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Preface

To find out what happens to a system when you inter-
fere with it you have to interfere with it (not just pas-
sively observe it). (Box, 1966)

This little book is addressed to people who are called upon
to organize research studies involving human subjects or to
judge the value of such studies, but who have little or no sta-
tistical knowledge. Those responsible for research and devel-
opment in government and industry will be one main body
of readers. Beginning Ph.D. candidates who will be conduct-
ing empirical research, requiring statistical methods, in some
substantive area involving human beings but who have little
training in such methods will form a second group.

In this book, I attempt to provide the basicprinciplesof
statistics in a non-mathematical way, accessible to a wide au-
dience. My intention is to avoid technical details that can be
obtained, as necessary, from a professional statistician or, for
the more advanced, from the statistical literature. In this way,
you should acquire sufficient knowledge of what statisticians
do in order to be able to communicate with them, whether to
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obtain advice or to criticize the work they have done.
The text begins at the point when a study is originally con-

ceived and moves in order through all stages to the final re-
port writing, covering both observational and experimental
(intervention) studies. Due to the primordial importance of
the proper design of a study, much of the material concen-
trates on this aspect. I have spent considerably less time on
the analysis, which, in any case, is covered, more or less ad-
equately, in introductory statistics courses.

Even if you are primarily interested in only one of obser-
vational and intervention studies, you should preferably read
both of these chapters. Many principles are common to the
two and the contrasts can provide you with illuminating in-
sights, highlighted by the quote from Box given above con-
cerning the perpetual problem of studying causality among
human beings.

The ideas presented in this book have accumulated from
two types of experience: in educational planning and evalua-
tion beginning about 25 years ago, primarily in Third World
countries, especially India, Indonesia, Madagascar, and Mo-
rocco, and in clinical trials, beginning somewhat more re-
cently and restricted to Europe. Thus, many of the examples
in the text are related to these two fields, but I have tried to
keep the discussion general enough to be applicable to any
studies directly involving human beings and requiring statis-
tical procedures.

In order to make the ideas clear and easily accessible,
I have presented many as check-lists. My intention is not
to provide many details on modern statistical methods but
rather an overview. The bibliography will give you indica-
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tions as to where to find some of the information needed ac-
tually to carry out the procedures that I have described.

Obviously, few of the ideas in this book are new. However,
to make the text more readable, I have not loaded it with
scholarly references, but have included in the bibliography
the works that I have found most useful.

Philippe Lambert, Patrick Lindsey and six referees pro-
vided many useful comments on an earlier draft of various
chapters.

I would like to acknowledge the support of UNESCO,
which financed a course on this subject for the Ministry of
Education in Morocco, and especially Claude Tibi who or-
ganized the course and who himself participated as much as
I in presenting it.

J.K.L.
Diepenbeek and Li`ege

July, 1998





1
Planning a study

1.1 Why statistics?

1.1.1 Human variability
This book is about rigorous ways of collecting scientific in-
formation about human beings. In such circumstances,ran-
dom variationin observations makes statistical procedures
necessary. If all people reacted in exactly the same way in
all circumstances, it would be possible to demonstrate any
relationship of interest simply by observing one individual.
If the common cold always lasted exactly seven days and ad-
ministration of a new medication to one person reduced it
to five, we would know that the drug worked. If every stu-
dent received the same score on a test, administering it to one
child would tell us how difficult it was. Because this is not
so, we must conduct studies involving groups of people. And
measures of variability will be as important as will averages.

However, although some specific group of people will be
of particular interest in a study, usually you cannot observe
all members of that group. You must select a representative
subgroup, orsample. Thus, the field of statistics can provide
you with objective means of generalizing from the particular-
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ities of observations only on some suitably chosen subgroup
to conclusions about the group as a whole.

1.1.2 Research projects
We can divide most research projects concerning human be-
ings into three main phases:

1. deciding on the question(s) to study, the procedures to use,
and which people to include (Chapters 1, 2, and 3);

2. collecting the required information from and/or about them
(Chapters 2 and 3);

3. processing, analysing, interpreting, and reporting this in-
formation (Chapters 4 and 5).

In a process of this complexity, detailed prior planning is es-
sential. A considerable body of theoretical statistical knowl-
edge is available to aid you in carrying out the first and third
stages efficiently. Appropriate ways of performing the sec-
ond are still very much a matter of trial and error, often de-
pending on specific-subject matter questions rather than gen-
eral statistical principles.

Statistical methods have a number of advantages over other
methodological tools of the research worker. You must:

1. record information in as standardized a form as is possible
with human subjects;

2. choose subjects in an objectively representative fashion so
that you can make generalizations from specific observa-
tions;

3. state assumptions clearly, and usually check them empiri-
cally.
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In planning a study, two aspects that will be of particular
pertinence to statistics are that the results of the study are
relevant to the questions being asked and that they are suf-
ficiently precise. Statisticaldesignof a study is specifically
concerned with these objectives. General questions that you
will have to face include:

� how to select the particular individuals to be observed;
� how to fix the total number of such individuals;
� how to allocate these individuals among various pertinent

groups.

Thus, it is essential that a statistician be involved from the
very initial stages of planning a study, and not simply be
called upon to analyse the final results. In the latter case,
unless one is particularly gifted or lucky, the statistician will
generally only be able to provide apost mortemreport on the
reasons why the study failed to attain its goals!

It is important that you clearly distinguish between two
types of investigation:

1. a plannedinterventionin the natural course of events to
determine its effect;

2. the passive observation of phenomena as they exist in so-
ciety.

The first is called anexperimentor a trial and the second a
survey. As we shall see, only the former can provide you
with direct objective information about the consequences of
the implementation of some innovation.
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1.1.3 Ethics
Statistical methods can play an important role both in deci-
sion making and in scientific inference. However, they also
have the potential for misuse: everyone is familiar with some
phrase such as ‘lies, damned lies, and statistics’! It is best to
consider some of these problems immediately.

Misuse of statistical methods can occur from the design,
through the analysis, to the reporting stage of a study. Three
of the most important problems to avoid are:

1. bias;
2. sampling too few subjects to detect a difference;
3. lack of published results.

The whole point of almost any study is to further knowledge,
often with the view to using the information as a partial basis
for policy or decision making. If you do not report the result
of a study, it was a waste of time both for the investigators
and for the subjects involved.

On the other hand, if it becomes evident to you during a
study that there are unexpected difficulties, implying serious
inadequacies, you should stop the study. Prior ignorance of
the design and organizational requirements of a study is not
an excuse for inadequate preparation!

One may argue (Altman, 1991, pp. 477–478, 491–492)
that such misuse of statistics, and the accompanying substan-
dard research, is unethical. You are:

� misusing subjects by exposing them to inconvenience and,
in some cases, to risks;

� wasting resources;
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� publishing misleading results that can lead to inappropri-
ate decisions, with the accompanying further risks and
wasted resources.

If you publish a poorly conducted study, others may:

� find it impossible to obtain funding or permission to con-
duct further research on the subject;

� be led to follow false lines of investigation;
� use the same inferior research methods elsewhere;
� widely introduce an intervention although it has no effect,

or even harmful effects.

Unfortunately, with enough effort, even the worst research
report can eventually be published somewhere.

Dishonesty and fraud are hopefully rare. Cases include:

� hoax – reporting a phenomenon that has never existed;
� forgery – inventing observations that were never made;
� cooking – selecting only those observations, or those sta-

tistical analyses, that agree with the desired conclusions.

Most cases of fraud are eventually uncovered, although some-
times only after significant damage has been caused.

1.2 Protocols

When beginning a study, you must develop aprotocol to de-
scribe the purpose of the study and the steps in obtaining and
analysing the data pertinent to this goal. However, there is no
point in starting to plan a study that does not have adequate
financial support and sufficient skilled staff available.
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Proper design of the study is essential. The data from
a well-planned study can be analysed in many appropriate
ways, but no amount of clever manipulation at the analysis
stage can compensate for a badly conceived study. A per-
fect design that is impossible to implement in practice is of
no use; neither is a practically convenient plan that will not
support the desired scientific conclusions.

Your protocol should clearly specify the following.

1. The subject:
(a) thebackgroundand motivation;
(b) thequestion(s)you wish to investigate;
(c) the administrativeresponsibilities.

2. The material:
(a) thepopulationandtime frameyou will consider, and

theunit of observation(person, family, town, . . . );
(b) how you will choose thesample, including the type

of study design, randomization, the sampling or ex-
perimental unit(s), and the determination ofsample
size;

(c) in experimental trials, the type ofsubject consent;
(d) whatoutcome(s), to become the response variables

in the statistical analysis, you will measure;
(e) whatsources of explanation, to become the explana-

tory variables in the statistical analysis, you will mea-
sure.

3. The methods:
(a) if you will maintain certain variables under experi-

mental control, the randomization process by which
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you will perform treatment assignmentto individu-
als in the study;

(b) what instrumentsyou will use to measure the vari-
ables and how you will train the investigators in-
volved to use them;

(c) the ways that you will conductmonitoring of the
progress of the study, including means of preventing
deviations from the protocol and any interim analy-
ses of the data.

4. The analysis:
(a) procedures fordata transferto electronic form and

for verification against recording and transcription
errors;

(b) appropriatestatistical modelsthat you think will al-
low you to detect patterns of interest in the data to
be collected;

(c) selection strategiesfor choosing among the possible
models;

(d) criteria to distinguish random, or chance, variability
from that which is systematic.

5. The report: the form in which you will submit the final
results.

These points form a unified whole; you should consider them
simultaneously. Your choices about any point will have an
impact on most of the others.

Prepare a draft protocol very early in your planning of a
study. This will reveal confusions, weak points, and possible
difficulties that you must face and resolve. You may require
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several drafts before producing a protocol that is acceptable
on scientific, organizational, and ethical grounds.

Where possible, invite all people or organizations who
may make use of the information obtained to provide input
as to the structure of the protocol. In this way, they will be
aware of the nature of the study and can make suggestions
for modifications before the study begins.

It may often be desirable to construct the protocol in such
a way that it will make the study comparable with previous
existing studies, whether in the same or in other countries.
This will be especially true for defining the population and
constructing the instruments.

Involve the statistician who will be responsible for the
analysis and presentation of the results from the first plan-
ning stages. It may also be necessary to consult with a statis-
tical expert in study design.

To make the choices necessary to construct a protocol (ex-
cept for the first point), prior knowledge of variability in the
population and of ways in which it is practical to collect the
information will be of help. For this, apilot studymay be
necessary.

The final protocol will serve, among other things, as:

� a specification of the scientific design, including motiva-
tion and aims;

� an operations manual by which all investigators know what
is expected of them;

� a prior record of assumptions and hypotheses so that you
cannot be accused of drawingpost hocconclusions.
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A protocol may vary from a few to 50 pages, depending on
the complexity of the study.

1.2.1 Study validity
The final role of any study is toconvince. Thus, in conduct-
ing a study, it is essential that people reading your final report
are prepared to accept that your conclusions arevalid. Inter-
nal validity refers to the extent to which your conclusions
apply to the people actually studied, whereasexternal valid-
ity refers to the possibility of generalizing such conclusions
to a wider population, whether persons, settings, or times.
You must expect that the recipients of the final report will
closely and critically question all of these.

Internal validity
Relationship validity The first and most fundamental type
of questioning will be whether the relationships that you have
found between the outcome and the sources of explanation
are valid. Threats to this can come, for example, from claims
that the relationships simply arose by chance in the sample
examined or that the way in which you collected the data was
biased.

Major problems may arise from:

� biases in study design or implementation;
� too much random variation in measurements;
� the sample size being too small to detect a relationship,

called lack ofpower;
� applying an inappropriate statistical analysis;
� a relationship not being stated in the protocol, but found

by ‘data dredging’ after the data have been collected.
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Causal validity If the relationships found can be accepted,
your second claim may be that they are causal. Causal re-
lationships are most easily studied in closely controlled cir-
cumstances, but this will limit generalization of conclusions.
Challenges to causal conclusions can arise, for example, if
some other source of explanation can be invoked as influ-
encing the outcome or if it can be argued that causality could
be in the opposite direction. This can always occur if you
have not used an intervention in the study and if you have
not randomized the subjects involved to the treatments (Sec-
tions 1.4.1 and 3.1.3).

Instrument validity Even if the critics can accept the ex-
istence of a relationship, and, if applicable, the fact that it
is causal, they may claim that the empirical phenomena ob-
served do not correspond to the theoretical concepts pro-
posed. In other words, the causal relationship that you have
found is not what you claim it to be. Problems of instrument
validity can arise from the ways in which you have measured
either the outcome or the sources of explanation. It may be
as simple as a bias, but may be related to complex problems
of measuring attitudes and opinions (Sections 1.2.4 and 2.3).

External validity
If the relationships you have found within a sample of peo-
ple can be accepted, whether claimed to be causal or not,
you must then ask to what extent they are generalizable to
other people, in the same time and location, or elsewhere. If
there is an interaction between a source of explanation and
the type of subject, the setting of the study, or the time of the
study, generalization of the results will be questionable. The
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essential technique here is the random selection of a sample
from an appropriately and widely enough defined population
of interest (Sections 1.4.1 and 2.1.2).

Experimental trials, because they apply interventions by
using random allocation of treatments but involve no random
selection of subjects, will generally have high internal va-
lidity but questionable external validity. In contrast, sample
surveys, with their random sample selection but no treatment
allocation, will have high external validity but no causal va-
lidity. Thus, when human beings are involved, internal and
external validity are often in conflict. The use of strict con-
trol and homogeneity within a study will allow you to detect
relationships more easily but will restrict the breadth of ap-
plication of your conclusions.

1.2.2 Question investigated
The first step in preparing a protocol is to translate your
vague general objectives, that have made a study necessary,
into more detailed and specific objectives. This may entail
developing working hypotheses that you can empirically test
by the study. For all of this to become operational, you will
usually have to choose some specific observableoutcomeas
the principal object of study to be explained: being cured of
a disease or becoming enrolled at school, for example. Such
an outcome may be more or less ‘natural’, but you should al-
ways carefully construct and define it in an appropriate way.
Be wary of predefined administrative or common-sense cat-
egories.

A number of steps are generally useful in developing the
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central theme of the study:

� Search the literature to find other similar studies already
available, whether in the same or other countries.

� Study the appropriate literature to discover the most suit-
able techniques of design and analysis for such a research
project.

� Meet the people concerned to discuss the means of opera-
tionalizing all aspects of the study.

� Plan the budget carefully to ensure that the objectives can
realistically be met.

� Where necessary and possible, consult outside experts.

1.2.3 Population and time frame
Always try to have in mind a clearly defined population about
which you plan to obtain information and a time frame to
which it will be applicable. This is a complex technical ques-
tion that I shall discuss in detail below and in the following
chapters.

If, as is usually the case, you cannot study the whole pop-
ulation, you must also clearly specify the means of objec-
tively choosing a representative sample of the appropriate
size. This is at the centre of the design of the study. The
principal designs will be described below.

In experimental trials, you can decide on the treatments
or procedures to be compared. In observational studies, such
flexibility is not possible. Having decided on the types of
comparisons to make, search for some environment in which
it is possible to collect data to provide such comparisons.
Often, you must make do with comparisons that are far from
ideal.
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1.2.4 Instruments and measurements
Besides the principal outcome to be explained, you will want
to study the conditions under which it is produced (Section
1.3.3). This will require a careful operational definition of
thesources of exposurethat could explain the observed dif-
ferences of outcome. If certain such conditions are to be un-
der the control of the investigators, clearly define the means
of assigning them to the subjects.

Instruments
The protocol must specify the instruments that will be used
to make the measurements, both of the outcome and of the
sources of exposure, as well as the investigators who will use
them. When necessary, it must also give the means of appro-
priate training of these investigators. Remember that a mea-
surement, whatever the instrument, involves many known
and unknown implicit theoretical variables, as well as un-
proven assumptions.

Three criteria are generally required for the evaluation of
any instruments to be used.

1. Validity: Several types of instrument validity are impor-
tant, although some are much more difficult to judge than
others.

(a) Criterion validity involves assessing an instrument
against some accepted absolute standard.

(b) Construct validityrefers to whether the empirical
phenomena being observed actually correspond to
the theoretical concepts you wish to study. You can
assess it by inspection of the pattern of relationships
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between the instrument and other measures made in
completely different ways.

(c) Faceor content validityinvolves checking if the in-
strument (usually a questionnaire) covers the range
of topics for which it is intended. A panel of experts
usually makes the judgements.

These are all connected to the internal validity, so that they
are also prerequisites for the external validity of the study
as a whole.

2. Reliability: An instrument isreliable if it is able to yield
the same results on repeated application. You may some-
times be able to accomplish this by looking at internal reli-
ability at a single administration. Thus, for example, split-
test reliability involves splitting your instrument (usually
a questionnaire) into equal halves and checking the de-
gree of agreement. The alternative is test-retest reliability,
but take care that subjects do not change in any important
ways between the two administrations. You should also
assess reliability of results among different investigators
using the instruments. Do this in normal operating condi-
tions, because intensive training or special expertise will
bias the results.

3. Sensitivity:The instrument should be able to detect scien-
tifically important differences, or changes over time. On
the other hand, you may waste money, and perhaps time,
if you use overly precise instruments.

Data recording
Common problems in data recording include:

� unclear specification of the data to be recorded;
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� values need to be calculated instead of being entered as
observed (for example, age from date of birth);

� too much data collected from each person;
� poor quality of recorded data;
� data recorded in a form unsuitable for transfer to a com-

puter.

In collecting the data, it is better to anticipate problems than
simply to wait for them to occur. Recordall departures from
protocol.

Together, this and the preceding subsection constitute what
are classically called thematerial and methods.

1.2.5 Analysis and reporting
Arrange for all results to be directly produced in, or trans-
fered to, a form that is machine readable. At this stage, ver-
ify all of the data to identify errors, cleaning and correcting
as necessary.

Here, we are principally concerned with studies that re-
quire statistical analysis. You need only set out the main
lines of such analyses in the protocol; these should be fairly
flexible. Two main phases will be involved:

1. selecting among all possible statistical models those which
are most appropriate to describe the patterns of interest in
the data;

2. providing measures of precision of the unknown quanti-
ties in these models that are calculated, orestimated, em-
pirically from the data.

Your choices will depend primarily on the type of outcome
you have chosen for study.
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Although the operations of statistical analysis are one of
the cheapest aspects of a complete study, the time required to
carry them through is often the most underestimated aspect
of a study. Masses of unanalysed, and hence wasted, data
that cost a great deal to collect lie stocked throughout the
world.

Finally, you must report the results obtained in a form that
is understandable by the audience to whom it is addressed.
For these results to be convincing, your report must cover a
clear description of all steps of the study to provide evidence
that you carried it out in an objective and complete manner.

1.2.6 Monitoring the study
Follow your study closely to ensure that all aspects of the
protocol are respected. Monitoring will be particularly im-
portant if:

� there is an intervention;
� there are several centres collecting data;
� the study extends over a considerable period of time.

Monitoring can serve a number of other functions as well,
including:

� finding errors in reporting, if data are being entered in the
computer as they are recorded;

� sustaining motivation by providing preliminary general
results, calledinterim analysis;

� if an intervention is involved,
– detecting adverse side effects;
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– allowing the study to stop early if the intervention
proves either ineffective or very effective.

Interim analysis is particularly delicate in any study. If you
disclose partial results, this may influence future responses
still to be recorded.

1.2.7 Administration
Carefully plan the project management. This will include:

� Who has overall responsibility for the project?
� Who is in charge of various areas of the work, possibly

divided both geographically and by subject?
� How are the various activities to be coordinated?
� What is the timetable?

You will have to establish a detailed budget covering:

� staff salaries;
� travel and subsistence;
� consumables, including general running costs and materi-

als;
� equipment;
� overheads.

Before going ahead, be sure that you will have adequate
funding available.
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1.3 Types of observations

1.3.1 Choice of subject areas
A basic problem is to select the most relevant items of infor-
mation or types of observations from all those that it is prac-
tical to collect and that might conceivably have a bearing on
the subject you are investigating. You may take a number of
steps to resolve this problem:

1. Determine the details of the information required to deal
with the problem.

2. Consider whether there are any related problems of impor-
tance on which this information, possibly supplemented to
some extent, would throw light.

3. With the whole field mapped out in this way, consider the
practicality of obtaining the necessary information cover-
ing any (sub)set of these problems.

4. Take final decisions on the inclusion of each point in light
of the relative importance of the problems and the total
load possible to impose on the investigators and on the
subjects who will be involved.

The items of information that you will collect should form a
rounded whole, covering a coherent area of interest.

You will only be able to collect accurate information if
you obtain the full and willing cooperation of the investi-
gators and of the subjects. Your study should have a clear
purpose that you can explain to them, and the material that
you collect must be relevant to this purpose.

You can distinguish three main types of observations that
you will frequently need in a study:
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1. objective facts;
2. opinions, attitudes, and motivations;
3. personal knowledge.

These will generally require different means of data collec-
tion and will be used for different purposes. If the observa-
tion unit is not human beings but, say, groups, only the first
is usually pertinent.

1.3.2 Outcomes
Your primary observation on each subject will be that of the
phenomenon or outcome to be explained. The statistician
calls this theresponse variable.

We may distinguish theprevalenceof the phenomenon
from its incidence. The former is concerned with the study
of all existing cases that have the characteristic in which we
are interested, as compared to those who do not. It refers to
theprobability of a case in the population whereas the latter
is concerned only with new cases, referring to therate, risk,
or intensityof its occurrence.

Response variables can take a number of forms that will
determine how the data are to be analysed:

� In many fields, the most common outcome type isbinary,
taking only two values, such as yes or no. Then, the phe-
nomenon studied is the proportion of units in the popula-
tion in each of the two categories: the proportion of chil-
dren attending school or of people who are cured.

� A second common type of phenomenon to explain in-
volves acountof something: the number of times a child
has failed at school or the number of infections.
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� Finally, a quantitativemeasurementmay be made. Two
forms of such measurements can be distinguished:

– The observations can take any value, positive or neg-
ative. This is the main type of observation treated in
many classical statistics books where the bell-shaped
normal curve is emphasized, but is rare in practice.

– Only positive values are possible, for example, length
or duration in time, such as survival or length of un-
employment.

You may also record other types of responses, such as mem-
bership in one of a number of categories. These may be un-
ordered or ordered, called respectivelynominalandordinal.

Take special care in the selection and construction of the
response variable, because the success of your study depends
upon it.

1.3.3 Sources of explanation
The second type of observations on each unit will be the
characteristics or sources of exposure that hopefully will ex-
plain at least some of the differences in the observed val-
ues of the response variable. The statistician calls these the
explanatory variables. However, care must be taken with
this term, because research workers in many disciplines call
such observable quantities the parameters. As we shall see
(Section 4.3.1), this latter term has a very different sense for
the statistician, leading to problems of communication and
to misunderstandings.

Explanatory variables take two main forms:
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� two or more qualitative categories that separate the popu-
lation into subgroups, such as sex, marital status, and so
on;

� measured quantities, such as income.

Such variables can be useful in three main ways:

� as descriptive categories among which the response varies,
such as sex or geographical region (in most contexts);

� as explanatory, but unmodifiable, characteristics, such as,
for adults, amount of formal education or childhood ill-
nesses;

� modifiable explanatory factors, such as accessibility to a
public facility.

Of course, modifying an explanatory factor is only useful if
it is a causalfactor, as discussed below.

The tendency is often to accumulate a vast number of ex-
planatory variables, but judicious choice of a relatively small
number is usually preferable for a number of reasons:

� The cost of data collection and analysis will otherwise be
unduly increased.

� The time required for each respondent to provide the in-
formation should be limited so that you obtain reliable
data.

� Large databases increase the risk of recording and man-
agement errors.

� If you collect a large number of explanatory variables, the
data analyst will be overwhelmed, and probably will be
obliged to ignore many of them.
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� The number of explanatory variables showing relation-
ships to the response variable just by chance will also be
increased.

Among other things, statistical analysis serves to determine
which explanatory variables appear to have links to the re-
sponse variable of interest, and in what way, given the in-
herent uncertainty arising from the variability when only a
sample from the population of interest is observed.

1.3.4 Confounding
Many factors usually influence a response of interest, not all
of which can be investigated at any one time. Any factor
along with which the response varies is called aconfound-
ing variable. If it is unequally distributed in the groups be-
ing compared, it will give rise to differences in the response
among the groups, distorting the comparison under study.
Consider, for example, alcohol consumption, smoking, and
lung cancer. Smoking and drinking tend to vary together.
Hence, one might be led to conclude that lung cancer is
caused by drinking.

In an experimental trial, you have three weapons to handle
extraneous variables not under your direct control:

1. strict regulation of experimental conditions to reduce the
effects of such variables;

2. direct measurement of such covariates to allow for them
by matching, blocking, or stratification (Section 3.1.3) in
the analysis;
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3. randomization of treatment assignment to make the aver-
age effect of confounding variables the same in all treat-
ment groups.

In observational studies, only the second strategy (Section
2.5.2) is generally possible. Your choice of environment is
limited by the availability of the comparisons to be made.
By definition, treatments are not assigned, randomly or oth-
erwise, in an observational study.

Thus, in an observational study, confounding variables
can be controlled by:

� stratification;
� matching similar individuals;
� measurement ofconcomitant explanatory variables.

These will be further discussed below.

1.3.5 Accuracy and precision
You must design any study in such a way that you can actu-
ally attain your desired objectives. Here, theaccuracyof the
results is their lack of bias, that is, you are actually measur-
ing what you want to study. You must distinguish this from
theprecisionof the results, the range of values within which
what you are studying is almost sure to lie, usually assuming
that the measurements are accurate.

Inaccuracies result from systematic biases in the methods
of collecting data, particularly from:

� the selection of the individuals to observe –coverage er-
ror;

� missing responses –non-response error;
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� the mode of data collection, as for differences in response
by mail, by telephone, and in person –design error;

� the validity of the instruments used to make the observa-
tions –instrument error;

� effects on response due to the way the instrument is ad-
ministered –investigator error;

� the accuracy of the information provided –respondent er-
ror.

You can never improve accuracy once the observations are
made. In addition, to measure any study biases, you will
require data external to the study itself.

The precision will depend primarily on:

1. the intrinsic variability of whatever is being observed, this
generally being relatively large for human subjects;

2. the number of individuals upon whom observations are
made and, to a lesser extent, the number of observations
per individual;

3. the actual design of the study;
4. the precision of the instruments used;
5. to a minor extent, the type of analysis performed.

The first three points determine the sampling precision.
The standard erroris a crude measure of the precision

of an estimate obtained in a study. It is a function of the
variability of the population, as measured by thevariance
or its square root, thestandard deviation, and of the sample
size, decreasing as that size increases.

If the variance is�2, then the standard error is�=
p
n,

wheren is the sample size. Approximately one-third of the
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observable random variability in an estimate will be greater
than the standard error and one-twentieth greater than twice
the standard error.

An estimate will be biased with respect to the population
of interest if the study fails to include certain units because
of coverage or non-response errors. In the same way, the
standard error can only measure variability among samples
due to not including all of the population in the observed
sample; it does not take into account non-coverage and non-
response.

Although only providing a rough estimate of precision for
almost all types of response variables, the standard error will
be useful for calculating the size of a study.

Lack of accuracy immediately places in question the value
of any results and conclusions, whereas lack of precision
generally only increases the uncertainty surrounding the ex-
act values calculated.

1.3.6 Missing values
Non-respondents are almost always different than those who
agree to respond, although the amount of difference may
vary among questions to be answered. Thus, if non-response
is not restricted to a small proportion of the sample, no gen-
eral validity can be claimed foranyconclusions drawn. Make
every effort to reduce the number of missing values. At the
same time, forcing people to participate or to reply to spe-
cific questions can bias the results because answers will not
be reliable, and perhaps not even relevant. Institute a rigor-
ous system of dealing with the non-response problem from
the outset of the study.
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Non-response may involve all answers for a given indi-
vidual or only some of the answers. Many of the reasons
may be similar in the two cases. Keep all respondents in the
study who supply at least an answer to one question. They
can furnish information about reasons for non-response.

The bias of non-response is approximately proportional to
the rate of non-response (R) times the difference in param-
eter value (�A � �M ) between the group answering and the
missing group. Thus, increasing the response rate does not
necessarily reduce bias if the missing group becomes much
more extreme so that the difference between the two groups,
�A � �M , increases more rapidly thanR decreases. Note,
however, that the situation is usually even more complex than
this because both the response rate and the parameter value
will differ among types of non-response: for example, not
contacted, incapable of replying, and refusal.

Substituting other individuals for the non-respondents is
usually a mistake because the replacements will resemble the
respondents, not the missing ones. It is not sufficient to plan
for a sample of 1000 when 800 are required and 20% are
expected to be missing. This is in no way equivalent to a
complete random sample of 800.

In repeated surveys, such as panels, and longitudinal ex-
periments, reduction of non-response may be especially im-
portant because it will tend to increase progressively. A con-
tinually larger number of missing respondents, calleddrop-
outs, can indicate that something is wrong, so that the study
should either be reorganized or abandoned. In surveys, col-
lection of information about friends and relatives of the par-
ticipants at the beginning of the study can be helpful in trac-
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ing those who disappear. However, in other cases, study of
the dropping-out process may be important in its own right,
as when it involves drug side effects. Then, you should not
discourage it but allow it to proceed ‘naturally’.

1.4 Study designs

Optimization of study designs has (wrongly) primarily been
concerned with obtaining maximum sampling precision for
the least cost. It generally ignores questions of bias arising
from questionnaires, investigator training, and so on, only
taking into account those connected with missing those mem-
bers of the population of interest not in the sample. In choos-
ing a design, you must make choices as to using resources to
maximize response rates, improve instruments, and so on, as
well as increasing sampling precision.

1.4.1 Population and sample
Any group of individuals that you wish to study will be called
theeligible population. You must clearly define it in such a
way that you know what individuals belong to it or, at least,
so that you know if any given individual belongs to it. It
may often be desirable to define the population in such a way
that it will make the study comparable with previous existing
studies, whether in the same or other countries.

Often the eligible population is a subset of some larger
source population. In practical situations, the latter will con-
tain four subgroups:

1. the eligible;
2. the adequately assessed ineligible;
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3. the assessed but unclassifiable because of incomplete in-
formation; and

4. the unassessed, due to lack of resources, unavailability,
and so on.

Thus, for example, special difficulties will occur if the pop-
ulation contains ‘floating’ elements such as the homeless or
nomads. In certain cases, for reasons of expense, you may
have to exclude them. This may sometimes be justified by
their differing fundamentally from the rest of the population.
If they are important, a separately constructed study may be
necessary.

Once you have defined, and enumerated, your population
of interest, your problems do not end. Certain members may
not be accessible, perhaps because you cannot locate them
or because they are incapable of or unwilling to participate
in the study.

To have practical value, the results of a study will gener-
ally need to be applicable to subjects other than those in the
eligible population, for example to those who will enter that
eligible population in future years. Thus, you will aim to ap-
ply the results to sometarget population. In contrast to the
other two populations, this one is usually not fixed.

In most cases, the population will be so large that you
cannot possibly observe all of the individuals in it, whether
because of time constraints, expense, or other reasons. Then,
a sampleis any subgroup of the population that you choose
to observe. Thus, you will have a five-level hierarchy from
the source population to the sample:

1. source population;
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2. target population;
3. eligible population;
4. accessible population;
5. sample.

Your selection criteria for inclusion in the sample will deter-
mine the external validity of the results of a study completely,
in so far as they are actually fulfilled, and the internal validity
to a large extent.

Once you have clearly defined the population, you will
have to make certain fundamental choices as to the appropri-
atedesignof the study. Several basic principles are common
to all designs. Two of the most important are the following:

1. Randomize wherever possible to maintain objectivity.
2. Calculate the minimum necessary sample size so as not to

waste resources.

Let us look at these in turn.

Randomization
As we shall see, randomization is used in selecting a sample
from a population (Section 2.1.2) and, when some interven-
tion is involved, in assigning subjects to groups receiving the
different treatments (Section 3.1.3).

The term ‘randomness’ is an everyday common-sense no-
tion that does not generally agree with what statisticians mean
by the term. It is often associated with the idea of haphazard-
ness. This latter term rarely if ever corresponds to the truly
random in the sense defined below but often simply means
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that an event has no obvious explanation. In statistical ran-
domness, the probabilities of the various possible events un-
der consideration are (in principle) exactly known, whereas
they are not in the everyday usage.

A very long completely random sequence of digits has the
following characteristics:

� Each digit occurs equally frequently.
� Adjacent digits and sets of digits are independent of each

other, so that you cannot predict the following digits from
previous ones.

� Reasonably long sequences show regularity, such as about
100 ones in a series of 1000 random decimal digits.

Randomness is thus a property of the whole sequence, or
more exactly of the process that generated it. You cannot
judge a shorter subsequence drawn from it in isolation as to
its randomness without knowing its source.

Traditionally, tables ofrandom numberswere used. Now,
you will usually generate such numbers by statistical soft-
ware on a computer. As we shall see, these are used in vari-
ous aspects of the design of a study.

Sample size
Sample size will largely determine the precision of your re-
sults. Always calculate it before beginning a study. The tech-
nical details will be given in the following chapters; see, par-
ticularly, Sections 2.6 and 3.3.4.

� If it is impossible for you to finance a sufficiently large
sample, so that the precision will be too low to draw useful
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conclusions, then you should probably abandon the idea
of making such a study.

� If your planned sample size is too large for the precision
required, you will unnecessarily waste resources.

In the ideal case, you should specify the precision and then
calculate the corresponding sample size, but this is often not
possible and you must use the reverse process, of calculating
the precision for a feasible sample size.

However, sample size is not the only important determi-
nant of cost to take into account. Maximization of response
rates and improvements in instruments and investigators are
also both important and costly. It is usually difficult to weigh
the relative benefits of each.

Unfortunately, sample size, and the resulting precision,
are easily measured so that effort is often concentrated on
it, at the expense of biases from non-response and inaccurate
answers. Ignoring the latter in your calculations can lead you
to greatly overestimate accuracy and precision.

1.4.2 Types of designs
A number of different basic organizations of a study are pos-
sible.

Prospective designs
In a prospective design, you sample individuals from a pop-
ulation and then follow them over a certain period of time,
recording new events. In principle, the idea is to start with
groups having different values of some important explana-
tory variables, that is, different sources of exposure, and to
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follow them to see if different distributions of the response,
the outcome, result.

We can distinguish three cases:

1. In anexperimental trial, such as theclinical trial often
used in medical studies, you will randomly allocate the
subjects to one of a number of different treatments before
the following observations.

2. In afollow-up study, you will follow distinct groups with
different exposures, calledprognosticor risk factors, to
determine if they finally give a different response.

3. In apanel design, sometimes misleadingly called a cohort
design, you simply observe all variables repeatedly as they
occur over time.

In acohort design, people of given ages are followed (strictly
speaking, a cohort consists of all of the age group). This may
be either prospective or historical.

Follow-up and panel studies are important for their ease
of ensuring representativity, at least at the beginning, before
drop-outs occur. Panel studies also cover the time dimension
in a population. You may make observations more or less
continuously, for example, using diary cards, or at intervals
of time, such as once a year. However, such studies will only
provide you with information about evolution as is, without
any intervention, whether voluntary or external.

Experimental trials have the big advantage of allowing a
direct causal interpretation because you have applied an in-
tervention, but the major limitation of being impossible in
most human situations. Even when possible, ethical consid-
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erations mean that you can usually only enroll unrepresenta-
tive volunteers.

Most trials look for a difference between two or more in-
terventions or treatments. A particularly difficult type of trial
to conduct is theequivalence trial, where you wish to de-
termine if a new treatment is equivalent to the existing one.
Does a new medication or teaching strategy provide as good
results as that currently in use? If your study is too small, it
will be incapable of detecting a difference so that you may
draw the wrong conclusions from too little information.

Cross-sectional designs
In a cross-sectional design, you simply record all variables
on observed sampled individuals at one given fixed point in
time. You can use them to study the state of a given popu-
lation, for example, the prevalence of some condition. They
are the easiest type of design to ensure a representative sam-
ple, by randomization, but have the major handicap of lack-
ing a time dimension.

Do not confuse a series of cross-sectional studies using the
same questionnaire with a panel study. In the former, differ-
ent people are involved each time, whereas, in the latter, the
same are used.

One special type of cross-sectional design is sometimes
used. Aggregate measurements of some characteristics are
compared across population groups, usually geographically
defined, in anecological design. Thus, you might want to re-
late the success rate in schools to the class size without taking
into account individual student and teacher characteristics.
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Retrospective designs
In a retrospective design, you choose subjects according to
their response values, their outcomes, and then obtain the
values of the explanatory variables, the exposures. Thus, in
contrast to all of the previous designs, here the explanatory
variables are subject to variability, whereas the responses
may be fixed and known. Many cross-sectional studies are,
in fact, retrospective, because many questions apply to past
history.

The major advantage is the speed with which you can ob-
tain results, whereas the major problem is distortion of in-
formation as you try to go further back into the past. For
example, you generally cannot use such a design to assess
prevalence: a currently representative sample is not repre-
sentative in previous points in time because of differential
mortality, and so on.

In certain circumstances, this may be the only design pos-
sible. In epidemiology, it is often only after the victims have
appeared that the origins of an epidemic can be studied!

A case–controldesign is a special type of design, usually
retrospective, where a number of cases having a given char-
acteristic are available. You then match these with similar
control subjects who do not have the characteristic in an at-
tempt to distinguish influential, hopefully causal, factors that
occurred in the past. This design is often used when one of
the response events is uncommon, as for a rare disease, be-
cause a prospective study would require an enormous sample
to obtain even a few individuals with the event. In such a sit-
uation, this design is highly efficient in terms of the number
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of subjects and the time required. But such studies are more
difficult to design properly, especially because of the choice
of control group, than are standard prospective studies.

1.4.3 Causality
When you observe the individuals in a sample survey at a
given point in time, one kind of information that you should
obtain concerns what you might observe if you chose another
sample from the same population. However, to do this, you
must assume that no change is taking place in the population
between the two sets of observations. This is static informa-
tion. Even if you observe the same sample over several time
points, the information you obtain only refers to the evolu-
tion at those time points. You may extrapolate into the future,
but this will only yield valid results if all of the conditions of
change remain fixed, as previously observed.

In contrast, operationally,causality, in a statistical con-
text, implies that changing one (explanatory) variable will
produce changes in thedistribution of another (response)
variable. This differs fundamentally from the inferences you
can make from surveys where you must assume that the pop-
ulation remains the same or continues to evolve in the same
way. You cannot empirically study causality simply by tak-
ing static samples from a population, even by following them
over time. Notice that, with this definition, an explanatory
variable such as sex could not be a cause.

Causality, as so conceived, is a group or collective, not
an individual, effect: two interventions cannot generally be
compared on the same individuals (certainly not simultane-
ously), but only on two different groups (for an exception,
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see Section 3.3.1). You then study differences in the distri-
butions of groups of responses.

The cause of some effect is often not unique. Both better
manuals and superior teaching can improve student perfor-
mance; several different drugs may cure the same illness.

Causality also implies a time sequence: an effect cannot
occur before its cause. Theory should specify some time in-
terval within which the effect will occur or last for appro-
priate measurement to be possible. However, in many cases,
this ordering may not be obvious. For example, many dis-
eases have a considerable latency period before the symp-
toms appear. It may not be possible to eliminate events oc-
curring during that period as potential causes because the
time of the true onset of the disease is not known. Even if
the effect of some cause is theoretically instantaneous, test-
ing the relationship will require a temporal precedence of
intervention before effect.

In pure science, one searches for the causes of a given
effect. In strictly applied work, one asks if a given cause
(treatment) will produce the desired outcome. However, the
latter is usually the required method for empirical study even
in pure research.

Thus, instead of taking a sample of individuals from the
population and observing the values of the variables that they
have, as in a survey, suppose that you can select the indi-
viduals and then control them by giving them values of the
variable(s) that you think are causes. This type of planned
intervention is called anexperimental trial. As we have seen
above, the assignment of such values is usually done ran-
domly, for the same reasons as in choosing a sample from a
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population, especially to eliminate biases.
To perform an experiment, you must have:

� at least an approximate theory predicting the size, or di-
rection, of effect of an intervention;

� a suitable group of subjects prepared to give consent to the
intervention;

� means of (unrealistically) isolating the phenomenon stud-
ied from external sources of influence;

� stable responses whose only reason for changing over time
is the treatment variable;

� measuring instruments whose resolution (precision) is fine
compared to the size of the predicted effect.

In studies involving human beings, causality is thus very dif-
ficult to ascertain empirically, which is not to belittle its ex-
treme importance. Think of the relationship between smok-
ing and lung cancer. The debate lasted for many years, al-
though sampling from existing populations showed a strong
association whereby proportionally more smokers had lung
cancer. But an experiment could not be performed in which
some people were randomly chosen and told to smoke and
others not, after which cancer incidence would be observed
in the following years.

In such cases, where an intervention is not possible, the
best plan is to attempt to discover as many different con-
sequences as possible of the causal hypothesis under study.
Thus, for example, with smoking and lung cancer, we could
look at the death rate for:

� people smoking different amounts in the same time;
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� those smoking the same amount but in different times;
� ex-smokers and current smokers of the same amount;
� ex-smokers smoking different amounts;
� ex-smokers smoking the same amount but stopping at dif-

ferent times in the past;

(see Cochran, 1965).
Take particular care when drawing conclusions from an

ecological design. Such studies may provide clues to rela-
tionships among individuals but can suffer from the ecologi-
cal fallacy. Suppose that you make a study in a set of groups
or clusters, say geographical regions, and that you have avail-
able global measures of some response and a corresponding
source of exposure for each cluster. Although the two mea-
sures vary together, this provides no direct evidence of any
links between the response and the exposure at the individual
level, one of the main reasons being that unavailable con-
founding factors could explain the relationship. Individual
success at school may not be linked to class size even al-
though the overall school success rate is; larger classes may
be found in more deprived neighbourhoods, with individual
success depending on social class.

Both in a static survey and in an experiment, you may
find a relationship of dependence between two variables. The
statistical procedure to describe the relationship may be the
same in both cases. But your conclusions about the mean-
ing of the relationship must depend on the way in which you
collected the information. No mathematical manipulation of
the data afterwards can change this. You can only directly
study causality empirically if you can manipulate the appro-
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priate explanatory variables. You can only draw causal con-
clusions from a survey, without experimentation, by making
empirically unverifiable assumptions.

1.4.4 Choosing a design
Many of the points already discussed in this chapter can be
summarized by considering issues surrounding the choice of
a study design.

The first question that you must decide in selecting a de-
sign is whether an intervention will be involved or not. Ex-
perimental trials have the enormous advantage of allowing
causality to be empirically studied without untestable hy-
potheses. However, they often may require a very long study
duration between intervention and effect. When a trial is eth-
ically and logistically possible, it is usually preferable. How-
ever, most studies on human beings are not experimental.

It cannot be emphasized enough that not all kinds of de-
signs will allow you to draw the same types of conclusions,
in particular those about the causal effect of one variable on
another. Only an experimental trial can answer such ques-
tions clearly.

Observational studies have the significant advantage of
generally providing no added risk to the people involved.
Among such studies, adescriptivesurvey is designed to esti-
mate some simple characteristics of a population, whereas an
analytical survey is to investigate associations among such
characteristics.

Retrospective and prospective studies are bothlongitudi-
nal designs. They can provide information about processes
over time. However, in a prospective study, current practice
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may change in unforeseen ways over time, making the find-
ings irrelevant.

With a prospective study, the sample can usually be clearly
defined and chosen to be representative of the population of
interest. This is often much more difficult for a retrospective
study. However, the prospective study can be more subject to
missing data, especially drop-outs. Retrospective studies are
generally completed much more quickly and cost less, but
are subject to increasing inaccuracy as you go back in time
(unless suitable written records are available).

An ecological design is particularly important when the
characteristics of interest are relatively homogeneous in each
area and measurement errors on individuals are relatively
large. Then, contrasts among regions, for example, among
cultures, may provide the evidence you require. Thus, for
example, in descriptive epidemiology, ecological evidence,
by comparison among countries, has indicated links between
diet and cancer.

1.5 Summary

Random variability in observations makes statistical proce-
dures necessary. Statistics can help you in all stages from
setting up a study to analysing and reporting it. If you expect
to call upon a statistician for help in the analysis, involve her
or him from the beginning of the design stage.

One of the most important distinctions is between making
passive observations of subjects and an intervention. Only
the latter will allow you to draw causal conclusions without
making empirically unverifiable assumptions, but, in most
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situations, it is impossible to perform with human subjects
for ethical or other reasons.

Do not begin any study without preparing a detailed proto-
col outlining all steps of the procedures to be followed. The
two main types of observations that you will make are the
outcomes to be explained and the corresponding sources of
explanation. You must take into consideration many factors
that will control their accuracy and precision. You can most
easily manipulate sample size, but others, such as instrument
biases and missing data, will generally be much more impor-
tant.

In choosing the design of the study, definition of the pop-
ulation of interest is a first important step, followed by ran-
domization where possible for all relevant aspects, especially
in choice of sample and assigning intervention treatments.
Designs may be retrospective, cross-sectional, or prospec-
tive, each with their particular advantages and disadvantages.

You must seriously consider all of these aspects of a study
before beginning the actual data collection. When you have
made the appropriate choices, you should state them clearly
in your protocol, a document that will help you to justify the
objectivity of your work when you make the final report.
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Sample surveys

2.1 Sampling

In observational studies, one of the first choices to make is
whether to study the whole population or only a sample from
it.

2.1.1 Samples versus censuses
In extreme cases, where you require information on all indi-
vidual units, you must make a completecensusof the popu-
lation. Generally, the cost in effort and expense required to
collect information is less, per unit, for a census than for a
sample. However, if the size of the sample needed to give
the required precision represents only a small fraction of the
total population, the total effort and expense required to col-
lect information by sampling methods will be much less than
that for a census.

A sample generally has a number of advantages over a
census:

� A full census may be impractical because of the cost, time,
and effort involved.
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� You can much more easily ensure the completeness and
accuracy of the results if you only collect information from
a small proportion of the population. Generally, forms are
more completely and more accurately filled in. Further-
more, you can make more detailed checks of the quality.

� You can obtain more detailed information about each unit
in a sample, even with a smaller total volume of data.

� You can generally obtain results much more quickly by
means of sampling than by a complete census. This is
especially true at the stages of collection and recording.

� Sampling using interviewers is necessary in a population
where many people are illiterate and could not fill out a
census form.

The amount of information that you will obtain from a sam-
ple depends on its absolute size, not on its size as a propor-
tion of the population, at least when the proportion is small.

Your final choice between a sample survey and a census
will usually depend on which gives you the highest degree
of precision and accuracy for the least cost. The latter will
depend on a number of factors, including:

� the amount of information required per individual;
� the number of individuals to be covered;
� the way in which individuals are distributed in the region

studied and their accessibility;
� the size of the region studied and the quality of the trans-

portation and communication network;
� the type of instruments used;
� the qualifications and training of the investigators using

the instruments.
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You must carefully weigh all of these factors.

2.1.2 Random sampling
One can imagine choosing a sample from a population in a
wide variety of ways:

� a readily accessible group;
� haphazard choice, most often used in experimental situ-

ations, where it is vaguely and implicitly assumed that
items selected are typical;

� expert choice or judgement sampling of some representa-
tive members;

� volunteers, where specific changes of behaviour must be
accepted, again most often in experimental contexts;

� quota sampling, used in opinion polls and market surveys,
whereby the interviewers themselves build up a sample
roughly proportional to the population on a few demo-
graphic variables.

All of these procedures have at least two major disadvan-
tages:

1. they are always biased in unknown ways with respect to
the population;

2. they do not allow any statistical calculation of precision
of the estimates.

You will not be able reliably to generalize the results of a
study based on any of these choices of sample to any known
population.
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Easily accessible groups are often unique. Experts rarely
agree. Volunteers, by definition, are exceptional. Interview-
ers tend to select subjects who are easy to find, who are likely
to be cooperative, or who they think may benefit from the
study. In all cases, the bias is constant with sample size,
never decreasing as more individuals are observed.

Usually, you will wish the sample to be ‘representative’ of
the population; you want the individuals to be exchangeable,
as far as possible, for all of their specific characteristics that
are not of interest. You can only accomplish this by choos-
ing a random sample: every member of the population, in-
dependently, has a known, non-zero probability of being se-
lected for the sample. Thus, usually, you will require that the
observations selected from the population beindependent:
observing one tells you nothing about which others may be
selected. In contrast, with haphazard selection you do not
know the probabilities of selection.

With random selection, you have the best chance of a rea-
sonable and unbiased balance of the unknown characteris-
tics, although this cannot be guaranteed.

2.1.3 Observational and sampling units
Theobservational unitis the entity about which you are di-
rectly collecting information. This does not mean that you
must obtain all information from that unit. If you are study-
ing children, you may require relevant information about their
family, the school, the village, and so on. Often, the only way
that you can obtain it accurately is directly from each such
group.

The unit of observation may not be the same as thesam-
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pling unit, which is the entity chosen at random from the
population. Thus, the sampling unit might be the family,
whereas the observational unit might be the eldest child or
even all children in the family. Sampling units may not be of
the same size, but may contain differing numbers of obser-
vational units. Several different levels of sampling units may
be necessary in the same study, such as school, classroom,
and child.

Generally, for a givensample sizeof observational units,
the smaller the sampling unit employed, the more precise
and representative the results will be. This is because ob-
servational units within a sampling unit tend to be similar,
providing less information than independently chosen units.
This requirement often conflicts with costs because larger
sampling units are generally easier to observe.

If you are interested in the inter-relationships among mem-
bers of a group, then collect information on such groups as a
whole, or at least on pairs of units within such groups. Sim-
ilarly, if you are interested in inter-relations among the be-
haviours of the same individuals at different time points, de-
sign the study so as to provide information over an adequate
time period.

Thus, your choice of a sampling procedure will depend
not only on the relative precision of the competing tech-
niques but also on practical considerations. The most suit-
able method will depend on the type of information already
available about the population. For example, you should not
oblige the investigators to travel excessively and you should
subject them to proper supervision and control.
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2.1.4 Sampling frame
A sampling frameis a list of all sampling units in the popu-
lation. This is necessary in order for you to be able to make
a random selection. If no such frame already exists, its con-
struction may constitute a sizeable part of the work of the
survey.

Notice that it is not necessarily required that a list of all
observational units be available: the population of sampling
units and the population of observational units may not be
identical. When they are not, a random sample of sampling
units does not yield a random sample of the observational
units.

A sampling frame may be defective in a number of ways:

� The information about the units may be inaccurate. Some
units may not even exist at all.

� The information may be incomplete if certain units in the
population are missing. These may be random individuals
or whole categories of the population. The latter is much
more serious.

� There may be duplication whereby certain units are in-
cluded more than once.

� The sampling frame may be out of date, in that it was
accurate, complete, and without duplications at the time
of construction, but the population has changed.

You will generally be able to discover inaccuracies, and to
correct them, as the study progresses, as, in many cases,
you will find the duplications. On the other hand, you will
not usually find thecoverage errors, due to incompleteness;
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these will often lead to some categories of the population
being under-represented. Thus, the former is measurable
whereas the latter is not.

Sources of frames
You can obtain information to construct a list of sampling
units in various ways.

� Population census: A complete census will tend to be out
of date, especially because it can only be carried out in-
frequently and the results take a considerable time to be
released.

� Administrative lists: Various administrative activities re-
quire lists of segments of the population. They will gen-
erally only be accurate, complete, and up to date if the ad-
ministration is very efficient. Often, they are maintained
by local offices so that their accuracy may vary throughout
the country.

� Lists of establishments: schools or hospitals (for cluster
sampling).

� Lists of households or dwellings: Such lists, for example
for taxes or elections, have more permanence than lists of
individuals.

� Town plans and maps: Considerable detail is required for
these to be useful. Otherwise, you may need to include all
dwellings in a block or other small region. Take care be-
cause equal-sized areas will not be equally densely popu-
lated. In rural regions, you may need to use natural bound-
aries, with unequal areas, because you cannot easily locate
rectangles marked on a map on the ground.
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� Lists of villages: If available maps are insufficient for ru-
ral areas, you may use villages as the sampling unit. Take
special care if all individuals are not affiliated with vil-
lages.

Note that lists of individuals are not suitable if the sampling
unit is a larger entity such as the household.

2.2 Organization

A number of the ways in which a particular society is orga-
nized can play important roles in the success of a survey:

1. common language(s) so that communication is possible;
2. common assumptions and understandings;
3. freedom for interviewers to contact sampled people;
4. lack of fear of strangers;
5. trust that answers will be held confidential;
6. belief that surveys are useful and informative.

Each can be a factor in non-response.

2.2.1 Types of surveys
We may distinguish three different types of studies:

1. collection of relatively simple facts covering the whole
population of a country and capable of giving separate re-
sults for small administrative regions, usually done by a
census;

2. surveys of the whole population of the country involving
more detailed information, but not providing details for
small regions;
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3. local surveys covering a small region to obtain detailed
information by field investigators.

The first type of study presents relatively simple sampling
problems but may be administratively complex. The third
type is usually simple both in sampling and administration.
The second type is the most difficult, usually benefiting from
a relatively complex sampling design.

2.2.2 Administration
Timing of the study will be influenced by:

� seasonal factors;
� availability of an appropriate sampling frame;
� holidays;
� deadlines for the results, and so on.

However, the principal requirement will be that you conduct
it at a time representative of that to which you will apply the
results. Once you establish the timing, you must set up a
schedule for the various stages.

Costs must be estimated. These may include:

� expert consultation fees;
� sample selection;
� printing questionnaires;
� travel and subsistence expenses;
� data entry, verification, and analysis, including computers

and software;
� preparing the report;
� general overheads, including salaries.
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Reasonable estimates are necessary to ensure that the study
is feasible.

The amount of administrative work will depend on:

� the scale of the study;
� the sample design;
� the area covered.

In the field, the main task will be to supervise the invest-
igators, whereas centrally it will be to direct the data record-
ing and analysis. Different people will often be responsible
for each. If the area covered is large, you may require re-
gional centres for the first task. Use existing administrative
and office organizations where possible.

2.2.3 Ethical questions
A basic principle for any study should be that those involved
should be part of a population that is in a position to benefit
from the results of the study.

You must use ethical means to obtain any list of people to
be used as the sampling frame. Many countries have data
protection acts that limit access to lists of names and ad-
dresses. You may need to recontact for permission any peo-
ple who have supplied information without being explicitly
told that it would be used for research. This can incur sub-
stantial non-response even before data collection begins.

Any collection of information from individuals involves
problems of confidentiality. Such private information is pro-
tected to differing degrees in different countries. Generally,
you should safeguard the confidentiality of respondents at all
costs. Longitudinal studies are particularly challenging; you
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will be collecting such a volume of information on each per-
son that it may be easy to identify specific individuals.

Take special care that individuals cannot be identified if
you are to release data banks for research purposes outside
the organization collecting the data. You may have to remove
certain information, such as geographical details. You may
want to release ‘restricted use’ files to researchers who swear
to abide by specific procedures to safeguard the security of
the data under penalty of law.

A further ethical issue involves the amount of information
about the goals of the study that you supply to the respon-
dents. Hiding the true purposes of a study from the respon-
dents may seem necessary in order to obtain honest answers
in some circumstances, but raises difficult ethical questions
that you must carefully weigh.

In many cases, you may have to call upon an ethics com-
mittee to make a decision about the various procedures used
in your study.

2.2.4 Pilot studies
When you know little about the population or are using new
and untested instruments, a small preliminary study will gen-
erally be necessary. Apretestis a piecemeal check of parts
of the instrument, whereas apilot studyis a small test version
of the full study.

A pilot study may aim to:

� check the adequacy of the sampling frame;
� develop the field procedure by

– testing the adequacy of the questionnaires;



2.2 Organization 53

– training the investigators;
– checking the efficiency of the briefing and instruc-

tions for the investigators;
– verifying communication between the field and the

office;
� obtain information on the various components of variabil-

ity to which the population is subject;
� determine the suitable size of sampling unit;
� estimate the rate of non-response, whether refusals or non-

contacts;
� provide estimates of the costs, such as interview and travel

times.

Where possible, try to use random sampling for the pilot
study, although this is rarely done in practice. Instead, some
typical sampling units, such as nearby villages, are generally
selected. Take care that the members of any pilot study are
not included in the final sample to avoid any biases arising
from repeated interviewing.

Where possible, conduct the testing in two stages:

1. a trial of the questionnaire by professional investigators
who are thoroughly familiar with it and with the study as
a whole;

2. a subsequent trial using the revised questionnaire with in-
vestigators of the type who will actually be used in the
study.

You may want to try open questions in the pretest, or pilot
study, in order to determine the range of possible answers.
From this, you can then construct closed questions (which
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does not mean that the final instrument should only contain
closed questions). In certain cases, you may find it necessary
to try several forms of the same question to check if different
answers are received.

2.3 Measuring instruments

If you lack research or administrative experience in the sub-
jects to be covered, it is fatally easy to omit some vital items
when designing the instruments.

Where possible, it is generally preferable to use instru-
ments that have already previously been used in other stud-
ies. This has several advantages:

� substantial time can be gained;
� the instruments have already been tested in a similar con-

text;
� results of the study will be more comparable with other

studies.

As already mentioned, thoroughly try out all instruments, in
the conditions of the new study, by means of a small pretest
of the survey procedures.

2.3.1 Types of instruments
The purpose of an interview is to find out what is on some-
one’s mind, to discover things that cannot be observed di-
rectly. You may use a large number of different instruments
to collect information about the problem of interest. These
include:

� direct observation schedules;
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� tests of personal knowledge;
� questionnaires consisting of closed and/or open questions;
� structured interviews;
� recording undirected discourse (life histories);
� participant observation.

Notice that certain of these instruments, especially later in
the list, often do not directly produce information appropri-
ate for subsequent statistical analysis.

The more detailed the information you obtain from each
observational unit, the smaller, and often the more unrep-
resentative, the sample will usually need to be. The more
structured the information you obtain, the more suitable it
will be for statistical analysis, as opposed to more subjective
means of summarization.

You can apply many of these instruments in a variety of
ways.

� Direct administration:
– observation;
– direct interviews;
– telephone interviews.

� Indirect methods:
– deposit the questionnaire to be collected later;
– diary cards collected periodically;
– postal surveys.

Among other things, your choice will depend on;

� the budget available;
� the number of observational units;
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� the ability of people to reply with and without guidance;
� the interest generated by the study.

Postal surveys can be relatively cheap and can have high
return rates. However, they do have a number of disadvan-
tages over interviewing:

� The questions must be simple and clear, not requiring a
lot of explanation.

� All answers are final, with no opportunity to attempt to
overcome hesitation or ambiguity.

� Spontaneous replies, opinions uninfluenced by discussion
with others, and tests of personal knowledge are impossi-
ble.

� Questions cannot be ordered such that early ones are an-
swered without knowledge of later ones.

� There is no guarantee that the person randomly sampled
actually answers the questionnaire.

� Supplementary observational data cannot be obtained.

Pretesting of the questionnaire is especially important with
postal surveys because the investigator will not be present
to gain cooperation or to clear up ambiguities. The cover-
ing letter and the sponsorship can be crucial in convincing
people to reply.

Generally, where possible, direct observation is preferable
to questions, and questions on facts and on past actions are
preferable to questions on generalities and on hypothetical
future actions. Physical measurements are more objective,
but qualitative observations are often more capable of sum-
marizing the important features of a complex situation. By
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proper standardization and calibration among investigators,
you can make qualitative observations reasonably objective.

Multicultural studies
Special problems arise if the instrument is to be used in sev-
eral cultures. You can distinguish two cases:

1. The instrument may be adapted for use in more than one
language and cultural context, without any attempt to com-
pare the results cross-culturally.

2. The results of the study must be compared or aggregated
across cultures.

In the first case, you should only use the original instrument
as a guide in producing a culturally appropriate procedure
for the new setting. The second case is much more complex,
raising conceptual, technical, and ethical problems. In all
cultures:

� both the items in the instrument and the responses to them
must be conceptually and functionally equivalent;

� the same phenomenon must be measured – the underlying
concept must exist and be pertinent;

� the questions must be relevant and not too personal or of-
fensive;

� issues of local importance must not be missed.

In most existing instruments, the majority of items are highly
culture-specific.

You should have your instrument translated into the target
language, preferably in several alternative versions, and then
back-translated to the original language for checking. Have
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a panel of monolingual lay people comment on the transla-
tion in the new language; multilingual people are never rep-
resentative, especially if one of their languages is English.
Psychological and emotional states are the most difficult to
translate between cultures. When working in several cul-
tures, you must use much more elaborate field pretesting for
reliability and validity in each language.

2.3.2 Questionnaires
You may design a questionnaire for completion in three prin-
cipal ways:

1. by the investigator,
(a) from direct observation or
(b) with the aid of questions put to the respondents;

2. by the respondent with little or no assistance from the in-
vestigator.

You may require all of them in the same survey for different
types of information. In all cases, clearly specify the means
of distinguishing a non-response from a non-applicable ques-
tion.

The simplest instruments are those where the investigators
themselves record observations. Generally, there should be
a separate instruction booklet, so that the form itself remains
simple.

When the investigators are to fill out the questionnaire
containing questions posed to respondents, you may train
them to use a given fixed wording or ask them to elicit infor-
mation in any way that will provide an answer to the ques-
tions. Thus, you must instruct them as to whether they must
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put the questions in the exact form given or can ask them in
a more general way. The former procedure is especially im-
portant in matters of opinion where the wording may affect
the answer.

In such a context, explanatory notes may either be on the
questionnaire or in a separate booklet. The latter results in
a more compact questionnaire and is more suitable for pro-
fessional investigators. The former is more likely to ensure
that the investigators remain aware of the purpose of each
question.

When the respondents will fill out the questionnaire them-
selves, the only role of the investigators may be to explain
the purposes of the study and to persuade the respondents
to cooperate. Be especially attentive to the wording of the
questions and the explanatory notes. The latter will gener-
ally be on the questionnaire beside each question. However,
detailed and lengthy explanations should be avoided.

The principal types of questions are:

� measurements, in clearly defined units;
� multiple-choice, or closed, questions, where all possible

answers are fixed in advance,one and only one of which
must necessarily be chosen;

� semi-open questions, with the main possibilities listed, but
alternative replies can also be supplied;

� open questions, where any reply is possible.

Never record measurements in predefined categories, except
in the rare cases of delicate subjects such as income, where
an accurate answer is otherwise unlikely.
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The advantage of multiple-choice questions is that they
are usually easy to understand and to reply to and that they
are also easy to record and to analyse. However, they carry
the danger of telegraphing the answer and provide no op-
portunity for nuance. The most common error is to allow
respondents to choose several possibilities; this makes statis-
tical analysis difficult or impossible.

Semi-open questions may suggest to the respondent that
the list provided contains more common or more acceptable
answers than the one not included that might be closer to the
truth.

Open questions, if well formulated, can provide informa-
tion on almost any subject. They are the only possibility
when you cannot predict most or all answers to a question.
However, they can be more difficult to construct to obtain
objective answers and much more difficult to record and to
analyse.

Thus, pay careful attention to the detailed wording of all
questions, even if these are only intended as a guide to the
investigator, and to the order in which they are presented.
In formulating questions, a number of basic principles are
important: they should each

� be precise, simple and logical, with no technical terms un-
familiar to the population being addressed;

� be short, concerning only one idea;
� be unambiguous – for example, age can refer to the last or

to the nearest birthday;
� be self-explanatory, where possible;
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� not ask for too many details or about events too far in the
past;

� require some answer, so that it is possible to detect non-
response;

� clearly specify any units of measurement and the precision
required;

� provide enough different categories, without any overlap-
ping intervals;

� be answerable – asking for the cause of death of parents
must be conditional on their being dead and not require
excessive medical details;

� avoid hypothetical situations.

In summary, a good question will:

� be relevant to the respondent;
� be easily understood and unambiguous in meaning;
� not be influenced in any untoward way by the context in

which it is used;
� relate to the survey objectives;
� mean the same thing to the respondent, the investigator,

and the decision makers for whom you are performing the
study.

For every question, ask yourself if it is really necessary. A
shorter questionnaire reduces non-response and increases ac-
curacy of answers.

The order of the questions is important. The logical order
is not necessarily the best. The first questions should help to
place the respondent at ease. Simple demographic questions
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often serve this purpose well. Then, the more delicate sub-
jects can be treated near the middle. Generally group ques-
tions by subject areas so that the respondent is not required to
change train of thought too often. An exception will be du-
plicate or redundant questions that you use to double-check
each other and that must appear at separate moments in the
sequence.

In complex cases, you may need several questionnaires for
each sampling unit: child, household, village, school. Take
great care in identification so that you can link them all cor-
rectly together for analysis.

The questionnaire forms must be convenient to use and set
out so that the information can easily be translated to elec-
tronic media. Only collect raw data; the investigator should
make no intermediate calculations. For example, dates are
more reliable than time intervals. You should usually al-
low space for the investigator or respondent to make general
comments. Although you cannot easily treat such observa-
tions by an exact analysis, they can be of considerable value
in drawing your attention to relevant facts not covered by the
questionnaire.

In all cases, arrange the information to be recorded on the
questionnaire in such a way as to be easily transferred to a
computer. Plan and clearly specify the manner in which to
do this, including the systematic handling of non-responses,
at the same time as you develop the questionnaire. No in-
termediate calculations should be necessary at this transfer
stage.
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2.3.3 Field investigators
The main tasks of a field investigator are:

� locating the people sampled;
� obtaining agreement to be interviewed;
� asking the questions;
� recording the answers.

In many cases, only about one-third of an investigator’s time
is actually spent interviewing. The rest involves:

� studying materials;
� travelling and locating respondents;
� editing questionnaires;
� general administrative work.

You must allow for this in scheduling work-loads.
Field work is very arduous, involving considerable men-

tal strain. Interviews are often intense experiences involv-
ing complete attention and frequent thinking on one’s feet.
Hours of work are generally very irregular, because evening
visits are often necessary to contact working people and re-
duce non-response. Supervisors should be required to un-
dertake some field work themselves in order to be able to
appreciate the difficulties.

Payment by piece rates is generally unsatisfactory, be-
cause it leads to incomplete or hasty work and to irregulari-
ties such as replacing one respondent by another.

If you are recruiting new investigators, give all applicants
preliminary tests and arrange proper training courses. Re-
cruits should be honest, interested, accurate, adaptable, pleas-
ant, and able to follow complicated instructions. Carefully
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watch and supervise the early work of new investigators. If
possible, build up the team of investigators by selecting suit-
able ones at the pilot stage; this provides a means of testing
and training.

Investigators should have background knowledge of the
subject under study. Unspecialized teams of investigators are
only suitable for carrying out routine studies requiring rela-
tively simple questionnaires. When a high degree of techni-
cal knowledge is needed, use staff in existing organizations.

Note also that the reactions of the respondents may de-
pend on the origin of the investigators. For example, gov-
ernment officials may arouse suspicions that the information
collected could be used for purposes other than those stated.

2.3.4 Accuracy of recorded information
Once you have chosen a proper sample, the most common
sources of inaccuracies in the observations are variation in
the respondents’ reactions to the method of assessment and
variation in the investigators’ techniques. These measure-
ment errors may be calledobservation errors. Inadequate
responses may be missing, incomplete, irrelevant, or inaccu-
rate. In order to be able to check if these problems are evolv-
ing over time, record the sequence in which the respondents
are interviewed.

In addition to the principles listed above for questionnaire
construction, you should consider a number of further points
in judging if you will obtain accurate information from the
respondents:

� Are the respondents sufficiently informed, or able to recall
past events, to be capable of providing accurate answers?
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� Can they translate into an unambiguous and understand-
able answer what they believe to be the truth, and are they
willing to do this?

� If the answers require substantial work, will they be pre-
pared to do it?

� Do they have motives for concealing the truth (perhaps
simply trying to impress or please) and, if so, will they
refuse to answer or give incorrect information?

A number of remedial actions are possible:

� Anonymity of respondents is important, especially when
using incriminating or highly personal questions.

� If you are using skilled investigators, working on a rel-
atively small sample, they may be able to elicit accurate
information in many circumstances.

� In certain cases where you expect such problems to arise,
you can take substitute measures, such as approximating
revenue by the size of the dwelling.

In other cases, you may have to abandon the question.
Similar points apply to the role of the investigators:

� Are they sufficiently informed about the subject and mo-
tivated to do the work required?

� Are they in possession of standardized methods for elicit-
ing and recording qualitative information in an objective
manner?

� Are they trained to approach all respondents in the same
way, independently of the opinions they hold and the dis-
position they happen to be in?
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� Do they know how to avoid indicating to the respondent
in any way what they believe to be the appropriate answer,
instead listening with the required patience?

� Are they meticulous in recording the answers supplied or
in verifying that the respondent has properly filled out a
questionnaire?

Fieldwork will be most accurate if the investigators are well
trained, capable, conscientious, and keen. Personal charac-
teristics of the investigators can influence the answers given.
Make field checks where possible. Carry these out on a ran-
dom subsample of units, in a way such that the investigators
know beforehand that they will be checked but not which
parts of their work will be examined.

Poorly constructed instruments, badly administrated, can
also lead to biases and inaccuracies, some already mentioned.

� Misinterpretation may occur because the question is not
specific and the respondent does not want to show igno-
rance.

� Technical terms and academic jargon can easily lead to
incomprehension.

� For multiple choices, an insufficient number of alterna-
tives may force the respondent to choose an inappropriate
answer.

� Providing the possibility of ‘don’t know’ may allow an
easy way out for lazy respondents but is necessary for peo-
ple who genuinely do not have experience of a subject.

� Probing by the interviewer is usually acceptable for fac-
tual questions but not for opinions or tests of knowledge.
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� Leading questions will cause some subjects to provide
what they believe to be the correct or desired answer.

� People tend to choose an item near the beginning or end
of a long list of possibilities.

� In a series of questions involving ratings, the first will of-
ten give more extreme results because the respondent has
not yet established a standard.

� More recent information is usually more accurately re-
ported. However, this may not always be the case. When
asking for the number of events in the previous week, the
answers may be, consciously or unconsciously, telescoped
so that more are reported than actually happened. In such
cases, reports of events in a longer period, such as a year,
may be more accurate.

For binary variables,sensitivityis the proportion of those
who actually have the characteristic who are classified as
having it. Specificityis the proportion of those not having it
correctly classified. Obviously, it is usually difficult to check
either of these because you do not generally know the correct
answer.

Make a preliminary examination of the returned forms as
quickly as possible so that you can have defective work cor-
rected while it is still possible.

2.4 Sampling error

If instruments could be constructed such that they could yield
accurately recorded data, that is, no observation errors, ob-
served differences in response among groups in a sample
could arise from four sources:
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1. the (causal?) effect of belonging to the group;
2. other relevant factors not taken into account, called con-

founding (Section 1.3.4);
3. bias in choosing the sample;
4. random chance in choosing the sample.

Your study has internal validity if you can ascribe differences
to the first source. Now, let us consider the last two.

Two types ofsampling errorcan arise:

1. biasesin selection of the sampled units;
2. chance differences between members of the population in-

cluded in the sample and those not included, calledran-
dom sampling error.

Bias forms a constant component of the error that does not
decrease, in a large population, as the number in the sample
increases. On the other hand, random sampling variation,
what statisticians have called random error, decreases on av-
erage as the sample size increases.

Bias is an important factor in determining theaccuracyof
the results, along with observation error. On the other hand,
random sampling error determines theprecisionof any quan-
tities estimated (Section 1.3.5). There is an inverse relation-
ship between the latter two: precision increases as random
sampling error diminishes.

2.4.1 Causes of sampling bias
Random selection is not haphazard selection. You can only
obtain a true random sample by adhering to some strict ran-
dom process (Section 1.4.1). Sticking pins on a map or meet-
ing people on a street corner is not random. If at all possible,
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perform the random selection centrally, and do not leave it to
the arbitrariness of the individual field investigators.

Faulty selection of the sample can give rise to bias in a
number of ways. The main causes are:

� deliberate selection of a ‘representative’ sample (Section
2.1.2);

� a selection procedure depending on some characteristic
that is associated with the properties of the units that are
of interest – many haphazard selection processes have this
defect, as when, in a shopping survey, customers arriving
at shops are interviewed;

� conscious or unconscious deviations from a proper ran-
dom selection process, for example when a field investiga-
tor replaces a sampling unit for some reason, such as sub-
stitution of a convenient member of the population when
difficulties are encountered in obtaining information from
the individual randomly selected;

� failure to cover the whole chosen sample, leading to miss-
ing data.

Of course, bias will also arise from any systematic measure-
ment errors as discussed above, for example if the respon-
dents misunderstand a question.

If possibilities of bias exist, you will not be able to draw
any fully objective conclusions from a sample. The only uni-
versally acceptable way for you to avoid bias in the selection
process is to draw the sample at random and to avoid miss-
ingness wherever possible.
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2.4.2 Missing values
Missing values can arise from coverage errors or from non-
response errors. The former are systematic for any sample
chosen, whereas the latter depend on many factors related to
the actual conduct of a given study. Only non-response can
generally be detected. Let us consider it in more detail.

There are many reasons for non-response.

� A respondent may be unsuitable for interview, because of
an error in the sampling frame.

� There may be difficulty in contacting respondents, which
can depend on various factors:

– change of residence;
– the nature of the respondent, where, for example,

housewives are more often at home than those who
go out to work;

– the time of call, with employed people being away
during the day or in vacation time;

– the interview situation, for example, if there is ad-
vance notice of the visit.

� Refusals may depend on:
– the disposition of the respondent, this varying from

cheerful cooperation to hostility;
– the techniques of the investigator;
– the number, nature, and sequence of the questions;
– sponsorship of the survey.

� Respondents may lack interest or concern – people with
children in school will be more prepared to answer ques-
tionnaires about education and ill people more inclined to
answer about health.
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� They may have some incapacity or inability, such as
– illness in the family;
– language difficulties.

If non-response is not minimal, review both the question-
naire and the type of investigator to find out whether it is
wise to continue. If you have not detected these problems
during the pilot stage, the required changes will often render
the earlier and later results incompatible.

You can fairly easily remedy two problems:

1. failure to make contact with the selected respondents –
persistent calling back may be the only solution, although
contacts with neighbours may provide useful information
to trace the missing individuals;

2. too long and complex a questionnaire – shorten and sim-
plify it (at the pilot stage!).

Making an appointment for an interview can have the per-
verse effect of allowing the respondent to be out at the time
of call.

In a well-designed questionnaire, you will include a sec-
tion to record information on non-respondents. For personal
refusals, you should have a considerable amount of approx-
imate information noted. Once the survey is finished, you
should check the missing answers to see if they are repre-
sentative at least for known groups, such as sex, age, and so
on.

Missing answers to single questions can occur for a num-
ber of reasons:

1. the interviewer forgets to ask the question;
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2. the respondent cannot provide an answer;
3. the respondent refuses to answer;
4. the answer is not recorded.

The rate of missing answers is often linked to interviewer
experience.

Measures to reduce the non-contact and overall refusal
rates, such as calling back, are often more costly than those
to reduce individual missing items. The latter usually in-
volve improving interviewer training and questionnaire de-
sign. You must weigh the cost of reducing non-response bias
against increased sampling error due to the resulting smaller
sample size for fixed total cost.

2.4.3 Random sampling error
Sampling error arises from non-observation: the whole eli-
gible population, the sampling frame, is not included in the
sample. Thus, the simplest way for you to reduce random
sampling error, and increase precision, is to increase the sam-
ple size. Other things being equal, this error is approximately
inversely proportional to the square root of the sample size.
However, the precision attained also depends on the variabil-
ity in the population. Techniques discussed below, that re-
strict selection as compared to full randomization without
introducing bias, can increase precision. The main one is
stratification.

If you only require overall results for the whole popula-
tion, you can attain a given degree of precision with a far
smaller sample than will be the case if you require the de-
tailed results for different parts of the populations (for exam-
ple, different regions, towns, and so on).
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2.5 Sample designs

For any random sampling procedure to be possible, you must
subdivide the population under study into sampling units. As
we have seen, these may be the observational units, or some
aggregation of them. They may be natural (families), admin-
istrative (villages), or artificial (square regions of equal area
or population density).

2.5.1 Simple random samples
A simple random sample from the population of observa-
tional units is the simplest type of rigorous method of obtain-
ing a sample. It is also the basis of most other procedures.
In this method, you divide the population into observational
units, a numbered list of which is available, and select the
required number of units at random from this entire popula-
tion.

Usually, you will generate random numbers by statistical
software on a computer. The numbers you obtain indicate
which units on the list you are to include in the sample. In
simple random sampling, each member has the same proba-
bility of being selected. Although the simplest method, this
is not usually the most efficient or the most cost-effective.

2.5.2 Stratification
If you have available additional information about all of the
individuals in the population, you can obtain increased repre-
sentativity and precision bystratificationof the sample. This
involves randomly choosing fixed proportions in each cate-
gory of some known explanatory variable such as regions,
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age groups, or sex. In this way, the sample and population
proportions are guaranteed to be equal, or to have a known
relationship, at least for this variable.

Divide the population into blocks, or strata, of units, such
that the members of each stratum are as similar as possible
on some important criteria. These strata may or may not all
contain the same number of units. You then sample each
stratum at random.

The main purpose of stratification is to increase precision
of the overall population estimates and of the correspond-
ing estimates for each stratum. If there are large differences
in response among the units in the various strata, the accu-
racy and precision of the overall estimates will be increased.
This is because the strata will be represented in their correct
(or at least known) proportions, whereas, in simple random
sampling, these proportions are subject to random sampling
error. In a stratified sample, only variation within strata pro-
duces random sampling error.

For stratification to be possible, you must be able to clas-
sify each sampling unit distinctly into one stratum. In other
words, you must have complete information about any stra-
tum variable available for all sampling units before begin-
ning the study. Typically, the formation of only a few strata
will yield the most gains.

In summary, stratification is only possible if the informa-
tion about each sampling unit necessary to create the strata
is available in the sampling frame. Stratification yields three
main advantages over simple random sampling:

1. If units within a stratum are more similar with respect to
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the response than those between strata, then the precision
of any overall population estimate will be greater than that
from a simple random sample of the same size.

2. The corresponding estimates within strata should be more
accurate, which will be important if these subgroups are
of special interest.

3. Stratification will make it possible to sample various sub-
groups in different ways, which may reduce costs.

Be careful about simplistic assumptions concerning the re-
lationship between sample size and costs. This relationship
may not be linear. For example, cost per unit may be a de-
creasing function of sample size in some strata.

Uniform and variable sampling fractions
If you select the same proportion of the members in the pop-
ulation from each stratum, the strata will all be represented
in the correct proportions in the complete sample. How-
ever, different proportions may be more useful if you al-
low the more important or more variable strata to be over-
represented. In this case, you may need to use appropriate
weightings in subsequent calculations.

Note, however, that a known non-zero probability ofse-
lectiondoes not imply a similar probability ofmeasurement.
Different groups of people may have different rates of non-
response introducing differential biases.

Often, the largest strata are most variable, but also have
the lowest sampling costs. If there is a fixed cost in each
stratum, as well as a variable cost proportional to sample
size, you will minimize total cost by choosing strata samples
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proportional to the product of strata size and strata variabil-
ity (measured by strata standard deviations) divided by the
square root of cost per unit.

In the opposite case, you may oversample small strata if it
is important to have precise information about them.

2.5.3 Clustered or multi-stage samples
In simple random and stratified samples, the sampling unit
and the observational unit are identical. These designs are
only possible when you have a complete sampling frame of
the observational units available. In many countries of the
world, they are not feasible for this reason, or because of high
travel costs. Then, you can only apply random sampling to
groups orclustersof observational units; these become the
sampling units.

Thus, you may sometimes save time and expense, at the
cost of reduced precision, by clustering, that is, by choos-
ing random groups of individuals found together. Then, you
may study all of members of each chosen group or select
some randomly. For example, you may choose several peo-
ple from each of several villages or entire classrooms of stu-
dents, where you take the village or classroom at random.
When the clusters are geographical regions so that the sam-
pling frame is a map, this is called area sampling.

Individuals in such a cluster will generally be more similar
or homogeneous than if you had chosen each of them inde-
pendently randomly from throughout the whole population.
This means that you are actually collecting less information
for a given number of observations, resulting in lower pre-
cision per observation unit. However, in certain cases, you
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may increase overall precision, because the smaller cost per
unit sampled allows you to take a larger overall sample for
the same total cost.

With cluster sampling, the variance, as compared to a sim-
ple random sample of the same size, will be increased by a
factor of approximately1 + (m� 1)�, wherem is the clus-
ter size and� is the correlation among responses in a cluster.
Thus, in contrast to stratification, where strata should be as
homogeneous as possible to increase precision, here clusters
should be small and heterogeneous (have small correlation).

In multi-stage sampling, you consider the population to be
made up of a number of first-stage sampling units. You then
take those chosen to consist of second-stage sampling units,
and so on. (Simple clustering is two-stage.) At each stage,
you sample the units by a suitable method, usually simple
random sampling or stratified sampling; this may not be the
same at all stages. The important point is that you choose all
sampling units at all stages by a proper random process.

Choice of the first-stage units is especially important. You
should take into account several criteria:

� The total number of primary units in the population should
be relatively large.

� The units should have clear boundaries. Well-known ad-
ministrative units are often preferable.

� The units should be fairly uniform in size.
� The units should remain stable over time (at least from

when the information was obtained until the survey is car-
ried out). Comparability to past and future data is even
better.
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Multi-stage sampling has several important advantages:

� It introduces flexibility that is absent from the simpler
methods. You can use existing natural divisions of the
population as sampling units.

� You will only need to carry out subdivision into second-
stage units on those first-stage units actually selected.

However, multi-stage sampling generally yields less precise
results than a sample containing the same number of final-
stage observational units selected by some suitable one-stage
process.

Construction of an appropriate pilot study is usually most
difficult for multi-stage sampling. You will require a much
more extensive pilot study than for other designs if you want
to obtain any reliable preliminary estimate of variability.

If you are interested in the clusters themselves, as well as
their members, many of the optimizing criteria discussed in
this section are no longer relevant.

2.5.4 Systematic samples
Much practical sampling is not fully random in nature. A
frequent method of selecting a sample, when a list of all units
is available, is to take everykth entry on the list. The first
entry should be determined by selecting a random number
between 1 andk.

Such a systematic sample would be a simple random sam-
ple if the list were arranged completely at random. You can
only estimate precision if you make this assumption. How-
ever, no list is completely random. If you are forced to use
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this method, take great care to verify that no periodic fea-
tures or monotonic trend appear in the list, especially any
that might be associated with the sampling interval,k.

This method does have several advantages:

� It often involves less labour and technical expertise than a
true random sample. Thus, it may be especially useful if
selection must be made in the field by relatively untrained
investigators.

� In some situations, you need not know the complete sam-
pling frame in advance. You can select units sequentially
in time.

2.5.5 Case–control designs
When the response characteristic that you wish to study is
extremely rare in a population, you would require an impos-
sibly large sample to obtain even a few cases randomly. If
cases are available, but in a non-random way, you may need
to use a radically different type of study. You identify sub-
jects with the condition of interest, as well as a group of con-
trols without the condition, matched as closely as possible
to the cases. You then compare them as to their previous
exposure to any risk factors of interest.

The main advantages of such a case–control study are
practicality, simplicity, speed, and low cost. However, the
disadvantages are many:

� non-random selection of the cases;
� difficulty in locating appropriate controls, as well as their

non-random selection;
� inaccuracy of retrospective memory;
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� differential recall between cases and controls;
� detection bias, whereby one of the exposure factors stud-

ied facilitates observing the response condition.

You must study cases carefully for conclusions to be gener-
alizable. Estimation of exposure from a control group that
includes individuals either predisposed to such exposure or
not can be altered by changes in this mix. Identification of
eligible cases and controls must not depend on their exposure
status.

You may locate cases as all those diagnosed

� in a community;
� in a random sample from the population;
� in all relevant institutions (schools, hospitals) in the com-

munity;
� in one or more such institutions.

The controls should be as similar as possible to the cases, ex-
cept that they do not have the condition being investigated.
Without the possibility of randomization, this can be diffi-
cult or impossible. Often, the best chance is by individually
matchingone or more controls with each case on some vari-
ables that could confound the comparison. These should be
variables that are strongly related both to the condition and to
the exposure factors. But then you cannot use such variables
as possible risk factors for the condition.

Problems of memory with retrospective observations have
already been discussed. However, here there is a further
problem. Subjects with the condition may have thought about
the reasons for it and have noticed exposure factors. These
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may also be present for the controls, who, however, have not
noticed them. Thus, exposure factors may be under-reported
in the controls. Subjects exposed to certain factors may more
often seek professional advice that, in turn, allows their con-
dition to be more often detected than the unexposed, creating
additional bias.

You must interpret any results from a case–control study
with extreme caution.

2.5.6 Repeated sampling
Most samples are carried out on a single occasion to deter-
mine the characteristics of the population at a given point in
time. If the population is subject to change, such a study
cannot provide you with information on the nature or rate of
change. One possibility is to work retrospectively, and ask
questions about the past. This generally involves problems
of memory, whereby information further back in time is less
trustworthy.

In other cases, you must make provision to redo the study
periodically, in what are calledwaves. This may take differ-
ent forms. You may:

� develop a completely new survey for each point in time
(these independent random samples may overlap);

� repeat the survey in the same form but with new sampling
units drawn at intervals in time (again, the random sam-
ples may overlap);

� repeat the survey with the same sample at each time point,
a panel or cohort study;

� replace a part of the sample at each occasion;
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� draw a subsample from the original sample, and only resur-
vey these units.

Your choice will generally depend on the exact type of change
to be studied, as well as on questions of cost and practicabil-
ity.

Panel and cohort studies will provide you with the most
information about how change is occurring. You may design
one so that you choose fixed proportions of respondents in
categories of some key explanatory variable, therisk groups.
For example, to study lung cancer, you could select groups
of smokers and non-smokers.

These studies will not require your respondents to remem-
ber events over long periods, thus increasing accuracy. How-
ever, they carry several dangers:

1. Respondents must betrackedfrom interview to interview,
with the major risk of drop-outs; the people lost will not
be representative.

2. A sample that you randomly selected to be representative
of some population when the study began will usually no
longer be representative at successive waves, if only be-
cause everyone has grown older and the younger cohorts
are missing.

3. Repeated restudy of the same units may induce resistance
to providing information, but it may also lead to more ac-
curate answers, both creating spurious trends in the re-
sults.

4. It may result in modification of the units involved, as com-
pared to the rest of the population, so that they become
less representative.
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5. If initial risk groups were sampled, the high-risk group
may be followed more closely, leading to surveillance bias,
or subjects may change habits, and hence risk groups, for
example, by stopping smoking.

Recruiting people willing to be included in a study requir-
ing continued participation over a period of time will often
not be easy. One of the most difficult and costly aspects of
longitudinal studies is keeping track of the respondents. To
facilitate this, it is usually a good idea to collect as much in-
formation as possible about the respondents’ families, close
relatives, and friends. If you lose contact with respondents,
you can contact these people to try to locate them.

The advantages of cluster designs, such as using hospi-
tals or schools as sampling units, may be lost in longitudinal
studies because the observational units may change clusters
between waves. If you administer questionnaires in groups,
this will also create an increasing problem as respondents
become split up over time.

The sample for a longitudinal study is representative at the
moment it is chosen. However, it may not remain so as time
goes by. For example, a sample of students chosen in the
sixth year of school will, two years later, no longer be rep-
resentative of students in the eighth year of school because
of failures and perhaps drop-outs. One possible approach
is to usefresheningby sampling extra students at each new
time point in an attempt to bring the sample back to repre-
sentativity. In such cases, it may also be useful to obtain ret-
rospective background information on these supplementary
respondents.
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In general, diary cards are better than repeated interviews
for registering new events or changes in circumstances. On
the other hand, interviews allow in-depth questioning about
chronic conditions.

2.6 Sample size

Sample size refers to the number of observational, not sam-
pling, units. A sample size can only be calculated for some
specific aspect of the population to be estimated, usually re-
lated to some important response variable. The size of sam-
ple that you will require in order to attain a given precision
for such an estimate depends on the variability of the popu-
lation and on the extent to which it is possible to reduce the
different components of this variability in the random sam-
pling error, primarily by stratification.

The standard error, although usually a crude measure of
the precision of an estimate obtained from a sample, is accu-
rate enough to allow you to make sample size calculations,
these being, in any case, themselves rather rough. We have
seen that the standard error is a function of the sample size,
decreasing as that size increases (Section 1.3.5).

Suppose that, in simple random sampling, you want to
be relatively confident that the population value of interest
is within a small region around an estimate of it calculated
from the sample. Then, you can use the standard error to
calculate the approximate size of sample required to ensure
this. Fortunately, in the common cases, the standard error is
easy to calculate.

Let us represent the population value of interest by�, and
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its estimate calculated from the sample by�̂. If the standard
error is represented by�=

p
n, wheren is the sample size,

you wish to have sufficient precision from the sample to be
confident that� lies in a small interval around̂�. Apply-
ing the criteria mentioned in Section 1.3.5, you can use the
approximate interval,̂�� 2�=

p
n.

2.6.1 Binary responses
For a binary response variable, in the simplest case, you will
be interested in the proportion of the population having a
given characteristic, that is, in theprobabilityof that charac-
teristic appearing. Let us call this�, so that� = � is the
value of interest. Then, you can obtain the estimated stan-
dard error from

�̂ =
q
�̂(1� �̂)

Thus, for the desired precision interval of two standard er-
rors, say�̂� Æ=2, to be small enough, you will require that

n =
16�̂(1� �̂)

Æ2

In order to calculate the sample size using this formula, you
need to have some idea of what value the population propor-
tion has — this is a major reason why sample size calculation
is always approximate.

Suppose that you think that the proportion is about 80%
and you want an interval ofÆ = 4%. Then, the sample size
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calculation is

n =
16� 0:8 � (1� 0:8)

0:042
= 1600

The closer� is to one-half, the larger the required sample
size will be.

2.6.2 Counts
When the response variable is a count, a similar procedure is
followed. Here, you will be interested in the average count;
we can call this� so that� = �. The estimated standard
error is now obtained from

�̂ =
p
�̂

Thus, for the desired interval to be small enough, you require
that

n =
16�̂

Æ2

Here, you will need to have some idea of the value of the
population mean.

Suppose that you think that the mean number of children
in a family is about 3 and you want an interval of 0.2. Then,
the sample size calculation is

n =
16� 3

0:22
= 1200

Notice that, if you believe the mean to be 2, the sample size
is smaller:

n =
16 � 2

0:22
= 800
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2.6.3 Measurements
When the response variable is a quantitative measurement,
the mean will again be of interest, so that� = �. The method
is slightly different because the standard error is not automat-
ically given. However, the sample size formula is similar:

n =
16�2

Æ2

where�2 is the variance of the measurements. Here, you do
not need to have an idea of the estimate of the mean but only
of the variability. Often, this is much more difficult to obtain.

For simplicity in these examples, I have assumed that you
are only interested in estimating a single value for the whole
population. For the way to modify this to estimate differ-
ences among categories of an explanatory variable, see Sec-
tion 3.3.4.

2.6.4 Complex sample designs
If you are interested in more than one response, make the
sample size calculation for each and use the largest (if feasi-
ble).

If you are concerned with the precision of the estimate
within each stratum of a stratified random sample, you can
make the above calculations separately for each group, such
as the regions of a country. In certain cases, the variability
may be less within such strata than in the population as a
whole, but the number in the sample will also be smaller.
Generally, stratification will reduce the variability of global
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estimates for the whole population, especially if there are
marked differences among the strata.

When you use clustering in a design, sample size calcula-
tion is much more difficult because it depends on how sim-
ilar are the units within each cluster. A measure of this is
usually impossible to estimate before the study begins. The
precision that you will obtain in multi-stage samples is often
closer to that for a sample size calculated from the sampling
units than from the observational units. In an extreme exam-
ple, suppose that the clusters are families and the observa-
tional units are identical twins. The amount of information
available is better indicated by the number of families than
by the number of children because of the similarity among
twins.

Essentially, a sample size calculation requires you to as-
sume, or to make a good guess at, what you are setting out to
discover. Furthermore, you must make vast simplifications,
for example ignoring all of the numerous explanatory vari-
ables that you are collecting except one crucial variable.

Sample size determination requires you to perform a del-
icate balancing of costs and precision. There is rarely any
point in collecting data on a sample that is so large that it
provides much greater precision than that actually needed.
But you may have to abandon any hope of high precision if
the cost of a sufficiently large sample is too great.
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2.7 Summary

Samples are often to be preferred to censuses because they
can provide more accurate information at less cost. Random
sampling is necessary in order to avoid unknown biases and
to yield a measure of precision of the estimates.

The observational unit, about which you will be collect-
ing information, may differ from the sampling unit, chosen
at random in the population. The sampling units in the pop-
ulation are defined by the sampling frame.

A pilot study is almost always necessary to test the field
procedures and to obtain an idea of the variability in the pop-
ulation under study.

You may use many different types of instruments in sam-
ple surveys. Those most useful for subsequent statistical
analysis include observational schedules, tests of knowledge,
and questionnaires. You should take great care in their con-
struction so as to obtain accurate information. You may ad-
minister them directly, say by interviews, or indirectly, for
example through the post. Carefully choose the field investi-
gators and adequately train them for the specific procedures
that you will use.

Sampling error arises from biases and from the random
variability in the sample. The biases may result from in-
adequacies in the sampling procedure or from missing re-
sponses, as well as from problems with the instruments or
investigators.

The main sampling designs are simple random samples,
stratification by randomly choosing fixed proportions of in-
dividuals within subgroups of the population, and clustering
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by randomly choosing whole groups of individuals. On the
other hand, case–control designs are sometimes useful when
you are studying some rare event. For changes over time,
you will need to do repeated sampling, as in a panel study.

Sample size calculations will provide you with a rough
idea of how many individuals you must observe in order to
obtain a desired degree of precision or to detect some effect
of interest.



3
Experimental trials

3.1 Basic principles

The main feature that distinguishes an experimental trial from
a sample survey is that you perform an intervention ortreat-
mentinstead of simply observing things as they are. Funda-
mental advantages of the experimental method are that:

� causality can be empirically studied;
� a complex causal problem can be attacked by proceeding

in a series of simple steps.

Thus, you can break a problem up into simple questions to be
explored by separate trials with simple causal assumptions.
However, as we have seen, the major drawback, especially
with human subjects, is that they cannot be chosen randomly,
making generalization to a larger population difficult.

In a trial, the principal sources of exposure will be un-
der your control; you decide to whom each is applied. The
smallest entity that might have received a different (sequence
of) intervention(s), when they were allocated in the study, is
called theexperimental unit. As with sampling units in a sur-
vey, there may occasionally be several levels of experimental



92 Experimental trials

units, such as classrooms and children.
In certain scientific investigations, you will not precisely

know thecausal factorsso that a goal of the study is to deter-
mine which are relevant. In other situations, you may pos-
sibly apply several distinct types of intervention in various
combinations. In either case, it may often be desirable for
you to include several causal factors simultaneously in the
same trial.

You will often begin your investigation of any relatively
complicated phenomenon with a general survey of the effect
of a variety of changes on the system. Next, you may test
more closely your ideas about how parts of the system really
work. Most often, you will need a series of trials, with your
initial ideas being corrected at each step.

Even trials with direct practical political or commercial
aims may allow you to include special treatments yielding
fundamental knowledge about the process under study. A
good check on reliability of a trial is agreement with pre-
viously established results in the field. Often, it is worth
including some specific ‘standardized’ treatment solely for
this objective.

The basic requirements for you to perform an acceptable
experimental trial include:

� as simple, but efficient, a design as possible;
� freedom from systematic error or bias;
� sufficiently precise and exact measurement of the response;
� a measure of precision of the results;
� wide validity of the results.
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Various procedures are necessary to ensure these goals. Three
of the important steps are choice of:

1. treatments;
2. experimental units;
3. types of measurements observed.

Generally, the choice of treatments, except perhaps for the
form of control, is a technical question specific to the subject
under study. Once you have settled these three questions,
you can elaborate the overall design of the trial.

3.1.1 Controls and placebo
Experimental trials can only allow you to identify the effect
of an intervention by comparison with something else. Ob-
servation of past conditions, before intervention, called his-
torical controls, is not sufficient because there can be exter-
nal evolution over time or unrecorded differences among the
subjects involved. Thus, you must include a simultaneous
control treatment for a trial to be worthwhile. In this way,
you construct experimentally the causal factor under study.

In many trials, you must randomly assign subjects either
to treatment or to control for valid comparisons to be feasi-
ble. Inform the participants that they will be (blindly) ran-
domized either to the control or to the new or active treat-
ment. That is, where possible, they will not know which
they receive. The protocol should be available for inspection
by all participants.

Cross-over trials (Section 3.3.1) are somewhat different in
that all subjects will receive the treatment(s) and control, but
in different orders.
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A placebocontrol is an inert treatment that appears, in
all external aspects, to be identical to the active treatment.
It reduces the chance of subjects guessing which treatment
they are receiving. Thus, for example, in testing drugs, the
placebo would be an inert substance, identical in taste, ap-
pearance, smell, density, and so on, to the active drug.

Using a placebo will allow you to distinguish the true
side effects of the intervention. If your control involves no
intervention at all, this can create problems of interpreta-
tion. Those receiving the intervention may be reacting sim-
ply because they are getting special attention (the placebo or
Hawthorne effect), and not because of the specific nature of
the treatment. Thus, it is preferable if members of all groups
believe that they are receiving equivalent special treatment.

The role of a placebo is not to deceive the subjects into
thinking that they are receiving the active treatment, but to
leave them in doubt as to which treatment they are receiving.
Thus, ethically, a placebo is only possible when randomiza-
tion of treatments is used.

If several active treatments, dissimilar to each other, are
involved in a trial, several corresponding placebos may also
be necessary. This can pose the problem of overburdening
the subject. Sometimes, it may also be useful to include two
control groups, with and without placebo.

In many situations, it is ethically impossible not to supply
an active treatment. Then, the new treatment is generally
compared to the existing or standard treatment as the control,
instead of to a placebo.

Always remember that a treatment effect, between two ex-
perimental groups (of volunteers), that is perfectly genuine
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under trial conditions may be quite different when introduced
on a large scale in realistic conditions.

3.1.2 Choice of subjects
As for sample surveys, carefully plan what is to be the el-
igible population. Specify eligibility criteria in advance, in
the protocol. You must not determine them after selecting
subjects and assigning them to an experimental group.

The fact that an intervention is involved means that it is
generally impossible to choose a random sample of subjects
to participate in a trial. You cannot impose the intervention
upon them; they must voluntarily agree. Thus, subjects in
such a trial are never representative of a larger population.
Even if there are no refusals among those in the eligible pop-
ulation whom you ask, this does not make the subjects rep-
resentative of some larger population.

Eligibility criteria may render the chosen subjects even
more unrepresentative. In a medical study, if subjects are
required not to be taking any other medication, they will be
healthier than average. The more restrictive are the exclusion
criteria, the less generalizable will be the results. Extrapola-
tion is always a risky process.

At the same time, the subjects should not be unrepresen-
tative. Your primary scientific goal in an experimental trial
is to investigate what effect some intervention can have by
showing what effect it had in a particular case. In other
words, the test intervention should not be applied to subjects
who would not receive it under normal conditions after test-
ing is completed. (An exception might be the initial testing
of a drug for tolerability on healthy volunteers.)
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Often, your choice of investigators may conflict with your
choice of subjects. Centres of excellence, for example hos-
pitals or schools with highly trained research staff, will gen-
erally provide select and unrepresentative subjects.

Your next step will be to define what will be the experi-
mental units. Factors to take into account include:

� their size, for example, classroom or child;
� how representative they need be;
� how close to realistic are the conditions in which they will

be studied;
� whether responses on the same unit can be observed sev-

eral times, perhaps under different treatments.

In most trials, the size of the units will not be in question,
because it will be the individual subject.

3.1.3 Randomization of treatment
In a trial, you want to compare a set of two or more treat-
ments, including the control, with a group of subjects as-
signed to each. These groups should initially be as alike
as possible in all ways so that, in the subsequent analysis,
you will only need to compare them on the characteristics of
direct interest. Individuals need not be equivalent; you are
studying the group reaction.

The only objective way for you to ensure this similarity
is by randomization. If the choice of treatment is made by
the investigator, or by the subject, there is great freedom
for unconscious or intentional bias. Thus, even although
you generally cannot choose subjects at random from some



3.1 Basic principles 97

larger population, use randomization for the allocation of
treatments among the participating subjects.

The equivalence achieved by random assignment is prob-
abilistic. It is not inevitable that a correctly implemented ran-
domization procedure will result in similar groups, although
the larger the groups the more chance of their not differ-
ing much. A successfully implemented random assignment
procedure does not guarantee that the initial comparability
among groups will be maintained over the course of a trial.
The major risk is differential attrition related to treatments.
In many trials, this can be an important object of study in its
own right.

Thus, this randomization does not rule out all threats to
causal validity.

� Subjects in a control group may imitate those under a
treatment.

� If a control group is felt to be unjustly treated, compen-
satory measures may be available to it from elsewhere.

� A group that feels it is receiving less desirable treatment
may exert special effort in compensation or it may become
demoralized.

You may prevent some of these by blinding where this is
possible, as discussed below.

If certain combinations of treatment allocation, that might
arise randomly, are undesirable, these can be specified in ad-
vance and eliminated. For example, when subjects are admit-
ted to a trial sequentially, the first half of subjects might all
randomly be assigned to receive one treatment and the sec-
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ond half the other. Such possibilities are rare and generally
only occur in very small trials.

Subjects meeting the selection criteria are said toenterthe
trial. Any exclusion after randomization, for whatever rea-
son, even discovery that eligibility criteria have not actually
been met, may upset the randomization balance. Before en-
try, every subject must be regarded as suitable for any of the
treatments under study. If this is not true, equivalent groups
cannot be constructed and comparisons will be impossible.

Your treatment allocation system should be such that the
people entering subjects into the trial do not know in advance
what is the next treatment to be assigned. If they did know,
they might decide that the next treatment was inappropriate
for the subject and not enter that person into the trial. Thus,
randomization is important as a measure of concealment of
the order of assigning treatments, because any system in the
sequence might be detected.

If the same investigator cannot administer the treatments
to all subjects, design the study so that investigators are also
distributed so as to give all treatments in some random fash-
ion. In this way, you can avoid confounding investigator bias
with treatment.

In simple randomization, you generate a series of random
numbers by computer. If only two treatments are involved,
you can assign the treatment of each subject sequentially,
with odd digits in the series indicating one treatment and
even digits the other. With three treatments, 1, 2, and 3 might
indicate the first, 4, 5, and 6 the second, and 7, 8, and 9 the
third, zeros being ignored. You can easily adapt such a pro-
cedure to weighted randomization, with different proportions
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in the groups.
Start treatment as soon as possible after entry and random-

ization of each subject, to avoid any intervening changes in
the state of the subjects. If at all possible, the waiting time
should be equal in all groups to avoid differential losses. In
many studies, entry must be staggered in time, as subjects
become available.

If it is necessary to ensure that exactly the same number
of subjects is assigned to each group, you will require some-
what more complex schemes. You can also use stratification
and cluster methods, as in sample surveys (Sections 2.5.2
and 2.5.3). Here, the first are often calledblocksandclassifi-
cation factorsand the secondplots, both to be distinguished
from the causal factors of interest. As in multi-stage surveys,
there may be several levels of ‘plots’, and several sizes of ex-
perimental units, for example in asplit plotdesign.

Cluster randomization
For intervention studies involving, say, new disease preven-
tion procedures or educational methods, randomization of
clusters is often more appropriate than that of individuals.
This may be necessary for various reasons.

� The intervention may have to be at the group level, as in
community health services or an educational curriculum.

� If allocation is at the individual level, control subjects may
benefit from observing or communicating with the treat-
ment subjects.

� You can capture the mass effect of interaction among in-
dividuals in a more realistic setting within each cluster.



100 Experimental trials

� In a context where transmission is possible, such as an
infectious disease, you can study both susceptibility and
infectiousness within each cluster.

� In a large study, it may be infeasible to allocate treatment
and control to different individuals in the same group even
although it would be possible within a small group.

The clusters might be villages, schools, medical practices,
factories, and so on. In many situations, cluster random-
ization provides experimental information that is closer to
that which will prevail if the intervention is subsequently ex-
tended to the whole population.

As with cluster sampling, there is a trade-off between a
few large clusters and many small ones. The former are
cheaper but may also reduce contamination between treat-
ment and control. On the other hand, the latter allow you to
control variability among clusters so that the averaging effect
of randomization can work. If you must use large clusters,
you may randomly sample individuals for further follow-up
within each cluster. If clusters are geographical, you may
concentrate sampling near the centre to avoid contamination
from neighbouring clusters.

3.1.4 Blinding
Even unconsciously, observers’ judgements can be affected
by knowing which treatment each subject is receiving, or by
knowledge of previous measurements on that subject. In the
same way, a subject knowing that he or she is receiving active
treatment may react differently than if the same subject knew
he or she had been assigned to the control group.
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Blinding, ormasking, refers to the fact that the people in-
volved in a trial are not aware of the treatment a subject is
receiving. In a single-blind trial, the subjects are not aware,
whereas, in a double-blind trial, neither the investigators di-
rectly involved nor the subjects know. The latter is preferable
but is obviously impossible in many contexts. If you cannot
blind the investigators directly involved, then you may be
able to use external assessment of responses.

A double-blind trial has the enormous advantage that the
investigators cannot, even unconsciously, bias the results in
one group and can objectively evaluate progress in all groups.
Indeed, in many cases, it will be advantageous to use a triple-
blind trial, whereby the statistician conducting the analysis
is also not aware of which group corresponds to which treat-
ment.

For blinding to be feasible, a placebo treatment must be
available. As with the use of a placebo, the subjects should
be informed of the protocol; blinding is only ethical under
randomization of treatments.

3.1.5 Primary end-point
Carefully define the main response variable that will be ob-
served, as well as when this will occur, called theprimary
end-point. Describe in detail the way in which you will mea-
sure this and closely control it. However, this is usually a
technical question, specific to the subject matter being stud-
ied, and not a statistical question like the questionnaire con-
struction in sample surveys. Nevertheless, you should take
similar care about recording the results and ensuring that
they will be susceptible to statistical analysis. Thus, it will
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be useful if you review Section 2.3.
Generally, you must follow the effects of intervention over

a certain period of time. In other words, you will need to
monitor subjects to detect some change. Take into account:

� the resources available;
� the frequency of visits required for normal monitoring of

the process;
� the inconvenience to subjects of frequent evaluation;
� the number of measurements required to provide an ade-

quate comparison among treatments.

Often, you may want to focus on evaluation of responses at
the beginning and end of some fixed period.

When you are performing interventions, the observations
that you measure on subjects, in addition to the actual treat-
ment(s), generally can take five main forms:

1. thebaselineresponse before treatment begins;
2. supplementary baseline explanatory variables and, as well,

sometimes time-varying ones;
3. the principal response end-point of interest;
4. secondary responses, such as side effects;
5. monitoring, including compliance.

In many situations, you may find it useful to make prelim-
inary observations on the subjects before treatments begin,
called baseline response values. Several recordings may be
necessary to avoid random fluctuations. These will provide
indications of the variability among the subjects, and the reli-
ability of measurement, that may be useful in controlling and
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interpreting the results. Indeed, if you are measuring change
or improvement under treatment, recording the baseline re-
sponse is essential.

Especially if there is substantial variation among subjects,
it may prove useful to plan to collect concomitant observa-
tions on other variables besides the baseline response. The
main condition for these to be useful in the subsequent anal-
ysis is that they not be affected by the treatment. You can
easily ensure this by taking the measurements before treat-
ment begins, but this is not always possible. If you believe
that they influence the subject’s response to treatment, you
may use them as prognostic factors.

Take particular care with subject identification: there will
usually be several forms to be filled out at different points
in time that must later be linked together. Investigators must
have the appropriate forms available at the right time. Send
out requests for them to be returned promptly.

Note and recordall reactions of all groups equally. A
checklist of possible side effects and the reasons for non-
compliance may be useful, although this has the same dan-
gers as closed questions in surveys (Section 2.3.2).

If judgements or interpretations of the data recorded for
each subject are required, make them before disclosure of
which group had what treatment.

For many types of trials, it is important to conduct some
form of follow-up study to determine what are the long-term
effects of the intervention, perhaps years after the treatment
has ended.
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3.1.6 Missing values and non-compliance
Because your subjects are volunteers, the problem of refusals
found in sample surveys generally does not occur here. On
the other hand, missing values will occur for certain obser-
vations. Where applicable, pay special attention to provision
for treatment during holidays and weekends.

In addition, because of the lengthy time period often in-
volved, the number of drop-outs can be considerable. Some-
times this will be unavoidable, as with deaths, people mov-
ing away, and so on. However, in other cases, treatment may
be stopped or changed because of side effects, and so on.
(Intentional drop-out might be considered to be a form of re-
fusal.) If drop-outs are not linked with the intervention, they
create no fundamental problem (except loss of information)
for internal validity, although problems may arise for exter-
nal validity.

You can make several types of checks on differential attri-
tion:

� Is the rate of drop-out the same in all groups?
� Are the reasons for dropping out the same in all groups?
� Are the pre-randomization covariates still comparable for

those remaining in the groups?
� If baseline response measures are available, are they still

comparable for those remaining in the groups?

A problem that does not arise with surveys iscompli-
ance: do the subjects actually follow the treatment assigned
to them? This can be very difficult to judge, because, for ex-
ample, patients can discard pills instead of consuming them
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and teachers can go back to their old teaching methods. In
some cases, you can assess the probability of adherence to
the assigned treatment and use it as a screening criterion for
entry to a trial. Once the trial begins, use all realistic proce-
dures to ensure the maximum compliance possible. Record
measures of the extent of non-compliance. The need for
screening and compliance enforcement will usually make it
more difficult for you to generalize the results to applications
in more realistic situations.

If your goal is to study the effect of intervention in realis-
tic conditions, compliance may not be a problem because the
same thing could be expected to occur under normal condi-
tions for the population as a whole. Then, statistical analysis
is carried out onintention to treat, that is, on the treatment
assigned to a subject, not necessarily that actually followed.

Related to compliance is the wider issue as to whether
subjects are reacting in a reasonably normal way in the ex-
perimental conditions so that fairly general conclusions can
be drawn. You can take certain steps in an attempt to ensure
this:

� Check the reactions on pilot subjects before beginning the
study.

� Redesign the study to reduce suspicion, if necessary.
� Provide clear instructions.
� Emphasize personal anonymity.
� Minimize aspects that appear to test the subject.
� Use non-invasive instruments to obtain response measures.
� Separate the experimental manipulation and the response

measurements as far as possible.
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� Develop special instruments to detect if subjects are sim-
ply trying to please the investigator.

3.2 Ethical issues

Because you are imposing an intervention, ethical issues are
much more critical than in a sample survey. However, many
of the basic questions are the same; your should review Sec-
tions 1.1.3 and 2.2.3.

3.2.1 Ethics committees
For experimental trials, the conflict between present individ-
ual and future collective ethics may be particularly evident.
Each subject should receive the most appropriate treatment
now, but, in the future, all subjects may collectively bene-
fit from an intervention that has been shown to be superior.
Weighing the merits of the two for a given trial is often a
delicate task. Some judgement must be made as to whether
the impingement on the individual is such, as compared with
the possible benefit to society, that the trial should not take
place.

For most areas of study, when interventions using human
subjects are involved, you must obtain permission from an
ethics committee. Generally, you must submit a full protocol
describing the study, with ample justification that the objec-
tives are worthwhile, that the design is efficient, and that the
rights of the subjects will be protected.
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3.2.2 Informed consent
The main question at issue is whether it is ethical to withhold
a treatment that might perhaps give benefit. On the one hand,
the value of the intervention is not proven or there would be
no need for the trial. On the other, there must be some ba-
sis for considering the new treatment, or a trial would not be
undertaken. In no case should the control group be disadvan-
taged by participation as compared to their non-involvement
in the study.

The decision often depends on the gravity of the condition
being treated, it being impossible, for example, to withhold
treatment in a life-and-death situation (which treatment, the
old or the new?). But it may be unethical to introduce a new
treatment into general use, if it has been poorly or inade-
quately tested. All risks do not lie on one side; what is new
is not always best.

On the research side, ideally no investigator should par-
ticipate who believes that one treatment is clearly superior.
An investigator should not enter a subject in a trial, if he or
she believes a particular treatment to be preferable for that
person. In other words, you are conducting the trial because
no one knows which treatment is better.

Unrandomized trials are almost invariably unethical be-
cause they involve subjects with risks when the results of the
study will be unreliable. The same might be said of any trial
that does not use an optimally efficient design.

Questions that you must face include:

� Should you obtain the subjects’ informed consent?
� Is the new treatment safe and unlikely to bring harm?
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� In a trial with inert control, can you ethically withhold
treatment?

� Is it acceptable to use a placebo treatment?
� What type of subjects can you acceptably allocate ran-

domly between different treatments?
� Is it all right to use double-blinding?

(See Hill and Hill, 1991, pp. 212–214.) For most questions
except the first, there is rarely an unequivocal answer.

Inform potential subjects in detail about the conduct of
the trial, including the alternative treatments that will be in-
volved. You must guarantee confidentiality. Potential sub-
jects can decline to participate. If they agree to take part,
they generally will have to sign a form stating that they un-
derstand the trial, calledinformed consent. The question may
arise as to whether they actually do understand or not.Legal
requirements as to such consent vary greatly among coun-
tries.

If the experimental unit is a group, then you must gener-
ally obtain special permission from the leaders of that group,
such as school directors or community officials. Although
you should inform the members of the group, obtaining ac-
tive individual consent is not always possible. However, if
individuals are to be followed up and tested, you will require
their consent.

3.2.3 Interim analysis
One of the main reasons for monitoring a trial is the ethical
concern to reduce the chance of subjects receiving a treat-
ment known to be inferior. Thus, when subjects are to re-
ceive treatment over a long period of time or if their entry to
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the trial is staggered, interim assessment of treatment differ-
ences, where possible, is essential to make a trial ethically
acceptable. Once you can reach a conclusion, you will enter
no new subjects, and you may perhaps change those in the
trial to a more appropriate treatment.

Generally, you will check the primary end-point response,
usually one main treatment comparison. Specify in the pro-
tocol the formal ‘stopping rule’ for the trial, that is, the cri-
terion indicating sufficient superiority of a treatment so that
the trial can be stopped. For this to be possible:

� the time lag between subject entry and meaningful re-
sponse measurements must not be excessive, especially
in comparison to the total time during which individuals
will be entered;

� data entry must be kept up to date, withall forms quickly
returned, not just an unrepresentative set, such as the op-
timistic ones.

Interim analyses should be relatively simple, sufficient only
to determine if the trial is to continue or not.

You will generally have interim analyses performed peri-
odically and not continuously, with the frequency specified
in the protocol. They should be performed by people not di-
rectly involved in the investigation, and the decision on con-
tinuing made by the committee responsible for the trial. The
decision to stop a trial will never be purely statistical.

The results, if the trial is to continue, should remain confi-
dential so that subsequent recruitment and responses will not
be biased. They can influence both subjects and investiga-
tors.
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3.3 Designs

In most trials, only a limited increase in precision can be ob-
tained by modifying the instruments used. Trials under very
controlled conditions usually cease to be representative of
practical conditions. Precision will depend much more on
intrinsic human variability and experimental design, includ-
ing sample size.

Take care not to use too many different treatments because
the ability to detect treatment differences depends primar-
ily on the number of subjects per treatment, not on the total
number in the trial.

The two principal designs used in experimental trials with
human beings are the parallel and cross-over designs. The
scientific ideal would always be to administer all treatments
to all subjects, because different subjects may react in differ-
ent ways to the various treatments. However, this is rarely
possible for various practical and ethical reasons.

3.3.1 Cross-over designs
In certain special circumstances, it may be possible for you to
apply several treatments sequentially to each subject. If you
can apply these in different orders, you require across-over
design: you randomly assign each subject to receive some
given sequence of different treatments in successive periods.
Often, you can use some form ofLatin square designto bal-
ance the numbers in the different sequences: each treatment
appears once in each period and in each sequence.

Note that this is quite different from applying all treat-
ments to all subjects, but always in the same order. Then,
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treatment effects cannot be distinguished from a temporal
change.

Obviously, you can only apply such designs in situations
where:

� the condition under study is chronic, with no trend in time;
� the measured response is recurrent;
� the condition is not fundamentally modified by a treat-

ment.

These designs are really the only possibility when subjects
may differ in their responses to the various treatments, that
is, when there is the possibility of a subject–treatment inter-
action. They are more useful for one-shot treatments, than
long-term ones.

Cross-over designs have the major advantage that you can
compare the different treatments on the same subjects. This
generally means that the sample size can be smaller for the
same precision.

The major disadvantages are as follows:

� The effects of earlier treatments maycarry overto modify
responses under later treatments.

� Drop-out may occur between treatments so that no within-
subject comparison is possible.

� Systematic differences may appear between periods, per-
haps simply due to the learning effect of being treated in
the first period.

To counter carryover, either plan an adequatewash-out pe-
riod between the end of one treatment and the beginning of
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the next or allow a ‘burn-in’ period at the beginning of each
treatment, during which you do not measure (or, at least, do
not analyse) the response values. In certain contexts, the first
possibility will present ethical problems, if you have to with-
hold treatment completely during that period.

If period effects are present, variability among individuals
has been replaced by variability over time within individuals.

Many different types of specific cross-over designs exist.
These depend on the number of different treatments and peri-
ods, on whether each subject receives each treatment in turn,
and so on.

3.3.2 Matching
If a cross-over trial is not possible, it may still be possible for
you to find pairs of subjects with closely similar character-
istics and to allocate treatment and control randomly to the
two members of thematched pair. The major problem here
is to have a large enough pool of subjects from which you
can draw ones with the appropriate characteristics simulta-
neously. If matching is made too precise, it will be difficult
to obtain two suitable subjects at the same time.

One advantage of this design is that it may permit you to
detect what kinds of subjects are most susceptible to ben-
efit from each treatment. For example, for the majority of
subjects, response differences to treatment may be negligi-
ble but, for a minority, one treatment may be vital.

3.3.3 Parallel designs
In aparallel design, you randomize subjects to different treat-
ments; they then stay on them for the whole trial. Most such



3.3 Designs 113

trials involve a new treatment and either a control or stan-
dard treatment. Randomization to the treatments allows you
to make the assumption that the groups are comparable in all
relevant aspects. This is the standard and most common type
of trial.

Factorial designs
Treatments should differ qualitatively in single, specifically
identifiable, ways so that your interpretation of response dif-
ferences will be clear, with unique explanations. In other
words, more complex treatments should be split up into sev-
eral simple factors. Remember that an effect generally has
several causes. In addition, it may not act the same way in
all situations.

If you are to study several types of intervention, the fac-
tors, it is almost always preferable to use them simultane-
ously in afactorial designthat includes all possible combi-
nations. The different treatments within a factor are often
calledlevels. Examples of pairs of treatments would include
new textbooks and new teaching practices, or two comple-
mentary types of medication. Thus, in the simplest case,
for example, with two such treatments, each at two levels
(control and active), you would have four groups: (1) con-
trol only (perhaps two placebos); (2) first type of treatment
only, perhaps with a placebo; (3) second type of treatment
only, perhaps with a placebo; and (4) both types of treat-
ment. Factorial experiments may also include combinations
of treatment and classification factors.

Factorial designs have several advantages: you can

� obtain more information from a smaller number of sub-
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jects, that is, higher precision at lower cost;
� study theinteractionamong types of treatment with re-

spect to the response;
� perhaps extend the validity of your conclusions by the in-

clusion of a classification factor that increases the vari-
ability of the conditions of application;

� check on whether treatments might have different effects
under different conditions, a causal factor interacting with
a classification factor.

Two factors are said to interact, in the statistical sense, if the
effect of one factor on the response changes depending on
what value the other has. If there is no interaction, the differ-
ence in response between two levels of one factor is the same
no matter what level the other has. Thus, for the statistician,
the term ‘interaction’ does not have the usual common-sense
meaning.

These considerations for factorial designs do not imply
that you should plan the biggest and most complex trial pos-
sible.

� Take care, especially at the beginning of an investigation,
not to commit yourself to one big trial; small preliminary
trials may indicate the proper line of attack.

� For a real understanding of many problems, a series of
small trials is more appropriate than one large trial, each
one designed in the light of previous results.

� Large and complex trials are difficult to organize.

In most cases, you should consider no more than two or three
factors.
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Factor levels may not necessarily be qualitatively distinct,
especially in factorial designs. We may distinguish:

� fixed qualitative factors, each level being of intrinsic in-
terest;

� ranked categories, such as slight, moderate, and severe;
� quantitative factors, with levels fixed at certain arbitrary

levels, such as doses of a drug;
� factor levels that are assumed to be ‘representative’ of

some larger population of possible levels, although rarely
chosen at random.

With quantitative factors, you can study changes as are-
sponse curve(or surfaceif in several dimensions). Because
only a few levels are used, analysis will generally require you
to make the assumption of some smooth functional statistical
model connecting them together.

Sequential trials
When it is imperative not to continue an inferior treatment
(once this becomes known), you may use a (group)sequen-
tial trial. You continue the study only until it is clear that
one treatment is superior to another. To do this, you must
analyse the data after the results of each subject or group of
subjects become available. For this to be possible, subjects
must enter the trial sequentially and results must be available
relatively quickly after administering the intervention.

Such trials have the additional advantage that, on aver-
age, you will require a substantially smaller number of sub-
jects than in a fixed sample size trial, particularly if there is
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a big difference in response between the treatments. How-
ever, when designing such a trial, you should realize that
the conventional probability levels for significance tests and
confidence intervals are much more difficult to calculate than
when the size is fixed in advance.

Equivalence trials
Trials to determine if a new treatment is equivalent to the ex-
isting standard one are particularly difficult to design because
of the danger of detecting no difference simply because the
study was too small. Those judging the results of such a trial
must be convinced that it was properly conducted.

3.3.4 Sample size
Sample size calculations are very similar to those for sample
surveys. You should first (re)read Section 2.6. Maintaining
a trial at its minimum size necessary to provide the required
precision is here even more imperative than for surveys be-
cause of the risks involved in imposing interventions. The
sequential trials mentioned above are one means to this end.
If you cannot use one, you will need to calculate the minimal
sample size.

Thepowerof a trial is its ability to detect a difference of
interest, due to an intervention, if it really exists. This is pri-
marily a function of sample size. Too small a trial is a waste
of resources and exposes subjects to useless risks. In equiv-
alence trials, too small a sample will ensure that treatments
appear to be equivalent!

Consider the simple case of two treatments, say active and
control, and equal numbers in each group. The sample size
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is calculated for differences in response at the primary end-
point.

The first step in a sample size calculation is to specify
the smallest difference in response among treatments,Æ, that
would be of importance. This is not a statistical, but a sci-
entific question. Then, you can apply the formula of Section
2.6, but where you replace the 16 by 64 to obtain precision
equivalent to the two standard errors used there. In other
words, you multiply by four all values that you would have
calculated for the examples without covariates given above
for sample surveys.

As an example, for binary responses, the value of� will
be the expected average probability under the two treatments.
Suppose that you want to detect a difference in probability of
response of 10%, between say 75% under control and 85%
under active treatment. The average is 80% and the sample
size is calculated to be

n =
64� 0:8 � (1 � 0:8)

0:12
= 1024

that is, 512 in each treatment group. You can use similar
procedures for counts and measurements, as in Section 2.6.

In more complex trials, one particular contrast between
two treatments may be of particular interest and you might
use this to calculate the required sample size. Otherwise, you
will require more complex techniques. In a sequential trial,
the standard error calculated at a first stage will generally
give you a good idea of how many subjects are still required
to attain the desired precision.

It is particularly important, when you begin a trial, to en-
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sure that you foresee a large enough sample size, that suf-
ficient subjects will be available to fulfil that goal, and that
your finance support is adequate. Do not undertake a trial
that will result in too few subjects to meet scientific require-
ments of precision.

When subjects enter into a trial sequentially, as they be-
come available, you must estimate theaccrual rateaccu-
rately in order to ensure that enough people will be avail-
able in the time planned for the trial. This will often be an
overestimate mainly because of:

� over-enthusiasm of the research workers planning the trial;
� ineligibility of some people;
� refusals;
� loss of interest over time if the study is too long.

If you cannot meet the sample size in the allotted time, you
will need to:

� increase the accrual rate, for example by using more cen-
tres or changing eligibility criteria;

� reduce precision;
� increase the time period; or
� stop the trial, if it will not be possible to detect relevant

differences among treatments.

Many trials that find no evidence of treatment differences are
too small to reach a reliable conclusion.
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3.4 Organization

3.4.1 Clinical trials
In medical research, experiments are usuallyclinical trials
to evaluate the effectiveness of some treatment(s), such as
drugs, surgery, physiotherapy, diet, health education, and so
on. These trials thus involve patients with a given medi-
cal condition and are designed to provide information about
the most appropriate treatment for future patients having the
same condition. The vast majority of clinical trials are con-
cerned with evaluating some specific drug, most often con-
ducted, or at least financed, by a pharmaceutical company.

A complete study for a new therapy requires evaluation
of safety, efficacy, andquality of life. Especially for a drug
that is to be commercialized, preclinical research begins with
animal experiments testing for safety. Then, human experi-
mentation can generally be classified into four phases:

1. Phase I: initial study of pharmacology and toxicity, usu-
ally with healthy subjects, to determine safety at various
doses, including side effects;

2. Phase II: small-scale, often non-comparative, clinical in-
vestigation on patients, to screen out ineffective drugs and
to determine dose and other characteristics of the therapy;

3. Phase III: full-scale evaluation of an apparently effective
treatment in its final form, as compared to a control or to
standard treatment;

4. Phase IV: surveillance after approval for commercializa-
tion, monitoring long-term adverse effects.
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The first two phases involve tightly controlled scientific in-
vestigation of medical aspects, whereas the third is closer to
realistic administration of the therapy once commercialized.
The first two are exploratory, providing hypotheses that can
be tested with the results of the third. The fourth may often
take the form of a sample survey, rather than a trial.

Phase II trials were traditionally often uncontrolled and
not blinded; this could bias the results, for example by the
enthusiasm of the investigators. Many early studies of this
type have suggested that the new treatment is highly effec-
tive, only for this apparent benefit to disappear when more
carefully tested in Phase III. Thus the use of randomization
is increasing in Phase II studies.

3.4.2 Multi-centre trials
An experimental trial may be organized in one centre, a hos-
pital or school for example, or, more often, in a number of
centres. The latter will create an effect of clustering, as in
sample surveys. The advantage of amulti-centre trial, over
using just one centre, is that it includes much more variability
among subjects so that there is more chance of the results be-
ing generally applicable. This should be true even although
the centres recruited will not be representative of centres in
general. Centres are chosen for reasons of cost, efficiency,
convenience, the research group’s reputation, and so on, but
rarely because they are typical.

The centres involved will usually be rather variable, for
size, geographical, subject recruitment, and other reasons.
It will often be preferable to allow these variations to enter
the study, particularly if they are commonly met in practice,
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rather than to maintain too high a degree of standardization,
difficult to accept either during the trial or subsequently. If
different centres provide different results, then generalizabil-
ity is in question. This is important information to obtain.

Often, the choice will be between a large number of sub-
jects rapidly recruited in a number of centres with relatively
short follow-up and fewer subjects with a long follow-up.
The former design can present major administrative prob-
lems, including ensuring the constant use of the same pro-
cedures in all centres. The latter may suffer from changing
investigators, loss of interest, and so on.

The difficulties that may arise with multi-centre trials in-
clude:

� complex planning and administration;
� excessive expense;
� demotivation of investigators;
� non-uniform eligibility requirements for entry;
� problems with monitoring;
� greater risks of missing data, for example from lost forms;
� deviations from the protocol, including problems of non-

compliance;
� lack of uniform quality control of data.

Carefully weigh these factors before undertaking such a trial.

3.4.3 Longitudinal trials
Most often, you must follow subjects over a sufficiently long
period for the treatment to have an effect. In this sense, all
trials are longitudinal. However, in many trials, a specific
end-point is defined: the final response of interest. Because
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this occurs at a given point in time, the study is fundamen-
tally cross-sectional.

In other cases, you will measure responses, at fixed or
convenient times, over a considerable period. Thus, you will
have a sequence of response values for each subject. This is a
true longitudinal study. Notice, however, that randomization
to treatment only assures comparability among groups at the
moment of allocation. As the subjects evolve over time, their
characteristics will be modified, depending on their previous
history, and hence may no longer be comparable.

3.5 Summary

An experimental trial is an intervention involving human be-
ings. The major advantage of such a trial is that you can
empirically study causality. However, because you must use
consenting volunteers, the results will often not be easily
generalizable to more realistic situations outside of the con-
trolled context of the trial.

You can only identify the effect of a new treatment by
comparing it with something else, usually a placebo or the
standard treatment. The only objective way to ensure that the
groups receiving the different treatments (including placebo)
are similar is to assign subjects randomly to them. To avoid
biases in reactions of both subjects and observers, blind the
trial whenever possible, so that those directly involved do not
know who has what treatment.

The primary end-point is the response of main interest to
be observed at some well-defined time. Baseline measure-
ments will also usually be useful.
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Missing values, including drop-outs, will be of concern.
One problem specific to trials is compliance: are the subjects
actually taking the treatment assigned to them?

Because you are applying an intervention, ethical issues
are crucial. All subjects must give informed consent. You
must use procedures, such as interim analysis, to stop the
trial as soon as possible if it is clear that one treatment (in-
cluding the placebo) is superior so that no subjects continue
longer than necessary on an inferior one.

Cross-over and parallel designs are the principal ones used.
The former have the advantage that the various treatments
are compared on the same people, but this is not possible in
many cases.

In medical research, clinical trials have a central place in
the development of new procedures. Both safety and effi-
cacy must be determined in a series of phases from initial
exploration to final confirmation and long-term surveillance.

Both multi-centre and longitudinal trials have their own
special complications.



4
Data analysis

4.1 Data handling

Efficient data management is essential to minimize errors.
This usually means that you should employ specialized staff,
neither the investigators nor the statisticians, for this task.
Your basic goals will be to have data that are:

� complete;
� accurate;
� uniform or properly standardized;
� coherent.

In many ways, achieving these goals will provide you with a
check on the actual data collection process.

4.1.1 Data entry
Once you terminate data collection, your first step will be to
check that all forms have been returned. Also visually check
them for any obvious errors and omissions, and seek the nec-
essary rectifications from the field investigators. Then, have
the data transferred to magnetic form for analysis by com-
puter. The main steps are:
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1. coding the results in a suitable form for computer treat-
ment (you may have incorporated this stage into the orig-
inal questionnaire);

2. typing the coded values into the computer (in certain cases,
this may also be possible electronically, as with bar codes
and light pens);

3. editing the resulting file(s) to remove errors.

This can be one of the most costly and time-consuming oper-
ations in a study. It is the one where errors are quite possible,
and where you can most easily avoid them, with proper care.

The main sources of error are:

� recording, as when an instrument is misread;
� deliberate, due to falsification either by the investigator or

by the respondent;
� transcription when observations are copied;
� typing (during data entry).

You should have the data entered using somedatabase
management system; some of the major statistical packages
contain one or you can use a general-purpose one. If the
mass of data is of a reasonable size, you should have an entry
grid developed within the database system; this will show the
coder, at all times, what variable is currently being entered
and prevent entry of impossible values. Thus, if a question
has a binary response, such as yes/no, that is to be coded as
1 or 2 (plus a missing value code), no other values will be
accepted. This removes one of the most common sources of
fundamental errors in the database.
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If you are using several forms for each observational unit,
whether from different levels of clustering or longitudinally
over time, such a database system will also provide a con-
venient means of linking them together. Complications may
arise, especially in experimental trials and longitudinal stud-
ies, because:

� subjects have unequal amounts of data recorded;
� data on each subject accumulate over time.

In trials with staggered entry, earlier subjects will have more
data available than later ones at any particular moment. Care-
fully choose ways of handling these problems.

You can reduce errors if you use the same code for miss-
ing values in all variables, although this may not always be
possible. Some computer programs have a special code sym-
bol for this, but, if you use it, no other software may be able
to read the file. Most often the code chosen is a set of nines,
the number of digits corresponding to the maximum number
of digits occupied by the variable. The use of blanks to in-
dicate missing values is especially dangerous because much
statistical software cannot distinguish these from zero values.

As explained in previous chapters, plan the ways in which
each variable will be coded for entry into the computer at the
stage of preparing the instruments for data collection. You
should have planned data collection in such a way that no
intermediate calculations are necessary until after the data
are in the computer. The basic types of coding are:

� counts;
� measurements, for which the units should be clearly spec-

ified;
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� discrete categories, for which special coding will be re-
quired.

Let us consider each of these in turn.

Counts These take integral values that cannot be negative.
There may be some upper limit to the reasonable values that
they can take.

Measurements Almost all measurements are positive val-
ues. Common errors involve:

� a misplaced decimal point;
� digit preference, whereby observers tend to round to say

zero or five for the last digit of each number;
� confusion about the type of units – in an international

study, feet or yards for lengths in one country and metres
in another;

� mistakes in the size of the units – some values in millime-
tres and others in centimetres, or some in days and others
in weeks.

The last can be difficult to detect, especially if the units are
not mentioned on the data form.

In international studies, extreme care must be taken with
numerical dates; not all countries use the day–month–year
order. If years are only recorded to two digits, errors can
easily occur at the turn of the century.

Discrete categories Many statistical packages allow you
to code discrete categories by alphabetic or numerical means,
but some require all values to be numeric. Use of alphabetic
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codes may restrict future analysis to the former packages, but
may reduce the risk of errors at data entry.

More general errors include:

� transposition of digits;
� repetition of the same value in two successive rows or

columns, perhaps with the effect of displacing all subse-
quent values in that row or column;

� hidden time effects, whereby the value observed depends,
for example, on the time of day or the time of year.

The safest, but most costly, way for you to ensure that data
are entered correctly is to do it twice with different people.
Then, a computer program can check for differences between
the two files. Any found must obviously be corrected! This
process, however, will only detect errors in the transfer of
data from the forms to the computer. It will not find errors in
originally filling out the forms.

It is usually not possible to know what is correct, so re-
strict attention to ensuring that the recorded values are plau-
sible. Nor can you expect to spot all errors, although hope-
fully you will find the major ones. However, if there is no
reason to suspect that seemingly strange, but possible, val-
ues are wrong, you should not modify them. Such checking
should be carried out as rapidly as possible; the longer you
wait, the less chance you will have of being able to obtain
a correction. Further data checking and screening will be
discussed in Section 4.2.

The database system will then finally produce one or more
computerdata filescontaining all of the information col-
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lected. In simple cases, these will be of rectangular form,
with each line referring to one observational unit and each
column to one variable, the standard form that most statisti-
cal software requires.

Once the data are entered, store the original forms in a
safe place. Also make copies of all computer data files and
store them in a separate building, in case of fire or theft. It is
wise to do this sequentially at all stages of data entry as well.

4.1.2 Computer treatment
Computer manipulation of data has both advantages and dis-
advantages. Among the advantages are that you can:

� quickly handle vast amounts of data;
� obtain results to high precision;
� try many and varied statistical techniques, some very com-

plex;
� easily present data graphically;
� rapidly repeat analyses after making small changes or cor-

rections;
� calculate new variables from those available.

On the other hand, some of the disadvantages are as follows:

� software may contain errors or, more often, poor or inad-
equately documented statistical techniques;

� with a wide variety of statistical methods available, you
may choose the wrong ones;

� you may use the software without any understanding of
what it is actually doing in any given analysis, the black
box approach;
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� if the data or the questions are erroneous, the software
will still produce a seemingly plausible answer – garbage
in, garbage out.

Massive computer analysis will never be a substitute for clear
thought.

Spreadsheets may be suitable for data management, but
are not designed for statistical analysis, often even yielding
incorrect results.

The criteria for choosing among statistical software in-
clude whether they have the following features:

� clear documentation;
� clear, self-explanatory output;
� flexibility for reading data from files;
� data management, such as editing;
� a reasonable maximum amount of data accepted;
� accuracy, precision, and speed;
� a wide choice of appropriate statistical methods;
� treatment of missing values;
� a variety of high-resolution graphics;
� good reputation and reasonable cost;
� good error handling;
� user friendliness and interactivity

(Altman, 1991, p. 110). The relative importance of these fac-
tors will depend on the variety of uses to which you will put
the software and on the sophistication of the users. Gener-
ally, it is preferable to use the same software for all analyses,
but, for certain problems, such as clustering, you may require
specialized software.
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4.1.3 Data editing
The goal of data editing is to detect and, where possible, to
correct errors in recorded data resulting from data collection
and entry. This should involve not only cleaning the data, but
also obtaining information on how the errors arose in the first
place in order to improve the process during future studies.

In a sample survey, editing may account for 20–40% of
the total costs, including computer hardware and software,
salaries, and field expenses. Other costs upon which you will
find it more difficult to place a monetary value include:

� ill will due to the additional burden on respondents;
� lack of confidence in data quality;
� loss of timeliness of the results due to delays.

Excessive editing can be often counter-productive; you can-
not guarantee high quality simply by increasing the number
of checks. This may hide problem areas instead of revealing
them.

Data errors that you can most easily correct by editing are
those that would be recognizable to a user of the individual
data records but not having any supplementary knowledge
about each given unit. The suspicious items are more diffi-
cult. You can judge the latter in relation to their influence
on the estimates (Section 4.4.1) to be calculated. Begin with
the most extreme suspicious values and stop verifying when
further corrections have little effect on the estimates.

The focus of recontacting respondents should be to ac-
quire knowledge of the respondents’ problems and causes of
errors rather than just to determine that a suspicious value is
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wrong and to find a more accurate value. This will lead to
improvements in your future study designs.

4.2 Descriptive statistics

4.2.1 Univariate statistics
The first step in any data analysis should be to produce the
simple descriptive statistics for each variable in the database.
For categorical data, provide the frequencies andpercentages
in each category. You may supplement these byhistograms
that display this information graphically. If count data in-
volve only a few small values, you can use the same methods
for them.

For large counts and for measurements, calculate themean,
maximum, minimum, andstandard deviation. It may also be
useful to categorize the values and to produce percentages
and histograms, as above.

Carefully scrutinize all of your descriptive statistics for
anomalies. This is the beginning of the second stage of data
checking. If you have used a proper entry grid in a database
system, no impossible values should be present. Then, any
anomalies might consist of unexpectedly large or small per-
centages in certain categories, unreasonable maxima or min-
ima, and so on, calledoutliers. Any problems that you detect
must be traced back to the original forms, or further if neces-
sary, in order to make the appropriate corrections. Again,
you should only change values that you are certain to be
wrong. If an outlier is correct, it may indicate an anomalous
individual, perhaps one who is not actually in the eligible
population or one who is of special scientific interest.
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4.2.2 Cross-classifications
Once you are satisfied that the univariate statistics are rea-
sonable, you can consider the relationships between pairs of
variables. For even a small number of variables, this will
yield an enormous number of combinations; you will usu-
ally not be able to study all of them in detail. Then, select
the most crucial and informative ones, especially those re-
lated to the main response variable(s).

For categorical data, two-way frequency tables, orcontin-
gency tables, are generally most useful. Most statistical soft-
ware will produce percentages for both rows and columns.
When numerical quantities are involved, whether counts or
measurements,scatter-plotsare often most useful. Occa-
sionally, non-parametric methods may be helpful in drawing
smoothed lines through the data.

Inspection of these results will provide logical checks, re-
vealing impossiblecombinationsof values, something that
you could not detect by the previous methods. Thus, for ex-
ample, if you consider age and year in school, three-year-
olds in grade five would be suspect. In the same way, the
number of previous pregnancies should be undefined for all
men. Such inspection may also reveal pairs of values that are
individually plausible but impossible in combination.

If you have recorded a series of values, say responses over
time, on each individual, plot them, as profiles, to check that
they vary in an acceptable way. For example, height of chil-
dren should gradually increase, with no decreases.

In experimental trials, you should make checks on the de-
gree of equality among randomized groups, especially if they
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are small. However, testing (Section 4.4) if departures from
equivalence are due to chance is irrelevant, unless you sus-
pect errors in the randomization process itself, because you
know that allocation was random, and random departures
will be present.

Study of these simple descriptive statistics also enables
you to gain a first familiarity with the structure of the data.
They will provide a basis for much of the presentation of the
final report; however, you will interpret them in the light of
the more sophisticated analyses that you have performed but
that many readers may not be able to understand.

4.3 Role of statistical models

The objectives of a study should indicate a few main analyses
of primary interest. This will be particularly so in experimen-
tal trials. Nevertheless,exploratory inspection of the data
will generally provide further important information that you
should not neglect. However, this is hypothesis generating,
notconfirmatoryanalysis; the latter will require new data.

Any data collected contain a mass of information. The
problem is for you to extract that part of it that is relevant to
the questions to be answered by your study, in the simplest
and most understandable way possible. This essentially in-
volves checking for pertinentpatternsand anomalies in the
data. This is a basic role of statistical models: to simplify
reality in a reasonable and useful way, a way that you can
empirically check with the data. No model is ever ‘true’, but
some models are more useful than others for given data and
questions.
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Models can serve many roles. They can provide:

� a parsimonious description or summary of results, high-
lighting the important features;

� a basis for prediction of future observations;
� biological or social insight into the processes under study;
� a test of a prior theoretical relationship;
� comparisons of results from different studies;
� measures of precision of quantities of interest.

You can think of models as smoothing the irregularities in
the data in a way that makes patterns clearer. The danger, of
course, is that a pattern that you isolate in this way is a ran-
dom artefact of the given data set, corresponding to nothing
reproducible if someone were to do a second such study, and
hence to nothing in the population under study. The role of
model selection, through empirical checking with the data,
and of measures of precision is to reduce this risk and to
quantify it; you can never eliminate it entirely.

The basic steps in exploratory model building will usually
include:

1. studying the pertinent descriptive statistics, as described
above, in order to become familiar with the data;

2. developing a reasonable model from the results of step 1
and from previous knowledge;

3. fitting the model to the data;
4. checking the goodness of fit of the model;
5. going back to step 2, if necessary;
6. using the model to draw appropriate conclusions.
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The purpose of modelling is not to get the best fit to the data,
but to construct a model that is not only supported by the
data but also consistent with previous knowledge (unless that
is being placed in question), including earlier empirical re-
search, and that also has a good chance of describing future
observations reasonably well.

Before looking at how you can actually fit models to em-
pirical data, let us consider some principles of model con-
struction. In constructing a model, the response and the ex-
planatory variables play very different roles. Let us consider
them in turn in the next two subsections.

4.3.1 Choice of probability distribution
The main response variable that you will study should be that
specified in the protocol. In most cases it is directly observ-
able, but in some experimental trials it may be constructed –
for example, the difference between the response at baseline,
before the intervention began, and the final response after a
certain length of treatment.

In statistical models, we consider the response variable
to ariseat randomin a certain sense: we cannot predict in
advance exactly what response each respondent will give so
that random fluctuations are not reproducible. This variabil-
ity arises primarily from differences among human beings,
in contrast to studies in physics or chemistry where measure-
ment error is predominant.

You can then represent the frequencies of the different
possible responses by a histogram. This is so even if you
are making quantitative measurements, because you can only
record them to some finite precision; hence, the observed
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values are actually categorical.
Unless you have made a very large number of observa-

tions, histograms will generally be rather irregular, with a
bumpy appearance. If the response consists of unordered cat-
egories, such as a list of career choices or of types of illness,
the shape of the histogram has little meaning: you can ar-
bitrarily modify it by changing the order of the categories.
Then, you have to construct models directly in terms of the
probabilities of respondents falling into the different cate-
gories. The most common case is a binary response, but a
number of models are also available for nominal and ordinal
response variables.

If the response is a count or a measurement, you can go
considerably further. The shape of the histogram now has a
meaning. Aprobability distributionis a mathematical func-
tion that smoothes the histogram in an informative way, while
retaining, and highlighting, the basic shape. For example,
everyone is familiar with the smooth bell-shaped form of the
Gaussianor normal distribution.

An added advantage of such smoothing is that different
distributions correspond to different ways in which the data
might have been generated. Thus, the normal distribution
arises when a large number of unknown small effects add
together to generate the response, as for example with genet-
ically inherited traits and multiple environmental influences.

Most probability distributions have one or two unknown
and unobservableparameters(not to be confused with the
observable parameters of the scientist, our explanatory vari-
ables). For example, the normal distribution has the mean
and the variance. These parameters allow flexibility so that
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you can adjust the distribution to fit as closely as possible to
the empirical histogram. Most distributions have a parameter
that indicates the size of the responses, generally the mean.
Some have a second parameter related to the shape of the
histogram. For the normal distribution, which is symmet-
ric, this is the variance. Most distributions, however, are not
symmetric and will have a different second parameter, if they
have one at all.

In modern statistics, there is rarely any need for you to
transform the response variable to normality. (The major
exception would be if you have made quantitative measure-
ments on an inappropriate scale.) Transformations gener-
ally make the results extremely difficult to understand: how
do you interpret the average of the square root of your re-
sponses? A multitude of distributions are available for non-
normal data, as is the software to perform analyses with them.
Only use transformations of response variables for scientifi-
cally valid reasons.

Common probability distributions
Binomial distribution For binary responses, we require a
distribution that describes the only two possible events. Gen-
erally, the binomial distribution, with only one parameter, the
probability, say�, of the first of the two events, is used.

Poisson distribution For counts, we require a distribution
to describe positive integers. Here, the Poisson distribution,
with one parameter, the mean number of events, say�, is
commonly used.
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Duration distributions A large number of asymmetric or
skeweddistributions is available to describe durations until
some specified event, such as survival (before death). Often
a survival curveis fitted, based on theKaplan–Meier esti-
mates. In many cases, it is more convenient to study directly
the intensityor rate of occurrence of the event of interest in-
stead of the time until the event occurs. The most famous ex-
ample of this is theCox proportional hazards model, widely
used in medical studies of survival.

Normal distribution This distribution is well known al-
though it is rarely encountered in practice, except as a con-
venient approximation.

The distributions mentioned are only the commonest ones.
For example, frequencies of binary events and counts may
show a large amount of variability, calledoverdispersion,
that must be taken into account with special distributions.
This is almost bound to occur, for example, if clustering is
used in a design, as in multi-stage surveys and multi-centre
trials.

In contrast to models based on the normal distribution, for
all other common distributions the variance cannot remain
constant when the mean changes. For example, as we saw
when calculating the sample size for counts in Section 2.6.2,
for the Poisson distribution, the mean is equal to the variance.

4.3.2 Regression models
The probability distribution describes the random variabil-
ity in the response variable. However, in a study, you will
usually be primarily concerned withsystematicchanges in
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response under certain conditions, the explanatory variables.
You can translate this into a statistical model by looking at
how the probability distribution of the response, or more ex-
actly the parameters in it, change under these conditions.

As usual, you generally must make simplifying assump-
tions. Thus, in many circumstances, you may reasonably as-
sume that only the mean of the distribution changes with the
conditions of interest. You can take the basic shape, for ex-
ample as indicated by the variance, to remain constant under
all conditions.

A second simplifying assumption is more peculiar to the
statistician, not being directly relevant to the scientific en-
deavour. The way in which the mean varies with the con-
ditions described by the explanatory variables is taken to
be linear in the unknown parameters. In contrast, scien-
tists are interested in the (non-)linearity of responses with
respect to the explanatory variables (their parameters). The
statisticians’ linearity is an old historical assumption that was
necessary to facilitate computation, and that is no longer re-
quired with modern computing power. Unfortunately, most
software packages do not meet such modern criteria.

When you combine these conditions, you will obtain a
standard (multiple) linearregressionmodel, whereby some
function of the mean changes with the conditions:

g(�i) = �0 + �1xi1 + �2xi2 + � � � (4.1)

where�i is the mean for theith subject,xij is the obser-
vation of thejth explanatory variable for that subject, and
�j is the corresponding unknown parameter, theregression
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coefficient, to be estimated. This model function, that com-
bines some probability distribution with a linear regression,
has come to be known as ageneralized linear model.

Notice that the function,g(�), is a transformation of the
mean, not of the observations, so that it does not produce the
difficulties of interpretation discussed above. Your choice for
this function of the mean generally will depend on the type
of response that you have observed. Common possibilities
include:

� binomial distribution— log odds or logit:
g(�) = log[�=(n� �)] where� = n�;

� Poisson distribution— logarithm:g(�) = log(�);
� duration distributions— logarithm:g(�) = log(�);
� normal distribution— identity: g(�) = �.

The logarithm is a particularly important transformation be-
cause it allows you to compare means as ratios instead of
as differences; effects are multiplicative instead of additive.
You can then study relative, instead of absolute, differences.
(Note that a logarithmic transformation of the observed re-
sponses does not have this simple interpretation.) In linear
models, the logarithm also ensures that the mean cannot be
negative, often an important requirement. However, a num-
ber of other functions are also possible and are fairly widely
used.

For a binary response, the logit transformation yieldslo-
gistic regression; this is probably the most widely used re-
gression model of all. It is noteworthy that this is the only
regression model that can provide the correct estimates of
regression coefficients in a case–control study.
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The Poisson distribution with a logarithmic transforma-
tion is the basis oflog linear modelsfor categorical data.

Duration data, such as survival times, present special dif-
ficulties that are now widely known. In particular, many ob-
servations may becensored, that is, incomplete in that the
event did not occur before observation had to stop so that the
duration is only known to be at least a certain length. These
are not missing values or drop-outs and provide essential in-
formation about the longest durations. All standard software
packages handle such data.

More complex constructions are required for nominal and
ordinal response variables because the definition of a mean is
not so obvious. These are well documented in many books.
One simple way to handle ordinal variables is to assign a
known scale to the categories. Care should be taken with
this approach, however, because it will be misleading if the
scale is poorly chosen.

The xijs in the model need not be simply the observed
explanatory variables. In contrast to response variables, here
transformations can often be useful. Furthermore, you can
handle interactions among variables by including their mul-
tiplicative products in the regression. These allow one con-
dition to influence the response in different ways depending
on other conditions.

The regression models commonly available in statistical
software are linear in the parameters. Skilful use of the trans-
formation function of the mean,g(�i), can yield a limited
selection of non-linear relationships. However, certain spe-
cialized software is available for more complex non-linear
models. Use these when they make scientific sense. One
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common example is an unknown transformation of a vari-
able, such asx�ij where� is an unknown parameter.

It is often forgotten, when analysing the usual multiple re-
gression models, that the fact that no relationship is detected
in a such a linear model does not exclude the possibility that
a non-linear relationship is present.

Complex sample designs
Take great care when you have used a design involving clus-
tering, as with multi-stage surveys and multi-centre trials.
You can only apply standard regression models as a rather
poor approximation. The model selection procedures to be
described below will generally include too many explana-
tory variables in the final model and the precision of the
parameters will be overestimated. Instead, you will require
special software that is not widely available, using random
effects models, to take into account the dependence among
responses within each cluster. This will allow you to make
more reasonable model selection and precision estimates.

You can handle more simply the case of stratification with
sampling fractions differing from the population proportions.
Reweight the observations in the strata to bring them back to
the population values. Good software will handle this fairly
automatically, once you have calculated the proper weights.

When you have found the appropriate model for depen-
dence within clusters and/or for stratification, handling and
interpretation of the regression aspects is not fundamentally
different from the simpler cases.
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Interpretation of explanatory variables
Binary variables You can usually most usefully code a bi-
nary variable,xij in Equation (4.1), using zeros and ones.
However, pay attention as to which of the two possible values
has the value one. The category with the value zero is often
called thebaseline, because you will make comparisons to
it. Then, you can interpret the corresponding regression co-
efficient,�j , as acontrastbetween the categories, that is, the
difference in the transformed mean for the category coded as
one, as compared to that for the baseline coded zero.

Several categories If the values of a variable correspond
to several categories, such as marital status or religion, your
interpretation in terms of contrasts will be similar to that for
binary variables, but somewhat more complex. Coding may
be as alphabetic names or as numbers. In the latter case, re-
member, and indicate to the software, that these numbers are
simply codes for categories and not measured magnitudes.
Otherwise, the software will generate completely erroneous
results. Generally, the software will produce an automatic
recoding to a series ofdummy variablesindicating in which
category each individual belongs.

Again, with most software, you must choose one category
as the baseline to which you will compare the responses in
all other categories. The choice will not alter the final in-
terpretation. You should make it for convenience in inter-
preting the contrasts among categories. Here, there will be
a set of regression coefficients, one less than the number of
categories, the missing one being the baseline category. You
can interpret each parameter in the same way as for binary
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variables, as the difference in the transformed mean for that
category, as compared to that for the baseline.

You can directly compare the sizes of the coefficients,
with larger values indicating greater mean differences from
the baseline category. If some values are close to zero, the
corresponding categories may possibly be collapsed into the
baseline category. If the values for two or more categories
are similar, they may also be combined together. These steps
will simplify the model by reducing the number of parame-
ters.

Quantitative variables When an explanatory variable,xij ,
is a count or measurement, the corresponding regression co-
efficient will be theslopeof a straight line describing how
the transformation of the mean changes per unit change of
that variable. For this reason, the size of the coefficient will
depend on the unit of measurement. For example, if the
variable is measured in centimetres, the coefficient will be
smaller than if it is measured in metres. Thus, in contrast to
the previous cases, here the sizes of the coefficients are not
directly comparable.

Interactions In simple cases, you can represent an interac-
tion in a regression model by the product of the two (or more)
explanatory variables concerned. This indicates that the re-
sponse depends on any one of these variables in a different
way depending on the value(s) of the other(s). Thus, for ex-
ample, when treatment and sex interact, this might mean that
treatment has a larger effect for one sex than for the other.
When a variable with two or more categories interacts with
a quantitative variable, this indicates that the slope for the
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latter variable is varying among the categories of the former
variable.

In all cases, when several variables are present in a re-
gression function, each coefficient gives the dependence of
the (transformed) mean response on the corresponding vari-
able,conditional on the values of all other variables in the
model. Thus, your interpretation of each given coefficient
will change every time you add another variable to the re-
gression model, or remove one.

Strictly avoid composite indices constructed from a set of
explanatory variables. Although they have often been used
in practice, they have several drawbacks:

� Considerable information will be sacrificed, especially if
an inappropriate index is constructed; in bad cases, the
result may be worse than using only one of the individual
explanatory variables.

� Objectivity is lost because someone else might choose an-
other combination to create the index.

Use of an index in a regression model is equivalent to as-
suming that the values of all the coefficients of the variables
contained in the index are known (up to a constant of propor-
tionality). It is preferable to estimate them in the model and
to eliminate those variables that are unnecessary.

4.3.3 Multivariate models
You will require amultivariate distributionwhen you wish to
study the inter-relationships among two or more responses.
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This may occur in at least two situations: you may have ob-
served:

1. two or more distinct responses, and it is important to un-
derstand the relationships among them;

2. the same response several times on each subject, usually
at successive points in time in a longitudinal study, known
asrepeated measures.

The most commonly (mis)used parameter to study such asso-
ciation among responses is thecorrelation coefficient. This
resembles a regression coefficient for dependence of a re-
sponse on explanatory variables, but has a very different in-
terpretation. Except as an approximation, a correlation is
generally restricted to interdependence among responses hav-
ing normal distributions, something that is not true for a re-
gression coefficient.

Many techniques are available for studying multivariate
relationships, in the first context, such as discriminant analy-
sis, principal components analysis, and factor analysis. Most
do not allow the introduction of explanatory variables and so
are of limited use in the applications being considered here.
They are most often used as descriptive tools for exploratory
analysis.

Much more sophisticated multivariate models are becom-
ing available for repeated measurements, although the soft-
ware is only slowly appearing. Generally, here you must con-
sider two types of dependence among responses on a given
individual:

1. serial dependence, whereby those observations closer to-
gether in time are more similar;
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2. constantintra-subject dependence, whereby all observa-
tions on one subject are more similar than randomly cho-
sen observations from different subjects.

For the former, never forget that human beings have memory
and the ability to learn. In your models, you must properly
condition on the previous history of each individual. For ex-
ample, subjects who first meet a task while tired may con-
tinue to do it badly when rested, whereas those who first en-
counter it when fresh may go on doing it well when tired.

The second form of dependence arises because the same
subject tends to respond consistently in the same way, always
with high or low scores on tests, high or low blood pressure,
and so on. In other words, subjects will be heterogeneous on
the many unobserved confounding explanatory variables.

A special case of such models is that for clustered designs.
Here, there are several levels of analysis, from the topmost
cluster to the final observation unit. The special software,
mentioned above, takes into account the multivariate depen-
dence among what are in fact ‘repeated’ responses within
clusters.

4.4 Model selection

Until now, we have been considering possible statistical mod-
els without actuallyfitting them to the data. Model selection
involves two phases: choice of possible models to be consid-
ered, before the data are collected, and choice among these
models in the light of the data, possibly even finding or de-
veloping new ones if necessary. The latter choice is our next
task.
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The actual procedure depends on the context. In decision-
making situations, you must have a clearly defined set of al-
ternatives available from which to choose. On the other hand,
science fundamentally involves attempting to discover the
unexpected. Only subsequently is replication used to con-
firm what was found.

When you do exploratory analysis, during preliminary re-
search, you still only know a little about the phenomenon un-
der study so that you will often have a wide variety of models
under consideration. Subsequently, you may construct clear
hypotheses, based on the information you have obtained, for
which you will then need to design a study involving con-
firmatory analysis. Model selection procedures are logically
different in the two cases.

The first phase, that we have been discussing up until now,
is largely determined by the way in which you designed the
study. You cannot consider a model for which you have not
collected appropriate data. For example, you cannot use a
model containing explanatory variables that you have not ob-
served.

If you are legitimately to apply any tests, you must clearly
specify the corresponding hypotheses, as models, in the pro-
tocol before the data are collected. Thus, if you conduct
some experiment with treatment and control, you can test
a model with no difference between the two against a model
with some scientifically large difference, usually in a specific
direction.

Most often, you cannot specify such clear hypothetical
models prior to a study, except in advanced stages of re-
search. This is especially true for sample surveys where
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you collect a large number of explanatory variables. Then,
you can apply a model selection procedure empirically us-
ing some criterion based on the observed data, moving from
one model to another in a way that cannot be foreseen before
collecting the data.

4.4.1 Parameter estimation
Once you have some model function under consideration,
one of the first things that you generally want to do is to ob-
tain, from the observed data,estimatesof the unknown pa-
rameters in that function. Thus, a first simple step of model
selection is to choose among parameter values for a given
model function.

One main role of statistical models is to provide a means
of calculating the probability of observing various possible
responses in a situation of random variability, as described
above (Section 4.3.1). We can invert this reasoning to pro-
vide a criterion for the relative plausibility of various models,
that is, a means of selecting among them. We can say that
one model is more plausible or likely than another, in the
light of the given observed data, if it makes those data more
probable. This procedure yields a function of all possible
models, giving the probability of the observed data for each,
called thelikelihood function. It is the basis of most of mod-
ern statistics. Most often, the logarithm of the likelihood is
used for ease of interpretation. Thus, a statistical model may
be more preferable if it has a relatively higher likelihood or
log likelihood, but this will also depend on the complexity of
the model and on its relevance to the question at hand.

For a given model function, there is usually one set of
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parameter values that makes the likelihood function largest.
This set is known as themaximum likelihood estimate(m.l.e.)
of those parameters. In most cases, it is the intuitively obvi-
ous estimate:

� For a mean parameter, the m.l.e. will almost invariably be
the sample mean.

� For the probability of a characteristic, what statisticians
call an event, it is the proportion of those in the sample
with that characteristic.

� For classical linear regression, the least squares estimates
are the m.l.e. when a normal distribution is assumed.

All software should provide such estimates, but you must
take care, because other estimates may also be available and
may even be the default ones given.

4.4.2 Selection criteria
In very simple designs, such as an experimental trial, with
one active treatment and a control, where a response is ob-
served at one end-point, selection among model functions
may not be necessary. You only wish to determine if the ob-
served mean difference in response between treatments, for
a given known probability distribution, could readily have
arisen by chance if there was no difference between them.

Often, however, even in this simple situation, you will not
be prepared to assume that treatment effects remain constant
over all individuals. Then, to control for these differences
among individuals, you must introduce into the model addi-
tional variables, in this context often calledcovariates, ob-
tained from the concomitant observations foreseen in the de-
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sign. One very particular example of this occurs in cross-
over designs where the use of the previous treatment as a
covariate may allow for the effect of carryover.

In more complex situations, you will not know the ap-
propriate probability distribution and you will have several
explanatory variables, even a large number in many sample
surveys. The use of different distributions and the inclusion
of different combinations of the variables correspond to dif-
ferent model functions. Thus, you will require means of se-
lecting among them.

The common way of performing model selection for re-
gression, by testing if the coefficients are significantly differ-
ent from zero, is simply wrong: hypotheses for tests must all
be constructed before looking at the data. This is impossible
in any step-by-step model selection. The standard probabil-
ity levels used are incorrect, and the correct ones impossible
to calculate. In addition, you can obtain contradictory re-
sults, depending on how many parameters you test at each
step, even if done in the same order.

The use of the likelihood function in estimation is straight-
forward and well known. However, the problem with the
likelihood function as it stands, for selection among model
functions, is that it does not take into account the complexity
of the functions being compared, that is, how many param-
eters each one has. The more complex is a model function,
the more chance it has of making the data probable. But you
will generally prefer simple models:

� they are more easily understandable;
� they can be more readily communicated to colleagues, es-
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pecially to non-specialists;
� they have more chance of being reproduced if the study is

repeated;
� they often provide superior predictions.

Thus, in model selection, you will need to balance the two:
high likelihood and simplicity. You can do this by penaliz-
ing the log likelihood by subtracting some function of the
number of parameters involved.

In this way, proper model selection criteria have been elab-
orated in recent years. The best known and most widely used
is theAkaike information criterionor AIC. You can obtain it
simply by subtracting the number of estimated parameters
from the log likelihood, thus slowing down the rate at which
the likelihood increases as parameters are added. Take care,
however, because most software packages give the negative
of this value (often multiplied by two) so that small values in-
dicate better models. Notice that the actual value of the AIC
for a given model has no meaning, only its size in relation to
that for another model fitted to the same data. Model selec-
tion criteria are relative, only allowing comparisons among
models.

4.4.3 Selection strategies
Especially in a sample survey, you will often collect informa-
tion on a considerable number of explanatory variables. You
must elaborate some strategy, generally specified in the pro-
tocol, in order to find your way through the maze of possible
models.

Many software packages provide automatic variable se-
lection procedures, such as forward and backward stepwise
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techniques. They can rapidly fit an enormous number of sta-
tistical models and provide masses of output. Avoid this ap-
proach for at least three reasons:

1. It does not take into account the relative importance of the
variables, as known to workers in the field.

2. It generally uses classical tests and not proper model se-
lection criteria, such as the AIC.

3. The more models are tried, the more will describe the data
well just by chance.

Instead, your strategy should be to use all available informa-
tion about what could be reasonable models so as to min-
imize the number considered. You should thus specify the
general order in which the variables will be entered into the
model before looking at the data.

In most studies, you can classify the explanatory variables
into a number of groups depending on how closely they are
associated with the unit of observation. Thus, for example,
if children are being studied, you might have:

1. variables directly describing them, such as sex, age, house-
hold activities, health, and so on;

2. variables describing the household, including the parents,
the house, and so on;

3. those for the community, such as size of village, distance
to a shop, and so on;

4. those for the whole region of the country, such as climate
and geography.

A reasonable strategy will often be first to study those vari-
ables most closely related to the observation unit to see how
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much of the variability among responses can be explained by
them, before adding in variables from the next set, and so on.
Remember that all parameters in a model change interpreta-
tion as each new variable is added.

Within a set of variables, you may use various strategies.
You may add each one according to some order of impor-
tance, if this is possible. Or you may enter the whole set, and
then withdraw the unnecessary ones, one at a time. The for-
mer is often preferable because you are then starting with the
simplest and most important explanation of the observations.

In observational studies, take care with pairs of variables
that are providing very similar or identical information. Such
variables are said to becollinear. If you include either one
of such a pair of variables in a model, you may find it nec-
essary, but if you include both, neither may be indicated as
necessary. Then, make some choice as to which is more per-
tinent, and only keep one.

Also, especially in observational studies, take particular
care with extreme values with respect to any given model,
called outliers. Each individual observation point may pro-
vide you with a clue to explaining the observed associations.
Values lying far from the model, that is, having largeresid-
uals, can indicate ways to improve the model, but they may
also simply be rare values.

Missing values
When you begin the task of fitting and comparing models
with computer software, it is essential to indicate how miss-
ing values are recorded for each variable. If you have coded
the missing value as 99, whereas plausible values range from
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zero to 20, the software will use the missing value code in the
calculations unless you have told it that that value is special.

Most software will simply eliminate missing values from
the analysis. The implicit assumption being made is that the
missing individuals are representative, that is, that the val-
ues are missing at random. However, when studying human
beings, we know that this is almost never the case. If you
have available some information about the reasons for miss-
ingness, you may incorporate this into the model, although
this is usually a difficult process.

Take special care with complex models containing a num-
ber of explanatory variables. As you add variables in the
selection process, each may have missing values on different
individuals so that the number of observations actually used
can diminish drastically. This generally also means that the
bias is rapidly increasing and the results can be completely
misleading.

In the present state of statistics, you can do very little
about non-random missing values without making major as-
sumptions. One possibility is to construct binary response
models to see how missingness depends on the other avail-
able variables, but this will be of little help in correcting for
missing values in a model for the response of interest. Thus,
be very careful about the accumulation of missing values in
complex models containing many variables.

4.5 Estimating precision

As we have seen, model building involves estimating un-
known parameters. However, you will also require some idea
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of how precisely these parameters can be calculated from the
information in the data.

The way in which you can estimate precision depends on
what type of model selection you performed. If you had only
one known model function before starting, no major prob-
lems arise and you can use classical forms of indicating pre-
cision, such as significance tests and confidence or credibil-
ity intervals. However, if you first apply some step-by-step
selection procedure among model functions, the uncertainty
in this process will not be taken into account in such classical
procedures and the stated probability levels will be incorrect.

Recall also that precision will be overestimated if you use
standard software for designs that involve clustering. Be-
cause of the dependence among responses, the sample size
of observational units is not equivalent to one without clus-
tering. The data will contain considerably less information
than a simple random sample of equal size and, thus, you
should not treat them as such.

Finally, if you did not fix the sample size in advance,
but determined it in some sequential trial using interim re-
sults at each stage, the true probability levels of classical
significance tests and confidence intervals will require non-
standard methods and be complex to calculate.

4.5.1 Significance tests
In simple cases, especially in experimental trials, you will
have some specific hypothesis in mind that you want to test
by the data obtained from the study. In the protocol, you
would generally have stated this, in relation to the primary
end-point, as anull hypothesisof no effect, for example of
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some treatment, on the observed response.
Intuitively, you are asking if the observed differences in

response under two or more conditions (defined by the ex-
planatory variables) could have arisen at random if those
conditions had no effect. If the probability of such a thing
happening is low, often taken to be less than 5%, either the
data represent an extremely rare occurrence or the null hy-
pothesis is wrong. Such a probability is known as aP-value.
Thus, statistical significance is a measure of the reliability of
an observed relationship.

No test is possible if no model is formulated for the data.
Only a model can provide the probabilities that tell you if the
observations are rare or not.

Common tests include:

� theStudent t testfor an individual parameter;
� theF testfor a set of parameters;
� theChi-squared (�2) testfor one or more parameters and

for goodness of fit;
� Fisher’s exact testfor contingency tables.

For most tests, like the first three just mentioned, you must
make the assumption that the model is based on or can be
approximated by a normal distribution. (In other cases, the
statistic is assumed to have the appropriate asymptotic distri-
bution; that is the sample is assumed to be very large.)

Such procedures are generally acceptablewhen you have
clearly stated the null hypothesis in the protocol. Note that,
in reporting the results, you should state the more informa-
tive exact P-value, and not simply an indication as to whether
it is less than some fixed level, such as 5%.
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In terms of a model, what you have done is to calculate
how rare it would be to observe the estimated difference
in responses among treatments if the actual difference were
zero. In other words, if the parameter of interest, describ-
ing treatment difference, is zero, what is the probability of
estimating it to be as large as that calculated? Thus, such a
significance test is a crude measure of precision of the pa-
rameter estimate.

In many scientific journals, significance tests are actively
discouraged, if not forbidden, in favour of some form of con-
fidence or credibility interval for the estimated difference pa-
rameter.

4.5.2 Confidence and credibility intervals
Many studies are more exploratory and do not have one such
simple hypothesis to be tested. As a next stage of complexity,
suppose that some one specific model function is of interest
and that your goal in the study is to estimate the unknown pa-
rameters in it. The best estimates will be the maximum like-
lihood estimates, following the criterion given above. How-
ever, there is little chance that these are the actual values in
the population. Thus, you require some measure of preci-
sion.

As we have just seen, one simple procedure would be
to test if each parameter were zero, obtaining a P-value for
each. This is only acceptable if you have clearly stated both
the model, and the parameters to be tested in it, in the proto-
col.

A more widely used and preferable procedure is to calcu-
late confidence or credibility intervals for each parameter (or
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some set of them). The common procedures include:

� giving the parameter estimate, plus or minus a fixed num-
ber of standard errors;

� calculating an interval based on the log likelihood, per-
haps penalized by aprior distribution of the parameter,
obtained from previous knowledge or beliefs (known as
the Bayesian approach).

For the classical normal linear models, the two will gener-
ally give identical results (unless prior belief is strongly con-
tradicted by the new data). In other cases, the likelihood-
based method is preferable, because the intervals should not
be symmetric around the m.l.e. Standard errors can then be
very misleading, even including impossible values in the in-
terval. However, such likelihood-based intervals are more
difficult to calculate and are rarely automatically given by
standard software packages.

Such intervals have a probability level assigned to them.
In the same way as for significance tests, such levels only
have meaning if you have specified the exact model func-
tion for which they are calculated in the protocol. If you
chose the model function by some selection criterion, using
the data, the uncertainty in that selection process will not be
allowed for and the intervals will be too narrow for the stated
probability level.

4.5.3 Likelihood intervals
In a context where you have used model selection to arrive
at a final choice, the only way to provide objective intervals
of precision for the estimated parameters is directly through
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the likelihood function. Thus, for example, all parameter
values that make the data, say, one-tenth as probable as the
maximum likelihood estimates will yield such a likelihood
interval.

In fact, such intervals will be identical to likelihood-based
confidence or credibility (with an uninformative prior) in-
tervals discussed above. The main difference is that, in the
present context, you do not know what probability level to
assign to them. You can only judge them in terms of the rel-
ative likelihood of the parameter values given the data. (You
can think of the interval obtained by using a standard error
as a quadratic approximation to such a likelihood interval.)

Thus, confidence or credibility intervals, calculated for
the final model obtained after some selection procedure, will
provide measures of relative precision of the remaining pa-
rameters. However, you can only measure the level of such
precision statements in terms of the (relative) likelihood it-
self and not by their nominal confidence or credibility prob-
abilities.

If you leave unnecessary variables in a model, instead of
eliminating them by the model selection procedure, the pre-
cision of parameters of interest will generally be less than if
you eliminate them. However, if you specified that model
in the protocol, you cannot eliminate these variables without
destroying the probabilistic basis of the intervals of precision
for the parameters of interest.

Thus, tests and confidence or credibility intervals are pri-
marily of use in decision making, as well as in confirmatory
scientific work, whereas likelihood intervals will be used in
the exploratory phases of scientific inference.
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4.6 Summary

Transfer all data collected to electronic form, preferably us-
ing a database management system. Each of the basic types
of observations – counts, measurements, and discrete cate-
gories – has its own specific potentials for errors. You should
detect, and correct, as many errors as possible at this stage.

You will need to choose appropriate computer software
that is reliable, can perform the required analyses, and is rea-
sonably easy to use.

The first step in data analysis will be to produce descrip-
tive statistics such as frequency or percentage tables and his-
tograms for qualitative variables and means, standard devi-
ations, maxima, and minima for counts and measurements.
You can then cross-classify the most important variables in
frequency tables or with scatter-plots. Check all of these for
suspect values and correct them, where possible.

You can use statistical models to search for informative
patterns in the data. In such models, you assume that the
response variable follows a probability distribution. They
will have unknown parameters that you must estimate from
the data.

Usually you will be interested in how such a distribution
changes under the different observed conditions. You can do
this by allowing one or more parameters in the distribution
to vary with these conditions, the explanatory variables, in
a regression model. Binary and qualitative variables provide
contrasts with some baseline condition, whereas quantitative
variables describe how the response distribution changes per
unit change in such a variable. Interactions allow one vari-
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able to have a different effect depending on the value of an-
other variable.

You will require multivariate models when you wish to
analyse several response variables simultaneously. An im-
portant case occurs when you make repeated measurements
on each subject.

Model selection includes both choosing possible models
for consideration before beginning the study and selecting
among these, or possibly adding new ones, in the light of the
data. The likelihood function tells you how probable your
data are for each model, thus giving you a measure of their
plausibility. In this light, for a given model function, the best
parameter values are the maximum likelihood estimates.

Stepwise testing of models, for example in multiple re-
gression, is wrong because it does not adequately allow for
the uncertainty involved. Use proper model selection cri-
teria, such as the Akaike information criterion. Instead of
using the automatic (stepwise) variable selection procedures
available in software, you should organize your model se-
lection strategy in a scientifically sensible way. Take special
care with missing values, although there is no easy answer.

The classical way of estimating precision is by means of
tests. However, these carry the important assumption that
the models were specified in the protocol. Report actual P-
values instead of just comparing them to some fixed level.
However, a preferable method is to use confidence or cred-
ibility intervals for the parameter estimates. If you did not
state the specific model you are considering in the proto-
col, the only objectively valid intervals of precision are those
based directly on the likelihood function.
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Reporting the results

5.1 Evaluation of the study

5.1.1 Decision making and scientific inference
The studies with which we have been primarily concerned
aim to produce information to further scientific knowledge
or to aid in making decisions as to some course of action.
Because this information must be as objective as possible, I
have emphasized the importance of the accuracy and preci-
sion of the results. However, the statistical material you ac-
cumulate will never be sufficient basis for making a decision
in itself. The role of the statistician is to provide objective in-
formation, not to tell the people in policy-making positions
what decisions to make.

The decision-making process is always complex:

� Decisions are rarely simple. They depend on informa-
tion from several types of observations, not just statistical
ones, and on the relative costs of the alternatives.

� The final decision is often an act of judgement, weighing
political and commercial factors, as well as scientific and
technological ones.
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Formal decision theories, including statistical ones, are al-
most universally designed to explain the choices of a ratio-
nal individual; they are unable to take into account complex
collective factors. They are generally of limited use as an aid
to decision making within industry or government.

Nevertheless, simply producing objective results directly
applicable to such a decision is usually unwise. Generally, it
is advisable also to attempt to reach some understanding of
the underlying process that you are investigating, rather than
only recording, say, the magnitude of some contrast between
treatments and its significance level. In addition, the results
of a study can often be useful in unexpected ways, helping
to resolve questions different from those specified in the pro-
tocol. You should present the results in a form allowing for
these possibilities. Science is an ever-continuing process, re-
lying on a community of critical minds judging results on the
basis of shared information.

5.1.2 Criteria for assessment
Once you have collected and analysed the data, you should
critically assess your study. It is meant to convince others of
the validity of your conclusions; they certainly will closely
scrutinize it. This evaluation will include (Elwood, 1988, p.
164) the following:

� Description of the evidence:
– What is your study design, is it appropriate to your

objectives, and how well did you follow it?
– Does it involve an intervention?
– Was your sample size adequate to detect the relation-

ships you were looking for?
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– What are your eligible and target populations?
– How did you choose the subjects involved?
– What are the rates of missing values and, in an ex-

perimental trial, of compliance, and what biases may
they introduce into the conclusions?

– What relevant explanatory variables do you have and
how accurately did you measure them?

– What is your outcome or primary end-point?
– How can you summarize your main result?
– How appropriate are your (absolute or relative?) com-

parisons among groups?
– Have you provided adequate measures of precision

of estimates?
� Internal validity:

– Is there an effect of observation bias?
– Are all necessary explanatory variables available or

could there be confounding?
– How large is the effect of random variation?
– Is there a correct time relation?
– How strong is the relationship between source of ex-

posure and outcome?
– Does the outcome vary with the magnitude of the

source?
– Are your results consistent within your study?

� External validity:
– Can you apply your results to the eligible popula-

tion?
– To the source population?
– To the target population?

� Comparison with other evidence:
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– Are your results consistent with those from other
studies, particularly similar or more powerful ones?

– Are your results plausible?

In summary, the most important point is that you made all
possible efforts to eliminate biases at the design stage. The
main ways that you have to convince people that you have
done this objectively are:

� to set out your project for the complete study clearly in a
protocol before beginning;

� to randomize wherever necessary and possible;
� to use appropriate instruments;
� to take all possible measures to eliminate missing obser-

vations;
� to carry out analyses appropriate for the data; and
� to draw conclusions justified by the information available.

Design is unquestionably the most important aspect of the
study, because alternative analyses can always be performed
once the data are available, but it will be too late to change
how the data were collected.

When administrative staff are heavily involved, you may
need to take extra care about the quality of the results. Cer-
tain bureaucrats tend to be more concerned with the internal
coherence of results than with their relationship to empirical
reality.

5.2 Interpreting the results

Statistical analysis is based on comparisons, the art being to
choose the relevant ones for the question at hand. Then, once
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you have observed a comparative difference, you will have
several candidate explanations available. The one explana-
tion that is virtually unique to statistics is that the difference
simply arose by chance. The first role of your study is to
provide supportive evidence that such an explanation cannot
be sustained.

However, this may still generally leave you with a vari-
ety of other believable explanations as possibilities. Thus, a
well-designed study should also provide evidence to permit
all but that of interest to be convincingly dismissed in the
interpretation of the results. In other words, it must be pos-
sible to present the results of your study in such a way as to
convince people that they did not arise by chance or by some
unspecified factors not taken into account.

5.2.1 General principles
Chance is at the very foundation of statistical reasoning. This
can lead to certain illusions. Thus, relationships are rarely
deterministic, so that exceptions never prove the rule in statis-
tics. Non-smokers can have lung cancer; adults without for-
mal education may be learned. Such cases demonstrate that
confounding factors are operating that have not been unac-
counted for, although they may usually be much less impor-
tant than the main factors. It is also commonly thought that
‘the errors will balance out’ in statistics. This will never
be true for errors of bias, as when a study is incorrectly
designed. Random sampling errors have decreasing impor-
tance as the sample size increases; biases do not.

Average values are not necessarily normal or typical val-
ues, and will often be impossible: no family has 2.3 chil-
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dren. The variability is essential. A mean only provides an
indication of the location of response values around which
variability occurs, not of what the response should be. In the
same way, a regression line cannot be interpreted as mean-
ing that most or all individuals would be expected to lie on it;
they will not. For example, in normal linear regression, the
estimated constant variance (mean residual sum of squares)
of the model provides the estimate of the variability of the
observed individuals around the line.

Random processes generally tend to produce fairly smooth
single-peaked distributions of responses. Multi-modal distri-
butions and outliers often indicate a mixture of several pro-
cesses that you have not properly distinguished, for example
because you have missed important explanatory variables.
In the same way, a range of ‘normal’ responses will often be
difficult to establish because the range of abnormal responses
will generally show considerable overlap with it.

Take special care with testing procedures.

� Check that you only test hypotheses stated in the protocol.
Otherwise, use model selection procedures.

� Be wary of exceptionally small or large test statistics. The
former, indicating the model fits too well, will raise sus-
picion of cooking the results, but can arise from design
errors. The latter may often be calculation errors unless
the sample is too large.

� Rejecting a null hypothesis does not mean that the alter-
native is true; a P-value is only a measure of doubt about
the hypothesis tested, providing no reasonable indication
of a better one.
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� Statistical significance depends on sample size, not on sci-
entific importance; with a large enough sample, you can
detect the most uninteresting minimal difference.

Testing is generally misused: any idea that occurs to the re-
search worker during analysis of the data is tested. How-
ever, you must formulate hypotheses or models to be tested
in the protocol. If you have, the study is confirmatory, and
strong conclusions can be drawn about the relationships you
have found. Otherwise, it is only exploratory, and you will
require further studies for confirmation of any relationships
discovered.

Other miscellaneous points of confusion and error in pre-
senting results include the following:

� Correlation is not a general term to describe relationships
but a specific technical statistical term; use association or
dependence instead.

� Be careful of the difference between the terms ‘parame-
ter’ and ‘variable’, especially when the audience will be a
mixture of scientists and statisticians.

� Figures in a computer seem very objective; do not forget
the long trail of their human origin.

5.2.2 Design dependencies
A first criterion for interpreting your results is whether you
have used an intervention or not. Only in the former case
can you draw objective empirical conclusions as to causality.
In the case of an experimental trial, you must then consider
to what extent your subjects are representative of some larger
population. This is a question that does not arise for properly
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conducted sample surveys, as long as the number of missing
values is minimal.

In an experimental trial, it is common for the difference
in response between two treatments to remain relatively con-
stant even when substantial differences in the mean responses
are possible. This often provides one argument for the plau-
sibility of generalization to a larger population. On the other
hand, the special attention devoted to a trial may mean that
the treatment is quite unsuited to routine use.

A second criterion is generality of the results. This is
related to replicability. If the study were repeated, would
the same or similar results be obtained? Standard statistical
measures of precision are intended to indicate how reliable
will be the results with replication under identical conditions.
However, generally such replication in identical conditions is
impossible in the study of human beings. Thus the question
widens to determining in what contexts similar results could
be obtained.

Often, you will have included a certain variability of con-
text in the study. This is indicated by stratification in surveys,
and blocks and classification factors in experimental trials.

Depending on the goals of the study, the range of contexts
of interest and applicability will vary:

� Can you assume that the phenomenon you have studied
will be reasonably constant over time?

� In an experimental trial, do the artificial clinical or lab-
oratory conditions inform you about possible results in a
more natural setting?

� Will your conclusions be applicable to other subgroups of



172 Reporting the results

human beings than those you have studied, such as other
cultures?

When you have included a variety of contexts in the design of
a study, it is important to look at interactions between them
and the explanatory variables of particular interest, such as
treatment in a trial. Do these variables have the same rela-
tionship to the response in all contexts? A second possibility
is that responses within each particular context show depen-
dencies, as in clustering, so that you may require a random
effects model.

It is essential to compare your results with those previ-
ously obtained elsewhere. These will generally provide a
wider set of contexts than are available in any one study.
However, be careful because only studies yielding statisti-
cally significant results are generally published, yielding a
publication biasin favour of relationships among variables.

If you have included the appropriate ‘standardized’ treat-
ments in an experimental trial, compare these responses with
those for previously established results in the field.

One convenient method of comparing all studies on a sub-
ject is through an overview ormeta-analysis. This involves
collecting information on all known comparable studies, ide-
ally both published and unpublished, to avoid bias. Then,
you will be able to apply statistical modelling techniques
similar to those for multi-centre trials or multi-stage surveys.
Because of the larger overall sample size, you

� may detect relationships that were not discovered in the
individual studies;
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� should obtain an improved estimate of effect size, and its
precision;

� may resolve disagreements among studies;
� may answer questions not posed at the beginning of the

individual trials.

In performing such an analysis, take care not to obscure dif-
ferences among individual studies.

Never assume that, if some context variable has not been
studied, it has no effect on the response.

5.2.3 Causality
Experimental trials
Randomization of treatment assignments is supposed to guar-
antee that you can draw causal conclusions in an experiment-
al trial. This can, nevertheless, be questioned in a number of
ways.

In trials where you cannot use blinding of the investigator,
your results can be accused of experimenter bias, including
bias in the statistical analysis. One precautionary measure is
to separate the experimental manipulation from the measure-
ment of the response, blinding the latter as to what occurred
in the first step. If no other procedure is possible, you may
want to make available filmed records of the interventions.

When human subjects are involved in an intervention, and
their blinding is not possible, they may react by:

� trying to please the research workers;
� responding in a socially desirable way;
� regarding the experiment as a personal test of knowledge

or character.
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This is closely related to compliance with the treatments be-
ing applied.

If you do not find a causal relation between treatment and
response, this may be because the intervention occurred too
late. The process being treated, such as a chronic disease,
may have been at too advanced a stage to be reversible.

Sample surveys
The dependence or association that you find between vari-
ables in a model does not provide direct empirical evidence
of causality unless your study was an experimental trial. In
observational studies, you can only support causality on non-
statistical grounds. However, the question of causality will
inevitably arise in observational studies, if policy decisions
are to be made. Important points to consider include:

� the temporal order of the association;
� the strength of association between source of exposure

and response;
� the consistency of association among different circum-

stances, people, places, and times;
� the specificity of the response to that association;
� the changing strength of association with changes in the

strength of the source;
� the scientific plausibility of the explanation.

Consider again the problem of linking cancer to smoking,
discussed in Section 1.4.3. A critic might first argue that the
cause is not smoking but the tar and nicotine. This, however,
would require a demonstration that smoking, as we know it,
is possible without them. Smoking and cancer might both be
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causally linked to some forgotten third variable. You can of-
ten rebut such arguments by examining the appropriate sub-
groups; unfortunately, there is no end to the potential list of
such variables.

Where possible, the most powerful strategy, as suggested
in Section 1.4.3, is to spell out the postulated causal mech-
anism in detail before beginning the study. Thus, tobacco
smoke contains substances that can cause cancer by contact.
This has the following implications:

� The risk of cancer should increase with:
– the length of time a person smokes;
– the number of cigarettes a person smokes in a given

period of time.
� Specific behavioural patterns should alter the risk:

– stopping smoking should lower it, or at least stop it
from increasing;

– using filter-tipped cigarettes should lower it;
– non-smokers in frequent contact with smokers should

raise it.
� Cancer should tend to be localized to contact areas:

– cancer tends to occur in the lungs;
– pipe and cigar smokers who do not inhale have high

rates of lip cancer.
� Finally, smokers should have higher risk of other respira-

tory diseases.

If you could demonstrate all of these relationships, then they
would provide a coherent whole yielding a strong argument
even although you have no direct empirical evidence of a
causal relationship available.
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Paradoxically, different results from a different type of
observational study will not refute the original evidence for
causality, but the same results from the same form of study
will not invariably strengthen the evidence. When summa-
rizing the results of such a study that shows an association
consistent with a causal hypothesis, list and discuss all al-
ternative explanations of the results. An observational study
can only end with an opinion about causality, not a proof.

5.3 Writing the report

5.3.1 Presenting the case
Good statistics involves principled argument that conveys an
interesting and credible message. If your report is not inter-
esting, no one will read or talk about it. Thus, it should not
be pointlessly formal, concentrating on hypothesis tests, but
rather make appealing claims based on intelligent interpreta-
tion of the appropriate evidence from empirical observations.
Your report will be scientifically interesting if it has the po-
tential to change what scientists, or decision makers, believe
about the phenomenon under study (Abelson, 1995).

For this to be possible, your report must be:

� reasonably brief;
� clearly written in an appropriate style, avoiding long and

technical words;
� well organized and coherent;
� supported by appropriately informative tables and graph-

ics where necessary;
� adequately referenced;
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� free of errors.

Reading your report should be a stimulating and satisfying
experience.

Scientific beliefs can be modified by strengthening, weak-
ening, or altering existing ones or creating new ones. Re-
search should be surprising in order to have the potential
for such change. For this to be possible, you must show
that your research has been conducted without flaws and that
your claims are not too incredible to be true. Research issues
that are currently considered to be important generally have
greater potential to generate change.

The writer(s) of a report must expect that it will come un-
der attack, and be prepared for it. The first line of attack is
usually methodological: critics will argue that your design
or analysis is flawed. Major criticisms will include:

� lack of or inadequate randomization;
� key missing explanatory variables;
� unrepresentative subjects to allow generalization;

in addition to the usual technical details. Successful rebuttal
will depend on providing appropriate details of your research
design and your statistical analysis. Thus, your study can
only be judged on the information included in the report(s).
No reader should be expected to assume that a study was
properly designed, executed, and analysed without it being
clearly demonstrated in the report. In particular, you must
show that you took all possible measures to reduce biases.

Make plans for writing, including individual responsibili-
ties, early, preferably in the protocol. You may prepare a list
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of possible reports, ranked in order of importance in relation
to the aims of your study. Most writing effort will require
team work. The team for each report should have a desig-
nated chief and should be composed of members with the
required expertise. If questions of design and data analysis
are involved, you should include a statistician.

5.3.2 Basic structure
The basic sections of a technical report are usually the fol-
lowing:

� title;
� material and methods– the study design and statistical

models;
� results– analysis and presentation;
� discussion– interpretation.

However, it is often preferable to provide a summary of the
main results and conclusions at the beginning so that the
reader does not need to search for them.

The structure of a scientific paper, essentially similar to
that just described, is generally as follows:

� title;
� abstractor summary of your main results;
� introduction, recalling relevant previous research and jus-

tifying your objectives in the present work;
� methods, describing exactly what you did, that is, the pro-

tocol and how you followed it;
� results, describing what you discovered;
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� discussion, interpreting your results and drawing implica-
tions;

� referencesto related publications in the field;
� occasionally anappendix, containing more technical and

detailed supporting material.

All sections, except the discussion that gives the authors’
opinions, are supposed to be objective. Each journal has its
particular style, with published guidelines; these should be
followed.

The first step in the actual writing process will be to pro-
duce an outline listing the main points to be covered. It is
often easiest to do this in the chronological order in which
you conducted the study. You can rearrange the points in
a more appropriate didactic order later. From this first out-
line, connections, gaps, and incongruencies should become
apparent. Next, you can compose a first draft.

A major problem in revision is that you will be too close
to the material and lack a wider perspective. You can gain
some distance by:

� leaving the draft a week or two;
� reading it to someone and seeing where further explana-

tions are necessary;
� having someone else critically read it.

Try to place yourself in the position of the reader. Remem-
ber that,when the reader cannot understand something, it is
always your fault.

Most readers will want to master the main results, and the
nature of the argument, along with its limitations. Few will
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be interested in all the details. They may have to present a
summary to their boss or colleagues.

5.3.3 Protocol and design
Your title should be short, but not cryptic, and to the point, at-
tracting attention to the specific points covered by your study.
The abstract is especially important because many readers
will go no further, but draw their conclusions from the infor-
mation in it. Thus, it should contain an accurate summary of
the principal findings, with little said of design or of inter-
pretation.

The objectives of the study should be clearly stated.
Present as much detailed information on the way in which

your study was conducted as is necessary for readers to judge
the validity of your conclusions. This should include:

� your main response variable, or end-point;
� your hypotheses or models, as defined in the protocol;
� how you calculated sample size;
� the types of subjects, including their source, exclusion cri-

teria, and how you selected them;
� how you performed randomization;
� in trials, blinding and controls;
� the types of observations and the measurement techniques

that you used;
� numbers of missing values, and any reasons why they

might or might not reasonably be assumed to be random;
� in trials, the rate of non-compliance.
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For example, it is not sufficient to state that your study used
randomization or blinding; you must describe the exact tech-
niques applied. For a survey, clearly state whether it is retro-
spective, cross-sectional, or prospective.

Provide adequate details of the hypotheses and models
specified in the protocol; clearly distinguish these from any
that you developed by exploratory analysis in the light of the
data.

5.3.4 Analyses
Present statistical analyses in sufficient detail so as to be un-
derstandable and so that a reader with access to the raw data
could repeat them. Give details of the types of statistical
models used and why. Identify complex methods unam-
biguously, including the software used. It is not sufficient
to say that you used analysis of variance or multiple regres-
sion. When you applied several techniques, it should be clear
which you used where.

Do not analyse repeated measurements on the same in-
dividuals as if the observations were independent (Section
4.3.3). In a related context, give details of how you han-
dled any dependence induced by clustering and how you per-
formed weighting if you used variable sampling fractions in
a stratified sample.

Give good reasons for excluding any outlying observa-
tions.

Estimates and precision
Give parameter estimates, and measures of their precision,
along with a concise description of the model from which
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they come. Take care that parallel sets of results are not in
contradiction, but also that they are not identical (perhaps
through copying errors).

In normal models, you can indicate the precision of pa-
rameter estimates by placing the standarderror in parenthe-
ses (not�). In non-normal models, measures of precision
will not be symmetric about the estimates so that standard
errors are approximate at best and often misleading. Where
possible, give likelihood-based intervals.

Do not confuse standard deviations and standard errors.
Only use each in its appropriate places. Except for models
based on the normal distribution, they are approximations.
The standard deviation is a direct estimate of variability in
the population, whereas the standard error is a description
of the precision of some estimate (that could be a standard
deviation).

Tests
Generally, avoid tests in favour of intervals of precision for
parameters. When you do use them, state the type of test
statistic. In scientific work, indicating that a test was sig-
nificant, for example, at the 5% level, without giving the P-
value, is unacceptable, although it may be sufficient in some
decision-making contexts. However, never present results
simply as P-values, without the estimates. The former give
absolutely no indication of how strong some relationship is.

A statistically significant result does not mean that it is
of any practical importance, nor does it even prove that the
relationship is real. Nor does a non-significant result tell you
that there is no relationship, only that you have not been able



5.3 Writing the report 183

to detect one, that is, that chance may be the reason for the
observed relationship.

Do not perform significance tests based on ideas suggested
by an examination of the data. For example, testing the dif-
ference between the largest and smallest of a set of means is
not valid.

If you make enough tests, you will find some to be sig-
nificant. Report all the tests made, not just the significant
ones; otherwise, you are committing fraud. For example, in
an experimental trial, you may measure the end-point in a
number of ways, not all reaching the same significance level
for differences between treatments.

5.3.5 Results and conclusions
Describe the data adequately, especially the important vari-
ables. Never give calculated values to an unreasonable num-
ber of decimal places, as compared to the way measurements
were made. State the number of individuals used for each
calculation. Scatter-plots or histograms may be more useful
than descriptive statistics. For profiles of repeated measure-
ments, join the points for individuals over time.

Give the characteristics of non-responders and drop-outs.
In experimental trials, thoroughly document and discuss both
non-compliance and any side effects from the interventions.

Simple descriptive statistics may serve to illustrate results
from more complex analyses that the general reader can-
not be expected to understand. (However, clearly document
those complex analyses.) Where possible, graphical presen-
tations are usually more understandable than complex equa-
tions. This is especially true for survival data where you can
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plot survival curves. For regression lines, also show the in-
dividual observation points.

In experimental trials, describe objectively what happened
to subjects on each treatment.

In complex regression models for surveys, compare the
dependence relations for each important explanatory variable
with the simple dependence of the response on that variable
separately. The latter gives an estimate of the direct depen-
dence in the population, whereas the former is conditional on
all other variables in the model, that is, ‘all other things be-
ing equal’. The two may even differ in sign. Clearly explain
the meaning of differences between the two.

Your discussion section will provide interpretation of the
results of your study, ideally in the context of previous work.
The degree to which your conclusions are convincing will
depend on a number of factors:

� themagnitudeof the relationships measured, as compared
to their precision;

� the amount ofdetailprovided about the observed relation-
ships;

� the evidence forgeneralityof application of your results;
� theinterestthat your research can generate, usually by up-

setting widely held beliefs;
� the credibility of your claims, based on methodological

soundness and theoretical coherence

(Abelson, 1995).
The organizers of a study should not lose interest just be-

cause no important relationships are found, so-called ‘nega-
tive’ results.If the sample was sufficiently largeso that a re-
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lationship of interest would have been detected if it existed,
this, in itself, is an important finding and you should report
it.

You can draw conclusions as to possible applications, in-
cluding limitations of generalizability, and to future research.
Justify these from the results obtained! It is always helpful
if you frankly discuss the deficiencies of the trial; this lends
credibility to your conclusions.

5.4 Publication and dissemination

Subject any type of report to rigorous internal review before
making it public. You should first:

� check the spelling, punctuation, and grammar;
� verify that tables, graphs, and equations are correct;
� independently have key statistical analyses redone, if fea-

sible;
� double-check information from other publications.

Then, a wider review within the organization should reveal
areas of confusion and missing information.

In large studies, you may create a special committee to
supervise this process. If possible, distribute the final draft
to all members of the investigative group. In certain circum-
stances, you may also wish to seek external comments.

Once you have completed your study and made your re-
sults public, if possible, release your data for research pur-
poses such as secondary analyses. Often, they can be placed
in an independent repository with easy access, for example
through the internet. However, take great care to conserve
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the privacy of the individuals involved. In most cases, you
can release the questionnaires, data forms, and design details
even much earlier.

Publication of a study may lead to requests for supple-
mentary analyses. Pursue any that may shed additional light
on your results. If the data are publicly available, you can
simply refer some requests back to the requesters for inde-
pendent analysis.

Publication of results can lead to political reactions, espe-
cially if your conclusions are not in accord with the accepted
view. Be prepared to face:

� burying unfavourable results in a mass of detail;
� changing definitions;
� discrediting the authors of the report.

In extreme cases, publication may not be allowed in the first
place.

5.4.1 Technical reports
Many studies are conducted in order to make policy deci-
sions, whether in government or in private industry. The re-
sult is often an internal technical report that is not widely
distributed. However, the drive to produce valid and objec-
tive results may be much stronger than in scientific publish-
ing because concrete actions will be taken. If the results of
the study prove to be wrong, the organization involved, and
hence also the persons producing the report, will often suffer
the consequences, a rather strong incentive.

In certain contexts, as when seeking authorization to com-
mercialize some product that has been tested in an experi-



5.4 Publication and dissemination 187

mental trial, the submission must take a strict form and sup-
ply all evidence available. Guidelines are generally available
on request from the appropriate authorities.

5.4.2 Scientific journals
If the study is conducted as scientific research, the customary
procedure is to attempt to publish it in an appropriate refer-
eed scientific journal. You will have to make certain choices
as to the form:

� One major publication or a series of small articles.
� A relatively general or a specialty journal.

Your choice should depend on the nature of your study and
on the type of audience it may be expected to interest.

Such publication will enable your results to be rapidly dis-
seminated throughout the world. Because such papers are
refereed by peers, such publication implies that the results
are scientifically sound and worthwhile. Unfortunately, real-
ity is far from this ideal, often because of defects in design
or analysis of the study not detected by this quality control
process.

This form of publication is preferable to having your study
appear in an edited collection of articles in book form. The
latter will be less widely distributed, and often difficult for
interested readers to locate. On the other hand, when the
subject of a study is of lasting interest, not requiring urgent
dissemination, a monograph form may be preferable.

Never publish interim results of your experimental trial if
the trial is continuing. This can bias the responses still to



188 Reporting the results

come and, in any case, your final results may contradict the
interim ones.

In a properly designed study, so-called ‘negative’ findings,
of no relationship among key variables, can be as important
as ‘positive’ ones. They do not indicate failure of a study.
However, editors are generally very reluctant to publish the
former. (It can be argued that they are responsible for fraud.)
On the other hand, repeating a study often enough will in-
evitably lead to a significant result at random (for example,
one in 20 times at a 5% significance level). That result will
then be published, even although there is no basis to it, and
the others ignored.

This publication bias is accentuated by the excess of small
studies made in certain fields. The few that are published
have a high chance of being false positives. Furthermore, it
is often difficult to publish confirmatory studies that simply
validate previous published findings.

One of the driving forces of scientific research is the re-
sulting prestige for the successful research workers. At the
same time, much research published in this way has no im-
mediate concrete consequences and its validity is difficult to
check. Consciously or unconsciously, these factors can in-
fluence both the decision to publish and the opinions of ref-
erees.

5.4.3 Oral presentations
Talks may be required in order to present your results to the
sponsors, as well as at scientific meetings. Their advantages
over a written report include:

� providing direct contact between you and the public;
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� transmitting enthusiasm for the research;
� allowing questions, answers, and discussion.

Presenting a good talk is a matter of practice. It requires:

� confidence and enthusiasm from the beginning;
� proper planning and timing, perhaps with rehearsal;
� clarity and accuracy;
� emphasis of key points, including conclusions and recom-

mendations;
� appropriate supporting materials.

Talks usually are limited in time so that you can only present
the basic procedures and major results. Unfortunately, this
leaves wide scope for bias.

For most audiences, omit the technical details of your sta-
tistical modelling, or leave them to the question period. Your
presentation should cover:

� specification of your problem;
� your approach;
� your results;
� the implications.

You will have to omit or briefly summarize your detailed
findings. Discussion of the implications should relate specif-
ically to the interests of the audience.

Visual aids should highlight your key ideas, not distract
the audience by their technical complexity. They are meant
to help to capture and hold the audience’s attention to your
ideas – the message, not the medium. Arrive early and check
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that you can use the equipment, such as the projector and mi-
crophone. Have a back-up plan in case of equipment failure,
either before or during your presentation.

Show the main points of the presentation by means of an
overhead projector, a slide projector, or the projection of a
computer screen. Slides, computers, and videos may look
more high-tech and professional but they generally require a
dark room that cuts down contact between you and the audi-
ence and may put them to sleep.

To look professional, do not use handwritten material. Be-
tween 25 and 30 transparencies would be the maximum for
an hour’s presentation. Each should contain minimal, but
key, information,large enough to be read. It should allow
the audience easily to follow the argument, to grasp your
point, and to focus on key ideas that you can then explain in
more detail. Do not read the material on the transparencies
to the audience. Take care not to get in the way and block the
projection of the transparencies onto the screen. Leave each
transparency long enough for people to study it. If you must
provide additional explanations on a board, write slowly, us-
ing large, clear characters.

Avoid tables of numbers in favour of more graphical sum-
maries of the data. Make sure that they fit on the screen,
that the axes, symbols, and legends are readable at the back
of the room. Do not assume that a graph is clear to the audi-
ence; describe what you are displaying and point out obvious
patterns.

If you are not an experienced speaker, practice the talk,
perhaps in front of a mirror. This will allow you to:
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� identify peculiar hand and body motion;
� isolate difficult language problems requiring careful phras-

ing;
� time the talk (although it will always take longer than you

think).

Taping the presentation in front of friendly critics may also
be useful to discover strange speech habits. The critics can
tell you which parts are unnecessary or unclear. Listen to
professional speakers to discover what effective methods they
use.

Start the talk with a clear voice and a confident stance
to command the attention of the audience. Be calm and
friendly. Do not apologize for being a poor speaker.Speak
slowly. Vary the level of your voice and the rate of speaking
to emphasize different points appropriately and to retain the
attention of your audience. Project your enthusiasm for the
material and your pride in your work. Watch the audience
to see how they are reacting and adjust you presentation ac-
cordingly. If they look puzzled, slow down and explain; if
they are bored, skip through to something more interesting.

If you find yourself running out of time, do not speak
faster. Instead, abandon large portions of the material, ac-
cording to a plan prepared ahead of time. Lack of time may
happen because of:

� your poor preparation;
� questions during your talk;
� bad planning on the part of the organizers;
� previous speakers running over their time.
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Finish early or on time, even if you must start late. Even if
the chairperson does not cut you off, the audience will react
negatively.

If there is time for questions, listen attentively and take
notes if necessary. Remain friendly, even to hostile ques-
tions. Repeat the question to make sure that you have un-
derstood and that everyone has heard. Answer briefly and
directly. Humility is usually appreciated during questions
and discussion. After the talk, seek out criticism that may
aid you the next time.

You know and understand your material; the audience does
not. Do not read or memorize the presentation, but use what
is on the slides as prompts. Avoid jargon and technical words.
Allow time for questions, either during the talk or at the end.
Always remember that the audience will not be familiar with
the specific work that you have done, so that you must in-
clude many apparently obvious details. Talks more often are
too complex than too simple. Know your audience and adapt
the presentation to them.

5.5 Summary

Both decision making and scientific inference are complex
processes. Good statistical methods can aid in both, but are
not sufficient in themselves.

Once a study is completed, you will need to evaluate it
critically; the people who will read your reports certainly
will. Many common statistical procedures are badly mis-
used; take care with these. Check that the conclusions you
will draw are compatible with the design that you used. Even
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although you did not use an experimental trial, you may be
expected to draw causal conclusions. Be prepared.

You should follow the basic structure of either a technical
report or a scientific paper so that your results can be clearly
understood.

Many studies are only for internal use in the organization
for which they were carried out. Nevertheless, if your results
are important, try to disseminate them more widely. Techni-
cal reports, scientific papers, monographs, and oral presen-
tations are the principal means available. Choose the appro-
priate ones for your material and audience.

Good research methodology, from initial design to final
presentation of conclusions, is essential in order to protect
against criticism and to make a contribution to the body of
scientific knowledge that may have some potential for the
advancement of human welfare.
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