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PREFACE 

This book developed out of a desire for a sampling course that would fit 
easily into a graduate program in statistics. Survey sampling is a relatively 
young discipline, achieving acceptance in the 1940’s and 1950’s, primarily for 
official statistics. As the discipline has matured, analytic use of survey data 
has increased inside and outside government. Also statistical models, such as 
those for nonresponse and for small area estimation, are now considered part 
of survey methodology. As a result, the overlap between survey sampling and 
other areas of statistics has increased, and the mutual dependence makes it 
important that survey sampling be an integral part of statistics. 

Originally, survey sampling was differentiated from other areas by the size 
of the data sets and by the number of estimates produced. In such a setting 
survey statisticians prefer techniques with broad applicability, and that require 
a minimum of assumptions. Procedures are sought that are nearly design 
unbiased, but no claim of optimality is made for a particular statistic. These 
standard survey techniques are introduced in Chapter One. I have adopted a 
tenor and notation similar to statistics texts in other specialities to make the 
material more accessible to those with limited exposure to survey sampling. 
Some of the technical material in Section 1.3 can be omitted or covered at 
a later point. Basic sampling concepts are introduced in a way to facilitate 
application of model based procedures to survey samples. Likewise, models 
are used in constructing estimators and in discussions of designs in Chapter 
Two and Chapter Three, respectively. Chapter Five is devoted to procedures, 
such as nonresponse adjustment and small area estimation, where models play 
a central role. To be comfortable with the material the reader should have 
completed courses in the theory of statistics and in linear regression. 

Survey data are now regularly used for the estimation of a parameter 0 of 
a subject matter model. Such estimation is discussed in Chapter Six. The 
problem will be familiar to most statisticians, but complex survey designs 
complicate the analysis. 

Our primary experience has been with survey samples of populations such 
as the residents of the state of Iowa or the land area of the United States. 
Thus our unconscious frame of reference will be such surveys. Likewise 

ix 



X PREFACE 

the majority of our experience has been in the production of “general use” 
databases rather than analytic study of a limited number of characteristics. 

I am indebted to a number of former students, coworkers, and friends for 
corrections and improvements. F. Jay Breidt made sizeable contributions to 
Chapter One. Emily Berg, Yu Wu, Nicholas Beyler, and Pushpal Mukhopad- 
hyay assisted in computing examples. Chris Skinner, Jae-Kwang Kim, and 
Mike Hidiroglou made suggestions that led to numerous improvements. Jean 
Opsomer used portions of the manuscript in his class and provided valuable 
feed back. I am particularly grateful to Jason Legg who used the manuscript 
in a class, corrected a number of errors and contributed to Chapter Three and 
Chapter Five. 

Appreciation is expressed for the support provided by the Center for Survey 
Statistics and Methodology and the Department of Statistics, Iowa State Uni- 
versity. I thank Glenda Ashley and Sherri Martinez for typing the manuscript 
and Ozkan Zengin for editing and for technical support on HTg.  

Wayne A. Fuller 

Ames, Iowa 
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CHAPTER 1 

PROBABILITY SAMPLING FROM A 
FINITE UNIVERSE 

1 .I  INTRODUCTION 

A large fraction of the quantitative information that we receive about our econ- 
omy and our community comes from sample surveys. Statistical agencies of 
national governments regularly report estimates for items such as unemploy- 
ment, poverty rates, crop production, retail sales, and median family income. 
Some statistics may come from censuses, but the majority are based on a 
sample of the relevant population. Less visible statistics are collected by 
other entities for business decisions, city planning, and political campaigns. 
National polls on items beyond politics are regularly reported in newspapers. 
These reports are so common that few reflect on the fact that almost all people 
believe that something interesting and (or) useful can be said about a nation 
of 300 million people on the basis of a sample of a few thousand. In fact, 
the concept that a probability sample can be so used has only been accepted 
by the scientific community for about 60 years. In this book we study the 
statistical basis for obtaining information from samples. 

Sampling Statistics. By Wayne A. Fuller 
Copyright @ 2009 John Wiley & Sons, Inc. 
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2 PROBABILITY SAMPLING: FINITE UNIVERSE 

In this chapter we develop a probabilistic framework for the study of 
samples selected from a finite population. Because the study of estimators 
often requires the use of large-sample approximations, we define sequences 
of populations and samples appropriate for such study. 

1.2 PROBABILITY SAMPLING 

Consider a finite set of elements identified by the integers U = { 1, 2, . . . , N } .  
The set of identifiers, sometimes called labels, can be thought of as forming 
a list. The existence of such a list, a list in which every element is associated 
with one and only one element of the list, is the cornerstone of probability 
sampling. The list is also called the sampling frame. In practice, the frame 
takes many forms. For example, it may be a list in the traditional sense, such 
as the list of employees of a firm or the list of patients in a hospital. It is 
sometimes the set of subareas that exhaust the geographic area of a political 
unit such as a city or state. 

Associated with the j th element of the frame is a vector of characteristics 
denoted by yj. In all of our applications, the yj are assumed to be real 
valued. The entire set of N vectors is denoted by 3. The set is called afinite 
population or afinite universe. A sample is a subset of the elements. Let A 
denote the set of indices from U that are in the sample. In statistical sampling 
the interest is in the selection of samples using probability rules such that the 
probability characteristics of the set of samples defined by the selection rules 
can be established. Let A denote the set of possible samples under a particular 
probability procedure. A person who wishes to obtain information about a 
population on the basis of a sample must develop a procedure for selecting 
the sample. 

The terms random samples and probability samples are both used for 
samples selected by probability rules. Some people associate the term random 
sampling with the procedure in which every sample has the same probability 
and every element in the population has the same probability of appearing in 
the sample. 

1.2.1 Basic properties of probability samples 

In this section we present some basic properties of statistics constructed 
from probability samples. In the methods of this section, the probabilistic 
properties depend only on the sampling procedure. The population from 
which the samples are selected is fixed. Let A be a subset of U and let A be 
the collection of subsets of U that contains all possible samples. Let P [ A  = a] 
denote the probability that a, a E A, is selected. 
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Definition 1.2.1. A sampling design is a function p ( . )  that maps u to [0, 11 
such that p ( u )  = P [ A  = u] for any a E A. 

A set of samples of primary importance is the set of all possible samples 
containing a fixed number of distinct units. Denote the fixed size by n. Then 
the number of such samples is 

N !  (:) = ( N  - n)!n! ' 
(1.2.1) 

where N !  = 1 x 2 x . . x N .  
A probability sampling scheme for samples of fixed size n assigns a prob- 

ability to each possible sample. Simple random nonreplacement sampling 
assigns equal probability to each possible sample. We may occasionally refer 
to such samples as simple random samples. The inclusion probability for 
element i is the sum of the sample probabilities for all samples that contain 
element i; that is, 

7ri = P(i E A )  = C p ( u ) ,  
a+,) 

where A(i) is the set of samples that contain element i. 
The terms selection probability, probability of selection, and observation 

probability are also used. In simple random nonreplacement sampling, ele- 
ment i appears in 

(:>( :I;) (1.2.2) 

samples. If every sample has equal probability, the probability of selecting 
element i is 

7ri = [(;)I-'( ;I;) = " n 
(1.2.3) 

In discussing probability sampling schemes, we define indicator variables 
to identify those elements appearing in the sample. Let Ii be the indicator 
variable for element i. Then 

(1.2.4) I ,  = 1 if element i is in the sample 

Let d = (11, 12, . . . , Iiv) be the vector of random variables. The probabilis- 
tic behavior of functions of the sample depends on the probability distribution 
of d. The sampling design specifies the probability structure of d, where the 
inclusion probability for element i is the expectation of Ii,  

= 0 otherwise. 

7ri = E ( I 2 ) .  (1.2.5) 
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With this notation, the sum of characteristic y for the elements in the sample 
is 

N 

sample sum = C liy i .  (1.2.6) 
i=l 

The set A is the set of indices appearing in the sample. Thus, 

A = { i € U : I i = I } .  (1.2.7) 

Then the sample sum of (1.2.6) can be written 

N 

(1.2.8) 
i=l iEA 

The joint inclusion probability, denoted by Tik, for elements i and k is the 
sum of sample probabilities for all samples that contain both elements i and k. 
In terms of the indicator variables, the joint inclusion probability for elements 
i and k is 

For simple random nonreplacement sampling, the number of samples that 
contain elements i and k is 

(:>( :>( z) (1.2.10) 

and 

The number of units in a particular sample is 

N 

n = C ~ i ,  

i=l 

(1.2.12) 

and because each Ii is a random variable with expected value ~ i ,  the expected 
sample size is 

N N 

E { n }  = C E { I i }  = X T ~ .  (1.2.13) 
i= 1 i= 1 
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Also, the variance of the sample size is 

I N  N N  

i= l  k = l  

where rii = ri. If V { n }  = 0, we say that the design is ajixed sample size or 
jixed-size design. It follows from (1.2.14) that 

N N  

(1.2.15) 

for fixed-size designs. Also, for fixed-size designs, 

N 

Discussions of estimation for finite population sampling begin most easily 
with estimation of linear functions such as finite population totals. This is 
because it is possible to construct estimators of totals for a wide range of 
designs that are unbiased conditionally on the particular finite population. 
Such estimators are said to be design unbiased. 

Definition 1.2.2. A statistic 8 is design unbiased for the finite population 
parameter 8, = 8 ( y l ,  y2, . . . , y N )  if 

for any vector ( y l ,  yz, . . . , y N ) ,  where E{8 I F}, the design expectation, 
denotes the average over all samples possible under the design for the finite 
population F. 

Probability sampling became widely accepted in the 1940s. For a number 
of years thereafter, sampling statisticians who considered estimation problems 
approached design and estimation problems by treating the N unknown values 
of the finite populat.ion as fixed values. All probability statements were with 
respect to the distribution created by the sample design probabilities. Thus, 
in many discussions in the sampling literature the statement that an estimator 
is “unbiased” means design unbiased for a parameter of the finite universe. 
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The concept of a linear estimator is also very important in estimation theory. 
Often, modifiers are required to fully define the construct. If an estimator e 
can be written as 

e = c w i y i ,  (1.2.17) 
iEA 

where the wi are not functions of the sample y’s, we say that the estimator 
6 is linear in y. In the statistical theory of linear models, estimators of the 
form (1.2.17) are called linear estimators provided that the wi are fixed with 
respect to the random mechanism generating the y values. Thus, the model 
specification for the random process and the set of samples under consideration 
define the statistical linearity property. We will have use for the concept of 
linearity relative to the design. 

Definition 1.2.3. An estimator is design linear if it can be written in the form 
(1.2.17) or, equivalently, as 

where the wi are fixed with respect to the sampling design. 

Observe that for a given finite population, the vector ( w ~ y l ,  w2y2, . . . , 
wNyN) is a fixed vector and the elements of the vector are the coefficients of 
the random variables Ii. 

The design mean and design variance of design linear estimators are func- 
tions of the selection probabilities. In Definition 1.2.2 we introduced the 
concept of the expectation over all possible samples for a particular finite 
population 3. We use V { e  1 3) to denote the analogous design variance. 

Theorem 1.2.1. Let (yl ,  92: . . . ? yN)  be the vector of values for a 
finite universe of real-valued elements. Let a probability sampling procedure 
be defined, where 7ri denotes the probability that element i is included in the 
sample and i7ih denotes the probability that elements i and k are in the sample. 
Let 

be a design linear estimator. Then 

N 

( 1.2.1 8) 
i=l 
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and 
N N  

i = l  k = l  

where T i k  = ~i if i = k .  
If V(n)  = 0, then V{e  1 F} can be expressed as 

Proof. Because E { I i }  = ~i and because w i y i ,  i = 1, 2, . . . , N ,  are fixed, 
we have 

N N 

and (1.2.18) is proven. In a similar manner, and using E { & I k }  = T i k ,  we 
have 

i = l  k = l  

and (1.2.19) is proven. Also see Exercise 1. 

obtain 
To prove (1.2.20) for fixed-size designs, expand the square in (1.2.20) to 
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The result follows because Cf=,(Tik - 7rjTk) = 0 for fixed-size designs. See 
(1.2.14). I 

We have stated Theorem 1.2.1 for scalars, but the results extend immedi- 
ately to vectors. If y i  is a column vector and 

iEA 

the covariance matrix of 8 is 

N N  

i=l k=l 

Two finite population parameters of particular interest are the finite popu- 
lation total, 

N 

TY = CYi = &' 
iEU i=l 

(1.2.21) 

and the finite population mean, 

yN = N - ~ T ~ .  (1.2.22) 

If ~i > 0 for all i, the design linear estimator of the total, 

(1.2.23) 

is design unbiased. The estimator (1.2.23) is known as the Horvitz-Thompson 
estimator and is sometimes called the T estimator. See Horvitz and Thompson 
(1952) and Narain (1951). The corresponding design-unbiased estimator of 
the mean is 

Y H T  = N-'TY (1.2.24) 

The properties of the Howitz-Thompson estimator follow from Theorem 
1.2.1. 

Corollary 1.2.1.1. Let the conditions of Theorem 1.2.1 hold, let 7ri > 0 for 
all i, and let the design linear estimator of Ty be Fy of (1.2.23). Then 

E{py IF} = Ty (1.2.25) 
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and 

N N  

If V { n }  = 0, then V { ( ,  - Ty) I F} can be expressed as 

N N  

(1.2.28) 

i f k  

Proof. Results (1.2.25), (1.2.26), and (1.2.28) follow from (1.2.18), (1.2.19), 
and (1.2.20), respectively, by substituting wi = rtF1. 

To show that (1.2.27) is equal to (1.2.26) for fixed-size designs, observe 
that 

N N  

i=l k = l  

From (1.2.16), x r = 1 T i k  = nri. Thus, 

N N N 

i= 1 k = l  i = I  

and (1.2.27) is equal to 

N N  

i=l k=l  

The Horvitz-Thompson estimator is an unbiased estimator of the total, 
but it has some undesirable features. The estimator is scale invariant but not 
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location invariant. That is, for real Q, ,8 not zero, 

iEA iEA 

but 

c 7r;yyi + a)  
iEA iEA i E A  

= c 7r;1yi + Q c q 1 .  (1.2.29) 

The second term of (1.2.29) is N a  for many designs, including equal- 

a nondegenerate random variable. 
The lack of location invariance restricts the number of practical situations 

in which the Horvitz-Thompson estimator and unequal probability designs 
are used. One important use of unequal probability sampling is the situation 
in which the 7ri are proportional to a measure of the number of observation 
units associated with the sampling unit. 

Example 1.2.1. Assume that one is interested in the characteristics of 
households in Des Moines, Iowa. A recent listing of the city blocks and the 
number of dwelling units in each block is available. On the presumption that 
the number of households is strongly correlated with the number of dwelling 
units, we might select a sample of blocks with probability proportional to 
the number of dwelling units. Assume that all households in the block are 
observed. In this situation, the fact that the Horvitz-Thompson estimator 
is not location invariant is relatively unimportant because we are interested 
in the properties of households, not in the properties of linear functions of 
blocks. It was in a context such as this that unequal probability sampling was .. 

probability fixed-sample-size designs. However, CzEA xi -1 is, in general, 

first suggested. See Hansen and Hunvitz (1943). 

The fact that the Horvitz-Thompson estimator is not location invariant has 
another consequence. Associated with each sampling unit is the characteristic, 
which is always 1. The population total for this characteristic is the number 
of sampling units in the population. The Horvitz-Thompson estimator of the 
population size is the coefficient of a in (1.2.29), 

i E A  

with variance 

N N  
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Although there are situations in which N is unknown, in many situations N is 
known. Therefore, the fact that the estimator of the population size is not equal 
to the true size suggests the possibility of improving the Horvitz-Thompson 
estimator. We pursue this issue in Section 1.3 and Chapter 2. 

Under the conditions that ~i > 0 for all i and T i l ,  > 0 for all i and k ,  it is 
possible to construct a design-unbiased estimator of the variance of a design 
linear estimator. Designs with the properties 7ri > 0 for all i and 7rik > 0 for 
all ik are sometimes said to be measurable. 

Theorem 1.2.2. Let the conditions of Theorem 1.2.1 hold with X i k  > 0 for 
all i, k :  E U .  Let 6 be a design linear estimator of the form (1.2.17). Then 

is a design-unbiased estimator of V(8 I F}. If V { n }  = 0, 

is a design-unbiased estimator of V(6 I F}. 

Proof. Let g(yi, y k )  be any real-valued function of (yi, yk). Because 
T i k  > 0 for all (i, k ) ,  it follows by direct analogy to (1.2.18) that 

N N 

Tt<’g(gi? y k )  I F = xg(!/i> y k ) .  (1.2.34) .Ic i , k E A  1 i=l k=l  

Result (1.2.32) is obtained from (1.2.34) and (1.2.19) by setting 

g(yi, y k )  = ( T i k  - T z T k ) w i y i w k y k .  

Result (1.2.33) follows from (1.2.34) and (1.2.20) by setting 

2 
g($’i, y k )  = ( T i k  - T i T k )  (wiyi - w k y k )  . 

The estimator (1.2.32) for estimator (1.2.19) is due to Horvitz and Thomp- 
son (1952), and the estimator (1.2.33) was suggested by Yates and Grundy 
(1953) and Sen (1953) for estimator (1.2.20). 

Theoretically, it is possible to obtain the variance of the estimated variance. 
The squared differences in (1.2.33) are a sample of all possible differences. 



12 PROBABILITY SAMPLING: FINITE UNIVERSE 

If we consider differences (wiyi - ~ k y k ) ~ ,  for i # k there is a population of 
N(N - 1) differences. The probability of selecting any particular difference 
is 7rik.  The variance of the estimated difference is a function of the 7rik and 
of the probability that any pair of pairs occurs in the sample. Clearly, this 
computation can be cumbersome for general designs. See Exercise 12. 

Although design unbiased, the estimators of variance in Theorem 1.2.2 
have the unpleasant property that they can be negative. If at least two values 
of 7rt:'yi differ in the sample, the variance must be positive and any other 
value for an estimator is unreasonable. 

The Horvitz-Thompson variance estimator also has the undesirable prop- 
erty that it can give a positive estimate for an estimator known to have zero 
variance. For example, if yi is proportional to 7ri ,  the variance of Ty is zero for 
fixed-size designs, but estimator (1.2.32) can be nonzero for some designs. 

Theorem 1.2.2 makes it clear that there are some designs for which design- 
unbiased variance estimation is impossible because unbiased variance esti- 
mation requires that 7r& > 0 for all (i, k ) .  A sufficient condition for a design 
to yield nonnegative estimators of variance is n i k  < 7 r g r k .  See (1.2.33). 

For simple random nonreplacement sampling, 7ri = N-ln and 

7rik = [N(N - I)]-' n(n - 1) for i # k .  

Then the estimated total (1.2.23) is 

Ty = Nn-')yi = NO,, (1.2.35) 

where 

iEA 

Similarly, the variance (1.2.26) reduces to 

where 
'V 

j = I  

and f N  = N-ln. The quantity S&,,, also written without the N subscript 
and with different subscripts, is called thejnite population variance. A few 
texts define the finite population variance with a divisor of N and change the 
definition of V{Ty I 3) appropriately. The term (1 - f N )  is called thejnite 
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population correction ( f p c )  or finite correction term. It is common practice 
to ignore the term if the sampling rate is less than 5%. See Cochran (1977, p. 
24). 

The estimated variance (1.2.33) reduces to 

P{Fy 1 F} = Nn- l (N  - n)s%,,  

for simple random sampling, where 

j E A  

(1.2.37) 

The quantity s& is sometimes called the sample variance and may be writ- 
ten with different subscripts. The results for simple random sampling are 
summarized in Corollary 1.2.2.1. 

Corollary 1.2.2.1. Let U = (1, 2, . . . , N }  and let F = (91, y2, . . . , yN)  
be the values of a finite universe. Let a simple random sample of size n be 
selected from F, let gn be defined by (1.2.35), and let be as defined for 
(1.2.37). Then 

E{y?l 1 F} = Y N ,  

(1.2.38) 

(1.2.39) 

Proof. For simple random nonreplacement sampling, 7ri = N - l n  and rik = 
[ N ( N  - l)]-'n(n - 1) for i # k .  Thus, by (1.2.25) of Corollary 1.2.1.1, 

E{Fy I F} = E { N y n }  = Ny, 

and we have the first result. The result (1.2.38) is obtained by inserting the 
probabilities into (1.2.26) to obtain 

- N  N 

N 

= Nn- l (N  - n ) ( N  - 1 ) - 1  c ( y i  - yN)2 

i=l 
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By the same algebraic argument, the estimator (1.2.33) for the estimated total 
is 

V{PY I F} = Nn- l (N  - n)sy,, 2 

with expectation Nn-l(N - n)S,”,, by Theorem 1.2.2. 

In some situations, such as the investigation of alternative designs, it is use- 
ful to consider the finite population to be generated by a stochastic mechanism. 
For example, the {yi}, i = 1, 2,  . . . , N, might be independent identically 
distributed ( i i d )  random variables with a distribution function F ( y ) .  We then 
say that the finite population is a sample from the superpopulation F(y) .  

A simple and useful specification is that of Theorem 1.2.3. The combination 
of a sample design and an estimator is called a strategy. 

Theorem 1.2.3. Let {yl,  9 2 ,  . . . ,  y N }  be a set of i i d ( p ,  0 2 )  random 
variables. Let the sample design have probabilities i7i, i7i > 0, and 7rik 

such that Czl.iri = n. Assume that the vector d of selection indicators is 
independent of {yl ,  y2, . . . yAh‘}. Let the estimated total be 

(1.2.40) 
i E A  

Then 7ri = N - l n  and 7rik = [ N ( N  - l)]-’n(n - 1) for i # k minimize the 
variance of Ty - T ~ .  

Proof. Under the assumptions, E{Fy - Ty 1 F} = 0 and d is independent 
of the yi. Therefore, the unconditional variance of 5$ - Ty is the expectation 
of the conditional variance. Using E{y:} = o2 + p2 and E{yiyk} = p2 for 
i # k ,  

N N  

i=l k=l 

N 

(1.2.41) 
i=l 

where C { x ,  z }  is the covariance of IC and z .  
Given that Cz1i7i = n, the second term of (1.2.41) is minimized if all i7i 

are equal because i7i1 is convex in rri. The first term of (1.2.41) is nonnegative 
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because it equals p2V{EElIgr:’}. Therefore, the minimum possible value 
for the first term is zero, which is attained if the 7ri are equal to N - l n  and 

rn r i k  = [ N ( N  - ~ ) ] - ~ n ( n  - 1) for all i # Ic.  

The formulation of Theorem 1.2.3 deserves further discussion. The result 
pertains to a property of an estimator of the finite population total. How- 
ever, the property is an average over all possible finite populations. The 
result does not say that simple random sampling is the best procedure for the 
Horvitz-Thompson estimator for a particular finite population. We cannot 
find a design-unbiased procedure that is minimum variance for all fixed un- 
known finite populations because the design variance is a function of the N 
unknown values. See Godambe (1955), Godambe and Joshi (1965), and Basu 
(1971). On the other hand, if our information about the finite population is 
such that we are willing to act as if the finite population is a set of i id  ran- 
dom variables, simple random sampling is the best sampling strategy for the 
Horvitz-Thompson estimator, where “best” is with respect to the superpop- 
ulation specification. If the finite population is assumed to be a sample from 
a normal distribution, the sample mean is optimal for the finite population 
mean. 

Theorem 1.2.4. Let (91, y2, . . . , g N }  be a set of normal independent 
random variables with mean p and variance u2, denoted by N I ( p ,  02)  

random variables. In the class of sample selection procedures for samples of 
size n that are independent of { y1, y2, . . . , yN}, the procedure of selecting 
a simple random nonreplacement sample of size n from U and using the 
estimator j j ,  to estimate the finite population mean, y N ,  is an optimal strategy 
in that there is no strategy with smaller mean square error. 

Proof. By Theorem 1.3.1, the n elements in the sample are N I ( p ,  0 2 )  

random variables. Therefore, the sample mean is the minimum mean square 
error estimator of p. See, for example, Stuart and Ord (1991, p. 617). 
Furthermore, the minimum mean square error predictor of yN- ,  is jj,. Thus, 

y, = N-l  [ny, + ( N  - n)y,] 

is the best predictor of yN. rn 

Because the elements of the original population are identically distributed, 
any nonreplacement sampling scheme that is independent of {y1 , y2, . . . , yN)  
would lead to the same estimation scheme and the same mean square error. 
However, probability sampling and the Horvitz-Thompson estimator are ro- 
bust in the sense that the procedure is unbiased for any set (y1, y2, . . . , y N } .  
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If the normality assumption is relaxed, the mean is optimal in the class of 
linear unbiased estimators (predictors). 

Corollary 1.2.4.1. Let {y1 , y2, . . . , yN} be a set of i id  random variables 
with mean p and variance u2. Then the procedure of selecting a simple 
random nonreplacement sample of size n from N and using the estimator gn 
is a minimum mean square error procedure for gN in the design-estimator class 
composed of designs that are independent of {yl,  y2, . . . , yN} combined 
with linear estimators. 

Proof. Under the i i d  assumption, the sample mean is the minimum mean 
square error linear predictor of ;YN-n and the result follows. See Goldberger 
(1962) and Graybill (1976, Section 12.2) for discussions of best linear unbi- 
ased prediction. 

H 

The consideration of unequal probabilities of selection opens a wide range 
of options and theoretical difficulties. The very fact that one is able to 
associate unequal 7ri with the elements means that we know something that 
differentiates element i from element j .  It is no longer reasonable to treat the 
elements as exchangeable, that is, as a set for which the joint distribution does 
not depend on the indexing. However, it may be possible to transform the 
observations to achieve exchangeability. For example, it might be possible 
to define ~i such that it is reasonable to treat the ygr:' as exchangeable. 
The nature of auxiliary information and the manner in which it should enter 
selection and estimation is the subject of survey sampling. 

1.2.2 Poisson sampling 

A sample design with simple theoretical properties is that in which samples are 
created by conducting N independent Bernoulli trials, one for each element in 
the population. If the result of the trial is a success, the element is included in 
the sample. Otherwise, the element is not part of the sample. The procedure 
is called Poisson sampling or Bernoulli sampling or sieve sampling. 

Theorem 1.2.5. Let (yl ,  9 2 ,  . . . , yN) be a finite universe of real-valued 
elements, and let ( T I ,  7r2 ,  . . . , r N )  be a corresponding set of probabilities 
with 7ri > 0 for all i E U .  For Poisson samples, 

N 

VC, - Ty 1 F} = C~i'(l - 7ri)yi 2 (1.2.42) 
i= 1 
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where Ty is the total defined in (1.2.21) and Fy is the Horvitz-Thompson 
estimator (1 -2.23). 

The expected sample size is 

IV 

E{n}  = X T ~  
i=l 

and 

N 

V { n }  = CTi(1 - Ti). 
i=l 

A design-unbiased estimator for the variance of Ty is 

V{FY IF} = C(1 - Tz)Tt: 2 2  y i .  

iEA 

(1.2.43) 

(1.2.44) 

(1.2.45) 

(1.2.46) 

and 

V n-’ C y i  1 (F, n), n > 0 = N - l ( N  - n)n-’Sy”,,. (1.2.47) { iEA 

Proof. Results (1.2.42), (1.2.43), and (1.2.44) follow from the fact that the 
Ii of d = ( I l , I2 ,  . . . , I,) are independent Bernoulli random variables. If 
~i F T, the sample size is a binomial random variable because it is the sum 
of N i id  Bernoulli random variables. The set of samples with size n = no is 
the set of simple random nonreplacement samples of size no, because every 
sample of size no has the same probability of selection. Results (1.2.46) and 
(1.2.47) then follow. rn 

Theorem 1.2.5 gives another example of difficulties associated with un- 
considered use of the Horvitz-Thompson estimator. If ~i = T ,  the Horvitz- 
Thompson estimator of the total of y for a Poisson sample is 

Ty = * - 1 z y i  (1.2.48) 
iEA 
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with variance 

N 

V{FY 1 F} = *-2Z7r(1 -7T)yp. (1.2.49) 
i=l 

By (1.2.46), another estimator of the total of a Poisson sample with 7ri = 7i 

is 
I 

T y  = NYn i f n  > 0 
= O  i f n = 0 ,  

(1.2.50) 

where Jn  = n-'&Ayi. The estimator NYn is conditionally unbiased for Ty 
for each positive n, and if n = 0, Fy = FY = 0. The mean square error of Fy 
is 

N 2 E  {(n-' - N-')Si , ,  1 (F,n), n > 0} P{n > 0) + TiP{n = O}. 
(1.2.51) 

= N7i and the variance of the Horvitz-Thompson estimator Now E{n} = 
can be written 

N 2 ( p i 1  - N- ' )  [N- ' (N - l)S,",, + Ji] . 

While E{n-ll n > 0) > p;', it is difficult to think of a situation in which 
one would choose the Horvitz-Thompson estimator over estimator (1.2.50). 
Note also that given 7ii = 7i,  

p{py I (F, n), n > l} = N2(n-' - N-') .S; ,~,  (1.2.52) 

where s : , ~  is as defined in (1.2.37), is a conditionally unbiased estimator of 
the conditional variance of py, conditional on n > 1. 

1.2.3 Stratified sampling 

Assume that the elements of a finite population are divided into H groups, 
indexed by h = 1, 2, . . . , H ,  called strata. Assume that the hth stratum 
contains Nh elements and it is desired to estimate the finite population mean 

H 

(1.2.53) 
h=l i=l h=l 

where Y N h  = N i l c z l y h i  and Yhi is the ith element in the hth stratum. 
Assume that we are willing to treat the elements in each stratum as if they 

were a random sample from a population with mean p h  and variance fli. That 
is, the unknown values in stratum h are considered to be a realization of Nh 
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i id  random variables. Thus, if one were selecting a sample to estimate the 
mean of an individual stratum, it is reasonable, by Theorems 1.2.3 and 1.2.4, 
to select a simple random sample from that stratum. Then, the sample mean of 
the stratum sample is an unbiased estimator of the population stratum mean. 
That is, 

where 

ZEAh 

and A h  is the set of indices for the sample in stratum h. It follows that 

(1.2.54) 
h=l 

is unbiased for the population mean, where jjh is the mean of a simple non- 
replacement sample of size nh selected from stratum h and the H stratum 
samples are mutually independent. 

The procedure of selecting independent samples from H mutually exclusive 
and exhaustive subdivisions of the population is called strutiJied sampling, a 
very common technique in survey sampling. The samples within a stratum 
need not be simple random samples, but we concentrate on that case. 

Because the Yh are independent, 

H 

h=l  

where gst is as defined in (1.2.54) and 

The estimated variance of the stratum mean jjh is 

where 
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It follows that an unbiased estimator of the variance of Gst is 

H 

h= 1 

Under the model in which the yhi are realizations of i i d ( p h ,  0;) random 
variables, the unconditional variance is the expected value of (1.2.55), 

H 

v {yst  - Y . ~ )  = E {V [yst - y N  I F]} = c N - ~ N ~ ( N ~  - nh)n,'g;. 

(1 -2.57) 
Assume that the objective of the design and estimation operation is to 

estimate the population mean, y N ,  of the characteristic y. Assume that a 
total amount C is available for sample observation and that it costs ch to 
observe an element in stratum h. Under this scenario, one would choose the 
nh to minimize the variance (1.2.55), or the variance (1.2.57), subject to the 
condition that 

h = l  

H 

h = l  

The minimization requires knowledge of the 27: or of g;. 
In practice, one seldom knows the 0: at the time that one is constructing a 

sampling design. Thus, it is reasonable for the designer to construct a model 
for the population, to postulate parameters for the model, and to use the model 
and parameters as the basis for determining a design. The model is called the 
design model, and the parameters of the model are called design parameters 
or anticipated parameters. 

The expected value of the design variance of the planned estimator calcu- 
lated under the designer's model using the postulated parameters is called the 
anticipated variance. Let 8 be an estimator of a finite population parameter 
8,. Then the anticipated variance of 0 - 8, is 

AV{8 - 8.v} = E{E[(8  - 8 ~ ) ~  1 F]} - [E{E(B - 8 N  I F)}I2* 

For stratified sampling E{yst - V.v 1 F} = 0 and the anticipated variance 
of Qst is minimized by minimizing 

h = l  

subject to the cost restriction, where 8:, h = 1: 2: . . . , H, are the antici- 
pated stratum variances. If one uses the method of Lagrange multipliers, one 
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obtains 

(1.2.59) 

where X is the Lagrange multiplier and 

h= I 

In general, the nh of (1.2.59) are not integers. Also, it is possible for n h  to 
exceed Nh. The formal feasible solution could be obtained by using integer 
programming. In practice, the n h  are rounded to integers with all nh greater 
than or equal to 2 and less than or equal to Nh. The allocation with nh 

proportional to Nhijh is optimal for constant costs and is sometimes called 
Neyman allocution, after Neyman (1934). 

Our discussion is summarized in the following theorem. 

Theorem 1.2.6. Let F be a stratified finite population in which the elements 
in stratum h are realizations of i i d ( p h ,  c i )  random variables. Let iji, h = 
1, 2, . . . , H ,  be the anticipated variances, let C be the total amount available 
for sample observation, and assume that it costs ch to observe an element in 
stratum h. Then a sampling and estimation strategy for Y N  that minimizes the 
anticipated variance in the class of linear unbiased estimators and probability 
designs is: Select independent simple random nonreplacement samples in 
each stratum, selecting n h  in stratum h, where n h  is defined in (1.2.59), 
subject to the integer and population size constraints, and use the estimator 
defined in (1.2.54). 

If it is desired to obtain a particular variance for a minimum cost, one 
minimizes cost subject to the variance constraint 

H 

where V, is the variance specified. In this case, 

In both cases, n h  is proportional to N - l N h ~ i ” ~ 8 h .  
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1.2.4 Systematic sampling 

Systematic sampling is used widely because of the simplicity of the selection 
procedure. Assume that it is desired to select a sample of size n from 
a population of size N with probabilities 7ri: i = 1, 2, . . . , N ,  where 
0 < 7ri < 1. To introduce the procedure, consider the population of 11 
elements displayed in Table 1.1. Assume that it is desired to select a sample 
of four elements with probabilities of selection that are proportional to the 
measures of size. The sum of the sizes is 39. Thus, 7ri is the size of the 
ith element divided by 39 and multiplied by 4. The third column contains 
the cumulated sizes, and the fourth column contains the cumulated sizes, 
normalized so that the sum is 4. 

To select a systematic random sample of four elements, we select a random 
number in the interval (0, 1). For our example, assume that the random number 
is 0.4714. Then the elements in the cumulated normalized sum associated 
with the numbers 0.4714, 1.4714, 2.4714, and 3.4714 constitute the sample. 
Let the cumulated size for element t be Ct, where the elements are numbered 
1, 2, . . . , N .  Then an element is associated with the number C if 

The probability that one of the numbers ( R N ,  RN + 1, RN + 2, RN + 3), 
where RN is a random number in (0, l),  falls in the interval (Ct-1, Ct] is 7rt. 

Table 1.1 Selection ofa  Systematic Sample 

Random 
Normalized Number 

Element Measure Cumulated Cumulated and 
Number of Size Size Size Increments 

1 6 
2 5 
3 6 
4 4 
5 5 
6 4 
7 2 
8 3 
9 2 

10 1 
11 1 

6 
11 
17 
21 
26 
30 
32 
35 
37 
38 
39 

0.6154 0.4714 
1.1282 
1.7436 1.47 14 
2.1538 
2.6667 2.4714 
3.0769 
3.2821 
3.5897 3.4714 
3.7949 
3.8974 
4.0000 
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The selection is particularly simple if N = nk ,  where k is an integer and 
the elements are to be selected with equal probability. Then the selection 
consists of selecting a random integer between 1 and k inclusive, say T .  The 
sample is composed of elements T ,  T + k ;  T + 2 k ,  . . . T + (n - 1)k. For 
this situation, there are k possible samples and we have 

~i = k-l for all i 

xi3 = k- l  i f j = i + k m o r j = i - k m  
= o  otherwise, (1.2.60) 

where rn is an integer. Because xij = 0 for some pairs, it is not possible to 
construct a design-unbiased estimator of the variance of a systematic sample. 

If the elements are arranged in random order and if the elements are se- 
lected with equal probability, systematic sampling produces a simple random 
nonreplacement sample. Sometimes, for populations in natural order, the 
variance is estimated as if the sample were a random nonreplacement sample. 
Such variance calculation is appropriate if the natural order is equivalent to 
random order. More often, adjacent pairs are assigned to pseudo strata and the 
variance estimated as if the sample were a two-per-stratum stratified sample. 
See Section 5.3. 

Systematic samples are sometimes defined with random sample sizes. For 
example, we might draw a sample from a population of size N by selecting a 
random integer between 1 and k inclusive, say T .  Let the sample be elements 
T ,  r+k ,  . . . , wherethelastelementisr+(q-1)k andN-k < r + ( q - l ) k  5 
N .  Let 

N = kq+ L ,  

where q and L are integers and 0 5 L < k ;  then L of the samples are of 
size q + 1, and k - L of the samples are of size q. Because every element 
has a probability k-’ of being selected, the Horvitz-Thompson estimator is 
unbiased for the population total. However, the estimator j j n ,  where j j n  is the 
sample mean, is slightly biased for the population mean. 

To consider systematic sampling for the mean of a population arranged in 
natural order, assume that the superpopulation satisfies the stationary first- 
order autoregressive model 

Yt = PYt-1 + e t ,  (1.2.61) 

where 0 < p < 1 and the symbol N means “is distributed as.” Under this 
model 
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2 -1 lMo2, C{Yt> Yt+j} = ( 1  - P 1 P 

and the correlation between unit t and unit t + j ,  denoted by p ( j ) ,  is plj l .  

A systematic sample of size n selected from a population of size N = n k  
generated by model (1.2.61) nearly minimizes the variance of the sample mean 
as an estimator of the finite population mean. Under the extended model with 
correlations that satisfy 

p ( i )  - 2p( i  + 1 )  + p( i  + 2 )  2 0 for i = 0, 1, 2 ,  . . . , 
Papageorgiou and Karakostas (1998) show that the optimal design for the 
population mean using the sample mean as the estimator is the systematic 
sample with the index of the first unit equal to the integer approximation of 
( 2 n ) - ' ( N  - n). Blight (1973) pointed out that the optimal linear estimator 
of the population mean under the model (1.2.61) is a weighted combination 
that gives more weight to the first and last observations than to the middle 
observations. Such selection and estimation procedures, although the best 
under the model, are not design unbiased. 

Systematic sampling is efficient relative to simple random nonreplacement 
sampling for populations with a linear trend. Assume that the population 
satisfies the model 

Yt = Po +Pit+%, (1.2.62) 

where et are i id (0 ,  0 2 )  random variables. Then, for a population of size 
N = kn ,  the variance, under the model, of the random-start systematic 
sample mean as an estimator of the population mean is 

V{ysys - Y N }  = (12)-l(lc + 1 ) ( k 2  - k)P;  

+ n - W ( k  - l)02 

= (12)-llc3p; + n-lcr2 (1.2.63) 

for large k .  The variance of the sample mean for a simple random nonre- 
placement sample is approximately 

~ { j j , , ,  - j j N }  = (12) -  1 2 3 2  n k p1 + n-lo2 . (1.2.64) 

If the ordered population is divided into n strata of size k and one element 
is selected in each stratum, the variance of the stratified mean as an estimator 
of the population mean is 

V{jjst - y N }  = n - l k - l ( k  - 1 ) ( 1 2 ) - l ( l ~  + 1 ) ( k 2  - k ) ~ ?  

+ n - l k - l ( k  - l)02 

- - . n - 1 ( 1 2 ) - 1 k 3 ~ ;  + n-1cr2. (1.2.65) 
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Thus, because the stratified sample mean averages over the local linear trends, 
it is more efficient than the systematic sample. It is not possible to construct 
a design-unbiased estimator of the variance for either the one-per-stratum or 
the systematic designs. 

Systematic sampling can also be inefficient relative to simple random non- 
replacement sampling. Assume that the y values satisfy 

yt = sin2.rrk-lt. 

Then the values in a systematic sample of interval k are identical. Hence, 
for this population, the variance of the mean is greater than the variance of 
a simple random nonreplacement sample. Furthermore, because the within- 
sample variation observed is zero, the estimated variance is zero when the 
variance is estimated as if the sample were a simple random sample. 

See Bellhouse (1988) for a review of systematic sampling. Variance esti- 
mation for systematic samples is considered in Section 5.3. 

1.2.5 Replacement sampling 

Consider a sampling scheme in which repeated selections of a single element 
are made from a population of elements. Let the selection probabilities for 
each selection, or draw, for the N elements be p,i, i = 1, 2, . . . , N ,  where 

i=l 

Then a replacement sample of size n is that obtained by selecting an element 
from the N elements with probability pri at each of n draws. Such a procedure 
may produce a sample in which element i appears more than once. An 
estimator of the population total is 

iEA d=l 

where ti is the number of times that element i is selected in the sample, 
and (pd,  Y d )  is the value of (pri ,  y i )  for the element selected on the dth 
draw. Although simple replacement sampling is seldom used in practice, its 
properties are useful in theoretical discussions. 

We may omit the descriptor nonreplacement when discussing nonreplace- 
ment samples, but we always use the descriptor replacement when discussing 
replacement samples. A replacement sample can be considered to be a ran- 
dom sample selected from an infinite population with the value p z 1 y i  =: zi 
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occurring with frequency p,i, where the symbol =: means "is defined to 
equal." Thus, the variance of the infinite population of z's is 

N 

N 

i=l 

where 
N N 

i=l i=l 

The estimator FyR is the mean of n i i d  random variables with mean puz and 
variance 022 .  Thus, 

where Zd is the value of z obtained on the dth draw. Furthermore, 

where 
n 

Zn = n-'):zd 
d=l  

is unbiased for V{FyR}. The simplicity of the estimator (1.2.69) has led to 
its use as an approximation in nonreplacement unequal probability sampling 
when all of the npr i  are small. 

The fact that some elements can be repeated in the estimator (1.2.66) is an 
unappealing property. That the estimator is not efficient is seen most easily 
when all pri are equal to N - l .  Then 

(1.2.70) 
iEA 

Because the draws are independent, the sample of unique elements is a simple 
random nonreplacement sample. Thus, an unbiased estimator of the mean is 

(1.2.71) 
i E A  
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where nu is the number of unique elements in the sample. The conditional 
variance of the mean associated with (1.2.66) conditional on (tl , t2, . . . , tn,) 
is 

V{N-'pgR I ( t l ,  t 2 ,  . . . , tn,)} = n-2):t:af, (1.2.72) 

while 

(1.2.73) 

Because Ctp 2 nu, with equality for nu = n, the mean of unique units is 
conditionally superior to the mean associated with (1.2.66) for every 1 < 
nu < n. 

1.2.6 Rejective sampling 

Rejective sampling is a procedure in which a sample is selected by a particular 
rule but is accepted only if it meets certain criteria. The selection operation is 
repeated until an acceptable sample is obtained. The procedure is sometimes 
called restrictive sampling. In most situations, the rejection of certain samples 
changes the inclusion probabilities. Hiijek (1964, 1981) studied two kinds 
of rejective sampling. In the first, a replacement sample is selected and 
the sample is kept only if it contains no duplicates. In the second, a Poisson 
sample is selected and is kept only if it contains exactly the number of elements 
desired. 

To illustrate the effect of the restriction on probabilities, consider the selec- 
tion of a Poisson sample from a population of size 4 with selection probabilities 
(0.2,0.4,0.6,0.8) for i =1, 2, 3,4.  Let the sample be rejected unless exactly 
two elements are selected. The probabilities of the six possible samples of size 
2 are (0.0064, 0.0144, 0.0384, 0.0384, 0.1024, 0.2304) for the samples [(1, 
2), (1,3), (1,4), (2, 3), (2, 4), (3,4)], respectively. It follows that the rejective 
procedure gives inclusion probabilities (0.1375, 0.3420, 0.6580, 0.8625) for 
i = 1,2 ,3 ,4 .  See Section 1.4 for references on the use of rejective sampling 
with unequal probabilities. 

To illustrate how the inclusion probabilities are changed by other rejection 
rules, consider the selection of a sample of size 3 from a sample of 6, where 
the elements are numbered from 1 to 6. Assume that the procedure is to select 
a simple random sample of size 3 but to reject the sample if it contains three 
adjacent elements. Thus, samples (1,2,3), (2, 3,4), (3,4,5), and (4,5,6) are 
rejected. If the sample is rejected, a new simple random sample is selected 
until an acceptable sample is obtained. There are 20 possible simple random 
samples and 16 acceptable samples. Therefore, the probabilities of inclusion 
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in an acceptable sample are (9/16, 8/16, 7/16, 7/16, 8/16, 9/16) for elements 
(1, 2, 3, 4, 5 ,  6), respectively. 

As a second example, let z be the ordered identification for a population 
of size 8. Assume that we select samples using simple random sampling but 
reject any sample with a mean of z less than 2.5 or greater than 6.5. Thus, the 
four samples (1,2,3), (1,2,4), (5,7, 8), and (6,7,8) arerejected. The resulting 
probabilities of inclusion are (19/52, 19/52,20/52,20/52,20/52,20/52, 19/52, 
19/52) for elements (1, 2, 3, 4, 5 ,  6, 7, 8), respectively. These two examples 
illustrate the general principles that rejecting adjacent items increases the 
relative probability of boundary elements, and rejecting samples with large 
I itn - iZN I decreases the relative probability of extreme observations. In 
these simple examples, one can construct the Horvitz-Thompson estimator 
using the correct inclusion probabilities. 

Many practitioners employ modest types of rejective sampling when the 
unit identification carries information. For example, let an ordered population 
be divided into rn strata of size k ,  with two elements selected in each stratum. 
Practitioners would be tempted to reject a sample composed of the two largest 
elements in each stratum. The probability of such a sample is [0 .5k (k  - l]]-m 
for rn strata of size k .  If only this sample and the similar sample of the two 
smallest elements are rejected, the inclusion probabilities will be little affected 
for large k and rn. On the other hand, if a large fraction of possible samples 
are rejected, the inclusion probabilities can be changed by important amounts. 

1.2.7 Cluster samples 

In much of the discussion to this point we have considered a conceptual list of 
units, where the units can be given an identification and the identifications can 
be used in sample selection. In Example 1.2.1 we introduced the possibility 
that the units on the frame are not the units of final interest. In that example, 
households are of interest and are the units observed, but the units sampled 
are blocks, where there will be several households in a block. Samples of this 
type are called cluster samples. It is also possible for the units of analysis to 
differ from the sampling units and from the observation units. Assume that 
data are collected for all persons in a household using a single respondent for 
the household and that the analyst is interested in the fraction of people who 
had flu shots. Then the analysis unit is a person, the observation unit is the 
household, and the sampling unit is the block. 

In estimation formulas such as (1.2.23) and (1.2.33), the variable yi is the 
total for the ith sampling unit. In Example 1.2.1, yi is the total for a block. It 
is very easy for analysts to treat analysis units or observation units incorrectly 
as sampling units. One must always remember the nature of the units on the 
sampling frame. 
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From a statistical point of view, no new concepts are involved in the 
construction of estimators for cluster samples. If we let Mi be the number of 
elements in the ith cluster and let yij be the value for the j th element in the 
ith cluster, then 

Mi 

.i = 1 
~i = C Y i j  

(1.2.74) 

where 7ri is the probability of selection 
of the characteristic for all persons in 
estimators such as (1.2.32) and (1.2.33) 

for the ith cluster and yi is the total 
the ith cluster. Similarly, variance 
are directly applicable. 

1.2.8 Two-stage sampling 

In many situations it is efficient first to select a sample of clusters and then 
select a subsample of the units in each cluster. In this case, the cluster is called 
a primary sampling unit (PSU), and the sample of primary sampling units is 
called the fzrst-stage sample. The units selected in the subsample are called 
secondary sampling units (SSUs), and the sample of secondary sampling 
units is called the second-stage sample. 

We adopt the convention described by Sarndal, Swensson, and Wretman 
(1992, p. 134). If the sample is selected in two steps (stages), if units selected 
at the second step are selected independently in each first-step unit, and if the 
rules for selection within a first-step unit depend only on that unit and not on 
other first step units in the sample, the sample is called a two-stage sample. 

The Horvitz-Thompson estimator of the total for a two-stage sample is 

T 2 3  = c c “&Yij :  (1.2.75) 

where 7r(ij) = 7ri7r(ij)li is the probability that second-stage unit i j  is selected 
in the sample, 7ri is the probability that first-stage unit i is selected, 7r(ij)li is 
the probability that second-stage unit i j  is selected given that first-stage unit 
i is selected, A1 is the set of indices for first-stage units in the sample, and Bi 
is the set of second-stage units in first-stage unit i that are in the sample. 

The estimator (1.2.75) is unbiased for the total by the properties of the 
Horvitz-Thompson estimator. The joint probabilities are 

i E A i  jEBi  

if i = k and j # m - 
T( i j )  ( k m )  - TZT( ij) (im) j i 

(1.2.76) 
- 
- ~ i k ~ ( i j ) ~ i ~ ( k m ) ~ k  if i # k and j # m, 
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where rrik is the probability that first-stage units i and k are selected, and 
rr(ij)(im)li is the probability that elements ij and im are selected given that 
PSU i is selected. Given these probabilities, the variances and estimated 
variances of the Horvitz-Thompson estimator are defined. We present some 
more convenient expressions for the variance and estimated variance. 

Consider a sample of n1 PSUs selected from a finite population which is, 
itself, a sample of N PSUs selected from an infinite population of PSUs. Let 
the ith PSU be selected with probability rri and let the ith PSU contain Mi 
secondary sampling units. Let a nonreplacement probability sample of mi 
units be selected from the Mi. Then an alternative expression for the estimator 
of (1.2.75) is 

(1.2.77) 

where 

and Bi is as defined in (1.2.75). The design variance of TzS is 

V(f'2S I F} = V{E[f'2S I ( A l ? F ) l  I 31  + E{V[f'2s I (Al ,F) I  I 3) 

= VI{;ils I F} + E{V[f'2s I ( A l , F ) I  I F)? (1.2.78) 

where f'lS is the estimated total with all mi = Mi, Vi{f'lS 1 F} is the 
variance of the estimated total with mi = Mi for all i, and V[f'2s I (A1 , F)] is 
the conditional design variance, conditional on the first-stage units selected. 
Generally, a design consistent estimator of V[5?zS I (Al ,  F)] is available and 
can be used to estimate E{V[f'2s 1 (Al ,  F)]}. Estimation of Vi(f'ls I F} is 
more difficult. Consider a quadratic function of the yi, such as the Horvitz- 
Thompson estimator, for V1{ f'lS 1 F}, 
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because 

E{$5 I ( A l , F ) }  =YS+v{$i-Yi I ( A l , 3 ) ) ,  

and given that samples are selected independently within each PSU, 

(1.2.80) 

E {&$j I (Al ,  3)) = Y i Y j  for i # j. (1.2.81) 

Thus, given a quadratic estimator of variance for the first stage, an estimator 
of v { F ~ ~  I 3) is 

V{5?2;s I 3) = V1{5?is I 3) + C(rc2 - ~ i i ) V { $ i  1 (Al ,F)},  (1.2.82) 
i C A i  

where V 1  {f'lS 1 F} is the estimated design variance for the first-stage sample 
computed with yi replacing yi. 

The coefficient for y: in the design variance of a design linear estimator is 
7r2T1 (1 - 7ri). It follows that the aii in a design-unbiased quadratic estimator 
of the variance of a design linear estimator is 7r2T2 (1 - ri). Therefore, the 
bias in V1{?zS I 3) as an estimator of V{T2;, 1 3) is the sum of the 
7riV{yi I (Al ,  F)}, and the bias is small if the sampling rates are small. 

For a simple random sample of PSUs, the variance of the estimator of the 
total for a complete first stage is 

(1.2.83) -1 2 
Vl{% I 3) = N2(1 - f l h l  Sly, 

where f l  = N-lnl, 

Mi 

j=1 

~i = CYij: 

and gN = N-lCiEuyi. Given that the samples within the first-stage units are 
simple random nonreplacement samples, 

V{TzS I ( A I , ~ ) )  = C rT2M! (1 - M,'mi) VL;~S&~, (1.2.84) 
i E A i  

where 

Mi 
s2 2YZ ' = (Mi - 1)-1 c (YZj - gJ 

j=1 
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and 

j=1 

For simple random sampling at the second stage, 

V { Y i  1 ( A l > F ) }  = M: (1 - MC'mi) m i  1 2  sZyi, (1.2.85) 

where 

and 

j € &  

is design consistent for E{V['Tfi, 1 (A l ,  3-71 I F}.  The expected value of the 
estimator of the variance (1.2.83) constructed by replacing yi with & is 

Therefore, an unbiased estimator of the variance of T 2 s  is, for simple random 
nonreplacement sampling at both stages, 

V P 2 S  I F} = V l , S T S { + 2 S  I Fl 

where V I . ~ ~ ~ { ? I ~  I F} is defined in (1.2.86) and siyi is defined in (1.2.85). 
The first-stage estimated variance in (1.2.86) is a quadratic in yi with aii = 
(1 - f l ) N 2 n 1 2 .  Furthermore, T ~ : ~  = N2nT2 and V1,srs{?2s I F} is the 
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dominant term in V{5? '2s 1 F} when the finite population correction is close 
to 1. 

To construct estimator (1.2.87), we require that rn, 2 2 for all i and require 
the assumption of independent simple random nonreplacement samples within 
first-stage units. Estimator (1.2.82) only requires that the second-stage design 
be such that a reasonable estimator of the second-stage variance is available 
for every PSU. 

If the finite population correction can be ignored, the estimator Vl {5?'2s I .F} 
is consistent for the variance under any selection scheme for secondary units, 
such that T 2 s  is an unbiased estimator and the selection within a PSU is 
independent of the selection in other PSUs. This follows from (1.2.80) and 
(1.2.81). Thus, for example, one could stratify each of the PSUs and select 
stratified samples of secondary units within each PSU. 

Example 1.2.2. We use data from the U.S. National Resources Inventory 
(NRI) in a number of examples. The NRI is conducted by the U S .  Natural 
Resources Conservation Service in cooperation with the Iowa State University 
Center for Survey Statistics and Methodology. The survey is a panel survey 
of land use conducted in 1982, 1987, 1992, 1997, and yearly since 2000. 
Data are collected on soil characteristics, land use, land cover, wind erosion, 
water erosion, and conservation practices. The sample is a stratified area 
sample of the United States, where the primary sampling units are areas of 
land called segments. Data are collected for the entire segment on such items 
as urban lands, roads, and water. Detailed data on soil properties and land use 
are collected at a random sample of points within the segment. The sample 
for 1997 contained about 300,000 segments with about 800,000 points. The 
yearly samples are typically about 70,000 segments. See Nusser and Goebel 
(1997) for a more complete description of the survey. 

We use a very small subsample of the Missouri NRI sample for the year 
1997 to illustrate calculations for a two-stage sample. The true first-stage 
sampling rates are on the order of 2%, but for the purposes of illustration, we 
use the much higher rates of Table 1.2. In Missouri, segments are defined by 
the Public Land Survey System. Therefore, most segments are close to 160 
acres in size, but there is some variation in size due to variation in sections 
defined by the Public Land Survey System and due to truncation associated 
with county boundaries. The segment size in acres is given in the fourth 
column of the table. The points are classified using a system called broaduse, 
where example broaduses are urban land, cultivated cropland, pastureland, 
and forestland. Some of the broaduses are further subdivided into categories 
called coveruses, where corn, cotton, and soybeans are some of the coveruses 
within the cropland broaduse. 
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Table 1.2 Missouri NRI Data 

Segment Total No. Pts. 
Stratum PSU Weight Size No. Pts Forest siYi $i 

1 1 3.00 195 
2 3.00 165 
3 3.00 162 
4 3.00 168 
5 3.00 168 
6 3.00 100 

2 1 5 .OO 162 
2 5.00 174 
3 5 .OO 168 
4 5.00 174 

7 3.00 1 ao 

3 
3 
3 
3 
3 
2 
3 
3 
3 
3 
3 

2 0.1111 130 
3 0 165 
2 0.1111 54 
0 0 0 
2 0.1111 112 
1 0.2500 50 
0 0 0 
1 0.1111 54 
1 0,1111 58 
2 0.1111 112 
0 0 0 

In this example, we estimate the acres of forestland and define 

yij = 1 if point j in PSU i is forest 
= 0 otherwise. 

The total number of points in the segment is given in the fifth column and 
the number that are forest is given in the sixth column. In a typical data 
set there would be a row for each point, and the sum for the segment would 
be calculated as part of the estimation program. Treating each point as if it 
represents 1 acre, we have 

r n h ,  

j=1 

where Mhi represents the acres (SSUs) in segment i of stratum h and mhi the 
number of sample points (SSUs) in the segment. Thus, the estimated total 
acres of forest for PSU 1 in stratum 1 is 130, and the estimated variance for 
that estimated segment total is 

I ( A i , F ) }  = 195(195 - 3)3-'(0.1111) = 1386.67, 

where s&, .~,~ = 0.1111 is as defined in (1.2.85). 
The estimated acres of forest for this small region is 

2 
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where n1h is the number of sample segments (PSUs) in stratum h. 
Equation (1.2.87) extends immediately to stratified sampling and we have 

h= l  

2 nl h 

h=l i=l 
= 340.940 + 29.190 = 370.130, 

and g h l n l  is the stratum analog of jjnl of (1.2.86). The values of the first-stage 
estimated variances are (if,,, if,,) = (4130.3,2093.3). There is a sizable 
correlation between points within a segment for a broaduse such as forest, .. and the between-PSU portion dominates the variance. 

1.3 LIMIT PROPERTIES 

1.3.1 Sequences of estimators 

We define sequences that will permit us to establish large-sample properties 
of sample designs and estimators. Our sequences will be sequences of finite 
populations and associated probability samples. A set of indices is used to 
identify the elements of each finite population in the sequence. To reduce the 
number of symbols required, we usually assume that the Nth finite population 
contains N elements. Thus, the set of indices for the Nth finite population is 

U, = (1, 2, . . . ,  N}, (1.3.1) 

where N = 1, 2, . . .. Associated with the ith element of the Nth population 
is a column vector of characteristics, denoted by y i N .  Let 

FN = (YlN, Y2N, . . * >  YNN) 

be the set of vectors for the Nth finite population. The set F, is often called 
simply the Nth jinite population or the Nth finite universe. 

In one, the set F, 
is a set of fixed vectors from a fixed sequence. In the other, the vectors 

Two types of sequences { F N }  may be specified. 
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yiAv, i = 1, 2, . . . , N, are random variables. For example, the {yZN}, i = 
1. 2, . . . , N ,  might be the first N elements of the sequence {yz} of iid 
random variables with distribution function F ( y )  such that 

and 

E{(Y,. - d2> = 02. 

(1.3.2) 

(1.3.3) 

If necessary to avoid confusion, we will add subscripts so that, for example, 
by denotes the mean of y and ot or oyy denotes the variance of y. 

As defined previously, the finite population mean and variance for scalar y 
are 

i=l 

and 

The corresponding quantities for vectors are 

N 

(1.3.4) 

(1.3.5) 

(1.3.6) 
i=l 

and 

Recall that a sample is defined by a subset of the population indices and let 
A, denote the set of indices appearing in the sample selected from the Nth 
finite population. The number of distinct indices appearing in the sample is 
called the sample size and is denoted by n,\,. We assume that samples are 
selected according to the probability rule pN(A) introduced in Section 1.2. 

Example 1.3.1. As an example of a sequence of populations, consider 
the sequence of sets of N = l O j  elements, where j = 1, 2, . . . . Let 
i i d  Bernoulli random variables be associated with the indexes 1, 2: . . . . N .  
From each set of l O j  values realized, a simple random nonreplacement sample 
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of size nnr = j is selected. In this case it is possible to give the exact form of 
the relevant distributions. Assume that the Bernoulli variable is such that 

xi = 1 with probability 
= 0 with probability 

Then the distribution of 

is that of a binomial random variable with parameters (N, p )  and 

Because the elements are independent, the unconditional distribution of the 
sample sum, X,, is binomial with parameters (n ,  p ) ,  

Now a particular finite population, Fn., has X N  elements equal to 1. The 
conditional distribution of X ,  given F,,, is the hypergeometric distribution 
and 

A fully specified sequence will contain a description of the structure of 
the finite populations and of the sampling probability rules. For example, it 
might be assumed that the finite population is composed of N i id  random 
variables with properties (1.3.2) and (1,3,3), and that the samples are simple 
nonreplacement samples of size n,v selected from the N population elements. 
In that situation, a simple random sample of size nN selected from the finite 
universe is a set of i id  random variables with common distribution function 
Fy(y) .  A proof, due to F. Jay Breidt, is given in Theorem 1.3.1. 

Theorem 1.3.1. Suppose that 91, 9 2 ,  . . . , yAV are i i d  with distribution 
function F ( y )  and corresponding characteristic function p(t) = E(e"9). Let 
d = (11, 12, . . . , IN) '  be a random vector with each component supported 
on (0, l}. Assume that d is independent of (yl ,  y2, . . . , yN)'. Let 
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U = (1, 2,  . . . , N }  and define A = { k  E U : I k  = 1). If A is nonempty, 
the random variables ( y k ,  k E A)  1 d are i i d  with characteristic function 

Proof. Let ( t l ,  t 2 ,  . . . , tN)' be an element of N-dimensional Euclidean 
space. Then, given d, the joint characteristic function of ( y k ,  k E A)  is 

(1.3 .S) 
kEA 

since p(0) = 1. The result follows because (1.3.8) is the characteristic 
function of n = C k E U I k  i id  random variables with distribution function 
F(Y)* 

The crucial assumption of the theorem is that the probability rule defining 
membership in the sample, the probability function for d, is independent of 
(y l ,  y 2 ,  . . . , y N ) .  It then follows that given d with component support on 
(0, l}, the sets { y k ,  k E A}  and { y k ,  k $ A }  are sets of n and N - n i id  
random variables with distribution function F' (y). Furthermore, the two sets 
are independent. The conditional distribution of the two sets is the same for 
all d with the same sample size, where the sample size is 

N 

n = C I ~  
k = l  

Thus, for fixed-sample-size nonreplacement designs and i id  random vari- 
ables, the unconditional distribution over all samples is the same as the con- 
ditional distribution for a particular sample set of indices. 

Example 1.3.2. As a second example of a sequence of populations and 
samples, let 3N = (y1, y2, . . . , yN) be the first N elements in a sequence of 
independent random variables selected from a normal distribution with mean 



LIMIT PROPERTIES 39 

py and variance 0;. Let nN be the largest integer less than or equal to f N ,  
where f is a fixed number in (0, 1). Assume that a simple random sample 
of size njV is selected from .F,v, let A N  be the set of indices of the sample 
selected, and let A: be the set of indexes of the N - n,xT elements not in A,. 
The n,v sample elements are N l ( p y ,  0;) random variables, independent of 
the N - nN nonsample N I ( p y ,  0;) random variables. It follows that 

Yn m y ,  &;), 

YN-n N b y ,  ( N  - %v) gy}, 
-1 2 

and 

where fN = N- lnN,  

i E A N  

iEA& 

and tn-l is Student’s t-distribution with n, - 1 degrees of freedom. rn rn 

Given a model for the stochastic mechanism generating the finite popula- 
tion, we can consider expectations conditional on properties of the random 
variables. Most often we are interested in a set of samples with some of the 
same characteristics as those observed in the current sample. 

Example1.3.3. Let.FN = [(XI, yl ) ,  (z~, y ~ ) ,  . . . , (z,,,, y,)] be the first 
N elements in a sequence of independent random variables from a bivariate 
normal distribution, 

Let a sequence of simple random samples be selected as described in Example 
1.3.2. Let x, = (z1, 5 2 ,  . . . , zn) ,  let zi = (xi, yi), and let 
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where Zn  is the simple sample mean. The least squares regression coefficient 
for the regression of y on z is 

-2 
Bn = S,,,Sxy,n. 

By Theorem 1.3.1, the sample is a realization of i i d  normal vectors. It follows 
that under the model, we have the conditional mean and variance, 

E{bn 1 x n 1  = P 
and 

r n  1-1 

where P = a;20x,y and oz = oi - ,fhsxy. .. 
In describing rates of convergence for real-valued sequences and for se- 

quences of random variables, a notation for order is useful. We use the 
conventions given by Fuller (1996, Chapter 5).  See Appendix 1A. 

Example 1.3.4. In previous examples we have considered sequences 
of finite populations generated by a random mechanism. To study sampling 
properties for a sequence of finite populations generated from a fixed sequence, 
let {yi} be a sequence of real numbers and assume that 

N 

where (01, 02)  are finite and 02  - 0T > 0. Define a sequence of finite 
populations {.FN}, where the Nth finite population is composed of the first N 
values of the sequence {yi}. Let a simple random sample of size nN = [fN] 
be selected from the Nth finite population, where 0 < f < 1 and [fN] is the 
largest integer less than or equal to f N .  By the results of Section 1.2, 

V{Yn - YN I FN} = (1 - fN)n;'si,p~, 

where fN = N-ln,. By assumption, 

is a finite positive number. It follows that we can write 

V{Yn - YN I ~ i v }  1 ~ ( n , ' )  
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and 

where { (& - YN) 1 FN} denotes the sequence of jjn - tN calculated from 
the sequence of samples selected from the sequence {FN} .  Because the 
sampling fraction is fixed, nN and N are of the same order. For a sequence 
of finite populations that is generated from a sequence of fixed numbers such 
as this example, the notational reference to FN is not required because the 
random variation comes only from the design. In complex situations the 
notation serves to identify properties derived from the sampling design. Even .. in situations where not required, we often employ the notation. 

Once the sequence of populations, sample designs, and estimators is spec- 
ified, the properties of the sequence of estimators can be obtained. The 
unconditional properties of the estimator, the properties conditional on the 
particular finite population, and the properties conditional on some attributes 
of the particular sample are all of interest. Because of the central importance 
of the sampling design, it is common in the survey sampling literature to use 
the term design consistent for a procedure that is consistent conditional on the 
particular sequence of finite populations. The sequence of populations can 
be composed of fixed numbers, as in Example 1.3.4, or can be a sequence of 
random variables, as in Example 1.3.2. For a sequence of random variables, 
the property is assumed to hold almost surely (as.); that is, the property holds 
for all sequences except for a set of measure zero. 

Definition 1.3.1. Given a sequence of finite populations { F N }  and an associ- 
ated sequence of sample designs, the estimator 6 is design consistent for the 
finite population parameter 8, if for every E > 0, 

(1.3.9) 

where the notation indicates that for the sequence of finite populations, the 
probability is that determined by the sample design. 

Observe that tn of Example 1.3.4 is design consistent for fjN because 
v{yn - gN I F ~ }  is ~ ( n ; ' ) .  

Example 1.3.5. 
1.3.2, 

For the sequence of populations and samples of Example 
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where f,v = N- ln ,  and 

N 

i=l 

The sequence of populations is created from a sequence of N I ( p ,  0;) random 
variables. Therefore, 

2 Iim ~ y ” , ~  = gU a s .  
N - x  

and hence gn is design consistent for y,. .. 
1.3.2 Central limit theorems 

Central limit theorems are critical to our ability to make probability statements 
on the basis of sample statistics. Our first results are for a stratified finite 
population, where the strata are composed of realizations of i i d  random 
variables. Under mild conditions, the properly standardized stratified mean 
converges to a normal random variable. In the theorem statement, N(0 ,  02) 

denotes the normal distribution with mean zero and variance 02,  and the 
symbol ---f is used to denote convergence in distribution (convergence in law). 

Theorem 1.3.2. Let {FN}, where F,v = {yhi,,,}, h = 1, 2. . . . , H,; 
i = 1, 2: . . . NhN, be a sequence of finite populations composed of 
H ,  strata, where the yht,v in stratum h are a sample of i i d ( p h ,  0;) random 
variables with bounded 2 + 6, 6 > 0, moments. Let the sample for the Nth 
population be a simple random stratified sample with nhAV 2 1 for all h, where 
{ n h N }  is a fixed sequence. Let 

C 

A, = {hi E U, : IhZN = l} , 

h=l h=l  i=l 
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and 

i = l  

where U, is the set of indices hi for population N and Ihj,li is the indicator 
for sample membership. Assume that 

Then 

[V{& - yAT)]-1/2(8, - Y N )  5 N ( 0 ,  l), (1.3.1 1) 

where 

h=l 

Furthermore, if the yhiN have bounded fourth moments, if nhlv 2 2 for all h, 
and 

H N  

(1.3.12) 
h= 1 h=l  

and 

j=1  

(1.3.13) 

Proof. For each N ,  the design is a fixed-size design and by Theorem 1.3.1 
the sample in each stratum is a set of i id  random variables. Therefore, the 
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stratified estimator is a weighted average of independent random variables 
and we write 

where 

Because the random variables are identically distributed and the nhN are fixed, 
we can treat the Ch,v as fixed. 

The Lindeberg criterion is 

where V, = V{6, - g N } ,  

and 

By assumption (1.3.10) B, is converging to zero and (1.3.14) converges to 
zero because the 2 + S moments are bounded. Thus, the first result is proven. 
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If the Yhi,v have fourth moments bounded by, say, Md, the variance of the 
estimated variance is 

H'V 

- < C Xi.rv(nhnr - 1)-2(nhnrM4 + M5) 
h=l 

= O ( [ V { &  - Y L V > l 2 )  

by assumption (1.3.12), where M5 is the bound on T/{nhK$} 

-2C{nh,yi ,  yiZN}. See Exercise 49. Therefore, 

[V{& - y'v}]-v{8, - yy} -5 1 

and result (1.3.13) is proven. rn 

By Theorem 1.3.2, the stratified mean is approximately normally dis- 
tributed for a large number of small strata or for a small number of large 
strata. 

It is important to note that in Theorem 1.3.2, as in Theorem 1.3.1, results 
are obtained by averaging over all possible finite populations under the as- 
sumption that the design vector d is independent of (y l ,  y2. . . . . 3, ) .  The 
independence assumption is reasonable for stratified samples because selec- 
tion in each stratum is simple random sampling. Simple random sampling is 
a special case of stratified sampling and hence the sample mean of a simple 
random sample is normally distributed in the limit. 

Corollary 1.3.2.1. Let {FAT}, where .?'.w = (y l lV.  . . . , y,Vvlv), be a 
sequence of finite populations in which the y t&,  i = 1.2,  . . . . N ,  are realiza- 
tions of independent ( p ,  02)  random variables with bounded 2 + 6.6 > 0, 
moments. Let A ,  be a simple random nonreplacement sample of size n, 
selected from the Nth population. Assume that 

lim nN = x 
N--c?o 

and 
lim N - n , = o o .  

Let fjn,  yAv. S;,,$,, and s : . ~  be as defined in (1.2.35), (1.2.22), (1.2.36), and 
(1.2.37), respectively. Then 

N+X 

(1.3.15) 
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Proof. Because both nN and N - nN increase without bound as N increases, 
(1.3.10) is satisfied for H = 1, and result (1.3.15) follows. By the assumption 
that E{ I y 1 2 + ' }  is bounded, 

2 lim s ~ , ~  = a2 a s .  
N+CC 

See Hall and Heyde (1980, p. 36). Result (1.3.16) then follows. 

Result (1.3.13) permits one to use the estimated variance to construct 

lim p{yn - ta:[V{y,}]0.5 5 gN 5 yn + t , [ V { ~ n } ] 0 ~ 5 }  = a,  

confidence intervals that are appropriate in large samples. That is, 

N+w 

where the probability that a standard normal random variable exceeds t ,  is a 
and 

V { Y n )  = (1 - Mn,'.;,,. 
In Theorem 1.3.2, the basis for the limiting result is a sequence of all possi- 

ble samples from all possible finite populations. One can also obtain limiting 
normality for Poisson sampling from a fixed sequence of finite populations. 
The result is due to Hijek (1960). 

Consider the Poisson sampling design introduced in Section 1.2.2. For 
such a design, define the vector random variable 

xi = gi Ii,  i = l ,  2, . . . ,  N ,  (1.3.17) 

where Ii is the indicator variable with Ii = 1 if element i is selected and 
Ii = 0 otherwise, 

-1 -1 / / gi = (1, yi, aNri , aAV7ri yi) , i = 1, 2, . . . ,  N ,  (1.3.18) 

7ri is the probability that element i is included in the sample, yi is a column 
vector associated with element i ,  a,  = N- 'nBN,  and nBN = E{nN 1 N } ,  
where nN = C i E ~ l i .  The ratio anr is required only for normalization purposes 
in limit operations, and is required only if N-ln ,  or 1 - N- ln ,  goes to zero 
as N increases. For a fixed gi, the mean of xi is gi.iri and 

/ 
V { X i  1 gi }  = 7.41 - T i )  gi gi. 
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The Horvitz-Thompson estimator, N- 'Tu ,  of the population mean of y is 
the vector associated with cuN7rt-lyi in the estimated mean vector, 

N 

( I  .3.19) 

Theorem 1.3.3. Let y1, y2, . . . , be a sequence of real vectors and let 
T I ,  77-2, . . . , be a sequence of probabilities, with 0 < 7ri < 1. Let a Poisson 
sample be selected from 3 N  = (yl, y2, . . . , y N ) ,  and let gi be defined by 
(1.3.18). Assume that 

N 

(1.3.20) 

the submatrix of &.. associated with (1, yi) is positive definite, and the 
submatrix of associated with (cuN7rtr1> ~t~7r;'yi) is positive definite. 
Also assume that 

for every fixed row vector y' such that 7' &. y > 0. Let xi, i = 1, 2, . . . , 
be the independent random variables defined by (1.3.17). Then 

(1.3.23) L 
n;3f iz  - P,N) I 3 N  + N O ,  &x), 

where 

and fi ,  is defined in (1.3.19). 
If, in addition, 

(1.3 -24) 
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for some finite M g ,  then 

[V{TY 1 F2%r}]-1/2(TY - TY) I FN 3 iV(0, I),  

where TY is the Horvitz-Thompson estimator, I gi I =  (g;gi)’l2, and 

(1.3.25) 

Proof. Let 

Zi = 7’ - 4, (1.3.26) 

where y is an arbitrary real-valued column vector, y # 0. Then {Z i }  is a 
sequence of independent random variables with zero means and V { Z i }  = 
T ~ ( I  - ~ i )  (y’ gi)2 =: uii. Letting 

N N 

V N  = c Ti (1 - Ti) (y’gi)2 = c wi i ,  (1.3.27) 
i=l i=l 

the arguments of the proof of Theorem 1.3.2 can be used to show that 

N 

v y 2  c zi 4 N ( 0 ,  1). (1.3.28) 
i=l 

Note that all moments exist for the random variables Ii . Multivariate normality 
follows because y is arbitrary. Now 

N 

N-CC lim n2l c(Y1gz)2Tz(l  - Tz) = yl&sy 
2 = 1  

and we have result (1.3.23). 
By assumption (1.3.24), the variance of P{N-ly;T, I FAV} is 

N 
3 -4 I v N - ~  c (1 - T~)T;~(T&Y~)~ = N - ~  C T z ( l  - T z )  T z  ( Y ~ Y ~ ) ~  

= 0 ( N - 3 )  

{ LEAN } z = 1  

for any fixed vector yy. Because V{TY} is positive definite, 
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By Theorem 1.3.3, the limiting distribution of the pivotal statistic for the 
mean of a Poisson sample is N ( 0 ,  1) for any sequence of finite populations 
satisfying conditions (1.3.20), (1.3.21), and (1.3.22). Condition (1.3.22) can 
be replaced with conditions on the moments of y and on the probabilities. 

Corollary 1.3.3.1. Let the sequence of populations and vectors satisfy (1.3.20) 
and (1,3.21) of Theorem 1.3.3. Replace assumption (1.3.22) with 

N 

( 1.3.30) 

for some 6 > 0. and assume that 

K L  < xi < Kcr (1.3.31) 

for all i where KL and KU are fixed positive numbers and nBN was defined 
for (1.3.18). Then the limiting normality of (1.3.23) holds. 

Proof. The result follows from the fact that (1.3.30) and (1.3.31) are sufficient 
for the Lindeberg condition. 

H6jek (1960) showed that the result for Poisson sampling can be extended 
to simple random nonreplacement sampling . 
Theorem 1.3.4. Let the assumptions of Theorem 1.3.3 hold for a sequence 
of scalars, {yj}, with the exception of the assumption of Poisson sampling. 
Instead, assume that samples of fixed size n = xN are selected by simple 
random nonreplacement sampling. Then 

v,- A 1’2 (Yn - - %v) 1 FN 3 N ( 0 ,  1); (1.3.32) 

where Vn = N-ln-’(N - n)st,n, and s:.~ is defined for (1.2.37). 

Proof. The probability that any set of T elements, 1 5 T 5 no, is included in 
a Poisson sample of size no is 
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which is also the probability for the set of T selected as a simple random 
sample. Hence, the conditional distribution of the Poisson sample given that 
no elements are selected is that of a simple random nonreplacement sample 
of size no. 

Let nB be the expected sample size of a Poisson sample selected with 
probability 7r, where nB is an integer, and let a realized sample of size no 
be given. We create a simple random sample of size nB starting with the 
sample of size no. If no > nB, a simple random sample of no - nB elements 
is removed from the original sample. If nB > no, a simple random sample 
of nB - no elements is selected from the N - no nonsample elements and 
added to the original no elements. If no > nB, the nB elements form a simple 
random sample from the no, and if no < nB, no is a simple random sample 
from nB. 

Consider, for no > nB, the difference 

where Yo is the mean of the original Poisson sample, gB = gsRs = Yn is the 
mean of the created simple random sample, A, is the set of indices in the 
original Poisson sample, and A k  represents the indices of the k = no - nB 
elements removed from the original Poisson sample. Because the nB elements 
are selected from the no elements, E{yB I (no, A,)} = go and 

- 
{YO - YB I (no, = (nil  - n o  ' )S;or  

where 

2 
syo = ( n o  - c (Y i  - y o ) 2 ,  

iEA, 

go = nil c Y i ,  
&A, 

and A, is the set of indices for the nB elements. Furthermore, 

where S;... is the finite population variance. 
I f 0  < no I nB, E{Yo I ( n o ,  AB)} = y B ,  
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where 

Then, for no > 0, 

v{y0 - g B  1 no> = 1 nil - nil 1 sy’,,. 
We note that no satisfies 

E{(n,lno - 1)2‘> = O(n,‘) 

for positive integer T because N-’no is the mean of N Poisson random 
variables. Now nilnB is bounded by nB for no > 0 and by KclnB for 
no > K1. It follows from Theorems 5.4.4 and 5.4.3 of Fuller (1996) that 

 nil - 1 no > O >  = o(ng3). 
See Exercise 1.34. 

write 
TO evaluate E{(jjo - y B ) 2 } ,  we define go - gB = yB when no = 0, and 

E{(YO - Y B ) ~ )  ~ { ( y ,  - YB)’ 1 no > o ) P { ~ ,  > 01 + &P{n0 = 0). 

Because P{no = 0) goes to zero exponentially as nB -+ 00, 

E { (yB - = o ( ~ , ~ / ~ )  
and the limiting distribution of ni’2(gB - g N )  is the same as that of ni”((yo - 
g N ) .  By Theorem 1.3.3, the limiting distribution of ni’2(go - gN) is normal. 
By assumption (1.3.24), s;,~ - Si,N converges to zero in probability, and 
result (1.3.32) is proven. 

Theorem 1.3.4 is for simple random samples, but the result extends imme- 
diately to a sequence of stratified samples with a fixed number of strata. 

Corollary 1.3.4.1. Let {FN} be a sequence of populations, where the Nth 
population is composed of H strata with Fh.N = {yhl, yh2, . . . , yh.,,,}, 

h = 1, 2,  . . . , H. Assume that {yhz}, h = 1, 2, . . . , H, are sequences of 
real numbers satisfying 
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where the h&h are finite and the 8: are positive. Then 

where yst is the stratified mean and e{(yst - YN) 1 FAV} is the usual stratified 
estimator defined in (1.2.56). 

Proof. Omitted. 1 

In proving Theorems 1.3.3 and 1.3.4, we assumed the elements of the finite 
population to be fixed and obtained results based on the sequence of fixed 
populations. In Theorem 1.3.2, the sequence of finite populations was created 
as samples from an infinite population, and the results were for averages over 
all possible samples from all possible finite populations. It is also useful to 
have conditional properties for a sequence of finite populations created as 
samples from an infinite population. Using the strong law of large numbers, it 
is shown in Theorem 1.3.5 that the central limit theorem holds conditionally, 
except for a set of probability zero. The sequence { ~ i }  in the theorem can be 
fixed or random. 

Theorem 1.3.5. Consider a sequence of populations, {FN} ,  where the Nth 
population is the set (91, y2, . . . , y N )  and {yi} is a sequence of independent 
( p ,  0:) random variables with bounded 4 + 6, 6 > 0, moments. Let a 
Poisson sample be selected from the Nth finite population with probabilities 
~ i ,  where the Nn,A.iri are bounded as described in (1.3.31). If the .iri are 
random, (ri, yi) is independent of ( ~ j ,  y j )  for i # j. Assume that 

(1.3.33) 

and 
N 

N-CC lim nBNN-2):~;1(1, yi) ' ( l ,  yi) = &2 as . ,  (1.3.34) 
i=l 

where E{nN 1 F N }  = nBN. Assume that V11 is positive and that E 2 2  is 
positive definite. Then 

[V{?y 1 FN}]-1'2(9y - T y N )  1 FN 4 N ( 0 ,  1) a.s., (1.3.35) 

where TYN is the population total for the Nth population, 
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and 

Proof. By the 2 + 6 moments of the superpopulation, 

and 

Therefore, conditions (1.3.20), (1.3.21), and (1.3.22) are satisfied almost 
surely and 

15 [V{Fy 1 FN}]-1/2(Fy - T y N )  I F,v + N ( 0 ,  1) a.s., (1.3.36) 

where 

i=l 

by Corollary 1.3.3.1. 
Now nBNN- ' ( l  - ~ i ) n i '  is bounded by, say, K,, and 

f N 

Therefore, by the 4 + S moments of yi, 

is a well-defined finite number, almost surely. It follows that 
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Theorem 1.3.5 is for Poisson sampling but the result holds for a sequence 
of stratified samples with a fixed number of strata, by Corollary 1.3.4.1. 

Corollary 1.3.5.1. Let {F,%,} be a sequence of populations, where the Nth 
population is composed of H strata with Fh.,, = {yhl ,  yh2, . . . , ~h.~\r,,}, 

h = 1, 2, . . . , H .  Assume that the {phi}, h = 1, 2, . . . , H, are 
sequences of independent (ph,  0:) random variables with bounded 4 + 6, 
S > 0 moments. Let a sequence of stratified samples be selected, where 

and 

for h = 1, 2)  . . . ~ 

h = 1, 2, . . . , H .  Then 
Assume that 0 5 fh ,m < 1 and 'h > 0 for 

where 

Proof. The conditions of Corollary 1.3.3.1 hold almost surely and the result 
follows by Corollary 1.3.4.1. 

To extend the results of Theorem 1.3.5 to estimation of parameters of the 
superpopulation, we require the following theorem, adapted from Schenker 
and Welsh (1988). 

Theorem 1.3.6. Let {FN} be a sequence of finite populations, let Qav be 
a function of the elements of F,,,, and let a sequence of samples be selected 
from by a design such that 

(1.3.38) 
L 

0, - 0; + N(O: Vll) , 
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and 

for a fixed sequence (0;) and an estimator, 6, where 

( 1.3.39) L ( 8  - e,) 1 F, + “0, ~ 2 2 )  as . ,  

+ I 4 2  > 0. Then 

(vll + ~ ~ ~ ) - ~ / ~ ( e  - e;) 2 N ( O ,  1). (1.3.40) 

Proof. Let Qvj  (.) denote the normal cumulative distribution function with 
mean zero and variance V,j, j = 1, 2, and let (av3(.) = Qvl( . )  * Qv2(.)  
denote the normal cumulative distribution function with mean zero and vari- 
ance V I ~  + V22 = V33, where Qvl(.)  * Q v 2 ( . )  is the convolution of (avl( .)  

(1.3.41) 

Because I P((8 - 19,) 5 s i FN} - (av2(s) j is bounded for all s E R, 

lim i P((8  - 0,) i s I F N }  - Qv&) I FN I 
N-KXZ 

by the dominated convergence theorem. By Lemma 3.2 of R. R. Rao (1962), 
assumption (1.3.39) implies that 

(1.3.43) 

and the expectation in (1.3.42) is zero. 
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Now 

= @ V 2 ( t )  * @"&I = @v3(t) ( 1 .3 -44) 

by (1.3.38) and the dominated convergence theorem. It follows from (1.3.43) 
and (1.3.44) that (1.3.41) converges to zero as N -+ 00. 

TheV11 of(1.3.38)ortheV&of(1.3.39)canbezero, butthesurnVllSV22 
is never zero. For example, let tn be the mean of a simple random sample 
from a finite population that is a set of zid(p>02) random variables, let 
8, - OrJ = N1I2(Yn - g,), and let 8, - 8: = N1/2(YN - p). Then if 
N - n -+ 0 as N increases, V22 = 0. Conversely, if N-ln -+ 0, the limiting 
variance of n1I2 (Yn -YN) = cr2 and the limiting variance of n1I2 (YN - p )  = 0. 
If l imN-ln = f, for 0 < f < 1, both and I 4 2  are positive. These 
theoretical results have a commonsense interpretation. If the sample is a very 
small fraction of the finite population, the fact that there is the intermediate 
step of generating a large finite population is of little importance. Conversely, 
if we have a very large sampling rate, say a census, we still have variability 
in the estimator of the superpopulation parameter. See Deming and Stephan 
(1941) on the use of a census in this context. 

Using Theorems 1.3.6 and 1.3.5, one can prove that the limiting distribution 
of the standardized j j H T  - p is normal. 

Corollary 1.3.6.1. Let the assumptions of Theorem 1.3.5 hold and assume 
that 

where 0 L fm I 1. Then 

-1/2 
(1.3.45) 

where j j H T  is as defined in (1.2.24), 
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Proof. By the moment properties of the superpopulation, 

112 - 0, = N (YN - 4 2 N O ,  Vll) 

nkC(%v - cl) f N O ,  fxV1l). 

nkC(gHT - y.v) I ~ . v  + ~ ( 0 ,  ~ 2 2 )  a.s.; 

or, equivalently, for fa > 0, 

By (1.3.36) of the proof of Theorem 1.3.5, 

c 

where 

A: 

lim nBNN-2 c(1 - 7ri).rrt7'y? = V22 a.s. 
N - a  

i= 1 

Therefore, by Theorem 1.3.6, 

(1.3.46) 

The estimated variance satisfies 

and jjtT = p2 + Op(n,i'2) by the fourth moments of yi. Therefore, 

v { g H T  - P }  = v { g H T  - p }  + 0,(~;3 (1.3.47) 

and result (1.3.45) follows from (1.3.46) and (1.3.47). 

1.3.3 Functions of means 

Theorems 1.3.2, 1.3.3, and 1.3.4 give the limiting distributions for means, but 
functions of means also occur frequently in the analysis of survey samples. It 
is a standard result that the limiting distribution of a continuous differentiable 
function of a sample mean is normal, provided that the standardized mean 
converges in distribution to a normal distribution. 
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Theorem 1.3.7. Let X, be a vector random variable with E{Z,}  = p, such 
that 

as n -+ 00. Let g(X,) be a function of X that is continuous at p, with a 
continuous derivative at p,. Then 

n 1 / 2 ( X ,  - p,) 5 N ( 0 ,  Ex,) 

as n t 00, where h,(p,) is the row vector of derivatives of g(X) with respect 
to X evaluated at X = p,. 

Proof. By a Taylor expansion 

d x n )  = dP, )  + (%I - P,)hL(P3? 

where pUj is on the line segment joining X, and p,. Now 2, - p, = 
Op(n-1/2) and h,(x) is continuous at x = p,. Therefore, given 6 > 0 and 
E, > 0, there is some no and a closed set B containing p, as an interior 
point such that h,(x) is uniformly continuous on B and P{X, E B and 
I Z, - p, I < E,} > 1 - S for n > no. Therefore, given 6 > 0 and an 
~h > 0, there is an E, > 0 and an no such that 

p { I  9(%) - dP,) - (% - P,)hXP,) 1 > E h )  < 6 
for all n > no. The limiting normality follows because n1/2(X, - p,) 
converges to a normal vector and hl  ( p,) is a fixed vector. 

Ratios of random variables, particularly ratios of two sample means, play 
a central role in survey sampling. Because of their importance, we give a 
separate theorem for the large-sample properties of ratios. 

Theorem 1.3.8. Let a sequence of finite populations be created as samples 
from a superpopulation with finite fourth moments. Let xj = ( q j  , "c2j) and 
assume that p,1 # 0, where pz = (p,1, p , ~ )  is the superpopulation mean. 
Assume that the sequence of designs is such that 

n g N - y T ,  - N p , )  5 N ( 0 ,  Ex,) (1.3.48) 

and 

n;CN-'(T,  - T,,v) 2 N ( 0 :  M,,), (1.3.49) 

where E,, and M,, are positive definite, nB,v = E{nN I FN} ,  
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and Tx,v = N Z N .  Then 

~ B N  1'2(h - R,) 5 N ( 0 ,  hsXxzhL) 

nk!;(h - RN) 5 N ( 0 ,  hNMzxh/N), 

( 1.3.50) 

and 

where R = TG1TX2, R, = p;;px2, R, = 3 ; $ ~ 2 , ~ ,  

(1.3.51) 
A A *  

and 

Let the designs be such that 

[V{Tx I FN}]-'VHT{TZ} - I = 0, (1.3.52) 

for any 2-variable with finite fourth moments, where VHT{Tx} is the Horvitz- 
Thompson variance estimator. Then 

[VHT{f'(2)}]-'lz(h - RN) 5 N ( 0 ,  l), ( 1.3.53) 

where VHT{f'(d̂ )} is the Horvitz-Thompson variance estimator calculated for 

f'@) = c T,'cii, 

~ E A N  

and & = FX<'(x2i - h21%). 

Proof. Results (1.3.50) and (1.3.51) follow from (1.3.48), (1.3.49), and 
Theorem 1.3.7. The Taylor expansion for the estimator of the finite population 
ratio is 

= RN + TztN(C2 - Tz2.N)  - Tz2NTz2,N(f'z1 - Glp) + Op(ni;)  

( 1.3.54) 

where ei = z2i - Rsxl i .  The remainder is O,(n;;) because the second 
derivatives are continuous at (Txl,N, T , z , ~ ) .  Now 
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where 

1 ^  & = di - Fzl~z;N(~zi - Tzl,N)ei + Fzl(fi  - ~ , ) z l i :  

and di = T&,ei. Because Ezz is positive definite, V{ f ’ (d ) }  is the same 

order as V{Fzl}. It follows from (1.3.52) that 

[ v {F(d) } ] - l vH, {F( i ) }  = 1 + O,(n;it;’”, (1.3.55) 

because, for example, 

i , j E A N  

where g i j  = 7rr1(7rij - 7ri7rj)~%:ln--’. Result (1.3.53) follows from (1.3.55) 
and (1.3.54). 

23 3 

Theorem 1.3.8 is for unconditional properties derived under the probability 
structure defined by sampling from a finite population that is a sample from a 
superpopulation. It is possible to prove a theorem analogous to Theorem 1.3.5 
in which the result holds almost surely for the sequence of finite populations. 

Observe that the error in the ratio estimator is approximated by a design 
linear estimator in ei in expression (1.3.54). This approximation is what leads 
to the limiting normality in (1.3.53). Although the estimator is not exactly 
normally distributed and VH,{p(i)} is not exactly a multiple of a chi-square 
random variable, the limiting distribution of the “t-statistic” is N ( 0 ,  1). This 
type of result will be used repeatedly for nonlinear functions of Horvitz- 
Thompson estimators. 

Expression (1.3.53) provides an efficient way to compute the estimated 
variance of the ratio using 

22 = ?-I( 21 2 2 2  - &i). 

The 22 is sometimes called the estimated Taylor deviate. In the notation of 
Theorem 1.3.7, the Taylor deviate is 

I 4 = hz(Pz)(Xi -%) 

and the estimated variance of g( Tz ) is the estimated variance of d,, calculated 
with &. 
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We can use Theorem 1.3.8 to define an estimator for the population mean 
of y by letting (zli, q i )  = (l! yi). Then we obtain 

(1.3.56) 
iEA 

as an estimator of Y,. We gave the unbiased estimator 

in (1.2.24). The estimators (1.3.56) and (1.3.57) are identical for many 
designs, including stratified sampling, but can differ considerably for designs 
such as Poisson sampling with unequal probabilities. In general, and under 
mild regularity conditions, N-' Fy is design unbiased and design consistent, 
whereas j j T  is only design consistent. However, j j T  is location and scale 
invariant, whereas N-'FY is only scale invariant. See (1.2.29). The estimator 
(1.3.56) is sometimes called the Hhjek estimator. See HAjek (1971). 

The estimators (1.3.56) and (1.3.57) can be compared under models for the 
population. One superpopulation model is 

yi = Po +PlJ: i+ei ,  (1.3.5 8) 

ei N ind(0,  z?o2), 

where a is positive, the zi are positive, e j  is independent of zi for all i and 
j ,  and N ind denotes distributed independently. Let ( 2 1 ,  zz, . . . , z,) be a 
finite population of positive z values, let the finite population of yi values be 
generated by model (1.3.58), and let a sample be selected with probabilities 
7ri = n(Cjcu x j ) -h i .  

Then the conditional expected value of the finite population mean is 

For fixed-size designs, the conditional expectations of the estimators are 

E{N-'Fy 1 xA}  = P o N - l f i H T  + P~zN, (1.3.60) 

qg7r I X A }  = Po + fi&NPI%-, (1.3.61) 

where f i H T  = CiEA7rT1 and xA is the set of J: values in the sample. If 
Po = 0, N-'FY is conditionally unbiased, and if P1 = 0, j j T  is conditionally 
unbiased, conditional on xA. 
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The conditional variances are 

and 

Thus, the conditional variance of Yn can be larger or smaller than that of 
N-lTy.  

The design variance of Y H T  is 

and the design variance of the approximate distribution of gn is 

Thus, as suggested by (1.3.64) and (1.3.65), YHT will have smaller design 
variance than gn if the ratio of yi to 7ri is nearly constant and Yn will have 
smaller design variance than Y H T  if yi - Y N  is nearly a constant multiple of 
~ i .  Also see Exercise 6. 

Because jjn is location invariant, we generally begin estimation for more 
complex situations with Yn. A regression estimator that is conditionally model 
unbiased, conditional on xA, is discussed in Chapter 2. 

In the analysis of survey samples, subpopulations are often called domains 
ofstudy or, simply, domains. Thus, in reporting unemployment rates, the rate 
might be reported for a domain composed of females aged 35 to 44. To study 
the properties of the estimated mean for a domain, let 

yDi = yi if element i is in domain D 

= o  otherwise, 

ZDZ = 1 if element i is in domain D 

= o  otherwise. 

Then the estimator of the domain mean is the ratio estimator 

(1.3.66) 
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where 

i E  A 

The Horvitz-Thompson variance estimator of Theorem 1.3.8 is 

where 6i = yDl. - ~ D z D ~ .  Observe that k?i is zero if element i is not in the 
domain. 

The properties of the estimated domain mean illustrate the care required in 
the use of large-sample results. Assume that we have a simple random sample 
from a finite population that is, in turn, a random sample from a normal 
distribution. Assume that the finite population correction can be ignored. 
Then the domain mean is the simple mean of the elements in the domain, 

( 1.3.68) 

where nD = C ~ E A Z D ~  is the number of elements in domain D and A D  is 
the set of indices of elements in domain D. The variance estimator (1.3.67) 
becomes 

Because the original sample is a simple random sample, the nD elements 
selected from domain D are a simple random sample from that domain. 
Therefore, 

is, conditional on nD, nD > 1, distributed as Student's t with no - 1 degrees 
of freedom, where 

and p D  is the population domain mean. If we use (1.3.69) to construct the 
estimated variance, we have 

( 1.3.72) -1 
Q L s { e D )  = (120 - l ) v S r S { e D } *  
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Thus, the estimator based on the large-sample approximation underestimates 
the variance and 

( 1.3.73) 

where tnD-l is distributed as Student’s t with nD - 1 degrees of fr :dom. 
For small nD, N ( 0 ,  1) will be a very poor approximation for the distrlmtion 
of (1.3.73). 

The assumptions of Theorem 1.3.8 require the distributions of Z D ,  and gDT 
to have small variances. This condition does not hold for the components of 
the domain mean if nD is small, no matter how large the original sample. 

1.3.4 Approximations for complex estimators 

An estimator is often defined as the solution to a system of equations, where 
the solution may be implicit. In Theorem 1.3.9 we show that Taylor methods 
can be used to obtain an approximation to the distribution of such an estimator. 
Results are given for 6 as an estimator of the finite population parameter and 
for 6 as an estimator of the parameter of the superpopulation that generated 
the finite population. 

The theorem contains a number of technical assumptions. They can be 
summarized as assumptions of existence of moments for the superpopulation, 
assumptions pertaining to the design, and assumptions about the functions 
defining the estimator. The design must be such that a central limit theo- 
rem holds for the Horvitz-Thompson estimator, and the function must be 
continuous with at least a continuous second derivative with respect to the 
parameter. 

It is assumed that the estimator is consistent. See (1.3.80) and (1.3.81). The 
consistency assumption is required because some functions have more than 
one root. If the function g(x. 6 )  is the vector of derivatives of an objective 
function, it may be possible to use the properties of the objective function to 
prove (1.3.80) and (1.3.81). See, for example, Gallant (1987). The usual wz 
of the theorem is 7 i i 1 ,  but alternative weights, some considered in Chapter 
6, are possible. Equation (1.3.75), which defines the estimator, is sometimes 
called an estimating equation. See Godambe (1991). 

Theorem 1.3.9. Let FaV = { X I ,  x2, . . . , xN} be the Nth finite population 
in the sequence {&}, where {xi} is a sequence of i i d  random variables with 
finite fourth moments. Assume that the sequence of designs is such that for 
any xj with positive variance, 
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where VT.s2,N is positive semidefinite almost surely, Tz,,v is the population 
total of x ,  T, is the Horvitz-Thompson estimator of the total, and n B N  = 
E{n,  I FN}. Let an estimator 8, be defined by 

iEA 

and let 8,v satisfy 

(1.3.75) 

(1.3.76) 
iEU 

where we have omitted the subscript N on U ,  and A N .  Assume that g(xi, 8 )  
is continuous in 8 for all 8 in a closed set t3 containing 8" as an interior point 
and all xi, where 8" satisfies 

(1.3.77) 

Assume that H(xi, 8)  = dg(xi, @)/at?' is continuous in 8 for all 8 in t3 and 
all xi. Assume for all 8 in B that 

and 

lim N-l C H ( x i ,  8 )  = H(8) as . ,  
iEU 

N - x  

where H(8) is nonsingular. Assume that 

I d X i ,  8 )  I < K(x2) (1.3.79) 

for some K ( x )  with finite fourth moment for all xi and all 8 in B. Assume 
that 

p lim (8 - eo)  = o (1.3.80) 
N - + X  

and 

Then 

(1.3.81) 

(1.3.82) 
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and 

/ \ -1 

and 

lim (%NVt,25.N - &,m) = 0 a.s., (1.3.85) 

is positive definite for any xj with positive definite covariance 

N - m  

where 
matrix. Then 

[v,{6 - eo)l-1/2(d - e o )  4 N(O, I) ( 1.3.86) 

and 

Vm{6 - eo}  = H-l(Oo)(N-lEgs + Vt,gg,N),H-l(Oo), 

and Egg = E {g(xi, Oo)g'(xi, O O ) } .  

Proof. For 6 E B, by a Taylor expansion, 
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i E A  

+ N - I  C w i ~ ( x i 5  eo)(e - eo)  
iEA 

+ +(I 6 - 8" I), ( 1 3.88) 

where 8* is between 6 and 8". The continuity of H(xi, 8) ,  (1.3.80), and 
(1.3.78) were used to obtain the second equality. Given E > 0, by (1.3.80), 
there is an no such that for n > no, P ( 6  E B }  > 1 - E .  Therefore, result 
(1.3.88) holds in general. Now, by (1.3.79) and (1.3.74), 

and by (1.3.79), 

Therefore, 

and result (1.3.82) is proven. Also see Exercise 3 1. 
Result (1.3.83) follows by analogous arguments. 
By (1.3.83) and (1.3.78), 

6 - eN I 3N 
/ 

and result (1.3.87) follows from (1.3.79) and the independence assumption. 
By (1.3.79) and the Lindeberg Central Limit Theorem, 

N-'12 C g ( x i ,  6') 3 N ( 0 ,  Egg) 
ZEU 

and, by (1.3.78), 

N1/2(6 - 8') 4 N [0, H-1(60)E,gH-1(60)] . (1.3.91) 

Result (1.3.86) follows from (1.3.90) and (1.3.91) by Theorem 1.3.6. 
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To apply Theorem 1.3.9, we require estimators of the variances. Estimators 
are obtained by substituting estimators for unknown parameters. 

Corollary 1.3.9.1. Let the assumptions of Theorem 1.3.9 hold. Then 

[V{8 - e, 1 F ~ ~ } I - ~ / ~ ( ~  - e,) 1 F~~ 5 N(O,I) a s .  

[vie - e o ) ~ - ~ / ~ ( e  - e o )  4 N(o;I), 
and 

iEA  

and 

Proof. By the assumptions that H(xi, 6) and g(xi, 0) are continuous in 8, 

iEA iEA 

and egg - N - I  C wig(xi, eo)gi(xi ,  eo) = o,(n;, 1/2 ). 

iEA 

Therefore, by (1.3.78), 

iEA iEU 

Furthermore, by (1.3.79), 

i E A  iEU 

and 

The conclusions then follow because the estimators of the variances are con- 
sistent estimators. 

egg - c,, = op(n;;/2) 
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1.3.5 Quantiles 

Means, totals, and functions of means are the most common statistics, but 
estimators of the quantiles of the distribution function are also important. 
Let y be the variable of interest and define the finite population distribution 
function by 

N 

( 1.3 -92) 
i=7 

where 

= 0 otherwise. 

Given a sample, an estimator of the distribution function at point a is the 
sample mean of the indicator function 

-1 

P y ( a )  = d,, = C7r;ldai. (1.3.93) 
i E A  iEA 

The finite population quantile is defined as 

and the sample quantile by 

Estimated quantiles are not simple functions of means, and therefore the 
results of Section 1.3.3 are not applicable. However, the relationship between 
the distribution function and the quantile function can be exploited to obtain 
useful results. 

Let $$ be the estimated variance of Fy(a) and assume that the sample is 
large enough so that fly (a) can be treated as being normally distributed. Then 
the hypothesis that F,(a) = b will be accepted at the Q level if @(a) falls in 
the interval 

( b  - b + tag,,), (1.3.96) 

where t ,  is the Q percentage point of the normal distribution. If @y (a) is in 
the interval defined in (1.3.96), then 

Q y ( b  - L j c a )  I Q,(b) I Q,(b + t a g c a ) ,  ( 1.3.97) 
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where F ( a )  = b. Therefore, [ Q y ( b  - ta ica).  Q ( b  + t,i,,)] is a 1 - cy 
confidence interval for Qy ( b ) .  Intervals of this type are sometimes called test 
inversion intervals. The interval (1.3.97) is also called the Woodrufl interval 
in the survey sampling literature. See Woodruff (1952). 

Using a plot of the distribution function, one can see that shifting the func- 
tion up by an amount 6 will shift the quantile left by an amount approximately 
equal to 6 divided by the slope of the distribution function. This local approx- 
imation can be used to approximate the distribution of a quantile. For simple 
random samples from a distribution with a density, the limiting distribution 
of a quantile associated with a positive part of the density is normal because 
the error in the quantile can be written 

i h  - t h  = [ fy (a ) ] - '  ( b  - &.T) + op(n-1'2), (1.3.98) 

where t h  = a and fy(a) is the density of y evaluated at a. Equation (1.3.98) is 
called the Bahadur representation. See Bahadur (1966), Ghosh (1971), and 
David (1981, Section 9.2). Francisco and Fuller (1991) extended representa- 
tion (1.3.98) to a more general class of samples and used the representation 
to show that sample quantiles for complex samples are normally distributed 
in the limit. 

Theorem 1.3.10. Let a sequence of finite populations be created as samples 
from a superpopulation with cumulative distribution function Fy (.) and finite 
fourth moments. Let <: = a' be the bth quantile. Assume that the cumulative 
distribution function Fy ( a )  is continuous with a continuous positive derivative 
on a closed interval B containing a' as an interior point. Assume that the 
sequence of designs is such that 

n;cN-'(Tz - N p z )  5 N ( 0 ,  ozz). 

for any J: with positive variance and fourth moment, where nBN = E { T L , ~ } ,  
VHT{Pz 1 .FN} is the Horvitz-Thompson estimator of the variance of Tz - T, 
given F,v, V{2 , }  is an estimator of the unconditional variance of 2T - 

pz, and pz is the superpopulation mean. Assume that n , - V { ~ y ( a ) }  and 
nNV{py(a)  - Fy.N(~)  1 F N }  are positive and continuous in a for a E B. 
Assume that 

V{Py(a + 6) - fiy(a)} 5 Cn,l I 6 1 
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for some 0 < C < 00, for all N, and for all a and a + S in B. Then 

iF:fy(&)(& - a') N(O, I)? (1.3.99) 

where iza = V{kY(a)}, 

fy([b) = ( 2 t a $ ~ a ) [ Q ( ~  f t a g c a )  - Q ( b  - t ~ ~ c a ) ] - ' ?  

6 = &, t ,  is defined by @ ( L a )  = 1 - 0.5cu, and @(.) is the distribution 
function of a standard normal random variable. 

Also, 

i i ; ,cafy(&) ( i b  - &.AT) N(O, 1) , 
where iiT,ca = V{py(a) - Fy,.v(a) I FN}.  

Proof. Omitted. See Francisco and Fuller (1991) and Shao (1994). 

In Theorem 1.3.10, the ratio of the difference between two values of the 
sample distribution function to the distance between the points defining the 
values is used to estimate the density. The use oft, = 2 in (1.3.99) to estimate 
fy(a) seems to work well in practice. The estimator of fy(a) in (1.3.99) can 
be viewed as a regression in the order statistics for order statistics "close" to 

Let y(,) be the largest order statistic less than Q ( i b  - t a g c a ) ,  let ~ ( ~ 1  be 
the smallest order statistic greater than Q(& + t,ica), and let a "smoothed" 
estimator of the distribution function of ~ ( ~ 1  be 

[ b e  

zi = 0.5[fi(Y(Z)) + @(Y(Z-l))l .  (1 -3.100) 

Let 8, and 81 be the regression coefficients obtained in a weighted regression 
of zi on (1, ~ ( ~ 1 )  for i = T ,  T + 1, . . . , rn. Then 8 1  is an estimator of fY(&) 
and 

i b  = 8F1(b-  8,) (1.3.101) 

are used in the regression is a smoothed estimator of &. If only ~ ( ~ 1  and 

61 = (Y(m) - Y(r))-l(zm - 4, 
eo = zk - e l Y ( k ) ,  and 

[b = Y ( r )  + (2, - z ~ ) - ' ( Y ( r n )  - y ( ~ ) ) ( b  - 2,). 

There are many smoothed estimators of quantiles. See Silverman (1986) and 
Scott (1992). 
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1.4 METHODS OF UNEQUAL PROBABILITY SAMPLE 
SELECTION 

The literature contains numerous procedures for the selection of nonreplace- 
ment unequal probability samples. The number of procedures is indicative of 
the difficulty of constructing a completely general procedure that is not ex- 
tremely cumbersome computationally. We consider only sampling schemes 
where selection is not a function of the y values. For selection procedures 
that are functions of y, see Thompson and Seber (1996). 

Selection procedures have been classified by Carroll and Hartley (1964) 
as draw-by-draw methods, mass draw procedures wherein samples are re- 
jected if duplication occurs, and systematic procedures. The draw-by-draw 
and mass draw methods require computation of “working probabilities” if 
the probability of selection is to be maintained at the values specified. The 
working probabilities are typically given as the solutions to a system of N ,  
N n ,  or N ( n  - 1) equations. Some procedures have been demonstrated to be 
superior to replacement sampling for n = 2 (Fellegi, 1963), while others are 
justified on the basis of joint probabilities that guarantee nonnegative estima- 
tors of variance (Hanurav, 1967; Vijayan, 1968). Alternative procedures have 
been discussed by Jessen (1969) and Rao (1978), and procedures have been 
reviewed extensively by Brewer and Hanif (1 983) and Till6 (2006). 

Perhaps the most common method of selecting an unequal probability 
sample is the systematic procedure described in Section 1.2.4. The systematic 
procedure is easy to implement but has the disadvantage that no design- 
unbiased estimator of the variance is available. 

The following two draw-by-draw methods of selecting a sample of size 2 
yield the same joint inclusion probabilities. The first was suggested by Brewer 
(1 963a) and the second by Durbin (1 967). Let p i  be a set of positive numbers 
(probabilities) with the properties that CE,p ,  = 1 and pi < 0.5 for all i. The 
selection probability is then 7ri = 2pi. 
Procedure 1 

1. Select a unit with probability q13, where 

(1.4.1) 

2. Select a second unit with probability 

(1.4.2) 

where pi(l) is the value of p for the unit selected at the first draw. 
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Procedure 2 

1. Select a unit with probability pi .  

2. Select a second unit with probability pL17rij, j # i ,  where i is the unit 
selected on the first draw and 

(1.4.3) 7rij = Ti 7rj (-++ 1 
2 ( l + A )  1 - ~ i  1 - ~ j  

where 
N N 

7r.  
(1.4.4) 

1 
A = 2 - E L  1 -Ti = E&* i=l 

i=l 

For both procedures, the joint probability is given by (1.4.3) and the total 
probability of selecting unit i is 7ri = 2pi.  Under selection procedure 2, the 
probability that the unit is selected on the first draw is pi and the probability 
that it is selected on the second draw is pi .  Fuller (1971) gave the following 
motivation for the joint probabilities (1.4.3). 

Assume that the population of N values of pi 'yi is a random sample from 
a normal population with variance a2. Then considering the population of all 
such populations, the variance of the Yates-Grundy-Sen estimated variance 
for samples of size 2 is 

N 

(1.4.5) 
i<j 

Therefore, under this model, minimization of the summation with respect 
to 7rij will result in a minimum variance for the estimated variance. Since 
minimization of this expression leads to a system of nonlinear equations 
for the 7rij, consider the approximation obtained by replacing the 7rij in the 
denominator by 7ri7rj. 

For n = 2 those 7rij that minimize 

subject to the restrictions that 

N 

(1.4.6) 

(1.4.7) 
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are the ~ i j  of (1.4.3). The 7rij of (1.4.3) are positive, and furthermore, for 
0 < Ti < 1.0, 

T' + 2 < 2 + 2 A  +- Ti - 1 1 +- - 
1-7ri 1-7rj 1 - T i  1-7rj 

and hence 7r i j  < 7ri7rj. Therefore, the joint probabilities (1.4.3) permit the 
construction of an unbiased nonnegative estimator of variance. The following 
theorem demonstrates that the sampling scheme is always more efficient than 
replacement sampling. 

Theorem 1.4.1. The variance of the Horvitz-Thompson estimator for the 
sampling scheme with joint probabilities (1.4.3) is never greater than that 
of estimator (1.2.70) for replacement sampling, equality holding only if all 
(z i  - zj)' = 0, where zi = yi7ri . -1 

Proof. Using the variance expression (1.2.28), the variance of the Horvitz- 
Thompson estimated total is 

2 
("2 - " j )  

i < j  

and the variance of the replacement sampling estimator (1.2.70) is 

Then 

equality holding only if all zi = 0.5Y. rn 

Two procedures that maintain inclusion probabilities equal to npi for n > 2 
are that of Brewer (1963a) and that proposed by Rao (1965) and Sampford 
(1967). In the Brewer (1963a) procedure, the first selection for a sample of 
size n is made with probability 
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the next with probabilities proportional to 

[1 - (. - l)Pjl-lPj(l  - Pj), 
and so on. 

Another way to select unequal probability samples is to select a replacement 
sample and reject the sample if the sample contains duplicates. Hijek (1964) 
studied this procedure. To illustrate, consider the selection of a sample of size 
2 from a population of size N with draw probabilities pi. The total probability 
of selecting the sample is 

1 = 
i=l 

and the probabilities of selecting one of the units twice is 

P{repeated selection} = pp. 
N 

i=l 

Thus, the joint probability of element i and element j ,  i # j ,  appearing 
sample where samples with repeated elements are rejected is 

-1 N 

“ ~ ~ I N R  - - P { ( i ;  j )  E A 1 NR} = ( 1 - C p k  k=l 2 )  Pip33 

where NR denotes no repeated elements in the sample. The probability 
element i appears in the sample is 

-1 N N 

* i l N R  c“ij = (l - 2 P ; )  (1 -Pi) Pi. 
2 = 1  

j # i  

in a 

that 

If a nonreplacement sample with selection probabilities close to the specified 
7ri is desired, working probabilities must be specified. Hijek (1964) suggested 
approximate p i ,  and Carroll and Hartley (1964) gave an iterative procedure, 
described by Brewer and Hanif (1 983), for determining working probabilities. 
Chen, Dempster, and Liu (1994) give a computational algorithm that can be 
used for sample selection. For a complete discussion, see Till6 (2006, Chapter 
5) .  Also see Section 3.4. 

1.5 REFERENCES 

Sections 1.1,1.2. Brewer (1963b), Cochran (1946, 1977), Goldberger 
(1962), Graybill (1976), Hansen and Hunvitz (1943), Horvitz and 
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Thompson (1952), Narain (1951), Royal1 (1970), Sen (1953), Stuart 
and Ord (1991), Yates (1948), Yates and Grundy (1953). 

Section 1.3. Bickel and Freedman (1984), Binder (1983), Blight (1973), 
Cochran (1946, 1977), Francisco (1987), Francisco and Fuller (1991), 
Fuller (1975, 1987b, 1996), Hijek (1960), Hannan (1962), Isaki and 
Fuller (1982), Krewski and Rao (198l), Madow (1948), Madow and 
Madow (1944), Papageorgiou and Karakostas (1998), Rao and Wu 
(1987), R. R. Rao (1962), Rubin-Bleuer and Kratina (2005), Sen 
(1988), Shao (1994), Thompson (1997), Woodruff (1952, 1971), Xiang 
(1994). 

Section 1.4. Brewer (1963a), Brewer and Hanif (1983), Carroll and Hartley 
(1964), Durbin (1967), Fellegi (1963), Fuller (1971), Hijek (1964), 
Hanurav (1967), Hedayat and Sinha (1991), Jessen (1969), Rao (1965, 
1978), Rao, Hartley, and Cochran (1962), Sampford (1967), Vijayan 
(1968), Yates and Gmndy (1953). 

1.6 EXERCISES 

1. (Section 1.2.1) Let d = ( I l , I 2 , .  . . , IAT), as defined in (1.2.4). Show 
that a matrix expression for the variance of the design linear estimator 
6 of (1.2.17) is 

where y N  = ( y ~ ,  y2, . . . , yN) ,  W,v = diag(w1, w2, . . . , wN) is a diago- 
nal matrix whose diagonal elements starting in the upper left corner are 
w1, w2;.  . . , wN, and Zdd is the covariance matrix of d. 

2. (Section 1.2.4) Derive the joint probabilities of selection for systematic 
samples of size 3 selected from the population of Table 1.1 with the 
measures of size of Table 1.1. 

3. (Section 1.2.4) Assume that a population satisfies 

yt = s i n 2 ~ k - l t  

for t = 1, 2, . . . , N .  Give the variance of the sample mean of a 
systematic sample of size 10 as an estimator of the population mean for 
a population with k = 6 and N = 60. Compare this to the variance of 
the mean of a simple random nonreplacement sample and to the variance 
of the mean of a stratified sample, where the population is divided into 
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two equal-sized strata with the smallest 30 indices in the first stratum. 
How do the results change if the sample size is 12? 

4. (Section 1.2.3) Let a stratified population be of the form described in 
Section 1.2.3 with H strata of sizes Nl , N2, . . . N H .  Find the optimal 
allocation to strata to estimate the linear function 

H 

h=l 

where ah, h = 1, 2, . . . , H, are fixed constants. Assume equal costs 
for observations in the strata. 

5 .  (Section 1.2, 1.3) Consider the following sampling scheme. A simple 
random sample of n households is selected from N households. The ith 
household contains Mi family members. In each household selected, 
one family member is selected at random and interviewed. Give the 
probability that person ij (the j th person in the ith household) is in- 
terviewed. Define the Horvitz-Thompson estimator of the total of y. 
Give the joint probability that any two people appear in the sample. 
Is it possible to construct an unbiased estimator of the variance of the 
Horvitz-Thompson estimator? 

Consider the estimator of the variance, 

/ n  \ - 2  n 

where 

\t=1 t=l  

and yij is the value observed for person ij. Assume that the household 
size satisfies 1 5 Mt 5 K for some K and assume that the finite popu- 
lation is a random sample from a superpopulation, where (ytj , Mt) has 
a distribution with finite fourth moments and (ytj, Mt) is independent 
of (yij, Mi) for t # i. Show that 

as N + m, n -+ cc, and N-'n + 0, where 
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6. (Section 1.3.3) Consider a population of z values with 2, > 0 for all i. 
Let model (1.3.58) hold with E{yy 1 Z,} = 5 N ,  g2 = 1, and cr = 2. 
Let samples be selected from a finite population generated by (1.3.58) 
with 7rz proportional to z,. Using the approximate design variances, for 
what values of Po and is V{YT 1 F} < V{YHT 1 F}? You may 
consider the set of finite populations with common ( 2 1 ,  z2, . . . , z N ) .  

7. (Section 1.2.4) In Section 1.2.4 it is stated that the sample mean for 
a systematic sample with equal probabilities for samples of unequal 
sizes is biased for the population mean. Derive the bias and construct 
an unbiased estimator of the population mean. Assign probabilities to 
the two types of samples so that the sample mean is unbiased for the 
population mean. 

8. (Section 1.2) Consider a population of size 9 that has been divided into 
two strata of size 4 and 5 ,  respectively. Assume that a stratified sample 
of size 5 is to be selected, with two in stratum 1 and three in stratum 2. 
Let d be the nine-dimensional vector of indicator variables defined in 
(1.2.4). Give the mean and covariance matrix of d. 

9. (Section 1.2.5) Assume that a replacement sample of size 3 is selected 
from a population of size N with draw probabilities (PI) p2,  . . . , p N ) .  

(a) What is the probability that element i appears in the sample three 

(b) What is the probability that element i is observed given that the 

(c) What is the probability that element i is selected twice? 

(d) What is the probability that element i is selected twice given that 

(e) What is the probability that element i appears in the sample at least 

(f) What is the probability that element i appears in the sample given 

times? 

sample contains only one distinct unit? 

some element was selected twice? 

once? 

that the sample contains three distinct units? 

10. (Section 1.2) Consider a design for a population of size N ,  where the 
design has N +  1 possible samples. N of the samples are of size 1, where 
each sample contains one of the possible N elements. One sample is of 
size N ,  containing all elements in the population. Each of the N + 1 
possible samples is given an equal probability of selection. 

(a) What is the probability that element j is included in the sample? 



EXERCISES 79 

(b) What is the expected sample size? 

(c) What is the variance of the sample size? 

(d) If the finite population is a realization of N I ( 0 ,  0 2 )  random vari- 
ables, what is the variance (over all populations and samples) of 
FY - Ty, where FY is the Horvitz-Thompson estimator of the finite 
population total? 

(e) Compare the variance of the estimated total of part (d) with the 
variance of N(yn  - YN) for a simple random sample of size n. 

(f) Consider the estimator that conditions on sample size 

T' = N r ~ - ' Z y i ,  
iEA 

where n is the realized sample size. Show that this estimator is 
design unbiased for Ty. 

(g) Give the variance of Tg - Ty of part (0 under the conditions of part 
(4. 

11. (Section 1.2) Assume an R-person list, where the ith person appears 
on the list ~i times. The total size of the list is N .  Assume that a 
simple random nonreplacement sample of n lines is selected from the 
list. For each line selected, a person's characteristic, denoted by yi, the 
total number of lines for person i, denoted by ~ i ,  and the number of 
times that person i occurs in the sample, denoted by ti, are determined. 
Assume that ~i is known only for the sample. 

(a) Give an estimator for the number of people on the list. 

(b) Give an estimator for the total of y. 

12. (Section 1.2) The possible samples of size 3 selected from a population of 
size 5 are enumerated in Table 1.3. The table also contains probabilities 
of selection for a particular design. 

(a) Compute the probabilities of selection, 7ri, for i = 1, 2, . . . , 10. 

(b) Compute the joint probabilities of selection, nij, for all possible 

(c) Compute the joint probability of selection for each pair of pairs. 

(d) Assume that a population of finite populations of size 5 is such that 
each finite population is a sample of 5 N I ( p ,  02)  random vari- 
ables. What are the mean and variance of the Horvitz-Thompson 

pairs. 
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Sample Prob. of 
Sample Elements Sample 

Table 1.3 Design for Samples of Size 3 from a Population of Size 5 

Sample Prob. of 
Sample Elements Sample 

1 1,2,3 0.06 
2 1 ~ 4  0.07 
3 1 2 3  0.08 
4 1 A 4  0.09 
5 1 A 5  0.10 

6 1,4,5 0.10 
7 2 A 4  0.11 
8 2 3  0.12 
9 2,4S 0.13 
10 3,4,5 0.14 

estimator of the total of the finite population when the sample is 
selected according to the design of the table? 

(e) Under the assumptions of part (d), find the mean and variance of 
the variance estimator (1.2.33). 

(f) Under the assumptions of part (d), find the mean and variance of 
81, - j j N ,  k = 1, 2, where 

and 

13. (Section 1.2) [Sirken (2001)l Let a population be composed of N units 
with integer measures of size mi; i = 1: 2,  . . . , N .  Let 1440 = 0 
and let Mj = $,mi, j = 1, 2, . . . , N .  Consider two sampling 
procedures: 

(a) A replacement simple random sample of n integers is selected 
from the set (1, 2:. . . . MA,}. If the selected integer, denoted by k ,  
satisfies 

M i - 1  < k 5 Mi ,  

element i is in the sample. 

(b) A nonreplacement simple random sample of n integers is selected 
from the set { 1 2, . . . , M N } .  The rule for identifying selected units 
is the same as for procedure (a). 
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For each procedure: 

i. Determine the probability that element i is selected for the sample 

ii. Determine the probability that element i is selected for the sample 

iii. Determine the joint probability that elements i and k appear to- 

exactly once. 

at least once. 

gether in the sample. 

14. (Section 1.2.2) Let a finite population of size N be a random sample 
from an infinite population satisfying the model 

where xi is distributed as a multiple of a chi-square random variable 
with d,  d 2 3, degrees of freedom, and ei is independent of xj for 
all i and j .  Let a Poisson sample of expected size nB be selected with 
the selection probability for element i proportional to xi. What is the 
expected value of 

15. (Section 1.2.2) Assume that a sample of n elements is selected using 
Poisson sampling with probabilities 7ri, i = 1: 2: . . . N .  Find the 
design variance of the linear function 

i E A  

where the g i ,  i = 1, 2, . . . , N ,  are fixed coefficients. Determine an 
estimator of the variance of 8. 

16. (Section 1.3) Let a sequence of populations of size N be selected from 
a distribution with mean p and variance g2. Give an example of a 
sequence ( N ,  nlv) such that 

Yi  + ( N  - n,v)n;l c Y i  - c Y i  = op(n;~).  
iEA iEU 

where p > 0.5. 



82 PROBABILITY SAMPLING: FINITE UNIVERSE 

17. (Section 1.3.3) Let yi - N I ( 0 ,  1) and define xi by 

xi = yi with probability 0.5 
- - -Yi  with probability 0.5, 

where the event defining zi is independent of yi. Let ( 2 ,  y) = 
n-l c:=,(.i, Y i ) .  

(a) Prove that 

n1/2(Z, y> 5 N ( O ,  I). 

(b) Does the conditional distribution of 2 given j j  converge to a normal 

(c) Let 

distribution almost surely? 

z = y  with probability 0.5 

= -y with probability 0.5, 

where the event defining Z is independent of g. Show that Z is a 
normal random variable. Is the conditional distribution of Z given 
y normal? 

18. (Section 1.3) Assume that a finite population of size N is a realization 
of N binomial trials with probability of success equal top. Let the finite 
population proportion be p,. Assume that a sample of size n is selected 
with replacement from the finite population. Show that the variance 
of the sample proportion, lj, as an estimator of the infinite population 
proportion is 

V{$ - p }  = N-'nP2 [(n - l )N  + n'] p(1 - p ) ,  

where p is the replacement estimator of the mean obtained by dividing 
the estimated total (1.2.66) by N .  

19. (Section 1.2.2) Assume that a Poisson sample is selected with known 
probabilities ~ i ,  where the ~i differ. Let nB be the expected sample 
size. Find the design mean and variance of the estimator 

iEA 

Is it possible to construct a design-unbiased estimator of the design 
variance of Py? 

20. (Section 1.2) Assume that a simple random sample of size n is selected 
from a population of size N and then a simple random sample of size rn 
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is selected from the remaining N - n. Show that the 72 + m elements 
constitute a simple random sample from the population of size N .  What 
is C{jjn, j j m  1 F}, where j j n  is the mean of the first n elements and j j m  
is the mean of the second m elements? 

21. (Section 1.3) Show that the assumptions 

(a) KL < 7ri < KU 

for positive constants 6, KL and KU are sufficient for 

r~ 1 - I  

22. (Section 1.3) Consider a sequence of finite populations composed of 
H ,  strata. Assume that random samples of size 2 are selected from 
each stratum. Do the p h  need to be bounded for the results of Theorem 
1.3.2 to hold? 

23. (Section 1.2.2) Assume that the data in Table 1.4 are a Poisson sample 
selected with the probabilities given in the table. 

(a) Estimate the fraction of managers who are over 50. Estimate the 

(b) Estimate the fraction of employees who have a manager over 50. 

(c) Estimate the population covariance between age of manager and 

variance of your estimator. 

Estimate the variance of your estimator. 

number of employees for the population of managers. 

24. (Section 1.3.3) Consider the estimator TrNRTry, where 

/ 

The denominator of the ratio is n, but the summation expression empha- 
sizes the fact that n is an estimator of NTr,. Thus, under the assumptions 
of Theorem 1.3.8, Tr.vl?ny = j j N  + Op(n,A'2). Find E{FN&, I 7rn} 

under model (1.3.58), where rn is the set of 7ri in A. Assume that Q = 2 
and Po = 0 in model (1.3.58). Find the best linear unbiased estimator 
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Age of Number of 
Probability Manager Employees 

Table 1.4 Poisson Sample of Managers 

Age of Number of 
Probability Manager Employees 

0.016 35 10 
0.016 36 4 
0.036 41 15 
0.040 45 25 
0.024 45 8 

0.070 50 31 
0.100 51 47 
0.100 56 55 
0.120 62 41 
0.100 64 50 

of PI,  conditional on T,. What is the best linear unbiased predictor of 
Ty? 

25. (Section 1.3.2) In the proof of Theorem 1.3.4 we demonstrated that for 
a sequence of Bernoulli samples there is a corresponding sequence of 
simple random samples such that the difference between the two means 
is Op(nG3’*). Given a sequence of simple random samples, construct 
a corresponding sequence of Bernoulli samples such that the difference 
between the two means is Op(nR3’*). 

26. (Section 1.3.1) Prove the following. 

Result. Let {X,} be a sequence of random variables such that 

E{X,} = 0:  

Vn{X,} = Op(n-), 

where Vn{Xn} is the sequence of variances of X, and 01 > 0. Then 

27. (Section 1.2.5) Let a population of size N be given and denoted by FAv. 
Let a second finite population of size nN be created by replicating each 
of the original observations n times. Denote the second population by 

Is V{zm - TAV I F,v} for an equal probability replacement sample 
of size n selected from F),, the same as the variance of V { 2 ,  -ZCs 1 Fn,,,} 
for a simple random nonreplacement sample of size n selected from 
Fnn.? The statistic for the replacement sample is the mean of the y 
for the n draws, not the mean of distinct units. 

28. (Section 1.2.3) Show that the estimator (1.2.56) is the Horvitz-Thompson 
variance estimator. 



EXERCISES 85 

29. (Section 1.2.1) Show that 

s2 = ( N  - 1)-1 c ( y i  - ys)2 

iEC 

= 0.5N-'(N - 1)-' x ( y i  - ~ j ) ~ .  

iEU j € U  

Hence, show that expression (1.2.28) for simple random sampling is 

V { N &  1 F} = N2(n-l - N- l )S2 .  

30. (Section 1.2.6) In the example in the text, the selection of a sample of 
size 3 from a population of size 6 led to selection probabilities of (9116, 
8/16, 7/16, 7/16, 8/16, 9/16). What is the joint selection probability of 
units 1 and 2? Of units 3 and 4? Of units 1 and 6? 

31. (Section 1.3.1) Prove: 

Lemma 1.6.1. If 6, = B, + op(l 6, I ) ,  then 8, = O,( I B, 1 ) ,  

32. (Section 1.2.1) Let A1 be the indexes of a simple random nonreplace- 
ment sample of size n1 selected from a finite population of size N. Let 
A2 be the indexes of a simple random sample of size 122 selected from 
the remaining N - n1 elements. Let g1 be the mean for sample A1 and 
g 2  be the mean for sample A2. What is C{yl,y2 1 F}? 

33. (Section 1.4) Let a population of size N have assigned probabilities 
(p1, p2 , . . . , p N )  and consider the following successive selection scheme. 
At step 1 a unit is selected from the N units with probability pi .  At 
step 2 a unit is selected from the remaining N - 1 units with probability 
p ,  (1 - pi)- ' .  What is the probability that unit j is in a sample of size 
2? What is the probability that units j and k will be in a sample of size 
2? Rosen (1972) has studied this selection scheme for n selections. 

34. (Section 1.3.2) In Theorem 1.3.4 it is asserted that 

Show that the conditions of Theorem 5.4.4 of Fuller (1996) are satisfied 
for no2n; and hence that the conditions of Theorem 5.4.3 of Fuller 
(1996) are satisfied for (n;'nB - 1)2. Hint: Let IC of Theorem 5.4.4 be 
-1 

nB 
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35. (Section 1.3) Prove: 

Theorem 1.6.1. 
F,,, = {yl, 3 2 , .  . . , y,}. Assume that 

Let {yi} be a sequence of fixed numbers and let 

and 
N 

lim N-' 1 yi /l+' = K, 
N-00 

i=l 

for some E > 0, where p and K, are finite. Let { ~ i }  be a sequence of 
probabilities with 0 < c, < ~i < cg < 1. Let a sequence of Poisson 
samples be defined with selection probabilities ~ i ,  where AN-l 5 A,. 
Then 

lim N-' C ~ i l y i  = p a s .  (1.6.1) 
N-00 

iEA,v 

and 

36. 

37% 

38. 

(Section 1.3) Let two finite populations of size N1 and N2 be realizations 
of i i d  random variables from a distribution F ( y ) .  Let a simple random 
sample of size n1 be selected from Nl and a simple random sample of 
size 122 be selected from N2. Show that the sample of n1+ n2 elements 
can be treated as a simple random sample from the population of size 
N1+ N2. 

(Section 1.2.7) Let y1, y2, . . . , yn be independent random variables with 
yi N ( p ,  g:). Show that 

f n n 

i=l i=l 

(Section 1.3) Prove: 

Result 1.6.1. Let y1,y2,.  . ., be a sequence of real numbers. Let 
FKr = f w, . m. . . . . 'u hT 1 be a seauence of Domlations. and let (1.3.20) and 
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(1.3.21) hold. Let a sequence of samples be selected with probabilities 
7ri and joint probabilities T T ~ , , ~ ,  where 7 r ~ j , ~  5 r r i ~ j  for all i and j in 
U,\,, i # j ,  and all N .  Then 

where nBN is the expected sample size for population N and Ty is the 
Horvitz-Thompson estimator of the total. 

39. (Section 1.4) Let a sample of size n be selected in the following way. 
The first element is selected with probability p,,  where C z , p ,  = 1. 
Then n - 1 elements are selected as a simple random sample from the 
remaining N - 1 elements. What is the total probability, T,, that element 
i is included in the sample? What is the probability that elements i and 
j appear in the sample? What is the probability that the n elements 
i l ,  i2.. . . , in form the sample? See Midzuno (1952). 

40. (Section 1.2.8) Assume simple random sampling at each of the two 
stages of a two-stage sample. Are there population configurations such 
that ~ ( , ~ ) ( k ~ )  of (1.2.76) is the same for all i j  and krn, i j  # km? 

41. (Section 1.3.1) Consider a sequence of populations {FJv} created as the 
first N elements of the sequence {yl,  92, . . .}. Assume that the I y, I are 
bounded and that SiN converges to a positive quantity. Let a systematic 
sample be selected from the Nth population with a rate of K-l for all 
N .  Is fjn design consistent for YN? Explain. 

42. (Section 1.2.4) Assume that a population of size 10 is generated by 
the autoregressive model of (1.2.61) with p = 0.9. Assume that a 
systematic sample of size 2 is selected and that the selected elements 
are A = [i. j ] .  Give 

and 
V(Y2 - YN I A = [3: 81). 

Derive the variance of the best linear unbiased predictor of fj,v for each 
of the situations A = [a, 71 and A = [3 :  81. Give the variance of the 
predictor. 

43. (Section 1.2) Let a population of size 2N be divided into two groups 
of size N .  Let a group be selected at random (with probability equal 
to one-half), and let one unit be selected at random from the selected 
group. Let a simple random sample of size 2 be selected from the other 
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group to form a sample of size 3 from the original population. Give the 
inclusion probabilities and joint inclusion probabilities for this selection 
scheme. 

44. (Section 1.2.5) Assume that a replacement sample of size 2 is selected 
from a population of size 4 with probability pi = 0.25 at each draw. 
What is the relative efficiency of estimator (1.2.66) to estimator (1.2.71)? 

45. (Section 1.2.1) Let yi, i = 1 , 2 , .  . . , n, be independent (p,  CT:) random 
variables and let 

n 

Show that 
i=l 

n, 

V{y}  = n-yn - 1)-l c ( y i  - y)2 
i=l 

is unbiased for V{y}. 

46. (Section 1.3.1)LetJ = C;==,wiyi, whereC?==,w; = 0(n-3),  C7=2=,w, = 
1 for all n, the wi are fixed, and the yi, i = 1 , 2 , .  . ., are independent 
(p ,  0:) random variables with bounded fourth moments. Show that 

E{Q(8)}  = V(8)  + 0(rr2), 

Q{8}  = 1 - c w i  c w , 2 ( y i  - e)? 
where 

n 

( a=l 2)-1z:l 

47. (Section 1.3) Let ( y l ,  y2,. . . , yn) be a simple random sample from a 
population with yi > 0 for all i and finite fourth moment. Let an 
estimator of the coefficient of variation be 

1 I9 = g- sy, 

where 19 = tNSyIN is the coefficient of variation. 
expansion, find the variance of the approximate distribution of 

Using a Taylor 

(8 - 

48. (Section 1.2) Let (yl ,  y2, . . . , y N )  = y'be avector of i i d ( p ,  02) random 
variables. What are the conditional mean and covariance matrix of 
y conditional on C z l y  = T? What are the conditional mean and 
covariance matrix of y conditional on (T ,  S2),  where 

6 )  * 

N 
s2 = ( N  - 1)-l C(y2 - 

i=l 
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49. (Section 1.3) To evaluate M5 of Theorem 1.3.2, show that for a popula- 
tion with zero mean and finite fourth moment, 

E { Y ~ }  = n-3 [~{y4}  + 3(n - qa43 

n 
and 

i=l 
Hint: See Fuller (1996, p. 241). 

ment sample of n integers. Let an estimator of the total of y be 
50. (Section 1.3) In Exercise 13, procedure (b) consisted of a nonreplace- 

n 

d=l 

where d is the index for draw, (md, yd) is the (measure of size, y value) 
obtained on the dth draw, and the vector of totals is 

N 

(Tm, T y )  = C(mi; Yi). 
i=l 

(a) Show that TY.? is design unbiased for Ty and give an expression for 
V{Py,? - Ty I F}. Give an estimator of V{?y,r - Ty I F}. Hint: 
Let zi = milyi and consider the population composed of ml 
values of my y1, m2 values of r n ~ ~ y 2 ,  . . . , mN values of mily,. 

(b) Consider a sequence of pairs of real numbers {mi, yi}, where the 
m, are positive integers. Assume that: 

(i) The mi are bounded. 

1 

N 

i=l 
N 

N 

Vii = lim nT;2V{Ty,, - Ty I FN}. 
N-.W 
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1.7 APPENDIX 1A: SOME ORDER CONCEPTS 

There are exact distributional results available for only a few of the statis- 
tics associated with survey sampling. For most, approximations based on 
large-sample theory are required. Concepts of relative magnitude or order 
of magnitude are useful in deriving those approximations. The following 
material is from Fuller (1996, Chapter 5). Let and {b,}rZl be 
sequences of real numbers, let {fn}rF1 and {gn},X,l be sequences of pos- 
itive real numbers, and let {X,}:!, and {Yn}F=l be sequences of random 
variables. 

Definition 1.7.1. We say that a, is of smaller order than g, and write 

if 

Definition 1.7.2. We say that a, is at most of order g, and write 

an = O(gn) 

if there exists a real number izf such that 9;' I a, I 5 Ad for all n. 

Using the definitions of order and the properties of limits, one can prove: 

1. If a, = o ( f n )  and b, = o(g,), then 

anbn = o(fngn)3 

I a ,  I s  = o ( f l )  fo r s  > 0; 
an + b, = o(max{f,..~n>). 

2. If a, = O ( f n )  and b, = O(gn),  then 

3. If a, = o ( f n )  and b, = O(gn),  then 



APPENDIX 1A: SOME ORDER CONCEPTS 91 

The concepts of order for random variables, introduced by Mann and Wald 
(1943), are closely related to convergence in probability. 

Definition 1.7.3. The sequence of random variables {X,} converges in 
probability to the random variable X, written 

plimX, = X 

(the probability limit of Xn is X), if for every E > 0 

lim P(1 X, - X /> E} = 0. 
,+30 

Definition 1.7.4. We say that X, is of smaller order in probability than gn 
and write 

x, = op(gn) 

plirngilx, = 0. 
if 

Definition 1.7.5. We say that X, is at most of order in probability g, (or 
bounded in probability by gn) and write 

if for every E > 0 there exists a positive real number Ad', such that 

for all n. 

Analogous definitions hold for vectors. 

Definition 1.7.6. If X, is a k-dimensional random variable, X, is at most of 
order in probability g, and we write 

if for every E > 0 there exists a positive real number Me such that 
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Definition 1.7.7. We say that X, is of smaller order in probability than g, 
and write 

if for every E > 0 and 6 > 0 there exists an N such that for all n > N ,  

x, = op(gn)  

P{I Xj, 1 > €9,) < 6, j = 1 , 2 , .  . . , k .  

Order operations for sequences of random variables are similar to those for 
sequences of real numbers; thus: 

1. If x, = op(fn) and Y, = op(gn), then 

2. If X, = Op(fn) and Y, = O,(gn), then 

One of the most useful tools for establishing the order in probability of 
random variables is Chebyshev 's inequality. 

Theorem 1.7.1. Let T > 0 and let X be a random variable such that 
E{ 1 X 1') < m. Then for every E > 0 and finite A, 
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It follows from Chebyshev’s inequality that any random variable with finite 
variance is bounded in probability by the square root of its second moment 
about the origin. 

Corollary 1.7.1.1. If {X,} is a sequence of random variables such that 

E{X:} = o(a:), 

then 
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CHAPTER 2 

USE OF AUXILIARY INFORMATION IN 
EST I MAT I ON 

Information available at the estimation stage beyond that in the sample is called 
auxiliary information. Such information can be placed into two categories: (1) 
knowledge of population totals, or means, of characteristics that are observed 
on the elements of the sample but not on all elements of the population, and 
(2) knowledge of characteristics for every element in the population. As an 
example of the first situation, the age distribution of the population of Iowa 
may be treated as known on the basis of a recent census, but the age of people 
in a sample of households is not known until the households are contacted, and 
the age of nonsampled persons is unknown. An example of a characteristic 
known for all households in the population is the geographic location of the 
households on an address list. Information available for every sampling unit 
can be used at both the design and estimation stages. Information available 
only at the population level, but not for the sampling frame, can be used only 
at the estimation stage. 

Sampling Statistics. By Wayne A. Fuller 
Copyright @ 2009 John Wiley & Sons, Inc. 
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2.1 RATIO ESTIMATION 

Ratio estimation of population totals is one of the oldest uses of auxiliary 
information in survey sampling. For example, if a government agency reports 
the acres planted to corn, and we conduct a survey of farmers later in the 
season, it is very natural to multiply the yield per acre obtained in our survey 
by the government report of acres planted to obtain an estimate of total 
production. 

Assume that the vector (yt .  x,) is observed on a sample of elements and 
that the population mean of x is known and not zero. Then a ratio estimator 
of the mean of y is 

(2.1.1) Yrat = Ynx, x\-. 
--I - 

where (&. a,) is a design consistent estimator of the mean of (y,  x). Note 
that YnIC;l = YHTIC&. By the results of Theorem 1.3.7, 

- 
Yrat - Yv = x, x,v(YiT - RN%) 

= Y, - RyICT + O p ( 6 ’ ) .  (2.1.2) 
--I - 

where R, = x,% yN, we assume that (Yn> Zn) - (gAv, ICN) = Op(n-l i2) ,  and 
assume that ZcN # 0. Thus, in large samples, the variance of the approximate 
distribution is V {YT - RnrICn 1 &} and the ratio estimator is superior to the 
design-consistent mean if 

For simple random sampling the inequality is 

(2.1.3) 

(2.1.4) 

or 

Rv < 2 P N .  (2.1.5) 

where PN = SG2Sz, is the regression coefficient. It is easy to construct 
populations where the correlation is large and (2.1.5) is not satisfied. 

It is possible to use a Taylor expansion to evaluate the first term in the bias 
of the estimated ratio. Assume that x, > 0 for all i, that the moments of 
(x. y) are bounded, and that the sample design is such that V{(Z,. gT)  I 
F,v} = O(n- l ) .  Then, by a Taylor expansion about (ZN. YN) ,  

--I - 
x, gn = R ,  + Z i l ( j j T  - RvZn) 

+ 
+ OP(123/2)* (2.1.6) 

[RLV(ZT - z A ) 2  - ( -  x7r - Zv)(Y7r - - Yd] 
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The expected value of the ratio does not always exist, but it is still useful to 
evaluate the expected value of the leading terms on the right of (2.1.6) as a 
property of the approximating random variable. If the moments of Z;l& are 
bounded, one can approximate the expectation to obtain 

E{Z,lY7r - RN I FN} = 2G2 [ ~ N V { G  I FN} - C{(YT, Z7r I F N ) > I  

+ ~ ( n - ~ )  a s .  (2.1.7) 

If the regression coefficient for the sample means, defined by 

PA. = [ V { G  I F N I 1 - l  C{YT, 2,  I F N I I  (2.1.8) 

is equal to E N ,  the regression line passes through the origin, and the leading 
O,(n-') term of (2.1.7) vanishes. 

Mussa (1999) has reviewed modifications of the ratio estimator that have 
been suggested to reduce bias. If one is interested in the ratio and is concerned 
about bias, the estimator due to Beale (1962) often performs well. The 
estimator is 

kB = [29 + V { Z ,  I FN}]-1[Z7rjj, + C{Z,, Yn I FN}]. (2.1.9) 

The estimator removes the O(n-')  terms in the bias and performs well if /2,1 
is small relative to the standard error of 2,. 

The implicit model underlying the ratio estimator is that the relationship 
between y and x is a straight line through the origin and that the variance 
about the line is proportional to x. Assume that the finite population is a 
sample from the infinite population satisfying the model 

Y, = x,P+ e.2, (2.1.10) 

e, N ind(0,  x ,02) ,  

where x, > 0 for all i E U,v. Then, given a sample, the best linear unbiased 
estimator of P is 

-1 

P = ( zx ;x ;1 )  C X Z X , l Y ,  = (c x,) - c Yz. (2.1 * 1 1) 
aEA a €  A aEA 

Hence, under the model, the best linear unbiased estimator of P?EN is the ratio 
estimator 42,v. See also Exercise 18. If the sample is a simple random sam- 
ple, the best linear unbiased estimator of the mean corresponds to estimator 
(2.1.11). This result has been a delight for theoreticians for decades. How- 
ever, the application of ratio estimation in practice requires caution because 
inequality (2.1.5) fails to hold for many y-characteristics and will often fail 
for subpopulations. 
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The model (2.1.10) is most likely to be satisfied for cluster sampling or 
two-stage sampling. In cluster sampling the relevant variable for variance 
estimation is the sum of the element values for the cluster. If no elements 
are observed in the cluster, the cluster totals are zero for all variables. Sim- 
ilarly, if the element values of y and of x are modestly correlated with the 
number of elements in the cluster, the cluster total for y will be approximately 
proportional to the cluster total for x. Also, for a given cluster, the variance 
of the cluster total of y will be approximately proportional to the number of 
elements and hence approximately proportional to the total for x. 

The ratio bias can become important in ratio estimation for stratified sam- 
ples. Consider a stratified sample for a population in which the stratum means 
of x, denoted by 2 h N ,  are known. The separate ratio estimator is the estimator 
composed of the weighted sum of the stratum ratio estimators, 

H 

(2.1.12) 
h = l  

where Wh = N-’Nh. If H is large and the nh small, the sum of the H 
stratum biases can make an important contribution to the mean square error. 
For large H and small n h ,  it may be preferable to use the combined ratio 
estimator 

(2.1.13) 

where (2 , t ;  ys t )  is the vector of stratified estimators defined by (1.2.54). See 
Exercise 25. 

- --I- - 
Yst,c = x& xNYst: 

Example 2.1.1. To illustrate ratio estimation we use a small sample of 
segments from the 1997 NRI sample for the state of Missouri. The segments 
in Table 2.8 of Appendix 2A are the slightly modified sample in a single county. 
The weight in the third column of the table is the inverse of the sampling rate 
and segment size of the fourth column is the area of the segment in acres. 
For this illustration the 80 segments are placed in three strata. The actual 
stratification is somewhat finer. All segments, except the next to last, have 
three points. That segment, with a size of 100 acres, has two points. The 
entry “federal” in the table is the fraction of points that are federally owned 
multiplied by segment size. The entries for the broaduses cultivated cropland 
and forest are defined in the same way. 

The direct (Horvitz-Thompson) estimate of the total area in the county and 
the direct estimate of cultivated cropland in thousands of acres are 

(Fa,Fcc) = (450.7, 153.8), 
(12.9) (18.3) 
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where the numbers in parentheses below the estimates are the estimated 
standard errors. The area of the county, Ta,,v is known to be 437,100 acres. 
Therefore, it is very natural to multiply all weights by the ratio 0.9692 so that 
the value for total acres calculated with the new weights is equal to the known 
value. This gives the ratio estimate for cultivated cropland, 

T c ' T a N T C c  = 0.9692(153.8) = 149.0: 

with an estimated standard error of 17.9. The ratio model is reasonable 
for these data because the segment must have acres if it is to have acres of 
cultivated cropland. The estimated efficiency of the ratio estimator relative to 
the direct estimator is about 105%. The gain from ratio estimation is modest 
because of the small variation in segment sizes. The use of the ratio to adjust 
the weights has the advantage for the analyst that the modified weights give .. the correct total acreage for the county. 

In many sample surveys, there are potentially thousands of quantities to be 
estimated. For example, the questionnaires for the U.S. Current Population 
Survey contain about 100 items. When one realizes that responses are often 
classified by age, gender, race, and location, the number of potential estimates 
easily exceeds 1 million. Because it is not possible to develop an estimator 
that is optimal for each potential y-variable, it is standard survey practice 
to provide a general-purpose estimation scheme for totals. These estimators 
almost always are of the form 

Tv = C W i Y i >  (2.1.14) 
iEA 

where the weights wi are not functions of the yi's. Although linear in y, the 
estimators typically are not design linear because the wi often depend on other 
attributes of the sample and of the population. The typical data set contains 
the y-variables and the weights. Estimated totals for any characteristic are 
given by (2.1.14), and estimated means are the ratios of two estimated totals 
where the denominator is the estimated number of units in the population. 
Estimators of the form (2.1.14) have the desirable property that they produce 
internally consistent estimators. That is, a two-way table with A and B as 
classifications has the same A marginals as a two-way table with A and C as 
classifications, and so on. The ratio estimator of this section and the regression 
estimator of the next section can be expressed in the form (2.1.14). 
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2.2 REGRESSION ESTIMATION 

2.2.1 Simple random sampling under the normal model 

To begin our discussion of regression estimation, assume that the finite pop- 
ulation is composed of row vectors (yi, xi) that are realizations of random 
variables satisfying the model 

(2.2.1) 

where e3 is independent of xi for all i and j .  We assume that the first element 
of the ( k  + 1)- dimensional vector x is identically equal to 1 and write 

xi = (1, Xl . i ) ,  

where the x1,i N i i ( p ,  C,,), and - ii denotes independent identically dis- 
tributed. 

We assume that C,, is of rank k and that the mean of x for the finite 
population of N elements is known and denoted by X N .  The values of x for 
the individual elements are not known prior to sampling and after sampling 
are known only for the sampled elements. Assume that a simple random 
nonreplacement sample of size n is selected from N .  Let X be the matrix of 
observations on x, 

x = (xi, x’z, . . .  , Xk) l ,  

let y = (yl ,  y2, . . . , yn)’, and let e = (el ,  e2, . . . , en)’. Then the model 
for the sample can be written 

y = X p + e ,  
e N N ( O ,  1a,2), 

where we assume that 

iEA  

is positive definite. For xi normally distributed and n > k + l ,  X’X is positive 
definite except for a set of probability zero. To simplify the presentation, we 
assume throughout that inverses are defined. 

Because the standard regression assumptions hold for the sample, given X, 
the estimated regression vector 

/ \ -1 

(2.2.2) 
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is the best estimator of the superpopulation parameter. The estimator 6 has 
the properties 

E{BIX} = P (2.2.3) 

and 
/ \ -1 

Under the normality assumption for e ,  ,8 is normally distributed, conditional 
on X. An unbiased estimator of a: is 

s: = (n  - k - 1)-l C ( y 2  - Xi$)2 (2.2.4) 
i E A  

and an unbiased estimator of V { b  I X} is 

V { B  I X} = (x’X)-ls:. 

X*&n = ( N  - n ) - y N x ,  - nzn) 
The mean of x for the unobserved elements is 

- 

and the best predictor of the mean of y for the unobserved N - n elements is 
,. - 

ZN-nP. 
- 

Y N - n , r e g  - 

Hence, the best predictor of the overall mean is 

\ iEA 

By least squares theory, 

i E A  

and because the first element of x i  is always 1, 

It follows that the predictor 

0, 

0. 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 
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Often, the unit element of x, is isolated and the model is written 

92 = Po + X1.2Pl + e,? (2.2.9) 

where, as before, x, = (1. ~ 1 , ~ ) .  Then the estimator (2.2.6) takes the form 

Yreg = ~n + ( ~ 1 . x  - ~ l , n ) D l >  (2.2.10) 

where 

+ ( N  - n)-b,2 (2.2.1 1) 

and V{Yreg - Y N /  X , X N }  is expression (2.2.11) multiplied by (1 - f n ) 2 .  

For an alternative derivation of the variance, we write 

Yreg - Y.v = N - W  - n) (YAv-n.reg - YN-,) 

= N - W  - n ) [ ( h w L  - X l . n ) ( P 1  - PI) + en  - es-n] 

= (X1.X - X l , n ) ( D l  - P I )  + N-yN - n)  (en - Cv-n). 

(2.2.12) 

It follows that an expression for the conditional variance of the predictor of 
YN is 

V{Yreg - Yn- 1 X ? ~ , }  = (1 - f’v)n-la: 

+ (Xl..v - Xl.n)V{D1 I X ) ( X l . N  - Xl,n)’? (2.2.13) 

where 

The conditional variance of the predictor of 
sample x-values and EiV, is 

conditional on the 
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Because s i  of (2.2.4) is an unbiased estimator of a:) an unbiased estimator 
of the conditional prediction variance is obtained by substituting s i  of (2.2.4) 
for a: in (2.2.13). 

The unconditional variance of Yreg - j jrJ is the expected value of (2.2.13), 
because the estimator is conditionally unbiased. Assume that xli is normally 
distributed with covariance matrix Ezz. Then the expected value of the last 
term of (2.2.13) is 

= (1 - f,)n-'(n - k - 2)-'ka,2, (2.2.15) 

where k is the dimension of x1.i. Thus, under the normal model, the uncon- 
ditional variance of the regression predictor is 

V{Yreg - YN} = (1 - fN)K1 [l + k ( n  - k - 2)-'] a:. (2.2.16) 

If is not normally distributed, expression (2.2.15) furnishes an approxima- 
tion that is correct through terms of order n-2. It follows that if the multiple 
correlation R2 = (1 - ac'a.,") is greater than k ( n  - 2)-', the regression esti- 
mator is superior to the simple mean as an estimator of the population mean. 
Because k ( n  - a)-' is small for fixed k and large n, it is often stated that in 
large samples, the regression estimator is never inferior to the sample mean. 
In practice, there is a temptation to increase the dimension of the 2-vector 
until the term k ( n  - k - 2)-' becomes important. 

The estimator Yreg is linear in y and can be written 

(2.2.17) 

where the weights are 

, -1 

Given the regression estimator for the mean, the regression estimator for 
the total is the estimator for the mean multiplied by N .  Thus, the estimated 
total 

(2.2.18) 
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where the wi are defined in (2.2.17), is also linear in y. The linearity in y is 
very important in practice because it means that the wi can be computed once 
and used to compute estimates for any characteristic. 

An additional advantage of the regression estimator is that, by construction, 
the weight applied to the vector xi gives the population mean, XN. See 
equation (2.2.20). Thus, if one has a survey of the residents of a state and uses 
the official census number of persons by age and gender as control totals in 
the vector N X N r  any table with gender or age as columns or rows will give the 
official numbers for the margins. This is a considerable asset to researchers 
who are comparing their analyses to those of others. 

A derivation of the regression estimator under alternative assumptions will 
serve to illustrate its properties. Assume that we desire the estimator of rZ,p 
with the smallest variance in the class of linear estimators that are unbiased 
under the model 

(2.2.19) 

where xj = (1,  XI,^), and ej  is independent of xi for all i and j .  To calculate 
the variance, we only require the ej to be uncorrelated with common variance, 
but we retain the independence assumption. Now 

i E A  

If CiEAwiyi is to be unbiased for rZ,p, we must have & A W ~ X ~  = XN. Thus, 
we desire the wi, i = 1, 2,  . . . , n: that minimize 

subject to the condition that 

(2.2.20) 
ZEA 

The problem can be formulated as the minimization of the Lagrangian 

(2.2.21) 
iEA 
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where X = (XI, Xz, . . . , Xk+1) is a row vector of Lagrange multipliers. The 
solution is 

wi = -0.5XX!,, 

x = 2Sz,(X’X)4 

where 

and X was defined following (2.2.1). Of course, these wi are precisely those 
defined in (2.2.17). 

The regression estimator defined with xj = (1, x1,j) and the weights of 
(2.2.17) has the important property that it is scale and location invariant. Thus, 
for arbitrary a0 and a1, the regression estimator of the mean of u = a0 + a ly  
is Ureg = a0 + a l g r e g .  Some have taken linearity, scale invariance, and 
location invariance as defining a regression estimator. See Mickey (1959). 

A reparameterization of the regression equation provides another useful 
representation of the regression estimator. A linear transformation can be 
constructed in which the regression estimator is the coefficient for the first 
element of x, the element that is identically equal to 1. Express the other 
z-variables as deviations from the population mean and write 

zi = (l, z1,i - E 1 , N ,  z2,i - 3 z 3 N ,  * .  . > xk,i - 3 k , N ) .  

The population mean of z is E N  = (1, 0) and the transformed regression 
model is 

yi = ziy + ei ,  

where y’ = (70, 71, . . . , yk) = ( 7 0 ;  pi ) .  The vector regression coefficient 
for the regression of y on z is 

where p is defined in (2.2.2). In expression (2.2.22) we see that the regression 
estimator of the mean of y is the regression coefficient 90. That is, 

Yreg = EN9 = To 
and 

V{?o I X} = n - l d  + El;nV{b1 1 X}&,W (2.2.23) 
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where Zl,, = (XI%, - XI,-,,) . Variance expression (2.2.23) is expression 
(2.2.13) without the finite population correction. 

Under the model of this section, the expected value of e is zero for every z. 
If this is not true, the regression estimator has a bias of O(n-0.5). To see the 
nature of the bias, consider the estimator for a simple random sample with a 
single z-variable. Then 

Yreg - YN = Yn - YN + ( 2 ,  - zn)P + (ZN - zn) (b  - P) 

= en + ( z , ~  - 2,) C(z, - 3,) 
= E ,  + ( 2 ,  - Z,>S;’(~ - I)-’ C(zi - z,>(e, - en) 

C(xi - z,)(e, - E,) 
( i F 1  ‘ ) - ’ i € A  

i € A  

+ 0,(n-”2) 

and the mean of the approximate distribution of Yreg - GAT is 

-N-’(N - n)n-1E{S;2(zi - ~ , ) ~ e i } .  

Thus, the approximate bias is a function of the covariance between ei and 
(xi - % N ) 2 .  

2.2.2 General populations and complex samples 

Let us now relax our assumptions on the population. Define the ( k  + 1)- 
dimensional vector qj = (yj ,  x1,j)’ and assume that 

Assume that qi has finite fourth moments and that the rank of X q q  is k + 1. 
If we define p to be the value of y that minimizes 

E{(% - xzr)’>, (2.2.24) 

where xi = (1, xl,i), we obtain 

p = [E{x;xi}] -l E {Xiyi} . (2.2.25) 

Consider a sequence of populations and estimators as described in Section 
1.3, where the Nth population is a realization of vectors qi , i = 1, 2, . . . , N .  
Let X N  be known for the Nth population. Let a sequence of simple random 
nonreplacement samples be selected, where the sample selected from the Nth 
population is of size nN, nN 2 nlv-1, 

lim nN = 30: 
N-im 
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and 

where f i y  = N-'nAr. Because ,8 is a differentiable function of second 
moments, the least squares estimator ,d of (2.2.2) satisfies 

,d - p = 0,(n,'/2), 

Also, under these assumptions, 

z1Jv - = 0,(n,1/2). 

Therefore, from (2.2.12), the regression estimator (2.2.10) constructed with 
,d of (2.2.2) satisfies 

Yreg - V x  = (1 - f.w)(G -  EN-^) + Op(nil) ,  (2.2.26) 

where e, = yz - x,P and p is defined in (2.2.25). It follows that the variance 
of the limiting distribution of ni(2 (Yreg - VAT) is 

where 0: = V {yi - xip}. Because p minimizes (2.2.24), it minimizes 0: 

and there is no estimator of V N ,  linear in yi, whose limit distribution has a 
smaller variance. This result is extended to general designs and estimators in 
Theorem 2.2.3. 

Under simple random sampling, the estimator ,d is also design consistent 
for the finite population regression coefficient in that 

,d - P,,~ I F , ~  = o , ( ~ G " ~ )  a.s., (2.2.28) 

where 

\ i d  1 i=l 

and p, - ,O = 0,(N-1/2) .  
Given the definition of the finite population regression coefficient, the error 

in the regression estimator of the finite population mean can be written in 
terms of deviations from the finite population regression. The error in ,d as 
an estimator of the finite population parameter is 

(2.2.29) 
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and 

Yreg - YN = an + (fN - Zn) (B - P,) 
= zi, + o,(n;l) as . ,  

where ai = a,vi = yi - xiPN. It follows that the variance of the 
approximating distribution, conditional on FN , is 

v{nk/2(Y?.eg - YN) I F N }  = (1 - fN)SL: (2.2.30) 

where 
S,2, = ( N  - 1)-l c a;$ 

iEUN 

An estimator of the approximate variance of the regression estimator of the 
mean of y under simple random sampling is 

V { Y r e g  - YN} = (1 - fN)n i l (nN - k - 1)-l &:, (2.2.31) 

where the divisor is chosen by analogy to (2.2.4) and 
A 

tia = GZ = ya - x,p. 
Two things are noteworthy. First, the estimator (2.2.31) is an estimator of 
(2.2.27), the variance expression in terms of the superpopulation variance, 
and of (2.2.30), the variance expression in terms of the finite population 
variance. Second, the simple estimator underestimates the true variance 
because it contains no term for the estimation error in 8. However, the 
variance contribution from estimating ,8 is order nE2. See, for example, 
(2.2.13) and (2.2.16). 

By (2.2.22), we can express the regression estimator of the mean as a 
regression coefficient, and the limiting properties of the regression estimator 
follow from the limiting properties of the vector of regression coefficients. 
We give a general result for the coefficients in Theorem 2.2.1. We extend the 
definition of the regression coefficient to the generalized regression coefficient 
and give the result for designs in which V {YHTIFN} = o(n&) almost surely 
and in which the limiting distribution of n1l2(YHT - YN) is normal almost 
surely. 

Theorem2.2.1. LetFN = {z1,22,. . . . z ~ } f o r N  = k + 3 ,  k + 4 , .  . . ,where 
zJ = (yJ, xJ), j = 1,2.  . . . , and {z3} is a sequence of ( k  + 2)-dimensional, 
independent random vectors with bounded eighth moments. Let Z be the 
n x ( k  + 2) matrix of observations for the sample from the Nth population. 
Let 

M z 4 z  = n-l z'@-'z (2.2.3 2) 
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for a positive definite n x n matrix Qi that may be a function of x but not 
of y. If Qi is random, assume that the rows of W I Z  have bounded fourth 
moments. Assume: 

(i) The sample design is such that for any z with bounded fourth moments 

v{zHT - z , ~  I 3,) = oP(n;;) a.s., (2.2.33) 

where 

i E A  

7ri are the selection probabilities, and ZN is the finite population mean 
of z. 

(ii) There is a sequence {M,4,,N} such that 

M+ - MZ4,,, 1 FN = 0,(n,k12) a.s., (2.2.34) 

M,4,,,, is positive definite almost surely, the limit of M,+, is positive 
definite, and M,4, is positive definite almost surely. 

(iii) The selection probabilities satisfy 

K1 < Nnihni < K2 

for positive K1 and K2. 

(iv) The design is such that 

112 - L 
[V{Z,, - ZN 1 FN}]-  

as n -+ 00 for any z with finite fourth moments, where V{ZHT - E N  I 
F,} =: V,,,, is the positive definite covariance matrix of Z H T  - ZN, 

(zHT - E N )  I .FN -+ N ( 0 ,  I) as . ,  (2.2.35) 

and V,,,, 112 is the symmetric square root of V,,;,. 

(v) The design admits an estimator vZz such that 

n(V** - VZ,,,) I FN = O p ( 1 )  a.s. (2.2.36) 

for any z with bounded fourth moments. 

Let 

6 = (x’<p-1x)-1x’Qi-ly. (2.2.37) 
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where 

V { b  1 FAr} = M;;Zv6gM;;x, 

966 
with bi = n; iN~iC:hi ,  and hi = yi - x$. 

V{bHT 1 F,,,} is the estimated sampling variance of LHT calculated 

Proof. The error in ,8 is 

/3 - p,v = (x’@-1x)-1(x’@-1y - x’wlxp,) 
= M&,(n-’X’~-’a).  

By the definition of P N ,  

Mx@y,Ar - Mx&Jx.,VPN = M z & . , V  = 0 a.s., 

and by assumption (2.2.34), 

MZOa = n-’X’+-’a = ~,(n- l / ’ ) .  

It follows that 
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The bi have bounded fourth moments by the moment assumptions and by the 
bounds on Nn&ni. Thus, by assumption (2.2.35), 

(2.2.40) v-l/2 .. 
P P , N  (P - p,v )  I FN ' I) a's'? 

where 

and Vbb,rJ = V{bHT I FN} .  
For variance estimation, consider 

where 

and Sp = ,d - P,. For any fixed 6, by (2.2.36), the estimated variance of 
N-'&AnZ:'(bi + hi) is consistent for the variance of the estimator of the 
mean of b + h. By assumption, the elements of 6;xi have fourth moments, 
and for a fixed 6, the variance of LHT is O,(n-') almost surely. Therefore, 
for S = Sp, 

P{F&Tl~N} 1 F~ = oP(n-l) a s .  

and 

In Theorem 2.2.1 it is assumed that M z 4 z  converges to some positive 
definite matrix Mz@z,N. If @ is the n x n portion of an N x N diagonal 
matrix ( P N ,  then 

-1 I 
M Z I $ Z , N  = z,v@k'D7r,NzN 

and 
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where X, is the N x k matrix of the N explanatory vectors, y N  is the vector 
of N values of yi, and DT,N = diag(r1, “ i 2 ,  . . . , r,). If ( P N  = D,.,,,, then 
p, is the ordinary least squares coefficient for the finite population. 

The conditions of Theorem 2.2.1 require the variables to have moments and 
require the orders of the error in the estimators and in the estimated variances 
to be the same as those of a simple random sample. This will be true for 
stratified samples and for stratified two-stage samples under mild restrictions 
on the sequence of populations. 

In Theorem 2.2.1 we defined MZQ,,,\, as the matrix being estimated by 
n-lZ’WIZ. In the case of diagonal a, where #i is defined for all N 
elements. 

i E U  

We give the limiting distribution for the regression coefficients for simple 
random sampling in Theorem 2.2.2, where the results are for samples from 
all possible sequences. 

Theorem 2.2.2. Let {U),,, FJv : N = k + 3, k + 4, . . .} be a sequence 
of finite populations, where U, is the set of indices identifying the elements. 
LetFN = {zl ,  22,  . . . , z,}, where zi = (yi, xi), {zi} is a sequence of i i d  
random variables with E{zi, zizi} = (p, ,  M,,), and M,, is of full rank. 
Assume that q has finite fourth moments, where 

qi = [yi, xi: (vechxixi)’] , 

wechA of the p x p symmetric matrix A is 

UechA = (all,  a21: * * * :  apl ,  a22, a32, . ” >  U p 2 1  * . . !  a p p ) ’ ,  

and aij is the ijth element of A. 

nonreplacement sample from U,. Assume that n,-+ x as A;+ 00 and 
Let A, be a set of nN 1 indices selected as a simple random 

lim fN = f, 0 5 f < 1. 
N - m  

Let the quantities of Theorem 2.2.1 be defined with a = I so that 



REGRESSION ESTIMATION 113 

(2.2.45) 

Proof. We can write 

6 - p  = M$Mze 

P, - P = M;:*’vMz€.N* 

and 

where Mze and M,,., are defined by analogy to (2.2.42) and (2.2.43). 
By the moment assumptions, 

lim (Mzz. Mre) = (M,,, Mze) a s .  
A’-= 

and 

( M z z .  Mze) - (Mzz.,v. Mze,N) 1 F,v = Op(n,1’2) a.s. (2.2.46) 

Now xie, is a characteristic of the ith observation in a simple random sample 
from a finite population and the finite population variance is converging to a 
finite positive number almost surely. Therefore, by Corollary 1.3.3.1, 

Result (2.2.44) follows by (2.2.46). 
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Arguments supporting result (2.2.45) are given in the first part of this 
section. See (2.2.27). Alternatively, one can use result (2.2.46), the limiting 

rn normality of E N ,  and Theorem 1.3.6 to prove (2.2.45). 

An estimator of the variance of b-p, of Theorem 2.2.2 can be constructed 
by replacing ei with 6i in MZe, where 6i = yi - x$. Thus, an estimator of 
the variance of the regression vector for a simple random sample is 

(2.2.47) 

where MZz is defined in (2.2.42) and 966 is a design-consistent estimator of 
the variance of the mean vector 

iEA 

The estimator (2.2.47) is generally an underestimate because it contains no 
degrees-of-freedom adjustment for the use of estimators in constructing 6,. 
Also, 6: is often negatively correlated with x:, so that xpe? often underesti- 
mates zc,2e:. 

If the regression vector can be written x, = (1, XI, , )  and if x, is coded in 
the deviation form used in (2.2.22), the estimated variance of the regression 
estimator of the mean (2.2.17) is the first element of (2.2.47). Unlike expres- 
sion (2.2.3 l), the estimated variance so constructed contains a contribution 
due to estimating the last Ic elements of p. The estimated variance (2.2.47) for 
the first element of the reparameterized model, denoted by To, can be written 
in the form 

V { V r e g )  = + { T O )  = C ( w Z q 2 ?  (2.2.48) 
ZEA 

where 
w, = n -1  + (x, - X ~ ) M ~ ~ X , .  -1 I 

Many of the samples encountered in practice are more complicated than the 
simple random sample of Theorem 2.2.2. It does not follow from Theorem 
2.2.1 that an estimator of the population mean using the estimator ,d of 
(2.2.37) will be a design-consistent estimator of the finite population mean. 
In Theorem 2.2.3 we give conditions such that the regression estimator of the 
population mean is design consistent. 

Theorem 2.2.3. Let z1, z2. .  . . , be a sequence of real vectors and let F,v = 
( Z I ?  z2. . . . , z,) be a sequence of finite populations. Let E N  = (Y,, Z,) be 
the mean of z, = (y,, x,) for the Nth population. Let a sequence of samples 
be selected from the sequence {FN}.  Define the regression estimator of Y, 
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by 
Greg = Z N P ,  

where ,8 is a design-consistent estimator of a parameter denoted by p,. Then 

p lim {aN I FN} = 0, 
N-w 

where ai = yi - x@,. 

(2.2.49) 

Proof. Because ,6 is design consistent for PN,  

and we have the conclusion. 

Our most used condition for design consistency is given in Corollary 
2.2.3.1. 

Corollary 2.2.3.1. Let y’ = (y l ,  y2, . . . , y,) and X’ = (xi, x;, . . . , xk). 
Let { @,} be a sequence of nonsingular symmetric n x n matrices. Let Y H T ,  
x H T ,  n i l  (X’@;’X), and n&lX’@;’y be design-consistent estimators for 
finite population characteristics Y N ,  X,, MZ4Z,N, and M,4,,,, respectively. 
Assume that there is a sequence of ( k  + 1)-dimensional column vectors {y,} 
such that 

- 

xy, = @,D;~J, (2.2.50) 

for all possible samples, where D, = diag(T1, 7r2 ,  . . . , T,) and J, is a 
column vector of 1’s. Then the regression estimator 

where 

(8 = (x’@;lx)-l X’@,ly, (2.2.52) 

is a design-consistent estimator of vN. 
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Proof. The estimator f i  is design consistent for 

by the design consistency of the sample moments. If ,6 is defined by (2.2.52), 
then by the properties of generalized least squares estimators, 

(y - Xfi)'iP,lX = 0. 

If (2.2.50) holds, 

It follows that Yreg is design consistent because 

and condition (2.2.49) of Theorem 2.2.3 is satisfied. w 

To describe an estimator meeting the requirements of Corollary 2.2.3.1, we 
reparameterize the regression problem by defining zo = cPnw and 

z1 = x1 - zo(zba~lzo) - lZb~, lX~,  

where w = D;'J,, Z = (ZO,  Z l ) ,  and X = (zo, XI) .  Then 

=: blockdiag (zb+P,lzo, Z/, Z l ) ,  

where blockdiag(B, G) is a matrix composed of four submatrices with B 
and G as the main diagonal matrices and zero matrices as the off-diagonal 
matrices. It follows that the regression estimator (2.2.5 1) can be written 
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where ,d is defined in (2.2.52), 9’ = (90, ,&), 

and 
- 
z, = [zo+J, z1p - z o , N ( w ~ z o ) - l w ~ x l ] .  

The elements of (j&, Xl,dc) are design-consistent estimators under the as- 
sumptions of Corollary 2.2.3.1 because they are ratio estimators of the form 
(2.1.1) with the 2-variable of (2.1.1) equal to 20. For example, if @ = I and 
xi = (N-lnwi,  xl,i). the regression estimator (2.2.53) is 

Yreg = ~r + (%N - z r ) B ,  (2.2.54) 

where 

iEA 

N = c7r71, 
iEA  

and 
( P o ,  B;)! = B = ( x / X ) - l x ’ y .  

The estimator (2.2.53) with Ydc = YT can be written 

iEA 

In this form it is sometimes called the generalized regression estimator 
(GREG) . See Cassel, Samdal, and Wretman (1976) and Samdal(l980). 

To study the large-sample properties of the regression estimator, assume 
that 

../ - 
“Ydc, Xdc: PI) - (YN, XN, &)I 1 Flv = OP(kN) ,  

where k ,  + 0 as N -+ 00. Then the regression estimator (2.2.53) satisfies 

Greg - Ylv = 

= Ydc - VN + (xl.,v - y l , d c ) P l , ~  + O p ( k i )  
= + Op ( k i )  , (2.2.55) 

Ydc - YN + ( % l > ~  - z l , d c ) b i  
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where ai = yz - g N  - (x1,i - X1,.v)pl;Av. Observe that the finite population 
mean of the ai of (2.2.55) is zero for any pl,rJ and that very mild conditions 
are placed on fil. In many situations k ,  is n-’/’. 

A natural f i  to use in constructing a regression estimator is the estimator 
weighted with the inverses of the selection probabilities, 

/ \ -1 

We call fiT the probability weighted estimator even though the weights are 
the inverses of the probabilities. The estimator (2.2.56) is of the form (2.2.52) 
with = DT, where D, is a diagonal matrix with the i7i on the diagonal. 
The estimator (2.2.56) is design consistent for 

i= 1 i= 1 

An estimator of the variance of f i n  is, by Theorem 2.2.1, 

where 

i E A  

(2.2.57) 

,. 
ai = yi - xiPN, V66 is a consistent estimator of variance calculated with iii 
replacing ai, and 6% = yi - xiPn. 

The variance estimation approach of (2.2.57) is applicable for all regression 
estimators of type (2.2.5 1). The estimator of variance is 

A 

V{g,, ,  I F} = Z,V{fi  1 F}X/N 

(2.2.58) 

where V{&AZ&U~ 1 F} is a consistent estimator, such as the Horvitz- 
Thompson estimator, computed with i& replacing ai,  and 

w = (G1,G’, * * * , Gn)’ = zN(x/qX)-1x’@;1. 
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Multiplying (2.2.58) by n(n - k - 1)-’ will often reduce the small-sample 
bias of the variance estimator. 

Example 2.2.1. The NRI data in Table 2.8 were used to illustrate ratio 
estimation in Example 2.1.1. It happens that the area of federally owned land 
and the total area are available from external sources. Therefore, the variables 
“segment size” and “federal acres” can be used as auxiliary variables in a 
regression estimator. We include indicators for strata in the regression so 
that the “estimated” stratum sizes are equal to the known sizes. The stratum 
variables have little effect on the estimated variance for the estimation of 
acres of cultivated cropland, but it is felt that they might have importance for 
variables related to geography. Let the indicator for stratum h be 

xhi = 1 if segment i is in stratum h 

= 0 otherwise 

for h = 1 ,2 ,3 .  Let x4, be total acres in segment i and let x5, be federal 
acres for segment i, where federal acres is the segment acres multiplied by 
the fraction of points that are federally owned. The estimated regression with 
acres of cultivated cropland as the dependent variable is 

$2 = 26.48~1, + 39.59~2, + 4.4723, + 0.22~4,  - O.49X5,. 
(51.75) (48.57) (48.70) (0.31) (0.10) 

where ( x ~ , x ~ . x s )  is the vector of stratum indicators, x4 is segment size, and 
2 5  is federal acres. The estimated standard errors are calculated as the square 
roots of the diagonal elements of the estimated covariance matrix defined in 
(2.2.57). For example, the computations can be carried out in SAS or in 
STATA. The sample is a two-stage sample, and ownership is determined only 
at the points observed. Therefore, the value of federal acres for a segment is 
an estimated value, and the expected values for the coefficients are affected 
by this sampling error. See Section 5.6. For the purposes of estimating the 
total y, we can ignore the within-segment sampling effect. See Section 2.6. 

Fy.rtg = Txfi = (990,1155,442.437.1,272)p = 156.9, 

The estimated total for cultivated cropland is 

where all values are thousands of acres. An estimated variance is 

V{Fy,reg 1 F} = TzV{fi 1 F}TL = 279.8. 

The estimated total of cultivated cropland calculated as the direct-expansion 
stratified estimator is 
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Table 2.1 Alternative Estimates for Missouri County 

Stratified Ratio Regression 
Characteristic Estimator Estimator Estimator 

Cultivated cropland 153.7 
(18.3) 

Forest 76.4 
(14.6) 

Other nonfederal 18 1.1 
(1 8.5) 

Federal 39.7 
(13.1) 

Total 450.7 
(12.8) 

149.0 
(17.9) 

74.1 
(13.8) 

175.5 
(17.2) 

38.5 
(12.6) 

437.1 
(0) 

156.9 
(16.7) 

74.7 
(13.7) 

178.3 
(17.2) 

27.2 
(0) 

437.1 
(0) 

and the estimated variance for the stratified estimator is 336.2. 
Table 2.1 contains the stratified estimator, the ratio estimator, and the 

regression estimator for four broaduses. The table is a simple form of the 
type of table produced with the NRI data. Typically, the reports focus on 
nonfederal lands. All three estimators are linear in y, so the sum of the four 
broaduse estimates is the estimate of the total. It is interesting that the addition 
of the known acres of federally owned land to the estimation procedure has a 
differential effect on the estimates for the different broaduses. The regression 
estimate for cultivated cropland is larger than the stratified estimate, whereas 
the regression estimate for forest is smaller. 

The gains estimated for the regression estimator relative to the stratified 
estimator range from 14% for forest to 20% for cultivated cropland. In general, 
gains will be larger for estimates of large quantities because the variance of 
the total area is zero for the regression estimator. The regression estimator has 
a large-sample variance that is never greater than the large-sample variance of 
the ratio estimator. In this example the efficiency estimated for the regression 
estimator relative to the ratio estimator ranges from 100% to 115%. m m  

The regression estimator sZ,v$, with $T of (2.2.56) is design consistent for 
Y N  if the column of 1’s is in the column space of X. While the estimator is 
design consistent, it is not necessarily the minimum variance estimator. In 
Theorem 2.2.4 we define a regression estimator in the class (2.2.54) with the 
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smallest large-sample design variance. Note that the estimator (2.2.63) of 
Theorem 2.2.4 is linear in y when C{??I;~, Yn I FN} is linear in y. We define 
the vector of auxiliary variables so that the covariance matrix of the estimated 
mean vector is nonsingular. 

Theorem 2.2.4. Let { z j }  be a sequence of real vectors where z j  = (yi, xlj). 

Let FN = (z1, z2:. . . , zN) for N > NO. Assume: 

(i) Positive KU and KL exist such that 

KL < V ' V  {z7r 1 FN} 7 < KU (2.2.59) 

for all N and any vector y with Iy/ = 1. 

(ii) The sequence is such that 

(2.2.60) 112 - 
[V{% I w1- (z7r - 4 L+ N(O, 1). 

(iii) There is a quadratic estimator of the variance of En, denoted by 
V{E,   IF^), satisfying 

[v{% I F'}]- 'V{% 1 FN} - I = Op(n-&) (2.2.61) 

for some K > 0. 

(iv) The variance V{ET1FN} is nonsingular with probability 1 for all N 
greater than some NO. 

Define 

Y D , r e g  = Y7r + ( X l > N  - % , T ) d l > D ,  (2.2.62) 

where 

d i , D  = [ V { % I ? ~  I FN}]-'C {gi,7r, YT I FN} . (2.2.63) 

Then 
(2.2.64) 

where V,,, is the minimum variance for the limiting distribution of design- 
consistent estimators of the form (2.2.54). 

Also, 

(2.2.65) 112 - 
[ @ 7 r  I Ed- (YLhreg - Y N )  .5 N ( 0 ,  11, 

(& = yi - Y7r - (X1,i - % , N ) P l , D  

where V{aT 1 F,v} is the estimator of (2.2.61) constructed with 
.. 
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Proof. By assumption (2.2.61), the estimated covariance matrix for sample 
means is design consistent for the true covariance matrix. Therefore, 

8 1 . D  - P 1 . D N  1 = oJJ(n,n) (2.2.66) 

and 

It follows from (2.2.60) that n1/2(jjD,res - y,v) has a limiting normal distribu- 
tion. Now Pl,D,v is the P that minimizes 

YD r e g  = V, + (XI,, - X I . , ) P ~ , D , ~  + ~ p ( n - ~ ' ~ - ~  1. 

V{Y, + ( q . v  - %r)P I F N }  

and there is no P that will give a smaller variance for the limit distribution. 
To prove (2.2.65), we write the quadratic estimator of the variance of si, as 

ZEA j E A  

where w i j  are the coefficients. If ai is replaced with &, where l i i is defined 
for (2.2.65), 

because, for example, 

ZEA j E A  

is O,(n-'-") by assumptions (2.2.59) and (2.2.61). Therefore, by (2.2.66) 
and (2.2.61), 

1 -  - [V{G I FN}]- V{a, 1 FN} - 1 = Op(n-l--n) 

and (2.2.65) follows. 
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In a large-sample sense, Theorem 2.2.4 answers the question of how to 
construct a regression estimator with the minimum design variance for a 
member of a particular class. Given estimators of ( j j N , X N ) ,  the theorem 
gives the p that minimizes the large-sample variance. We used the estimator 
( j j n ,  Xn) because these estimators are location invariant. One could use other 
estimators, such as ( j j H T ,  X H T ) ,  but the resulting estimator may not be location 
invariant. In practice, a number of questions remain. Theorem 2.2.4 assumes 
a large sample and a vector x of fixed dimension. If a large number of 
auxiliary variables are included in the regression, terms excluded in the large- 
sample approximation become important. This can be true if the number 
of primary sampling units in the sample is small and hence the number of 
degrees of freedom in V{i& 1 F} is small. With a small number of degrees 
of freedom, terms ignored in the approximations can become important. The 
variance contribution due to estimating p can be large, and it is possible 
for some of the weights defined by the regression procedure to be negative. 
If weights are negative, estimates of quantities known to be positive can be 
negative. Negative weights are discussed in Section 2.8. 

We have introduced regression estimation for the mean, but it is often the 
totals that are estimated and totals that are used as controls. Consider the 
regression estimator of the total of y defined by 

(2.2.67) 

where T z z N  is the known total of x, and (TYin, T,>,) is the vector of design 
unbiased estimators of ( T y , N ;  T z , N ) .  By analogy to Theorem 2.2.4, the 
estimator of the optimum ,B is 

(2.2.68) 

where +{T,,n 1 F} is a design-consistent estimator of the variance of T,,, 
and C{%,,,, Ty,, 1 F} is a design-consistent estimator of the covariance of 

The estimator of the total is Njjreg for simple random sampling, but the 
exact equivalence may not hold for other designs. In more complicated 
samples, the mean is a ratio estimator. However, if the regression estimator 
of the two totals is constructed using Theorem 2.2.4, the ratio of the two 
estimated totals has large-sample variance equal to that of the regression- 
estimator of the ratio. To see this, write the error in the regression-estimated 
totals of y and u as 

Tz,, and Ty;,. 

and 
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where R, = TLiTy.x. If we construct the regression estimator for R, 
starting with R = T;iTy,r, we have 

k r e g  = + ( ~ z , x  - T z , r ) f i R . z ,  (2.2.71) 

where 

and 

It follows that the large-sample design-optimum coefficient for the ratio is 
T& (Py,z - RNPuLL2), and the ratio of design-optimum regression estimators 
is the large-sample design-optimum regression estimator of the ratio. 

2.2.3 Poststratification 

One type of regression estimation is so important that it deserves special 
discussion. Assume that after the sample is observed the elements of the 
sample can be assigned to mutually exclusive and exhaustive categories for 
which the population totals are known. Assume that the categories are defined 
prior to sample selection. When the categories are used to construct an 
estimator, they are calledpoststruta. If the original sample is a simple random 
sample, the sample observed in each poststratum is a simple random sample of 
elements in that poststratum. Given a particular sample realization of simple 
random sampling, a very natural procedure is to use the stratified estimator, 

H 

(2.2.72) 
h= 1 

where we are assuming that Ty,r - TV,,,, - ,13y,z, and the corresponding 
quantities for u are Op(Nni1’2) and Op(n,1’2), respectively. Then the error 
in T;7tegTy,reg is 

T-1 T 
u, reg  y,reg - ~ i , b ~ y ~ ~ v  = TL~-[ ( T y , r  - ~ y . , v )  - ~ h r ( P u . r  - T ~ . N )  
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where y h  is the sample mean for the hth poststratum. Conditional on the 
sample sizes (nl ,  722,  . . . , n H ) ,  all n h  > 0, the estimator is unbiased for 
the population mean. Also, if all n h  > 0, the conditional variance of the 
estimator is the variance of the stratified estimator, 

V {gPs  - 1 F. (121. n 2 .  . . . . n H ) }  
H 

h=l 

as defined in equation (1.2.55). 

in that stratum, 
Because the sample in each stratum is a simple random sample of elements 

is unbiased for Si  and 

h=l 

is unbiased for the conditional variance, given that all n h  2 2. 
To see that the poststratified estimator for simple random sampling is a 

special case of regression estimation, let xi be the vector with H elements 
X ht ,  where 

xhi = 1 if element i is in poststratum h 

= 0 otherwise. 

Note that the vector of 1’s is in the column space of the matrix X = 
(xi, xh. . . , . x;)’ because Chxh, = 1 for all i. The vector of regres- 
sion coefficients for the regression of y on x is 

P = ( Y l .  y 2 .  . ” >  YH) 

and the sample mean of x, is 

- -1 x, = n (nl. 7x2, . . . .  n H ) .  

where n - l n h  is the fraction of the sample that falls in stratum h. 
population mean of x, is 

The 

- 
XN = Ar-’(N1, N2, . . . , N H ) .  
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Thus, the regression estimator is 

H 

greg = x,vb = ~ N ’ l T V ’ h g h  = gps.  (2.2.75) 

Using the variance estimator (2.2.47) in the variance for the linear com- 
bination g N b  gives an alternative variance estimator for the regression esti- 
mator (2.2.75). The difference between (2.2.47) and (2.2.74) depends on the 
degrees-of-freedom adjustment made in (2.2.47). Generally, (2.2.74) is the 
preferred estimator. 

The regression form of the poststratified estimator can be used for any 
probability sample and the variance estimator of the regression estimator 
remains appropriate. 

h= l  

2.2.4 Residuals for variance estimation 

We noted that estimator (2.2.47) generally underestimates the variance of 
regression coefficients. For many situations this bias is not serious, but it can 
be important in small samples when the regression coefficients are of subject 
matter interest. An improved estimator of variance can be obtained by using 
alternative regression residuals. Consider the model 

y = X p + e ,  
e N (0,1a2) I 

Let an estimator of p be constructed by giving the ith observation a weight 
of gi and write the estimator as 

p( i )  = (X’GiX) X’Giy, (2.2.76) 

where Gi = diag(1, 1, . . . , 1, gi, 1, . . . , 1) and gi is in the ith position. 
Let the residual for observation i be 

(2.2.77) 1 E ,  - - yi - xip(,) = ei - xi (X’GiX)- X’Gie. 

Then 

g-2V { E i  I X} = 1 - 2xiAL1x!,gi + xiAi1X’G;XAi1x!, 

1 ’  1 1 2  = 1 - 2xiAC xigi + X~AL’X; - (x~AL xi) (gi - g:) , 
(2.2.78) 

where X’GiX = Ai. By replacing Ia2 with diag(a:), one can see the 
importance of the assumption that e N (0, Io2) in obtaining (2.2.78). Setting 
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the right side of (2.2.78) equal to 1, it is possible to use iterative methods 
to determine a gi so that the variance of Ei  is 02. Because (xiAL'x:) = 

0, (n- ') ,  for many problems, 0.5 furnishes a good approximation to the 
desired gi. A computational form for (X'GiX)-' that requires no additional 
matrix inverse calculations is 

(X/GiX)-' = (X'X)-' + hi (X'X)-' X!,X~ (X/X)-', (2.2.79) 

2.3 MODELS AND REGRESSION ESTIMATION 

In Section 2.2.1 we introduced the regression estimator of the finite population 
mean using the normal regression model and simple random nonreplacement 
sampling. It was demonstrated in Section 2.2.2 that a vector of regression 
coefficients can be used to construct an estimator of the population mean that 
has minimum design variance, in large samples, for estimators in a class of 
design-consistent regression estimators. In this section we explore the use of 
models to construct regression estimators. 

Given information about the population, it is natural to formulate a model 
relating the characteristics of interest to the information available, but the 
way in which the model is used to create estimators remains an area of 
discussion in the survey literature. This is because estimators constructed 
under a model need not be design consistent. If the estimator is consistent 
for the parameter under the randomization distribution, it can be asserted that 
the estimator is consistent even if the model is incorrect. In some cases, 
the estimator constructed to be optimal under the model will automatically 
satisfy the design-consistency requirement. We call a model for which the 
standard model estimator is design consistent a full model. A model for which 
the model estimator is not design consistent is called a restricted model or 
reduced model. It is understood that the definition of full model depends on 
the sample design. Estimators that are not design consistent are called model 
dependent in the survey sampling literature. 

2.3.1 Linear models 

In this section we consider linear models and show how to construct estimators 
with good model properties that also satisfy a condition for design consistency. 

Assume that a sample is selected using a design such that the linear-in-y 
estimator 

(2.3.1) 
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where the a, are weights, is design consistent for the mean. Assume that the 
elements of the finite population were generated by the model 

Yz = x,P + e,, (2.3.2) 

where x, = (1, XI.,), P‘ = ( P o ,  P:) ,  yz. is the observation on the charac- 
teristic of interest for the ith element, ~ 1 , ~  is the vector of observations on an 
auxiliary variable, and e, is a zero mean error that is independent of ~ 1 , ~  for 
all i and j .  Assume that the finite population mean of XI,, is known and equal 
to 

Given that the weighted sample mean (t&,  XI,^) is consistent for the 
population mean, we have shown that the estimator 

Greg = 57r + (%l,.V - %l,,)Pl (2.3.3) 

is a design-consistent estimator of the population mean of y for any ,d1 that 
is a design-consistent estimator of a constant. The ,d1 that minimizes the 
large-sample design variance was defined in Theorem 2.2.4. 

Assume now that a superpopulation model is postulated for the data. As- 
sume also that the sample is an unequal probability sample or (and) the 
specified error covariance structure is not a multiple of the identity matrix. 
Only in special cases will the estimator of Theorem 2.2.4 agree with the best 
estimator constructed under the model, conditioning on the sample x-values. 
To investigate this possible conflict, write the model for the population in 
matrix notation as 

Y n r  = XNP+e,, (2.3.4) 

eN N (0 ,  Ceeavlv). 

where yN = (91, y2. . . . , y,)’, e,V = (el. e2, . . . , eAV)/, and e ,  is 
independent of 

/ /  I /  x, = (XI. x 2 .  . . .  . X & ) .  

It is assumed that XeeRT,V is known or known up to a multiple. 

a sample of n observations is of the same form as (2.3.4) and can be written 
If the selection indicators are independent of the vector e,, the model for 

Y A  = X A P + e A ,  (2.3.5) 

e A  N (0,  CeeA.4).  

where eA is independent of X,, y, = (y1, y2. . . . , yn)’, eA = 

(e l ,  e2, . . . , en) / ,  

x, = (xi. x;, . .  . , xi)/, 
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and we index the sample elements by 1: 2, . . . , n, for convenience. We have 
used the subscript N to identify population quantities and the subscript A to 
identify sample quantities, but we will often omit the subscript A to simplify 
the notation. For example, we may sometimes write the n x n covariance 
matrix of eA as Xee. 

The unknown finite population mean of y is 

knr = X n r P + @ N ,  

and under model (2.3 S) ,  the best linear-in-y, conditionally unbiased predictor 
of BAT = k N ,  conditional on XA, is 

(2.3.6) 

- where F A A  = x ~ ~ A ~ x L : ~ ~ ,  xN-, = ( N  - n ) - l ( ~ f ,  - nx,), 

b = ( x L x ~ , A A x A )  -‘XL~::AAY A ,  

X e e ~ A  = E{e,ea}, ea = (e,+l, en+2, . . . , eN)’, J,+, is an (Ar - n)- 
dimensional column vector of l’s, X, is the simple sample mean, and A is the 
set of elements in U that are not in A. 

Under model (2.3.5), 

6 - k~ = c z A ( $  - p) + N - l J k - n ( r A A e A  - e A )  

where X e e A ~  = ELeAA and 

c z ,  = N-l  [(N - n)Xp~-,  - J ~ - , ~ A A X A ]  . 

The conditional variance (2.3.7) based on the assumption that selection prob- 
abilities are independent of eA is sometimes called model variance in the 
survey literature. The predictor (2.3.6) will be design consistent for the finite 
population mean if the design probabilities, the matrix XeeNlv, and the matrix 
X, meet certain conditions. 

Theorem 2.3.1. Let the superpopulation model be (2.3.4), where the xi, 

i = 1,2, . . . , N ,  are i i d  random variables with finite fourth moments. Assume 
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a sequence of populations, designs, and estimators such that 

(2.3.8) 

where the 7ri are the selection probabilities, TyN is the total of y for the Nth 
population, and a > 0. Let ,8 be defined by (2.3.6) and let {p,} be a sequence 
of finite population parameters such that 

( ,8-pN) I F, = ~ ~ ( n , ~ )  a.s. (2.3.9) 

(i) Assume that there is a sequence { y N }  such that 

X A Y N  = E e e A A D G I J n ,  (2.3.10) 

where D, = diag(7r1, 7r2 ,  . . . , 7rn)', for every sample from U, that is 
possible under the design. Then 

( ~ N f i  - jj,) 1 F,V = op(nia) a.s. (2.3.11) 

(ii) Assume that there is a sequence { q N }  such that 

x A q N  - - E e e A A J ? I  + E e e A A J N - n  (2.3.12) 

for all samples with positive probability. Then 6 of (2.3.6) satisfies 

e = X N f i .  (2.3.13) 

(iii) Assume that there is a sequence { C,} such that 

XACN = E e e a A ( D i 1 J n  - J n )  - ~ : ~ ~ A A J N - ~  (2.3.14) 

for all samples with positive probability. Then 6 of (2.3.6) is expressible 
as 

and 

where aiN = yi - jjN - (xi - j f N ) P N .  
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Proof. We sometimes omit subscripts on the sample quantities. Given 
(2.3.10), by Corollary 2.2.3.1, the regression estimator jzNp is design consis- 
tent. By assumption (2.3.9), 

z N ~  I FN = x N p N  + oP(nko) a.s. 

= j j N  + Op(niCu)  a.s. 

and result (2.3.1 1) is established. 
The predictor (2.3.6) can be written 

8 = N - ' [ N Z N ~  + J',(y - xb) + J ' , - n x e e L 4 ~ ~ ~ A A ( y  - xb)], 
and if (2.3.12) is satisfied, 

(Y - x b ) ' x c : A A ( x e e A A J n  + E e e A A J N - n )  = 0. 

Hence, 8 = Z N b ,  and (2.3.13) holds. 
If (2.3.14) is satisfied, we have 

0 = (Y - X b ) '  [ ( W J n  - J n )  - x 2 A A x e e ' 4 2 J N - n ]  

= ( N  - .)(yC - %b) - ( y  - xb)'x,-, ' ,AxeeAAJN-?l, 

where 

(yc, xc) = ( N  - n)-l C(7r" - 1) (yi, X i ) .  

iEA 

It follows that 8 of (2.3.6) is 

and equality (2.3.15) is established. By (2.3.8) and (2.3.9), 

- (8 - Y N )  I FN = Y H T  - y.w + (x, - X H T ) p N  + op(ni2a) as .  

and (2.3.16) follows. Note that SiN = 0. 

If (2.3.15) holds, the error in predictor (2.3.6) is 

8 - Y N  = ( % N  - % H T ) ( b  - O N )  + aHT 
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and the conditional variance is 

where C ,  = (D;’ - I)Jn and ai, is defined in (2.3.16). 
A regression model of the form (2.3.4) for which (2.3.10) or (2.3.14) holds 

is a full model. If (2.3.10) or (2.3.14) does not hold, the model is a reduced 
model. 

We cannot expect condition (2.3.10) or condition (2.3.14) for a full model to 
hold for every y in a general-purpose survey because Xee will be different for 
different y’s. Therefore, given a reduced model, one might search for a good 
model estimator in the class of design-consistent estimators defined by (2.3.3). 
Given model (2.3.4), we choose the weights wi to give small model variance 
for a particular Eee subject to constraints that guarantee design consistency 
for any y-characteristic. 

To construct a design-consistent estimator of the form %,vb when (2.3.4) 
is a reduced model, we add a vector satisfying (2.3.10) to the X-matrix to 
create a full model from the original reduced model. There are two possible 
situations associated with this approach. In the first, the population mean (or 
total) of the added 2-variable is known. With known mean, one can construct 
the usual regression estimator, and the usual variance estimation formulas are 
appropriate. 

To describe an estimation procedure for the situation in which the popula- 
tion mean of the added variable is not known, we use a transformation similar 
to that used to obtain (2.2.54). Let z,+ denote the added variable, where the 
vector zk satisfies 

/ \ -1 

Let Z = (X, zk), where X is the matrix of auxiliary variables with known 
population mean XAV. For the model 
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the best linear-in-y, conditional-on-Z unbiased estimator of ,L3y.z is 

(2.3.19) 

It is not possible to construct an unbiased estimator of Zn7Py,z, conditional 
on Z, because the Z k , N  of ZN is unknown. It is natural to replace the unknown 
2k.N with an estimator of 2k .N  and we use the regression estimator 

(2.3.20) 

where 
bzk.z = (x’q:x)-1x’c,-,lzk. (2.3.21) 

Then, replacing Z,+av with Zk,reg in a regression estimator for the mean of y, 
we obtain 

(2.3.22) 

where 
= (x’E;;X)-lx’q;y. (2.3.23) 

Thus, a regression estimator of the finite population mean based on the full 
model, but with the mean of Zk unknown and estimated, is the regression 
estimator with ,By,z estimated by the generalized least squares regression of 
y on z using the covariance matrix E,=e. 

Expression (2.2.50) of Corollary 2.2.3.1 can be used to construct other 
design-consistent estimators. Letting an be diagonal, we obtain a consistent 
estimator of the form 

Yreg,4 = X N P ~  (2.3.24) 

by setting the ith element of an equal to 4% = ;rixiy, where y is a fixed 
vector and, as in (2.2.52), 

A 

/j* = (x ’qX)yx’a?;1y .  (2.3.25) 

It is possible that the model specifies the error covariance matrix to be diag- 
onal and the error variances 02. to be a linear function of xi. Then setting 
4i = oii7ri gives a design-consistent estimator. See Sarndal, Swensson and 
Wretman (1992, Section 6.5). 

e2 
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Example 2.3.1. Table 2.2 contains an example constructed to compare 
the model properties of several estimators under the model for the sample 
observations, 

Table 2.2 Weights for Alternative Estimators 

(2.3.26) 

Model- Design- Design- Location- 
Original Optimal Consistent Consistent Invariant 
Weight x1,i Weight EM. Weight Ratio Wt. Regr. Wt. 

0.07 
0.08 
0.08 
0.09 
0.09 
0.10 
0.10 
0.11 
0.13 
0.15 

0.1 
0.3 
0.6 
1 .o 
1.7 
2.1 
3.1 
3.5 
4.2 
5.4 

0.10377 
0.10377 
0.10377 
0.10377 
0.10377 
0.10377 
0.10377 
0.10377 
0.10377 
0.10377 

0.05636 
0.06636 
0.06636 
0.07636 
0.07636 
0.08636 
0.08636 
0.09636 
0.11636 
0.13636 

0.06187 
0.07071 
0.07071 
0.07955 
0.07955 
0.08839 
0.08839 
0.09722 
0.11490 
0.13258 

0.15242 
0.09533 
0.07856 
0.08185 
0.07771 
0.08658 
0.08504 
0.09466 
0.1 1419 
0.13365 

and ei independent of z1,i. We assume that the finite population correction 
can be ignored. The first column of Table 2.2 contains the sampling weights 
for a mean where the weights are proportional to the inverses of the selection 
probabilities. The weighted mean of 2 1  for the sample is 21,, = 2.583. 
Assume that 21,, = 2.283 is known. 

Under model (2.3.26) the best linear-in-y conditionally unbiased estimator 
of /3 is 

/ 

Yrat,m = ~l , .wf im = C w m i y i ,  (2.3.28) 

where w,i = (CiG~z1.i)-’21,,. The weights are given in Table 2.2 in the 
column “model optimal weight.” This estimator is the simple ratio estima- 

iEA 
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tor and is not design consistent for our unequal probability sample. The 
conditional model variance of the simple ratio estimator is 

I V {Yrat,m 1 XI,  Z1,N} = w,E,,w~ = 0.2369102, 

where w& = (wml,  wm2,.  . . , wmn). 
Construction of a design-consistent estimator of the form ZN,& where is 

as defined in (2.3.6), requires a variable proportional to z1.i~~:’ to be in the 
column space of the matrix of explanatory variables. Because the population 
mean of z1,i.irt-l is not known, we are led to consider estimator (2.3.22), 

Yreg,jm = Yn + ( Z I ~ ~ ~  - Zl ,n )Pm,  (2.3.29) 

where jm is defined in (2.3.27). The weights associated with this estimator 
are given in the column “design-consistent F.M. weight.” The conditional 
model variance of this estimator is 

Model (2.3.26) is a special model in that the error variance is a linear 
function of the 2-variable. Setting $i = ~ i z i  in estimator (2.2.52) gives the 
estimator 

The weights associated with this estimator are given in the column “design- 
consistent ratio wt.” The conditional model variance of estimator (2.3.3 1) 
is 

V{jjrat,n I Xi, Z l , N }  = 0.246040~. (2.3.32) 

For this sample, imposing the design consistency requirement by either of the 
two methods increases the conditional model variance by less than 5%. 

If we are seeking robustness against model failure for ratio model (2.3.26), 
it is reasonable to consider the alternative model, 

Under model (2.3.33) with ei independent of the selection probabilities, the 
conditional model biases for estimators (2.3.28), (2.3.29), and (2.3.3 1) are 
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and 

respectively. 

for the estimator 

E{Yrat.r - YN I XI, ~ I J V }  = -0.1161P0, 

The weights in the column “location-invariant regr. wt.” are the weights 

(2.3.34) 

BLI = (x’x;2x)-1x/x;;y, 
X’ = (xi, xk, . . . , xk), and w is the vector of “original weight” of Table 
2.2. The estimator (2.3.34) is conditionally model unbiased under both model 
(2.3.26) and model (2.3.33), and the conditional model variance is 

V { Y r e g , g  1 X,XN} = w$xeewg 

= 0.246460~. 

The estimator (2.3.34) is location invariant because the column of 1’s is the 
first column of the X-matrix and the original weights sum to 1. That the 
conditional model variance of the estimator using x, = (1, XI.,) is less than 
the conditional model variance of the estimator (2.3.29) using only zl,i may be 
counterintuitive. However, recall that neither estimator is minimum variance 
under model (2.3.29) or under model (2.3.33). 

The model variances change considerably if the sample mean is less than the 
population mean. The conditional model variances of the estimators computed 
under the assumption that the population mean is 2.883 are 0.37780~ for the 
model optimal estimator, 0.38950~ for design-consistent estimator (2.3.29), 
0.39240~ for design-consistent estimator (2.3.3 l), and 0.39440~ for design- 
consistent location invariant estimator (2.3.34). Note that the variance of 
estimator (2.3.29) is smaller than the variance of estimator (2.3.31) when .. Z l l N  > 2 1 ) ~  and larger when %I,, < 21,T. 

There are many estimators that are design consistent and that use the model 
in construction. Only if the X matrix satisfies a condition such as (2.3.14) 
and the population mean of all 2-variables is known can we claim model opti- 
mality. When the population mean of a variable in the full model is unknown, 
estimators (2.3.22) and (2.3.24) have appeal but neither is guaranteed to have 
a smaller conditional model variance than other design-consistent estimators. 
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The illustration demonstrates that the difference in efficiency between the 
model variance of an estimator constructed under the reduced model and 
the model variance of an estimator constructed to be design consistent need 
not be great. Given a small difference, one might well choose the design- 
consistent procedure to protect against model failure. If one is considering a 
single y-variable and is confident in the reduced model, one might choose the 
estimator based on the reduced model. It is prudent to test the coefficient of 
the z = cr;7rz-' of the extended model before proceeding with the estimator 
for the reduced model. See Chapter 6. 

A model with no intercept, such as (2.3.26), fails for many common vari- 
ables. Thus, if the weights are to be used for many y-variables, weights based 
on model (2.3.33) are preferred. See Exercise 6. 

2.3.2 Nonlinear models 

Typically, nonlinear models are proposed for estimation of the finite popula- 
tion mean only when the population of 17: values is known. We consider that 
case and assume that (yi, xi), i = 1 , 2 ,  . . . , N ,  is an iid sample from a super- 
population with finite fourth moments. Let the model for the superpopulation 
be 

yi = a(xi, 8 )  + ei,  (2.3.35) 

where a(x, 0) is a continuous function of the unknown 8, E{ei}  = 0, and 
ei is independent of xj for all i and j. Let be an estimator of 8 such that 
6 - 8 = 0,(n-'/2) for an i i d  sample. Given the model and 6, a natural 
estimator for the finite population mean is 

where A' is the complement of A. Let the selection probabilities for the 
sample be ri. If a(x, 8 )  has continuous derivatives, the estimator (2.3.36) 
will be design consistent provided that 6 is design consistent, 

N-' c rz ryyi  - a(x2, e)] = op(n-1/2) (2.3.37) 
iEA 

and 
C[Yi - Q(X2, e)] = op(n-1/2) (2.3.3 8) 

These conditions are satisfied for simple random sampling and least squares 
estimation of 8, but need not be satisfied for general sampling schemes. A 
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design-consistent version of estimator (2.3.36) analogous to estimator (2.2.53) 
is given in equation (2.3.40) of Theorem 2.3.2. See Firth and Bennett (1998). 

Theorem 2.3.2. Let {yi, xi} be a sequence of i id  random variables with 
finite fourth moments. Let {FN} be the first N elements in the sequence 
{yi, xi}. Let xi, i = 1 , 2 ,  . . . > N, be known. Let a sampling design be given 
with selection probabilities 7ri,lv and joint probabilities 7ri,+,,, such that 

for any characteristic z with finite second moment. 

exists a sequence {ON} satisfying 
Assume that an estimator of 8 of (2.3.35), denoted by 6, is such that there 

6 -  8, I F~ = ~ , (n -q )  as .  (2.3.39) 

for some 7 > 0, where 6 is constructed from (yi, x a ) ,  i E A and 8, is 
an estimator of 8 constructed from (pi, xi), i E U,. Let a(x, 8 )  be a 
continuous differentiable function of 8 with derivative uniformly continuous 
in (xj, O ) ,  j E U,, for 8 in a closed set B containing 8, as an interior point. 

Let 

Yc,reg = jjT + N-' C C Y ( X ~ ,  6) - fi-' C T<:O!(X~, 6),  (2.3.40) 
iEU iEA 

where 

Then 
iEA 

where 

iEA 

proof. Expanding 6 about O N ,  we have 

N 

Yc,reg - YN = g7r - y.v + N-l C a(x2, 6,) 
i=l 
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N 

i E A  

i=l 

i E A  

where 8i,N is between 6 and 8,v and h(xi, 8 j , N )  is the vector of first deriva- 
tives of Q ( x ~ ,  6)  with respect to 8 evaluated at 6j),. Now 6 - O N  + 0 in 
probability, and hence the probability that e i ; N  is in B goes to 1 as N -+ x. 
Because h(zi, 0 )  is bounded on B, 

for almost all sequences and we have result (2.3.41). 

If all xi are known, a great many estimators of the mean of y are available. 
For example, given a particular y of interest, nonparametric procedures can be 
considered. See Breidt and Opsomer (2000). For another method of creating 
a design-consistent estimator, see Wu and Sitter (2001). A powerful general- 
purpose estimation procedure for approximating nonlinear relationships is to 
use the known z values to form poststrata. See Section 2.2.3. 

2.4 REGRESSION AND STRATIFICATION 

In Section 2.2 we presented the regression estimator for a general design 
and for a general vector of auxiliary variables. In Theorem 2.2.4 we gave 
conditions under which a particular regression estimator is the large-sample 
best with respect to the design variance. Because stratified sampling is so 
important, we describe the construction of the large-sample best estimator for 
stratified samples. 

By Theorem 2.2.4, to find an estimator with minimum limit variance we 
choose ,6 to be the vector y that minimizes the estimated variance 

(2.4.1) v { y s t  - %ty)  , 
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where (Yst, X,,) is the stratified estimator of the mean of (y, x). There are a 
number of possible estimators for ,B because there are a number of consistent 
estimators of the variance. If one uses the unbiased estimator of variance, the 
resulting estimator for stratified sampling is 

,. 
Yreg = Yst + (2, - % t ) P o p t ,  (2.4.2) 

where 

n h  

H 

( $ s t :  Yst) = CWh(% Yh), 

h = l  

fh = NT'nh, Wh = N-'Nh, Nh is the population stratum size, and nh is 
the sample stratum size. The stratified weight for an individual element in the 
sample estimator of the mean is Whn;'. Therefore, 

h=l j=1 

where 

h=l j = 1  

and Kh = Wh(1 - f h ) n ; l ( n h  - 1)-'. A simpler form for the regression 
estimator is obtained if we replace nh - 1 with nh to obtain 

(2.4.4) K;I = Wi(1 - f h ) n t 2  = N- Nhnh (1 - f h ) ,  

so that the weight for an observation in the regression is proportional to 

2 2 -2 

-2 
7rhZ (1 - f h ) .  
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The estimator (2.4.2) is a linear-in-y estimator with weights 

w h j  = wh'rLll + (%2v - ? , ) M i i K h ( X h j  - Z h ) ' :  

where the weights minimize the Lagrangian 

h=l j=1 h=l \j=1 

To compare alternative estimators, we write a regression representation for 
the j th observation in stratum h as 

where 
e h j  ind(0,  O;,h)> 

and e h j  is independent of X h j  . 
Let the regression estimator be 

Vst,reg = Yst + (%, - % s t ) b  

and let P,. be the population regression parameter defined as the probability 
limit of p. Given p N ,  the large-sample variance of the regression estimator is 

H 

(2.4.7) 

where 
2 2 

Oa.h = Oe,h + ( P h  - P A v ) ' C m , h ( P h  - p A v ) ,  
w h  is the fraction of the population in stratum h, and &z.h is the population 
covariance matrix of X h j  for stratum h. Thus, under model (2.4.6), the 
presence of different within-stratum variances and (or) different population 
slopes in different strata leads to different large-sample variances for different 
p,. By construction, POpt is an estimator of the 0, that minimizes (2.4.7). 

Example 2.4.1. To illustrate the possible difference between the variances 
of alternative estimators under model (2.4.6), consider two estimators of p, 

A 

pWls  = (x/D,x)-~x/D,Y (2.4.8) 
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and 
(2.4.9) 

where D, is a diagonal matrix with diagonal elements equal to W h  for units 
in stratum h. The probability limit of (2.4.8) is the population ordinary least 
squares coefficient 

P O l S , N  = (x’,xh’)-lx’,YN, (2.4.10) 

and the probability limit of (2.4.9) is 

1 1 2  bopt = (XID:X)- x D,Y, 

@Opt, N = ( xk DW, h’ xh’ ) x’, DW, N Y N  * (2.4.1 1) 

To construct a numerical example, assume a population divided into two 
strata with W1 = 0.15 and W2 = 0.85. Assume a single z variable with 
stratum population variances 0 2 , ~  = 4.3 for stratum 1 and 0 2 , ~  = 0.6 for 
stratum 2. Assume that the stratum coefficients for z are = 3.0 for stratum 
1 and ,& = 1.0 for stratum 2. Then the population least squares coefficient 
for x is 

= 2.1169, 
(0.15) (4.3) (3.0) + (0.85) (0.6) (1 .O) 

(0.15)(4.3) + (0.85)(0.6) P o l s p  = 

and the population coefficient (2.4.11) for 2 is 

= 1.3649. 
(0.15)2(4.3)(3.0) + (0.85)2(0.6)(1.0) 

(0.15)2 (4.3) + (0.85)2 (0.6) pop,,, = 

To complete the specification for model (2.4.6), assume that = 24 and 
u,“ ,~  = 0.8. For the ordinary least squares regression, the stratum variances 
of the population regression residuals are 

Oa,l,o2s - - (3 - 2.1169)2(4.3) + 24 = 27.3537 

and 
g2,2,01s = (1 - 2.1169)2(0.6) + 0.8 = 1.5485. 

The stratum population variances of the regression residuals computed with 
,BOpt,N of (2.4.1 1) are 

02,1,0pt = (3 - 1.3649)2(4.3) + 24 = 35.4960 

and 
g2)2,0pt = (1 - 1.3649)2(0.6) + 0.8 = 0.8106. 

To compare the variances of the estimators we assume equal n h  and ignore the 
finite population correction. Then the large-sample variances of the regression 
estimators satisfy 

n h V { Y s t , r e g ; w l s }  = 1.7345 
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and 

In this illustration, the stratum regression slopes and stratum variances differ 
considerably, and the optimum procedure is about 25% more efficient than .. 

nhV{Yst ,reg,opt}  = 1.3845. 

the procedure that uses stratum weights to construct the regression. 

Example 2.4.2. Table 2.3 contains an illustrative stratified sample, where 
2 3  is the auxiliary variable. Let Xhj = (1, Q h j ,  23 ,h j ) ,  where 23,hi is given 
in Table 2.3 and 22,hj is the indicator variable for stratum 1, 

Z2.hj = 1 if h = 1 

= 0 otherwise. 

Table 2.3 Regression Estimators for a Stratified Sample 

Stratified Stratified 
Regression Regression 

Original Stratified Optimum 
Stratum Weight 2 3  Weight Weight 

1 0.03 1.1 
0.03 2.5 
0.03 4.1 
0.03 5.2 
0.03 7.1 

2 0.17 1.9 
0.17 2.6 
0.17 3.0 
0.17 3.3 
0.17 4.2 

0.0034 
0.0162 
0.0309 
0.0410 
0.0584 
0.1 128 
0.1492 
0.1700 
0.1856 
0.2324 

0.0212 
0.0254 
0.0303 
0.0337 
0.0394 
0.0623 
0.1309 
0.1700 
0.1994 
0.2874 

The column in Table 2.3 with the heading “stratified regression stratified 
weight” contains weights that can be used to construct the regression estimator 
with pwls. The weights minimize the Lagrangian 

A 

hjEA r=l \hjcA 

where (31,,,, 32,,,, 3 ~ ~ ~ )  = (1, 0.15, 3.50) and W h j  = Wh is the original 
weight of Table 2.3. In matrix notation, the vector of weights is 

wwlS = z,(x’D,x)-~x/D,. (2.4.13) 
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The set of weights associated with the coefficient (2.4.9) are given in the 
column “stratified regression optimum weight.” The weights are obtained 
by minimizing (2.4.12), with w;: replacing w;;. Because the sample sizes 
are the same and the finite population correction is ignored, Kh of (2.4.5) is 
proportional to Wt.  The vector of weights is 

(2.4.14) 

We call the weights of (2.4.14) the optimal weights, recognizing that there 
are other weights that give the same limiting variance. Because the x vector 
contains a variable for stratum effect, the weights sum to the known stratum 
proportion for each stratum. a. 

Minimizing the approximate design variance of the regression estimator 
minimizes the variance under a model that permits different slopes in different 
strata. If the stratum means of 2 are known and if there is a possibility that 
the regression coefficients differ by stratum, it is natural to construct the 
regression estimator for each stratum and then merge the stratum estimators 
using the stratum proportions. The resulting estimator is called the separate 
regression estimator. The regression estimator constructed in Example 2.4.2 
with a single coefficient is called the combined regression estimator. See 
Cochran (1977, p. 200). 

In Theorem 2.2.3 the design consistency of the regression estimator re- 
quired the vector ,8 to converge to a population parameter p,,,. The practical 
implication of this requirement for the separate regression estimator is that the 
sample size should be large in each stratum. If some stratum sample sizes are 
small, the separate regression estimator can have a large bias. Thus, even if 
stratum means of the auxiliary variables are available, it may be preferable to 
use the combined estimator. A compromise estimator can be constructed by 
combining small strata on the basis of similar characteristics. Also, if there is 
a vector of auxiliary variables, a regression estimator can be constructed that 
permits some coefficients to vary by strata while using a single coefficient for 
other variables. 

2.5 ESTIMATION WITH CONDITIONAL PROBABILITIES 

Till6 (1998) suggested the computation of an estimator based on the con- 
ditional probabilities of selection, given the observed mean for an auxiliary 
variable. The basis for the estimator is the conditional probability that element 
i is included in the sample, given that the sample mean of 2 is equal to t ,  

P{i  E A}  P{Zn = t 1 F> i E A}  
P{i  E A I F, Z, = t }  = . (2.5.1) 

P{Zn = t I F} 
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For some small samples and some finite populations, there may be no sam- 
ple with sample mean exactly equal to t .  Also, if only IcN is known, it is 
impossible to determine the probabilities for E n .  Therefore, we consider ap- 
proximations to the probabilities in (2.5.1). If n and N are large and the 
selection probabilities meet some regularity conditions, 2 ,  is approximately 
normally distributed. Furthermore, the mean of the n - 1 observations, other 
than xi, is also approximately normally distributed. If the sample is a simple 
random sample and N- ln  is small, 

(2.5.2) -1 2 5, A N ( z N ,  n a,) 

and 
(2.5.3) 2,  I i E A A N(ZN, ( i ) ,  (n  - 1)” -2  gz), 2 

where 
Z N , ( i )  = E{E, 1 i E A}  = n-’ [(n - 1)2, + xi] (2.5.4) 

is used to denote “is approximately distributed as” and = is used to and 
denote “is approximately equal to.” 

It follows that the approximate conditional density of the sample mean is 

The approximate unconditional density is 

- (27rn-1 a,) 2 -112 exp{-[2a,n 2 -1 ] -1 (x, - - 2.v)2} (2.5.6) f ( 2 n )  - 

and from (2.5. l), 

Nn-l [(n - 1)-1n]-1’2 P{i  E A 1 F, 2,)  

= e s p {  [2a,n 2 -1 ] -1 [(?En - z N ) 2  - (n - l)-1n(2n - 2.v , ( i ) )2]  } 

1 
= e s p {  - ( 2 a ; ) - l n ( n  - 11-1 [(zn - + n-l(xi  - ~ , ) 2  

-a($,  - 2 N )  (xi - ZN)] . (2.5.7) 

If we denote the probability in (2.5.7) by 7rilz,, a conditional Horvitz- 
Thompson ratio estimator of the mean is 

-1 

(2.5.8) 
iEA iEA 
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If only g N  is known, it is necessary to estimate (2.5.7) by replacing 02 with 
SX. 

Now ( 2 ,  - 2 N ) 2  = O,(n-') and (n - l)-l(Zn - x i ) 2  = OP(n-l). 
Therefore, by a Taylor expansion, 

(N i7 . -  )-1 = -1 -1 - 2 -1 
21xn n + n ( z , ~  - %,)(ax) (xi - 2,) + ~,(n-~) 

2 

(2.5.9) 

Expression (2.5.9) is another demonstration that to the degree that (y, 2 )  is 
normally distributed, the regression estimator is an estimator of the conditional 
expected value of y given that the finite population mean of z is Z N .  

The estimator (2.5.8) is not a regression estimator because Z, is not neces- 
sarily equal to ZN.  It is natural to create a regression estimator using the bi of 
(2.5.8) as initial weights. That regression estimator is 

-1 n + ( zN - 2,) 

+ 0,(K2). 

- - 

Yc,reg = c WiYi = y e  + (ZN - Z c ) j c l ,  (2.5.10) 
iEA 

where 

zi = (1, xi - z,), and g N  = (0, Z N  - 2,) .  Assuming that the existence of 
moments, by (2.5.9), (ZN - 2,) = O,(n-') and estimator (2.5.10) differs 
from the usual regression estimator by a term that is O,(n-'). 

The representation for the conditional inclusion probability extends imme- 
diately to a vector of auxiliary variables. Let C,, be the covariance matrix 
of the sample vector of means, let X N , ( i )  be the expected value of the sample 
mean given that xi is in the sample, let C,,, ( i )  be the covariance matrix of the 
sample mean given that xi is in the sample, and let 7ri be the original selection 
probability for xi. Then 

(2.5.11) P{i  E A 1 F,Z , }  = 7ri 1 C,, 1'121 C,,,(il \-'I2 ezp{Q,,}, 

where 

Q,, = 0.5[ (X, - XN)X&!(X, - X N ) '  

- ( X n  - ~ N ( z ) ) ~ ; ; , ( z ) ( % 2  - X N , ( i ) ) '  I. 
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In simple random sampling ZN,(i)  is given by the vector version of (2.5.4) and 
X z z . ( i )  is (n - ~ ) n - ~ & ~ .  

To develop an approximation for general designs, let i be the index for pri- 
mary sampling units. Let Z, be a linear design unbiased, or nearly unbiased, 
estimator of the population mean. Consider an estimator of the population 
mean constructed by removing primary sampling unit i and increasing the 
weights of some of the remaining elements so that the resulting estimator is 
unbiased, or nearly unbiased, for the mean of the population with xi deleted. 
For example, let the sample be a simple stratified sample with estimated mean 

H 

h=l  j E A h  

where Ah is the set of sample elements in stratum h, Wh is the fraction of 
the population in stratum h, and H is the total number of strata. Then the 
estimator of the population mean of 2 with element i in stratum m removed 
from the sample is 

H 

J E A m  
3 5 2  

h=l 
h f m  

See also jackknife variance estimation in Section 4.2. 

in the sample is 
By construction, the conditional expectation of 2t) given that element i is 

for large N .  Therefore, 

E { z t )  - 2 ,  I i E A, F} = ?tN - E { z ,  I i E A: F} (2.5.14) 

and an estimator of the conditional mean of 2,  given that xi E A is 

~ Z I ~ E A  = 2~ + 2 ,  - 2c'.  (2.5.15) 

We assume that the estimators of the mean are such that 

c{Zp-z,, 2,  IF} = 0. (2.5.16) 

This condition holds, for example, for the estimator (2.5.12). Then 

= V { Z t )  I i E A, F} V{Z,  I i E A, F} 

+ V(2:) - 2,  I i E A, F}. (2.5.17) 
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An estimator of expression (2.5.11) can be constructed if it is possible to 
estimate V{Z?' I 3). In the case of a stratified sample with element i in 
stratum m removed, 

H 

and 

H 

where Sk(i)  is the population variance of stratum m when element i is re- 

moved and is the corresponding sample quantity. The stratified variance 
expressions are discussed in Section 1.2.2. 

2.6 REGRESSION FOR TWO-STAGE SAMPLES 

In the preceding sections we presented the regression estimator as if the 
sampling unit and the analysis unit were the same. In cluster or two-stage 
samples, this is no longer true. Consider a sample containing n primary 
sampling units with mi second-stage units in the ith primary sampling unit. 
Let a vector of auxiliary variables with known population means be available. 
If, following Theorem 2.2.3, one constructs a regression estimator of the total 
by minimizing the estimated design variance, the estimator is 

Ty, reg  = p y  + ( T z 1 . N  - T z l ) d d o ,  (2.6.1) 

where 

bdo = [V{*zl I F}]-'C{*zl> T y  I F}, (2.6.2) 

@zl ,  Fy) = C T&Xl>i j ,  Y i j ) ,  
i jEA 

and ~ ( i j )  is the probability of selecting secondary unit j in primary sampling 
unit i. If the covariance matrix V{Tzl I F} is a quadratic function and the 
finite population corrections are ignored, estimator (2.6.1) assigns a weight 
to each primary sampling unit. If the number of primary units in the sample 
is large and the number of elements per primary unit relatively small, a 
single weight for each primary sampling unit is feasible. A good example 



REGRESSION FOR TWO-STAGE SAMPLES 149 

is a sample of households. Census information may be available for both 
household characteristics and personal characteristics. Because the number 
of persons per household is relatively small, the regression estimator can 
be constructed by assigning a weight to each household. If all members of 
each sampled household are observed, each member receives the household 
weight in tabulations of individuals. In many practical situations the number 
of primary sampling units is small and hence the degrees of freedom for the 
estimator V { 7 k x 1 }  is small. It is also possible for the dimension of XI to be 
relatively large. In such cases the b of (2.6.2) may have a very large variance, 
or in extreme cases, V{7krl} may be singular. 

If the primary sampling units are relatively few in number, if little analysis 
of the primary units themselves is planned, and if the principal analysis unit 
is the element, it is reasonable to construct weights for elements. The most 
common procedure is to construct weights for secondary units ignoring the 
primary sampling units. Then a regression estimator for the total is 

Tg,reg,su = c 7r&)YZj + ( T 5 , N  - T z ) b s u ,  (2.6.3) 
i jEA 

where 
-1 

c 7r&Xij - W ( X i j  - X-i) c 7r~;)(xij-~T)/(Yij-~T) 
i jEA t jEA 

(2.6.4) 
and 

Under our usual conditions for consistency, the variance can be estimated by 
applying the two-stage variance estimator to &j  = yij - CjT - (xij - RT)Psu.  
See (1.2.82) and (1.2.87). 

In constructing an element regression estimator for a two-stage sample 
there may be auxiliary information available for the primary sampling units 
as well as for elements. Also, it may be desirable to maintain control for the 
number of primary sampling units per stratum. One can include controls for 
primary sampling unit characteristics by defining the variable 

A 

(2.6.5) zij = zimi 7rjli> 

where zi is the characteristic total for the ith primary sampling unit, mi is 
the number of sample elements in the ith primary sampling unit, and 7rjli is 
the probability of selecting element ij given that primary sampling unit i has 

-1 



150 USE OF AUXILIARY INFORMATION IN ESTIMATION 

been selected. Observe that Cji7T1zzj = zi, where the sum is over sample 
elements in the ith primary sampling unit. If the subsampling rate within a 
primary unit is constant, z i j  = Mt:’zi: where Ad, is the population number of 
elements in the ith primary sampling unit. The restriction on the regression 
weights expressed in terms of element weights is 

31% 

i jEA 

where wi j  is the final weight for element j in primary sampling unit i and ZN 
is the population mean of zi. 

In cases with a small number of primary sampling units, a design-consistent 
model-based estimator of p can be considered. A potential model for the 
observations yij in a two-stage, or cluster, sample is 

(2.6.6) 

where b, N i id (0 ,  a:). ezll N i id (0 ,  a:), and ez3 is independent of bk for all 
i. j ,  and k .  With model (2.6.6) the error covariance matrix is block diagonal 
with n blocks, where the ith block is an rn, x rn, matrix 

xuuzz = 1 ~ 2  + J J ’ ~ ; ,  (2.6.7) 

and J is an rn,-dimensional column vector of 1’s. 

Example 2.6.1. Table 2.4 contains an illustration data set for a stratified 
two-stage sample. The first column of Table 2.3 gives the stratum. The 
primary unit sampling rate is one in 40 for stratum 1 and one in 30 for 
stratum 2. Note that there are 200 primary sampling units in stratum 1 and 
90 primary sampling units in stratum 2. The element weights are the stratum 
weights divided by the subsampling rates and are given in the column “wo.” 
An element control variable, identified as “21,” is given in the table. The 
auxiliary variables used to maintain the stratum primary sampling unit totals, 
as defined in (2.6.5), are 

where & i j  is the stratum indicator for stratum h. These variables are given 
in the two columns identified as “z1” and ‘‘22 .” 

To define regression weights, we assume that model (2.6.6) holds for both 
strata of the stratified sample and write the model as 

(2.6.8) 
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Table 2.4 Stratified Two-Stage Sample 

PSU 
Str. PSU SSU Wt. wo ICI z1 2 2  z3 Y 

1 1 
1 
1 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 

2 6  
6 
6 
6 
6 
6 
6 
7 
7 
7 
8 
8 
8 
8 
8 

1 
2 
3 
1 
1 
2 
3 
4 
1 
2 
3 
4 
5 
1 
2 
1 
2 
3 
4 
5 
6 
7 
1 
2 
3 
1 
2 
3 
4 
5 

40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

80 3.0 
80 3.3 
80 2.5 
80 5.3 

160 4.1 
160 5.0 
160 4.4 
160 3.7 
160 6.0 
160 5.1 
160 4.4 
160 3.3 
160 4.0 
80 6.4 
80 4.9 

150 4.2 
150 4.5 
150 6.4 
150 3.6 
150 4.3 
150 3.3 
150 4.8 
60 5.1 
60 4.8 
60 4.9 

120 3.7 
120 3.8 
120 2.9 
120 5.4 
120 5.3 

0.1667 
0.1667 
0.1666 
0.5000 
0.0625 
0.0625 
0.0625 
0.0625 
0.0500 
0.0500 
0.0500 
0.0500 
0.0500 
0.2500 
0.2500 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0286 
0.0286 
0.0285 
0.0286 
0.0286 
0.0286 
0.0285 
0.1667 
0.1666 
0.1667 
0.0500 
0.0500 
0.0500 
0.0500 
0.0500 

176 10.64 
176 11.40 
176 8.36 
112 19.75 
416 19.96 
416 19.92 
416 18.63 
416 16.31 
480 21.93 
480 19.78 
480 19.69 
480 15.99 
480 16.47 
144 23.27 
144 18.48 
570 20.82 
570 20.17 
570 26.12 
570 18.78 
570 20.36 
570 19.37 
570 21.47 
132 21.64 
132 21.34 
132 22.73 
360 17,25 
360 19.41 
360 16.13 
360 23.76 
360 21.97 

where bhi is the primary sampling unit (PSU) effect and ehij is the element 
effect. Assume that the bhi are independent (0, 0,”) random variables, the ehij 

are independent (0, C T ~ )  random variables, and bht is independent of ehij for 
all h, i, j ,  and t .  The covariance matrix of u = ( u ~ , J J ,  u1,1,2, . . . , u2,8~)’, 

denoted by Euu, is block diagonal with blocks of dimension mi where the ith 
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block is given by (2.6.7). Note that 

(2.6.9) 

To compute the regression estimator, only the ratio ge2o; is required and 
we compute the regression weights under the assumption that aL2a; = 0.4. 
The population total of 2 1  is known to be 18,168.7 and the sample estimate 
of the total of 21 is 16,517.0. 

The regression estimator Z N D  for model (2.6.6) will be design consistent 
if the X-matrix is such that 

E,-,’Xy = L,, (2.6.10) 

where y is a fixed vector and L, = (T&, T ; : , ~ ,  . . . , T ~ , ~ , ~ )  -1 I is the vector 
of sampling weights. The vector g;2E:2L:2LLw is identified as “z3” in Table 2.4. 
If the number of secondary units and the subsampling rate for each primary 
unit is known, the population total of 23 is known and is 

Tz3 = C M:mL1 (1 + o ~ 2 ~ ~ m z ) ~ z - 1 .  (2.6.11) 
zEU 

For our illustration, the total of 23 is 1,687,000 and the sample estimate of 
the total of z3 is 1,562,740. Then the vector of weights for the model-optimal 
regression estimator T,P, computed with X h z j  = ( x l , h z j ,  z 1 , h t j ,  22,hZ3, 

A 

z3,hzj), is 

W) = TX(X’W1X)-’X’W1, (2.6.12) 

where the rows of X are xhzl l ,  the total of x is 

T, = (18.1687, 0.200, 0.090, 1687.000) x lo3, 

and = o;2Xuu with CT;~C$ = 0.4. We use the weights of (2.6.12), given 
in Table 2.5 and the vector in the last column of Table 2.4, denoted by y, to 
illustrate some of the computations for two-stage regression. The estimated 
total of y using weights (2.6.12) is 

An estimated design variance, ignoring the finite population correction, is 
n 

= 2,276,381, (2.6.13) 
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Table 2.5 Regression Weights for Stratified Two-Stage Sample 

Str. PSU SSU wo Wf WP 

1 1  
1 
1 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 

2 6  
6 
6 
6 
6 
6 
6 
7 
7 
7 
8 
8 
8 
8 
8 

1 
2 
3 
1 
1 
2 
3 
4 
1 
2 
3 
4 
5 
1 
2 
1 
2 
3 
4 
5 
6 
7 
1 
2 
3 
1 
2 
3 
4 
5 

80 
80 
80 
80 
160 
160 
160 
160 
160 
160 
160 
160 
160 
80 
80 
150 
150 
150 
150 
150 
150 
150 
60 
60 
60 
120 
120 
120 
120 
120 

80.4 
89.3 
65.6 
37.3 

172.5 
199.1 
181.3 
160.6 
220.0 
193.4 
172.7 
140.1 
160.8 
128.5 
84.2 

151.2 
160.1 
216.3 
133.4 
154.1 
124.6 
168.9 
56.0 
47.1 
50.1 

115.8 
118.7 
92.1 

166.1 
163.1 

77.3 
78.5 
75.3 
57.2 

181.5 
188.6 
183.9 
178.4 
198.7 
191.6 
186.1 
177.4 
182.9 
83.5 
77.5 

169.4 
171.6 
185.7 
165 .O 
170.2 
162.7 
173.9 
47.7 
46.8 
47.1 

125.5 
126.1 
120.8 
135.6 
135.0 
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n,, = 30 is the number of secondary units in the regression, n h  is the number 
of primary sampling units in stratum h, Bhi is the set of indices for elements 
in primary sampling unit hi, .xhi = 7rh is the first-stage sampling rate, and 
Alh is the set of indices for primary sampling units in stratum h. The ratio 
(n,, - 4)-’(n,, - 2) is the ratio of sample size less the number of strata to 
sample size less the dimension of x h i j .  The quantity Thi w f ,hij is the regression 
modification of the inverse of the conditional probability that element hij is 
in the sample given that primary sampling unit hi is in the sample. One could 
use w, to form Gf,h i  for an alternative consistent estimator. 

The estimated variance of 5?y,reg,f under the model is 

V{Tylreg,f I x,xAr} = w;*wf8: 

= 1,843,9438: 
= 1,915,857, (2.6.14) 

where 

6: = (n,, - 4)-l [yIa-ly - y’w1x(x’~-1x)-1x/@-~y] 

= 1.039. 

This sample is too small for reliable comparisons, but if the model is true and 
gep2a; = 0.4, the estimators (2.6.13) and (2.6.14) are estimating the same 
quantity. The design estimator (2.6.13) remains an appropriate estimator if 
the model is not true. 

The generalized least squares estimate of p for the regression of y on 
( 2 1 ,  21, 22,  0.01~3) defined in (2.6.13) is 

0s = (2.76, 7.39, 40.89, 1.37)’. 

The estimated model covariance matrix is 

V{& I X} = (x/w1X)-%: 

i 0.0449 -0.5105 -1.0376 -0.0350 
-0.5105 9.6950 12.9631 0.3408 
-1.0376 12.9631 51.4084 0.6347 ’ 
-0.0350 0.3408 0.6347 0.0356 

(2.6.15) 

where 6: is given in (2.6.14). The t-statistic to test the hypothesis that 
the coefficient of z3 is zero is 7.26, and the reduced model containing only 
( x ~ , z I , z ~ )  is rejected. Thus, we would expect the model estimator ENfiy.zl  
based on z = ( ~ 1 . ~ 1 ,  ~ 2 )  to be seriously biased. Also see Section 6.3. 
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The design covariance matrix of Pf is 

V{Pf 1 F} = v{(x’@-’x)-’x’@-lu 1 F} 

where Gfp = (X’@-’X)-’X’@-’ and u is the vector with components 
uhij .  An estimator of the covariance matrix is 

2 

h=l ZEAih 
(2.6.16) 

where cd f  = (n - H ) ( n  - H - 2)-’, H = 2 is the number of strata, there 
are two explanatory variables other than stratum indicators, 

i E 4 i h  

g f p . h i j  is the hij column of Gfp, and fif,hij is defined in (2.6.13). The 
estimate is 

1 0.0581 -0.5334 -1.4133 -0.0337 
-0.5334 9.1527 12.5783 0.2748 

v @ f  F’ = -1.4133 12.5783 44.6731 0.8074 ’ 

-0.0337 0.2748 0.8074 0.0238 
(2.6.17) 

The regression vector and the estimated covariance matrix can be computed in 
SAS or STATA. The test statistics for the hypothesis that the coefficient of 23 

is zero based on the variance from (2.6.17) is 8.88, giving the same conclusion 
as the use of the variance from (2.6.15). The two covariance matrices (2.6.15) 
and (2.6.17) differ by a considerable amount because the model may not be 
true and because this is a very small sample. 

If the mean of z3 is not known and if 23 is significant in the regression, the 
estimator (2.6.3) is a strong option for estimating Ty. The vector of regression 
estimation weights for the probability weighted estimator (2.6.3) is 

i 

W’ P = W; + (T, - T,)(Z’D;~Z)-~Z/D;~,  

where D;’ = diag(w0) and the rows of Z are z h i j  = ( Z l ) h i j ,  z l ,hij ,  22,hij). 

The weights Wp,hij are given in the last column of Table 2.5. The estimated 
total using the Wp,hij is 

Tyy,reg,p = W ~ J J  = 79,368. 
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The estimated variance of the form (2.6.13) using W p , h i j  and f i p , h i j  = Y h i j  - 

V{+y,Teg>p 1 ~1 = 3,163,440, (2.6.18) 
2 1 , h i j b p  is 

where 
bP = ( Z ~ D ; ~ Z ) - ~ Z / D ; ~ Y .  

The estimated vector of regression coefficients is 

-1  p p  = (4.36, -10.58, 13.71), 
(0.16) (4.10) (16.01) 

where the standard errors are the square roots of the estimated covariance 
matrix of the form (2.6.16). The primary reason that V{fp,Teg,p I F} is larger 
than V{?y,reg,f 1 F} is that extra information, the 2 3 ,  is used for ?y,reg,f.  

The estimator of the form (2.6.13) calculated with W p , h i j  and fif ,hi j  in place 
of f i p , h i j  gives 2,119,104, illustrating the effect of z3 on the variance. 

Table 2.6 Primary Sampling Unit Totals and Regression Weights 

Regr. 
PSU PSU Design 

Str. PSU Weight 21 Total ZI zz 6 Weight Residuals 

1 1  40 17.6 1 0  
2 40 10.6 1 0  
3 40 68.8 1 0  
4 40 91.2 1 0  
5 40 22.6 1 0  

2 6  30 155.5 0 1  
7 30 29.6 0 1  
8 30 84.4 0 1  

60.80 
39.50 

299.28 
375.44 

83.50 
735.45 
131.42 
394.08 

36.13 
35.02 
44.20 
47.73 
36.92 
36.99 
23.59 
29.42 

1.2096 
1 1.8637 
5.9675 

1.085 1 
15.3726 

-20.1259 

-13.9385 
-1.4341 

Table 2.6 contains the estimated PSU totals of 21 and of y required to 
construct estimator (2.6.1) using z 1  as the auxiliary variable. The regression 
weights for the PSUs constructed by minimizing the estimated variance of the 
estimator are given in Table 2.6. The finite population correction was ignored, 
giving the vector of weights 

wd = (Tzl, Tz1, T z ~ ) ( ~ : K ~ I ) - ~ Z : K ,  

where the rows of Z l  are iil;hi = (?l,hi, zl ,hi ,  Z 2 . h i ) ,  the elements of y are 
$hi, K is a diagonal matrix with N;nT1(nl - 1)11 = 2000 for PSUs in the 
first stratum and N;nT1(nz - 1)-l = 1350 for PSUs in the second stratum, 
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Nh is the population number of PSUs in stratum h, and nh is the sample 
number of PSUs in stratum h. 

The vector of estimated coefficients is 

,d& = Pzl, P z 2 )  = (4.56, -20.75, 10.24), 
(0.17) (6.80) (17.03) 

where 

and the elements of y are Chij. The standard errors are the square roots of the 
diagonal elements of 

& = ( Z ; K Z ~ ) - ~ Z ; K ~ ,  

v{& I F} = (Z’,KZ~)-~Z;KD,~D,, ,KZ~(Z’,KZ,)-~,  (2.6.19) 

where D,,, = diag(&&,), 

%i,hi = Chi - Yhi - ( h i  - %L)Pd,Zl  

&,+l = [+{FZ I F } l - l c{Tz ,Fy  I F}, 

- 
= Chi - &,hi&> 

Dcd = (n - H ) ( n  - H - 1)-l x blockdiag(1.215,1.513), 

n = 8 is the number of primary sampling units, H = 2 is the number of 
strata, and the multipliers for the identity matrices are nh(nh - 1)-’ for 
h = 1,2.  Because the stratum means of the fid,hi are zero, the estimated 
variance (2.6.19) is the estimated variance for a stratified sample. 

The estimated total is 
2 nh 

with estimated variance 

= 2,532,658, 

where cH = (n - H - 1)-l (n - H )  and Wd,hj  is the regression design weight 
of Table 2.6. The estimated variance for the procedure using PSU totals is 
similar to that using the probability weighted estimator based on secondary 
units. This small sample was used to illustrate the computations and is not 
representative of the large samples typical of survey practice. However, 
samples with a large number of elements and a relatively small number of 
PSUs are common. m m  
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2.7 CALIBRATION 

One of the attributes of the regression estimator of the mean is the property 
that 

(2.7.1) 
% € A  

where the w, are the regression weights. The property (2.7.1), called the 
calibration property, has been discussed by Deville and Sarndal (1992) and 
Sarndal (2007). One way to construct weights with the calibration property 
is to minimize a function of the weights subject to the restriction (2.7.1). See 
(2.2.21). 

A procedure for constructing estimators discussed by Deville and Sirndal 
(1992) is to minimize a function of the distance between an initial weight a, 
and a final weight w, subject to the calibration restriction. Let the distance 
function between at and w, be denoted by G(w,, a,). Then the problem is 
to minimize c G(w,. a,) (2.7.2) 

% € A  

subject to the calibration constraint (2.7.1). It is assumed that G(w,  a )  is 
nonnegative, differentiable with respect to w, strictly convex, defined on an 
interval containing a,  and such that G(a,  a )  = 0. It is also assumed that 
a, = N-'T,-' and 

(2.7.3) - c a,x, = XN + O,(n-'/2). 
ZEA 

The equations defining the weights are 

g(wz, a,) - x , X  = 0, (2.7.4) 

where X is a column vector of Lagrange multipliers and g(w,, a,) = 
dG(w,, a,)/dw,.  Let g-'(. ,  a,) be the inverse function with respect to 
w, holding a fixed at a,. Then 

w, = g-l(x,X, a,). (2.7.5) 

From the calibration equation (2.7.1) and equation (2.7.5), 

c g - ' ( x Z x ,  a,)% = %v 

ZEA 

defines A. Deville and Sarndal(l992) prove, under regularity conditions, that 
the estimator with weights of (2.7.5) can be approximated by a regression 
estimator. 
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We give a result with a different proof than that of Deville and Sarndal 
(1992). 

Theorem 2.7.1. Let G(w,  a )  be a continuous convex function, with a first 
derivative that is zero for w = a, with a continuous second derivative that is 
positive and bounded away from zero, with a continuous third derivative, and 
with G(a,  a )  = 0. Let a sequence of populations and sample designs be 
such that 

(2.7.7) 

and 

where MZZ = n- 'E jE~x$xj ,  1 xi /= ( x ~ ; ) O . ~ ,  and 1 MZZ 1 is the determi- 

nant of MZZ. Assume that K1 < nai < K2 for some positive K1 and Kz, 
where ai = N-l7rZT1. 

Then the wi that minimize (2.7.2) subject to (2.7.1) satisfy 

wi = ai + (2, - %) zx:+;'xi xi+;' + O,(nP2), (2.7.9) 
( i 6 A  

where 

(2.7.10) 

is the second derivative of G(w,  a )  with respect to w evaluated at ( w ,  a )  = 

(ail 00. 

Proof. The equations associated with the Lagrangian are 

G'(wi, ai) + X ~ X  = 0 ,  i = I ,  2, . . . ,  n, (2.7.11) 

C w z x ;  - 2; = 0, 
iEA 

where G/(wi ,  ai) is dG(w, a ) / d w  evaluated at (w ,  a )  = (wi,  ai). Let 
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where q5ii is defined in (2.7.10) and 

iEA 

Then 

and 

= 0 ( ~ - 2 . 7 5 ) ,  (2.7.13) 

where Li = n-’M;&xi$;’. Also, 

= O@) 

because 1 Mi;, 1 = Op(l) and the 4;’ are bounded. 
A second-order expansion of the objective function is 

c G(ai + e i ,  ai) = c G ” ( a i  + e:, ai)Ei (2.7.14) 
iEA &A 

where e: is between ei and zero and we have used G(a i ,  ai) = G/(a i ,  ai) = 
0. By (2.7.13), there is an no and a closed interval B b  with zero as an interior 
point such that for n > no, the probability is greater than 1 - S that all ei are in 
the interval. Then, because I nai I is bounded and G”(w, a )  is continuous, 
G”(ai + E : ,  ai) is bounded for e: E B6 and 

C G(ai  + ~ i ,  ai) = Op(n-2). (2.7.15) 
iEA 

Now 

By the continuity and positivity of the second derivative of G(wi,  ai) ,  

2 C G(wi, aii) = G”(wH, ai)(~i - cti) = Op(n-2)  
iEA iEA 
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for the wi that minimize (2.7.2), where W% is between wi and ai. Therefore, 

2EA ZEA 

and, as n increases, the w, that minimize 

c $21,(w, - % I 2  + (5 W t X t  - ix) 
% € A  

converge to the w, that minimize (2.7.2) subject to (2.7.1). 

equations (2.7.1 1). Expanding (2.7.1 1) about a, yields 
To establish the order of the remainder in (2.7.9), we return to the defining 

G”(cY,, a,) (w, - a,) + G”’(at, a,) (w, - + x,X = 0, (2.7.16) 

where W i  is the solution to (2.7.11) and a: is between wi and ai. Multiplying 
by xi$;’ and summing, we have 

0 .  

By assumption, G”’ 

c 
iEA 

Therefore, 

i E A  

9 ,  ai) is continuous and 

and 

We note that assumptions (2.7.6) and (2.7.7) will be satisfied by simple 
random samples from a distribution with eighth moment. See David (1981, 
p. 56). 
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It follows from the properties of the weights of (2.7.9) that the associated 
estimator is a regression estimator. This is made explicit in the corollary. 

Corollary 2.7.1.1. Let the assumptions of Theorem 2.7.1 hold. Let y be 
a variable such that E{(yHT - Y N ) 2  I FN} = OP(n-l) .  Then the wi that 
minimize (2.7.2) subject to (2.7.1) satisfy 

c w i y i  = V H T  + (XN - X H T ) d ,  + Op(n-’), 
% A  

(2.7.17) 

where 

/ \ -1 

Proof. The wi are given in (2.7.9). Because the remainder term of (2.7.9) has 
a moments, the sum of products of remainder terms and y is Op(n-l) .  

We have emphasized the construction of weights that minimize a variance 
or a quantity closely related to variance. In some cases, when G(wi, cq) 
is a quadratic, the minimum distance weights are the same as the minimum 
variance weights. 

Lemma 2.7.1. Let X be an n x k matrix and let Eee be a positive definite 
symmetric matrix. Assume that X’E;:X is nonsingular and that E e e a  is 
in the column space of X, where CY is a given n-dimensional vector. Then 
w, = Wb, where Wb minimizes the Lagrangian 

wLE:,,wb + (WLX - zN)&, (2.7.18) 

w, minimizes the Lagrangian 

(w, - a)’Eee(wa - a) + (WLX - xN)X~, (2.7.19) 

and A, and &, are vectors of Lagrangian multipliers. 

Proof. By assumption, Eeea is in the column space of X. Therefore, we 
can find a nonsingular transformation of X such that the first column of 
the transformed matrix is Z1 = Eeea. Denote the transformed matrix by 
X = ( Z l ,  Xz), where 3 2  is an n x ( k  - 1) matrix of full rank. Transform 
the matrix further by letting 

z2 = X2-zlr,  
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where 

r = ( z ~ E T J z ~ ) - ~ z ~ x F ~ ~ ~ ~  = ( a ’ ~ e e a ) - ’ a ’ j i 2 .  

To simplify the notation, let, with no loss of generality, 2 2  = X2. Then 
the calibration constraint becomes w‘Z = Zhr, where Z = (ZI ,  Z2) and 
ZN = ( Z I , ~ ,  Z2,N - Z I , ~ I ” ) .  The solution to (2.7.19) is 

w; = a’ + (ZN - Za)(z’E;;z)-lz’Z;; 

a’ + (Zl,, - zl,a)(z;ET:zl) -1 I 

+ ( Z 2 p  - Z2,*)(zhET2Z2)-lzhET; 

z ~ , N  ( a ’Xeea1- l  + ~ 2 r J  (z~ET~z~)-’z;x;~!  

= 

= 

where Z a  = (ZI, ~ ,  Z Z , ~ )  = CY’Z = (a’Ce,a, 
Z Z , ~  = 0. The solution to (2.7.18) is 

and, by construction, 

w; = ZN(z’E;;Z)-lz’E;; 

= Z1,N (a’Xeea)  -la’ + Z2,, (z;E;; Z2) -1z;x;; 

w; - - 

and we have the conclusion. 

2.8 WEIGHT BOUNDS 

We have described the regression estimator as a function that is linear in 
y and have demonstrated procedures that can be used to construct weights. 
For most of these procedures there are no bounds on possible values for the 
weights. If the weights are to be used for estimating totals for a wide range 
of characteristics of the finite population, every weight should be greater than 
1. Also, a very large weight on an observation can result in large variances 
for some estimates. Therefore, in the application of regression estimation, 
procedures are used to control the magnitude of the weights. 

If the weights are constructed by minimizing a quadratic function, the 
bounds can be added as constraints in a quadratic programming problem. For 
example, the weights might be constructed by minimizing 

w‘E=,-,lw (2.8.1) 
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subject to the constraints 

w’x - jz;y = 0, (2.8.2) 

L1 5 W, 5 L2, i E A, (2.8.3) 

where L1 and L2 are arbitrary constants. A popular version of constraint 
(2.8.3) restricts w, to be greater than 1 for an estimated total or greater than 
N-l  for an estimated mean. There is no guarantee that a solution exists 
for this problem. For example, if the population mean of z is zero and all 
observations in the sample are positive, there is no set of positive weights that 
sum to 1 and such that C z E ~ ~ , ~ ,  = 0. At least one element with a negative 
z value and at least one with a positive IC value are required to construct a set 
of weights satisfying the two restrictions. 

Deville and Samdal (1992) discuss ways to define objective functions that 
contain bounds on the weights. Huang and Fuller (1978) defined an iterative 
procedure that restricted the range of the weights by adding a function of x, 
to the minimization problem. Increasing the value of the function, equivalent 
to a larger gee,, in (2.8.1), will result in a weight for i that is closer to the 
mean weight. 

A procedure that produces positive weights in a large fraction of cases is 
that discussed in Section 2.5. The weights b, of (2.5.8) are always positive 
and, by construction, sum to 1. The weights w, of (2.5.10) will be positive 
much more often than will the ordinary regression weights. 

If it is impossible to find weights satisfying (2.8.2) and (2.8.3), or if the 
calibration property is not important, weights can be constructed to meet 
(2.8.3) by relaxing the calibration constraint (2.8.2). Husain (1969) used 
quadratic programming to obtain positive weights. He also considered, for 
Xee = I and simple random sampling, an alternative to (23.1)-(2.8.3). He 
minimized 

w’w + y(w’X - x,)X;:(w’x - x,J (2.8.4) 

subject to 
L1 5 wa 5 L2. (2.8.5) 

The problem (2.8.4)-(2.8.5) always has a solution. Husain showed that for 
simple random sampling the value of y that minimizes the variance under the 
linear normal model is 

Yo@ = [k ( l  - R2)]-I(n - k - 2)R2,  

where k is the dimension of XI, the vector without the 1, and R2 is the squared 
multiple correlation between XI and y. 
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Rao and Singh (1997) proposed a method of ridge shrinkage to satisfy 
bounds on the weights and to satisfy the calibration constraints within spec- 
ified tolerances. Another method used to obtain weights meeting bounds 
requirements is to drop z variables from the model. 

2.9 MAXIMUM LIKELIHOOD AND RAKING RATIO 

In many situations the number of elements in certain categories are known or 
can be treated as known. For example, it is common practice in surveys of the 
human population to use updated census numbers as auxiliary information. 
To study estimation for such situations, consider a simple random sample 
from a multinomial distribution defined by the entries in a two-way table. 
The logarithm of the likelihood, except for a constant, is 

r c  

(2.9.1) 

where Ukm is the estimated fraction in cell k m ,  pkm is the population fraction 
in cell km, T is the number of rows, and c is the number of columns. If 
(2.9.1) is maximized subject to the restriction CC pkm = 1, one obtains the 
maximum likelihood estimators &m = akm. Now assume that the marginal 
row fractions p k . ,  N, k = 1, 2, . . . , T ,  and the marginal column fractions 
P . ~ , ~ ,  m = 1 , 2 ,  . . . , c, are known. By analogy to (2.2.21) we define the 
estimators of p i ,  to be the pkm that maximize the likelihood subject to the 
constraints by using the Lagrangian 

r c  r i c \ 

k = l  m=l 
C / r  \ 

+ C Ar+m ( C p k m  -P,m,N ) , (2.9.2) 
m=l \ k = l  

where Ak, k = 1, 2, . . . , T ,  are for the row restrictions and rn = 
1, 2, . . . , c, are for the column restrictions. There is no explicit expression 
for the solution to (2.9.2), and iterative methods are required. 

If we expand (2.9.1) about the akm, we have 

r c  r c  

C c akm log pkm c [akm 1% akm + (Pkm - akm) 
k=l m=l k=l m=l 



166 USE OF AUXILIARY INFORMATION IN ESTIMATION 

Minimizing the right side of (2.9.3) subject to the constraints gives a first 
approximation to the solution. The procedure can be iterated replacing a k m  

with the estimates from the previous round, but convergence is not guaranteed 
if there are too many empty cells. See Ireland and Kullback (1968) and 
Bishop, Fienberg, and Holland (1975, Chapter 3). 

A procedure that produces estimates close to the maximum likelihood 
solution is called raking ratio or iterative proportional fitting. The procedure 
iterates, first making ratio adjustments for the row restrictions, then making 
ratio adjustments for the column restrictions, then making ratio adjustments 
for the row restrictions, and so on. The method was given by Deming and 
Stephan (1940); see also Stephan (1942). As with the likelihood procedure, 
convergence is not guaranteed. Raking has been used heavily in practice. 
Often, only a few iterations are used, with the final ratio adjustment made on 
the category deemed to be most important. 

Deville and Samdal (1992) suggested the objective function 

c [Wi 1og(a;'wz) + a2 - Wi] (2.9.4) 

where ai are initial weights, to construct the raking ratio weights and the 
function 

(2.9.5) 
iEA 

to construct the maximum likelihood weights. By Theorem 2.7.1, the estima- 
tors obtained by minimizing (2.9.4) and (2.9.5) are asymptotically equivalent 
to regression estimators with weights defined by the second derivatives. The 
second derivative of (2.9.4) is w2r1 and that of (2.9.5) is aiw2-2. Because 
both derivatives evaluated at wi = cui are a;', both estimators are close to 
the regression estimator with weights that minimize 

Ca;' (wz - .i) 2 . 

iEA 
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2.1 1 EXERCISES 

1. (Section 2.2.1) Show that the estimator 

C WiYi  
&A 

can be viewed as the regression coefficient for the regression of yi on 
xi, where zi = (CjEA w;)-'wi. 

2. (Section 2.3) Compute the entries of Table 2.2 with the order of the 
original weights reversed. That is, the original weight for element 1 is 
0.15 and the original weight for the last element is 0.07. Compare the 
estimators as estimators of the total of y under model (2.3.26). 

3. (Section 2.3.2) Assume that 8 of (2.3.35) is the 8 that minimizes the 
objective function 

i E A  

Assume that a(xi, 0) is continuous with continuous first and second 
derivatives. What condition for the first derivative is sufficient for the 
design consistency criterion (2.3.37)? 

4. (Section 2.3) Compute the weights for the regression estimator %,,,fir, 
where xi = (l;zl,i) and bT is defined in (2.2.56) for the sample of 



168 USE OF AUXILIARY INFORMATION IN ESTIMATION 

Table 2.2. Compare the conditional model variances of Example 2.3.1 
with the conditional model variance of the regression estimator using 
(2.2.56). 

5. (Section 2.3) Show that minimizing the Lagrangian 

C ( W 2  -n-1)2rl + A1 

ZEA 

produces the same wz as minimizing 

6. (Section 2.1, 2.2) Let z be an auxiliary variable and let 

y = x i f x < C  
= 0 otherwise. 

Assume that z is distributed as a uniform random variable on (0, 1) 
and that the mean of z is known. For a random sample of size n, let the 
mean of y be estimated with the ratio estimator (2.1.1). Plot y against 
x for C = 0.5. Plot the least squares regression line for C = 0.5. For 
what values of C is the ratio estimator (2.1.1) superior to the simple 
mean? 

7 .  (Section 2.3) Let a population be composed of two equal-sized strata. 
Assume that 

( yli ) N I  (( kY1 ) , ( 1'25 0'50 )) 
XlZ P X I  0.50 1.00 

in stratum 1, and 

( y2Z ) N I  (( P!I2 ) , ( 3'25 1'50 )) 
2 2 2  Px2 1.50 1.00 

in stratum 2. Assume that a stratified sample is selected with two 
elements in stratum 1 and nine elements in stratum 2. 

(a) Give the design optimal regression weights for the case in which 
only 3. is known. What is the expected value of the design variance 
through the order n-' terms? 



EXERCISES 169 

(b) Assume that the survey was designed under the assumption that 

!/hi = bhi + (zhi - z h ~ ) P  + ehi 

ehi N i i (0 ,  g i ) .  

Construct the best unbiased estimator of the mean of y conditional 
on the realized zh i  and known z N .  

8. (Section 2.2, 2.3) Regression can be used to convert the Horvitz- 
Thompson estimator into a location and scale-invariant estimator. Con- 
struct the regression estimator that minimizes the Lagrangian 

\ /  \ 1' 

iEA / \iEA 

Assume that there are different values of xi to avoid singularities. Show 
that the estimator, denoted by gT,regr is scale and location invariant. Let 
the finite population be a sample from a superpopulation satisfying 

yi = (1, ni)P+ ei, 
ei N ind(0,  x?g2). 

Give V{%,regIX, X,}. Compare the variance to the conditional model 
variances of 

and 

/ \ -1 

\ iEA / iEA 

Compare E{VW (*IF)} for the three estimators as a function of (Do, P I )  
under the assumption of Poisson sampling, where V,{.IF} is the vari- 
ance of the approximate distribution. 

9. (Section 2.3) Assume that the vector y associated with Table 2.2 is 

y' = (0.5, 1.1, 1.7, 1.7, 2.9, 3.2, 3.9, 4.8, 5.9, 6.5). 

Test the hypothesis that the reduced model (2.3.26) is adequate against 
the alternative model (2.3.33). Use the estimated design variance and 
assume that the sample is a Poisson sample. Construct the regression 
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estimator (2.3.29) assuming that Z N  = 2.283. Estimate the design 
variance of the estimator. Ignore the finite population correction. 

10. (Section 2.2.3) Let a simple random sample of size 21 be selected and 
classified into three poststrata as displayed in Table 2.7. Assume that the 
population sizes for the three poststrata are Nl = 20, Nz = 30. N3 = 
50. Estimate the mean using poststratification. Estimate the variance 
using equation (2.2.74). Estimate the variance using equation (2.2.3 1). 

Table 2.7 Poststratified Observations 

Post- Post- Post- 
stratum 1 stratum 2 stratum 3 

40 99 108 
50 109 113 
15 104 93 
10 49 83 

53 89 
56 
73 
95 
74 

115 
64 
86 

11. (Section 2.2, 2.3) Consider the model 

Yi = Po + ei, 
ei N ind(0 ,  c2). 

Assume that a sample of size n has been selected with probabilities 7ri. 
Construct the model optimal estimator for Po.  Then construct the model 
optimal regression estimator of YnT for the model 

yi = + P~.-%T' + ei, 
ei N ind(0 ,  c2),  

assuming that the population mean of T:' is known. Is the second 
estimator design consistent? Explain. Compare the model variances of 
the two estimators. 
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12. (Section 2.2) For a simple random sample of size n, let a sample 2 x 2 
table have entries nij, where 

2 2  

n = C C nij. 

(a) Assume that the row marginals Ni., i = 1, 2, are known. Find es- 
timates of the cell proportions, denoted by p i j ,  by finding quantities 
mij that minimize 

i=l j=1 

2 2  

subject to the restrictions 

2 

i = 1, 2. 
j=1 

(b) Compare the estimators of (a) with estimators of pi j  obtained with 
the ordinary regression estimator, where the regression estimator 
is constructed using individual sample elements. 

(c) Assume that the row marginals Ni., i = 1, 2, and the column 
marginals, N,j ,  j = 1, 2, are known. Construct the ordinary 
regression estimator of the cell proportions. 

13. (Section 2.2.2) Assume that a sequence of finite populations is created 
as realizations of i i d  random variables generated from a distribution 
function with finite fifth moments. Let a Poisson sample be selected 
with probabilities ri, where the 7ri are not all equal. Let xi = (1, 7rZ:l) 

and define YTeg = Z N B ,  where f i  = ( C ~ € A X ~ X ~ ) - ~ C ~ € A X ! , ~ ~ .  Assume 
that {TZ} is a fixed sequence, that limN+mng1CzEU7ri = pT, and that 
KL < NnZlri  < KU for positive KL and KU,  where nB is the expected 
sample size. 

(a) Show that B - ,B, 1 .FN converges to zero in probability almost 
surely, where 
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(b) Show that CiEUei = 0 almost surely, where ei = yi - xipN. 
(c) Show that 

(d) Show that 

iEA 

14. (Section 2.3) The regression estimator of (2.3.3) can be viewed as the 
fitted regression model 

y .  - 
2 - + (Xi - %T)d 

evaluated at xi = XN. For a regression estimator of the mean defined in 
terms of a fitted regression, the regression estimator of the mean will be 
design consistent if the fitted regression passes through (b,, X,), where 
(y,, X,) is a vector of design-consistent estimators. Let a regression 
estimator of the mean be defined by 

Is the regression estimator constructed with a and b location invariant? 
Is the estimator with aHT,i = N-'7r2:' and ~ ~ i , ~ ~  = (1, x1,i -  XI.^^), 
where ( Y H T ,  = C i E ~ a H T , i ( y i ,   XI,^), location invariant? 

15. (Section 2.7) Prove the following: 

Result. Let .F,v = {yl,  ~ 2 ,  . . . , yA,}, where {yi} is a fixed sequence. 
Assume that a sequence of Poisson samples is selected from the sequence 
of populations. Assume that the selection probabilities satisfy 

K ,  5 xi 5 KU 

Show that 
b’ = 

minimizes the Lagrangian, 

b ’ L b  + x j  (2 bZZ,ji - Zc j  

j=1 i=l 9 
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for all i, where K,  and K ,  are positive constants. Assume that 

where A12 - p2 > 0. Then 

E maxzi = o ( N ' / ~ ) .  { iEA } 
16. (Section 2.3) Consider the model 

yi = xip + ei, 
ei N ind(0, zl,io2), 

where E{I z1>iei 12+'} is finite, xi = (l;zl,i) = (1,Nng17ri), n g  is 
the expected sample size and z1.i > 0. Define a regression estimator by 

iireg = (1, z1,N) f i ,  
where 

/ \ -1 

\ i E A  

Is greg location and scale invariant? Let the sequence { ~ i }  satisfy 

where o i  > 0 is finite. Is Yreg design consistent under Poisson sam- 
pling? Compare V {. 1 X; Z N }  for Greg,  gT and Y H T ,  where 

/ \ -1 

and j j H T  is as defined in (1.2.24). 

17. (Section 2.3) Consider the model 

yi = xip + ei ,  

where xi = (1 , 7ri, T~: ' )  and ei are independent O,o& random vari- 
ables independent of xi. Let samples be selected with probabilities 

0 
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ni, i = 1 , 2 , .  . . , N, using a design such that jjT is design consistent. 
Define a regression estimator by 

where 

f i  = (x’v-1x) x’v-ly. 
Let D, = diag(n1, n2, . . . , nn). Show that Yreg is design consistent 
for V = I, V = D,, and V = D;. Define a situation for which each 
V is the preferred V. Assume that X’V-lX is nonsingular. 

18. (Section 2.1) Let model (2.1.10) hold and let a simple random sample 
of size n be available. What is the best predictor of & A C Y ~ ,  the sum of 
the elements not sampled, given that ZN is known? Show that the best 
predictor of the population total is ,8 of (2.1.1 1) multiplied by N Z N .  

19. (Section 2.2) Construct a regression estimator of the form Yreg = 
C i E ~ w i y i  by minimizing 

iEA 

subject to the restriction 

iEA 

where xi = (1,ni (1 - ~ i ) - ’ ,  x2i). Is the regression estimator design 
consistent given that the probability that element i is in the sample is ni? 
Assume that the sequence of designs is such that the Horvitz-Thompson 
estimator of the first three moments of (yi, xi) are design consistent. If 
the sample is a Poisson sample, is the estimator the design-optimal 
estimator of Theorem 2.2.4? Is there an x2i such that the estimator for 
a stratified sample is the optimal estimator of Theorem 2.2.4? 

20. (Section 2.2) Assume that we select a Poisson sample with selection 
probabilities 7ri. Give an expression for the covariance between Z H T  
and Y H T .  Give an expression for the approximate covariance between 
2,  and Y,. Consider the regression estimator 

and the regression estimator 
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Given the large-sample approximations, is one estimator always superior 
to the other? 

21. (Section 2.7) Let A be a simple random sample of size n, and let 

Yreg = Yn + (% - Zn)P1,, 

and 

zi = 1 if xi > Z,,, 
= o  if xi = Z,,, 

= -1 i f z i  < Z N .  

Is Yreg calibrated in the sense of (2.7.1)? Is the estimator location 
invariant? Assume a sequence of populations such that estimators of 
moments have errors that are OP(n-'l2). Show that Greg is design 
consistent. Give the large-sample variance of Greg. Assume that the 
distribution of x is symmetric with P{xi = ZN} = 0. What is the 
probability that all regression weights are positive? 

22. (Section 2.2) For a sequence of samples and populations, let wi = 
N -1 n i l ,  

i € A  
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Show that 

s;N = ( N  - 1)-l C(.z - ZN)? 
iEU 

Evaluate E{(ZN - Z H T )  CiEA wi(xi - Z N ) e i  1 F-,,}. 

2.2.1 to show, for a simple random sample, that 
23. (Section 2.2) Use expression (2.2.29) and the assumptions of Theorem 

Yreg - ~ , v  = (z1,N - z l3n ) s i2 ,bT(n  - 11-l C (x1,i - ~ 1 . n ) ' ~  

i € A N  

+ an + 0,(~-1,5) 

N 

where fb, = N-ln, z;.% = S;:;z(x1,2 - %l,v)', 

N 

S Z Z J  = ( N  - 11-l C ( X l . ,  - Xl.N)'(Xl.% - ~ l , , ) ,  

2=1 

I 

Yreg = Yn + (z1..v - %1,n)P1 

and & is defined by (2.2.10). 

24. (Section 2.2.1) Prove result (2.2.13). 

25. (Section 2.1) The variance of the approximate distribution of the separate 
ratio estimator given in (2.1.12) is 

H 

v {Yst.s I 3) = c Wi(1 - f h & ( S i , h  - 2RhSzy.h + R,2S&) 
h= 1 
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and the corresponding variance of the combined ratio estimator is 

H 

v {Yst,c I F} = c W,'(1 - fh)nhl(S;>h - 2RS,,>h + R2S,y,h) .  
h = l  

where fh = NC'nh, Rh = Yh,,S;,f,, and R = Y,\.l.Zn;'. Let H = 10, 

(1: 0.7 , l )  for all h. Assume that the finite population correction can be 
ignored. Give a value for R such that the squared bias of the separate 
ratio estimator based on (2.1.7) equals the variance of the separate ratio 
estimator. What is the bias of the combined ratio estimator for that R? 

(Z,,h: Rh, Wh) = (1, R, 0.1) for all h, and (SiSii, Szy ,h .  S,.h)n;l 2 = 
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2.1 2 APPENDIX 2A: MISSOURI DATA 

Table 2.8: NRI Data from Missouri 

Obs. Segment Cult. 
Stratum Number Weight Size Crop Forest Federal 

cc  1 1 33 165 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2 31 
32 
33 
34 

33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
35 
35 
35 
35 

162 
162 
168 
168 
162 
162 
162 
162 
162 
234 
162 
165 
162 
339 
162 
162 
162 
204 
165 
162 
162 
147 
162 
165 
162 
165 
162 
3 24 
168 
159 
171 
159 
159 

J J  

54 
108 
56 
56 
54 
54 
54 
0 

54 
234 
108 

0 
108 

0 
54 
54 

162 
0 
0 
0 

54 
49 
0 

I10 
0 

110 
54 

108 
0 
0 

57 
0 

106 

110 
0 
0 

56 
0 
0 

108 
0 
0 

54 
0 
0 

110 
54 
0 
0 
0 
0 

68 
165 

0 
108 
98 

162 
0 
0 
0 
0 

108 
168 
53 
0 

53 
53 

0 
0 
0 
0 
0 
0 
0 

108 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

68 
0 

162 
0 
0 
0 
0 

108 
0 
0 
0 
0 
0 
0 
0 
0 

Continued 
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Obs. Segment Cult. 
Stratum Number Weight Size Crop Forest Federal 

9 C  9c  
J J  J J  

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

3 64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
35 
26 
26 
26 
26 
26 
26 
26 
26 
26 
26 

165 
165 
165 
159 
159 
345 
165 
156 
168 
168 
309 
159 
159 
333 
162 
162 
165 
159 
165 
159 
165 
159 
159 
162 
165 
153 
162 
159 
162 
162 
162 
162 
165 
168 
162 
162 
162 
162 
159 

0 
0 
0 

106 
0 
0 

55 
52 

112 
56 

309 
159 
159 

0 
108 
108 
55 

159 
165 

0 
0 
0 
0 
0 

110 
102 
162 
53 

108 
54 
54 
0 

55 
56 

108 
54 
0 

108 
0 

0 
0 
0 
0 
0 

230 
0 
0 

56 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

108 
0 

56 
0 

108 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

222 
0 
0 
0 
0 
0 

159 
0 

106 
0 

108 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Continued 
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Obs. Segment Cult. 
Stratum Number Weight Size Crop Forest Federal 

74 26 162 0 108 0 
75 26 165 55 0 0 
76 26 165 0 0 0 
77 26 156 52 0 0 
78 26 165 0 55 110 
79 26 100 0 50 50 
80 26 177 0 118 0 



CHAPTER 3 

USE OF AUXILIARY INFORMATION IN 
DESIGN 

3.1 INTRODUCTION 

We have studied estimation procedures before discussing design because it is 
necessary to specify the estimation method in order to evaluate the strategy 
composed of a design-estimator pair. As we discussed in Section 1.1, there are 
many characteristics of interest in the typical survey. Also, there is generally 
considerable information about the population that can be used at the design 
stage. In our discussion of estimation, such things as the sampling frame, 
stratum boundaries, and cluster sizes were treated as fixed. These are some 
of the properties of the design that are determined at the design specification 
stage. 

Designing a survey is a particularly challenging activity. Because there are 
many possible characteristics of interest, a realistic objective function will be 
multiple valued. Furthermore, few analysts can specify all characteristics of 
interest at the design stage. Even a carefully specified list of objectives will 
undergo changes as a survey progresses. This is completely natural and will 

Sampling Statistics. By Wayne A. Fuller 
Copyright @ 2009 John Wiley & Sons, Inc. 
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lead the wise person to build a survey design capable of meeting unanticipated 
requirements. One should remember that the reason for conducting a survey 
is to “find out things.” Very often, the most interesting results are only mildly 
associated with the primary design variables. 

The determination of sample size and design depends on objectives and 
available resources. Designing a sample is an iterative process where the 
initial questions are often of the form, “I want to study banks; how big a 
sample do I need?’ or “I have $200,000. Can I find out something useful 
about the debt status of families in Iowa?” Only after extended discussions 
will the objectives be refined enough to be useful for sample design. Similarly, 
considerable effort will be required to determine the possible methods of data 
collection, the restrictions on data collecting, and the sources of information 
that can be used in design. Finally, it is possible that it will be determined 
that available resources are not sufficient to support a study that can hope to 
meet the objectives. 

In this chapter we study some simplified design problems. The simplest 
problem specifies a single y-characteristic, a class of designs, a cost function, 
and an estimator. The class of designs is then searched for the design that 
minimizes variance, or mean square error, for a given cost. The determination 
of the best design typically requires specification of the characteristics of the 
population, which are unknown. Thus, one must specify a model, complete 
with parameters, to solve the design problem. This model, introduced in Sec- 
tion 1.2, is called the design model. The variance of the estimator calculated 
under the design model is called the anticipated variance. 

It is difficult to include in a formal cost function the attractiveness of 
the design to the user. Designs that produce samples that can be understood 
intuitively to “represent” the study population and that are relatively simple are 
preferred. Also important is the ease with which the design can be explained 
and defended given the possibility of a user unhappy with the quantitative 
results. 

There are almost always constraints on data collection. Certain times 
of the day and certain days will generally be excluded from personal data 
collection. There is always a conflict between the desire for more data 
and what can reasonably be requested of a personal respondent. Although 
such considerations can theoretically be included in a cost function, they are 
generally treated as side constraints on the designs. 

There is a component of the estimation problem that is often given little 
discussion and is sometimes neglected entirely. This is the requirement of 
variance estimation. If the properties of the estimator are to be conveyed 
correctly to the user, it is necessary to estimate the distributional properties. 
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This means that the design should be such that it is possible to construct good 
estimates of the variance of the estimator. 

We restrict consideration to probability designs in which the probability of 
selection is known at the time of selection, or can be calculated after selection 
for items selected in the sample. We restrict the probabilities to be positive 
for all elements of the population. Generally, we consider estimators that are 
design consistent. 

3.1.1 Selection probabilities 

We have given some design results in Theorems 1.2.3 and 1.2.6. As an exten- 
sion of those results, consider the problem of determining the optimal selection 
probabilities when the design model is the regression model. Assume that 

(3.1.1) 

where ei is independent of xj for all i and j .  Assume that the finite pop- 
ulation is a realized sample of size N from (3,1.1), where xi has finite 
fourth moments. The finite population mean of x, denoted by ZJV, and the 
yii, i = 1, 2, . . . , N, are known. 

Given a sample of n observations satisfying (3.1. l), conditional on X, the 
best linear unbiased estimator of p is 

= (X’D;~X)-~X/D,~Y,  

where X = (xi , xb, . . . , xk)’, D, = diag(yl1) 7 2 2 ,  . . . , ynn), and y’ = 

(y1, y2, . . . , yn). Similarly, the best predictor of YN is 

(3.1.2) 

where X N P n  = (N - n)-l(NZZ, - CiEA x ~ ) ,  See (2.3.6). We give a result, 
due to Isaki and Fuller (1982), that defines the large-sample best strategy 
as a combination of predictor and selection probabilities that minimize the 
anticipated variance for the design model (3.1.1). Recall from Section 1.2.3 
that the anticipated variance of an estimator 8 as an estimator of YN is 

AV{8 - YN} = E{E[(B - YN)2  I .FK)]} 

- [E{E[(B - Y N )  I .F’V1)l2. 

If the superpopulation has moments and the inclusion indicator variables 
are independent of y, we may reverse the order of expectations, taking the 
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expectation of the conditional expectation, conditional on the sample inclusion 
indicators and the population matrix of explanatory variables, to obtain 

AV{B - = - Y d 2  I (d’,XN)]} 

- [E{E[ (e  - YN) I (d’,X,)]}l2, (3.1.3) 

where X, is the N x k population matrix of auxiliary variables and d = 
( I l , I2 ,  . . . , I,), as defined in Section 1.2.1. The conditional expectation 
conditional on (d’, X,) is sometimes called the model expectation. The 
matrix X, is fixed in Theorem 3.1 . l ,  but we retain the notation of (3.1.3). 

Theorem 3.1.1. Let {xi,yii} be a sequence of fixed vectors. Let Fav = 
[ (yl ,  X I ) ,  (y2,x2),  . . . , (yN,  x,)] , N > k + 1, where the yi  are realizations 
from the model (3.1.1). Let Pc be the class of fixed-sample-size nonreplace- 
ment designs with fixed probabilities admitting design-consistent estimators 
of the population mean. For designs in PC, assume that 

lim (yN> %) = (py, p,) as . ,  (3.1.4) 
N-w 

lim S,,,, = C,, as . ,  
N-w 

(3.1.5) 

lim nE{x,(X’D;lX)-lx,} = pZH-lpk, (3.1.6) 
N-C€ 

and 
(3.1.7) -1 I lim n X,D,,,D,kX, =: lim H, = H, 

N-C€ “30 

N 

s,,,, = ( N  - 1)-l C(z2 - 2,)’(zz - Z,). 
i=l 

Assume that 

for all i. Let Dk be the class of linear-in-y predictors of the form 

+e = Ca.i ,Ayi ,  
iEA 

satisfying 

(3.1.8) 

(3.1.9) 

(3.1.10) 

(3.1.11) 
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where c q A  are permitted to be functions of sample characteristics other than 
y. Let there be 71 and 7 2  such that xi71 = and xi72 = T& for all i. Let 
8 be the predictor (3.1.2), and let the inclusion probabilities for the design be 
proportional to 7 i 5 .  Then 

and 

for all +e E Dt and all p E Pc. 

Proof. The predictor (3.1.2) has the minimum conditional model variance, 
conditional on (d’, X N ) ,  for predictors in the class of linear conditionally 
unbiased predictors for model (3.1.1). The predictor can be written as ZN,b 
because yii = xi72. See (ii) of Theorem 2.3.1. Thus, we can write 

8 = ai ,Ay i  =: 
iEA 

where 

The conditional expectation E[(8  -6,) I (d’, X,)] = 0 because the predictor 
(3.1.2) is conditionally unbiased. Therefore, the anticipated variance is given 
by the first term on the right of the equality of (3.1.3). The conditional variance 
conditional on (d’! X,), is 

a = z,(x’D;~x)-~x’D;’. 

V{8 - g N  1 (d’! XN)} = (aDya’ - 2 A 7 - l ~ D y J ,  + N-2J’,Dy,NJN)~2, 

where J, is an N-dimensional column vector of 1’s and J, is an n-dimensional 
column vector of 1’s. Now 

aD,J, = ax72 = % ~ 7 2  = N-lJ’,Dy,,JN 

and 

V{8 - Y N  1 (d’,X,)} = (~D,(Y’  - N-2J’,Dy;NJN)~2. (3.1.14) 

Because JLD,,, J, is apopulation quantity, we needonly consider E{aD,a’} 
in determining the anticipated variance. 

To evaluate E{aD?a’}, note that 

lim nE{aD,a’} = lim nE{Z,v(X’D~lX)-l%’,} 
N-CC N- 00 
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with limit given in (3.1.6). With no loss of generality, let 7k5 be the first 
element of xi, and let T denote the upper triangular Gramm-Schmidt matrix 
with 1's on the diagonal such that T'HT is a diagonal matrix. Note that if 
the first element of xi is 7$5, the 1-1 element of H is 

N 

Then, by (3.1.7), 

p z ~ - l p ;  = pX~T-lH- 'T-  I/ T p x  I I 

(3.1.15) 

where r.j is the j th column of R = (ri r/2: . . . r:v)'; ri = xiT, and p, = 
p z T .  The second element of ri is 

0.5 
r2.i = x2,i - 62,lYii > 

where 

N 

(3.1.16) 
i=l 

From (3.1.16), the mean p,2 will equal zero if {xi} satisfies (3.1.4) and 
(3.1.5), and 

The third element of r; is 

where 
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and 

It follows that pT3 = 0 if (3.1.17) holds. A similar argument applies for the 
remaining elements of ri. Therefore, (3.1.15) attains the minimum value of 

for the 7ri,N of (3.1.17). The minimum holds for all designs satisfying (3.1.4) 
and (3.1.5) and hence for designs admitting design-consistent estimators with 
probabilities (3.1.17). 

Given (3.1.4), (3.1.5), and probabilities satisfying (3.1.9), it can be shown 
that there exists a sequence of designs with inclusion probabilities (3.1.17) 
such that 

E{(VJHT - j j N ) 2  1 F} = 0(n-l) .  

See Lemma 2 of Isaki and Fuller (1982). Therefore, result (3.1.13) is estab- 
lished. Substituting pzl into (3.1.14), we obtain result (3.1.12). 

The important result of Theorem 3.1.1 is that selection probabilities should 
be proportional to the square root of the design variances. It is the variances, 
not the values of the design variables, that are of primary importance in 
determining optimal selection probabilities, given that the design variables 
can be used in a regression estimator. 

For the regression estimator (3.1.2) to be design consistent, 7,0,.5 must be a 
linear combination of the elements of xi. In the theorem it is also assumed 
that 

To extend the discussion of optimal selection probabilities to the situation 
with unequal costs, assume that it costs ci to observe element i and that a 
total of C is available for the survey. We desire selection probabilities that 
minimize the large-sample anticipated variance of the regression estimator. 
Assume that the model (3.1.1) is a full model as defined in Section 2.3. We 
write a regression estimator of the mean as 

is expressible as 7ii = x i 7 2 .  

and the estimator of the total as 
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where 

and a: = 7iia2. Then the approximate anticipated variance of the estimated 
total is V { F y , T e g }  = V{Fe} and 

AV{Fe - T,} = C a;7ri1(l - ~ i ) ,  (3.1.19) 

where 7ri is the selection probability. See (1.2.41) and note that E{ei} = 0. 
The Lagrangian formed to minimize the approximate anticipated variance 
subject to the constraint that the expected cost is C is 

iEU 

(3.1.20) COi7ri 2 -1 (1 - 7rz) + X 

i € U  

The optimal selection probabilities are 

where X is the Lagrangian multiplier and 

= c-1 cc;l/2ai. 

iEU 

It is possible for some 7ri to exceed 1. If so, one sets those 7ri equal to 1, 
reduces the cost accordingly, and solves the reduced problem. If the cost per 
element is a constant, c, the minimum value for the variance of Fe is 

/ 

(3.1.21) 

Expression (3.1.21) is known as the Godumbe-Joshi lower bound. See Go- 
dambe and Joshi (1965). 

In most design problems there are many variables of interest. If one is 
willing to specify a variance model and a maximum acceptable variance for 
each of K variables, mathematical programming can be used to determine 
optimal selection probabilities. Let the cost of observing element i be ci. 
Then one chooses probabilities to minimize expected cost 

c = C C i W i l  

iEU 
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subject to the variance constraints 

C wig& 5 Vj, k = 1 , 2 , .  . . , K ,  
iEU 

where oi i  is the model variance for characteristic k for element i, vj is the 
maximum acceptable variance for characteristic k ,  and wi = T,:'. 

3.1.2 Strata formation 

The stratification model of Theorem 1.2.6 is a special case of model (3.1.1) 
in which x, is an H-dimensional vector of indicator functions identifying the 
strata, and the a: are constant within a stratum. If element i is in stratum 
h, the hth element of x, is 1 and the other H - 1 elements of x, are zero. 
Then the regression estimator reduces to the simple stratified estimator and 
the selection probabilities are those defined in (1.2.59). Note that for the 
n h  of (1 -2.59) and constant costs. the individual selection probabilities are 
proportional to gz. For stratification, the variance expression (3.1.19) is exact, 
except for rounding. 

Joint probabilities of selection do not appear in the anticipated variance of 
Theorem 3.1.1 because the anticipated variance is functionally independent of 
the joint probabilities under model (3.1.1). If all the 2-variables are indicator 
variables for strata, the strata and the selection probabilities define the design. 
For other 2-variables it is natural to impose some type of control in sample 
selection, stratification based on the x, being the most common tool. 

Stratification on the 2-variables provides protection against model misspec- 
ification and will reduce the O(n-2)  term in the variance of the regression 
estimator if the stratum indicators are not included in the regression defin- 
ing the estimator. If the true relationship is linear and stratum indicators 
are included in the defining regression, it is possible for the O(n-2) term in 
the variance to increase because of the increase in the number of parameters 
estimated. See Exercise 11. Order n-l gains in efficiency are possible from 
stratification if the true relationship between y and x is nonlinear. 

The way that strata are formed depends on the dimension of x, on the type 
of estimator that one plans to use, and on the degree to which simple estimators 
are desirable. Given a single 2-variable and a 0% that is monotonically related 
to x,, a reasonable way to form strata is to order the data on 0, and use 
the cumulative sum of the T, to form strata. The cumulative sums can be 
normalized so that the total is the number of units to be selected and stratum 
boundaries chosen so that the sum of normalized sizes in a stratum is nearly 
an integer greater than 1. If there are no extreme sizes, one can choose 
stratum boundaries so that the sum of ot is approximately the same in each 
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stratum. Very often, one will then choose to select elements within the strata 
by simple random sampling. Typically, there is only a very small increase 
in the anticipated variance from using a single stratum rate in place of the 
individual oz as selection probabilities. See Godfrey, Roshwalb, and Wright 
(1984) and Kott (1985). 

Defining strata becomes a complex operation when there are many variables 
of interest and many variables that can be used to form strata. If x is of small 
dimension, a simple procedure for forming strata is to split the population into 
two (or more) groups on the basis of 21, then split each of those groups into 
two (or more) groups on the basis of 2 2 ,  and so on, until the desired number of 
strata are formed. Because this procedure is realistic only for a small number 
of z-variables, the set of variables used in design is often restricted to a small 
number deemed most important. The number of design variables can also 
be reduced by using the first few principal components of the original set. 
See Pla (1991). Other methods of forming strata include cluster analysis and 
mathematical programming. See Hartley (1965), Jarque (1981), Golder and 
Yeomans (1973), and McCallion (1992). 

Example 3.1.1. We consider sample design for a population of workplaces, 
where the data are patterned after data collected in the Canadian Workplace 
and Employee Survey conducted by Statistics Canada. The data represent a 
population of workplaces in the retail sector in a province. The data are not 
those collected by Statistics Canada, but display characteristics similar to the 
original data. Two characteristics are available for each workplace: payroll, 
denoted by 22, and total employment, denoted by 21. These data are for time 
t and our task is to design a sample for time t + 1. There are 2029 workplaces 
on the list. Payroll and employment are highly correlated, and if we regress 
log payroll on log employment, the residuals appear to have nearly constant 
variance. 

Assume that resources are available for a study composed of 100 work- 
places and assume that the cost of observing a workplace is the same for all 
workplaces. Assume that our objective is to estimate total payroll for next 
year. The two components that are primary determinants of the efficiency 
of a design are the probabilities of selection and the control variables, where 
control is most often exercised through stratification. 

~2 . t+1 .~  = PO + ~ 2 , t , ~ P 1  + e2,t+1,i, 

Our design model for the population is 

(3.1.22) 

e2.t+1,i - ind(O,Z37:2), 

where 22,t,i  is the payroll of workplace i in year t in thousands of dollars 
and y is a parameter. By the results of Section 3.1.1, the optimal selection 
probabilities should be proportional to the square roots of the variances and 
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hence to z & ~ .  A variable such as z2Yt is often called the size of element t. 
One model used for economic variabies assumes y = 1. 

If model (3.1.22) holds exactly with y = 1, the strategy composed of a 
design with probabilities proportional to Z Z , ~ , ~  and the regression estimator 
approximately attains the Godambe-Joshi lower bound. In a large-scale 
survey with many characteristics, one is guaranteed that the design model 
will not hold for all characteristics. Therefore, it is wise to stratify to protect 
against model failure and to provide the potential for gains in efficiency. Our 
method of forming strata is to order the population on size, cumulate the sizes, 
and form stratum boundaries using the cumulated sizes. Because the mean and 
variance are monotonically related, the strata will furnish control on both. We 
require a sample size of at least two in each stratum to permit construction of a 
design-unbiased estimator of variance. Also, the two-per-stratum design will 
give good efficiency if there is a nonlinear relationship between the y-variable 
and size. One can select an unequal probability sample in each stratum, but 
we will see that little efficiency is lost by selecting simple random samples 
within strata. 

The sum of the Z Z , ~ , ~  for the 2029 workplaces is 320,117, and with y = 1, 
the probabilities proposed for a sample of 100 are 

ffi = 100(320,117)-122,t,i. 

Therefore, any workplace with a size greater than 3201 should be included 
in the sample with certainty. The nine largest workplaces have a size greater 
than 3201, the sum of the sizes for these nine is 50,000, and the sum of the 
sizes for the 2020 remaining workplaces is 270,117. Because 91 units remain 
to be selected, any unit with a size greater than 2968 should be included with 
certainty. The tenth and eleventh sizes are 3000 and 2800. The size of the 
tenth workplace exceeds the bound, and the size of the eleventh is 94% of the 
bound. Therefore, we add these two workplaces to the certainty class. This 
type of very skewed population where the size measure leads to a sample with 
some certainty units is common for economic variables. 

To form the remaining 2018 elements, with a total size of 264,317, into 
strata for the remaining 89 sample units, we form cumulative sums and divide 
the sums by 2969.85 so that the total is 89. We form strata for the largest 
units to obtain good approximations to the desired probabilities by keeping 
the population number in the stratum small and the normalized sum of sizes 
for the stratum close to an integer. We place the five largest of the remaining 
workplaces in a stratum, from which four will be selected. The sum of the 
optimal selection probabilities is 4.16 for this stratum. Four units are placed 
in the next stratum with a sum of optimal probabilities equal to 2.96, from 
which three are to be selected. 
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The remaining workplaces are placed in 41 strata of approximately equal 
size, where two units are to be selected from each stratum. To form the 41 
strata, an iterative procedure is used. The cumulative sum of the ordered sizes 
is formed, where the order is from largest to smallest. The cumulative sums 
are normalized so that the final sum is 82. Let k be the index j such that 
1 C(j) - 2 I is a minimum, where C(j )  is the cumulative sum associated with 
the j th element in the ordered set. Then element k and all elements with 
smaller order indices form stratum 1. The elements in stratum 1 are removed 
and cumulative sums of sizes formed for the remaining elements. These new 
cumulative sums are normalized so that the final sum is 80 and the I C ( j )  - 2 1 
criterion is applied to the new sums to form the second stratum. The elements 
for the second stratum are removed, the cumulative sums for the remaining 
elements formed and normalized so that the final sum is 78, and so on. With 
this procedure of forming strata, strata 3,4,  and 5 have 3, 3, and 4 population 
elements, respectively. The sum of the sizes for these three strata are 1.97, 
1.79, and 2.24, respectively. The last three strata contain 129, 159, and 299 
workplaces, with sizes of 1.99, 1.99, and 1.98, respectively. 

To calculate the anticipated variance for the design, we assume that PI of 
(3.1.22) is equal to 1. Then the anticipated variance of the stratified mean 
under the design model is 

43 

A V { x 2 , t + l , s t )  = c(1 - fh)W;ni1(Sfh + S22h), (3.1.23) 
h = l  

and Z2.t ,h, ,v is the stratum mean for stratum h. The second part of the stratum 
variance, S&, is the contribution of the variability among the Z Z . ~ , ~  within 
the strata. That term is the difference between the anticipated variance of the 
simple stratified estimator and the large-sample anticipated variance of the 
regression estimator for the stratified design, 

43 

(3.1.24) 
h= 1 

where 
Yreg,st  = Yst + ( Z 2 . t , N  - z 2 . t . s t ) P  
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We must approximate aZ2 to calculate the anticipated variance. In applica- 
tions, there may be outside information on the relationship between variables, 
such as a previous census or survey, or one may be forced to use an estimate 
based on general experience. We have no additional information, but suppose 
that there is a strong correlation between ~ 2 , t . i  and ~ 2 , ~ + l , i .  If we assume an 
R2 of 0.80 and assume that V(z2, t )  = V{z2,t+1} =: u : ~ ,  then 

N 

i=l 

and 

= 0.2(2.4225)-'2.1736 = 0.1794, 

where = 2.1736 x lo5 is the finite population variance of 22,t and 

For the stratified design outlined, the anticipated variance (3.1.23) of the 
Z Z , ~ ~  = 157.77. 

simple stratified estimator of the mean of ~ 2 , t + l  is 

43 43 

h= 1 h=l 

= 27.31 + 0.65 = 27.96. (3.1.25) 

Note the small contribution of the S& to the sum. Stratification removes most 
of the correlation between ~ 2 , t . i  and ~ 2 , ~ + 1 , ~ .  

The minimum anticipated variance for a sample of 100 workplaces with 
11 certainty workplaces is obtained with the optimum selection probabilities 

-1 

r i , s  = (n,l c Z2.t.z 

Z€U3 

= (2969.85)-'~2,t,i, 

where n, = 89 and Us is the set of indices for the 2018 noncertainty work- 
places. Thus, 
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2969.85 C ~ 2 , t , i  - 

&US iEU,  

= 27.15, (3.1.26) 

and the stratified design with the simple stratified estimator has an anticipated 
variance that is only 3% larger than the theoretical minimum. Use of the 
regression estimator would reduce the large-sample anticipated variance to 
27.31. Hence, the theoretical loss relative to the lower bound from using 
stratification probabilities in place of optional probabilities is less than 1%. 

Assume now that employment is also of interest and that the design model 
for employment is model (3.1.22) with (zl.tll %, zl,t,z) replacing (22,t+1,%, ~ 2 , t , ~ ) .  

If one specifies that payroll and employment are “equally important,” there 
are a number of alternative designs, depending on the definition of “equally 
important.” If one is willing to specify maximum variances for each, mathe- 
matical programming can be used to determine a minimum cost design. We 
develop a design using both . q t , z  and Z Z , ~ , ~ ,  but without specifying maximum 
variances. 

There are two workplaces that have payroll less than 2800 and that have 
employment greater than 201.23, a size that would lead to certainty inclusion 
if employment was used as size to determine probabilities. Adding these two 
workplaces to the set of 11 workplaces with large payroll gives a certainty 
group of 13 workplaces. The average of the payrolls is 157.77, and the average 
number of employees is 9.9177. To keep the magnitudes similar, we work 
with l6zllt.,. Among the possible sizes to use for selection of the remaining 
87 sample elements are the weighted sum of the two sizes, the square root of 
the sum of the two squared sizes, and the maximum of the two sizes. See Kott 
and Baily (2000) for use of the maximum of the sizes. We placed the 2016 
workplaces in strata on the basis of l621,~,% + Z Z . ~ , ~ .  

Using the ordered list, ordered on 1 6 q t , ,  + z2,t,%, workplaces 14 through 
18 are placed in a stratum from which four will be selected. The next four 
workplaces are placed in a stratum from which three are to be selected. Using 
the described procedure that minimizes I C(Jl - 2 1 ,  the remaining workplaces 
are placed in strata of approximately equal sum size so that two workplaces 
are selected in each stratum. There are 131, 156, and 302 workplaces in the 
last three strata. 

To complete the set of design assumptions, we assume that the correlation 
between zl,t+l,z and zl.t,z is 0.80, which gives aZ1 = 0.1747 for l621t. The 
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anticipated variances for the stratified means of l621,t+1 and 22,t+1 are 

AV { l6Zl,t+l,,t} = 30.65 + 4.27 = 34.92 

and 
AV {Z2.t+l3,t) = 28.45 + 4.19 = 32.64, 

where the two parts of each anticipated variance correspond to the two parts of 
(3.1.25). The anticipated variance for 1621.t+ll,t under the design for Z2,t+l,,t 

is 35.23 + 23.99 = 59.22. Thus, moving to the second design decreases the 
variance of Zl, t+l,st  by 41% and increases the variance of Z ~ , t + l . ~ t  by 17%. 
If one uses the regression estimator, the decrease for Zl,t+l.,t  is 13% and the 
increase for ~ 2 , t + l , ~ t  is 4%. 

Consider now an alternative objective for the survey design. Assume that 
one is interested in estimating the regression of log payroll on log employment. 
In particular, we are interested in estimating P1 of the regression model 

where Yt+i,z = logz2,t+1,z. xt+1,2 = logzl.t+l,Z, and et+l.,, is assumed 
to be independent of xl,t+l.ll for all i and j. Because we are interested 
in PI as a superpopulation parameter, we use notation appropriate for an 
infinite superpopulation. For design purposes, we assume that the estimator 
of (PO. PI) will be 

where the ith row of X is (1, xt+l.z - %t+l,,,). Thus, 

(3.1.28) C z E A  Til(xt+l,i - zt+l.n)(Yt+l,z - Yt+l,T) 

C i E A  q l ( x t + l . i  - %t+l,T) 2 
PIT = 

and the design objective is to minimize the approximate variance, 

/ \ - 2  

(3.1.29) 
Absent any other information, the ~i that minimize (3.1.29) are proportional 
to I xt+l,i - %t+l,,, 1. We do not know xt+l,i - Zt+l:Av, but it is reasonable 
to use xt,i - Et,,,, as a proxy variable. If we do so, we must recognize that 
a very small value of xt,i - %t,,, could be associated with a relatively large 
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xt+l,i - Zt+l,,,. Therefore, we impose a lower bound on our measure of size. 
We define our size measure by 

mi = 0.6750, if I xt,i - Zt,,, I <  0.6750, 

- - I xt,, - Zt,N I otherwise. (3.1 .30) 

This measure of size does not minimize the anticipated variance of POT, but 
using the lower bound on the size will give us a good compromise design for 
both boT and blT. 

Next we ask if any control variables can be used to reduce the variance of 
the estimator of PI.  The model (3.1.27) for time t is 

yt,, = PO + (xt,,  - px,t)P1 + et,, (3.1.31) 

and it is reasonable to assume that et+l,, and et,, are correlated. That is, a firm 
that has a high payroll relative to employment at time t will probably have 
relatively a high payroll at time t + 1. Thus, we fit the model for the time t data 
and use the residuals &t,, for a stratification variable. If we stratify, we need 
to ask ourselves if it is reasonable to suppose that the conditional distribution 
of the errors given the stratification is also zero mean with constant variance. 
Proceeding as if this is the case, we desire selection probabilities close to 
m, in strata with similar time t residuals. We also want the sample to be 
“representative” with respect to zt,, as well as with respect to m,. 

We could order the population on the residuals, form 50 equal-sized strata, 
where size is m, of (3.1.30), and select two elements in each stratum using 
the Brewer scheme of Section 1.4. An alternative procedure, and the one we 
adopt, is to use the three variables xi, &, and m, as stratification variables. 
Let the m, be normalized so that the sum of the m, is 100. 

We first divide the population into two parts on the basis of m,. There are 
1363 workplaces with m, equal to 0.6750,. The sum of the m, for the 2029 
workplaces is 1810.79, and the sum for the 1363 workplaces is 872.03. The 
workplaces with m, = 0.6750, are ordered on &, and divided into six nearly 
equal-sized groups. Then each of these groups is ordered on xt,, and divided 
into four nearly equal-sized groups, creating a total of 24 strata for the set 
of workplaces with m, = O.675crx. Each of these strata contains 56 or 57 
workplaces. 

The second set of workplaces is ordered on x t ,  and divided into seven 
subsets. Each of the first six subsets has a sum size of approximately 8 and 
the last subset has a sum size of approximately 4. The subsets are ordered on 
&,, and subdivided. Each of the six subsets is divided into four subgroups, 
and the seventh is divided into two subgroups. The subgroups are formed to 
have approximately the same size in terms of m,. The strata range in size 
from 10 to 44 workplaces. 
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Given these strata, the sum sizes within a stratum are fairly similar and the 
simple stratified sample with two per stratum will have selection probabilities 
that are approximately proportional to m,. 

To produce an anticipated variance, we require values for Q: and for the 
correlation between e t + l , ,  and et.,. The estimated value of 02 for the regres- 
sion using time t data is 0.06155, and we use this as the anticipated value. 
In the absence of information on the correlation between e t + l , ,  and et,,, but 
feeling it should be fairly high, we assume a squared correlation of 0.36. 
Then the anticipated variance of p1 is given by expression (3.1.29), where 
02 = 0.64(0.06155) = 0.03939 and zt+1,, is replaced with xt,,. The design 
using m, as the size variable is nearly five times as efficient for fil as the 
design based on (zl . t .$,  Z Z , ~ , , ) .  Conversely, estimates of ( Z l , t + l , N ,  Z 2 , t + 1 , ~ )  

under the design for those parameters are six to nine times more efficient than 
estimates from the design for the regression coefficient. See Table 3.1. 

Under the design for PI ,  the anticipated variance of the regression estimator 
for Z 2 , t + 1 . ~  using Z Z . ~ , ~  as the auxiliary variable is 121.55 and the anticipated 
variance of the regression estimator for Z l , t+ l ,N  using .zl,t,, as an auxiliary 
variable in 96.84. Regression estimation removes the portion of the variance 
due to within-stratum variation in mean values. There is no way to compensate 
for the fact that the selection probabilities have a poor correlation with the 
standard deviations of the Zl . t+ l , ,  and y ~ , t + 1 , ~ .  

Table 3.1 
Alternative Designs 

Anticipated Variances of Stratified Estimator Under 

Designed Statistic 

to Estimate: 

32 ,  t + l  . N 59.22 27.96 53.37 10.46 12.97 
( Z ~ , t + l , ~ ;  Z a , t + l . N )  33.06 30.69 57.63 10.61 13.19 
PI 208.33 279.47 39.70 4.67 2.68 
Median ~ 2 , ~ + 1  1762.95 2296.06 23.86 4.53 7.12 
Compromise 36.69 34.67 45.87 7.26 7.27 

As a fourth objective, assume that we wish to estimate the median of z2t. 

From the discussion in Section 1.3.5, we know that the approximate variance 
of the median is the variance of the cumulative distribution function (CDF) at 
the 50% point divided by the square of the slope of the CDF at that point. The 
variance of the CDF at point a, is the variance of the mean of the indicator 
function 
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= 0 otherwise. 

By specifying a distribution for et in model (3.1.22), we can compute the 
variance of l y (a , )  for each i. The normal distribution is a natural choice 
but will lead to many exceedingly small probabilities. Therefore, we set a 
lower bound of 0.04 on the probabilities and define the design size to be 
bi = bi(l - where 

pi = max{@ [(0.4243z2;t;i)-' I ~ 2 , t : i  - 78 I] ,0.04}, 
[ 1 ] is the normal CDF, and 78 is the median of ~ 2 ~ .  With the lower bound 

of 0.04, the smallest probabilities are about 0.4 of the largest probabilities, a 
fairly conservative design. We order the population on z 2 t i  and form strata 
that are of equal size with respect to bi. The stratum containing the smallest 
workplaces contains 70 workplaces, the stratum with the largest workplaces 
contains 70 or 71 workplaces, and the strata close to the median contain 27 or 
28 workplaces. 

The anticipated variance of the median under the median design is about 
0.4 of the variance under the design for ( Z I . ~ + ~ , ~ ,  Z2;t+l,N). However, the 
anticipated variance of the stratified estimator of the mean of 2 ~ . t + l , ~  under 
the design for the median is more than 80 times that under the design for the 
mean of 22. Under the design for the median, the anticipated variances of 
the regression estimators of 16Zl:t+l%A, and Z 2 , ~ + l . ~ , ,  are 717.23 and 571.12, 
respectively. The large differences between these variances and those of 
the second line of Table 3.1 reflect the large differences between the set of 
selection probabilities that is optimum for the mean of 22 and the set that is 
optimum for the median. The differences in probabilities are greatest for the 
large workplaces. The large workplaces are assigned very large probabilities 
for estimating the mean but assigned small probabilities for estimating the 
median. 

Table 3.1 contains anticipated variances for the four designs we have out- 
lined and for a compromise design. The size for the compromise design is 
zg,t,i + 16zl.t,i + 64. The constant was chosen so that the probabilities of 
selection for the smallest workplaces are about twice those for the design us- 
ing z ~ , t , i  + 1 6 ~ 1 , ~ ) ~  as the size measure. Eight workplaces are included in the 
sample with certainty and the three strata with the smallest workplaces have 
108, 128, and 155 workplaces. Increasing the smallest probabilities relative 
to those optimum for z2 produce improvements for the median and regression 
coefficients with modest loss for the estimated totals of 21 and 22. 

The variances for the compromise design demonstrate the nature of a 
compromise. The variances of estimators are never the best and never the 
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worst. The difference between the compromise and the specific design is 
greatest for the estimator of slope. This is because the design for slope has 
higher probabilities for small workplaces than do the other designs. 

In constructing designs for specific objectives, we never attempted to 
achieve the absolute minimum variance. Also, by using the classic strati- 
fied design with n h  > 2, simple unbiased estimators of variance are available 
for the estimators. One must remember that the design model is imperfect 
and that the survey will be used for purposes other than those specified at 
the design stage. It is wise to create a design and then consider increasing 
the smallest selection probabilities. Models such as (3.1.22) often specify 
variances that are too small for small units. .. 
3.1.3 Stratification and variance estimation 

A topic often overlooked in discussion of survey design is variance estimation. 
We give an illustration of the effect of stratification on the efficiency of variance 
estimation. 

Example 3.1.2. Assume that the auxiliary information on a population of 
1600 elements is that each element is associated with one and only one of the 
integers from one to 1600. Let the design model for the characteristic y be 

yi = Po + xipi + ei,  (3.1.32) 

where ei N N I ( 0 ,  a:) and 

I C ~  = i, i = 1, 2,  . . . , 1600. 

Assume that a sample of size 64 is to be selected. Table 3.2 contains the 
variance of the stratified sample mean for different numbers of strata and 
different values of the correlation between y and z. We assume that the 
population is divided into equal-sized strata on the basis of the n: values, and 
that the same number of elements is selected in each stratum. We ignore the 
finite population correction term throughout. We standardize all table entries 
so that the variance of the mean of a simple random sample is 100. We set 
a: = (1 - p 2 ) a i ,  where p is the correlation between z and y, and note that 
p2a i  is a multiple of 02, 

The approximate variance of the stratified mean for equal-sized samples 
selected from equal-sized strata is 



200 USE OF AUXILIARY INFORMATION IN DESIGN 

Table 3.2 Variance of Stratified Sample Mean Under Alternative Designs 

~ ~ ~ ~ ~ 

Number Population Squared Correlation 
of 

Strata 0 0.25 0.50 0.75 0.90 0.99 

1 100.00 100.00 100.00 100.00 100.00 100.00 
2 100.00 81.25 62.50 43.75 32.50 25.75 
4 100.00 76.56 53.12 29.69 15.62 7.19 
8 100.00 75.39 50.78 26.17 11.41 2.55 

16 100.00 75.10 50.20 25.29 10.35 1.39 
32 100.00 75.02 50.05 25.07 10.09 1.10 
64 100.00 75.01 50.01 25.02 10.02 1.02 

where oi,w is the pooled within-stratum variance, 

H hf 

h = l  j=1 

H 

h=l 

H is the number of strata, M is the population number of elements in each 
stratum, Yhlh is the population mean of the hth stratum, and oih is the 
population variance of the hth stratum. In our example 

(12) ( M 2  - l )p2 + 0:. 

If the variances are standardized so that the variance of the mean of a simple 
random sample is 100, then o$ is 

[ H P p ’  + (1 - p”] x 100. 

Two things are clear from Table 3.2. The anticipated variance of the strat- 
ified sample mean decreases monotonically as the number of strata increases 
for any positive p 2 .  Second, the decrease is modest from 16 to 64 strata, 
except for very large correlations. Also see Cochran (1977, Section 5A.8). 

The estimated variance for stratified designs with equal sized strata and 
equal sized samples is 

H M  
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Table 3.3 
Under Alternative Designs 

Variance of Estimated Variance of Stratified Sample Mean 

Number Population Squared Correlation 
Of 

Strata 0 

1 100.00 
2 101.61 
4 105.00 
8 112.50 

16 131.25 
32 196.87 

0.25 0.50 

96.25 85.00 
66.84 38.74 
61.53 29.57 
63.94 29.00 
74.02 33.07 

110.81 49.31 

0.75 0.90 

66.25 51.40 
17.31 7.65 
9.12 2.36 
7.70 1.45 
8.40 1.41 

12.38 2.00 

0.99 

41.19 
3.00 
0.30 
0.06 
0.02 
0.02 

where M is the number of sample elements in each stratum. An approximate 
variance of the estimated variance for our illustration population is 

p4(72O)-'(4M4 + 10M2 - 5)X4 + 4p20:h02 + 20: 

n2(n - H )  VlV'(?7st)I = 

where a& = (12)-'(M2 - 1)X2 is the within-stratum variance of z. Table 
3.3 contains the variances of the estimated variances standardized so that the 
variance of the estimated variance for the simple random sample design with 
p2 = 0 is 100. The distribution of z is uniform. Therefore, the variance of z2 is 
about 0.8 of the square of the variance of z. Because e is normally distributed, 
the variance of e2 is twice the square of the variance of e. Therefore, the 
variance of the estimated variance is smaller for populations with a large p2.  

The degrees of freedom for the variance estimator are 63, 62, 60, 56, 48, 
and 32 for the designs with 1, 2, 4, 8, 16, and 32 strata, respectively. If 
p2 = 0, the two-per-stratum design has a variance of the estimated variance 
that is approximately twice that of the simple random sample. On the other 
hand, the variance of the estimated variance for populations with p2 > 0 first 
declines and then increases as the number of strata increase. This is because, 
initially, the decrease in the variance is more important than the decrease in 
the degrees of freedom. 

This example demonstrates the limited gains in efficiency that are generally 
obtained from heavy stratification on a single variable, and the cost in terms 
of variance of the estimated variance associated with heavy stratification. In 
practice, several variables are often available for use in stratification. The 
gain from using additional variables in stratification can be substantial if the 
additional variables have low correlation with the initial stratification variables 
and high correlation with some of the y-variables. 
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We have considered simple estimators to illustrate the relationship between 
efficiency in variance estimation and efficiency in mean estimation. In our 
illustration, given a linear relationship between the characteristic of inter- 
est and the design variable, the regression estimator could be used. The 
approximate variance of the variance estimator for the regression estima- 
tor, with xi containing the design variable and stratum indicators, would be .. 2(n  - H - 1)-b$ 

A common procedure is to select one unit per stratum and to combine 
or “collapse” two adjacent strata to form a variance estimation stratum. The 
two-per-stratum variance is calculated using the collapsed strata. For an equal 
probability design with equal population sizes, the estimated variance for the 
mean of the two strata calculated from the collapsed stratum is 

where y1 is the observation in original stratum 1 and y2 is the observation in 
original stratum 2. Assuming large population sizes so that finite correction 
terms can be ignored, 

where Y c o ~  = 0.5(yl + ya), p1 and 1-12 are the stratum means in strata 1 and 2, 
respectively, and a: and a; are the two variances. If p1 = 1-12, the variance of 
the one-per-stratum design is the same as the variance of the two-per-stratum 
design. If 1-11 # 1-12, the collapsed strata variance estimator is positively biased 
for the variance of the one-per-stratum design. In fact, the estimator is a biased 
estimator of the variance of a two-per-stratum design because the variance of 
a two-per-stratum design is 

A person using a one-per-stratum design and the collapsed variance estimator 
will, on average, produce wider confidence limits for estimates than a person 
using a two-per-stratum design. 

There is sometimes a need for an unbiased estimator of variance beyond 
that of a measure of reliability of estimates. Examples include small area 
estimation and design of future surveys. If such use is anticipated, the one-per- 
stratum design with the collapsed strata variance estimator is a questionable 
choice. 
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3.1.4 Controlled two-per-stratum design 

Two-per-stratum designs are popular because unbiased design variance es- 
timation is possible, it is relatively easy to implement unequal probability 
sampling for the designs, and the designs give good efficiency for many pop- 
ulations. Also, replication variance estimation, particularly balanced half- 
sample variance estimation, can be used. See Chapter 4. We discuss a way to 
impose additional control on a two-per-stratum design. See Park and Fuller 
(2002). 

Consider selection of a two-per-stratum sample with four sets of strata. Let 
each stratum be divided into two equal-sized groups. The division can be on 
the basis of the original ordering or on the basis of a second variable. Let 
the group with smaller values of the division variable be called group 1 and 
the group with larger values be called group 2. Given the partition, there are 
three types of samples of size 2 in a stratum: two elements from group 1, two 
elements from group 2, and one element from each group. For groups of size 
m and ordinary two-per-stratum sampling, the probabilities for the three types 
of samples are m(m - 1) [2m(2m - 1)l-I , m(m - 1) [2m(2m - l)]-', and 
m(2rn - l)-', respectively. As rn increases, these probabilities approach 
0.25, 0.25, and 0.50, respectively. 

Consider a design in which for each set of four strata, we impose the 
restriction that one stratum has two elements in group 1, one stratum has 
two elements in group 2, and two strata have one element in group 1 and 
one element in group 2. Let there be rn elements in each group of stratum 
h; h = 1,2,3.4.  To select the sample, one of the 24 possible arrangements is 
chosen at random. Then random samples of one or two elements are chosen 
in the designated strata. Using an analysis-of-variance decomposition, we 
write the characteristic for element k in group j of stratum h as 

where 

k = l  
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and ehjk = y h j k  - yNy:hj. The probability that element k in group j of stratum 
h is selected is m-', an unbiased estimator of the finite population mean is 

h j k E A  h j k E A  

and 4 is the simple mean. 
To evaluate the variance of 6, consider the sample composed of two ele- 

ments from group 1 of stratum 1, two elements from group 2 of stratum 2, 
one element from each group of stratum 3, and one element from each group 
of stratum 4. For this arrangement, the error in 6 as an estimator of j j N  is 

1 6 - YN = N -  [m(711 - 712) - 4 7 2 1  - 7 2 2 )  

+ m(e111 + e m )  + m(e221 + ~ 2 2 )  

4 2  

+ c mehjll, (3.1.35) 
h=3 j=1 

where the k identification is chosen for convenience and we suppress the N 
subscript on yN,hj .  It follows that 

2 -m - Y N I 2 1 F ' ,  A[l]) = N -  [m(711 - 712)  - m(721 - Y22)I2 

+ N-2[2m2(1 - 2rn-1)S121 

+ 2m2(1 - 2m-l)Si2 

+ m2(1 - m-l)(Sil + S,",) 

+ m2(1 - m-')(S& +Si2)], (3.1.36) 

where All] denotes the described sample arrangement and 

m 

k = l  

The estimator 8 is unbiased under the design, and the variance of 6 is 

JW{@ - 17N)21.T!A[r]) I FI 
4 2  4 2  

r=l j=1 

In expression (3.1.37) the yN,hj, defined in (3.1.34), are treated as fixed 
quantities. 
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To compute an anticipated variance, assume that 

where ah are fixed stratum effects, 5j is the fixed group effect with C1 = 
-52, the e h j k  are iid(O,o,") random variables, the bhj are iid(0,o:) random 
variables, and the e h j k  are independent of bst for all hjk  and st. Then 

E(V(8 - j j N  I F)} = (16)-lo; + 8-'(1 - m-l)a?. (3.1.39) 

The analogous anticipated variance of the estimated mean for the two-per- 
stratum design is 

where &st is the estimated mean and C = 2(2m - l)- l(m - 1). If Cf > 
0.25(m - l)-'a;, the anticipated variance for the controlled design is less 
than that of the two-per-stratum design. 

To construct an estimator of the variance, we note that for a given h and t ,  

and 

E{(yhrk - yhrj12 I 3) = 2s;, for j + k .  

Because every arrangement of strata is equally likely, 

ne I F} = N-2{[m(Yyll - Yy21) - m(y7-11 - Yr21)I2) 

+ N - 2 { m 2 ( 1  - 2m-%Yhll - Yh12)2 

+ m2(1 - 2m-')(yt21 - ~ t 2 2 ) ~ } ,  (3.1.41) 

where strata h and t have two elements in one group, stratum q has one element 
in each group, and stratum T has one element in each group, is a design- 
unbiased estimator of the variance of 8. If the finite population correction is 
ignored, V { 8  I F} is the residual mean square from the regression of Y h j k  on 
stratum indicator variables and an indicator variable for group. 
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3.1.5 Design for subpopulations 

A common set of competing design objectives is the desire for good estimates 
at the, say, national level and a desire for good estimates at the subnational, 
say, state level. If the within-state variances are the same, the optimum 
allocation to states for national estimates is proportional to the state population. 
Conversely, the optimal allocation for individual state estimates, assuming 
that all are equally important, is an equal sample size for each state. Because 
it is difficult for users to give precise measures of relative importance, a 
common design allocates the sample proportional to the square roots of the 
subpopulation sizes. If some subpopulations are very small, a lower bound 
may be placed on the subpopulation sample size. 

Table 3.4 Alternative Subpopulation Sample Allocations 

Propor- Square Propor- Square 
ID tional Root Bound ID tional Root Bound 

CA 
TX 
NY 
FL 
IL 
PA 
OH 
MI 
NJ 
GA 
NC 
VA 
MA 
IN 
WA 
TN 
MD 
WI 
MD 
AZ 
MN 
LA 
AL 
co 
KY 

1206 
742 
676 
569 
442 
437 
404 
354 
299 
292 
287 
252 
226 
217 
210 
203 
199 
191 
189 
183 
175 
159 
158 
153 
144 

55 1 
433 
413 
379 
334 
332 
319 
299 
275 
27 1 
269 
252 
239 
234 
230 
226 
224 
219 
218 
215 
210 
200 
200 
196 
190 

528 
415 
396 
363 
3 20 
318 
306 
286 
263 
260 
258 
242 
229 
224 
220 
217 
215 
210 
209 
206 
20 1 
192 
192 
188 
183 

sc 
OK 
OR 
CT 
IA 
MS 
KS 
AR 
UT 
NV 
NM 
WV 
NE 
ID 
ME 
NH 
HI 
RI 
MT 
DE 
SD 
ND 
AK 
VT 
WY 

143 
123 
122 
121 
104 
101 
96 
95 
79 
71 
65 
64 
61 
46 
45 
44 
43 
37 
32 
28 
27 
23 
22 
22 
17 

190 
176 
175 
175 
162 
160 
155 
155 
142 
134 
128 
127 
124 
108 
107 
106 
104 
97 
90 
84 
82 
76 
75 
74 
66 

182 
169 
168 
167 
155 
153 
149 
148 
136 
128 
122 
122 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
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Example 3.1.3. Table 3.4 was constructed using the populations of the 50 
states of the United States as given by the 2000 U.S. Census. The numbers in 
the column “proportional” are approximately proportional to the populations, 
and the numbers in the column “square root” are approximately proportional 
to the square roots of the populations. 

The variances of estimates for three designs are compared in Table 3.5 
under the assumption of common within-state variances. The variances are 
standardized so that the variance for the national estimate under proportional 
sampling is 1. The numbers used in variance calculations were not rounded. 
With proportional sampling the variance for the largest state (California) is 
8.3 and the variance for the smallest state (Wyoming) is 573.1. The average 
of the state variances is 132. If a fixed number is taken in each state, the 
variance of the estimator for each state is 50, but the variance of the national 
estimator is more than twice that for proportional allocation. 

Allocating the sample proportional to the square roots of the population 
leads to a large reduction in the largest state variance and in the average of the 
state variances relative to proportional allocation. The cost of this reduction 
is an increase of 22% in the variance of the national estimator relative to 
proportional allocation. The variance of the state estimator for Wyoming is 
still three times that for equal allocation. 

Table 3.5 Variances Under Alternative Designs 

Design 
Square Root 

Variance Proportional Square Root Lower Bound Fixed 

National 1 .oo 1.22 1.27 2.19 
Min. state 8.29 18.13 18.92 50.00 
Max. state 573.08 150.76 83.33 50.00 
Ave. state 131.96 64.31 58.23 50.00 

The third column of the table is for an allocation with a lower bound on 
the number allocated to a state. If one allocates proportional to population, 
Wyoming would receive 17 units in a sample of 10,000. Under allocation 
proportional to the square roots, Wyoming would receive 66 of the 10,000. 
Under the allocation of the third column, the 13 smallest states each receive 
120 units. This allocation leads to a largest state variance that is nearly half 
that of the square root allocation. The variance of the national estimator is 
about 5% larger for the design with a lower bound than for the proportional- 
to-square-root design. In designing such a sample, it is relatively easy to 
prepare tables similar to Table 3.5 for alternative designs for the clients. 
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Preparing such tables is often preferable to asking the client to specify design 
requirements. .. 
3.2 MULTIPLE-STAGE SAMPLES 

3.2.1 Cluster sampling 

Cluster sampling was introduced in Section 1.2.7. Although cluster sampling 
requires no new theory for estimation, design for cluster samples warrants 
discussion for two reasons. First, it may be possible to form clusters of 
different sizes. For example, if the clusters are area clusters of households, it 
is possible to design clusters of different sizes using materials such as census 
block statistics. Second, known cluster size is an auxiliary variable that can 
be used at both the design and estimation stages. However, the cluster size 
is not always known at the design stage. For example, a sample of residence 
addresses provides a cluster sample of persons, but the number of persons per 
resident is often not known at the design stage. 

Clusters must be formed so that the data collector finds it relatively easy 
to identify the unit correctly. For example, if the land area is being sampled 
for a survey of agricultural practices, units based on land ownership or farm 
operators would be practical, while units with boundaries defined by latitude 
and longitude would be less desirable. On the other hand, a segment based 
on latitude and longitude would be practical for a survey of forests given that 
geopositioning units can be used to determine location. 

If determinations are to be made on field plots, such as measurements on 
plants, the plots must be of a reasonable size. It is well known that “edge 
effects” can bias the mean for small plots. Early studies of plots are those of 
Mahalanobis (1946) and Sukhatme (1947). 

Practical considerations often limit the possible cluster sizes to a set of 
discrete possibilities. For example, much of the sampling in the NRI, the 
survey introduced in Example 1.2.2, is based on the Public Land Survey 
System. That system is based on units called sections which are 1 square 
mile. A section contains 640 acres and can be further divided into quarter 
sections of 160 acres and quarter-quarter sections of 40 acres. Thus, sampling 
units whose nominal sizes are multiples of 40 acres or of 160 acres were 
considered as possible sampling units for the NRI. 

Given a range of practical sampling units, the classical problem is to form 
clusters to minimize the variance for a fixed cost or, equivalently, minimize the 
cost for a fixed variance. Typically, the cost per observation unit (interview, 
acre of land, meter of line segment) decreases as the size of the sampling unit 
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increases. Conversely, the variance of the mean per observation unit based 
on a fixed number of observation units increases as the size of the sampling 
unit increases. A size equal to a one-day workload typically reduces travel 
costs per observation. In surveys being conducted for the first time, both the 
cost and the variance as functions of cluster size can be approximated only 
crudely. In other cases, a previous survey, a pretest, or a census can furnish 
information on the correlation structure of the population. See Jessen (1978, 
Chapter 4) for an excellent discussion of the choice of sampling unit. 

The cluster size is a natural stratification variable because we expect the 
cluster total to be related to cluster size. Often, the size used in design is not 
the actual number of elements in the cluster. For example, the design size of 
the segments studied in Example 2.1.1 was 160 acres, but the realized sizes 
varied from 100 to 345 acres. Similarly, the number of addresses in a block is 
not always the same as the number of households, but the number of addresses 
can be used as a measure of size because it will be strongly correlated with 
the number of households. 

Given that the cluster sizes are known, we study alternative selection and 
estimation strategies. Consider the design model 

Y ~ J  = ~y + b, + eaj. (3.2.1) 

where b, are the primary unit effects, etj  are secondary unit effects, the b, are 
independent (0. g,") random variables, the eZJ are independent (O,.,") random 
variables, and the eL3 are independent of the bk for all i.j. and k .  Note that 
py is the mean per element, not the mean per cluster. Assume a population of 
cluster sizes with mean p M  and variance o:~. Also, assume that e tJ ,  b,, and 
M, are mutually independent. Then the expected total for a cluster of size M, 
is M,py and the variance of the cluster total for a cluster of size M,, denoted 
by Yzz, is 

The mean of cluster totals is 

and the population variance of the cluster totals is 

(3.2.2) 
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Because the expected value €or a cluster total is proportional to Mi and because 
the conditional variance of a cluster total is positively related to cluster size, 
the ratio estimator is a natural estimator to consider. The ratio estimator of 
the total of y is 

where 

(+Y,HT,  + M , H T )  = c ;.[l(Y,, M t ) ,  

M, is the number of elements in cluster i, and TM is the total of M, for the 
population. Some large-sample properties of the estimator of a ratio are given 
in Theorem 1.3.7 and ratio estimation is discussed in Section 2.1. 

Given known 0; and 02, and the regression estimator, the best large- 
sample strategy is to select clusters with probabilities proportional to (M: at + 
M%cT~) ' /~ and use the regression estimator with, say, x, = M, or x, = 
( M,, M:). See Theorem 3.1.1. Stratified random sampling with strata formed 
on the basis of cluster size and sampling with probability proportional to 
cluster size are common in practice. Selection with probabilities proportional 
to M, is often called selection with probability proportional to size (PPS). 
Simple random sampling and PPS are popular partly because of simplicity 
and partly because practitioners may be unwilling to specify the ratio of CT; to 
gee  

We compare equal probability sampling, sampling with probability propor- 
tional to Mt,  and sampling with probability proportional to r:5 = (M:c$ + 
M,g2)1/2. In all three cases we use the ratio estimator and ignore the finite 
population correction. 

Under the model, the approximation for the variance of the ratio estimator 
of the mean per element for a simple random sample of size n is 

(3.2.5) 
aEA 

2 

(3.2.6) 

where (A&, gn)  is the simple sample mean of ( M i ,  yi) . 
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Given the model, the approximate variance of the ratio estimator for a 
sample of size n selected with probabilities equal to nTGIMi is 

(3.2.7) 

where we used the variance for replacement sampling. 
The approximation for the variance of the ratio estimator for a sample 

of size n selected with probabilities equal to nTi17E5, where T, is the 
population total of ~i = 7E5, is 

= n-l P ~ N - ~ E  -2 

i=l 

> .  (3.2.8) 

By Theorem 3.1.1, the minimum large-sample variance is that associated with 
probabilities proportional to 7E5 and we have 

If all Mi = p M ,  the procedures are equivalent. If a: = 0, the two unequal 
probability procedures are equivalent. 

The comparison of (3.2.6) and (3.2.8) neglects the fact that the cost for the 
PPS designs might be greater because the number of elements expected to be 
observed is larger for unequal probability selection than for equal probability 
selection. Also, stratification on 7ii will reduce the differences among the 
procedures. 
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3.2.2 Two-stage sampling 

The design options expand considerably when we permit subsampling of the 
primary sampling units. A classic design problem is the sample allocation 
between primary and secondary units for a population of equal-sized PSUs. 
We determine the optimal allocation under the design model (3.2.1). Consider 
a design in which m secondary units are to be selected from each of n1 PSUs, 
with simple random sampling used at both stages. Assume that all PSUs 
are of size hf. By the estimation theory for two-stage samples introduced in 
Section 1.2.8, the anticipated variance of the mean per element for a sample 
of n1 primary units with m secondary units per primary unit is 

v{e} = (1 - N- ln l )n ,b ;  

(3.2.10) + [l - ( N M ) - l n l m ]  (n1m) -1 oe, 2 

where 

A reasonable approximation to the cost function for many surveys is 

C = q n l +  c2nlm, (3.2.11) 

where c1 is the cost associated with the PSUs and c2 is the cost associated 
with the SSUs. In an area sample for personal interview, c1 will include travel 
cost and costs such as sketching the sampling unit and listing dwellings in the 
unit. The cost c2 is the cost of conducting the interview. If one minimizes 
(3.2.10) subject to (3.2.1 l), one obtains 

(3.2.12) 

Of course, mopt must be rounded to an integer between 1 and M .  The number 
of PSUs is obtained from (3.2.11), or from (3.2.10) if a certain variance is 
desired. The result (3.2.12) is reasonable because m increases as c2 decreases 
and as gz  increases. 

Example 3.2.1. A survey of land cover for the northern part of the state of 
Alaska is being designed. Aerial photography will be used to obtain square 
images that are 3 miles on a side. Because of the large distances between 
units, each image costs about $2000. The secondary sampling unit is a square 
1 /2  mile on a side, called a segment. Thus, each image contains 36 segments. 
It is estimated that the cost of data collection for a segment is about $200. 
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The ratio of a: to uz will depend on the characteristic being observed, but a 
6: 1 ratio is judged reasonable. Using this variance ratio, m = 7.7 is optimal. 
In the study, m = 9 was used because of the simplicity associated with one- 
in-four subsampling. .. 

Designs in which the weights for all secondary units are the same are called 
self-weighting. Self-weighting designs are appealing for surveys of human 
populations conducted for general-purpose use because in such surveys there 
is little reason to postulate unequal variances for individuals. 

Given PSUs selected with equal probability, the sample will be self- 
weighting when the same fraction of secondary units is selected in each 
PSU selected. Another popular design for two-stage samples is one in which 
the PSUs are selected with PPS, where size is the number of SSUs in the 
PSU. If the same number of secondary units is selected in each PSU, called a 
Jixed take, the design is self-weighting. Often, rn is chosen to meet practical 
restrictions such as the number of interviews that can be completed in a fixed 
time period. 

We compare the PPS fixed take with the equal-probability proportional- 
take procedure. Recall that given a known total number of elements in the 
population and an equal-probability cluster sample, the ratio estimator is 
inferior to PPS sampling with the Horvitz-Thompson estimator under the 
population model (3.2.1). See (3.2.6) and (3.2.7). A ratio estimator of the 
total of y for a two-stage sample is 

where 

j E B i  

and TIM = 
(1.2.77). 

written as 

where Tls is the estimated total with all mi = Mi, V,{f'ls 1 F} is the 
variance of the estimated total with rni = Mi for all i, and V[5?--s 1 (A1 , F)] is 

is the total number of elements in the population. See 

Recall from (1.2.78) that the design variance of a two-stage sample can be 

V,C~lS I F} + E{V[P2s I (A1,F)I I F}, 



214 USE OF AUXILIARY INFORMATION IN DESIGN 

the conditional variance, conditional on the selected first-stage units. Under 
model (3.2. I), omitting the first-stage finite population correction and simple 
random sampling at the second stage, the anticipated variance is 

= E[&{PTa,,t 1 F}] + E { N 2 n - ' ( A ? ; m - l  - UN)}o? 

(3.2.14) 

where S2,i is the mean square of eij for PSU i, the fixed subsampling rate is 
MG'rn, 

-1 2 2 
G ~ 2 1  n-1 ( d r +  ddd + n-lm PMge 1 ,  

and yii = M: o; + Mi.,". 
Under model (3.2.1) and PPS fixed-take sampling, 

E [ V { F 2 i i s . P P S  I n1 = E [ V l { P P P S  1 q - I  

where 
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Therefore, the PPS scheme is preferred to equal-probability selection for 
populations generated by model (3.2.1) under the cost function (3.2.1 1). 

The cost structure (3.2.11) is often a reasonable approximation for the PPS 
fixed-take design. It follows that (3.2.12) furnishes an approximation to the 
optimum number of secondary units per PSU. 

3.3 MULTIPLE-PHASE SAMPLES 

3.3.1 Two-phase samples 

The procedure called double sampling or two-phase sampling is typically 
employed in the following situation. There exists a procedure, relatively 
cheap to implement, that produces a vector of observations denoted by x. The 
vector x is correlated with the characteristics of interest, where the vector of 
interest is denoted by y. In some situations, the x-variables are of interest in 
themselves and may be a part of y. It is very expensive to make determinations 
on y. 

In the most popular form of two-phase sampling, a relatively large sample 
is selected and x determined on this sample. This sample is called thejrst- 
phase sample or phase I sample. Determinations for the vector y are made 
on a subsample of the original sample. The subsample is called the second- 
phase sample orphase 2 sample. In the form originally suggested by Neyman 
(1938), the original sample was stratified on the basis of x and the stratified 
estimator for y constructed using the estimated stratum sizes estimated with 
the phase 1 sample. We first describe this particular, and important, case of 
two-phase sampling. We simplify the discussion by considering scalar y. We 
also begin with a simple sampling procedure. 

Assume that a simple random nonreplacement sample of n1 elements is 
selected and assume that on the basis of the observations, the sample of n1 
elements is divided into G subgroups, also called phase 2 strata. We use the 
terms group and phase 2 stratum interchangeably. A sample of n ~ ~ .  nzg > 0, 
elements is selected in the gth group for g = 1, 2, . . . , G. The estimated 
number of elements in the gth phase 2 stratum is 

where A1 is the set of elements in the phase 1 sample, 

(3.3.1) 

xig = 1 if element i is in group g 

= 0 otherwise 
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and 

The vector of estimated population sizes is 

where the gth element of xi is as defined in (3.3.1). 
A reasonable estimator of the population total of y is obtained by weighting 

the stratum sample means of y with the estimated group sizes. This estimated 
total is 

G 

(3.3.3) 
g=l  

where 

and A2g is the set of indexes of elements in group g of the phase 2 sample. 
The corresponding estimator of the population mean is 

G 

Y2p:st  = C Z l g Y 2 q r  (3.3.4) 
g=1 

where Elg,  defined in (3.3.1), is the estimated fraction of the population that 
is in group g. 

The estimator (3.3.4) is, conditionally on the phase 1 sample, unbiased for 
the phase 1 sample mean. That is, 

E { Y 2 p , s t  I (All  = Y l ,  

where 

iEAi 

It follows that the estimator (3.3.3) is unbiased for the finite population total, 

(3.3.5) 
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where 

No assumption about the procedure used to form the groups for phase 2 
selection is required in showing that T2p,s t  is unbiased for T .  Similarly, no 
assumption about the phase 1 design, beyond the existence of the variance, 
is used in deriving (3.3.6). By (3.3.6), the variance of T2p,s t  for a two-phase 
sample is always larger than the variance of the estimated total computed 
from a phase 1 sample in which y is directly observed. Thus, two-phase 
sampling is used when the determinations on y are much more expensive than 
determinations on z, or when other operational conditions restrict the possible 
number of y determinations. 

Given a cost function and a design model, the optimal design can be 
determined. Let 0; be the population variance of y and 0; be the common 
within phase 2 strata variance of y. Let 0; = 0; - 0;. Assume that each 
phase 1 observation costs c1 and each phase 2 observation costs c2. Ignoring 
the phase 1 finite population correction factor, 

V { N - ' F ~ ~ , ~ ~  1 F ~ }  = n1 -1 ay+(n;l-n;l)gi 2 = n; 1 2  ab+n2 - 1 2  ow, (3.3.8) 

and for 722 > 0, the optimal sample sizes satisfy 

122 = [ ( g ; c 2 ) - 1 a i c 1 1 ~ ' ~  n1. (3 * 3.9) 

Result (3.3.9) can be compared to result (3.2.12). Variance expression (3.2.10) 
is analogous to expression (3.3.8), but the boundary conditions differ. In two- 
stage sampling, 1 < m < M ,  whereas for two-phase sampling, 0 < n 2  I nl. 
Because n 2  = n 1  is an acceptable design, the variance for two-phase sampling 
must be checked against the variance for single-phase sampling to determine 
the optimal procedure. 

Example 3.3.1. Suppose that we have 10,000 units to spend, c 1  = 
1, c 2  = 3, 0; = 100, and 0; = 40. Then the n 1  from (3.3.9) is 4141 and 
the n 2  is 1953. The two-phase variance is 0.035. As an alternative design, 
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consider selecting a simple random sample of size 3333 and observing y on the 
selected sample. The variance of the alternative design is 0.030. Therefore, 
the described two-phase design is less efficient than using only the phase 1 
design as a single phase. Suppose that the cost of observing y is 100. Then the 
optimal sample sizes are n1 = 1100 and n2 = 89. The two-phase variance of 
the mean is 0.504. If we use the simple random sample design, the variance 
of the mean is 1. .. 

It is relatively easy to estimate V{T2p.st 1 (A1 , F)} because it is the variance 
of a stratified sample. It is more difficult to estimate the first term of (3.3.6), 
and variance estimation is very difficult when the phase 1 sample is selected 
by a complex design. 

If the phase 1 sample is a simple random nonreplacement sample, the first 
term of (3.3.6) is 

V { f ;  - T 1 F} = N ( N  - nl)nl -1 S,. 2 

For the stratified phase 2 sample with a simple random nonreplacement phase 
1 sample, 

g=1 iEAzS 

where Y2p.st is defined as in (3.3.4), is a consistent estimator of Si, under mild 
assumptions. Then a consistent estimator of the variance (3.3.6) is 

-1 ^ 2  V{F2p,st - T I F} = N ( N  - nl)nl S, 
G 

+ C fiig(fiig - n 2 g ) 5 i ~ E 2 g ;  (3.3.11) 
g=1 

where 

2 
sY2g = (n2g  - c (yi - y2g)2  

We now consider two-phase samples with more complex phase 1 designs. 
Let the probability that element i is included in the phase 1 sample be  TI^, 

and let 7r2ilAl be the probability that element i is included in the sample given 
the specific phase 1 sample containing i. Thus, 

(3 -3.12) 
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is unbiased for T ,  by the arguments of (3.3.5). Let ~2~ be the unconditional 
probability that element i is included in the phase 2 sample. Then 

r 2 2  = 57125722112, 

where 5722112 is the conditional probability that element i is included in the 
phase 2 sample given that i is in the phase 1 sample. 

We assume that the population is divided into G groups that serve as phase 
2 strata. We assume simple random sampling within strata and that the 
sampling rate for group g for the phase 2 sample, 7r22112 = fig, is fixed. The 
number of phase 2 sample elements in group g is n 2 g ,  where nzg is the integer 
closest to nlgfig, and nlg is the number of phase 1 sample elements in group 
g. The rounding error is ignored in the subsequent discussion. Let x, be a 
G-dimensional vector with a 1 in position g when element i is in group g and 
zeros in the remaining locations, as defined in (3.3.1). The phase 1 vector of 
means is 

(Ylm %r> = c Wlz(Yz, XZ), 

zEAi 

where ~ 1 %  = (EJE~l~<l)-l~;l and XI, ,  but not &,, is observed. An 
estimator of the mean of y is 

G 

Y2pr,st = c %r.gY27r,g, (3.3.13) 
g=1 

where Z I , , ~  = C j E A I W l i X i g ,  is the phase 1 
tion in group g, 

is the phase 2 mean of y in group g, and 
elements in group g of the phase 2 sample. 

estimated fraction of the popula- 

-1 

(3.3.14) 
ZEAzg 

Aag is the set of indexes of the 

Estimator (3.3.13) uses a separate ratio estimator as the phase 2 estimator. 
An alternative estimator of the mean is 

G 

(3.3.15) 
g=1 
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where 

~ E A Z ~  

and ui = wliyi. The estimator of total associated with (3.3.15) is 

The estimator TysDE is a Horvitz-Thompson estimator and is called a double 
expansion estimator by Kott and Stukel (1997). Note that if 7r221A1 is used 
in place of 7r2211,, and if 7r22141 is not fixed, the estimator is not a Horvitz- 
Thompson estimator. If the phase 1 probabilities have a wide range and the 
phase 2 stratum sample sizes are small, (3.3.15) may be preferred to estimator 
(3.3.13). 

We give the limiting properties of Y2p,s t  in Theorem 3.3.1. Because of the 
complex nature of the sequence of populations and samples, we break with 
our usual practice and index elements in the sequence with k instead of N .  

Theorem 3.3.1. Let { (y2, x,)} be a sequence of zid random variables with 
fifth moment, where the G elements of x, are indicators for group membership 
and every element is a member of one and only one of the G groups. Let 
{Fk, A l k }  be a sequence of populations and samples where All, is a sample 
of size n 1 k  from F k ,  Fk c F k + l ,  A l l ,  c A l , k + 1 ,  and F k  contains the first 
N k  elements of { (yz, x,)}. Assume that {Fk, A l k }  is such that the phase 1 
estimator of a mean vector, denoted by 8 k ,  satisfies 

[v{ek I F k } ] - 1 ' 2 ( 8 k  - &k)' I F k  2 N(O.1) as . ,  (3.3.16) 

where v { e k  1 F k }  is op(nLi),  6, = ( Y l ~ k .  z l ~ k ) ,   ON^ = ( Y N k ,  z . ivk) ,  

and ( j j l T k ,  z 1 , k )  is defined in (3.3.13). Assume that the 7r2,112 are fixed and 
constant within groups and assume that the sequence of phase 1 selection 
probabilities satisfy 

< n T 1 N k x 1 2  < K,  (3.3.17) 

for all 2 ,  for some positive K L  and Ku. Assume that the design is such that 

lim NT1 7 r ~ 1 ( l , x ~ , ~ , . y , " ) ' ( l . x 2 . ~ 2 .  y,") = M a.s.. (3.3.18) 
k-00 

ZEAlk 

where M is a matrix of constants. 
Then, as k -+ 00, 
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where $j2p,st3k is as defined in (3.3.15), 

V{Y2,;,t,k I Fk} = V ( Y l 7 r k  I Fkl 

i E A l g k  iEA1gk 

ui = wliyi, and A l g k  is the set of indices in group g of the phase 1 sample. 

Proof. Variance expression (3.3.20) follows from expression (3.3.6) because 
the phase 2 sample is a stratified sample of the phase 1 values wlzyz. The 
term inside the expectation in (3.3.20) is the variance of the stratified sample 
estimator of CzEAl w12yz, conditional on the elements of A l k .  

The error in the phase 2 estimator of the phase 1 mean is 

G 

YPp,st ,k  - Y l T k  = c n lgk(G2g lc  - U l g k ) ,  
g=1 

where u, = wlzyz and 'ii2gk is as defined in (3.3.15). The conditional variance, 
conditional on the phase 1 sample, is 

G 

g = l  

where n:gk,!?:gk is of order 1. By assumption (3.3.18), 

lim N;' C T T T ~ , ~  = 1 a.s. 
k-+w 

iEA1k 

(3.3.21) 

and 
-1 lim nlk n l g k  = gg,.= as . ,  

k + x  

where gg..= is the fraction of the population in group g. Let Y2p,st ,k = 
Y I T k  + j&,st,k - Y l n k  and consider the sequence 

[V,{(Y2p,st.k - Yl7rk) I m-1'2 (Y2p.st.k - Y17rd  3 
(3.3.22) 
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where 

is a well-defined a s .  limit by (3.3.18). By assumptions (3.3.17) and (3.3.18), 
nlg~Ni17r,lyl has finite third moment. Therefore, 

L 
[VW { ( k 2 p , s t , k  - kind I 3k>1-’:2 @2p,st,k - Y l 7 r k )  I (Alk, Fk) + N O ,  11, 

(3.3.24) 
for almost all sequences of phase 1 samples, by a modification of Corollary 
1.3.5.1. 

By assumption, the standardized phase 1 mean converges in distribution to 
a normal random variable. By Corollary 1.3.6.1 it follows from the limiting 
normality of the phase 1 mean and from (3.3.24) that the normalized sum 

1/2  - 
ni f (Y17Tk  - Y N k )  + l Z l k  (Y2p,S t ,k  - Y17rk) 

also converges to a normal random variable, and 

L 
[V{YZp,s t ,k  I 3k}]-1/2 (Y2p,s t , k  - Y’vk) I Fk --+ N(O, 1) a.s.: (3.3.25) 

where 

V { Y 2 p , s t , k  I Fk} = v { g l 7 r k  I Fk} + Voo{(Y2p,st,k - t l n k )  I F k } .  

The limiting distribution of estimator (3.3.13) follows from Theorem 3.3.1. 

Corollary 3.3.1.1. Let the assumptions of Theorem 3.3.1 hold and let the 
estimator of the mean of y be Y2pr,s t  defined in (3.3.13). Then 

L 
[V{gZpr ,s t :k  I 3 k } ] - 1 / 2  (g2pr,st ,k - Y N k )  I 3 k  N(O, 1) a.s., (3.3.26) 

where 

V { Y P p r , s t : k  I Fk} = V { Y 1 7 r > k  I 
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Proof. Let 

( ~ 2 g k , a 1 , 2 g k >  = ny,j c ( u i , W l i ) .  

iEAzg 

By the vector extension of Theorem 3.3.1, the vector ( U z g k ,  W 1 , p g k ) ,  properly 
normalized, has a limiting normal distribution for each g because the number 
of groups is fixed and the within-group sampling rates are constant. Hence, 
the ratio Y2n;gk  = U 2 g k t 3 [ i g k  has a limiting normal distribution for each g. 
The result analogous to (3.3.24) then holds for estimator (3.3.13), and (3.3.26) 
follows. 

The two-phase estimator with a stratified phase 2 sample given in (3.3.13) 
is a special case of a regression estimator. See Section 2.2.3. To consider two- 
phase regression estimation with an extended vector of observations on the 
phase 1 sample, let xi be a k-dimensional vector of observations made on the 
phase 1 sample, where the first G elements of xi are the xig,  g = 1, 2, . . . , G, 
of (3.3.13). Then a two-phase regression estimator of the mean of y is 

Y2p;reg  = j21xb2n,y .x  

(3.3.27) - - 
Y 2 n  + ( X l n  - X 2 n ) b 2 n , y . x r  

where 

and 

Alternative estimators of p can be used. See Chapter 2. 

Corollary 3.3.1.2. 
The extension of Theorem 3.3.1 to the more general xi vector is given in 
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Corollary 3.3.1.2. Let the assumptions of Theorem 3.3.1 hold, and let xi 

be an ( r  - 1)-dimensional vector with the first G elements defined by xig of 
(3.3.1). Assume that the covariance matrix of (y,  x )  is positive definite. Let 
the vectors 6 l k  = ( Y I T k ,  X1*k) and 6 , k  = vech M k  satisfy (3.3.16), where 

and ,6v,z = [E {x’x}]-’ E {x’y} 

Proof. Consider the regression estimated total 

where 

L 

and P2.rr,y.z,k is as defined in (3.3.27). Now, by the moment assumptions, 

- - 1 / 2 )  
/32.rr,y.x,k - Py.z , iv .k  + O,(% 

T2p.reg.k  = ?2p,reg,y + 0p(ni1) -  

and it follows that 

vech M = (mil, m 2 1 .  . . . 
the ijth element of the T x T matrix M. 

mrl,  77122, . . . , m r 2 ,  . . . , mrr) ’ ,  and mij is 

Then 

and ,6y,z = [E {x’x}]-’ E {x’y} . 
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where T2p.reg ,k  = F2,y ,k  + ( T 1 . x . k  - T 2 , x , k ) p , ,  The difference 

g=1 

G 

(3.3.29) 
g=1 i€A1,1, 

where ei = yi - X ~ , B ~ . ~ .  Therefore, by analogy between (3.3.29) and (3.3.25), 
we have result (3.3.28). 

To use the results of Corollary 3.3.1.2 to set approximate confidence in- 
tervals, a consistent estimator of the variance is required. Theoretically, the 
procedure used to construct (3.3.1 1) can be extended to more complex designs 
if the joint selection probabilities are known. Write the estimated variance as 

V {?J2p,reg I F} = N-21Vl{fl I F} + Q{T2i;,,st I (Al, F)H. 

TO construct an estimator of {PI 1, let 

be the full-sample estimator of the variance of the phase 1 estimated total. 
Then, given the phase 2 sample, an unbiased estimator of the variance is 

-1 -1 -1 -1 
V?.HT{?1 1 F} = c T23/.l.41“13k(T1Jk - “ l J T 1 k ) “ l ~  “ I k  Y J y k :  

3 h E A 2  

(3.3.30) 

where 7r23klA1 is the probability that y3 and y k  are included in the phase 2 
sample given sample Al.  The proof that V2,HT{5?1 I F} is unbiased follows 
the proof of (3.3.5) and requires no assumption about the phase 2 design other 
than positive joint selection probabilities. The difficulty in applying (3.3.30) 
is the determination of the joint probabilities as well as the calculation of the 
double summation. 

A second estimator of the variance is based on an alternative expression 
for the variance of jj2p,reg. By a Taylor approximation, 

I 

Y2p,Teg - YW = x17Tp~.y.a: - 3 N o y . x  - EN 
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= @17r - %)Py., + x N ( D , . y . z  - P,.,) 

- E N  +Op(n- l )  

- EN + Op(n-1), (3.3.31) 

where ei = yi - xip,.,, p,., is defined in (3.3.28) and the approximation for 

~ Z A T ( ~ ~ ~ , , . ,  - P,.,) as the ratio estimator En follows from (2.2.55). Therefore, 
the variance of the approximating distribution is 

V W { f h p , r e g  - Y N  1 F} = p&.zV{jz17r 1 F}py., + V{E27r I F} 

+ 2C{P&.,Z:,, e2n I F}. (3.3.32) 

By the definition of ei as the population residual, C{xi;ei} = 0 for the 
population, and we expect C{jz1,, E2=} to be small for most designs. If the 
first stage is a simple random sample and the stratified estimator (3.3.4) is 
used, E{E2.ir I Z1} = 0 because E{y, 1 nlg} = ygN for all g. 

If C{jzl.irPy.,, EzT I F} is zero, an estimator of the variance of $i2p,reg is 

VT(g2p. reg  1 F} = Vi{~lrr~T;,y . ,  I .T} + P ( ~ 2 7 r  I 3) 

+ QE27r I F}, (3.3.33) 

= b:>,.,V{% I m7r.y.z 

where V1{ZIT I F} is a consistent estimator of the variance for the phase 1 
mean of xi and V ' ( E z T  I F} is a consistent estimator of the unconditional 
variance of E2*. If the phase 1 finite population correction can be ignored and 
the phase 1 sample is a simple random sample, an estimator of V{EaT I F} is 

where &i = yi - x $ ~ ~ , ~ . , .  

Example 3.3.2. The data of Table 3.6 were generated to illustrate some of 
the computations associated with two-phase sampling. The phase 1 sample 
is a sample of 22 elements in two strata. The elements of the phase 1 sample 
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are placed in three groups, also called phase 2 strata, where the groups are 
identified in the table. A simple random sample is selected in each group. 
The phase 2 sampling rate is two-in-five, four-in-nine, and three-in-eight for 
groups I ,  2, and 3, respectively. 

Table 3.6 Data for Two-Phase Sample 

Phase 1 Element Phase 1 Phase 2 Phase 2 
Stratum ID Weight Group Weight y 

1 1 
2 
3 
4 
5 
6 
7 
8 

2 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

300 
300 
300 
300 
300 
300 
300 
300 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 

1 
1 
2 
2 
2 
2 
3 
3 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

750 7.2 

675 8.6 

675 8.0 
800 6.2 

500 5.2 

450 5.5 

450 6.3 

533 5.3 

533 4.9 

Let 

z h g i  = 1 if element i is in group g of stratum h 

= 0 otherwise. 

Then the estimated total number of elements in group g is 

2 

(3.3.35) 
h = l  
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where 
2hg = ni: c x h g i ,  

ZEAhl 

Ah1 is the set of indices for elements in stratum h of the phase 1 sample and 
nhl is the number of sample elements in stratum h of the phase 1 sample. The 
estimated numbers are 

(Fxl, F z 2 ,  Fxs) = (1150,2100,1450). 

The estimated covariance matrix of ( 2 1 . 1 ;  2 2 . 1 , 2 3 . 1 )  = W1(FX1, T z 2 .  F z 3 ) ,  

calculated by the standard stratified formula and ignoring the finite population 
correction is 

(3.3.36) 

1.926 -1.137 -0.789 
-1.137 2.589 1.452 
-0.789 1.452 2.241 

v {?l,l, 3 2 , 1 ,  Z3%l}  

The group means of y are 

( Y 2 n . 1 ,  Y 2 x . 2 :  Y 2 n . 3 )  = (6.400,7.340,5.572), 

where Y 2 x , g  is defined in (3.3.14). Although the sample sizes are small, we use 
estimator (3.3.13) for the mean of y because (3.3.13) is generally preferred in 
practice. The estimator is 

G 

g=l 

To estimate the variance of 92p.s t ,  we first estimate the phase 1 stratum 
variances for y by 

sib = W B 2 h i  W B 2 h i ( Y i  - Y B 2 . h ) 2 :  

( iEBlh ) iEB2h 

where 
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and B 2 h  = A l h  n A 2  is the portion of the phase 2 sample in phase 1 stratum 
h. If the yi in a stratum were i i d  random variables, S& would be an unbiased 

estimator of S$. The estimates are (S2 ? Si2) = (1.102: 0.268). 
y.1 

The estimator of the conditional vanance of yzp,+t as an estimator of the 
phase 1 mean given the phase 1 sample is 

Thus, an estimator of the variance of Y2p,st is 

2 

h = l  

= 0.0348 + 0.0959 = 0.1307. 

The Y2p,st of Example 3.3.1 is not necessarily the best estimator of the mean 
of y because the information in the phase 1 strata is ignored in constructing 

The estimator of Corollary 3.3.1.2 can be extended to cover the situation 
where the population mean is known for some elements of x i .  

Example 3.3.3. We continue the analysis of the two-phase sample of 
Table 3.6. To incorporate the phase 1 stratum information into the estimator, 
we compute the regression estimator where the explanatory variables are 
indicators for phase 1 strata and for phase 2 groups. In our illustration there 
are two strata and we define the variable 

uli = 1 - 0.4615 

= -0.4615 otherwise? 

if element i is in stratum 1 

where 0.4615 is the fraction of the population in stratum 1. The estimated 
fraction of elements in phase 2 group g is the estimated mean of xgi, where 
zgi is the indicator function for group g. Let 

agi = xgi - %g,st: g = 1 , 2  
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be the deviations of the indicator function from its phase 1 estimated mean. 
The regression estimator of the mean of y is computed using the phase 1 
stratum indicator as an additional variable. By coding the regression vari- 
ables with zero population mean or zero estimated population mean, the 
coefficient for 1, the intercept, in the phase 2 weighted regression of y on 
(1, ul i ,  al i ,  a2i) =: zi is the regression estimator of the mean of y. 

The estimated coefficient vector is 

= (ZkW2Z2)-1ZkW2y2 = (6.365,2.075,0.512,1.452)’, 

where 2 2  is the n2 x 4 matrix of phase 2 observations on zi, Wz = diag(wzi), 
and y2 is the vector of observations on yi. Thus, the estimated mean of y, 
denoted by g2p,reg3 is 6.365. Because the phase 1 strata are explanatory 
variables in the regression, the phase 1 mean of ei = yi - zipN, where p, = 
( Z ~ Z N ) - ’ Z ~ y N  is uncorrelated with the phase 1 mean of zgi. Therefore, 
we can use (3.3.33) to estimate the variance of ;ii2p,reg. The variance of 6 _ -  - 92p,reg as an estimator of gN is 

v{bO - UN 1 F} = v{2?‘.%JB I F} 
= VCflO I 3) + P/V{Zreg - EN I w> 

- 
where Zreg - z N  = [O ,O,  - ( Z ~ . J  - Z I . ~ ) ,  -(Z2,i - Z Z , ~ ) ] .  An estimated 
covariance matrix for b is 

where DLe = diag{e%}, & = yi  - z$, and T is the dimension of zi. For 
our illustration. 

2.761 -0.601 -3.162 0.337 
-0.601 10.850 -2.434 -2.104 
-3.162 -2.434 11.932 11.612 i 0.337 -2.104 11.612 20.124 

V{BIF} = 

The estimated covariance matrix of ( Z ~ , J ,  Z2 , l )  is the upper left 2 x 2 matrix 
of (3.3.36) of Example 3.3.2, and (&, fi4)P{(?E1,1, 3 2 , ~ )  1 3 } ( b 3 ,  b d ) ’  = 
0.04271. Thus, 

V{g2p;reg - ;YN I F} = 0.02761 + 0.04271 = 0.07032. 

In this example the phase 1 variance of Xi contributes a sizable fraction to 
the total variance. The estimated variance of the regression estimator of this 
example is much smaller than that of the estimator of Example 3.3.2 because 
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y is correlated with the phase 1 strata even after adjusting for groups. Often, 
groups will be formed so that this partial correlation is small, but if not and 
if there are adequate degrees of freedom, variables for phase 1 strata can 
be included in the estimator. If there is a large number of phase 1 strata, a 
compromise procedure is to include indicators for groups of strata. If phase 
1 strata are included in the regression or if there is no partial correlation 
between phase 1 strata and y, variance estimator (3.3.33), which assumes that .. C{%l,,  ~ 2 , )  = 0,  is appropriate. 

Replication methods for variance estimation for two-phase samples are 
studied in Section 4.4. 

3.3.2 Three-phase samples 

To extend the discussion to three-phase estimation, assume that a phase 3 
sample of size n3 is selected from a phase 2 sample of size 722, which is itself 
a sample of a phase 1 sample of size n1 selected from the finite population. 
Let A l ,  A 2 ,  and A 3  be the sets of indices for the phase 1, 2, and 3 samples, 
respectively. 

Let the vector (1, u) be observed on the phase 1 sample, the vector (1, u, 
x) observed on the phase 2 sample, and the vector (1, u, x, y) observed on the 
phase 3 sample. We construct a phase 3 estimator by proceeding sequentially. 
Given the phase 1 and 2 samples, the regression estimator of the mean of x is 

2 2 p , r e g  = g27r + (hr - f i2 i r ) /32Ti , z .u :  (3.3.37) 

where 

( ~ 2 7 r )  ~ 2 7 r )  = C TG1(ui; xi), 
aEAz 

and / 3 2 R ~ 2 . u  is the estimator 

Then the improved estimator of the mean of x together with the phase 1 mean 
of u can be used in a regression estimator constructed from phase 3. The 



232 USE OF AUXILIARY INFORMATION IN DESIGN 

result is the three-phase regression estimator, 

~ ~ p , r e g  = ~ 3 7 r  + ( ~ l n  - ~ 3 7 r 1  ~ 2 p , r e g  - ~ 3 n ) f i 3 ~ , ~ . ( ~ , ~ ) >  (3.3.38) 

where 

r3,u2,i = (ui - U Q ~ ,  xi - Z 3 n ) ,  and 7r3i is the probability that element i enters 
the phase 3 sample. To obtain an alternative expression for the estimator, let 

gi = xi - Z27r - (Ui - f i 2x ) f i2n , z .u ,  (3.3.39) 

where f i2n,z .u  is as defined in (3.3.37). Then &,p,reg can be written as 
A - 

Y3p,reg = G3n + (Ul7r - -ar.37r)Pgp:y.(u,a), (3.3-40) 

where Sr,3n is the phase 3 mean of &, 

and r3,ua,i = (ui - U s T ,  Bi - Sr,sn). In the form (3.3.40) containing the 
deviation, &, it can be seen that y must be correlated with the part of x that is 
orthogonal to u in order for phase 2 to add information beyond that contained 
in phase 1. 

The variance of the three-phase estimator can be obtained by repeated 
application of conditional expectation arguments. We assume the existence 
of moments for the estimators. We also assume a design such that the bias in 
Y3p,reg is O(~2-l) and the variance of means is O(n- l ) .  Then the variance of 
Ysp,reg for a fixed A1 is the variance of a two-phase sample estimator of yl,; 

V{(Y3p , reg  - Yln) I (A1 , F)> 

= V { ( ~ 2 p , r e g  - 1J1n) I (AI ,  TI} 

+ E{V [Y3p,reg I (A2, AI,  3)1 I (Al ,  T)} 
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where 
E { ~ 3 n , r e g  I ( A 2 ,  Al;  F)} = ~ 2 p , r e g  + o p ( n , ' )  

~ 2 p , r e g  = ~ 2 n  + ( ~ l n  - ~2n),&,y.u 

and is defined by analogy to b2a,r.u of (3.3.37). It follows that 

V ( ( Y 3 p . r e g  - YN) I F} = 

+ E{V [(V2p , reg  - Y1n) I (Al ,  F)] I 3) 

+ E [E{V [ ( ~ 3 p , r e g  - ~ 2 p . r e g )  I ( A 2 ,  AI, F)] I (A l ,  F)} I TI 

V { E  [ ( Y 2 p , r e g  - YN) I (Al ,  F)] 1 F} 

+ op(n;2), (3.3.4 1) 

where 

E { Y 2 p , r e g  I (Al ,  F)} = ~ 1 n .  

The first two terms in the variance expression are often difficult to estimate, 
for reasons given in the discussion of two-phase estimation in Section 3.3.1. 

To obtain a second representation for the variance, we write the Taylor 
approximation to the error in the estimator as 

- 
Y3p , reg  - YN = Y3n - YN + ( U l n  - uN, X 2 p . r e g  - XN)PY.(,,,),N 

+ O p ( n 2 )  

= E3n +  IT - UN, a 2 n ) P y . ( u , a ) , N  + op(nT1), (3.3.42) 
where S ,  = 0, 

ei = Yz - YN - (Ui - UN, xi - X N ) P y . ( U , S ) , N :  

ai = xi - X N  - (Ui - ~ N ) P , . , , N ,  

and PY.(,,,)., and P,.,,, are population regression coefficients. If E3n, 
and SizX are uncorrelated, 

V { ~ 3 p , r e g  - YN 1 F} = V{~37r I F} + P S . u , N V { f i ~ T  I F}PY.u,N 

+ P ; . a , N V { 5 2 7 r  I F')Py.a,N, (3.3.43) 

where ,6L.i,,a),N = (PL.,,,,, ,BL,a,,). It is reasonable to treat the means as 
uncorrelated if stratified sampling is used at each phase, all stratum indicators 
are included in the regression vectors, and the same sampling units are used 
at all phases. 

An important special case of the three-phase estimator occurs when the 
first of the three phases is the entire population. Then i i ln = ti,, V { U 1 ,  I 
F} = 0, and the variance expression is that of a two-phase sample with the 
exception that V{Xl, I F} is replaced with V{Szn  1 F}. 
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3.3.3 Separate samples with common characteristics 

Two-phase estimation procedures can be applied in situations where the sec- 
ond phase is not a subsample of a phase 1 sample. Consider a situation in 
which two samples are selected from the same population for two different 
studies, but some common data are collected on the two samples. Let the ob- 
servations on the common elements for sample 1 be x1 and let the observations 
on the common elements for sample 2 be x 2 .  Assume that we are interested in 
estimating the mean of characteristic y for sample 2. The estimation problem 
can be viewed as an estimated generalized least squares problem. Let the 
estimator of the mean of x for sample 1 be ZT,l, let the estimator of the mean 
of ( x ,  y)  for sample 2 be ( Z T , 2 ,  y , . ~ ) ,  and let (Z,.1> X , J ,  y , , ~ ) '  = u. If we 
have an estimator of the covariance matrix of u, the estimated generalized 
least squares estimator of the mean vector 8 = ( Z N ,  GAT) is 

- 

ereg = (z-IV;;z)-lZ-IV;;u, (3.3.44) 
A 

where ereg  = (%reg 1 Yreg)  

z ' =  (;; y )  
and quu is the estimated covariance matrix of u. The covariance of %,,I 

with X, ,2  depends on the nature of the two samples. For large populations 
and independently drawn samples, a reasonable approximation is to assume 
zero correlation between the two samples. Then the estimator of the vector 
of means is 

(3.3.45) - (V-1 + V - 1  )-l(Q-l --I 1 --I 
Elreg - u u l l  uu22 uullX7r,l + %u22x,;a): 

(3.3.46) 

where VuuiJ is the ij block of Vuu and the variance blocks for Z,,I, Z , , 2 ,  and 
&,2, are identified by 11, 22, and 33, respectively. The error in Yreg as an 
estimator of Y N  can be written 

- 
Yreg = Y T , ~  + (XTeg - ~ 7 r , 2 ) V i ; 2 2 + ~ u 2 3 .  

Yreg - ~ , v  = ~ r , 2  + (%reg - zlv)p + o p ( n - l ) .  

Under the assumption of independent samples, variance estimator (3.3.33) 
is relatively easy to compute because V { E n , 2  I 3) can be computed from 
sample 2 and the estimated variance of Xreg follows from (3.3.43). Thus, an 
estimator of the variance is 
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1 1  

where P = V;:229TuTu23, V{gTeg I 3) = (9i:ll + 9L:22)-1, V(G.2 I 3) 
is an estimator of the variance of the estimated mean of ei computed with E i ,  

3.3.4 Composite estimation 

The generalized least squares procedure of Section 3.3.3 is appropriate in 
the situation where there are two or more samples and a common set of 
characteristics is observed for the samples. When the samples have common 
elements, efficiency gains are possible without observing a common set of 
characteristics. The estimation procedures for samples with common elements 
are most often applied when sampling is carried out at several time periods. 

Consider the relatively simple situation of a single characteristic and simple 
random sampling on two occasions. Let rill be the number of elements 
observed only at time 1, let n12 be the number of elements observed at both 
times 1 and 2, and let 7222 be the number of elements observed only at time 
2. Assuming the three samples to be independent, the covariance matrix of 

v-- = YY (3 * 3.47) 2 
0 ;  

where yt,jk is the time t mean of sample j k  and p is the correlation between 
observations made at times 1 and 2 on the same element. Given V,,, the 
generalizedleast squares estimator of the vector of timemeans , jj2,N)I =: 
8 is 

where 

6 = (z'v-1z)-~z'v~;y, YY 

z I = ( l  
O 0 )  0 0 1 1 '  

Estimators that are a function of parts of samples observed at several points 
in time are often called composite estimators. 

To consider optimizing the design for the simple example, assume that 
the total budget for data collection is C. Sometimes it is cheaper to obtain 
the second determination, but we assume equal costs for the two types of 
observations. To determine an optimal allocation to the three types of samples, 
one must have an objective function. The two time means are two unique 
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parameters, but it is useful to think about the second period mean and the 
change from time 1 to time 2. If the only parameter of interest is the change 
from period 1 to period 2, and p > 0, the optimal strategy is to observe all 
sample elements at both time periods. 

If the period means are also important, the design choice is less clear. Tables 
3.7 and 3.8 contain the variances of the change and of the second period mean, 
respectively, for samples of size 100 at each of two time points. The variances 
are standardized so that the variance of the mean of the sample at a time point 
is 1.00. The impact of correlation on the variance of a difference is clear in 
Table 3.7, with the variance of estimated change decreasing as p increases. 

Table 3.7 
Elements and Correlation 

Variance of One-Period Change as a Function of Common 

1212 

P O  20 40 60 80 100 

0.00 2.000 2.000 2.000 2.000 2.000 2.000 
0.50 2.000 1.667 1.429 1.250 1.111 1.000 
0.70 2.000 1.364 1.034 0.833 0.698 0.600 
0.85 2.000 0.938 0.612 0.454 0.361 0.300 
0.90 2.000 0.714 0.435 0.312 0.244 0.200 

If p > 0, there is some 0 < 7112 < 7111 that gives the minimum variance 
for the estimator of the mean. For p > 0, as 7212 is moved away from 100, 
the variance of the mean goes down and the variance of the change goes up. 
With large correlations the decrease in the variance of the mean is smaller in 
percentage terms but larger in absolute value than the increase in the variance 
of change. Thus, defining an optimum requires specification of the relative 
importance of the two types of estimators. In a survey conducted over a long 
period of time, such as a labor force survey, the number of times a sample 
person is asked to respond is an important determinant for the amount of 
overlap in the survey design. 

3.4 REJECTIVE SAMPLING 

We have discussed several methods of using auxiliary information to define 
and select samples so that the samples have desirable properties. The method 
of rejective sampling, introduced in Section 1.2.6, is a method of removing 
“undesirable” samples from a set with generally good properties. In fact, it 
is possible to design a sample-estimation procedure that rejects such samples 
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Table 3.8 
Correlation 

Variance of Mean as a Function of Common Elements and 

7212 

P O  20 40 60 80 100 

0.00 1.000 1.000 1.000 1.000 1.000 1.000 
0.50 1.000 0.952 0.934 0.938 0.960 1.000 
0.70 1.000 0.886 0.857 0.872 0.920 1.000 
0.85 1.000 0.795 0.766 0.804 0.881 1.000 
0.90 1.000 0.731 0.726 0.777 0.866 1.000 

and is design consistent. The properties of the procedure depend on the 
method of initial selection, the nature of the rejection rule, the estimator, and 
the parameter being estimated. 

A sample selection procedure related closely to the rejective procedure we 
describe is that of Deville and Till6 (2004), called by them balanced sampling. 
The Deville-Till6 sampling procedure uses an algorithm that attempts to select 
samples with selection probabilities close to prescribed selection probabilities 
and with the sample mean of the vector of auxiliary variables close to the 
population mean. 

To study the design properties of a rejective procedure, let the design model 
for the population be 

(3.4.1) 

where zi is the auxiliary variable observed at the design stage. Given a 
simple random sample of size n selected from a finite population of size N ,  
a regression estimator for the mean of y is 

Yreg = y + ( 2 ,  - 4b1, (3.4.2) 

where 

B 1  = C(.i - q2 C(Zi - Z)(yz - y), 
( i E A  ) - ' i € A  

and the conditional variance, conditional on X' = (xi, zb, . . . , xi) and ?fa\,, 
is 



238 USE OF AUXILIARY INFORMATION IN DESIGN 

The variance in (3.4.3) is minimized if ( 2 ,  - 2 ) 2  = 0. Thus, a nearly 
minimum conditional variance can be obtained if we can select a sample with 
Z close to 2,. 

One approach is to select simple random samples rejecting the samples 
until one is obtained with 

Qp,n = ( % p  - ?EN)2VG1 < r2,  (3.4.4) 

where Z p  is used to denote the mean of the simple random sample, y is a 
specified value, and V,, = N - l ( N  - n)n-'S;,, is the variance of 2,. Let 

be the mean of the sample meeting the criterion, where Areg is the set of 
indices for the sample selected. The sample that meets the criterion of (3.4.4) 
is sometimes called the rejective sample, the reference being to the procedure. 
From our introduction to rejective sampling in Section 1.2.6, and by the 
discussion in Section 2.5, we know that the inclusion probabilities for the 
rejective sample are not equal to the original selection probabilities. However, 
it is possible to show that the regression estimator of g N  calculated with the 
rejective sample has the same limiting variance as the regression estimator for 
the simple random sample. We give the argument for a sequence of simple 
random samples from a sequence of finite populations of size N generated 
by model (3.4.1). We assume a constant sampling rate. For such samples, 
Z, - 3,  is nearly normally distributed and Qp,n is approximately distributed 
as a chi-square random variable with 1 degree of freedom. 

With no loss of generality, let 2 ,  = 0 and S; = 1, where S: is the finite 
population variance of z. Then 

E{Z, I F,, i E A} = n-'q5z, (3.4.5) 

and 

1 2  V{Z, I FN,i E A }  = K 2 ( n  - 1)q5[1 - N -  (2 ,  - I)] + 0,(nP2),  (3.4.6) 

where q5 = ( N  - 1)-'(N - n). It follows that 

E{Qp,n I FN, i E A} = 1 - & , z  + op(n-') ,  

where (,,, = n-' - 2N-1 + (N-' - n-lq5)z;. The conditional distribution 
of Qp,n, given i E A, is approximately that of a multiple of a noncentral chi- 
square random variable with noncentrality parameter n-2q52 VG1 zz. Thus, 
(1 - CN,z)-lQp,n is approximately distributed as a chi-square random variable 
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with 1 degree of freedom. For the noncentral chi-square, the remainder in the 
approximation is O ( T L - ~ )  for a noncentrality parameter that is O(n-’). See 
Johnson and Kotz (1970) and Cox and Reid (1987). Therefore, we can write 

G,!,,(y2) = GN{(1 + C N , i ) r 2 >  + .p(.-l) 

= GN(y2) + y2giN(y2)CN,i + oP(n-’), (3.4.7) 

where GN(il(y2) is the conditional distribution of Qp,n given i E A, G N ( y 2 )  
is the chi-square distribution evaluated at y2, and glN(y2) is the chi-square 
density evaluated at y2. 

Approximation (3.4.7) can be used to obtain an approximation for the 
inclusion probability by writing the probability that element i is included in 
the rejective sample as 

Thus, for a simple random sample from a finite population of size N generated 
as a realization of N I ( 0 , l )  random variables, the probability that element i 
is included in the rejective sample is 

(3.4.9) T i p  = N - l n { l  + C I Y N ~ N , i }  + op(n-l) ,  

where ClyN = {G,(y2)}-’g1N(y2)y2. By similar arguments, 

E{Qp.n I FN, ( i ? j )  E A}  = 1 + C N , i  + C N , j  + 24n-lzizj + o P ( n F 1 )  

and the joint selection probability for the rejective sample is 

r i j , ~  = p i j , N { I  + C l y ~ ( < ~ , i  + C N , j  + 24n-lzizj)  + oP(n- l ) ,  (3.4.10) 

where p i j . N  = N-’n(N - I)-’ (n - 1 )  for simple random sampling. 
Now CN,i = oP(n-’) and it follows from (3.4.9) that 

and pi = N- ln  for a simple random sample. By (3.4.9) and (3.4.10), the 
variance of j j re j  is 

N N  

= Op(n- l ) ,  (3.4.1 1) 
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whereK, = 2~N-1(N-1)-1n-2(n-1)C1,, andSi = (N-l)-' CE1(yi- 
Y d 2 .  

Let be p1 of (3.4.2) calculated from the rejective sample, and let 
Yreg,rej be the corresponding regression estimator. By (3.4.9) and (3.4.10) 
and the development of (3.4.1 l), 

P1.rej  - PI = Op(n 4 2 )  

and 

Therefore, the variance of the approximate distribution of j jreg,rej  is the vari- 
ance of Erej.  By substituting the probabilities into the Horvitz-Thompson 
variance expression for E r e j ,  we have 

Y r e g j r e j  = Yrej + ( 2 N  - 3 r e j ) P l  = ~ e j  + op(n-l)* 

N N  

N N  

i=l j=1 

= V(EP 1 Fv) + op(n- l )  (3.4.12) 

because C;"=, ziei = 0 by the properties of regression residuals. Thus, the 
large-sample variance of the regression estimator for the rejective sample is 
the large-sample variance of the regression estimator for the basic procedure. 

If the inclusion probabilities for the rejective sample and the ei were known, 
the Horvitz-Thompson estimator of the variance for Erej  would be 

where 7ri,,\, is the true inclusion probability for the rejective sample and ~ i j , ~  

is the true joint inclusion probability. It can be proven that 
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To consider rejection in a more general setting, assume that a vector of 
auxiliary variables is available at the design stage. Let the probability rule 
used to select initial samples be called the basic procedure. We restrict our 
discussion to Poisson sampling and stratified sampling. Let the sample be 
rejected unless 

Qp = (Xp - jZ,)H,l(fP - Z,)' < y2, (3.4.15) 

where y2 > 0, H, is a positive definite symmetric matrix, xi is a vector of 
auxiliary variables, 

i E A  

wi = N-lp;', pi is the selection probability for the basic procedure, and A 
is the set of indexes in a sample selected by the basic procedure. An obvious 
choice for H, is VIz ,  where V I z  = V{X,} is the positive definite variance 
of Z,, but the matrix H, permits one to impose a tighter restriction on some 
variables than on others. 

Let the estimator of the population mean of y be the regression estimator 

where z i  = (xi, zzi)  is a vector containing design variables, 

/ \ -1 

A r e j  is the set of elements in the rejective sample, & = (1 - p i )  for Poisson 
sampling, +i = (Nh - l)-'(Nh - n h )  for stratified sampling, and h is the 
index for strata. The z can contain variables not used in the design. Also, 
one need not include all 2-variables in the estimator, but all are required for 
a formally correct variance estimator. For example, one might include the 
determinant of X'X in the rejection criterion to guarantee a positive definite 
matrix for regression estimation, but not use the variable in the regression 
estimation of the mean. 

We assume that the basic procedure and sequence of finite populations are 
such that 

v{(z,, gp> 1 F ~ ~ }  = ~ ( n - l )  a s .  (3.4.17) 
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Under mild conditions on the sequence of designs and populations, the esti- 
mator b of (3.4.16) computed for the basic sample will converge to 

J i=l 

For stratified sampling and Poisson sampling, the regression estimator with a 
,8 converging to P, gives nearly the minimum large-sample design variance. 
See Theorem 2.2.3. For the regression estimator to be design consistent under 
the basic design, we assume that there is a vector c such that 

for all i .  
The vector xi of (3.4.15) is a subset of zi for which V& is nonsingular. For 

example, if the basic procedure is stratified sampling, the vector zi contains 
stratum indicator variables and other auxiliary variables. The sample mean 
of the stratum indicator variable, 

$hi = 1 if element i is in stratum h 
= 0 otherwise, 

is the population fraction of elements in stratum h for all samples. Therefore, 
$hi is in zi but not in xi. If this is a fixed-size design, the unit element does 
not appear in xi. However, the unit element can appear in xi for random-size 
designs such as Poisson sampling. 

The large-sample variance of the regression estimator for samples selected 
by the basic procedure is the large-sample variance of E p ,  where ei = yi - 
zip, ,  E p  is defined by analogy to Z p  of (3.4.4), and PA, is defined in (3.4.18). 
Furthermore, the variance of the regression estimator can be estimated with 
the usual variance estimator using the selection probabilities of the basic 
procedure. See Fuller (2009). 

Example 3.4.1. 
sampling. Assume that our design model for the population of Table 3.9 is 

We use some generated data to illustrate the use of rejective 

where xi is proportional to the probabilities pi in the table. 
Assume that we desire a sample of size 20 but we are willing to accept 

a sample as small as 18 or as large as 22. Then Poisson rejective sampling 
becomes an option. We can use a rejection rule based on pi alone or a rule 
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Number of Selection 
Elements Probability 

Table 3.9 Selection Probabilities for a Population of Size 100 

Number of Selection 
Elements Probability 

35 0.057 14 
15 0.13333 
11 0.18182 
9 0.22222 
8 0.25000 

7 0.28571 
5 0.40000 
4 0.50000 
6 0.66667 

based on a larger vector. If we use p i  alone, we could reject any sample where 
n < 18 or n > 22. 

If we define an z-variable to be p i ,  the estimated total for pi is 

iEA  

the realized sample size. The standard deviation for the number in the sample 
is 1.5341. Therefore, rejecting a sample with I n - 20 12 3 is equivalent to 
rejecting a sample with 

(1.5341)-2(n - 20)2 2 0.6544. 

For the estimator (3.4.5) to be consistent, (1 -p i ) - Ip i  must be in the column 
space of the matrix of auxiliary variables. We can reject using only sample 
size and construct an estimator with a z vector that contains (1 -pi)- lpi ,  or we 
can use a rejection rule based on a larger vector. We consider a rejection rule 
based on the vector xi = [l, lopi, (1 -pi)- 'p i] ,  where Z N  = (1: 2,0.34244). 
The covariance matrix of 

for a Poisson sample based on the probabilities of the table is 

) 
4.716 -1.790 -1.011 i -1.011 1.353 1.241 

V Z ~  = V{XHT I F} = -1.790 2.353 1.353 x lo2.  

We transform the vector so that the estimated means are uncorrelated, letting 
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Then the covariance matrix of E H T  is 

Vzz = diag{(13.753,3.183,0.028) x 

=: diag(vzz11, 'uzz22, % f 3 3 ) ,  

If we reject the sample when 

( Z H T  - ZN)DwV;i(ZHT - E N ) '  > 0.6544, 

where D, = diag(l.O, 0.5, 0.5), then In < 20 I 5 2 for all accepted samples 
and there are no very large deviations in 22 or 23 for the samples accepted. 
B. 
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3.6 EXERCISES 

1. (Section 3.2) Assume that a finite population is composed of N clusters 
of elements of size Mi. Assume that the elements of the population 
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were generated by the model 

y z j  = p + a i + u . .  23 , 

where ai N N I ( 0 ,  oi), uij N N I ( 0 ,  o;), and ai is independent of u j k  

for all i, j ,  and k .  

(a) Assume that a sample of n elements is obtained by selecting a re- 
placement sample of size n clusters with probabilities proportional 
to Mi, where Mi is the number of elements in cluster i. When a 
cluster is selected, an element is selected from the Mi by simple 
random sampling. What is the variance of the simple sample mean 
as an estimator of the finite population mean conditional on the 
finite population? What is the expected value of the variance under 
the model? 

(b) Assume that a nonreplacement sample of size 2 clusters is selected 
with probabilities 7ri = 2Mi(E7=1Mj)-1 and joint probability 7rij 

defined by (1.4.3). Assume that an element is selected from the 
cluster as in part (a). What is the variance of the weighted sample 
mean (ratio estimator) as an estimator of the finite population mean 
conditional on the finite population? What is the expected value of 
the design variance under the model? 

2. (Section 3.3) Show that S,” of (3.3.10) is a consistent estimator of S,”. 
Give the conditions on your sequence of populations and estimators. 

3. (Section 3.2) Compare, under model (3.2.1), 

for the sampling schemes of PPS fixed take and equal-probability pro- 
portional take. 

4. (Section 3.2) Let a geographic area be divided into sections each of size 
640 acres. Let each section be divided into four quarter-sections each 
of 160 acres. Call the quarter-sections segments. Using Table 3.10, 

Table 3.10 Population Analysis of Variance 

Source 
~ ~~ 

d.f. E.M.S. 

Sections N - 1  u,“ + 4 4  
Segments/sections 3(N - 1) 4 
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5 ,  

compare the following two sampling schemes. Do not ignore the stage 
2 finite population correction. 

Scheme 1: Select a simple random sample of n segments. 

Scheme 2: Select a simple random sample of n sections and select one 
segment in each. 

(Section 3.2) Let the observations in Table 3.11 be for a two-stage sample 
composed of three stage 1 units and two stage 2 units per stage 1 unit. 
The sample was selected from a population of size 25 with probability 
proportional to size where the total size is 200. 

Table 3.11 Two-Stage Sample 

PSU SSU Size yii "cij 

1 1 10 16 18 
2 12 12 

2 1 40 33 41 
2 39 47 

3 1 90 105 94 
2 115 100 

Let 7r127rT17rT1 = 0.92, ~ 1 3 ~ 1 ~ ~ 3 '  = 0.98, and 7 1 2 3 ~ ; ~ ~ ; ~  = 0.95. 
Estimate the total of y and estimate the variance of your estimator. 
Estimate the ratio of the total of y to the total of n: and estimate the 
variance of your estimator. You may use large-sample approximations. 

6. (Section 3.1) In Example 3.1.2 the simple stratified estimator was used. 
Construct Table 3.3 for the regression estimator with a vector xi con- 
taining the order-of-z variable i of (3.1.32) and dummy variables for 
strata. Assume that the data are generated by model (3.1.32). Use the 
approximation 

V { y r e s }  = n-yn - H - 1)-l ze:> 
i E A  

where E i  is the regression residual. 

the stationary autoregressive process satisfying 
7. (Section 3.1) Let finite populations of 100 elements be realizations of 
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(a) Calculate the unconditional variance of the sample mean for an 

(b) Calculate the unconditional variance of the stratified mean for a 

equal-probability systematic sample of size 10. 

one-per-stratum sample selected from 10 equal-sized strata. 

8. (Section 3.1) In the controlled two-per-stratum design for four strata 
described in Section 3.1.3, two groups have two elements and four 
groups have one element. For equal-sized strata of size m, show that 
the joint probabilities of selection are [2m(m - 1)I-l for elements in 
the same group of a stratum, (2rn2)-' for elements in different groups of 
the same stratum, 5(6m2)-' for elements in the same group of different 
strata, and 7(6m2)-' for elements in different groups of different strata. 

9. (Section 3.3) Assume that we have a stratified phase 1 sample that is 
restratified for phase 2 sample selection. Let the two-phase estima- 
tor be the regression estimator, where the phase 2 regression contains 
indicators for both phase 1 and 2 strata. Let 

H 

h=l 

and 

where 

i E A l h n A z  

is an estimator of the phase 1 variance for stratum h,  nlh is the number 
of elements in phase 1 stratum h, Alh is the set of indexes of elements 
in phase 1 stratum h, & = yi - xiP2, and 

.. 

\ -1 

Ignoring the phase 1 finite population correction, show that 
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10. (Section 3.1) In Theorem 3.1.1, ei N ind(0, ?iia2). Isaki and Fuller 
(1982) made the weaker assumptions 

E{ei}  = 0 ,  
. .  
2'3 

2 E{e ie j }  = YiiO > 

11. 

where - ( N  - 1)-l < p < 1. Let T $ ~  be an element of xi. Show that 
the best model unbiased linear predictor of gN conditional on X is 

g p r e d  = f N g n  -k (1 - f~)T~-n@i 

where f N  = N- ln  and 

@ = (X/D;~X)- IX~D;~Y.  

If ~ ~ y ~ i  and 7k5 are elements of xi, show that the predictor can be written 
as 

Show that the result (3.1.13) of Theorem 3.1.1 holds under the weaker 
conditions. 

(Section 3.1) Let a very large finite population, 3, be a realization of 
(xi, yi) random vectors, where (xi, yi) N N I ( 0 ,  X )  and V{y I x} = 
a2. Let a simple random sample of size n be selected from 3. The 
unconditional variance of the regression estimator of gN constructed 
with known ZN is given in (2.2.16). Assume now that the population 
is ordered on IC and formed into H equal-sized strata. Let a stratified 
sample be selected, where n = mH,m 2 2. What is the approxi- 
mate unconditional variance of the regression estimator for the mean 
of y, where the regression is constructed with indicator variables for 
the strata? To develop the approximation, assume that 2,t is normally 
distributed and that Z,t is independent of C;==, xzl (xhi - Z h ) 2 .  You 
may also assume that 

A 

g p r e d  = ~ N P .  

where x: is the chi-square distribution with d degrees of freedom. What 
is the approximate unconditional variance of the regression estimator of 
the mean of y that ignores the strata? To develop the approximation, 
you may assume that Z,t is normally distributed. Describe any other 
approximations that you use. 
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12. (Section 3.1) We used a two-per-stratum design in Example 3.1.1. On 
reading the example, an investigator argued that one should take three 
or more observations per stratum in case there is nonresponse. To assess 
this argument, assume that we wish to select a sample of size 4 from a 
very large population. Consider two options: 

(i) Select a simple random sample of size 4. If there is nonresponse, 
the mean of the respondents is taken as the estimator. 

(ii) Select an equal-probability stratified sample with two per stratum. 
If there is nonresponse, collapse the strata and take the mean of the 
respondents as the estimator. 

Assume that the variance of the two-per-stratum sample is 4.0 and 
the variance of the simple random sample is 5.0. Assume that the 
probability of nonresponse is 0.15, that the finite population correction 
can be ignored, and that response is independent of the y-values. 

(a) Explain why, under the independence assumption, both procedures 
are unbiased for the population mean. 

(b) Calculate the variance for each of the two procedures for samples 
with 0, 1, or 2 nonrespondents. Let jj be the simple mean of the 
respondents for all cases, 

(c) Let n be the number of respondents, and let 

for the mean of the simple random sample and for any sample with 
a nonrespondent, where 

n 

i=l 

Let 

for a complete stratified sample, where 

2 2  

h=l  j=1 

What is E{V(y ) )  for each procedure given that n = 4,3, and 2? 

with n = 3.  
(d) Construct an unbiased estimator of V (g) for the stratified procedure 
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CHAPTER 4 

R E P L I CAT I0  N VAR I AN C E 
EST I MAT I0  N 

4.1 INTRODUCTION 

In our discussion of estimation, we have presented variance estimation formu- 
las for a number of estimators. Essentially all of these formulas are quadratic 
functions of the observations and most can be expressed as a weighted sum of 
squares and products of the original observations. Some expressions that are 
relatively simple require a great deal of computation for a large-scale survey. 
For example, an estimator of the variance of the regression estimator for a 
simple random sample can be written 

n 

V{&-es} = [n(n - 1)I-I C [ y i  - fj - (xi - 2)812. (4.1.1) 
i= l  

To compute this estimator for a 10 x 10 table requires defining 100 y-variables, 

yci = yi if i is in cell C 
= 0 otherwise, 
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computing the regression coefficient for each y-variable, and computing the 
estimator (4.1.1) using the deviations for the respective y-variable. Because 
of the computations required for this and similar variance estimators, other 
methods have been developed for variance calculations. 

4.2 JACKKNIFE VARIANCE ESTIMATION 

4.2.1 Introduction 

We call a sample created from the original sample by deleting some elements 
or (and) changing the weight of some elements, a replicate sample. The use 
of a set of such replicate samples to estimate variances is now established 
practice. Quenouille (1949) noted that the average of samples with one 
unit deleted could be used to reduce the bias in a nonlinear estimator, and 
Tukey (1958) suggested that deleted samples could also be used for variance 
estimation. 

Let the mean of n - 1 units remaining after unit lc is deleted from a simple 
random sample be denoted by 2(')), where 

Note that the mean of the n samples of size n - 1 is the original mean, 
n 

2 = 12-1 c #) .  

k = l  

The difference between the mean of a simple random sample of size n with 
xk deleted and the mean of the total sample is 

d k - x  - - ( k )  - 2 = n-l(z(% - z k )  (4.2.1) 

= -(n - l)-l(zk - 2 ) .  (4.2.2) 

If Xk, k = 1, 2, . . . , n, is a simple random sample from an infinite 
population with variance g2, then by (4.2.1), 

~ { d ; )  = n-2 [(n - 1 ) - l +  11 n2 = [n(n - I)]-' n2, 

because is independent of xk. Also, by (4.2.2), 
n n 

k = l  i= l  

= (n- 1)-V, (4.2.3) 
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where 

n 

s2 = (n - 1)-l C(Xj - q2. 
j=1 

Therefore, for a simple random sample selected from an infinite population, 
the jackknife estimator of the variance, 

n 

?J{2} = ( n -  l)n-'>:d; = ? { 2 } ,  (4.2.4) 
k=l  

is the unbiased estimator of the variance of the mean. If the finite population 
correction cannot be ignored, the expression on the right of the equality in 
(4.2.4) is multiplied by (1 - N- ln ) .  We shall see that the jackknife variance 
estimator has real advantages for some complex estimators and some complex 
designs. 

Alternative replicates can be constructed by reducing the weight of an ob- 
servation without setting it equal to zero. Such replicates are preferred for 
samples with rare items and complex estimators and can simplify the compu- 
tational form for stratified samples. As an example, consider a weighted mean 
in which unit k is given a weight of $ and the remaining n - 1 observations are 
given equal weight so that the sum of the weights is equal to 1. The weighted 
mean is 

$xk -t (n - zp' = 

and the corresponding deviation is 

- ( k )  - z = 
d @ k  = x@ 

In this case, 

If zb = n-l - [nP3(n - l)] 1'2, then 

(4.2.7) 

n 

(4.2.8) 
k=l 
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where V ( 2 )  is the unbiased variance estimator defined in (4.2.4). If ?C, = 

n-’ - [n-3(n - 1) ( 1  - fN)]1’2, then 
n 

E d &  = V { Z  - 2, }  = (1 - f N ) V { 2 ) ,  (4.2.9) 
k = l  

where f N  = N-ln. 
One can also create replicates by deleting a random group of elements from 

the sample. Let 2b”) be the mean of n - b elements obtained by randomly 
deleting b elements from a simple random sample of size n. Then 

= (n  - b)-ln-’ba2. (4.2.10) 

where Bb is the set of elements deleted. Thus, if a simple random sample 
of size rnb is split at random into m groups of size b and if m replicates are 
created by deleting each group in turn, 

m 

VJG {z} = (rn - 1)rn-l C(a, ( k )  - % ) 2  (4.2.11) 

is an unbiased estimator of V ( 2 ) .  Of course, this estimator has only rn - 1 
degrees of freedom. 

If one is willing to accept an estimator with fewer degrees of freedom, one 
can choose a random subset of the replicates of any of the types considered 
and modify the multiplier accordingly. 

The jackknife procedure can often be used to simplify the computations 
for more complicated functions of the data. The jackknife is appropriate for 
differentiable functions of sample moments. We state and prove the theorem 
for simple random samples and scalars, but the result extends to other designs 
and to vector-valued functions of vectors. See also Theorem 1.3.6, Exercise 
8, and Exercise 10. 

Theorem 4.2.1. Let {FN} = {yl,  y2 , .  . . , y , )  be a sequence of finite 
populations, where the yz are i i d ( p p .  gi) random variables with finite 4 + 
7. Q > 0, moments. Let (91. 92, . . . , yn) be a simple random sample of 
size n selected from the Nth population where n + 00 as N -+ 00. Let g(y) 
be a continuous function of the sample mean with continuous first and second 
derivatives at by. Then 

k=l 

n 

k7l C [ g ( y ‘ ” )  - g(y)I2 = [g’(y)] V {Y)  + 0,(n-2) (4.2.12) 
k = l  
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= [g’(pY)]’ V {v} + Op(n-1,5),  (4.2.13) 

where kn = n-’(n- l), V { y }  = nP1s2, s2 is defined in (4.2.3), g’(py) is the 
derivative of g( . )  evaluated at py, and jj(’”) is the jackknife replicate created 
by deleting element k .  

Proof. By a Taylor expansion, 

n n 

where y i  is between j j ( k )  and ?j and g ’ (g i )  is the derivative of g( . )  evaluated 
at g i .  Given 1 > 6 > 0, there is an no such that for n > no, the probability 
is greater than 1 - 6 that p and p ( k ) ,  k = 1, 2, . . . , n, are all in a compact 
set D containing py as an interior point. 

For and g ( k )  in D,  

I [s’(Gi)I2 - [g‘(v)12i = pg’””(v;*)(~i - Y > /  < K1 1 %  - YI 

for some K1 > 0, where gi* is between jji and v, because the second 
derivative is continuous on D. Note that p i  - = OP(n-’). It follows that 
for j j  and all j j ( k )  in D, 

k=l k=l  

= [g’()I2 v {y} + 0,(n-2). 

See Fuller (1996, p. 226). 
Also, for y in D, 

for some K2 > 0. Given that V {v} - V {y} = Op(n-1,5), result (4.2.13) is 
established. 
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4.2.2 Stratified samples 

The basic ideas of element deletion can be used to construct jackknife repli- 
cates for more complicated designs. For stratified sampling, replicates can be 
constructed by deleting a unit from each stratum in turn and applying the size 
correction appropriate for the stratum. 

Example 4.2.1. Table 4.1 gives a set of simple jackknife weights for 
estimated totals for a small stratified sample. The sampling rate is one- 
twelfth in stratum 1 and one-twentieth in stratum 2. Thus, if the weights of 
Table 4.1 are used to construct five replicates, 

3 

k=l 

k=4 

is algebraically equivalent to the usual stratified variance estimator. The 
multipliers are N i l  (Nh - nh) ni l  (nh - l),  where h is the stratum index. 
Observe that the deviations for replicates 4 and 5 ,  the replicates for the 
stratum with two observations, give the same square. Therefore, only one of 
the replicates need be used, and the appropriate multiplier becomes the finite 
population correction of (40)-l (38). 

Table 4.1 Replication Weights for a Stratified Sample 

Original Replicate 
Stratum Obs. Weight 1 2 3 4 5 

0 18 18 12 12 
0 18 12 12 2 12 18 

3 12 18 18 0 12 12 
2 1 20 20 20 20 0 40 

2 20 20 20 20 40 0 

1 1 12 

In Table 4.2 the zero weight for a “deleted” element in the first stratum is 
replaced with 

and the zero weight in the second stratum is replaced with 

q2 = 20 [I - {19(40)-~}~’~]  . 
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See equation (4.2.9). With the weights of Table 4.2, 

5 

where the k index is for the replicates of Table 4.2. 
The replicates of Table 4.2 were constructed to reproduce the standard 

estimator of variance for an estimated total. It is possible to construct a 
smaller number of replicates with the same expected value but fewer degrees 
of freedom. For example, the linear combinations in stratum 2 of replicates 4 
and 5 could be added to the linear combinations of replicates 1 and 2. Then, 
for example, 

Table 4.2 Alternative Replication Weights for a Stratified Sample 

Original Replicate 
Stratum Obs. Weight 1 2 3 4 5 

1 1 12 2.6192 16.6904 16.6904 12.0000 12.0000 
2 12 16.6904 2.6192 16.6904 12.0000 12.0000 
3 12 16.6904 16.6904 2.6192 12.0000 12.0000 

2 1 20 20.0000 20.0000 20.0000 6.2160 33.7840 
2 20 20.0000 20.0000 20.0000 33.7840 6.2160 

The two new replicates and replicate 3 provide an unbiased estimator of 
the variance of the total. This type of procedure is appropriate when one has a 
large number of strata and is willing to accept an estimator with fewer degrees 
of freedom in order to reduce the number of computations. B B  

If the total sample is large and there are a large number of primary sampling 
units in each stratum, one can create a relatively small set of replicates by 
deleting one primary sampling unit (or a small number) from each stratum. 
The procedure is called delete-a-group jackknife. We outline one of the 
possible ways of defining replicates. See Kott (2001) and Lu, Brick, and Sitter 
(2006). Assume that the stratum with the largest number of observations has 
nL primary sampling units and that L is the number of replicates desired. First, 
the elements in each stratum are arranged in random order and numbered. If 
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nh < L,  the sampling units are assigned multiple numbers until L is reached. 
The elements are rerandomized for each assignment. For example, if L = 8 
and nh = 3, numbers 1, 5, and 8 might be assigned to unit 1, numbers 2, 6, 
and 7 assigned to unit 2, and numbers 3 and 4 assigned to unit 3. Replicate 
k is created by reducing the weight of the element in each stratum that has 
been assigned number k .  Let BI, be the set of numbers assigned number k 
for replication purposes, and let whi = Whn;' be the original weight for 
element i in stratum h for the stratified mean. Then 

where 

H 

and '$h is the smallest root of 

See Exercise 9. If the sample is a cluster sample or a two-stage sample, 
primary sampling units are deleted to create the jackknife replicates. 

In many cases the jackknife variance estimator gives a larger estimated 
variance for a nonlinear function of means than the traditional Taylor variance 
estimator. The reason for this can be illustrated with the ratio estimator. Let 

and assume a simple random sample. The jackknife deviate is 

The jackknife variance estimator based on (4.2.17) is 
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The traditional Taylor estimator of the variance of k is 

VT{k} = (n - l)-’n-’ C Z - 2 ( y i  -  AX^)^. (4.2.19) 
ZEA 

Assume that zi > 0 for all i. Because (dk))-2 is a convex function of 2,  
E { (dk) ) -2}  2 E {3-2}. In many of the data configurations in which the 
ratio is computed, 1 Yk - R x ~  1 is positively correlated with Xk and hence dk)  
is negatively correlated with 1 y k  - Rzk 1 .  In such situations the expected 
value of (2(k))-2(yk - R x ~ ) ~  exceeds the expected value of 2-2(y,+ - R x ~ ) ~ ,  
and the jackknife variance estimator can be considerably larger than the Taylor 
variance estimator. 

4.2.3 Quantiles 

The simple jackknife variance estimator is appropriate for differentiable func- 
tions of sample means but is not appropriate for nonsmooth functions such 
as sample quantiles. One approach to quantiles is to delete relatively large 
numbers of units at a time. See Shao (1989a), Shao and Tu (1995), and Kott 
(2001, 2006a). A second approach is to define functions for the replicates 
that give proper estimated variances. 

For one implementation of the second approach, we use the Bahadur repre- 
sentation introduced in Section 1.3.5 and employ a local approximation to the 
cumulative distribution function to define replicates so that no computation 
outside jackknife replication is required. Let ( b  be the quantile of interest, let 
& be the full-sample estimator of <b, and let i(b) be the largest integer j such 
that qj) 5 &, where the y(j) are the order statistics of the full sample. Let 
i(s) and i ( t )  be the largest integers less than or equal to 

i(s) = maz{l, i(b) - 2 [ b ( l  - b)n]1’2] 

and 
i ( t )  = min{n, i(b) + 2 [ b ( l  - b)n]’”}, 

respectively. See Exercise 12. For replicate k ,  let the estimated quantile be 

i b  ( k )  - - i b  + ?[b - W Y ( Z ( b ) ) ) I ,  (4.2.20) 

where 

? = I&)) 1 - P(Y(i(S)) > l r l  ( Y ( i ( t ) )  - Y(i(s)) 1. 
Calculation of &, i(b), i(s), and -j can be part of the calculation for each 
replicate if necessary to avoid external computations. The jackknife variance 
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estimator is then 

(4.2.21) 
k=l 

where 
by the design. The jackknife deviate is 

is the average of the $ k )  for the L replicates and Ck is determined 

and 

We used a particular smoothed estimator of the quantile in (4.2.20), but 
there are alternative smoothed estimators for which the jackknife remains 
appropriate. See Sheather (2004) and references cited there. 

VJ.,,t&> = ?2V{fi(Y(z(b))1}. 

4.3 BALANCED HALF-SAMPLES 

In Section 4.2 we created replicates for a stratified sample by deleting indi- 
vidual primary sampling units in each stratum and applying the appropriate 
multiplier to the squared deviation. A special replication technique for two- 
per-stratum designs was developed at the US. Census Bureau using results 
of McCarthy (1969). Let a sample be composed of two units in each of H 
strata. Then the stratified estimator of the mean is 

H 

kst = C W h h  
h=l 

where IVh = N-'Nh, jjh = 0.5(yhl +yh2).  If the finite population correction 
can be ignored, the estimated variance is 

H 

h = l  

H 

h = l  

See Section 1.2.3. 

each stratum, and define the half-sample estimator of the mean by 
Consider a half-sample created by selecting at random one element from 

H 

h=l  
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where ~ h ( ~ )  is the unit selected in stratum h. For an alternative representation 

of the half-sample, let d g )  = 1 if element hj is selected for the sample and 

6c) = - 1 otherwise. Then the half-sample estimator is 

H 2 

Y s t ( k )  = 0 . 5 - p %  c(Jg) + 1 ) Y h j .  
h = l  j=1 

It follows that 

H 

h=l 

and the squared difference is unbiased for V{yst I F}. Of course, the use of 
one square gives a very inefficient estimator of the variance. One can improve 
efficiency by using more half-samples. As with the jackknife, it is possible to 
define a set of half-samples such that the average of the squared differences 
reproduces the usual variance estimator. See Wolter (2007, Chapter 3). 

4.4 TWO-PHASE SAMPLES 

Two-phase sampling was introduced in Section 3.3. The variance estimator 
given in (3.3.28) can be very difficult to compute for complex first-phase 
samples. We outline replication procedures that are often easier to implement. 

Assume a two-phase sample in which the second-phase sampling rates and 
sampling procedure are defined prior to selection of the first-phase sample. 
An example is a population divided into G mutually exclusive and exhaustive 
groups with a second-phase sampling rate specified for each group. It may 
be, and usually is, the case that the first-phase sample is selected to identify 
membership in the groups. Assume that there is a replicate variance estimator 
that gives a consistent estimator of the full-sample first-phase direct-expansion 
estimator of the total. We write the replication estimator for the covariance 
matrix of T I z  as 

L 

k = l  

where L is the number of replicates, Ti",' is the estimated total for the kth 
replicate, Tzl is the full-sample estimator of the total computed from the 
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first-phase sample, 

(4.4.2) 
iEAi iEAi 

w s l  = 7r1i is the probability that element i is in the first-phase sample, A1 is 
the set of indices in the first-phase sample, and C k  is a factor associated with 
replicate k .  We assume that the lcth replicate can be written as 

iEAi 

where w$f)  is the weight of element i for the kth replicate. 
We define the two-phase regression estimator of the mean of y by 

~ 2 p , r e g  = ~ 2 7 7  + - ~ 2 7 7 ) , 4 :  (4.4.3) 

where 

,& = ML; C ~ 2 i ( x i  - % 2 x ) ’ ( ~ t  - g2. i r ) ;  

iEA2 

/ \ -1 

/ \ -1 

(Mzz, M z y )  = c WZi(X2  - % x ) /  [ ( X i  - %), (Yi - g 2 ? r ) ]  

i E A 2  

wG1 = 7 ~ 2 i  = 7rli7r2illi is the second-phase selection probability for element 
i, and 7rZilli is the conditional probability of selecting element i for the phase 
2 sample given that i is in the phase 1 sample. The estimator can be written 
as 

where 

1 
w ~ r e g , i  = N -  [ ~ 2 i  + (XI, - %2n)M;:(xi - Z2r)’w~iI . 

Consider a replication procedure in which the kth replicate is created on 
the basis of the phase 1 sampling units. For example, if a jackknife replicate 
for the phase 1 sample is created by deleting a phase 1 unit from a sample of 
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n units, the kth replicate of the phase 2 sample is composed of all phase 2 
elements in the remaining n - 1 phase 1 units. Let the kth replicate estimator 
of the mean of y be 

where is the estimator for the kth phase 1 replicate, 

%A2 

and wit)  = ~ , ~ ~ ~ w i : '  is the phase 2 weight for element i in replicate k .  If 
the replicate estimator is written in the form 

(4.4.5) 

the regression weights are 

It is shown in Theorem 4.4.1 that the variance estimator 

L 

k=l  

has a negative bias of order N- l .  The finite population of the theorem is 
assumed to be a sample from a superpopulation and the conclusions are with 
respect to all such finite populations. Replication variance estimators such as 
balanced half-samples or the ordinary jackknife satisfy the assumptions for 
the variance estimator. See Kim, Navarro, and Fuller (2006). 

Theorem 4.4.1. Assume a sequence of finite populations in which each 
population is composed of G groups, G 2 1, with proportion Wg in the gth 

first G - 1 elements of xZN are indicator variables for membership in G - 1 of 
group. Let F,v = { ( X l N ,  Y1N).  ( X 2 N .  Y 2 N ) ,  . . ' > ( X , V Y ,  YN.-& where the 
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the groups. Assume that the finite population in the gth group is a sample from 
an infinite population with 4 + 6,  S > 0,  moments. Let two-phase samples 
be selected, where the phase 1 selection probabilities are 7 r 1 % , ~ .  Let a set of 
fixed probabilities 7r22112 = constant within a group, be used to select a 
phase 2 stratified random sample or to select a phase 2 Poisson sample. Let 

( T 1 Z 7  = w l z , N ( x 2 N ,  Y Z N ) 7  (4.4.7) 
zEAi 

where = ~ 1 2 : ~ .  Assume that: 

(i) The phase 1 selection probabilities satisfy 

K L  < N n Y i 7 r 1 % , N  < KU (4.4.8) 

for all N ,  where KL and KU are fixed positive constants. 

(ii) The variance of Fly for a complete phase 1 sample satisfies 

V { ? I y  1 FN} I K M ~ { ? Y , S R S  1 F N } 7  (4.4.9) 

for a fixed K M ,  for any y with fourth moments, where V{5?y,SRS I FN} 
is the variance of the Horvitz-Thompson estimator of the total for a 
simple random sample of size nlN. 

symmetric quadratic function, and 
(iii) The variance of a complete phase 1 linear estimator of the mean is a 

N N  

~ N v  C X & Y ~  1 3 , v  = w t j . N ~ t N ~ j N  (4.4.10) { zEAi 2 = 1  j=l 

for coefficients w , ~ , ~ ,  where 

N 

(4.4.11) 
i=l 

(iv) The phase 1 replicate variance estimator of ply, denoted by V1{?ly}, 

E{[ (v{?~y  1 F~})'-'Vl{f'ly} - 112 I FN} = ~ ( l )  (4.4.12) 

satisfies 

for any y with bounded fourth moments. 

(v) The replicates for the phase 1 estimator, Fly, satisfy 

E{[C~N(~ ' ! : )  - F1y)2]2 1 FN} < KTL,2[V{?1y I FN}12 (4.4.13) 
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uniformly in N for any variable with fourth moments, where K, is a 
fixed constant and L ,  is the number of replicates. 

Then the variance estimator (4.4.6) with replicates (4.4.4) satisfies 

p { j i 2 p , r e g )  = v { g 2 p , r e g  I ~ . v }  
N 

- N P 2  C ~;;‘(l - ~ ; 2 i ) & ,  + O ~ ( T L ; ~ ) ,  (4.4.14) 
i=l 

where ei, = yi, - Y N  - (xi, - X N ) p N ,  nlN is the size of the phase 1 sample 
and 

/ N  

Proof. To simplify the notation, we sometimes omit the N subscript. Let 

ai = 1 if element i is selected for the phase 2 sample 

= 0 otherwise. (4.4.15) 

Under the assumption that the phase 2 sampling rates, 7r2 i l l i  = ~ 2 % ,  are fixed, 
we can conceptualize the sample selection process as composed of two steps. 
First, an a is generated for every element in the population, and then a phase 
1 sample is selected from the population of (ai, aiyi, xi) vectors. See Fay 
(1991) and Rao and Shao (1992). Let zi = aiyi and ui = aixi. Then the 
regression estimator can be expressed as a function of phase 1 estimators, 

Y2p , reg  = g(21,; u~.rr, W I T ,  M1.2121, M 1 , u z )  
A 

= 21.T + (Ul, - X17r)P, (4.4.16) 

where 

Mi,Uu = M,, andMl,,, = MZu. By assumptions (4.4.12) and(4.4.13), and 
by the extension of Theorem 4.2.1 to complex designs, the phase 1 replicate 
variance estimator is consistent for V { j j 2 p , r e g  I (aN, FN)} ,  where aN is the 
N-dimensional vector (a1 , a 2 ,  . . . , a N ) .  We write the variance of g2p , reg  in 
terms of conditional expectations, 

V { Y 2 p , r e g  1 F N )  = E{V [ ~ 2 p , r e g  I (aNy, F,)] I F.v} 

+ V { E  [Yap.reg 1 (~Iv, FN)] 1 3.~). (4.4.17) 
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To show that the replicate variance estimator is consistent for the first term of 
(4.4.17), we must show that the estimator of the conditional expectation is a 
consistent estimator of the unconditional expectation. Because 

Y2p , reg  = Yz7r + (%7r - X 2 7 r ) P N  + 0,(ni1), (4.4.18) 

the variance of the approximate distribution of jj2p,reg is the variance of 
EzT + %lTTPN. Because XI, does not depend on aN, we consider only EzzT and 
further simplify by considering E2,xT ,  where 

By (4.4. lo), 

N N  

where di = tcjr2i'ai - 1. We assume that aN is a Poisson sample so that the 
aj are independent Bernoulli random variables, expand ( d i  + l ) (dj  + l), and 
consider the resulting four terms of (4.4.19). Now 

by the conditioning. Also, 

N N  N 

= 0,(N-l12), (4.4.20) 

where V { d i }  = ?ii = tc;' (1 - t c z i ) ,  because the double sum in e 9 e j  is 
an 0, (1) covariance by (4.4.9) and (4.4.10), and C f = , w i k e k  = Op(N-1 /2 )  
by the assumptions on the sequence of finite populations. To evaluate the 
variance of the remaining term of (4.4.19), we use 

COW ( d i d j , d k d ,  I FN) = &?ij 
= o  otherwise. (4.4.21) 

if ij = km or ij = mk 
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Then 

i=l j = 1  

= 0, (q, (4.4.22) 

by (4.4.21) and assumption (4.4.11). Therefore, V { E 2 , H T  I ( a N ,  F ) }  is con- 
sistent for E{V [E2:HT I ( a N ,  F)] 1 F} and the replicate variance estimator 
is consistent for the first term of (4.4.17). 

To evaluate the second term on the right side of equality (4.4.17), we have 

and for Poisson sampling, 

N N 

Combining the consistency of the replicate variance estimator for the first 
term of (4.4.17) with (4.4.23), we have conclusion (4.4.14) for phase 2 Pois- 
son sampling. By the arguments used in the proof of Theorem 1.3.3, the 
conclusion also holds for stratified samples. 

If the phase 1 sampling rate is small, the second term of (4.4.14) is small 
relative to the first term, and estimator (4.4.6) can be used for the two-phase 
regression estimator. If the second term of (4.4.14) is judged to be important, 
the term can be estimated directly or with replicates. 

In Theorem 4.4.1 it is assumed that the error in ,& is small. The delete-one 
jackknife variance estimator will have a positive bias if the phase 2 samples 
within strata are small. To investigate the nature of the small-sample bias, 
consider the simple stratified estimator of (3.3.13), which we write as 

G 

g=1 
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where E2, is the mean for phase 2 stratum 9, and Wg is the fraction of the 
population in phase 2 stratum g. Then the replicate estimator of the mean is 

g=1 

where E2, = unless element k is in group g. By (4.2.3), 

L G 

- l)-'Si, (4.4.24) 

where S," is the variance for phase 2 stratum g and ng is the number of 
elements in phase 2 stratum g. Thus, the estimator (4.4.6) is biased to the 
degree that the C k  differ from the n,&k) ( n 2 , g ( k )  - l), where g ( k )  is the phase 
2 stratum containing element k .  

For some designs and replication procedures, it is possible to modify the 
weights to reduce the bias. To improve the performance of the variance 
estimator, we recall expression (4.4.16), which identifies two components 
that contribute to the variance. It is possible to construct a replicate for each 
component. The squared deviate associated with the replicate 

$1  = Y27r - + (.i:) - .2,,d (4.4.25) 

will estimate the variance of (%I, - %,)p, and the squared deviate associated 
with the replicate 

(4.4.26) 

will estimate the variance of jj2.n - (XzT - XN),B2n. In both cases the replicates 
are formed on the basis of the phase 1 units. The procedure associated with 
(4.2.6) can be used to reduce the bias in the estimator of the phase 2 variance. 
Let the replication method be the delete-one jackknife and let element k in 
group g ( k ) ,  where g ( k )  is the phase 2 stratum containing element k ,  be the 
"deleted" element. Let 

= - ( k )  - ( k )  - ( k )  
Y2.n + (%r - x2.n )P 

.. 

?47Wlk nl ,g ( k )  Yk 
yF) = 
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where Qg is the solution of the quadratic 

1) -1 -1 
‘k  n 2 g .  (4.4.27) 

If unit k is a phase 2 unit, the replicate deviate is ;Vy’ + gp’ - 2 g 2 p , r e g .  

If unit k is not a phase 2 unit, the replicate deviate is ;V1 - ;V2p,reg. One 
can use the adjusted weights in a stratum for the stratified estimator (3.3.13) 
because adjusting the phase 2 weights will not alter the replicate estimate 
of the fraction in the stratum. If the x vector contains variables other than 
the group indicators, the replicate mean of x must be calculated with the 
unmodified weights. 

Example 4.4.1. We use a small artificial data set to illustrate the construction 
of jackknife replicates for two-phase samples and to demonstrate the nature of 
possible biases in the replication variance estimator. The eight observations 
in Table 4.3 are assumed to be a simple random sample. We assume that 
N is large and ignore the finite population correction. On the basis of the 
classification defined by IC, a phase 2 stratified sample is selected with a 
sampling rate of one-half in each stratum. The original weights for the full- 
sample mean are 1/8, and the weights for the phase 1 jackknife replicates are 
zero for the deleted unit and 1/7 for the remaining units. The eight estimates 
of 3,v for the eight phase 1 replicates are given in the second column of Table 
4.4. Observe that 

( 7 / 8 )  C(fE(k) - 3)2 = (7/8)(0.040816) = 0.03571, 
kEA 

which equals the usual variance estimator of (n - 1)-’2(1 - 3).  

Table 4.3 Two-Phase Sample 

Phase 1 Replicate Weight 
Ident. x y 1 2 3 4 5 6 7 8 

1 1 0 1/7 1/7 1/7 1/7 1/7 1/7 1/7 
1 4 1/7 0 1/7 1/7 1/7 1/7 1/7 1/7 
1 - 1/7 1/7 0 1/7 1/7 1/7 1/7 1/7 
1 - 1/7 1/7 1/7 0 1/7 1/7 1/7 1/7 
0 5 1/7 1/7 1/7 1/7 0 1/7 1/7 1/7 
0 7 1/7 1/7 1/7 1/7 1/7 0 1/7 1/7 
0 - 1/7 1/7 1/7 1/7 1/7 1/7 0 1/7 
0 - 1/7 1/7 1/7 1/7 1/7 1/7 1/7 0 
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Table 4.4 Statistics for Jackknife Replicates 

Replicate 

1 317 
2 317 
3 317 
4 317 
5 417 
6 417 
7 417 
8 417 

4.0 6 
1 .o 6 
2.5 6 
2.5 6 
2.5 7 
2.5 5 
2.5 6 
2.5 6 

-2.0 
-5.0 
-3.5 
-3.5 
-4.5 
-2.5 
-3.5 
-3.5 

5.1429 
3.8571 
4.5000 
4.5000 
4.4286 
3.5714 
4.0000 
4.0000 

Adjusted 

4.9861 
4.0141 
4.5000 
4.5000 
4.3242 
3.6762 
4.0000 
4.0000 

The replicate weights in Table 4.5 are the replication weights defined by 
The (4.4.5) and give the Y2p,reg (k) of the penultimate column of Table 4.4. 

estimated phase 2 variance (4.4.6) is 

(4.4.28) 

Table 4.5 Phase 2 Replicate Weights 

Replicate 
Ident. 1 2 3 4 5 6 7 8 

1 0 0.4286 0.2143 0.2143 0.2857 0.2857 0.2857 0.2857 
2 0.4286 0 0.2143 0.2143 0.2857 0.2857 0.2857 0.2857 
5 0.2857 0.2857 0.2857 0.2857 0 0.4286 0.2143 0.2143 
6 0.2857 0.2857 0.2857 0.2857 0.4286 0 0.2143 0.2143 

For this simple example an estimator of the population Sy” is 

Sz = b22(1 - 2 )  + 4.52 + 2.0(1 - 2 )  = 6.3125, (4.4.29) 



THE BOOTSTRAP 271 

where 4.5 and 2.0 are the sample variances for the two phase 2 strata. Thus, 
an estimator of the variance of the two-phase mean is 

2 

V { ~ 2 ~ , ~ t )  = nT13; + C I@~(I - jg)n;:sE 
g=1 

= 0.7891 +0.4063 = 1.1954, (4.4.30) 

where I@I = Z = 0.5, I@z = (1 - Z ) ,  and j g  = r~Tin2~. The considerable 
difference between the two estimates is due to the small sample sizes in the 
phase 2 strata. 

Table 4.6 Adjusted Phase 2 Replicate Weights 

Replicate 
Ident. 1 2 3 4 5 6 7 8 

1 0.0523 0.3763 0.2143 0.2143 0.2857 0.2857 0.2857 0.2857 
2 0.3763 0.0523 0.2143 0.2143 0.2857 0.2857 0.2857 0.2857 
5 0.2857 0.2857 0.2857 0.2857 0.0523 0.3763 0.2143 0.2143 
6 0.2857 0.2857 0.2857 0.2857 0.3763 0.0523 0.2143 0.2143 

For this sample design, we can adjust the weights to remove the bias. The 
gg of (4.4.27) is 0.1220 for both strata because the stratum sample sizes are 
the same. The adjusted replicate weights are given in Table 4.6. Only the 
weights for the strata and the replicate in which a phase 2 element is "deleted" 
are adjusted. The adjusted replicate estimates are given in the last column of 
Table 4.4. The estimated variance computed with the adjusted replicates is 
1.1873, which agrees well with the estimate (4.4.30) based on nearly unbiased 
components. .. 
4.5 THE BOOTSTRAP 

The bootstrap is a replication procedure that creates replicates by selecting 
samples with replacement from the original sample. Consider a simple ran- 
dom sample of size n, from which a number, say L,  of replacement samples are 
selected. By the results of Chapter 1, we know that the mean of a replacement 
sample is the original sample mean, and the variance of the replacement sam- 
ple mean is the finite population variance divided by the sample size. Thus, 
the variance of replacement samples of size rn selected from the original 
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sample is 

iEA 

2 (4.5.1) ,-1 -1 n (n - 1)s - - 

where fj is the original sample mean and 

s2 = (n - 1)-l x ( g i  - y)2.  (4.5.2) 
iEA 

If we set m = n - 1, the variance of the mean of the replacement samples is 
equal to the usual estimator of the variance of the original sample mean. 

It follows that an estimator of the variance of the original sample mean is 

L 

{y - Y N }  = N - y N  - n ) P  C(gbj - y)2,  (4.5.3) 
j=1 

where y b j  is the mean of the j th replacement sample of size n - 1. 

original sample, 
The bootstrap sample mean can be written as the weighted mean of the 

(4.5.4) 
iEA 

where wji = n-lrji and rji is the number of times unit i is selected for the 
j th bootstrap sample. 

Equations (4.5.1) and (4.5.4) can be used to define samples for more com- 
plicated designs. Consider a stratified sample with sample sizes nh and 
sampling rates fh. We wish to create replicates so that the expected value of 
the bootstrap variance is the variance of the mean. Therefore, we desire rnh 
such that 

(4.5.5) 

If fh is not zero, the mh will, in general, not be an integer. There are two 
ways to modify the bootstrap samples to obtain the correct expectation. In 
one procedure, proposed by Rao and Wu (1988), the weights for bootstrap 
samples with size MT, are replaced by 

(1 - f h ) n ; l  = ,;1n;l(nh - 1). 

(4.5.6) 

where Wbi are the bootstrap weights and wi are the original weights for the 
full sample. The procedure is called the rescaling bootstrap. Typically, mT, 
is chosen equal to nh-1,  but Rao and Wu (1988) suggest alternatives. In a 
second procedure, a fraction of samples with nh elements and a fraction with 

1 * 0.5 
wbr,i = wi -k [(I - fh)(nh - 1)- m h ]  (wbi - wi), 
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n,h - 1 elements is chosen so that the resulting set of samples gives the correct 
expected value. See McCarthy and Snowden (1985) and Shao and Tu (1995, 
p. 247). The procedure, called the with-replacement bootstrap, is outlined in 
Example 4.5.1. 

Example 4.5.1. We construct bootstrap samples for the stratified sample of 
Table 4.1. The stratum sample sizes are (n1, n2) = (3: 2) and the sampling 
rates are (fl, f2) = (0.0833,0.0500). If we select samples of size 1 from the 
two elements in stratum 2, the sample variance of the means has expectation 
0.5s;. If we select samples of size 2, the expectation is 0.25s;. We desire the 
expectation to be (0.95)(0.5s;). Thus, we create a mixture of size 1 and 2 
samples, where 62, the fraction of size 1 samples, is given by the solution to 

Therefore, 0.90 of the bootstrap samples should have one element selected in 
stratum 2, and 0.10 of the samples should have two elements. 

For stratum 1, 61, the fraction of samples with ml = 2, is the solution to 

61(0.3333~1) + (1 - 61)(0.2222~1) = (11/12)(0.3333)~1 

and 61 = 0.75. 

Table 4.7 Bootstrap Weights for a Stratified Sample 

Original Replicate 
Stratum Obs. Weight 1 2 3 4 5 6 7 8 9 10 

1 1 12 36 0 36 24 18 12 0 18 18 0 
2 12 0 18 0 12 0 12 18 18 0 36 
3 12 0 18 0 0 18 12 18 0 18 0 

2 1 20 40 0 40 0 40 0 40 0 40 20 
2 20 0 40 0 40 0 40 0 40 0 20 

Table 4.7 contains 10 possible bootstrap samples for our stratified sample. 
Ninety percent of the samples for stratum 2 are of size 1 and the first nine 
samples of Table 4.7 are of size 1. The tenth sample is a sample of size 2 and 
it happens to be of two different elements, but it could look exactly like one 
of the first nine. For stratum 1, samples 4 and 6 are of size 3. The remaining 
samples are of size 2. In sample 4, element 1 was selected twice and element .. 2 was selected once. In sample 6, each element was selected once. 

The original objective of the bootstrap was to approximate the distribution 
of statistics using a large number of bootstrap samples. See Efron (1982), 
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Efron and Tibshirani (1986), and Shao and Tu (1995). For example, con- 
fidence sets might be formed on the basis of the bootstrap distribution of a 
statistic constructed by analogy to Student's t .  In survey sampling the boot- 
strap is most often used to obtain an estimator of variance and the confidence 
interval is then constructed on the basis of the normal approximation to the 
distribution. 

The bootstrap estimator of variance is an estimator of the estimated vari- 
ance. Thus, for simple random samples from a normal distribution, 

where o2 is the variance of the normal distribution, and 

The variance of st as an estimator of o2 is 

V{St - 2) = v{s; - s 2 }  + V{s2 - 2) 
= 2 [L-' + (n  - 1)- l ]  04. 

It follows that a variance estimator for a sample of size n = 30 from a N(0,l)  
distribution based on 100 bootstrap samples has an approximate variance of 
0.089, which is approximately equal to the variance of the sample variance 
for a sample of size 22. Therefore, a large number of bootstrap samples 
is required to approximate the efficiency of Taylor and jackknife variance 
estimators. 

If the sample has a very large number of strata, on the order of 1000, and a 
small number of units per stratum, the bootstrap variance estimator becomes 
a viable estimation procedure. 

The bootstrap variance estimator is consistent for the variance of quantiles 
without modification, but confidence intervals based on the Woodruff proce- 
dures of Section 1.3.5 generally perform better. See Shao and Rao (1994) and 
Shao and Tu (1995, p. 268). 
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4.7 EXERCISES 

1. (Section 4.2) Assume that a simple random sample of size 30 from an 
infinite population with variance o2 is available. For each element of 
the sample of 30, a replicate is created as 

30 
Z ( i )  = $xi + (29)-'(1 - $) x x j  

j # i  

Find the $ such that 

2. (Section 4.2) Assume that a simple random sample of size n = mb from 
an infinite population has been split at random into m groups of size b. 
Define a replicate estimator of the mean by 

where B b k  is the set of b elements deleted for the kth replicate, and the 
replicate estimator of the variance is 

m 

P{z} = C(ZP' -q2. 
k = l  

Find a $ such that P{Z} is unbiased for V{Z}.  
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3. (Section 4.2) Let a simple random sample of 10 (z, y) vectors be (1, 
0.11, (1, 1.91, (2,2.5),(3, 1.9), (4,2.4), (4,6.01, ( 5 , 3 . 3 ) ,  (6,9.01, (7,4.1), 
(7, 10.0). 

(a) Calculate the estimator of the ratio R, = 2;’y, and calculate the 
Taylor estimator of the variance of the ratio estimator. Assume that 
the finite population correction can be ignored. 

(b) Calculate the jackknife variance estimator for the ratio of part (a). 

(c) Assume that the population mean of 2 is ?tN = 4.5. Calculate 
the regression estimator of the mean of y. Calculate the Taylor 
estimator of the variance of Yreg. 

(d) Calculate the jackknife variance estimator of the vreg of part (c). 

4. (Section 4.2) Let the regression estimator for a simple random sample 
be 

where Z is the simple sample mean and 

/ \ -1 

/3 = [ C(Zi - Z)2 ) C(Xi - 2)(Yi - y).  

Define a jackknife deviate by 

Show that the jackknife deviate can be written 

ypig - iireg = -n-l& - (,(C - ZN)(D(i))-l(zz - ,)& 
+ 0 , (~ -2 ,5 )  

- [(z - 2,) - n-yzz - .)I ( D ( y ( 2 i  - a)62 = 

- 
- n + ~ , ( n - ~ , ~ ) ,  

where i3i = yi - Y - (xi - Z)/3 and 

5 .  (Section 4.2) In the proof of Theorem 4.2.1, it is stated: “Given 1 > 
6 > 0, there is an no such that for n > no, the probability is greater 
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than 1 - 6 that g and jj(”), k = 1, 2, . . . n, are all in a compact set D 
containing py as an interior point.” Prove this assertion. 

6. (Section4.2) Write the jackknife variance estimator for a linear estimator 
as 

Let (91, y2, . . . , yn) be independent ( p ,  0:) random variables and con- 
sider the jackknife variance estimator with Ck = K 1 ( n  - 1) for all 
k ,  L = n, and 

What is the expected value of this jackknife variance estimator? 

7. (Section 4.5) Compute the rescaling bootstrap weights for samples 1, 2, 
3, 5 ,  7, 8, 9 of Table 4.7 under the assumption that (ml, m2) is always 
equal to ( 2 , l ) .  

8. (Section 4.2) Prove the extension of Theorem 4.2.1. Let {F,,,} = 
{ y ~ ,  y2, . . . , y N }  be a sequence of finite populations, where the yi are 
i i d ( p y ,  gi) random variables with finite 4 + 7 ,  7 > 0 moments. Let 
a sequence of probability samples be selected from the sequence of 
populations such that 

and limN-+m nN = m. Let Yn ( k )  , k = 1; 2, . . . L,,,, be replicate estima- 

tors such that 

for k = 1 , 2 , .  . . , L N ,  and 
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Let g ( l J K )  be a continuous function of the mean with continuous first 
and second derivatives at pLy. Then 

k=l 

+ ~ , ( n - l . ~ )  a.s. 

9. (Section 4.2) Prove expression (4.2.15). You can use the generalization 
of (4.2.6) to show that E{(yLf) - Y s t ) 2  I F} = L-lV{jj,t I F}. 

Let an estimator of the total be 
10. (Section 4.2) Consider a Poisson sample with selection probabilities 7ri. 

j € A  

and let an estimator of the mean be 

Let 

and 

j E A  

/ \ -1 

where 

(a) Show that 

kEA 

is an unbiased estimator of V(FHT). 

consistent estimator of V(Y, 1 F). 
(b) Give ck such that pJ{YK} = CkEACk(&k) - Yn)’ is a design 
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1 1. (Section 4.5) For the data of Example 4.5.1, how many bootstrap samples 
are required for the variance estimator to have an efficiency equal to 
95% of that of the usual variance estimator? You may use variances 
for normal variables as approximations and assume common stratum 
variances. 

12. (Section 4.2.3) In Section 4.2.3 the slope of the estimated cumulative 
distribution function used the order statistics with indexes i ( t )  and i(s). 
Show that for a simple random sample and b = 0.5, these points cor- 
respond to Q ( b  - tagca) and Q ( b  + tagca) ,  where is the variance 
of $(a)  and t ,  = 2.0. In Section 1.3 it is stated that t ,  = 2.0 works 
well. If it is known that the design effect is about d, for the survey, what 
would you use for i(s) and i(t)? Recall that the design effect is the ratio 
of the variance of the estimator under the design to the variance of the 
estimator for a simple random sample with the same number of sample 
elements. 
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CHAPTER 5 

MODELS USED IN CONJUNCTION 
WITH SAMPLING 

5.1 NONRESPONSE 

5.1.1 Introduction 

Most surveys of human respondents suffer from some degree of nonresponse. 
One reason for nonresponse is a failure to contact some elements of the sample. 
In addition, some people may refuse to participate or fail to respond to certain 
items in the data collection instrument. Nonresponse is also common in other 
surveys. An instrument used to record physical data may fail or it may be 
impossible to record certain data. For example, in an aerial survey of land use 
it may not be possible to photograph certain selected sampling units where 
the air space is restricted. 

Nonresponse is generally placed in two categories: unit nonresponse and 
item nonresponse. Unit nonrespondents, as the name implies, are those 
sample elements for which none of the questionnaire information is collected. 
However, often some information is available. For example, the address of the 
household is generally available in household surveys, and other information, 
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such as the physical condition of the residence or the number of residents, 
may be collected. 

Ztern nonresponse occurs when responses for some items are missing from 
a questionnaire that is generally acceptable. Such nonresponse is common in 
self-administered surveys where the respondent can skip questions or sections. 
Some collection procedures are designed recognizing that people may be 
reluctant to answer certain questions. For example, questions about income 
may be placed near the end of the interview and interval categories given as 
possible answers. 

We have introduced the topic of this section using examples of data col- 
lected from human respondents, where some people neglect, or refuse, to 
report for some items. Often, as in two-phase sampling, some data are 
missing on the basis of the design. Such missing data is called planned, or 
designed, rnissingness. Also, some data collection may not require active 
participation from the sample unit, as in photo interpretation of an area seg- 
ment. Nonetheless, with analogy to human respondents, we call an element 
with a reported value a respondent and call an element with a missing value 
a nonrespondent. 

The analysis of data with unplanned nonresponse requires the specification 
of a model for the nonresponse. Models for nonresponse address two char- 
acteristics: the probability of obtaining a response and the distribution of the 
characteristic. In one model it is assumed that the probability of response can 
be expressed as a function of auxiliary data. The assumption of a second im- 
portant model is that the expected value of the unobserved variable is related 
to observable auxiliary data. In some situations models constructed under the 
two models lead to the same estimator. Similarly, specifications containing 
models for both components can be developed. 

5.1.2 Response models and weighting 

A model specifying the probability of responding is most common for unit 
nonresponse, with the complexity of the model depending on the data avail- 
able. In two-phase estimation in which the vector (x, y) is collected on 
phase 2 units but only x is observed on the remainder of the phase 1 sample, 
the probabilities of observing y given x are known. If the nonresponse is un- 
planned, it is common to assume that the probability of response is constant in 
a subpopulation, often called a cell. The response cell might be a geographic 
area or a subpopulation defined by demographic characteristics. 

Under the cell response model, the sample is formally equivalent to a two- 
phase sample and we use the notation of Section 3.3 in our discussion. Assume 
that the original sample was selected with selection probabilities rli, that the 
population is divided into G mutually exclusive and exhaustive response cells, 
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and that every element in a cell has the same probability of responding. Then 
the two-phase estimated mean of the form (3.3.13) is 

G 

(5.1.1) 
g=l 

where 

A, is the set of sample indices in cell g, A,, is the set of indices for the 
respondents in cell g, and Zlr ,g  is the estimated fraction of the population in 
cell g. Under the cell response model, the estimated variance of (5.1.1) can be 
computed with the two-phase formulas of Section 3.3. Of course, the validity 
of the variance estimator rests on the validity of the cell response model. 

If the fractions of the population in the cells are known, the estimated mean 

G 

(5.1.2) 
g= I 

can be treated as a poststratified estimator under the cell response model. See 
Section 2.2.3 for variance formulas. 

The cell mean model is a special case of the regression model and (5.1.2) is 
the corresponding special case of the regression estimator. To consider general 
regression estimation, let a vector of auxiliary variables, x, be available for 
both respondents and nonrespondents, and let the population mean of x, 
denoted by Z,, be known. Then a regression estimator using the inverses of 
the original probabilities as weights is 

Yreg = x N B :  (5.1.3) 

where 

X R  is the nR x k matrix of observations on the respondents, nR is the total 
number of respondents, D r R  is the diagonal matrix of original selection prob- 
abilities for respondents, and y R  is the vector of observations for respondents. 
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Assume that there is a vector a such that 

(5.1.4) 

where 7r2i l l i  is the conditional probability that element i responds given that 
it is selected for the original sample. Note that condition (5.1.4) holds if 
a vector of indicator variables is used to construct estimator (5.1.2). Given 
(5.1.4), the regression estimator (5.1.3) is consistent. Furthermore, there is an 
appropriate regression estimator of variance if the finite population correction 
can be ignored. 

Theorem 5.1.1. Let a sequence of finite populations and samples be such 
that the variance of the Horvitz-Thompson estimator of a mean for a complete 
sample has a variance that is 0, (n-l) ,  the Horvitz-Thompson estimator of the 
variance of a mean for a complete sample has a variance that is 0, ( T L - ~ ) ,  and 
the limiting distribution of the properly standardized Horvitz-Thompson mean 
of a complete sample is normal. Assume that for a sample with nonresponse, 
(5.1.4) holds and that 

(5.1.5) 

for positive constants KL and K,. Assume that responses are independent, 
that ZN is known, that there is a X such that x i X  = 1 for all i, and let the 
regression estimator be defined by (5.1.3). Then 

greg - gA- = N-’ C 7r;lei + ~ , ( n - l ) ,  

where A ,  is the set of indices of the respondents, ei = yi - xiPN, ~ 2 i  = 
7r l i7r2 i l11 ,  7r1i is the probability that element i is included in the original 
sample, and 

(5.1.6) 
i c A ~  

Furthermore. 

IEU 

(5.1.8) 
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where 

6 .  - 

distribution of n1/2 (Yreg - YN) conditional on FN. 
I I  - Yj -Xj,& and VW { n1/2 (Greg - GN) 1 FN } is the variance of the limiting 

Proof. The conditional expectations of the components of f i  of (5.1.3) are 

and 

By the assumption that the Horvitz-Thompson estimators of means have 
errors that are 0, (n-'l2), 

D - D N  = oP(n- 1/2 . (5.1.10) 

By (5.1.4), CiEUei = 0, and by Theorem 2.2.1, n1l2 (Yreg - Y N )  has anormal 
distribution in the limit. 

To obtain representation (5.1.6), assume, without loss of generality, that the 
first element of x is 7rGtli. Define a transformation of the original x-vector 

by zi = xi& where 

and 

/ \ -1 
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for j = 2 , 3 , .  . . k .  Then 

A , .  

wherej&,,-g, = RNAA-'@-/3,), andzi = ( z l i ,  z2i) = ( z l i ,  Z 2 i 7 . .  . , ~ k i ) .  

Now 

-1  

i l j  = - (& T&) xji + 0, (d2) 

--1 - - - - Z l , , X j , N  + 0, ( n - 1 / 2 )  

%,A = (z1;,,0) + 0 , ( n - 1 / 2 ) .  

f o r j  = 2 , 3 , .  . . , k ,  and 

It follows that 

because 

= N - l [ l  + 0p(n-1i2)], 

where 

and result (5.1.6) is proven. 
To prove (5.1.8), note that 

where wzi = N-'.irG', is a design linear estimator and 
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j E U  

where 7r1ij is the probability that elements i and j are in the original sample, 
7 ~ 2 i  = 7rli7r2i11i, and ~ 2 i j  is the probability that both i and j are in the sample 
and both respond. We have 7r2ij  = 7r1ij7r2i11i7r2j11j because responses are 
independent. 

The expectation of the Horvitz-Thompson variance estimator for Cw2iei 

constructed with 7~1i and 7rlij is 

The variance estimator constructed with & is asymptotically equivalent 
to that constructed with et. See the proofs of Theorems 2.2.1 and 2.2.2. 

W Therefore, result (5.1.8) is proven. 

In the variance estimator (.5.1.9), I$ is of the form t&&, where 1-zli is the 
regression weight. The Gi must be retained in the variance calculations 
because the error in ,8 contributes an O(n- l )  term to the variance. 

The second term in (5.1 .S) can be written as 

(5.1.11) 
iEU 

and will be relatively small for small sampling rates. Given (5.1.4), the 7r2illi 

can be estimated by expressing the response indicator as a function of (xicr)-l 

and estimating a. Then, using the i i  of (5.1.9), expression (5.1.11) can be 
estimated. 
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5.2 IMPUTATION 

5.2.1 Introduction 

If a modest number of variables are missing from otherwise complete ques- 
tionnaires, one method of implementing estimation is to replace individual 
missing values with “estimates.” The objective is to use the replacement 
values as if they were observed values in a full-sample estimation procedure. 
The replacement values are called imputed values. 

A goal of the imputation procedure is to construct imputed values that 
will yield efficient estimators of parameters for which estimators would be 
available from the full sample. Second, it should be possible to estimate the 
variance of the imputed estimators. In a typical survey situation, the survey 
statistician makes available to analysts a data set with weights and the values 
of a set of characteristics for the sample elements. The statistician may know 
some of the estimates that will be constructed from the data set, but seldom 
will the full set of possible estimates be known. Thus, the objective is to design 
an imputation procedure such that the imputed data set will be appropriate for 
both planned and unplanned estimates. 

One may ask; “If one must build a model for the imputation, why not 
simply use the estimator obtained from the model’?’’ The answer is in the 
many ways in which survey sample data are used. If a single variable is 
of importance, a model will be developed for that variable and estimates 
generated directly from the model. If the objective is to create a data set for 
general use, replacing the missing values with model-imputed values gives 
such a data set. Of course, the imputed values must be identified, and the 
model used for imputation must be made available to the end users. 

Consider a simple random sample of n elements in which the y value for m 
elements is not observed and T = n - m are observed. Assume that the fact 
that an element is not observed is independent of y. Then the T observations 
are a simple random sample of size T and the natural estimator of the mean of 
y is 

f i v  = T - l  c yi> (5.2.1) 

where A, is the set of indices of units observed and responding. Now assume 
that we wish to impute values for the missing values so that estimates based 
on the entire set of n elements will be equal to estimates based only on the 
responding units. If the only parameter to be estimated is the mean, replacing 
the missing values with the mean of the responding values will give a mean 
of the completed sample that is equal to the mean of the responding units. 
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However, if other characteristics of the distribution are of interest, estimates 
based on the mean-imputed data set will be seriously biased. For example, 
the large fraction of imputed values equal to the mean will bias all estimated 
quantiles. To meet the goal of multiple use, the imputed data set should 
provide a good estimate of any function of the variables. That is, the imputed 
data set should give a good estimate of the distribution function. 

There are a number of imputation procedures that furnish good estimates 
of the distribution function. For a simple random sample and random non- 
response, one procedure is to choose randomly one of the respondents for 
each nonrespondent and use the respondent value for the missing value. Let 
y i ~ ,  i = T + 1, T + 2, . . . ? n, be the m imputed values and let the mean 
computed with imputed data be 

(5.2.2) 

where 
n 

Y,,I = m-l C yiI 

i=T+? 

Because y i ~  is a random selection from the respondents, the expected value 
for any percentile is that for the respondents. 

Procedures that use values from the sample as imputed values are called 
hot deck imputation procedures. In a situation such as that just described, the 
element with a missing value is called the recipient and the element providing 
the value for imputation is called the donor. The hot deck name was originally 
used by the U.S. Census Bureau to describe an imputation procedure when 
computer cards were used in processing data. The donor was an element that 
was close to the recipient in the deck of cards. An advantage of hot deck 
procedures is that the imputed values are values that appear in the data set. It 
is possible for some imputation procedures to generate impossible responses. 

The random selection of donors gives an imputed data set with the correct 
expectation under the model, but the random selection increases the variance 
of an estimator relative to an estimator constructed directly from the respon- 
dents. If response is independent of y, and we use a random replacement 
selection of donors for a simple random sample, the conditional variance of 
the mean of the imputed values is 

r 

(5.2.3) 
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where yr  = (y1, y2, . . . , yr ) is the set of respondents and j j r  is the mean of 
the respondents. See Section 1.2.5. Then 

= (r-1 - N-1) Sy” + 72-2mr-1 ( r  - 1) Sy”, (5.2.4) 

where the conditioning notation denotes the variance for samples of size n 
with exactly m missing. 

There are a number of ways to select donors to reduce the imputation 
variance. One possibility is to use a more efficient sampling method, such as 
nonreplacement sampling, to select the donors. If m is an integer multiple of 
T ,  the imputed estimator of the mean based on without-replacement sampling 
is equal to the mean of the y values for the respondents. If m is not an 
integer multiple of T ,  there is an increase in variance relative to the mean of 
the respondents. See Exercise 1. Also, one can reduce the variance by using 
stratified or systematic selection of donors. 

Another way to reduce the variance due to imputation is to impute more 
than one value for each respondent. In a procedure proposed by Rubin (1987) 
and called multiple imputation, the imputation operation is repeated a number 
of times to create multiple sets of imputed data. Also see Little and Rubin 
(2002) and Schafer (1997). In the next section we consider a procedure called 
fractional imputation, suggested by Kalton and Kish (1984). 

5.2.2 Fractional imputation 

In fractional imputation, a number, say M ,  of donors is used for each re- 
cipient and each donor is given a fractional weight, where the fractions sum 
to 1. Consider a simple random sample with random nonresponse and T 

respondents. Instead of selecting a single donor for each recipient we assign 
all respondents to each recipient and give a relative weight of r-l to each 
donor value. The resulting data set has T + mr vectors where there are now 
r vectors for each of the elements with missing y. For such a data set, the 
estimate for any function of y is exactly the same as that obtained by tabu- 
lating the sample composed of the respondents. Kim and Fuller (2004) call 
the procedure f i l l y  efJicient fractional imputation because there is no variance 
due to the selection of imputed values. Fully efficient fractional imputation 
is not common because of the size of the resulting data set. However, very 
efficient procedures can be constructed with two to five imputed values per 
respondent. 
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Table 5.1 Sample with Missing Data 

Observation Weight Cell for z Cell for y z y 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 

1 
1 
1 
1 
1 
2 
2 
2 
2 
2 

1 
1 
2 
1 
2 
1 
2 
1 
2 
1 

1 7  
2 M  
3 M  

M 14 
1 3  
2 15 
3 8  
3 9  
2 2  

M M  

Example 5.2.1. We use a small artificial data set to illustrate the use 
of fractional imputation for the calculation of fully efficient estimators and 
for the calculation of estimated variances. Assume that the data in Table 5.1 
constitute a simple random sample and ignore any finite population correction. 
Variable z is a categorical variable with three categories, identified as 1, 2, 
and 3. The sample is divided into two imputation cells for this variable. In 
imputation cell 1 the fraction in the three categories is 0.50,0.25, and 0.25 for 
categories 1,2, and 3, respectively. In imputation cell 2 the fractions are 0.00, 
0.50, and 0.50 for categories 1, 2, and 3, respectively. For the missing value 
of z for observation 4, we impute three values, one for each category, and 
assign weights for the fractions equal to the observed fractions. All other data 
are the same for each “observation” created. See the three lines for original 
observation 4 in Table 5.2. The estimated fraction in a category for imputation 
cell 1 calculated using the imputed data and the fractional weights is the same 
as the fraction for the respondents. 

The fully efficient fractional imputation of y for y-imputation cell 1 would 
require four imputed values. That would not be a problem for this small data 
set, but to illustrate the computation of efficient estimators with a sample of 
donors, we select a sample of three of the four available donors. See the 
imputed values for observation 3 in Table 5.2. 

Several approaches are possible for the situation in which two items are 
missing, including the definition of a third set of imputation cells for such 
cases. Because of the small size of our illustration, we impute under the 
assumption that z and y are independent within cells. Thus, we impute four 
values for observation 10. For each of the two possible values of z we impute 
two possible values for y. One of the pair of imputed y values is chosen to be 
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less than the mean of the responses, and one is chosen to be greater than the 
mean. See the imputed values for observation 10 in Table 5.2. 

Table 5.2 Fractionally Imputed Data Set 

Donor Final 
Observation z y wTio Weight Cell for z Cell for y z y 

1 
2 

3 

4 

5 
6 
7 
8 
9 

10 

0 0  
0 1  
0 6  
0 8  
0 5  
0 7  
0 9  
t o  
t o  
t o  
0 0  
0 0  
0 0  
0 0  
0 0  
t 8  
t 4  
t 1  
t 6  

- 

0.3333 
0.3333 
0.3333 
0.3333 
0.3333 
0.3333 
0.5000 
0.2500 
0.2500 

- 

0.2500 
0.2500 
0.2500 
0.2500 

0.1000 
0.0289 
0.0396 
0.03 15 
0.0333 
0.0333 
0.0333 
0.0500 
0.0250 
0.0250 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.0225 
0.0275 
0.0209 
0.0291 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
2 
2 
2 
1 
1 
1 
2 
1 
2 
1 
2 
1 
1 
1 
1 

1 7  
2 7  
2 15 
2 9  
3 3  
3 8  
3 2  
1 14 
2 14 
3 14 
1 3  
2 15 
3 8  
3 9  
2 2  
2 9  
2 14 
3 7  
3 15 

tAll relevant values of z are imputed for every missing observation. 

To create fully efficient estimates of the mean of y, the cell mean of the 
imputed data should be the same as the mean of the respondents in the cell. 
To define such a data set, we use the regression estimator and require the 
fractional weights to sum to 1 for each observation. For observation 10, we 
require the two weights for each category to sum to the fraction (0.5) for the 
category. In using regression to adjust the fractional weights, one can adjust 
all weights subject to the restriction that the sum of the fractional weights is 
1 for each person or one can adjust the weights for each person. Because of 
the small number of imputed values per person we use the second approach. 

Let B, be the set of indices of elements in cell g that have at least one 
characteristic imputed, let Z , [ ~ ] ~  be the ith imputed vector of characteristics 
for which at least one value has been imputed, let wj be the weight for 
observation j ,  and let w& be an initial fractional weight for the ith imputed 
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vector for element j, where 

and Alj is the set of indices of imputed values for observation j. The fractional 
weight for imputed value i of observation j in cell g is 

- wTj = wzjo + (ZFE,s  - - zg)Szzgwijo(Zg[i]j -1 * - zg.j)', (5.2.5) 

where 

E F E , g  is the fully efficient weighted mean of the respondents in cell g, and 
Eg.j is the mean of imputed values for observation j. If the rth characteristic 
is observed, E g j r  is the value observed and Z g [ i ~ j r  - E g . j r  = 0. 

Because all values of y in cell 2 were used to impute for observation 3, 
we need only compute weights for cell 1 for y. The mean of imputed values 
for observation 2 is 10.333 and the two means for observation 10 are 11.500 
and 11.000. The mean of the observed values of y for cell 1 is 11.25, the 
weighted mean of the imputed values is 21 = 10.7917, and the weighted sum 
of squares is 23.1618. The adjusted fractions are 0.2886, 0.3960, and 0.3154 
for observation 2 and 0.2247, 0.2753, 0.2095, and 0.2905 for observation 10, 
in the order that they appear in the table. The weights, calledfinal weights in 
the table, are the products w:~ wj.  

We use jackknife replicates to illustrate variance estimation with fractional 
imputation. The procedure is analogous to that for two-phase samples. As the 
first step we create a standard jackknife replicate by deleting an observation. 
Tables 5.3 and 5.4 give the estimates for the cell means for the observed 
values for the 10 replicates. For example, when observation one is deleted, 
the replicate mean of y for y-cell 1 is 12.67, and the fractions for 2-cell 1 are 
0.33, 0.33, and 0.33 for categories 1, 2, and 3, respectively. 

Using the regression procedure, the fractional weights of each replicate 
are adjusted to give the mean for that replicate. For example, the fractional 
weights of the imputed y-values for observations 2 and 10 of replicate 1 are 
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modified so that 

where yjI = C ~ ~ A Z U ~ ~ ~ ~ .  Table 5.5 contains the replicate weights. 

Table 5.3 Jackknife Replicate Cell Means for y-Variable 

Replicate 
Cell 1 2 3 4 5  6 7  8 9 10 

1 12.67 11.25 11.25 10.33 11.25 10.00 11.25 12.00 11.25 11.25 
2 4.33 4.33 4.33 4.33 5.00 4.33 2.50 4.33 5.50 4.33 

Table 5.4 Jackknife Replicate Fractions for 2-Categories 

Cat. Replicate 
Cell o f z  1 2 3 4 5 6 7 8 9 10 

1 1 0.33 0.67 0.67 0.50 0.33 0.50 0.50 0.50 0.50 0.50 
2 0.33 0.00 0.33 0.25 0.33 0.25 0.25 0.25 0.25 0.25 
3 0.33 0.33 0.00 0.25 0.33 0.25 0.33 0.25 0.25 0.25 

2 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.50 0.50 0.50 0.50 0.50 0.33 0.67 0.67 0.33 0.50 
3 0.50 0.50 0.50 0.50 0.50 0.67 0.33 0.33 0.67 0.50 

The final data set with the weights of Table 5.2 and the replicate weights 
of Table 5.5 can be used to compute all estimators and all estimated variances 
for which the jackknife is appropriate. For example, the estimated cumulative 
distribution function for y and its variance could be computed. 

The jackknife estimated variance for the mean of y is 

and the two-phase variance estimator is 
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where sig is the within-cell sample variance for cell g. The two estimates 
differ by the amount 

2 c [(rg - l ) - lrg(n - l)% - 11 s;,. 
g=1 

See Section 4.4. .. 
Table 5.5 Jackknife Weightst for Fractionally Imputed Data 

Replicate 
Obs 1 2 3 4 5  6 7  8 9 10 

1 0 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 
2 0.17 0 0.32 0.42 0.32 0.46 0.32 0.24 0.32 0.27 

0.66 0 0.44 0.30 0.44 0.25 0.44 0.55 0.44 0.51 
0.29 0 0.35 0.39 0.35 0.40 0.35 0.32 0.35 0.33 

3 0.37 0.37 0 0.37 0.32 0.37 0.50 0.37 0.29 0.37 
0.37 0.37 0 0.37 0.50 0.37 0.01 0.37 0.60 0.37 
0.37 0.37 0 0.37 0.29 0.37 0.60 0.37 0.22 0.37 

4 0.37 0.74 0.74 0 0.37 0.56 0.56 0.56 0.56 0.56 
0.37 0 0.37 0 0.37 0.28 0.28 0.28 0.28 0.28 
0.37 0.37 0 0 0.37 0.28 0.28 0.28 0.28 0.28 

5 1.11 1.11 1.11 1.11 0 1.11 1.11 1.11 1.11 1.11 
6 1.11 1.11 1.11 1.11 1.11 0 1.11 1.11 1.11 .11 
7 1.11 1.11 1.11 1.11 1.11 1.11 0 1.11 1.11 . l l  
8 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0 1.11 . l l  
9 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0 -11 

10 0.16 0.28 0.28 0.31 0.28 0.23 0.35 0.30 0.15 0 
0.39 0.28 0.28 0.25 0.28 0.14 0.39 0.44 0.22 0 
0.09 0.28 0.28 0.32 0.28 0.44 0.15 0.07 0.32 0 
0.46 0.28 0.28 0.23 0.28 0.30 0.22 0.30 0.42 0 

+Multiply entries by 0.10 for mean estimation. Weights are rounded. 

5.2.3 Nearest-neighbor imputation 

Nearest-neighbor imputation is a hot deck procedure in which a distance 
measure, defined on the basis of observed characteristics, is used to define 
the donor. The respondents closest to the element with a missing value act as 
donors. It is common practice to use a single donor, but we suggest that two 
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or more donors be used for each recipient. The use of more than one donor 
facilitates variance estimation and generally improves efficiency. 

Assume that the finite universe is generated by a stochastic mechanism and 
that a distance measure is defined for the elements. Let a neighborhood of 
element g be composed of elements that are close to element g, and let 

P g  = W Y j  I j E B g } :  

where Bg is the set of indices for the elements in the neighborhood of element 
g. One might suppose that there would be some correlation among elements in 
the neighborhood, with elements that are close having a positive correlation, 
but we will assume that neighborhoods are small enough so that the correlation 
can be ignored. We assume that an adequate approximation for the distribution 
of elements in the neighborhood is 

Yj i @ g ,  0;): j E Bg, (5.2.6) 

where N ii denotes independent identically distributed. We assume that re- 
sponse is independent of the y values so that the distribution (5.2.6) holds for 
both recipients and donors. Our results are obtained under the working as- 
sumption (5.2.6). For the assumption to hold exactly for every neighborhood, 
the assumption must hold globally or the neighborhoods must be mutually 
exclusive. See Chen and Shao (2000, 2001) for conditions under which it is 
reasonable to use (5.2.6) as an approximation. 

Let a probability sample be selected from the finite universe with selection 
probabilities 7 r j .  Let 6, be a design linear estimator based on the full sample, 

en = CWiYi, (5.2.7) 
iEA 

and let V { & }  be the variance of the full-sample estimator. Under model 
(5.2.6) we can write 

Yi = Pi + ei, (5.2.8) 

where the ei are independent ( 0 ,  0:) random variables and pi is the neigh- 
borhood mean. Then, under model (5.2.6), the variance of Ty = & A W ~ Y ~  

is 

(5.2.9) 
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where Ty is the population total of the yi and Tp is the population total of the 
pi. Note that the variance is an unconditional variance. 

Assume that y is missing for some elements and assume that there are 
always at least M observations on y in the neighborhood of each missing 
value. Let an imputation procedure be used to assign M donors to each 
recipient. Let wrj be the fraction of the weight allocated to donor i for 
recipient j .  Then 

(5.2.10) 
j € A  

is the total weight for donor i, where it is understood that wri = 1 for a donor 
donating to itself. Thus, the imputed linear estimator is 

(5.2.11) 
j € A  G A R  

where A ,  is the set of indices of the respondents, the mean imputed value for 
recipient j is 

(5.2.12) 
i € A  

and yIJ = y j  if j is a respondent. Then, under model (5.2.6), 

(5.2.13) 

where A ,  is the set of indices of the respondents and TyI is the estimated total 
based on imputed data. The increase in variance due to imputing for missing 
values is, from (5.2.9), 

i € A  

To use replication to estimate the variance of the imputed estimator, let a 
replication variance estimator for the complete sample be 

L 

k=l 

where 8 is the full-sample estimator, 8(lC) is the kth estimate of O N  based on 
the kth replicate, L is the number of replicates, and ck is a factor associated 
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with replicate k determined by the replication method. If imputed data are 
used in (5.2.14) for 0 = TyI ,  

where a:!’ = Cj ,wj ( k )  w:~ and wj ( k )  is the weight for element j in replicate k .  

The estimator Vl(0) computed as if imputed data were observed is sometimes 
called the naive variance estimator. We outline a replication procedure that 
produces unbiased variance estimates. 

For nearest-neighbor imputed data, there are three types of observations in 
the data set: 

1. Respondents that act as donors for at least one recipient 

2. Respondents that are never used as donors 

3. Recipients 

The original full-sample replicate weights will be used for the last two 
types. For donors, the initial fractional weights wZj in replicate k will be 
modified so that we obtain the correct expectation. Let superscript k denote 
the replicate where element k is in the deleted set. Following Kim and Fuller 
(2004), the fractions assigned to donor k are changed so that the expected 
value of the sum of squares is changed by the proper amount. First, the 
full-sample replicates for the variance estimator (5.2.14) are computed, and 
the sum of squares for element i computed as 

L 

(5.2.16) 
k=l 

where a$) is defined following (5.2.15). 
In the second step, the fractions for replicates for donors are modified. Let 

R k  be the set of indices of recipients for which k is a donor. We use k as 
the index for the replicate and for the donor. Let the new fractional weight in 
replicate k for the value donated by element k to recipient j be 

(5.2.17) 
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where bk is to be determined. For two donors to each recipient the new 
fractional weight for the other donor, denoted by t ,  is 

(5.2.18) 

For W &  = 0.5, w$) = 0.5bk and w:;') = (1 - 0 . 5 b k ) .  Then, by (5.2.15), 
the bk that gives the correct sum of squares is the solution to the quadratic 
equation 

= C Y k - a k - Q ,  2 (5.2.19) 

where t is used as the index for the donors other than k that donate to j ,  and 
D,, is the set of donors other than k that donate to recipients that receive a 
value from donor k .  The difference @k - (a: - a k )  is the difference between 
the sum of squares for the naive estimator and the sum of squares desired for 
observation k .  Under the assumption of a common variance in a neighborhood 
and the assumption that the full-sample variance estimator Ql(8) of (5.2.14) 
is unbiased, the variance estimator with b,+ defined by (5.2.19) is unbiased 
for the variance of the mean of the imputed sample. The procedure corrects 
weights within each replicate and does not force the sum of squares over 
replicates for observation i to be equal to a:. 

Example 5.2.2. Table 5.6 contains an illustration data set of six observa- 
tions. The variable zi is observed on all six, but the variable y is missing 
for observations 3 and 6. The variable z is used to determine distance and, 
in Euclidean distance, observation 2 is closest to observation 3. Therefore, 
using the nearest-neighbor rule, we replace the missing value for observation 
3 by the value of observation 2. In the same way, observation 5 is closest 
to observation 6, so the missing value for observation 6 is replaced by 2.3, 
the value of y for observation 5. If only the nearest neighbor is used for 
imputation, we obtain the imputed data set of the last column. The weight of 
1/6 would be the weight for a simple mean. 
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Table 5.6 Data Set 

Obs. Weight xi yi yli  

1 0.166 0.9 0.7 0.7 
2 0.166 1.1 1.0 1.0 
3 0.166 1.3 M 1.0 
4 0.166 2.2 1.9 1.9 
5 0.166 2.6 2.3 2.3 
6 0.166 3.1 M 2.3 

Table 5.7 contains the imputed observations when two imputations are 
made for each missing value. The second nearest neighbor for observation 2 
is observation 4, where 1 2 2  - x4 1 = 0.6. Observation 6 has the largest z- 
value, so the two nearest neighbors are observations 4 and 5. In some situations 
one might impose the restriction that a donor is used only once when that is 
possible. We use the strict nearest-neighbor rule and use observation 4 as 
a donor for both observations 3 and 6. Each imputed value is weighted by 
one-half of the weight of the original observation. For observation 3 there 
are two new lines in the imputed data set, each with a weight of 1/12. The 
z-value is the same for both lines. If we had additional variables in the data 
set, those data are also repeated for the two lines. 

Table 5.7 Jackknife Data 

Naive Replicate Weights 
Obs. Donor Weight yIt 1 2 3 4 5 6 

- 1 
2 
3 2 

4 
4 
5 
6 4 

5 

- 

- 
- 

0.166 
0.166 
0.083 
0.083 
0.166 
0.166 
0.083 
0.083 

0.7 0 0.2 0.2 0.2 0.2 0.2 
1.0 0.2 0 0.2 0.2 0.2 0.2 
1.0 0.1 0.1 0 0.1 0.1 0.1 
2.2 0.1 0.1 0 0.1 0.1 0.1 
2.2 0.2 0.2 0.2 0 0.2 0.2 
2.3 0.2 0.2 0.2 0.2 0 0.2 
2.2 0.1 0.1 0.1 0.1 0.1 0 
2.3 0.1 0.1 0.1 0.1 0.1 0 

We construct jackknife replicate weights for variance estimation. The 
weights for six naive jackknife replicates are given in Table 5.8, where the 
weights are constructed as if the sample were complete. The two imputed 
values for an observation are treated as two observations from a primary 
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Table 5.8 Naive Weights for Respondents 

Naive Respondent Replication Weights 

Obs. ai a!:’ &’ 4%) 4%’ 4;’ 4’ 
1 0.166 0.0 0.2 0.2 0.2 0.2 0.2 
2 0.250 0.3 0.1 0.2 0.3 0.3 0.3 
4 0.333 0.4 0.4 0.3 0.2 0.4 0.3 
5 0.250 0.3 0.3 0.3 0.3 0.1 0.2 

sampling unit. Ignoring the finite population correction, Ck = 5/6. The 
full-sample replicate weights for the respondents are given in Table 5.8. We 
have 

L 

(5/6) C(ait’ - = (0.0278, 0.0292, 0.0278, 0.0292) 
k = l  

for i = 1, 2, 4, 5, respectively. From Table 5.8, 

(~yl ,ai ,a: ,  a:) = (0.0278,0.0625,0.1111,0.0625). 

The use of the naive replicates severely underestimates most of the coefficients 
for 0:. Only for observation 1, the observation not used as a donor, is the sum 
of squares from the naive replicates equal to a:. 

defined in (5.2.16) and the w L ’ Z ~ ( ~ )  of (5.2.17), the quadratic 
equation for b2 is 

[0 + b2(0.2)(0.5) - 0.2512 + [0.2 + 0.2(0.5) + (1 - 0.5b2)(0.2) - 0.333312 

Using the 

- 0.0350 - 0.0269 0.0750, 

where 0.0750 - ~ ; ~ a ; ,  ck = 5/6, and 
quadratic equation is 

= 0.0350. The simplified 

0.02b; - 0.0833b2 + 0.0234 = 0 

and b2 = 0.3033. The equation for b5 is the same as that for b2. The quadratic 
equation for b4 is 

[0 + 2(0.l)b4 - 0.333312 + 2[0.2 + (1 - 0.5b4)(0.2) - 0.2512 
+ 0.0333 - 0.0228 = 0.1333 

and b4 = 0.1827. The final jackknife replicates are given in Table 5.9 and the 
respondent weights in Table 5.10. 
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Table 5.9 Jackknife Weights for Fractional Imputation 

Weights for Unbiased Variance Estimator 
Obs. Donor Weight 1 2 3 4  5 6  

- 1 
2 
3 2 

4 
4 
5 
6 4 

5 

- 

- 
- 

0.166 
0.166 
0.083 
0.083 
0.166 
0.166 
0.083 
0.083 

0 0.2 0.2 
0.2 0 0.2 
0.1 0.030 0 
0.1 0.170 0 
0.2 0.2 0.2 
0.2 0.2 0.2 
0.1 0.1 0.1 
0.1 0.1 0.1 

0.2 
0.2 

0.183 
0.017 

0 
0.2 

0.017 
0.183 

0.2 0.2 
0.2 0.2 
0.1 0.1 
0.1 0.1 
0.2 0.2 

0 0.2 
0.170 0 
0.030 0 

Table 5.10 Final Weights for Respondents 

Final Respondent Replication Weight 
1) 2 3) 4) 5 Obs. Q i  Qj ) Q,i Qi ) a! 6 )  

1 0.166 0.0 0.2000 0.2 0.2000 0.2000 0.2 
2 0.250 0.3 0.0303 0.2 0.3817 0.3000 0.3 
4 0.333 0.4 0.4697 0.4 0.0366 0.4697 0.3 
5 0.250 0.3 0.3000 0.3 0.3817 0.0303 0.2 

The reader may check that 

6 

(5/6) c c(ajk) - ai)2 = c a:, 
ZEAR k=l i€AR 

WhereAR = (1, 2,  4, 5). Onlyfori = l i s ~ k ( a ~ ) - a 1 ) 2  =a?. Forother 
observations the individual sums deviate slightly. Under our assumptions the 
neighborhoods that share a common donor have the same variance and hence 
the variance estimator is unbiased. Of course, the unbiased result requires the 
model assumptions of (5.2.6). .. 
5.2.4 Imputed estimators for domains 

One of the reasons imputation is used in place of weighting is to improve 
estimates for domains. If the imputation model includes items such as age 
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and gender but not local geography, it is reasonable to believe that imputation 
will give an estimator for a small geographic area that is superior to the mean 
of the respondents in that area. If the model used for imputation is true, the 
imputed estimator for the small area may be superior to the simple estimator 
constructed from the full sample. 

To illustrate the last point, consider a simple random sample and assume 
that the imputation model is 

Yi  = P + ei, (5.2.20) 

where the ei are iid(0, u 2 )  random variables. Let there be m nonrespondents 
and let the imputed value for each nonrespondent be the mean of the respon- 
dents. Let ZQ be an indicator variable for membership in a domain, where a 
domain might be a cell in a two-way table. Assume that ZQ is observed for all 
elements of the sample, and let the imputed estimator for domain a be 

/ \ -1 

(5.2.21) 

where YQI is the imputed value for the rth element and yir = y~ for respondents. 
Let domain a contain r, respondents and m, nonrespondents. Then the 
estimated domain mean based on imputed data is 

ha = (ma + r J 1  ( Q z , a Y Q  + magr) ' (5.2.22) 

where AR,, is the set of indices of respondents in the domain and gr is the 
mean of all respondents. 

The model (5.2.20) is assumed to hold for all observations and hence holds 
for observations in the domain. Under model (5.2.20), mean imputation, and 
a negligible finite population correction, 

V{fi,} = (ma + r,)-2(r, + 2m,rar-l + m:r-')u2 

2 - 1  = [(ma + r a ) - l +  (ma + T m,(m, + 2r, - .)lo2 

= [r-' + (ma + r,)-2(r, - .:r-1)]02. (5.2.23) 

The second set of the expressions in (5.2.23) demonstrates that the imputed 
domain estimator is superior to the full-sample estimator if T > m, + 2r,, a 
condition easy to satisfy if the domain is small. 
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Under the model, the best estimator for the domain is Y T .  The last ex- 
pression in (5.2.23) contains the increase in variance for the imputed domain 
estimator relative to the grand mean of the respondents. Often, practitioners 
are willing to use the model for imputation but unwilling to rely on the model 
to the degree required to use the model estimated mean for the cell. When the 
practitioner is willing to use the model estimator for the domain, the procedure 
is more often called small area estimation. See Section 5.5 .  

The use of donors from outside the domain produces a bias in the fractional 
replicated variance estimator for the domain. For nearest-neighbor imputation 
and an estimator linear in y, we constructed replicate weights that met the 
unbiasedness requirement (5.2.16) or an equivalent requirement. Because the 
weights for a domain estimator are not the same as the weights for the overall 
total, (5.2.16) will, in general, not hold for the domain mean. 

Example 5.2.3. We use the imputed data of Table 5.7 to illustrate the nature 
of domain estimation. Assume that observations 1, 2, and 3 are in a domain. 
Then the imputed estimator for the domain total of y is 

and the imputed estimator for the domain mean is 

-1 

j E  A iE Aij  j E  A iE A i j  

where y[qj is the imputed value from donor i to recipient j ,  A,, is the set of 
indices of donors to j ,  wZj are the weights of Table 5.7, and 

Sdj = 1 if observation j is in domain d 

= 0 otherwise. 

Table 5.11 Respondent Weights for Alternative Estimators 

Observation 
Estimator 1 2 4 5  

Total(N = 1000) 167 250 333 250 
Imputeddomain 167 250 83 
Poststrat. domain 250 250 
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The line “imputed domain” in Table 5.11 gives the weights for the three 
respondents that contribute to the estimate for the domain. The weights are 
for a total under the assumption that N = 1000. Although observation 4 is 
not in the domain, it contributes to the domain estimate because, under the 
model, observation 4 has the same expectation as observation 2, which is in 
the domain. If only the two observations that fall in the domain are used to 
estimate the domain total, they receive the weights given in the last line of 
Table 5.11. Clearly, the weights of the second line of Table 5.1 1 will give a .. smaller sum of squares than those of the third line. 

5.3 VARIANCE ESTIMATION 

Systematic sampling and one-per-stratum sampling produce unbiased estima- 
tors of totals, but design-unbiased variance estimation is not possible because 
some joint probabilities of selection are zero. One approach to variance esti- 
mation in these cases is to postulate a mean model and use deviations from 
the fitted model to construct a variance estimator. 

Models can be divided into two types: local models and global models. For 
a population arranged in natural order, on a single variable 2,  a local model 
for y given 2 in the interval qj = ( x L 3 ,  I C ~ , ) ,  is 

Y i  = 9 ( I C i 4 j )  + ei,  22 E q j ,  

ei ind(0, of). 

(5.3.1) 

The model is often simplified by letting IC be the order number of the sample 
observations. A global model assumes that g (22, p)  holds for the entire data 
set. 

The most common local model assumption for a one-per-stratum design is 
that the means of two strata are the same. Thus, for an ordered set of an even 
number of strata, 

i = 1, 2, . . .  , 0.5n, (5.3 -2) 

for zi  = 2h and = 2h - 1, where 22 is the order identification of the 
strata. Use of the mean model (5.3.2) leads to the procedure of collapsed 
strata discussed in Section 3.1.3. 

Of the many variance estimation procedures that have been suggested for 
systematic sampling, the most popular is to form pairs of sample elements 
and assume a common mean for the pair. The pair is then treated as a set 
of two observations from a stratum. The created strata are sometimes called 
pseudostrata. Unlike the result for collapsed strata with one-per-stratum 
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sampling, the estimated variance for a systematic sample based on model 
(5.3.2) is not guaranteed to be an overestimate. 

For a systematic sample or a one-per-stratum sample from a population 
arranged in natural order, a local model can be used to increase the number of 
degrees of freedom for the variance estimator relative to that for the collapsed 
strata procedure. Let yli] denote the ith observation, where the order is that 
used in the sample selection, and let xi = i .  Then a local model that specifies 
adjacent observations to have the same mean is 

Y[i] = P j  + ei, (5.3.3) 

ei N ind(0,  op), 

for i E [ j ,  j + 11. The associated variance estimator is 

P{Yd = 0 . 5 4 ( 1  - 7rl)(Y[2] - Y[1;)2 

n- 1 

+ 0.25 C w ' ( 1  - Ti) [(Y[i-l] - Y[i])2 + (Y[i] - Y[i+1])2] 

where wi = N-'7rt:'. If wi = n-', the estimator reduces to 

n 

i=2  
n 

The estimator (5.3.4) has nearly twice as many degrees of freedom as the 
collapsed strata procedure. 

A second local model assumes a linear model for the center observation in 
a set of three adjacent observations. The model is 

(5.3.6) 

for xi E { j  - 1, j ,  j + l}, where, as before, xi = i is the order identification. 
The use of local models for intervals greater than 2 usually requires an adjust- 
ment for the end observations. With model (5.3.6), for variance estimation 
purposes, we assume that the superpopulation mean associated with the first 
observation is equal to the superpopulation mean associated with the second 
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Table 5.12 Weights for Replicate Variance Estimation 

Full Replicate 
Observation Sample 1 2 . . .  9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 

0.1671 0.1387 
0.0329 0.0226 
0.1000 0.1387 
0.1000 0.1000 
0.1000 0.1000 
0.1000 0.1000 
0.1000 0.1000 
0.1000 0.1000 
0.1000 0.1000 
0.1000 0.1000 

0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1387 
0.0226 
0.1387 

0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
0.1671 
0.0329 

observation. Making the same assumption for the last two observations, the 
estimated variance of an estimator of the form & A W ~ Y ~  is 

V { Y )  = N-l" - n)lo.5.Lli:(Y[l] - Y[2]I2 

n,-1 

(5.3.7) 

The linear combination - 2qil + Y [ ~ + ~ I )  is a multiple of the devi- 
ation from fit for the linear model estimated with the three observations 

The estimator (5.3.7) has a positive bias for the design variance of the 
one-per-stratum design. The bias expression can be obtained by replacing y j  
with pj in (5.3.7), where pj is the mean for the j th stratum. 

Example 5.3.1. Replication can be used to construct estimator (5.3.7). 
To illustrate, assume that a sample of 10 observations is selected, either by 
systematic sampling or by equal-probability one-per-stratum sampling, from 
an ordered population of 100 elements. 

The replicate weights in Table 5.12 are such that the kth deviation j j ( k )  - Y 
is the kth linear combination in (5.3.7) normalized so that the square has the 
correct expectation. Thus, the entries in the first column for replicate 1 give 

(Y[ i - l ]>  Y[i], Y[i+l]). 

0.5 -1 y(1) - Y - - - [ 0 . 5 W w  - 741 n (Y[1] - Y[2]) 

= 0.0671(~[11 - ~ [ 2 j ) .  
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H H  

Models for the covariance structure of the population can be used to estimate 
the variance of one-per-stratum designs. Let the population size for stratum 
h be Nh, and let uh be the set of indices for stratum h. Let a simple random 
sample of size 1 be selected in each stratum. Then the variance of the estimated 
total for stratum h is 

H 

(5.3.8) 

where Wh = N-'Nh. Assume that the finite population is a realization 
of a stationary stochastic process, where the covariance is a function of the 
distance between observations. That is, 

C b j !  Yk} = ?@)! (5.3.9) 

where d is the distance between j and k and y(d) = y(-d) is the covariance 
between two units that are a distance d apart. The distance can be defined in 
terms of auxiliary information and is often the distance between the indexes 
of a population arranged in natural order. 

Under the model, 

) 
Nh-1 

E { S i }  = (Nh - 1)-l NhY(0) - N i l  C (Nh - d ) y ( d )  
d=-(Nh - 1) 

Nh-1 

( 
and 

- q V ( Y j  - Y h : N  I j E uh!m = Y(0) - q2 c (Nh - d ) y ( d ) .  
d=- (Nh  -1) 

(5.3.10) 

If a parametric model for y(d) can be estimated, the estimated values for y(d) 
can be substituted in (5.3.10) and (5.3.8) to obtain an estimated variance for 
ts t .  It may be simpler to estimate the parameters of 

E((9.j - Y k I 2 )  = $@! 4, (5.3.11) 

and the entries in the second column give 
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where $ ( d ,  8) is called the vuriogrum and 8 is the parameter vector. 
For the one-per-stratum procedure, only differences with d 5 N M  -- 1 enter 

the variance expression, where NM is the maximum of the Nh. Thus, a simple 
procedure is to assume a constant variogram for d 5 N M  - 1 and estimate 
the variance with 

H 

where 

and 

For a variogram that increases with distance, the estimator (5.3.12) will have 
a positive bias because differences with large d appear more frequently in the 
estimator than in the population. 

A three-parameter variogram model based on the first-order autoregressive 
process is 

$(d ,  e) = eo + (5.3.13) 

where 80 2 81 and I 6’2 1 < 1. For the stationary first-order autoregressive 
process, 80 = 81. For a process with measurement error, 00 > 81. The 
parameters can be estimated using a nonlinear least squares procedure or by 
maximum likelihood. A large number of observations is required to obtain 
good estimates for the parameters of variance models. See Cressie (1991, 
Chapter 2) for a discussion of the variogram and for variogram models. 

5.4 OUTLIERS AND SKEWED POPULATIONS 

The problem of estimating the mean, or total, using a sample containing a few 
“very large” observations will be faced by almost every sampling practitioner. 
The definition of “very large” must itself be part of a study of estimation for 
such samples and the definition of “very large” that appears most useful is 
a definition that separates cases wherein the sample mean performs well as 
an estimator from those cases wherein alternative estimators are markedly 
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superior to the mean. Most editing procedures will have rules that identify 
unusual observations as part of the checking for errors. In this section we 
are interested in situations where the extreme observation, or observations, 
have been checked and the data are believed to be correct. These are typically 
situations where the population sampled is very skewed. Personal income 
and size measures of businesses are classical examples. 

One approach to estimation for skewed populations is to specify a paramet- 
ric model for the superpopulation and estimate the parameters of that model. 
Parametric estimation is discussed in Chapter 6. Our experience suggests 
that it is very difficult to specify a relatively simple model for the entire 
distribution. Robust procedures, as described by Huber (1981) and Hempel 
et al. (1986), are related estimation procedures but have heavy emphasis on 
symmetric distributions. 

In applications, an observation can be extreme because the value of the 
characteristic is large, because the weight is large, or both. Estimators that 
make adjustments in the largest observations can be made by modifying the 
value or by modifying the weight. Because the value is believed to be correct, 
the modification is most often made by modifying the weight. We begin by 
considering the general estimation problem for simple random samples. 

We present the procedure of Fuller (1991), in which it is assumed that the 
right tail of the distribution can be approximated by the right tail of a Weibull 
distribution. The Weibull density is 

f (y ;  a,  A) = a~-~y"-lezp{-~-~y"} if y > o 
= o  otherwise, (5.4.1) 

where A > 0 and a > 0. If 17: is defined by the one-to-one transformation 
17: = y", 17: is distributed as an exponential random variable with parameter A. 
Conversely, the Weibull variable is the power of an exponential variable, zy, 
where y = a-l. If cv 5 1, the sample mean will perform well as an estimator 
of the population mean. If a is much larger than 1, there are alternative 
estimators that will perform better than the sample mean. We use the order 
statistics to test the hypothesis that a = 1 against the alternative that a > 1. 

The distribution of the differences of order statistics from the exponential 
distribution are distributed as exponential random variables. Let 17:(1) 5 
17:p) 5 . - . 5 ~ ( ~ 1  be the order statistics of a sample of size n selected from an 
exponential distribution with parameter A, and let = 0. Then the random 
variables 

z k  = (n - k + 1)(17:(k) - 17:(k-11), k = 1, 2, . . . , n, (5.4.2) 

are i id  exponential random variables with parameter A. See David (1981, p. 
20). Postulating the exponential model for the largest rn observations, we 
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construct the test 
-1 n-j 

(5.4.3) 

If cy = 1, Fmj is distributed as Snedecor’s F with 2 j  and 2(m - j )  degrees 
of freedom. If the test rejects cy = 1, one has reason to believe that there are 
estimators superior to the mean. A relatively simple estimator constructed 
with the order statistics is 

i=n-j+l 

) -1 
- - n (g q i )  + j (yn- j  + KjZmj) otherwise, (5.4.4) 

where F, is defined in (5.4.3), Kj is a cutoff value, and 

The estimator of (5.4.4) is a test-and-estimate procedure in which the estimator 
is a continuous function of the sums formed from different sets of order 
statistics. The sample mean is a special case of estimator (5.4.4) obtained by 
setting Kj equal to infinity. 

It is difficult to specify the number of tail observations, m, the number of 
large order statistics, j ,  and the cutoff values, Kj,  to use in constructing the 
estimator for the tail portion. It would seem that m approximately equal to 
one-fifth to one-third of the observations is reasonable for many populations 
and sample sizes. It also seems that one can reduce this fraction in large 
( n  > 200) samples. When the sample is large, setting m = 30 seems to 
perform well. 

In many applications j = 1, and Kj equal to the 99.5 percentile of the F 
distribution works well. The large value required for rejection means that the 
procedure has good efficiency for populations with modest skewness. See 
Fuller (1991a). The results of Rivest (1994) also support the use of j = 1. 

5.5 SMALL AREA ESTIMATION 

Sometimes estimates for a set of small domains are of considerable interest, 
but the sample sizes in the individual domains are not large enough to provide 
direct estimates with acceptable standard errors. In such situations models 
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and auxiliary variables can be used to construct improved estimates for the 
domains. The domains are often geographic areas, and the term small area 
estimation is used as a generic expression for such procedures in the survey 
literature. Rao (2003) describes a large number of procedures and models. 
We present one frequently used model. 

Let the population be divided into M mutually exclusive and exhaustive 
areas. Let survey estimates be available for m, m 5 M ,  of the areas. Let 
yg be the estimate of the mean for the gth area, and let j ig, be a vector of 
known means for a vector of auxiliary variables for the gth area. For example, 
the areas might be metropolitan areas, and the means might be means per 
household. Assume that the j j ,  satisfy the model 

y, = e, + e, (5.5.1) 

and 

where ug is the area effect, -5, is the sampling error, 

e, - ind(O,a:J, 

and ug is independent of Eh for all h and g. This model is also called a 
mixed model because the mean of y for area g is assumed to be the sum of 
a fixed part X,,p and a random part u,. The unknown mean for area g is 

To be comfortable with model (5.5.1) the analyst should feel that the 
observable important differences among areas are included in the vector Z,,. 
That is, after adjusting for Z,,, there is no reason to believe that any area 
is particularly unusual relative to the others. We state our model for means, 
but the nature of the data will vary for different problems. The model could 
be stated in terms of mean per primary sampling unit or mean per element. 
The model could also be defined in terms of small area totals, but we find the 
model (5.5.1) more appealing when expressed in terms of means. 

To introduce the estimation procedure, assume p, cr i ,  g:, are known. Then 
Z,,P and ug + E ,  = y, -5igNp are known for the m sampled areas. If (u, , E , )  
is normally distributed, then (u, + E, ,  u,) is normally distributed and the best 
predictor of u,, given ug + I?,, is 

e, = zgNp + ug. 

f i g  = Tg(Ug + e,), (5.5.2) 

where 



SMALL AREA ESTIMATION 31 3 

is the population regression coefficient for the regression of ug on (u, + E , ) .  
If (u,, E , )  is not normal, (5.5.2) is the best linear unbiased predictor of u,. 
Therefore, a predictor of the mean of y for the gth area is 

e, = %,NP + Tg(Pg - ZgNP) i f g E A  

- - X,NP i f g  $ A,  (5.5.3) 

where A is the index set for small areas in which gg is observed. 
The terms small area estimator and small area predictor are both used in 

the literature. We prefer to describe (5.5.3) as a predictor because ug is a 
random variable. The variance of the prediction error is 

i f g E A  2 - 1 2 2  v{e, - e,> = (0% +a,,) 0 u 0 e g  

- 2  - 0 U  if g $ A. (5.5.4) 

If P is unknown but 02 and o;, are known, the generalized least squares 
See Exercise 8. 

estimator of P is 

-1 
m 

The estimator (5.5.5) of P can be substituted for P in (5.5.3) to obtain the 
unbiased predictor, 

4, = Z g d  + Tg(Yg - XgNfi) i f g E A  
.. 

- - %,NP if g $ A. (5.5.6) 

The prediction variance has an added term due to the estimation of P, 

v{4, - e,} = Tgo,2, + (1 - Tg)2~gNv{fi>x;N i f g  E A 

= 0% + ZgNV{fi}X;, if g $ A, (5.5.7) 

where 

See Exercise 9. 
Estimation becomes even more difficult for the realistic situation in which 

02 is unknown. Although an estimator of $, is often available, estimation of 
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IT; and p requires nonlinear estimation procedures. A number of statistical 
packages contain estimation algorithms for both Bayesian and classical proce- 
dures. For classical estimation, one procedure uses estimators of p and uzg to 
construct an estimator of 0; and then uses the estimator of u; and estimators 
of ozg to construct an improved estimator of p. The predictor is (5.5.3) with 
the estimators of uz,, oi, and ,8 replacing the unknown parameters. 

An estimator of the prediction mean square error (MSE) is 
A -  

v{eg - e,} = ~ ~ 8 2 ,  + (1 - ~ , ) ~ z , ~ v @ } z $ ,  

+ 2(8: + 8:g)v{Tg} i f g E A  

= 8; + zg,Q{B}z;, if g f A ,  (5.5.9) 

where 
V{; lg}  = (8: + oeg) - 2  -4 [ 8:v{8:g} + 8:gv{8:} ] ,  

-1 
m + 8:g)-1zgN) , 

8gg is an estimator of ozg based on d, degrees of freedom, and d, + 1 is 
typically the number of primary sampling units in the small area. Many 
computer programs will provide an estimate of the variance of u;, where the 
estimated variance of 8; will depend on the particular algorithm used. 

One estimator of o; is 

m 

g=3 

with the estimated variance 
m 

g=1 

where Ic is dimension of xg and 

Construction of the estimator requires iteration because K~ depends on 82. 
See Prasad and Rao (1990), Rao (2003), and Wang and Fuller (2003) for 
derivations and alternative estimators. 
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Example 5.5.1. We illustrate small area estimation with some data from the 
US. National Resources Inventory (NRI). The NRI was described in Example 
1.2.2. 

In this example we use data on wind erosion in Iowa for the year 2002. 
The analysis is based on that of Mukhopadhyay (2006). The data had not 
been released at the time of this study, so the data in Table 5.13 are a modified 
version of the original data. The general nature of the original estimates is 
preserved, but published estimates will not agree with those appearing in the 
table. The Ng is the population number of segments in the county and ng 
is the sample number of segments. The variable y is the cube root of wind 
erosion. This variable is not of subject matter interest in itself but is used for 
illustrative purposes. There are 44 counties in Iowa for which wind erosion 
is reported. There were observations in all 44 counties in the study, but for 
purposes of this illustration we assume that there are four additional counties 
with no sample observations. 

Wind erosion is a function of soil characteristics. The soils of Iowa have 
been mapped, so population values for a number of soil characteristics are 
available. The mean of the soil erodibility index for the county is used 
as the explanatory variable in our model. For our purposes, the sample of 
segments in a county is treated as a simple random sample. A preliminary 
analysis suggested that the assumption of a common population variance for 
the counties was reasonable. Therefore, we assume that the variance of the 
mean wind erosion for county g is nilo;, where ng is the number of segments 
in county g and 02 is the common variance. We treat 0: = 0.0971 as known 
in our analysis. Thus, our model is 

g g  = Qg + eg ,  (5.5.10) 

where ug is independent of e j  for all g and j ,  x g N  = [l, O . l ( F l , g , N  - 9 ) ] ,  
F I , ? , ~  is the population mean erodibility index for county g and gg is the 
estimated mean wind erosion for county g. The erodibility index was reduced 
by 59 in the regression to facilitate the numerical discussion. 

Using a program such as PROC Mixed of SAS, the estimated model pa- 
rameters are 
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()0,)1,8:) = (0.770, 0.155, 0.0226), 
(0.026) (0.024) (0.0062) 

where the estimates are based on the 44 counties with erosion values and the 
estimator of C T ~  is the maximum likelihood estimator. 

The estimated parameters were used to construct the predictions of the 
erosion measure given in Table 5.13. For the first county in the table, 

8 3  = T 3 Y 3  + (1 - T 3 ) 2 3 N b ,  

= 0.466, 

where j 3  = [0.0226 + (13)-10.0971]-1(0.0226) = 0.7516 and X s N  = 
(1, -1.232). The standard errors of Table 5.13 were computed using (5.5.9) 
treating a: as known. For county 3 the model standard error of 0.077 is about 
89% of the design standard error of 0.086. County 167 has 44 observations, 
rj/167 = 0.942, and the model standard error is about 99% of the design 
standard error. The difference between the design standard errors and the 
prediction standard errors are modest because the oig are small relative to 8;. 

Table 5.13: Data on Iowa Wind Erosion 

Erodibility S.E. of 
County Ng ng Index Yg 8, Prediction 

3 1387 13 46.683 0.429 0.466 0.077 
15 2462 18 
21 2265 14 
27 2479 19 
33 2318 18 
35 1748 12 
41 2186 16 
47 3048 19 
59 1261 12 
63 1822 15 
67 1597 11 
71 1345 15 
73 1795 12 
75 2369 13 
77 2562 15 
79 1899 11 
83 2486 16 
85 2241 19 
91 2066 15 

58.569 
65.593 
47.727 
52.802 
72.130 
59.079 
49.757 
53.694 
63.563 
44.947 
56.807 
54.182 
40.95 1 
48.605 
74.98 1 
57.455 
66.700 
56.118 

0.665 
1.083 
0.788 
0.869 
1.125 
0.683 
0.408 
0.839 
0.754 
0.690 
0.927 
0.945 
0.619 
0.475 
0.790 
0.647 
0.727 
1.120 

0.684 
1.034 
0.753 
0.831 
1.085 
0.701 
0.448 
0.799 
0.773 
0.651 
0.885 
0.879 
0.587 
0.504 
0.854 
0.668 
0.757 
1.032 

0.067 
0.074 
0.066 
0.067 
0.079 
0.070 
0.066 
0.079 
0.072 
0.082 
0.072 
0.079 
0.077 
0.072 
0.082 
0.070 
0.066 
0.072 

Continued 
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Erodibility S.E. of 
County Ng ng Index yg 8, Prediction 

93 1385 10 61.830 0.677 0.718 0.084 
109 
119 
129 
131 
133 
135 
141 
143 
145 
147 
149 
151 
153 
155 
157 
161 
165 
167 
169 
187 
189 
193 
195 
197 
20 1 
202 
203 
204 

2752 18 
1753 29 
1270 12 
1232 10 
2943 24 
1190 15 
1567 11 
1511 10 
1772 16 
2716 17 
3877 16 
1823 10 
1580 18 
4405 21 
2121 13 
2423 16 
2327 12 
3180 44 
1862 16 
3011 15 
1644 10 
2319 17 
1290 16 
1754 11 
1822 
151 1 
3877 
301 1 

64.255 
61.605 
58.739 
48.739 
73.121 
45.417 
81.911 
56.229 
40.862 
60.8 1 1 
80.541 
63.190 
48.503 
62.348 
44.462 
66.55 1 
47.496 
72.262 
54.794 
58.420 
76.335 
75.142 
46.488 
71.380 
63.563 
56.229 
80.541 
58.420 

0.968 0.945 
0.703 0.717 
0.616 0.656 
0.422 0.478 
1.045 1.037 
0.363 0.407 
1.424 1.340 
0.975 0.900 
0.451 0.459 
0.945 0.915 
1.065 1.073 
0.918 0.893 
0.670 0.658 
0.619 0.653 
0.578 0.570 
0.719 0.754 
0.376 0.432 
0.954 0.956 
0.583 0.609 
0.874 0.849 
1.256 1.191 
0.905 0.928 
0.599 0.594 
0.577 0.685 

0.841 
0.727 
1.104 
0.761 

0.067 
0.055 
0.079 
0.084 
0.060 
0.072 
0.083 
0.084 
0.071 
0.069 
0.071 
0.084 
0.067 
0.063 
0.077 
0.070 
0.079 
0.045 
0.070 
0.072 
0.085 
0.069 
0.07 1 
0.082 
0.153 
0.153 
0.161 
0.153 

The prediction for a county with no observations is ggN,d and has a variance 

V{gg - 0,) = V{rt,P} + o;, 
estimated by 

V{eg - 0,) = x,,V{,d}x;, + g ,  
where the estimated covariance matrix of ,d is 

6.65 0.04 ) 10-4 

v{” = ( 0.04 5.77 
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Thus, the estimated prediction variance for county 201 is 

P{eZOl - eZO1} = (1,0.456)V{b}(l, 0.456)’ + 6; 
= 7.8894(1OW4) + 0.0226 = 0.0234. 

The estimated variance of ug is the dominant term in the estimated prediction .. variance when there are no observations in the county. 

In many situations the standard error of the direct survey estimate for the 
overall total is judged to be acceptable, whereas those for the small areas are 
judged to be too large. In such situations the practitioner may prefer small 
area estimates that sum to a design consistent survey estimate of the total. 
That is, it is requested that 

M 

C Ngeg = Ty,  (5.5.11) 
y=1  

where Ng is the number of elements in small area g, 6, is the small area 
predictor, and Ty is a design-consistent estimator of the total of y. If (5.5.11) 
is satisfied, the predictions are said to be benchmarked and the small area 
procedure becomes a method for allocating the design-consistent estimated 
total to the small areas. Two situations for benchmarking can be considered. 
In one the design-consistent estimator has been constructed using information 
not used for the small area estimation. Procedures appropriate for this situation 
have been reviewed by Wang, Fuller, and Qu (2009). 

We consider benchmarking for the situation in which information to be 
used to construct the design consistent estimator is that used in the small area 
estimation. Under model (5.5.1), T g N  is known for all small areas and it 
follows that the population total 

M 

(5.5.12) 
g=1 

is known. Given the information available on x, it is natural to use the 
regression estimator as an estimator for the total of y. If 0 2 ~  and 0: are known, 
the generalized least squares estimator (5.5.5) is the preferred estimator for 
P,  and a regression estimator of the total of y is 

T y p g  = T X P ,  (5.5.13) 

where 
= (x/v-lx) -l x’v-‘y, 
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V = diag(o: + oig)! X is the m x k matrix with gth row equal to Xgh-! y' = 
( G I !  y2 ,  . . . , yg, . . . ! ym), and the estimator of p of (5.5.13) is identically equal 
to the estimator b of (5.5.5). We investigate the design consistency of estima- 
tor (5.5.13) permitting the number of small areas with a direct observation yg 
to be less than M .  Let 7rg denote the probability that area g is observed and as- 
sume that (yg, Xg) is design unbiased for ( j j g N ,  Z g N ) .  Then a design-unbiased 
estimator of the vector of totals is 

It follows that the regression estimator (5.5.13) will be design consistent for 
the total of y if there is a vector c1 such that 

(5.5.14) - 
XgNCl = 7r,'Ng(0: + & 

for all g. See Corollary 2.2.3.1. 

sion estimator of the total, we require that 
For the weighted sum of the small area predictors to be equal to the regres- 

M 

g=1 

M 

= Z N g I X g i v B  + 7g(Yg - % 9 N i 3 1 !  (5.5.15) 
g=1 

where it is understood that the predictor is Xj,b  if area j is not observed. 
Because T, = xEl NgZgN,  the requirement (5.5.15) becomes 

m 

g= 1 

where m is the number of small areas observed, and the requirement (5.5.15) 
is satisfied for estimator (5.5.13) if there is a vector cp such that 

(5.5.16) 

for all g. See Exercise 12. Thus, if Ng and 7r;'Ng(o: + 0 2 ~ )  are in the 
column space of X, the weighted sum of the small area predictors is equal to 
the design-consistent regression estimator of the total. 

Typically, 02g will not be known for the unobserved areas, but 7rs1Ng 
will be known. In some situations the rule defining ng as a function of Ng 

- 
xgNc2 = N g  
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is known and one may be willing to assume that 02, is of the form ni'u:. 
Then 7rg'Ngu~, = .rrglNgnglu: can be treated as known for the unobserved 
areas. 

To consider the case where pig is unknown, we adopt some of the notation 
of Section 2.3 and let zg = ( R Q ~ ,  zdS), where 

zd = x d  - Xo(XbV-lXo)-lXbV-lXd, (5.5.17) 

Xd is the vector of observations on zd.g = 7rg'Ng(o: + XO is the 
matrix of observations on the other explanatory variables, and V is defined in 
(5.5.13). The population mean of XO is known, but the population mean of Zd 

is unknown. Following the development of Section 2.3, we let 

& = (&b, &d)' = (z 'v-1z)-1Z'v- ly ,  (5.5.1 8) 

where Z = (XO, zd). Then the regression estimator (2.3.22) is 

Yreg = (RO,.,N, = g7r + (XO,.,N - ~ 0 7 r ) & O :  (5.5.1 9) 

where 

(YT, %or, Zdr) = 
SEA 

and is the population mean of XO. The small area predictors are 

e, = %,,ti + hj,(y, - Z g N & )  

= R g d  + " j @ g  - X,N& i f g E A  

and 

6, = (XO,g,,v, Z d 7 r P  if g $ A. (5.5.20) 

When Yg is observed, the estimated MSE of 8, is of the form (5.5.9) and, in 
the current notation, is 

If yS is not observed, the estimation error is 
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and an estimator of the MSE is 

- 2  2 
W g  - 0,) = ( z o : g , N ,  2 d a ) v { & ) ( r t 0 , g , N ,  Zdn)' + + 6:, (5.5.21) 

where 
/ \ -1 

Example 5.5.2. To illustrate the construction of small area estimates 
constrained to match the regression estimator, we use the data of Table 5.13. 
We assume, for the purposes of this example, that the sample of 44 counties 
is a simple random sample selected from a population of 48 counties. Then 
7rg = 44/48 for all counties. To satisfy (5.5.14) and (5.5.16), we add multiples 
of ~;'N~(62 + n; '~,")  and Ng to model (5.5.10), letting 

- 
Xg, = ( L Z 2 , 9 , N ,  23:g;,, Z4,9,N) 

_. -. [l, O . l ( F ~ , g , ~ ~  - 59), O.OINg, 0.01Ng(6: + TL;'&?)]. 

We iterate the estimation procedure redefining ZgN at each step and using 62 
from the previous step until 

(m - k)-'(y - x@'V-'(y - X$) = 1.00, (5.5.22) 

where 

V = diag(62 + n; '~,") ,  the gth row of X is $,, and m - k = 40. The 
vector of estimates is 

(,!$,b2,j3,j4,6:) = (0.800, 0.160, -0.016, 0.452, 0.0256), 
(0.111) (0.026) (0.026) (0.897) (0.0066) 

6 = (x'V-lX)-lx'V-1y, 

(5.5.23) 

where the standard errors for the elements of ,h are the square roots of the 
diagonal elements of (X'V-'X)-'. The variance of 6: was estimated by 

= (20)-1(33.8031)-2 = (0.0066)2; (5.5.24) 

obtained from a Taylor expansion of equation (5.5.2). See Exercise 16. The 
estimate of 0: differs from that of Example 5.5.1 because of the additional 
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explanatory variables and because the current estimator differs from the max- 
imum likelihood estimator used in Example 5.5.1. 

If the small areas are not selected with equal probability, the estimator of 
0; should recognize this fact. See Pfeffermann et al. (1998). 

Because xd,g = ~ 4 , ~  is unknown for the unobserved counties, we construct 
the design-consistent regression estimator (5.5.19) for the mean of y. We 
define 24 = Zd to be the deviations from the weighted regression of x4 on 
(1, 2 2 , g N ,  2 ~ 3 , ~ ~ ~ ) .  Then the vector of regression coefficients for the weighted 
regression of y on (1,22,gN,23,g,N, .qg), the & of (5.5.18), is 

&' - - (0.831, 0.161, -0.003, 0.453). (5.5.25) 

(0.090) (0.026) (0.004) (0.897) 

A design-consistent estimator of the mean of Zd is 

== -0.0013 

and the regression estimator (5.5.19) of the population mean of y is 

The regression estimated mean of 0.7887 corresponds to an estimated total of 
81,441.28. 

The county predictions of (5.5.20) are given in Table 5.14. The values 
predicted differ slightly from those of Table 5.13, primarily because of the 
difference in 6:. The standard errors for the predictions for counties with a y 
observation are computed using (5.5.9), and the standard errors for counties 
with no y observation are computed using (5.5.21). 

= (0.453)2(0.00099) adds little to the variance of pre- 
dictions for areas with no y observations because sZd is small. The standard 
errors of Table 5.14 are sometimes slightly larger than those of Table 5.13 
because more parameters are being estimated and the estimate of 02 is larger 
than that used to construct Table 5.13. 

The term 
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Table 5.14: Predictions with Sum Constrained to Regression 
Estimator 

S.E. of 
8, Prediction - 

County x4, xgNb yg -xgN,d 
3 0.4084 0.5906 -0.1615 0.466 0.077 

15 
21 
27 
33 
35 
41 
47 
59 
63 
67 
71 
73 
75 
77 
79 
83 
85 
91 
93 

109 
119 
129 
131 
133 
135 
141 
143 
145 
147 
149 
151 
153 
155 

0.6739 
0.6549 
0.6716 
0.6345 
0.5256 
0.6131 
0.8257 
0.3792 
0.5184 
0.4920 
0.3827 
0.5398 
0.6976 
0.7290 
0.5850 
0.6973 
0.6071 
0.5878 
0.4389 
0.7533 
0.4440 
0.3819 
0.3904 
0.7659 
0.3386 
0.4827 
0.4788 
0.4970 
0.7521 
1.0874 
0.5777 
0.4325 
1.1719 

0.748 1 
0.8799 
0.571 1 
0.6584 
0.9995 
0.7679 
0.5924 
0.7075 
0.8486 
0.5708 
0.7469 
0.7120 
0.4901 
0.5993 
1.0505 
0.7374 
0.8793 
0.7262 
0.8471 
0.8337 
0.7934 
0.7881 
0.6374 
0.9541 
0.5667 
1.1623 
0.7576 
0.4828 
0.7834 
1.0855 
0.8694 
0.6032 
0.7575 

-0.083 1 
0.2034 
0.2173 
0.2105 
0.1250 

-0.0854 
-0.1842 

0.1312 

0.1189 
0.1802 
0.2327 
0.1287 

-0.09 5 0 

-0.1246 
-0.2605 
-0.0902 
-0.1525 
0.3936 

0.1339 
-0.1703 

-0.0907 
-0.17 19 
-0.2 1 5 7 
0.0912 

0.2614 
0.2175 

0.1619 

0.0488 
0.0670 

-0.1386 

-0.2033 

-0.03 14 

-0.0208 

0.679 
1.040 
0.752 
0.832 
1.094 
0.699 
0.439 
0.807 
0.773 
0.659 
0.891 
0.889 
0.590 
0.500 
0.857 
0.664 
0.752 
1.040 
0.724 
0.944 
0.7 13 
0.658 
0.48 1 
1.033 
0.404 
1.357 
0.913 
0.457 
0.915 
1.069 
0.905 
0.658 
0.640 

0.067 
0.074 
0.066 
0.067 
0.079 
0.070 
0.066 
0.079 
0.072 
0.082 
0.072 
0.079 
0.077 
0.073 
0.083 
0.070 
0.066 
0.072 
0.085 
0.067 
0.055 
0.079 
0.085 
0.060 
0.073 
0.083 
0.085 
0.07 1 
0.069 
0.072 
0.085 
0.067 
0.064 

157 0.6246 0.5485 0.0294 0.571 0.077 
Continued 
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S.E. of 
- County xqg xgN,d gg - SZg,,d Q, Prediction 

161 0.6796 0.8839 -0.1653 0.750 0.070 
165 
167 
169 
187 
189 
193 
195 
197 
20 1 
202 
203 
204 

0.6997 
0.7691 
0.5223 
0.8567 
0.5210 
0.6422 
0.3618 
0.5403 
0.5282 
0.4504 
1.0408 
0.8240 

0.6018 
0.908 1 
0.7043 
0.7503 
1.0795 
1.0192 
0.5802 
0.9933 
0.8528 
0.7434 
1.0683 
0.7362 

-0.2261 
0.0462 

0.1239 
0.1767 

0.01 89 

NA 
NA 
NA 
NA 

-0.1215 

-0.1143 

-0.4164 

0.430 
0.95 1 
0.606 
0.849 
1.208 
0.926 
0.595 
0.684 
0.853 
0.743 
1.068 
0.736 

0.080 
0.046 
0.070 
0.073 
0.086 
0.069 
0.071 
0.082 
0.164 
0.165 
0.180 
0.167 

Because c N,?g(Yg - R g N a  = 0, 
96'4 

the weighted sum of the predicted values for the 48 counties in Table 5.14 is 

48 

C NgQ, = 81,441.28, 
g=1 

equal to the regression estimator of the total. The sum of the predictions in 
Table 5.13 is 81,605. 

In this example wind erosion has a small correlation with the sampling 
weight, so the weighted sum of predictions constructed with Ng and Ng(6t  + 
n;'& included in the set of explanatory variables differs little from the 
weighted sum constructed with only (1, Z I , ~ , , ~ )  as the explanatory vector. 

5.6 MEASUREMENT ERROR 

5.6.1 Introduction 

Essentially all data are collected subject to measurement error, and the design 
of collection instruments to minimize measurement error is an important 
part of the discipline of survey sampling. The mean and variance of the 
measurement process are both important. The mean is typically the most 
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difficult to evaluate, because some determination of the “truth” is required. 
In survey sampling, external sources, perhaps available at a later time, can 
sometimes be used to estimate bias. If a reliable external source is available, 
the collection instrument can be recalibrated. 

The variance of the measuring operation can sometimes be estimated by 
repeated independent determinations on the same element. One measure of 
the relative magnitude of the variance of measurement error is the correlation 
between two independent determinations on a random sample. This measure 
is called the attenuation coeflcient and is denoted by K~~ for the variable x. 
We adopt the convention of using a lowercase letter to denote the true value 
and a capital letter to denote the observed value, where the observed value 
is the sum of the true value and the measurement error. The K~~ gives the 
relative bias in the simple regression coefficient of y on X as an estimator of 
the population regression of y on x. For continuous variables, K~~ is the ratio 
of the variance of the true z to the variance of observed X .  

Fuller (1987b, p. 8) reports on a large study conducted by the U.S. Census 
Bureau in which determinations were made on a number of demographic 
variables in the Decennial Census and in the Current Population Survey. The 
two surveys gave two nearly independent determinations. The attenuation 
coefficient for education was 0.88, that for income was 0.85, and that for 
fraction unemployed was 0.77. Thus, for example, of the variation observed 
in a simple random sample of incomes, 15% is due to measurement error. 

5.6.2 Simple estimators 

Consider a simple measurement error model in which the observation is the 
true value plus a zero-mean measurement error. Let X i  be the observed value, 
and xi be the true value, so that 

(5.6.1) 

where ui is the measurement error. Assume that ui is independent of xj 
for all i and j. Assume that a sample of size n is selected from a finite 
population of x values and that the measurement process satisfies (5.6.1). Let 
the Horvitz-Thompson estimator of the total be constructed as 

Tx = c w i x i .  
iEA 

where wi = ~ ~ 7 ’ .  Because the estimator based on the true values, 

(5.6.2) 

iEA 
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is unbiased for T,, TX is also unbiased for T,. That is, 

E{E(?x I 3x1 I Fx} = E{Tx 1 F Z }  = T,, 

where 3x = ( X I ,  X 2 , .  . . , X,) and 3, = (XI, z2,. . . , x,) is the set of true 
x values. 

Given that zi is independent of u j  for all i and j. 

where Tx = &AQ. The variance of Fu = C i E ~ w i u i  is a function of 
the covariance structure of u = (ui,u2,. . . ,un), and if ui N ind(O,a;), 
independent of (zj, wj) for all i and j, then 

(5.6.4) 

2 = V{F, - T,} + C(1 - 7ri)wiau, 

iEU 

(5.6.5) 

where 

It follows that 

E{VHT(?x - Tx I Fx) I F,} - V{Tx - T, 1 F,} = -Na:. (5.6.6) 

Thus, if the measurement errors have zero means, are independent of z and 
w, and are independent, the expectation of a design linear estimator in the 
observed values is equal to the expectation of the estimator in the true variables. 
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Furthermore, the bias in the Horvitz-Thompson estimator of variance is small 
if the sampling rates are small. See Exercise 6. 

The assumption of independent measurement errors is critical for result 
(5.6.6) and the result does not hold with personal interviews, where each 
interviewer collects data from several respondents. See Hansen et al. (195 1). 
The traits of the interviewer lead to correlation among responses obtained 
by that interviewer. To illustrate the effect of correlated measurement error, 
assume that a simple random sample of size n = mk is selected and each 
of k interviewers is given an assignment of m interviews, where assignment 
is at random. Assume that interviewers have an effect on the responses and 
that it is reasonable to treat the k interviewers as a random sample from the 
population of interviewers. With these assumptions a representation for the 
observations is 

Ygj = p + e3 + ag + E g j ,  (5.6.7) 

where p is the superpopulation mean, ej = y j  - p,  y j  is the true value, ag 
is the interviewer effect for interviewer g, and eg j  is the measurement error 
for person j interviewed by interviewer g. We consider the relatively simple 
specification 

ag N ii(O,ai), 

E g j  N i i (0 ,  a:), 

and assume ag, ~ , j ,  and ei to be independent for all g, T ,  j ,  and i .  Then 

V { Y .  - y N  I Fy} = V { e ,  + 6, + c,, 1 Fg} 
= (1 - fn)n-lS: + k-'aZ + n-la;, (5.6.8) 

where 

g=1 

and fn = N-'n. Because there is one observation per person, the summation 
over g j  is a summation over persons. For large interviewer assignments the 
term k-'a; can be very important even when a: is relatively small. 

The usual estimator of variance is seriously biased. For a simple random 
sample, 

E { s $ }  = a: + 0: + n(n - 1)-lm-'(m - l)& (5.6.9) 
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where 
s$ = (n - 1)-l c (Y,j - Q2 

g j E A  

and 02 = E{S;}.  

Example 5.6.1. Let model (5.6.7) hold and assume that 02 is 2% of 02 and 
that 02 is 15% of 02.  Let a simple random sample of 1000 be selected, and 
let each of 20 interviewers be given a random assignment of 50 interviews. 
If the finite population correction can be ignored, the variance of the sample 
mean is 

V { Y ,  - YN} = n- ' (~ ,"  + 0.150;) + 0.021c-l0,2 = 0.0021502. 

Although the variance of the interviewer effect is small, it makes a large 
contribution to the variance because each interviewer has a large number of 
interviews. By (5.6.9) 

E{s;} = 1.16960; 

and the usual estimator of variance of p, has a bias of -45.6%. 
By treating interviewer assignments as the first stage of a two-stage sample, 

it is possible to construct an unbiased estimator of the variance of p.. Under 
the assumptions that the interviewer assignments are made at random and 
that the finite population correction can be ignored, an unbiased estimator of 
V { Y ,  - j j N }  is 

20 

g=1  

where y,, is the mean for the gth interviewer. .. 
Many large-scale surveys are stratified multistage samples. In such sur- 

veys the interviewer assignments are often primary sampling units. If an 
interviewer is not assigned to more than one primary sampling unit, and if the 
finite population correction can be ignored, the usual variance estimator for a 
design linear estimator remains appropriate. 

Situations that seem simple at first can be quite difficult in the presence of 
measurement error. The estimation of the distribution function is an example. 
Assume that 
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where ei N N I ( 0 ,  o,"), independent of yi. Then the mean of Y,  for a simple 
random sample is an unbiased estimator of p,  but the estimator 

iEA  

where 

6 i ( Y O )  = 1 if Y,  5 yo 

= o  otherwise, 

is, in general, biased for the probability that yi < yo. The mean of ei is zero 
for yi, but the mean of the measurement error for &(yo) is not zero. 

If ei N N I ( 0 ,  oz) and if yi N N ( p ,  0;) then Y,  - N ( p ,  IT; + 02) and the 
parameters of the distribution function of yi are easily estimated. Similarly, 
one can use likelihood methods to estimate the parameters of the distribution 
if one can specify the form of the distribution of yi and the form of the error 
distribution. 

Nonparametric or semiparametric estimation of the distribution function 
in the presence of measurement error is extremely difficult. See Stefanski 
and Carroll (1990>, Cook and Stefanski (1994), Nusser et al. (1996), Cordy 
and Thomas (1997), Chen, Fuller, and Breidt (2002), and Delaigle, Hall, and 
Meister (2008). If uz is known, the variable 

has sample mean and variance equal to estimators of the mean and variance 
of y, where those estimators are (by, 8;) = (Y, 8: - 02) and (Y: 8:) is an 
estimator of the mean and variance of Y .  Therefore, the sample distribution 
function of z is a first approximation to the distribution function of y that can 
be used to suggest parametric models for the distribution of yi. 

5.6.3 Complex estimators 

As demonstrated in the preceding section, measurement error with zero mean 
increases the variance of linear estimators, but the estimators remain unbiased. 
Alternatively, the expectation of nonlinear estimators, such as regression coef- 
ficients, can be seriously affected by zero-mean measurement error. Consider 
the simple regression model, 

yi = Po + Ic lzPl + ei, (5.6.10) 

where ei N (0,a:) independent of xli. Assume that the observation on 
the explanatory variable is X l i  = 1c1i + ui, where ui N ind(0,oi) is the 
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measurement error as specified in (5.6.1). Consider the finite population to be 
a simple random sample from an infinite population where (yi, zli) satisfies 
(5.6.10). Given a probability sample, the weighted estimator 

T = (X’D;~X)-~X’D;~~, (5.6.11) 

where D, = d i a g ( ~ 1 , ~ 2 , .  . . ,rn),  X’ = (Xi,Xh> . . .  ,XL), and Xi = 
(1, Xli), was discussed in Chapter 2. We call the estimator 9 because, in the 
presence of measurement error, we shall see that is a biased estimator of p. 
The estimator of the coefficient for Xli can be written 

Under the assumption that ui is independent of ( q i ,  ~ i ,  e i ) ,  and under the 
usual assumptions required for consistency of a sample mean, 

and 

where F ( Z , Y ) , N  = “ Y l ,  ql)! (Y2,  q 2 ) ,  * ’ .  , (YN, q N ) ]  is the finite popula- 
tion of values for the true z1 and y. Then 

(5.6.13) 2 -1 
91 = cs:,, + 0,) &y,N + 0 p ( n - l i 2 )  

and -iil is a consistent estimator of (n: + o2)-lcrZy = 1~,,/31. 

Consistent estimation of /31 requires additional information beyond the set 
of (yi, Xi) vectors. There are several forms for such information. If we know 
IC,, or have an estimator of IC.,,, then 

b 1 , K  = &?l (5.6.14) 

is a consistent estimator of PI.  For example, one could use the estimate of IC,, 

from the U.S. census study if the explanatory variable is education. Similarly, 
if 02 is known, or estimated, 

Bl,g = ( C[(X1i  - XlJ2 - 0: 1.; - XlT)T;l(Yi - Y,) 

(5.6.15) 
iEA 
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is a consistent estimator of PI. The matrix expression for the estimator of p 
is 

where C,, = diag(0, a;), Xi = (1, X l i ) ,  and 

& = (Mx,x - &L,)-lMXnyr 

i E A  

Our usual Taylor approximation gives 

and 

V H T { 6 H T }  = V H T  { ( ~ r r ; l ) - ‘ ~ x : r r &  
ZEA ZEA 

is computed using iii = yi - j jHT - ( X l i  - XlHT)b0. In most situations 
one is interested in 0 as a superpopulation parameter. If so, finite population 
corrections are not appropriate. See Chapter 6. 

Establishing the relationship between two error-prone measures is an im- 
portant application of measurement error models. In some situations there is 
a relatively inexpensive procedure appropriate for large-scale data collection 
and an expensive procedure believed to be unbiased for the characteristic of 
interest. Then a subsample may be used to study the relationship between 
the two measures. Similarly, if one measuring procedure is to be replaced by 
another, it is important to establish the relationship between the two measures. 
Example 5.6.2 is an illustration. 

Example 5.6.2. The National Resources Inventory is described in Example 
1.2.2. In 2004, the Natural Resources Conservation Service changed the way 
in which data were collected for the segments. In 2003 and in prior years, 
the data collectors outlined, on a transparent overlay placed on an aerial pho- 
tograph, the areas designated as developed. Developed land includes urban 
areas, built-up areas, and roads. Beginning in 2004 a digital process was used 
in which roads and certain types of developed land, such as manufacturing 
plants and cemeteries, were outlined digitally, but for single- or double-unit 
residences, the location of the residence was entered as a simple “dot” loca- 
tion. A computer program was designed to convert the digital information to 
area information. To calibrate the computer program, a study was conducted 
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in which two data collectors, using the new procedure, made independent 
determinations on segments that had been observed in 2003. The determi- 
nations were treated as independent because only unmodified photographs 
were available to the data collector for each determination. See Yu and Legg 
(2009). 

We analyze data collected in the calibration study for the western part of 
the United States. The data are observations where at least one of the three 
determinations is not zero. The computer program has parameters that can 
be changed to improve the agreement between the old and new procedures. 
Our analysis can be considered to be a check on parameters determined on a 
different data set. 

Let (Y1i , Yzi, Xi) be the vector composed of the first determination by 
the new procedure, the second determination by the new procedure, and the 
determination by the old procedure, respectively. In all cases, the variable 
is the fraction of segment acres that are developed. The old procedure is 
assumed to be unbiased for the quantity of interest. Our analysis model is 

Y j i  = Po + PlG, 

2i N ind(O,& 

eji N ind(0,  czi), 

uz N ind(O,I&), (5.6.1 6) 

for j = 1, 2, and it is assumed that ui;  ejt, and xi are mutually indepen- 
dent. It seems reasonable that the measurement error has smaller variance for 
segments with a small fraction of developed land than for segments with a 
fraction near 50%. One could specify a model for the error variance, but we 
estimate the model estimating the average variance of ui, denoted by D : , ~ ,  

and the average variance of ei, denoted by c:,,. 

( K i , Y i i $ X i )  = ( ~ i , ~ i , ~ i )  + (eli ,e2i,ui) ,  

To estimate the parameters, it is convenient to define the vector 

Zi = (Zl i ,  Z2i: Z3i) = [ X i ,  0.5(Yii + Yii), (0.5)0'5(Y1i - Yzi)] (5.6.17) 

and let 

Then 

E{m} = (5.6.18) 
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If the elements of Zi are normally distributed, mi3 and m23 contain no infor- 
mation about the parameters because E(ml3, m23) = 0 and the covariance 
between ( ~ ~ 1 3 ,  m23) and the other elements of m is the zero vector. If the 
distribution is not normal, it is possible that ( ~ ~ 1 3 ,  ~ ~ 2 3 )  contains information, 
but we ignore that possibility and work only with (mil, m12, m22 , m33). By 
equating the sample moments to their expectations, we obtain the estimators 

/$) = 2 1  - b 1 2 2 :  

- -1 - 2  b1 
62 = (m22 - 0 . 5 ~ ~ 3 3 )  m12 - oy mI2, 

= m1i(77222 - 0.5m33) = m12 fly, 

-1 2 - - - 2  2 

2.e = m33, 
- 2  -1 2 - - 2  
O'a,u = m1l - (m22 - 0.5m33) mi2 - mll - 0,: (5.6.19) 

where 6; = m22 - 0.5m33. 
For our sample of 382 segments, 

(Zl,Z2) = (0.1433, 0.1464), 

(0.0073) (0.0070) 

(mil ,  m12, ~ ~ 2 2 , 7 7 2 3 3 )  = (2.061, 1.758, 1.873, 0.060) x lop2, 
(0.184) (0.129) (0.120) (0.014) 

(bo, b1) = (-0.0039, 1.0482): 

(0.0037) (0.0374) 

and 

100(8&, 8i,u,  62) = (0.0601, 0.3837, 1.6775): 

(0.0139) (0.0546) (0.1583) 

where the standard errors were calculated with 382 delete-one jackknife repli- 
cates. The jackknife is appropriate under model (5.6.16) because all estimators 
are continuous differentiable functions of the moments. Also see Exercise 15. 

The calibration sample was selected to have a much higher fraction of seg- 
ments with developed land than the general population of segments. Because 
our analysis is conducted on unweighted data, (b2,  62) is not an estimate for 
the general population. 

The estimated variance of 6& is much larger than one would expect if 
ei N N(O,o,"). There are two reasons: (1) the ei have unequal variances, and 
(2) the distribution of the measurement errors has long tails. 
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The approximate F test for HO : (PO, PI) = (0 , l )  is 

F(2,380) = o.5(p0, bl - l)[p{&, f ~ l } ] - ' ( j o ,  p1 - 1)' = 0.83: 

where the estimated covariance matrix for (bo7 bl) is 

Also, plots of the data give little indication of a nonlinear relationship between 
the old and new procedures. Therefore, the data are consistent with the 
hypothesis that the new measuring procedure produces values that are equal .. to the true value plus a zero-mean measurement error. 

5.7 REFERENCES 

Section 5.1. Chang and Kott (2008), Fuller and An (1998), Fuller, Loughin, 
and Baker (1994), Kalton and Kasprzyk (1986), Kalton and Kish (1984), 
Kott (2006b), Little (1983b, 1988), Little and Rubin (2002), Meng 
(1994), Sande (1983), Sarndal(1992). 

Section 5.2. Chen and Shao (2000,2001), Fay (1996, 1999), Fuller and Kim 
(2005), Kim and Fuller (2004), Kim, Fuller, and Bell (2009), Rancourt, 
Surndal, and Lee (1994), Rao and Shao (1992), Siirndal (1992). 

Section 5.3. Cressie (1991), Wolter (2007). 

Section 5.4. Fuller (1991), Hidiroglou and Srinath (1981), Rivest (1994). 

Section 5.5. Battese, Harter, and Fuller (1988), Fay and Hemot (1979), 
Ghosh and Rao (1994), Harville (1976), Kackar and Harville (1984), 
Mukhopadhyay (2006), Pfeffermann and Barnard (1991), Prasad and 
Rao (1990, 1999), Rao (2003), Robinson (1991), Wang and Fuller 
(2003), Wang, Fuller, and Qu (2009), You and Rao (2002). 

Section 5.6. Biemer et al. (1991), Carroll, Ruppert, and Stephanski (1993, 
Fuller (1987b, 1991b, 1995). Hansen et al. (1951), Hansen, Hunvitz, 
and Pritzker (1964), Yu and Legg (2009). 

5.8 EXERCISES 

1. (a) (Section 5.2) Let a simple random sample of size n have m missing 
values and T respondents. Assume that response is independent of 
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y. Let a simple random replacement sample of M of the respon- 
dents be used as a set of donors for each missing value. Each 
donated value is given a weight of n-’M-’. Show that the vari- 
ance of the imputed mean is 

V{Yl 1 (F ,m)}  = (r-’ - N-’)Sy” + nP2M-’ mr-l(. - 1)s;. 
(b) Assume that m values are missing and T are present in a simple 

random sample of size n and assume that the probability of response 
is independent of y. The data set is completed by imputing a single 
value for each missing value. Let m = kr  + t ,  where k is the 
largest nonnegative integer such that kr  5 m. Consider a hot 
deck procedure in which r - t respondents are used as donors k 
times, and t respondents are used as donors k + 1 times. In human 
nonresponse, k is generally zero. The t respondents are chosen 
randomly from the r .  Show that the variance of the imputed mean 
is 

V { Y ~  I F, m} = (T-’ - N-’) sy” + n-2tr-1 ( r  - t )  sy”. 
2. (Section 5.2) Using the data of Table 5.2, compute the estimated mean 

of y for each of the three 2-categories. Using the replicates of Table 5.5, 
estimate the variance of your estimates. 

3. (Section 5.2) Using the replicates of Table 5.7, estimate the variance 
of the estimated mean of 2,  where z is as given in Table 5.6. Is this a 
design-unbiased estimator? 

4. (Section 5.2) Using the imputed data of Table 5.7, compute the weighted 
regression for y on LC using the weights in the table. Using the replicates 
of Table 5.9, compute the estimated covariance matrix of (b0, b,), where 
(,&, b,) is the vector of estimated coefficients and ijt = fro + ztbl. In 
this simple example, do you think the regression coefficient based on 
the imputed estimator is a good estimator? Would your answer change 
if we had a sample of 100 observations with 30 y-values missing? 

5. (Section 5.3) Assume that a one-per-stratum sample is selected from a 
population with stratum sizes Nh, h = 1, 2,  . . . , H .  Let q i ,  i = 

1, 2, . . . , N ,  be the selection probabilities, where the subscript h is 
redundant but useful. Assume that H is even and that the strata are 
collapsed to form H / 2  strata. Let yh.i  be the sample observation in the 
hth original stratum and let 
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where 

H 

T = c T i , ;  Yh,i * 

h= 1 

Assume that the finite population is a sample from a superpopulation 
with 

yh.i N ind(,uh, 0;) for (h,i) E ~ h .  

What is the expected value of V{T 1 F}? 
6. (Section 5.6) Assume that it is known that the measurement error vari- 

ance for a variable x is 0:. Let a stratified sample be selected, where the 
observations are Xhj = X h j  + Ehj. Let the usual estimator of variance 
of the estimated total be 

H 

h=l 

where fh = N t l N h ,  s i  is the sample stratum variance of X ,  and Nh is 
the stratum size. Assume the model (5.6.1) holds for each h. Show that 

is an unbiased estimator of the variance of ?x - T,. 

7. (Section 5.6) Let a simple random sample of size n be selected from a 
population of size N .  Let duplicate measures be made on rn, m < n of 
the observations, where X i j ,  j = 1 , 2  are the measurements. Assume 
that 

where uij is independent of xt for all i j  and t .  Let 

where Xi. is the mean of the two determinations on elements with 
two determinations, A, is the set of indices for elements with two 
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determinations and A, is the set of indices for elements with a single 
determination. What is the variance of Tjr as an estimator of T,? Give 
an unbiased estimator of V { & - T, 1 F, }. Include the finite population 
correction. 

8. (Section 5.6) Let the predictor of ug for known a: and 02, be given by 
(5.5.2). Show that E{ (6, - u , ) ~ }  = (0% + oz,)-'a20,"~, where Q, is 
as defined in (5.5.2). 

9. (Section 5.5) Prove that the estimator (5.5.6) is unbiased for 0, in the 
sense that E{ lg  - 0,) = 0. Derive expression (5.5.7). 

10. (Section 5.5) The yg values for counties 201, 202, 203, and 204 were 
treated as unobserved in Table 5.13. Assume that the values are 0.754, 
0.975, 1.065, and 0.874, with n, values of 15, 10, 16, and 15, re- 
spectively. Are the predicted values in the table consistent with these 
observations? Using the estimated parameters given in Example 5.5.1, 
compute predicted values using the given observations. 

11. (Section 5.5) The standard error for 62 of Example 5.5.1 is 0.0062. Use 
a Taylor approximation to estimate the variance of 93 for county 3 of 
Table 5.13, treating a: as known. Use a Taylor expansion to find the 
leading term in the bias of 9, under the assumption that 62 is unbiased 
and that 02 is known. 

+ aig) and that 12. (Section 5.5) Use the facts that V = diag(a: 
X'V-'(y - X@) = 0, to show that (5.5.16) is sufficient for (5.5.15). 

13. (Section 5.6) Assume the model 

where (e i :ui)  is independent of zi, and ei is independent of ui. It is 
desired to estimate using a simple random sample of n values of 
(yi, Xi). How small must the true K ~ ,  be for the ordinary least squares 
estimator to have a MSE smaller than that of ~ ; i j ~ . ~ ~ ~ ?  Assume that 

14. (Section 5.6) In Example 5.6.1 the finite population correction was 
ignored. Calculate the variance under the assumption that Nn-' = 0.6. 
Construct an unbiased estimator of the variance of the sample mean 
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assuming it is known that gi = 0.02 and a: = 0.15~2,  but 02 is 
unknown. 

15. (Section 5.6) The jackknife was used to estimate variances in Example 
5.6.2. In this exercise we use Taylor methods. Let 

where$, = [n(n- 1)-1]1/2. Then6 = (21,22,mll,mlz:m22,mss) 
and an estimator of the variance of E is 

IEA 

The variance estimator is biased for the sample covariances, but is 
judged an adequate approximation in large samples. Then the estimated 
covariance matrix of 

is 

V { 6 }  = HV{L}H’> 

where H is the estimator of the partial derivative of 6 with respect to 6 
evaluated at 6.  Show that the rows of H are 
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- 2  
where 6; = p162. The estimated covariance matrix of (mil, m12, m22, 
m33) is 

2.1599 1.6520 1.3556 0 
3.4025 2.1599 1.4496 0 

1.4496 1.3556 1.4412 0 
0 0 0 1.9254 

53.960 46.031 ) 
10-6, 

and the covariance matrix of (z1,22) is 

( 46.031 49.038 

Compute the Taylor estimated variance of 6.  

16. (Section5.5)Letag N NI(O,gi+o:,) andletasampleal, a2, ..., am 
be given. Define an estimator of o i  to be the solution to the equation 

m 
m -1 x(82 + oeg) 2 -1 ag 2 = 1.00, 

g=1 

where the ozg, 0 < ozg < C,, g = 1, 2, ..., m, are known and C, 
is a positive constant. Let 6: = 0 if ET=ln&2u: < m. Assume that 
ni > 0 and that 

m 

g=1 

where Q, is a positive constant. Obtain the limiting distribution of 6: as 
m + 03. 

Hint: The quantity (0; + o:~)-' = dZog(ai + o:~)/&:.  Also, (05 + 
 IT:^)-' is monotone decreasing in cr; for positive 0:. See Fuller (1996, 
Chapter 5) to prove that 62 is consistent for o2. 



This Page Intentionally Left Blank



CHAPTER 6 

ANALYTIC STUDIES 

6.1 INTRODUCTION 

We introduced a model in which a finite population is generated from a super- 
population in Chapter 1. In Theorem 1.3.2 we considered an estimator for the 
superpopulation mean and for the finite population mean, but in subsequent 
chapters we concentrated on estimation for the finite population parameters. 

The parameters estimated for the finite population are generally enumera- 
tive. For example, “How many people in the United States were unemployed 
on March 10,2007?” or “What fraction of the persons employed in secondary 
education in Iowa in 2007 are female?” The questions pertain to a specific 
finite population and are descriptive. The questions asked about the infinite 
superpopulation are almost always analytical. For example, “If personal in- 
come (in the United States) increases 2%, how much will the consumption 
of beef increase?’ or “Do people working in automobile production have a 
higher risk of lung cancer than production workers in farm tractor produc- 
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tion?” Deming and Stephan (1941) described these two uses of survey data. 
See also Deming (1953). 

The analytic questions often have a less well-specified population of interest 
than the descriptive questions. For example, with respect to beef consumption, 
is income to increase next year? or within two years? or is there no time limit 
on the applicability of the results? Ultimately, the user will judge whether 
or not the model assumptions are such that the results of the analysis are 
applicable in the user’s situation of interest. Thus, the user must judge the 
degree to which the population sampled is similar to the population of interest. 

To develop statistical estimators, the finite population is treated as a real- 
ization of some probabilistic mechanism, also called the model. The analysis 
is carried out under the assumptions of that model, and a part of the analysis 
involves checking those model assumptions for which checks are available, 
but not all model assumptions are subject to test. The sometimes implicit 
statement associated with the analysis is: “Given the model assumptions, it is 
estimated that., . .” 

Since the 1940s, statisticians have grappled with the problem of determin- 
ing statistical procedures appropriate for analytic studies employing survey 
data. An early article on the use of census data for analytic purposes is that of 
Deming and Stephan (1941). Books containing discussions of the topic are 
Skinner, Holt, and Smith (1989), Korn and Graubard (1999), and Chambers 
and Skinner (2003). We concentrate on regression models and on procedures 
requiring modest model specification beyond that usually associated with 
regression models. 

6.2 MODELS AND SIMPLE ESTIMATORS 

For the formal study of analytic estimators, we require formal specification 
of the random process that is conceptually generating the finite population. It 
is reasonable to treat some design variables, such as stratification variables, 
as part of the vector generated by the random process if the design variables 
are assigned by the statistician on the basis of information about the finite 
population. 

In one approach to estimating an analytic parameter, the finite population 
is considered to be a simple random sample from an infinite superpopulation. 
An equivalent description for this situation is the statement that the vector 
(91, 92, . . . , yN) is a realization of N independent identically distributed 
random variables. Then the finite population can be used to estimate the 
superpopulation parameter and inference proceeds in two steps; first a finite 
population quantity is estimated and then this estimate is used as an estimator 
of the parameter of interest. 



MODELS AND SIMPLE ESTIMATORS 343 

To study the two-step approach, assume that the subject matter specialist 
has a model for a conceptual population with population parameter 8. Assume 
a sequence of finite populations that is a sequence of simple random samples 
from the conceptual population. Assume that a sample estimator 8 is unbiased, 
or nearly unbiased, for the finite population parameter ON with variance that is 
order n-'. Also assume that V(8 I F} is a nearly unbiased design-consistent 
variance estimator for V(8 I F}. That is, assume that 

~ ( 8  - 8, I F ) ~ }  = o,(n-l) a.s., (6.2.1) 

E(V(8 I FN)} = 0(n - l ) ,  (6.2.4) 

and 

V ( E ( 8  I FN)} = V(8,} + o(N- l ) .  (6.2.5) 

If the finite population is generated by a random process, one can usually 
define a function of the finite population, denoted by ON,  that is an estimator 
of 8 with the properties 

E(8,) = e + o ( N - l )  (6.2.6) 

and 

v(e, -8)  = O ( N - ~ ) .  (6.2.7) 

Given (6.2.1) and (6.2.6), 6 is nearly unbiased for the superpopulation param- 
eter 8, 

E(8}  = E(E(8  I F,)} = 6+0(n- ' )  (6.2.8) 

Furthermore, given (6.2.1), (6.2.4), and (6.2.7), the variance of 8 as an esti- 
mator of 6 is 

V(8 - 8} = E(V(8 I FN)} + V(8,} + o(N-1).  

Thus, to estimate the variance of 8 as an estimator of 8, we can use 

V(8 - 8} = V(8 I F} + V ( 8 ,  - O } ,  (6.2.9) 
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where V { O ,  - O} is an estimator of V{O, - O}. 
We give some example model specifications. 

Case 1. The finite population is a realization of i i d ( p ,  0;)  random vari- 
ables, and a simple nonreplacement sample of size n is selected from the finite 
population. Because the simple random sample from the finite population is 
also a random sample from the infinite population, it follows that the sample 
mean is unbiased for the finite population mean and for the infinite popula- 
tion mean. See Theorems 1.3.1 and 1.3.2. Furthermore, from the results of 
Chapter 1, 

E{(jj, - j j N ) 2  1 F} = N - y N  - n)n-1SEN (6.2.10) 

and 

(6.2.11) 

where y N (p,  0;) in the infinite superpopulation. Estimators of the variances 
are 

V { g ,  - g ,  I F} = N - y N  - n,n-1,; (6.2.12) 

-1 2 
- P ) 2 >  = n gy,  

and 

(6.2.13) 
- V { y n  - p }  = n Is;, 

where, as before, 

See Theorem 1.3.1. W. 

Case 1 is particularly simple because the estimator gn is a "good" estimator 
for both parameters. If we add the assumption that the finite population 
is a realization of independent N ( p ,  0;) random variables, gn is the best 
estimator, in that it minimizes the mean square error. 

However, if one assumes, for example, that the finite population is a re- 
alization of independent lognormal random variables, there exist superior 
estimators for the mean under the model, because the maximum likelihood 
estimator of the mean of a sample from a lognormal distribution is not the 
simple mean. 

Case 2. The sample is a simple nonreplacement sample of clusters from 
a finite population of clusters, where the finite population is a sample from 
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an infinite population of clusters. This is a modest extension of Case 1 
obtained by replacing “elements” with “clusters of elements.” The sample of 
clusters from the finite population of clusters is also a sample from the infinite 
population of clusters. 

let 
For a simple random 

YR 

sample of clusters selected from the finite population, 

(6.2.14) 
i E A  iEA jEBi 

where Mi is the number of elements in cluster i, yi j  is the value for element 
j in cluster i, and Bi is the set of elements in cluster i. Then Y R  is design 
consistent for the population element mean 

YN = ( E M i ) - l E E Y i j .  (6.2.15) 

The extension from element sampling to cluster sampling may lead to 
considerable increase in the complexity of the analysis. Assume that the 
elements of the superpopulation satisfy the model 

iEU iEU j E B i  

Y i j  = p +  Ti + e i j  , (6.2.16) 

where the e i j  are i id (0 ,  o,”), the yi are iid(0, o:), and e i j  is independent of 
Tt for all ij and t .  Assume that a random sample of rn clusters is selected from 
the superpopulation to form the finite population, where the size of cluster i, 
denoted by Mi, is a random variable independent of ej and ~j for all i and 
j .  Under the assumption that the Mi are independent of yij, the estimator 
(6.2.14) is consistent for p, where p = E{yij}.  However, if model (6.2.16) 
is true, the best linear unbiased estimator of p is 

a = ( J ;E -~J~) -~J ;E-~Y,  (6.2.17) 

where 

y = (Y11; Y12, . . .  , YlrM1’  Y 2 l .  . . ’ ,  Yml, * . . ‘  Yrn,M,) ,  

X,, = I M z o , 2  + J,crtJ’,zo$ 

E = blockdiag(E:lll, E 2 2 ,  . . . , Xmm). 

JM, is a column of M, 1’s and Jt is a column o f t  = E z E ~ M z  1’s. If Mt = M 
for all i, estimator (6.2.17) reduces to (6.2.14). Also, the estimators are very 
similar for modest differences in cluster sizes. Practitioners will often choose 
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estimator (6.2.14) in such situations because it is design consistent for the 
finite population parameter. The assumption that Mi is independent of yij is 
required for estimator (6.2.17) to be consistent for p. If, say, Mi is larger for 
clusters with large cluster means, the subject matter specialist must be sure 
that the p of (6.2.16) is the parameter of interest. Note that the assumption 
that the cluster mean & and size Mi are uncorrelated can be tested using the 
sample correlation. .. 

Case 3. A stratified sample is selected from a finite population that is a re- 
alization of independent and identically distributed (p ,  g;) random variables. 
The estimator 

H 

Yst  = CWhgh ,  (6.2.18) 

where Wh = 1V1Nh, is design unbiased for the finite population mean. 
Also, conditions (6.2.2) and (6.2.3) on the variance and estimated variance of 
the stratified mean are satisfied under the assumption of fixed Wh and finite 
population fourth moments. Thus, the variance of the stratified mean as an 
estimator of the superpopulation mean is 

h= 1 

(6.2.19) 

An estimator of the population S," and hence of g; is 

H nh 

(6.2.20) 
h = l  j=1 

It follows that an estimator of the variance of fjst as an estimator of the 
superpopulation mean p is 

H 

h= 1 

Note the analogy between (6.2.21) and (3.3.1 1). The estimation of a super- 
population parameter using a sample from a finite population is analogous to 
estimating the mean of a finite population given a sample (phase 2 sample) .. selected from a (phase 1) sample. 
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Case 4. To illustrate the importance of the assumptions made about the 
infinite population, consider a stratified sample and the model assumption that 
the superpopulation is a stratified population with the same fixed number of 
strata and the same relative stratum sizes as the finite population. Then the 
superpopulation mean is 

H 

(6.2.22) 
h=l 

where the Ph are the individual superpopulation stratum means. The finite 
population mean is 

h=I 

where ghN is the finite population mean for stratum h. The variance of g N  as 
an estimator of p is 

(6.2.24) 
h= I 

where the .t are the individual superpopulation stratum variances. It fol- 
lows that under the assumption of an infinite population with fixed strata, an 
estimator of the variance of Yst  as an estimator of p is 

H 

h=l 

If the stratified sample is a proportional stratified sample, the difference 
between the variance estimator (6.2.21) constructed under the assumption that 
the finite population is a simple random sample from a superpopulation and 
the variance estimator (6.2.25) constructed under the assumption of a stratified 
superpopulation is 

v s  {Yst - P }  - v s t  {gs t  - P }  
H 

= A r - l C w ;  [(I - n h  -1 - w h ) s t  f (gh  - g ~ t ) ~ ]  . 
h= 1 

The difference in the variances, and hence in the variance estimators, is due 
to the assumption made about the infinite population. One making the second 
assumption (6.2.22) is specifying that inferences are for infinite populations 
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with the same stratification structure as that of the finite population. In most 
situations, stratification is effective and (6.2.25) is smaller than (6.2.21). Of .. course, the difference goes to zero as the sampling rates go to zero. 

Case 5. The sample is a stratified sample from a superpopulation with an 
infinite number of strata. To create the finite population, a sample of H strata is 
selected from a population of strata. Then a sample of Nh , h = 1, 2,  . . . , H ,  
elements is selected from the selected strata. It is assumed that the stratum 
means of the population of strata are i id  random variables, 

ph i id (p,  0;). (6.2.26) 

Conditional on the strata selected, denoted by h, and the stratum fractions 
w = (Wl, w2, Wh), 

H 

(6.2.27) 
h=l 

Under assumption (6.2.26), the expectation of (6.2.27) is p because the stratum 
means are assumed to be independent and identically distributed. However, 
given assumption (6.2.26), we can use additional assumptions to construct a 
superior estimator. The standard nested-error model adds the assumption of 
common stratum variances so that the observations satisfy 

Yhj  = p + ah + eh j ,  (6.2.28) 

where ah = p h  - p, the ehi are i i d ( 0 ,  02) ,  the a h  are izd(0, o:), and e h j  

is independent of a, for all hj and T .  Often, ah and e h j  are assumed to be 
normally distributed, but the assumption of fourth moments is adequate for 
most purposes. Under model (6.2.28) with known 02 and 02, the best linear 
unbiased estimator of p is 

f i  = (J;v-~J,)-~J;v-~Y, (6.2.29) 

where V = blockdiag(V11, . . . , V h h ,  . . . , V,,), 

2 
V h h  = I n h o  + Jn,J; ,d,  

J, is a column vector of T l’s, and y is the column vector of n observations. 
Simple estimators of o2 and o: are 

H nnh 

82 = (n - H ) - y  X ( Y h j  - yfJ2 (6.2.30) 
h=l  j=1 
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and 

H 

3; = max (H - l)-'x [(& - g.)2 - T L ; ' ~ ~ ]  , 0) , (6.2.31) ( h = l  

where 

H 

g. = H - y g h .  
h=l 

For alternative estimators, see texts on linear models such as Searle (1971). As 
with the analogous model for clusters, the use of estimator (6.2.29) requires 
the assumption that stratum sizes and stratum means are independent. 

Very often the analyst will formulate a model such as (6.2.28) without 
consideration of the sample design. Our model (6.2.28) assumed that the 
random effects were sampling strata, but it is possible to define random 
effects with a different relationship to the design variables. See Pfeffermann 
et al. (1998). m m  

These examples demonstrate how the analysis depends on the superpop- 
ulation model. If all sampling rates are small, there are models where the 
design variance of the estimator of the finite population parameter is nearly 
equal to the variance of the estimator as an estimator of the superpopulation 
parameter. See Cases 1 and 3. Furthermore, if the postulated structure of 
the superpopulation is the structure of the sample, the estimated variance of 
the estimator for the superpopulation parameter is the estimator of the design 
variance with the finite population correction omitted. See Case 4. In other 
situations, such as Case 5 ,  the superpopulation model leads to a different 
estimation procedure than that appropriate for a finite population parameter. 

6.3 ESTIMATION OF REGRESSION COEFFICIENTS 

6.3.1 Ordinary least squares and tests for bias 

We now concentrate our discussion of model parameter estimation on regres- 
sion estimation. Assume that the subject matter analyst specifies a regression 
model relating yi to xi as 

yi = xiP + ei: (6.3.1) 

where the ei are independent (0: 02) random variables independent of xj for 
all i and j .  Assume that the finite population can be treated as a set of vectors 
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satisfying (6.3.1). Then the model for the finite population can be written as 

Y N  = X N P + e N ,  (6.3.2) 

where yN is the N-dimensional vector of values for the dependent variable, 
X, is the N x k matrix of values of the explanatory variables, and the error 
vector eN is a vector of independent random variables independent of XN. 
We discuss the linear model (6.3.2) in this section, but the mean of yi could 
be given by a function g(xi, p), and the covariance matrix might be specified 
in a more general form. See Section 6.4. 

Assume that a simple random sample of size n is selected from the finite 
population. Then the model structure also holds for the sample and we can 
write 

y = X p + e ,  (6.3.3) 

e - (0, 1a2), 

and e is independent of X, where y is the n-dimensional column vector of 
observations on y and X is the n x k matrix of observations on the explanatory 
variables. On the basis of the model, conditional on X, the best linear unbiased 
estimator of p is the ordinary least squares estimator 

Dols = (x’x)-lx’y (6.3.4) 

with conditional variance 

V{Dols I X} = (x’x)-12. (6.3.5) 

Consider a sample selected with unequal probabilities 7ri .  If ei is inde- 
pendent of 7ri,  the ordinary least squares estimator (6.3.4) remains unbiased 
with conditional variance (6.3.5). If ri is correlated with ei,  the ordinary least 
squares estimator (6.3.4) is biased. For example, if 7ri and ei are positively 
correlated, large values of ei have a greater probability of appearing in the 
sample and E{ei I i E A }  is positive. 

If we assume that DoZs has the requisite moments so that 
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.. 
where eN = (el, e2, . . . , e,) and the leading term in the bias of pols as an 
estimator of p is a function of E{xk7riei}. For the simple model with zi EE 1 
and pols = j jn ,  the bias in Jn  as an estimator of the superpopulation mean is 

The probability weighted estimator of p for model (6.3.3) is 

f i n  = (X’D;~X)-~X’D;~Y: 

and by Theorem 2.2.1, f i n  is design consistent for 

(6.3.9) 

P,v = (xl,X,)-lx’,y,. 

Under model (6.3.2), E{,B,} = p and V { p ,  - p }  = O(N-’).  Therefore, 
f i n  is a consistent estimator of p. 

If e is independent of 7r = (TI, 7r2 ,  . . . , 7rn) ,  the conditional covariance 
matrix of f i n  - p under model (6.3.3), conditional on X, is 

v@, I x} = (X’D,~X)-~X/D,~D,~X(X’D-~X)-~ 7r . (6.3.10) 

In most cases the variances in (6.3.10) are larger than the corresponding 
elements of (6.3.5), and one may be tempted to use the ordinary least squares 
estimator. However, if ordinary least squares is to be used, one should be 
comfortable with model (6.3.3) and the condition that E{xiei I i E A }  = 0. 
Fortunately, it is possible to test for the condition. 

A test of the hypothesis that the expected value of the coefficient in (6.3.4) 
is equal to the expected value of the coefficient in (6.3.9) can be performed 
as a test on coefficients in an expanded multiple regression model. The null 
hypothesis is 

E { (X’D,lX)-lX’D,ly - (X’X)-’X’y} = 0. (6.3.1 1) 

Multiplying (6.3.1 1) by X’D;lX, the hypothesis becomes 

E { x’D;~ (I - x(x ’x ) - lx ’ )y}  = 0. 

Recall that (I - X(X’X)-’X’) is an idempotent matrix and the regression 
coefficient for Z = D;’X in the multiple regression of y on (X, Z) is the 
regression coefficient for the regression of 

(I - X(X’X)-’X’)y on (I - X(X’X)-’X’)D;’X. 
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Hence, if 

E{ ( X / X ) - ~ X / ~ }  = E{(X’D;~X)-~X/D;~~}, 

the expected value of the coefficient of Z = DFIX in the multiple regression 
of y on (X, Z) is zero. That is, given hypothesis (6.3.11), y = 0 in the 
expanded model 

y = X p + Z y + a ,  (6.3.12) 

where a is the error in the expanded model and a = e under the null hypoth- 
esis. 

Two options are available for testing y = 0, the usual ordinary least squares 
test based on the null model with error assumptions of (6.3.3), and a test based 
on the sample design. See DuMouchel and Duncan (1983) and Fuller (1984). 
The use of the ordinary least squares test requires the assumption that the ei 
are uncorrelated with common variance. If the e, are correlated, as in a cluster 
design, or have unequal variances, the test based on the design is preferable. 

One can compute a test using a subset of the x-variables if the dimension of 
x is large. In practice, the intercept is often the most biased of the coefficients. 
Hence, computing the test using a subset containing the intercept or adding 
only w, to the regression can increase the power of the test. See Das Gupta and 
Perlman (1974). Estimation under the hypothesis that only some coefficients 
are biased is considered in Section 6.4.4. 

If the test indicates that the probability-weighted estimator differs from the 
least squares estimator, the analyst must answer the question: Why? The 
usual first response will be a search for subject matter variables to add to 
the model. If the inclusion of such variables results in a nonsignificant test 
statistic, the expanded model can be accepted. 

Example 6.3.1. The data in Table 6.1 are artificial data, generated to mimic 
the properties of data studied by Korn and Graubard (1999). In that study, y 
is gestational age of babies and x is birthweight. The sample in Table 6.1 is 
a stratified sample with the relative weights given in the second column. Age 
as a function of birthweight is of interest. Our initial model postulates age to 
be a linear function of birthweight. The ordinary least squares regression of 
age on birthweight (y on z) gives 

6 = 25.765 + 0.3892: 

(0.370) (0.012) 

where s2 = 1.359 and the ordinary least squares standard errors are in paren- 
theses. The weighted estimator (6.3.9) gives 

6 = 28.974 + 0.2972: 

(0.535) (0.016) 
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Table 6.1 Birthweight and Age Data 

Stratum Weight Birthwgt. Gest. Age I Stratum Weight Birthwgt. Gest. Age 

0.05 
0.05 
0.05 
0.05 
0.05 
0.06 
0.06 
0.06 
0.06 
0.06 
0.07 
0.07 
0.07 
0.07 
0.07 
0.10 
0.10 
0.10 
0.10 
0.10 
0.20 
0.20 
0.20 
0.20 
0.20 
0.22 
0.22 
0.22 
0.22 
0.22 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.80 
0.82 
0.82 
0.82 
0.82 
0.82 

10.5 
07.7 
07.9 
09.8 
09.1 
11.5 
13.3 
12.0 
12.1 
11.6 
15.9 
15.3 
16.1 
13.8 
15.1 
19.0 
17.1 
19.6 
19.7 
19.1 
21.1 
21.4 
22.1 
20.9 
22.0 
23.1 
24.0 
22.5 
23.0 
23.1 
25.1 
24.4 
25.9 
25.0 
25.1 
27.9 
27.2 
26.1 
28.0 
27.8 
29.2 
29.6 
29.6 
29.5 
28.6 

29.4 
26.1 
26.4 
27.6 
28.2 
29.1 
30.6 
30.4 
28.1 
29.9 
31.3 
30.9 
31.7 
30.7 
31.2 
34.2 
31.9 
32.9 
33.7 
32.9 
33.9 
36.1 
36.0 
35.1 
34.9 
34.5 
36.3 
36.5 
34.2 
36.4 
35.3 
36.8 
37.5 
36.1 
36.1 
38.0 
36.8 
37.0 
38.0 
36.6 
37.4 
39.0 
39.6 
38.9 
38.7 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0.84 
0.84 
0.84 
0.84 
0.84 
0.90 
0.90 
0.90 
0.90 
0.90 
0.95 
0.95 
0.95 
0.95 
0.95 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 

31.9 
30.4 
32.0 
30.6 
30.1 
33.5 
33.1 
33.6 
32.7 
32.5 
33.9 
33.8 
34.8 
34.6 
34.3 
35.4 
35.6 
34.9 
35.1 
36.3 
37.1 
36.5 
37.5 
37.3 
36.5 
39.1 
38.7 
38.1 
39.3 
38.5 
40.3 
39.8 
39.9 
41 .O 
39.5 
41.4 
41.7 
42.4 
42.0 
41.2 
43.2 
43.4 
42.6 
44.1 
43.5 

38.3 
37.8 
39.6 
39.1 
39.0 
38.8 
38.7 
40.4 
38.2 
38.8 
38.9 
38.8 
39.1 
39.6 
39.3 
38.9 
40.3 
40.0 
39.3 
39.5 
40.3 
41.4 
40.3 
40.3 
40.4 
41.6 
39.0 
39.5 
41.1 
40.7 
40.2 
40.4 
40.7 
39.7 
39.5 
40.2 
42.8 
41.1 
40.8 
42.7 
40.0 
41.8 
41.0 
41.7 
40.9 
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where the standard errors in parentheses are obtained from 

v{&} = (X’D,~X)-~X’D,~D),,D,~X(X/D,~X)-~ (6.3.13) 

with Dee = diag(&:, &?j, . . . 6;) and &i = yi - x$,. The estimator 
(6.3.13) is the estimator V{b}  in (2.2.39) with = D,. Note that the 
variance estimator is appropriate for heterogeneous error variances. 

The weighted estimate of the slope differs from the ordinary least squares 
estimate by several standard errors. Also, the calculated standard errors for the 
weighted procedure are much larger than those calculated for ordinary least 
squares. To construct a formal test of the hypothesis that the two procedures 
are estimating the same coefficients, we regress, using ordinary least squares, 
y on (1, z, w, wz), where wi = 7rZT1, to obtain 

(&, b1, 90, Sl) = (22.088, 0.583, 8.287, -0.326). 
(0.532)(0.033)(0.861) (0.332) 

The residual mean square is 0.606 and the F test for the hypothesis that 
(71, 7 2 )  = (0, 0) is F(2,86) = 55.59. The tabular 5% point for the F is 
3.10 and the hypothesis is clearly rejected. 

If the original model of a linear relationship is estimated, the ordinary least 
squares estimates are severely biased. However, the results lead us to ask if 
the model linear in birthweight is the appropriate model. A plot of the original 
data, or of the stratum means, shows a curvilinear relationship. Therefore, we 
fit the quadratic function by ordinary least squares to obtain 

6 = 28.355 + 0 . 3 3 1 ~  - 0.88722, 

(0.343) (0.010) (0.082) 

where z2 = O.Ol(z - 30)2. The residual mean square is 0.590. The quadratic 
function estimated by the weighted least squares of (6.3.9) is 

5 1 28.458 + 0.3272 - 0.86422. 

(0.386) (0.011) (0.108) 

The two estimated functions now appear similar. The ordinary least squares 
regression coefficients for the regression of y on [l, z: z2, w - W, (w - 
W) (x - z), (w - ~ ) x 2 ]  gives 

(60, P I ,  f i2)  = (27.044, 0.384, -0.494) 
(2.045) (0.019) (0.344) 

and 

( 9 0 ,  91, ?2) = (-1.376, -0.203, -0.390). 

(1.926) (0.178) (0.728) 
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We define the added variables in terms of deviations from the means to improve 
numerical calculations and to make coefficients somewhat easier to interpret. 
The F test of the hypothesis that (yo, y1,yz) = 0, with 3 and 84 degrees of 
freedom, is 0.49. Hence, one easily accepts the null hypothesis that the two 
estimators of (DO, PI Pz) are estimating the same quantity. Although the 
two procedures may have the same expected value, the standard errors of the 
weighted procedure are larger than those of ordinary least squares. A plot 
of the residuals gives no reason to reject the model of homogeneous error 
variances. Therefore, we are comfortable with the quadratic model and the 
ordinary least squares estimates. .. 
6.3.2 Consistent estimators 

It is quite possible that no variables leading to a nonsignificant test statistic for 
the hypothesis that E{xi-iriei} = 0 can be identified. If E{xi-iriei} # 0, it is 
sometimes said that the design is informative for the model. In such cases it 
becomes necessary to incorporate the sampling weights into the analysis. One 
approach is to add a specification for the weights themselves. See Pfeffermann 
(1993) and Pfeffermann and Sverchkov (1 999). 

Another approach is to specify an extended model that includes design 
variables. The extended model is then estimated and the subject matter 
parameters evaluated by taking an expectation with respect to the design 
variables. See Skinner (1994) and Holt, Smith, and Winter (1980). 

It is possible that the weights have no subject matter content per se but are 
deemed by the analyst to be an artifact created by the sampler. Because the 
sampler has knowledge of the population, the probabilities are related to the 
errors in the model in a way that cannot be captured completely by the subject 
matter variables in the model. The probability weighted estimator (6.3.9) is 
consistent for ,O but can be inefficient if the diagonal matrix of weights differs 
from the inverse of the model covariance matrix. 

In some situations, the properties of the population model can be used to 
construct consistent estimators that are more efficient under the model than the 
probability weighted estimator. Our objective is to obtain estimators for the 
subject matter coefficients that are not biased by the selection probabilities, 
but with a minimum of model specification for the weights themselves. 

Assume that the finite population is a realization of a random process such 
that 

(6.3.14) Y N  = XivP + eN 

and 
E{e,  1 X,} = 0 .  
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Consider an estimator of the form 

where \E is a diagonal matrix with diagonal elements $i, and $i is defined for 
all i E U .  Assume that 

where \EN is the N x N population matrix with diagonal elements $i. Then, 
given regularity conditions, 

BWq - ,L3 = (X’D,19X)-1X’D,1SPe 

= X~*NXN)-lXk*NeN + oP(n-li2) (6.3.16) 

and &,* is consistent for p because, by assumption, 

E{X’,q,e,} = 0. (6.3.17) 

We give the limiting distribution of estimator (6.3.15) in Theorem 6.3.1. 
There are a number of assumptions that can be summarized in two basic 
conditions. First, the finite population is a sample from a superpopulation for 
which a central limit theorem holds and with enough moments for consistent 
variance estimation. Second, the sample design is such that a central limit 
theorem holds for almost all sequences of finite populations and such that 
a design consistent variance estimator is available. The assumption that the 
ei are independent can be relaxed and that assumption does not preclude 
correlation in the finite population. For example, the finite population may 
contain clusters of related individuals. 

Theorem 6.3.1. Let {(yi, xi, $i, $)} be a sequence of independent 
random vectors of dimension k + 4 with bounded eighth moments, where yi 
is related to xi through the model 

yi = xip + ei,  

ei N ind(0 ,  g:), 

and E{ei 1 xi,$i} = 0 for all i. Let { F N } , N  = k + 4, k + 5 ,  . . . , be a 
sequence of finite populations, where F, is composed of the first N elements 
of {(yi, xi, $i, CT?)}. Let zi = (yi, xi), let 

( M Z * Z , N ,  MZZ,,) = N-l(Zk*NzN, Z’,Z,), (6.3.18) 

and let 
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MzQz = N-lZ'D;'*Z, (6.3.19) 

where Z is the n, x ( I c  + 2) matrix of sample observations on zi and Z, is 
the N x (Ic + 2) matrix of population values of zi. Assume that: 

The $+ satisfy 0 < $q < Kh for some positive Kh and all i. 

The matrices of (6.3.18) satisfy 

where M,, and M,,, are positive definite. 

The sequence of sample designs is such that for any z with bounded 
fourth moments, 

lim n,V { E H T  - Ex 1 F N }  = V m 0 , Z Z  as.: (6.3.21) 
N+CO 

where E H T  = N - l C i E ~ ~ t r ' ~ i ,  and E N  is the finite population mean of 
Z .  

The variance V{EHT - ZN 1 3,) is positive definite almost surely, and 

112 - rs 
[V { Z H T  - EN I . F N } ] -  ( z H T  - EN) I FN -+ N ( 0 ,  I) a s .  (6.3.22) 

The sampling rates satisfy 

almost surely, where 0 5 fm < 1 and nAT is the expected sample size 
for a sample selected from the Nth population. 

The estimator V{ZHT I FN} is a quadratic estimator of V{ZHT I F,} 
such that 

V { E H T  I FN} - V{ZHT 1 F,v} = o,(nG1) (6.3.23) 

for any z with bounded fourth moments. 

The variances of bi = xigiei satisfy 



Proof. By the design and moment assumptions, 

M-1 xqx - M;kx,N = Op(n,1’2). 

By the assumption that E{$iei I xi} = 0, 

E{Mxqe,jv} = 0: 

and by the moment assumptions, Mxqe  = O,(n, 1/2 ). Thus, 

6 w q - p  = MikxMxqe 

=: MXixLHT + OP(nL1),  

where (Mxqe, Mxqe) =: ( L H T ,  LN). Similarly, 

1 -  b w q  - P, = MX*X,N(bHT - G N )  + Op(n,l> 

= 

By (6.3.21), and (6.3.22), 

MXkX(LHT - LN) + O p ( n i l ) .  

L ni\i/2(~HT - L,,,) I F~ -+ N ( O ,  vm,6g) a.s., 

(6.3.26) 

(6.3.27) 

(6.3.28) 

(6.3.29) 

(6.3.30) 

where Vm>66 is well defined by (6.3.21). By the moment assumptions, 

N1/2b, 2 N ( 0 ,  E b b ) .  (6.3.31) 

It follows by Theorem 1.3.6 that 

n k ’ 2 L ~ ~  5 N(O, v,,,, + fmxbb) .  (6.3.32) 

358 ANALYTIC STUDIES 

where 

be an estimator of bb, where bb = bb..v + o,(l) and bb,N = 

Let bWq be defined by (6.3.15). 
Then 

?{EHT I .FN} is the estimator of the design variance of bHT calculated with 
bi = xi$i&, and & = yi - xi&,*. 
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By (6.3.23), the estimator of variance 

I 3,) = V { L H T  I 3,) + o,(nil), 

and by the arguments in the proof of Theorem 2.2.1, the result still holds when 
ei is replaced with &. Therefore, 

[V{bw,}1-1/2(bw, - P )  5 W O !  11, (6.3.33) 

where V{,d,,} is as defined in (6.3.25). 

Theorem 6.3.1 is closely related to Theorem 2.2.1. For example, result 
(6.3.29) of the proof could be obtained from Theorem 2.2.1 by setting = 

diag(wi$,i). Theorem 2.2.1 gives the limiting distribution of ni’2(,d - ,ON), 
while Theorem 6.3.1 gives the limiting distribution of nY2@ - p), where P 
is defined by a superpopulation model. Also, result (6.3.24) for the estimator 
of the vector of superpopulation regression coefficients is closely related to 
result (3.3.19) for the estimator of the finite population mean with a two-phase 
sample. 

Under the regularity conditions of Theorem 6.3.1, bW, is consistent for P 
for any q such that E{ ei I xi! $i} = 0 and such that the moment requirements 
are satisfied. Therefore, we search for a \E that minimizes the variance of the 
approximate distribution, where 

(6.3.34) 

See (6.3.32). The variance expression is relatively simple for Poisson sam- 
pling from a finite population generated as independent random variables 
because 7rilei is then independent of 7rJr1ej for all i and j .  It follows that for 
Poisson sampling, 

m w d  = n,lM,;,(Vm,bb + f30Cbb)MX:X’ 

W b w ,  I X N , * N )  

= E { N-~M,~,x’,D,~,\E~D,~,,x,M~~, I x,, XP,} (6.3.35) 

where Dee,, = diag(e:, ei! . . . , e;). To further simplify the search for \E, 
consider the univariate model 

yi = z1iP1 + ei, (6.3.3 6) 

ei N ind(0,  $1. (6.3.37) 

For Poisson sampling, the variance of the approximate distribution of B,,,, - 

p1 for model (6.3.36) is 

(6.3.38) 
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2 2 2  where a: = 7ri -1 ei 2 . Because ~i can be a function of ( q i ,  e i ) ,  E{xliQi ui } 
need not be E{&+?}E{a!}. Nevertheless, a $i that is a good approximation 
for a;', where a:i = E{a:}, should give good efficiency for &*. 

Typically, a:i is not known and we consider functions of zi as approxima- 
tions for o :~ .  A general representation for 7rt-'ef = af is 

ai 2 = 4a(Xi, 7,) + r a i ,  (6.3.39) 

where ~ , i  includes the difference a: - E{a!} and the difference E{a&} - 
$,(xi, Y ~ ) .  Sometimes it is possible to specify a q,(xi, 7,) that is linear in 
the parameters. For example, we might write 

af = qiy, + r a i ,  (6.3.40) 

where the qi are known functions of the xi. The qi can contain variables 
other than functions of the xi, provided that the additional variables are such 
that E{ei 1 xi, qi} = 0. To estimate 7,. we use a consistent estimator of 
,fJ to construct estimators of the ei, replace the ei in (6.3.40) with the &, 
and compute the regression of 7rt-'2: on qi. One can compute a weighted 
regression using nZy1 as weights or one can compute the ordinary least squares 
regression. The two approaches can give different limiting values for the 
estimated Y,, but the use of either ?a to construct the & will give a consistent 
estimator for p. 

A natural preliminary estimator for p is ,hn of (6.3.9). The work of Pfef- 
fermann and Sverchkov (1999) provides an alternative preliminary estimator 
of ,B. Pfeffermann and Sverchkov (1999) considered the regression model 
(6.3.1) with constant error variance and a design in which the 7ri may be re- 
lated to xi and to ei. They presented estimators based on detailed parametric 
models and also argued that it is reasonable to estimate p by minimizing 

n c wiGz:l(yi - X $ q 2  (6.3.41) 

with respect to p, where wi = 7 r i 1  and Gi is an estimator of E{wi /xi, i E A}. 
The resulting estimator, 

i=l 

j p s  = ( X ' W - ~ D , ~ X ) - ~ X ' V V - ~ D ~ ~ ~ ,  (6.3.42) 

is of the form (6.3.15) with $ = W-l = diag(G;l, w2 , . . . , GL1). 
Given a linear model for wit the parameters of a functional representation of 
wi can be estimated by ordinary least squares. Letting 

--1 

wi = q i y w  + Twi,  (6.3.43) 
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where qi is a function of xi, an estimator of yw is 

;uw = (Q’Q)-~Q’w, (6.3.44) 

where w = (w1, w2, . . . , wn)‘ and the ith row of Q is qi. The estimator 

element i is in the sample. In general, 2zli is not a consistent estimator of the 
superpopulation expected value of wi given xi. 

If the original model has constant error variances, and if the correlation 
between wi and e: is modest, wi will be correlated with aii to the degree 
that wi is correlated with a function of xi. Hence, in situations with strong 
correlation, the estimator (6.3.42) will perform well. If we believe the error 
variances differ or that there is a correlation between wi and ei, we can use 
bps or ,bT to construct & and use the & in (6.3.40) to estimate Y ~ .  

6. - - qiqw is an estimator of the expected value of wi given I C ~  and given that 

With an estimator of ya of (6.3.40), we define an estimator of ,B by 

PwQ = (x’D;~+x)-~x’D;~+~,  (6.3.45) 

where 9 = diag(&, 42, . . . , qn) and & = (&(xi,?a) = [qa(xi, ?a)]- 1 . 
Under mild assumptions on qa (xi, ya), the population, and the design, 

?a = Ya + 0,(n-1’2). (6.3.46) 

Assume that Qa(x, Y ~ )  is continuous and twice differentiable, and let 
(6.3.46) be satisfied. Then 

where Eh(xi, 7 )  = d$,(xi. r)/dy’. It follows that 
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because E{x:[+(x~, r,)ei} = 0 and the multiplier for (9, - 7,) in (6.3.48) 
is OP(n-'I2). Thus, 

&, - P = (X/D;lIEX)-lX'D,lXPe + O,(n-l) (6.3.49) 

and the results of Theorem 6.3.1 hold for the estimator constructed with @. 
To apply the results of Theorem 6.3.1, we require a consistent estimator 

of the variance of ,&,, - 0. For Poisson sampling, variance estimation is 
relatively straightforward. The conditional variance of M,,, for Poisson 
sampling from a finite population 
is 

generated as independent random variables 

and 

I iEU I i E U  

Therefore, a consistent estimator of V{&,,} for Poisson sampling is 

v{&,,} = n(n - ~ ) - ~ ( X / ~ D ~ ~ X ) - ~ X / D ~ ~ X ( X / ~ D ~ ~ X ) - ~ ~  
(6.3.51) 

where k is the dimension of xi, DTT = diag(?:,, ?,"2, . . . , ?&), ?ei = 

$ p ~ , ~ e : ,  and & = yi - xi&,,. 
For a general design and a finite population correction that can be ignored, 

a variance estimator is 

v&, I F) = ( x / @ D ~ ~ x ) - ~ ~ { N M , , ~ } ( x / @ D ; ~ x ) - ~ ,  
(6.3.5 2) 

where Q{NMxqe} = V{CiEA x:$i~~:'ei} is the Horvitz-Thompson esti- 
mator, or other consistent estimator, of the variance of the sum calculated with 
x:&&.Pee the proof of Theorem 2.2.1 for a proof that (6.3.52) is consistent 

Example calculations for stratified sampling are given in Example 6.3.2. 

Example 6.3.2. The data in Table 6.2 are a stratified sample with three strata, 
where the vector of sample sizes (n1,722,n3) = (20,10,20). The sample is 
from a population of size 9000 composed of three types of elements. The 
parameter of interest is the mean of y. The type of observation, j ,  is known 

for W w ,  - P, IF}. 
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for the sample elements, but the number of each type is not known. Similarly, 
there is no population information on 2 available for use in estimation. The 
population model has a common mean, but a variance that depends on type. 
Thus, the population model is 

Y j i  = P + e j i ,  (6.3.53) 

where yji is observation i on type j and eji N ind(0 ,  uzj). The regression 
estimator (6.3.45) for the p of model (6.3.53) reduces to the ratio estimator 

where we add the subscript h for stratum, W h  = N-lNhn;', Ah is the set 
of indexes in stratum h, and 

C.. 3% = 1 if element i is in group j 
= 0 otherwise. 

The variance of the approximate distribution of estimator (6.3.54) is the 

Table 6.2 Stratified Sample 

Stratum Type y I Stratum Type y I Stratum Type y 

1 1 12.90 
2 13.05 
2 8.19 
2 14.72 
3 8.04 
3 12.87 
2 8.80 
3 13.95 
3 5.92 
3 12.33 
3 2.78 
2 12.67 
1 13.37 
2 11.32 
1 13.59 
3 12.33 
3 16.15 

2 14.86 
3 3.75 
1 12.72 

2 1 16.47 
3 15.45 
1 15.39 
2 15.69 
2 12.42 
3 12.97 
2 2.12 
1 13.02 
1 15.15 
1 13.38 

3 2 17.75 
3 27.20 
2 19.82 
2 17.66 

3 
1 
3 
2 
1 
2 
2 
1 
2 
3 
3 
1 
3 
1 
3 
2 

11.58 
15.34 
24.29 
16.83 
16.92 
17.46 
19.37 
14.16 
17.28 
16.23 
15.77 
15.40 
18.18 
17.11 
20.26 
15.35 
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where 

ehJz = YhJZ - p, and uh is the population set of indexes for stratum h. The 
sampling rate is small, so we ignore the E b b  part of the variance (6.3.32). Our 
objective is to find gJ, j = 1,2.3,  so that ,Gwq is more efficient than gist for 
P. 

Attempting to minimize an estimator of expression (6.3.55) with respect 
to the GJ would result in gJ that are functions of the components of M1,ge h ,  

where those components are functions of the means of the ehJz within the 
strata. Weights that are functions of means may produce bias in the estimator 
of p. Therefore, we prefer GJ that depend as little as possible on means of the 
ehJz and we consider only the portion of the variance (6.3.55) that is a function 
of M2,ge h .  That portion of the variance is of the same form as (6.3.51), and 
we choose qJ-’ to estimate the expected value of whetJz. An estimator of the 
expected value of w h e i J Z  for elements of type J is 

/ 3  \-I 3 

where f?hji = Y h j i  - gist. The three values are 47542253.8, and 5307.6 
for j = 1,2,  and 3, respectively. The estimator (6.3.54) computed with $ j  

replacing $ j  is ,Gwq = 14.533. 
An estimator of the variance of ,GwQ is the estimated variance for a ratio, 

where 
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V{,&V*} = 0.0981. 

The stratified estimate of the mean is 

jjst = (11.219 + 13.906 + 17.702)/3 = 14.276 

and the estimated variance of jjst, ignoring the finite population correction, is 

V { j j s t }  = (13.829/20 + 4.771/10 + 11.676/20)/9 = 0.1947. 

There is an estimated gain of about 40% in efficiency from using the +- 
estimator relative to the stratified estimator. For additional analyses of the 
illustrative data. see Exercises 8 and 9. .. 

In Example 6.3.3 we analyze a data set that has structure similar to that of 
Example 6.3.2. 

Example 6.3.3. The Canadian Workplace and Employee Survey con- 
ducted by Statistics Canada was introduced in Example 3.1.1. The sample 
is a stratified sample with simple random sampling of workplaces in strata. 
The population of workplaces in Canada was placed in categories based on 
industrial activity and region. Then workplaces in each category were further 
divided into three strata on the basis of a function of 1998 tax records, where 
the function correlates highly with payroll. The sample allocation to strata 
was made on the basis of the variance of the measure of size. The sampling 
rates were quite different for the three strata. The original weights are about 
2200 for the small workplace stratum, about 750 for the medium-sized work- 
place stratum, and about 35 for the large workplace stratum. The original 
weights were adjusted, primarily for nonresponse. The survey is described in 
Patak, Hidiroglou, and LavallCe (1998). The data in Table 6.3 were generated 
to approximate data collected in the 1999 survey of workplaces and are repre- 
sentative of an activity-region category. The original analysis was performed 
by Zdenek Patak at Statistics Canada. 
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Table 6.3: Canadian Workplace Data 

1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 
65 
67 
69 
71 

Employ- Payroll 
ID Weight ment ( x 1000) 

786 17 260 
36 
37 

2557 
35 

2198 
29 
34 
26 
30 
36 
28 

743 
38 

1929 
845 
38 

141 
743 

2198 
597 
43 
34 
31 
29 
34 
41 
39 
31 
28 

2647 
37 

2378 
1750 

32 
36 

3 
55 

3 
39 
3 
6 

71 
127 
136 
157 
73 
29 
73 
4 

22 
3 

23 
40 

6 
5 

68 
65 
96 

173 
37 
4 

102 
136 
143 

2 
55 
7 
1 

99 
156 

366 
1868 

65 
482 

39 
197 
615 

1416 
1943 
1916 
1269 
403 
990 
97 

23 3 
139 
618 
85 1 
123 
161 

2008 
4394 
1544 
599 

1295 
112 

1027 
702 

2567 
14 

794 
166 
27 

804 
73 1 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 

Employ- Payroll 
ID Weight ment ( x  1000) 

173 66 1 6873 JL. 

38 
30 
39 
39 

2198 
35 
37 
37 
34 
34 
30 

743 
29 
33 

495 
612 

2378 
25 12 
2109 

32 
39 
25 
40 
32 
31 

743 
699 

36 
2288 
1884 

39 
25 
39 
43 
36 

58 
39 
86 
53 
7 

151 
200 
118 
46 

244 
3 

37 
7 
2 
3 

28 
4 
3 
1 

60 
107 
48 
94 
79 
71 
15 
43 
99 
7 
3 

180 
149 
93 
82 

108 

1336 
1251 
1276 
897 
78 

1861 
4520 

826 
732 

4193 
71 

374 
44 1 

86 
129 
448 
132 
38 
24 

1462 
916 
697 
373 

1689 
1595 
513 
699 

1420 
186 
71 

5413 
2373 
883 
909 

5508 
Continued 
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Employ- Payroll 
ID Weight ment ( x  1000) 
73 36 75 1685 
75 
77 
79 
81 
83 
85 
87 
89 
91 
93 
95 
97 
99 

101 
103 
105 
107 
109 
111 
113 
115 
117 
119 
121 
123 
125 
127 
129 
131 
133 
135 
137 
139 
141 

50 
39 
44 

684 
24 
29 
39 
32 
38 
40 
23 

655 
524 

2109 
37 

1929 
17 
34 
32 

1884 
12 
33 

2109 
2423 

32 
2109 

42 
39 
32 
15 

1884 
28 
35 

2423 

223 
62 
73 
18 

213 
81 
66 
77 
37 
63 
56 
50 
22 

3 
87 
6 

45 
76 
68 

9 
55 

187 
1 
7 

190 
3 

301 
16 
50 

358 
14 

131 
22 

3 

2436 
1590 
49 1 
300 

2445 
622 

1524 
1933 
506 
767 

1257 
786 
186 
47 

1234 
410 
967 

1956 
1481 
188 
737 

4097 
11 

162 
3068 

47 
278 1 

131 
1492 
4310 

54 
1734 
301 
46 

Employ- Payroll 
ID Weight ment ( x  1000) 

~ 

74 
76 
78 
80 
82 
84 
86 
88 
90 
92 
94 
96 
98 

100 
102 
104 
106 
108 
110 
112 
114 
116 
118 
120 
122 
124 
126 
128 
130 
132 
134 
136 
138 
140 
142 

~~ 

1974 
32 
34 

2153 
1839 

27 
30 
40 
76 
35 

1884 
2423 
2826 
2737 

129 
26 

1660 
39 
38 

568 
2557 

34 
25 
31 

2333 
699 

80 
33 
30 
62 
28 
34 

582 
2243 
1839 

5 
75 
75 

1 
7 

145 
5 

26 
58 

194 
9 
6 
3 
1 

93 
96 
7 

96 
92 
23 

5 
74 
61 
31 
6 

24 
127 
22 
82 
17 
99 
10 
39 
8 

14 

63 
1549 
64 1 
20 

113 
5185 

106 
314 

1036 
3989 

65 
74 
17 
21 

2247 
91 1 

63 
1103 
1624 
285 
49 

1358 
1601 
394 
75 

321 
1565 
718 
938 
35 1 

1373 
3 10 
5 82 
48 

161 

The initial subject matter regression model for the population is 

~i = PO +zi,31 + e i ,  (6.3.56) 



368 ANALYTIC STUDIES 

where the ei are i id (0 ,  02) random variables, E{ei 1 z,} = 0, yi is the 
logarithm of 1999 payroll, and xi is the logarithm of 1999 total employment. 
The simple sample mean vector is ( g n ,  ? E n )  = (13.082,3.376) and the 
weighted mean vector is ( g T ,  ?E,) = (1 1.3222, 1.693). The large difference 
between the two estimates is due to the wide range in the weights and the fact 
that the weights are strongly correlated with size. Fitting model (6.3.56) by 
ordinary least squares (OLS), we obtain 

j j i = 13.082 + 0.907(zi - ? E n )  (6.3.57) 

s2 = 0.320, 
(0.048) (0.032) 

where ?En = 3.376 is the simple sample mean, and the numbers in parentheses 
are the standard errors from the OLS calculations. We centered xi at the 
sample mean to make it easier to identify some of the effects. 

The probability weighted regression of (6.3.9) is 

$i = 12.889 + 0.931(~i  - ? E n ) ,  (6.3.5 8) 
(0.113) (0.053) 

where the numbers in parentheses are the standard errors calculated from 
the covariance matrix (6.3.52) for a stratified sample. If we use the residuals 
described in Section 2.2.4 to calculate the standard errors, we obtain estimated 
biases in the variance estimators due to estimation of ei of about 2%. 

The standard error of the weighted estimator of the intercept is more than 
twice that of OLS. Equations (6.3.57) and (6.3.58) are not greatly different, 
but the intercepts do differ by more than three OLS standard errors. 

To test the hypothesis that the two estimators are estimating the same 
quantity, we compute the OLS regression of yi on [l, xi - ?En,  w?, w5(zi - 
? E n ) ] ,  where w$ = O.OOl(wi - an) and ri = w,:' is the selection probability. 
The estimated equation is 

$i = 13.099 + 0.732(~i - 3,) - 0.372~5 + 0.016~;(zi  - ? E n )  

(0.070) (0.047) (0.117) (0.053) (6.3.59) 

and s2 = 0.263, where the numbers in parentheses are the standard errors from 
the OLS calculations. The F test for the hypothesis of common expectation 
for ,dT and Pols is F(2,138) = 15.20. The 1% point for F with 2 and 
138 degrees of freedom is 4.76, and we conclude that the OLS estimator is 
biased for p. The significant test is consistent with the sample design. The 
stratification was based on an index of payroll constructed from tax records. 
Thus, a correlation between the error in the payroll model for 1999 and the 
index for 1998 is plausible. 
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In an attempt to find an estimator superior to the probability weighted 
estimator, we begin with the Pfeffermann-Sverchkov estimator. To construct 
the estimator we first regress wi on functions of xi. If the sample weights for 
the payroll data are plotted against xi, they fall into three groups with respect 
to x. The groups are defined by the intervals (0, 2.71), [2.71, 4.09), and 
[4.09, m). The means of wi for the three groups are 1655.5,279.2, and 36.2, 
respectively. Using these estimated weights, we calculate the Pfeffermann- 
Sverchkov estimator, 

,hps = ( x ’ D , ~ W - ~ X ) - ~ X ’ D , ~ W - ~ Y ,  

where W = diag(zij1, 752, . . . , 6%) and ziji are the predicted values (group 
means) for the regression of wi on dummy variables for the intervals of x, 
and the ith row of X is (1, zi - Z). The estimated equation is 

Y p s , %  = 12.975 + 0.969(~ ,  - Z), (6.3.60) 

where the standard errors were calculated using (6.3.52) with 9 = W-l. 
The standard errors of (6.3.60) are essentially equal to those of OLS. The 
estimated covariance matrix is 

(0.048) (0.032) 

2.286 -0.005 ) 10-3 

v{bps} = ( -0.039 1.011 

To construct an estimator with the estimated value for \E based on &, 
whereoii = E{-irt-laS},letwiZS = Zi:,,whereZi = g i - ( l , q - Z ) b p s .  The 
regression equation estimated for the regression of 6fi on dummy variables 
defined for the intervals of x is 

c?:i = 11.19 + 536.0221, + 9.62~2i, (6.3.61) 

where 

zli = 1 if xi < 2.71 

= 0 otherwise 

and 

z2i = 1 if 2.71 5 xi < 4.09 

= 0 otherwise. 

Using (6.3.61), the GL1, scaled to be comparable to I&, are 

4;’ = 1770.3 ifxi  < 2.71 
= 65.8 if 2.71 5 xi < 4.09 

= 36.2 if xi 24.09 .  

(6.3.62) 
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The estimated equation calculated with &,* of (6.3.45) is 

&,,+,i = 12.963 + 0.979~i .  (6.3.63) 

(0.044) (0.032) 

where the standard errors were calculated using the estimated variance matrix 
(6.3.52). 

The estimated variance for the intercept for the @-estimator is about 15% 
less than the estimated variance for the Pfeffermann-Sverchkov estimator and 
comparable to that for OLS. The estimated superiority relative to Pfeffermann- 
Sverchkov is most likely due to differing error variances. If we regress Wz-16:i 
on the dummy variables, we obtain the estimated equation 

(6.3.64) --1-2 wi CLI~ = 0.309 + O.021~li - O.235~2i: 

(0.058) (0.089) (0.096) 

where the numbers in parentheses are the OLS standard errors. The regression 
(6.3.64) suggests that 0 2 ~  is not a constant multiple of Wi. 

In comparing OLS and the *-estimator one should remember that the 
estimated variances for OLS and for the @-estimator are biased, although the 
relative bias is O(n- l ) .  Second, if the error variances are not constant, the 
OLS estimator is not the minimum variance estimator. 

The model (6.3.56) specifies E{ei I xi} = 0, and this assumption is 
required for consistency. The assumption is only partially subject to test, but 
it is possible to test the hypothesis that e is uncorrelated with the indicators 
used to estimate Q, given model (6.3.56). We construct a test by adding the 
two indicators of equation (6.3.64) to the regression model for y. Using the 
probability weighted estimator, the 2 x 2 portion of the covariance matrix 
associated with ( z l i ,  z2i) is 

( 0.1898 0.0716 ) 
0.0716 0.0348 

v 2 2  = 

and the test statistic for the hypothesis that the two coefficients are zero is 

F(2,136) = 0.5(-0.365, -0.183)VT,-,l(-0.365? -0.183)' = 0.49. 

One easily accepts the hypothesis that the mean of the e's is zero for each of 
w w  the three groups used to define @. 
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6.4 I NSTR U M E NTA L VA R I A B L ES 

6.4.1 Introduction 

In estimation for the model 

where E{ei} = 0, there may be some members of xi that cannot be treated 
as independent of ei. This occurs in econometric models when some of 
the variables are mutually determined under a simultaneous equation model. 
The variables correlated with ei are called endogenous and denoted by y in 
econometrics. In a second situation some members of xi are measured with 
error. In both the measurement error and endogenous variable cases, OLS 
estimators are biased. 

Assume that some additional variables, denoted by ui, are available with 
the superpopulation properties 

E{uiei} = o (6.4.2) 

and 

E{x;u~u~xi} # 0. (6.4.3) 

Variables satisfying (6.4.2) and (6.4.3) are called instrumental variables or 
instruments. It is sometimes said that u is an instrument for x. 

6.4.2 Weighted instrumental variable estimator 

We first construct the probability weighted version of the standard instrumental 
variable estimator. Assume that we have a sample selected from a finite 
population, where the finite population is generated as a simple random sample 
from a superpopulation in which (6.4.1) holds. Let (yi, xi, ui, wi), where 
N-'.;.rz7' = wi, be the vector of observations. If we multiply (6.4.1) by uiwi, 
and sum, we obtain 

iEA i E A  iEA 

If (6.4. l),  (6.4.2), and (6.4.3) hold in the superpopulation, then 

(6.4.4) 

(6.4.5) 
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and 

{ ~ w i u ~ x ~ x : u ~ }  = E { CU:X~X~U~ iEU ’ } # 0. (6.4.7) 

The ui can contain some elements of xi provided that the model specifies 
those elements to be independent of ei. Letting zi = wiui, equation (6.4.4) 
in matrix notation is 

z‘y = z’xp+6, (6.4.8) 

where 6 = Z’e, Z is an n x k2 matrix, X is an n x kl  matrix, and k2 2 k l .  
Equation (6.4.8) has the appearance of a regression problem, where Z‘y is the 
vector of “dependent” variables, Z’X is the matrix of “explanatory” variables, 
and 6 is the vector of errors in the equation. Because the elements of 6 are 
correlated with unequal variance, it would not be appropriate to apply ordinary 
least squares to (6.4.8) unless k2 = k l .  To obtain an estimator of p superior to 
ordinary least squares, we require an approximation to the covariance matrix 
of 6. Letting such an estimator be denoted by ?bb, we define an instrumental 
variable estimator by 

= [( z’x)’Vi1z’x]-1 (Z’X)’?i1Z’y. (6.4.9) 

If e: has a small correlation with wi and if the original ei have common 
variances, a first approximation to a multiple of the covariance matrix of 6 is 

?bb = z’z. (6.4.10) 

Estimator (6.4.9) with ?bb of (6.4.10) is called the two-stage least squares 
estimator. See, for example, Wooldridge (2006, Chapter 15). The estimator 
(6.4.9) with zi proportional to wiui is the instrumental variable analog of the 
design weighted regression estimator (6.3.9). 

6.4.3 Instrumental variables for weighted samples 

Instrumental variable estimation is a method suitable for models in which the 
error in the equation is correlated with the explanatory variables. If 7ri and ei 
are correlated, then 

E{ziei I i E A }  # 0 

and the basic problem is the same as that associated with the presence of 
endogenous variables or measurement error in the explanatory variables. 
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In the sampling situation, there are some ready-made instrumental vari- 
ables. Under the assumption that E{ ei I xi} = 0 for all i in the superpopula- 
tion, xiwi is a possible vector of instrumental variables because 

In fact, any function of x i  multiplied by wi is a potential instrument under the 
assumption that E{ei I xi} = 0. 

When zi = wixi and V b b  = Z’Z, estimator (6.4.9) reduces to the 
probability-weighted estimator (6.3.9). Thus, the estimator 6, of (6.3.9) 
is a particular instrumental variable estimator. Similarly, the Pfeffermann- 
Sverchkov estimator (6.3.42) is an instrumental variable estimator with zi = 
wi wixi. 
--1 

The error in estimator (6.4.9) is 

,dIV - p  = P6, (6.4.11) 

where 

L’ = [ (Z’X)’Vi1Z’X] -1 (Z’X)’V,l 

and 6 is as defined in (6.4.8). Under the assumption that the finite population 
is a sample of independent random variables, the proof of Theorem 6.3.1 can 
be mimicked to show that the estimator has a normal distribution in the limit. 
The large-sample variance of ,drv is 

VLs{n1/2(,dIv - p ) }  = L’,[V,{n1/2b 1 F,} + V{n1/2b.v}]LN, 
(6.4.12) 

1 F,} is the variance of the limiting where b, = Z/ND,,Ne,, and 
distribution of n1l2b, 

Lk = E{ [ ( z ~ D , , , x , ) ’ v ~ ~ b b ( z ~ D * ~ ~ x N ) ] - l  (zkD7T,NxN)’vLtbb}? 

V&b = p lim nqbb, and D,,, = diag(.;;rl, ~ 2 ,  . . . , .;;rA-). 

The variance of ,drv can be estimated with 

V{,dIv - p }  = E’[V{6 1 F} + Z’DxDeeZ]C, (6.4.13) 

where Dee = diag(e?), & = yi - xi,drv, and V{6 1 F} is a consistent 
quadratic estimator of the variance of 6 calculated with & replacing ei. 

If e: is strongly correlated with wi, it is possible to improve the estimator 
using an estimator of the covariance matrix of b. Thus, a second round 
estimator is (6.4.9) with V { 6  I F} of (6.4.13) replacing the V b b  of (6.4.10). 



374 ANALYTIC STUDIES 

6.4.4 Instrumental variable pretest estimators 

In Example 6.3.3 we used a global test of the hypothesis that the unweighted 
estimator is unbiased. We now investigate tests for more specific hypotheses 
under the superpopulation model 

Yi  = Po + X l , i P 1  + ei, (6.4.14) 

where E{ei 1 xi} = 0 for all i .  One situation that leads to a test for a 
reduced set of explanatory variables is that in which the selection probability 
is correlated with the error ei, but 

(6.4.15) 

Model (6.4.15) will hold if the ei are i id (0 ,  0 2 )  random variables independent 
of xi and the selection probabilities have the representation 

Ti = + g 2 ( 4  + ui, (6.4.16) 

where g1(.) and g2(.) are continuous differentiable functions and ui is inde- 
pendent of (xi, ei) .  Then 

(6.4.17) 

because E{gz(ei)ei} is a constant. It follows that the estimator defined by 

is consistent for p. We can replace %l,N with j i ~ ; ~  if XI:, is unknown. Then, 
under (6.4.17) and our usual moment assumptions, the estimator defined by 

iEA i € A  

(6.4.18) 

is consistent for p. 
We now develop a test of the hypothesis that a set of variables can be 

used as instruments, given an initial set known to satisfy the requirements 
for instruments. We consider the general problem, but we will often be 
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interested in testing the set (xl,i -  XI,^), given the set (wi, wixl,i). Let 
zi = (zli,  z2i) be the vector potential instruments, where zli is known to 
satisfy the requirements of instruments. Thus, it is assumed that 

(6.4.19) 

and we wish to test 

(6.4.20) 

We write the subject matter equation in matrix notation as 

y = X p + e .  (6.4.21) 

The two-stage least squares estimator constructed using the entire z vector 
can be written as 

OIV = (X’X)-lXy? (6.4.22) 

where 
X = z(z’z)-lz’x. 

From (6.4.9), the estimated generalized least squares version of the instru- 
mental variable estimator is 

&EGLS = [(z’x)’+,~z’x]-’(z’x)’+,~z’y~ (6.4.23) 

where Qbb is an estimator of the variance of Z’e. 
To test that E{ Zhe} = 0, using (6.4.22) as our basic estimator, we compute 

(Ti??;)’ = ?  = [(X?R~)’(X?R2)]-l(X?R2)’Y? (6.4.24) 

where R2 = Z2 - Z1(ZiZ1)-1ZiZ2 and Z = ( Z l ,  Z2). If the finite popu- 
lation correction can be ignored, an estimated covariance matrix for 9 is 

V { T }  = [(X? R2)’(X? Rz)]-’V{(X? Rz)’e}[(X, Rz)’(X? R2)l-l. 
(6.4.25) 

Continuing to ignore the finite population correction, an estimator of 
V {  (X, R2)’e) is the Horvitz-Thompson estimator calculated with (X? R z ) ’ ~ ,  
where E i  = yi - (2i? r2i)T and r2i is the ith row of R2. Under the null hy- 
pothesis that E{Zbe} = 0, Tl, the coefficient for X, is estimating p, and T2, 
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the coefficient for r 2 i ,  is estimating the zero vector. Therefore, a test statistic 
is 

(6.4.26) 

where k 2 z  is the dimension of rzi, V T 7 2 ~  is the lower right Ica2 x Ica2 block 
of ?{?}, and d is the number of primary sampling units less the number 
of strata. Under the null hypothesis that E{Zhe} = 0, the test statistic is 
approximately distributed as F with k 2 2  and d, degrees of freedom, where, 
for cluster-stratified sampling, a reasonable value for d, is the number of 
primary sampling units less the number of strata. 

Example 6.4.1. We continue study of the Canadian workplace data. On the 
basis of the analysis of Example 6.3.3, zli = [wi, wi (xi-Zn),  $iwi, \iriwi (xi- 
kn) ] ,  where \iri is defined in (6.3.62), can be used as a vector of instrumental 
variables. The estimated equation using the four variables as instruments in 
BIV of (6.4.22) is 

fji = 12.976 + 0 . 9 7 7 ( ~ i  - Zn)> (6.4.27) 

(0.050) (0.031) 

where the standard errors are the square roots of the diagonal elements of 

2‘333 -0’174 x (6.4.28) 
= ( -0.174 0.988 

(X’X) - 1 X’ D ee x (X’X) - 

Dee = diag(2?, 2;>. . , , e i ) ,  and 2i = yi - x i p I V .  This estimated variance is 
very similar to the estimated variance that recognizes the stratification. 

The estimated generalized least squares (EGLS) estimator of (6.4.23) is 

b I V . E G L S  = [(z~x)’(z:D~~z,>-~z:xI-~(z:x)’(z:D~~z,>-~z:Y 

= (12.974: 0.975)’) 

(0.042) (0.030) 

(6.4.29) 

where V b b  = ZiDeeZ1 and Dee is defined in (6.4.28). The standard errors 
in (6.4.29) are the diagonal elements of 

Q { B I V : E G L s }  = [(~~x)’(z~De,~l>-~~~x]-~. (6.4.30) 

The estimated variances for EGLS are usually underestimates, but the fairly 
large reduction in the standard error for the intercept suggests that EGLS 
represents a real improvement relative to estimator (6.4.22). 

In the ordinary least squares regression of yi on [ 1, xi - Z,, w: , w: (xi - 
Z,)] displayed in (6.3.59), the coefficient for w;(xi - 2,) is less than the 
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standard error. The nonsignificant coefficient is consistent with the way in 
which the selection probabilities were determined. Because the selection 
probabilities are related to the payrolls of the previous year and assuming a 
similar subject matter model for the previous year, (6.4.16) is a reasonable 
specification for the probabilities. This suggests that the instrumental vari- 
able estimator with instrument vector containing I C ~  - 2,  is an appropriate 
procedure. To check if zi - 3, can be used as an instrument, the vector 'j/ of 
(6.4.24) is computed, 

9' = (12.976, 0.977, O.OOS), 

(0.049) (0.032) (0.022) 

where the coefficients are for (1, I C ~  - Z,, ~ i ) ,  r2i is the deviation from the 
regression of xi - 2,  on zli, and the standard errors are the square roots of 
the diagonal elements of (6.4.25). Because the test statistic for 7 3  is 0.341, 
we easily accept the hypothesis that zi - 2,  can be used as an instrument. 
The EGLS instrumental variable estimator with 

is 

yi = 12.977 + 0.976(1~i - ?En), 

(0.041) (0.030) 

where the standard errors are from an estimated covariance matrix of the form 
(6.4.30) using zi of (6.4.31). 

In this example there is a very strong correlation between IC and w. Hence, 
the addition of xi - 2,  to the set of instruments results in a modest reduction 
in the standard error. B B  

6.5 NONLINEAR MODELS 

Many of the procedures of the preceding sections can be extended to nonlinear 
models and to other estimation procedures. Consider a problem for which 
maximum likelihood estimation is appropriate for simple random samples. 
Assume that the subject matter analyst specifies a population density function 
f ( y ,  8), where the parameter 8 is of interest. Given a random sample from 
f ( y ,  O), the maximum likelihood estimator of 8 is obtained by maximizing 
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with respect to 8. Let dS be the value of 8 that maximizes (6.5.1). 
A direct extension of (6.5.1) to an unequal probability sample is obtained 

by weighting the elements of the likelihood function by the inverses of the 
selection probabilities. Assume that a sample is selected with probabilities 7ri 

from a finite population, where the finite population is a sample of indepen- 
dent identically distributed observations generated from f (y ,8) .  Then the 
weighted log-likelihood is 

(6.5.2) 

If the sample design is such that selection of yi is independent of the selection 
of y j  for all i # j ,  (6.5.2) is proportional to the probability of observing 
the set of sample y values. One might choose to construct an estimator of 
8 by maximizing (6.5.2) whether or not the independence assumption holds. 
Therefore, we call the function (6.5.2) a weighted log-likelihood whether or 
not the sample design produces independent observations. Let 6, be the value 
of 8 that maximizes (6.5.2), and let 8, be the value of 8 that maximizes 

(6.5.3) 

One can view 6, as an estimator of O N ,  where 8, is the estimator that 
one would obtain if one applied maximum likelihood to the finite population. 
To formalize this view, assume that log f (y i ,  8 )  has continuous first and 
second derivatives, let b(yi, 6) = d log f (y i ,  6 ) / d 8  be the vector of partial 
derivatives evaluated at 8 = 6, and let 

be the negative of the matrix of second partial derivatives evaluated at 8 = 6. 
The 6, that maximizes the unweighted likelihood of (6.5.1) satisfies 

(6.5.4) 
i E A  

the 8, that maximizes (6.5.3) satisfies 

(6.5.5) 



NONLINEAR MODELS 379 

and the 6, that maximizes the weighted likelihood of (6.5.2) satisfies 

(6.5.6) 
iEA 

Equations such as (6.5.4) and (6.5.6) are estimating equations of the type 
studied in Section 1.3.4. 

Assume that the sampling design is such that Horvitz-Thompson estimators 
are design consistent. Then the error in 6, as an estimator of the true value 
8' is 

/ \ -1 

See Theorem 1.3.9. The finite population vector 8, satisfies 

/ 

and from (6.5.7) and (6.5.8), 

6, - 8, = ( Z E U  C H ( y i :  00) ) - l  (~7r; 'b :yi ,e")  - Cb(Yi,8") 
iEU 

+ 0,(n-'). (6.5.9) 

Let the covariance matrix of the approximate distribution of 6, for a simple 
random sample of size m be Vm{es}, and let V{6,  - 8, 1 3) be the 
conditional covariance matrix of the approximate distribution of 6, - 8,. 
Then, under the assumption that the finite population is a simple random 
sample from the infinite population and that the variances are defined, the 
variance of 6, - eo is 

vie, - eo}  = vw{e,} + E { v ( ~ ,  - 8, I F)). (6.5.10) 

The variance of the approximate conditional distribution of 6, - 8, can be 
estimated by 
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where 

iEA 

and V{&A.n;r lb  I F} is the Horvitz-Thompson variance estimator calcu- 
lated with 6i = b(yi ,  8,) replacing bi = J(yi, O N ) .  An estimator of the 
variance of the approximate distribution of 8, as an estimator of 8” is 

where 

iEA 

A question addressed in Section 6.3.1 is: “Do I need to include the 
weights?” or alternatively, “Is the estimator that maximizes (6.5.1) estimating 
the same quantity as the estimator that maximizes (6.5.2)?” A probabilistic 
answer to the question can be obtained by constructing a test similar to that 
developed in Section 6.3.1. 

The Newton-Raphson iterative procedure for constructing the estimator 
defined by (6.5.4) uses a trial value and then constructs an estimated change 
as 

g =  ( ~ H z ) - l ~ L z ,  (6.5.13) 

where 6i = b(yi ,  6 ) ,  H i  = H ( y ,  6 ) ,  6 is the trial value, and 6 + s’ is the 
value for the next iteration. If 6 = B S ,  then 8 = 0. We build on this approach 
to construct a test. Let 8 = (a:, 8;)’ be defined by 

iEA 

’,. 

=: M;;xqi, (6.5.14) 

where wi = rZr’ and q i  = (bi, wibi)’. An estimator of the variance of 8 is 

9 6 6  = V { 8 }  = M&VqqM;L, (6.5.15) 
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where Qqq is the estimated variance of &Aqi .  If the design is such that we 
can treat yi, i E A, as independent of yj ,  j E A ,  for i # j ,  

where T is the dimension of 8, is a possible estimator. For a general design, 
Qqq will be the estimator appropriate for the design. 

A test of the hypothesis that E(8,) = E(8,) is 

F(T, c)  = k - b $ 9 & b 2 ,  (6.5.16) 

where 9 6 6 . 2 2  is the lower right T x T submatrix of 9 6 6  of (6.5.15), c = n - 27- 
for a simple random sample, and c is the number of primary sampling units 
less the number of strata for a stratified sample. Under the null model, the test 
statistic is approximately distributed as F with T and c degrees of freedom. If 
T is large, a test can be constructed using a subset of variables. 

Instrumental variables can also be used for nonlinear models. An important 
model is that in which the expected value of y is an explicit nonlinear function. 
Let 

(6.5.17) 

where g(xi, 8 )  is continuous in 8 with continuous first and second derivatives 
and ei is independent of xj for all i and j ,  i .f j .  The instrumental variable 
estimator is developed as an extension to the equation associated with least 
squares estimation, where the least squares estimator for 8 is the 8 that 
minimizes 

Q(8)  = c[~i - dxi,~)l2. (6.5.18) 
iEA 

In the Gauss-Newton method for finding the minimum of Q (8 )  , the function 
g(x, 0) is expanded about a trial value, 8, to obtain the approximation 

iEA 

where k(xi, 6) = ag(xi, 8)/88’ and 6 = 8 - 6.  The improved estimator of 
8 is 6 + 8, where 

(6.5.20) 
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and ki =: k ( x i ,  6 ) .  The procedure can be iterated to obtain the 8 that 
minimizes Q(8) .  A modification may be required to assure convergence. See 
Fuller (1996, p. 272). 

One step of an instrumental variable estimator is obtained by replacing k 
with a vector of instrumental variables, zi, to obtain 

(6.5.21) 
iEA i E A  

If the dimension of zi is greater than that of ki, the estimator of 6 analogous 
to (6.4.9) is 

iYIV = [(z’K)’v,yZ’K)]-l(Z’K)’V,1Z’i5, (6.5.22) 

where V b b  is an estimator of the variance of b = Z‘e, the ith row of z is 
zi, the ith row of K is ki and 6 = ( Z l l  E z ,  . . . ? En) ’ .  If the trial value 6 is a 
consistent estimator of 8, a single step estimator, 8 + gIV will have the same 
asymptotic properties as a multiple-step estimator. If desired, the procedure 
can be iterated until 8,” of (6.5.21) is the zero vector. The variance of eIV 
can be estimated with 

Q{eIv}  = v { e N }  + v{eIv - e,v I F}, 

6.6 CLUSTER AND MULTISTAGE SAMPLES 

The correlation associated with clustering of sample elements is a dimension 
of design that has a universal impact on estimation properties. The elements 
within a primary sampling unit are almost always positively correlated, and 
this correlation must be recognized in variance estimation. 

A potential regression model for cluster samples is given in (2.6.6). In 
practice, the model might need to be extended to permit different slopes in 
different clusters and (or) different variances in different clusters. Because 
of the difficulty in constructing models for survey clustered data, a common 
procedure is to employ a consistent estimator and then estimate the variance 
recognizing the cluster effects. Let yij denote the j th element in the ith 
primary sampling unit, and let 7r(ij) be the probability that second-stage unit 
ij is selected for the sample. Assume that it is desired to estimate the p of 
the linear model, 

yij = xijp + eij .  (6.6.1) 
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Assume that an estimator of the form 

p = (xl@-lX)-1xq-ly (6.6.2) 

is a consistent estimator, where y is the vector of observations and @ is a 
diagonal matrix. For example, @-’ might be D;’& of (6.3.45). If the finite 
population is a sample of primary sampling units from an infinite population 
of primary sampling units, the error in ,d of (6.6.2) is 

p - p = (x’ipX)-’x’+-le 

i j E A  

where bij = (X’+-lX)-lx:j#;ldij and #ij is the ijth diagonal element of 

+. Then an estimator of the design variance of ,d is a variance estimator of 
the sum, such as the Horvitz-Thompson variance estimator, computed with 

Example 6.6.1. To illustrate the effect of clustering, we use the analysis of 
a sample of Canadian workplaces conducted by Zdenek Patak. The sample 
is composed of 5781 employees in 1389 workplaces interviewed in 1999. 
A logistic function was fit to estimate the probability that a person received 
classroom training in the last 12 months. The variables are: 

6 .  I = (X’@-lX)-lx! .+-’;. . and 6 . .  = 9 . ’  - x. .p. 
23 a3 1.3 23 $3 1-3 2 3  

y = 1 if employee received training 

= 0 otherwise, 

z1 = 1 if gender is male 
= 0 if gender is female, 

22 = 1 if full-time employee 
= 0 if part-time employee: 

z3 = 1 if employee has some university education 

= 0 otherwise, 

x4 = 1 if workplace adopted an innovation in last 12 months 

= 0 otherwise, 

z5 = 1 if size of workplace is <= 15 employees 

= 0 otherwise, 

2 6  = 1 if size of workplace is <= 60 employees 

= 0 otherwise. 

The conditional expected value of y under the logistic model is 

q y i  I Xi} = (1 + e~P{xiP))-lezP{xiP>, 
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where xi = (1, zli, 2 2 i ,  . . . , 2&). The parameter vector was estimated by 
maximizing the weighted likelihood, where the weighted likelihood is the 
likelihood constructed as if the observations are independent. The estimated 
vector is 

(b,,fi,, . . . ,b6) = (-0.971, -0.142,0.497,0.627,0.282, -1.096, -0.572). 

Although the sample is an unequal probability sample, the estimation pro- 
cedure assigned equal weight to all observations. The standard errors were 
estimated by two procedures. The first set of estimated standard errors are 
those constructed as if the sampling units are the individual employees and 
are (0.123,0.056,0.107,0.060,0.060,0.079,0.069). The second estimation 
procedure used the correct design specification, in which the workplaces are 
the primary sampling units. The estimated standard errors using the work- 
place as the primary sampling unit are (0.150, 0.061, 0.124, 0.063, 0.079, 
0.096, 0.091). 

The differences between the two sets of estimated standard errors are fairly 
typical for cluster samples. Although it is possible for standard errors for a 
cluster sample to be smaller than those for an element sample, in the majority 
of cases the standard errors for a cluster sample are larger than those for 
an element sample. This example is typical in that the correctly estimated 
standard errors are larger than the biased estimates based on elements. Also, 
the bias in the standard error of the intercept is generally larger than the bias 
in coefficients measured on elements. In this case the bias in the standard 
error of the intercept is estimated to be about 22%, while the average bias 
in the standard errors for the three element variables is about 9%. The bias 
in the standard errors is often largest for the coefficients of variables that are 
measured on large units, in our case on the primary sampling units. The 
average bias for the three workplace variables is about 29%, corresponding to 
a 66% bias in the estimated variance. 

The estimated vector constructed using the sampling weights is 

6’ = (-1.351, -0.159, 0.690, 0.785, 0.376,-0.980,-0.639), 

(0.242) (0.120) (0.175) (0.123) (0.155) (0.164) (0.177) 

where the standard errors are computed under the correct design specification. 
The estimated standard errors are much larger for the weighted fit than for the 
unweighted fit. The test of the hypothesis that the weighted and unweighted 
estimators are estimating the same quantity is F(7,342) = 1.19. Thus, the 
null hypothesis is easily accepted and the unweighted estimators are chosen 
as the final estimates. .. 
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6.7 PRETEST PROCEDURES 

In Section 6.3 we discussed procedures in which a test of model assumptions 
was used to decide between two estimation procedures. In practice, the 
preliminary test may have a subject matter context. For example, the subject 
matter specialist may have begun the analysis with a theory that stated that 
the mean of stratum 1 should be equal to the mean of stratum 2. If that is so, 
the test that the two stratum means are equal is a test of the theory as well as 
a part of the estimation procedure. 

Given that the model is accepted by the test, an estimator is constructed 
under the model assumptions. The test is often called a pretest. Procedures 
based on a pretest were studied by Bancroft (1944) and Huntsberger (1955). 
See also Brown (1967), Gregoire, Arabatzis, and Reynolds (1992), Albers, 
Boon, and Kallenberg (2000), and Saleh (2006). Because of the frequent use 
of procedures of this type, we illustrate the properties of the procedure using 
a simulation experiment conducted by Wu (2006). 

Samples were created using 400 trials of the following selection procedure. 
A vector (ei , xi, ui )  is selected, where ei is distributed as the part of the normal 
distribution on [-2, 21, xi is a uniform (0; 1) random variable, and ui is a 
uniform ( 0 , l )  random variable. The ei, xi, and ui are mutually independent. 
Let 

i7i = (0.01 + 0.99xi)(l - <) + t(2.0 + e i ) ,  (6.7.1) 

where < is a parameter that is varied in the experiment. If ui 5 i7i, the vector 
(e i  , xi, ui) is accepted and yi is defined by 

yi = 4.0 + ei.  (6.7.2) 

If ui > 7r i ,  the vector is rejected. The size of the sample is random with an 
expected size of 200 elements. 

Estimators of the population mean were constructed using a pretest proce- 
dure to decide between the simple mean jj  and the weighted mean yT. First, 
the yi values were regressed on the vector (1,~~:') to obtain the coefficient 
vector 

-1 

i7L1)'(l, i7c1)) x(l,i7c1)'yi. (6.7.3) 
iEA 

The vector (1, rZr1) corresponds to (xi, zi) of (6.3.12). Based on the regres- 
sion, the test statistic is 

(6.7.4) 
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where 

and 
s2 = (n - 2)-l  - y [ Y i  - (1,7q1)@]? 

i € A  

Then the pretest estimator of p is 

ji = jj if 1 tp ,  I <  t ,  
= 

Y7r if I t p ,  I >  t,: 

where 

(6.7.5) 

and t ,  is the y quantile of Student’s t .  The value y = 0.05 was used in the 
simulation. 

Table 6.4 
Samples) 

Monte Carlo Results for Size 0.05 Pretest Estimator (10,000 

Bias(g)  M.S.E.(G) V(YT) Bias(,) M.S.E.(b) ‘ S.E.(y) v(y) M.S.E.@) S.E.(y) M.S.E.(y,) 

0.00 0.000 
0.02 0.112 
0.04 0.247 
0.06 0.376 
0.10 0.619 
0.14 0.861 
0.17 1.043 
0.20 1.229 
0.23 1.437 
0.27 1.683 
0.30 1.838 
0.40 2.472 
0.50 3.171 

1 .ooo 
1.013 
1.061 
1.141 
1.383 
1.741 
2.087 
2.510 
3.065 
3.831 
4.380 
7.112 

1 1.055 

2.210 
1.948 
1.750 
1.579 
1.178 
0.896 
0.750 
0.600 
0.483 
0.384 
0.327 
0.203 
0.135 

0.000 
0.078 
0.186 
0.284 
0.423 
0.484 
0.456 
0.386 
0.302 
0.125 
0.041 
0.000 
0.000 

0.594 
0.638 
0.706 
0.758 
0.970 
1.175 
1.298 
1.376 
1.332 
1.172 
1.063 
1 .ooo 
1.000 

Results for 10,000 samples for the size 0.05 pretest are given in Table 6.4. 
If the < of (6.7.1) is zero, is unbiased for the mean because 7ri is independent 
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of g. For any positive 5, 7rt and ei are correlated and the simple mean of the 
observed sample is biased for the population mean. The weighted sample 
mean gT is a consistent estimator of the population mean and is essentially 
unbiased for all E .  For < = 0, the weights are independent of yi, and the simple 
mean is twice as efficient as gn for the population mean. As < increases, the 
relative efficiency of declines rapidly. At E = 0.14 the bias in jj is 86% of 
the standard deviation, and the mean square error of g is 10% larger than the 
variance of gn. 

The variance of the pretest estimator j i  is about 30% greater than that of g 
at 5 = 0 because gT is being used as the estimator about 5% of the time, and 
those samples are often samples with large deviations. On the other hand, 
j i  is about 68% more efficient than Yn when E = 0. As E increases, the 
efficiency of j i  declines relative to j j T ,  reaching a minimum of about 72% for 
E near 0.20. As E increases further, the pretest rejects the null model more 
frequently, and j i  is essentially equal to gn for 5 2 0.40. The shape of the 
relative mean square error of j i  relative to Yn as a function of E is typical of 
pretest procedures. If the null condition ( E  = 0) holds, the pretest procedure 
is better than the alternative (gn) but not as good as the estimator constructed 
under the null model. As the parameter [ moves away from the null model, the 
pretest procedure improves relative to the null model estimator and declines 
relative to the (nearly) unbiased estimator gn. For very large E ,  the null model 
is almost always rejected and the pretest procedure is essentially equivalent 
to gn. 

The standard error for j i  computed using the variance estimation procedure 
appropriate for the estimator chosen is 

where 

and 

n 

s2 = (72 - 1)-l c ( y i  - g)2 

i=l 

We call the statistic 
ip = [ V { j i } ] - 1 ’ 2 ( j i  - p )  

the t-statistic for j i ,  recognizing that the distribution is not that of Student’s t .  
As the simulation results of Table 6.5 illustrate, the statistic has a variance 
greater than 1 for all [ values studied. Hence, the statistic exceeds the 
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Table 6.5 Monte Carlo Properties of &Statistic for Pretest Estimator 

E Mean Variance, P { f ,  > t 0 . 0 5 )  

0.00 0.00 1.09 
0.02 0.09 1.08 
0.04 0.21 1.11 
0.06 0.31 1.10 
0.10 0.46 1.17 
0.14 0.54 1.33 
0.17 0.53 1.49 
0.20 0.46 1.56 
0.23 0.36 1.50 
0.27 0.18 1.30 
0.30 0.09 1.14 
0.40 0.07 1.06 
0.50 0.09 1.06 

0.060 
0.060 
0.068 
0.07 1 
0.093 
0.1 17 
0.140 
0.137 
0.124 
0.093 
0.065 
0.055 
0.056 

tabular value for Student’s t by more than the nominal fraction. The poorest 
performance occurs near 5 = 0.20, where the ratio of the mean square error 
of ,& to the mean square error of yT is largest. 
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6.9 EXERCISES 

1. (Section 6.2) What is the bias of estimator (6.2.20) as an estimator of 
S,”? 

2. (Section 6.3) Consider the regression equation (6.3.12) used to test the 
hypothesis that the ordinary least squares estimator is unbiased for 0. 
Let xi = (1, q i ) .  Assume that ~i is a multiple of (a + ei)-’, where 
a is a positive constant, ei is distributed on the interval ( b l ,  bz), and 
a + bl > 0. What would be the residual mean square for regression 
(6.3.12)? 

3. (Section 6.2) Show that the error in the estimator S,” of (6.2.20) as an 
estimator of S,” is O , ( K ~ / ~ )  for populations with a fourth moment. 

4. (Section 6.4) Show that the instrumental variable estimator of p1 of 
(6.4.18) can be written as the ordinary least squares regression of yi - gT 
on x1,i - Z1,=, where p’ = (PO, p i ) .  

5. (Section 6.3) Let a Poisson sample be selected from the finite population 

i id  random variables with sixth moments. Let model (6.3.36) hold, 
where ei is independent of x1.j for all i and j. Show that 

{Ed = ((211, Yl), ( 2 1 2 ,  Y2) ,  . ’ ’ , (wv, YN)}? where the (Zl i ,  Yi) are 

given that ( ~ i ,  $ i )  is a function of zli with the requisite moments. It is 
to be understood that E{i.rz:l$~z~ie~} is the superpopulation mean of 
7ri -1 $ixliei. 2 2  2 

6. (Section 6.3) Let FN = ( ~ 1 , 2 5 2 , .  . . , z N )  be a realization of i i d ( p z ,  a:) 
random variables. Let a Poisson sample be selected with probabilities 
7ri and let 

/ \ -1 
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Using the Taylor approximation for the variance of a ratio, show that 

f IV 

7 .  (Section 6.3) Assume the superpopulation model 

Phi = X h i P  + chi: 

ehi N ind(0, $1, 
where ehi is independent of xfLi and there is a fixed fraction Wh of 
the population in stratum h, h = 1, 2, . . . , H. Assume that the 
population has eighth moments. Let a sequence of stratified samples be 
selected from a sequence of stratified finite populations satisfying the 
model. Let the sampling fraction N;'nh in stratum h be fixed. Let 

/ \ -1 

\hiEA 

where $hi is a known bounded function of x h i .  Show that 

h 

where & = yi - xiPwq, is consistent for E b b  of (6.3.34). 

8. (Section 6.3) In Example 6.3.2 the three types were assumed to have a 
common mean. Using the stratified means for the three types, test the 
hypothesis of common means. 

9. (Section 6.3) Estimate the ~ $ , j  = 1 , 2 , 3 ,  of Example 6.3.2 by com- 
puting the domain means of (yhji - ,iist)2. Estimate the variances of 
your estimators. 

10. (Section 6.3) Construct the Pfeffermann-Sverchkov estimator for the 
sample of Example 6.3.2. Estimate the variance of the estimator. Why 
is the estimated efficiency relative to the stratified estimator poor? 
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