errors
normal correlation models, 53
normal distribution

approximating with polynomials, 272–275
statistical table for, 414–418

null hypotheses, 12–13

O
observations, problems with, 119–173

correlated errors, 118, 160–172
autoregressive models, 161–170
model modification, 170–172

outliers and unusual observations, 117,
120–142

detecting (example, artificial),
132–135

detecting (example, with census
data), 135–141

DFBETAS statistics, 128
influence on estimated response,

126–128
influence on precision of estimated

coefficients, 130–132
in logistic regression, detecting,

387–388
measuring leverage, 125–126
multiple linear regression, 108
remedial methods, 142
residual plots, 64–65, 123–124,

137–141, 165, 229–232
simple linear regression models, 63
variable selection and, 259–262

row diagnostics, 117–118
unequal cell frequencies, 346–351
unequal variances, 118, 143–156

as cause of outliers, 142
nonlinear relationships in linear

regressions, 306, 308–310
odds ratio, 383
omission of variables, effects of, 228–229.

See also specification error
one-way ANOVA, dummy variable approach,

339–346
one-way classification ANOVA models, 27
optimum subset of variables, 240
order, matrix, 434
ordinary least squares, 12, 214, 439–441

correlated errors and, 164
dichotomous response variables,

376–379
outliers and, 122–123

origin, regression through, 56–62
outcomes, binary, 371–374

multiple logistic regression, 385–388
simple logistic regression, 379–385

outliers and unusual observations, 117,
120–142. See also row diagnostics

detecting (example, artificial), 132–135
detecting (example, with census data),

135–141
DFBETAS statistics, 128
influence on estimated response, 126–128
influence on precision of estimated

coefficients, 130–132
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in logistic regression, detecting,
387–388

measuring leverage, 125–126
multiple linear regression, 108
remedial methods, 142
residual plots, 64–65, 123–124, 137–141

specification error, 229–232
with and without correlation, 165

simple linear regression models, 63
variable selection and, 259–262.

See also variable selection
multicollinearity and, 261–262

overdispersion, 410
overspecification. See multicollinearity;

variable selection

P
p-value, 10
partial correlation, 102, 104–105
partial regression coefficients, 74–76

biased estimators for, 214–216
estimating, 76–81, 82–85
interpreting, 81–85
multicollinearity and, 180, 182–183

partial residual plots, 96
partitioning degrees of freedom, 14
partitioning of sums of squares, 13–14, 20

ANOVA models, 24
multiple linear regression, 87
simple linear regression models, 46

Pearson product moment correlation
coefficient, 54

plots of residuals, 64–65, 123–124, 137–141
specification error, 229–232
with and without correlation, 165

plotting leverage, 96, 129–130
plotting residuals, 64–65, 123–124, 137–141

specification error, 229–232
with and without correlation, 165

point estimators, 5
Poisson regression link function, 403–404
polynomial regression, 270–292

curve fitting without models, 292–297
interactive analysis, 277–278
multicollinearity, 272
one independent variable, 270–278
segmented polynomials with known knots,

279–283
several independent variables,

283–292
three-factor response surface

(example), 285–287
two-factor response surface (example),

288–292
polytomous logistic regression models, 388
pooled t statistic, 18, 21, 337–339
pooled variance, 18

population means, 9
several, inferences on, 23–27
single, inferences on, 9–17
two, inferences on, 17–23

population variances, 10
positive autocorrelation, 166
power transformation, 305–306, 308–312
precision, measuring influence on, 130–132
prediction error sum of squares (PRESS),

129–130, 140
example of outlier detection, 135
helping with variable selection, 246,

261–262
prediction intervals

response variable, multiple regression,
101–102

simple linear regression models, 50–52
PRESS statistic, 129–130, 140

example of outlier detection, 135
helping with variable selection, 246, 261–262

principal components analysis, 192–198
principal components regression, 205–214

incomplete, 218–221
PRINCOMP procedure, 204
probit models, 387–388, 405
PROBIT procedure, 387
pseudo inverses, 344

Q
quadratic polynomials, 270–271
quantal response variables, 371–374

multiple logistic regression, 385–388
simple logistic regression, 379–385

quartic polynomials, 270–271

R
R-square (correlation of determination), 56

adjusted, 104
helping with variable selection, 245
maximum (variable selection), 241
multiple correlation, 103–104
no-intercept regression, 62

random component of linear models, 2, 11
random component of linear regression

models, 38
random error, 2, 401–402
redefining variables (to reduce

multicollinearity), 199–214, 213–214
based on knowledge of variables, 200–203
principal components analysis for,

203–205
principal components regression for,

205–214
REG procedure

CLI and CLM options, 101
RESTRICT option, 99
simultaneous inference, 94
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statistics for variable selection, 245
two-factor response surface model,

285–286
WEIGHT statement, 150

regression coefficients, 37, 76
estimating (multiple regression), 76–81
estimating (simple regression), 40–42
inferences on, 40–49
interpreting partial regression

coefficients, 81–85
partial vs. total, 74–76, 81–82. See also

multiple linear regression
multicollinearity and, 180, 182–183

principal components regression, 205–214
weighted least squares, 295–298

binary response variables, 374–379
regression mean square, 49
regression models

defined, 53
distribution of error in, 151–152
logistic models. See logistic regression
multicollinearity in. See multicollinearity
multiple linear, 73–108

correlation models, 102–105
estimating coefficients, 76–81
general linear hypotheses, testing,

97–100
inferences on parameters, 85–96
inferences on response variable,

100–102
observations problems. See

observations, problems with
partial and total regression coefficients,

74–76
uses and misuses of, 106–107
weighted regression, 150–155, 158, 238

nonlinear. See nonlinear
observations problems. See observations,

problems with
polynomial regression, 270–292

curve fitting without models, 292–297
interactive analysis, 277–278
multicollinearity, 272
one independent variable, 270–278
segmented polynomials with known knots,

279–283
several independent variables, 283–292

ridge regression, 216–218
simple linear, 35–68

assumptions on, 62–65
for binary response variables, 372–374
correlation models, 52–56
inferences on regression coefficients,

40–49
inferences on response variable,

49–52
inverse predictions, 65–67

regression through the origin, 56–62
uses and misuses of, 65

weighted regression, 144–155, 238
estimating variances, 150–151
influence functions vs., 158

with and without intercept, 59–60
regression sum of squares, 49
rejection region. See confidence intervals
relationship-based weights, 151–156
reliability of variable selection, 250–255
remedial methods

autocorrelated errors, 167
multicollinearity, 198–221, 238
outliers and unusual observations, 142
overspecification, 238–240

reparameterization, 27
resampling (to verify variable selection),

253–255
residual plots, 64–65, 123–124, 137–141

specification error, 229–232
with and without correlation, 165

residual standard deviations (RMSE), 180
helping with variable selection, 245

residuals, 12, 43
detecting outliers, 64–65, 123–124,

137–141
specification error, 229–232
studentized residuals, 124–125
with and without correlation, 165

detecting specification error, 229–232
influence functions, 157
no-intercept regression, 62
partial correlations, computing, 105
partial regression coefficients, 82–85,

94–96
response surfaces, 283–292

three-factor (example), 285–287
two-factor (example), 288–292

response variables (dependent variables)
categorical, 371–396

binary, 371–374
contingency tables and loglinear

regression, 388–395
multiple logistic regression, 385–388
simple logistic regression, 379–385

curved response, treating as linear,
230–232. See also specification error

detecting outliers with residuals. See

residuals
influence of observation on,

measuring, 126–128
multiple linear regression models,

100–102
outliers in. See leverage
simple linear regression models, 37,

49–52
RESTRICT option (REG procedure), 99
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restricted models, 13, 20
ANOVA models, 24
lack of fit test, 233, 236
multiple linear regression, 86–96
simple linear regression models, 46

ridge regression, 216–218
RMSE (residual standard deviations),

180, 245
robust estimation, 156–160
Root MSE (SAS output), defined, 49
row diagnostics, 117–118
RSREG procedure, 289–291

S
sample means, 9

sampling distribution of, 6–7
sample statistics, 5
sample variances, 6, 10

ratio of two, distribution of. See F
distribution

sampling distribution of. See chi-square
distribution

sampling distributions, 5–9, 15–16
inferences on single mean, 9–10, 15–16
inferences on slope of regression line,

42–46
inferences on two means, independent

samples, 17–19, 22
of ratio of variances, 8
regression through the origin, 56–58
of variance, 7

scalar matrix, defined, 434
segmented polynomials

with known knots, 279–283
nonlinear models, 330–333

sequential sums of squares, 272
serially correlated errors, 160

diagnosing and remedial methods,
165–167

model modification, 170–172
significance level, 10
simple linear regression models, 35–68

assumptions on, 62–65
for binary response variables,

372–374
correlation models, 52–56
inferences on regression coefficients,

40–49
inferences on response variable, 49–52
inverse predictions, 65–67
regression through the origin, 56–62
uses and misuses of, 65

simple logistic regression, 379–385
simultaneous inference, 93–94
single-factor ANOVA models, 27
size of variable subsets, 241–246

slope (linear regression model), 37
estimating, 40–42
inferences using sampling distribution,

42–46
smoothing (curve fitting), 157, 269–297

polynomial regression, 270–292
curve fitting without models, 292–297
interactive analysis, 277–278
multicollinearity, 272
one independent variable, 270–278
segmented polynomials with known

knots, 279–283
several independent variables, 283–292

without model, 292–297
solving linear equations with matrices,

437–438
specification error, 143–173, 227–232.

See also overspecification
correlated errors, 118, 160–172

autoregressive models, 161–170
model modification, 170–172

regression analyses, 108
row diagnostics, 117–118
simple linear regression models, 63
unequal variances, 118, 143–156

as cause of outliers, 142
nonlinear relationships in linear

regressions, 306, 308–310
violations of. See specification error

splines. See curve fitting
square matrix, defined, 434
SSE. See error sum of squares
SSR. See regression sum of squares
standard deviation, 6
standard error, 42

of DFFITS statistic, 127
of residuals, 124–125, 132

standard normal distribution
approximating with polynomials,

272–275
statistical table for, 414–418

standardized residuals, 124–125
statistical hypothesis tests, 10, 12–17

general linear hypotheses, testing,
97–100

statistical models, defined, 1–2
statistical portion of regression models,

36–37
statistical tables, 413–432

chi-square distribution, 420
Durbin–Watson test bounds, 431–432
F distribution, 421–430
normal distribution, 414–418
t distribution, 419

stochastic portion of regression models,
36–37

straight lines, segmented, 279
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Student t distribution, 6, 10
pooled t statistic, 18, 21, 337–339
statistical table for, 419
studentized residuals, 124–125, 132,

139, 140
subsets of variables. See variable selection
sums of cross products, 41
sums of squares, 7, 12

corrected, 41
of error. See error sum of squares
hypothesis, 97
for lack of fit, 233
partitioning, 13–14, 20

ANOVA models, 24
multiple linear regression, 87
simple linear regression models, 46

PRESS statistic, 129–130, 140
example of outlier detection, 135
helping with variable selection, 246,

261–262
restricted and unrestricted models, 13
sequential, 272

symmetric matrices, defined, 435

T
t distribution, 6, 10

pooled t statistic, 18, 21, 337–339
statistical table for, 419
studentized residuals, 124–125

tests of independence, 390–392
three-factor response surface model

(example), 288–292
time-dependent errors, 160
time series, 166
too few variables. See specification error
too many variables. See overspecification
total regression coefficients, 74–76

estimating, 76–81
estimating partial coefficients as, 82–85
multicollinearity and, 180, 182–183

transformation matrix, 193
transformations, 401–402

of intrinsically linear models,
305–306, 308

transpose of matrix, defined, 434
Tri-cube weight technique, 296
two-factor ANOVA models, 28–29
two-factor response surface model

(example), 285–287
two-sample pooled t tests, 337–339
Type I sums of squares. See sequential sums of

squares
Type III sums of squares, 352–353
Type IV sums of squares, 353

U
unbalanced data, 346–351
unbiased estimators, 214. See also biased

estimation
underspecified models. See specification error
unequal cell frequencies, 346–351
unequal variances, 118, 143–156. See also row

diagnostics
as cause of outliers, 142
nonlinear relationships in linear

regressions, 306, 308–310
uniform multicollinearity, 180–183
unity link function, 403
unnecessary variables. See

overspecification
unrestricted models, 13, 20

ANOVA models, 24
lack of fit test, 233, 236
multiple linear regression, 86–96
simple linear regression models, 45–46

unusual observations. See outliers and
unusual observations

V
variable redefinition, 199–214

based on knowledge of variables,
200–203

principal components analysis for,
203–205

principal components regression for,
205–214

variable selection, 108, 118, 178, 240–261
backward elimination and forward

selection, 248–250
influential observations and, 259–262
Mallows Cp statistic, 246–248
multicollinearity and, 199, 250–251,

261–262
reliability of, 250–255
size of subset, 241–246
usefulness of, 256–259

variables, too many. See overspecification
variables, wrong. See specification error
variance inflation factors (VIF), 190–192
variance proportions, 195–198
variance–covariance matrix, 143, 345–346
variances

of error, nonconstant. See unequal
variances

estimating, 6
implementing weighted regression,

147–151
simple linear regression models, 50

generalized variance, 130
linear functions with correlated

variables, 345–346
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population variances, 10
sample variance, 6, 10

ratio of two, distribution of. See F
distribution

sampling distribution of. See

chi-square distribution
VIF (variance inflation factors), 190–192
violations of assumptions, 143–173,

227–232. See also overspecification
correlated errors, 118, 160–172

autoregressive models, 161–170
model modification, 170–172

regression analyses, 108
row diagnostics, 117–118
simple linear regression models, 63
unequal variances, 118, 143–156

as cause of outliers, 142

nonlinear relationships in linear
regressions, 306, 308–310

violations of. See specification error

W
Wald statistics, 402
WEIGHT statement (REG procedure), 150
weighted least squares (loess method),

295–298
binary response variables, 374–379

weighted regression, 144–155, 238
estimating variances, 150–151
influence functions vs., 158
relationship-based weights, 151–156

Y
Yule–Walker procedure, 167–170
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