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Preface

The idea for this book came in part from teaching quantitative drug
design to B.Sc. and M.Sc. students at the Universities of Sussex and
Portsmouth. I have also needed to describe a number of mathemati-
cal and statistical methods to my friends and colleagues in medicinal
(and physical) chemistry, biochemistry, and pharmacology departments
at Wellcome Research and SmithKline Beecham Pharmaceuticals. I have
looked for a textbook which I could recommend which gives practical
guidance in the use and interpretation of the apparently esoteric meth-
ods of multivariate statistics, otherwise known as pattern recognition. I
would have found such a book useful when I was learning the trade, and
so this is intended to be that sort of guide.

There are, of course, many fine textbooks of statistics and these are
referred to as appropriate for further reading. However, I feel that there
isn’t a book which gives a practical guide for scientists to the processes of
data analysis. The emphasis here is on the application of the techniques
and the interpretation of their results, although a certain amount of
theory is required in order to explain the methods. This is not intended
to be a statistical textbook, indeed an elementary knowledge of statistics
is assumed of the reader, but is meant to be a statistical companion to
the novice or casual user.

It is necessary here to consider the type of research which these meth-
ods may be used for. Historically, techniques for building models to
relate biological properties to chemical structure have been developed in
pharmaceutical and agrochemical research. Many of the examples used
in this text are derived from these fields of work. There is no reason,
however, why any sort of property which depends on chemical structure
should not be modelled in this way. This might be termed quantita-
tive structure–property relationships (QSPR) rather than QSAR where
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xii PREFACE

A stands for activity. Such models are beginning to be reported; re-
cent examples include applications in the design of dyestuffs, cosmetics,
egg-white substitutes, artificial sweeteners, cheese-making, and prepared
food products. I have tried to incorporate some of these applications
to illustrate the methods, as well as the more traditional examples of
QSAR.

There are also many other areas of science which can benefit from the
application of statistical and mathematical methods to an examination
of their data, particularly multivariate techniques. I hope that scientists
from these other disciplines will be able to see how such approaches can
be of use in their own work.

The chapters are ordered in a logical sequence, the sequence in which
data analysis might be carried out – from planning an experiment
through examining and displaying the data to constructing quantita-
tive models. However, each chapter is intended to stand alone so that
casual users can refer to the section that is most appropriate to their
problem. The one exception to this is the Introduction which explains
many of the terms which are used later in the book. Finally, I have in-
cluded definitions and descriptions of some of the chemical properties
and biological terms used in panels separated from the rest of the text.
Thus, a reader who is already familiar with such concepts should be able
to read the book without undue interruption.

David Livingstone
Sandown, Isle of Wight

May 2009
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1
Introduction: Data and Its
Properties, Analytical Methods
and Jargon

Points covered in this chapter

� Types of data
� Sources of data
� The nature of data
� Scales of measurement
� Data distribution
� Population and sample properties
� Outliers
� Terminology

PREAMBLE

This book is not a textbook although it does aim to teach the reader
how to do things and explain how or why they work. It can be thought
of as a handbook of data analysis; a sort of workshop manual for the
mathematical and statistical procedures which scientists may use in order
to extract information from their experimental data. It is written for
scientists who want to analyse their data ‘properly’ but who don’t have
the time or inclination to complete a degree course in statistics in order

A Practical Guide to Scientific Data Analysis David Livingstone
C© 2009 John Wiley & Sons, Ltd

1
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2 INTRODUCTION

to do this. I have tried to keep the mathematical and statistical theory
to a minimum, sufficient to explain the basis of the methods but not too
much to obscure the point of applying the procedures in the first case.

I am a chemist by training and a ‘drug designer’ by profession so it is
inevitable that many examples will be chemical and also from the field
of molecular design. One term that may often appear is QSAR. This
stands for Quantitative Structure Activity Relationships, a term which
covers methods by which the biological activity of chemicals is related to
their chemical structure. I have tried to include applications from other
branches of science but I hope that the structure of the book and the way
that the methods are described will allow scientists from all disciplines
to see how these sometimes obscure-seeming methods can be applied to
their own problems.

For those readers who work within my own profession I trust that
the more ‘generic’ approach to the explanation and description of the
techniques will still allow an understanding of how they may be applied
to their own problems. There are, of course, some particular topics which
only apply to molecular design and these have been included in Chap-
ter 10 so for these readers I recommend the unusual approach of reading
this book by starting at the end. The text also includes examples from the
drug design field, in some cases very specific examples such as chemical
library design, so I expect that this will be a useful handbook for the
molecular designer.

1.1 INTRODUCTION

Most applications of data analysis involve attempts to fit a model, usually
quantitative,1 to a set of experimental measurements or observations.
The reasons for fitting such models are varied. For example, the model
may be purely empirical and be required in order to make predictions for
new experiments. On the other hand, the model may be based on some
theory or law, and an evaluation of the fit of the data to the model may
be used to give insight into the processes underlying the observations
made. In some cases the ability to fit a model to a set of data successfully
may provide the inspiration to formulate some new hypothesis. The type
of model which may be fitted to any set of data depends not only on the
nature of the data (see Section 1.4) but also on the intended use of the
model. In many applications a model is meant to be used predictively,

1 According to the type of data involved, the model may be qualitative.
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but the predictions need not necessarily be quantitative. Chapters 4 and
5 give examples of techniques which may be used to make qualitative
predictions, as do the classification methods described in Chapter 7.

In some circumstances it may appear that data analysis is not fitting
a model at all! The simple procedure of plotting the values of two vari-
ables against one another might not seem to be modelling, unless it is
already known that the variables are related by some law (for example
absorbance and concentration, related by Beer’s law). The production
of a bivariate plot may be thought of as fitting a model which is simply
dictated by the variables. This may be an alien concept but it is a useful
way of visualizing what is happening when multivariate techniques are
used for the display of data (see Chapter 4). The resulting plots may be
thought of as models which have been fitted by the data and as a result
they give some insight into the information that the model, and hence
the data, contains.

1.2 TYPES OF DATA

At this point it is necessary to introduce some jargon which will help
to distinguish the two main types of data which are involved in data
analysis. The observed or experimentally measured data which will be
modelled is known as a dependent variable or variables if there are more
than one. It is expected that this type of data will be determined by
some features, properties or factors of the system under observation or
experiment, and it will thus be dependent on (related by) some more or
less complex function of these factors. It is often the aim of data anal-
ysis to predict values of one or more dependent variables from values
of one or more independent variables. The independent variables are
observed properties of the system under study which, although they may
be dependent on other properties, are not dependent on the observed
or experimental data of interest. I have tried to phrase this in the most
general way to cover the largest number of applications but perhaps
a few examples may serve to illustrate the point. Dependent variables
are usually determined by experimental measurement or observation on
some (hopefully) relevant test system. This may be a biological system
such as a purified enzyme, cell culture, piece of tissue, or whole animal;
alternatively it may be a panel of tasters, a measurement of viscosity,
the brightness of a star, the size of a nanoparticle, the quantification
of colour and so on. Independent variables may be determined exper-
imentally, may be observed themselves, may be calculated or may be
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ID Response Ind 1 Ind 2 Ind 3 Ind 4 Ind 5
Case 1 14 1.6 136 0.03 -12.6 19542
Case 2 24 2 197 0.07 -8.2 15005
Case 3 -6 9.05 211 0.1 -1 10098
Case 4 19 6 55 0.005 -0.99 17126
Case 5 88.2 3.66 126 0.8 0 19183
Case 6 43 12 83 0.79 -1.3 12087
……. ……. ……. ……. ……. ……. …….
……. ……. ……. ……. ……. ……. …….
Case n 11 7.05 156 0.05 -6.5 16345

Figure 1.1 Example of a dataset laid out as a table.

controlled by the investigator. Examples of independent variables are
temperature, atmospheric pressure, time, molecular volume, concentra-
tion, distance, etc.

One other piece of jargon concerns the way that the elements of a
data set are ‘labelled’. The data set shown in Figure 1.1 is laid out as
a table in the ‘natural’ way that most scientists would use; each row
corresponds to a sample or experimental observation and each column
corresponds to some measurement or observation (or calculation) for
that row.

The rows are called ‘cases’ and they may correspond to a sample or an
observation, say, at a time point, a compound that has been tested for
its pharmacological activity, a food that has been treated in some way,
a particular blend of materials and so on. The first column is a label,
or case identifier, and subsequent columns are variables which may also
be called descriptors or properties or features. In the example shown
in the figure there is one case label, one dependent variable and five
independent variables for n cases which may also be thought of as an n
by 6 matrix (ignoring the case label column). This may be more generally
written as an n by p matrix where p is the number of variables. There is
nothing unsual in laying out a data set as a table. I expect most scientists
did this for their first experiment, but the concept of thinking of a data
set as a mathematical construct, a matrix, may not come so easily. Many
of the techniques used for data analysis depend on matrix manipulations
and although it isn’t necessary to know the details of operations such as
matrix multiplication in order to use them, thinking of a data set as a
matrix does help to explain them.

Important features of data such as scales of measurement and distri-
bution are described in later sections of this chapter but first we should
consider the sources and nature of the data.
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Figure 1.2 Typical and not so typical dose–response curves for a set of five different
compounds.

1.3 SOURCES OF DATA

1.3.1 Dependent Data

Important considerations for dependent data are that their measurement
should be well defined experimentally, and that they should be consistent
amongst the cases (objects, samples, observations) in a set. This may
seem obvious, and of course it is good scientific practice to ensure that
an experiment is well controlled, but it is not always obvious that data is
consistent, particularly when analysed by someone who did not generate
it. Consider the set of curves shown in Figure 1.2 where biological effect
is plotted against concentration.

Compounds 1–3 can be seen to be ‘well behaved’ in that their
dose–response curves are of very similar shape and are just shifted along
the concentration axis depending on their potency. Curves of this sig-
moidal shape are quite typical; common practice is to take 50 % as the
measure of effect and read off the concentration to achieve this from
the dose axis. The advantage of this is that the curve is linear in this
region; thus if the ED50 (the dose to give 50 % effect) has been bracketed
by experimental measurements, it simply requires linear interpolation
to obtain the ED50. A further advantage of this procedure is that the
effect is changing most rapidly with concentration in the 50 % part of
the curve. Since small changes in concentration produce large changes in
effect it is possible to get the most precise measure of the concentration
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required to cause a standard effect. The curve for compound 4 illus-
trates a common problem in that it does not run parallel to the others;
this compound produces small effects (<50 %) at very low doses but
needs comparatively high concentrations to achieve effects in excess of
50 %. Compound 5 demonstrates yet another deviation from the norm
in that it does not achieve 50 % effect. There may be a variety of rea-
sons for these deviations from the usual behaviour, such as changes in
mechanism, solubility problems, and so on, but the effect is to produce
inconsistent results which may be difficult or impossible to analyse.

The situation shown here where full dose–response data is available is
very good from the point of view of the analyst, since it is relatively easy
to detect abnormal behaviour and the data will have good precision.
However, it is often time-consuming, expensive, or both, to collect such
a full set of data. There is also the question of what is required from
the test in terms of the eventual application. There is little point, for
example, in making precise measurements in the millimolar range when
the target activity must be of the order of micromolar or nanomolar.
Thus, it should be borne in mind that the data available for analysis may
not always be as good as it appears at first sight. Any time spent in a
preliminary examination of the data and discussion with those involved
in the measurement will usually be amply repaid.

1.3.2 Independent Data

Independent variables also should be well defined experimentally, or
in terms of an observation or calculation protocol, and should also be
consistent amongst the cases in a set. It is important to know the precision
of the independent variables since they may be used to make predictions
of a dependent variable. Obviously the precision, or lack of it, of the
independent variables will control the precision of the predictions. Some
data analysis techniques assume that all the error is in the dependent
variable, which is rarely ever the case.

There are many different types of independent variables. Some may be
controlled by an investigator as part of the experimental procedure. The
length of time that something is heated, for example, and the temperature
that it is heated to may be independent variables. Others may be obtained
by observation or measurement but might not be under the control of the
investigator. Consider the case of the prediction of tropical storms where
measurements may be made over a period of time of ocean temperature,
air pressure, relative humidity, wind speed and so on. Any or all of these
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parameters may be used as independent variables in attempts to model
the development or duration of a tropical storm.

In the field of molecular design2 the independent variables are most
often physicochemical properties or molecular descriptors which char-
acterize the molecules under study. There are a number of ways in which
chemical structures can be characterized. Particular chemical features
such as aromatic rings, carboxyl groups, chlorine atoms, double bonds
and suchlike can be listed or counted. If they are listed, answering the
question ‘does the structure contain this feature?’, then they will be bi-
nary descriptors taking the value of 1 for present and 0 for absent. If they
are counts then the parameter will be a real valued number between 0
and some maximum value for the compounds in the set. Measured prop-
erties such as melting point, solubility, partition coefficient and so on are
an obvious source of chemical descriptors. Other parameters, many of
them, may be calculated from a knowledge of the 2-dimensional (2D) or
3-dimensional (3D) structure of the compounds [1, 2]. Actually, there
are some descriptors, such as molecular weight, which don’t even require
a 2D structure.

1.4 THE NATURE OF DATA

One of the most frequently overlooked aspects of data analysis is consid-
eration of the data that is going to be analysed. How accurate is it? How
complete is it? How representative is it? These are some of the questions
that should be asked about any set of data, preferably before starting
to try and understand it, along with the general question ‘what do the
numbers, or symbols, or categories mean?’

So far, in this book the terms descriptor, parameter, and property
have been used interchangeably. This can perhaps be justified in that it
helps to avoid repetition, but they do actually mean different things and
so it would be best to define them here. Descriptor refers to any means by
which a sample (case, object) is described or characterized: for molecules
the term aromatic, for example, is a descriptor, as are the quantities
molecular weight and boiling point. Physicochemical property refers to
a feature of a molecule which is determined by its physical or chemical
properties, or a combination of both. Parameter is a term which is used

2 Molecular design means the design of a biologically active substance such as a pharmaceutical
or pesticide, or of a ‘performance’ chemical such as a fragrance, flavour, and so on or a
formulation such as paint, adhesive, etc.
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to refer to some numerical measure of a descriptor or physicochemical
property. The two descriptors molecular weight and boiling point
are also both parameters; the term aromatic is a descriptor but not a
parameter, whereas the question ‘How many aromatic rings?’ gives rise
to a parameter. All parameters are thus descriptors but not vice versa.

The next few sections discuss some of the more important aspects of
the nature and properties of data. It is often the data itself that dictates
which particular analytical method may be used to examine it and how
successful the outcome of that examination will be.

1.4.1 Types of Data and Scales of Measurement

In the examples of descriptors and parameters given here it may have
been noticed that there are differences in the ‘nature’ of the values used
to express them. This is because variables, both dependent and indepen-
dent, can be classified as qualitative or quantitative. Qualitative variables
contain data that can be placed into distinct classes; ‘dead’ or ‘alive’, for
example, ‘hot’ or ‘cold’, ‘aromatic’ or ‘non-aromatic’ are examples of
binary or dichotomous qualitative variables. Quantitative variables con-
tain data that is numerical and can be ranked or ordered. Examples of
quantitative variables are length, temperature, age, weight, etc. Quantita-
tive variables can be further divided into discrete or continuous. Discrete
variables are usually counts such as ‘how many objects in a group’, ‘num-
ber of hydroxyl groups’, ‘number of components in a mixture’, and so
on. Continuous variables, such as height, time, volume, etc. can assume
any value within a given range.

In addition to the classification of variables as qualitative/quantitative
and the further division into discrete/continuous, variables can also be
classified according to how they are categorized, counted or measured.
This is because of differences in the scales of measurement used for
variables. It is necessary to consider four different scales of measurement:
nominal, ordinal, interval, and ratio. It is important to be aware of the
properties of these scales since the nature of the scales determines which
analytical methods should be used to treat the data.

Nominal

This is the weakest level of measurement, i.e. has the lowest information
content, and applies to the situation where a number or other symbol
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is used to assign membership to a class. The terms male and female,
young and old, aromatic and non-aromatic are all descriptors based on
nominal scales. These are dichotomous descriptors, in that the objects
(people or compounds) belong to one class or another, but this is not the
only type of nominal descriptor. Colour, subdivided into as many classes
as desired, is a nominal descriptor as is the question ‘which of the four
halogens does the compound contain?’

Ordinal

Like the nominal scale, the ordinal scale of measurement places objects
in different classes but here the classes bear some relation to one another,
expressed by the term greater than (>). Thus, from the previous example,
old > middle-aged > young. Two examples in the context of molecu-
lar design are toxic > slightly toxic > nontoxic, and fully saturated >

partially saturated > unsaturated. The latter descriptor might also be
represented by the number of double bonds present in the structures
although this is not chemically equivalent since triple bonds are ignored.
It is important to be aware of the situations in which a parameter might
appear to be measured on an interval or ratio scale (see below), but
because of the distribution of compounds in the set under study, these
effectively become nominal or ordinal descriptors (see next section).

Interval

An interval scale has the characteristics of a nominal scale, but in addition
the distances between any two numbers on the scale are of known size.
The zero point and the units of measurement of an interval scale are
arbitrary: a good example of an interval scale parameter is boiling point.
This could be measured on either the Fahrenheit or Celsius temperature
scales but the information content of the boiling point values is the same.

Ratio

A ratio scale is an interval scale which has a true zero point as its origin.
Mass is an example of a parameter measured on a ratio scale, as are
parameters which describe dimensions such as length, volume, etc. An
additional property of the ratio scale, hinted at in the name, is that it
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contains a true ratio between values. A measurement of 200 for one
sample and 100 for another, for example, means a ratio of 2:1 between
these two samples.

What is the significance of these different scales of measurement? As
will be discussed later, many of the well-known statistical methods are
parametric, that is, they rely on assumptions concerning the distribution
of the data. The computation of parametric tests involves arithmetic ma-
nipulation such as addition, multiplication, and division, and this should
only be carried out on data measured on interval or ratio scales. When
these procedures are used on data measured on other scales they intro-
duce distortions into the data and thus cast doubt on any conclusions
which may be drawn from the tests. Nonparametric or ‘distribution-free’
methods, on the other hand, concentrate on an order or ranking of data
and thus can be used with ordinal data. Some of the nonparametric tech-
niques are also designed to operate with classified (nominal) data. Since
interval and ratio scales of measurement have all the properties of ordi-
nal scales it is possible to use nonparametric methods for data measured
on these scales. Thus, the distribution-free techniques are the ‘safest’ to
use since they can be applied to most types of data. If, however, the
data does conform to the distributional assumptions of the parametric
techniques, these methods may well extract more information from the
data.

1.4.2 Data Distribution

Statistics is often concerned with the treatment of a small3 number of
samples which have been drawn from a much larger population. Each
of these samples may be described by one or more variables which have
been measured or calculated for that sample. For each variable there
exists a population of samples. It is the properties of these populations
of variables that allows the assignment of probabilities, for example, the
likelihood that the value of a variable will fall into a particular range, and
the assessment of significance (i.e. is one number significantly different
from another). Probability theory and statistics are, in fact, separate
subjects; each may be said to be the inverse of the other, but for the
purposes of this discussion they may be regarded as doing the same job.

3 The term ‘small’ here may represent hundreds or even thousands of samples. This is a small
number compared to a population which is often taken to be infinite.
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Figure 1.3 Frequency distribution for the variable x over the range −10 to +10.

How are the properties of the population used? Perhaps one of the
most familiar concepts in statistics is the frequency distribution. A plot
of a frequency distribution is shown in Figure 1.3, where the ordinate
(y-axis) represents the number of occurrences of a particular value of a
variable given by the scales of the abscissa (x-axis).

If the data is discrete, usually but not necessarily measured on nominal
or ordinal scales, then the variable values can only correspond to the
points marked on the scale on the abscissa. If the data is continuous, a
problem arises in the creation of a frequency distribution, since every
value in the data set may be different and the resultant plot would be a
very uninteresting straight line at y = 1. This may be overcome by taking
ranges of the variable and counting the number of occurrences of values
within each range. For the example shown in Figure 1.4 (where there are
a total of 50 values in all), the ranges are 0–1, 1–2, 2–3, and so on up to
9–10.

It can be seen that these points fall on a roughly bell-shaped curve
with the largest number of occurrences of the variable occurring around
the peak of the curve, corresponding to the mean of the set. The mean
of the sample is given the symbol X and is obtained by summing all the
sample values together and dividing by the number of samples as shown
in Equation (1.1).

X = x1 + x2 + x3 + . . . . . . xn

n
=

∑
x

n
(1.1)
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Figure 1.4 Frequency histogram for the continuous variable x over the range 0
to +10.

The mean, since it is derived from a sample, is known as a statistic. The
corresponding value for a population, the population mean, is given the
symbol μ and this is known as a parameter, another use for the term. A
convention in statistics is that Greek letters are used to denote parameters
(measures or characteristics of the population) and Roman letters are
used for statistics. The mean is known as a ‘measure of central tendency’
(others are the mode, median and midrange) which means that it gives
some idea of the centre of the distribution of the values of the variable.
In addition to knowing the centre of the distribution it is important
to know how the data values are spread through the distribution. Are
they clustered around the mean or do they spread evenly throughout the
distribution? Measures of distribution are often known as ‘measures of
dispersion’ and the most often used are variance and standard deviation.
Variance is the average of the squares of the distance of each data value
from the mean as shown in Equation (1.2):

s2 =
∑

(X − X)2

n − 1
(1.2)

The symbol used for the sample variance is s2 which at first sight might
appear strange. Why use the square sign in a symbol for a quantity like
this? The reason is that the standard deviation (s) of a sample is the
square root of the variance. The standard deviation has the same units
as the units of the original variable whereas the variance has units that
are the square of the original units. Another odd thing might be noticed
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Figure 1.5 Probability distribution for a very large number of values of the variable
x; μ equals the mean of the set and σ the standard deviation.

about Equation (1.2) and that is the use of n − 1 in the denominator.
When calculating the mean the summation (Equation (1.1)) is divided
by the number of data points, n, so why is n − 1 used here? The reason
for this, apparently, is that the variance computed using n usually under-
estimates the population variance and thus the summation is divided by
n − 1 giving a slightly larger value. The corresponding symbols for the
population parameters are σ 2 for the variance and σ for the standard
deviation. A graphical illustration of the meaning of μ and σ is shown
in Figure 1.5, which is a frequency distribution like Figures 1.3 and 1.4
but with more data values so that we obtain a smooth curve.

The figure shows that μ is located in the centre of the distribution, as
expected, and that the values of the variable x along the abscissa have
been replaced by the mean +/− multiples of the standard deviation.
This is because there is a theorem (Chebyshev’s) which specifies the
proportions of the spread of values in terms of the standard deviation,
there is more on this later.

It is at this point that we can see a link between statistics and proba-
bility theory. If the height of the curve is standardized so that the area
underneath it is unity, the graph is called a probability curve. The height
of the curve at some point x can be denoted by f (x) which is called the
probability density function (p.d.f.). This function is such that it satisfies
the condition that the area under the curve is unity

∞∫

−∞
f (x)dx = 1 (1.3)
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This now allows us to find the probability that a value of x will fall in
any given range by finding the integral of the p.d.f. over that range:

probability (x1 < x < x2) =
x2∫

x1

f (x)dx (1.4)

This brief and rather incomplete description of frequency distributions
and their relationship to probability distribution has been for the purpose
of introducing the normal distribution curve. The normal or Gaussian
distribution is the most important of the distributions that are considered
in statistics. The height of a normal distribution curve is given by

f (x) = 1

σ
√

2π
e−(x−μ)2/2σ 2

(1.5)

This rather complicated function was chosen so that the total area under
the curve is equal to 1 for all values of μ and σ . Equation (1.5) has
been given so that the connection between probability and the two pa-
rameters μ and σ of the distribution can be seen. The curve is shown in
Figure 1.5 where the abscissa is marked in units of σ . It can be seen that
the curve is symmetric about μ, the mean, which is a measure of the
location or ‘central tendency’ of the distribution. As mentioned earlier,
there is a theorem that specifies the proportion of the spread of values
in any distribution. In the special case of the normal distribution this
means that approximately 68 % of the data values will fall within 1
standard deviation of the mean and 95 % within 2 standard deviations.
Put another way, about one observation in three will lie more than one
standard deviation (σ ) from the mean and about one observation in 20
will lie more than two standard deviations from the mean. The standard
deviation is a measure of the spread or ‘dispersion’; it is these two prop-
erties, location and spread, of a distribution which allow us to make
estimates of likelihood (or ‘significance’).

Some other features of the normal distribution can be seen by con-
sideration of Figure 1.6. In part (a) of the figure, the distribution is no
longer symmetrical; there are more values of the variable with a higher
value.

This distribution is said to be skewed, it has a positive skewness;
the distribution shown in part (b) is said to be negatively skewed. In
part (c) three distributions are overlaid which have differing degrees
of ‘steepness’ of the curve around the mean. The statistical term used
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Figure 1.6 Illustration of deviations of probability distributions from a normal
distribution.

to describe the steepness, or degree of peakedness, of a distribution is
kurtosis. Various measures may be used to express kurtosis; one known
as the moment ratio gives a value of three for a normal distribution. Thus
it is possible to judge how far a distribution deviates from normality
by calculating values of skewness (= 0 for a normal distribution) and
kurtosis. As will be seen later, these measures of how ‘well behaved’
a variable is may be used as an aid to variable selection. Finally, in
part (d) of Figure 1.6 it can be seen that the distribution appears to have
two means. This is known as a bimodal distribution, which has its own
particular set of properties distinct to those of the normal distribution.

1.4.3 Deviations in Distribution

There are many situations in which a variable that might be expected
to have a normal distribution does not. Take for example the molecu-
lar weight of a set of assorted painkillers. If the compounds in the set
consisted of aspirin and morphine derivatives, then we might see a bi-
modal distribution with two peaks corresponding to values of around
180 (mol.wt. of aspirin) and 285 (mol.wt. of morphine). Skewed and
kurtosed distributions may arise for a variety of reasons, and the effect
they will have on an analysis depends on the assumptions employed
in the analysis and the degree to which the distributions deviate from
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normality, or whatever distribution is assumed. This, of course, is not a
very satisfactory statement to someone who is asking the question, ‘Is my
data good enough (sufficiently well behaved) to apply such and such a
method to it?’ Unfortunately, there is not usually a simple answer to this
sort of question. In general, the further the data deviates from the type of
distribution that is assumed when a model is fitted, the less reliable will
be the conclusions drawn from that model. It is worth pointing out here
that real data is unlikely to conform perfectly to a normal distribution,
or any other ‘standard’ distribution for that matter. Checking the distri-
bution is necessary so that we know what type of method can be used
to treat the data, as described later, and how reliable any estimates will
be which are based on assumptions of distribution. A caution should
be sounded here in that it is easy to become too critical and use a poor
or less than ‘perfect’ distribution as an excuse not to use a particular
technique, or to discount the results of an analysis.

Another problem which is frequently encountered in the distribution
of data is the presence of outliers. Consider the data shown in Table 1.1
where calculated values of electrophilic superdelocalizability (ESDL10)
are given for a set of analogues of antimycin A1, compounds which kill
human parasitic worms, Dipetalonema vitae.

The mean and standard deviation of this variable give no clues as to
how well it is distributed and the skewness and kurtosis values of −3.15

Table 1.1 Physicochemical properties and antifilarial activity of antimycin analo-
gues (reproduced from ref. [3] with permission from American Chemical Society).

Compound Calculated Melting
number ESDL10 log P point ◦◦C Activity

1 −0.3896 7.239 81 −0.845
2 −0.4706 5.960 183 −0.380
3 −0.4688 6.994 207 1.398
4 −0.4129 7.372 143 0.319
5 −0.3762 5.730 165 −0.875
6 −0.3280 6.994 192 0.824
7 −0.3649 6.755 256 1.839
8 −0.5404 6.695 199 1.020
9 −0.4499 7.372 151 0.420

10 −0.3473 5.670 195 0.000
11 −0.7942 4.888 212 0.097
12 −0.4057 6.205 246 1.130
13 −0.4094 6.113 208 0.920
14 −1.4855 6.180 159 0.770
15 −0.3427 5.681 178 0.301
16 −0.4597 6.838 222 1.357
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Figure 1.7 Frequency distribution for the variable ESDL10 given in Table 1.1.

and 10.65 respectively might not suggest that it deviates too seriously
from normal. A frequency distribution for this variable, however, re-
veals the presence of a single extreme value (compound 14) as shown in
Figure 1.7.

This data was analysed by multiple linear regression (discussed fur-
ther in Chapter 6), which is a method based on properties of the normal
distribution. The presence of this outlier had quite profound effects on
the analysis, which could have been avoided if the data distribution had
been checked at the outset (particularly by the present author). Outliers
can be very informative and should not simply be discarded as so fre-
quently happens. If an outlier is found in one of the descriptor variables
(physicochemical data), then it may show that a mistake has been made
in the measurement or calculation of that variable for that compound.
In the case of properties derived from computational chemistry calcula-
tions it may indicate that some basic assumption has been violated or
that the particular method employed was not appropriate for that com-
pound. An example of this can be found in semi-empirical molecular
orbital methods which are only parameterized for a limited set of the
elements. Outliers are not always due to mistakes, however. Consider
the calculation of electrostatic potential around a molecule. It is easy
to identify regions of high and low values, and these are often used to
provide criteria for alignment or as a pictorial explanation of biological
properties. The value of an electrostatic potential minimum or maxi-
mum, or the value of the potential at a given point, has been used as
a parameter to describe sets of molecules. This is fine as long as each
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molecule in the set has a maximum and/or minimum at approximately
the same place. Problems arise if a small number of the structures do
not have the corresponding values in which case they will form outliers.
The effect of this is to cause the variable, apparently measured on an
interval scale, to become a nominal descriptor. Take, for example, the
case where 80 % of the members of the set have an electrostatic poten-
tial minimum of around −50 kcal/mole at a particular position. For the
remaining members of the set, the electrostatic potential at this position
is zero. This variable has now become an ‘indicator’ variable which has
two distinct values (zero for 20 % of the molecules and −50 for the
remainder) that identify two different subsets of the data. The problem
may be overcome if the magnitude of a minimum or maximum is taken,
irrespective of position, although problems may occur with molecules
that have multiple minima or maxima. There is also the more difficult
philosophical question of what do such values ‘mean’.

When outliers occur in the biological or dependent data, they may
also indicate mistakes: perhaps the wrong compound was tested, or it
did not dissolve, a result was misrecorded, or the test did not work out as
expected. However, in dependent data sets, outliers may be even more
informative. They may indicate a change in biological mechanism, or
perhaps they demonstrate that some important structural feature has
been altered or a critical value of a physicochemical property exceeded.
Once again, it is best not to simply discard such outliers, they may be
very informative.

Is there anything that can be done to improve a poorly distributed
variable? The answer is yes, but it is a qualified yes since the use of too
many ‘tricks’ to improve distribution may introduce other distortions
which will obscure useful patterns in the data. The first step in improv-
ing distribution is to identify outliers and then, if possible, identify the
cause(s) of such outliers. If an outlier cannot be ‘fixed’ it may need to be
removed from the data set. The second step involves the consideration of
the rest of the values in the set. If a variable has a high value of kurtosis
or skewness, is there some good reason for this? Does the variable re-
ally measure what we think it does? Are the calculations/measurements
sound for all of the members of the set, particularly at the extremes of
the range for skewed distributions or around the mean where kurtosis is
a problem. Finally, would a transformation help? Taking the logarithm
of a variable will often make it behave more like a normally distributed
variable, but this is not a justification for always taking logs!

A final point on the matter of data distribution concerns the non-
parametric methods. Although these techniques are not based on



P1: OTA/XYZ P2: ABC
JWBK419-01 JWBK419/Livingstone September 25, 2009 14:48 Printer Name: Yet to Come

ANALYTICAL METHODS 19

distributional assumptions, they may still suffer from the effects of
‘strange’ distributions in the data. The presence of outliers or the effec-
tive conversion of interval to ordinal data, as in the electrostatic potential
example, may lead to misleading results.

1.5 ANALYTICAL METHODS

This whole book is concerned with analytical methods, as the following
chapters will show, so the purpose of this section is to introduce and ex-
plain some of the terms which are used to describe the techniques. These
terms, like most jargon, also often serve to obscure the methodology to
the casual or novice user so it is hoped that this section will help to unveil
the techniques.

First, we should consider some of the expressions which are used to
describe the methods in general. Biometrics is a term which has been used
since the early 20th century to describe the development of mathematical
and statistical methods to data analysis problems in the biological sci-
ences. Chemometrics is used to describe ‘any mathematical or statistical
procedure which is used to analyse chemical data’ [4]. Thus, the simple
act of plotting a calibration curve is chemometrics, as is the process of fit-
ting a line to that plot by the method of least squares, as is the analysis by
principal components of the spectrum of a solution containing several
species. Any chemist who carries out quantitative experiments is also
a chemometrician! Univariate statistics is (perhaps unsurprisingly) the
term given to describe the statistical analysis of a single variable. This is
the type of statistics which is normally taught on an introductory course;
it involves the analysis of variance of a single variable to give quantities
such as the mean and standard deviation, and some measures of the dis-
tribution of the data. Multivariate statistics describes the application of
statistical methods to more than one variable at a time, and is perhaps
more useful than univariate methods since most problems in real life are
multivariate. We might more correctly use the term multivariate analy-
sis since not all multivariate methods are statistical. Chemometrics and
multivariate analysis refer to more or less the same things, chemometrics
being the broader term since it includes univariate techniques.4

Pattern recognition is the name given to any method which helps to
reveal the patterns within a data set. A definition of pattern recognition
is that it ‘seeks similarities and regularities present in the data’. Some

4 But, of course, it is restricted to chemical problems.
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Table 1.2 Anaesthetic activity and hydrophobicity of a series of alcohols
(reproduced from ref. [5] with permission from American Society for Pharmacology
and Experimental Therapeutics (ASPET)).

Alcohol �π Anaesthetic activity
(
log 1/C

)

C2H5OH 1.0 0.481
n–C3H7OH 1.5 0.959
n–C4H9OH 2.0 1.523
n–C5H11OH 2.5 2.152
n–C7H15OH 3.5 3.420
n–C8H17OH 4.0 3.886
n–C9H19OH 4.5 4.602
n–C10H21OH 5.0 5.00
n–C11H23OH 5.5 5.301
n–C12H25OH 6.0 5.124

of the display techniques described in Chapter 4 are quite obvious ex-
amples of pattern recognition since they result in a visual display of the
patterns in data. However, consider the data shown in Table 1.2 where
the anaesthetic activity of a series of alcohols is given as the logarithm
of the reciprocal of the concentration needed to induce a particular level
of anaesthesia.

The other column in this table (�π) is a measure of the hydrophobic-
ity of each of the alcohols. Hydrophobicity, which means literally ‘water
hating’, reflects the tendency of molecules to partition into membranes
in a biological system (see Chapter 10 for more detail) and is a physic-
ochemical descriptor of the alcohols. Inspection of the table reveals a
fairly obvious relationship between log 1/C and �π but this is most
easily seen by a plot as shown in Figure 1.8.

Figure 1.8 Plot of biological response (log 1/C) against �π (from Table 1.2).
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This relationship can be expressed in a very concise form as shown in
Equation (1.6):

log 1/
C = 1.039

∑
π − 0.442 (1.6)

This is an example of a simple linear regression equation. Regression
equations and the statistics which may be used to describe their ‘goodness
of fit’, to a linear or other model, are explained in detail in Chapter 6.
For the purposes of demonstrating this relationship it is sufficient to say
that the values of the logarithm of a reciprocal concentration (log 1/C)
in Equation (1.6) are obtained by multiplication of the �π values by a
coefficient (1.039) and the addition of a constant term (−0.442). The
equation is shown in graphical form (Figure 1.8); the slope of the fitted
line is equal to the regression coefficient (1.039) and the intercept of the
line with the zero point of the x-axis is equal to the constant (−0.442).
Thus, the pattern obvious in the data table may be shown by the simple
bivariate plot and expressed numerically in Equation (1.6). These are
examples of pattern recognition although regression models would not
normally be classed as pattern recognition methods.

Pattern recognition and chemometrics are more or less synonymous.
Some of the pattern recognition techniques are derived from research
into artificial intelligence. We can ‘borrow’ some useful jargon from this
field which is related to the concept of ‘training’ an algorithm or de-
vice to carry out a particular task. Suppose that we have a set of data
which describes a collection of compounds which can be classified as
active or inactive in some biological test. The descriptor data, or inde-
pendent variables, may be whole molecule parameters such as melting
point, or may be substituent constants, or may be calculated quantities
such as molecular orbital energies. One simple way in which this data
may be analysed is to compare the values of the variables for the ac-
tive compounds with those of the inactives (see discriminant analysis in
Chapter 7). This may enable one to establish a rule or rules which will
distinguish the two classes. For example, all the actives may have melt-
ing points above 250 ◦C and/or may have highest occupied molecular
orbital (HOMO) energy values below −10.5. The production of these
rules, by inspection of the data or by use of an algorithm, is called super-
vised learning since knowledge of class membership was used to generate
them. The dependent variable, in this case membership of the active or
inactive class, is used in the learning or training process. Unsupervised
learning, on the other hand, does not make use of a dependent variable.
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An example of unsupervised learning for this data set might be to plot
the values of two of the descriptor variables against one another. Class
membership for the compounds could then be marked on the plot and a
pattern may be seen to emerge from the data. If we chose melting point
and HOMO as the two variables to plot, we may see a grouping of the
active compounds where HOMO < −10.5 and melting point >250 ◦C.

The distinction between supervised and unsupervised learning may
seem unimportant but there is a significant philosophical difference be-
tween the two. When we seek a rule to classify data, there is a possibility
that any apparent rule may happen by chance. It may, for example, be
a coincidence that all the active compounds have high melting points;
in such a case the rule will not be predictive. This may be misleading,
embarrassing, expensive, or all three! Chance effects may also occur with
unsupervised learning but are much less likely since unsupervised learn-
ing does not seek to generate rules. Chance effects are discussed in more
detail in Chapters 6 and 7. The concept of learning may also be used to
define some data sets. A set of compounds which have already been tested
in some biological system, or which are about to be tested, is known as
a learning or training set. In the case of a supervised learning method
this data will be used to train the technique but this term applies equally
well to the unsupervised case. Judicious choice of the training set will
have profound effects on the success of the application of any analytical
method, supervised or unsupervised, since the information contained in
this set dictates the information that can be extracted (see Chapter 2). A
set of untested or yet to be synthesized compounds is called a test set,
the objective of data analysis usually being to make predictions for the
test set (also sometimes called a prediction set). A further type of data
set, known as an evaluation set, may also be used. This consists of a set
of compounds for which test results are available but which is not used
in the construction of the model. Examination of the prediction results
for an evaluation set can give some insight into the validity and accuracy
of the model.

Finally we should define the terms parametric and nonparametric. A
measure of the distribution of a variable (see Section 1.4.2) is a measure
of one of the parameters of that variable. If we had measurements for all
possible values of a variable (an infinite number of measurements), then
we would be able to compute a value for the population distribution.
Statistics is concerned with a much smaller set of measurements which
forms a sample of that population and for which we can calculate a sam-
ple distribution. A well-known example of this is the Gaussian or normal
distribution. One of the assumptions made in statistics is that a sample
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distribution, which we can measure, will behave like a population distri-
bution which we cannot. Although population distributions cannot be
measured, some of their properties can be predicted by theory. Many sta-
tistical methods are based on the properties of population distributions,
particularly the normal distribution. These are called parametric tech-
niques since they make use of the distribution parameter. Before using a
parametric method, the distribution of the variables involved should be
calculated. This is very often ignored, although fortunately many of the
techniques based on assumptions about the normal distribution are quite
robust to departures from normality. There are also techniques which
do not rely on the properties of a distribution, and these are known as
nonparametric or ‘distribution free’ methods.

1.6 SUMMARY

In this chapter the following points were covered:

1. dependent and independent variables and how data tables are laid
out;

2. where data comes from and some of its properties;
3. descriptors, parameters and properties;
4. nominal, ordinal, interval and ratio scales;
5. frequency distributions, the normal distribution, definition and ex-

planation of mean, variance and standard deviation. skewness and
kurtosis;

6. the difference between sample and population properties;
7. factors causing deviations in distribution;
8. terminology – univariate and multivariate statistics, chemometrics

and biometrics, pattern recognition, supervised and unsupervised
learning. Training, test and evaluation sets, parametric and non-
parametric or ‘distribution free’ techniques.
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2
Experimental Design:
Experiment and Set Selection

Points covered in this chapter

� What is experimental design?
� Experimental design terminology
� Experimental design techniques
� Compound and set selection
� High throughput experiments

2.1 WHAT IS EXPERIMENTAL DESIGN?

All experiments are designed insofar as decisions are made concerning
the choice of apparatus, reagents, animals, analytical instruments, tem-
perature, solvent, and so on. Such decisions need to be made for any
individual experiment, or series of experiments, and will be based on
prior experience, reference to the literature, or perhaps the whim of an
individual experimentalist. How can we be sure that we have made the
right decisions? Does it matter whether we have made the right deci-
sions? After all, it can be argued that an experiment is just that; the
results obtained with a particular experimental set-up are the results ob-
tained, and as such are of more or less interest depending on what they
are. To some extent the reason for conducting the experiment in the first
place may decide whether the question of the right decisions matters. If
the experiment is being carried out to comply with some legislation from
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a regulatory body (for example, toxicity testing for a new drug may re-
quire administration at doses which are fixed multiples of the therapeutic
dose), then the experimental decisions do not matter. Alternatively the
experiment may be intended to synthesize a new compound. In this case,
if the target compound is produced then all is well, except that we do
not know that the yield obtained is the best we could get by that route.
This may not matter if we are just interested in having a sample of the
compound, but what should we do if the experiment does not produce
the compound? The experiment can be repeated using different condi-
tions: for example, we could change the temperature or the time taken
for a particular step, the solvent, or solvent mixture, and perhaps the
reagents. These experimental variables are called factors and even quite
a simple chemical synthesis may involve a number of factors.

What is the best way to set about altering these factors to achieve the
desired goal of synthesizing the compound? We could try ‘trial and error’,
and indeed many people do, but this is unlikely to be the most efficient
way of investigating the effect of these factors, unless we are lucky.
However, the most important feature of experimental design lies in the
difference between ‘population’ values and ‘sample’ values. As described
in the last chapter, any experimental result, whether a measurement or
the yield from a synthesis, comes from a population of such results. When
we do an experiment we wish to know about the population structure
(values) using a sample to give some idea of population behaviour. In
general, the larger the number of samples obtained, the better our idea of
population values. The advantages of well-designed experiments are that
the information can be obtained with minimum sample sizes and that the
results can be interpreted to give the population information required.
The next section gives some examples of strategies for experimental
design. This can be of use directly in the planning of experiments but
will also introduce some concepts which are of considerable importance
in the analysis of property–activity data for drug design.

One may ask the question ‘how is experimental design relevant to the
analysis of biological data when the experimental determinations have al-
ready been made?’. One of the factors which is important in the testing of
a set of compounds, and indeed intended to be the most important, is the
nature of the compounds used. This set of compounds is called a train-
ing set, and selection of an appropriate training set will help to ensure
that the optimum information is extracted from the experimental mea-
surements made on the set. As will be shown in Section 2.3, the choice
of training set may also determine the most appropriate physicochem-
ical descriptors to use in the analysis of experimental data for the set.
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At the risk of stating the obvious, it should be pointed out that the ap-
plication of any analytical method to a training set can only extract as
much information as the set contains. Careful selection of the training
set can help to ensure that the information it contains is maximized.

2.2 EXPERIMENTAL DESIGN TECHNIQUES

Before discussing the techniques of experimental design it is necessary
to introduce some terms which describe the important features of ex-
periments. As mentioned in the previous section, the variables which
determine the outcome of an experiment are called factors. Factors may
be qualitative or quantitative. As an example, consider an experiment
which is intended to assess how well a compound or set of compounds
acts as an inhibitor of an enzyme in vitro. The enzyme assay will be car-
ried out at a certain temperature and pH using a particular buffer with
a given substrate and perhaps cofactor at fixed concentrations. Different
buffers may be employed, as might different substrates if the enzyme
catalyses a class of reaction (e.g. angiotensin converting enzyme splits
off dipeptides from the C-terminal end of peptides with widely varying
terminal amino acid sequences). These are qualitative factors since to
change them is an ‘all or nothing’ change. The other factors such as
temperature, pH, and the concentration of reagents are quantitative; for
quantitative factors it is necessary to decide the levels which they can
adopt. Most enzymes carry out their catalytic function best at a particu-
lar pH and temperature, and will cease to function at all if the conditions
are changed too far from this optimum. In the case of human enzymes,
for example, the optimum temperature is likely to be 37 ◦C and the
range of temperature over which they catalyse reactions may be (say)
32–42 ◦C. Thus we may choose three levels for this factor: low, medium,
and high, corresponding to 32, 37, and 42 ◦C. The reason for choosing
a small number of discrete levels for a continuous variable such as this
is to reduce the number of possible experiments (as will be seen below).
In the case of an enzyme assay, experience might lead us to expect that
medium would give the highest turnover of substrate although exper-
imental convenience might prompt the use of a different level of this
factor.1

1 Optimum enzyme performance might deplete the substrate too rapidly and give an inaccurate
measure of a compound as an inhibitor.
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Table 2.1 Experimental factors for an enzyme assay.

Factor Type Levels Treatments

Temperature Quantitative 32 ◦C, 37 ◦C, 42 ◦C 3
Cofactor Qualitative Yes/No 2
pH Quantitative 7.0, 7.8 2

Total = 12

A particular set of experimental conditions is known as a treatment
and for any experiment there are as many possible treatments as the
product of the levels of each of the factors involved. Suppose that we wish
to investigate the performance of an enzyme with respect to temperature,
pH, and the presence or absence of a natural cofactor. The substrate
concentration might be fixed at its physiological level and we might
choose two levels of pH which we expect to bracket the optimum pH.
Here the cofactor is a qualitative factor which can adopt one of two
levels, present or absent, temperature may take three levels as before, and
pH has two levels, thus there are 2 × 3 × 2 = 12 possible treatments, as
shown in Table 2.1. The outcome of an experiment for a given treatment
is termed a response; in this enzyme example the response might be the
rate of conversion of substrate, and in our previous example the response
might be the percentage yield of compound synthesized.

How can we tell the importance of the effect of a given factor on a
response and how can we tell if this apparent effect is real? For example,
the effect may be a population property rather than a sample property
due to random variation. This can be achieved by replication, the larger
the number of replicates of a given treatment then the better will be
our estimate of the variation in response for that treatment. We will
also have greater confidence that any one result obtained is not spurious
since we can compare it with the others and thus compare variation
due to the treatment to random variation. Replication, however, con-
sumes resources such as time and material, and so an important feature
of experimental design is to balance the effort between replication and
change in treatment. A balanced design is one in which the treatments to
be compared are replicated the same number of times, and this is desir-
able because it maintains orthogonality between factors (an important
assumption in the analysis of variance).

The factors which have been discussed so far are susceptible to change
by the experimentalist and are thus referred to as controlled factors.
Other factors may also affect the experimental response and these are
referred to as uncontrolled factors. How can experiments be designed
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to detect, and hopefully eliminate, the effects of uncontrolled factors on
the response? Uncontrolled factors may very often be time-dependent.
In the example of the enzyme assay, the substrate concentration may
be monitored using an instrument such as a spectrophotometer. The
response of the instrument may change with time and this might be
confused with effects due to the different treatments unless steps are
taken to avoid this. One approach might be to calibrate the instrument
at regular intervals with a standard solution: calibration is, of course,
a routine procedure. However, this approach might fail if the standard
solution were subject to change with time, unless fresh solutions were
made for each calibration. Even if the more obvious time-dependent
uncontrolled factors such as instrument drift are accounted for, there
may be other important factors at work.

One way to help eliminate the effect of uncontrolled factors is to
randomize the order in which the different treatments are applied. The
consideration that the order in which experiments are carried out is
important introduces the concept of batches, known as blocks, of exper-
iments. Since an individual experiment takes a certain amount of time
and will require a given amount of material it may not be possible to
carry out all of the required treatments on the same day or with the same
batch of reagents. If the enzyme assay takes one hour to complete, it may
not be possible to examine more than six treatments in a day. Taking
just the factor pH and considering three levels, low (7.2), medium (7.4),
and high (7.6), labelled as A, B, and C, a randomized block design with
two replicates might be

A, B, B, C, A, C

Another assay might take less time and allow eight treatments to be
carried out in one day. This block of experiments would enable us to
examine the effect of two factors at two levels with two replicates. Taking
the factors pH and cofactor, labelled as A and B for high and low levels
of pH, and 1 and 0 for presence or absence of cofactor, a randomized
block design with two replicates might be

A1, B0, B1, A0, A1, B0, B1, A0

This has the advantage that the presence or absence of cofactor alternates
between treatments but has the disadvantage that the high pH treatments
with cofactor occur at the beginning and in the middle of the block. If
an instrument is switched on at the beginning of the day and then again
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half-way through the day, say after a lunch break, then the replicates of
this particular treatment will be subject to a unique set of conditions –
the one-hour warm-up period of the instrument. Similarly the low pH
treatments are carried out at the same times after the instrument is
switched on. This particular set of eight treatments might be better
split into two blocks of four; in order to keep blocks of experiments
homogeneous it pays to keep them as small as possible. Alternatively,
better randomization within the block of eight treatments would help
to guard against uncontrolled factors. Once again, balance is impor-
tant, it may be better to examine the effect of one factor in a block
of experiments using a larger number of replicates. This is the way
that block designs are usually employed, examining the effect of one
experimental factor while holding other factors constant. This does
introduce the added complication of possible differences between the
blocks. In a blocked design, the effect of a factor is of interest, not
normally the effect of the blocks, so the solution is to ensure good ran-
domization within the block and/or to repeat the block of experimental
treatments.

A summary of the terms introduced so far is shown in Table 2.2

Table 2.2 Terms used in experimental design.

Term Meaning

Response The outcome of an experiment
Factor A variable which affects the experimental response. These can

be controlled and uncontrolled, qualitative and quantitative
Level The values which a factor can adopt. In the case of a

qualitative factor these are usually binary (e.g.
present/absent)

Treatment Conditions for a given experiment, e.g. temperature, pH,
reagent concentration, solvent

Block Set of experimental treatments carried out in a particular
time-period or with a particular batch of material and thus
(hopefully) under the same conditions. Generally,
observations within a block can be compared with greater
precision than between blocks

Randomization Random ordering of the treatments within a block in an
attempt to minimize the effect of uncontrolled factors

Replication Repeat experimental treatments to estimate the significance of
the effect of individual factors on the response (and to
identify ‘unusual’ effects)

Balance The relationship between the number of treatments to be
compared and the number of replicates of each treatment
examined



P1: OTA/XYZ P2: ABC
JWBK419-02 JWBK419/Livingstone September 25, 2009 14:3 Printer Name: Yet to Come

EXPERIMENTAL DESIGN TECHNIQUES 31

2.2.1 Single-factor Design Methods

The block design shown previously is referred to as a ‘balanced, com-
plete block design’ since all of the treatments were examined within the
block (hence ‘complete’), and the number of replicates was the same for
all treatments (hence ‘balanced’). If the number of treatments and their
replicates is larger than the number of experimental ‘slots’ in a block
then it will be necessary to carry out two or more blocks of experiments
to examine the effect of the factor. This requires that the blocks of exper-
iments are chosen in such a way that comparisons between treatments
will not be affected. When all of the comparisons are of equal impor-
tance (for example, low vs. high temperature, low vs. medium, and high
vs. medium) the treatments should be selected in a balanced way so that
any two occur together the same number of times as any other two. This
type of experimental design is known as ‘balanced, incomplete block de-
sign’. The results of this type of design are more difficult to analyse than
the results of a complete design, but easier than if the treatments were
chosen at random which would be an ‘unbalanced, incomplete block
design’.

The time taken for an individual experiment may determine how many
experiments can be carried out in a block, as may the amount of ma-
terial required for each treatment. If both of these factors, or any other
two ‘blocking variables’, are important then it is necessary to organize
the treatments to take account of two (potential) uncontrolled factors.
Suppose that: there are three possible treatments, A, B, and C; it is only
possible to examine three treatments in a day; a given batch of mate-
rial is sufficient for three treatments; time of day is considered to be an
important factor. A randomized design for this is shown below.

Batch Time of day

1 A B C

2 B C A

3 C A B

This is known as a Latin square, perhaps the best-known term in exper-
imental design, and is used to ensure that the treatments are randomized
to avoid trends within the design. Thus, the Latin square design is used
when considering the effect of one factor and two blocking variables.
In this case the factor was divided into three levels giving rise to three
treatments: this requires a 3 × 3 matrix. If the factor has more levels,
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then the design will simply be a larger symmetrical matrix, i.e. 4 × 4,
5 × 5, and so on. What about the situation where there are three blocking
variables? In the enzyme assay example, time of day may be important
and there may only be sufficient cofactor in one batch for three as-
says and similarly only sufficient enzyme in one batch for three assays.
This calls for a design known as a Graeco-Latin square which is made
by superimposing two different Latin squares. There are two possible
3 × 3 Latin squares:

A B C

B C A

C A B

A B C

C A B

B C A

The 3 × 3 Graeco-Latin square is made by the superimposition of these
two Latin squares with the third blocking variable denoted by Greek
letters thus:

Aα Bβ Cγ

Bγ Cα Aβ

Cβ Aγ Bα

It can be seen in this design that each treatment occurs only once in
each row and column (two of the blocking variables, say time of day
and cofactor batch) and only once with each level (α, β, and γ ) of
the third blocking variable, the enzyme batch. Both Latin squares and
Graeco-Latin squares (and Hyper-Graeco-Latin squares for more block-
ing variables) are most effective if they are replicated and are also subject
to the rules of randomization which apply to simple block designs. While
these designs are useful in situations where only one experimental factor
is varied, it is clear that if several factors are important (a more usual
situation), this approach will require a large number of experiments to
examine their effects. Another disadvantage of designing experiments
to investigate a single factor at a time is that the interactions between
factors are not examined since in this approach all other factors are kept
constant.



P1: OTA/XYZ P2: ABC
JWBK419-02 JWBK419/Livingstone September 25, 2009 14:3 Printer Name: Yet to Come

EXPERIMENTAL DESIGN TECHNIQUES 33

Table 2.3 Options in a multiple-factor design.

Temperature

Solvent T1 T2

S1 y1 y3
S2 y2 y4

2.2.2 Factorial Design (Multiple-factor Design)

The simplest example of the consideration of multiple experimental fac-
tors would involve two factors. Taking the earlier example of a chemical
synthesis, suppose that we were interested in the effect of two different
reaction temperatures, T1 and T2, and two different solvents, S1 and
S2, on the yield of the reaction. The minimum number of experiments
required to give us information on both factors is three, one at T1S1

(y1), a second at T1S2 (y2) involving change in solvent, and a third at
T2S1 (y3) involving a change in temperature (see Table 2.3). The effect
of changing temperature is given by the difference in yields y3−y1 and
the effect of changing solvent is given by y2−y1. Confirmation of these
results could be obtained by duplication of the above requiring a total
of six experiments.

This is a ‘one variable at a time’ approach since each factor is exam-
ined separately. However, if a fourth experiment, T2S2 (y4), is added
to Table 2.3 we now have two measures of the effect of changing each
factor but only require four experiments. In addition to saving two exper-
imental determinations, this approach allows the detection of interaction
effects between the factors, such as the effect of changing temperature
in solvent 2 (y4−y2) compared with solvent 1 (y3−y1). The factorial
approach is not only more efficient in terms of the number of experi-
ments required and the identification of interaction effects, it can also be
useful in optimization. For example, having estimated the main effects
and interaction terms of some experimental factors it may be possible
to predict the likely combinations of these factors which will give an
optimum response. One drawback to this procedure is that it may not
always be possible to establish all possible combinations of treatments,
resulting in an unbalanced design. Factorial designs also tend to involve
a large number of experiments, the investigation of three factors at three
levels, for example, requires 27 runs (3f where f is the number of factors)
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without replication of any of the combinations. However, it is possible
to reduce the number of experiments required as will be shown later.

A nice example of the use of factorial design in chemical synthesis
was published by Coleman and co-workers [1]. The reaction of
1,1,1-trichloro-3-methyl-3-phospholene (1) with methanol produces
1-methoxy-3-methyl-2-phospholene oxide (2) as shown in the reaction
scheme. The experimental procedure involved the slow addition
of a known quantity of methanol to a known quantity of 1 in
dichloromethane held at subambient temperature. The mixture was
then stirred until it reached ambient temperature and neutralized with
aqueous sodium carbonate solution; the product was extracted with
dichloromethane.

Scheme 2.1 .

The yield from this reaction was 25 % and could not significantly be
improved by changing one variable (concentration, temperature, addi-
tion time, etc.) at a time. Three variables were chosen for investigation
by factorial design using two levels of each.

A: Addition temperature (−15 or 0 ◦C)
B: Concentration of 1 (50 or 100 g in 400 cm3 dichloromethane)
C: Addition time of methanol (one or four hours)

This led to eight different treatments (23), which resulted in several yields
above 25 % (as shown in Table 2.4), the largest being 42.5 %.

The effect on an experimental response due to a factor is called a
main effect whereas the effect caused by one factor at each level of the
other factor is called an interaction effect (two way). The larger the
number of levels of the factors studied in a factorial design, the higher
the order of the interaction effects that can be identified. In a three-level
factorial design it is possible to detect quadratic effects although it is
often difficult to interpret the information. Three-level factorial designs
also require a considerable number of experiments (3f) as shown above.
For this reason it is often found convenient to consider factors at just
two levels, high/low or yes/no, to give 2f factorial designs.
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Table 2.4 Responses from full factorial design
(reproduced from ref. [1] with permission of the
Royal Society of Chemistry).

Order of Treatment
treatment combinationa Yield (%)

3 − 24.8
6 a 42.5
1 b 39.0
7 ab 18.2
2 c 32.8
4 ac 33.0
8 bc 13.2
5 abc 24.3

aWhere a lower-case letter is shown, this indicates that a
particular factor was used at its high level in that
treatment, e.g. a means an addition temperature of 0 ◦C.
When a letter is missing the factor was at its low level.

Another feature of these full factorial designs, full in the sense that
all combinations of all levels of each factor are considered, is that inter-
actions between multiple factors may be identified. In a factorial design
with six factors at two levels (26 = 64 experiments) there are six main ef-
fects (for the six factors), 15 two-factor interactions (two-way effects), 20
three-factor, 15 four-factor, 6 five-factor, and 1 six-factor interactions.
Are these interactions all likely to be important? The answer, fortunately,
is no. In general, main effects tend to be larger than two-factor interac-
tions which in turn tend to be larger than three-factor interactions and so
on. Because these higher order interaction terms tend not to be significant
it is possible to devise smaller factorial designs which will still investigate
the experimental factor space efficiently but which will require far fewer
experiments. It is also often found that in factorial designs with many
experimental factors, only a few factors are important. These smaller
factorial designs are referred to as fractional factorial designs, where
the fraction is defined as the ratio of the number of experimental runs
needed in a full design. For example, the full factorial design for five
factors at two levels requires 32 (25) runs: if this is investigated in 16
experiments it is a half-fraction factorial design. Fractional designs may
also be designated as 2f−n where f is the number of factors as before and
n is the number of half-fractions, 25−1 is a half-fraction factorial design
in five factors, 26−2 is a quarter-fraction design in six factors.

Of course, it is rare in life to get something for nothing and that prin-
ciple applies to fractional factorial designs. Although a fractional design
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allows one to investigate an experimental system with the expenditure
of less effort, it is achieved at the expense of clarity in our ability to sep-
arate main effects from interactions. The response obtained from certain
treatments could be caused by the main effect of one factor or a two-
(three-, four-, five-, etc.) factor interaction. These effects are said to be
confounded; because they are indistinguishable from one another, they
are also said to be aliases of one another. It is the choice of aliases which
lies at the heart of successful fractional factorial design. As mentioned
before, we might expect that main effects would be more significant than
two-factor effects which will be more important than three-factor effects.
The aim of fractional design is thus to alias main effects and two-factor
effects with as high-order interaction terms as possible.

The phospholene oxide synthesis mentioned earlier provides a good
example of the use of fractional factorial design. Having carried out the
full factorial design in three factors (addition temperature, concentra-
tion of phospholene, and addition time) further experiments were made
to ‘fine-tune’ the response. These probing experiments involved small
changes to one factor while the others were held constant in order to
determine whether an optimum had been reached in the synthetic con-
ditions. Figure 2.1 shows a response surface for the high addition time
in which percentage yield is plotted against phospholene concentration
and addition temperature. The response surface is quite complex and
demonstrates that a maximum yield had not been achieved for the fac-
tors examined in the first full factorial design. In fact the largest yield
found in these probing experiments was 57 %, a reasonable increase over
the highest yield of 42.5 % shown in Table 2.4.

Figure 2.1 Response surface for phospholene oxide synthesis (reproduced from ref.
[1] with permission of the Royal Society of Chemistry).
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Table 2.5 Responses from fractional factorial design (reproduced
from ref. [1] with permission of the Royal Society of Chemistry).

Treatment
combinationa Yield Aliasing effect

− 45.1
ad 60.2 A with BD
bde 62.5 B with CE +AD
abe 46.8 D with AB
ce 77.8 C with BE

acde 49.8 AC with DE
bcd 53.6 E with BC
abc 70.8 AE with CD

aAs explained in Table 2.4.

The shape of the response surface suggests the involvement of other
factors in the yield of this reaction and three more experimental variables
were identified: concentration of methanol, stirring time, and tempera-
ture. Fixing the concentration of phospholene at 25 g in 400 cm3 of
dichloromethane (a broad peak on the response surface) leaves five ex-
perimental factors to consider, requiring a total of 32 (25) experiments to
investigate them. These experiments were split into four blocks of eight
and hence each block is a quarter-fraction of 32 experiments. The results
for the first block are shown in Table 2.5, the experimental factors being

A: Addition temperature (−10 or 0◦ C)
B: Addition time of methanol (15 or 30 minutes)
C: Concentration of methanol (136 or 272 cm3)
D: Stirring time (0.5 or 2 hours)
E: Stirring temperature (addition temperature or ambient)

This particular block of eight runs was generated by aliasing D with
AB and also E with BC, after carrying out full 23 experiments of A, B,
and C. As can be seen from Table 2.5, the best yield from this principal
block of experiments, which contains variables and variable interac-
tions expected to be important, was 78 %, a considerable improvement
over the previously found best yield of 57 %. Having identified impor-
tant factors, or combinations of factors with which they are aliased, it
is possible to choose other treatment combinations which will clarify
the situation. The best yield obtained for this synthesis was 90 % using
treatment combination e (addition temperature −10 ◦C, addition time
15 mins, methanol concentration 136 cm3, stirring time 0.5 hours, stir-
ring temperature ambient).
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2.2.3 D-optimal Design

Factorial design methods offer the advantage of a systematic exploration
of the factors that are likely to affect the outcome of an experiment;
they also allow the identification of interactions between these factors.
They suffer from the disadvantage that they may require a large num-
ber of experiments, particularly if several levels of each factor are to
be examined. This can be overcome to some extent by the use of frac-
tional factorial designs although the aliasing of multi-factor interactions
with main effects can be a disadvantage. Perhaps one of the biggest
disadvantages of factorial and fractional factorial designs in chemistry
is the need to specify different levels for the factors. If a factorial de-
sign approach is to be successful, it is necessary to construct treatment
combinations which explore the factor space. When the experimental
factors are variables such as time, temperature, and concentration, this
usually presents few problems. However, if the factors are related to
chemical structure, such as the choice of compounds for testing, the
situation may be quite different. A factorial design may require a par-
ticular compound which is very difficult to synthesize. Alternatively,
a design may call for a particular set of physicochemical properties
which cannot be achieved, such as a very small, very hydrophobic
substituent.

The philosophy of the factorial approach is attractive, so, are there re-
lated techniques which are more appropriate to the special requirements
of chemistry? There are a number of other methods for experimental
design but one that is becoming applied in several chemical applica-
tions is known as ‘D-optimal design’. The origin of the expression ‘D-
optimal’ is a bit of statistical jargon based on the determinant of the
variance–covariance matrix. As will be seen in the next section on com-
pound selection, a well-chosen set of experiments (or compounds) will
have a wide spread in the experimental factor space (variance). A well-
chosen set will also be such that the correlation (see Box 2.1) between
experimental factors is at a minimum (covariance). The determinant of
a matrix is a single number and in the case of a variance–covariance ma-
trix for a data set this number describes the ‘balance’ between variance
and covariance. This determinant will be a maximum for experiments or
compounds which have maximum variance and minimum covariance,
and thus the optimization of the determinant (D-optimal) is the basis of
the design. Examples of the use of D-optimal design are given in the next
section and later in this book.
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Box 2.1 The correlation coefficient, r

An important property of any variable, which is used in many statistical
operations is a quantity called the variance, V. The variance is a measure
of how the values of a variable are distributed about the mean and is
defined by

V =
n∑

i=1

(xi − x)2/n

where x is the mean of the set of x values and the summation is carried out
over all n members of the set. When values are available for two or more
variables describing a set of objects (compounds, samples, etc.) a related
quantity may be calculated called the covariance, C(x,y). The covariance is
a measure of how the values of one variable (x) are distributed about their
mean compared with how the corresponding values of another variable
(y) are distributed about their mean. Covariance is defined as

C(x,y) =
n∑

i=1

(xi − x)(yi − y)/n

The covariance has some useful properties. If the values of variable x
change in the same way as the values of variable y, the covariance will
be positive. For small values of x, x − x will be negative and y − y will be
negative yielding a positive product. For large values of x, x − x will be
positive as will y − y and thus the summation yields a positive number.
If, on the other hand, y decreases as x increases the covariance will be
negative. The sign of the covariance of the two variables indicates how
they change with respect to one another: positive if they go up and down
together, negative if one increases as the other decreases. But is it possible
to say how clearly one variable mirrors the change in another? The answer
is yes, by the calculation of a quantity known as the correlation coefficient

r = C(x,y)
/[

V(x) × V(y)
] 1

2

Division of the covariance by the square root of the product of the individ-
ual variances allows us to put a scale on the degree to which two variables
are related. If y changes by exactly the same amount as x changes, and
in the same direction, the correlation coefficient is +1. If y decreases
by exactly the same amount as x increases the correlation coefficient is
−1. If the changes in y are completely unrelated to the changes in x, the
correlation coefficient will be 0.
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Further discussion of other experimental design techniques, with the
exception of simplex optimization (see next section), is outside the scope
of this book. Hopefully this section will have introduced the principles
of experimental design; the reader interested in further details should
consult one of the excellent texts available which deal with this subject
in detail [2–5]. A review discusses the application of experimental design
techniques to chemical synthesis [6].

2.3 STRATEGIES FOR COMPOUND SELECTION

This section shows the development of methods for the selection of com-
pounds in computer-aided molecular design but the methods employed
are equally relevant to the selection of data sets in many scientific ap-
plications. It could also have been entitled strategies for ‘training set
selection’ where compounds are the members of a training set. Training
sets are required whenever a new biological test is established, when
compounds are selected from an archive for screening in an existing test,
or when a set of biological (or other) data is to be analysed. It cannot be
stressed sufficiently that selection of appropriate training sets is crucial
to the success of new synthetic programmes, screening, and analysis. The
following examples illustrate various aspects of compound selection.

Some of the earliest techniques for compound selection were essen-
tially visual and as such have considerable appeal compared with the
(apparently) more complex statistical and mathematical methods. The
first method to be reported came from a study of the relationships be-
tween a set of commonly used substituent constants [7]. The stated pur-
pose of this work was to examine the interdependence of these parame-
ters and, as expected, correlations (see Box 2.1) were found between the
hydrophobicity descriptor, π , and a number of ‘bulk’ parameters such
as molecular volume and parachor (see Chapter 10 for an explanation
of these descriptors). Why should interdependence between substituent
constants be important? There are a number of answers to this question,
as discussed further in this book, but for the present it is sufficient to
say that independence between parameters is required so that clearer,
perhaps mechanistic, conclusions might be drawn from correlations. As
part of the investigation Craig plotted various parameters together, for
example the plot of σ vs. π shown in Figure 2.2; such plots have since
become known as Craig plots.

This diagram nicely illustrates the concept of a physicochemical pa-
rameter space. If we regard these two properties as potentially important
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Figure 2.2 Plot of σ vs π for a set of common substituents (reproduced from ref.
[7] with permission of the American Chemical Society).

experimental factors, in the sense that they are likely to control or at least
influence experiments carried out using the compounds, then we should
seek to choose substituents that span the parameter space. This is equiva-
lent to the choice of experimental treatments which are intended to span
the space of the experimental factors.

It is easy to see how substituents may be selected from a plot such
as that shown in Figure 2.2, but will this ensure that the series is well
chosen? The answer is no for two reasons. First, the choice of compounds
based on the parameter space defined by just two substituent constants
ignores the potential importance of any other factors. What is required is
the selection of points in a multidimensional space, where each dimension
corresponds to a physicochemical parameter, so that the space is sampled
evenly. This is described later in this section. The second problem with
compound choice based on sampling a two-parameter space concerns the
correlation between the parameters. Table 2.6 lists a set of substituents
with their corresponding π values.

At first sight this might appear to be a well-chosen set since the sub-
stituents cover a range of −1.2 to +1.4 log units in π and are represented
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Table 2.6 π values for a set of substituents
(reproduced from ref. [8] copyright 1984 with
permission from Elsevier).

Substituent π

NH2 −1.23
OH −0.67
OCH3 −0.02
H 0.00
F 0.14
Cl 0.70
Br 0.86
SCF3 1.44

at fairly even steps over the range. If, however, we now list the σ values
for these substituents, as shown in Table 2.7, we see that they also span
a good range of σ but that the two sets of values correspond to one
another.

In general, there is no correlation between π and σ as can be seen from
the scatter of points in Figure 2.2. For this particular set of substituents,
however, there is a high correlation of 0.95; in trying to rationalize the
biological properties of this set it would not be possible to distinguish be-
tween electronic and hydrophobic effects. There are other consequences
of such correlations between parameters, known as collinearity, which
involve multiple regression (Chapter 6), data display (Chapter 4), and
other multivariate methods (Chapters 7 and 8). This is discussed in the
next chapter and in the chapters which detail the techniques.

So, the two main problems in compound selection are the choice of
analogues to sample effectively a multi-parameter space and the avoid-
ance of collinearity between physicochemical descriptors. A number of

Table 2.7 π and σ values for the substituents in Table 2.6
(reproduced from ref. [8] copyright 1984 with permission from
Elsevier).

Substituent π σ

NH2 −1.23 −0.66
OH −0.67 −0.37
OCH3 −0.02 −0.27
H 0.00 0.00
F 0.14 0.06
Cl 0.70 0.23
Br 0.86 0.23
SCF3 1.44 0.50
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methods have been proposed to deal with these two problems. An attrac-
tive approach was published by Hansch and co-workers [9] which made
use of cluster analysis (Chapter 5) to group 90 substituents described
by five physicochemical parameters. Briefly, cluster analysis operates by
the use of measurements of the distances between pairs of objects in
multidimensional space using a distance such as the familiar Euclidean
distance. Objects (compounds) which are close together in space become
members of a single cluster. For a given level of similarity (i.e. value of
the distance measure) a given number of clusters will be formed for a
particular data set. At decreasing levels of similarity (greater values of
the distance measure) further objects or clusters will be joined to the
original clusters until eventually all objects in the set belong to a single
cluster. The results of cluster analysis are most often reported in the form
of a diagram known as a dendrogram (Figure 2.3).

A given level of similarity on the dendrogram gives rise to a particular
number of clusters and thus it was possible for Hansch and his co-
workers to produce lists of substituents belonging to 5, 10, 20, and 60
cluster sets. This allows a medicinal chemist to choose a substituent from
each cluster when making a particular number of training set compounds
(5, 10, 20, or 60) to help ensure that parameter space is well spanned.
This work was subsequently updated to cover 166 substituents described
by six parameters; lists of the cluster members were reported in the
substituent constant book [11], sadly no longer in print although an

Figure 2.3 Example of a similarity diagram (dendrogram) from cluster analysis
(reprinted from ref. [10] with permission of Elsevier).
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Table 2.8 Examples of substituents belonging to clusters in the ten cluster set
(reproduced from ref. [11] with permission of John Wiley & Sons, Inc.).

Cluster Number of
set number members Examples of substituents

1 26 –Br, –Cl, –NNN, –CH3, –CH2Br
2 17 –SO2F, –NO2, –CN, –1–Tetrazolyl, –SOCH3
3 2 –IO2,, –N(CH3)3
4 8 –OH, –NH2, –NHCH3, –NHC4H9, –NHC6H5
5 18 –CH2OH, –NHCN, –NHCOCH3, –CO2H, –CONH2
6 21 –OCF3, –CH2CN, –SCN, –CO2CH3, –CHO
7 25 –NCS, –Pyrryl, –OCOC3H7, –COC6H5, –OC6H5
8 20 –CH2I, –C6H5, –C5H11, –Cyclohexyl, –C4H9
9 21 –NHC=S(NH2), –CONHC3H7, –NHCOC2H5,

–C(OH)(CF3)2, –NHSO2C6H5
10 8 –OC4H9, –N(CH3)2, –N(C2H5)2

updated listing has been published [12]. Table 2.8 lists some of the
substituent members of the ten cluster set.

Another approach which makes use of the distances between points
in a multidimensional space was published by Wootton and co-workers
[13]. In this method the distances between each pair of substituents is
calculated, as described for cluster analysis, and substituents are chosen
in a stepwise fashion such that they exceed a certain preset minimum
distance. The procedure requires the choice of a particular starting com-
pound, probably but not necessarily the unsubstituted parent, and choice
of the minimum distance. Figure 2.4 gives an illustration of this process to
the choice of eight substituents from a set of 35. The resulting correlation
between the two parameters for this set was low (−0.05). A related
technique has been described by Franke [14] in which principal com-
ponents (see Chapter 4) are calculated from the physicochemical de-
scriptor data and interpoint distances are calculated based on the prin-
cipal components. Several techniques are compared in the reference
cited.

These techniques for compound selection have relied on the choice
of substituents such that the physicochemical parameter space is well
covered; the resulting sets of compounds tend to be well spread and
interparameter correlations low. These were the two criteria set out ear-
lier for successful compound choice, although other criteria, such as
synthetic feasibility, may be considered important [15]. An alterna-
tive way to deal with the problem of compound selection is to treat
the physicochemical properties as experimental factors and apply the
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Figure 2.4 Example of the choice of substituents by multidimensional mapping
(reproduced from ref. [13] with permission of the American Chemical Society).

techniques of factorial design. As described in Section 2.2, it is necessary
to decide how many levels need to be considered for each individual
factor in order to determine how many experimental treatments are
required. Since the number of experiments (and hence compounds) in-
creases as the product of the factor levels, it is usual to consider just two
levels, say high and low, for each factor. This also allows qualitative
factors such as the presence/absence of some functional group or struc-
tural feature to be included in the design. Of course, if some particular
property is known or suspected to be of importance, then this may be
considered at more than two levels. A major advantage of factorial de-
sign is that many factors may be considered at once and that interactions
between factors may be identified, unlike the two parameter treatment
of Craig plots. A disadvantage of factorial design is the large number of
experiments that may need to be considered, but this may be reduced by
the use of fractional factorials as described in Section 2.2. Austel [16]
was the first to describe factorial designs for compound selection and
he demonstrated the utility of this approach by application to literature
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Figure 2.5 Representation of a factorial design in three factors (A, B, and C)
(reproduced from ref. [16] copyright Elsevier (1982)).

examples. The relationship of a full to a half-fractional design is nicely
illustrated in Figure 2.5.

The cube represents the space defined by three physicochemical prop-
erties A, B, and C and the points at the vertices represent the compounds
chosen to examine various combinations of these parameters as shown
in Table 2.9.

An extra point can usefully be considered in designs such as this
corresponding to the midpoint of the factor space. If A, B, and C are
substituent constants such as π , σ , and MR which are scaled to H = 0,
this midpoint is the unsubstituted parent. A fractional factorial design in
these three parameters is shown in Table 2.10. This fractional design in-
vestigates the main effects of parameters A and B, factor C is confounded
(aliased, see Section 2.2.2) with interaction of A and B.

Table 2.9 Factorial design for three
parameters (two levels) (reproduced from ref.
[16] copyright Elsevier (1982)).

Compound A B C

1 − − −
2 + − −
3 − + −
4 + + −
5 − − +
6 + − +
7 − + +
8 + + +
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Table 2.10 Fractional factorial design for three
parameters (two levels) (reproduced from ref. [16]
copyright Elsevier (1982)).

Compound A B C

1(5a) − − +
2(2) + − −
3(3) − + −
4(8) + + +

a( ) corresponding compound in Table 2.9.

The four compounds in this table correspond to compounds 2, 3, 5,
and 8 from Table 2.9 and in Figure 2.5 form the vertices of a regular
tetrahedron, thus providing a good exploration of the three-dimensional
factor space.

The investigation of the biological properties of peptide analogues
gives a particularly striking illustration of the usefulness of fractional
factorial design in the choice of analogues to examine. The problem with
peptides is that any single amino acid may be replaced by any of the 20
coded amino acids, to say nothing of amino acid analogues. If a peptide
of interest is varied in just four positions, it is possible to synthesize
160 000 (204) analogues. As pointed out by Hellberg et al. [17] who
applied fractional factorial design to four series of peptides, the develop-
ment of automated peptide synthesis has removed the problem of how to
make peptide analogues. The major problem is which analogues to make.
In order to apply the principles of experimental design to this problem it
is necessary to define experimental factors (physicochemical properties)
to be explored. These workers used ‘principal properties’ which were
derived from the application of principal component analysis (see Chap-
ter 4) to a data matrix of 29 physicochemical variables which describe
the amino acids. The principal component analysis gave three new vari-
ables, labelled Z1, Z2, and Z3, which were interpreted as being related to
hydrophobicity (partition), bulk, and electronic properties respectively.
Table 2.11 lists the values of these descriptor scales.

This is very similar to an earlier treatment of physicochemical proper-
ties by Cramer [18, 19], the so-called BC(DEF) scales. The Z descriptor
scales thus represent a three-dimensional property space for the amino
acids. If only two levels are considered for each descriptor, high (+)
and low (−), a full factorial design for substitution at one amino acid
position in a peptide would require eight analogues. While this is a sav-
ing compared with the 20 possible analogues that could be made, a full



P1: OTA/XYZ P2: ABC
JWBK419-02 JWBK419/Livingstone September 25, 2009 14:3 Printer Name: Yet to Come

48 EXPERIMENTAL DESIGN: EXPERIMENT AND SET SELECTION

Table 2.11 Descriptor scales for the 20 ‘natural’ amino
acids (reproduced from ref. [17] with permission from
American Chemical Society).

Acid Z1 Z2 Z3

Ala 0.07 −1.73 0.09
Val −2.69 −2.53 −1.29
Leu −4.19 −1.03 −0.98
Ile −4.44 −1.68 −1.03
Pro −1.22 0.88 2.23
Phe −4.92 1.30 0.45
Trp −4.75 3.65 0.85
Met −2.49 −0.27 −0.41
Lys 2.84 1.41 −3.14
Arg 2.88 2.52 −3.44
His 2.41 1.74 1.11
Gly 2.23 −5.36 0.30
Ser 1.96 −1.63 0.57
Thr 0.92 −2.09 −1.40
Cys 0.71 −0.97 4.13
Tyr −1.39 2.32 0.01
Asn 3.22 1.45 0.84
Gln 2.18 0.53 −1.14
Asp 3.64 1.13 2.36
Glu 3.08 0.39 −0.07

factorial design is impractical when multiple substitution positions are
considered. A full design for four amino acid positions requires 4096
(84) analogues, for example. Hellberg suggested 1/2 (for one position),
1/8th and smaller fractional designs as shown in Table 2.12.

One of the problems with the use of factorial methods for compound
selection is that it may be difficult or impossible to obtain a compound
required for a particular treatment combination, either because the

Table 2.12 Number of peptide analogues
required for fractional factorial design based on
three Z scales (reproduced from ref. [17] with
permission from American Chemical Society).

Number of varied Minimum number
positions of analogues

1 4
2 8
3–5 16
6–10 32

11–21 64
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Table 2.13 Subsets of ten substituents from 35 chosen by four different methods
(reprinted from ref. [21] with permission from Elsevier).

Methoda

h D V(1) V(2)

H H H Me
n-butyl n-butyl phenyl t-butyl
phenyl t-butyl OH OEt
CF3 O–phenyl O–phenyl O–n-amyl
O–phenyl NH2 NMe2 NH2
NH2 NMe2 NO2 NMe2
NMe2 NO2 COOEt NO2
NO2 SO2Me CONH2 COO(Me)2
SO2NH2 SO2NH2 SO2Me SO2NH2
F F Br F

V = 1.698 1.750 1.437 1.356
D = 1.038 1.041 0.487 0.449
h = 1.614 1.589 1.502 1.420

aThe methods are: h – maximization of information content, D – D-optimal design, V(1)
maximal variance [13] and V(2) maximal variance [12].

synthesis is difficult or because that particular set of factors does not
exist. One way to overcome this problem, as discussed in Section
2.2.3, is D-optimal design. Unger [20] has reported the application
of a D-optimal design procedure to the selection of substituents from
a set of 171, described by seven parameters.2 The determinant of the
variance–covariance matrix for the selected set of 20 substituents was
3.35 × 1011 which was 100 times better than the largest value (2.73 ×
109) obtained in 100 simulations in which 20 substituents were randomly
chosen. Herrmann [21] has compared the use of D-optimal design, two
variance maximization methods, and an information-content maximiza-
tion technique for compound selection. The results of the application of
these strategies to the selection of ten substituents from a set of 35 are
shown in Table 2.13. Both the D-optimal and the information-content
methods produced better sets of substituents, as measured by variance
(V) or determinant (D) values, than the variance maximization tech-
niques.

The final compound selection procedures which will be mentioned
here are the sequential simplex and the ‘Topliss tree’. The sequential

2 The reference includes listings of programs (written in APL) for compound selection by D-
optimal design.
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Figure 2.6 Illustration of the sequential simplex process of compound selection
(reproduced from ref. [22] with permission of the American Chemical Society).

simplex, first reported by Darvas [22], is an application of a well-known
optimization method which can be carried out graphically. Figure 2.6
shows three compounds, A, B, and C, plotted in a two-dimensional prop-
erty space, say π and σ but any two properties may be used. Biological
results are obtained for the three compounds and they are ranked in
order of activity.

These compounds form a triangle in the two-dimensional property
space, a new compound is chosen by the construction of a new triangle.
The two most active compounds, say B and C for this example, form two
of the vertices of the new triangle and the third vertex is found by taking
a point opposite to the least active (A) to give the new triangle BCD. The
new compound is tested and the activities of the three compounds com-
pared, if B is now the least active then a new triangle CDE is constructed
as shown in the figure. The procedure can be repeated until no further
improvement in activity is obtained, or until all of the attainable physic-
ochemical property space has been explored. This method is attractive in
its simplicity and the fact that it requires no more complicated equipment
than a piece of graph paper. The procedure is designed to ensure that
an optimum is found in the particular parameters chosen so its success
as a compound selection method is dependent on the correct choice of
physicochemical properties. One of the problems with this method is
that a compound may not exist that corresponds to a required simplex
point. The simplex procedure is intended to operate with continuous ex-
perimental variables such as temperature, pressure, concentration, etc.
There are other problems with the simplex procedure, for example, it
requires biological activity data, but it has a number of advantages, not
least of which being that any selection procedure is better than none.
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Figure 2.7 Illustration of the ‘Topliss tree’ process for compound selection; L, E,
and M represent less, equal, and more active respectively (reproduced from ref. [23]
with permission of Elsevier).

The ‘Topliss tree’ is an operational scheme that is designed to explore
a given physicochemical property space in an efficient manner and is thus
related to the sequential simplex approach [23]. In the case of aromatic
substitution, for example, this approach assumes that the unsubstituted
compound and the para-chloro derivative have both been made and
tested. The activity of these two compounds are compared and the
next substituent is chosen according to whether the chloro substituent
displays higher, lower, or equal activity. This is shown schematically in
Figure 2.7.

The rationale for the choice of –OCH3 or Cl as the next substituent is
based on the supposition that the given effects are dependent on changes
in π or σ and, to a lesser extent, steric effects. This decision tree and
the analogous scheme for aliphatic substitution are useful in that they
suggest a systematic way in which compounds should be chosen. It suf-
fers, perhaps, from the fact that it needs to start from a particular point,
the unsubstituted compound, and that it requires data to guide it. Other
schemes starting with different substituents could of course be drawn up
and, like the simplex, any selection scheme is better than none.

2.4 HIGH THROUGHPUT EXPERIMENTS

A revolution happened in the pharmaceutical industry in the 1990s that
was to have far-reaching consequences. The revolution, called ‘combi-
natorial chemistry’, took place in the medicinal chemistry departments
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of the research divisions. Hitherto, new compounds for screening as
potential new drugs had been synthesized on an individual basis usually
based on some design concept such as similarity to existing successful
compounds, predictions from a mathematical model or expected inter-
action with a biological molecule based on molecular modelling. The
ideas behind combinatorial chemistry were inspired by the existence of
machines which could automatically synthesize polypeptides (small pro-
teins) and latterly sequence them.

These processes were modified so that nonpeptides could be automati-
cally synthesized since, although peptides often show remarkable biolog-
ical properties, they are poor candidates for new drugs since there are
problems with delivery and stability in the body. We routinely destroy
proteins as fuel and the body is well prepared to identify and elimi-
nate ‘foreign’ molecules such as peptides and proteins. Combinatorial
chemistry strategies began with the synthesis of mixtures of compounds,
at first a few tens or hundreds but then progressing to millions, but
soon developed into parallel synthesis which is capable of producing
very large numbers of single compounds. The two approaches, mixtures
and singles, are both used today to produce libraries or arrays of com-
pounds suitable for testing. But, what about experimental design? At
first it was thought that the production and subsequent testing of such
large numbers of compounds was bound to produce the required results
in a suitable timeframe and thus design would be unnecessary. A little
contemplation of the numbers involved, however, soon suggested that
this would not be the case. As an example, decapeptides (a very small
peptide of 10 residues) built from the 20 naturally occurring amino acids
would have 2010 different sequences, in other words 1.024 × 1013 dif-
ferent molecules [24]. An even more startling example is given by the
relatively small protein chymotrypsinogen-B which is composed of 245
amino acid residues. There are 20245 possible sequences −5.65 × 10318

molecules. An estimate of the number of particles in the visible universe
is 1088 so there isn’t enough available to build even a single molecule of
every possible sequence! [25] The result of the realization of the enor-
mous potential of combinatorial chemistry soon led to the development
of design strategies for ‘diverse’ and ‘focussed’ libraries which, as the
names imply, are intended to explore molecular diversity or to home in
on a particularly promising range of chemical structures. There is also
the question of the size of libraries. At first it was thought that large
libraries were best, since this would maximize the chances of finding a
useful compound, but it soon became evident that there were associated
costs with combinatorial libraries, i.e. the cost of screening, and thus
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what was required was a library or screening collection that was large
‘enough’ but not too large [26].

So, what was the effect of this change in compound production on
pharmaceutical research? As may be imagined, the effect was quite dra-
matic. Biological tests (screens) which were able to handle, at most, a
few tens of compounds a day were quite inadequate for the examina-
tion of these new compound collections. With great ingenuity screening
procedures were automated and designed to operate with small volumes
of reagents so as to minimize the costs of testing. The new testing pro-
cedures became know as High Throughput Screening (HTS) and even
Ultra-HTS. The laboratory instrument suppliers responded with greater
automation of sample handling and specialist companies sprang up to
supply robotic systems for liquid and solid sample handling. A typical
website (http://www.htscreening.net/home/) provides numerous exam-
ples in this field.

The ‘far-reaching’ consequences of combinatorial chemistry and HTS
are now spreading beyond the pharmaceutical industry. The agrochem-
icals industry, which faces similar challenges to pharmaceuticals, was
an obvious early adopter and other specialist chemicals businesses are
now following suit. Other materials such as catalysts can also benefit
from these approaches and academic institutions are now beginning to
pursue this approach (e.g. http://www.hts.ku.edu/). The whole process
of combinatorial sample production and automated HTS is likely to be
an important part of scientific research for the foreseeable future.

2.5 SUMMARY

The concepts underlying experimental design are to a great extent
‘common sense’ although the means to implement them may not be
quite so obvious. The value of design, whether applied to an individ-
ual experiment or to the construction of a training set, should be clear
from the examples shown in this chapter. Failure to apply some sort of
design strategy may lead to a set of results which contain suboptimal
information, at best, or which contain no useful information at all, at
worst. Various design procedures may be applied to individual exper-
iments, as indicated in the previous sections, and there are specialist
reports which deal with topics such as synthesis [6]. A detailed review
of design strategies which may be applied to the selection of compounds
has been reported by Pleiss and Unger [27]. The development of combi-
natorial chemistry and its effect on compound screening to produce HTS
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methods has had a dramatic effect on pharmaceutical and agrochemical
research which is now finding its way into many other industries and,
eventually, many other areas of scientific research.

In this chapter the following points were covered:

1. the value of experimental design;
2. experimental factors – controlled and uncontrolled;
3. replication, randomization, experimental blocks and balance in

design;
4. Latin squares, factorial and fractional factorial design;
5. main effects, interaction effects and the aliasing of effects;
6. variance, covariance and correlation;
7. the balance between maximization of variance and minimization

of covariance;
8. D-optimal design and the sequential simplex for compound selec-

tion;
9. Combinatorial chemistry and high throughput screening.
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3
Data Pre-treatment and
Variable Selection

Points covered in this chapter

� Data distribution
� Scaling
� Correlations – simple and multiple
� Redundancy
� Variable selection strategies

3.1 INTRODUCTION

Chapter 1 discussed some important properties of data and Chapter 2
introduced the concept of experimental design and it’s application to the
selection of different types of data sets. One of these is the training or
learning set which is used to produce some mathematical or statistical
model or no model at all when used in an unsupervised learning method
(see Chapters 4 and 5). Another is the test or prediction set which is used
to assess the usefulness of some fitted model and sometimes an evaluation
set which has played no part in creating or testing the model. An evalu-
ation set is often a set of data which was deliberately held back from the
investigator or which became available after the model or models were
constructed. Unfortunately, there is no standard for this nomenclature.
An evaluation set, which may also be called a control set, can be used to
judge an early stopping point when training an artificial neural network

A Practical Guide to Scientific Data Analysis David Livingstone
C© 2009 John Wiley & Sons, Ltd
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(see Section 9.3.3). In this case the test set contains samples which have
played no part in creating the model.

So far so good, but what about the variables themselves? Do these
need to be selected and is there anything that needs to be done with them
before an analysis is started? The answer to both these questions is yes
and the correct pre-treatment and variable selection may be crucial to
the successful outcome of an analysis as the next few sections will show.

3.2 DATA DISTRIBUTION

As discussed in Section 1.4.2 of Chapter 1, knowledge of the distribution
of the data values of a variable is important. Examining the distribution
allows the identification of outliers, whether real or artefacts, shows
whether apparently continuous variables really are and gives an idea of
how well the data conforms to the assumptions (usually of normality)
employed in some analytical methods. A prime example of this is the very
commonly used technique of regression (see Chapter 6) which depends
on numerous assumptions about the distribution of the data. Thus, it is
often rewarding to plot data values and examine the frequency distri-
butions of variables as a preliminary step in any data analysis. This, of
course, is easy to do if the problem consists of only one or two dependent
variables and a few tens of independent variables but becomes much
more tedious if the set contains hundreds of variables. This, amongst
other reasons, is why it is very rarely done! At the very least one should
always examine the distribution of any variables that end up in some
sort of statistical or mathematical model of a data set.

One particularly important property of variables that can be easily
checked, even when considering a large number of variables, is the vari-
ance (s2) or standard deviation (s) which was discussed in Section 1.4.2.
The sample variance is the average of the squares of the distance of each
data value from the mean:

s2 =
∑

(X − X)2

n − 1
(3.1)

Calculation of the variance and standard deviation for a set of variables
is a trivial calculation that is a standard feature of all statistics packages.
Examination of the standard deviation (which has the same units as the
original variable) will show up variables that have small values, which
means variables that contain little information about the samples. In the
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limit, when the standard deviation of a variable is zero, then that variable
contains no information at all since all of the values for every sample are
the same. It isn’t possible to give any ‘guide’ value for a ‘useful’ standard
deviation since this depends on the units of the original measurements
but if we have a set of, say, 50 variables and need to reduce this to 10 or
20 then a reasonable filter would be to discard those variables with the
smallest standard deviations. It goes without saying that variables with
a standard deviation of zero are useless!

The mean and standard deviation of a data set are dependent on the
first and second ‘moments’ of the set. The term moments here refers to
the powers that the data are raised to in the calculation of that partic-
ular statistic. There are two higher moment statistics that may be used
to characterize the shape of a distribution – skewness, based on the
third moment, and kurtosis based on the fourth moment. Skewness is a
measure of how symmetrical a distribution is around it’s mean and for
a completely ‘normal’ distribution with equal numbers of data values
either side of the mean the value of skewness should be zero (see Fig-
ure 1.6 for examples of skewed distributions). Distributions with more
data values smaller than the mean are said to be positively skewed and
will generally have a long right tail so they are also known as ‘skewed to
the right’. Negatively skewed distributions have the opposite shape, of
course. Kurtosis is a measure of how ‘peaked’ a distribution is as shown
in Figure 1.6. Kurtosis, as measured by the moment ratio, has a value
of 3 for a normal distribution, although there are other ways of calcu-
lating kurtosis which give different values for a normal distribution. It
is thus important to check how kurtosis is computed in the particular
statistics package being used to analyse data. Distributions which have
a high peak (kurtosis > 3) are known as leptokurtic, those with a flatter
peak (kurtosis < 3) are called platykurtic and a normal distribution is
mesokurtic.

These measures of the spread and shape of the distribution of a vari-
able allow us to decide how close the distribution is to normal but
how important is this and what sort of deviation is acceptable? Perhaps
unsurprisingly, there is no simple answer to these questions. If the ana-
lytical method which will be used on the data depends on assumptions
of normality, as in linear regression for example, then the nearer the dis-
tributions are to normal the more reliable the results of the analysis will
be. If, however, the analytical technique does not rely on assumptions of
normality then deviations from normality may well not matter at all. In
any case, any ‘real’ variable is unlikely to have a perfect, normal distri-
bution. The best use that can be made of these measures of normality is
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as a filter for the removal of variables in order to reduce redundancy in
a data set. As will be seen in later sections, variables may be redundant
because they contain the same or very similar information to another
variable or combination of variables. When it is necessary to remove one
of a pair of variables then it makes sense to eliminate the one which has
the least normal distribution.

3.3 SCALING

Scaling is a problem familiar to anyone who has ever plotted a graph. In
the case of a graph, the axes are scaled so that the information present
in each variable may be readily perceived. The same principle applies to
the scaling of variables before subjecting them to some form of analysis.
The objective of scaling methods is to remove any weighting which is
solely due to the units which are used to express a particular variable.
An example of this is measurement of the height and weight of people.
Expressing height in feet and weight in stones gives comparable values
but inches and stones or feet and pounds will result in apparent greater
emphasis on height or weight, respectively. Another example can be
seen in the values of 1H and 13C NMR shifts. In any comparison of
these two types of shifts the variance of the 13C measurements will be
far greater simply due to their magnitude. One means by which this
can be overcome, to a certain extent at least, is to express all shifts
relative to a common structure, the least substituted member of the
series, for example. This only partly solves the problem, however, since
the magnitude of the � shifts will still be greater for 13C than for 1H. A
commonly used steric parameter, MR, is often scaled by division by 10
to place it on a similar scale to other parameters such as π and σ .

These somewhat arbitrary scaling methods are far from ideal since,
apart from suffering from subjectivity, they require the individual inspec-
tion of each variable in detail which can be a time-consuming task. What
other forms of scaling are available? One of the most familiar is called
normalization or range scaling where the minimum value of a variable
is set to zero and the values of the variable are divided by the range of
the variable

X′
ij = Xij − Xj (MIN)

Xj (MAX) − Xj (MIN)
(3.2)

In this equation X′
i j is the new range-scaled value for row i (case i)

of variable j. The values of range-scaled variables fall into the range
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0 =< Xj =< 1; the variables are also described as being normalized in the
range zero to one. Normalization can be carried out over any preferred
range, perhaps for aesthetic reasons, by multiplication of the range-scaled
values by a factor. A particular shortcoming of range scaling is that it is
dependent on the minimum and maximum values of the variable, thus it
is very sensitive to outliers. One way to reduce this sensitivity to outliers
is to scale the data by subtracting the mean from the data values, a
process known as mean centring:

X′
ij = Xij − Xj (3.3)

As for Equation (3.2), X′
i j is the new mean-scaled value for row i (case i)

of variable j where Xj is the mean of variable j. Mean centred variables are
better ‘behaved’ in terms of extreme values but they are still dependent
on their units of measurement.

Another form of scaling which is less sensitive to outliers and which
addresses the problem of scaling is known as autoscaling in which the
mean is subtracted from the variable values and the resultant values are
divided by the standard deviation

X′
ij = Xij − Xj

σj
(3.4)

Again, in this equation X′
i j represents the new autoscaled value for row i

of variable j, Xj is the mean of variable j, and σ j is the standard deviation
given by Equation (3.6).

σj =
√
√
√
√

(
N∑

i=1

(xij − xj)2

N − 1

)

(3.5)

Autoscaled variables have a mean of zero and a variance (standard devi-
ation) of one. Because they are mean centred, they are less susceptible to
the effects of compounds with extreme values. That they have a variance
of one is useful in variance-related methods (see Chapters 4 and 5) since
they each contribute one unit of variance to the overall variance of a
data set. Autoscaled variables are also known as Z scores, symbol Z, or
standard scores.

One further method of scaling which may be employed is known as
feature weighting where variables are scaled so as to enhance their effects
in the analysis. The objective of feature weighting is quite opposite to
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that of ‘equalization’ scaling methods described here; it is discussed in
detail in Chapter 7.

3.4 CORRELATIONS

When a data set contains a number of variables which describe the same
samples, which is the usual case for most common data sets, then some
of these variables will have values which change in a similar way across
the set of samples. As was shown in the box in chapter two, the way that
two variables are distributed about their means is given by a quantity
called covariance:

C(x,y) =
n∑

i=1

(xi − x)(yi − y)/n (3.6)

Where the covariance is positive the values of one variable increase as the
values of the other increase, where it is negative the values of one variable
get larger as the values of the other get smaller. This can be handily
expressed as the correlation coefficient, r shown in Equation (3.7), which
ranges from −1, a perfect negative correlation, through 0, no correlation,
to +1, a perfect positive correlation.

r = C(x,y)
/[

V(x) × V(y)
]1

2 (3.7)

If two variables are perfectly correlated, either negatively or positively,
then it is clear that one of them is redundant and can be excluded from the
set without losing any information, but what about the situation where
the correlation coefficient between a pair of variables is less than one but
greater than zero? One useful property of the correlation coefficient is
that it’s square multiplied by 100 gives the percentage of variance that is
shared or common to the two variables. Thus, a correlation coefficient
of 0.7 between a pair of variables means that they share almost half
(49 %) of their variance. A correlation coefficient of 0.9 means a shared
variance of 81 %. A diagrammatic representation of these correlations
is shown in Figure 3.1.

These simple, pairwise, correlation coefficients can be rapidly com-
puted and displayed in a table called the correlation matrix, as shown in
the next section. Inspection of this matrix allows the ready identification
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Figure 3.1 Illustration of the sharing of variance between two correlated variables.
The hatched area represents shared variance.

of variables that are correlated, a situation also known as collinearity,
and thus are good candidates for removal from the set.

If two variables can share variance then is it possible that three or
more variables can also share variance? The answer to this is yes and
this is a situation known as multicollinearity. Figure 3.2 illustrates how
three variables can share variance.

There is a statistic to describe this situation which is equivalent to the
simple correlation coefficient, r, which is called the multiple correlation
coefficient. This is discussed further in the next section and in Chapter 6
but suffice to say here that the multiple correlation coefficient can also be
used to identify redundancy in a data set and can be used as a criterion
for the removal of variables.

3.5 DATA REDUCTION

This chapter is concerned with the pre-treatment of data and so far we
have discussed the properties of the distribution of data, means by which
data may be scaled and correlations between variables. All of these mat-
ters are important, in so far as they dictate what can be done with data,
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Figure 3.2 Illustration of the sharing of variance between three correlated variables.
The hatched areas show shared variance between X1 and X2 and X1 and X3. The
crosshatched area shows variance shared by all three variables.

but perhaps the most important is to answer the question ‘What infor-
mation does the data contain?’ It is most unlikely that any given data set
will contain as many pieces of information as it does variables.1 That is
to say, most data sets suffer from a degree of redundancy particularly
when they contain more variables than cases, a situation in which the
data matrix is referred to as being over-square. Most people are aware
of the fact that with two data points it is possible to construct a line,
a 1 dimensional object, and with three data points a plane, a 2 dimen-
sional object. This can be continued so that 4 data points allows a 3
dimensional object, 5 points, 4 dimensions and so on. Thus, the maxi-
mum dimensionality of an object, and hence the maximum number of
dimensions, in a data set is n − 1 where n is the number of data points.
For dimensions we can substitute ‘independent pieces of information’
and thus the maximum that any data set may contain is n − 1. This,
however, is a maximum and in reality the true dimensionality, where
dimension means ‘information’, is often much less than n − 1.

1 An example where this is not true is the unusual situation where all of the variables in the set
are orthogonal to one another, e.g. principal components (see Chapter 4), but even here some
variables may not contain information but be merely ‘noise’.



P1: OTA/XYZ P2: ABC
JWBK419-03 JWBK419/Livingstone September 25, 2009 14:10 Printer Name: Yet to Come

DATA REDUCTION 65

This section describes ways by which redundancy may be identified
and, to some extent at least, eliminated. This stage in data analysis is
called data reduction in which selected variables are removed from a
data set. It should not be confused with dimension reduction, described
in the next chapter, in which high-dimensional data sets are reduced to
lower dimensions, usually for the purposes of display.

An obvious first test to apply to the variables in a data set is to look
for missing values; is there an entry in each column for every row? What
can be done if there are missing values? An easy solution, and often the
best one, is to discard the variable but the problem with this approach
is that the particular variable concerned may contain information that is
useful for the description of the dependent property. Another approach
which has the advantage of retaining the variable is to delete samples
with missing values. The disadvantage of this is that it reduces the size
and variety of the data set. In fact either of these methods of dealing with
missing data, variable deletion or sample deletion, result in a smaller data
set which is likely to contain less information.

An alternative to deletion is to provide the missing values, and if these
can be calculated with a reasonable degree of certainty, then all is well.
If not, however, other methods may be sought. Missing values may be
replaced by random numbers, generated to lie in the range of the variable
concerned. This allows the information contained in the variable to be
used usefully for the members of the set which have ‘real’ values, but, of
course, any correlation or pattern involving that variable does not apply
to the other members of the set. A problem with random fill is that some
variables may only have certain values and the use of random numbers,
even within the range of values of the variable, may distort this structure.
In this case a better solution is to randomly take some of the existing
values of the variable for other cases and use these to replace the missing
values. This has the advantage that the distribution of the variable is
unaltered and any special properties that it has, like only being able to
take certain values, is unchanged.

An alternative to random fill is mean fill which, as the name implies,
replaces missing values by the mean of the variable involved. This, like
random fill, has the advantage that the variable with missing values
can now be used; it also has the further advantage that the distribution
of the variable will not be altered, other than to increase its kurtosis,
perhaps. Another approach to the problem of missing values is to use
linear combinations of the other variables to produce an estimate for
the missing variable. As will be seen later in this section, data sets some-
times suffer from a condition known as multicollinearity in which one
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variable is correlated with a linear combination of the other variables.
This method of filling missing values certainly involves more work, unless
the statistics package has it ‘built in’, and is probably of debatable value
since multicollinearity is a condition which is generally best avoided.
There are a number of other ways in which missing data can be filled
in and some statistics packages have procedures to analyse ‘missingness’
and offer a variety of options to estimate the missing values. The ideal
solution to missing values, of course, is not to have them in the first
place!

The next stage in data reduction is to examine the distribution of the
variables as discussed in Section 3.2. A fairly obvious feature to look
for in the distribution of the variables is to identify those parameters
which have constant, or nearly constant, values. Such a situation may
arise because a property has been poorly chosen in the first place, but
may also happen when structural changes in the compounds in the set
lead to compensating changes in physicochemical properties. Some data
analysis packages have a built-in facility for the identification of such
ill-conditioned variables. At this stage in data reduction it is also a good
idea to actually plot the distribution of each of the variables in the set
so as to identify outliers or variables which have become ‘indicators’, as
discussed in Section 1.4.3.

This introduces the correlation matrix. Having removed ill-
conditioned variables from the data set, a correlation matrix is con-
structed by calculation of the correlation coefficient (see Section 3.4)
between each pair of variables in the set. A sample correlation matrix
is shown in Table 3.1 where the correlation between a pair of variables
is found by the intersection of a particular row and column, for exam-
ple, the correlation between ClogP and Iy is 0.503. The diagonal of the
matrix consists of 1.00s, since this represents the correlation of each vari-
able with itself, and it is usual to show only half of the matrix since it is

Table 3.1 Correlation matrix for a set of physicochemical properties.

Ix 1.00
Iy 0.806 1.00
ClogP 0.524 0.503 1.00
CMR 0.829 0.942 0.591 1.00
CHGE(4) 0.344 0.349 0.286 0.243 1.00
ESDL(4) 0.299 0.257 0.128 0.118 0.947 1.00
DIPMOM 0.337 0.347 0.280 0.233 0.531 0.650 1.00
EHOMO 0.229 0.172 0.209 0.029 0.895 0.917 0.433 1.00

Ix Iy ClogP CMR CHGE(4) ESDL(4) DIPMOM EHOMO
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symmetrical (the top-right hand side of the matrix is identical to the
bottom left-hand side).

Inspection of the correlation matrix allows the identification of pairs
of correlating features, although choice of the level at which correlation
becomes important is problematic and dependent to some extent on the
requirements of the analysis. There are a number of high correlations
(r > 0.9) in Table 3.1 however, and removal of one variable from each
of these pairs will reduce the size of the data set without much likelihood
of removing useful information. At this point the data reduction process
might begin to be called ‘variable selection’ which is not just a matter of
semantics but actually a different procedure with different aims to data
reduction. There are a number of strategies for variable selection; some
are applied before any further data analysis, as discussed in the next
section, while others are actually an integral part of the data analysis
process.

So, to summarize the data reduction process so far:

� Missing values have been identified and the problem treated by
either filling them in or removing the offending cases or variables.

� Variables which are constant or nearly constant have been identified
and removed.

� Variables which have ‘strange’ or extreme distributions have been
identified and the problem solved, by fixing mistakes or removing
samples, or the variables removed.

� Correlated variables have been identified and marked for future
removal.

3.6 VARIABLE SELECTION

Having identified pairs of correlated variables, two problems remain in
deciding which one of a pair to eliminate. First, is the correlation ‘real’,
in other words, has the high correlation coefficient arisen due to a true
correlation between the variables or, is it caused by some ‘point and
cluster effect’ (see Section 6.2) due to an outlier. The best, and perhaps
simplest way to test the correlation is to plot the two variables against
one another; effects due to outliers will then be apparent. It is also worth
considering whether the two parameters are likely to be correlated with
one another. In the case of molecular structures, for example, if one
descriptor is electronic and the other steric then there is no reason to
expect a correlation, although one may exist, of course. On the other
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hand, maximum width and molecular weight may well be correlated for
a set of molecules with similar overall shape.

The second problem, having decided that a correlation is real, con-
cerns the choice of which descriptor to eliminate. One approach to this
problem is to delete those features which have the highest number of
correlations with other features. This results in a data matrix in which
the maximum number of parameters has been retained but in which the
inter-parameter correlations are kept low. Another way in which this
can be described is to say that the correlation structure of the data set
has been simplified. An alternative approach, where the major aim is to
reduce the overall size of a data set, is to retain those features which
correlate with a large number of others and to remove the correlating
descriptors.

Which of these two approaches is adopted depends not only on the
data set but also on any knowledge that the investigator has concerning
the samples, the dependent variable(s) and the independent variables.
In the case of molecular design it may be desirable to retain some par-
ticular descriptor or group of descriptors on the basis of mechanistic
information or hypothesis. It may also be desirable to retain a descriptor
because we have confidence in our ability to predict changes to its value
with changes in chemical structure; this is particularly true for some of
the more ‘esoteric’ parameters calculated by computational chemistry
techniques. What of the situation where there is a pair of correlated pa-
rameters and each is correlated with the same number of other features?
Here, the choice can be quite arbitrary but one way in which a decision
can be made is to eliminate the descriptor whose distribution deviates
most from normal. This is used as the basis for variable choice in a pub-
lished procedure for parameter deletion called CORCHOP [1]; a flow
chart for this routine is shown in Figure 3.3.

Although the methods which will be used to analyse a data set once
it has been treated as described here may not depend on distributional
assumptions, deviation from normality is a reasonable criterion to apply.
Interestingly, some techniques of data analysis such as PLS (see Chap-
ter 7) depend on the correlation structure in a data set and may appear
to work better if the data is not pre-treated to remove correlations. For
ease of interpretation, and generally for ease of subsequent handling, it is
recommended that at least the very high correlations are removed from
a data matrix.

Another source of redundancy in a data set, which may be more diffi-
cult to identify, is where a variable is correlated with a linear combination
of two or more of the other variables in the set. This situation is known
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Figure 3.3 Flow diagram for the correlation reduction procedure CORCHOP
(reproduced from ref. [2] with permission of Wiley-VCH).

as multicollinearity and may be used as a criterion for removing vari-
ables from a data set as part of data pre-treatment. An example of the
use of multicollinearity for variable selection is seen in a procedure [2]
called UFS (Unsupervised Forward Selection) which is available from the
website of the Centre for Molecular Design (www.cmd.port.ac.uk). UFS
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constructs a dataset by selecting variables with low multicollinearity in
the following way:

� The first step is the elimination of variables that have a standard
deviation below some assigned lower limit.

� The algorithm then computes a correlation matrix for the remaining
set of variables and chooses the pair of variables with the lowest
correlation.

� Correlations between the rest of the variables and these two chosen
descriptors are examined and any that exceed some pre-set limit are
eliminated.

� Multiple correlations between each of the remaining variables and
the two selected ones are examined and the variable with the lowest
multiple correlation is chosen.

� The next step is to examine multiple correlations between the re-
maining variables and the three selected variables and to select the
descriptor with the lowest multiple correlation.

This process continues until some predetermined multiple correlation
coefficient limit is reached. The results of the application of CORCHOP
and UFS can be quite different as the former only considers pairwise
correlations. The aim of the CORCHOP process is to simplify the cor-
relation structure of the data set while retaining the largest number of
descriptors. The aim of the UFS procedure is to produce a much simpli-
fied data set in which both pairwise and multiple correlations have been
reduced.

It is desirable to remove multicollinearity from data sets since this
can have adverse effects on the results given by some analytical methods,
such as regression analysis (Chapter 6). Factor analysis (Chapter 5) is one
method which can be used to identify multicollinearity. Finally, a note
of caution needs to be sounded concerning the removal of descriptors
based on their correlation with other parameters. It is important to know
which variables were discarded because of correlations with others and,
if possible, it is best to retain the original starting data set. This may
seem like contrary advice since the whole of this chapter has dealt with
the matter of simplifying data sets and removing redundant information.
However, consider the situation where two variables have a correlation
coefficient of 0.7. This represents a shared variance of just under 50 %,
in other words each variable describes just about half of the information
in the other, and this might be a good correlation coefficient cut-off limit
for removing variables. Now the correlation coefficient between two
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Figure 3.4 Illustration of the geometric relationship between vectors and correla-
tion coefficients (reproduced from ref. [2] with permission of Wiley-VCH).

parameters also represents the angle between them if they are considered
as vectors, as shown in Figure 3.4.

A correlation coefficient of 0.7 is equivalent to an angle of approxi-
mately 45◦. If one of the pair of variables is correlated with a dependent
variable with a correlation coefficient of 0.7 this may well be very useful
in the description of the property that we are interested in. If the vari-
able that is retained in the data set from that pair is one that correlates
with the dependent (X1 in Figure 3.4) then all is well. If, however, X1

was discarded and X2 retained then this parameter may now be com-
pletely uncorrelated (θ = 90◦) with the dependent variable. Although
this is an idealized case and perhaps unlikely to happen so disastrously
in a multivariate data set, it is still a situation to be aware of. One way
to approach this problem is to keep a list of all the sets of correlated
variables that were in the starting set. Figure 3.5 shows a diagram of
the correlations between a set of parameters before and after treatment
with the CORCHOP procedure. In this figure the correlation between
variables is given by the similarity scale. The correlation between LOG-
PRED and Y PEAX, for example, is just over 0.4. It can be seen from
the figure that there were 4 other variables with a correlation of ∼0.8
with LOGPRED (shown by dotted lines in the adjacent cluster) which
have been eliminated by the CORCHOP algorithm. If no satisfactory
correlations with activity are found in the de-correlated set, individual
variables can be re-examined using a diagram such as Figure 3.5. A list
of such correlations may also assist when attempts are made to ‘explain’
correlations in terms of mechanism or chemical features.
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Figure 3.5 Dendrogram showing the physicochemical descriptors (for a set of anti-
malarials) retained after use of the CORCHOP procedure. Dotted lines indicate
parameters that were present in the starting set (reproduced from ref. [3] with
permission of Wiley-Blackwell).

A recent review treats the matter of variable selection in some
detail [4].

3.7 SUMMARY

Selection of the analytical tools, described in later chapters, which will be
used to investigate a set of data should not be dictated by the availability
of software on a favourite computer, by what is the current trend, or by
personal preference, but rather by the nature of the data within the set.
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The statistical distribution of the data should also be considered, both
when selecting analytical methods to use and when attempting to inter-
pret the results of any analysis. The first stage in data analysis, however,
is a careful examination of the data set. It is important to be aware of
the scales of measurement of the variables and the properties of their
distributions (Chapter 1). The cases (samples, objects, compounds, etc.)
need selection for the establishment of training and test sets (Chapter 2)
although this may have been done at the outset before the data set was
collected. Finally, the variables need examination so that ill-conditioned
variables can be removed, missing values identified and treated, redun-
dancy reduced and possibly variables selected. All of this is known as
pre-treatment and is necessary in order to give the data analysis methods
a good chance of success in extracting information.

In this chapter the following points were covered:

1. how an examination of the distribution of variables allows the
identification of variables to remove;

2. the need for scaling and examples of scaling methods;
3. ways to treat missing data;
4. the meaning and importance of correlations between variables both

simple and multiple;
5. the reasons for redundancy in a data set;
6. the process of data reduction;
7. procedures for variable selection which retain the maximum num-

ber of variables in the set or which result in a data set containing
minimum multicollinearity.
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4
Data Display

Points covered in this chapter

� Variable by variable plots
� Principal component analysis
� Principal component scores and loadings plots
� Nonlinear mapping
� Artificial neural network plots
� Faces, flower plots, etc

4.1 INTRODUCTION

This chapter is concerned with methods which allow the display of data.
The old adage ‘a picture is worth a thousand words’ is based on our
ability to identify visual patterns; it is probably true to say that man is
the best pattern-recognition machine that we know of. Unfortunately,
we are at our best when operating in only two or three dimensions,
although it might be argued that we do operate in higher dimensions
if we consider the senses such as taste, smell, touch, and, perhaps, the
dimension of time. There are a number of techniques which can help in
trying to ‘view’ multidimensional data and it is perhaps worth pointing
out here that this is exactly what the methods do – they allow us to
view a data set from a variety of perspectives. If we consider a region of
attractive countryside, or a piece of famous architecture such as the Taj
Mahal, there is no ‘correct’ view to take of the scene. There are, however,
some views which are ‘better’ from the point of view of an appreciation

A Practical Guide to Scientific Data Analysis David Livingstone
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Figure 4.1 Plot of a set of active (A) and inactive (I) compounds described by two
physicochemical properties.

of the beauty of the scene, a view of the Taj Mahal which includes
the fountains, for example. Figure 4.1 shows a plot of the values of
two parameters against one another for a set of compounds which are
marked as A for active and I for inactive.

Looking at the plot as presented gives a clear separation of the two
classes of compounds, the view given by the two parameters is useful. If
we consider the data represented by parameter 1, seen from the position
marked view 1, it is seen that this also gives a reasonable separation of
the two classes although there is some overlap. The data represented by
parameter 2 (view 2), on the other hand, gives no separation of the classes
at all. This illustrates two important features. First, the consideration of
multiple variables often gives a better description of a problem: in this
case parameter 2 helps to resolve the conflict in classification given by
parameter 1. Second, the choice of viewpoint can be critical and it is
usually not possible to say in advance what the ‘best’ viewpoint will
be. Hopefully this simple two-dimensional example has illustrated the
problems that may be encountered when viewing multivariate data of
50, 100, or even more dimensions.

Now to multivariate display methods. These methods can conve-
niently be divided into linear and nonlinear techniques as discussed in
the next two sections; cluster analysis as a display method is covered in
Chapter 5.
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4.2 LINEAR METHODS

The simplest and most obvious linear display method is a variable-by-
variable plot. The advantages of such plots are that they are very easy to
interpret and it is easy to add a new point to the diagram for prediction
or comparison (this is not necessarily the case with other methods, as
will be shown later). One of the disadvantages of such an approach is
that for a multivariate set, there can be many two-dimensional plots,
p(p − 1) for p variables. Such plots not only take time to generate but
also take a lot of time to evaluate. Another disadvantage of this tech-
nique is the limited information content of the plots; Figure 4.1 shows
the improvement that can be obtained by the addition of just one param-
eter to a variable which already describes the biological data reasonably
well. How can further dimensions be added to a plot? Computer graph-
ics systems allow the production of three-dimensional pictures which
can be viewed in stereo and manipulated in real time. They are often
used to display the results of molecular modelling calculations for small
molecules and proteins, but can just as easily be adapted to display data.
The advantage of being able to manipulate such a display is that a view
can be selected which gives the required distribution of data points; in
Figure 4.1, for example, the best view is above the plot. The use of
colour or different-shaped symbols can also be used to add extra di-
mensions to a plot. Figure 4.2 shows a physical model, a reminder of
more ‘low-tech’ times, in which a third parameter is represented by the
height of the columns above the baseboard and activity is represented by
colour.

Another approach is shown in the spectral diagram in Figure 4.3
which represents a simultaneous display of the activities of compounds
(circles) and the relationships between tests (squares); the areas of the
symbols represent the mean activity of the compounds and tests. A fuller
description of spectral map analysis is given in Chapter 8.

Through these ingenious approaches it is possible to expand diagrams
to four, five, or even six dimensions, but this does not even begin to solve
the problem of viewing a 50-dimensional data set. What is required is
some method to reduce the dimensionality of the data set while retaining
its information content. One such technique is known as principal com-
ponent analysis (PCA) and since it forms the basis of a number of useful
methods, both supervised and unsupervised, I will attempt to explain it
here in some detail. The following description is based, with very grateful
permission, on part of Chapter 6 of the book by Hilary Seal [2].
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Figure 4.2 A physical model used to represent three physicochemical properties, π
and σ on the baseboard and MR as the height of the balls. Five colours were used
to code the balls (representing compounds) for five activity classes.

Figure 4.3 Spectral map of the relationships between the activity of neuroleptics
(circles) and in vivo tests (squares) (reproduced from ref. [1] copyright (1986)
Elsevier).
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Figure 4.4 Three-dimensional plot of the frequency distribution for two variables.
The two variables have the same standard deviations so the frequency ‘surface’ is
symmetrical (reproduced from ref. [2] copyright Methuen).

We have seen in Chapter 1 (Figures 1.3 and 1.4) that a frequency
distribution can be constructed for a single variable in which the fre-
quency of occurrence of variable values is plotted against the values
themselves. If we take the values of two variables which describe a set
of samples (compounds, objects, mixtures, etc.) a frequency distribution
can be shown for both variables simultaneously (Figure 4.4).

In this diagram the height of the surface represents the number of
occurrences of samples which have variable values corresponding to the
X and Y values of the plane which the surface sits on. The highest point
of this surface, the summit of the hill, corresponds to the mean of each of
the two variables. It is possible to take slices through a solid object such
as this and plot these as ellipses on a two-dimensional plot as shown in
Figure 4.5. These ellipses represent population contours: as the slices are
taken further down the surface from the summit, they produce larger
ellipses which contain higher proportions of the population of variable
values.

Two important things can be seen from this figure. First, the largest
axis of the ellipses corresponds to the variable (X1) with the larger stan-
dard deviation. Thus, the greatest part of the shape of each ellipse is
associated with the variable which contains the most variance, in other
words, information. Second, the two axes of the ellipses are aligned
with the two axes of the plot. This is because the two variables are not
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Figure 4.5 Population contours from a frequency distribution such as that shown
in Figure 4.4. In this case, the variables have different standard deviations (σ 1 > σ 2)
so the contours are ellipses (reproduced from ref. [2] copyright Methuen).

associated with one another; where there are high values of variable
X2, there is a spread of values of variable X1 and vice versa. If the
two variables are correlated then the ellipses are tilted as shown in Fig-
ure 4.6 where one population contour is plotted for two variables, Y and
X, which are positively correlated.

Figure 4.6 Population contour for two correlated variables X and Y. The axes X′

and Y′ represent mean-centred variables achieved by translation of the origin of X
and Y. The axes X′ ′ and Y′ ′ are formed by rotation of X′ and Y′ through the angle
α (reproduced from ref. [2] copyright Methuen).
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The two ‘ends’ of the population ellipse are located in two quadrants
of the X–Y space which correspond to (low X, low Y) and (high X, high
Y). If the variables were negatively correlated, the ellipse would be tilted
so that high values of Y correspond to low values of X and the other end
of the ellipse would be in the (low Y, high X) quadrant. The relationship
between the two axes, X and Y, and the population ellipse, which can
be thought of as enclosing the cloud of data points, shows how well the
original variables describe the information in the data. Another way of
describing the data is to transform the axes X and Y to new axes X′ and
Y′ as shown in the figure. This is achieved by translation of the origin of
X and Y to a new position in the centre of the ellipse, a procedure called,
unsurprisingly, centring. A further operation can be carried out on the
new axes, X′ and Y′, and that is rotation through the angle α marked on
the figure, to give yet another set of axes, X′′ and Y′′. These are the two
basic operations involved in the production of principal components,
translation and rotation.

Now it may seem that this procedure has not achieved very much
other than to slightly alter two original variables, and both by the same
amount, but it will be seen to have considerable effects when we involve
larger numbers of variables. For the present, though, consider the results
of this procedure as it illustrates some important features of PCA. The
new variable, X′′, is aligned with the major axis of the ellipse and it is
thus explaining the major part of the variance in the data set. The other
new variable, Y′′, is aligned with the next largest axis of the ellipse and
is thus explaining the next largest piece of information in the set of data
points. Why is this the next largest piece of variance in the data set;
surely another direction can be found in the ellipse which is different to
the major axis? The answer to this question is yes, but a requirement of
principal components is that they are orthogonal to one another (also
uncorrelated) and in this two-dimensional example that means at 90◦.
The two important properties of principal components are:

1. the first principal component explains the maximum variance in
the data set, with subsequent components describing the maximum
part of the remaining variance subject to the condition that

2. all principal components are orthogonal to one another.

In this simple two-dimensional example it is easy to see the directions that
the two principal components (PCs) must take to describe the variance
in the data set. Since the two axes, X and Y, were originally orthogonal
it is also easy to see that it is only necessary to apply the same single
rotation to each axis to produce the PCs. In the situation where there
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are multiple variables, the same single rotation (including reflection) is
applied to all the variables. The other feature of principal components
analysis that this example demonstrates is the matter of dimensionality.
The maximum number of components which are orthogonal and that
can be generated in two dimensions is two. For three dimensions, the
maximum number of orthogonal components is three, and so on for
higher dimensional data sets. The other ‘natural’ limit for the number of
components that can be extracted from a multidimensional data set is
dictated by the number of data points in the set. Each PC must explain
some part of the variance in the data set and thus at least one sample point
must be associated with each new PC dimension. The third condition for
PCA is thus

3. as many PCs may be extracted as the smaller of n (data points) or p
(dimensions) for a n × p matrix (denoted by q in Equation (4.1)).1

There are other important properties of PCs to consider, such as their
physical meaning and their ‘significance’. These are discussed further in
this section and in Chapter 7; for the present it is sufficient to regard
them as means by which the dimensionality of a high-dimensional data
space can be reduced. How are they used? In the situation where a data
set contains many variables the PCs can be regarded as new variables
created by taking a linear combination of the original variables as shown
in Equation (4.1).

PC1 = a1,1v1 + a1,2v2 + . . . . . a1,pvp

PC2 = a2,1v1 + a2,2v2 + . . . . . a2,pvp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PCq = aq,1v1 + aq,2v2 + . . . . . aq,pvp (4.1)

Where the subscripted term, aij, represents the contribution of each origi-
nal variable (v1 → vp) in the P-dimensional set to the particular principal
component (1 → q) where q (the number of principal components) is the
smaller of the n points or p dimensions. These coefficients have a sign
associated with them, indicating whether a particular variable makes a
negative or positive contribution to the component, and their magnitude

1 Actually, it is the rank of the matrix, denoted by r(A), which is the maximum number of
linearly independent rows (or columns) in A. 0 ≤ r(A) ≤ min (n,p), where A has n rows and p
columns.
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Figure 4.7 Illustration of the process of principal components analysis to produce
a ‘new’ data matrix of Q scores for N samples where Q is equal to (or less than) the
smaller of P (variables) or N (samples). The loadings matrix contains the contribution
(loading) of each of the P variables to each of the Q principal components.

shows the degree to which they contribute to the component. The coef-
ficients are also referred to as loadings and represent the contribution of
individual variables to the principal components.2 Since the PCs are new
variables it is possible to calculate values for each of these components
for each of the objects (data points) in the data set to produce a new (re-
constructed but related) data set. The numbers in this data set are known
as principal component scores; the process is shown diagrammatically
in Figure 4.7.

Now, it may not seem that this has achieved much in the way of di-
mension reduction: while it is true that the scores matrix has a ‘width’ of
q this will only be a reduction if there were fewer compounds than
variables in the starting data set. The utility of PCA for dimension

2 A loading is actually the product of the coefficient and the eigenvalue of the principal com-
ponent (a measure of its importance) as described later.
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Figure 4.8 Scores plot for 13 analogues of γ -aminobutyric acid (reproduced from
ref. [3] with kind permission of Springer Science + Business Media).

reduction lies in the fact that the PCs are generated so that they ex-
plain maximal amounts of variance. The majority of the information in
many data sets will be contained in the first few PCs derived from the set.
In fact, by definition, the most informative view of a data set, in terms
of variance at least, will be given by consideration of the first two PCs.
Since the scores matrix contains a value for each compound correspond-
ing to each PC it is possible to plot these values against one another
to produce a low-dimensional picture of a high-dimensional data set.
Figure 4.8 shows a scores plot for 13 compounds described by 33 calcu-
lated physicochemical properties.

This picture is drawn from the scores for the first two PCs and it is
interesting to see that the compounds are roughly separated into three
classes of biological activity – potent, weak, and no agonist activity.
Although the separation between classes is not ideal this is still quite an
impressive picture since it is an example of unsupervised learning pattern
recognition; the biological information was not used in the generation of
the PCs. Table 4.1 gives a list of the loadings of the original 33 variables
with the first three PCs. This table should give some idea of the complex
nature of PCs derived from large dimensional data sets.

Some variables contribute in a negative fashion to the first two PCs,
e.g. CMR, 4-ESDL, 3-NSDL, and so on, while others have opposite signs
for their loadings on these two PCs. The change in sign for the loadings
of an individual variable on two PCs perhaps seems reasonable when
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Table 4.1 Loadings of input variables for the first three principal
components (total explained variance = 70 %) (reproduced from
ref. [3] with kind permission of Springer Science + Business Media).

Loading

Variable PC1 PC2 PC3

CMR −0.154 −0.275 0.107
1-ATCH −0.196 0.096 0.298
2-ATCH 0.015 −0.203 −0.348
3-ATCH 0.186 0.003 0.215
4-ATCH −0.183 0.081 −0.197
5-ATCH −0.223 0.061 −0.027
6-ATCH 0.272 −0.030 0.049
X-DIPV 0.152 −0.085 −0.059
Y-DIPV 0.079 −0.077 −0.278
Z-DIPV 0.073 −0.117 0.019
DIPMOM −0.019 0.173 −0.006
T-ENER 0.137 0.146 −0.242
1-ESDL 0.253 −0.156 0.120
2-ESDL 0.221 −0.071 −0.020
3-ESDL −0.217 0.108 −0.248
4-ESDL −0.167 −0.115 −0.245
5-ESDL −0.105 0.197 0.158
6-ESDL 0.128 0.072 0.337
1-NSDL 0.183 −0.253 0.148
2-NSDL 0.186 −0.236 0.025
3-NSDL −0.021 −0.136 −0.365
4-NSDL −0.226 0.195 −0.046
5-NSDL −0.111 0.227 0.141
6-NSDL −0.099 0.257 0.125
VDW VOL −0.228 −0.229 0.031
X-MOFI −0.186 −0.238 0.136
Y-MOFI −0.186 −0.266 0.093
Z-MOFI −0.209 −0.238 0.090
X-PEAX −0.218 −0.178 −0.020
Y-PEAX −0.266 −0.050 0.084
Z-PEAX −0.051 −0.217 0.035
MOL WT −0.126 −0.263 0.189
IHET 1 0.185 −0.071 −0.052

we consider that the PCs are orthogonal; the PCs are taking different
‘directions’ and thus a variable that contributes positively to one PC
might be negatively associated with another (see Figure 4.13). Where
the signs of the loadings of one variable on two PCs are the same, the
loading for that variable on a third PC is often (but not always) reversed,
demonstrating that the third component is taking a different direction to
the first two. It should be pointed out here that the direction that a PC
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Figure 4.9 Scores plot for fruit juice samples: A, apple juice; P, pineapple juice; and
G, grape juice (reproduced from ref. [4] with permission of Wiley-Blackwell).

takes, with respect to the original variables, is arbitrary. Reversing all of
the signs of the loadings of the variables on a particular PC produces a
component which explains the same amount of variance. When PCs are
calculated for the same data set using two different software packages,
it is not unusual to find that the signs of the loadings of the variables
on corresponding PCs (e.g. the first PC from the two programs) are re-
versed, but the eigenvalues (variance explained) are the same. The other
important piece of information to note in Table 4.1 is the magnitude of
the coefficients. Many of the variables that make a large contribution
to the first component will tend to have a small coefficient in the sec-
ond component and vice versa. Some variables, of course, can make a
large contribution to both of these PCs, e.g. CMR, T-ENER, 1-ESDL, 1-
NSDL, etc., in which case they are likely to make a smaller contribution
to the third component. The variable T-ENER demonstrates an excep-
tion to this in that it has relatively high loadings on all three components
listed in the table.3

Figure 4.9 shows an example of the value of PCA in food science.
This is a scores plot for the first two PCs derived from a data set of 15

3 For this data set it is possible to calculate a total of 13 components although not all are
‘significant’ as discussed later.
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variables measured on 34 samples of fruit juices. The variables included
pH, total phenols, reducing sugars, total nitrogen, ash, glucose content,
and formol number, and the samples comprised 17 grape, 11 apple, and
six pineapple juices.

As can be seen from the figure, the first two components give a very
satisfactory separation of the three types of juice. The first PC was re-
lated to richness in sugar since the variables reducing sugars, total sugars,
glucose, ◦Brix, dry extract, and fructose load highly onto it. This com-
ponent distinguishes grape from apple and pineapple juice. The second
PC, which separates apple from pineapple juice was highly correlated
with the glucose:fructose ratio, total nitrogen, and formol number. In
this example it is possible to attempt to ascribe some chemical ‘mean-
ing’ to a PC, here, sugar richness described by PC1, but in general it
should be borne in mind that PCs are mathematical constructs without
necessarily having any physical significance. An example of the use of
PCA in another area of chemical research is shown in Figure 4.10. This
scores plot was derived from PCA applied to a set of seven parameters,
calculated logP and six theoretical descriptors, used to describe a series
of 14 substituted benzoic acids.

Figure 4.10 Scores plot for a set of benzoic acids described by seven physicochem-
ical properties. Compounds are metabolized by the formation of glucuronide conju-
gates (squares) or glycine conjugates (circles) and two test set compounds are shown
(triangles) (reproduced from ref. [5] with permission of Elsevier).
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Figure 4.11 Structure of (a) the glycine conjugate of 4-fluorobenzoic acid; (b) the
glucuronic acid conjugate of 4-trifluoromethylbenzoic acid. (reproduced from ref.
[5] with permission of Elsevier).

The major route of metabolism of these compounds in the rat was
determined by NMR measurements of urine, or taken from the literature,
and they were assigned to glycine (Figure 4.11a) or glucuronide (Figure
4.11b) conjugates.

A training set of 12 compounds is shown on the scores plot in Figure
4.10 where it can be seen that the glucuronide conjugate-forming com-
pounds (squares) are well separated from the rest of the set. Two test
set compounds are shown as triangles; compound 13 is metabolized by
the glucuronide route and does lie close to the other glucuronide conju-
gate formers. However, this compound is also close, in fact closer, to a
glycine conjugate-forming acid (number 6) and thus might be predicted
to be metabolized by this route. The other test set compound lies in a
region of PC space, low values of PC2, which is not mapped by the other
compounds in the training set. This compound is metabolized by the
glycine conjugate route but it is clear that this could not be predicted
from this scores plot. This example serves to illustrate two points. First,
the PC scores plot can be used to classify successfully the metabolic route
for the majority of these simple benzoic acid analogues, but that individ-
ual predictions may not be unambiguous. Second, it demonstrates the
importance of careful choice of test and training set compounds. Com-
pound 14 must have some extreme values in the original data matrix and
thus might be better treated as a member of the training set. In fairness to
the original report it should be pointed out that the selection of ‘better’
variables, in terms of their ability to classify the compounds, led to plots
with much better predictive ability.

As was seen in Table 4.1, PCA not only provides information about
the relationships between samples in a data set but also gives us insight
into the relationships between variables. The schematic representation
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Table 4.2 Loadings for selected variables on the first two PCs∗ (reproduced
from ref. [6] with kind permission of Springer Science + Business Media).

No. on Figure 4.12 Parameter PC1 PC2

1 PIAR −0.72 0.11
2 PIAL −0.66 0.16
3 FARR −0.71 0.23
4 FALR −0.69 0.21
5 FARHL −0.72 0.17
6 FALHL 0.69 0.23
7 K 0.04 −0.49

38 SX 0.14 0.04
43 RE 0.07 0.01
44 I 0.14 0.07
50 HD 0.12 0.07
59 RAND 0.09 0.39

∗From a total of 75 parameters describing 59 substituents.

of PCA in Figure 4.7 shows that the process produces two new matrices,
each of width Q, where Q is the smaller of P (variables) or N (sam-
ples). The scores matrix contains the values of new variables (scores)
which describe the samples. The loadings matrix contains the values of
the loadings (correlations) of each variable with each of the Q princi-
pal components. These loadings are the coefficients for the variables in
Equation (4.1) and can be used to construct a loadings plot for a pair
of PCs. In an analysis of an extensive set of physicochemical substituent
constants, Van de Waterbeemd and colleagues [6] produced the PC load-
ings shown in Table 4.2.

The loadings for the full set of substituent constants are shown pro-
jected onto the first two PC axes in Figure 4.12. In this figure each point
represents a variable; where points are clustered together, the variables
are all highly associated with one another. Those points which lie close
to the origin of the plot (e.g. 38, 43, 44, and 50) make little contribution
to either PC, conversely the points at the extremes of the four quadrants
are highly associated with their respective PCs.

The cluster of variables represented by points 1 to 6 is a chemically
‘sensible’ one, these are all descriptors of lipophilicity. The fact that
parameter 59 lies close to the origin is reassuring, this variable was
generated from random numbers. Descriptor 7 is derived from measure-
ments of charge-transfer complexes, its relationship to other parameters
is examined further in Section 7.3. Points which lie on their own in the
PC space represent variables which contain some unique information
not associated with other variables.
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Figure 4.12 Loadings plot for a set of 75 substituent constants (reproduced from
ref. [6] with kind permission of Springer Science + Business Media).

By joining the points representing variables to the origin of the PC
plot it is possible to construct vectors in the two-dimensional plane of
PC space. This type of representation can be adapted to produce a dia-
gram which aims to give another, more visual, explanation of principal
component analysis. In Figure 4.13 the solid arrows represent individual

Figure 4.13 Pictorial representation of the relationship between data vectors (vari-
ables), shown by solid lines, and PCs shown by dotted lines. The plane of the diagram
is not ‘real’ two-dimensional space or PC space but is meant to represent P dimen-
sions.
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variables as vectors, with the length of each arrow proportional to the
variance contained in the variable. This is not the same type of plot as
Figure 4.12; the two-dimensional space is not PC space but is intended
to represent P dimensions.

The position of the arrows in the diagram demonstrates the rela-
tionships between the variables, arrows which lie close to one another
represent correlated variables. The first PC is shown as a dotted arrow
and it can be seen to lie within a cluster of correlated variables. The load-
ings of these variables (and the others in the set) are found by projection
of the arrows onto this PC arrow, illustrated for just two variables for
clarity. The length of the PC arrow is given by vector addition of the
arrows representing the variables and, as for the individual variables,
this represents the variance contained in this component. The second
and third PCs lie within other sets of correlated variables and are shorter
vectors than the first since they are explaining smaller amounts of vari-
ance in the set. The PC vectors are not at right angles (orthogonal to one
another) in this diagram since the space in the figure is not ‘real’ two-
dimensional space. The relationship between PC vectors and the variable
vectors illustrates an operation that can be carried out on PCs in order to
simplify their structure. This can be of assistance in attempts to interpret
PCs and may also result in PCs which are better able to explain some
dependent variable. The three PC vectors shown in Figure 4.13 were
generated so as to explain the maximum variance in the data set and
thus there are a lot of variables associated with them. This association of
many variables with each component leads to low loadings for some of
the variables, particularly some of the more ‘important’ (high-variance)
variables. By trying to explain the maximum amount of variance in the
set, PCA achieves a compromise between PC ‘directions’ that are aligned
with high-variance variables and directions that are aligned with a large
number of variables. Rotation of the PCs allows new directions to be
found in which fewer variables are more highly associated with each PC.
There are a number of techniques available to achieve such rotations,
one of the commonest is known as varimax rotation [7]. Table 4.3 shows
the loadings of seven physicochemical parameters on four PCs for a set
of 18 naphthalene derivatives. High loadings, i.e., variables making a
large contribution, for each component are shown in bold type.

It can be seen that the first component in particular has a quite com-
plicated structure with four variables contributing to it and that two of
these, π and MR, are properties that it is desirable to keep uncorrelated.
Table 4.4 shows the loadings of these same variables on four PCs after
varimax rotation.
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Table 4.3 Parameter loadings for four principal components (reproduced from
ref. [8] with permission of Elsevier).

Parameter 1 2 3 4

π 0.698∗ −0.537 −0.121 −0.258
MR 0.771 0.490 −0.302 −0.002
F 0.261 0.389 0.745 −0.423
R 0.405 −0.012 0.578 0.697
Ha −0.140 0.951 0.071 −0.101
Hd −0.733 0.373 −0.271 0.172
1χ v

sub 0.739 0.412 −0.404 0.163

∗Boldface numbers indicate parameters making a large contribution to each component.

The structure of the first PC has been simplified considerably and the
correlation between π and MR has been almost eliminated by reducing
the π loading from 0.6988 to 0.2. This parameter now loads onto the
second PC (note the change in sign) and the properties which were
highly associated with the third and fourth PCs have had their loadings
increased. Varimax rotation results in a new set of components, often
referred to as factors, in which loadings are increased or reduced to give a
simplified correlation structure. This rotation is orthogonal, that is to say
the resulting factors are orthogonal like the PCs they were derived from.
Other orthogonal rotations may be used to aid in the interpretation of
PCs and non-orthogonal (oblique) rotations also exist [7].

Scores or loadings plots are not restricted to the first two PCs, although
all of the examples shown so far have been based on the first two PCs.
By definition, the first two PCs explain the largest amount of variance
in a data set, but plots of other components may be more informative;
section 7.3.1, for example, shows a data set where the first and fourth
PCs were most useful in the explanation of a dependent variable. Plots

Table 4.4 Parameter loadings after varimax rotation (reproduced from ref. [8]
with permission of Elsevier).

Parameter 1 2 3 4

π 0.200 0.919∗ 0.012 0.012
MR 0.891 0.195 0.093 0.061
F 0.020 −0.003 0.975 0.123
R 0.081 0.018 0.115 0.982
Ha 0.272 0.451 0.318 −0.083
Hd −0.159 −0.285 −0.138 −0.148
1χ v

sub 0.974 0.037 −0.024 0.064

∗Boldface numbers indicate parameters making a large contribution to each component.
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Figure 4.14 Scores plot on the first three PCs for a set of natural orange aroma
samples described by GC–MS data. Different samples are indicated by the letters
A–P, and different categories by different symbols (reproduced from ref. [9] with
permission of Elsevier).

are also not restricted to just two PCs, although two-dimensional plots
are quite popular since they fit easily onto two-dimensional paper! The
physical model shown earlier (Figure 4.2) is a four-dimensional plot
and the spectral map (Figure 4.3) contains a third dimension in the
thickness of the symbols. Figure 4.14 shows a plot of the first three PCs
calculated from a GC–MS analysis (32 peaks) of natural orange aroma
samples. The different samples, labelled A to P, were of distinct types
of orange aroma provided by six different commercial flavour houses.
These orange aromas could be classified into nine separate categories, as
indicated by the different symbols on the plot, and it can be seen that
this three-dimensional diagram separates the categories quite well.

The plots shown in these examples have involved either the loadings or
the scores from PCA but it is in fact possible to produce plots, known as
biplots, which simultaneously display the scores and loadings [10]. The
advantage of a biplot is that it enables the analyst to examine relation-
ships between variables and the cases at the same time. The disadvantage,
of course, is that it can be more difficult to see any resulting patterns.
Biplots are discussed further in Section 8.4.

As mentioned at the beginning of this section, PCA lies at the heart
of several analytical methods which will be discussed in later chapters.
These techniques such as factor analysis, as shown in the next chapter,
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and Partial Least Squares (Chapter 7) can be used to produce scores and
loadings plots in a similar way to PCA. Some other features of PCs, such
as their ‘significance’, are also discussed later in the book; this section
has been intended to illustrate the use of PCA as a linear dimension
reduction method.

4.3 NONLINEAR METHODS

The next two sections discuss nonlinear approaches to data display.
The first section describes a method in which cases in the data set are
displayed in two dimensions while striving to preserve the inter-sample
distances as measured in the multidimensional space. There are two tech-
niques for achieving this, based on similar concepts, which are called
multidimensional scaling [11, 12] and nonlinear mapping [13, 14]. The
section describes the procedure for nonlinear mapping. The second sec-
tion introduces a data display technique based on an approach called
artificial neural networks. The underlying philosophy of artificial neural
networks is described in some detail later in the book so this section only
briefly discusses the operation of a particular network architecture and
algorithm.

4.3.1 Nonlinear Mapping

For any given data set of points in P dimensions it is possible to calculate
the distances between pairs of points by means of an equation such as
that shown in Equation (4.2).

dij =

√
√
√
√
√

⎛

⎝
∑

k=1,P

(di,k − dj,k)2

⎞

⎠ (4.2)

This is the expression for the Euclidean distance where dij refers to the
distance between points i and j in a P-dimensional space given by the
summation of the differences of their coordinates in each dimension
(k = 1, P). Different measures of distance may be used to characterize
the similarities between points in space, e.g. city-block distances, Maha-
lonobis distance (see Digby and Kempton [15] for examples), but for
most purposes the familiar Euclidean distance is sufficient. The collection
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of interpoint distances is known, unsurprisingly, as a distance matrix (see
Section 5.2 for an example) and this is used as the starting point for a
number of multivariate techniques.

The display method considered here is known as nonlinear map-
ping, NLM for short, and takes as its starting point the distance ma-
trix for a data set calculated according to Equation (4.2). The distances
in this distance matrix are labelled dij

∗ to indicate that they relate to
P-space interpoint distances. Having calculated the P-space distance
matrix, the next step is to randomly (usually, but see later) assign the
points (compounds, samples) to positions in a lower dimensional space.
This is usually a two-dimensional space for ease of plotting but can
be a three-dimensional space if a computer is used to rotate the plot
to show the third dimension. It could also be a true 3-D display if a
computer graphics display with stereo is used, or a two-dimensional
stereo plot with appropriate viewer. Having assigned the n points to
positions in a two-dimensional coordinate system, distances between
the points can be calculated using Equation (4.2) and these are labelled
dij. The difference between the P-space interpoint distances and the 2-
space interpoint distances can be expressed as an error, E, as shown in
Equation (4.3).

E =
∑

i>j

(d∗
ij − dij)2/(d∗

ij )
ρ

(4.3)

Minimization of this error function results in a two-dimensional display
of the data set in which the distances between points are such that they
best represent the distances between points in P-space. The significance
of the power term, ρ, will be discussed later in this section; it serves
to alter the emphasis on the relative importance of large versus small
P-space interpoint distances.

A physical analogy of the process of NLM can be given by consid-
eration of a three-dimensional object composed of a set of balls joined
together by springs. If the object is pushed onto a flat surface and the ten-
sion in the springs allowed to equalize, the result is a two-dimensional
representation of a three-dimensional object. The equalization of ten-
sion in the springs is equivalent to minimization of the error function
in Equation (4.3). A two-dimensional plot produced by the NLM pro-
cess has some interesting features. Each axis of the plot consists of some
(unknown) nonlinear combination of the properties which were used
to define the original P-dimensional data space. Thus, it is not possi-
ble to plot another point directly onto an NLM; the whole map must
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Figure 4.15 NLM of a set of antiviral bicyclic amine derivatives (reproduced from
ref. [3] with kind permission of Springer Science + Business Media).

be recalculated with the new point included. An example of an NLM
which includes both training set and test set compounds is shown in
Figure 4.15. This plot was derived from a set of bicyclic amine derivatives
which were described by nine calculated parameters. Antivirus activity
results were obtained from a plaque-reduction assay against influenza A
virus. It can be seen from the map that the active compounds are grouped
together in one region of space. Some of the test set compounds lie closer
to this region of the plot, though none of them within it, and thus the
expectation is that these compounds are more likely to be active than
the other members of the test set.

This is a good example of the use of a NLM as a means for deciding
the order in which compounds should be made or tested. Another use for
NLM is to show how well physicochemical property space is spanned
by the compounds in the training set, or test set for that matter. Regions
of space on the NLM which do not contain points probably indicate
regions of P-space which do not contain samples. The qualifier ‘probably’
was used in the last statement because the space on an NLM does not
correspond directly to space in P dimensions. A map is produced to
meet the criterion of the preservation of interpoint distances so, as we
move about in the 2-space of an NLM this might be equivalent to quite
strange moves in P-space. Small distances on the NLM may be equivalent
to large distances in the space of some variables, small or zero distances
with respect to other variables and may even involve a change of direction
in the space of some variables.
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Figure 4.16 NLM of natural orange aroma samples described by 32 GC–MS peaks
(reproduced from ref. [9] with permission of Elsevier).

Another example of the use of NLM to treat chemical data is shown
in Figure 4.16.

This NLM was calculated from the same GC–MS data used to pro-
duce the principal component scores plot shown in Figure 4.14. The
NLM clearly groups the samples into nine different categories, the de-
scriptions of the samples are comments made by a human testing panel
(see later). Figure 4.17 shows another example of an NLM, this time

Figure 4.17 NLM of hallucinogenic phenylalkylamine derivatives described by 24
physicochemical properties; • is active, + is low activity, 0 is inactive (from ref. [16]
copyright (1990) American Chemical Society).
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from the field of drug design. This plot shows 63 hallucinogenic pheny-
lalkylamine derivatives characterized by 24 physicochemical properties.
Compounds with high activity are mostly found in the top-left quadrant
of the map, the inactive and low-activity compounds being mixed in the
rest of the space of the map. Interestingly, this map also shows three
active compounds which are separated from the main cluster of actives.

These compounds lie quite close to the edge of the plot and thus in a
region of the NLM space that might be expected to behave in a pecu-
liar fashion. They may actually be quite similar to the rest of the active
cluster, in other words the map may ‘join up’ at the axes and they are
simply placed there as a good compromise in the minimization of the
error function. An alternative explanation is that these compounds exert
their activity due to some unique features, they may act by a different
mechanism or perhaps occupy a different part of the binding site of a
biological receptor. Display methods are quite good tools for the identi-
fication of compounds, samples, or objects which have different features
to the rest of the set.

Figure 4.18 illustrates the use of the power term, ρ, in Equation (4.3).
The bicyclic amine data set shown in Figure 4.15 was mapped using a
value of two for this term. With ρ = 2, both large and small interpoint
distances are equally preserved; this compromise ensures the best overall
mapping of the P-space interpoint distances. Figure 4.18 shows the result
of mapping this same data set using a value of −2 for ρ. This has the effect

Figure 4.18 NLM, using a power term ρ = −2, of the antiviral bicyclic amine
derivatives shown in Figure 4.15 (reproduced from ref. [3] with kind permission of
Springer Science + Business Media).
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of preserving the larger interpoint distances at the expense of the smaller
ones; the result is to ‘collapse’ local clusters of points thus emphasizing
the similarities between compounds. The effect on the data set has been
quite dramatic; the active compounds still cluster together and it can be
seen that none of the test set compounds join this cluster. However, one
of the test set compounds now lies very close to the cluster of actives
and thus becomes a much more interesting synthetic target. Two of the
remaining test set compounds are close together (only one need be made)
and one of the test set compounds has been separated from the rest of
the set. This latter compound may now represent an interesting target
to make, as it may be chemically different to the rest of the test set, or
may be ignored since it lies a long way from the active cluster. Synthetic
feasibility and the judgement of the research team will decide its fate.

Another example of the use of display methods also involves a different
type of descriptor data, results from a panel of human testers. In the
analysis of natural orange aroma (NOA) samples reported earlier [9] a
human testing panel was trained over a period of three months using pure
samples of 15 identified components of the NOA samples. A quantitative
descriptive analysis (QDA) report form was devised during the course
of the training; the QDA form was used to assign a score to a number
of different properties of the NOA samples. PCA of the QDA data for
the same samples as shown in Figure 4.14 resulted in the explanation of
58 % of the variance in the data set in the first three PCs. A scores plot
of these three PC axes is shown in Figure 4.19 where it can be seen that
the NOA samples are broadly grouped together into different categories,
but the classifications are not as tight as those shown in Figure 4.14.

Figure 4.20 shows a nonlinear map of Fisher-weighted QDA where it
can be seen that some of the categories are quite well separated but not
as clearly as the NLM from GC–MS data (see Figure 4.16).4

Some of the advantages and disadvantages of nonlinear mapping as a
multivariate display technique are listed in Table 4.5. Most of these have
been discussed already in this section but a couple of points have not.

Since the technique is an unsupervised learning method, it is unlikely
that any grouping of objects will happen by chance. Any cluster of
points seen on an NLM generally represents a cluster of points in the P-
dimensional space. Such groupings may happen by chance although this
is much more likely to occur when a supervised learning method, which
seeks to find or create patterns in a data set, is employed. The significance

4 Fisher-weighting and variance-weighting are different procedures for weighting variables ac-
cording to their ability to classify samples (see ref. [17]).
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Figure 4.19 Scores plot for a set of NOA samples described by sensory QDA data.
The QDA data was autoscaled and variance-weighted (see reference for details).
Symbols are the same as those used in Figure 4.14 (reproduced from ref. [9] with
permission of Elsevier).

of a group of points found on a nonlinear map, or any other display
for that matter, may be assessed by a method called cluster significance
analysis as discussed in Chapter 5. The fact that the display is dependent
on the order of the compounds and changes as compounds are added or

Figure 4.20 NLM of a set of NOA samples described by Fisher-weighted sensory
QDA data. Symbols are the same as those used in Figure 4.14 (reproduced from ref.
[9] with permission of Elsevier).
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Table 4.5 Nonlinear mapping – pros and cons.

Advantage

No assumptions concerning mechanism and may identify different mechanisms
Unsupervised learning so chance effects unlikely
Does not require biological data
Non-linear
Can change the emphasis on the preservation of interpoint distances
Can view multivariate data in two (or three) dimensions

Disadvantage

Unknown non-linear combination of variables
Cannot plot a point directly on the map
Display may change dramatically as points are added/removed
Cannot relate NLM distances to N-space distances (mapping errors)
Display depends on the order of data entry

removed is a consequence of the minimization of the error function. The
calculated map depends on the initial guess for the 2-space points since
the minimizer will find the nearest local minimum rather than the global
minimum (if one exists). A common way to choose the initial positions
of the points in 2-space is to assign them randomly, but a disadvantage of
this is that running the NLM routine several times on the same data set
may produce several different maps. One approach to overcoming this
problem is to use principal component scores as the initial guess for the
2-space positions; a disadvantage of this is that the resultant map may be
more ‘linear’ than is desirable. Since the error function is calculated over
a summation of the distance differences, adding or removing points may
alter the subsequent display. This can be disconcerting to newcomers to
the method, particularly when we are accustomed to display methods
which give only one ‘answer’.

Finally, most of the examples shown here have been two-dimensional
but the addition of an extra dimension can dramatically improve the
performance of a display method such as PCA or NLM. The data shown
in Table 4.6 is a set of computed descriptors for 26 compounds which
are antagonists of the 5HT3 receptor. 5HT3 antagonists are highly effec-
tive at preventing nausea and vomiting during chemotherapy and radio-
therapy.

The molecules were originally described by a total of 112 computed
properties and therefore, as described in Chapter 3, the starting data set
contained a considerable amount of redundancy. Elimination of pair-
wise correlations reduced this set to 56 and the application of a feature
selection routine (see Chapter 7) chose the 9 variables shown in the table
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Figure 4.21 Two-dimensional NLM from the data in Table 4.6 (map created using
the SciFit package – www.scimetrics.com).

as being important for the prediction of activity. A two-dimensional
NLM was calculated from these descriptors and gave some clustering of
the active compounds (19 to 26) as shown in Figure 4.21.

The clustering is not very convincing, however, and there is little real
separation between active and inactive compounds. A two-dimensional
scores plot on the first two PC’s gave an even more confused picture
with some clustering of the active compounds together but with inactives
mixed in as well. A three-dimensional NLM, however, gives an almost
perfect separation of the active compounds as shown in Figure 4.22.

All of the active compounds, except 23, are collected together in a
single region of the 3D map bounded by the inactives 11, 13, 14 and 15.
Clearly, the compression of information from a 9 variable space to two
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Figure 4.22 Three-dimensional NLM from the data in Table 4.6 (map created using
the SciFit package – www.scimetrics.com).

dimensions loses too much information compared with the correspond-
ing three dimensional plot.

4.3.2 Self-organizing Map

A self-organizing map (SOM) or Kohonen map [18] is an artificial neural
network (ANN) architecture used for the display of multivariate data.
ANN are described in detail in Chapter 9 so suffice to say here that
the ‘heart’ of these networks is an artificial neuron, designed to mimic
to some extent biological neurons, and that these artificial neurons can
be connected together in a variety of different patterns or architectures.
The neurons are connected to one another via a set of weights, called
connection weights, and training of the ANN involves alteration of these
weights by a training algorithm until some training target is met.
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Figure 4.23 Block representation of a 7 × 7 Kohonen network with 6 input vari-
ables. Each layer of the block depicts the connection weights between a particular
input variable and all of the neurons in the 7 × 7 plot. The shaded layer shows the
weights for input variable 3 with the particular weights for neurons (1,1) and (6,5)
picked out as shaded circles (reproduced from ref. [19] with permission).

A SOM is made up from a two-dimensional array of neurons, each one
being connected, via a connection weight, to each of the inputs (variables
in the data set). The set of weights and neurons can be represented by a
three-dimensional diagram as shown in Figure 4.23.

In the figure a single layer in the 3-D ‘stack’ represents all the weights
associated with a particular input variable. Training a SOM consists of
two parts, competitive learning and self-organization. Initially, as with
most network training procedures, the connection weights are set to
random values. Each pattern (object, case, compound) in the training set
may be considered to be a vector, X, consisting of p values xi (where
there are p variables in the set); each neuron j in the map is character-
ized by a weight vector, Wj, consisting of p weights wij. Euclidean dis-
tances, dj, are calculated between each X and each weight vector Wj by
Equation (4.4):

dj =
(

m∑

i=1

(
xi − wij

)2

)1/2

(4.4)

The neuron with the weight vector Wj closest to the input pattern X is
said to be the winning neuron, j∗, and it is updated so that its weight
vector, Wj

∗, is even closer to the input vector X:

w∗
ij(t + 1) = wij∗(t) + α(t)[xi − w∗

ij(t)]
0 < α < 1

(4.5)
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The terms t and α in Equation (4.5) are time and learning rate, re-
spectively, (t and t + 1 are successive instants of time) and after each
updating the time variable is incremented whereas the learning rate, α, is
decreased. This process, which is called a step, is repeated for each of the
patterns in the training set; a learning epoch consists of as many steps as
there are patterns in the training set.

The competitive learning phase of Kohonen mapping takes no account
of the topological relationships between the neurons in the plot, these are
updated in an isolated fashion. Self-organization is the second phase of
the training process and this is achieved by defining a set of neighbouring
neurons, Nj∗ , as the set of neurons which are topologically close to the
‘winning’ neuron j∗. The learning algorithm shown in Equation (4.5)
may be modified so that the neighbouring neurons are updated as well
as the j∗ neuron:

wij(t + 1) = wij(t) + α(t)γ (t)[xi − wij(t)]
γ (t) = 1 ∀ j ∈ Nj∗(t)
γ (t) = 0 ∀ j /∈ Nj∗(t)

(4.6)

The neighbouring neurons are specified by the parameter γ and at first
the area of this set is wide but, as training proceeds, the radius of this
area is decreased (like the learning rate α) as the time variable t is in-
cremented. The result of this combination of competitive learning and
self-organization is to produce a two-dimensional plot in which the data
points are arranged according to their similarities in the high dimen-
sional space defined by the variables in the data set. The similarity be-
tween SOM mapping and NLM or principal component scores plots is
evident.

Table 4.7 shows descriptor data and disconnection mechanism for a
set of 32 carbonyl containing compounds. The four different disconnec-
tion mechanisms, Aldol-, Claisen-, Michael- and enamine, indicate the
way that these compounds react in a retrosynthetic analysis. Differences
in reaction mechanism are due to different substitution patterns (not
shown) on the compounds.

Bienfait [20] created a SOM for this data set as shown in Figure 4.24.
The training process was run for a total of 20 epochs and at the end of
this time the resultant map was clearly split into four distinct areas as
shown in the bottom right of the figure.

The figure shows four of the stages of this training process, including
the initial and final plots, where it can be seen that the four different
classes of disconnection have been separated in the display. Although
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Table 4.7 Carbonyl compounds, molecular descriptors and disconnection
mechanism (reproduced from ref. [20] with permission of the American Chemical
Society).

ε

δ β

α α'

β'

γ

Ο

Disconnection Index Cε Cδ Cγ Cβ Cα Cα′ Cβ′

Aldol-type 1 0 0 0.1 0.36 0.08 0.02 0
2 0 0 0.1 0.38 0.08 0.1 0
3 0 0.1 0.08 0.36 0.06 0.02 0
4 0 0.1 0.08 0.38 0.06 0.1 0

Claisen-type 5 0 0 0.02 0.3 0.08 0.18 0.1
6 0 0 0.02 0.3 0.08 0.18 0.08
7 0 0 0.1 0.3 0.06 0.18 0.1
8 0 0 0.1 0.3 0.06 0.18 0.08

Michael-type 9 0.02 0.3 0.9 0.08 0.08 0.02 0
10 0.02 0.3 0.9 0.06 0.08 0.02 0
11 0.02 0.3 0.9 0.08 0.06 0.02 0
12 0.02 0.3 0.9 0.04 0.08 0.02 0
13 0.02 0.3 0.9 0.06 0.06 0.02 0
14 0.02 0.3 0.9 0.04 0.06 0.02 0

enamine-type 15 0.02 0.3 0.08 0.08 0.08 0.02 0
16 0.02 0.3 0.08 0.08 0.06 0.02 0
17 0.02 0.3 0.08 0.06 0.08 0.02 0
18 0.02 0.3 0.06 0.08 0.08 0.02 0
19 0.02 0.3 0.08 0.06 0.06 0.02 0
20 0.02 0.3 0.08 0.04 0.08 0.02 0
21 0.02 0.3 0.06 0.06 0.08 0.02 0
22 0.02 0.3 0.04 0.08 0.08 0.02 0
23 0.02 0.3 0.06 0.08 0.06 0.02 0
24 0.02 0.3 0.06 0.04 0.08 0.02 0
25 0.02 0.3 0.06 0.06 0.06 0.02 0
26 0.02 0.3 0.04 0.06 0.08 0.02 0
27 0.02 0.3 0.08 0.04 0.06 0.02 0
28 0.02 0.3 0.04 0.08 0.06 0.02 0
29 0.02 0.3 0.06 0.04 0.06 0.02 0
30 0.02 0.3 0.04 0.06 0.06 0.02 0
31 0.02 0.3 0.04 0.04 0.08 0.02 0
32 0.02 0.3 0.04 0.04 0.06 0.02 0

the classes have been separated, however, it can also be seen that the
final map does not display all of the compounds in the set. The four
compounds which undergo Claisen-type disconnection, for example,
are represented by just a single cell (neuron) on the plot while the six
Michael-type compounds are shown in just two cells.

Principal component analysis of this data set resulted in two principal
components which explained ∼76 % of the variance in the data. A scores
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Figure 4.24 Four stages in the training of a Kohonen self-organizing map for the
data shown in Table 4.7. Numbers above each plot indicate the number of training
epochs and the letters a, c, m and e represent Aldol, Claisen, Michael and enamine-
type disconnections respectively (reproduced from ref. [20] with permission of the
American Chemical Society).

plot from this PCA is shown in Figure 4.25 where it can be seen that the
Aldol- and Claisen-type disconnections are clearly separated from the
other two classes, although these fall into two groups.

The Michael- and enamine-type disconnections fall into two mixed
clusters. A nonlinear map of the same data is shown in Figure 4.26.
Here it can be seen that compounds which follow all four disconnection
mechanisms are clearly separated although, again, each class is split into
two separate groups.

Both the PC scores plot and the NLM appear to be giving a better
view of the data since most of the compounds are visible, compared with
the display of the SOM. The latter, however, has a limited resolution
of 9 × 9 pixels since this was the size chosen for the map. Increasing
the number of neurons in the display may well separate the overlapping
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Figure 4.25 Scores plot on the first two principal component axes for the com-
pounds shown in Table 4.7, points are shown as a circle for Aldol- a cross for
Claisen- a plus for Michael- and a triangle for enamine-type disconnections (repro-
duced from ref. [21] with permission of Elsevier).

compounds although this is likely to be at the expense of longer training
times since there are more connection weights to compute. The SOM or
Kohonen map is claimed to be one of the most widely applied neural
network algorithms [22] and there are certainly many examples of it’s
use in a wide variety of application areas.

4.4 FACES, FLOWERPLOTS AND FRIENDS

The previous display methods have all been examples of dimension re-
duction; that is to say they are means by which a high dimensional data
set can be shown in a lower dimensional plot such as 2- or 3-D. This has
been achieved by creating new variables which are linear or non-linear
combinations of the original variables. The advantage of this is that all
of the information in the original variables is used but the disadvan-
tage is that, in combining the variables, the ‘compression’ may obscure
some useful information. To avoid this problem what is needed is some
means by which all of the variables can be simultaneously displayed
but without creating combinations of them. Fortunately, there are some
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Figure 4.26 Non-linear map of the compound set shown in Table 4.7, points are
numbered as in the table that is 1-4 Aldol-, 5-8 Claisen- and so on. Display generated
using the SciFit package – www.scimetrics.com (reproduced from ref. [21] with
permission of Elsevier).

ingenious techniques which can be used to display high dimensional
data in lower dimensions and these make use of our natural ability to
recognize patterns.

Perhaps the most obvious example of human ability to recognize pat-
terns is the way that we can identify faces. This was exploited by Herman
Chernoff when he devised the method that bears his name, Chernoff faces
[23]. In this technique the facial characteristics of a cartoon face, such as
size of ears, shape of mouth, slant of eyebrows, size of nose and so on,
are assigned to each of the variables in the set. The result is a single face
for each case in the set and similar cases can be rapidly identified as they
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Figure 4.27 Chernoff faces display of the data in Table 4.7. The data was standard-
ized (autoscaled, see Section 3.3) and the cases are shown in the order 1–5, left to
right top row, 6–10 l-r second row and so on. Display generated using the statistics
package Systat (www.systat.com).

have similar faces. Figure 4.27 shows the data in Table 4.7 displayed as
Chernoff faces.

The Aldol- and Claisen-type disconnections are quite clearly distin-
guished from the other compounds although they are not so easily sep-
arated from one another. The Michael-type disconnections have char-
acteristic large noses and the enamines are shown up as having straight
mouths, eyebrows and smaller noses than the Michael-type. This type
of display can work quite well although it becomes difficult to use for
reasonably large numbers of samples.
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Chernoff faces are a particular example of a type of plot known as
icon plots. Icon plots use a geometric shape or object, the icon, which
has sufficient features whose characteristics can be altered so that the
variables can be displayed. A popular icon plot is the star plot as shown
in Figure 4.28.

The star plot operates by assigning individual ‘rays’ of a symbolic
representation of a star to each of the variables. The length of a ray for
an individual case represents the magnitude of that variable for the case
relative to the maximum magnitude of the variable across all the cases.
The star plot in Figure 4.28 quite clearly shows all four classes of com-
pounds and easily separates the Aldol- and Claisen-type disconnections.
In this respect it has performed better than the Chernoff faces but this
is really demonstrating a common property of all data display methods,
whether dimension reducing or dimension preserving, and that is that
there is no ‘best’ technique. All have their advantages and disadvantages
and, depending on the data set, some will work better or worse than
others. A final type of icon plot which is quite popular is the flower plot.
A flower plot is constructed by assigning variables to ‘petals’ arranged
on a circle and, as in the case of other icon plots, each case has a single
flower plot symbol. Negative values of variables are shown as the petals
going inside the circle and positive going out from the circle. Figure 4.29
shows the now familiar data from Table 4.7 displayed as flower plots
where, once again, all four types of compounds can be distinguished.

4.5 SUMMARY

Multivariate display methods are very useful techniques for the inspec-
tion of high-dimensional data sets. They allow us to examine the re-
lationships between points (compounds, samples, etc.) in both training
and test sets, and between descriptor variables. Dimension reduction can
be achieved using linear and non-linear methods, both with advantages
and disadvantages, and this has proved useful in numerous scientific
applications. The linear approach (PCA) forms the basis of a variety
of multivariate techniques as described later in this book. Other tech-
niques for the display of multidimensional data in fewer dimensions, but
without recourse to combinations of the original data, can be useful for
moderately sized data sets. Finally, it is not possible to say in advance
which, if any, is the best approach to use.
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In this chapter the following points were covered:

1. how the selection of appropriate variables can give the most useful
‘view’ of a data set;

2. the need for the inclusion of more variables in displays of multi-
variate data;

3. the way that principal components analysis works and the meaning
of scores and loadings;

4. the interpretation of scores plots and loadings plots;
5. how to rotate principal components and the effects of such rota-

tions;
6. non-linear methods for reducing the dimensionality of a data set in

order to display it in lower dimensions;
7. how artificial neural networks can be used to produce low dimen-

sional plots of a multivariate data set;
8. what icon plots are and how they can be used to display multiple

variables without data compression.
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5
Unsupervised Learning

Points covered in this chapter

� k-nearest neighbours
� Factor analysis
� Cluster analysis
� Cluster significance analysis

5.1 INTRODUCTION

The division of topics into chapters is to some extent an arbitrary device
to produce manageable portions of text and, in the case of this book, to
group together more or less associated techniques. The common theme
underlying the methods described in this chapter is that the property that
we wish to predict or explain, a biological activity, chemical property,
or performance characteristic of a sample, is not used in the analytical
method. Oddly enough, one of the techniques described here (nearest-
neighbours) does require knowledge of a dependent variable in order to
operate, but that variable is not directly involved in the analysis. The
display methods described in Chapter 4 are also unsupervised learning
techniques, and could have been included in this section, but I felt that
display is such a fundamental procedure that it deserved a chapter of
its own. Cluster analysis, described in Section 5.4, may also be thought
of as a display method since it produces a visual representation of the
relationships between samples or parameters. Thus, the division between
display methods and unsupervised learning techniques is mostly artificial.

A Practical Guide to Scientific Data Analysis David Livingstone
C© 2009 John Wiley & Sons, Ltd
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5.2 NEAREST-NEIGHBOUR METHODS

A number of different methods may be described as looking for nearest
neighbours, e.g. cluster analysis (see Section 5.4), but in this book the
term is applied to just one approach, k-nearest-neighbour. The starting
point for the k-nearest-neighbour technique (KNN) is the calculation of
a distance matrix as required for non-linear mapping. Various distance
measures may be used to express the similarity between compounds but
the Euclidean distance, as defined in Equation (4.2) (reproduced below),
is probably most common:

dij =

√
√
√
√
√

⎛

⎝
∑

k=1,P

(di,k − dj,k)2

⎞

⎠ (5.1)

where dij is the distance between points i and j in P-dimensional space. A
distance matrix is a square matrix with as many rows and columns as the
number of rows in the starting data matrix. Table 5.1 shows a sample
distance matrix from a data set containing ten samples. The diagonal of
this matrix consists of zeroes since this represents the distance of each
point from itself. The bottom half of the matrix gives the distance, at the
intersection of a row and column, between the samples represented by
that row and column; the matrix is symmetrical, i.e. distance B → A =
distance A → B, so the top half of the matrix is not shown here. An
everyday example of a distance matrix is the mileage chart, which can
be found in most road atlases, for distances between cities.

The classification of any unknown sample in the distance matrix may
be made by consideration of the classification of its nearest neighbour.

Table 5.1 Distance matrix for ten samples.

A 0
B 1.0 0
C 2.6 2.5 0
D 2.8 2.6 1.3 0
E 3.2 2.2 2.8 2.1 0
F 3.4 2.4 3.1 3.0 1.3 0
G 3.7 3.4 4.1 3.0 1.3 1.3 0
H 6.2 5.3 4.3 3.0 3.0 3.2 2.9 0
I 9.8 9.7 4.0 3.7 6.2 7.5 6.2 3.5 0
J 10.0 9.9 4.4 4.0 6.3 7.6 6.4 3.6 1.2 0

A B C D E F G H I J
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Figure 5.1 Two-dimensional representation of the KNN technique; training set
compounds are represented as A for active and I for inactive, test set compounds as
X, Y, and Z.

This involves scanning the row and column representing that sample to
identify the smallest distance to other samples. Having identified the dis-
tance (or distances) it is assumed that the classification of the unknown
will be the same as that of the nearest neighbour, in other words samples
that are similar in terms of the property space from which the distance
matrix was derived will behave in a similar fashion. This mimics the
‘common-sense’ reasoning that is customarily applied to the interpreta-
tion of simple two-dimensional plots, the difference being that here the
process is applied in P-dimensions. Figure 5.1 shows a two-dimensional
representation of this process.

The training set compounds are shown marked as A and I for active
and inactive; the unknown, test set, compounds are indicated as X, Y,
and Z. The nearest neighbour to compound X is active and that to com-
pound Y is inactive, and this is how these two would be classified on the
basis of one nearest neighbour. Classification for compound Z is more
difficult as its two apparently equidistant neighbours have different ac-
tivities. Although one of these neighbours may be slightly closer when
the values in the distance matrix are examined, it is clear that this rep-
resents an ambiguous prediction. With the exception of one close active
compound the remaining neighbours of compound Z are inactive and
the common-sense prediction would be for Z to be inactive. This is the
meaning of the term k in k-nearest-neighbour, k refers to the number of
neighbours that will be used for prediction. The choice of a value for
k will be determined by the training set; this is achieved by comparing
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the predictive performance of different values of k for the training set
compounds. The value of k can be any number, including 1, but is usu-
ally chosen to be an odd number so that the algorithm may make an
unambiguous decision. Figure 5.1 also illustrates a quite common sit-
uation in the analysis of multivariate data sets; the two activity classes
are not linearly separable i.e. it is not possible to draw a single straight
line that will divide up the space into two regions containing only active
or inactive compounds. Some analytical methods operate by the con-
struction of a hyperplane, the multivariate analogue of a straight line,
between classes of compounds (see Chapter 7). In the case of a data set
such as this, the KNN method will have superior predictive ability.

Nearest-neighbour methods are also able to make multi-category pre-
dictions of activity; training set samples can be ranked into any number
of classifications, but it is important to maintain the balance between the
number of classes and the number of members within a class. Ideally,
each class should contain about the same number of members although
in some situations (such as where the property is definitely YES/NO)
this may not be possible to achieve. The reason for maintaining similar
numbers of members in each class is so that a ‘random’ prediction of
membership for any class is not significantly greater than that for the
other classes. This raises the question of how to judge the prediction
success of a nearest-neighbour method. When a training set is split into
two classes, there is a 50 % chance of making a successful prediction for
any compound, given equal class membership. A success rate of 80 %
for the training set may sound impressive but is, in fact, little over half
as good again as would be expected from purely random guesses. Where
classes do differ significantly in size it is possible to change the random
expectation in order to judge success. For example, if class 1 contains
twice as many members as class 2, the random expectations are ∼66 and
∼33 % respectively. Another aspect of the balance between the number
of classes and the size of class membership concerns the dimensionality
of the data set. When the number of dimensions in a data set is close
to or greater than the number of samples in the set, it is possible to
discover linear separation between classes by chance. The risk of this
happening is obviously greatest for supervised learning methods (which
are intended to find linear separations) but may also happen with un-
supervised techniques. There are no ‘rules’ concerning the relationship
between dimensions and data points for unsupervised learning methods
but, as with most forms of analysis, it is desirable to keep the problem
as simple as possible.



P1: kPb/XYZ P2: ABC
JWBK419-05 JWBK419/Livingstone September 26, 2009 17:1 Printer Name: Yet to Come

NEAREST-NEIGHBOUR METHODS 123

Table 5.2 Nearest-neighbour classification for NMR (12 features) data set
(reproduced from ref. [1] with permission of the American Chemical Society).

Correct/Total

Training set Test set

1–nearest-neighbour

Class 1 60/66 60/66
Class 2 60/66 60/66
Class 3 64/66 64/66
Total 184/198 = 93 % 184/198 = 93 %

Learning machine

Class 1 56/66 54/66
Class 2 12/66 12/66
Class 3 24/66 23/66
Total 92/198 = 46 % 89/198 = 45 %

Now for some examples of the application of nearest-neighbour meth-
ods to chemical problems. An early example involved the classification of
compounds described by calculated NMR spectra [1]. The data set con-
sisted of 198 compounds divided into three classes (66 each) of molecules
containing CH3CH2CH2, CH3CH2CH, or CH3CHCH. The NMR spec-
tra were preprocessed (see reference for details) to give 12 features de-
scribing each compound and the data set was split in half to give training
and test sets. Table 5.2 shows the results for training set and test set pre-
dictions using 1–nearest neighbour.

Since there are three classes with equal class membership, the random
expectation would be 33 % correct, and thus it appears that the nearest-
neighbour technique has performed very well for this set. Also shown in
Table 5.2 are the results for a method called the linear learning machine
(see Section 7.2.1) which has performed quite poorly with a success rate
only slightly above that expected by chance, suggesting that the data is
not linearly separable. An application of KNN in medicinal chemistry
was reported by Chu and co-workers [2]. In this case the objective was
to predict the antineoplastic activity of a test set of 24 compounds in
a mouse brain tumour system. The training set consisted of 138 struc-
turally diverse compounds which had been tested in the tumour screen.
The compounds, test set, and training set, were described by a vari-
ety of sub-structural descriptors giving a total of 421 parameters in all.
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Table 5.3 Comparison of predicted and observed antineoplastic activities
(reproduced from ref. [2] with permission of the American Chemical Society).

Non-active False negative Active False positive

KNN 14 1 6 3
Experimental 17 7

Various procedures were adopted (see reference for details) to reduce
this to smaller sized sets and KNN was employed to make predictions
using the different data sets. The KNN predictions were averaged over
these data sets to give an overall success rate of 83 %. A comparison of
the predictions with the experimental results is shown in Table 5.3.

Scarminio and colleagues [3] reported a comparison of the use of
several pattern recognition methods in the analysis of mineral water
samples characterized by the concentration of 18 elements, determined
by atomic absorption and emission spectrometry. The result of the ap-
plication of cluster analysis and SIMCA to this data set is discussed
elsewhere (Sections 5.4 and 7.2.2); KNN results are shown in Table 5.4.
The performance of KNN in this example is really quite impressive; for
two regions, the training set samples are completely correctly classified
up to five nearest-neighbours and the overall success rate is 95 % or bet-
ter (∼25 % success rate for the random expectation). A test set of seven
samples was analysed in the same way and KNN was found to classify
all the samples correctly, considering up to nine nearest-neighbours.

An example of the use of KNN in chemistry was reported by Goux and
Weber [4]. This study involved a set of 99 saccharide residues, occurring
as a monosaccharide or as a component of a larger structure, described

Table 5.4 KNN classification results for water samples, collected from four
regions, described by the concentration of four elements (Ca, K, Na, and Si)
(reproduced from ref. [3] with permission of Energia Nuclear & Agricultura).

Number of points incorrectly classified

Region Number of samples 1-NN 3-NN 5-NN 7-NN

Serra Negra 46 2 3 3 2
Lindoya 24 0 0 0 1
Sao Jorge 7 1 2 1 1
Valinhos 39 0 0 0 0

Correct (%) 97.3 95.5 96.4 96.4
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Table 5.5 Nearest-neighbour classification of
glycosides (reproduced from ref. [4] with permission
of Elsevier).

Number misassigned
Data set (% correct)

UAR-19 (full set) 1 (99)
DP-12 0 (100)
DP-9 8 (90)
SP-6/1 0 (100)
SP-6/4 1 (99)
SP-6/5 3 (96)

by 19 experimentally determined NMR parameters. The NMR measure-
ments included a coupling constant and both proton and carbon chemical
shifts. The aim of the work was to see if the NMR data could be used
to classify residues in terms of residue type and site of glycoside substi-
tution to neighbouring residues. A further aim was the identification of
important NMR parameters, in terms of their ability to characterize the
residues. To this end, a number of subsets of the NMR parameters were
created and the performance of KNN predictions, in this case 1-NN,
were assessed. Table 5.5 illustrates the results of this 1-NN classification
for the full dataset and five subsets. For the full dataset of 19 variables,
one residue is misassigned, and for two subsets this misclassification is
eliminated. Two of the other subsets give a poorer classification rate,
demonstrating that not only can the NMR data set be used to classify
the residues but also that the important parameters can be recognized.

5.3 FACTOR ANALYSIS

Principal components analysis (PCA), as described in Chapter 4, is an
unsupervised learning method which aims to identify principal compo-
nents, combinations of variables, which ‘best’ characterize a data set.
Best here means in terms of the information content of the components
(variance) and that they are orthogonal to one another. Each princi-
pal component (PC) is a linear combination of the original variables as
shown in Equation (4.1) and repeated below

PCq = aq,1v1 + aq,2v2 + . . . . . aq,PvP (5.2)

The principal components do not (necessarily) have any physical mean-
ing, they are simply mathematical constructs calculated so as to comply
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with the conditions of PCA of the explanation of variance and orthogo-
nality. Thus, PCA is not based on any statistical model. Factor analysis
(FA), on the other hand, is based on a statistical model which holds that
any given data set is based on a number of factors. The factors themselves
are of two types; common factors and unique factors. Each variable in
a data set is composed of a mixture of the common factors and a single
unique factor associated with that variable. Thus, for any variable Xi, in
a P-dimensional data set we can write

Xi = ai,1F1 + ai,2F2 + . . . . . . ai,pFp + Ei (5.3)

where each ai,j is the loading of variable Xi on factor Fj,, and Ei is the
residual variance specific to variable Xi. The residual variance is also
called a unique factor associated with that variable, the common factors
being F1 to Fp which are associated with all variables, hence the term
common factors. The similarity with PCA can be seen by comparison of
Equations (5.3) and (5.2). Indeed, PCA and FA are often confused with
one another and since the starting point for a FA can be a PCA this is
perhaps not surprising.

The two methods, although related, are different. In the description
of Equation (5.3) the loadings, ai,j, were described as the loadings of
variables Xi on factor Fj so as to point out the similarity to PCA. Expres-
sion of this equation in the (hopefully) more familiar terms of PCA gives
these loadings as the loadings of each of the common factors, F1 to Fp,
onto variable Xi. In other words, PCA identifies principal components
which are linear combinations of the starting variables; FA expresses
each of the starting variables as a linear combination of common fac-
tors. PCA seeks to explain all of the variance in a data set; FA seeks
to factor (hence the name) the variance in a data set into common and
unique factors. The unique factors are normally discarded, since it is
usually assumed that they represent some ‘noise’ such as experimental
error, and thus FA will reduce the variance of a data set by (it is hoped)
removing irrelevant information. Since the unique factors are removed,
the remaining common factors all contain variance from at least two, if
not more, variables. Common factors are explaining covariance and thus
FA is a method which describes covariance, whereas PCA preserves and
describes variance. Like PCs, the factors are orthogonal to one another
and various rotations (like varimax, see Section 4.2) can be applied in
order to simplify them. One of the advantages claimed for FA is that it
is based on a ‘proper’ statistical model, unlike PCA, and that by discard-
ing unique factors the data set is ‘cleaned up’ in terms of information
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content. FA, however, relies on a number of assumptions and these are
equally claimed as disadvantages to the technique. Readers interested in
further discussion of FA and PCA should consult Chatfield and Collins
[5], Malinowski [6], or Jackson [7].

What about applications of FA? An interesting example was reported
by Li-Chan and co-workers [8] who investigated the quality of hand-
deboned and mechanically deboned samples of meat and fish. The sam-
ples were characterized by physicochemical properties such as pH, fat,
and moisture content, and by functional properties such as gel strength
and % cookloss (in terms of weight). Factor analysis of the overall data
set of 15 variables for 230 samples extracted three factors which de-
scribed 70 % of the data variance. The factor loadings are shown in
Table 5.6 where it can be seen that factor 1 includes the hydrophobic/
hydrophilic properties of the salt-extractable proteins, factor 2 describes
total and salt-extractable proteins and mince pH, and factor 3 is associ-
ated mainly with moisture and fat. The factor loadings may be plotted
against one another as for PC loadings (Figure 4.12) in order to show the
relationships between variables. Rotated factor loadings from Table 5.6
are shown in Figure 5.2 in which various groupings of associated vari-
ables may be seen. For example, total and salt-extractable protein are
associated, as are solubility, dispersibility, and emulsifying capacity. Fac-
tor scores may be calculated for the samples and plotted on the factor
axes. Figure 5.3 shows factor scores for factor 3 versus factor 2 where it

Table 5.6 Sorted rotated factor loadings (pattern) from factor analysis of meat
and fish data

∗
(reproduced from ref. [8] with permission of Wiley-Blackwell).

Factor 1 Factor 2 Factor 3

Dispersibility −0.959 0.000 0.000
Solubility −0.939 0.000 0.000
ANS 0.864 0.000 0.255
Gel-M 0.862 0.000 0.000
Gel-E 0.853 0.288 0.000
EC −0.848 0.000 0.000
CPA 0.844 0.000 0.000
FBC −0.604 0.293 0.000
Cookloss 0.529 0.000 −0.457
Protein 0.000 0.916 0.000
Mince-pH 0.000 −0.852 0.285
S.E.P. 0.000 0.821 0.000
SH 0.000 0.617 0.000
Moisture 0.000 0.000 0.966
Fat 0.000 −0.382 −0.891

∗Loadings less than 0.25 have been replaced by zero.
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Figure 5.2 Loadings plot on the first two factors for 15 variables used to describe
samples of meat and fish. SOL, solubility; EC, emulsifying capacity; DISP, dispers-
ibility; FBC, fat binding capacity; SH, sulphydryl content; PROTEIN, protein con-
tent; SEP, salt-extractable protein; H2O, moisture content; pH, pH of a mince sus-
pension; FAT, crude fat content; COOKLOSS, percentage weight lost after cooking;
GEL-M, gel strength of mince; GEL-E, gel strength of extract; ANS and CPA, protein
surface hydrophobicity using aromatic (ANS) or aliphatic (CPA) fluorescent probe
(reproduced from ref. [8], with permission from Wiley-Blackwell).

can be seen that the fish samples are quite clearly distinguished from the
meat samples which, in turn, fall into two groups, hand deboned and
mechanically deboned.

Takagi and co-workers [9] applied FA to gas chromatography reten-
tion data for 190 solutes measured using 21 different stationary phases.
Three factors were found to be sufficient to explain about 98 % of the
variance of the retention data; physicochemical meanings to these factors
were ascribed as shown below:

Factor 1: size
Factor 2: polarity
Factor 3: hydrogen-bonding tendency

As is usually the case with PCA, the attribution of any physical meaning
to factors is not straightforward, particularly for the ‘later’ factors
(smaller eigenvalues, less variance explained) from an analysis; this
was the case for the third factor. Factor loadings for the three factors
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Figure 5.3 Plot of factor scores for meat and fish samples. C, B, P – hand-deboned
chicken, beef, and pork; M, m, mechanically deboned pork and chicken; F, cod fish;
f, cod fish in presence of cryoprotectants (reproduced from ref. [8] with permission
from Wiley-Blackwell).

are shown in Table 5.7. Part of the argument in favour of factor 3 as
a hydrogen-bonding factor is the negative loading of a proton donor
stationary phase (HCM 18) and the positive loading of proton acceptor
phases (DEGA, PPE5R, and EGA). Another part of the argument is that
nonpolar stationary phases have approximately zero loadings with this
factor.

The attempted physicochemical interpretation of the factors highlights
a common problem with PCA and FA, along with the question of how
significant is a factor (or PC) which only describes a few % of the data
variance. The significance of factor 3 is uncertain but it is clearly useful
since a scores plot of factor 3 versus factor 2 separates the solutes in
terms of chemical functionality as shown in Figure 5.4.

The physiochemical interpretation of factors is nicely illustrated by
a factor analysis of solvent parameters reported by Svoboda and co-
workers [10]. Many attempts have been made to characterize solvents in
terms of their effect on chemical reactions, their ability to dissolve solutes,
their effect on properties such as spectra, and so on. This has led to the
development of many different parameters and a variety of attempts have
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Table 5.7 Factor loadings calculated by PFA (principal
factor analysis) method (reproduced from ref. [9] with
permission of The Pharmaceutical Society of Japan).

Factor 1 Factor 2 Factor 3

CCR∗ 0.922 0.990 0.997
AP1-L 0.898 0.431 −0.001
CASTOR 0.983 0.133 −0.094
CW1000 0.947 −0.315 −0.004
DEGA 0.945 −0.311 0.083
D2EHS 0.968 0.238 −0.044
DIDP 0.969 0.224 −0.040
DC550 0.942 0.321 0.087
EGA 0.953 −0.279 0.089
HCM18 0.971 0.050 −0.227
HYP 0.901 −0.419 −0.052
IGE880 0.981 −0.183 −0.005
NPGA 0.994 −0.095 0.022
PPE5R 0.966 0.209 0.150
QUAD 0.931 −0.326 −0.089
SE30 0.931 0.359 0.000
SAIB 0.998 0.002 0.030
TCP 0.993 0.031 −0.016
TX305 0.982 −0.181 −0.055
U2000 0.994 −0.071 −0.037
VF50 0.912 0.399 0.020
XF1150 0.960 −0.195 0.138

∗Cumulative contribution ratio.

Figure 5.4 Scores plot on factors 3 and 2 derived from GC retention data (repro-
duced from ref. [9] with permission of The Pharmaceutical Society of Japan).
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Table 5.8 Coordinates of parameters in factor space of the
selected set (set 2) (reproduced from ref. [10] with permission
of the Collection of Czechoslovak Communications).

Parameter F1 F2 F3 F4

B −0.079 0.012 0.610 0.008
ET(30) 0.181 0.263 0.002 0.092
Z 0.305 −0.018 0.021 0.133
S1

a 0.261 0.078 0.144 0.014
S2

b 0.225 0.208 −0.010 0.051
DN 0.187 −0.208 0.560 −0.161
ε 0.154 0.237 0.026 −0.047
n20

D −0.010 0.044 −0.010 −0.600
YPcc −0.097 0.473 0.090 0.068
ppd −0.014 0.046 −0.008 −0.604
E 0.297 0.073 −0.042 0.124
a14N 0.355 −0.015 0.022 0.037
AN 0.390 −0.066 −0.026 −0.014
π∗ 0.026 0.413 −0.032 −0.250
log P −0.113 −0.103 −0.152 −0.167
δ 0.373 0.024 −0.014 −0.114
χR 0.094 −0.480 −0.046 0.106
δ2 0.363 −0.011 −0.071 −0.113
β −0.137 0.169 0.472 0.140
nχ e 0.028 −0.320 0.159 −0.222

aS1, the parameter S defined by Zelinski.
bS2, the parameter S defined by Brownstein.
cThe Kirkwood function of dielectric function YP = (ε − 1)/(2ε + 1).
dThe function of refractive index P P = (n2 − 1)/(n2 + 1).
eThe index of molecular connectivity of the nth order.

been made to relate these parameters to one another. Table 5.8 shows
the loadings of 20 parameters, for 51 solvents, on four factors which
have been rotated by the varimax method. The parameters associated
with the first factor describe electrophilic solvation ability, while those
associated with factor 2 concern solvent polarity. The third factor is
associated with nucleophilic solvation ability and the fourth factor with
dispersion solvation forces.

It was proposed that a property, A, which is dependent on solvent
effects could be described by an equation consisting of these four factors
as shown in Equation (5.4):

A = Ao + aAP + bBP + eEP + pPP (5.4)

where AP (acidity parameter) is the electrophilic factor, BP (basicity
parameter) is the nucleophilic parameter, EP (electrostatic parameter)
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Figure 5.5 Pyrethroid parent structure; rotatable bonds are indicated by arrows
(reproduced from ref. [12] with kind permission of Springer Science + Business
Media).

the polar factor, and PP (polarizability parameter) the dispersion factor.
Ao is the value of the solvent-dependent property in a medium in which
the solvent factors are zero (cyclohexane was suggested as a suitable
solvent for this). The coefficients a, b, e, and p are fitted by regression
(see Chapter 6) to a particular data set and represent the sensitivity of a
process, as measured by the values of A, to the four solvent factors. Ap-
plication of this procedure to 22 chemical data sets identified examples of
processes with quite different dependencies on these solvent properties.

The final example of FA to be discussed here involves a number of
insecticides, which are derivatives of the pyrethroid skeleton shown in
Figure 5.5.

Computational chemistry methods were used to calculate a set of
70 molecular properties to describe these compounds [11]. Factor analy-
sis identified a set of eight factors (Table 5.9) which explained 99 % of the
variance in the chemical descriptor set. The physicochemical significance
of the factors can be judged to some extent by an examination of the pro-
perties most highly associated with each factor, as shown in the table.
The factors were shown to be of importance in the description of sev-
eral biological properties of these compounds (see Section 8.5). These
pyrethroid analogues are flexible as indicated by the rotatable bonds
marked in Figure 5.5.

The physicochemical properties used to derive the factors shown in
Table 5.9 were based on calculations carried out on a single conforma-
tion of each compound using a template from an X-ray crystal structure.
In an attempt to take account of conformational flexibility, molecular
dynamics simulations were run on the compounds and a number of rep-
resentative conformations were obtained for each analogue [12]. The ma-
jority of these conformations represent an extended form of the molecule,
similar to the X-ray template, but some are ‘folded’. The physicochem-
ical property calculations were repeated for each of the representative



P1: kPb/XYZ P2: ABC
JWBK419-05 JWBK419/Livingstone September 26, 2009 17:1 Printer Name: Yet to Come

FACTOR ANALYSIS 133

Table 5.9 The molecular features of the QSAR pyrethroids (identified by FA)
(reproduced from ref. [11] with permission of Wiley-Blackwell).

Factor
Principal associated

descriptors and loadings Molecular feature

1 A11(0.97), A12(0.99),
A13(0.91), A16(−0.99)
A17(−0.95), MW(−0.63)

The nature of the acid moiety indicated by
associated MW and partial atomic charges

2 NS9(0.97), NS10(0.97)
NS8(0.96), NS11(0.96)
ES15(0.77), NS7(0.77)

Tendency of the atoms around the central
ester linkage to accept and the cis geminal
methyl to donate electrons

3 ES1(0.94), ES7(0.94)
ES8(0.94), ES9(0.94)
ES10(0.95)

Tendency of the atoms associated with the
ester linkage to donate electrons

4 A3(0.84), A5(0.84)
A10(0.85), ET(−0.84)

Partial atomic charges on the meta carbon
atoms of the benzyl ring and the carbonyl
carbon

5 NS2(0.90), NS3(0.75)
NS5(0.77), NS6(0.87)
A7(−0.77)

Tendency of the ortho- and meta-carbon
atoms of the benzyl ring to accept electrons

6 DCA(0.86), SA(0.79)
CD(0.71), VWV(0.71)

Molecular bulk, surface area and distance of
closest approach

7 DVZ(0.82), DM(0.81) Dipole strength and orientation
8 MW(0.70) Molecular weight due to the alcohol moiety

conformations of each analogue and the resulting descriptors were av-
eraged. Running factor analysis on this time-averaged set resulted in the
identification of nine ‘significant’ factors (eigenvalues greater than 1),
one more than the factor analysis of the static set. This additional factor
suggests that there is extra information in the time-averaged set. Several
of the static and time-averaged factors were highly correlated with one
another and it was shown that these factors could be used to explain the
lifetimes of the folded conformations.

Before leaving this description of factor analysis it is worth returning to
another similarity with principal components analysis (and some other
‘latent’ variable methods, see Section 7.3.2) and that is the decision
about the number of important or ‘significant’ or perhaps just useful
factors/PC’s to consider. One approach which is commonly employed
is to construct what is known as a scree plot. A scree plot is simply a
plot of the eigenvalues of the factors against their factor number. Since
factors (and PC’s) are extracted in order of their explanation of variance
the eigenvalues decrease as the factor number increases and thus the



P1: kPb/XYZ P2: ABC
JWBK419-05 JWBK419/Livingstone September 26, 2009 17:1 Printer Name: Yet to Come

134 UNSUPERVISED LEARNING

Figure 5.6 Scree plot from a factor analysis of 31 variables describing 35 com-
pounds.

plot can look a little like the side of a mountain with irregularities as
the eigenvalues change, hence the description scree plot. Such a plot is
shown in Figure 5.6.

This scree plot shows three distinct discontinuities, or ‘elbows’, which
indicate changes in the amount of variance described. The first of these
happens at factor 5 where the next eigenvalue is considerably lower. The
eigenvalues had been falling in quite a regular fashion for the first four
factors, with the change in eigenvalue between four and five smaller, so
this might be a natural stopping point. The next discontinuity occurs at
factor 8 and as this and the next factor both have eigenvalues greater
than 1 this might also be a natural stopping point. As mentioned in
the previous example, an eigenvalue of 1 may be used as a cutoff value
since with an autoscaled data set each variable has a variance of 1,
therefore a factor or principal component with an eigenvalue less than
1 is explaining less variance than one of the original variables. This is
a commonly used ‘stopping rule’ for factor analysis and PCA. The last
discontinuity occurs at factor 13 with the eigenvalues for the subsequent
factors falling in a regular fashion until they vanish to almost nothing. So,
the scree plot suggest three possible stopping points and the eigenvalue
>1 rule suggests 1 stopping point which coincides with a point identified
with the scree plot. Unfortunately, neither of these approaches ensures a
‘correct’ choice as demonstrated in Section 7.3.1.
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5.4 CLUSTER ANALYSIS

Chatfield and Collins [5], in the introduction to their chapter on cluster
analysis, quote the first sentence of a review article on cluster analysis
by Cormack [13]: ‘The availability of computer packages of classifica-
tion techniques has led to the waste of more valuable scientific time
than any other “statistical” innovation (with the possible exception of
multiple-regression techniques).’ This is perhaps a little hard on cluster
analysis and, for that matter, multiple regression but it serves as a note
of warning. The aim of this book is to explain the basic principles of
the more popular and useful multivariate methods so that readers will
be able to understand the results obtained from the techniques and, if
interested, apply the methods to their own data. This is not a substi-
tute for a formal training in statistics; the best way to avoid wasting
one’s own valuable scientific time is to seek professional help at an early
stage.

Cluster analysis (CA) has already been briefly mentioned in Sec-
tion 2.3, and a dendrogram was used to show associations between
variables in Section 3.6. The basis of CA is the calculation of distances
between objects in a multidimensional space using an equation such as
Equation (5.1). These distances are then used to produce a diagram,
known as a dendrogram, which allows the easy identification of groups
(clusters) of similar objects. Figure 5.7 gives an example of the process
for a very simple two-dimensional data set.

The two most similar (closest) objects in the two-dimensional plot
in part (a) of the figure are A and B. These are joined together in the
dendrogram shown in part (b) of the figure where they have a low value
of dissimilarity (distance between points) as shown on the scale. The
similarity scale is calculated from the interpoint distance matrix by find-
ing the minimum and maximum distances, setting these equal to some
arbitrary scale numbers (e.g. 0 and 1), and scaling the other distances to
lie between these limits. The next smallest interpoint distance is between
point C and either A or B, so this point is joined to the A/B cluster. The
next smallest distance is between D and E so these two points form a
cluster and, finally, the two clusters are joined together in the dendro-
gram. This process is hierarchical and the links between clusters have
been single; the procedure is known, unsurprisingly, as single-link hier-
archical cluster analysis and is one of the most commonly used methods.
Another point to note from this description of CA is that clusters were
built up from individual points, the process is agglomerative. CA can
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Figure 5.7 Illustration of the production of a dendrogram for a simple two-
dimensional data set (reproduced with permission from ref. [3] with permission
of Energia Nuclear & Agricultura).

start off in the other direction by taking a single cluster of all the points
and splitting off individual points or clusters, a divisive process.

There are many different ways in which clusters can be generated; all
of the examples that will be described in this section use the agglomer-
ative, hierarchical, single-linkage method, usually referred to as ‘cluster
analysis’. Most textbooks of multivariate analysis have a chapter describ-
ing some of the alternative methods for performing CA, and Willett [14]
deals with chemical applications. It may have been noticed that in this
description of CA the points to be clustered were referred to as just that,
points in a multidimensional space. They have not been identified as sam-
ples or variables since CA, like many multivariate methods, can be used
to examine relationships between samples or variables. For the former
we can view the data set as a collection of n objects in a p-dimensional
parameter space. For the latter we can imagine a data set ‘turned on its
side’ so that it is a collection of p objects in an n-dimensional sample
space. When using CA to examine the relationships between variables,
the distance measure employed is often the correlation coefficients be-
tween variables, as shown in Figure 3.5.
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Figure 5.8 Dendrogram of water samples characterized by their concentrations of
Ca, K, Na, and Si (reproduced from ref. [15] with permission of Wiley-Blackwell).

The study of mineral waters characterized by elemental analysis dis-
cussed in Section 5.2 [3] provides a nice example of the use of CA to
classify samples. Figure 5.8 shows a dendrogram of water samples from
one geographical region (Lindoya) described by the concentrations of
four elements. The water samples were drawn from six different locations
in this region and one group on the dendrogram, cluster IV, contained all
the samples from one of these locations. The samples from the other five
locations are contained in clusters I, II, and III. One sample, cluster V, is
clearly an outlier from this set and thus must be subject to suspicion.

The characterization of fruit juices by various analytical measure-
ments was used as an example of a principal component scores plot
(Figure 4.9) in Chapter 4 [15]. A dendrogram from this data is shown in
Figure 5.9 where it is clearly seen that the grape, apple, and pineapple
juice samples form distinct clusters. The apple and pineapple juice clus-
ters are grouped together as a single cluster which is quite distinct from
the cluster of grape juice samples. This is interesting in that it mimics
the results of the PCA; on the scores plot, all three groups are separated,
but the first component mainly serves to separate the grape juices from
the others while the second component separates apple and pineapple
juices. This is a good illustration of the way that different multivariate
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Figure 5.9 Dendrogram showing the associations between grape (G), apple (A),
and pineapple (P) juice samples described by 15 variables (reproduced from ref. [16]
with permission of Arzneimettel-Forschung).

methods tend to produce complementary and consistent views of the
same data set.

The dendrogram in Figure 5.10 is derived from a data matrix of ED50

values for 40 neuroleptic compounds tested in 12 different assays in rats
[16]. This is an example of a situation in which the data involves multiple
dependent variables (see Chapter 8), but here the multiple biological data
is used to characterize the tested compounds. The figure demonstrates
that the compounds can be split up into five clusters with three com-
pounds falling outside the clusters. Compounds within a cluster would
be expected to show a similar pharmacological profile and, of course,
there is the finer detail of clusters within the larger clusters. A procedure
such as this can be very useful when examining new potential drugs. If
the pharmacological profile of a new compound can be matched to that
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Figure 5.10 Dendrogram of the relationships between neuroleptic drugs character-
ized by 12 different biological tests (reproduced from ref. [12] with kind permission
of Springer Science + Business Media).

of a marketed compound, then the early clinical investigators may be
forewarned as to the properties they might expect to see.

The final example of a dendrogram to be shown here, Figure 5.11, is
also one of the largest. This figure shows one thousand conformations
of an insecticidal pyrethroid analogue (see Figure 5.5) described by the
values of four torsion angles [12]. A dendrogram such as this was used
for the selection of representative conformations from the one thousand
conformations produced by molecular dynamics simulation. Conforma-
tions were chosen at equally spaced intervals across the dendrogram
ensuring an even sampling of the conformational space described by the
torsion angles. In fact, the procedure is not as simple as this and various
approaches were employed (see reference for details) but sampling at
even intervals was shown to be suitable.
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Figure 5.11 Dendrogram of the relationships of different conformations of a
pyrethroid derivative described by the values of four torsion angles (reproduced
from ref. [17] with permission from the American Chemical Society).

5.5 CLUSTER SIGNIFICANCE ANALYSIS

The advantage of unsupervised learning methods is that any patterns
that emerge from the data are dependent on the data employed. There
is no intervention by the analyst, other than to choose the data in the
first place, and there is no attempt by the algorithm employed to ‘fit’ a
pattern to the data, or seek a correlation, or produce a discriminating
function (see Chapter 7). Any groupings of points which are seen on
a non-linear map, a principal components plot, a dendrogram, or even
a simple bivariate plot are solely due to the disposition of samples in
the parameter space and it is unlikely, although not impossible, to have
happened by chance. There is, however, a major drawback to the un-
supervised learning approach and that is an evaluation of the quality or
‘significance’ of any clusters of points. Many analytical methods, partic-
ularly the parametric techniques based on assumptions about population
distributions, have significance tests built in. If we look at the principal
component scores plot for the fruit juices (Figure 4.9) or the dendrogram
for the same data (Figure 5.8) it seems obvious that the groupings have
some ‘significance’, but is this always the case? Is it possible to judge
the quality of some unsupervised picture? McFarland and Gans [17] ad-
dressed this problem by means of a method which they termed cluster
significance analysis (CSA). The concept underlying this method is quite
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Figure 5.12 Plot of active (�) and inactive (◦) compounds described by two pa-
rameters (reproduced from ref. [17] with permission of the American Chemical
Society).

simple: for a given display of N samples which contains a cluster of M
active (or otherwise interesting) samples, how ‘tight’ is the cluster of
M samples compared with all the other possible clusters of M samples?
Various measures of tightness could be used but the one chosen was
the mean squared distance (MSD) which involves taking the sum of the
squared distances between each pair of points in the cluster divided by
the number of points in the cluster (M).

The process is nicely illustrated by a hypothetical example from the
original report. Figure 5.12 shows a two-dimensional plot of six com-
pounds, three active and three inactive. The total squared distance (TSD)
for the active cluster is given by

TSD = (x1 − x2)2 + (y1 − y2)2 + (x1 − x3)2 + (y1 − y3)2

+ (x2 − x3)2 + (y2 − y3)2 (5.4)

and the mean squared distance

MSD = TSD/
3. (5.5)

The probability that a cluster as tight as the active cluster would have
arisen by chance involves the calculation of MSD for all the other possi-
ble clusters of three compounds. The number of clusters with an MSD
value equal to or less than the active MSD is denoted by A (including
the active cluster) and a probability is calculated as

p = A/
N (5.6)
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Figure 5.13 Plot of active (�) and inactive (◦) inhibitors of monoamine oxidase
(from ref. [17] copyright (1986) American Chemical Society).

where N is the total number of possible clusters of that size, in this case
three compounds. It is obvious from inspection of the figure that there is
one other cluster as tight as or tighter than the active cluster (compounds
2, 3, and 4) and that all other clusters have larger MSD values since they
include compounds 1, 5, or 6. There are 20 possible clusters of three
compounds in this set and thus A = 2, N = 20, and

p = 2/
20 = 0.10 (5.7)

If a probability level of 0.05 or less (95 % certainty or better) is taken
as a significance level then this cluster of actives would be regarded as
fortuitous.

Figure 5.13 shows a plot of a set of inhibitors of the enzyme mono-
amine oxidase (MAO) described by steric (Es

c) and hydrophobic (π) pa-
rameters. It can be seen that the seven active compounds mostly cluster
in the top left-hand quadrant of the plot. The original data set involved a
dummy parameter, D, to indicate substitution by OCH3 or OH at a par-
ticular position, and in the application of CSA to this problem, a set of
random numbers, RN, was added to the data. The results of CSA analysis
for this data are shown in Table 5.10 where it is seen that lowest prob-
ability of fortuitous clustering is given by the combination of π and Es

c.
This illustrates another feature of CSA; not only can it be used to

judge the significance of a particular set of clusters, it can also be used
to test the effect (on the tightness of clusters) of adding or removing a
particular descriptor. Thus, it may be used as a selection criterion for the
usefulness of parameters. One thing that should be noted from the table
is the large number of possible subsets (77 520) that can be generated
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Table 5.10 Application of CSA to a set of 20
MAO inhibitors (reproduced from ref. [17] with
permission of the American Chemical Society).

Parameters A
∗

p

D 21464 0.27688
RN 14825 0.19124
πc 1956 0.02523
Es 118 0.00152
D, π 1299 0.01676
D, Es

c 1175 0.01516
RN, Es

c 172 0.00222
π , Es

c 71 0.00092
RN, π , Es

c 151 0.00195
D, π , Es

c 78 0.00101
∗
From a total possible set of 77,520 subsets of 7.

for this data set. This may cause problems in the analysis of larger data
sets in terms of the amount of computer time required. An approach
to solving this problem is to compute a random sample of the possible
combinations rather than exhaustively examining them all [17]. CSA
has been compared with three other QSAR techniques in the analysis of
three different data sets [18].

5.6 SUMMARY

Unsupervised learning methods, like the display techniques described
in Chapter 4, are very useful in the preliminary stages of data analy-
sis. Cluster analysis and FA produce easily understood displays from
high-dimensional data sets and may be used when the number of vari-
ables in the set exceeds the number of samples. Although care must be ex-
ercised in the choice of class members when using k-nearest-neighbours,
this and other methods described in this chapter should be reasonably
safe from the danger of chance correlations. Cluster significance analy-
sis allows us to attempt to assign significance levels to any ‘interesting’
groupings of samples seen using these methods or multivariate display
techniques. Finally, in common with all of the other methods described
in this book, it is not possible to say that any one technique is ‘best’.

In this chapter the following points were covered:

1. classification by k-nearest neighbours;
2. factor analysis – similarity and differences with PCA;
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3. use of factor analysis to see the relationships between variables;
4. use of factor analysis to visualize samples;
5. use of scree plots to choose ‘significant’ factors;
6. cluster analysis to examine relationships between samples;
7. cluster significance analysis to judge the ‘quality’ of clusters.
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6
Regression Analysis

Points covered in this chapter

� Simple linear regression
� Multiple linear regression
� Constructing multiple regression models
� Model validation and chance effects
� Non-linear regression
� Regression with indicator variables (Free and Wilson)

6.1 INTRODUCTION

Regression analysis is one of the most commonly used analytical methods
in chemistry, including all of its specialist subdivisions and allied sciences.
Indeed, the same can probably be said about most forms of science. The
reason for its appeal lies perhaps in the fact that the method formalizes
something that the human pattern recognizer does instinctively, and that
is to fit a line or a curve through a set of data points. We are accustomed
to looking for trends in the data that the world presents to us, whether
it be unemployment or inflation figures, or the results of some painstak-
ingly performed experiments. We do this in the hope, or expectation, that
the trends will reveal some underlying explanation of how or why the
data is produced. In its simplest form, regression analysis involves fitting
a straight line through a set of data points represented by just two vari-
ables, calculating an equation for the fitted line, and providing estimates
of how well the points fit the line. The first section of this chapter will
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discuss simple linear regression and the calculation and interpretation of
its statistics. The next section describes multiple linear regression: how
the equations are constructed, non-linear regression models and the use
of indicator variables in regression, including Free and Wilson analysis.
The final section discusses some important features of regression anal-
ysis such as the comparison of regression models, tests for robustness,
and the problems of chance correlations. Regression analysis based on
variables derived from multivariate data, principal components, factors,
and latent variables is discussed in Chapter 7, Supervised Learning.

6.2 SIMPLE LINEAR REGRESSION

We have already seen in Chapter 1 an example of a simple linear re-
gression model (Equation (1.6), Figure 1.8) in which anaesthetic activity
was related to the hydrophobicity parameter, π . How was the equation
derived? If we consider the data shown plotted in Figure 6.1, it is fairly
obvious that a straight line can be fitted through the points.

A line is shown on the figure and is described by the well-known
equation for a straight line.

y = mx + c (6.1)

The value of c (2.0), the intercept of the line, can be read from the
graph where x = 0 (y = m0 + c) and the value of m (1.0), the slope of
the line, by taking the ratio of the differences in the y and x values at two
points on the line (y2 − y1)/(x2 − x1). A line such as this can be obtained

Figure 6.1 Plot of the values of variable y against variable x with a fitted straight
line.
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Figure 6.2 Plot of y against x where two different straight lines can be fitted to the
points.

easily by laying a straight edge along the data points and it is clear that
for this data, if another person repeated the procedure, a line with a very
similar equation would result.

Figure 6.2 shows a different situation in which the data points still
clearly correspond to a straight line but here it is possible to draw differ-
ent lines through the data. Which of these two lines is best? Is it possible
to say that one line is a better fit to the data than the other, or is some
other line the best fit? Whether or not there is some way of saying what
the ‘right’ answer is, it is clear that some objective way of fitting a line to
data such as those shown in these figures is required. One such technique
is called the method of least squares, or ordinary least squares (OLS), in
which the squares of the distances between the points and the line are
minimized.

This is shown in Figure 6.3 for the same data points as Figure 6.2 with
the exception that there is an extra data point in this figure. The extra
point corresponds to the mean of the x (x) and y (y) data,

x =

n∑

i=1
xi

n
, y =

n∑

i=1
yi

n
(6.2)

and it can be seen that the regression line, or least-squares line, passes
through this point. Since the point (x, y) lies on the line, the equation
can be written as

y − y = m(x − x) (6.3)

the constant term, c, having disappeared since it is explained by the
means

c = y − mx (6.4)
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Figure 6.3 Illustration of the process of least squares fitting.

Equation (6.3) can be rewritten as

y = y + m(x − x) (6.5)

and thus for any value of x (xi ) an estimate of the y value (ŷi ) can be
made

ŷi = y + m(xi − x) (6.6)

The error in prediction for the y value corresponding to this x value is
given by

yi − ŷi = yi − y − m(xi − x) (6.7)

This equation can be used to express a set of errors for the prediction of
y values over the whole set of data (n pairs of points) and the sum of the
squares of these errors is given by

U =
n∑

i=1

(yi − y − m(xi − x))2 (6.8)

Minimization of this sum of squares gives the slope of the regression line
(m), which is equivalent to minimizing the lengths of the dotted lines,
shown in Figure 6.3, between the data points and the fitted line. It can
be shown for minimum U (where dU/dm = 0 and d2U/dm2 is positive)
that the slope is given by

m =

n∑

i=1
(xi − x)(yi − y)

n∑

i=1
(xi − x)2

(6.9)
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Table 6.1 Assumptions for simple linear regression.

1 The x and y data is linearly related
2 The error is in y, the dependent variable
3 The average of the errors is 0
4 The errors are independent; there is no serial correlation among the errors

(knowing the error for one observation gives no information about the others)
5 The errors are of approximately the same magnitude
6 The errors are approximately normally distributed (around a mean of zero)

Thus both the slope and the intercept of the least-squares line can be
calculated from simple sums using Equations (6.4) and (6.9). In practice,
few people ever calculate regression lines in this way as even quite simple
scientific calculators have a least-squares fit built in. However, it is hoped
that this brief section has illuminated the principles of the least-squares
process and has shown some of what goes on in the ‘black box’ of
regression packages.

Having fitted a least-squares line to a set of data points, the question
may be asked, ‘How well does the line fit?’ Before going on to consider
this, it is necessary to state some of the assumptions, hitherto unmen-
tioned, that are implicit in the process of regression analysis and which
should be satisfied for the linear regression model to be valid. These
assumptions are summarized in Table 6.1, and, in principle, all of these
assumptions should be tested before regression analysis is applied to the
data.

In practice, of course, few if any of these assumptions are ever checked
but if simple linear regression is found to fail when applied to a particular
data set, it may well be that one or more of these assumptions have been
violated. Assumptions 1 and 2 are particularly important since the data
should look as though it is linearly related and at least the majority of
the error should be contained in the y variable (called a regression of
y on x). In many chemical applications this latter assumption will be
quite safe as the dependent variable will often be some experimental
quantity whereas the descriptor variables (the x set) will be calculated or
measured with good precision.

The assumption of a normal distribution of the errors allows us to
put confidence limits on the fit of the line to the data. This is carried out
by the construction of an analysis of variance table (the basis of many
statistical tests) in which a number of sums of squares are collected.1

1 There is no agreed convention for abbreviating these sums of squares, other treatments may
well use different sets of initials.



P1: OTA/XYZ P2: ABC
JWBK419-06 JWBK419/Livingstone September 26, 2009 15:12 Printer Name: Yet to Come

150 REGRESSION ANALYSIS

The total sum of squares (TSS), in other words the total variation in y,
is given by summation of the difference between the observed y values
and their mean.

TSS =
n∑

i=1

(yi − y)2 (6.10)

This sum of squares is made up from two components: the variance in
y that is explained by the regression equation (known as the explained
sum of squares, ESS), and the residual or unexplained sum of squares,
RSS. The ESS is given by a comparison of the predicted y values (ŷ) with
the mean

ESS =
n∑

i=1

(ŷi − y)2 (6.11)

and the RSS by comparison of the actual y values with the predicted

RSS =
n∑

i=1

(yi − ŷi)
2 (6.12)

The total sum of squares is equal to these two sums

TSS = ESS + RSS (6.13)

These sums of squares are shown in the analysis of variance (ANOVA)
table (Table 6.2). The mean squares are obtained by division of the sums
of squares by the appropriate degrees of freedom. One degree of freedom
is ‘lost’ with each parameter calculated from a set of data so the total sum
of squares has n − 1 degrees of freedom (where n is the number of data
points) due to calculation of the mean. The residual sum of squares has

Table 6.2 ANOVA table.

Sum of Degrees of
Source of variation squares freedom Mean square

Explained by regression ESS 1 MSE (=ESS)
Residual RSS n − 2 MSR (=RSS/n − 2)
Total TSS n − 1 MST (=TSS/n − 1)
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n − 2 degrees of freedom due to calculation of the mean and the slope
of the line. The explained sum of squares has one degree of freedom
corresponding to the slope of the regression line.

Knowledge of the mean squares and degrees of freedom allows assess-
ment of the significance of a regression equation as described in the next
section, but how can we assess how well the line fits the data? Perhaps
the best known and most misused regression statistic is the correlation
coefficient. The squared multiple correlation coefficient (r2) is given by
division of the explained sum of squares by the total sum of squares

r2 = ESS
TSS

. (6.14)

This can take a value of 0, where the regression is explaining none of
the variance in the data, up to a value of 1 where the regression explains
all of the variance in the set. r2 multiplied by 100 gives the percentage
of variance in the data set explained by the regression equation. The
squared correlation coefficient is the square of the simple correlation
coefficient, r, between y and x (see Box 2.1 in Chapter 2, p. 39). This
correlation coefficient can take values between −1, a perfect negative cor-
relation (y decreases as x increases), and +1, a perfect positive correla-
tion. Correlation coefficients, both simple and multiple (where several
variables are involved), can be very misleading. Consider the data shown
in Figure 6.4.

Part (a) of the figure shows a set of data in which y is clearly dependent
on x by a simple linear relationship; part (b) shows two separate ‘clouds’
of points where the line has been fitted between the two groups; parts
(c) and (d) show two situations in which a single rogue point has greatly
affected the fit of the line.2 Table 6.3 gives the data used to produce these
plots and some of the statistics for the fit of the line. The correlation
coefficients for these four graphs (and parts (e) and (f) of Figure 6.4)
are very similar, as are the regression coefficients for x (0.55 to 0.82).
There is a somewhat wider range in values for the constant term (0.20 to
0.80), but overall the statistics give little indication of the four different
situations shown in parts (a) to (d) of the figure. Parts (e) and (f) show two
other types of data set for which a single straight line fit is inappropriate,

2 This situation is often referred to as a ‘point and cluster effect’; the regression line is fitted
effectively between two points, the rogue point and the cluster of points making up the rest of
the set.
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Figure 6.4 Plot of six different sets of y and x data.

a curve (e) and two separate straight lines (f). Once again the statistics
give little warning, although the large standard errors of the constants
do suggest that something is wrong. The lesson from this is clear; it is not
possible to assess goodness of fit simply from a correlation coefficient.
Indeed, this statistic (and others) can be very misleading, as well as very
useful. In the case of a simple problem such as this involving just two
variables the construction of a bivariate plot will reveal the patterns in
the data. More complex situations present extra problems as discussed
in the next section and Section 6.4.



P1: OTA/XYZ P2: ABC
JWBK419-06 JWBK419/Livingstone September 26, 2009 15:12 Printer Name: Yet to Come

SIMPLE LINEAR REGRESSION 153

Table 6.3 Data and statistics for the regression of y on x for the six data sets in
Figure 6.4 (after an original example by Anscombe [1]).

∗

y1 x1 y1 x1 y2 x2 y2 x2

1.898 2.790 2.092 2.573 0.920 1.149 1.090 0.716
3.318 2.111 2.820 1.879 1.138 0.577 1.187 0.648
3.385 3.672 2.287 1.318 1.266 1.047 1.902 1.343

−0.460 1.224 2.011 2.967 1.267 0.942 1.960 0.683
0.900 0.130 2.819 2.354 0.513 0.673 1.088 0.676
3.718 2 276 2.127 1.686 0.401 0.892 0.765 0.462
2.046 2 668 1.866 3.462 0.770 0.831 2.081 0.654

−1.344 0.374 3.655 2.644 0.483 1.422 1.783 0.637
2.459 1.114 3.630 1.880 1.258 0.661 1.178 0.350
3.559 3.333 1.020 0.070 0.594 0.922 1.065 1.779
3.667 3.631 3.865 2.897 0.671 0.962 1.069 0.485
2.909 2.224 1.986 0.689 1.702 1.055 1.141 0.977
0.589 0.198 1.948 0.749 1.420 1.017 1.414 1.188
4.150 3.973 1.442 0.312 0.204 0.483 2.484 1.074
3.066 3.326 −1.505 0.007 1.453 0.295 0.837 0.036
3.859 3.459 2.590 3.483 1.355 0.617 0.835 1.004
2.093 1.082 2.664 2.866 1.432 0.521 2.170 3.090
3.647 3.294 1.989 1.230 1.810 0.927 2.500 2.970
3.255 2.487 0.776 2.026 3.220 2.830
1.014 1.101 1.500 0.819 2.670 2.940
1.639 2.532 0.934 1.055 2.800 3.160
0.484 2.195 1.219 1.090 2.230 3.080
1.294 2.928 1.076 1.043 2.680 3.540
1.521 1.595 0.962 1.489 2.710 2.820
2.554 2.750 1.449 1.227 2.200 3.680
3.170 2.751 0.957 0.372 2.830 3.100
3.962 3.893 1.486 0.865 2.540 2.830
2.304 2.793 1.084 1.452 2.380 3.190
1.898 3.172 0.483 1.589 2.470 3.400
0.122 0.903 1.477 1.343 3.200 2.600
0 309 1.523 0.168 1.593 2.280 2.840
3.979 3.218 0.307 1.080

r = 0.702 r = 0.706
F = 46.77 F = 60.55
SE = 0.95 SE = 0.56
RC = 0.82 (0.12) RC = 0.55 (0.07)
c = 0.48 (0.12) c = 0.69 (0.12)

y3 x3 y4 x4 y5 x5 y6 x6

0.191 0.542 0.333 0.250 1.600 0.250 0.250 0.250
1.270 0.575 0.665 0.500 0.813 0.750 0.800 0.800
1.536 0.961 0.998 0.750 0.500 1.000 1.250 1.250
0.943 1.772 1.663 1.250 0.313 1.250 2.000 2.000
0.742 0.895 1.862 1.400 0.250 1.500 2.750 2.750
0.837 1.361 2.128 1.600 0.313 1.750 3.000 3.000
0.851 0.517 2.527 1.900 0.500 2.000 3.500 3.500
0.399 0.900 2.793 2.100 0.813 2.250 0.080 0.250

(continued)
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Table 6.3 (Continued)

y3 x3 y4 x4 y5 x5 y6 x6

1.369 1.215 2.993 2.250 1.250 2.500 0.400 0.800
0.643 0.854 3.325 2.500 1.813 2.750 0.510 1.250
0.740 1.590 1.900 3.800 2.500 3.000 0.700 2.000
0.405 1.914 3.313 3.250 0.910 2.750
0.731 0.275 3.950 3.500 0.995 3.000
0.733 1.262 1.195 3.500
0.807 0.095
1.512 0.847
1.233 0.903
0.666 1.164
0.619 0.850
0.365 0.948
1.692 1.365
0.319 1.015
1.667 1.268
4.000 4.000

r = 0.702 r = 0.709 r = 0.707 r = 0.708
F = 21.34 F = 9.11 F = 10.97 F = 12.09
SE = 0.56 SE = 0.72 SE = 0.90 SE = 0.80
RC = 0.72 (0.16) RC = 0.68 (0.22) RC = 0.85 (0.26) RC = 0.66 (0.19)
c = 0.20 (0.21) c = 0.80 (0.43) c = −0.30 (0.57) c = 0.04 (0.42)
∗
The statistics reported for each fit are – the simple correlation coefficient, r; the F statistic,

F; the standard error of the fit, SE; the regression coefficient for X, RC, followed by its
standard error in brackets; the constant of the equation, c, followed by its standard error in
brackets.

6.3 MULTIPLE LINEAR REGRESSION

Multiple linear regression is an extension of simple linear regression by
the inclusion of extra independent variables

y = ax1 + bx2 + cx3 + . . . . + constant (6.15)

Least squares may be used to estimate the regression coefficients (a, b, c,
and so on) for the independent variables (x1, x2, x3, and so on), and the
value of the constant term. Goodness of fit of the equation to the data
can be obtained by calculation of a multiple correlation coefficient (R2)
just as for simple linear regression. In the case of simple linear regression
it is easy to see what the fitting procedure is doing, i.e. fitting a line to the
data, but what does multiple regression fitting do? The answer is that
multiple regression fits a surface. Figure 6.5 shows the surface fitted by a
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Figure 6.5 Illustration of different surfaces corresponding to two-term regression
equations.

two-term equation in π and σ (a plane) and an equation which includes
a squared term.

It is difficult to illustrate the results of fitting higher order equations
but the principle is the same; multiple regression equations fit a surface to
data with a dimensionality equal to the number of independent variables
in the equation. It was shown in the previous section that the correlation
coefficient can be a misleading statistic for simple linear regression fitting
and the same is true for the multiple regression case. It is more difficult
(or impossible) to check a multiple regression fit by plotting the data
points with respect to all of the parameters in the equation, but one way
that even the most complicated regression model can be evaluated is by
plotting predicted y values against the observed values. If the regression
equation is a perfect fit to the data (R2 = 1), then a plot of the predicted
versus observed should give a straight line with a slope of one and an
intercept of zero. When some particular points are badly predicted it will
be obvious from this plot; a curved plot suggests some other equation is
more appropriate.

What about an assessment of the significance of the fit of a multiple
regression equation (or simple regression) to a set of data? A guide to the
overall significance of a regression model can be obtained by calculation
of a quantity called the F statistic. This is simply the ratio of the explained
mean square (MSE) to the residual mean square (MSR)

F = MSE
MSR

. (6.16)
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Table 6.4 5 % points (95 % confidence) of the F-distribution (reproduced from
ref. [2] copyright Cambridge University Press).

ν1

ν2 1 2 3 4 5 10 ∞
1 161.4 199.5 215.7 224.6 230.2 241.9 254.3
2 18.5 19.0 19.2 19.2 19.3 19.4 19.5
3 10.13 9.55 9.28 9.12 9.01 8.79 8.53
4 7.71 6.94 6.59 6.39 6.26 5.96 5.63
5 6.61 5.79 5.41 5.19 5.05 4.74 4.36
6 5.99 5.14 4.76 4.53 4.39 4.06 3.67
7 5.59 4.74 4.35 4.12 3.97 3.64 3.23
8 5.32 4.46 4.07 3.84 3.69 3.35 2.93
9 5.12 4.26 3.86 3.63 3.48 3.14 2.71

10 4.96 4.10 3.71 3.48 3.33 2.98 2.54
15 4.54 3.68 3.29 3.06 2.90 2.54 2.07
20 4.35 3.49 3.10 2.87 2.71 2.35 1.84
30 4.17 3.32 2.92 2.69 2.53 2.16 1.62
40 4.08 3.23 2.84 2.61 2.45 2.08 1.51
∞ 3.84 3.00 2.60 2.37 2.21 1.83 1.00

An F statistic is used by looking up a standard value for F from a table of
F statistics and comparing the calculated value with the tabulated value.
If the calculated value is greater than the tabulated value, the equation
is significant at that particular confidence level. F tables normally have
values listed for different levels of significance, e.g. 10 %, 5 %, and 1 %.
As might be expected, the F values are greater for higher levels of signif-
icance. This is equivalent to saying that we expect the explained mean
square to be even larger than the residual mean square in order to have a
higher level of confidence in the fit. This seems like good common sense!
Table 6.4 gives some values of the F statistic for different numbers of
degrees of freedom at a significance level of 5 %. It can be seen that the
table has entries for two degrees of freedom, the rows and the columns.
These correspond to the number of degrees of freedom associated with
the explained mean square, MSE, which is given by p (where p is the
number of independent variables in the equation) and with the residual
mean square, MSR, which is given by n−p−1 (where n is the number
of data points). An F statistic is usually quoted as F(ν1ν2), where ν1 =
p and ν2 = n−p−1. When regression equations are reported, it is not
unusual to find the appropriate tabulated F value quoted for comparison
with the calculated value.

The squared multiple correlation coefficient gives a measure of how
well a regression model fits the data and the F statistic gives a measure
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Table 6.5 Percentage points of the t distribution (reproduced from ref. [2]
copyright Cambridge University Press).

P

ν1 25 10 5 2 1 0.2 0.1

2.41 6.31 12.71 31.82 63.66 318.3 636.6
2 1.60 2.92 4.30 6.96 9.92 22.33 31.60
3 1.42 2.35 3.18 4.54 5.84 10.21 12.92
4 1.34 2.13 2.78 3.75 4.60 7.17 8.61
5 1.30 2.02 2.57 3.36 4.03 5.89 6.87
6 1.27 1.94 2.45 3.14 3.71 5.21 5.96
7 1.25 1.89 2.36 3.00 3.50 4.79 5.41
8 1.24 1.86 2.31 2.90 3.36 4.50 5.04
9 1.23 1.83 2.26 2.82 3.25 4.30 4.78

10 1.22 1.81 2.23 2.76 3.17 4.14 4.59
12 1.21 1.78 2.18 2.68 3.05 3.93 4.32
15 1.20 1.75 2.13 2.60 2.95 3.73 4.07
20 1.18 1.72 2.09 2.53 2.85 3.55 3.85
24 1.18 1.71 2.06 2.49 2.80 3.47 3.75
30 1.17 1.70 2.04 2.46 2.75 3.39 3.65
40 1.17 1.68 2.02 2.42 2.70 3.31 3.55
60 1.16 1.67 2.00 2.39 2.66 3.23 3.46

120 1.16 1.66 1.98 2.36 2.62 3.16 3.37
∞ 1.15 1.64 1.96 2.33 2.58 3.09 3.29

of the overall significance of the fit.3 What about the significance of in-
dividual terms? This can be assessed by calculation of the standard error
of the regression coefficients, a measure of how much of the dependent
variable prediction is contributed by that term. A statistic, the t statis-
tic, may be calculated for each regression coefficient by division of the
coefficient by its standard error (SE).

t =
∣
∣
∣
∣

b
S.E. of b

∣
∣
∣
∣ (6.17)

Like the F statistic, the significance of t statistics is assessed by looking
up a standard value in a table; the calculated value should exceed the
tabulated value. Table 6.5 gives some values of the t statistic for different
degrees of freedom and confidence levels. Unlike the F tables, t tables
have only one degree of freedom which corresponds to the degree of
freedom associated with the error sum of squares. This value is given by

3 As long as the data is well distributed and does not behave as the examples shown in Figure
6.4. This situation is often difficult to check for multivariate data.
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(n−p−1), where n is the number of samples in the data set and p is the
number of independent variables in the equation, including the constant.
It can be seen from the table that the value of t at a 5 % significance level,
for a reasonable number of degrees of freedom (five or more), is around
two. This is equivalent to saying that the regression coefficient should
be at least twice as big as its standard error if it is to be considered
significant. Again, this seems like good common sense.

Another useful statistic that can be calculated to characterize the fit
of a regression model to a set of data is the standard error of predic-
tion. This gives a measure of how well one might expect to be able to
make individual predictions. In the situation where the standard error
of measurement of the dependent variable is known, it is instructive to
compare these two standard errors. If the standard error of prediction
of the regression model is much smaller than the experimental standard
error then the model has ‘over-fitted’ the data, whatever the other statis-
tics of the fit might say. After all, it should not be possible to predict y
with greater precision than it was measured, from a model derived from
the experimental y values. Conversely, if the prediction standard error
is much larger than the experimental standard error, then the model is
unlikely to be very useful, although in this case it is likely that the other
statistics will also indicate a poor fit. Where the experimental standard
error is unknown the standard error of prediction can still be used to
assess fit by comparison with the range of measured values. As a rule of
thumb, if the prediction standard error is less than 10 % of the range of
measurements the model will be useful. For many data sets, particularly
from biological experiments, a prediction within 10 % may be regarded
as very good. A summary of the statistics that have been described so far
is shown in Table 6.6.

Table 6.6 Statistics used to characterize regression equations.

Statistic Use

Correlation
coefficient

r Gives the direction (sign) and degree (magnitude) of a
correlation between two variables

Multiple correlation
coefficient

R2 A measure of how closely a regression model fits a
data set

F statistic F A measure of the overall significance of a regression
model

t statistic t A measure of the significance of individual terms in a
regression equation

Standard error of
prediction

SE A measure of the precision with which predictions can
be made from a regression equation
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6.3.1 Creating Multiple Regression Models

Creation of a simple linear regression equation is obvious; there are just
two variables involved and all that is required is the estimation of the
slope and intercept parameters, usually by OLS. The construction of
multiple linear regression equations, on the other hand, is by no means
as clear since the selection of independent variables for the equation
involves choice. At one time variables were selected for inclusion in
a model based on some strong justification. This justification might be
some a priori idea or hypothesis that the chosen parameters were the best
ones for explaining the variance in the dependent variable. Increasingly
though, this is not the case and some choice of the independent variables
is involved. How can this choice be made? One obvious strategy is to
use all of the independent variables and, as long as there is a reasonable4

number of samples compared with variables in the model, then this can
be sufficient. A ‘full’ regression model like this is in fact the basis of one
technique for the creation of multiple regression equations, backward-
elimination as discussed later. So, how else can regression models be
constructed? The following sections describe the most common methods
for producing multiple regression equations.

6.3.1.1 Forward Inclusion

Forward inclusion means, as the name implies, the consideration of each
variable in turn for inclusion in the model and then selection of the ‘best’
variable to produce a 1 term equation. The next step is examination of
each of the remaining descriptors and selection of the next best variable
to produce a 2 term equation, with the process continuing until none
of the remaining variables exceed the inclusion criterion or all of the
variables have entered the model. So what is meant by ‘best’ and what is
this inclusion criterion? A commonly used measure is F-to-enter, Fenter,
which is given by:

Fenter = RSSp − RSSp+1

RSSp+1
/
n − p − 1

(6.18)

4 Of course the term ‘reasonable’ can be contentious but a common rule of thumb is at least 3
times as many data points as terms in the model.
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where n is the number of data points, p is the number of terms in the
equation and RSSp and RSSp+1 are the residual sums of squares before
and after the (p+1)th variable is included. The best variable at each
step will be the one with the highest value of F-to-enter. The value of
F-to-enter can be preset by the user so that descriptors will continue
to be added until the F-to-enter values of the remaining variables no
longer exceed this value. Once a variable has entered the equation in
forward inclusion regression it remains there. In most of the older sta-
tistical software packages the default value for Fenter is 4 irrespective of
the number of variables in the model. This critical F value is based on
the upper 5 % point of the F distribution on 1 and (n − p − 1) degrees
of freedom which, for n − p − 1 of around about 20 or higher is approx-
imately 4 (4.35 in Table 6.4). As an alternative to using Fenter values
some packages allow the user to specify the corresponding p-values with
the selection process stopping when the p-value exceeds some specified
level.

An example may serve to illustrate this process. Figure 6.6 shows the
output from a forward inclusion regression routine (actually a stepwise
routine, see Section 6.3.1.3) applied to a data set of calculated physic-
ochemical properties for a set of antimycin A1 derivatives; the same
compounds mentioned in Chapter 1 (Table 1.1 and Figure 1.7). The
output shows that the inclusion criterion is F-to-enter of 4 and the first
step has selected melting point as the first variable to enter the regression
model. The model already contains a constant and this is the normal
procedure when fitting regression models. If theory or some hypothesis
dictates that the equation should pass through the origin then the con-
stant term can be eliminated from the fitting process. The next variable
to enter the model will be LogPcalc which has an F-to-enter of 11.976.
The inclusion process continues for two more steps to produce a final 4
variable model as shown in Figure 6.7. The output shows the number
of cases (16), the multiple correlation coefficient, squared multiple cor-
relation coefficient and an adjusted multiple correlation coefficient (see
Section 6.4.3) along with the regression coefficients, their standard er-
rors and t-statistics. Fitting a four-term equation to only 16 data points
is probably overfitting and a safer model for this set would probably
be the three- or even two-term model. This demonstrates one of the
dangers of relying blindly on an algorithm to fit models to data. The
fitting process has stayed within the constraints of F-to-enter but has
produced a model which may not be reliable. The output also reports
the analysis of variance sums of squares and an F statistic which may
be used to judge the overall fit. This latter quantity may be misleading
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Figure 6.6 Snapshot of the output from the statistics package Systat showing the
first step in a forward inclusion regression analysis.

since the model was chosen from a large pool of variables and thus may
suffer from ‘selection bias’ as discussed in Section 6.4.4. Finally, this
particular program also reports some problems with individual cases
showing that case 8 is an outlier and that case 14 has large leverage.
Discussion of these problems is outside the scope of this chapter but can
be found in references [3, 4 & 5] and in the help file of most statistics
programs.

6.3.1.2 Backward Elimination

This procedure begins by construction of a single linear regression model
which contains all of the independent variables and then removes them
one at a time. Each term in the equation is examined for its contribu-
tion to the model, by comparison of F-to-remove, Fremove, for example.
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Figure 6.7 Snapshot of the last stage in a forwards inclusion analysis.

F-to-remove is defined by an equation similar to (6.18):

Fremove = RSSp−1 − RSSp

RSSp
/
n − p − 1

, (6.19)

where the notation is the same as that used in Equation (6.18). The
variable making the smallest contribution is removed (lowest Fremove)
and the regression model is recalculated, now with one term fewer. Any
of the usual regression statistics can be used to assess the fit of this new
model to the data and the procedure can be continued until a satisfactory
multiple regression equation is obtained. Satisfactory here may mean an
equation with a desired correlation coefficient or a particular number of
independent variables, etc.

Backward elimination and forward inclusion might be viewed as
means of producing the same result from opposite directions. However,
what may be surprising is that application of the two procedures to the
same data set does not necessarily yield the same answer. Newcomers to
data analysis may find this disturbing and for some this may reinforce the
prejudice that ‘statistics will give you any answer that you want’, which
of course it can. The explanation of the fact that forward inclusion and
backward elimination can lead to different models lies in the presence of
collinearity and multicollinearity in the data. A multiple regression equa-
tion may be viewed as a set of variables which between them account
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for some or all of the variation in the dependent variable. If the inde-
pendent variables themselves are correlated in pairs (collinearity) or as
linear combinations (multicollinearity) then different combinations may
account for the same part of the variance of y. An example of this can
be seen in Equations (6.20) and (6.21) which describe the pI50 for the
inhibition of thiopurine methyltransferase by substituted benzoic acids
in terms of calculated atomic charges [6].

pI50 = 12.5q2π − 8.3

n = 15 r = 0.757
(6.20)

pI50 = 12.5q6π − 8.4

n = 15 r = 0.785
(6.21)

The individual regression equations between pI50 and the two π -electron
density parameters have quite reasonable correlation coefficients and
thus it might be expected that they would be useful in a multiple regres-
sion equation. The two equations, however, are almost identical, indicat-
ing a very high collinearity between these descriptors. When combined
into a two-term equation (Equation (6.22)), which has an improved cor-
relation coefficient, we see the effect of this collinearity; even the sign of
one of the coefficients is changed.

pI50 = −74q2π + 84q6π − 6.3
n = 15 r = 0.855

(6.22)

The fact that these two descriptors are explaining a similar part of the
variance in the pI50 values was revealed in the statistics of the fit for the
two-term equation (high standard errors of the regression coefficients).
Collinearity and multicollinearity in the descriptor set (independent vari-
ables) may lead to poor fit statistics or may cause instability in the regres-
sion coefficients. Indeed, regression coefficients which are seen to change
markedly as variables are added to or removed from a model are a good
indication of the presence of collinear variables.

6.3.1.3 Stepwise Regression

Stepwise regression is a combination of forward inclusion and backward
elimination. The first two steps are the same as for forward inclusion
and the algorithm selects the two descriptors with the highest F-to-enter
values. After this, as each new variable is added a test is performed to
see if any of the variables entered at an earlier step can be deleted. The
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procedure uses both Equations (6.18) and (6.19) in a sequential manner.
The stepping stops when no more variables satisfy either the criterion for
removal or the criterion for inclusion. To prevent the procedure from
unnecessarily cycling the critical values of F-to-enter and F-to-remove
should be such that Fremove < Fenter as can be seen in the third line of the
output in Figure 6.6.

All three of these methods used for variable selection are prone to
entrapment in local minima, i.e. they find a combination of variables
that cannot be improved upon in the next step (removal or addition
of one variable) in terms of the criterion function. This can be avoided
by performing either a Tabu search (TS) or the more computationally
expensive ‘all subsets regression’ as discussed in the next section. Tabu
search is well described by Glover [7, 8].

6.3.1.4 All Subsets

Are there solutions to these problems in the construction of multi-
ple linear regression equations? Does forward inclusion or backward
elimination give the best model? Are there alternative ways to con-
struct multiple linear regression equations? One popular approach is
to calculate all possible equations of a particular size and then select
the best on the basis of the fit statistics. Selection of the best subset
of any given size usually involves picking the one which maximizes R2

although alternative procedures have also been employed. All subset se-
lection techniques will find the combination of variables that maximizes
or minimizes a criterion function. This is a property not guaranteed
by any of the stepwise methods. At one time this would have been a
way of tying up your computer for many hours if not days even for
a moderate number of variables from which to select. The speed of
modern computers now allows such calculations to be carried out rou-
tinely but this procedure will be particularly prone to chance effects
(see Section 6.4). There is a practical limit, however, on the size of the
models and the pool of variables which can be explored by this means.
A pool of 10 variables gives rise to 10 possible 1-term equations, 45
2-term equations, 120 3-term equations and so on. The formula for
the number (N) of possible models of size, p, from a pool size, k, is
given by:

N = k!/(p!(k − p)!) (6.23)
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Thus, the number of possible models increases very rapidly as the pool
size is increased and as the size of the models examined increases. An
extreme example, as discussed in the next section, estimates that at a rate
of calculation of 1 model per second it would take 226 million years to
systematically search for all possible models up to size 29 from a pool of
53 variables!

6.3.1.5 Model Selection by Genetic Algorithm

Darwin’s theory of evolution, natural selection, survival of the fittest,
selection pressure and so on, appears to offer a neat explanation of the
processes leading to the development of highly complex organisms from
an enormous variety of options as evidenced by the variety of species on
earth. Without getting involved in theological arguments about the ori-
gin of species it does appear that this theory proposes a means by which
a large solution space – all of nature – can be explored with consider-
able efficiency. Borrowing from this theory has led to the development
of algorithms which make use of these concepts to solve a variety of
problems which are difficult if not impossible to solve by exhaustive
search of all possible solutions. These approaches are described in more
detail in Chapter 9 (Section 9.5) but for the purposes of this discussion
suffice it to say that the terms in a regression model may be viewed as
chromosomes in an organism.

So, having expressed a multiple linear regression equation as an or-
ganism, how is a genetic5 approach applied? There are some general
steps involved:

� Choose a coding scheme for the problem, in this case the variables
in a regression model.

� Create an initial population. This is most often carried out by ran-
dom assignment of variables to the regression models although it can
be ‘seeded’ with known good solutions. Implicit in this, of course,
is the question of the size of the models and also the number of
equations in the population.

� Choose a fitness function and evaluate the solutions. In this case a
fit statistic such as R2 may be used.

5 This is a generic term which includes genetic algorithms, evolutionary programming and so
on. See Chapter 9.
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Figure 6.8 Schematic illustration of the genetic process.

� Alter the population by producing new solutions. This may be by
mutation of existing solutions or mating (crossover) of two existing
solutions.

� Having created the new solutions they are added to the population
and the population is then reduced to give a new generation. This
reduction is carried out by ranking the solutions in terms of the
fitness function and then removing the least fit solutions to give
a generation of a set size. In this way existing good solutions are
retained in the population.

The genetic process is illustrated in Figure 6.8. The cycle is repeated
for a set number of generations or until some target value of the fitness
function is achieved. Crucial parameters in this fitting procedure are the
size of the population, the nature of the fitness function and the number
of cycles that the process runs for, all of which are determined by the
user. The data set used to illustrate forward inclusion in Section 6.3.1.1
has been the subject of examination by several genetic techniques. This
set consisted of 53 calculated descriptors for a set of 31 compounds.
The original report of this study involved the removal of correlated
descriptors by application of the CORCHOP algorithm (see Section 3.6
in Chapter 3) to leave 23 variables which was further reduced by the
selection of the 10 best variables in terms of their correlation with the
dependent variable. All of the genetic approaches used the full set of 53
parameters as potential variables in regression solutions. This is where
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the 226 million years comes from as mentioned in the previous section.
For a set of 31 compounds it is possible to fit models up to a size of
29 variables and from a pool of 53 descriptors this would give rise to
7.16 × 1015 models [9]. In practice, of course, models of such a size
would be hopelessly overfitted and it is unlikely that any analysis would
consider regression equations larger than say 6 variables for such a data
set. In fact, as the original study reported, there was an initial training
set of only 16 compounds and so the fitting was restricted to three-term
equations.

All of the genetic methods applied to this data set discovered a variety
of better models than the original report. This is partly a consequence
of the inclusion of all of the original variables in the genetic studies
and partly a consequence of the strategy employed in the original study
which was a sequential elimination and then selection of variables. This
also demonstrates a very important feature of these genetic methods in
that they generate a population of possible solutions. All of the methods
described above for the production of multiple linear regression models
result in a single model at the end of the process, even the all subsets
approach only gives a single best model for each chosen subset size.
This population of possible solutions allows the generation of a range
of predictions and also provides an interesting alternative method for
variable selection. The descriptors which emerge in the population of
solutions may be ranked in terms of their frequency of occurrence.

6.3.2 Non-linear Regression Models

Non-linear models may be fitted to data sets by the inclusion of func-
tions of physicochemical parameters in a linear regression model – for
example, an equation in π and π2 as shown in Figure 6.5 – or by the
use of nonlinear fitting methods. The latter topic is outside the scope of
this book but is well covered in many statistical texts (e.g. Draper and
Smith [3]). Construction of linear regression models containing non-
linear terms is most often prompted when the data is clearly not well
fitted by a linear model, e.g. Figure 6.4b, but where regularity in the
data suggests that some other model will fit. A very common example in
the field of quantitative structure–activity relationships (QSAR) involves
non-linear relationships with hydrophobic descriptors such as log P or π .
Non-linear dependency of biological properties on these parameters be-
came apparent early in the development of QSAR models and a first
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Figure 6.9 Plot of biological response (C is the concentration to give a particular
effect) against log P.

approach to the solution of these problems involved fitting a parabola
in log P [10].

log 1/
C = a(log P)2 + b log P + cσ + constant (6.24)

Equation (6.24) may simply contain terms in π or log P, or may contain
other parameters such as σ and so on. Unfortunately, many data sets
appear to be well fitted by a parabola, as judged by the statistics of the
fit, but in fact the data only corresponds to the first half or so of the curve.
This is demonstrated in Figure 6.9 for the fit shown in Equation (6.25):

log 1/
C = 1.37 log P − 0.35(log P)2 + 2.32 (6.25)

Dissatisfaction with the fit of parabolic models such as this and a natural
desire to ‘explain’ QSARs has led to the development of a number of
mechanistic models, as discussed by Kubinyi [11]. These models give
rise to various expected functional forms for the relationship between
biological data and hydrophobicity, and data sets may be found which
will be well fitted by them. Whatever the cause of such relationships it
is clear that non-linear functions are required in order to model the bi-
ological data. An interesting feature of the use of non-linear functions is
that it is possible to calculate an optimum value for the physicochemical
property involved (usually log P). For example, Equation (6.25) gives
an optimum value (at which log 1/C is a maximum) for log P of 1.96.
This ability to derive optimum values led to attempts to define optima
for the transport of compounds across various biological ‘barriers’.
For example, Hansch and co-workers [12] examined a number of
QSARs involving compounds acting on the central nervous system and
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concluded that the optimum log P value for penetration of the
blood–brain barrier was 2. Subsequent work, by Hansch and others,
has shown that the prediction of brain uptake is not quite such a simple
matter. Van de Waterbeemd and Kansy [13], for example, have demon-
strated that brain penetration may be described by a hydrogen-bonding
capability parameter (�alk) and Van der Waals’ volume (Vm).

log(Cbrain/Cblood) = −0.338(±0.03)�alk + 0.007(±0.001)Vm + 1.73 (±0.30)

n = 20, r = 0.934, s = 0.290, F = 58 (6.26)

where the figures in brackets are the standard errors of the regression
coefficients and s is the standard error of prediction.

6.3.3 Regression with Indicator Variables

Indicator variables are nominal descriptors (see Chapter 1, Section 1.4.1)
which can take one of a limited number of values, usually two. They are
used to distinguish between different classes of members of a data set.
This situation most commonly arises due to the presence or absence
of specific chemical features; for example, an indicator variable might
distinguish whether or not compounds contain a hydroxyl group, or
have a meta substitution. An indicator variable may be used to combine
two data sets which are based on different parent structures. Clearly, the
dependent data for the different sets should be from the same source, oth-
erwise there would be little point in combining them, and there should be
some common physicochemical descriptors (but see later in this section,
Free–Wilson method). Indicator variables are treated in multiple regres-
sion just as any other variable with regression coefficients computed
by least squares. An example of this can be seen in the correlation of
reverse phase HPLC capacity factors and calculated octanol/water parti-
tion coefficients for the xanthene and thioxanthene derivatives shown in
Figure 6.10 [14].

The correlation is given by Equation (6.27) in which the term D
was used to indicate the presence (D = 1) or absence (D = 0) of
the –NHCON(NO)– group, in other words series I or series II in
Figure 6.10.

log P = 0.813(±0.027) log kw + 2.114(±0.161)D (6.27)

n = 24 r = 0.972 s = 0.365
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Figure 6.10 Parent structures for the compounds described by Equations (6.27) and
(6.28).

Examination of the log kw values showed that the replacement of oxygen
by sulphur did not produce the expected increase in lipophilicity and it
was found that a second indicator variable, S, to show the presence or
absence of sulphur could be added to the equation to give:

log P = 0.768(±0.021) log kw + 2.115(±0.115)D + 0.415(±0.095)S

n = 24 r = 0.985 s = 0.260 (6.28)

The correlation coefficient for Equation (6.28) is slightly improved over
that for Equation (6.27) (but see Section 6.4.3), the standard error has
been reduced, and the regression coefficients for the log kw and D terms
are more or less the same. This demonstrates that this second indicator
variable is explaining a different part of the variance in the log P values.
It may have been noticed that Equations (6.27) and (6.28) do not contain
intercept terms: this is because the intercepts are not significantly differ-
ent to zero. These examples show how indicator variables can be used
to improve the fit of regression models, but do the indicator variables
(actually their regression coefficients) have any physicochemical mean-
ing? The answer to this question is a rather unsatisfactory ‘yes and no’.
The sign of the regression coefficient of an indicator variable shows the
direction (to reduce or enhance) of the effect of a particular chemical fea-
ture on the dependent variable while the size of the coefficient gives the
magnitude of the effect. This does not necessarily bear any relationship
to any particular physicochemical property, indeed it may be a mathe-
matical artefact as described later. On the other hand, it may be possible
to ascribe some meaning to indicator variable regression coefficients.
The log P values used in Equations (6.27) and (6.28) were calculated by
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the Rekker fragmental method (see Section 9.2.1 and Table 9.2). This
procedure relies on the use of fragment values for particular chemical
groups and the –NHCON(NO)– group, accounted for by the indicator
D, was missing from the scheme. The regression coefficient for this indi-
cator variable has a fairly constant value, 2.114 in Equation (6.27) and
2.115 in Equation (6.28), suggesting that this might be a reasonable esti-
mate for the fragment contribution of this group. Measurement of log P
values for two compounds in set I allowed an estimate of −2.09(±0.14)
to be made for this fragment, in good agreement with the regression
coefficient of D. At first sight this statement may seem surprising since
the signs of the fragment value and regression coefficients are different.
The calculated log P values used in the equations did not take account of
the hydrophilic (negative contribution) nitrosureido fragment and thus
are bigger, by 2.11, than the experimentally determined HPLC capacity
factors.

How does an indicator variable serve to merge two sets of data? The
effect is difficult to visualize in multiple dimensions but can be seen in
two dimensions in Figure 6.11.

Here, the two lines represent the fit of separate linear regression mod-
els, for multiple linear regression these would be surfaces. If the indicator
variable has a value of zero for the compounds in set A it will have no
effect on the regression line, whatever the value of the fitted regression
coefficient. For the compounds in set B, however, the indicator variable
has the effect of adding a constant to all the log 1/C values (1 × regres-
sion coefficient of the indicator variable). This results in a displacement
of the regression line for the B subset of compounds so that it merges
with the line for the A subset.

Figure 6.11 Illustration of two subsets of compounds with different (parallel) fitted
lines.
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An indicator variable can be very useful in combining two subsets
of compounds in this way since it allows the creation of a larger set
which may lead to more reliable predictions. It is also useful to be able
to describe the activity of compounds which are operating by a similar
mechanism but which have some easily identified chemical differences.
However, the situation portrayed in Figure 6.11 is ideal in that the two
regression lines are of identical slope and the indicator variable simply
serves to displace them. If the lines were of different slopes the indi-
cator may still merge them to produce an apparently good fit to the
larger set, but in this case the fitted line would not correspond to a ‘cor-
rect’ fit for either of the two subsets. This situation is easy to see for
a simple two-dimensional case but would clearly be difficult to identify
for multiple linear regression. A way to ensure that an indicator vari-
able is not producing a spurious, apparently good, fit is to model the
two subsets separately and then compare these equations with the equa-
tion using the indicator. The situation can become even more compli-
cated when two or more indicator variables are used in multiple regres-
sion equations; great care should be taken in the interpretation of such
models.

An interesting technique which dates from the early days of modern
QSAR, known as the Free and Wilson method [15], represents an ex-
treme case of the use of indicator variables, since regression equations are
generated which contain no physicochemical parameters. This technique
relies on the following assumptions.

1. There is a constant contribution to activity from the parent struc-
ture.

2. Substituents on the parent make a constant contribution (positive
or negative) to activity and this is additive.

3. There are no interaction effects between substituents, nor between
substituents and the parent.

Of these assumptions, 1 is perhaps the most reasonable and 3 the
most unlikely. After all, it is the interaction of substituents with the elec-
tronic structure of the parent that gives rise to Hammett σ constants (see
Chapter 10). However, despite any misgivings concerning the assump-
tions,6 this method has the attractive feature that it is not necessary to

6 The first two assumptions are implicit, although often not stated, in many other QSAR/QSPR
methods. The third assumption may be accounted for to some extent by the deliberate inclusion
of several examples of each substituent.
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Table 6.7 Free–Wilson data table (reproduced from ref. [16] with permission of
the Collection of Czechoslovak Chemical Communications).

R1 R2

Compound H 4–CH3 4–Cl 3–Br H 4′–CH3 4′–OCH3

XI 1 0 0 0 1 0 0
XII 1 0 0 0 0 1 0
XIII 1 0 0 0 0 0 1
XIX 0 1 0 0 0 0 1
XXX 0 0 1 0 0 1 0
XXXV 0 0 0 1 1 0 0

measure or calculate any physicochemical properties; all that is required
are measurements of some dependent variable. The technique operates
by the generation of a data table consisting of zeroes and ones. An ex-
ample of such a data set is given in Table 6.7 for six compounds based
on the parent structure shown in Figure 6.12.

A Free–Wilson table will also contain a column or columns of depen-
dent (measured) data; for the example shown in Table 6.7 results were
given for minimum inhibitory concentration (MIC) against two bacteria,
Mycobacterium tuberculosis and Mycobacterium kansasii. Each column
in a Free–Wilson data table, corresponding to a particular substituent at
a particular position, is treated as an independent variable. A multiple
regression equation is calculated in the usual way between the dependent
variable and the independent variables with the regression statistics in-
dicating goodness of fit. The regression coefficients for the independent
variables represent the contribution to activity of that substituent at that
position, as shown in Table 6.8. In this table, for example, it can be seen
that replacement of hydrogen with a methyl substituent (R1) results in a
reduction in activity (increase in MIC) against both bacteria.

One of the disadvantages of the Free–Wilson method is that – unlike
regression equations based on physicochemical parameters – it cannot

Figure 6.12 Parent structure for the compounds given in Table 6.7 (reproduced
from ref. [16] with permission of the Collection of Czechoslovak Chemical Commu-
nications).
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Table 6.8 Activity contributions for substituents as determined by the
Free–Wilson technique (reproduced from ref. [16] with permission of
the Collection of Czechoslovak Chemical Communications).

� MIC against

Substituent M. kansasiia M. tuberculosisb

4–H −0.397 −0.116
4–CH3 0.264 0.101
4–OCH3 0.290 0.337
4–Cl 0.095 −0.101
3–Br −0.253 −0.312
4′–H −0.078 0.088
4′–CH3 0.260 0.303
4′–OCH3 −0.081 0.085
4′–Cl 0.403 0.303
3′,4′–Cl2 −0.259 −0.586
4′–C–C6H11 −0.589 −0.399
4′–Br 0.345 0.205
μo

c 1.871 1.887

aFit statistics, r = 0.774, s = 0.43, F = 3.59, n = 35.
br = 0.745, s = 0.42, F = 3.01, n = 35.
cμo is the (constant) contribution of the parent structure to MIC.

be used to make predictions for substituents not included in the original
analysis. The technique may break down when there are linear depen-
dencies between the structural descriptors, for example, when two sub-
stituents at two positions always occur together, or where interactions
between substituents occur. Advantages of the technique include its abil-
ity to handle data sets with a small number of substituents at a large num-
ber of positions, a situation not well handled by other analytical meth-
ods, and its ability to describe quite unusual substituents since it does not
require substituent constant data. A number of variations and improve-
ments have been made to the original Free and Wilson method, these and
applications of the technique are discussed in a review by Kubinyi [17].

6.4 MULTIPLE REGRESSION: ROBUSTNESS,
CHANCE EFFECTS, THE COMPARISON
OF MODELS AND SELECTION BIAS

6.4.1 Robustness (Cross-validation)

The preceding sections have shown how linear regression equations,
both simple and multiple, may be fitted to data sets and statistics
calculated to characterize their fit. It has also been shown how at least
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one statistic, the correlation coefficient, can give a misleading impression
of how well a regression model fits a data set. This was shown in Fig-
ure 6.4 which also demonstrates how easily this may be checked for a
simple two-variable problem. A plot of predicted versus observed goes
some way towards verification of the fit of multiple regression models
but is there any other way that such a fit can be checked? One answer to
this problem is a method known as cross-validation or jack-knifing. This
involves leaving out a number of samples from the data set, calculating
the regression model and then predicting values for the samples which
were left out. Cross-validation is not restricted to the examination of re-
gression models; it can be used for the evaluation of any method which
makes predictions and, as will be seen in the next chapter, may be used
for model selection.

How are the left-out samples chosen? One obvious way to choose
these samples is to leave one out at a time (LOO) and at one time this
was probably the most commonly used form of cross-validation. Using
the LOO method it is possible to calculate a cross-validated R2, by com-
parison of predicted values (when the samples were not used to calculate
the model) with the measured dependent variable values. This is also
sometimes referred to as a prediction R2, R2

cv or Q2. Such correlation
coefficients will normally be lower than a ‘regular’ correlation coefficient
(but see later) and are said to be more representative of the performance
(in terms of prediction) that can be expected from a regression. Other
‘predictive’ statistics, such as predicted residual sum of squares (PRESS,
see Chapter 7), can also be calculated by this procedure. Cross-validation
can not only give a measure of the likely performance of a regression
model, it can also be used to assess how ‘robust’ or stable the model is.
If the model is generally well fitted to a set of data then omission of one
or more sample points should not greatly disturb the regression coeffi-
cients. By keeping track of these coefficients as samples are left out, it is
possible to evaluate the model for stability, and also to identify which
points most affect the fit.

Although LOO cross-validation is the most obvious choice, is it
the best? Unfortunately, it is not. Figure 6.13 shows a simple two-
dimensional situation in which a straight line model is well fitted to
a set of data points which also contains a few outliers.

Some of these points (a and b) will not affect the fitting of the line to
the rest of the data and so will be badly predicted (whether included in
the model or not) but would not alter the regression coefficients. Other
points (c and d) which lie off the line but outside the rest of the data
will affect the fit and thus will be badly predicted when left out and will
alter the coefficients of the model. So far, so good: LOO cross-validation
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Figure 6.13 Two-dimensional example of a data set with outliers.

would identify these points. Samples e and f, however, occur along with
another point well removed from the line and thus LOO would not
identify them as being poorly predicted. A solution to this problem is to
leave compounds out in groups but the question then arises as to how
to choose the groups. The most obvious way to do this is to choose the
cross-validation groups at random and to repeat this a sufficient number
of times to ensure that the cross-validation results are representative.
Cross-validation in groups also results in the need for a lot of computer
time to carry out the recalculation of the models and can generate a lot
of information which needs to be assessed. This used to be a problem
when computers were relatively slow but today they are so fast that the
extra computing overhead is rarely a problem. Some statistics packages
have cross-validation built in.

The other way to test how well a regression model is fitted to a set
of data is to see how well it performs in prediction. Although this isn’t
really a test of “fit” it can indicate problems in the fitted model. So, in
order to test prediction another data set is required as first discussed
in chapter 1. This is an evaluation set, that is to say a set of data with
results that has been held back from the model fitting process. This is
also often called a test set, although this is really incorrect as a true test
set is one that becomes available after the model has been fitted, usually
because new measurements have been made. As has been pointed out
elsewhere there is no standard for the nomenclature used in naming these
sets; many of the test sets shown in the examples discussed in chapter 4,
for instance, are actually evaluation sets. Perhaps because of this lack of
standardization, the term Q2 is sometimes used to refer to the prediction
results for an evaluation or test set, when really it should be R2

eval or
R2

test. Bearing this in mind it is important to read literature reports
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of model fitting and evaluation carefully in order to discern what the
reported statistics actually mean.

A problem with the use of evaluation or test sets arises with the ques-
tion of which mean should be used to calculate the sums of squares
necessary to give the correlation coefficient. An OECD guideline (OECD
Document ENV/JM/MONO(2007)2, 2007, pp 55) oddly suggests the
use of the original training set mean. Schüürmann and colleagues have
pointed out that there can be problems with using the training set mean
including the contradictory result of obtaining Q2 values higher than
the fitted R2 results [18]. The recommendation from this study is that
the training set mean should be used when calculating cross-validation
statistics, either in groups or LOO, but that the test set mean should be
used when computing statistics for a test set.

Cross-validation is a useful technique for the assessment of fit and
predictive performance of regression (and other) models but it is not the
perfect measure that it was once proposed to be, particularly LOO cross-
validation. A good solution to the questions of robustness and predictive
performance is to use well-selected training and test sets, but this is a
luxury we cannot always afford.

6.4.2 Chance Effects

One of the problems with regression analysis, and other supervised learn-
ing methods, is that they seek to fit a model. This may seem like a curious
statement to make, to criticize a method for doing just what it is intended
to do. The reason that this is a problem is that given sufficient oppor-
tunity to fit a model then regression analysis will find an equation to fit
a data set. What is meant by ‘sufficient opportunity’? It has been pro-
posed [19] that the greater the number of physicochemical properties
that are tried in a regression model then the greater the likelihood that
a fit will be found by chance. In other words, the probability of finding
a chance correlation (not a true correlation but a coincidence) increases
as the number of descriptors examined is increased. Will not the statis-
tics of the regression analysis fit indicate such an effect? Unfortunately,
the answer is no; a chance correlation has the same properties as a true
correlation and will appear to give just as good (or bad) a fit.

Do such chance correlations happen, and if so can we guard against
them? The fact that they do occur has been confirmed by experiments
involving random numbers [20]. Sets of random numbers were gen-
erated, one set chosen as a dependent variable and several other sets
as independent variables, and the dependent fitted to the independents
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Figure 6.14 Plot of mean R2 versus the number of screened variables for regression
equations generated for sets of random numbers (reproduced from ref. [20] with
permission of the American Chemical Society).

using multiple regression. This procedure was repeated many times and
occasionally a ‘significant’ correlation was found. A plot of average R2

versus the number of random variables screened, for data sets contain-
ing different numbers of samples, is shown in Figure 6.14. As originally
proposed, the probability of finding a chance correlation for a given size
of data set increases as the number of screened variables is increased.
Plots such as that shown in the figure may be used to limit the number of
variables examined in a regression study although it should be pointed
out that these results apply to random numbers, and real data might be
expected to behave differently.

Another way in which we can assess the possibility of chance correla-
tions is a method known as Y scrambling. This is performed by randomly
swapping the values of the response variable around while maintaining
the structure of the independent variables. The dependent variable thus
has the same distribution as the original data, mean, standard deviation
and so on, but as the values have been scrambled any significant rela-
tionships with the independent variables should have been destroyed.
Having scrambled the Y values, the regression model is recalculated, the
Y values are scrambled again and the regression model recalculated and
this is carried out a number of times. The results for the scrambled sets
are collected and their correlation coefficients compared with the corre-
lation coefficient of the original model. Figure 6.15 shows the results of
Y scrambling 500 times for a 2 term regression model computed on 25
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Figure 6.15 Plot of frequency of correlation coefficient values for 500 Y scramblings
of a regression model.

data points. The correlation coefficient of the original regression model
was 0.67 and as can be seen from the plot all the scrambled correlation
coefficients except 1 are lower than the original model. Thus we can be
quite confident that the original model is not a chance fit. Having said
all this, perhaps the best test of the significance of a regression model is
how well it performs with a real set of test data.

6.4.3 Comparison of Regression Models

If two regression equations contain the same number of terms and have
been fitted to the same number of data points, then comparison is
simple. The R2 values will show which equation has the best fit and
the F and t statistics may be used to judge the overall significance and
the significance of individual terms. Obviously, if one equation is to be
preferred over another it is expected that it will have significant fit statis-
tics. Other factors may influence the choice of regression models, such as
the availability or ease of calculation of the physicochemical descriptors
involved. If the regression equations involve different numbers of terms
(independent variables), then direct comparison of their correlation coef-
ficients is not meaningful. Since the numerator for the expression defining
the multiple correlation coefficient (Equation (6.14)) is the explained sum
of squares, it is to be expected that this will increase as extra terms are



P1: OTA/XYZ P2: ABC
JWBK419-06 JWBK419/Livingstone September 26, 2009 15:12 Printer Name: Yet to Come

180 REGRESSION ANALYSIS

added to a regression model. Thus, R2 would be expected to increase as
extra terms are added. An alternative statistic to R2, which takes account
of the number of terms in a regression model, is known as the adjusted
R2 coefficient (R

2
)

R
2 = 1 − (1 − R2)

n − 1
n − p − 1

(6.29)

where n is the number of data points and p the number of terms in the
equation. This statistic should be used to compare regression equations
with different numbers of terms. Finally, if two equations are fitted to
different numbers of data points, selection of a model depends on how
it is to be used.

6.4.4 Selection Bias

The selection of variables for inclusion in a multiple regression model
or, for that matter, many kinds of mathematical models describing the
relationship between a response variable and descriptor variables is often
a very necessary step. There are situations where variable selection is not
necessary, when testing an hypothesis for example or where the analyti-
cal method is able to cope with extra unneeded variables, but more often
than not some selection process is required. Apart from the problem of
deciding which variables to choose, are there any other drawbacks to
variable selection? The unfortunate answer to this question is yes. When
variables are selected from a large pool of potential variables they are
usually chosen to maximize some function involving the response vari-
able, such as R2. This selection process suffers from an effect known as
competition or selection bias. A simple experiment with random num-
bers will demonstrate this:

� Four sets of 25 random numbers were generated to represent a
dependent (y) variable and three independents (x1, x2, x3). These
were standard normal variables, that is to say with zero mean and
unit variance.

� One x variable was chosen at random and the y variable regressed
on it and the regression coefficient and R2 values recorded.

� Step 2 was repeated but the y variable was regressed on all three x
variables and the result with the highest correlation was recorded.

� The whole process was repeated a 1000 times.
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Figure 6.16 Plot of frequency of occurrence of (a) regression coefficients (b) magni-
tude of regression coefficients and (c) F values for randomly selected (grey) regression
models and models selected to maximize R2 (black) (reproduced from ref. [21] with
permission of Wiley-VCH)

Figure 6.16 shows the results of this experiment where the values ob-
tained from random selection are shown in grey and those from maxi-
mum R2 are shown in black.

The first part of the figure shows the histograms for the regression
coefficients which, for the randomly chosen x, are fairly normal in shape
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and centred around zero. Since the variables are random numbers we
would expect no correlation between them and the regression coefficient
(m in y = mx + c) should be zero. The result for the maximum correlation
set are quite different, however, and here we see a bimodal distribution
which shows that the regression coefficients are centred about two values
(negative and positive) which are smaller (larger) than zero. In the second
part of the figure where the absolute values of the regression coefficients
are plotted this result is even clearer. So, this is one effect of selection
bias; the regression coefficients are larger in magnitude than those chosen
at random. There is, however, another perhaps more alarming effect of
selection bias and that is that it has a marked effect on significance levels.
This can be seen in the third part of the figure where the distribution
of F ratios for the different models are plotted. The grey arrow marked
on the figure is the value of F (4.35) for the 95th percentile from the
1000 simulations for the random selections, that is to say the value
of F for the 950th regression when the 1000 values are arranged in
ascending numerical order. Because the experiment is fitting y to one
x with a sample size of 25 this should correspond with the upper 5 %
point of the F-distribution on 1 and 25 − 1 − 1 = 23 degrees of freedom,
i.e. 4.30. The two values are in good agreement which shows that in
the case of this simulation 95 % of the regression models would have
an F value which doesn’t exceed the critical value and thus would be
deemed to be non significant. If we now look at the F distribution from
the regressions chosen to maximize the fit we find that over 15 % of the
values exceed this critical value thus, using the tabulated value for F, it
would be concluded that the significance level is 15 % not 5 %. To assess
the significance of a model selected when maximizing R2 would require
an F value of approximately 7.1 which is the 95th percentile of the F
values from maximum fit.

These F values have been termed Fmax and simulations have been run
using various combinations of sample size (n), model size (p) and pool
size (k) to provide a more appropriate set of critical values to judge the
significance of multiple linear regression models constructed from large
pools of variables [22, 23]. The antimycin analogue data set used as
an example in forward inclusion regression (Section 6.3.1.1) and genetic
algorithm selection (6.3.1.5) serves well to illustrate the use of these Fmax

values. The first line of Table 6.9 shows the F values obtained from fitting
regression models containing 1, 2 and 3 terms and the second row gives
the usual F values from tables.

Based on this evidence it would appear that all three models are highly
significant. The third line of the table shows the Fmax values obtained
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Table 6.9 Comparison of actual, tabulated, and simulated
F-values for the antimycin data (reproduced from ref. [22]
with permission of the American Chemical Society (2005)).

Terms in the model 1 2 3

F value from fit 13.55 18.0 17.5
Tabulated F 4.62 3.85 3.54
Fmax (k) 4.58 3.63 3.48
Fmax (10) 11.06 10.03 9.80
Fmax (23) 13.88 14.85 17.39
Fmax (53) 17.22 21.11 29.73

from simulations in which the pool size was equal to the size of the fitted
model (k = p) and these of course should correspond to the tabulated F
values which, within the limits of precision of the simulation process,
they do. The fourth line of the table shows Fmax values obtained from
simulations with a pool size of 10 variables, the number of variables used
in the original reported stepwise regression, and here we can see that the
Fmax values are considerably larger. On the basis of these results the
original models would still be judged as ‘significant’ but it is plain that
the regular tabulated values are inappropriate. The last two rows of the
table give the Fmax values obtained from simulations with pool sizes of
23 (the variables used to choose the subset of 10 from) and 53 which
was the original starting pool of variables before unsupervised variable
elimination. It is left to the reader to judge the significance of these
regression models.

Tabulations of Fmax from these simulation experiments are useful but
of course in practice tabulations often lack the precise combination of
n, p and k which is needed to assess a particular regression model. It is
possible to estimate Fmax values by means of a power function which was
fitted to the simulation results and this estimator is available on the web-
site of the Centre for Molecular Design at the University of Portsmouth
(http://www.port.ac.uk/research/cmd/research/selectionbiasinmultiple
regression/) as is access to the Fmax simulator.

6.5 SUMMARY

Regression analysis is a very useful tool for the identification and ex-
ploitation of quantitative relationships. The fit of regression models may
be readily estimated and the direction and magnitude of individual cor-
relations may give some useful clues as to mechanism. Regression models
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are easily interpreted, since they mimic a natural process by which we try
to relate cause and effect, but it should be remembered that a correlation
does not prove such a relationship. Successful regression models may
inspire us to design experiments to examine causal relationships and, of
course, empirical predictions are always of use. There are dangers in the
use of regression analysis – even quite simple models may be very mis-
leading if judged by their statistics alone – but there are means by which
some of the dangers may be guarded against. This chapter has been a
brief introduction to some of the fundamentals of regression analysis;
for further reading see Draper and Smith [3], Montgomery and Peck [4],
or Rawlings [5].

In this chapter the following points were covered:

1. how simple linear regression works and how to judge the quality
of the models;

2. multiple linear regression models – what they are and how to con-
struct them;

3. how to judge the quality and performance of multiple linear regres-
sion models;

4. non-linear regression modelling;
5. chance effects and how to avoid them;
6. the problems of selection bias and how it inflates regression coeffi-

cients and the statistics used to judge them;
7. regression models with indicator variables – what they are and how

to interpret them.
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7
Supervised Learning

Points covered in this chapter

� Supervised learning methods for classified data – discriminant anal-
ysis and SIMCA

� Regression on principal components
� Partial Least Squares regression (PLS)
� Continuum regression
� Feature selection

7.1 INTRODUCTION

The common feature underlying supervised learning methods is the use
of the property of interest, the dependent variable, to build models
and select variables. Regression analysis, which warranted a chapter
of its own because of its widespread use, is a supervised learning tech-
nique. Supervised methods are subject to the danger of chance effects
(as outlined in Section 6.4.2 for regression) which should be borne
in mind when applying them. The dependent variable may be classi-
fied, as used in discriminant analysis described in the first section of
this chapter, or continuous. Section 7.3 discusses variants of regres-
sion, which make use of linear combinations of the independent vari-
ables; Section 7.4 describes supervised learning procedures for feature
selection.

A Practical Guide to Scientific Data Analysis David Livingstone
C© 2009 John Wiley & Sons, Ltd
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7.2 DISCRIMINANT TECHNIQUES

The first two parts of this section describe supervised learning meth-
ods which may be used for the analysis of classified data. There are a
number of techniques which can be used to build models for such data
and one has already been discussed, k-nearest-neighbours, but here we
will consider only two: discriminant analysis and SIMCA. The use of
artificial neural networks to analyse classified data is described in Chap-
ter 9 (Section 9.3.2) and consensus models which use several classifi-
cation methods are discussed in Section 9.6. Discriminant analysis is
related to regression while the other technique, SIMCA, has similarities
with principal component analysis (PCA). The final parts of this section
describe confusion matrices and consider some of the conditions which
data should meet when analysed by discriminant techniques.

7.2.1 Discriminant Analysis

Discriminant analysis, also known as the linear learning machine,1 is
intended for use with classified dependent data. The data may be mea-
sured on a nominal scale (yes/no, active/inactive, toxic/nontoxic) or an
ordinal scale (1,2,3,4; active, medium, inactive) or may be derived from
continuous data by some rule (such as ‘low’ if <10, ‘high’ if >10). The
objective of regression analysis is to fit a line or a surface through a set
of data points; discriminant analysis may be thought of as an orthogonal
process to this in which a line or surface is fitted in between two classes
of points in a data set. This is illustrated in Figure 7.1 where the points
represent compounds belonging to one of two classes, A or B, and the
line represents a discriminating surface.

It is confusing, perhaps, that the discriminant function itself (shown
by the dotted line in Figure 7.1) does run through the data points; the
discriminant surface represents some critical value of the discriminant
function, often zero. Projection of the sample points onto this discrimi-
nant function yields a value for each sample and classification is made by
comparison of this value with the critical value for the function. In this
simple two-dimensional example, the discriminant function is a straight
line; in the case of a set of samples described by P physicochemical

1 Linear discriminant analysis is equivalent to the linear learning machine. There are also
procedures for non-linear discriminant analysis (as there are for non-linear regression) but
these will not be considered here.
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Figure 7.1 Two-dimensional representation of discriminant analysis. The dotted
line represents the discriminant function and the solid line a discriminant surface
which separates the two classes of samples.

properties, the discriminant function would be a P-dimensional hyper-
surface. The discriminant function may be represented as

W = a1x1 + a2x2 + . . . . . apxp (7.1)

or more succinctly as

W =
p∑

i=1

aixi (7.2)

where the xi’s are the independent variables used to describe the samples
and the ai’s are fitted coefficients. These coefficients are known as the
discriminant weights and may be rescaled to give discriminant loadings
[1] which are the loadings of the variables onto the discriminant func-
tion, reminiscent of principal component loadings, and which are in fact
the simple correlation of each variable with the discriminant function.
Two things may be noticed from this equation and the figure. The com-
bination of variables is a linear combination, thus this method strictly
should be called linear discriminant analysis (LDA). The line shown
drawn in the figure (which is at right angles to the discriminant function)
is not the only line that could be drawn between the two classes of com-
pounds. Creation of a different discriminant surface (drawing another
line) is achieved by computing a different discriminant function. Unlike
regression analysis, where the least squares estimate of regression coef-
ficients can give only one answer, the coefficients of the variables in a
discriminant function may take one of a number of values. As long as the
discriminant function correctly classifies all of the samples, then it does
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not matter what the values of the discriminant loadings are. This is not
to say that an individual discriminant analysis procedure run repeatedly
on the same data set will give different answers, but that discriminant
functions are more susceptible to change when samples or descriptors are
added to or removed from the data set. The fact that a unique solution
does not exist for a discriminant function has implications in the use of
discriminant analysis for variable selection, as described in Section 7.4.
Figure 7.1 also demonstrates how one of the alternative names, the linear
learning machine, arose in artificial intelligence research. The algorithm
to generate the discriminant function is a ‘learning machine’ which aims
to separate the two classes of samples in a linear fashion by ‘learning’
from the data.

Returning to Equation (7.1), how is this used? Once a discriminant
function has been generated, a prediction can be made for a compound
by multiplication of the descriptor variables by their coefficients and
summation of these products. This will give a value of W which, if it
exceeds some critical value, will assign the compound to one of the two
classes. A value of zero may be used as the critical value so that if W
is positive the compound belongs to class 1 (A in Figure 7.1), if nega-
tive then to class 2 (B in Figure 7.1). The question also arises of how
to judge the quality of a discriminant function. In terms of prediction,
this is quite easily done by comparison of the predicted class member-
ship with known class membership. A more stringent test of the pre-
dictive ability of discriminant analysis is to use a leave one out (LOO)
cross-validation procedure as described for regression analysis in Sec-
tion 6.4.1. It is also possible to compute a statistic for discriminant anal-
ysis which is equivalent to the F statistic used to characterize the fit of
regression models. This statistic may be used to judge the overall signif-
icance of a discriminant analysis result and, in a slightly different form
as a partial F statistic, also used to construct discriminant functions (see
ref. [1]).

An early example of the use of discriminant analysis in QSAR involved
inhibition of the enzyme monoamine oxidase (MAO) by derivatives of
aminotetralins and aminoindans shown in Figure 7.2 ([2], see also Sec-
tion 5.5).

These compounds inhibited the enzyme in vitro, and it was possible
to obtain percentage inhibition data for them in an enzyme assay but
the crucial test was a measure of their activity in vivo. This was assessed
by judgement of the severity of symptoms following administration of
dl-Dopa and was given a score of 0, 1, 2, or 3 as shown in Table 7.1.
Initial examination of the data by discriminant analysis suggested that
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Figure 7.2 Parent structure for the compounds shown in Table 7.1 (reproduced
from ref. [2] copyright American Chemical Society).

the compounds should be classified into just two groups,2 and thus a
two-group discriminant function was fitted as shown in the table. This
function involved the steric parameter, Es

c, and an indicator variable
which showed whether the compounds were substituted in position X
or Y in Figure 7.2. The results of classification by this function are quite
impressive: only one compound (number 18) is misclassified. A more
exacting test of the utility of discriminant analysis was carried out by
fitting a discriminant function to 11 of the compounds in Table 7.1
(indicated by a ∗). Once again, Es

c and the indicator variable were found
to be important; one of the training set compounds was misclassified and
all of the test set compounds were correctly assigned.

A comparison of the performance of discriminant analysis and other
analytical techniques on the characterization of two species of ants by
gas chromatography was reported by Brill and co-workers [3]. Sam-
ples of two species of fire ants, Solenopsis invicta and S. richteri, were
prepared using a dynamic headspace analysis procedure. The gas chro-
matography analysis resulted in the generation of 52 features, retention
data for cuticular hydrocarbons, for each of the samples. Each of these
descriptors was examined for its ability to discriminate between the two
species of ants and the three best features selected for use by the different
analytical methods. A nonlinear map of the samples described by these
three features is shown in Figure 7.3 where it is clear that the two species
of ants are well separated.

Analysis of this data was carried out by k-nearest-neighbour (see Sec-
tion 5.1), discriminant analysis and SIMCA (see Section 7.2.2). The dis-
criminant analysis routine used was the linear learning machine (LLM)
procedure in the pattern recognition package ARTHUR. A training/test
set protocol was used in which the data was split up into two sets five

2 This was supported by the pharmacology since on retest, some compounds moved between
groups 0 and 1 or 2 and 3, but rarely from (0,1) to (2,3) or vice versa.
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Figure 7.3 Nonlinear map of two species of fire ant, Solenopsis invicta (♦) and
Solenopsis richteri (�), described by three GC peaks (reproduced from ref. [3] with
permission of Elsevier).

times, with all of the original data used as a test set member at least once.
Results of these analyses are shown in Table 7.2. These rather impressive
results are perhaps not surprising given the clear separation of the two
species shown in Figure 7.3. They do, however, illustrate an important
general feature of data analysis and that is that there is no ‘right’ way to
analyse a particular data set. As long as the method used is suitable for
the data, in this case classified dependent data, then comparable results
should be obtained if the data contains appropriate information.

Table 7.2 Classification of fire ants characterized by gas chromatography data
(reproduced from ref. [3] with permission from Elsevier).

Method Category∗ Training correct (%) Test correct (%) Overall (%)

KNN 1 100 100 100
(k = 10) 2 100 100 100

LLM 1 100 89.6 97.9
2 100 100 100

SIMCA 1 100 100 100
2 100 100 100

∗
1 = S. richteri, 2 = S. invicta.
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These two examples have involved classified dependent data and con-
tinuous independent data. It is also possible to use classified independent
data in discriminant analysis, as it is in regression (such as Free–Wilson
analysis) or a combination of classified and continuous independent vari-
ables. Zalewski [4] has reported a discriminant analysis of sweet and
nonsweet cyclohexene aldoximes using indicator variables describing
chemical structural features. From the discriminant function it was pos-
sible to identify features associated with the two classes of compounds:

Sweet a short chain up to three carbons
a substituted carbon at a particular position
a cyclohexane ring

Nonsweet a carbon chain at a different position to the sweet com-
pounds

the presence of a heteroatom in a ring

This function classified correctly 22 out of 23 sweet compounds and
24 out of 29 nonsweet derivatives. The same report also described a
discriminant analysis of another set of aldoxime derivatives characterized
by molecular connectivity indices (see Chapter 10). The discriminant
function involved just two of these indices [5]

DF = 1.21 1χ − 3.88 4χp (7.3)

The first term (1χ) in Equation (7.3) describes the size of molecules
in terms of the number of bonds, the second term (4χp) is influenced
by the size of the substituents. Compounds with a value of DF greater
than −3.27 were classified as sweet. This discriminant function correctly
assigned nine out of ten sweet compounds and eight out of ten nonsweet.

How are discriminant functions built? The construction of a multi-
ple variable discriminant function presents similar problems to the con-
struction of multiple regression models (see Section 6.3.1) and similar
solutions have been adopted. The stepwise construction of discriminant
functions presents an extra problem in that there is not necessarily a
unique solution, unlike the situation for regression. The other question
that may have occurred to a reader by now is whether discriminant
analysis is able to handle more than two classes of samples. The an-
swer is yes, although the number of discriminant functions needed is
not known in advance. If the classes are organized in a uniform way
in the multidimensional space, then it may be possible to classify them
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Table 7.3 Classification of cancer patients based on tumour marker measurements
(reproduced from ref. [6] with permission of John Wiley & Sons, Ltd).

LDA correct (%)a

Discrimination between Classification Prediction KNN (%)

Controls - patientsb 83.1 83.7 85.7
Controls - lungs 92.8 91.2 86.8
Controls - breast 79.1 81.1 81.5
Controls - gastro 93.4 91.9 89.1

aThe data from 102 subjects (30 controls, 72 patients) was divided into training set
(classification) and test set (prediction) containing about 70 % and 30 % of the subjects
respectively.
bThe difference between controls and all patients.

using a single discriminant function, e.g. if W (from Equation 7.1) < x
then class 1, if x < W < y then class 2, if W > y then class 3 (where x
and y are some numerical limits). When the classes are not organized in
such a convenient way, then it will be necessary to calculate extra dis-
criminant functions; in general, k classes will require k − 1 discriminant
functions.

An example of multi-category discriminant analysis can be seen in a
report of the use of four different tumour markers to distinguish between
controls (healthy blood donors) and patients with one of three different
types of cancer [6]. The results of this analysis are shown in Table 7.3
where LDA is compared with k-nearest-neighbour (KNN, k was not
specified).

7.2.2 SIMCA

The SIMCA3 method is based on the construction of principal compo-
nents (PCs) which effectively fit a box (or hyper-box in P dimensions)
around each class of samples in a data set. This is an interesting applica-
tion of PCA, an unsupervised learning method, to different classes of data
resulting in a supervised learning technique. The relationship between
SIMCA and PLS, another supervised principal components method, can
be seen clearly by reference to Section 7.3.

3 The meaning of these initials is variously ascribed to Soft Independent Modelling of Class
Analogy, or Statistical Isolinear MultiCategory Analysis, or SImple Modelling of Class Analogy.
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How does SIMCA work? The steps involved in a SIMCA analysis are
as follows:

1. The data matrix is split up into subsets corresponding to each class
and PCA is carried out on the subsets.

2. The number of PCs necessary to model each class is determined
(this effectively defines the hyper-box for each category).

3. The original descriptors are examined for their discriminatory
power and modelling power (see below) and irrelevant ones dis-
carded.

4. PCA is again carried out on the reduced data matrix and steps 2
and 3 repeated. This procedure continues until consistent models
are achieved.

The discriminatory power and modelling power parameters are mea-
sures of how well a particular physicochemical descriptor contributes to
the PCs in terms of the separation of classes and the position of samples
within the classes. Since the PCs are recalculated when descriptors with
low discriminatory or modelling power are removed, new parameters
must be recalculated for the remaining properties in the set. Thus,
the whole SIMCA analysis becomes an iterative procedure to obtain
an optimum solution. Readers interested in further mathematical
details of the SIMCA method should consult the chapter by Wold and
Sjostrom [7].

The results of applying the SIMCA procedure can perhaps best be
seen in a diagram such as that shown in Figure 7.4. The hyper-boxes

Figure 7.4 Graphical representation of SIMCA (reproduced from ref. [8] with per-
mission of the American Chemical Society).
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Table 7.4 Comparison of SIMCA and KNN for classification of water samples
(reproduced from ref. [9] with permission from Energia Nuclear & Agricultura).

Number of points
incorrectly classified

Number of
Region samples 9-NN SIMCA

Serra Negra 46 2 16
Lindoya 24 2 5
Sao Jorge 7 1 0
Valinhos 39 2 3
Correct (%) 93.8 79.3

do not fit around all of the points in each class but for the purposes
of prediction it is possible to assign a sample to the nearest hyper-box.
The size and shape of the hyper-boxes allows a probability of class
membership to be assigned to predictions and if the objects within a
class have some associated continuous property, it is possible to make
quantitative predictions (by the position of a sample within the hyper-
box compared to other points).

The SIMCA technique has been applied to a variety of problems within
the QSAR field and others. One data set that has already been cited
(Section 5.2) was also analysed by SIMCA [9]. This data consisted of
water samples characterized by their concentrations of four elements
(the four most important for classification were chosen from a total of
18 elements measured). A comparison of the performance of SIMCA
and the worst nearest neighbour analysis is shown in Table 7.4. For a
test set of seven samples, four Lindoya and three Serra Negra, the 9-NN
analysis classified all correctly while the SIMCA method misclassified
two of the Serra Negra samples as Valinhos.

Another example of the use of SIMCA for the analysis of multicate-
gory data was reported by Page [10]. This involved the characterization
of orange juice samples of different varieties from various geographical
locations using the following techniques: HPLC (34), inductively coupled
plasma emission spectrometry (10), infrared (40), fluorescence (6), 13C
NMR (49), ultraviolet (29), enzymatic analysis (6), and GC (13). The
numbers in brackets give the number of parameters measured using each
method; the use of such a variety of analytical techniques allowed the
identification of different components of the juices, e.g. trace elements,
sugars, organic acids, polyphenols etc. The performance of SIMCA on
the HPLC data (carotenoids, flavones, and flavonoids) is shown in
Table 7.5. This is a particular type of table that is often used to
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Table 7.5 SIMCA classification of orange juice samples (reproduced from ref.
[10] with permission from the Institute of Food Technologists).

Computed class – assigned (%)
True
classa 1 2 3 4 5 6 7 8

1 100
2 100
3 82.4 11.8 5.9
4 94.4 5.6
5 6.7 93.3
6 16.7 83.3
7 100
8 18.2 81.8

aThe classes are: 1, Valencia (Florida); 2, Valencia (other US); 3, Valencia (non-US);
4, Hamlin (all); 5, Pineapple (all); 6, Navel (all); 7, others (Florida); 8, others (Brazil).

summarize the results of classification algorithms and which has the
rather wonderful name ‘confusion matrix’ as discussed in the next sec-
tion. In this example SIMCA can be seen to have done quite an impressive
job in classification; three of the classes (1, 2 & 7) are completely cor-
rectly predicted and two others (4 & 5) are over 90 % correct. The lowest
figure on the diagonal of the table is 81.8 %, and in most cases, wrong
assignment is only made to one other class.

7.2.3 Confusion Matrices

Reporting the results of a classification method might, at first thought,
appear to be simple. All that is required is to report the number, or per-
centage, of each class that is correctly predicted, surely? Unfortunately,
on reflection, it isn’t quite as simple as that. Consider the situation where
we have an equal number of samples of two classes and that the classi-
fication method, discriminant analysis, k-nearest-neighbour, SIMCA or
whatever, correctly classifies all of the members of class one but gets all
the members of class two wrong. The prediction success for class one
is 100 % but the overall prediction rate is only 50 %. This is where the
confusion matrix comes in. Table 7.6 shows the layout of a confusion
matrix.

In this table the two classes are conventionally referred to as positive
and negative although for this one can read active/inactive or class 1/class
two or big/small and so on. The first entry in the table, TP, is the number
of true positives, that is to say the number of members of the positive
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class which are correctly classified as positive. The next entry on this row,
FN, stands for false negatives, in other words the number of members
of the positive class which are predicted to be negative. The second row
contains the corresponding false positives, FP, and true negatives, TN,
and the third row contains totals of positive and negative predictions.
The top two entries of the last column are known as sensitivity, the
percentage of positives predicted correctly, and specificity, the percentage
of negatives predicted correctly. These are the numbers that are most
often considered or quoted when assessing or reporting the results of
a classification analysis. The entry in the bottom right hand cell of the
table is the total percentage correctly predicted and this is also often
used to summarize the results of an analysis. The bottom row contains
two important numbers and these are the percentage of cases correctly
predicted to be positive, known as the predictive power of a positive
test, and the corresponding percentage of cases correctly predicted to be
negative, the predictive power of a negative test.

When considering how well a classification method has performed
on a particular data set it is important to be aware of these predictive
powers as well as the sensitivity and specificity of predictions. There
may be circumstances where false positives or negatives are less impor-
tant, for example it may be better to mis-classify a blood sample as
indicative of cancer since further tests will identify this, but generally
one might aim to have predictive powers and sensitivity/specificity of
about the same order. It is also important to be aware of class mem-
bership numbers since this affects the expected ability of a classifier, as
discussed before for k-nearest neighbour methods, and also the number
of descriptors used in a classification model (see next section). Some sta-
tistical packages may produce a simplified confusion matrix as shown
in Figure 7.5. The results shown in the figure, termed a classification
matrix, contain just the totals for each class and the percentages cor-
rect without the predictive powers of the positive and negative tests.
The figure also shows results for what is termed a jacknife classification
matrix. Jacknife is another name for leave-one-out cross-validation (see
Section 6.4.1) in which each sample is left out in turn, the discriminant
function fitted to the remaining samples and the left out sample classi-
fied. In this case the results are identical indicating that the function is
able to generalize, or that none of the samples is an outlier, or both, of
course. As discussed in the last chapter this is not necessarily the best
test of predictive ability of any mathematical model and it is much better
to split the data into training and test sets, preferably several times, as a
check.
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Figure 7.5 Example of the output from discriminant analysis applied to a well
known data set (the Fisher Iris data).

7.2.4 Conditions and Cautions for Discriminant Analysis

As was said at the beginning of this chapter, supervised learning tech-
niques in general are subject to the dangers of chance effects, and discrim-
inant techniques are no exception. Jurs and co-workers have reported
quite extensive investigations of the problem of chance separation [11–
14]. As was the case for regression analysis using random numbers, it
was found that the probability of achieving a separation by chance using
linear discriminant analysis increased as the number of variables exam-
ined was increased. The situation, however, for discriminant analysis is
compounded by the question of the dimensionality of the data set. In the
limit where a data set contains as many physicochemical (or structural,
e.g. indicators) variables as there are samples in the set, there is a trivial
solution to the discriminant problem. The discriminant procedure has as
many adjustable parameters (the discriminant function coefficients) as
there are data points and thus can achieve a perfect fit. This is equiva-
lent to fitting a multiple linear regression model to a data set with zero
degrees of freedom. The recommendation from Jurs’s work is that the
ratio of data points (compounds, samples, etc.) to descriptor variables
should be three or greater.

Another aspect of the dimensionality of a data set that is perhaps not
quite so obvious concerns the number of members in each class. Ideally,
each of the classes in a data set should contain about the same num-
ber of members. If one class contains only a small number of samples,
say 10 % of the total points or less, then the discriminant function may
be able to achieve a trivial separation despite the fact that the ratio of
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Figure 7.6 Illustration of a data set in which one class is embedded in another.

points to descriptors for the overall data set is greater than three. The fol-
lowing guidelines should be borne in mind when applying discriminant
techniques.

� The number of variables employed should be kept to a minimum
(by preselection) and the ratio N:P (samples : parameters) should
be greater than three.

� The number of members in each class should be about equal, if nec-
essary by changing the classification scheme or by selecting samples.

Finally, it may be the case that the data is not capable of linear separation.
Such a situation is shown in Figure 7.6 where one class is embedded
within the other. An interesting technique for the treatment of such
data sets makes use of PCs scaled according to the parameter values of
the class of most interest, usually the ‘actives’ [15]. This is somewhat
reminiscent of the SIMCA method.

7.3 REGRESSION ON PRINCIPAL COMPONENTS
AND PARTIAL LEAST SQUARES

Methods such as PCA (see Section 4.2) and factor analysis (FA) (see Sec-
tion 5.3) are data-reduction techniques which result in the creation of
new variables from linear combinations of the original variables. These
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new variables have an important quality, orthogonality, which makes
them particularly suitable for use in the construction of regression mod-
els. They are also sorted in order of importance, in so far as the amount of
variance in the independent variable set that they explain, which makes
the choice of them for regression equations somewhat easier than the
choice of ‘regular’ variables. Unfortunately, the fact that they are linear
combinations makes the subsequent interpretation of regression models
somewhat more difficult. The following sections describe regression us-
ing PCs, a variant of this called partial least squares (PLS), and, briefly,
a technique called continuum regression which embraces both of these
and ordinary multiple regression.

7.3.1 Regression on Principal Components

The first step in carrying out principal component regression (PCR) is,
unsurprisingly, a PCA. This produces scores and loadings as described
by Equation (4.1), reproduced below.

PC1 = a1,1v1 + a1,2v2 + . . . . . a1,PvP

PC2 = a2,1v1 + a2,2v2 + . . . . . a2,PvP

PCq = aq,1v1 + aq,2v2 + . . . . . aq,PvP (7.4)

The scores are the values of each PC for each sample, the loadings
are the subscripted coefficients (ai,j) in Equation (7.4). A score for a
particular compound or sample in the data set (for a particular principal
component) is computed by multiplying the descriptor variable values
by the appropriate loadings and then adding together the products. Each
PC has associated with it a quantity called an eigenvalue, a measure of
how much of the variance in the original data set is described by that
component. Since the components are calculated in order of decreasing
amounts of variance explained, it follows that the first PC will have
the largest eigenvalue in the set and subsequent PCs successively smaller
eigenvalues. Can these eigenvalues be used as a measure of importance
or ‘significance’? After all, PCA will produce as many components as
the smaller of N points or P dimensions,4 so there may be as many PCs
as there were originally dimensions. The answer to this question is a
reassuring perhaps! If the original data are autoscaled (see Section 3.3),

4 Actually, it is the rank of the matrix, denoted by r(A), which is the maximum number of
linearly independent rows (or columns) in A. 0 ≤ r(A) ≤ min (n,p), where A has n rows and
p columns.
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then each variable will contribute one unit of variance to the data set,
which will have a total variance of P where P is the number of variables
in the set. As PCs are produced, their eigenvalues will decrease until
they fall below a value of one. At this point the components will no
longer be explaining as much variance as one of the original variables
in the set and this might make a reasonable limit to assess components
as meaningful (however, see later). For most real data sets, components
with an eigenvalue of approximately one are found in a far smaller
number than the original number of properties.

Having carried out PCA, what comes next? The principal component
scores are treated as any other variables would be in a multiple regression
analysis and MLR models are constructed as shown in Equation (7.5)

y = a1 PCx1 + a2 PCx2 + . . . . . . . ap PCxp + c (7.5)

where y is some dependent variable, perhaps log 1/C for a set of bio-
logical results, a1 to ap are a set of regression coefficients fitted by least
squares to the p principal components in the model and c is a constant
(intercept). The fit of the regression model can be evaluated by using the
usual regression statistics and the equation can be built up by forward-
inclusion, backward-elimination or whatever (see Chapter 6). Is it possi-
ble to say which PCs should be incorporated into a PCR model? Surely
the components are calculated in order of their importance and thus we
might expect them to enter in the order one, two, three, and so on. This
is partly true, components are calculated in order of their importance in
terms of explaining the variance in the set of independent variables and
very often the first one or two components will also be best correlated
with a dependent variable. But for this to happen depends on a good
choice of variables in the first place, in so far as they are correlated with
y, and the fact that a linear combination of them will correlate with the
dependent variable.

An example may illustrate this. In an attempt to describe the experi-
mentally determined formation constants for charge-transfer complexes
of monosubstituted benzenes with trinitrobenzene, a set of computa-
tional chemistry parameters were calculated [16]. The initial data set
contained 58 computed physicochemical descriptors, which after the re-
moval of correlated variables (see Section 3.5), left a set of 31. Parameters
were selected from this set, on the basis of their ability to describe the
formation constants (see Section 7.4), to leave a reduced subset of 11 de-
scriptors. PCA carried out on this set gave rise to four components with
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Table 7.7 Variable loadings∗ for the first five PCs derived from the reduced data
set of 11 variables (reproduced from ref. [16] with permission of the Royal Society
of Chemistry).

Component (eigenvalue)

1 (2.73) 2 (2.19) 3 (1.78) 4 (1.23) 5 (0.95)

Variable Loading

CMR 0.48 −0.34
clogP −0.41 −0.47
EHOMO −0.36 0.49
P3 0.41 0.33
μx 0.48 −0.37
Sn(1) −0.31 0.42
Sn(2) −0.59
P1 −0.41 0.60
Fe(4) −0.39 −0.38
μ −0.40 0.40 0.38
Sn(3) −0.60
∗
Only loadings above 0.3 are shown for clarity.

an eigenvalue greater than one, and one component with an eigenvalue
close to one (0.95), as shown in Table 7.7.

Forward-inclusion regression analysis between κ, a substituent con-
stant derived from the formation constants, and these PCs led to the
following equations

κ = 0.191PC1 + 0.453 (7.6)

R2 = 0.5 F = 33.01 SE = 0.32

κ = 0.191PC1 + 0.193PC4 + 0.453 (7.7)

R2 = 0.732 F = 43.77 SE = 0.24

κ = 0.191PC1 + 0.193PC4 + 0.130PC5 + 0.453 (7.8)

R2 = 0.814 F = 45.22 SE = 0.20

n = 35 for all three equations, the F statistics are all significant (at 99 %
probability) and the t statistics for the individual regression coefficients
are significant at greater than the 1 % level.

A number of things may be seen from these equations. The first compo-
nent to be incorporated in the regression models was indeed the first PC
and this, combined with a constant, accounted for half of the variance in
the dependent variable set (R2 = 0.5). The next component to enter the
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model, however, was PC4 despite the fact that the variables in the set of
11 had been chosen for their individual ability to describe κ. Clearly, the
linear combinations imposed by PCA, combined with the requirements
of orthogonality, did not produce new variables in PC2 and PC3 which
were useful in the description of κ. The third PC to be included has an
eigenvalue of less than one and yet it is seen to be significant in Equation
(7.8). If the eigenvalue cut-off of less than one had been imposed on this
data set, Equation (7.8) would not have been found.

As extra terms are added to the regression model it can be seen that the
regression coefficients do not change, unlike the case for MLR with un-
transformed variables where collinearity and multicollinearity amongst
the descriptors can lead to instability in the regression coefficients. The
regression coefficients in Equations (7.6) to (7.8) remain constant be-
cause the principal component scores are orthogonal to one another, the
inclusion of extra terms in a PCR leads to the explanation of variance
in the dependent variable not covered by terms already in the model.
These features of PCR make it an attractive technique for the analysis
of data; an unsupervised learning method (lower probability of chance
effects?) produces a reduced set of well-behaved (orthogonal) descrip-
tors followed by the production of a stable, easily interpreted, regression
model. Unfortunately, although the regression equation is easily un-
derstood and applied for prediction, the relationship with the original
variables is much more obscure. This is the big disadvantage of PCR, and
related techniques such as PLS described in the next section. Inspection
of Table 7.7 allows one to begin to ascribe some chemical ‘meaning’ to
the PCs, for example, bulk factors (CMR and P3) load onto PC1 and
log P (−0.47) loads onto PC4, but it should be remembered that the
PCs are mathematical constructs designed to explain the variance in the
x set. The use of varimax rotation (see Section 4.2) may lead to some
simplification in the interpretation of PCs.

7.3.2 Partial Least Squares

The method of partial least squares (PLS) is also a regression technique
which makes use of quantities like PCs derived from the set of inde-
pendent variables. The PCs in PLS regression models are called latent
variables (LV),5 as shown in the PLS equation, Equation (7.9).

y = a1LV1 + a2LV2 + . . . . . . apLVp (7.9)

5 This term may be generally used to describe variables derived from measured variables (for
example, PCs, factors, etc.).



P1: OTA/XYZ P2: ABC
JWBK419-07 JWBK419/Livingstone September 26, 2009 15:42 Printer Name: Yet to Come

REGRESSION ON PRINCIPAL COMPONENTS 207

where y is a dependent variable and a1 to ap are regression coefficients
fitted by the PLS procedure. Each latent variable is a linear combination
of the independent variable set.

LV1 = b1,1x1 + b1,2x2 + . . . . . . b1,pxp

LV2 = b2,1x1 + b2,2x2 + . . . . . . b2,pxp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LVq = bq,1x1 + bq,2x2 + . . . . . . bq,pxp (7.10)

As in PCA, PLS will generate as many latent variables (q) as the smaller
of P (dimensions) or N (samples). Thus far, PLS appears to generate
identical models to PCR so what is the difference (other than terminol-
ogy)? The answer is that the PLS procedure calculates the latent variables
and the regression coefficients in Equation (7.9) all at the same time. The
algorithm is actually an iterative procedure [17] but the effect is to com-
bine the PCA step of PCR with the regression step. Latent variables, like
PCs, are calculated to explain most of the variance in the x set while re-
maining orthogonal to one another. Thus, the first latent variable (LV1)
will explain most of the variance in the independent set, LV2 the next
largest amount of variance and so on. The important difference between
PLS and PCR is that the latent variables are constructed so as to maxi-
mize their covariance with the dependent variable. Unlike PCR equations
where the PCs do not enter in any particular order (see Equations (7.6)
to (7.8)) the latent variables will enter PLS equations in the order one,
two, three, etc. The properties of latent variables are summarized below.

� The first latent variable explains maximum variance in the inde-
pendent set; successive latent variables explain successively smaller
amounts of variance.

� The latent variables conform to 1 with the provision that they max-
imize their covariance with the dependent variable.

� The latent variables are orthogonal to one another.

One problem with the PLS procedure, common to both PCR and multiple
linear regression (MLR), is the choice of the number of latent variables
to include in the model. The statistics of the fit can be used to judge the
number of variables to include in an MLR but the situation is somewhat
more complex for PCR and PLS. Judgement has to be exercised as to
how ‘significant’ the LVs or PCs are. Although the statistics of the fit may
indicate that a particular PC or LV is making a significant contribution to
a regression equation, that variable may contain very little ‘information’.
The eigenvalue of a PC or LV may be a guide but as was seen in the
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previous section, some cut-off value for the eigenvalue is not necessarily
a good measure of significance.

A commonly used procedure in the construction of PLS models is to
use leave-one-out (LOO) cross-validation (see Section 6.4.1) to estimate
prediction errors. This works by fitting a PLS model to n − 1 samples
and making a prediction of the y value for the omitted sample (ŷ). When
this has been carried out for every sample in the data set a predicted
residual error sum of squares (PRESS) can be calculated for that model.

PRESS =
n∑

i=1

(yi − ŷi)
2 (7.11)

Note that this sum of squares looks similar to the residual sum of squares
(RSS) given by Equation (6.12) but is different; in Equation (6.12) the
ŷi is predicted from an equation that includes that data point; here the
ŷi is not in the model hence the term predictive residual sum of squares.
PRESS values are calculated for all the models to be considered and then
various criteria may be employed to determine the optimal model. One
simple way to do this is to choose the model with the lowest PRESS
value. Since PRESS is a function of residuals this model will minimize
predictive errors. Another way is to select a model which yields a local
minimum. The model is chosen to contain the fewest components while
minimizing PRESS. A plot of PRESS versus the number of components
(a scree plot) is quite often illuminating in these situations, as PRESS will
decrease with increasing components and then will begin to increase, as
predictive ability worsens, but may then decrease again. A third method
is to set some threshold value of PRESS and the optimal model is then
chosen to be the first model with a PRESS score below this threshold.
These criteria, particularly the threshold value, however are somewhat
subjective.

Various numeric criteria involving PRESS have also been proposed
[18]. Wold [17] suggested a quantity called the E statistic (Equa-
tion (7.12)) to judge the difference in predictive ability of two PLS
models.

E = PRESSi

PRESSi−1
(7.12)

The E statistic compares a PLS model of i components with the model
containing one component less and in order to evaluate E for the one
component model, PRESS for the model containing no components is
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calculated by comparing predicted values with the mean. The original
suggestion for using E was that models with an E value < 1.0 were sig-
nificant. Some problems with leave-one-out methods have already been
discussed (Section 6.4.1) and thus other approaches to model selection
have involved different choices of selection for the left out set [19]. All of
this may appear very confusing but fortunately most implementations of
PLS offer some built-in model selection criteria and the usual principle of
parsimony, that is to say selection of the simplest model where possible,
is often the best advice.

On the face of it, PLS appears to offer a much superior approach to
the construction of linear regression models than MLR or PCR (since the
dependent variable is used to construct the latent variables) and for some
data sets this is certainly true. Application of PLS to the charge-transfer
data set described in the last section resulted in a PLS model containing
only two dimensions which explained over 90 % of the variance in the
substituent constant data. This compares very favourably with the two-
and three-dimensional PCR equations (Equations (7.7) and (7.8)) which
explain 73 and 81 % of the variance respectively. Another advantage
that is claimed for the PLS approach is its ability to handle redundant
information in the independent variables. Since the latent variables are
constructed so as to correlate with the dependent variable, redundancy
in the form of collinearity and multicollinearity in the descriptor set
should not interfere. This is demonstrated by fitting PLS models to the
31 variable and 11 variable parameter sets for the charge-transfer data.
As shown in Table 7.8 the resulting PLS models account for very similar
amounts of variance in κ.

How are PLS models used? One obvious way is to simply make pre-
dictions for test set samples by calculation of their latent variables from
Equation (7.10) and application of the appropriate regression coefficients
(Equation (7.9)). The latent variables may be used like PCs for data dis-
play (see Chapter 4) by the construction of scores plots for samples and

Table 7.8 Modelling κ by PLS (reproduced from ref. [16] with
permission of the Royal Society of Chemistry).

Percentage of κ variance explained using:

PLS model of dimension: 11 variable dataset 31 variable dataset

1 78.6 78.7
2 92.9 90.4
3 94.9 95.1
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Figure 7.7 A PLS scores plot for a set of halogenated ether anaesthetics; the el-
lipses enclose compounds with similar side-effects (reproduced from ref. [20] with
permission of Wiley-VCH).

loadings plots for variables. A PLS analysis of halogenated ether anaes-
thetics allowed the production of the scores plot shown in Figure 7.7 in
which anaesthetics with similar side-effects are grouped together [20].
The biological data available for these compounds included a measure
of toxicity and separate PLS models were fitted to the anaesthetic and
toxicity data. Prediction of toxicity was good from a three-component
PLS model as shown in Figure 7.8.

Another widespread use of the PLS technique is based on its ability to
handle very large numbers of physicochemical parameters. The increas-
ing use of molecular modelling packages in the analysis of biological and
other data has led to the establishment of so-called three-dimensional
QSAR [21–23]. In these approaches a grid of points is superimposed on
each of the molecules in the training set. Probes are positioned at each
of the points on the grid and an interaction energy calculated between
the probe and the molecule. Depending on the resolution chosen for
the grid, several thousand energies may be calculated for each type of
probe for every molecule in the set. Clearly, many of these energies will
be zero or very small and may be discarded, and many will be highly
correlated with one another. For example, when a positively charged
probe is placed at the grid points near a region of high electron density,
the attractive interactions will be similar. PLS is used to model the rela-
tionship between these grid point interaction energies and the dependent
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Figure 7.8 Plot of toxicity predictions from a three-component PLS model (repro-
duced from ref. [20] with permission of Wiley-VCH).

variable. The resultant PLS models may be visualized by displaying the
‘important’ grid points, as determined by their loadings onto the latent
variables and the coefficients of these variables in the PLS regression
equation.

What are the problems with the PLS technique? One problem, like
the question of deciding dimensionality, is shared with MLR and PCR.
Why fit a linear model? The imposition of simple linear relationships on
nature might be thought of as ‘expecting too much’. Fortunately, simple
or at least fairly simple linear relationships often do hold and linear
models do quite a good job. Another problem with PLS is also shared
with PCR and that is the question of interpretation of the latent variables.
Table 7.9 shows the important loadings of the 11 variable descriptor set
for the charge-transfer data onto the first two PCs and the first two LVs.
LV1 is very similar to PC1 with the exception that it contains clogP, LV2

has some similarity with PC2 but of course PC2 was not included in the
PCRs.

7.3.3 Continuum Regression

In MLR the equations are constructed so as to maximize the explanation
of the correlation between the dependent variable and the independent
variables. Variance in the independent set is ignored, regression coeffi-
cients are simply calculated on the basis of the fit of y to the x variables.



P1: OTA/XYZ P2: ABC
JWBK419-07 JWBK419/Livingstone September 26, 2009 15:42 Printer Name: Yet to Come

212 SUPERVISED LEARNING

Table 7.9 PC and LV∗ loadings for charge-transfer data (reproduced from ref.
[16] with permission of the Royal Society of Chemistry).

PCR component
(eigenvalue) PLS latent variable

1 (2.73) 2 (2.19) 1 2

Variable Loading Loadings

CMR 0.48 −0.34 0.48
clogP −0.41 −0.32 0.67
EHOMO −0.36 −0.51
P3 0.41 0.42
μx 0.48 0.36
Sn(1) −0.31 −0.24
Sn(2)
P1
Fe(4) −0.39 −0.34
μ −0.40 0.40 −0.39 0.4
Sn(3)
∗
As in Table 7.7, only loadings above 0.3 are shown for clarity (except the loading for Sn(1)

on latent variable 1 so that it can be compared with PC1).

PCR, on the other hand, concentrates on the explanation of variance
in the descriptor set. The first step in PCR is the generation of the PCs,
regression coefficients are calculated on the basis of explanation of the
correlation between y and these components.

These two approaches to the construction of regression models be-
tween y and an x set can be viewed as extremes. The relative balance
between explanation of variance (in the x set) and correlation (y with x)
can be expressed as a parameter, α, which takes the value of 0 for MLR
and 1 for PCR. PLS regression sets out to describe both variance and
correlation, and thus will have a value of α of 0.5, midway between these
two extremes. Continuum regression (CR) is a new type of regression
procedure which contains an adjustable parameter, α, which allows the
production of all three types of regression model [24]. An alternative
formulation of continuum regression has been developed in which the
parameter α is optimized during the production of the regression model
[18]. The two most popular forms of regression analysis, MLR and PLS,
tend to be applied to data sets in a quite arbitrary way, often dictated
by the whim (or experience) of the analyst. Continuum regression
presents the opportunity to allow the structure within a data set to
determine the most appropriate value of α, and hence the decision as to
which regression model to fit. Indeed, since α is an adjustable parameter
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Table 7.10 Continuum regression results for literature data.

Number of Number of
Referencea samples variables R2 αb

[25] (PLS) 7 11 0.69 (1)c 0.73

[26] (MLR) 21 6 0.94 (3) 0.35, 0.07, 0.07

[27] (MLR) 25 3 0.85 (1) 0.55

[28] (MLR) 40 4 0.95 (3) 0.58, 0.85, 0.58

[29] (MLR) 12 3 0.85 (2) 0.4, 0.24

aThe method used in the original report is shown in brackets.
bWhere more than one component is used, the α values are for models of each dimensionality.
cThe number of components used for this R2 is given in brackets.

which can adopt any value between zero and one, it is possible to fit mod-
els which do not correspond to MLR, PLS, or PCR. This is illustrated
in Table 7.10 for some literature data sets where it can be seen that α

values of 0.24, 0.35, 0.73, and 0.85 are obtained for some components
of the fitted models. The first two of these correspond to models which
are somewhere between MLR and PLS, while the latter two correspond
to models in between PLS and PCR. The two- and three-dimensional
models for the Wilson and Famini example [26] have α values near zero
which correspond to the MLR used in the original analysis. The example
data set from Clark and co-workers [27], on the other hand, which was
also originally fitted by MLR gives an α value of 0.55 corresponding to
a PLS model.

The charge-transfer data shown in the last two sections has also been
modelled by continuum regression. Since it was possible to fit both PCR
and PLS models to this data set it was expected that CR should model
this data well, as indeed it does. Table 7.11 shows a summary of these
models along with the corresponding information from the PCR and
PLS models.

It can be seen from the table that continuum regression is doing an
even better job at modelling the data set than PLS which, itself, was an
improvement over PCR. The correlation coefficient for the first dimen-
sional models was 0.5, 0.786 and 0.84 for PCR, PLS and CR respectively.
PCR had to be taken to 3 dimensions to get a reasonable model whereas
both PLS and CR modelled the set well in just two dimensions although
it should be remembered that each of these dimensions contains loadings
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Table 7.11 Summary of PCR, PLS and continuum regression models.

PCR PLS
Continuum
regression

Model Dimension 1 2 3 1 2 3 1 2 3

Components PC1 PC1 PC1 LV1 LV1 LV1 C1 C1 C1
PC4 PC4 LV2 LV2 C2 C2

PC5 LV3 C4
R2 0.5 0.732 0.814 0.786 0.929 0.949 0.84 0.95 0.97
α 1 1 1 0.5 0.5 0.5 0.31 0.31 0.31

0.24 0.24
0.46

for all of the original 11 variables. The α values for the PCR and PLS
models are fixed of course, at 1.0 and 0.5 respectively, so it is interesting
to see the values of α assigned by the algorithm to the three CR compo-
nents. The first two represent something in between MLR (α = 0) and
PLS, while the third component is much closer to a PLS latent variable.
Interpretation of these α values is not obvious but it is intriguing that
continuum regression appears to offer the useful facility of allowing the
data to select the model to fit. Finally, the (simplified) structure of the
first two CR components is shown in Table 7.12 for comparison with
the PCR and PLS components shown in Table 7.9.

7.4 FEATURE SELECTION

One of the problems involved in the analysis of any data set is the iden-
tification of important features. So far this book has been involved with
the independent variables, but the problem of feature selection may also
apply to a set of dependent variables (see Chapter 8). The identifica-
tion of redundancy amongst variables has already been described (Sec-
tion 3.5) and techniques have been discussed for the reduction of dimen-
sionality as a step in data analysis. These procedures are unsupervised
learning methods and thus do not use the property of most interest,
the dependent variable. What about supervised learning methods? The
obvious way in which a supervised technique may be used for the iden-
tification of important features is to examine the relationship between
the dependent and independent variables. If the dependent variable is
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Table 7.12 Constitution of CR
components.

CR component

1 2

Variable Loading∗

CMR 0.47
clogP −0.40 −0.80
EHOMO −0.39
P3 0.40
μx 0.37
Sn(1)
Sn(2)
P1
Fe(4) −0.3
μ 0.30
Sn(3)
∗
As in Table 7.7, only loadings above 0.3

are shown for clarity.

continuous then correlation coefficients may be calculated, if classi-
fied then variables can be selected which split the data (more or less)
into the two or more classes. Both of these methods have already been
mentioned; the 11 parameters from the charge-transfer set were selected
by their individual correlation with κ and the gas chromatography pa-
rameters from the fire ants were chosen for their ability to distinguish
the two species.

This approach selects variables based on their individual usefulness but
of course they are often then combined into overall predictive models.
Thus, another supervised means of selecting variables is to examine the
parameters that are included in the models. Significant terms in MLR
equations may point to important variables as may high loadings in
PCR components or PLS latent variables. High loadings for variables in
the latter are likely to be more reliable indicators of importance since the
PLS variables are constructed to be highly correlated with the dependent
variable. This process may be useful if further modelling, say the use
of non-linear methods such as artificial neural networks, is going to
be applied to the data set. LDA models may also be used to identify
important variables but here it should be remembered that discriminant
functions are not unique solutions. Thus, the use of LDA for variable
selection may be misleading.
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Genetic algorithms have already been mentioned (Section 6.3.1.5) as a
means of building multiple linear regression models from large pools of
potential descriptor variables and this process, in itself, may be used as a
means of variable selection. Since the genetic approach often gives rise to
a population of models then the frequency of occurrence of variables in
the population may be used as a measure of variable importance. Genetic
methods may be used as a ‘wrapper’ around many sorts of models, such
as linear discriminant functions, PLS equations, artificial neural networks
and so on, and thus this technique can be generally employed for variable
selection. Whatever form of supervised learning method is used for the
identification of important variables it is essential to bear in mind one
particular problem with supervised learning: chance effects. In order to
reduce the probability of being misled by chance correlations it is wise to
be conservative in the use of supervised learning techniques for variable
selection.

7.5 SUMMARY

This chapter has described some of the more commonly used supervised
learning methods for the analysis of data; discriminant analysis and its
relatives for classified dependent data, variants of regression analysis for
continuous dependent data. Supervised methods have the advantage that
they produce predictions, but they have the disadvantage that they can
suffer from chance effects. Careful selection of variables and test/training
sets, the use of more than one technique where possible, and the appli-
cation of common sense will all help to ensure that the results obtained
from supervised learning are useful.

In this chapter the following points were covered:

1. the modelling and prediction of classified data using discriminant
analysis;

2. modelling classified data with SIMCA;
3. reporting results with a confusion matrix;
4. regression on principal components (PCR);
5. partial least squares regression (PLS);
6. model selection for PCR and PLS;
7. continuum regression;
8. feature selection using supervised methods.
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8
Multivariate Dependent Data

Points covered in this chapter

� Use of multiple dependent data in PCA and factor analysis
� Cluster analysis and multiple dependents
� Biplots
� Spectral map analysis
� Methods to handle multiple responses and multiple independents

8.1 INTRODUCTION

The last four chapters of this book have all been concerned with meth-
ods that handle multiple independent (descriptor) variables. This has in-
cluded techniques for displaying multivariate data in lower dimensional
space, determining relationships between points in P dimensions and fit-
ting models between multiple descriptors and a single response variable,
continuous or discrete. Hopefully, these examples have shown the power
of multivariate techniques in data analysis and have demonstrated that
the information contained in a data set will often be revealed only by
consideration of all of the data at once. What is true for the analysis
of multiple descriptor variables is also true for the analysis of multiple
response data. All of the techniques so far described for independent vari-
ables may also be applied to multiple dependent variables, as illustrated
in Figure 8.1.

The following sections of this chapter demonstrate the use of prin-
cipal components and factor analysis (FA) in the treatment of multiple

A Practical Guide to Scientific Data Analysis David Livingstone
C© 2009 John Wiley & Sons, Ltd
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Figure 8.1 Analytical methods that may be applied to one response with multiple
descriptors and multiple responses with multiple descriptors.

response data, cluster analysis, and a method called spectral map analy-
sis. The last section discusses the construction of models between multi-
ple dependent and independent variable sets. It is perhaps worth pointing
out here that the analysis of multivariate response data is even more un-
usual in the scientific literature than the multivariate analysis of indepen-
dent data sets. This is probably not only a reflection of the unfamiliarity
of many multivariate techniques but also of the way in which experi-
ments are conducted. It is not uncommon to design experiments to have
only one outcome variable, an easily determined quantity such as colour,
taste, percentage inhibition, and so on. This demonstrates a natural hu-
man tendency to try to make a complicated problem (the world) less
complicated. In many cases, our experiments do generate multiple re-
sponses but these are often discarded, or processed so as to produce a
single ‘number’, because of ignorance of methods which can be used to
handle such data. Perhaps the following examples will show how such
data sets may be usefully treated.
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8.2 PRINCIPAL COMPONENTS AND
FACTOR ANALYSIS

Compounds which are biologically active often show different effects in
different tests, e.g. related receptor assays, as shown later, or in different
species. A very obvious example of this is the activity of antibacterial
compounds towards different types of bacteria. If a biological results
table is drawn up in which each row represents a compound and each
column the effect of that compound on a different bacterial strain, prin-
cipal components analysis (PCA) may be used to examine the data. An
example of part of such a data set, for a set of antimalarial sulphones
and sulphonamides, is shown in Table 8.1.

The application of PCA to these data gave two principal components
which explained 88 % and 8 % of the variance respectively. Relation-
ships between variables may be seen by construction of a loadings plot,
as shown in Figure 8.2; here the results of Mycobacterium lufu and
Escherichia coli are seen to correspond to one another; the Plasmodium
berghei data is quite separate.

Pictures such as this can be useful in predicting the likely specificity of
compounds and can also give information (potentially) on their mech-
anism of action. When different test results are grouped very closely
together it might be reasonable to suppose that inhibition of the same
enzyme is involved, for example. A multivariate response set need not
be restricted to data from the same type of biological test. Nendza and

Figure 8.2 Loadings plot for three biological responses on the first two principal
component axes (reproduced from ref. [1] with permission of Wiley-VCH).



P1: OTA/XYZ P2: ABC
JWBK419-08 JWBK419/Livingstone September 26, 2009 18:13 Printer Name: Yet to Come

T
ab

le
8.

1
O

bs
er

ve
d

bi
ol

og
ic

al
ac

ti
vi

ty
of

2′ ,4
′ –

su
bs

ti
tu

te
d

4–
am

in
od

ip
he

ny
ls

ul
fo

ne
s

de
te

rm
in

ed
in

ce
ll-

fr
ee

sy
st

em
s

(c
ol

um
ns

1–
3,

I 5
0

[μ
m

ol
/L

])
an

d
w

ho
le

ce
ll

sy
st

em
s

(c
ol

um
ns

4–
6,

I 2
5
, M

I C
[μ

m
ol

/L
])

of
pl

as
m

od
ia

an
d

ba
ct

er
ia

ls
tr

ai
ns

as
in

di
ca

te
d

(r
ep

ro
du

ce
d

fr
om

re
f.

[1
]

w
it

h
pe

rm
is

si
on

of
W

ile
y-

V
C

H
).

P.
be

rg
he

i
M

.l
uf

u
E

.c
ol

i
E

.c
ol

i
M

.l
uf

u
E

.c
ol

i
N

o.
C

om
po

un
d

I 5
0

I 5
0

I 5
0

I 2
5

M
IC

M
IC

1
4′ –

N
H

2
(D

D
S)

12
.4

1
1.

20
34

.3
6

7.
85

7
0.

17
16

.0
0

2
4′ –

O
C

H
3

∗∗
∗

7.
55

12
8.

16
37

.2
77

7
30

.3
8

10
9.

00
3

4′ –
N

O
2

∗∗
∗

31
.0

3
21

2.
74

39
.5

46
10

.7
8

5.
60

4
4′ –

H
10

4.
00

12
.0

6
11

6.
53

33
.4

56
51

.4
4

45
.0

0
5

4′ –
O

H
32

.2
3

1.
50

34
.9

2
5.

86
7

20
.0

6
22

.5
0

6
4′ –

C
l

∗∗
∗

12
.9

9
∗∗

∗
∗∗

∗
59

.7
6

45
.0

0
7

4′ –
N

H
C

O
C

H
3

33
.2

6
7.

01
75

.6
5

21
.4

06
10

.3
3

45
.0

0
8

4′ –
B

r
∗∗

∗
9.

69
∗∗

∗
∗∗

∗
∗∗

∗
33

.7
5

9
4′ –

N
H

C
H

3
26

.7
0

1.
29

46
.2

1
10

.7
40

1.
90

90
.0

0
10

4′ –
N

H
C

2
H

5
∗∗

∗
2.

75
41

.7
1

16
.1

40
0.

90
64

.0
0

11
4′ –

C
H

3
48

.0
0

8.
08

89
.8

4
47

.2
21

16
.1

7
∗∗

∗

12
4′ –

N
(C

H
3
) 2

21
.5

1
1.

76
∗∗

∗
42

.3
74

12
.6

60
∗∗

∗

13
4′ –

C
O

O
C

H
3

14
7.

0
11

.7
5

14
9.

29
12

3.
95

0
13

.7
3

∗∗
∗

14
4′ –

C
O

O
H

∗∗
∗

3.
60

74
.2

4
86

7.
20

0
∗∗

∗
∗∗

∗

15
4′ –

C
O

N
H

N
H

2
76

.5
10

12
.7

2
15

5.
39

36
.1

58
27

.4
6

64
.0

0
∗ T

he
bl

an
k

en
tr

ie
s

in
di

ca
te

a
co

m
po

un
d

no
t

te
st

ed
or

a
m

is
si

ng
pa

ra
m

et
er

.



P1: OTA/XYZ P2: ABC
JWBK419-08 JWBK419/Livingstone September 26, 2009 18:13 Printer Name: Yet to Come

PRINCIPAL COMPONENTS AND FACTOR ANALYSIS 223

Figure 8.3 Loadings for eleven biological test systems on two principal components;
the identity of the test systems is given in Table 8.3 (reproduced from ref. [2] with
permission of Wiley-VCH).

Seydel [2] have reported results of the toxic effects of a set of phenols
and aniline derivatives on three bacterial, four yeast, two algae, one
protoplast, and one daphnia system (Table 8.2).

Loadings of these test systems on the first two principal components
are shown in Table 8.3 and Figure 8.3.

The second principal component, which only explains 9 % of the vari-
ance in the set of 26 compounds, appears to be mostly made up from
the inhibition of algae fluorescence data. All of the test systems have a
positive loading with the first component but inspection of the loadings
plot in Figure 8.3 shows that these variables fall into two groups ac-
cording to the sign of their loadings with the second component. Scores
may be calculated for each of the principal components for each of the
compounds and these scores used as a composite measure of biological
effect. The scores for PC1 were found to correlate well with log k′, a mea-
sure of hydrophobicity determined by HPLC, as shown in Figure 8.4.
Thus, it may be expected that lipophilicity is correlated with the individ-
ual results of each test system.

Response data from both in vitro and in vivo test systems may be
combined and analysed by PCA or FA. This is a particularly useful
procedure since in vitro tests are often expected (or assumed!) to be good
models for in vivo results. A straightforward test of the simple correlation
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Table 8.3 Loadings of the biological test systems on the first
two principal components (reproduced from ref. [2] with
permission of Wiley-VCH).

Test system PC1 PC2

1 MIC E. coli 0.89 0.14
2 MIC M. 169 0.91 0.21
3 I50 E. coli 0.89 −0.13
4 I50 Sacch. cerevisiae 0.92 −0.24
5 I50 Purin 0.92 −0.16
6 I50 ATPase 0.95 −0.20
7 I50 DEF 0.90 −0.32
8 I50 Rubisco 0.88 0.24
9 I50 Algae 0.75 −0.27

10 I50 Fluorescence 0.65 0.70
11 I100 Daphnia (24 h) 0.89 −0.26

between any two experimental systems can of course be easily obtained
but this may not reveal complex relationships existing in a response set.
Figure 8.5 shows the results of a factor analysis of a combined set of in
vitro, in vivo, and descriptor data, there being no reason why data sets
should not be formed from a combination of dependent and independent
data.

The factor plot shows that a calculated (Ke∗-pred) and experimental
(Ke∗) measure of chemical reactivity fall close together, while in another
part of factor space, experimental Ames test (STY) results (in vitro) and
a predicted measure of mutagenicity (SA) are associated. Both of these

Figure 8.4 Plot of PC1 scores versus log k′ (reproduced from ref. [2] with permission
of Wiley-VCH).
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Figure 8.5 Loadings plot from a factor analysis of in vivo and in vitro tests, and
measured and calculated physicochemical descriptors (reproduced from ref. [3] by
permission of Oxford University Press).

associated sets of responses are separated from the in vivo measures of
rat carcinogenicity (Canc), which they are expected to predict (at least
to some extent). Another example of the use of factor analysis in the
treatment of multiple response data involved the antitumour activity of
platinum complexes against the tumour cell lines shown in Table 8.4 [4].

Three factors were extracted which explained 84 % of the variance
of 52 complexes tested in these nine different cell lines. A plot of the

Table 8.4 Cell lines used in the testing of antitumour platinum complexes
(reproduced from ref. [4] with permission of The Pharmaceutical Society of Japan).

Number on
Tumour cell lines

Figure 8.6 Cell line Origin

1 L1210 Mouse leukemia
2 P388 Mouse leukemia
3 LL Mouse lung carcinoma
4 AH66 Rat hepatoma
5 AH66F Rat hepatoma
6 HeLa S3 Human cervical carcinoma
7 KB Human nasopharyngeal carcinoma
8 HT-1197 Human bladder carcinoma
9 HT-1376 Human bladder carcinoma
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Figure 8.6 Loadings plot from a factor analysis of the activity of platinum com-
plexes in a set of nine different tumour cell lines. Cell lines are identified by the
numbers in Table 8.4 (reproduced from ref. [4] with permission of The Pharmaceu-
tical Society of Japan).

rotated1 factor loadings for the first two factors is shown in Figure 8.6
where it can be seen that the tests fall into four groups: AH66F, L1210,
AH66; HeLa, P388, KB; HT-1197, LL; and HT-1376. Compounds that
exhibit a given activity in one of these cell lines would be expected to
show similar effects in another cell line from the same group, thus cutting
down the need to test compounds in so many different cell lines.

The factor scores for the platinum complexes also present some inter-
esting information. Figure 8.7 shows a plot of the factor 2 scores versus
factor 1 scores where the points have been coded according to their ac-
tivity against L1210 in vivo. Factor 2 appears to broadly classify the
compounds in that high scores on factor 2 correspond to more active
compounds; factor 1 does not appear to separate the complexes.

This plot indicates that the results obtained in the in vitro cell lines,
as represented by the factor scores for the complexes, can be used as a
predictive measure of in vivo activity. The factor scores can also be used
as a simple single measure of ‘anticarcinogenic’ activity for use in other
methods of analysis. The complexes were made up of carrier ligands and
leaving groups and the activity contribution of each type of ligand or
leaving group to the factor 2 scores was evaluated by the Free–Wilson
method (Section 6.3.3). The results of this analysis are shown in

1 Simplified by varimax rotation, see Section 4.2.
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Figure 8.7 Scores plot of the first two factor axes for high activity ( �), moderate
activity (◦), and low activity (�) complexes against L1210 (reproduced from ref. [4]
with permission of The Pharmaceutical Society of Japan).

Table 8.5 where the higher positive values indicate greater contribution
to the factor scores, and hence in vivo activity.

Factor scores estimated by the Free–Wilson method are well corre-
lated to the measured factor scores as shown in Figure 8.8. Factor scores
or principal component scores can thus be used as new variables repre-
senting a set of multiple responses, just as they have been used as new
variables representing a set of multiple descriptors. Section 8.5 describes

Figure 8.8 Plot of factor 2 scores estimated from a Free and Wilson analysis ver-
sus experimental factor 2 scores (reproduced from ref. [4] with permission of The
Pharmaceutical Society of Japan).



P1: OTA/XYZ P2: ABC
JWBK419-08 JWBK419/Livingstone September 26, 2009 18:13 Printer Name: Yet to Come

T
ab

le
8.

5
C

on
tr

ib
ut

io
ns

of
ca

rr
ie

r
lig

an
ds

an
d

le
av

in
g

gr
ou

ps
to

fa
ct

or
2

sc
or

es
(r

ep
ro

du
ce

d
fr

om
re

f.
[4

]
w

it
h

pe
rm

is
si

on
of

T
he

Ph
ar

m
ac

eu
ti

ca
lS

oc
ie

ty
of

Ja
pa

n)
.

C
ar

ri
er

lig
an

d
C

on
tr

ib
ut

io
n

L
ea

vi
ng

gr
ou

p
C

on
tr

ib
ut

io
n

1–
(A

m
in

om
et

hy
l)

cy
cl

oh
ex

yl
am

in
e

2.
56

94
T

et
ra

ch
lo

ro
0.

05
99

1–
(A

m
in

om
et

hy
l)

cy
cl

op
en

ty
la

m
in

e
2.

24
97

D
ic

hl
or

o
0.

0
1,

1–
D

ie
th

yl
et

hy
le

ne
di

am
in

e
1.

77
29

O
xa

la
to

−0
.1

47
9

1,
2–

C
yc

lo
he

xa
ne

di
am

in
e

1.
67

38
M

al
on

at
o

−0
.2

58
1

1,
4–

B
ut

an
ed

ia
m

in
e

0.
74

94
Su

lf
at

o
−0

.2
43

8
1,

1–
D

im
et

hy
le

th
yl

en
ed

ia
m

in
e

0.
73

70
2–

M
et

hy
lm

al
on

at
o

−0
.3

39
3

3,
4–

D
ia

m
in

ot
et

ra
hy

dr
op

yr
an

0.
50

84
C

yc
lo

bu
ta

ne
–1

,1
–d

ic
ar

bo
xy

la
to

−0
.8

78
7

D
ia

m
in

e
0.

0
D

ih
yd

ro
xy

di
ch

lo
ro

−1
.4

11
1

N
,N

–d
im

et
hy

le
th

yl
en

ed
ia

m
in

e
−0

.0
89

57



P1: OTA/XYZ P2: ABC
JWBK419-08 JWBK419/Livingstone September 26, 2009 18:13 Printer Name: Yet to Come

230 MULTIVARIATE DEPENDENT DATA

the construction of regression-like models using multiple response and
descriptor data.

8.3 CLUSTER ANALYSIS

We have already seen, in Section 5.4 on cluster analysis, the application
of this method to a set of multiple response data (Figure 5.10). In this
example the biological data consisted of 12 different in vivo assays in
rats so the y (dependent) variable was a 40 (compounds) by 12 matrix.
These compounds exert their pharmacological effects by binding to one
or more of the neurotransmitter binding sites in the brain. Such binding
may be characterized by in vitro binding experiments carried out on
isolated tissues and a report byTesta et al. [5] lists data for the binding
of 21 neuroleptic compounds to the following receptors:

α-noradrenergic, α1 and α2
β-noradrenergic, β(1 + 2)
dopaminergic, D1 and D2
serotoninergic, 5HT1 and 5HT2
muscarinic, M(1 + 2)
histaminic, H1
opioid
Ca2+ channel
serotonin uptake

A dendrogram showing the similarities between these compounds is
given in Figure 8.9 where it can be seen that there are three main clusters.
Cluster A, which is quite separate from the other clusters, contains the
benzamide drugs. The compounds in cluster B, made up of two sub-
groups of different chemical classes, are characterized by higher affinity
for D2 and 5HT2 receptors compared to D1, α1 and 5HT1 and have
no activity at muscarinic receptors. Cluster C contains compounds with
high α1 affinity, similar D1 and D2 affinity and a measurable affinity for
muscarinic receptors (all other compounds have −logIC50 <4 for this re-
ceptor). Compounds shown in bold in Figure 8.9 were also present in the
data set shown in Figure 5.10 and in some cases fall into similar clusters,
e.g. fluphenazine and trifluperazine in cluster B1 are present in the same
cluster in Figure 5.10. This shows the anticipated result that in vitro
receptor binding data may be used to explain in vivo pharmacological
results.
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Figure 8.9 Dendrogram showing the associations between neuroleptic compounds
binding to 14 receptors (reproduced from ref. [5] with kind permission of Springer
Science + Business Media).

Cluster analysis can also be used to show relationships between vari-
ables, dependent or independent. Again, as was said in Section 5.4, a
data set of n objects in a P-dimensional space can also be viewed as a set
of P objects in an n-dimensional sample space. This is demonstrated in
Figure 8.10 for the biological test results shown in Table 8.6 [6].

All of the test results are related to one another to some extent as
shown by the correlation coefficients in the table and more graphically by
the single large cluster in the dendrogram. This nicely illustrates the utility
of a dendrogram since it is immediately obvious that logTD50/ED50 is
separated from the rest of the tests. This can be seen by inspection of the
correlation matrix, for example, the bottom line (logTD50/ED50) where
the highest value is 0.494, but this is not as immediately apparent as
the dendrogram. The dendrogram also clearly shows the unfortunate
similarity between the dose required for therapeutic effect (ED50) and
the dose which shows toxicity (TD50).
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Figure 8.10 Dendrogram of the associations between the biological tests shown in
the correlation matrix in Table 8.6 (reproduced from ref. [6] with permission of
Anticancer Drug Design).

8.4 SPECTRAL MAP ANALYSIS

Principal component scores plots involve two principal components as
the axes of the plot; similarly, principal component loadings plots make
use of two principal components as the plot axes. Therefore it should
be possible to plot both the scores and the loadings simultaneously on
a plot, given the application of some suitable scaling. Such a plot is
known as a biplot [7] and an example is shown in Figure 8.11 for the
charge-transfer data set described in Section 7.3.1.

In the figure the diamonds represent the principal component scores
for the individual rows (compounds) in the data set. These can obviously
be labelled with their row numbers, coloured according to the dependent
variable, and so on. The arrows represent the loadings of the named
variables on the two principal component axes. The direction of the
arrow from the origin indicates the sign of the loading and the length
of the arrow is related to the magnitude of the loading. The loadings
for the variables on these first two principal components are given in
Table 7.7 and here it can be seen that μx and μ (shown as Mux and
Mu on the figure) have positive loadings on PC2 whereas CMR, ClogP
and EHOMO have negative loadings. This is reflected in the directions of
the corresponding arrows on the y-axis (PC2) in Figure 8.11. P3 and
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Figure 8.11 Biplot of the charge-transfer data produced using the program XLS-
Biplot (http://gauss.upf.es/xls-biplot/).

CMR have positive loadings on PC1 in the table but in the figure are
shown with negative loadings. This is just because of the direction that
the program has arbitrarily chosen for this particular PC and in fact there
is an option on the program to reverse the sign of either of the axes. Of
course, as pointed out earlier, the ‘direction’ of a principal component
has no particular significance, it is the relative signs and magnitude of the
variable loadings on the PC’s that are important. So, a biplot allows the
analyst to simultaneously examine relationships between variables and
samples in a single display and there are situations where this approach
can be very useful.

A more spectacular example of biplots is spectral map analysis (SMA)
which was briefly mentioned in Chapter 4 with an example of a spec-
tral map shown in Figure 4.3. The reason for the development of this
technique was the use of activity spectra to represent the activity of com-
pounds in several different pharmacological (usually, but not necessarily)
tests. An example of activity spectra for four α-agonists in six tests on
rats is shown in Figure 8.12.
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Figure 8.12 Activity spectra for four α-agonists (reproduced from ref. [8] with
permission of Elsevier).

The three tests A, B, and C are in vivo antidiarrhoeal, diuretic, and
antiptotic respectively; tests D, E, and F are in vitro clonidine bind-
ing [8]. The similarities between the two compounds in each pair can
immediately be seen. The shape of their activity profiles, or spectra,
demonstrate that guanabenz and nordephrine have similar selectivity for
the six test results shown and simply differ in terms of their potency.
Similarly, amidephrine and methoxamine have virtually identical spec-
tra with amidephrine being the more active (the activity scale is log 1/C
to cause a standard effect).

The distinction between activity and specificity has been likened by
Lewi [8] to the difference between size and shape. As an example, he
suggested the consideration of a table of measurements of widths and
lengths of a collection of cats, tigers, and rhinoceroses. With respect to
size, tigers compare well with rhinoceroses, but with respect to shape,
tigers are classified with cats. In order to characterize shape it is necessary
to compare width/length ratios with their geometric mean ratio. This is
called a contrast and can be defined as the logarithm of an individual
width/length ratio divided by the mean width/length ratio. From the table
of animal measurements, a positive contrast would indicate a rhinoceros
(width/length ratio greater than the mean width/length ratio), whereas a
negative contrast could indicate a cat or a tiger. If the contrast is near
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zero, this may mean an overfed cat, a starving rhinoceros, or some error
in the data.

For the compounds and tests represented by the activity spectra shown
in Figure 8.12, a single major contrast allowed the correct classification
to be made visually. However, when more than one important contrast is
present in the data it becomes difficult, if not impossible, to identify these
contrasts by simple inspection of activity spectra. This is where SMA
comes in as it is a graphical method for displaying all of the contrasts
between the various log ratios in a data table. The SMA process consists
of the following steps.

� logarithmic transformation of the data;
� row centring of the data (subtraction of the mean activity of a

compound in all tests);
� column centring of the data (subtraction of the mean activity of all

compounds in one test);
� application of factor analysis to the doubly centred data;
� application of scaling2 to allow both factor scores and loadings to

be plotted on the same plot (called a biplot).

The end result of this procedure is the production of a biplot in which the
similarities and differences between compounds, tests and compound/
tests can be seen.

The activity spectra shown in Figure 8.12 come from a data set of
18 α-agonists tested in the six different tests. Application of SMA to
this data set produced three factors which explained 48, 40, and 8 %
respectively of the variance of contrasts. The factor scores and loadings
were used to produce the biplot shown in Figure 8.13, the x and y axes
representing the first and second factors, respectively.

At first sight it appears that this figure is horribly complicated but it
does contain a great deal of information and the application of a few
simple ‘rules’ does allow a relatively easy interpretation of the plot. The
rules are as follows.

1. Circles represent compounds and squares represent tests. For ex-
ample, oxymetazoline and clonidine binding in Figure 8.13.

2. Areas of circles and squares are proportional to the mean activity
of the compounds and tests. For example, the mean activity of
compounds in the antidiarrhoeal and diuretic tests are similar.

2 Various scaling options can be applied to produce biplots, see ref. [8] for details.
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Figure 8.13 Spectral map of factor scores and loadings (reproduced from ref. [8]
with permission of Elsevier).

3. The position of compounds and tests are defined by their scores
and loadings on the first two factors. Where compounds are
close together they have similar activity profiles; where tests are
close together they give similar results for the same compounds;
where compounds are close to tests they have high specificity for
those tests. Compounds and tests that have little contrast lie close
to the centre of the map. For example nordephrine and guanabenz
are close together on Figure 8.13 and have similar activity profiles
as shown in Figure 8.12. These compounds are close to the square
symbol for clonidine binding (test D in Figure 8.12).

4. The third most significant factor is coded in the thickness of the
contour around a symbol – a thick contour indicates that the sym-
bol is above the plane of the plot, a thin contour that it lies below it.

5. Compounds and tests that are not represented in the space spanned
by these three factors are represented by symbols with a broken line
contour (none in this example).

6. An axis of contrast can be defined through any two squares repre-
senting tests.

There are many useful features of a data set that can be revealed in
a spectral map such as this and we can see that it is consistent with
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the patterns shown in the activity spectra (Figure 8.12) since these two
pairs of compounds are grouped together on the plot. The use of the
thickness of symbol contours to denote the third factor is perhaps not
very successful but modern computer graphics would allow easy display
of such a plot in three dimensions. In this particular example, the third
factor is probably not very important since it only describes 8 % of the
variance of contrasts. SMA is clearly a useful method for the analysis
of any chemical problem in which a set of compounds is subjected to a
battery of tests which produce some quantitative measure of response.
It offers the advantage of a simultaneous display of the relationships
between both tests and compounds.

8.5 MODELS FOR MULTIVARIATE DEPENDENT
AND INDEPENDENT DATA

Chapters 6 and 7 described the construction of regression models (MLR,
PCR, PLS, and continuum regression) in which a single dependent vari-
able was related to linear combinations of independent variables. Can
these procedures be modified to include multiple dependent variables?
One fairly obvious, perhaps trivial, way to take account of the informa-
tion in two dependent variables is to use the difference between them
or to take a ratio such as logTD50/ED50 as seen in Section 8.3. Another
way to take account of at least some of the information in a multivariate
dependent set is to carry out PCA or FA on the data and use the resulting
scores to construct regression models.

The biological activity data for the nitro-9-aminoacridines shown in
Table 8.6 and Figure 8.10 were analysed by PCA to give two principal
components explaining 81 % and 8 % of the variance in the set [6]. The
loadings of the biological tests on these two principal components are
shown in Table 8.7.

All of the tests appear to have a high positive loading on the first
component and this PC was interpreted as being a measure of ‘general
biological activity’. The main variable loading onto PC2 was the ther-
apeutic index, although this loading is quite small (0.531). Thus the
second PC might be interpreted as a measure of ‘selectivity’. The com-
pounds were described by log P and a number of topological descriptors,
and regression equations were sought between the principal compo-
nent scores and these physicochemical parameters. The first component
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Table 8.7 Loadings of the two significant principal
components after varimax rotation (reproduced from ref. [6]
with permission of Anticancer Drug Design).

Loadings for

Biological tests
∗

PC1 PC2

T1 0.903 −0.124
T2 0.863 −0.252
T3 0.812 −0.386
T4 0.934 0.114
p LD50 0.918 −0.252
p ED50 0.971 0.195
p TD50 0.967 0.151
log LD50/ED50 0.834 0.531
∗
The symbols of the biological tests have the same meaning as in

Table 8.5.

was well described by a parabolic relationship with modified (see paper
for details) log P values

PC1 = −0.25(±0.03) log P2
∗ − 0.80(±0.08) log P∗ + 0.30(±0.11) (8.1)

n = 28 R = 0.97 s = 0.23 F = 201

The values in brackets are the standard errors of the regression coeffi-
cients and it should be noted that R is quoted not R2 as is more usual for
multiple regression equations. The second PC was less well described by
a shape parameter based on molecular connectivity (2K) and an indicator
variable.

PC2 = 0.028(±0.018)2 K − 0.122(±0.07) IN2N − 0.124(±0.101) (8.2)

n = 28 R = 0.762 s = 0.07 F = 17.33

Equation (8.2) only describes 60 % of the variance in PC2 and the high
standard error for the shape descriptor term casts some doubt on the
predictive ability of the equation. However, it is hoped that these two
equations demonstrate the way in which regression models for multi-
variate dependent data can be generated by means of PCA.

Two alternative methods for the construction of regression type mod-
els for multivariate response sets are Partial Least Squares regression
(PLS) and a technique known as canonical correlation analysis (CCA).
PLS has already been described in Chapter 7 (7.3.2) as a regression
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method for constructing models between a single dependent variable
and a set of descriptors but this technique can be more generally applied
to a matrix (set) of dependents and a matrix of independent variables. A
simple example may serve to illustrate this. Measurements of solubility
(logS) and partition coefficient (logP) have been modelled for a set of
552 compounds using multiple linear regression applied to a set of 37
calculated molecular descriptors as the independent variables [9]. The
following rather large regression equations were fitted for logS with 28
and logP with 26 significant descriptors:

log S = ∑
(ai Si ) + 1.128 (8.3)

n = 552, R2 = 0.783, s = 0.753, F = 68.18

log P = ∑
(ai Si ) − 0.635 (8.4)

n = 552, R2 = 0.870, s = 0.645, F = 134.8

Running the PLS regression routine [10] of the statistics package, R,
on this data set gave rise to a model with 37 latent variables, each one
containing contributions from all of the original variables. Such a high
dimensional model is not necessary of course and the problem then is
how to select the appropriate size for a useful model. Table 8.8 shows
the percentage variance explained for the X set (descriptors) and the two
responses with increasing numbers of latent variables in the model.

As can be seen from the table the variance explained steadily increases
with increasing number of components, as expected, but there is no clear
indication of where the model fitting should be stopped. As discussed
earlier, this is one of the problems with fitting PLS models, the number
of components to use, and there is no generally applicable test so the
number of components to retain is a subjective judgement [10]. A plot of
the Root Mean Squared Error of Prediction (RMSEP), however, is more
informative. As can be seen from the plot (Figure 8.14) there is a distinct
discontinuity at 4 components and thus it might be reasonable to stop
the model at this point or shortly after.

The legend on the plot indicates that there should be two sets of
values corresponding to CV and adjusted CV. This particular run was
carried out with leave-one-out cross-validation which of course with a
data set of this size has very little effect since only 1 point is omitted
at a time from 552. The run was repeated with 10 randomly selected
cross-validation segments, thus giving 10 % cross-validation results, and
these are shown in the last 4 rows of Table 8.8. As can be seen from the
table, the model gives an R2 of 0.63 for logS for 5 components and 0.69
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Figure 8.14 Plot of RMSEP vs the number of latent variables (a scree plot) for logS
and logP in a combined PLS model.

for logP. Comparable results to the regression models can be obtained
for larger numbers of components.

So, what about the other technique, canonical correlation analysis?
CCA operates by the construction of a linear combination of q responses

W1 = a1,1Y1 + a1,2Y2 + . . . . . . . . + a1,qYq (8.5)

and a linear combination of p descriptors

Z1 = b1,1 X1 + b1,2 X2 + . . . . . . . . + b1,p Xp (8.6)

where the coefficients in Equations (8.5) and (8.6) are chosen so that
the pairwise correlation between W1 and Z1 is as large as possible.
W1 and Z1 are referred to as canonical variates and the correlation
between them as the canonical correlation. Further pairs of canonical
variates may be calculated until there are as many pairs of variates as the
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smaller of p and q. Important features of the canonical variates are listed
below.

� They are generated in descending order of importance, i.e. canonical
correlation coefficients decrease for successive pairs of variates.

� Successive pairs of variates are orthogonal to one another.

There should be a ring of familiarity about this description of canonical
correlation when we compare it with PCA or FA and, indeed, CCA can
be considered as a sort of joint PCA of two data matrices. The canonical
variates are orthogonal to one another, as are principal components and
factors, and they are generated in decreasing order of importance, al-
though for CCA importance is judged by the correlation between canon-
ical variates, not the amount of variance they explain which is the crite-
rion used for principal components and factors. In this respect, CCA can
also be seen to be akin to PLS since the latent variables in PLS are con-
structed so as to explain variance and maximize their covariance with a
dependent variable. One other similarity which should be pointed out,
which may not be immediately obvious, is the relationship between CCA
and multiple linear regression (MLR). MLR normally involves a single
response variable, Y and thus we can write

W1 = Y (8.7)

and this gives rise to one pair of canonical variates

Z1 = b1,1 X1 + b1,2 X2 + . . . . . . + b1,p Xp (8.8)

where the coefficients are chosen to maximize the correlation between Z1

and W1 (Y). Equation (8.8) shows us that MLR can be viewed as a special
case of canonical correlation analysis. Before moving on to an example
of CCA, it is perhaps worth pointing out some obscuring jargon which
is sometimes used to ‘explain’ the results of application of the technique.
The canonical variates produced by linear combinations of the response
set (W1, W2, and so on) are often called the nth canonical variate of the
first set. Similarly, the linear combinations of the descriptor set (Z1, Z2,
and so on) can be called the nth canonical variate of the second set. Thus,
descriptions like ‘the second canonical variate of the first set’, and ‘the
first canonical variate of the second set’ can confuse when what is meant
is W2 and Z1 respectively.
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Application of CCA to the logS and logP data set described above
resulted in two pairs of canonical variates with canonical correlations
of 0.92 and 0.75. These equate to correlation coefficients of 0.75 for
logS and 0.85 for logP (see ref. [9] for details of how these corre-
lation coefficients are extracted from the canonical correlations) thus
CCA is giving similar results to the regression modelling and PLS, al-
though with a much smaller number of latent variables than the PLS
models.

Application of CCA to the neurotoxic effects of pyrethroid analogues
has been reported by Livingstone and co-workers [8]. Factor analysis of
a set of computed physicochemical properties for these compounds has
been discussed in Section 5.3 of Chapter 5 (Table 5.9). Analysis of two
in vivo responses, knockdown (KDA) and kill (KA), and eight in vitro
responses by factor analysis led to the identification of three significant
factors as shown in Table 8.9.

Factor 1 is associated with both killing and knockdown activity (factor
loadings of −0.93 and −0.5 respectively) and several neurotoxicological
responses, while factor 2 is mostly associated with knockdown. The third
factor, although judged to be statistically significant, is almost entirely
composed of the slope and intercept of the in vitro dose response curves
and was judged not to have neurotoxicological significance. From this
factor analysis of the combined in vitro and in vivo data, it was possible
to identify three in vitro responses which had high association with the
in vivo data, in itself a useful achievement since it is usually easier (and
more accurate) to acquire in vitro data. The responses were the loga-
rithm of the time to maximum frequency of action potentials (LTMF)
which has a high loading on factor 1, the logarithm of the maximum
burst frequency (LBF) which has a high loading on factor 2 and the
logarithm of the minimum threshold concentration (MTC) which loads
on to both factors. These three responses were used to select a subset
of six physicochemical properties (see paper for details) which describe
the pyrethroid analogues. Canonical correlation analysis of this set of
three in vitro responses and six physicochemical descriptors gave rise
to two pairs of significant canonical variates with correlations of 0.91
and 0.88 respectively. The first canonical variate had a high associa-
tion with MTC and thus might be expected to be a good predictor for
both knockdown and kill. The second canonical variate had a signif-
icant association with LBF and thus should model knockdown alone.
An advantage of CCA is the simultaneous use of both response and
descriptor data but this can also be a disadvantage. In order to make
predictions for a new compound it is necessary to calculate values for its
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physicochemical properties and then to combine these using the coeffi-
cients from the canonical correlation to produce descriptor scores (scores
for the second set). These scores are equated by the canonical correlation
to response scores (scores for the first set) but of course the scores are
linear combinations of the individual responses. In order to predict an
individual response for a new compound, it is necessary to obtain mea-
sured values for the other responses. This may be advantageous if one of
the response scores is difficult or expensive to measure, for example, an
in vivo response. The ability to predict in vivo responses from in vitro
data may be a significant advantage in compound design. It may also
be possible to make an estimate for an individual response by making
assumptions about the values of the remaining response variables. The
extra complexity of an approach such as CCA may be a disadvantage
but it also offers a number of advantages.

8.6 SUMMARY

This chapter has shown how multivariate dependent data, from multiple
experiments or multiple results from one experiment, may be analysed
by a variety of methods. The output from these analyses should be con-
sistent with the results of the analysis of individual variables and in some
circumstances may provide information that is not available from con-
sideration of individual results. In this respect the multivariate treatment
of dependent data offers the same advantages as the multivariate treat-
ment of independent data. The simultaneous multivariate analysis of
response and descriptor data may also be advantageous but does suffer
from complexity in prediction.

In this chapter the following points were covered:

1. how PCA and factor analysis can be used to examine the relation-
ships between different dependent (test) data;

2. modelling combined responses using PCA or FA to produce sum-
mary dependent variables;

3. simultaneous examination of dependent and independent data us-
ing PCA, FA and biplots/spectral maps;

4. the use of cluster analysis with multiple dependent variables;
5. modelling multiple dependent data with canonical correlation anal-

ysis and PLS.
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9
Artificial Intelligence
and Friends

Points covered in this chapter

� Expert systems
� Log P and toxicity prediction
� Reaction routes and chemical structure prediction
� Artificial neural networks
� Network interrogation
� Rule induction
� Genetic algorithms
� Consensus models

PREAMBLE

This chapter is mostly concerned with techniques which can be broadly
classified as artificial intelligence. A couple of other topics which are
important in data analysis are also discussed here since they don’t logi-
cally or easily fit elsewhere in this book. If artificial intelligence can be
thought of as mimicking biological systems then so can genetic methods
and hence the chapter title of artificial intelligence and friends. Consensus
modelling doesn’t fit into this analogy so easily!

A Practical Guide to Scientific Data Analysis David Livingstone
C© 2009 John Wiley & Sons, Ltd
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9.1 INTRODUCTION

The workings of the human mind have long held a fascination for man,
and we have constantly sought to explain how processes such as memory
and reasoning operate, how the senses are connected to the brain, what
different physical parts of the brain do, and so on. Almost inevitable
consequences of this interest in our own minds are attempts to construct
devices which will imitate some or all of the functions of the brain, if
not artificial ‘life’ then at least artificial intelligence. It might be thought
that we have already achieved this goal when some of the awesome
computing tasks, such as weather forecasting, that are now carried out
quite routinely (and surprisingly accurately) are considered. Nowadays,
for example, even a simple electrical appliance like the humble toaster
is likely to contain a microchip ‘brain’. Computers, of course, have rev-
olutionized artificial intelligence (AI) research, so much so that devices
are now being built which are models, albeit limited, of the physical
organization and ‘wiring’ of the brain. These systems are known as arti-
ficial neural networks (ANN) and they have proved to be so remarkably
successful that they have found application in a very diverse set of fields
as shown in Table 9.1. The use of ANN in the analysis of chemical data
is discussed in Section 9.3.

AI research has already provided the concepts of supervised and un-
supervised learning to data analysis, and these have proved useful in
the classification of analytical methods and to alert us to the potential
danger of chance effects. But what of the application of AI techniques
themselves to the analysis of chemical data? The linear learning machine,
or discriminant analysis (see Section 7.2.1) is an AI method that is used in
data analysis, but perhaps the most widely used AI technique is a method
called expert systems. There are various flavours of expert systems and

Table 9.1 Applications of artificial neural networks.

‘Reasoning’
∗

Process control

Verification of handwriting on cheques Traffic control on underground stations
Identification of faces for a security

system
Control of a magnetic torus for nuclear

fusion
Credit ratings Control of a chemical plant
Stock market forecasting Control of a nuclear reactor
Drug detection at airports
Grading pork for fat content
∗
Including pattern recognition.
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some authors apply the term to models, e.g. regression models, which
have been derived from a particular set of data. In this chapter, the term
expert system is used only to mean a procedure which has been created
by some human expert or panel of experts. The expert systems described
here do not necessarily have a role in data analysis but they do have
a role in chemistry, for example, to calculate octanol/water partition
coefficients and predict toxicity. The next section of this chapter deals
with expert systems and the following section contains miscellaneous
examples of the use of AI methods in chemistry.

9.2 EXPERT SYSTEMS

The heart of any expert system consists of a set of rules, sometimes
referred to as a rule base or knowledge base, which has been put together
by ‘experts’. The question of course arises of how to define (or find) the
experts, but for the purposes of this discussion an expert is any human
who has an opinion on the particular problem to be solved! Expert
systems are usually, but not necessarily, implemented on a computer
(see, for example, the structural alert system later in this section).

A simple example from the FOSSIL (Frame Orientated System for
Spectroscopic Inductive Learning) system, which aims to identify chem-
icals from spectral data, may illustrate the expert system approach [1].
This system contains, in its knowledge base, information about NMR
spectra, infrared spectra, mass spectra, and ultraviolet spectra along with
spectral heuristics (most suitable technique for assignment of particular
structural properties, etc.) and molecular structures, functional groups,
etc. One of the rules in the infrared section concerns the assignment
of a methyl stretch – are there peaks in the IR spectrum in the region
2950–2975cm−1 and 2860–2885cm−1? This information may be ob-
tained from the user of the system by a prompt (the program asks a
question) or might come from the automatic interpretation of a spec-
trum. A positive answer to this question would indicate the presence
of a methyl group, and it is easy to see how similar rules in this and
other parts of the knowledge base would allow assignment of various
structural features. Some spectral information, of course, may indicate
the presence of several alternative molecular features and here it is neces-
sary to construct logical queries using operators such as IF, AND, NOT,
THEN, ELSE, etc. The information required to satisfy such a query may
be contained entirely in one spectrum or may need to come from other
sources such as NMR and UV. Once the molecular features have been
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recognized, the construction of a molecule from them is not a trivial task
since there will be many ways in which such fragments can be put to-
gether. A commonly adopted approach to this type of problem in expert
systems is the construction of a decision tree which contains a number
of connected nodes. Each node represents a logical question which has
two or more answers and which dictates how the expert system proceeds
with a query, in this example, the construction of a molecule from the
identified features. Further discussion of expert systems can be found in
the book by Cartwright [2] and the review by Jakus [3].

9.2.1 Log P Calculation

One of the earliest applications of expert systems in the field of QSAR
was the development of calculation schemes for octanol/water partition
coefficients. Although the early work with π constants had shown that
they were more or less additive (see Chapter 10), a number of anomalies
had been identified. In addition, in order to calculate log P values from
π constants it is necessary to have a measured log P for the parent and
this, of course, is often unavailable. One approach to the question of how
to calculate log P from chemical structure is to analyse a large number
of measured log P values so as to determine the average contribution of
particular chemical fragments [4]. The fragment contributions constitute
the rules of the expert system, extra rules being supplied in the form
of correction factors. Operation of this expert system consists of the
following few simple steps.

� Break down the chemical structure into fragments that are present
in the fragment table.

� Identify any correction factors that are needed.
� Add together the fragment values and apply the necessary correction

factors to obtain a calculated log P.

Table 9.2 gives an example of some of the fragment contributions for this
method; interestingly the correction factors always appeared to adopt the
same value (0.28) or multiples of it. This was originally given the perhaps
unfortunate name ‘the magic constant’.

The Rekker system of log P calculation was based on a statistical anal-
ysis of a large number of measured partition coefficients and can thus be
called a reductionist approach. An alternative procedure was proposed
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Table 9.2 Some fragment constants and correction factors for the Rekker log P
prediction methoda (reproduced from ref. [5] copyright (1979) Elsevier).

Fragmentb Value Fragment Value

Br (Al) 0.249 COOH (Al) −0.938
Br (Ar) 1.116 COOH (Ar) −0.071
Cl (Al) 0.057 CONH2 (Al) −1.975
Cl (Ar) 0.924 CONH2 (Ar) −1.108
NO2 (Al) −0.920 CH3 0.701
NO2 (Ar) −0.053 C6H5 1.840
OH (Al) −1.470 pyridinyl 0.520
OH (Ar) −0.314 indolyl 1.884

Correction factors

Type Value

Proximity effect – 2C separation 2 × 0.28
Proximity effect – 1C separation 3 × 0.28
H attached to a negative group 0.27
Ar–Ar conjugation 0.31
Proximity effects
(experimental – summation of component fragments)
–COOH 8 × 0.28
–CONH2 4 × 0.28
–NHCONH2 11 × 0.28

aThis is only a small part of the scheme reported by Rekker and de Kort [5].
bThe symbol in brackets denotes aliphatic (Al) or aromatic (Ar).

by Hansch and Leo [6] which involved a small number of ‘fundamental’
fragment values derived from very accurate partition coefficient mea-
surements of a relatively small number of compounds. This technique,
which can be viewed as a constructionist approach, requires a larger
number of correction factors as shown in Table 9.3.

In both cases the procedure for the calculation of a log P value is
the same; a compound is broken down into the appropriate fragments,
correction factors are identified, and the fragments and correction fac-
tor values are summed up. Figure 9.1 illustrates the process for three
different compounds where it can be seen that both methods can give
quite comparable results which are in good agreement with the exper-
imental values. This, of course, is not always the case; for some types
of compounds, as shown in the figure, the Rekker method may give
better estimates than the Hansch and Leo approach, and vice versa for
other sets of compounds. A comparison of the approaches concludes,
perhaps unsurprisingly, that neither can be said to be ‘best’ [7] and it is
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Table 9.3 Some fragment values and correction factors for the Hansch and
Leo log P prediction systema (reproduced from ref. [6] with permission of John
Wiley & Sons, Inc.).

Valueb

Fragment f f φ f φφ

Br 0.20 1.09
Cl 0.06 0.94
NO2 −1.16 −0.03
OH −1.64 −0.44
COOH −1.11 −0.03
CONH2 −2.18 −1.26
–O– −1.82 −0.61 0.53
–NH– −2.15 −1.03 −0.09
–CONH– −2.71 −1.81 −1.06
–CO2– −1.49 −0.56 −0.09

Correction factors

Type Value

Normal double bond −0.55
Conjugate to φ −0.42
Chain single bond −0.12 (proportional to length)
Intramolecular H–bond 0.60 (for nitrogen)
Intramolecular H–bond 1.0 (for oxygen)

aFrom the scheme (Tables IV-1a and IV-1b reported by Hansch and Leo [6]).
bValue given for aliphatic (f ), aromatic (fφ ), and for the fragment between two aromatic
system (fφφ ).

prudent to always compare predictions with measured values whenever
possible.

In these two examples, the knowledge base or rule base of the expert
system consists of the fragment values and correction factors, along with
any associated rules for breaking down a compound into appropriate
fragments. Although the numerical values for the fragments and factors
have been derived from experimental data (log P measurements) it has
required a human expert to create the overall calculation scheme. This
can be seen particularly clearly for the Hansch and Leo system which, be-
cause of the small number of fragments in the scheme, requires a variety
of different types of correction factors to account for the way that dif-
ferent fragments influence one another. Devising the correction factors
and the rules for their application has required the greatest contribution
of human expertise in these two systems. One major problem in the ap-
plication of any expert system to chemical structures is the question of
how to break down compounds into fragments that will be recognized
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Figure 9.1 A comparison of the Rekker and the Hansch and Leo log P calculation
for three molecules (reproduced from ref. [7] copyright (1982) Elsevier).

by the system. The problem lies not so much in the process of creating
fragments but in deciding which are the ‘correct’ fragments. Although
the rules for creating fragments are a necessary part of such expert sys-
tems, it is possible, particularly for large molecules, to create different
sets of fragments which still conform to the rules. If the expert system
has been carefully created, these different sets of fragments (and correc-
tion factors) may yield the same answer, but it is disconcerting to find
two (or more) ways to do the same job. This was a particular problem
when the schemes were first created and all calculations were carried out
manually, but more recently they have been implemented in computer
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Figure 9.2 Computer screen for input of the compound tiotidine to the program
UDRIVE (reproduced with permission of Daylight Chemical Information Systems
Inc.).

systems. The Hansch and Leo system is probably the most widely used,
and is available commercially from Daylight Chemical Information Sys-
tems (www.daylight.com). Of course, a computer implementation of a
chemical expert system requires some means by which chemical struc-
ture information can be passed to the computer program. Unless the
particular expert system simply requires a molecular formula (or some
other atom count), this means that it is necessary to provide two- or
three-dimensional information to the program. There are a variety of
ways in which two- and three-dimensional chemical information can
be stored and processed by computers; the input system used by the
Hansch and Leo expert system of log P calculation (CLOGP) is known
as SMILES (Simplified Molecular Input Line Entry System). The SMILES
coding scheme is so elegantly simple and easy to learn (see Box 9.1) that
it has become used as an input system for several other chemical cal-
culation programs. Figure 9.2 shows the input screen for one means
of access to the CLOGP program1 for the compound tiotidine, an H2

receptor antagonist used for the control of gastric acid secretion.

1 This is the program UDRIVE which provides access to CLOGP and CMR calculation algo-
rithms, as well as the database routine THOR running on DEC VAX machines (once a very
popular scientific computer, defunct since 2005).
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Box 9.1 SMILES - line entry for chemical structure

The SMILES (Simplified Molecular Input Line Entry System) system re-
quires only four basic rules to encode almost all organic structures in
their normal valence states. These rules are as follows.

1. Atoms in the ‘organic’ subset (B, C, N, O, P, S, F, Cl, Br, and I) are
represented by their atomic symbols with hydrogens (to fill normal
valency) implied. Thus,

C - methane (CH4)
N - ammonia (NH3)
O - water (H2O)
Cl - hydrogen chloride (HCl)

Atoms in aromatic rings are specified by lower case letters, e.g.
normal carbon C, aromatic carbon c.

2. Bonds are represented by −, =, and # for single, double, and triple
bonds respectively. Single bonds are implied and thus the − symbol
is usually omitted, but the double and triple bonds must be specified.
Thus,

CC ethane (CH3CH3)
CCO ethanol (CH3CH2OH)
C=C ethylene (CH2=CH2)
O=C=O carbon dioxide (CO2)
C=O formaldehyde (CH2O)
C#N hydrogen cyanide (HCN)

3. Branches are specified by enclosure of the branch within brackets,
and these brackets can be nested or stacked to indicate further
branching.

2-propylamine CH3CH(NH2)CH3 CC(N)C
isobutyric acid CH3CH(CH3)C(=O)OH CC(C)C(=O)O
3-isopropyl-1-hexene CH2CHCH(CH(CH3)2)CH2CH2CH3 C=CC(C(C)C)CCC

4. Cyclic structures are represented by breaking one single or aromatic
bond in each ring and numbering the atoms on either side of the
bond to indicate it. This is shown for several different rings in the
figure. A single atom may have more than one ring closure; different
ring closures are indicated by different numbers (the digits 1–9 are
allowed and can be reused after closure of that ring bond).
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These simple rules allow very rapid encoding of most chemical structures
and need only a few simple additions to cope with other atoms, charges,
isomers, etc. Specification of atoms not in the ‘organic’ subset, for ex-
ample, is coded by use of an atomic symbol within square brackets. An
extensive description of the SMILES system is given by Weininger and
Weininger [8].

One of the most attractive features of the SMILES structure genera-
tion algorithms is that is does not matter where a SMILES string begins,
if the coding is correct the corresponding structure will be produced.
This is in marked contrast to other linear chemical structure coding
schemes where order is important and there are complex rules to de-
cide where to start. The following are all valid SMILES for 6-hydroxy-1,
4-hexadiene.

CH2=CH–CH2–CH=CH–CH2OH C=CCC=CCO
C(C=C)C=CCO
OCC=CCC=C

Although the ordering of coding of a SMILES string does not matter
for the input of structures, it does have an effect on the efficiency of
storing and subsequent searching of a collection of compounds. The
order of coding of structures also has implications for the generation
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of rules for chemical expert systems which, for example, predict three-
dimensional chemical structure. By application of a set of ordering rules,
it is possible to produce a unique SMILES string for any given structure.
This is achieved in the Daylight software by the use of two separate
algorithms.

The SMILES string CNC(NCCSCc1csc(N=C(N)N)n1)=NC#N is
shown at the top of the screen with a two-dimensional representation of
the compound in the box. A calculated value for log P (0.389) and molar
refractivity (8.211) appear at the bottom of the screen and, in this case, a
measured log P value (0.67) which has been retrieved from the Pomona
College Medicinal Chemistry Database. The Daylight software provides
access to a variety of chemical databases in addition to the CLOGP and
CMR calculation routines (see Daylight website). The box on the right-
hand side of Figure 9.2 reports a summary of the types of data which are
held in the database which the program is currently connected to, in this
case the Pomona College Master 353 data collection. Figure 9.3 shows

Figure 9.3 Computer screen for access of the THOR chemical database program
from UDRIVE (reproduced with permission of Daylight Chemical Information
Systems Inc.).
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Figure 9.4 Details of the calculation of log P for tiotidine (computer screen from
UDRIVE) (reproduced with permission of Daylight Chemical Information Systems
Inc.).

how the data for this compound may be displayed from the UDRIVE
menu by accessing the THOR chemical database program.

The database page contains the SMILES string for tiotidine as the
root of the data tree, the molecular formula and a WLN string,2 a local
name for the compound, and then experimental values for log P and
pKa in some cases. The measured value of 0.67 has been selected by
the database constructors as a ‘best’ value, called a log P∗. The Pomona
College database stores partition coefficient values for octanol/water
and other solvent systems (in 2009, 61 000 measured log P values and
13 900 pKa values for 55 000 compounds). Details of the fragments and
correction factors used in the calculation of log P can be obtained from
the program as shown in Figure 9.4. In this case the calculation made use
of one approximated fragment as shown by the comments alongside the
fragments and factors; the degree of certainty can be seen by comparison
of the predicted with the measured value (�log P = −0.28).

2 WLN (Wiswesser line notation) is another line notation system for chemical structures which
has seen widespread use.



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

EXPERT SYSTEMS 261

Figure 9.5 A supermolecule for the assessment of structural alerts for toxicity
(reproduced from ref. [10] with permission of Elsevier).

9.2.2 Toxicity Prediction

The structural alert model for carcinogenicity first proposed by Ashby
[9] and later modified by Ashby and Tennant [10] is a good example of
a manual expert system in chemistry. This scheme was created by the
recognition of common substructures which occur in compounds which
have shown positive in an in vitro test for mutagenicity, the well-known
Ames salmonella test. Putting together these substructures has allowed
the creation of a ‘supermolecule’ as shown in Figure 9.5.

Prediction of the likelihood of mutagenicity for any new compound
is achieved by simple comparison of the new structure with the alerts
present in the supermolecule; common sense suggests that the greater
the number of alerts, then the higher the likelihood of mutagenicity. The
structural alert system has been shown to be successful for the predic-
tion of mutagenicity; for example, in a test of 301 chemicals [11] almost
80 % of alerting compounds were mutagenic compared with 30 % of
non-alerting compounds. Unfortunately, compounds may be carcino-
genic due to mechanisms other than mutagenicity (thought to be caused
by reaction with a nucleophilic site in DNA). The correlation between
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mutagenicity and carcinogenicity (measured in two rodent species) was
low, suggesting that structural alerts are useful but nondefinitive indica-
tors of potential carcinogenic activity [11]. This is a nice example of the
strengths and limitations of expert systems; if the experts’ knowledge is
well coded (in the rules) and used correctly, the system will make good
predictions. The expert system, however, can only predict what it really
knows about; if a compound is carcinogenic because it is mutagenic then
all is well.

The DEREK system (Deductive Estimation of Risk from Existing
Knowledge) is a computer-based expert system for the prediction of
toxicity [12]. This program uses the LHASA synthesis planning program
(see Section 9.2.3) as its foundation for the input of chemical structures
and the processing of chemical substructures. DEREK makes predictions
of toxicity by the recognition of toxic fragments, toxicophores, defined
by the rules present in a rule base created by human experts. At present,
the rule base is being expanded by a collaborative effort involving phar-
maceutical, agrochemical, and other chemical companies, as well as gov-
ernment organizations. The collaborative exercise involves a committee
which considers any new rules that are presented for inclusion in the rule
base. Rules are written in the PATRAN language of LHASA, and when
a rule is activated, due to the presence of a toxic fragment, a different
language, CHMTRN, is used to consider the rest of the structure and
the environment of the toxicophore. Toxicity is not determined simply
by the presence of toxic fragments, but also by other features in the
compound which may modify the behaviour of toxicophores.

Figure 9.6 gives an example of the display of a DEREK answer for
a query compound (part a) and display of the notes written by the rule
writer for the rule which has been activated for this compound (part
b). Prediction of the potential toxicity of compounds is of considerable
appeal to most areas of the chemical industry, particularly if this reduces
the need for animal testing. Unfortunately there is a major complication
in the prediction of toxicity in the form of metabolism. Indeed, there are
a number of therapeutic compounds which rely on metabolism to pro-
duce their active components. Currently, metabolic processes are dealt
with in the DEREK system by explicit statements in the rule base [14]
and for a method such as the identification of structural alerts, the alert-
ing fragments may well have been chosen because human metabolism
leads to toxic structures. In principle, the likely routes of metabolism
for a given compound in a particular species can be predicted by an
expert system, and programs exist which aim to do just that (see Section
9.4). The production of a generally applicable expert system for toxicity



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

EXPERT SYSTEMS 263

Figure 9.6 An example of the output from the DEREK program (reproduced from
ref. [13] with permission of Wiley-Blackwell).

prediction is likely to require an expert system for metabolism predictions
as well as perhaps some means of assessing distribution and elimination.

Other methods have been reported for the estimation of toxicity and
these are often called ‘expert systems’ although the definition of an ex-
pert system used here, in which humans define the rules, would not label
them as such. The TOPKAT program (Toxicity Prediction by Kom-
puter Assisted Technology) uses a combination of substructural descrip-
tors, topological indices, and calculated physicochemical properties to
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make predictions of toxicity [15]. The program has been trained on
databases of a number of different toxicity endpoints using multiple
linear regression if the experimental data is continuous (e.g. LD50) or
discriminant analysis if the data is classified. Prediction of toxicity for
an unknown compound is made by calculation of substructural descrip-
tors and physicochemical properties and insertion of these values into
the regression or discriminant functions. One TOPKAT model has been
created which links rat toxicity to mouse toxicity [16]. A ‘rudimentary’
model involving just these two activities is shown in Equation (9.1).

log
(
1/

C
)

RAT
= 0.636 + 1.694 log

(
log

(
1/

C
)

MOUSE
+ 1

)

N = 160 R2 = 0.399 S.E. = 0.41 (9.1)

This equation uses a somewhat unusual double logarithm of the mouse
toxicity data, to make this variable conform better to a normal distri-
bution. A better predictive equation for rat toxicity was obtained by
combining structural descriptors with the mouse toxicity data as shown
in Table 9.4.

Input of chemical structure to the TOPKAT program is by means
of SMILES; the program recognizes fragments and properties which
correspond to the regression equation or discriminant function which
is associated with the selected module (particular toxic endpoint) and
calculates a value for the endpoint. The parts of the structure which

Table 9.4 Regression model for the prediction of rat LD50 from mouse LD50 and
structural descriptions (reproduced from ref. [16] with permission of Sage
Publications, Ltd).

WLN Key # Variable description Coefficient F

log
(
log

(
1/

C
)

MOUSE
+ 1

)
1.654 227.3

144 Two heterocyclic rings −0.361 12.4
molecular weight 0.000432 11.9

10 One sulphur atom 0.125 11.4
39 One – C = O (chain fragment) −0.0965 11.1
58 One –NH2 group −0.0990 7.76

(log P)2 −0.00833 5.71
107 One heteroatom in more than one ring 0.191 7.00

37 One – OH group (chain fragment) −0.0605 5.25
135 Two ring systems (not benzene) 0.186 5.15

67 One – C = O group (substituent) −0.0856 4.56
Constant 0.628

R2 = 0.793 SE = 0.33 N = 160
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Figure 9.7 Computer screens from the TOPKAT program running through Discov-
ery Studio showing a prediction of toxicity for 4-chloro-m-cresol against Fathead
Minnow (figure kindly supplied by Accelrys).

are used in the calculation are shown graphically, as can be seen in the
right-hand side of Figure 9.7.

The report in the figure gives details of the calculation of toxicity (LC50

for Fathead Minnow) for the compound, which in this case gives a value
of 2.3 mg/l for LC50 (experimental value 7.4 mg/l, so not bad agreement).
The program also recognizes features in a molecule that are not present
in the predictive model, and will issue a warning if the compound has
not been well ‘covered’.

Figure 9.8 shows an example of a workflow that can be built for toxi-
city prediction from a file of structures (an SD file). In this case only one
toxicity prediction module is used in the process but others can be easily
added to give alternative results or a consensus prediction. The workflow
was constructed using Pipeline Pilot (Accelrys, Inc.) which is a software
environment which allows the assemblage of data analysis/handling rou-
tines using a graphical interface. The lower part of the figure shows a
report for the prediction of toxicity of a herbicide to Daphnia magna.
The report also gives details of the calculation and would warn if any
of the molecular features were not recognized (covered) or if any prop-
erties were outside their normal range. The recognition of incomplete
coverage is particularly important for any method that relies on the use
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Figure 9.8 Illustration of a workflow system for toxicity prediction from a single
module (TOPKAT), other prediction systems can be easily combined to form a
consensus prediction. The lower part of the figure shows a prediction of toxicity for
nitralin against Daphnia magna (figures kindly supplied by Accelrys).

of certain substructures or physicochemical features for prediction. It is
essential to know how much of the molecule was recognized and used
in the calculation in order to be able to make some sort of judgement of
the reliability of prediction.

The CASETOX program uses a somewhat similar approach to
TOPKAT but rather than using predetermined structural fragments,
CASETOX generates all possible fragments for the compounds in a
database [17]. Like TOPKAT, the CASETOX system has been trained
on databases for a number of toxic endpoints. Perhaps one of the biggest
problems with any of these toxicity prediction systems lies in the quality
and suitability of the available databases. Since these databases often
collect together results from different laboratories, the question of con-
sistency obviously arises. Suitability is probably an even more important
matter. If the compound for which prediction is required is a potential
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Table 9.5 Results of carcinogenicity prediction (reproduced from ref. [18] with
permission of the American Chemical Society).

Program or researcher

Equivocal compounds
equated to non-carcinogen

(%)
Equivocal compounds

eliminated (%)

Programs
MULTICASE 49 55
DEREK 59 62
TOPKAT 58 58
COMPACT 56 62

Humans
Rash 71 68
Bakale 64 65
Benigni 63 72
Tennant & colleagues 75 84

pharmaceutical, then the best database for prediction will contain mostly
pharmaceuticals, preferably with some degree of structural similarity.
Such databases are not yet generally available.

Finally, how well do such prediction systems work? In 1990, a chal-
lenge was issued to interested parties to make predictions for 44 com-
pounds that were then being tested for rodent carcinogenicity in bioas-
says by the National Toxicology Program (NTP) in America. The results
of the predictions were discussed at a workshop in 1993 and are shown
in Table 9.5 [18].3

The four computer programs, MULTICASE, DEREK, TOPKAT, and
COMPACT, were not particularly impressive in their predictions since
their best result was 62 % correct and the requested prediction was
YES/NO, which might be expected to be 50 % right by chance, given
an even distribution of carcinogens in the set. The results from the hu-
man groups or individuals are at least as good or considerably better,
but in fairness it should be pointed out that in some cases these predic-
tions made use of more information than was available to the programs.
One other consideration should be borne in mind when comparing pre-
diction results between computer systems, or between computers and
humans, and that is the overall number of predictions made. The human
experts generally made a prediction for every compound, whereas differ-
ent computer systems omitted different numbers of compounds because
their ‘rules’ could not cope with certain structures or sub-structures.

3 At the time of the meeting, results had been obtained for 40 of the 44 compounds.
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Benigni has reviewed the prediction of mutagenicity and carcinogenicity
[19].

9.2.3 Reaction Routes and Chemical Structure

The LHASA system (Logic and Heuristics Applied to Synthetic Analysis)
has already been mentioned as the basis of the DEREK toxicity predic-
tion program. The LHASA program was originated as OCSS (Organic
Chemical Simulation of Synthesis) by E.J. Corey [20] and is being further
developed in the LHASA group of the chemistry department at Harvard
University. This program contains a large database of organic reactions,
also known as a knowledge base, and a set of rules (heuristics) that dictate
how the reactivity of particular functional groups or fragments (retrons)
is affected by other parts of the molecule, reaction conditions, etc. The
aim of the program is to suggest possible synthetic routes to a given target
molecule from a particular set of starting materials. This system actually
starts at the target structure and breaks this down into simpler materi-
als until eventually reaching the starting compounds, thus the process is
retrosynthetic. An example of one of the steps given by the program for
the synthesis of a prostaglandin precursor is shown in Figure 9.9.

When setting up the synthesis query, the user can select one of five dif-
ferent synthetic strategies, including a stereochemical option, and there
is also an option for the program to make its own suggestions for strate-
gies and tactics. Synthesis of a relatively complex molecule may proceed
from simple starting materials by a great many different routes; Corey,
for example, shows a retrosynthetic analysis of aphidicolin produced
by LHASA which contained over 300 suggested intermediates [21]. Fig-
ure 9.10 shows an early stage in the synthesis planning of the pros-
taglandin precursor shown in Figure 9.9. Each number (node) on the
display represents a different compound, Figure 9.9, for example, in-
volved nodes 1 and 2.

Of course synthesis-planning expert systems can operate in the oppo-
site direction, from starting materials to products, and the CAMEO pro-
gram (Computer Assisted Mechanistic Evaluation of Organic reactions)
is an example of this [22]. A problem with the operation of a synthesis-
planning system in the forward direction, particularly if several steps are
required, is the potentially large number of synthetic alternatives that
must be considered.4 Each intermediate molecule may undergo a number

4 The same is also true of retrosynthetic systems.
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Figure 9.9 Computer screen from the LHASA program showing a reaction step
(copyright LHASA).

Figure 9.10 Computer screen from the LHASA program showing an intermediate
stage in the breakdown of the prostaglandin precursor shown in Figure 9.9 (copyright
LHASA).
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Figure 9.11 Output screen from the reaction prediction program CAMEO (copy-
right LHASA).

of transformations and thus the target may be reached by a number of
different routes. A successful expert system not only has to work out
the feasible routes, but also has to assign some likelihood of success,
or degree of difficulty, to the individual routes. Figure 9.11 shows an
example of an output screen from the CAMEO program for a reaction
predicted using the acidic/electrophilic mechanistic module. This screen
shows that this compound is one of the possible products, the smiling
face symbol indicates that the program predicts that this will be a major
product, and there is even a calculated �H for the reaction.

The CAMEO program has a quite comprehensive set of options for
controlling the conditions under which reaction predictions will be made
(Figure 9.12). The user can choose one of eight different mechanistic
modules, temperature ranges may be set, and there are menus for the
choice of reagents and solvents. Another view of the CAMEO system
is that it is a reaction evaluation program. It may be used to verify
suggestions, made by other programs or methods (or even individual
chemists) concerning particular reactions within a sequence.
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Figure 9.12 Output screen from the CAMEO program showing the choice of mech-
anistic modules and reaction conditions for prediction (copyright LHASA).

This account of the LHASA and CAMEO programs has been neces-
sarily very limited; readers interested in further details should contact the
suppliers of the software. Another approach to the problem of synthesis
planning is to provide literature references to model reactions, thus al-
lowing the chemist user to make his or her own assessment of feasibility,
using his or her own expert system! A number of reaction database sys-
tems are in common use (e.g. REACCS, SYNLIB) and a combination of
synthesis-planning software with literature reaction retrieval software is
a powerful tool for synthetic chemistry.

The prediction of three-dimensional chemical structure from a list
of atoms in a molecule and their connectivity is a good example of a
chemical problem that may be solved by an expert system. We have
already seen (Figure 9.2) how the SMILES interpreter can construct a
two-dimensional representation of a structure from its one-dimensional
representation as a SMILES string. The CONCORD program (CON-
nection table to CoORDinates) takes a SMILES string and, very rapidly,
produces a three-dimensional model of an input molecule. This system is
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a hybrid between an expert system and a molecular mechanics program,
molecular mechanics being the method by which molecular structures
are ‘minimized’ in most molecular modelling systems. The procedure
operates as follows.

1. The SMILES input string is checked for syntax errors and is made
‘unique’ if it is not already (see panel).

2. The atom symbols in the SMILES string are numbered sequentially
and a connection table is constructed which indicates which atoms
are bonded to each other.

3. A bond type table (i.e. single, double, aromatic, etc.) is constructed
from the connection table and a ring table is constructed from the
connection table.

4. The connection table and bond table are used to assign the num-
ber of hydrogens to be attached to each atom and other chemical
validity checks are carried out.

A set of rules is used to assign reasonable three-dimensional structures
to various features in the molecule, e.g. rings, and to certain bond angles
and torsion angles. At this point the three-dimensional structure will be
a good approximation for most parts of the molecule but some bond
angles and torsion angles could be adjusted to minimize unfavourable
steric interactions (at the expense of introducing extra energy into the
system in the form of bond angle or torsion angle strain). This requires
optimization of an expression for energy such as that shown in Equa-
tion (9.2).

E =
N∑

i=1

kl
i (b0,i − bi) +

N∑

i=1

kθ
i (�0,i − �i) + . . . . . . (9.2)

In this very simple expression for the energy of a molecule, the first two
terms represent a summation over all the bonds of the compound of
the energy contribution due to bond lengths and bond angles. The two
constants, kl

iandk�
i , represent the force necessary to distort that partic-

ular type of bond (i) from its ‘natural’, i.e. average, bond length (b0,i)
or bond angle (�0,i). The standard bond lengths and bond angles have
been derived from experimental measurements such as X–ray crystallog-
raphy, and the force constants from spectroscopic data. Equation (9.2)
is known as a molecular mechanics force field and can be elaborated
to include contributions from torsion angles, steric interactions, charge
interactions, and so on. The CONCORD system gives warnings of close
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Table 9.6 Performance of CONCORD on a subseta of the Cambridge Structural
Database (X-ray structures) and the fine chemical directory (FCD) and modern
drug data report (MDDR)b. (Personal communication from R.S. Pearlman, College
of Pharmacy, the University of Texas at Austin.)

CSD FCD and MDDR

Number of compounds 30,712 101,776
Total errors 3,207 (10.4%) 1,531 (1.5%)

made up from
ring-system 707 (2.3%) 223 (0.2%)
chiral fusions 1,462 (3.4%) 216 (0.2%)
close-contacts 1,038 (3.4%) 1,092 (1.1%)

Close-contact warningsc 11,126 (36.2%) 28,080 (27.6%)

aExcluding ‘unusual’ atoms (e.g., As, Se, etc.).
bCompounds are often chosen for X-ray structure determination because they represent
unusual structural classes, hence the relatively high error rate compared with the more
‘typical’ structures in the FCD and MDDR.
cStructures are generated in these cases and may be ‘cleaned up’ by molecular mechanics or
quantum mechanics calculations.

interactions and other recognized problems in the final structure and
these, of course, can be resolved manually or by structure optimization
using another molecular mechanics program or by quantum mechanics.
The combination of expert system and ‘pseudo-molecular mechanics’
generally does a good job, as shown in Table 9.6, and has the distinct
advantage that it is very fast in terms of computer time. The input of
SMILES strings to CONCORD can be automated and in this way many
large corporate databases of (generally) good three-dimensional struc-
tures have been generated.

9.3 NEURAL NETWORKS

As was briefly mentioned in the introduction to this chapter, artificial
neural networks (ANN) are attempts to mimic biological intelligence
systems (brains) by copying some of the structure and functions of the
components of these systems. The human brain is constructed of a very
large number (∼ 1011) of relatively slow and simple processing elements
called neurons. The response time of a neuron (i.e. the time between suc-
cessive signals) is of the order of a tenth to one-hundredth of a second. In
computing terms this is equivalent to a ‘clock speed’ of 0.01 to 0.1 kHz,
very slow compared with the processor speeds of commonly used per-
sonal computers (2 to 3 GHz). So what is it that makes man so smart?
The answer lies in the fact that the brain contains a large number of
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processing elements which are working all the time; this is parallel pro-
cessing on a grand scale, and the brain in computing terms is a massively
parallel device. The other important feature of biological intelligence is
the highly complex ‘wiring’ which joins the neurons together; a single
neuron may be connected to as many as 100 000 other neurons.

So what do these processing elements do? Even a cursory examination
of a textbook of neurobiology will show the complexity of the bio-
chemical processes which take place in the brain. Various compounds
(neurotransmitters) are involved in the passage of signals between neu-
rons, and the functions of the neurons themselves are regulated by a
variety of control processes. Ignoring the complexity of these systems
the functions of a neuron can be summarized as follows.

1. the receipt of signals from neurons connected to it; these signals
can be excitatory or inhibitory;

2. summation of the input signals, and processing of the sum to reach
a ‘firing’ threshold;

3. the production of an output signal (firing) as dictated by (2) and
transmission of this signal to other connected neurons.

This highly simplified description of how a biological neuron functions
may not be a good model for the real thing but it serves as the basis
for the construction of ANN. Intelligence in living biological systems
appears to reside in the way that neurons are connected together and
the ‘strength’ of these connections. Indeed, the creation of connections
and the modification of connection weights is thought to be part of the
processes involved in our development, i.e. learning and memory. It may
not be clear where in the brain signals arise and which pathways they
follow, although for certain regions of the brain, such as the sensory
organs, it is more obvious. The eyes, for example, produce nervous
signals in response to light and these are passed to the visual cortex.
Some preprocessing of the information received by the eyes is carried
out by sets of neurons which are organized in particular structures, e.g.
layers. It is these three functions of biological neurons and their physical
organization and connectivity which forms the basis of the construction
of ANN.

ANN, like their biological counterparts, are built up from basic pro-
cessing units as shown in Figure 9.13.

This artificial neuron receives one or more input signals, applies some
kind of transformation function to the summed signal and produces an
output signal (equal to the transformation) to be passed on to other
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Figure 9.13 Diagram of an artificial neuron connected to three input neurons and
a bias unit (reproduced from ref. [23] with permission of Springer).

neurons. A network usually receives one or more input signals and the
input neurons, one for each input signal, behave somewhat differently in
that they usually do not do any processing but simply act as distributors
to deliver the signal to other neurons in the network. There are many
ways in which the neurons in an ANN can be connected together, often
referred to as the ANN ‘architecture’, but one of the most common is in
the form of layers as shown in Figure 9.14.

Figure 9.14 Illustration of how an ANN is built from layers of artificial neurons
(reproduced from ref. [23] with permission of Springer).
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This is known as a ‘feed-forward’ network since information enters
the network at the input layer and is fed forward through the hidden
layer(s) until it reaches the output layer. Each neuron in the input layer
is connected to every neuron in the hidden layer and each hidden layer
neuron in turn is connected to every neuron in the next layer (hidden or
output). The strengths or weights of the connections between each pair
of neurons are adjustable and it is the adjustment of these connection
weights that constitutes training of a network. The neurons, or process-
ing elements, in the hidden layer(s) and output layer apply a non-linear
function (transfer function) to their summed inputs such as that shown
in Equation (9.3),

OUTPUT = 1/[
1 + e−s

] (9.3)

where s represents the sum of the inputs to the neuron and Output
represents its output signal. The shape of this function is sigmoid as
shown in Figure 9.15 and thus the neuron mimics, to some extent, the
way that biological neurons ‘fire’ when their input signals exceed some
threshold. The use of a function such as that shown in Equation (9.3), or
some other non-linear function, allows a network to ‘build’ non-linear
relationships between its inputs and some desired target output.

The bias neurons, one for each layer, represent neurons which produce
a constant signal. Their function is to act as shift operators so that the
summed inputs for the neurons in the next layer are ‘moved’, on their
transfer function scales, so as to produce signals. Training (adjustment of
connection weights) is usually carried out in order to produce a desired

Figure 9.15 Representation of a commonly used transfer function. Scaled between
−0.5 and +0.5, as often used in neural network programs. (reproduced from ref.
[23] with permission of Springer).
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target signal or signals at the output layer. A commonly used form of
training is known as ‘back-propagation of errors’ and thus networks such
as that shown in Figure 9.14 sometimes glory under the title of ‘back-
propagation feed-forward networks’. There are various ways in which
connection weights can be assigned (before training) and networks can
be trained. One very common procedure is to assign random values
to the connection weights and then to repeatedly pass the training set
data through the network, adjusting the weights by back-propagation,
until some target error (� target–output) is achieved. Of course this
does not guarantee that the ‘best’ solution has been reached and so
the network is ‘shaken’ by applying small perturbations to the weights
and then retraining, usually for a set number of passes through the
data. This process can be repeated several times, storing the network
connection weights and errors at the end of each training cycle, so that
the ‘best’ network can be selected. For a more detailed description of
the operation of neural networks see references [24] and [25] and the
references contained therein. Reviews on the use of neural networks in
chemistry have been published by Zupan and Gasteiger [26], Burns and
Whiteside [27], Jakus [3], and Zupan and Gasteiger [28], and on the
use of networks in drug design by Manallack and Livingstone [25] and
Livingstone and Salt [29]. Applications of neural networks to a variety of
problems in biology and chemistry are discussed in a volume of ‘Methods
in Molecular Biology’ [30] and no doubt they have found uses in many
other areas of science.

Finally, before moving on to the applications of ANN in data analysis,
it is necessary to consider how networks are implemented. ANN are well
suited to construction using dedicated computer hardware, particularly
when we consider that they are meant to mimic a parallel-computing
device. Hardware implementations have the advantage that they can
be trained very quickly even when using very large data sets. The dis-
advantage of constructing networks in hardware, however, is that it is
difficult or impossible to change the architecture of the network. Soft-
ware implementations, although slower to train, are more versatile and
are available, both commercially and as ‘public-domain software’, for a
variety of computers.

9.3.1 Data Display Using ANN

One method of data display using artificial neural networks, the self-
organizing map (SOM) or Kohonen map, has already been described in
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Figure 9.16 Diagram of a ReNDeR dimension reduction network (reproduced from
ref. [31] with permission of Elsevier).

Section 4.3.2 of Chapter 4. As discussed in that section, the architecture
of a SOM is quite different to the back-propagation feed-forward net-
works which are used in the majority of applications of ANN in data
analysis. This section describes another, quite different, technique for
displaying data using ANN.

The physicochemical properties that describe a set of molecules may
be used as the input to a neural network and the training target may
be some classification (discriminant analysis) or continuous dependent
variable (regression analysis) as described in Section 9.3.2. The training
target may also be the values of the input variables themselves and this is
the way that a ReNDeR (Reversible Non-linear Dimension Reduction)
network operates. A ReNDeR network (Figure 9.16) consists of an in-
put layer, with one neuron for each descriptor, a smaller hidden layer
(encoding), a parameter layer of two or three neurons, another hidden
layer (decoding), and an output layer [31].

The encoding and decoding hidden layers are of the same size and
there are as many output neurons as there are input. Each compound
(or sample or object) in a data set is presented to the network by feeding
in the values of its descriptor variables to the input neurons. The signals
from the output neurons are compared to their targets, in this case the
value of the input variables, for each compound and the weights in the
network are adjusted until the output matches the input. Once training
is complete the network has mapped the input onto the output by going
through a ‘bottleneck’ of two (or three) neurons. Each sample in the
data set can now be presented to the ReNDeR network in turn and a
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Figure 9.17 ReNDeR plot of a set of active (�), intermediate (�), and inactive (�)
compounds described by 23 properties (reproduced from ref. [31] with permission
of Elsevier).

value will be produced at each of the neurons in the parameter layer.
These values will be the summation of the inputs, multiplied by their
connection weights, received by the parameter neurons from the neurons
in the encoding layer. The parameter layer numbers may be used as x and
y (or x, y, and z) coordinates to produce a plot of the samples in the data
set. Such a plot will be non-linear because of the network connections
and non-linear transfer functions, and provides an alternative method for
the low-dimensional display of a high-dimensional data set. An example
of this type of display is shown in Figure 9.17 for a set of 16 analogues
of antimycin-A1 described by 23 calculated physicochemical parameters
(these are the same compounds reported in Table 1.1).

The active compounds, shown as filled squares, are grouped quite
tightly together and thus the plot might be expected to identify new
compounds which will be active. The inactive compounds, along with
three intermediates, lie in a quite different region of space in this display.
For comparison, a non-linear map of this data set is shown in Figure 9.18
where once again it can be seen that the active compounds are grouped
together, although there are some inactives nearby. The non-linear map
in this case has made a better job of grouping compounds together which
have intermediate activity.

Can we say that one of these two plots is best? The answer to that
depends on the use that is to be made of the display, in other words
what questions are we asking of the data. The ReNDeR plot gives a
very clear separation between actives and inactives whereas the non-
linear map groups most of the intermediates together. An encouraging
thing is that the plots produced by the two different display methods are
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Figure 9.18 Non-linear map of the same set of compounds as shown in Figure 9.17
(reproduced from ref. [32] with permission of the American Chemical Society).

giving similar information about the data. Of course, we might expect
that this non-linear display technique would give similar results to an-
other non-linear method such as non-linear mapping. How do ReNDeR
plots compare with linear displays such as those produced by principal
components analysis (PCA)? Figure 4.8 shows a principal components
scores plot for a set of analogues of γ –aminobutyric acid (GABA). These
compounds were tested for agonist activity at the central nervous system
GABA receptor, and the PC plot roughly separates them into potent and
weak agonists and compounds with no agonist activity. The compounds
were characterized by 33 calculated physicochemical properties and it
was found that the scores plot could be considerably improved, in terms
of its ability to classify the compounds, by selecting properties and re-
computing the PCA [33]. A ReNDeR plot of this data is shown in Fig-
ure 9.19 where it can be seen that the compounds are quite clearly
grouped according to their class of activity. This is an interesting result
in that this technique is giving a superior result to the PCA display of
the data. Since the network method is non-linear, this may show that
the linear structure imposed by PCA is not suitable for this data set,
although a non-linear map of the same data also failed to classify the
compounds. The better classification by ReNDeR could, of course, be
entirely fortuitous and it will be necessary to examine many other data
sets to establish the utility of this new technique.

9.3.2 Data Analysis Using ANN

A neural network may be trained to reproduce any given target from
a set of input values, provided it has a sufficient (see later) number of
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Figure 9.19 ReNDeR plot of GABA analogues (� potent agonist, � weak agonist,
* no agonist activity) described by 33 properties (reproduced from ref. [31] with
permission of Elsevier).

neurons and layers. Where the dependent variable or property to be pre-
dicted is classified, e.g. active/intermediate/inactive, the network can be
set up with a neuron in the output layer corresponding to each of the
classes. Training is carried out until only one neuron (the correct one!) is
activated for each of the examples in the training set. This is equivalent
to performing discriminant analysis (see Section 7.2.1), physicochemi-
cal descriptors are used as input to the network and, once trained, the
network connection weights might be equated to the coefficients of the
parameters in a discriminant function. Unfortunately, the connection
weights cannot be identified quite so easily as this, since there will be a
connection from every input neuron (parameter) to each of the neurons
in the hidden layer. After training it may be found that most of these
connection weights are around zero and one dominant weight may be
found for a particular input parameter. However, it is just as likely that
many of the connection weights will have ‘significant’ values and it will
not be possible to extract the contributions made by individual variables
(but see Section 9.3.4).

An example of a data set with a classified response which has been
analysed using a neural network is shown in Table 9.7 [23].

This data set was chosen because the best discriminant function which
could be generated from the sum of the parameters π , MR, and π2

for the two substituents was only able to classify correctly 22 of the
27 compounds [34]. The network architecture used for this analysis
consisted of two input units, one for �π and one for �MR, a hidden
layer and two output units, so that one unit could be activated (take
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Table 9.7 Structure, physicochemical properties, and activity category of
napthoquinones (reproduced from ref. [23] with permission of Springer).

Compound R1 R2 �π �MR Categorya

1 Cl H 0.71 0.70 1
2b OH H −0.67 0.38 1
3 OCH3 H −0.02 0.89 1
4 OCOCH3 H −0.64 1.35 1
5b NH2 H −1.20 0.64 1
6 NHC6H5 H 1.37 3.10 1
7b CH3 CH3 1.12 1.12 1
8 CH3 OCH3 0.54 1.35 1
9 OH CH3 −0.11 0.84 1

10b Br Br 1.72 1.78 1
11 Cl N(CH3)2 0.89 2.16 1
12 OCH3 OCH3 −0.04 1.58 1
13 H H 0.00 0.20 2
14 CH3 H 0.56 0.66 2
15b SCH3 H 0.61 1.48 2
16 Cl Cl 1.42 1.21 2
17 C2H5 H 1.02 1.13 2
18 COCH3 H −0.55 1.22 1
19b SC2H5 H 1.07 1.94 2
20 OH CH2C6H5 1.34 3.28 1
21 OH COCH3 −1.22 1.4 1
22b CH3 SCH3 1.17 1.94 1
23b CH3 SC2H5 1.63 2.4 1
24b OH Br 0.19 1.17 2
25 Cl NHCH3 0.24 1.63 1
26 OH Cl 0.40 0.88 1
27 OH NH2 −1.87 0.82 2

aCategory 1 = inactive; 2 = active.
bCompounds used for testing purposes in the second part of this analysis. Test compounds
were chosen at random and the test set possesses approximately the same ratio of inactive to
active compounds as in the original data set.

a positive value) for active compounds and the other unit for inactives.
Network training was carried out using networks with different numbers
of neurons in the hidden layer so as to assess the performance of the
networks. It had already been shown that, given sufficient connections,
ANN were able to make apparently successful prediction using random
numbers [23]. This behaviour of networks is dependent on the number
of network connections, the greater the number of connections the more
easily (or more completely) a network will train. In fact it was pointed
out by Andrea and Kalayeh [35] that the important quantity is not
the overall number of connections but the ratio of the number of data
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Table 9.8 Summary of network performance using 27 training compounds
(reproduced from ref. [23] with permission of Springer).

Network Total RMS Summary
architecture Connections ρ error (incorrect compounds)

2, 1, 2 7 3.86 0.4175 1, 7, 15, 17, 19, 24, 27
2, 2, 2 12 2.25 0.3599 1, 7, 8, 27
2, 3, 2, 17 1.59 0.2778 1, 7, 8
2, 4, 2 22 1.23 0.2750 1, 7, 8
2, 5, 2 27 1.00 0.2275 17, 24
2, 6, 2 32 0.84 0.1926 8
2, 7, 2 37 0.73 0.0309 All correct

points (samples) to connections which they characterized by the para-
meter, ρ.

ρ = number of data points
number of connections

(9.4)

Table 9.8 shows the effect of adding extra hidden layer neurons to these
networks; for a ρ value of 1.00 where there are as many connections
as samples the network is able to classify all but two of the compounds
successfully.

A better test of the suitability of ANN to perform discriminant analysis
is to split the data set into separate test and training sets. This was done
for this data to give a training set of 18 compounds and a test set of nine
as indicated in Table 9.7. Results of training and test set performance
are shown in Table 9.9 where it can be seen that training set predictions

Table 9.9 Summary of network performance and prediction using 18 training
compounds (reproduced from ref. [23] with permission of Springer).

Training summary

Network Total RMS (incorrect) Prediction summary
architecture Con

∗
ρ error compounds) (incorrect compounds)

2, 1, 2 7 2.57 0.3166 1, 27 7, 10, 15, 19, 24
2, 2, 2 12 1.50 0.2059 1 2, 5, 7, 10, 15, 19, 24
2, 3, 2 17 1.06 0.3099 1, 27 7, 10, 15, 19, 24
2, 4, 2 22 0.82 0.2359 27 7, 10, 15, 19, 23, 24
2, 5, 2 27 0.67 0.2357 27 7, 10, 15, 19, 23, 24
2, 6, 2 32 0.56 0.0274 All 7, 10, 15, 19, 24
2, 7, 2 37 0.49 0.0367 All correct 2, 5, 7, 10, 15, 19, 24
∗
The number of connections in the network.



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

284 ARTIFICIAL INTELLIGENCE AND FRIENDS

are good even for the highest value of ρ and at the lower ρ values all
compounds are predicted correctly.

Prediction performance for the test set, on the other hand, was uni-
formly bad and if anything got even worse at the lowest values of ρ. This
demonstrates that the ANN is able to fit the data better than a linear
discriminant function, probably because of the non-linearity5 involved in
the ANN modelling, but that the fitted model is not very useful in predic-
tion. This may be because the properties used to describe the molecules
are insufficient to characterize their behaviour sufficiently well, or it may
be that the neural networks have been ‘over-trained’ as discussed in the
next section.

An example of the use of neural networks to classify olive oil samples
described by pyrolysis mass spectrometry data shows that ANN can
work well in prediction [36]. In this work a training set of extra-virgin
olive oils and adulterated oil samples (added peanut, sunflower, corn,
soya, or sansa olive oils) were analysed by pyrolysis mass spectrometry to
give spectra in the M/Z range of 51–200. Cluster analysis and canonical
variates analysis of these data showed that the oil samples were broadly
classified on the basis of the cultivar from which the extra-virgin oil was
derived; extra-virgin and adulterated samples were not distinguished.
A three layer back-propagation network with 150 input neurons (one
for each M/Z value), eight hidden neurons, and one output neuron was
trained with the training set data and found to predict all of the training
samples successfully. This is perhaps not surprising since the training set
was very small (24 samples) compared with the number of connections
in the network (1217)6. Network performance on an unknown test set
(samples were analysed blind) was very good, however, as shown in
Table 9.10.

ANN may be used to fit a continuous response variable to a set of
physicochemical properties, the network just requires one output unit
and the training targets are the values of the response variable (IC50,
ED50, etc.) for each compound in the set. Performance of these networks,
however, can be deceptively good if care is not taken with the network
architecture [37]. Figure 9.20 shows the results of network training using
random numbers in which four columns of random numbers were used
as input data and a column of random numbers was used as the target

5 The discriminant function also employed non-linearity by using a π2 term, but this may not
be the appropriate function to use for successful modelling of this data set.
6 The network has 150 × 8 weights between input and hidden layer, 8 × 1 between hidden and
output, and 8 × 1 plus 1 × 1 for the bias units.
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Table 9.10 Network prediction of test set oil samples (reproduced
from ref. [36] with permission of Wiley-Blackwell).

Codename Network answera Virgin or adulterated

Perugia 1 Virgin
Lecce 1 Virgin
Urbino 1 Virgin
Rimini 0 Adulterated
Taormina 0 Adulterated
Napoli 1 Virgin
Milano 1 Virgin
Trieste 1 Virgin
Torino 0 Adulterated
Cagliari 0.8b Virgin
Bolzamo 1 Virgin
Venezia 0 Adulterated
Roma 0 Adulterated
Genova 1 Virgin
Bari 1 Virgin
Pescara 0 Adulterated
Padova 0 Adulterated
Palermo 0 Adulterated
Firenze 1 Virgin
Ancona 1 Virgin
Siena 0 Adulterated
Messina 0 Adulterated
Bologna 0 Adulterated

aThe network was trained and interrogated five times. The scores given are the
average of the five runs (±0.001), where virgin is coded 1 and adulterated oil is
coded 0.
bThe network indicated that the oil Cagliari was of virgin quality (1) on four of
the five trainings.

Figure 9.20 Plot of R2 versus ρ for regression networks using random numbers
(reproduced from ref. [37] with permission of the American Chemical Society).
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(dependent variable). Any attempt at measuring predictive ability for
these networks would be meaningless but the fit can be assessed, as a
correlation coefficient (R2) by comparison of the network output with
the target values. As can be seen from the figure, quite high R2 values
are achieved below ρ = 2.

Finally, ANN may be used to build models for multiple dependent
variables by simply including an output neuron for each of the depen-
dent variables. Section 8.5 showed how two measured molecular proper-
ties, partition coefficient (logP) and solubility (logS), could be modelled
simultaneously using PLS and canonical correlation analysis. This set
consisted of a training set of 552 molecules and a test set of 68 all char-
acterized by 37 calculated molecular descriptors [38]. The fit of multiple
linear regression, canonical correlation and PLS models to this data is
shown in Table 9.11.

ANN were constructed for the two dependent variables separately
using the descriptors chosen by multiple linear regression (28 descrip-
tors for logS and 26 for logP) and a single ANN was computed
with two output neurons to model logS and logP simultaneously. Net-
work architecture and the optimal training endpoint (see Section 9.3.3)
were determined on the results obtained for a further validation set of
68 compounds. The network for logS used 6 neurons in the hidden layer
and that for logP had 5 hidden layer neurons. As can be seen from the

Table 9.11 Comparison of the modelling results for MLR, CCA,
PLS and ANN on LogS and LogP data.

Training set Test set

Model Nvars R2 s R2 s

LogS
MLR 28 0.78 0.75 0.78 0.75
CCA 37 0.75 0.76
PLS 37 0.63 0.98 0.61 0.99
ANN 28 0.87 0.60 0.83 0.65
ANN 37 0.89 0.53 0.83 0.65

LogP
MLR 26 0.87 0.65 0.86 0.65
CCA 37 0.85 0.87
PLS 37 0.7 0.98 0.68 0.90
ANN 26 0.91 0.53 0.89 0.55
ANN 37 0.93 0.47 0.89 0.55

Nvars is the number of variables used in the model. The PLS models used 5
latent variables. The ANN models of fewer than 37 variables used the same
variables as chosen by multiple linear regression.
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table, MLR and CCA give roughly comparable results in terms of fit
and prediction while the PLS models are poorer. The PLS modelling was
stopped at 5 latent variables since, as can be seen in Figure 8.14, there is
a discontinuity in a scree plot of RMSEP at 4 dimensions. The ANN, on
the other hand, give better fits and predictions for both properties with
the combined output network performing slightly better, although this
did use all 37 independent variables rather than the subsets. Since the
neural networks are using the same information as the other methods
this better performance is presumably due to the ability of the ANN to
include non-linearity in the models. There is a cost to this improved per-
formance, of course, and that is in terms of ease of interpretation. The
MLR models are relatively easy to interrogate since they ‘just’ consist of
28 or 26 regression coefficients for the selected variables. The canoni-
cal correlation equations are more involved since there are two pairs of
them and thus two coefficients for each of the responses (loading onto
the first and second canonical variate of the first set) and two coefficients
for each of the independent variables. The PLS models are a degree more
complex since they involve coefficients for 5 dimensions but the ANN
models are the most obscure of all since the information in the model
is contained in the connection weights between neurons. In the case of
the combination network, which had a hidden layer of 10 neurons, this
means a total of 402 connections since there are 37 inputs, plus a bias
neuron, and 10 hidden neurons plus a bias. Such ANN models tend to be
treated as a ‘black box’ with no attempt made at interpretation although
there are ways in which these models may be probed as described in Sec-
tion 9.3.4.

9.3.3 Building ANN Models

Many neural network software packages have built-in tools and guid-
ance for the construction and training of ANN but it is important to be
aware of the potential problems and pitfalls in their use. Quite a wide
variety of different types of artificial neural network have been devel-
oped but the majority of applications in data analysis have involved the
self-organizing map (SOM) and back-propagation feed-forward (BPN)
networks. Construction of a SOM is fairly straightforward as it mostly
consists of choice of the resolution (number of neurons) of the resulting
plot. The number of input neurons is decided by the choice of input
parameters and training is continued until a ‘useful’ picture emerges.
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Successful development of a BPN is more involved and thus there are a
number of steps to consider:

1. choice of network architecture and initialization of weights;
2. choice of transfer functions;
3. selection of a training algorithm to adjust the weights;
4. division of the data into training, test and possibly validation sets;
5. decision on when to stop training.

1. The choice of network architecture involves decisions on how many
hidden layers to use, how many neurons in the hidden layers, and how
many neurons to use in the output layer. In principle, there can be a
number of hidden layers but in practice it has been found that one layer
is usually sufficient. Choice of the number of output neurons is usually
easy since only one is needed if training is to a single dependent variable.
The first example shown in the previous section where the dependent
variable was classified used two output neurons but the same effect
could have been achieved by training a single output neuron to produce
0 or 1 for the different classes. The major problem in the determination
of an appropriate network architecture is the number of hidden layer
neurons. What is required is a sufficient number of hidden neurons so
that the network can develop enough complexity to model the data
but not too many because this can cause the network to be slow to train
and, more importantly, give rise to overfitting. As we saw in the previous
section it is essential to have more data points than connections in the
network (ρ > 1 in Equation (9.4)) otherwise the network will be able to
model the data perfectly, by effectively training 1 connection per sample,
but will be unable to make predictions. Initialization of the weights is
normally carried out by random assignment using values in a suitable
range, where the range of weights will be determined by the training
algorithm employed. This helps to ensure that training will lead to a
useful network but it also means that retraining a network from scratch
will often yield a different network. This is a feature of ANN; there is no
unique solution to a BPN unlike other data modelling techniques. This
is discussed further at the end of this section.

2 & 3. There are a number of different transfer functions which can
be used to introduce non-linearity into the ANN models and choice of
these will to some extent be dictated by what is available in the particular
software package used. Similarly there are several different training algo-
rithms available to adjust the weights during training and these all have
advantages and disadvantages in terms of speed to convergence, ability
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to escape local minima and so on. Choice of these are also dictated by
their implementation in the software package employed.

4 & 5. Division of the data into training, test and possibly validation
sets and the decision on when to stop training lie at the heart of successful
data modelling using ANN. There are no ‘rules’ here and the number
of samples available dictates the size of any sets but the main aim is
that any subsets should be representative of the overall data set. The
strategy of using a training set to fit a model and a test set to judge
its predictive performance has already been discussed, but for ANN the
procedure can be somewhat different in that this division can be used as
a means to stop training. The problem with training ANN is that any
weight optimization algorithm will carry on adjusting the weights until
as perfect a possible fit is obtained. This will usually be at the expense
of predictive performance because it is possible to ‘overtrain’ a network
so that it learns all the peculiarities of the training set data without
fitting a generalizable model. The network will probably have fitted the
‘correct’ model as part of the training process but will then have carried
on adjusting the weights to fit the training data better while at the same
time moving away from the proper model. A way to avoid this is to use
a process known as ‘early stopping’ or stop-training [39]. Figure 9.21
shows some data which illustrates this process.

In early stopping the training set data is used to provide the targets for
the weight adjustment algorithm and then periodically, say at the end
of every 10 cycles through the training data, another set of samples are
presented to the network for prediction and the prediction error is cal-
culated. In Figure 9.21 the training set error (labelled learning) is shown
as a solid line and it can be seen that this continues to decrease with in-
creasing training iterations. This is a common feature of the algorithms
used to adjust the weights and training can continue until the change in
training set error falls below some pre-set minimum. This is dangerous,
though, since as can be seen from the figure the mean square error for a
separate data set, labelled the control set, begins to rise at an earlier stage
in the training. There are three stopping points (S1, S2 and S3) indicated
by arrows on the figure. The last one, S3, is where training might ordi-
narily be stopped as this is where the training set error is almost constant
but it can be seen that the errors for the validation set (labelled control)
and the joint set of validation and training are increased at this point.
Thus, early stopping involves the choice of S1 or S2 as a stopping point
(there is little to choose between them). This example has highlighted
the problems with naming the data sets used in ANN training. A set of
data used to train the network is generally called a training set, although
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Figure 9.21 Plot of mean square error versus the number of training epochs (itera-
tions) for a training set, validation set and joint set of data points for a linear artificial
data set. The three arrows represent early stopping points S1, S2 and S3 respectively
(reproduced from ref. [39] copyright (1995) American Chemical Society).

here it was called learning, but the set used to judge an early stopping
point is like a test set, but since the data it contains is used as part of the
training process it isn’t an independent test set in the normal use of the
term. Thus, it is often called a validation set, although here it was called
control. Finally, a true test set is a third set that has taken no part in the
training process.

As was briefly mentioned earlier, a trained BPN is not a unique solu-
tion but simply a minimum, in terms of the error between the outputs
and targets, from a particular starting set of network connection weights.
Thus, a commonly employed technique is to train a set of neural net-
works and then take a subset of the ‘best’ networks, that is those with
the lowest training errors, to form a committee in order to make pre-
dictions. This has the advantage that for a continuous response variable
it is possible to assign an error range to the predictions and thus give
some measure of uncertainty in the predicted values of any new sam-
ples. Such an approach may be variously called a ‘consensus’ network
[40] a network ensemble [39] or a committee of neural networks [41].
An example of this is a study which aimed to identify molecules which
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Table 9.12 Confusion matrices for consensus network predictions for kinase
targets (reproduced from ref. [42] with permission of the American Chemical
Society).

Training set predictions

Active Inactive Total %Correct

active 105 15 120 87.50
inactive 5 115 120 95.83
total 110 130 240
%correct 95.45 88.46 91.67

Validation set predictions

active 45 15 60 75.00
inactive 4 56 60 93.33
total 49 71 120
%correct 91.84 78.87 84.17

Test set predictions

active 44 16 60 73.33
inactive 9 51 60 85.00
total 53 67 120
%correct 83.02 76.12 79.17

would be active against a particular gene family of protein targets [42].
In this work, compounds were described by a set of 20 calculated molec-
ular properties, neural networks were constructed with a hidden layer
of 3 neurons and an output layer of 1 unit and 1000 networks were
trained from the usual randomly assigned starting weights. The 100 best
networks were chosen to form a consensus and Table 9.12 shows the
results for a set of kinase targets.

As can be seen from the table the data was split up into 3 sets; a
training set of 240 compounds, a validation set of 120 and a test set
of 120. The overall performance for the training set was about 92 %
with the expected reduction in performance for the validation set and
the unseen test set. The use of a full confusion matrix such as this to
report the results shows that the networks performed better at classi-
fying active compounds as opposed to inactives. Since the aim of the
study was to classify compounds which were going to be purchased for
screening against kinase targets then it is better to be more certain of the
compounds which are likely to be active, and hence potentially useful.

Finally, it has already been shown that a genetic algorithm may be used
to select multiple linear regression models from a large set of independent
variables (Section 6.3.1.5). This is essentially an efficient method to find



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

292 ARTIFICIAL INTELLIGENCE AND FRIENDS

solutions in a very large potential solution space. The possibilities for
ANN models, in terms of network architecture, choice of input variables,
network connection weights and so on also represent solutions in a
very large solution space and so genetic methods have been applied to
solve these problems. There is something quite intellectually satisfying
in making use of two methods borrowed from nature to solve problems
of data analysis.

9.3.4 Interrogating ANN Models

One of the drawbacks in the use of ANN to model data is that the model
is hidden within a large collection of network connection weights. This
is fine if all that is required of a model is the ability to predict but if
we want to try to interpret or understand a model then it isn’t very
satisfactory. There are, however, ways to interrogate a trained neural
network. One technique involves presenting a constant signal at all of
the input neurons except one, varying the signal to this one input neuron
and examining the output. The aim of this is to see how a particular
independent variable affects the dependent while being fed through the
network model. One problem with doing this is the choice of signal to
apply to the neurons which are kept constant. Should it be the mean
value of each of these neurons or the value of the variable for one of
the samples in the set, perhaps the sample with a median value of the
dependent variable?

Another technique is known as sensitivity analysis. There are various
flavours of this method, known in the neural network field as pruning
since they generally aim to remove unnecessary connections between
neurons, but they can be broadly classified as magnitude based or er-
ror based. Magnitude based techniques depend on the direct analysis
of neuron weights while error based methods take account of changes
in network error following the elimination of connections. Some of
these techniques have rather marvellous names such as ‘optimal brain
surgeon’ and ‘optimal brain damage’ which just reflects the biological
origins of ANN. A simple example may serve to illustrate sensitivity
analysis. A data set of charge-transfer complexes has already been intro-
duced in Section 7.3.1. This set consists of experimental measurements
of complex formation for simple monosubstituted benzenes described by
58 computed physicochemical descriptors, the independent variables
[43]. A subset of 11 descriptors were selected on the basis of their cor-
relation with the dependent variable, κ, derived from the experimental
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measurements. Neural networks with the architecture 11:5:1, that is to
say 11 input neurons, 5 hidden neurons and a single output neuron, were
set up and initialized with random starting weights. The networks also
included a bias neuron on the input and hidden layers. Neural networks
were trained 400 times and the sensitivities of the input parameters cal-
culated [44] for each of the input properties. The least sensitive (least
useful) variable found in the first run was variable 11 which agrees
with the order in which these properties were originally chosen; they are
ordered 1 to 11 in terms of their individual correlations with κ. This
variable was removed and the network reconstructed (10:5:1) and again
refitted 400 times. The next least sensitive variable found at this stage
was variable 6, not variable 10 as might have been expected from the
correlations with κ. Complete results from this sensitivity analysis are
shown in Table 9.13.

The first row of the table shows the results for a network which con-
tained all 11 properties, the next row shows that variable 11 (Sn(3))
was omitted, then variable 6 (Sn(1)), then variable 7 and so on. Elim-
ination of variable 11 in the first step is the expected result since this
variable had the lowest individual correlation with κ but the next step
in the procedure shows that a variable with a higher correlation than
four others (7,8,9 and 10) is eliminated. Variable 7 (Sn(2)) is the next
to be dropped and then, surprisingly, the variable with the third highest
correlation with κ (EHOMO). The three ‘best’ variables chosen by the
networks (CMR, ClogP and P3) give a 3 term multiple linear regression

Table 9.13 Network fitting and eliminated properties for the charge-transfer data
set (reproduced from ref. [45] with permission of Springer).

Parameter q2(S1)

1 2 3 4 5 6 7 8 9 10 11
CMR ClogP EHOMO P3 Mux Sn(1) Sn(2) P1 Fe(4) Mu Sn(3) 0.95 ± 0.01

x 0.95 ± 0.009
x x 0.95 ± 0.009
x x x 0.95 ± 0.008

x x x x 0.95 ± 0.008
x x x x x 0.94 ± 0.009
x x x x x x 0.94 ± 0.007
x x x x x x x 0.94 ± 0.006
x x x x x x x x 0.90 ± 0.007
x x x x x x x x x 0.90 ± 0.006

x x x x x x x x x x 0.32 ± 0.03

Eliminated parameters are denoted by x. The correlation coefficients (q2) and their 95 %
confidence limits were calculated by leave-one-out cross-validation.
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Figure 9.22 The molecular structure of rosiglitazone with the 8 flexible torsion
angles (T1 to T8) used for conformational analysis (reproduced from ref. [50] with
permission of Springer).

equation with an R2 of 0.92, the best 3 term equation (found by forward
inclusion linear regression) for CMR, ClogP and EHOMO has an R2 of
0.95. There is clearly some underlying non-linear relationship between
κ and the physicochemical descriptors and it is this non-linearity which
is presumably responsible7 for the different order in which variables are
selected by the network. A non-linear model involving the first few pa-
rameters chosen by the networks may give a better fit to the κ data than
the multiple linear regression equations.

These approaches have all looked at the effect or contribution of
individual descriptors but it is the combination of variables, along with
non-linearity and cross terms introduced by the BPN, which goes to make
up the complete model. Is it possible, therefore, to interrogate the entire
model? The answer to this question is, perhaps surprisingly, yes. There
are a number of different methods for extracting rules from trained
networks such as NeuroRule [46], BioRe [47], MofN3 [48], REANN
[49], TREPAN [50] and others. Many of these techniques generate a
set of rules known as M-of-N rules. Rules in this form state, ‘If M of
the N conditions, a1, a2,. . . . , am are true, then the conclusion b is true.’
It has been argued [51] that some concepts can be better expressed in
this form than the other logical ‘if-then’ form of rules and it seems that
this representation also helps to avoid the combinatorial explosion in tree
size found with if-then rules. An example of the use of TREPAN involves
molecular dynamics simulations of the antidiabetic agent rosiglitazone
shown in Figure 9.22.

The data involved are the dihedral angles of the 8 flexible torsion
angles indicated on the diagram. A sample structure was taken every 1
picosecond during the course of a 5 nanosecond simulation, leading to
5000 data points describing the simulation. Each of these conformations

7 Although it is possible that collinearity or multicollinearities amongst the descriptors may
also contribute.
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Figure 9.23 The TREPAN M-of-N rules for classification of the conformations of
rosiglitazone (reproduced from ref. [50] with permission of Springer).

was classified as either a folded or extended structure based on the dis-
tance between the two ends of the molecule; from the simulations carried
out, the conformations were divided approximately 50:50 between these
two states. Application of a datamining algorithm called C5 [52] resulted
in highly accurate classifications of the conformations but using a very
complex decision tree [53]. A neural network trained on these data gave
a slightly lower accuracy of prediction but application of the TREPAN
algorithm to the trained network resulted in the very simple set of rules
shown in Figure 9.23.

This has been a rather superficial treatment of an important topic but
detailed discussion of these methods is beyond the scope of this book.
Interested readers should consult the cited papers and the references
therein.

9.4 MISCELLANEOUS AI TECHNIQUES

The expert systems described in Section 9.2 should illustrate some of
the principles of the construction and operation of expert systems in
chemistry. Given a suitable knowledge base (empirical database) and set
of production rules it is possible to predict various chemical properties
from structure. Many such systems exist (for example, spectroscopic
properties, solubility, heat of formation, etc.), although they are not al-
ways called ‘expert systems’. The Rekker system for log P [4] has been
coded into a computer-based expert system called PrologP. This system
operates in a very similar way to the CLOGP calculation routine, taking
a graphical input of structure, dissecting this into fragments, and then
applying the rules of the Rekker scheme to calculate log P. The same
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Figure 9.24 Computer screen from the program pKalc (reproduced with permission
of Compudrug Company Ltd.).

company has also produced a pKa prediction expert system (pKalc)
which uses a Hammett equation (for aromatic systems) or a Taft equation
(for aliphatics) as a basis for the calculation. Once again, the program
takes graphical input of structure which is dissected into fragments.
The ionizable groups are perceived and the appropriate equation se-
lected for the prediction of the dissociation constant of each group. The
rest of the molecule is treated as fragments or substituents which will
modify the pKa values and fragment constants, equivalent to σ values,
are looked-up in a database and applied to the prediction equations.
An example of an output screen from this program is shown in Figure
9.24; the program has the facility to sketch in molecules, as shown for
cyclizine, store compounds in a database, and predict pKa values, as
shown for ampicillin. Ionization, of course, affects partition coefficients
since it is generally the un-ionized species which partitions into an organic
phase.8 The PrologP and pKalc programs have been combined to create a

8 Ionized species can dissociate into a ‘wet’ organic phase singly and as uncharged ion pairs.
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distribution coefficient prediction system (PrologD) where log D repre-
sents the partitioning of all species at a given pH.

Before leaving expert systems, it is worth considering two problems in-
volved in the prediction of toxicity, namely metabolism and distribution.
These two problems are related in that metabolizing enzymes are vari-
ously distributed around the body. Thus, the distribution characteristics
of a particular compound or its metabolites may dictate which elimi-
nation systems they will encounter. Similarly, as metabolism proceeds,
the distribution properties of the metabolites may encourage them to
migrate into different tissues. Prediction of toxicity necessarily involves
the identification of at least the major products of metabolism and of
course the situation is further complicated since different species will be
eliminated at different rates. The DEREK system makes some attempt
to account for metabolism by incorporating some well-known predictive
rules. Other systems deal with specific metabolizing enzymes, for exam-
ple, the COMPACT program deals with cytochrome P450 [54], while at
least one program (METABOLEXPERT) attempts to combine metabolic
pathways with a simulation of pharmacokinetic behaviour. While these
systems have not yet reached the reliability of log P prediction programs,
an inherently simpler problem, it seems inevitable that they will improve
as the body of data is increased.

Rule induction is an artificial intelligence method that has been ap-
plied to the analysis of a number of chemical data sets. As the name
implies, rule induction aims to extract rules from a set of data (descrip-
tor variables) so as to classify the samples (compounds, objects) into two
or more categories. The input to a rule induction algorithm is a num-
ber of test cases, a test set, and the output is a tree-structured series of
rules, also known as a class probability tree. A popular rule induction
algorithm is known as ID3 (Iterative Dichotomizer three) [55] and its
operation in terms of information can be described as follows. If a test
set contains p samples of class P and n samples of class N, a sample
will belong to class P with probability p/(p + n) and to class N with a
probability n/(p + n). The information in a decision tree is given by

I(p, n) = −p/(p + n) log2 p/(p + n) − n/(p + n) log2 n/(p + n) (9.5)

If a particular feature (property, descriptor), F, in the data set, with
values (Fi, Fi+1. . . . .) is used to form the first rule of the decision tree,
also known as the ‘root’ of the tree, it will partition the test set, C, into
Ci, Ci+1, and so on, subsets. Each subset, Ci, contains those samples
which have value Fi of the chosen feature F. If Ci contains pi samples
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of class P and ni samples of class N, the expected information for the
subtree Ci is I(Pi, ni). The expected information required for the tree
with feature F as a root is obtained as the weighted average

E(F ) =
v∑

i=1

(pini)/(p + n)I (pi,ni) (9.6)

The information gain on branching on feature F is given by Equa-
tion (9.7).

gain(F ) = I (p, n) − E (F ) (9.7)

The ID3 procedure examines all the features in the data set and chooses
the one that maximizes the gain, this process being repeated until some
pre-set number of features are identified or a particular level of reliability
is achieved. One problem with this procedure is that ‘bushy’ trees can
be produced, that is to say decision trees which have so many rules that
there is a rule for every one or two samples: the ID3 algorithm can be
modified, using a significance test, to reject rules that are irrelevant [56].

Examples of the application of the ID3 algorithm to four sets of
data involving biologically active compounds have been reported by
A-Razzak and Glen [56]. One of these consisted of an expanded version
(17 compounds) of the set of 13 γ –aminobutyric acid analogues (GABA)
already shown in Figures 4.8 and 9.19. This particular set of compounds
was described by seven computed physicochemical properties which did
a very reasonable job of separating activity categories, as may be seen
from the non-linear map shown in Figure 9.25.

The ID3 algorithm was run on a larger set of 24 computed properties
to give the decision tree shown in Figure 9.26. Interpretation of this tree
is fairly self-evident; the data set is split into two above and below a
surface area value of 162.15, for example. This is one of the attractions
of this form of ‘machine learning’, the decision rules may be readily
understood and should be easy to apply when attempting to design new
molecules. Two of the three properties used to provide these decision
rules were included in the set of seven parameters used to produce the
non-linear map. However, if one is interested in examining the effect of
particular variables, perhaps because they have proved important in the
prediction of another activity, the ID3 algorithm can be forced to create
decision rules for user-selected features. In this example, the samples fell
naturally into three classes; where the dependent variable is continuous,
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Figure 9.25 Non-linear map of 17 GABA analogues described by seven physico-
chemical properties (reproduced from ref. [56] with permission of Springer).

the ID3 algorithm can be used by classifying compounds according to a
range of the response variable.

Another example of the use of the ID3 algorithm is given in a report
which compares ‘rule-building expert systems’ with pattern recognition

Figure 9.26 Decision tree from the ID3 algorithm run on the GABA analogues
shown in Figure 9.25 (reproduced from ref. [56] with permission of Springer).
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Figure 9.27 Principal components scores plot for olive oil samples characterized by
their content of eight fatty acids (reproduced from ref. [57] with permission of the
American Chemical Society).

in the classification of analytical data [57]. Figure 9.27 shows a principal
components plot of 100 olive oil samples characterized by their content
of eight fatty acids.

The samples are clearly separated into two geographical areas, Eastern
and Western Liguria. An implementation of the ID3 algorithm called EX-
TRAN was able to characterize these samples on the basis of their content
of linolenic acid (first rule or root of the tree), oleic acid, linoleic acid,
and palmitic acid. A comparison of the performance of EX-TRAN with
k–nearest neighbours (one and five neighbours) and linear discriminant
analysis (LDA) is shown in Table 9.14, where it can be seen that the
results are slightly worse than the pattern recognition techniques (except
KNN with raw data).

The final artificial intelligence method for the analysis of chemical data
that will be discussed in this section might also be called ‘rule-building
expert systems’. The widespread use of molecular modelling packages
in drug design has led to the creation of ‘pharmacophore’ or ‘biophore’
recognizing systems. A pharmacophore is defined as that pattern of atoms
(or perhaps properties) which is required to exist in a molecule in order
for it to exert some particular biological effect. It is generally accepted
that the pharmacophore is ‘recognized’ by the biological activity site and
presumably some, if not all, parts of the pharmacophore are involved
in the compound binding to the site. A biophore has a less restrictive
definition in that a biophore is some pattern of atoms and/or properties
which occurs in some of the active or inactive molecules. The concept of
a biophore for inactivity is an interesting one; presumably this relates to
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Table 9.14 Comparison of validation results: number of wrong
prediction results (not counting object 50 of eastern Liguria)
(reproduced from ref. [57] with permission of the American
Chemical Society).

Eastern Liguria Western Liguria

EX-TRAN 2 2

1NN
Raw data 1 5
Autoscaled 1 2
Range-scaled 0 2

5NN
Raw data 0 5
Autoscaled 1 1
Range-scaled 1 0

LDA
Stepwise 0 0
All variables 0 1

a pattern of atoms and/or properties which are responsible for confusing
recognition at the active site, or perhaps preventing binding by some
repulsive interactions.

The CASE (Computer Assisted Structure Evaluation) program, now
elaborated to an enhanced form called MULTICASE [58], is an example
of an algorithm which seeks biophores in the active and inactive com-
pounds in a set. Input to the CASE program is by means of a line notation
system, called KLN, which has similarities to the Wiswesser line notation
system (see ref [8] for a discussion of line notation systems). The program
generates a very large number of descriptors, as one report states ‘easily
ranging in the thousands for 50–100 compound databases’, consisting
of molecular fragments of various sizes; molecular connectivity indices
and log P are included in the MULTICASE program. Statistical tests are
used to assess the significance of the biophores although, with such a
large number of descriptors, the danger of chance effects cannot easily
be overlooked. The CASE program has been applied to a variety of sets
of biologically active compounds (ref. [58] and references therein) and,
under the name CASETOX, to toxicity databases (see Section 9.2.2).

9.5 GENETIC METHODS

We have already seen how genetic methods can be applied to the search
for multiple linear regression models (Section 6.3.1) and it has been
briefly mentioned that they can be used in both the selection of neural
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network architectures and in their training. In principle, many different
aspects of data analysis can benefit from a genetic algorithm ‘wrapper’
but there are also many other scientific tasks, involving selections from
a large number of alternatives, which can be treated in this way. Thus,
this section is a more general description of the use of genetic methods.

Genetic methods is a general term which covers genetic algorithms,
evolutionary strategies, genetic programming and so on. There are sub-
tle differences between these methods; genetic algorithms, for example,
employ mating of fit solutions and also mutation of individual genes
whereas evolutionary strategies make use of mutation, but the following
general principles apply to all of these approaches.

The first step in a genetic approach is the representation of a solution
which requires:

� choice of a coding scheme;
� choice of the form of the genetic vector;
� choice of the genetic alphabet.

There are 4 (or more) coding schemes; gene-based coding where each
position in the vector represents an independent variable and each vari-
able can assume a value independent of the others; node-based coding
where each position represents a path; delta coding which is similar to
gene-based except that the values of a particular solution are added to
a ‘template’ solution and messy coding which is based on a template
structure but here the position and value of the variables is important
(missing values are allowed).

The genetic vector comes in a standard form, which contains values of
the variables, and an extended form which is the same as standard but
with extra control information. The genetic alphabet can use real num-
ber, integer or standard binary coding or a scheme called grey coding
which is a variant of binary coding. Since the function/problem con-
tains multiple minima, the coding scheme affects the ‘distance’ between
minima and hence how easy it is to find a solution. Real number cod-
ing allows solution to any degree of accuracy – but there are infinite
solutions.

Having chosen how to represent a solution there are a number of steps
involved in the genetic process:

1. Determine the size of the population (the number of solutions to
store).
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2. Create an initial population (there are a variety of ways to do this,
e.g. random selection).

3. Choose how to select the parents (again, various ways, e.g. random
selection, based on fitness, etc.).

4. Determine a mating operator (the standard is a 1 point crossover)
and the probability of mating.

5. Choose a mutation operator and mutation probability.
6. Decide whether to use a maturation operator. This can improve

the search results by optimization of a solution before checking its
fitness.

7. Choose which offspring to keep (again there are various ways, e.g.
based on fitness (an elitist strategy) or simplicity, or a combination
of the two, etc.).

8. Choose what to do with the new offspring. They may be added
to the population by replacement of the weakest (least fit) or by
replacement of random members of the population, etc.

Inherent in this process is some means of judging the fitness of a solution.
In other words, how well a model has been fitted, how well a neural
network performs, how closely a structure fits to a template and so on.
Choice of a fitness function is crucial since it is the optimization of this
which is the driving force of the genetic method.

Genetic methods have been applied successfully to a very wide range
of scientific problems but they also suffer from some disadvantages:

� The configuration of the G.A. (coding scheme, fitness function, etc.)
is crucial for success.
� There are few guidelines to help with configuration.
� Most configurations are problem dependent.

� They may reach a local optimum too quickly.
� They may suffer from slow convergence.

9.6 CONSENSUS MODELS

We have already seen the use of consensus models in Section 9.3.3 where
the 100 ‘best’ artificial neural networks from a set of 1000 were chosen to
form a committee to make predictions of activity against kinase targets.
This, of course, makes sense as any individual trained network will have
converged to some minimum error value and may not be an optimum
solution. Use of a panel of trained networks like this is likely to give a



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

304 ARTIFICIAL INTELLIGENCE AND FRIENDS

more reliable prediction and has the added advantage of being able to
assign a range of likely values thus giving some measure of reliability.
Another example of a situation where consensus models could be used
is in the case of multiple small (3 or 4 term) multiple linear regression
models derived from a large pool of potential independent variables.
Just such a situation was shown in Section 6.3.1.5 where the starting set
consisted of 53 variables. The use of different genetic strategies gave rise
to populations of linear regression models and these could be combined
to give consensus predictions. Some papers have reported improvements
in predictions using consensus models of MLR equations, and of other
types of model, but it has also been shown that in some situations there
is no improvement and that the benefits don’t outweigh the complexity
[59]. These findings may be problem specific, of course, but further work
is needed to draw conclusions on the utility of consensus models of the
same type.

Another use of consensus modelling, however, is to combine models
of different types. It should be obvious from a number of the examples
shown in this book that it is possible to apply several different data mod-
elling techniques to the same set of data. These usually, but not always,
give rise to similar sets of predictions and in some cases may work better
for one part of the data set, say the inactives, than another. Consensus
modelling in these circumstances simply consists of running each of the
available models on new data points to be predicted and then forming a
consensus forecast in some way. In the case of classified data this may be
just a majority vote on the outcome, for continuous data it may involve
a range of predicted values. An example of the classification of andro-
genicity (compounds which mimic androgenic hormones such as testos-
terone) for a diverse set of molecules using three different classification
techniques showed that a consensus model performed better than any of
the individual models [60]. Like the regression results this finding may
be problem specific but it is tempting to believe that a consensus made up
from different modelling approaches may well give superior predictions.

9.7 SUMMARY

Sections 9.2.1 to 9.2.3 described a number of important chemical ex-
pert systems which are regularly used in the research and development
of pharmaceuticals and agrochemicals. Hopefully, readers with other
research or commercial interests may see an application of these and
similar systems to their own work, or may even be prompted to develop
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new systems tailored to their own needs. Section 9.3 discussed neural
networks which are a fascinating new development in artificial intel-
ligence techniques and which appear to offer a novel method for the
display of multidimensional data. They have been extensively applied
to the analysis of different types of data sets and techniques have been
devised to unravel the complexities of the non-linear models that they
fit to data. Rule induction and the pharmacophore/biophore recognition
systems appear to show promise in data analysis and should be useful
complements to the wide range of more or less well-understood methods
available today. Finally, genetic algorithms offer an attractive method
for the optimization of complex problems and consensus modelling may
well be an important step forward in the production of robust and reli-
able predictive models.

In this chapter the following points were covered:

1. how expert systems work;
2. the development of expert systems for chemical property and tox-

icity prediction;
3. the use of expert systems for chemical reaction planning and the

prediction of chemical structures;
4. how neural networks work and how they are used in data display

and data analysis;
5. attempts to uncover the ‘black box’ of artificial neural network

models;
6. what is meant by rule induction;
7. how genetic algorithms can be set up to solve complex problems;
8. the possibility that consensus models may work better than indi-

vidual models.

REFERENCES

[1] Ayscough, P.B., Chinnick, S.J., Dybowski, R., and Edwards, P. (1987). Chemistry
and Industry, Aug., 515–20.

[2] Cartwright, H.M. (1993). Applications of Artificial Intelligence in Chemistry.
Oxford University Press, Oxford, UK.

[3] Jakus, V. (1992). Collection of Czechoslovak Chemical Communications, 57,
2413–51.

[4] Nys, G.C. and Rekker, R.F. (1973). European Journal of Medicinal Chemistry, 8,
521–35.

[5] Rekker, R.F. and de Kort H.B. (1979). European Journal of Medicinal Chemistry,
14, 479–88.



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

306 ARTIFICIAL INTELLIGENCE AND FRIENDS

[6] Hansch, C. and Leo, A.J. (1979). Substituent Constants for Correlation Analysis in
Chemistry and Biology, pp. 18–43. John Wiley & Sons, Inc., New York.

[7] Mayer, J.M., Van de Waterbeemd, H., and Testa, B. (1982). European Journal of
Medicinal Chemistry, 17, 17–25.

[8] Weininger, D. and Weininger, J.L. (1990). In Quantitative Drug Design (ed.
C.A. Ramsden), Vol. 4 of Comprehensive Medicinal Chemistry. The Rational De-
sign, Mechanistic Study and Therapeutic Application of Chemical Compounds,
C. Hansch, P.G. Sammes, and J.B. Taylor (eds), pp. 59–82. Pergamon Press,
Oxford.

[9] Ashby, J. (1985). Environmental Mutagenesis, 7, 919–21.
[10] Tennant, R.W. and Ashby, J. (1991). Mutation Research, 257, 209–27.
[11] Ashby, J. and Tennant, R.W. (1991). Mutation Research, 257, 229–306.
[12] Sanderson, D.M. and Earnshaw, C.G. (1991). Human and Experimental Toxicol-

ogy, 10, 261–73.
[13] Judson, P.N. (1992). Pesticide Science, 36, 155–60.
[14] Langowski, J. (1993). Pharmaceutical Manufacturing International, 77–80.
[15] Enslein, K., Blake, B.W., and Borgstedt, H.H. (1990). Mutagenesis, 5, 305–6.
[16] Enslein, K., Lander, T.R., Tomb, M.E., and Craig, P.N. (1989). Toxicology and

Industrial Health, 5, 265–387.
[17] Klopman, G. (1985). Environmental Health Perspectives, 61, 269–74.
[18] Hileman, B. (1993). Chemical and Engineering News, 21 June, 35–7.
[19] Benigni, R. (2004). Prediction of human health endpoints: mutagenicity and carcino-

genicity. In Predicting Chemical Toxicity and Fate, M. Cronin and D.J. Livingstone
(eds), pp 173–92. CRC Press, Boca Raton.

[20] Corey, E.J., Long, A.K., and Rubenstein, S.D. (1985). Science, 228, 408–18.
[21] Corey, E.J. (1991). Angewandte Chemie – International edition in English, 30,

455–65
[22] Metivier, P., Gushurst, A.J., and Jorgensen, W.L. (1987). Journal of Organic Chem-

istry, 52, 3724–38.
[23] Manallack, D.T. and Livingstone, D.J. (1992). Medicinal Chemistry Research, 2,

181–90.
[24] Salt, D.W., Yildiz, N., Livingstone, D.J., and Tinsley, C.J. (1992). Pesticide Science,

36, 161–70.
[25] Manallack, D.T. and Livingstone, D.J. (1994). Neural Networks – A Tool for Drug

Design. In Advanced Computer-assisted Techniques in Drug Discovery, H. Van
de Waterbeemd (ed.), Vol 3 of Methods and Principles in Medicinal Chemistry,
R. Mannhold, P. Krogsgaard-Larsen and H.Timmerman (eds), pp. 293–318. VCH,
Weinheim.

[26] Zupan, J. and Gasteiger, J. (1991). Analytica Chimica Acta, 248, 1–30.
[27] Burns, J.A. and Whitesides, G.M. (1993). Chemical Reviews, 93, 2583–2601.
[28] Zupan, J. and Gasteiger, J. (1993). Neural Networks for Chemists. VCH, Cam-

bridge.
[29] Livingstone, D.J. and Salt, D.W. (1995). Neural networks in the search for simi-

larity and structure-activity. In Molecular Similarity in Drug Design, P. Dean (ed.),
pp. 187–214, Blackie Academic and Professional, London, Glasgow.

[30] Livingstone, D.J. (ed.) (2008). Artificial Neural Networks – Methods and Appli-
cations, Vol. 458 of Methods in Molecular Biology, J.M. Walker, Series editor,
Humana Press.



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

REFERENCES 307

[31] Livingstone, D.J., Hesketh, G., and Clayworth, D. (1991). Journal of Molecular
Graphics, 9, 115–18.

[32] Selwood, D.L, Livingstone, D.J., Comley, J.C.W., et al. (1990). Journal of Medicinal
Chemistry, 33, 136–42.

[33] Hudson, B., Livingstone, D.J., and Rahr, E. (1989). Journal of Computer-aided
Molecular Design, 3, 55–65.

[34] Prakash, G. and Hodnett, E.M. (1978). Journal of Medicinal Chemistry, 21, 369–73.
[35] Andrea, T.A. and Kalayeh, H. (1991). Journal of Medicinal Chemistry, 34, 2824–36.
[36] Goodacre, R., Kell, D.B., and Bianchi, G. (1993). Journal of the Science of Food and

Agriculture, 63, 297–307.
[37] Livingstone, D.J. and Manallack, D.T. (1993). Journal of Medicinal Chemistry, 36,

1295–7.
[38] Livingstone, D.J., Ford, M.G., Huuskonen, J.J. and Salt, D.W. (2001). Journal of

Computer-Aided Molecular Design, 15, 741–52.
[39] Tetko, I.V, Livingstone, D.J. and Luik, A.I. (1995). Journal of Chemical Information

and Computer Science, 35, 826–33.
[40] Manallack, D.T., Tehan, B.G., Gancia, E., et al. (2003). Journal of Chemical Infor-

mation and Computer Science, 43, 674–9.
[41] Helle, H.B. and Bhatt, A. (2002). Petroleum Geoscience, 8, 109–18.
[42] Manallack, D.T., Pitt, W.R., Gancia, E., et al. (2002). Journal of Chemical Infor-

mation and Computer Science, 42, 1256–62.
[43] Livingstone, D.J., Evans, D.A., and Saunders, M.R. (1992). Journal of the Chemical

Society-Perkin Transactions II, 1545–50.
[44] Tetko, I.V, Villa, A.E.P and Livingstone, D.J. (1996). Journal of Chemical Informa-

tion and Computer Science, 36, 794–803.
[45] Livingstone, D.J., Manallack, D.T. and Tetko, I.V. (1997). Journal of Computer-

aided Molecular Design, 11, 135–42.
[46] Setiono, R. and Liu, H. (1996). IEEE Computer, March 1996, 71–7.
[47] Taha, I. and Ghosh, J. (1996). Intelligent Engineering Systems Through Artificial

Neural Networks, 6, 23–8.
[48] Setiono, R. (2000). IEEE Transactions of Neural Networks, 11, 512–19.
[49] Kamruzzaman, S.M. and Islam, Md. M. (2006). International Journal of Informa-

tion Technology, 12, 41–59.
[50] Livingstone, D.J., Browne, A., Crichton, R., Hudson, B.D., Whitley, D.C. and Ford,

M.G. (2008). In Artificial Neural Networks – Methods and Applications, D.J. Liv-
ingstone (Ed.), Vol. 458 of Methods in Molecular Biology, J.M. Walker, Series
editor, pp. 231–48, Humana Press.

[51] Towell, G. and Shavlik, J.W. (1993). Machine Learning, 31, 71–101.
[52] Kohavi, R. and Quinlan, J. (2002). In Handbook of Data Mining and Knowledge

Discovery, W. Klosgen and J.M. Zytkow (eds), pp. 267–76, Oxford University Press,
New York.

[53] Hudson, B.D., Whitley, D.C., Browne, A. and Ford, M.G. (2005). Croatia Chemica
Acta, 78, 557–61.

[54] Lewis, D.F.V., Moereels, H., Lake, B.G., Ioannides, C., and Parke, D.V. (1994).
Drug Metabolism Reviews, 26, 261–85.

[55] Quinlan, J.R. (1986). Machine Learning, 1, 81–106.
[56] A-Razzak, M. and Glen, R.C. (1992). Journal of Computer-aided Molecular Design,

6, 349–83.



P1: OTA/XYZ P2: ABC
JWBK419-09 JWBK419/Livingstone September 26, 2009 18:7 Printer Name: Yet to Come

308 ARTIFICIAL INTELLIGENCE AND FRIENDS

[57] Derde, M.-P., Buydens, L., Guns, C., Massart, D.L., and Hopke P.K. (1987). Ana-
lytical Chemistry, 59, 1868–71.

[58] Klopman, G. (1992). Quantitative Structure–Activity Relationships, 11, 176–84.
[59] Hewitt, M., Cronin, M.T.D., Madden, J.C., et al. (2007). Journal of Chemical

Information and Modeling, 47, 1460–8.
[60] Ji, L., Wang, X., Qin, L., Luo, S. and Wang, L. (2009). QSAR & Combinatorial

Science, 28, 542–550.



P1: OTA/XYZ P2: ABC
JWBK419-10 JWBK419/Livingstone September 26, 2009 15:46 Printer Name: Yet to Come

10
Molecular Design

Points covered in this chapter

� The need for molecular design
� Quantitative structure-activity and structure-property relationships
� Characterization of chemical structure by measured and calculated

properties
� Application to mixtures

10.1 THE NEED FOR MOLECULAR DESIGN

Most, if not all, of what follows in this chapter can be applied to the
design of any ‘performance’ chemical. What is meant here by a perfor-
mance chemical is a molecule which exerts a specific effect or which has
some particular property or set of properties which are essential for the
product to function in the way that it is intended. In some applications
the performance chemical may form the bulk of the product, in others it
may only be a small percentage and in others it may be just one of several
molecules which are all important for the eventual successful functioning
of the product. This latter situation, of course, may be described as a
mixture and some chemical products, especially those derived from nat-
ural materials, consist of mixtures of molecules whose exact composition
may be unknown. Mixtures are such a special case that they need sepa-
rate consideration as discussed in Section 10.5. There are many chemical
products in everyday use which are perfectly satisfactory but where it
may be desirable to change or modify the performance ingredient for a
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variety of reasons. This may be economic, simply to reduce costs, say,
or it may be necessary for legislative reasons, such as the introduction of
the REACH legislation in the EU, or it may be commercial in order to
succeed against a competitor’s product, and so on. Whatever the reason,
this situation calls for the application of molecular design.

The scientific approaches used in molecular design have been largely
developed in the pharmaceutical and, perhaps to a lesser extent, agro-
chemical industries. This is mainly because these companies have a long
history of very high expenditure on research and the enormous costs of
the development of new drugs are widely known. Thus, the examples
that follow are almost exclusively drawn from these fields but I hope
that readers from other academic and industrial fields will see how these
approaches may be applied to their own problems.

10.2 WHAT IS QSAR/QSPR?

The fact that different chemicals have different biological effects has
been known for millennia; perhaps one of the earliest examples of a
medicine was the use by the ancient Chinese of Ma Haung, which con-
tains ephedrine, to treat asthma and hay fever. Table 10.1 lists some
important biologically active materials derived from plants; no doubt
most readers will be aware of other bioactive substances derived from
plants.

Of course it was not until the science of chemistry had become suf-
ficiently developed to assign structures to compounds that it became
possible to begin to speculate on the cause of such biological proper-
ties. The ability to determine structure enabled early workers to estab-
lish structure–activity relationships (SAR), which are simply observa-
tions that a certain change in chemical structure has a certain effect
on biological activity. As an example, molecules of the general formula
shown in Figure 10.1 are active against the malaria parasite, Plasmodium
falciparum. The effect of structural changes on the biological properties
of derivatives of this compound are shown in Table 10.2, where the
chemotherapeutic index is the ratio of maximum tolerated dose to min-
imum therapeutic dose.

Such relationships are empirical and are semi-quantitative in that the
effect of changes in structure are represented as ‘all or nothing’ effects.
In this example, replacement of oxygen by sulphur (compounds 8 and
3) results in a decrease in activity by a factor of 5, but that is all that
can be said about that particular chemical change. In this case there
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Table 10.1 Some examples of plant-derived compounds.

Artemisin Antimalarial Sweet wormwood
(Artemisia annua L.)

Ascaridol Anthelminthic American Wormseed
(Chenopodium anthelminticum)

Aspirin Analgesic Willow bark
(Salix sp.)

Caffeine Stimulant Tea leaves and coffee beans
Digitalis Antiarrythmic Foxglove

(Digitalis purpurea)
Ephedrine Sympathomimetic Ma Huang

(Ephedra sinica)
Filicinic acid Anthelminthic Fern

(Aspidium filix-mas)
Nicotine Stimulant Tobacco

(Nicotiana tabacum)
Permethrin Insecticide Chrysanthemum
Quinine Antimalarial Cinchona bark

(Cinchona officinalis)
Reserpine Tranquilizer sedative Fern

(Rauvolfia spp.)
Strychnine Central nervous system

stimulant
Seeds
(Strychnos nux-vomica)

Taxol Antitumour Pacific yew tree
(Taxus brevifolia)

Vinblastin and
Vincristine

Antitumour Rosy periwinkle
(Catharanthus roseus)

is only one example of that particular substitution and thus it is not
possible to predict anything other than the fivefold change in activity. If
the set of known examples contains a number of such changes then it
would be possible to determine a mean effect for this substitution and
also to assign a range of likely changes in activity for the purposes of
prediction.

An SAR such as that shown here only applies to the set of compounds
from which it is derived, the so-called ‘training set’ as discussed in Section
1.4 and Chapters 2 and 3. Although this might be seen as a disadvantage
of structure-activity relationships, the same qualification also applies

Figure 10.1 Parent structure of the antimalarial compounds in Table 10.2.
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Table 10.2 Effect of structural variation on the antimalarial activity of derivatives
of the parent compound shown in Figure 10.1.

Chemotherapeutic
X R1 R2 index

1 (CH2)2 NO2 OEt 0
2 (CH2)2 Cl OMe 8
3 (CH2)3 Cl OMe 15
4 (CH2)3 H H 0
5 (CH2)3 Cl OEt 7.5
6 (CH2)4 Cl OEt 11.2
7 (CH2)3 CN OMe 10
8 (CH2)3 Cl SMe 2.8

to other quantitative models of the relationship between structure and
activity. One of the powerful features of modelling is also one of its
disadvantages, in that any model can only be as ‘good’ as the training
set used to derive it. Making use of a number of more or less reasonable
assumptions, the SAR approach has been used to derive more quanti-
tative models of the relationship between structure and activity using a
technique known as the Free and Wilson method which is described in
Chapter 6.

Quantitative structure–activity relationships (QSAR) are a develop-
ment of SAR. There is a similar term, QSPR, which is applied to rela-
tionships between a measured chemical property, e.g. solubility, boiling
point, partition coefficient, etc., and chemical structure. So, what does
this mean, what is QSAR/QSPR? The earliest expression of a quantita-
tive relationship between activity and chemical structure was published
by Crum Brown and Frazer in 1868 [1]:

φ = f (C) (10.1)

where φ is an expression of biological response and C is a measure
of the ‘constitution’ of a compound. It was suggested that a chemical
operation could be performed on a substance which would produce a
known change in its constitution, �C. The effect of this change would
be to produce a change in its physiological action, �φ. By application
of this method to a sufficient number of substances it was hoped that it
might be possible to determine what function φ is of C. It was recognized
that the relationship might not be a strictly mathematical one because
the terms �C, φ, and φ + �φ could not be expressed with ‘sufficient
definiteness to make them the subjects of calculation’. It was expected,
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Table 10.3 Anaesthetic activity and hydrophobicity of a
series of alcohols.

Anaesthetic activity
Alcohol �π

(
log 1/

C
)

C2H5OH 1.0 0.481
n–C3H7OH 1.5 0.959
n–C4H9OH 2.0 1.523
n–C5H11OH 2.5 2.152
n–C7H15OH 3.5 3.420
n–C8H17OH 4.0 3.886
n–C9H19OH 4.5 4.602
n–C10H21OH 5.0 5.00
n–C11H23OH 5.5 5.301
n–C12H25OH 6.0 5.124

however, that it might be possible to obtain an approximate definition of
f in Equation (10.1). The key to the difference between the philosophy
of this approach and SAR lies in the use of the term quantitative. The Q
in QSAR refers to the way in which chemical structures are described,
using quantitative physicochemical descriptors. It does not refer to the
use of quantitative measures of biological response, although this is a
common misconception.

Perhaps the most famous examples of early QSAR are seen in the
linear relationships between the narcotic action of organic compounds
and their oil/water partition coefficients [2, 3]. Table 10.3 lists the anaes-
thetic activity of a series of alcohols along with a parameter, �π , which
describes their partition properties (see Box 10.2 in this chapter for a
description of π ).

The relationship between this activity and the physicochemical de-
scriptor can be expressed as a linear regression equation as shown
below.

log 1/
C = 1.039

∑
π − 0.442 (10.2)

Regression equations and the statistics which may be used to describe
their ‘goodness of fit’, to a linear or other model, are explained in detail
in Chapter 6. For the purposes of demonstrating this relationship it is
sufficient to say that the values of the logarithm of a reciprocal concen-
tration (log 1/C) in Equation (10.2) are obtained by multiplication of the
�π values by a coefficient (1.039) and the addition of a constant term
(−0.442). The equation is shown in graphical form (Figure 10.2); the
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Figure 10.2 Plot of biological response (log 1/C) against �π (from Table 10.3).

slope of the fitted line is equal to the regression coefficient (1.039) and
the intercept of the line with the zero point of the x-axis is equal to the
constant (−0.442).

The origins of modern QSAR may be traced to the work of Profes-
sor Corwin Hansch who in the early 1960s proposed that biological
‘reactions’ could be treated like chemical reactions by the techniques
of physical organic chemistry [4]. Physical organic chemistry, pioneered
by Hammett [5], had already made great progress in the quantitative
description of substituent effects on organic reaction rates and equilib-
ria. The best-studied and most well-characterized substituent property
was the electronic effect, described by a substituent constant SIGMA
(see Box 10.1).

Hansch, however, recognized the importance of partition effects in any
attempt to describe the properties of compounds in a biological system.
The reasoning behind this lay in the recognition that in order to exert an
effect on a system, a compound first had to reach its site of action. Since
biological systems are composed of a variety of more or less aqueous
phases separated by membranes, measurement of partition coefficients
in a suitable system of immiscible solvents might provide a simple chem-
ical model of these partition steps in the biosystem.1 Although the olive
oil/water partition system had already been demonstrated to be of utility,
Hansch chose octan-1-ol as the organic phase of his chemical model sys-
tem of partition. Octan-1-ol was chosen for a variety of reasons: perhaps

1 The organic phase of a partition coefficient system is intended to model the fatty, hydrophobic
(water hating), membranes and the aqueous phase the hydrophilic parts of a biosystem.
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Box 10.1 The electronic substituent constant, σ

Consider the ionization of benzoic acid as shown below where X is a
substituent in the meta or para position to the carboxyl group.

The extent to which this equilibrium goes to the right, to produce the
carboxylate anion and a proton, may be expressed by the value of the
equilibrium constant, Kc

a , which is known as the concentration ionization
constant

Kc
a = [A−][H+]

[HA]

where the terms in square brackets represent the molar concentrations of
the ionized acid (A−), protons (H+), and the un-ionized acid (HA). This
is a simplification of the treatment of ionization and equilibria but will
serve for the purposes of this discussion. The ‘strength’ of an organic∗

acid, i.e. the extent to which it ionizes to produce protons, is given by
the magnitude of Ka, most often expressed as the negative logarithm of
Ka, pKa. Since pKa uses the negative log, a large value of Ka will lead to
a small number and vice versa. Typical pKa values of organic acids range
from 0.5 (strong) for trifluoroacetic acid to 10 (very weak) for phenol.
The strength of bases can also be expressed on the pKa scale; here a large
value of pKa indicates a strong base. A very readable description of the
definition and measurement of acid and base strengths, along with useful
tabulations of data, is given in the monograph by Albert and Serjeant [6].

One of the features of an aromatic system, such as the benzene ring
in benzoic acid, is its ability to delocalize electronic charge through the
alternating single and double bonds. Once again, this is a simplification,
since the bonds are all the same type; however, it will serve here. A
substituent on the benzene ring is able to influence the ionization of the
carboxyl group by donating or withdrawing electronic charge through
the aromatic system. Since ionization produces the negatively charged

* Inorganic acids, such as HCl, H2SO4, and HNO3, are effectively always completely
dissociated in aqueous solution.
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carboxylate anion, a substituent which is electron-donating will tend to
disfavour this reaction and the equilibrium will be pushed to the left
giving a weaker acid, compared with the unsubstituted, with a higher
pKa. An electron-withdrawing substituent, on the other hand, will tend
to stabilize the anion since it will tend to ‘spread’ the negative charge
and the equilibrium will be pushed to the right resulting in a stronger
acid than the unsubstituted parent. Hammett [5] reasoned that the effect
of a substituent on a reaction could be characterized by a substituent
constant, for which he chose the symbol σ , and a reaction constant,
ρ. Thus, for the ionization of benzoic acids the Hammett equation is
written as

ρσx = log Kx − log KH

where the subscripts x and H refer to an x substituent and hydrogen
(the parent) respectively. Measurement of the pKa values of a series of
substituted benzoic acids and comparison with the parent leads to a
set of ρσ products. Choice of a value of ρ for a given reaction allows
the extraction of σ values; Hammett chose the ionization of benzoic
acids at 25 ◦C in aqueous solution as a standard since there was a large
quantity of accurate data available. This reaction was given a ρ value of
1; the substituent σ values derived from these pKa measurements have
been successfully applied to the quantitative description of many other
chemical equilibria and reactions.

the most important is that it consists of a long hydrocarbon chain with a
relatively polar hydroxyl head group, and therefore mimics some of the
lipid constituents of biological membranes. The octanol/water system has
provided one of the most successful physicochemical descriptors used in
QSAR, although arguments have been made in favour of other models
and it has been proposed that three further chemical models of partition
would be a useful addition to octanol [7]. It was suggested that these
provide information that is complementary to that of the octanol/water
system. When Hansch first published on the octanol/water system he
defined [8] a substituent constant, π , in an analogous fashion to the
Hammett σ constant (see Box 10.2).

The generalized form of what has now become known as the Hansch
approach is shown in Equation (10.3).

log 1/
C = aπ + bπ2 + cσ + dEs + const. (10.3)

where C is the dose required to produce a standard effect (see Section
10.3); π , σ , and Es are hydrophobic, electronic, and steric parameters
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Box 10.2 The hydrophobic substituent constant, π

The partition coefficient, P, is defined as the ratio of the concentrations of
a compound in the two immiscible phases used in the partitioning system.
The custom here is to take the concentration in the organic phase as the
numerator; for most QSAR applications the organic phase is 1-octanol.

P = [ ] OCT

[ ] AQ

Here, the terms in the square brackets refer to the concentration of the
same species in the two different phases.

Hansch chose logarithms of the partition coefficients of a series of
substituted benzenes to define a substituent constant, π , thus

πx = log Px − log PH

where x and H refer to an x-substituted benzene and the parent, benzene,
respectively. The similarity with the Hammett equation may be seen but
it should be noted that there is no reaction constant equivalent to the
Hammett constant ρ. If a substituent has no effect on the partitioning
properties of benzene, its π value will be zero. If it increases partition into
the octanol phase, then P, and hence log P, will be larger than for benzene
and π will be positive. Such a substituent is said to be hydrophobic (water
hating); a substituent which favours partition into the aqueous phase will
have a negative π value and is said to be hydrophilic. Some representative
π values are shown in the table.

Hydrophobic Hydrophilic

Substituent π Substituent π

–CH3 0.56 –NO2 −0.28
–C(CH3)3 1.98 –OH −0.67
–C6H5 1.96 –CO2H −0.32
–C6H11 2.51 –NH2 −1.23
–CF3 0.88 –CHO −0.65

A couple of interesting facts emerged from early investigations of π

values following the measurement of partition coefficients for several se-
ries of compounds. The substituent constant values were shown to be
more or less constant and their effects to be, broadly speaking, additive.
This is of particular importance if a quantitative relationship involving π

is to be used predictively; in order to predict activity it is necessary to be
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able to predict values for the substituent parameters. Additivity breaks
down when there are interactions between substituents, e.g. steric interac-
tions, hydrogen bonds, electronic effects; ‘constancy’ breaks down when
there is some interaction (usually electronic) between the substituent and
the parent structure. One way to avoid any such problem is to use
whole molecule log P values, or log P for a fragment of interest, but
of course this raises the question of calculation for the purposes of
prediction. Fortunately, log P values may also be calculated and there
are a number of more or less empirical schemes available for this
purpose [9, 10].

In the defining equation for the partition coefficient it was noted that
the concentration terms referred to the concentration of the same species.
This can have significance for the measurement of log P if some inter-
action (for example, dimerization) occurs predominantly in one phase,
but is probably of most significance if the molecule contains an ionizable
group. Since P refers to one species it is necessary to suppress ionization
by the use of a suitable pH for the aqueous phase. An alternative is to mea-
sure a distribution coefficient, D, which involves the concentrations of
both ionized and un-ionized species, and apply a correction factor based
on the pKa values of the group(s) involved. Yet another alternative is to
use log D values themselves as a hydrophobic descriptor, although this
may suffer from the disadvantage that it includes electronic information.

The measurement, calculation, and interpretation of hydrophobic pa-
rameters has been the subject of much debate. For further reading see
references [10–12].

respectively (see Box 10.3); a, b, c, and d are coefficients fitted by re-
gression; and const. is a constant. The squared term in π is included
in an attempt to account for non-linear relationships in hydrophobic-
ity. The form of an equation with a squared term is a parabola and
it is true that a number of data sets appear to fit a parabolic relation-
ship with the partition coefficient. However, a number of other non-
linear relationships may also be fitted to such data sets and non-linear
modelling in hydropobicity has received some attention, as described in
Chapter 6.

What of QSPR? In principle, any property of a substance which is
dependent on the chemical properties of one or more of its constituents
could be modelled using the techniques of QSAR. Although most of the
reported applications come from pharmaceutical and agrochemical re-
search, publications from more diverse fields are increasingly beginning
to appear. For example, Narvaez and co-workers [17] analysed the rela-
tionship between musk odourant properties and chemical structure for a
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Box 10.3 The bulk substituent constant, MR

In Equation (10.3) three substituent parameters π , σ , and Es, are used to
describe the hydrophobic, electronic, and steric properties of substituents.
The substituent constant Es, due to Taft [13], is based on the measurement
of rate constants for the acid hydrolysis of esters of the following type

X − CH2COOR

where it is assumed that the size of the substituent X will affect the ease
with which a transition state in the hydrolysis reaction is achieved.

A variety of successful correlations have been reported in which Es has
been involved but doubt has been expressed as to its suitability as a steric
descriptor, mainly due to concern that electronic effects of substituents
may predominantly control the rates of hydrolysis. Another problem with
the Es parameter is that many common substituents are unstable under
the conditions of acid hydrolysis.

An alternative parameter for ‘size’, molar refractivity (MR), was
suggested by Pauling and Pressman [14]. MR is described by the
Lorentz–Lorenz equation

MR = n2 − 1
n2 + 1

.
mol.wt.

d

where n is the refractive index, and d is the density of a compound,
normally a liquid. MR is an additive-constitutive property and thus can
be calculated by the addition of fragment values, from look-up tables, and
nowadays by computer programs. This descriptor has been successfully
employed in many QSAR reports although, as for Es, debate continues
as to precisely what chemical property it models. A variety of other
parameters has been proposed for the description of steric/bulk effects
[15] including various corrected atomic radii [16].

set of bicyclo- and tricyclo-benzenoids. A total of 47 chemical descrip-
tors were generated (Table 10.4) for a training set of 148 compounds
comprising 67 musks and 81 nonmusks. Using the final set of 14 pa-
rameters, a discriminant function (see Chapter 7) was generated which
was able to classify correctly all of the training set compounds. A test set
of 15 compounds, six musk and nine nonmusks, was used to check the
predictive ability of the discriminant functions. This gave correct predic-
tions for all of the musk compounds and eight of the nine nonmusks.
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Table 10.4 Descriptors used in the analysis of musks (reproduced from
ref. [17] with permission of Oxford University Press).

Number of descriptors

Generated Useda Finalb

Substructure 8 7 2
Substructure environment 6 6 2
Molecular connectivity 9 6 4
Geometric 15 8 4
Calculated log P 1 1 0
Molar refractivity 1 1 0
Electronic 7 6 2
Total 47 35 14

aSome descriptors were removed prior to the analysis due to correlations with
other parameters or insufficient non-zero values.
bNumber of parameters used in the final predictive equation.

Another example involves a quantitative description of the colour-
fastness of azo dye analogues of the parent structure shown in Fig-
ure 10.3 [18]. Amongst other techniques, this study applied the method
of Free and Wilson (see Chapter 6) to the prediction of colour-fastness.
Briefly, the Free and Wilson method involves the calculation, using re-
gression analysis, of the contribution that a substituent in a particular
position makes to activity; here the activity is light-fastness of the dye. It
is assumed that substituents make a constant contribution to the prop-
erty of interest and that these contributions are additive. The analysis
gave a regression equation which explained 92 % of the variance in the
light-fastness data with a standard deviation of 0.49. An extract of some
of the predictions made by the Free and Wilson analysis is shown in
Table 10.5, which includes the best and worse predictions and also
shows the range of the data. One advantage of this sort of treatment of
the data is that it allows the identification of the most important posi-
tions of substitution (X1 and X5) and the most positively (CN and Cl)
and negatively influential substituents (NO2 and OCH3).

Figure 10.3 Parent structure of azo dye analogues (from ref. [18] copyright Society
of Dyers and Colourists).
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Table 10.5 Predicted light-fastness of azo dyes (from ref.
[18] copyright Society of Dyers and Colourists).

Calculated
Dyea light-fastness Residualb

1 4.03 0.47
4 5.50 0.00
8 5.35 −0.35

13 2.84 0.16
18 1.05 −0.05
19 6.69 0.31
21 4.25 0.75
28 2.15 −0.15
39 5.76 −0.76
44 5.36 −0.36

aSelected dyes from a larger set have been shown here.
bDifference between predicted and measured.

10.3 WHY LOOK FOR QUANTITATIVE
RELATIONSHIPS?

The potential of organic chemistry for the production of new compounds
is enormous, whether they be intended for pharmaceutical or agrochem-
ical applications, fragrances, flavourings, or foods. In May 2009, Chem-
ical Abstracts listed more than 46 million compounds, but this is only
a tiny percentage of those that could be made. As an example, Hansch
and Leo [19] chose a set of 166 substituents to group into various cat-
egories according to their properties (see Chapter 2). If we consider the
possible substitution positions on the carbon atoms of a relatively sim-
ple compound such as quinoline (Figure 10.4), there are 1015 different
analogues that can be made using these substituents. If the hunt for new
products merely involved the synthesis and testing of new compounds
without any other guidance, then it would clearly be a long and expensive
task.

Figure 10.4 Quinoline.
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Of course, this is not the way that industry goes about the job.
A large body of knowledge exists ranging from empirical structure–
activity relationships to a detailed knowledge of mechanism, including
metabolism and elimination in some cases. The purpose of quantitative
structure–activity (or property) relationships is to provide a better de-
scription of chemical structure and perhaps some information concerning
mechanism. The advantage of having a better description of structure is
that it may be possible to transfer information from one series to another.
In the example shown in Section 10.2, it was seen that substitution of
a sulphur atom by oxygen resulted in an improvement in activity. This
may be due to a change in lipophilicity, bulk, or electronic properties. If
we know which parameters are important then we can, within the con-
straints of organic chemistry, design molecules which have the desired
properties by making changes which are more significant than swapping
oxygen for sulphur.

The work of Hansch et al. [20] provides an example of the use of
QSAR to give information concerning mechanism. They demonstrated
the following relationship for a set of esters binding to the enzyme
papain.

log 1/
Km

= 1.03π ′
3 + 0.57σ + 0.61MR4 + 3.8

n = 25 r = 0.907 s = 0.208
(10.4)

Where Km, the Michaelis-Menten constant, is the substrate concentration
at which the velocity of the reaction is half maximal. The subscripts to the
physicochemical parameters indicate substituent positions. The statistics
quoted are the number of compounds in the data set (n), the correlation
coefficient (r) which is a measure of goodness of fit, and the standard
error of the fit (s); see Chapter 6 for an explanation of these statistics. It is
possible to try to assign some chemical ‘meaning’ to the physicochemical
parameters involved in Equation (10.4). The positive coefficient for σ

implies that electron-withdrawing substituents favour formation of the
enzyme–substrate complex. Since the mechanism of action of papain
involves the electron-rich SH group of a cysteine residue, this appears to
be consistent. The molar refractivity term (see Box 10.3) is also positive,
implying that bulkier substituents in the 4 position favour binding. The
two parameters π4 and MR4 are reasonably orthogonal for the set of
25 compounds used to generate Equation (10.4), and since the data
does not correlate with π4 it was concluded that a bulk effect rather
than a hydrophobic effect was important at position 4. The prime sign
associated with the π parameter for position 3 indicates that where
there were two meta substituents the π value of the more hydrophobic
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substituent was used, the other π3 value being ignored. The rationale for
this procedure was that binding of one meta substituent to the enzyme
placed the other meta substituent into an aqueous region outside the
enzyme binding site. It was also necessary to make this assumption in
order to generate a reasonable regression equation which described the
data.

Following the QSAR analysis, Hansch and Blaney [21] constructed
computer a model of the enzyme and demonstrated that the invariant
hydrophobic portion of the molecules could bind to a large hydrophobic
pocket. In this model, one of the two meta substituents also fell into a
hydrophobic pocket forcing the other meta substituent out of the binding
site. The substituent at the 4 position points towards an amide group
on the enzyme which is consistent with the assignment of a bulk not
hydrophobic component to enzyme binding at this position. The QSAR
equation and molecular graphics study in this instance appear to tie
together very nicely and it is tempting to expect (or hope!) that this will
always be the case. A note of caution should be sounded here in that
strictly speaking a correlation does not imply causality. However, there
is no need to be unduly pessimistic; correlation can inspire imagination!

10.4 MODELLING CHEMISTRY

In the late 1970s there were two main approaches to molecular design:
the techniques of QSAR as described in the previous section and else-
where in this book and the use of molecular models, previously physical
models but by this time computational. These were viewed as alterna-
tives and each method had their champions and detractors. In truth, of
course, they were actually complementary and gradually this realization
dawned on everyone concerned.

A major problem with the QSAR approach was the description of
molecular structure. The most information rich descriptors were the
substituent constants as described in Boxes 10.1 to 10.3 but there were
a number of drawbacks in their use:

� They could only be applied to congeneric series (that is, derivatives
of a common parent).

� There were often missing values in the tabulations which could only
be replaced by experimental measurements.

� For complex molecules it was sometimes difficult to decide what the
common parent should be, and hence which series of substituent
constants to use or which positional variants to use.
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Box 10.4 Molecular connectivity indices

Molecular connectivity is a topological descriptor, that is to say it is
calculated from a two-dimensional representation of chemical structure.
All that is required in order to calculate molecular connectivity indices for
a compound is knowledge of the nature of its constituent atoms (usually
just the heavy atoms, not hydrogens) and the way that they are joined to
one another.

Consider the hydrogen-suppressed graph of the alcohol shown below.

The numbers in brackets give the degree of connectivity, δi, for each
atom; this is just the number of other atoms connected to an atom. For
each bond in the structure, a bond connectivity, Ck, can be calculated by
taking the reciprocal of the square root of the product of the connectivities
of the atoms at either end of the bond. For example, the bond connectivity
for the first carbon–carbon bond (from the left) in the structure is

C1 = 1/√
(1 × 3)

More generally the bond connectivity of the kth bond is given by

Ck = 1/√
(δiδj)

where the subscripts i and j refer to the atoms at either end of the bond.
The molecular connectivity index, χ , for a molecule is found by summa-
tion of the bond connectivities over all of its N bonds.

χ =
N∑

k=1

Ck

For the butanol shown above, the four bond connectivities are the recip-
rocal square roots of (1 × 3), (1 × 3), (2 × 3), and (2 × 1) which gives a
molecular connectivity value of 2.269. This simple connectivity index is
known as the first-order index because it considers only individual bonds,
in other words paths of two atoms in the structure. Higher order indices
may be generated by the consideration of longer paths in a molecule
and other refinements have been considered, such as valence connectivity
values, path, cluster, and chain connectivities [22].
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Molecular connectivity indices have the advantage that they can be
readily and rapidly calculated from a minimal description of chemical
structure. As might be expected from their method of calculation they
contain primarily steric information, although it is claimed that certain
indices, particularly valence connectivities, also contain electronic infor-
mation. Molecular connectivity has been shown to correlate with chemi-
cal properties such as water solubility, boiling point, partition coefficient,
and Van der Waals’ volume. Other topological descriptors have been used
to describe a variety of biological properties including toxicity, and they
have a number of environmental applications. There are many different
types of topological descriptors which are well described in the book by
Devillers and Balaban [23].

There was a class of descriptor available, however, which overcame all of
these problems and these were the topological descriptors or molecular
connectivity indices (see Box 10.4). There was some resistance to their
use, mainly on the grounds of interpretation, but they were quite popular
particularly in applications to environmental data which often involved
diverse sets of compounds.

The major breakthrough in the description of molecules came about
through the use of the computational molecular modelling packages. The
first parameters calculated in this way were simple spatial descriptors
based on the computational equivalent of physical models; quantities
such as length, breadth, width, volume etc. Added to these were prop-
erties calculated from the results of semi-empirical, and sometimes ab
initio, quantum mechanical calculations; quantities such as the energy
of the highest occupied molecular orbital, the dipole moment and it’s X,
Y and Z components, atomic charges, superdelocalizability and so on.
Research into the utility of different types of molecular descriptors led
to an explosion in their numbers such that a handbook of molecular de-
scriptors published in 2000 listed over 3000 different types [24]. Despite
this, it seems that there is no generally accepted best set of parameters to
use in quantitative molecular design [15].

10.5 MOLECULAR FIELD AND SURFACE
DESCRIPTORS

All of the properties described in the previous section, with the exception
of molecular connectivity indices, can be more or less equated to quan-
tities which could be measured by some suitable experiment. It might
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x, y, z Coordinates

Compound 1

0,0,0 1,0,0 2,0,0 0,1,0 10,10,0 10,10,10

R

Figure 10.5 Illustration of the procedure for the production of a 10×10×10 ma-
trix of molecular field values (reproduced from ref. [15] copyright (2000) American
Chemical Society).

be difficult or even impossible to devise experiments to measure some
of the properties but in principle they are all descriptors which could be
measured and which could be interpreted in physical or ‘chemical’ (e.g.
in terms of reactivity, say) terms. Another class of property, known as
molecular field descriptors, was devised in the late 1970s. This approach
is based on the 3-D structure of a molecule and involves the superim-
position of a grid of points in a box bounding the molecule. Probes are
brought in to each of the grid points and an interaction energy calculated
between the probe and the molecule at that point. Figure 10.5 illustrates
this process.

The collection of grid point energies is known as a molecular field
and different fields can be calculated using different probes and differ-
ent interaction energy calculations, e.g. steric, electronic, hydrophobic
and so on. The calculations are generally carried out using a molecular
mechanics force field as described in Section 9.2.3 (Equation (9.2)). The
whole process involves a number of steps:

� Obtain a suitable 3-D structure for each molecule in the training
set.

� Derive partial atomic charges so that an electrostatic field can be
generated.

� Align the molecules using some suitable alignment strategy (after
conformational analysis if required).
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� Create a cubic lattice of points around the molecules (usually larger
than the largest member of the set).

� Compute interaction energies using a probe such as a pseudo methyl
group with a unit positive charge. This generates a steric interac-
tion energy based on a Lennard-Jones potential and an electrostatic
interaction energy based on a coulombic potential.

� Fit a PLS model to the biological response and the interaction
energies.

� Make predictions for a test set, visualize the results as contour plots
on displays of the individual molecules in the set.

The advantages of this sort of description includes the fact that the 3-D
structure of the molecules are involved and 3-D effects are known to
be important in the interaction of drugs with biological systems. The
first two systems to use this approach, CoMFA (Comparative Molecular
Field Analysis) and Grid, have found many successful applications and
a number of related techniques have subsequently been developed as
described in reference [15].

A different sort of approach, but still based on 3-D structure, in-
volves the calculation of molecular surfaces and then properties on those
surfaces. These calculations involve quantum mechanics, not molecular
mechanics, and are based on the surface of the molecules; not a field
surrounding the structure. Early studies have shown promise for this
technique [25].

10.6 MIXTURES

There are few reports on the application of quantitative design methods
to mixtures. What has appeared has mostly been concerned with toxicity
(e.g. [26], [27]) probably because of the importance of these effects
and regulatory requirements. But mixtures are very important materials
which we all use just about every day so why the paucity of effort in
this area? There are, no doubt, a number of reasons but perhaps the
most important lies in the difficulty of characterizing mixtures. Some
approaches have used measured properties of the mixture and this can
be useful in the development of empirical relationships with some other
mixture property but it is not going to be predictive and is unlikely to be
able to ‘explain’ the mixture property of interest.

So, how do we go about characterizing a mixture using properties
which can be calculated and thus predicted for new components and/or
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mixtures? Consider the simplest mixture, a binary mixture of pure com-
ponents in equal proportions (by mole fraction). Any property can be
calculated for each of the components and the entire mixture may be
characterized by a simple list of these properties thus:

P1A, P2A, P3A, P4A, . . . . . . ., P1B, P2B, P3B, . . . . .

For mixtures of different mole fractions the properties can be weighted
by the appropriate mole fraction in some way. The problem with this
method, of course, is that it immediately doubles the number of de-
scriptors that need to be considered and this can lead to problems of
‘over-square’ data matrices, that is to say data sets with more columns
(descriptors) than rows (samples). An alternative is to only use parame-
ters that are relevant to both components, i.e. whole molecule properties,
and to combine these by taking the mole fraction weighted sum:

MD = R1 × D1 + R2 × D2

Where MD = Mixture descriptor, R1, R2 = mole fraction of first and
second component in the mixture, D1, D2 = descriptor of first and
second component. Application of this method to the density measure-
ments of a very large set of binary mixtures led to some quite satisfactory
models of deviation from ideal density as shown in Figure 10.6.

The results shown here are for consensus neural network models built
using 15 calculated properties for a training set of nearly 3000 data
points derived from 271 different binary mixtures. This technique could,
of course, be extended to more complex mixtures.

A problem with this approach, though, is that it is difficult if not im-
possible to assign any mechanistic interpretation to the resulting models.
The models can be used for prediction and this is fine if that is all that is
required but the descriptors themselves relate to two or more molecules
and the modeling process, using an ensemble of neural networks, is at
best opaque. An alternative technique has been proposed in which the
descriptors are based on mechanistic theories concerning the property to
be modeled [29]. In this case the property concerned was infinite dilution
activity coefficients which are the result of intermolecular interactions
between two components in the mixture. Thus, mixture descriptors were
formulated using different mixing rules based on thermodynamic prin-
ciples (see reference for details). Attempts to build linear models for this
data set using multiple linear regression and PLS failed so consensus
neural network models were built using just 5 mixture descriptors. The
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Figure 10.6 Plot of predicted versus observed deviations from ideal density (MED)
using an ensemble neural network model (from ref. [28] copyright (2006) American
Chemical Society).

importance of each of these parameters in the neural network models
was judged by using a form of sensitivity analysis. This sensitivity anal-
ysis involved setting each descriptor one at a time to a constant value
(its mean in the training set) and then calculation of the infinite dilution
activity coefficients for the set using the neural network ensemble. The
correlation coefficients for each of these models were compared with the
correlation coefficient for the original model and the descriptors thus
ranked in importance.

These are just two examples of how mixture properties may be mod-
eled and no doubt, given the commercial importance of mixtures, other
approaches will emerge in the future.

10.7 SUMMARY

The importance of molecular design has been described and some means
for its implementation has been presented although the rest of this book
contains many other examples. Approaches to the characterization of
chemical structures have been briefly discussed, including some of their
historical origins, and the difficulty of applying such methods to mixtures



P1: OTA/XYZ P2: ABC
JWBK419-10 JWBK419/Livingstone September 26, 2009 15:46 Printer Name: Yet to Come

330 MOLECULAR DESIGN

has been introduced. There is an enormous literature on this subject
which the interested reader is encouraged to access.

In this chapter the following points were covered:

1. the reasons for molecular design and areas where it can be em-
ployed;

2. the meaning of the terms QSAR and QSPR;
3. how to characterize chemical structures using measured and calcu-

lated properties;
4. alternatives to the ‘obvious’ physical and chemical descriptors using

fields and surfaces;
5. attempts to describe and/or explain the behaviour of mixtures.
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