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Preface

Environmental epidemiology is arguably the basic science upon which
government regulatory agencies rely for setting standards to protect the
public from environmental and occupational hazards. While other disci-
plines such as toxicology are obviously also relevant, it is generally agreed
that direct observation of risks in humans is the best basis for setting
public health policy. Recent years have seen a shift in emphasis in epidemi-
ology toward molecular and genetic epidemiology, with a focus on using
epidemiologic methods to understand the fundamental mechanisms of dis-
ease or to incorporate basic science concepts and measurements of genetic
modifiers and biomarkers into the conduct of epidemiologic studies. While
laudable, such efforts should not denigrate the value of traditional epi-
demiologic studies of exposure–response relationships in humans that will
ultimately provide the basis for environmental safety standards. This book
represents an attempt to lure young investigators back into a field that may
have lost some of its cachet of late in this recent enthusiasm for molecular
epidemiology.

This book was conceived during a vacation in the Galapagos Islands,
where the inspirational spirit of CharlesDarwin is strong. I began to appre-
ciate that Darwin was as interested in the environment as a driving force
of evolution as he was in genetics. The first few chapters of the book were
drafted in longhand there, between conversations with our outstanding
naturalist guide, andmailed back tomy long-suffering assistant, Stephanie
Cypert-Martinez, who did a remarkable job of deciphering my scribbles.
The rest of the book was drafted back at the University of Southern Cal-
ifornia during the fall semester, while I was struggling to keep a week
ahead of my students during my new course on Environmental Biostatis-
tics. I am grateful the USC for awardingme a sabbatical leave the following
year, so that I could focus on completing the manuscript, while visiting
a number of units that are major research centers in environmental epi-
demiology. In particular, I would like to thank my hosts at the Beijing
Medical University and Peking University Department of Environmental
Engineering, the Radiation Effects Research Foundation, the Columbia
University Bangladesh Arsenic Study, the Bhopal Memorial Hospital and
Research Institute, INSERM Unit 574 on Cancer and the Environment
in Villejuif Paris, and the numerous researchers at each institution who
shared their experiences, read portions of the book, and provided helpful
comments. I am also grateful for the extensive comments I received from



Preface xv

Bryan Langholz, Mark Little, Nino Künzli, Don Pierce, Jonathan Samet,
Dan Stram, Jonathan Samey, Erich Wichmann, and several anonymous
reviewers. And of course to my wife, Nina, who again supported me
throughout this process and kept my spirits up.

The book is intended primarily as a textbook for an advanced graduate
course in epidemiology and biostatistics. As such, it provides only a brief
overview in Chapters 2–4 of some of the basic design and analysis tech-
niques that one might find in any of the standard epidemiology textbooks.
A general familiarity with this material from basic courses in epidemiology
and biostatistics is assumed, and these chapters are provided only so the
book will be somewhat self-contained. The remainder of the book aims
to cover a range of methods that are in some sense unique to environmen-
tal epidemiology. While there have been many textbooks covering one
or more of these more specialized topics, when I began this project there
appeared to be none that attempted to cover such a broad range of topics
in a unified manner. Perhaps the closest to achieving this goal is the recent
book by Baker andNieuwenhuisen, “Environmental Epidemiology: Study
Methods and Application” (Oxford University Press, 2008). While pro-
viding an excellent overview of epidemiologic study design principles and
basic statistical methods, illustrated with a broad range of applications
in environmental epidemiology, the present text aims to take the treat-
ment of statistical methods to a higher level of sophistication. Much of
this advanced material is my attempt to explain to myself some of the new
literature I had to read to be able write the book; I hope that established
epidemiologic and statistical researchers in the field will also find some of
this material helpful as a reference book.

As in my previous book on Statistical Methods in Genetic Epidemi-
ology (Oxford University Press, 2004), where I used the story of breast
cancer genetics to illustrate the statistical methods, here I have tried to
illustrate the various methodological challenges with examples from the
environmental epidemiology literature. As no one story proved sufficient
to illustrate the full range of problems, I have had to rely on two that I
have been involved with for many years—ionizing radiation and air pol-
lution. My aim is not, however, to provide a systematic review of either
of these massive literatures or a quantitative risk assessment, only to pick
and choose amongst them to illustrate methodologic points.
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1 A tale of two exposures

Throughout history, mankind has experienced numerous and diverse
environmental challenges. Some life-threatening problems have doubtless
influenced the course of human evolution. Others, less severe, have nev-
ertheless afflicted us with disease or affected us in other ways. Some are
natural: climate, the micro-cosmos that surrounds us; others manmade:
the myriad forms of pollution of the air, water, soil. Some are highly
localized (toxic waste disposal sites), some regional (air pollution), some
truly global in extent (climate change, depletion of the ozone layer). And
new environmental problems are continually appearing, like fallout from
nuclear weapons testing or novel chemicals produced by technological
progress.

The Greeks believed that all matter was composed of four “elements”:
air, water, earth, and fire. We now recognize a more complex hierar-
chy of molecules, formed from 92 naturally occurring chemical elements
(atoms), themselves composed of protons, neutrons, electrons, and a
veritable zoo of subatomic particles and ultimately the truly elementary
particles known as quarks. Nonetheless, the Greek’s concept provides a
useful metaphor for the scope of environmental epidemiology: Air, and
the various pollutants we have contaminated it with; Earth, the source of
all our nourishment, the nutritional choices we make and the pesticides
we have used to boost its productivity; Water, the oceans from which life
evolved, the lakes and rivers that transport the contaminants from earth
and air; and Fire, or more generally energy, solar, ionizing radiation, and
the entire electromagnetic spectrum.

This book is concerned with the study of the effects of the environment
on human health—the field of environmental epidemiology—specifically,
approaches to study design and methods of statistical analysis. If epidemi-
ology is broadly the study of the distribution and determinants of disease
in human populations, environmental epidemiology is more specifically
focused on environmental factors in disease. The environment can be con-
sidered broadly as all risk factors other than genetics—including both
exogenous and endogenous factors (e.g., nutritional status, hormones)—
but here we will be focused on the external environment, particularly the
changes brought about by human activity. The “nature vs. nurture” con-
troversy is, of course passé, as we now recognize that most diseases that
concern us today are the result of complex interactions between genes and
environment. Here our field overlaps with that of genetic epidemiology
(the subject of my previous book (Thomas 2004)), but no treatment of
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environment epidemiology would be complete without some discussion
of gene–environment interactions.

The physical environment is also intimately tied to the social environ-
ment. Social, economic, and racial factors also affect both the distribution
of environmental exposures and the risk of disease. Poor people are more
likely to live near major sources of pollution and their host resistance to
environmental insults more likely to be compromised. Here, we are not
primarily concerned with social risk factors directly, but we cannot ignore
their potential confounding and modifying effects on environmental risk
factors.

There are at least three distinguishing features of environmental epi-
demiology from epidemiology more generally. First, most environmental
risk factors—at least man-made factors—are modifiable. Thus, once we
understand their effects on human health, interventions and regulations
may be possible to ameliorate the problem. Environmental epidemiol-
ogy thus has profound implications for public health policy, and can
even be thought of as the basic science of risk assessment and risk
management.

Second, environmental factors are spatially distributed, varying locally,
regionally, and globally. These spatial correlations pose unique chal-
lenges to study design and analysis. But individuals also differ in their
exposures due to behavioral and host factors—even individuals living
at the same location. This heterogeneity poses both a challenge and an
opportunity.

Third, environmental exposures vary temporally. Here we are not par-
ticularly concerned with the major infectious diseases of the past, although
infectious disease epidemiologists continue to be confronted with new
agents or strains of old ones or resurgence of those previously under con-
trol. But within the course of a person’s lifetime, exposures come and go
or vary in intensity. Most chronic diseases are due to the accumulated
effects of a lifetime history of exposure. Again, this poses both a challenge
and an opportunity. The epidemiologist must carefully assess this entire
history, but comparisons over time can shed light on exposure–response
relationships, or more generally what we will call exposure–time–response
relationships.

These three distinguishing features combine in interesting ways to pose
unique methodological challenges that are the subject of this book. Rather
than systematically orienting the reader to the organization of the chapters
that follow, I begin with a capsule summary of the two “tales” that will
be used throughout to illustrate the various methodological problems and
some of the creative solutions that have been found. First, ionizing radi-
ation, then air pollution—these two examples provide rich fodder and
illustrate quite different points. To preserve the narrative flow, we defer
providing citations to the original literature until later chapters, where
these studies are discussed.
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The ionizing radiation tale

In 1945, the United States dropped atomic bombs on Hiroshima and
Nagasaki, with devastating consequences. Approximately 100,000 people
are estimated to have died from the immediate effects of the blast. Though
they dwarf the numbers of deaths attributable to the radiation released by
the bombs, these are not the primary concerns of this tale. Their causes
are obvious and need no sophisticated epidemiologic study to reveal.

The radiation effects are early and late. The former comprise the various
well-known symptoms of “acute radiation sickness” in varying degrees of
severity depending upon dose. (Various units are used in different context
to describe radiation exposures, but here we will be concerned with mea-
sures of energy deposition known as the Gray (Gy) and of “biologically
effective tissue dose” known as the Sievert (Sv), the now standard inter-
national units replacing the previously used rad (1 Gy = 100 rad) and
rem (1 Sv = 100 rem) respectively. Individuals closer than about 0.75 km
from the hypocenters typically received whole body doses in excess of 6
Gy (Preston et al. 2004), generally a lethal dose (even if they survived the
immediate blast effects) and would probably have died within a week or
so. Their causes of death are also obvious and not directly a part of our
tale, as they were thus not at risk of the late effects that concern us here.
Individuals not quite so close to the hypocenters, but still receiving sub-
stantial doses (say>1Gy, at about 1.25 km), may have experiencedmilder
symptoms of acute radiation sickness, including hair loss (epilation) and
chromosomal aberrations. Most such individuals will have survived the
immediate blast and acute radiation effects, and gone on to be at risk of the
late effects. We shall see how their experience of these symptoms can serve
as a form of “biological dosimetry,” to be combined with the “physical
dosimetry” based on location and shielding. We can also ask whether such
symptoms can provide evidence of genetic susceptibility to the late effects
of radiation. Beyond about 2.5 km, doses were generally less than 0.01Gy.

The primary late effect we will discuss is cancer, although the reader
should be aware that many other endpoints have been studied and a few of
those definitively associated with radiation, notably cataracts and, among
those 12–15 weeks of gestation at the time of bombing, severe mental
retardation. Most, but not all, cancer sites have been found to be radiation
related, but with important differences in the slope of the dose–response
relation and modifying effects of age, latency, and other risk factors. One
cancer—leukemia—stands out as being uniquely radiosensitive and arising
much earlier than the others. Of the remainder, numbers of cases are
sometimes inadequate for detailed analysis, so for our purposes, it suffices
to consider the broad category of all solid tumors combined.

In the immediate aftermath of the bombing, medical research on these
late effects was, needless to say, not the highest priority. Some years later
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the joint U.S.–Japan Atomic Bomb Casualty Commission was established,
later renamed the Radiation Effects Research Foundation (RERF). Despite
concerns expressed by some about using the survivors as human guinea
pigs, the overwhelming sentiment has been that the lessons that could be
learned from this experience should not go to waste, and the voluntary
participation of the survivors in research that has been conducted under
the highest ethical standards has been exemplary. The full collaboration of
scientific researchers from two former enemy counties (and many others)
has been a model of multidisciplinary, international cooperation. As a
result of this research (and a larger body of data from other exposure con-
texts), we know more about the health effects of radiation than virtually
any other environmental exposure.

In 1950, the commission established two overlapping cohort studies
(Chapter 2), the Life Span Study (LSS) and the Adult Health Study (AHS).
The LSS comprised approximately 100,000 survivors of all ages who
would be followed passively for mortality until the complete extinction
of the cohort. At present, approximately half remain alive. The AHS is a
smaller group of about 20,000 individuals who agreed to participate in
periodic clinical examinations and provide biological specimens. For the
purpose of this tale, we focus on the LSS cohort.

Radiation doses for the vast majority of the LSS cohort were estimated
in 1965 and have been refined several times since then. These estimates
are based on physical modeling of the spatial distribution of gamma and
neutron radiation from the bomb, combined with information about the
subjects’ locations and shielding by buildings of the time of bombing.
Despite the enormous efforts over decades of research that have gone
into developing this dosimetry system, the reader should appreciate that
these dose estimates are imprecise—a recurring theme in environmental
epidemiology. Wewill return to the influence of these uncertainties shortly.

Identification of cohort members and passive mortality follow-up has
been facilitated by the Japanese system of family registration known as
koseki. Each nuclear family is registered in their town of residence. When
an offspring marries and starts a new family, this event is recorded at their
new place of residence, together with pointers to the records for their
families of origin. The obvious privacy concerns were carefully addressed
so that these records could be used for research purposes. In principle,
these also provide a potential gold-mine for genetic research, but as of this
writing, the greater sensitivity of such use has precluded the establishment
of a family study. Instead, each member of the cohort is treated as an
unrelated individual.

RERF statisticians have been at the forefront of developing sophisticated
methods of analysis of dose–time–response relationships, the details of
which will be a major theme of subsequent chapters. The major approach
has been to prepare on extensive cross-tabulation of cause-specific deaths
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and person-years at risk by dose, age at exposure, attained age, sex, city,
and other factors. These tabulations have been made available in pub-
lic use data sets that have become one of the classic databases for both
substantive and statistical methods research. Models can then be fitted to
these data using the technique of Poison regression (Chapter 4). A vari-
ety of model forms have been explored, but most entail a general form
for the baseline risk—the risk that would have occurred in the absence of
exposure—either multiplied by or added to a model for the excess risk due
to radiation. The latter is generally taken to be a linear (for solid cancers)
or linear-quadratic (for leukemia) function of radiation dose, with slope
coefficients that could depend upon the various modifying factors. Non-
parametric dose–response analysis (Chapter 6) has shown no significant
evidence of departure from linearity at doses as low as 0.1 Gy, although
the possibility of a threshold below which there is no effect can never be
excluded statistically. (Indeed, some have even suggested the possibility of
a protective effect of low doses of radiation (“hormesis”) using on evolu-
tionary argument based on natural selection in the presence of background
radiation, but there is no evidence to support this conjecture in the LSS
data.) Nevertheless, radiobiological theory about the interactions of radi-
ation with DNA (Chapter 13) strongly supports the linear-no-threshold
hypothesis.

All cancers have some latent period between exposure and increases
in risk. That latent period is the shortest for leukemia. Since the LSS
data do not begin until 1950, they provide no information about risk less
than five years after exposure, but some dose-related excess is already
apparent 5–9 years after. The risk rises to a peak about 10–14 years
after (the timing depending upon age of exposure) and then begins to
decline, although some excess remains to this day, 50 years later. For
most solid tumors, no excess is seen for at least 10 years, and the absolute
excess rate continues to rise with age, although the relative rate (rela-
tive to the natural rise in rates of cancer rates with age) starts to decline
after about 20 years (depending on cancer site and other factors). These
estimated dose–response relationships—together with similar data from
other occupational, environmental, and medically exposed populations—
provide the scientific basis for radiation standards, as well as for resolving
tort litigation and compensation claims, as discussed below. Exposure–
time–response relationships can also shed light on basic mechanisms of
carcinogenesis, like the multistage theory (Chapter 13).

Earlier, we mentioned that dose estimates had an inherent uncertainty.
Considerable efforts have been devoted to quantifying the likely extent of
these uncertainties and allowing for them in the statistical analysis. As well
known in other areas of epidemiology, the general effect of random errors
(here “nondifferential,” not influenced by disease status, as in recall bias in
case-control questionnaire data) is to dilute dose–response relationships,
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biasing the relative risk towards the null. Nevertheless, there are several
important qualifications to this general principle (see Chapter 11), and, in
particular the types of errors expected from the RERF dosimetry system
are less subject to this bias than those based, say, on film badge dosime-
try because the relationship between true and estimated doses differ by
design of the respective dosimetry systems. In brief, the effect depends
upon whether the measured doses are distributed around the true doses,
as would be expected for a well-calibrated dosimeter (“classical error”)
or whether individuals’ true doses are distributed around some assigned
dose, as would be expected based on a dose reconstruction system based
on external predictors like distance and shielding (“Berkson error”). The
general rule of thumb about bias towards the null strictly applies only to
classical error. Under appropriate assumptions, Berkson error does not
produce a bias towards the null, although power will be reduced and
confidence limits widened.

Earlier, we mentioned the idea of using early effects as a form of bio-
logical dosimetry. The basic idea is that for two individuals with the same
assigned dose based on physical dosimetry, onemanifesting early radiation
symptoms is likely to have had a higher true dose than one who did not.
Of course, it is also possible that there is real variation between individu-
als in their sensitivity to both early and late effects of radiation, perhaps
due to genetic factors. The observation that the slope of the dose–response
for cancer is steeper for those with epilation or chromosomal anomalies
is, in principle, compatible with either hypothesis. However, these data
are compatible with an average uncertainty of 35% without invoking any
variability in sensitivity to early and late effects.

Nevertheless, there remains great interest in whether any host factors
affect cancer radiosensitivity. Because detailed risk factor information and
biological samples are not available on all LSS numbers, investigation of
such questions requires some form of hybrid study design, as discussed
in Chapter 5. For example, a nested case-control study of breast cancer
was conducted, matching each breast cancer case in the LSS cohort with a
randomly selected cohort member who was the same age at exposure and
received the same dose. These members were then interviewed to learn
about such established breast cancer risk factors as menstrual and repro-
ductive histories. A similar design showed that for lung cancer, radiation
and tobacco smoking interacted more nearly additively then multiplica-
tively. (As we shall see below, this interaction is quite different for uranium
miners exposed to radiation.) Even more sophisticated designs are possi-
ble, exploiting information already available on the entire cohort to select
controls in a manner that would considerably improve the power of the
design, such as the “counter-matching” strategy discussed below.

Without biological specimens, it would still be possible to obtain indi-
rect evidence of variability in genetic susceptibility using a family-based
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study to see if specific cancers aggregate in families, and whether the extent
of such familial clustering varies with dose. The possibility of doing such a
study using the koseki system is currently being explored. Various assays
of biological samples from the clinical examination cohort have estab-
lished that there is indeed variability in radiosensitivity as a function of
an individual’s genotype of various DNA repair and cell cycle control
genes. Similar studies in medical irradiation cohorts are discussed below
and more extensively in Chapter 12.

Before leaving this tale, it is worth considering some unique method-
ological challenges posed by other forms of radiation exposure: occupa-
tional, environmental, and medical. Several of these stories will be told
in greater detail in subsequent chapters, so here we touch only on a few
highlights, beginning with the uranium miners

Uranium for the production of nuclear weapons during World War II
came primarily from foreign sources, notably the Belgian Congo and
Czechoslovakia. Following the war, uranium mining began in earnest
in the four-state Colorado Plateau (Colorado, Utah, New Mexico, and
Arizona) of the United States, while on the other side of the Iron Curtain,
several hundred thousand miners were employed in East German uranium
mines. In total, perhaps about 10,000 U.S. miners were involved in what
was in its early days, a largely unregulated industry. Uranium undergoes
a series of radioactive decays, leading to radon gas, which accumulates
in high concentrations in uranium mines (and also to a lesser extent in
homes in certain geological areas). Radon is still radioactive and under-
goes further disintegrations, through a sequence of “radon daughters,”
releasing a series of alpha particles (charged helium nuclei) that deliver
most of the dose to the individuals exposed to radon. Unlike gamma
rays and neutrons released by the atomic bombs that penetrate deeply,
alpha particles cannot penetrate even the thickness of the skin. Inhaled,
however, they can deliver a substantial dose to the lung epithelium, lead-
ing to lung cancer. Ultimately hundreds, if not thousands, of uranium
miners died of this disease in what can only be characterized as a pub-
lic health travesty. (See the report of the President’s Advisory Committee
on Human Radiation Experiments for an account of how knowledgeable
government officials failed to require ventilation that could have prevented
this epidemic, despite knowledge of the risks already available at the
time.)

Belatedly, the U.S. Public Health Service launched a cohort study of
3,545 uraniumminers in 1960 that is still on-going. Like the atomic bomb
cohort study, a major challenge in this study was dosimetry, including
efforts to characterize the uncertainties in dose estimates. There are two
important differences, however. First, rather than using predictions based
on location and shielding, actual measurements of radon or radon daugh-
ter concentrations were available. Second, unlike the instantaneous dose
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delivered by the atomic bombs, uranium miners received low dose-rate
exposures over their entire working lifetimes.

The first difference is important because the measurement error struc-
ture is more like the classical error situation of other occupational settings
like nuclear workers, where doses are based on film badges, but because
the available measurements were sparse (some mines with few, if any,
measurements for several years), dose estimation required an elaborate
system of interpolation between nearby mines or over time. Furthermore,
these uncertainties are correlated between individuals who worked in the
same mines at the same time. We will discuss the effects of the shared
uncertainties in Chapter 11.

The second difference raises both conceptual and analytical problems.
Whereas the A-bomb data could be neatly summarized by a cross-
tabulation of individuals by dose and other factors, this is not possible
for the uranium miners because their lung cancer risks depend on the
entire history of exposure. Furthermore, since the effect of each increment
of exposure is modified by such factors as latency, age, and dose rate, no
simple summary of an individual’s exposure can tell the whole story. We
will explore methods for modeling the effects of such extended exposure
histories in Chapter 6.

From a biological perspective, differences in the nature of sparsely ion-
izing, penetrating forms of radiation (low Linear Energy Transfer, LET)
like gamma rays and densely ionizing (high LET) radiation like alpha
particles can have different implications for their interactions with DNA
and subsequent carcinogenesis. Low LET radiation produces very nar-
row ionization tracks that are more easily repaired then the double-strand
breaks typically produced by high-LET radiation. Since the probability of
any DNA damage, single-stranded or double-stranded, is proportional to
dose, the probably of two independent events leading to a double-strand
break should be proportional to the square of dose. However, dose rate is
also relevant, as a high dose-rate exposure is more likely to yield two inde-
pendent breaks close enough in time that the first break will not have been
repaired before the second occurs. Conventionally, it has been believed
that high-LET and low dose-rate low-LET radiation would produce lin-
ear dose response relationships, whereas high dose-rate low-LET radiation
would produce linear-quadratic dose–response relations. More recently,
it has been noted that high-LET radiation can produce sublinear dose–
response relations (steeper slopes at lower doses), a phenomenon that is
difficult to reconcile with classical microdosimetry. One possible explana-
tion is “bystander” effects, in which cells not directly hit by a radiation
track, can be affected by damage to neighboring cells. The implications
for formal models of carcinogenesis are discussed in Chapter 13.

In 1990, the U.S. Congress enacted the Radiation Exposure Compensa-
tion Act, which provided criteria for compensating uranium miners and
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residents downwind of the Nevada Test Site. (A separate act provided
compensation for “Atomic Veterans” involved in nuclear weapons tests.)
These criteria were loosely based on a synthesis of epidemiologic evidence
from the world literature, incarnated in a set of “Radioepidemiologic
Tables” published by NIH in 1985 and recently updated in the form of
a computer program. These tables and program provide estimates of the
“probability of causation” (PC) and uncertainty bounds on these probabil-
ities that a cancer that occurred to an individual with a particular exposure
history (and other possible causes or modifying factors) was caused by that
exposure. (Note that the PC is a very different quantity from the risk that
disease will occur in someone with a particular history, which forms the
basis for risk management.) Under the principle of “balance of probabili-
ties” that governs tort litigation, a claimant with a PC greater than 50%
should be entitled to compensation. In practice, government agencies and
courts have interpreted these criteria flexibly, often giving the claimant the
benefit of the doubt—a principle formally enshrined in the legislation for
the Veterans Administration, for example. While these public policy issues
are beyond the scope of the volume, there are fundamental scientific issues
about the estimability of PCs and the implications of their uncertainties
that are discussed further in Chapter 16.

Although their lung cancer risks were high, the number of miners
exposed to radon daughter products is small in comparison with the
general population exposed to low-dose radon in their homes. The com-
parison of risks from occupational and residential settings raises yet
other challenges, such as the extrapolation from high dose to low dose
(Chapter 15), andmethods of studying low-dose risks directly. Many case-
control studies of residential radon exposure have been done, typically
obtaining residence histories and attempting to measure radon concen-
trations at multiple locations over extended periods in as many of these
homes as possible. Risk estimates derived from such studies have been
highly variable, but generally compatible with those obtained by extrapo-
lation from the uranium miner cohorts. In contrast, ecological correlation
studies relating lung cancer rates at the county level to estimated average
radon concentrations from sample surveys have often yielded negative
correlations, even after adjustment for available population smoking and
other demographic data. The reasons for this apparent paradox involve
the “ecologic fallacy,” namely that associations at the population level
may not reflect those among individuals, due to confounding by individual
and/or “contextual” variables, as explored in detail in Chapter 10.

As a consequence of nuclear weapons production and testing, as well
as nuclear reactor accidents at Three Mile Island and more seriously
at Chernobyl (Chapter 17), radionuclides have been widely dispersed
throughout the environment, with the heaviest exposures to humans
downwind of these facilities. Various epidemiologic studies have been
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conducted to assess whether any such exposures have had demonstra-
ble health effects. These studies will be discussed in subsequent chapters,
but here it is worth emphasizing another unique element of such studies,
the major effort typically involved in “dose-reconstruction” using tech-
niques of environmental pathway analysis and spatial statistics (Chapters
9 and 11). Pathway analysis entails reconstruction of the magnitude of the
releases from the source (weapons test, industrial stack, waste disposal
site, etc.), its transport by air or water, deposition on the ground, uptake
in foodstuffs, distribution to humans, and ultimate fate in target organs.
This is done for each radionuclide for each release—a mammoth under-
taking, requiring much reliance on expert judgment as well as data and
careful analysis of uncertainties of each step. Spatial analysis entails use of
sophisticated statistical models for the correlations in measurements as a
function of the distance between them to interpolate exposures at locations
for which no measurements are available. Modern Geographic Informa-
tion Systems (GIS) technologies have revolutionized the compilation and
integration of spatially distributed data of different types (points, lines,
areas) on different scales, and facilitate their analysis by spatial statistics
methods. These methods will be illustrated in the following tale about air
pollution, and have broad applicability to many types of environmental,
socio-demographic, and medical data.

The final example of radiation exposure illustrates yet other unique
methodological challenges. Unlike the previous examples, medical
irradiation—diagnostic or therapeutic—is intended to improve health, but
nevertheless also has the potential to cause harm. Needless to say, the
risk/benefit balance is clearly in favor of its use, but the adverse effects
are a valuable source of information about late radiation effects. A great
advantage of medical irradiation studies is that dose is often known with
much greater precision than is possible in environmental or occupational
settings. Furthermore, because of the medical setting, much more detail
may be available about other risk factors, long-term follow-up may be
easier, and biological specimens may be readily available. This is particu-
larly valuable for studies of gene–environment interactions and molecular
mechanisms.

As an example, consider the question of whether DNA repair
pathways—particularly those involved in repair of double-strand breaks—
modify the effect of ionizing radiation. Various lines of investigation
suggest that heterozygous mutations in the gene ATM (for Mutated in
Ataxia Telangiectasia (A-T)) confer increased risk of cancer generally, and
breast cancer in particular, and greater sensitivity to radiation.

It is known, for example, that ATM “homozygotes” (who develop the
recessive A-T disease) are exquisitely sensitive to radiation and that their
parents (obligate carriers of a single mutation, or “heterozygotes”) are at
increased risk of cancer. In order to investigate this hypothesis further,
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a study of second breast cancer in survivors of a first cancer has been
launched. The advantage of this design is that by virtue of having had a first
cancer, the study population is more likely to carry mutations of etiologic
significance (including ATM) and that about half of such women will have
had high dose radiation for treatment of the first cancer, which can yield
exposure of 1–3 Gy to the contralateral breast at risk of a second cancer.
This study illustrates a number of methodological challenges, including
a novel study design for improving power by exploiting radiotherapy
information in a multistage sampling fashion (Chapter 5), allowance for
variation in dose across the contralateral breast rather than treating it as a
single homogeneous organ as in most other studies (Chapter 6) and analy-
sis of gene–radiation interactions (Chapter 12) involving ATM and other
genes in an integrated model for DNA repair pathways (Chapter 13).

The air pollution tale

Rich as the radiation tale is, it is not sufficient to illustrate all of themethod-
ological challenges that can face the environmental epidemiologist. For
one thing, the endpoint of primary interest is cancer, a long-latency condi-
tion, which does notwell illustrate problems of studying short-term effects.
For another, risks are often high and unequivocal, allowing detailed study
of the fine structure of dose–time–response relationships and modification
by other factors, whereas much of environmental epidemiology is con-
cerned with assessing very small risks—risks that may be at the limit of
detection by epidemiologic methods. Nevertheless, even very small risks
from a ubiquitous exposure like air pollution, when multiplied by a large
population, can impose a large public health burden. Third, radiation
doses can often be estimated relatively well at the individual level, whereas
environmental epidemiology is often concerned with exposures that are
ubiquitous or broadly distributed geographically. Thus, similarly situated
individuals are likely to have very similar exposures, but comparisons
between people living far away are likely to be strongly confounded. For
these and other reasons, we need other examples to illustrate some of the
problems to be addressed here, so we turn to another rich literature, that
on air pollution.

That air pollution can have serious health effects—including death—has
not been in serious dispute since the experience of the London Fog episode
of 1952, in which 3,000 died within a week of the peak of pollution and
another 12,000 over the following three months. (In an earlier episode
in Donora, Pennsylvania, an even higher proportion of the population
died in the first week than in London, although the total numbers were
much smaller.) What is in question is whether present day regulations
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are sufficient to keep these health effects to an acceptable level, what the
full range of health effects is, and whether there are subgroups of the
population at especially high risk.

As with the radiation tale, we begin by distinguishing acute and
chronic effects, but here we must consider both, rather than dismiss-
ing the acute effects as unambiguous. Amongst the acute effects are
increased mortality, hospitalizations, absenteeism, asthma exacerbations,
and other respiratory and cardiovascular symptoms immediately follow-
ing an air pollution episode. Unlike the London Fog, however, such
increases from modern air pollution levels tend to be very small—of the
order of a few percent above background levels—and dwarfed by the
normal range of variation. Chronic effects, on the other hand, include
reduced lung function, increased risk of asthma, cardiovascular disease,
and death due to long-term exposure to air pollution. An important
question is whether these chronic effects represent an accumulation of
insults from the acute effects or whether the acute effects are reversible
and of no long-term significance. Alternatively, one could ask whether
short-term associations between increases in mortality and air pollu-
tion levels immediately preceding represent additional deaths that would
not have occurred otherwise or merely represent the advancement of
the time of death by a few days of individuals who were about to die
anyway. In short, a major challenge is to reconcile the estimates of
excess risk of death or life shortening from acute and chronic effects
studies.

Studies of acute and chronic effects require quite different designs.
Broadly speaking, acute effects have been investigated using time-series
correlation studies (Chapter 8), in which daily fluctuations in population
mortality or hospitalization rates are correlated with daily variations in
air pollution levels for the same area, after a suitable lag and adjusted
for temporal variations in potentially confounding factors like weather.
For endpoints for which population data are not routinely available, such
as asthma exacerbations, one might conduct a panel study, in which, for
example, a one or more cohorts of asthmatics are observed repeatedly
over a relatively short period of time.

Such temporal comparisons are largely useless for studying chronic
effects. For these, the most informative comparisons are spatial, relating
morbidity or mortality rates in different geographic areas to air pollution
levels in these areas, controlling for differences in potential confounding
factors. The fundamental difficulty with such “ecologic correlation” stud-
ies is that associations across groupsmay not accurately reflect associations
across individuals within groups. This so-called “ecologic fallacy” is dis-
cussed in depth in Chapter 10. The only way to overcome this problem is
to study individuals, not aggregate data, so that the joint distribution of
exposure and potential confounders can be assessed.
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This leads us to consider various hybrid designs that combine elements
of all these types of comparisons. One example is the multi-city time-
series design, aimed at studying both the acute effects of air pollution
overall, as well as spatial patterns of differences in effects between cities.
Examples include the National Morbidity and Morbidity Air Pollution
Study (NMMAPS), a comprehensive study of acute effects of air pollution
in the 100 largest U.S. cities, and similar studies in Europe (APHEA).

For chronic effects, an example is the Southern California Children’s
Health Study (CHS). The CHS was designed to exploit three levels of
comparisons: between communities (“ecologic” or aggregate); between
individuals within communities (individual); and between times within
individuals (temporal). Twelve communities with very different levels
and types of air pollution (ozone, particulates, nitrogen dioxide, and
acid vapors) were selected that were otherwise as demographically sim-
ilar as possible. Within each community, cohorts of 4th, 7th, and 10th
grade school children were enrolled, totaling initially about 300 children
per community, 3,600 in total, from 45 different schools. Subsequent
expansion of the study added three more communities, increased the total
number of subjects to 12,000, and reduced the age of enrollment to kinder-
garten. Each child completed an extensive baseline questionnaire and
lung functionmeasurement, andwas then re-examined annually thereafter
until high school graduation. Another component monitored daily school
absences, similar to the time series studies discussed above, except at the
individual rather than aggregate level. Exposure assessment was initially
based on continuousmonitoring (hourly orwith two-week integrated sam-
pling depending upon the pollutant) at central sites established within
each community. In addition, each child provided data on their usual
time-activity patterns and household characteristics (e.g., air conditioning,
indoor sources such as gas stoves and smokers in the household). These
exposure data informed between-community comparisons of health effects
(ecologic correlations), while controlling for confounders at the individ-
ual level. Later, as a result of the growing recognition of the importance
of traffic as a source of local variation in air pollution levels, emphasis
shifted to within-community comparisons. Measurements of local expo-
sures at a sample of locations (homes and schools) within communities
were launched to support the development of individual exposure models
based on GIS-based traffic assessment, atmospheric dispersion modeling,
and spatial statistics (see Chapters 9 and 11). A hierarchical random effects
statistical model was used to assess air pollution effects at the aggregate,
individual, and temporal levels (Chapter 7). A major advantage of a lon-
gitudinal design is that comparisons can be made within individuals—that
is rates of change—so that each person serves as their own control, ren-
dering comparisons at the individual and aggregate levels more resistant
to confounding by personal factors.
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The different air pollutants derive from multiple sources and interact
with each other in a complex system of atmospheric chemical reactions.
Teasing out the health effects of the different pollutants and their sources
is an important goal of air pollution epidemiology, both to understand
the biological basis of these effects and for setting air pollution regula-
tions. An intervention aimed at the wrong source could have little benefit
or even prove counter-productive. Some sources are regional, some local,
some individual (ignoring for the moment global influences like climate
change), and epidemiologic studies can take advantage of these different
levels of spatial resolution to help tease apart these effects. Furthermore,
some are natural while some are man-made, and again the two interact.
For example, industrial emissions and motor vehicles in Southern Califor-
nia contribute various oxides of nitrogen (NOx) amongst other chemicals
that, under the influence of strong sunlight, are transformed to ozone
(O3) giving the Los Angeles region the highest ozone levels in the country.
Ozone being a powerful oxidant, these reactions are reversible at the local
level, so that fresh nitrous oxide (NO) emissions frommotor vehicles react
withO3 to formNO2, thereby paradoxically reducing the levels ofO3 near
major roadways. Thus, depending upon whether NOx or O3 has a greater
health impact, one might see either a positive or negative association with
distance from major highways! Other chemical reactions transform the
various primary pollutants into particles which further aggregate as they
age in their journey across the Los Angeles basin toward the surrounding
mountains, driven by the prevailing the Western winds. Both the phys-
ical and chemical properties of the resulting particles could affect their
biological activity—their depth of inhalation, absorption into the blood
stream, the body’s local and systemic responses. The difficulty is that the
various pollutants tend to be highly correlated with each other, so that sep-
arating their effects is difficult. Fortunately, this correlation structure can
be rather different at different levels of spatial and temporal resolution,
offering some hope to the epidemiologist clever enough to design stud-
ies to exploit multiple levels of comparisons. For example, comparisons
between communities can shed light on regional pollutant effects, whereas
comparisons within communities based on traffic exposure or household
characteristics shed light on local sources and indoor sources respectively.

These various exposure sources are also subject to different sources
of confounding and effect modification. Temporal comparisons have the
great advantage of being completely immune to confounding by personal
factors (except possibly by time-dependent factors, but these are unlikely
to have much influence at the population level unless these temporal
variations are synchronized across individuals, say by infectious diseases
episodes). However, they are very sensitive to confounding by temporal
factors like weather that affect the whole population more or less uni-
formly. Fortunately, weather data are routinely available and could be
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readily incorporated into time/series analysis. Flexible multivariate mod-
els may be needed to adequately adjust for the complex dependences:
for example, mortality can be increased by periods of both hot and cold
temperatures, at various lags. To overcome temporal confounding by
unmeasured risk factors (or incomplete adjustment for measured factors),
time-series methods or filtering are used. One must also take care not to
over-adjust: wind speed, for example, can have a direct effect on air pol-
lution levels but may not have any direct effect on health (conditional on
air pollution); thus, adjustment for wind speed could incorrectly explain
away a real causal effect of air pollution.

“Ecological” comparisons, on the other hand, are completely immune
to temporal confounding but exquisitely sensitive to socio-demographic
and other risk factors. In some cases, it may be possible to control for
such factors at the aggregate level using routinely available population
data, such as census data on income, race, and education, but such anal-
yses are still subject to the ecological fallacy. Better would be to collect
individual data on potential confounders for adjustment, even if the final
analysis is done at the aggregate level. In Chapters 5 and 10, we will con-
sider multistage sampling designs that combine population level data with
individual data on a manageable subsample. The CHS is an example of
such a study, which might be better characterized as “semi-individual,” in
that outcomes and confounders are assessed at the individual level, even
though the basic comparison of exposure effects is performed at the aggre-
gate level, thereby overcoming most of the problems with purely ecologic
studies.

Except for demographic factors like age, sex, and race, for which pop-
ulation outcome data may be tabulated routinely, study of modifying
factors generally requires collection of individual data. This might include
pre-existing disease (asthma, heart disease), other risk factors (smoking,
obesity, nutrition), genetics (family history, candidate genes), determi-
nants of personal exposure or dose (time spent outside, physical activity,
household ventilation), or biomarkers of intermediate biological processes
(exhaled NO as a marker of inflammation).

Considering the complexity of exposure—multiple pollutants, different
scales of spatial and temporal resolution, multiple sources, and determi-
nants of personal exposure—it is not surprising that the CHS required
a complex exposure assessment protocol. This was briefly summarized
earlier in terms of its core components: central site monitoring, samples
for inter-community variation, GIS-based traffic density, personal time-
activity and household characteristics. Tying these disparate sources of
information together requires extensive model building (Chapter 9), the
aim being to assign to each study subject an estimate of their personal
exposure, based on data that are available for the entire cohort, with-
out requiring actual measurements for each person, which would have
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been a monumental and hopelessly expensive task. In addition, we aim
to have an estimate of the uncertainty of each exposure assignments that
could be incorporated into exposure–response models that account for
measurement error (Chapter 11).

Some specific aims require more extensive data collection than is fea-
sible for the entire cohort. For these, various nested substudies can be
done. For example, for studying asthma, extensive phenotyping efforts
are needed to confirm the cases’ diagnosis and characterize their subtypes
(and to document the absence of disease in controls), and to gather more
extensive risk factor information, particularly about early-life or in utero
exposures. For this purpose, a counter-matched case-control design was
used, selecting for each newly diagnosed case one control at random from
those in the cohort still free of asthma, matched on age, sex, community,
and other factors, and counter-matched on maternal smoking while preg-
nant. For studying genetic factors, a case-parent-triad design (Chapter 5)
was used, comparing the genotypes of asthma cases to the other geno-
types the case could have inherited from their parents (Chapter 12). A
variant of this approach is also available for continuous traits like lung
function changes. This design is particularly useful for investigating both
main effects of genes, as well as gene-environment interactions, in a way
that overcomes confounding by unmeasured genetic or other personal risk
factors.

Data from such epidemiologic studies—both acute and chronic—have
had a major influence on regulatory policy for air pollution standards.
Obviously, the single most relevant summary of the epidemiologic results
for this purpose is the estimate of the excess risk of various endpoints per
unit exposure, which can then be used by policy makers in combination
with economic cost-benefit analysis and other considerations to evalu-
ate the appropriateness of current standards or support new regulations.
Some endpoints, like a reduction in lung function, are difficult to interpret
in terms of clinically significant disease or prognosis for future adverse
effects. The evidence for low-dose linearity may be equivocal and the pos-
sibility of a threshold impossible to exclude. Acute and chronic effects
estimates could differ by an order of magnitude and their implications for
life shortening be fundamentally impossible to determine without making
untestable assumptions. Such issues will be addressed in Chapter 15.

Another important function of environmental epidemiology is evalua-
tion of the effectiveness of interventions (Chapter 14). While epidemiology
is basically an observational science, there are occasional opportunities
to exploit “natural experiments” to evaluate the adequacy of current
standards or the effect of changes in them—the latter has been called
“accountability.” The obvious comparison of health endpoints before and
after the introduction of some new regulation is easily confounded by
the many other changes that could have happened about the same time,
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although an abrupt and lasting improvement could provide compelling
evidence of a benefit. More convincing yet would be when similar regu-
lations are introduced in different places, since the timing of changes in
confounders is unlikely to occur at the same times in each location. An
example of a natural experiment occurred in the Utah Valley in 1967–68,
when the workers at a copper smelter went on strike for about 9 months,
shutting down the plant and removing the major source of air pollution.
The resulting reduction in mortality (2.5% with 95% CI 1.1–4.0%)—
and their subsequent return to previous levels—provide some of the most
compelling evidence yet of the health benefits of cleaner air. Similar results
were seen two decades later during a steel mill strike in the same general
area. As this volume is going to press, a similar investigation is under-
way on the changes in respiratory and cardiovascular health indicators in
panels of children, young adults, and elderly before, during, and after the
Beijing 2008 Olympics, where considerable efforts are planned to reduce
air pollution levels to those in other major Western cities.

Beyond the public policy implications, environmental epidemiology can
also help elucidate biological mechanisms. Indeed, policy makers are often
hesitant to act in the absence of at least some understanding of the mecha-
nism underlying an epidemiologic association—particularly in the absence
of an experimental animal model—lest the association not be truly casual.
A potential mechanism for a broad range of air pollution health effects
is thought to be oxidative stress. Ozone, particulate matter, and other
gaseous pollutants are powerful oxidizing agents, capable of producing
free radicals like hydroxyl radicals, peroxides, and super-oxides. These
can cause damage to the respiratory epithelial lining fluid, inducing var-
ious host responses leading to chronic inflammation. The production of
free radicals, the damage and repair process, the inflammation and its long-
term sequellae can be modified by various genes, host factors (antioxidant
intake and compromising disease conditions like asthma), and other expo-
sures like metals in particulate matter that catalyze the Fenton reaction.
Only by studying all these factors in combination can we hope to develop
a comprehensive causal model for air pollution health effects, as discussed
in Chapter 13.

Ultimately, the elucidation of causal mechanisms requires a multidisci-
plinary collaboration between epidemiologists, toxicologists, geneticists,
physiologists, clinicians, and other disciplines. Such collaborations need to
be a two-way street. Hypotheses suggested by epidemiologic data may be
tested in various experimental ways—by acute human challenge studies,
long term or high-dose animal toxicology, cell culture experiments—and
conversely, confirmation can be sought for predictions of mechanistic
studies in epidemiologic data. Ultimately, it is hoped that studies can be
designed and statistical analysis methods developed that will allow the two
to be more intimately connected. For example, a substudy within the CHS
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is currently underway using toxicological methods to characterize various
measures of biological activity of particles sampled from each community
on cells with different genes inactivated; these biological activity measures
will then be incorporated into the analysis of the epidemiologic data.

With this overview of the scope of this book, illustrated through the
radiation and air pollution stories, we now turn to a more systematic
treatment of the principles of study design and analysis for environmental
epidemiology. The emphasis in the ensuing chapters is on the methods,
using our two tales (and others as needed) merely to illustrate principles,
rather than to provide a comprehensive review of these two monumental
literatures.



2
Basic epidemiologic
study designs

Much of this book is concerned with dichotomous disease outcomes with
variable age at onset. Continuous outcomes are usually studied with sim-
ple random samples, using standard linearmodels for normally distributed
random variables. But disease traits—particularly, rare diseases—require
the use of specialized sampling designs and methods of survival anal-
ysis. Here we provide a brief introduction to these principles, as they
apply to the study of independent individuals. [See the companion volume
(Thomas, 2004) for a discussion of dependent data arising in the context of
family studies.] This introduction will be somewhat terse, and the reader
who wishes a more in depth treatment of these topics might be referred to
standard epidemiology (Kleinbaum et al. 1982; Rothman and Greenland
1998) and biostatistics (Breslow and Day 1980; 1987) textbooks.

Experimental

The gold standard for inference about cause–effect relationships is an
experimental study. In clinical research, this would typically be a double-
blind randomized controlled trial, in which subjects are randomly allo-
cated to the treatments being compared and followed in the same manner
to determine their outcomes, with neither the study subjects nor the inves-
tigators being aware of the specific treatment assignments for individuals
so as to avoid bias. In prevention or program evaluation research, such
studies might instead be conducted in a group-randomized fashion. Of
course, in environmental epidemiology, one is generally concerned with
the effects of hazardous exposures, so ethical concerns preclude deliber-
ately exposing individuals to potential harms and an experimental design
is seldom feasible, except perhaps for studying mild short-term reversible
effects, as in challenge studies of asthma exacerbations or other chamber
studies. Most of environmental epidemiology therefore involves observa-
tional studies, in which one passively observes the effects of exposures that
have happened without any intervention by the investigator. The rest of
this book is primarily concerned with these kinds of studies, except for
a brief discussion of the kinds of causal inferences that are possible from
experimental and observational studies in Chapters 14 and 16.
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Descriptive

Epidemiologists distinguish two basic types of observational studies—
“descriptive” and “analytical.” Descriptive studies are based on examina-
tion of routinely collected disease rates in relation to basic demographic
characteristics (age, gender, race/ethnicity, place of residence, etc.) in the
hopes of getting clues to possible risk factors. A commonly used approach
is the so-called ecologic correlation study, in which groups rather than
individuals are the unit of analysis and one studies the correlation between
disease rates and the prevalence of some characteristic of interest. An
example discussed in Chapter 1 was the correlation between lung cancer
rates and average household radon concentrations, which we will revisit
in greater detail in Chapter 10. Such studies are often useful for generat-
ing hypotheses, but are subject to numerous sources of bias and cannot
provide rigorous tests of hypotheses.

Nevertheless, various routinely collected sources of information can be
useful for generating hypotheses. Beyond such obvious demographic char-
acteristics as age, gender, and race/ethnicity, clues can be obtained from
occupation, place of residence, or date of diagnosis, if combined with
available information about how various potential environmental agents
might be distributed across such factors. Thus the category of descriptive
studies used in environmental epidemiology can be broadly subdivided
into two main types of comparison, geographical and temporal.

Geographic comparisons

International comparisons of age-adjusted breast cancer rates in rela-
tion to average levels of fat intake have been used to support a causal
connection between the two (Prentice and Sheppard 1990; 1991), as
discussed further in Chapter 10. The Atlas of Cancer Mortality (Pickle
et al. 1987) at the county level has been widely examined in search
of environmental hypotheses to account for variation in rates. Freemen
(1987) reviews a number of examples of the use of cancer maps to gen-
erate etiologic hypotheses, including the possible association of high rates
of non-Hodgkin’s lymphoma among males in the central United States
with herbicide exposure, of lung cancer among males in coastal areas
with asbestos exposure in shipyard workers, and of oral cancer among
females in the rural south with smokeless tobacco use. At an even finer
level, an elevated incidence of nasopharyngeal cancer in census tracts bor-
dering the 710 freeway in Los Angeles suggests a connection with the
heavy diesel truck traffic from the Ports of Los Angeles and Long Beach
(Mack 2004).
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Temporal comparisons

Time trends are frequently invoked to support hypotheses relating to
novel or increasingly common environmental exposures. Asthma rates,
for example, have been increasing, potentially due to factors related to
urbanization—air pollution, crowding, allergens, etc. Of course, some of
this increase could simply be due to changes in diagnostic practices or
data collection methods, since asthma is not a notifiable disease. Since so
many factors are changing simultaneously, it is impossible to pinpoint any
one of them as causal solely on the basis of long-term trends. Short-term
correlations between daily fluctuations in mortality, hospitalization, or
absenteeism and daily fluctuations in air pollution levels are much more
specific and hundreds of such studies have been reported (see Schwartz
1994a; Bell et al. 2004b for reviews). Of course, even such short-term
correlations are subject to potential confounding, such as by changes
in weather, requiring careful control in the analysis. See Chapter 8 for
further discussion of such designs, including those like the National Mor-
bidity and Mortality Air Pollution Study (Samet et al. 2000a; Bell et al.
2004a) that combines geographical and temporal comparisons. Neverthe-
less, it must be appreciated that short-term temporal comparisons aremore
useful for demonstrating potential acute effects than long-term temporal
comparisons are for demonstrating chronic effects.

Prevalence surveys

A cross-sectional study aims to describe the prevalence of disease at a
particular point in time in some population. Typically, that population
is geographically defined, such as the entire United States or some city.
A random sample is drawn and an inquiry is made into disease status of
the individuals in the sample and various demographic and risk factors of
interest. Because exposure and disease are measured at the same time, it is
not possible to establish their temporal sequence, so any associations may
not be causal (i.e., exposure could have followed disease development, not
caused it). Furthermore, disease rates are measured in terms of prevalence
(the proportion of the population currently living with the disease) rather
than incidence (the rate of development of new cases). Since prevalence is
approximately the incidence rate multiplied by the average duration of the
disease, a positive association of a factor with prevalence could indicate
that that factor increases the rate of new disease or it increases the length
of time individuals are afflicted by it. For example, a factor that causes
more rapid case fatality (shorter duration) could appear to be protective
against the disease when assessed by a prevalence survey, when in fact it
has no effect on the incidence rate or is even positively associated with
incidence.
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Despite these difficulties of interpretation, prevalence surveys like the
National Health and Examination Survey (NHANES) can be an important
source of descriptive information to help in the generation of hypotheses
to be tested using analytical studies. In particular, unlike the geographi-
cal or temporal correlation studies described above, the unit of analysis
in a prevalence survey is the individual, allowing control of more factors
than is possible when only aggregate data are compared. NHANES uses
a sophisticated multi-stage sampling strategy involving the selection of
municipalities, followed by subsampling of blocks within tracts to iden-
tify individual homes to be enrolled in the survey (Ezzati et al. 1992).
In the first stage, the 13 largest primary sampling units (mainly counties
were selected with probability one, and an additional 68 were selected at
random from 2,812 in the United States; some of the largest were further
subdivided, to make a total of 89 primary sampling units. Within each of
these, subsamples of city blocks or other geographically defined areas were
selected, a total of 2,138 areas. All addresses within these areas were then
enumerated and a random sample of about 100,000 homes was surveyed
to determine the presence of individuals meeting the eligibility criteria for
the survey. Sampling probabilities proportional to size were used at the
various stages so that the final sample would be “self-weighting,” that is,
so that unweighted statistics could be used to estimate national parame-
ters. The final sample comprised about 40,000 individuals, of whom about
35,000 were interviewed and 30,000 were examined. Similar techniques
are discussed under the heading of control selection later in this chapter
and in Chapter 5. They are also widely used in post-disaster epidemiologic
surveys (Chapter 17).

In addition to their role in generating hypotheses and providing useful
descriptive and administrative data, cross-sectional surveys can be useful
in their own right for testing hypotheses. Prevalence is a natural measure
of effect for some chronic, nonfatal diseases like asthma, and the relevant
exposure could be lifetime or usual concentrations, so associations with
environmental factors for such conditions can be usefully investigatedwith
prevalence studies. Aswill be discussed inChapter 14, the effect of an inter-
vention to change the exposure of a population (e.g., regulations aimed at
curbing air pollution) might be studied by repeated cross-sectional surveys
before and after the intervention.

Analytical

To avoid the pitfalls of drawing causal inferences from descriptive studies,
environmental epidemiology typically relies on analytic studies involving
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collection of original data on individuals in order to test specific hypotheses
in a controlled manner.

The two principal analytical study designs used in traditional risk-factor
epidemiology are cohort and case-control designs. These are distinguished
primarily by the direction of inference: cohort studies reason forward
in time from an exposure to disease, while case-control studies reason
backward in time from disease back to possible causes. It is important to
understand that it is this direction of inference—not the temporal sequence
of data collection—that is conceptually important. Either cohort or case-
control studies can be conducted “retrospectively” (using records from
the past) or “prospectively” (collecting new observations as they occur in
the future). Some authors have used the terms prospective and retrospec-
tive to refer to cohort and case-control designs, leading to a confusion we
shall try to avoid by restricting these terms to the direction of data collec-
tion, not inference. (Other authors have used the terms “historical” and
“concurrent” to refer to the direction of data collection.)

Cohort study design

Conceptually, the fundamental design in epidemiology (if not the most
commonly used one) is the cohort study. In this approach, a cohort of
at-risk individuals (currently free of the disease under study) is identi-
fied, characterized in terms of their baseline risk factors, and followed
over time to identify which subjects develop disease. The risk of disease
is then estimated in relation to these baseline characteristics. During the
follow-up period, changes in risk factors might also be recorded, but
this is not an essential element; the important element is that exposure
is recorded before disease occurs. This design is generally felt by epidemi-
ologists to be less subject to the selection and information biases than
case-control studies are prone to, as discussed below. Nevertheless, for
studies of anything but the most common diseases, a cohort study is an
ambitious undertaking, generally requiring enrollment of a large cohort
(sometimes hundreds of thousands of individuals) and follow-up for many
years, with the consequent difficulties of tracing subjects over time and
completely ascertaining disease outcomes. For these reasons, the preferred
design for most rare diseases is the case-control design discussed in the
following section. Use of historical records (retrospective data collection)
avoids one of the fundamental challenges of cohort studies, namely the
long period of observation needed. The feasibility of this option depends
on the availability of a suitable sampling frame for defining the cohort
members in the past, as well as mechanisms for tracking the current sta-
tus of individuals (including those who have died or moved away in the
interim).
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The atomic bomb survivor study, the Colorado Plateau uraniumminers
study, and the Children’s Health Study described in Chapter 1 provide
examples of different kinds of cohort studies.

A central design issue in any cohort study is whether the primary com-
parison will be between the cohort as a whole and some external reference
population or internal to the cohort. While the former can be useful for
putting the overall experience of the cohort in a broader perspective, such
comparisons can be biased by various factors influencing selection into or
out of the cohort. In the context of occupational studies, these are gener-
ally referred to as the “healthy worker effect” (Bell and Coleman 1987),
in which healthier individuals are preferentially selected for employment
from the general population, and the “healthy worker survivor effect”
(Robins 1987; Arrighi and Hertz-Picciotto 1994), in which individuals
who are more resistant to the noxious effects of exposure are more likely
to remain employed in the industry. These problems can be partially over-
come bymaking comparisons between exposed and unexposed subcohorts
or across a gradient of exposure within the cohort.

Still, identifying a comparable unexposed control group can be difficult,
as illustrated in analyses of the atomic bomb survivors using the subgroup
of individuals living in the two cities at the time of the bombing, but far
enough away to have been assigned zero dose (Cologne and Preston 2001).
Including various geographically defined subgroups in the analysis led to
estimates of excess relative risk ranging from 6% higher to 8% lower
than those excluding the zero dose group. This bias could be removed
by including an indicator variable for zero dose in the model, thereby
allowing better estimation of the effects of modifying factors like age, sex,
and city on baseline rates because of the larger sample size.

Case-control study design

The case-control design begins with ascertainment of a representative
series of cases of the disease and a comparable group of individuals from
the same population who are free of the disease, and inquires into aspects
of their past history that might account for their different outcomes. Fre-
quently, controls are selected by individually matching to each case on
established risk factors that are not of particular interest, such as age,
gender, and race. The inquiry into possible risk factors might be done
by questionnaire, structured personal interview, or retrieval of records.
These should be designed in such a way to avoid any lack of comparabil-
ity between the quality of information for the two groups, for example;
by blinding interviewers to whether subjects are cases or controls.

The great advantage of the case-control design is that it does not require
enormous sample sizes or a long period of follow-up—only enough to
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accrue a sufficient number of cases and a comparable number of controls—
so is ideal for studying rare diseases. Hence more resources can be devoted
to data quality, for example, verifying the diagnosis of cases and unaf-
fected status of controls, and obtaining much more detailed information
on exposure than is typically possible in a cohort study.

Probably, the biggest challenge in designing a case-control study is the
choice of controls. Before this can be done, a rigorous definition of the
case series is needed. Ideally this is population-based, for example all cases
identified by a registry covering some population defined by space and
time, or for mortality, all deaths in a similarly defined population. Many
diseases, however, are not routinely recorded in any population-based
registry, so one must resort to hospital- or clinic-based series or a special
survey of the population. In such cases, it may be more difficult to identify
the source population from which the identified cases arose, as hospitals
typically do not have well-defined catchment areas from which all cases
would come and different cases from the same area may go to different
hospitals. Nevertheless, the basic principle is that controls should represent
this “base population” that gave rise to the case series.

Having defined this population, there may be multiple ways of sam-
pling from it. The ideal would be a random sample, possibly stratified
by such factors as age and gender to match the corresponding frequency
distribution of cases, but this would require a sampling frame listing all
the people eligible to be selected. While some countries (Australia and the
Scandinavian countries, for example) maintain such population registers,
many others do not, making this impractical, or have confidentiality poli-
cies precluding access for research purposes. Some alternatives that have
been widely used include

• Neighborhood controls: a census of the neighborhood surrounding each
case is made by the investigator and an eligible control is selected at ran-
dom from that set. For example, a field worker may start at the some
pre-determined location near the case’s residence (say the correspond-
ing location one block away, to preserve the anonymity of the case) and
walk the neighborhood in a spiral pattern to obtain a list of potential
control residences. At each door, the walker either asks for the identity
of individuals who might be eligible as controls or leaves a request to
call the investigator with this information if no one answers; the walk
continues until some predetermined number of residences has been sur-
veyed. Once complete, the first eligible person who agrees to participate
is used as the control.

• Random digit dial controls: Starting with the first few digits of a case’s
phone number, the remaining digits are selected at random and dialed.
If a suitable control is available and willing to participate, he or she
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is included in the list of available controls to be sampled, or the first
available control is selected;

• Friend controls: Each case is asked to list the names and contact
information for a number of friends and one of these is selected at
random,

• Spouse controls: For diseases of adulthood, the spouse of the case is
selected;

• Sibling controls: A sibling who has attained the age of the case, still free
of the disease under study, is selected as the control;

• Birth registry controls: For diseases of childhood, the immediately pre-
ceding or following birth on the registry in which the case appears may
be used.

• Hospital controls: For hospital-based case series, individuals attending
the same hospital or practice for some condition or conditions thought
not to be related to the risk factors under study are selected.

None of these is ideal (Wacholder et al. 1992b). Wacholder et al.
(1992a) begin their series of three papers on the subject by discussing three
general principles for choosing between potential control sources: repre-
sentativeness of the study base population; freedom from confounding;
and comparability of data quality. They also discuss the relative effi-
ciency of different control sources and whether it is advisable for cases
and controls to have equal opportunity for exposure (Poole 1986).

Neighborhood controls are likely to best represent the source population
of cases, but are labor intensive and it may be impractical to survey some
dangerous neighborhoods. Furthermore, for geographically determined
exposures like air pollution, cases and controls would tend to have simi-
lar exposures, leading to what epidemiologists call “overmatching,” with
consequences that will be explored in the following chapter. Random digit
dial controls are also labor intensive, typically requiring on average about
40 calls to identify each control and may be subject to various selection
biases related to phone availability. The viability of random digit dialing
is likely to become more and more difficult with the increasing prevalence
of answering machines, caller id, and cell phones (Link and Kresnow
2006; Kempf and Remington 2007). Spouse controls are, of course, of
the opposite gender, so unsuitable for studying exposures that are sex
related. Many cases may also not have an eligible spouse or sibling con-
trol. Hospital controls are afflicted by some other condition that led them
to the hospital, and it can be difficult to choose control conditions that are
truly unrelated to the factors under study. Friend controls can be subject
to various biases relating to differences between cases in their number of
friends, the representativeness of their exposures, willingness of cases to
name friends, and the risk of overmatching (Flanders and Harland 1986;
Siemiatycki 1989; Robins and Pike 1990; Thompson 1990; Wacholder
et al. 1992b; Kaplan et al. 1998; Ma et al. 2004). These are more
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likely to pose a problem for environmental risk factors, particularly those
related to social behaviors like smoking, than for genetic factors, however
(Shaw et al. 1991).

Inherent in many of the control selection strategies described above is
the idea of individual matching. Beyond providing a convenient way of
selecting controls, it also serves the important function of ensuring the
comparability of case and control series on factors that are not of particu-
lar interest but may be important risk factors for the disease. Matching can
be done either individually or by strata. For the former, the control who
most closely matches the case on the set of factors under study is selected
(typically this may entail prioritizing the various factors, e.g., gender, fol-
lowed by age within 5 years, followed by race, followed by education,
etc.). For the latter, cases are divided into mutually exclusive strata and
an equal number of controls are selected at random from those eligible in
each stratum. This approach is commonly called frequency matching or
stratum matching.

Individual matching is generally done by defining a sequence of criteria
to be matched upon, beginning by requiring an exact match (for discrete
variables, or for continuous variables a match within either strata or some
caliper (Austin et al. 1989)) on the most important criteria, and then seek-
ing the closest availablematch on less critical factors, relaxing the closeness
of matching as needed to find an acceptable control. For prospective case-
control studies, this might be done one at a time as cases accrue; for a
nested case-control study, the order in which cases are considered is ran-
domized. In either situation, once selected as a control for one case, that
individual is usually not eligible to be paired with another more closely
matching case, so that the resulting set of pairs could be less than optimal
overall. In any event, such rules can be difficult to implement in prac-
tice when several risk factors are to be matched for simultaneously. An
attractive alternative is the use of optimal matching designs (Rosenbaum
1989), typically involvingminimization over all possible case-control pairs
of some measure of multivariate distance on the set of matching factors.
This minimization can be accomplished without having to enumerate all
possible pairings using an efficient network algorithm. Cologne and Shi-
bata (1995) empirically compared two such approaches in the design of
a nested case-control study of liver cancer within the atomic bomb sur-
vivor cohort, where hepatitis-B infection was considered as a potentially
strong confounder or modifier. One was based on the propensity-score
(the probability of being a case given the matching factors, as esti-
mated from the entire pool of cases and potential controls (Rosenbaum
and Rubin 1985)), the other on a variance-weighted Euclidean dis-
tance between case-control pairs (Smith et al. 1977). They concluded
that the weighted-distance method produced better overall closeness
across matched sets because the propensity score tended to be poorly
estimated.
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A particular advantage of individual matching in environmental epi-
demiology is that for evaluation of time-dependent exposure variables,
cases and controls can be assigned comparable “reference dates,” such as
one year before diagnosis of the case or the corresponding interval before
interview, age, or calendar date for the matched control. Unless cases’
and controls’ references dates are similar, the comparison of variables like
cumulative exposure can be biased by lack of comparability of their times
over which exposure is accumulated or their “opportunity for exposure.”
This is more difficult to accomplish for unmatched or frequency-matched
case-control studies, for which it would be necessary to assign reference
dates for controls corresponding to the distribution of reference dates for
all cases in the same stratum; this would be difficult to accomplish until
after all the cases have been enrolled.

The second major challenge in case-control study design is exposure
assessment, particularly ensuring comparability of the quality of informa-
tion from cases and controls. “Recall bias” is a particularly important
challenge if exposure information is to be obtained by interview or ques-
tionnaire: cases may be more inclined to over-report exposures they think
could have caused their disease or to deny exposure about which there
is some stigma. Cases with advanced disease may be too ill to respond
accurately to questions or it may be necessary to obtain exposure infor-
mation from a proxy (e.g., next of kin) if the case is dead or too sick to
respond (Nelson et al. 1990; Wacholder et al. 1992b). For this reason,
Gordis (1982) suggested selecting dead controls for dead cases, so that
exposure information would be obtained by proxy for both, but this vio-
lates the principle of controls’ representativeness of the base population
(McLaughlin et al. 1985), even if it does tend to promote comparability
of data quality.

Nested case-control and case-cohort designs

One of the major expenses of a cohort study is assembling the expo-
sure information on the entire cohort, when perhaps only a very small
portion of the cohort will develop the disease. For example, in an occu-
pational study, obtaining exposure information on a large cohort can be
very expensive indeed. To minimize these costs, an efficient compromise
can be to obtain this information only on the cases and a random sample
of the rest of the cohort. There are two principal variants of this idea.

In the nested case-control design, controls are individually matched to
each case by random sampling from the set of subjects who were at risk
at the time that case occurred; the data are then analyzed as a matched
case-control study. In this scheme, it is possible for a subject to be sampled
as a control for more than one case, and for a case to serve as a control
for an earlier case. Lubin and Gail (1984) show that this scheme leads to
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unbiased estimation of the relative risk parameter, while the alternative of
excluding cases from eligibility to serve as controls for other cases (Hogue
et al. 1983) would lead to a bias away from the null (Greenland et al.
1986).

In case-base sampling (Mantel 1973), the controls are a random sample
of the entire cohort (the “subcohort”) at the time of enrollment, irrespec-
tive of whether or not they later became cases; the analysis then compares
the cases as a group to the controls. Thus, some cases will appear in the
subcohort, some outside it, but all cases are used. The original case-base
analysis (Kupper et al. 1975; Miettinen 1982b; 1985; Flanders et al. 1990;
Langholz and Goldstein 2001) uses standard methods for estimating risk
ratios (rather than rate ratios), with an adjustment to the variance to allow
for the overlap between subjects appearing both as cases and as controls.
The case-cohort analysis is aimed instead at estimating rate ratios for the
same reasons they are generally preferred in cohort studies to deal with
censoring, using a variant of the standard Cox regression model described
in Chapter 4 (Prentice 1986). Advantages of the case-base sampling (with
either analysis) are that the same control group can be used for compar-
ison with multiple case groups and that obtaining the baseline data on
the subcohort can be done early in the study while the cases are accumu-
lating (for example, blood specimens could be obtained and genotyping
or assays of serum biomarkers of exposure started for controls without
waiting to see who became cases). The main disadvantages are that a more
complex analysis is required and it can be less efficient than a nested case-
control study for long duration studies with many small strata (Langholz
and Thomas 1990).

One way to think about either nested case-control or case-base designs
is as an analytic strategy for sampling from within an established cohort,
as opposed to the standard case-control design entailing drawing separate
samples of cases and controls from their respective populations. Either can
be conducted in matched or unmatched fashion, the nested case-control
design being thematched version (Langholz andGoldstein 1996), the case-
base design being the unmatched version (Langholz and Goldstein 2001),
paralleling the analogous analyses for population-based designs, matched
(Breslow 1981) and unmatched (Prentice and Breslow 1978; Prentice and
Pyke 1979).

Interpretation of epidemiologic associations

As an observational science, epidemiologists do not generally have the
opportunity to test hypotheses by conducting controlled experiments rely-
ing on randomization to ensure comparability of the groups compared
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(Greenland 1990). Hence, the associations between risk factors and dis-
ease found in epidemiologic studies are subject to a wide range of potential
biases and do not necessarily indicate causation. Epidemiologists have
developed a series of criteria for judging when an inference of causality is
warranted from an observed association, of which the most famous are
those outlined by Sir Austin BradfordHill (1965), as described inmost epi-
demiology textbooks: dose-response, temporal sequence, strength, lack of
other explanations, consistency across multiple studies, coherence across
types of evidence, and so on. Bates (1992) has elaborated upon the last
of these in the context of air pollution, comparing 11 indices of acute
and chronic effects in terms of their logical interrelationships and the
extent to which 44 epidemiologic studies produce the expected pattern of
coherence.

Particularly relevant to environmental epidemiology is freedom from
biases, which are generally classified into three types:

1. Selection bias: any of several study design aspects that would tend to
make the groups sampled unrepresentative of their respective source
populations (e.g., using hospital controls to represent the population
of unaffected individuals);

2. Information bias: various study design aspects that would tend to
make the quality of the information obtained on subjects noncompa-
rable between the groups compared (e.g., recall bias in a case-control
study, where cases might tend to recall past exposures differently from
unaffected individuals); and

3. Confounding: distortion of a true relationship by the action of another
variable that is associated with exposure in the source population and,
conditional on exposure, is also an independent risk factor for disease.

In addition to such potential “study biases” in the design and analy-
sis of particular studies, one should also be aware of what we might call
“meta-biases” in the interpretation, publication, and synthesis of evidence
and the conceptualization of new hypotheses. For example, meta-analysis
of the epidemiologic literature on a particular association depends for its
validity on access to the entirety of evidence on the question. But individual
investigators are more likely to submit findings for publication—and jour-
nals to accept reports—if they are deemed “significant,” a phenomenon
known as “publication bias” (Begg and Berlin 1988). Various methods
have been suggested to overcome this problem in quantitative summaries
of scientific evidence (Dickersin and Berlin 1992; Berlin et al. 1993; Green-
land 1994b; Blair et al. 1995; Stroup et al. 2000; Greenland 2005).
For example, it is generally agreed that the problem is more severe for
initial reports of a novel association than for subsequent attempts at
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Figure 2.1. Schematic representation of confounding and effect modification.

replication, so exclusion of the first report may somewhat attenuate the
problem. Of course, scientists are only human and their prior beliefs will
inevitably color their interpretation the literature and their selection of
hypotheses and approaches to testing them. Rigorous attention to the
principles of good epidemiologic practice is thus essential to avoid hav-
ing such meta-biases spill over into the actual conduct of epidemiologic
studies.

Sackett (1979) has provided an exhaustive catalog of potential study
biases and meta-biases in observational epidemiology and a discussion
how sensitive different study designs are to each. Generally, cohort stud-
ies are felt to be less susceptible to selection and information bias than
case-control studies, because the cohort is enrolled as a single group and
everyone followed in the same way, and because the exposure informa-
tion is obtained before the onset of disease. But they are not immune to
bias; for example, usually some individuals are lost to follow-up, and the
probability of being lost may depend upon exposure or disease status.

Epidemiologists attempt to control confounding by matching, strati-
fied analysis (e.g., the SIR discussed in the following chapter), covariate
adjustment (e.g., the logistic model discussed in Chapter 4), or restriction
to homogeneous subpopulations. It is also possible that a factor could be
related to exposure but not be an independent risk factor for disease (no
C-D arrow in the left-hand side of Figure 2.1), that is, associated with
disease only indirectly through exposure. Controlling for such a factor is
not advisable and would be called “overmatching” or “overadjustment”
(Day et al. 1980), not because it would yield a biased estimate of the E-D
association but because it would inflate its variance and reduce power by
unnecessarily restricting the variability in E conditional on C. This concept
is related to the question of whether cases and controls should be required
to be comparable in terms of “opportunity for exposure” (Poole 1986;
Wacholder et al. 1992a).

Confounding must not be confused with effect modification or interac-
tion, as discussed in the following chapter. As illustrated in Figure 2.1, an
effect modifier M is a variable that alters the magnitude of the association
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between exposure E and disease D, for example, if disease rates differ
between males and females. Such a variable need not be associated with
either E or D directly. In contrast, a confounder C is associated with both
E and D and thereby distorts the direct relationship between E and D that
would be observed for any particular value of C. The concept of effect
modification will be addressed in greater detail in Chapters 3, 4, and 12.
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Basic probability theory

Before describing the basic approaches to the analysis of epidemiological
data, we need to establish some fundamental concepts from probability
theory. Let us denote a random variable (a quantity that varies between
observational units—individuals, times, and so on—in some manner that
is not completely predictable) by the symbol Y and use the corresponding
lower case letter y to denote the specific value a particular observationmay
have. Three kinds of random variables that will be particularly important
in epidemiology are binary (dichotomous), count, and continuous vari-
ables. A binary variable is one with only two possible values, for example,
present (Y = 1) or absent (Y = 0). A count variable is one which can take
any nonnegative integer value, such as the number of cases of disease in a
group. A continuous variable can take any real value (although possibly
over some restricted range, such as only positive numbers).

We refer to the set of probabilities for the values a random variable
can take as its probability density function. For example, for a binary
variable, we might write p= Pr(Y = 1) and q = 1 − p= Pr(Y = 0). We
say two random variables, say X and Y , are independent if the value of
one does not affect the probability distribution of the other. In this case,
we can write Pr(X= x and Y = y)= Pr(X= x) × Pr(Y = y). (From here
on, we will write the former simply as Pr(X= x,Y = y), with the comma
implying “and”.) For example, if p is the probability that any random
individual in a particular group will have a disease, then the probability
that two independent individuals will both have the disease is p×p=p2.
If the disease were infectious, however, and two individuals were in close
contact with each other, then their outcomes would probably not be inde-
pendent, as exposure to one could have caused the other; likewise, if two
individuals are living far apart, then their risks of disease are probably
independent, but if they are living in the same or neighboring households,
then they could be dependent because of shared exposures to unmeasured
risk factors. (Dependent data also arise in family studies due to shared
genotypes.) These examples illustrate two different ways dependent data
can arise: as a direct causal connection in the case of transmission of an
infectious disease; or as a result of a shared latent (unobserved) variable
in the case of shared exposures.
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Because we are particularly interested in describing the relationships
between variables that are not independent (or testing hypotheses about
whether they are independent), we are frequently interested in their con-
ditional probabilities, denoted Pr(Y |X), that is, the probability of Y for
a specific value of X (“the probability of Y given X”). For example, we
might be interested in the risk of disease Y in an individual exposed to X,
that is, Pr(Y = 1|X= 1). The fundamental law of conditional probability
states that

Pr(Y |X) = Pr(Y ,X)

Pr(X)

If the two variables were independent, the numerator would become
Pr(Y ) Pr(X), so Pr(Y |X)= Pr(Y ), that is, the probability of Y would not
depend uponX. By cross-multiplication, the lawof conditional probability
can also be written as Pr(Y , X)= Pr(Y |X) Pr(X). Of course, we could just
as well write Pr(Y , X)= Pr(X|Y ) Pr(Y ). Equating these two expressions
and solving for Pr(Y |X) leads to the famous Bayes theorem,

Pr(Y |X) = Pr(X|Y ) Pr(Y )

Pr(X)

which defines the relationship between the two conditional probabilities.
Statistics is the study of the distribution of random variables, using

random samples of observations from some larger unobserved population
to which we wish to generalize. In particular, statisticians are concerned
with two types of activities:

1. Estimation: finding simple summaries of a distribution, like its mean
and variance, together with some measure of the uncertainty of these
estimates; and

2. Hypotheses testing: determining the probability that two or more
distributions differ.

For example, we might wish to estimate the risk of disease p in some
population by obtaining a sample of N individuals from that population
and observing the number Y who are affected. The sample proportion
Y /N , denoted p̂, is an estimator of the unknown true population risk p.
Likewise, for a continuous variable, the sample average Ȳ = ∑N

i= 1 Yi/N is
an estimator of the population mean μ. Confidence intervals describe the
likely range of estimates that could have been generated by hypothetical
replication of the study using the same procedures (e.g., with the same
design, sample size, method of sampling, measurement, etc.). It is not,
however, the same as the likely range of the true population parameter
given the data, as we shall see below.
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In general, we are particularly interested in testing a hypothesis about
some particular null hypothesis value of a population parameter, again
based on a finite sample of observations. For example, we might want
to know whether the risk of disease p1 in a particular subgroup of the
population (say, exposed individuals) differs from that in the general pop-
ulation p0. Then we would write the null hypothesis as H0: p1 =p0. We
would then compute some summary statistic (such as the chi square statis-
tic (Y −E)2/E where E=Np0, described further below) for the observed
data and compare that value to the distribution of possible values of the
statistic that would be expected in hypothetical replications of the study
if the null hypothesis were true. If the observed value is quite unlikely—
say, fewer than 5% of these hypothetical replications would be expected
to lead to more extreme values—then we would call the result “statisti-
cally significant” and quote as the p-value the probability of obtaining
by chance a result as or more extreme than that actually observed. Note,
that the p-value should not be interpreted as the probability that the null
hypothesis is true. The latter would require the prior probability that the
null hypothesis was true (the probability we would have assigned before
seeing the data), whichwould be difficult to get a consensus about. Therein
lies the difference between classical (“frequentist”) and Bayesian statistics,
which we will discuss further below. These basic concepts of probability
and statistics are explained in greater detail in virtually any elementary
statistics textbook, but this cursory treatment of the subject should be
sufficient for the particular applications in environmental epidemiology
discussed below.

Two summary statistics for a distribution that we will encounter repeat-
edly are its mean and variance. Themean, denotedμ=E(Y ) for “expected
value of”, is the theoretical average of values from the entire population or
of an infinitely large sample from it. Thus, if the range of possible values
for Y is finite, we would define the mean as

μ =
∑
y

y Pr(Y = y)

or if it is continuous, as

μ =
∫

y Pr(Y = y) dy

The variance, denoted σ 2 = var(Y ), is a measure of the spread of a
distribution and computed as

σ 2 =
∫

(y − μ)2 Pr(Y = y) dy
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or the analogous summation for a discrete distribution. Thus, the variance
can also be thought of as E[(Y − μ)2].

The mean and variance of a sum S of independent random variables Yi

is simply the sum of their respective means and variances, E(S)=�iμi and
var(S)=�iσ

2
i . In particular, if S is the sum of ν independent identically

distributed (iid) random variables, then E(S)= νμ and var(S)= νσ 2.

Probability distributions used in epidemiology

Binomial distribution

For count data, the two most important distributions are the binomial
and Poisson distributions, depending upon whether the number of cases
is expressed relative to the number of people at risk (the resulting propor-
tion affected being a probability) or the person-time at risk (the resulting
fraction being a rate).

Suppose we have a group of i= 1, . . . ,N individuals, each of whom
is characterized by a binary random variable Yi and let Y =�iYi be the
number of “cases” in the group (the numberwith Yi = 1). Then if each indi-
vidual’s value is independent with the same probability p, the probability
distribution function for Y is given by the Binomial distribution

Pr(Y = y) =
(
N

y

)
py(1− p)N−y = N !

y!(N − y)!p
y(1− p)N−y

whereN ! =1×2×· · ·×(N−1)×N . Themean of this distribution is readily
shown to be pN and its variance Np(1 − p). The binomial distribution
puts probability mass at a finite set of integer values from 0 to N . When N

is large (as is typical of most epidemiologic applications), the distribution
resembles a continuous Normal distribution with mean pN. However, as
the distribution is bounded at 0 and N , this is only an approximation and
when p is small (as is also typical of many epidemiologic applications), the
distribution will be markedly skewed (see Figure 3.1). For convenience,
we write a binomially distributed random variable as Y ∼ Binom(N , p).
In epidemiology, the binomial distribution most commonly arises in the
analysis of disease prevalence data or case-control studies.

Poisson distribution

Since epidemiologic studies seldom follow individuals over their entire
lives, or even over a uniform interval of time, the element of time at risk and
under study (“in view”) is central. Suppose we have some large population
in which events (say, disease) occur only rarely at rate λ per unit time
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Figure 3.1. Binomial (black bars) and Poisson (gray bars) distributions and the Normal
approximation (smooth line) for N = 10 and p= 1/3 or λ= 3.33 respectively, both having
the same expectation.

and let Y denote the number of cases over some total amount of person-
time T (the sum of all their individual times at risk). Now the probability
distribution function for Y is given by the Poisson distribution

Pr(Y = y) = e−λT (λT )y/y!
whichwewrite in shorthand as Y ∼ Poisson(λT ). The Poisson distribution
(see Figure 3.1) can be thought of as the limit of the Binomial distribution
as N becomes very large and p becomes very small, so that their product
converges to pN = λT . Like the binomial distribution, as λT becomes
large, the distribution takes on the appearance of a Normal distribution,
although somewhat skewed. Characteristic of the Poisson distribution is
that its mean and variance are the same, λT .

The Poisson distribution puts nonzero probability on the infinite set
of nonnegative integers. Because the distribution is unbounded, it could
include values greater than N , the total number of people at risk! Of
course, if λ is small, then the probability associated with values greater
than N will be trivial. Furthermore, if the outcome does not lead to termi-
nation of the period at risk (like death does), then individuals could have
multiple events (e.g., asthma attacks) and so the total number of events
could indeed be larger than the total number of individuals at risk. For
events that do lead to termination of time at risk, the resolution of this
paradox relies on the realization the total person-time T is also random,
so it is the pair (Y , T ) that needs to be modeled, using appropriate tech-
niques for censored survival analysis, as discussed in the following chapter.
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The remarkable observation is that by conditioning on T and treating Y as
having a Poisson distribution, the resulting likelihood has the same depen-
dence on λ [or the parameters of some more complex model for λ(t , Z)]
as the real survival-time likelihood, and thus leads to identical tests, esti-
mates, and confidence intervals, without requiring any assumption about
disease rarity. The Poisson distribution commonly arises in the analysis
of grouped cohort study data, such as from the atomic bomb survivors
study, as well as in time-series studies or panel studies of acute effects,
such as for air pollution.

Normal distribution

For continuous distributions, the most important probability distribution
function is the Normal distribution, with density

ϕ(y)dy = Pr(y ≤ Y ≤ y + dy) = 1√
2πσ

exp

(
− (y − μ)2

2σ 2

)
dy

where μ is the mean and σ 2 is the variance of Y . In general, we use the
notationN(μ, σ 2) to denote this distribution. The cumulative distribution
function cannot be expressed in closed form, but is written as

�(y) = Pr(Y < y) =
∫ y

−∞
ϕ(u) du

Chi square distribution

Unlike the three distributions described above, the chi square distribution
generally arises not as the distribution of the data itself but rather of some
summary statistic for a distribution or some hypothesis test about the
data. For example, if Y ∼ N(0, 1), then Z=Y 2 has a central chi square
distribution on 1 degree of freedom, with probability given by

Pr(Z = z) = z− 1
2 exp(−z/2)√

2π

This distribution has mean 1 and variance 2. The sum of ν independently
distributed chi squares has a chi square distribution with degrees of free-
dom (df) ν, so it follows from general result above about sums of random
variables that its mean is ν and its variance is 2ν. This general chi square
distribution on ν df is given by

Pr(Z = z|v) = zν/2−1 exp(−z/2)
2ν/2	(v/2)
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Although this connection with Normal distribution defines the chi
square distribution, it arises in practice more commonly in connection
with the large sample approximation of the binomial or Poisson distribu-
tions. Thus, for example, if Y∼ Poisson(E) ≈ N(E, E), where E= λT is
the expected number of cases, thenZ= (Y−E)2/E has approximately a chi
square distribution on one degree of freedom. The analogous expression
for a binomial random variable would be Z= (Y −E)2/var(Y )= (Y −E)2

[N/E(N − E)].
Frequently, we will wish to compare observed and expected events

across several groups j = 1, . . . , ν, so following the general princi-
ples above, the total chi square statistic, Z=�ν

j=1(Yj − Ej)
2/Ej has

a chi square distribution on ν df, where ν is the number of groups
compared, assuming the number of expected events are computed using
a known external standard, e.g, Ej = λTj . Frequently, however, the
rates are estimated from the ensemble of all the data, for example,
λ̂= ∑v

j = 1 Yj/
∑v

i= 1 Tj , in which case the df is reduced by one (i.e., to
ν − 1) to allow for this conditioning on the total number of events.

The central chi square distribution applies under the null hypothe-
sis H0:μ= 0, σ 2 = 1 for Normally distributed random variables, or, for
the chi square statistic given above for Poisson variables, when H0:
E(Y )=E, var(Y )=E. Under the alternative hypothesis, the chi square
statistic will have a noncentral chi square distribution with noncentrality
parameter λ being the sum of the expectations of the original variables,
λ= ∑v

j = 1(E(Yj )/
√
var(Yj )). This distribution has a complex expression,

but is readily computed and has important applications in statistical power
calculations. (Power is the probability that a real effect of some hypothe-
sized size will be detected at a specified level of significance by a particular
study design and analysis method. An investigator typically aims to choose
the sample size for a particular design in a particular population so as to
attain some minimum power, say, 90% for detecting a relative risk of
2 at a 5% level of significance. The details of the calculation of power
thus depend upon the specific hypotheses, designs, analysis methods, and
population characteristics under consideration, so are not treated in detail
here. Such methods are covered in most of the standard epidemiology and
biostatistics textbooks.)

Measures of disease frequency and risk

We now use the binomial and Poisson distributions defined in mathe-
matical generality above to develop the concepts of risks and rates that
epidemiologists use to describe disease outcomes. We begin by defining
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measures of absolute risk as applied to a single population or subgroup,
and then discuss measures of relative rates used to compare disease out-
comes between groups. As described earlier, we distinguish between the
parameter value for a population and the estimator of that parameter
obtained from the data on a finite random sample of individuals from the
population. In this chapter, we assume that all the members of a particu-
lar group are “exchangeable,” in the sense that their disease risks or rates
are the same (at least within distinguishable subgroups, such as males and
females), and hence the population parameter applies equally to any rep-
resentative member of the group. In the following chapter, we will develop
regression models for estimating the rate for a particular individual whose
characteristics may be unique, by analysis of all the data on outcomes and
predictors. This estimate could then be used as a risk predictor for new
individuals whose unique combination of predictors may not even have
existed in the sample used to estimate it.

Absolute risk

Risk

Risk or incidence, is defined as the probability of new disease occurring
during some defined time period among a group of individuals free of
the disease at the start of the period. Throughout this book, we will not
distinguish between disease incidence and mortality, as both can occur
only once—one cannot have a first event more than once! Of course, the
study of recurrent events and prevalence (without the restriction to new
cases) are of interest in epidemiology as well, but are of less use in studying
disease etiology, although they do arise in, say, panel studies of asthma
exacerbations due to air pollution.

Denoting the time period [0, t], we might write the risk as p(t)=
Pr[Y (t)= 1|Y (0)= 0]. Any of a number of time scales might be relevant,
for example, age, time since start of observation, calendar year. In etio-
logic research, age is usually taken as the primary time scale, with year of
birth and year of start of observation being treated as covariates. Being
a probability, risk is a dimensionless quantity ranging between 0 and 1.
For a given time interval, the population parameter is a fixed quantity we
shall denote simply as p. If in a random sample of N observations from
some population at risk, we observe Y cases developing during the at-risk
period, then we would treat the random variable Y as having a Bino-
mial distribution, Y ∼ Binom(N , p), and estimate the risk by the sample
proportion p̂=Y/N with variance var(p̂)=Y (N − Y )/N3. The chi square
distribution can be used to test the significance of the departure of the
observed frequency from some null value H0: p=p0 (say, the population
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risk, for comparison with that observed in the cohort)

(p̂ − p0)
2

var(p̂)
= (Y − p0N)2

Np0(1− p0)
∼ χ2

1

Rates

In contrast to risk, a rate is a probability density, expressed in units
of person-time at risk (typically, as a rate per 100,000 person-years).
Rates are the preferred measure of disease frequency when observation
is extended over time, so that not all subjects are at risk for the same
duration due to “censoring” by competing risks or loss to follow up. They
are also useful for describing disease frequency that varies over age or
other temporal variables, as discussed further in Chapter 6. The probabil-
ity density of disease occurrence at any instant of time within the period
of observation amongst individuals free of the disease the instant before
is defined as

λ(t) = lim
dt→0

Pr(Y (t + dt) = 1|Y (t) = 0)
dt

Viewed as a function of time, λ(t) is known as a hazard function (equiv-
alent terms include incidence density, failure rate, and (for death) force
of mortality). Incidence and mortality rates used in epidemiology are a
form of hazard rate, often expressed as step functions, treated as constant
over some arbitrary grid of age and time intervals. For the moment, we
consider a single such interval and assume the hazard rate λ is constant
across time and across individuals, dropping the qualifier (t). Suppose the
i= 1, . . . ,N individuals have each been observed from time 0 to ti (where
ti denotes to time of disease occurrence, loss to follow up, or termination
of the study, whichever comes first), and let T =�iti be the total person-
time of observation. Then the number of events has a Poisson distribution,
Y ∼ Poisson(λT ), and we would estimate the incidence or hazard rate as
λ̂=Y/T with variance var(λ̂)=Y/T 2. The null hypothesis H0 : λ = λ0
can be tested by the chi square (y − λ0T )2/λ0T ∼ χ2

1 .

Survival analysis

Risks and rates are linked by the fundamental relationships:

S(t) = exp
(
−
∫ t

0
λ(u) du

)
λ(t) = −dS(t)/dt

S(t)

(3.1)
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where S(t)= 1 − p(t)= Pr[Y (t)= 0|Y (0)= 0] is known as the survival
function. If the rate is assumed to be constant over some interval of time
(0, t), these expressions reduce to p= 1− exp(−λt) and λ= − ln(1−p)/t ,
respectively.

The survival function can be estimated in a number of ways. Using indi-
vidual data, the Kaplan–Meier or product-limit estimator of the survival
curve is given by

Ŝ(t) =
∏

(i|ti<t)

(
1− Yi

Ri

)
,

where Yi is an indicator for whether subject i developed the disease and
Ri is the number of subjects who are still at risk (free of disease and under
observation) at age ti . This estimate is a step function, with discontinuous
drops at the observed event times. Alternatively, one could start with a
grouped time estimator of the incidence rate λ̂k =Yk/Tk for some catego-
rization of the time axis (say, five-year intervals �k), and compute the
survival function as

Ŝ(tk) = exp

⎛⎝−
∑
j≤k

λ̂k�k

⎞⎠ .

Both these approaches estimate the probability of remaining free of dis-
ease absent competing risks, that is, assuming that one does not die of
some unrelated cause first (sometimes called the “gross probability”). To
estimate the lifetime risk of disease or the probability of developing disease
at any specific age allowing for competing risks (the “net probability”),
the lifetable method is used. Let μ denote the risk of dying of causes other
than the disease of interest and assume that the two causes “compete
independently.” Then the probability of developing the disease at age t is

p(t) = λ(t) exp
(
−
∫ t

0
[λ(u)+ μ(u)] du

)

and the cumulative risk of disease to age T is P(T )= ∫ T

0 p(t) dt . Thus,
the lifetime risk is P(∞). The quantity �(t)= ∫ t

0 λ(u) du is known as the
“cumulative hazard” and can be interpreted as the expected number of
cases per person at risk (as opposed to the probability) up to time t in the
absence of competing risks. The rationale for this expression is as follows:
the probability of the disease of interest during the interval (t , t + dt) is
the probability of surviving to t , multiplied by the conditional probability
of dying of that cause in the next instant; the former is the probability of
surviving both the cause of interest and competing causes, given by the
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exponential factor; the latter is simply the hazard rate for the cause of
interest at time t .

These calculations are illustrated for lung cancer incidence in Table 3.1.
The column headed “Probability of surviving interval” is computed as
sk = exp[−5(λk + μk)], where λk is the lung cancer incidence rate and
μk the mortality rate for all other causes in age interval k. The column
headed “Probability of surviving, cumulative” is the running product
Sk =k

j = 1Sj = Sk− 1sk, representing the probability of surviving to the
end of each interval. Thus, Pk = Sk − Sk−1 = Sk−1(1− sk) is the proba-
bility of either developing lung cancer or dying of other causes during
the interval. “Risk of lung cancer” is computed as Pkλk/(λk + μk), the
proportion of all these events in the interval that are incident lung can-
cer cases, the lifetime risk being given by the total at the bottom of the
column. The column “Expected years of life remaining, survivors” col-
umn is yk =

∫ tk
tk−1

S(t) dt =[1− exp(−5λk)]/λk the average person-time
during the interval among those surviving to the start of the interval
(five years for those who survive to the next interval, plus slightly less
than half that among those who die during the interval). The final
column Yk = ∑∞

k ykSk−1 is the remaining expectation of life among
those alive at the start of the interval. The final row (age 90+) is cal-
culated in a similar way, assuming the incidence and mortality rates
remain constant thereafter (details not shown). Thus, by age 90, the
cumulative risk of dying of lung cancer has reached about 7.8%; con-
tinuing the calculations beyond this age (assuming the death rates remain
constant), the lifetime risk eventually converges to 8.0%. The expecta-
tion of life at birth is 72.4 years. We will revisit these calculations in
Chapter 15, where we compare the effect of a particular exposure pat-
tern on such quantities as excess lifetime risk of cancer or loss of life
expectancy.

Relative risk

The term relative risk (RR) is used in a variety of ways, depending on
the context, but generally refers to the ratio of risks or rates between
groups differing with respect to some measurable risk factor, for example,
between groups exposed and unexposed to some environmental agent.
In its simplest form, we might define the relative risk as a ratio of risks,
p1(t)/p0(t), comparing individuals with or without some risk factor, or as
a ratio of rates (hazard ratio or incidence rate ratio) λ1(t)/λ0(t). A constant
RR model assumes that these quantities do not vary over time, although
there are numerous examples in which they do—for example, the marked
variation in relative risks of cancer from ionizing radiation with age and
latency, mentioned in Chapter 1.



Table 3.1. Calculation of age-specific and lifetime risk of dying of lung cancer using the lifetable
method (U.S. white males, 1973–2004, from http://www.seer.cancer.gov/canques/)

Age interval Incidence
rate of lung
cancer

Mortality rate
for all other
causes

Probability of
surviving

Risk of lung
cancer during
interval

Years of life

Interval Cumulative Interval
(survivors)

Cumulative

0–4 0.0 237.2 0.9882 0.9882 0.00000 4.970 72.427
5–9 0.0 25.7 0.9987 0.9869 0.00000 4.997 67.457
10–14 0.0 32.0 0.9984 0.9854 0.00000 4.996 62.519
15–19 0.2 116.2 0.9942 0.9796 0.00001 4.985 57.588
20–24 0.2 153.6 0.9923 0.9721 0.00001 4.981 52.676
25–59 0.4 147.6 0.9926 0.9650 0.00002 4.982 47.796
30–34 1.5 166.4 0.9916 0.9569 0.00007 4.979 42.954
35–39 4.9 211.0 0.9893 0.9466 0.00023 4.973 38.149
40–44 14.2 290.4 0.9849 0.9323 0.00067 4.962 33.390
45–49 37.6 429.6 0.9769 0.9108 0.00173 4.942 28.693
50–54 84.5 654.8 0.9637 0.8777 0.00378 4.909 24.085
55–59 162.1 1028.4 0.9422 0.8270 0.00691 4.854 19.614
60–64 276.7 1627.5 0.9092 0.7519 0.01091 4.769 15.354
65–69 404.3 2497.3 0.8650 0.6504 0.01415 4.654 11.409
70–74 514.0 3850.3 0.8040 0.5229 0.01502 4.492 7.910
75–79 572.1 5963.0 0.7213 0.3771 0.01276 4.265 4.988
80–84 553.4 9464.1 0.6060 0.2285 0.00821 3.933 2.758
85–89 446.5 17478.1 0.4081 0.0933 0.00337 3.302 1.275
90+ 446.5 17478.1 0.0000 0.0000 0.00232 5.579 0.520

Totals 0.08017

http://www.seer.cancer.gov/canques/
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Case-control studies

In case-control studies, amore usefulmeasure of association between some
risk factor and disease is the odds ratio

OR = p1(1− p0)

p0(1− p1)

the ratio of the odds p/(1−p) of disease between those with and without
the risk factor. It is readily seen by application of Bayes formula that this
quantity is the same as the odds of exposure between cases and controls,
since

OR(Y |Z) = odds(Y |Z = 1)
odds(Y |Z = 0)

=
Pr(Y = 1|Z = 1)
Pr(Y = 0|Z = 1)
Pr(Y = 1|Z = 0)
Pr(Y = 0|Z = 0)

=
Pr(Z = 1|Y = 1)
Pr(Z = 0|Y = 1)
Pr(Z = 1|Y = 0)
Pr(Z = 0|Y = 0)

= odds(Z|Y = 1)
odds(Z|Y = 0)

= OR(Z|Y )

an attractive feature for its use in case-control studies. For a rare disease,
the OR approximates the risk ratio, p1/p0. While in general one could
combine estimates of the OR and the proportion of controls exposed from
a case-control study with external information on the population average
risk to derive an estimate of the risk ratio, a more useful observation
is that, under appropriate circumstances, the OR provides a consistent
estimator of the hazard ratio even without the rare disease assumption
(Greenland and Thomas 1982). In particular, when matched controls are
sampled from the individuals at risk at the time of each case (“incidence
density sampling”), then no rare disease assumption is needed to justify
the interpretation of the odds ratio as an estimator of the hazard ratio.

Epidemiologic data from cohort or case-control studies are frequently
presented in the form of a 2×2 contingency table, as in Table 3.2. Using
these data, a test of the null hypothesis H0: OR= 1 is given by the chi

Table 3.2. Presentation of data from a
cohort study or unmatched case-control
study of a binary risk factor

Risk factor Disease status

Unaffected (Y = 0) Affected (Y = 1)

Absent (Z= 0) A B

Present (Z= 1) C D
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square test

X2 = [A− E(A)]2
E(A)

+ [B − E(B)]2
E(B)

+ [C − E(C)]2
E(C)

+ [D − E(D)]2
E(D)

= (AD − BC)2N

(A+ B)(C +D)(A+ C)(B +D)

where E(A)= (A + B)(A + C)/N and so on. Under the null hypothesis,
X2 has asymptotically (i.e., in large samples) a chi square distribution
on 1 degree of freedom (df) (henceforth, we write statements like this
as X2 ∼ χ2

1 ). A continuity correction of N /2 is usually subtracted from
|AD − BC| in the numerator to allow for the discreteness of the possible
values of the chi square test for a given sample size. In small samples, a
more appropriate procedure for significance testing is Fisher’s exact test,
which takes the form

Pr(X > A|A+ B,A+ C,N) =
N∑

X=min(A+B,A+C,A−D)

Pr(X|A+ B,A+ C,N)

where

Pr(X|A+ B,A+ C,N) = A!B!C!D!
X!(A+ B −X)!(A+ C −X)!(D − A+X)!N !

The OR is estimated as AD/BC and its asymptotic variance as

var(ln ÔR) = 1
A

+ 1
B

+ 1
C

+ 1
D

A confidence interval with 1− α percent coverage is then given by

exp
[
ln ÔR ± Zα/2

√
var(ln ÔR)

]
Of course, there could be more than two categories of “exposure,” for
example, none, light, moderate, or heavy exposure; the relevant degrees
of freedom of the chi square test would then be one fewer than the number
of categories.

Stratum-matched (frequency-matched) case-control studies are pre-
sented as a series of 2 × 2 tables, each in the same form as Table 3.2.
The stratum-specific measures of association would then be summarized
across subtables s in some fashion, themost-commonly-usedmethod being
the Mantel–Haenszel odds ratio and test described in Chapter 12.
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Table 3.3. Presentation of data from a matched
case-control study

Control risk factor Case risk factor

Absent Present Total

Absent a c C

Present b d D

Total A B N

For pair-matched case-control studies, the data needs to be presented
in a form that keeps the matched pairs intact, as displayed in Table 3.3,
rather than as independent individuals. Here the McNemar estimator of
the OR is given by c/b with asymptotic variance

var(ln ÔR) = 1
b
+ 1

c

and significance test under H0

(b − c)2

b + c
∼ χ2

1

The appropriate continuity correction to |b − c| in the numerator is −1.
The corresponding exact test would be

Pr(X > B|B + C) =
B+C∑

X=B+1

Binom
(
X|N ,

1
2

)

=
B+C∑

X=B+1

(B + C)!
X!(B + C −X)!2

B+C

Extensions to categorical exposure variables with more than two levels
(Pike et al. 1975) or to binary variables with more than one control per
case Miettinen (1969) are available, but are complex. These turn out to
be special cases of conditional logistic regression, as described in the fol-
lowing chapter. With the widespread availability of logistic regression
programs in standard statistical packages, there is no longer any need for
explicit formulae for dealing with these special settings.

Only variables that are related both to exposure and to disease (con-
ditional on exposure) need to be controlled in case-control studies by
stratification or matching. There is no benefit from controlling for a risk
factor that is independent of exposure, but no penalty for doing so if one is
uncertain whether or not the variable is really related to exposure. On the
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other hand, adjusting for a variable that is related to exposure but not to
disease will lead to unnecessary inflation of the variance of the OR and
a loss of power. This situation is commonly known as “overmatching”
or “over-adjustment” (Day et al. 1980). Provided the correct matched or
stratified analysis is done, however, the estimate will still be unbiased and
the nominal size of the significance test will be preserved.

Cohort studies

For a cohort study, in which individuals might be followed over a long
and variable length of time and a range of ages, the standard method of
data analysis is the standardized incidence ratio (SIR, or for mortality,
the standardized mortality ratio, SMR). One begins by tabulating each
individual’s time at risk over a two-dimensional array of ages and calen-
dar years (e.g., five-year intervals), known as a Lexis diagram (Figure 3.2)
to obtain the total person-time Tzs in each age–year stratum s and expo-
sure category z. Next, one tabulates the number of observed cases Yz in
each exposure category. These are then compared with the corresponding
numbers expected Ez based on a set of standard age-year specific inci-
dence rates λs , obtained by multiplying the rates by the total person-time
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Figure 3.2. Lexis diagram, illustrating the calculation of events and person-time at risk in
a cohort study.
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Table 3.4. Presentation of data from a cohort study using the standardized
incidence ratio (SIR) method

Exposure Cases Standardized Standardized
status incidence rate ratio

Observed Expected rate

Unexposed Y0 E0 =�sλsT0s SIR0 =Y0/E0 1
Exposed Y1 E1 =�sλsT1s SIR1 =Y1/E1 SIR1/SIR0

in each stratum and summing over strata, Ez =�sλsTzs . Standard rates
might come from some external source, like national death rates or inci-
dence rates from a disease registry, or internally from the cohort as a
whole, ignoring the exposure classification.

The data are typically displayed as shown in Table 3.4. The indirectly
standardized incidence ratio (SIRindirect) for each exposure category is
defined as the ratio of observed to expected events SIRindirect

z =Yz/Ez and
the Standardized Rate Ratio (SRR) as the ratio of SIRs between exposure
categories.

Unfortunately, the ratio of indirect SIRs, which we have loosely called
the SRR, is not an unbiased estimator of the ratio of hazard rates, even
if these stratum-specific rate ratios are constant across strata, for reasons
explained by Breslow and Day (1987). An alternative estimator, known
as the directly standardized incidence ratio, is defined as the ratio of the
number of cases that would have occurred in the standard population if the
cohort rates applied versus the standard rates, SIRdirect

s =D0/�sT0sλs . The
ratio of these directly standardized incidence rates is a consistent estimator
of a constant hazard ratio, but has larger variance than the ratio of indirect
SIRs, and is much less commonly used. As we shall see in the next chapter,
the ratio of indirect SIRs turns out to be a special case of multivariate
methods of survival analysis like Cox regression.

Attributable risk and other measures of
public health impact

Suppose we had a simple dichotomous classification of exposure as
“exposed” or “unexposed” with a relative risk for exposure of RR and a
proportion pE of the population exposed. Attributable risk is a measure
of the proportion of disease in the population that is caused by expo-
sure, that is, that would be eliminated if the exposure were eliminated.
This quantity is easily estimated for the exposed population by recog-
nizing that the disease rate attributable to exposure ARE is simply the
difference between the rates in the exposed and unexposed populations,
ARE = λ1 − λ0 = λ0(RR − 1). Expressed as a proportion of the total risk
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in the exposed population λ1 = λ0RR, the baseline rate λ0 cancels out and
this becomes the quantity known as the “attributable or etiologic frac-
tion among the exposed” AFE = (RR − 1)/RR (Miettinen 1974). (Note
that the term “attributable risk” is used somewhat ambiguously in the
epidemiologic literature to refer either to the excess rate or the excess
fraction of the total rate; to avoid this confusion, we will used the terms
“excess rate” to refer to the former and “attributable fraction” for the lat-
ter.) Of course, among the unexposed, none of the cases can be attributed
to exposure, so the population attributable fraction is obtained by divid-
ing the excess pEARE by the total population rate pEλ1 + (1 − pE)λ0
to obtain

PAF = pE(RR − 1)
pERR + (1− pE)RR

(Levin 1953). We will revisit the quantity AFE in Chapter 16 when it is
applied to individuals as the “probability of causation” and defer until
then a treatment of the assumptions required for either the population or
individual attributable fractions to be estimable.

For categorical exposure variables with more than two levels or for
continuous exposure variables Z, the population attributable fraction is
computed in a similar fashion, summing or integrating over the population
distribution of exposure p(z):

PAF =
∫
p(z)[RR(z)− 1] dz∫

p(z)RR(z) dz

The PAF can also be decomposed into portions attributable to each
of several risk factors and their interactions, as described in Chapter 16.
These various components, along with the fraction unexplained by any
of them, must add to 100%. The total attributable to any particular risk
factor would include its interactions with other factors, since if that factor
were eliminated, all of the cases attributed to both its main effect and its
interaction with other factors would be eliminated. Thus, the sum of these
total attributable fractions could easily add up to more than 100%, due
to double counting of interaction effects.

This derivation assumes that the relative risk is a constant over time.
In general, the calculation of lifetime risk and quantities derived from it,
like the lifetime population attributable risk or the population loss of life
expectancy requires the use of lifetable methods, as described above and
in greater detail in Chapter 15.

For a chronic disease like asthma, onemight wish to distinguish between
acute exacerbations that are caused directly by exposure and those for
which exposure is the cause of the underlying disease. Kunzli et al. (2008)
decomposed the attributable risk of bronchitic symptoms among CHS
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participants in Long Beach and found that 33.5% were due to exposure
to traffic-related pollutants (3.1% among those whose underlying asthma
was also due to air pollution, 30.5% among those whose asthma was
due to other factors). However, an additional 6.2% of bronchitic symp-
toms attributable to other factors occurred among children whose chronic
disease was due to air pollution, for a total of 39.8%. It is this latter con-
tribution that would be neglected in the usual calculation of attributable
risk for acute effects.

Interaction

By interaction or effect modification, wemean a variation in somemeasure
of the effect of an exposure on disease risks across the levels of some third
variable M, known as a modifier (Figure 2.1). For example, among the
atomic bomb survivors, the excess risk of leukemia declines by about 6.5%
per year after 5 years following exposure (the start of observation) (Preston
et al. 1994). This decline is highly significant (p < 0.001) and decreases
more rapidly in those exposed at younger ages (Figure 3.3). Hence, we
would call latency a modifier of the radiation risk.

The definition of interaction depends upon the measure of association
used. For solid cancers, the excess risk (the difference in annual incidence
rates between radiation exposed and unexposed subjects) increases with
age, but the relative risk declines. Hence, age is amodifier of bothmeasures
of association, but in very differentways. In general, the absence of interac-
tion on a scale of relative risk corresponds to a multiplicative model for the
joint effect of the two factors, that is, p(Z,M)=p0 × RRZ ×RRM . The
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Figure 3.3. Excess absolute risks of leukemia in males by years following exposure to the
atomic bomb. (Reproduced with permission from Preston et al. 1994.)
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absence of interaction on a scale of excess risk corresponds to an additive
model p(Z,M)=p0+ERZ+ERM . Here, p(Z,M) represents some mea-
sure of risk (lifetime risk, hazard rate, etc.), p0 the risk in the absence of
exposure to both factors, RR the relative risk for the indicated factor, and
ER the corresponding excess risk.

There is a philosophical debate in the epidemiologic literature about
the meaning of the word synergy; some reserve this term to mean any
joint effect of two factors that is greater than additive (Rothman and
Greenland 1998) whereas others apply it to any departure from some
biological model for independent effects (Siemiatycki and Thomas 1981).
We distinguish between qualitative interaction, where the effect of one
variable is completely absent in one stratum or the other or even goes in
opposite direction, from quantitative interaction, where the effect is in the
same direction in all strata but varies in magnitude.

Simple descriptive analyses of interaction effects can be accomplished
by stratifying the analysis into categories of the modifier, estimating the
association and its variance in each stratum, and comparing the magni-
tudes of the effect sizes between the two strata. For example, suppose in a
case-control study the odds ratios in two strata of the modifier were OR1
and OR2 with variances of ln OR being V1 and V2, respectively. Then
we might take the ratio of the two ORs, ψ = OR1/OR2 as a measure of
interaction. The variance is thus var(lnψ)=V1 + V2, so we could test the
null hypothesis of no interaction (constancy of the OR) H0: ψ = 1 by test-
ing ln ψ̂/

√
var(ln ψ̂) against a normal distribution. Confidence limits on

ψ̂ would be obtained in the usual way as exp[ln ψ̂ + Z1−α/2
√
var(ln ψ̂)]

for large enough sample sizes (i.e., asymptotically).
Note, however, that the finding of a significant effect in one stratum but

not in another does not necessarily imply interaction: the sample size in one
of the subgroups might simply be too small for that OR to be significant,
even though the magnitude of its effect was not appreciably different from
the significant one; on the other hand, the differences in the estimated ORs
might appear large, but be quite unstable due to inadequate sample sizes
and not be significant. Hence a claim of an interaction should be reserved
for situations where the two estimates are actually judged to differ from
each other by an appropriate significance test.

Basic principles of statistical inference

Let us denote a body of “data” by D. In this book, this will generally
mean the raw observations from a single epidemiologic study, but in some
contexts might include a meta-analysis of many such studies, or more
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broadly a compilation of all relevant information, observational or exper-
imental, in humans, animals, cell cultures, or other systems. We wish
to compare various alternative “hypotheses” (H), of which we single out
one—the “null hypothesis” (H0) that there is no association—for special
attention. The remaining possibilities we will denote generically as the
“alternative hypothesis” (H1). This could be simply the converse of H0
(there is some association), or a whole family of alternative hypotheses,
indexed by some parameter θ , say the true relative risk RR (in some cases,
θ might represent a whole vector of parameters, some of which might be
the parameter(s) of primary interest (e.g., the risks associated with several
pollutants), others “nuisance” parameters needed to describe other parts
of a model such as the dependence of risk on confounders like age). Clas-
sical “frequentist” statistical inference is based on the likelihood function,
denotedL(θ)= Pr(D|Hθ), generally viewed as a function of the parameters
of some statistical model, as described in greater detail in the following
chapter. It is important to realize that the likelihood is not the probability
that a given hypothesis is true in light of the data (see below), but rather
the probability of observing the actual data if the various hypotheses were
true.

From the likelihood, one can compute the “likelihood ratio”, LR=
Pr(D|H1)/ Pr(D|H0), where the numerator is themaximum likelihood over
all hypotheses in the family of models under consideration. From this, it is
evident that the LR is necessarily greater than or equal to one, that is, that
one can always find a specific hypothesis, such that Pr(D|H1) ≥ Pr(D|H0).
The real question is whether the LR is compellingly large, in the sense
that it is bigger than can be explained simply by chance. Another way
of expressing this observation is the maxim that “one can never prove
the null hypothesis;” instead, science proceeds by finding evidence that
would lead one to reject the null hypothesis in favor of some alternative
hypothesis.

This attempt at rejection is known as significance testing. In classical fre-
quentist statistics, we judge whether the evidence is “significant” based on
whether the observed values of the LR (or some other test statistic) would
be highly unlikely if the null hypothesis were true. Thus, in likelihood-
based methods, the p-value is defined as the probability Pr(LR > T |H0)

for some critical value T , which can be computed from a model for the
distribution of the data in theoretical random samples from the population
or by randomly scrambling the data in some appropriate way. (Details of
this and subsequent calculations are deferred to the following chapters.)
By convention, scientists declare a result “significant” if p < 0.05 (i.e.,
there is only a 1 in 20 chance that such an extreme result could have
occurred by chance), but we recognize the arbitrariness of such a conven-
tion and, depending upon the context, other thresholds might be adopted.
The essential point is that a finding of statistical significance does not tell
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one whether H0 or H1 is more likely to be true in light of the data, only
that the data were highly unlikely to have occurred if H0 were true. The
calculation of these significance tests is described in the following chapter.

The kinds of judgment that one might really like to make are more in
the spirit of Bayesian inference, which is based on the “posterior proba-
bility” Pr(H |D), namely the probability that hypothesis H is true given the
observed data. One could then, in principle, answer the question “Is H1
more likely than H0 in light of the data?” We can express this question
formally as “Is Pr(H1|D) > Pr(H0|D)?” or equivalently, “Is the Poste-
rior Odds, Pr(H1|D)/ Pr(H0|D) > 1?” The computation of these posterior
probabilities is given by Bayes’ formula, which can be expressed as pos-
terior odds=LR × prior odds, where prior odds= Pr(H1)/ Pr(H0). This
clarifies the fundamental difficulty that to answer the questionwe are really
interested in, we must consider the relative prior credibility of the compet-
ing hypotheses. By its nature, these prior odds are a matter of judgment,
aboutwhich scientists are likely to disagree. Nevertheless, this is essentially
what scientists are doing—albeit not in a mathematical way—when, indi-
vidually or in expert committees, they evaluate the totality of the evidence
regarding causality.

In addition to testing hypotheses, investigators are frequently interested
in estimating the parameters of a model and putting some confidence
bounds on them. Again deferring the details of the calculations to the
following chapter, we would call the parameter value θ̂ that maximizes
the likelihood function (i.e., the value for which the observed data would
be the most likely) the “maximum likelihood estimate” (MLE) and a con-
fidence limit or interval estimate the set of such values that would be
most likely to be observed in hypothetical replications of the study. They
should not be interpreted as the most likely range of the true parameter
given the observed data, which would be obtained in Bayesian inference,
however. That posterior mode estimate θ̃ would be the value which max-
imizes the posterior probability Pr(θ |D) and the posterior mean would
be θ̄ = ∫

θ Pr(θ |D) dθ . “Credibility intervals” are then the range of θ val-
ues that encompasses most of the distribution Pr(θ |D). As with Bayesian
tests, the calculation of these quantities requires the specification of prior
distributions Pr(θ).

Although in general the specification of prior distributions is a matter
of judgment based on substance matter expertise, one important use of
Bayesian inference is to combine the data at hand with knowledge from
previous literature. Thus, if one had a set of previous studies that yielded
estimates of θ̂ and confidence limits on each, one could transform each
of these into data of the same form as the study at hand and simply sup-
plement the observed dataset with these “pseudodata” and analyze the
ensemble with conventional methods (Greenland 2007).
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The previous chapter introduced the elementary measures of disease
risk and rates per unit time, and methods for estimating and compar-
ing them in groups of subjects. Any group is necessarily a somewhat
artificial assemblage of a set of heterogeneous individuals, even though
they may share some characteristics of interest. Some of this hetero-
geneity may be quantifiable, some not. (Of course, here we need only
be concerned with characteristics that relate in some way to their risk
of disease.) To the extent that this heterogeneity can be characterized,
the epidemiologist could, of course, define further subgroups, but soon
one is confronted with a multitude of groups, each with more unstable
estimates of risk as their sample sizes get smaller, and it can become
quite a challenge to discern the patterns in the data. For this purpose,
this chapter introduces a general regression framework for modeling dis-
ease risks in individual or grouped data. The specific methods are special
cases of what is known as the general linear model (GLM) framework,
which is applicable to more than dichotomous disease data, but we
will defer treatment of continuous and longitudinal data to Chapter 7,
where we will introduce the further generalization of general linear mixed
models (GLMMs).

To set the stage, before presenting the GLM in its full generality,
we begin with a brief review of ordinary linear regression models for
continuous outcome data. Then we describe three specific methods for
binary outcome data: logistic regression for risks in individual binary
outcome data; Cox regression for rates in individual censored survival
data, and Poisson regression for rates in grouped data. All these mod-
els are fitted using the techniques of maximum likelihood, which will
be described later in this chapter. Since not only disease rates, but also
exposure, can vary over time as a cohort is followed, special consider-
ation is needed for time-dependent data. This will be introduced in the
context of Cox regression, but developed in greater depth in Chapter 6.
Here we restrict attention to particular forms of the exposure–response
relationship that are mathematically convenient, the so-called canoni-
cal links appropriate to each data structure. Chapter 13 will extend
to more general forms that may be motivated by biological or physical
considerations.
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Linear regression for continuous data

Suppose we have a continuous outcome variable Y and a vector Z =
(Z1, . . . ,ZP) of predictors (covariates). We might propose a linear model
of the form

Yi = β0 +
P∑

p=1

Zipβi + ei = Z′
iβ + ei , where ei ∼ N(0, σ 2)

or equivalently

E(Yi |Zi ) = Z′
iβ and var(Yi |Zi ) = σ 2

or

Yi ∼ N(Z′
iβ, σ

2)

(From here on, for notational simplicity, we omit the intercepts β0 by
adopting the convention Z0 ≡ 1 and letting the summation in Z′β run
from 0 to P .)

There are two approaches we could take to fitting this model: ordinary
least squares (OLS) or maximum likelihood (ML). OLS seeks to mini-
mize the total squared deviations between the observed Y values and their
predicted values, that is, to find β that minimizes

SS(β) =
N∑
i=0

(Yi − Z′
iβ)

2

whereas ML seeks to maximize the probability of the observed Y data,
that is, to find β that maximizes

L(β) =
N∏
i=1

ϕ

(
Yi − Z′

iβ

σ

)
Both approaches solve this problem by taking derivatives of their respec-
tive criteria with respect to β, setting them equal to zero, and solving
for β. Remarkably, the two yield identical solutions. This is not a coinci-
dence, but merely the consequence of SS(β) and lnL(β) having the same
dependence on Yi − Z′

iβ. The resulting solution can be found in closed
form as

β̂ =
(

N∑
i=1

Z′
iZi

)−1 ( N∑
i=1

YiZi

)
= (

Z′Z
)−1

(YZ)
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As we shall see below, the models for binary data will generally not lead to
closed-form solutions, but will require iterative methods. Also, OLS and
ML may not yield the same answers, but by incorporating variance-based
weights, weighted least squares (WLS) will turn out to be equivalent to
ML, a result that lies at the heart of the GLM framework.

Multivariate models for binary data

In the previous chapter, we introduced risk p as the basic measure of
disease risk for individuals followed for a fixed period of time and the
hazard rate λ(t) as the basic measure of disease rates per unit time. For
case-control data, the odds p/(1 − p) is the natural measure of risk. We
now extend the estimation of these basic measures for groups of people
and tests of their similarity across groups to regression models involving
person- or group-specific covariates. We begin with methods for simple
binary outcomes at the individual and group levels (logistic and binomial
regression respectively), then introduce regression models for individual
censored survival-time data (parametric as well as the semi-parametric
Cox regression model), and conclude this section with a discussion of
Poisson regression for grouped survival-time data.

Logistic regression

Suppose that during a fixed period of follow-up time T , each person i

either experiences the event under study (Yi = 1) or does not (Yi = 0).
When follow-up times vary between individuals, the techniques of cen-
sored survival analysis described in the next section would be needed. Also
suppose each individual is characterized by a vector of personal covariates
Zi = (Zi1, . . . ,ZiP ). Nowwe have all the ingredients needed to model risk
at the individual level.

The quantity we wish to model is now the risk, pi = Pr(Yi = 1|Zi ). The
observed outcome is either 0 or 1—not particularly useful for discerning
patterns with respect to Z—but it is the model for the true probabilities
that we are interested in. Since a probability cannot be negative or exceed
unity, some transformation of the regression model to the unit interval is
needed to model them. There are many functions that could be used for
this purpose, including

Logistic: Pr(Y = 1|Z) = eZ
′β/(1+ eZ

′β)

Probit: Pr(Y = 1|Z) = �(Z′β) = ∫ Z′β
−∞ ϕ(u) du

Complementary log–log: Pr(Y = 1|Z) = exp[− exp(−Z′β)]
Arctangent: Pr(Y = 1|Z) = arctan(Z′β)/π + 1/2
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Figure 4.1. Alternative transformations from linear predictors on the real line (X-axis) to
the probability interval [0, 1] (Y -axis).

These four functions are shown in Figure 4.1. All four are asymptotic
to 0 and 1 as Z′β goes to minus and plus infinity respectively, and all
but the complementary log–log are symmetric about Z′β = 0. The latter
two have not been widely used in modeling binary outcome data. The
first two differ only in slope and, with the scaling factor of 0.607, they
become almost identical to each other. The logistic function is mathemat-
ically easier to work with, as it does not involve the integral �(·) that
cannot be expressed in closed form. Nevertheless, the probit form has
some advantages when dealing with latent variables, as we shall see in
Chapter 11. For the remainder of this chapter, we will not be concerned
with latent variables, so we will confine attention to the logistic model.
In some cases it will be convenient to express this model in terms of the
logistic transformation

logit[Pr(Y = 1|Z)] = Z′β

where logit(u) = ln[u/(1 − u)]. The inverse logistic transformation we
will denote by expit(u) = eu/(1 + eu), so the model could be written
equivalently as Pr(Y = 1|Z) = expit(Z′β).

To fit the model, we use ML, forming a likelihood function by multi-
plying each individual’s probability of their observed disease status given
their covariates, assuming they are independent. Thus,

L(β) =
∏
Yi=1

eZ′
iβ

1+ eZ′
iβ

×
∏
Yi=0

1

1+ eZ′
iβ

=
N∏
i=1

eYiZ′
iβ

1+ eZ′
iβ

For cohort studieswith extended and possibly variable lengths of follow-
up (say, because of loss to follow-up, deaths due to competing causes,
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or staggered entry to the cohort), one could subdivide the total period
of observation into fixed-length intervals and build up a likelihood by
multiplying each subject’s conditional probabilities for each interval, given
that he or she survived the previous interval disease-free andwas still under
observation. Thus, letting Rik be an indicator for whether individual i was
at risk in time-interval k,Yik an indicator for disease status in that interval,
and Zik the covariate values at the start of that interval, the likelihood
would become

L(β,α) =
∏
i

∏
k|Rik=1

Pr(Yik|Zik) =
∏
i

∏
k|Rik=1

eYik(αk+Z′
ikβ)

1+ eαk+Z′
ikβ

where αk are intercept terms for the baseline risk in each time interval.
This provides a natural way to accommodate time-dependent covariates.
However, since in practice, individuals may be at risk for only part of
an interval, and the interval boundaries are somewhat arbitrary, this
approach should be viewed as only an approximation to the survival anal-
ysis techniques discussed in the next section. Indeed, in the limit as the time
intervals become infinitesimal, this reduces to Cox regression.

Although originally introduced in 1967 by Truett et al. (1967) as
a means of analyzing multiple risk factors for coronary heart disease
incidence in the Framingham cohort study, it is less often used for
cohort studies because individuals’ times at risk generally vary, requir-
ing the use of censored survival analysis techniques, as discussed in the
next section. Instead, the major application of logistic regression is to
case-control data.

In principle, case-control analysis would appear to require a retrospec-
tive likelihood of the formPr(Z|Y ), since the disease status (case or control)
is fixed by design and the observed random variables are the Zs. The ret-
rospective likelihood, however, would require complex modeling of the
joint population distribution of the covariates. Breslow and Powers (1978)
showed that with increasing degree of stratification, the prospective and
retrospective models became similar, and recommended the use of the
prospectivemodel in the casewhere therewere continuous ormany covari-
ates. Using Bayes formula, Pr(Z|Y ) = Pr(Y |Z) Pr(Z)/ Pr(Y ), Prentice and
Pyke (1979) showed that using the prospective probability Pr(Y |Z) as if
it were the likelihood for the data yielded consistent estimators of the
regression coefficients, that is, the two likelihoods estimate the same pop-
ulation log relative risk parameters. The only exception is the intercept
term, which no longer estimates the log baseline odds of disease in the
population (the odds for a subject with Z = 0), but rather that in the sam-
ple, which is inflated by the different sampling fractions π1 and π0 for cases
and controls respectively. Indeed, it is easily shown that the intercept term
β0 estimates β0+ ln(π1/π0). Prentice and Pyke’s elegant proof requires no
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parametric assumptions about the joint distribution Pr(Z), relying instead
on nonparametric density estimation techniques where that distribution is
assumed to be concentrated at the observed covariate locations, and using
the constraint that the denominator Pr(Y = 1) = ∫ Pr(Y = 1|Z) Pr(Z) dZ
is the population rate to estimate the probability masses in Pr(Z) at each
observed Z value. Ultimately, their proof relies on the same invariance of
the odds ratio (OR) mentioned in the previous chapter, namely that the
odds ratio comparing Z to Z0 can be written in either of the following
two forms:

Pr(Y = 1|Z)/ Pr(Y = 0|Z)

Pr(Y = 1|Z0)/ Pr(Y = 0|Z0)
= Pr(Z|Y = 1)/ Pr(Z|Y = 0)

Pr(Z0|Y = 1)/ Pr(Z0|Y = 0)

See Langholz and Goldstein (2001); Arratia et al. (2005) for formal
treatments of the asymptotic distribution theory justifying the use of
the prospective likelihood in terms of sampling from the study base
population.

The preceding discussion applies to unmatched case-control studies,
where only the numbers of cases and controls are fixed by design (pos-
sibly within broad strata defined by confounders like age, sex, or race).
Most case-control studies, however, are conducted in matched fashion,
each case being individually matched to one or more controls on a num-
ber of potential confounders. Recall how, for this design, the data are
represented as matched sets, as in Table 3.3, rather than as individuals.
The likelihood is formed by treating each matched set as the observational
unit and computing the prospective probability of the observed outcomes
of all the members of the matched set conditional on it containing exactly
the numbers of cases and controls specified by the design. Letting i sub-
script the matched sets and j the members of the set, the likelihood would
be written as

L(β) =
N∏
i=1

Pr
(
Yi |Zi ,

∑m0+m1

j=1
Yij = m1

)

where m0 and m1 are the numbers of controls and cases in each set. For
example, for case-control pairs, this becomes

L(β) =
N∏
i=1

Pr(Yi1 = 1,Yi0 = 0|Zi0,Zi1,Yi0 + Yi1 = 1)

=
N∏
i=1

Pr(Yi1=1|Zi1) Pr(Yi0=0|Zi0)

Pr(Yi1=1|Zi1) Pr(Yi0=0|Zi0)+ Pr(Yi1=0|Zi1) Pr(Yi0=1|Zi0)
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=
N∏
i=1

(
e
αi+Z′

i1β

1+e
αi+Z′

i1β

)(
1

1+e
αi+Z′

i0β

)
(

e
αi+Z′

i1β

1+e
αi+Z′

i1β

)(
1

1+e
αi+Z′

i0β

)
+
(

1

1+e
αi+Z′

i1β

)(
e
αi+Z′

i0β

1+e
αi+Z′

i0β

)

=
N∏
i=1

eZ′
i1β

eZ′
i1β + eZ′

i0β

(Note that in the third line of this derivation, we are making the same
independence assumptions across individuals within a matched set as that
discussed below for Poisson regression.) The logic is similar for larger
case-control sets, except that there are more terms to be included in the
denominator, specifically the number of possible ways to select m1 cases
out of a set of m0 +m1 cases and controls. Perhaps the best way to think
about this likelihood is as the conditional probability of which members of
each matched set are the cases, given their covariate values and how many
cases there are in each set. For reasons that will become clear shortly, this
is essentially the same form of likelihood as that used in the analysis of
censored survived data, thus clarifying the relation between nested case-
control and cohort studies, so we defer further discussion to the following
section.

As an example, we turn to the analysis of asthma incidence in relation
to air pollution in the Children’s Health Study (CHS). This study has both
cross-sectional and longitudinal elements, and is complicated by the fact
that the effects of air pollution are mainly assessed at the community and
temporal levels, rather than the individual level. We will return to these
complications in Chapters 7 and 9–11. To illustrate the use of logistic
regression, we focus here on an analysis of the asthma prevalence data
in the initial cross-sectional survey in relation to an individual assessment
of NO2 exposures based on measurements conducted on a subsample of
208 of the participants’ homes (Gauderman et al. 2005), which will be
described in greater detail in Chapter 9. Figure 4.2 shows the measured
NO2 concentrations at each of the participants’ home, showing the general
tendency for those with asthma to be at the upper end of the distribution
for their respective community. The risk of prevalent asthma was fitted
to a logistic regression model for various measures of traffic exposure as
well as measured NO2 concentrations in winter and summer seasons, with
adjustments for sex, race/ethnicity, and year of enrollment. Indicator vari-
ables for each of the study communities were also included as covariates,
so that the relative risks for exposure variables can be interpreted as effects
within community.

Significant associations were found with measured NO2 (OR= 1.83,
95% CI 1.04–3.21 per inter-quartile range (IQR) of 5.7 ppb), as well as
for distance to the nearest freeway (OR/IQR= 1.89(1.19 − 3.02)) and
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Figure 4.2. Four-week average concentration of NO2 measured at homes of CHS partici-
pants in 10 communities, with asthma cases shown in black. (Reproduced with permission
from Gauderman et al. 2005).

model-based prediction of pollution from freeways (OR/IQR= 2.22
(1.36 − 3.63)), but not from model-based prediction of pollution from
surface streets (OR/IQR= 1.00(0.75 − 1.33)). Associations with traffic
exposures in the entire cohort were found to be stronger in children
without a family history of asthma (McConnell et al. 2006).

McConnell et al. (1999) analyzed the prevalence of bronchitic symp-
toms (chronic cough, wheeze, phlegm, etc.) in children with and without
asthma in the entire CHS cohort in relation to individual risk factors
such as the presence of mildew, cockroaches, gas stoves, or smokers in
the home using logistic regression, adjusted for community as above.
However, associations with ambient air pollution required a second
level of analysis in which the coefficients for community (the community
log-odds, adjusted for personal risk factors) were regressed on ambient
exposure. This second-stage regression demonstrated significant associa-
tions of bronchitis with ambient PM10 and of phlegm with ambient NO2
only in asthmatics.

Cohort analyses of the incidence of newly diagnosed asthma were
performed using Cox regression, as described later in this chapter.

Binomial regression for grouped binary data

Now suppose we have only data on the proportions Pg = Ng/Yg of indi-
viduals i in group g with Yi = 1. In some applications, such as individual
chromosome abnormality data, one might have data on the proportion of
cells pi = ni/yi from an individual i that are affected. In other cases, the
observations might be of the number of affected offspring i in a litter g.
Such data are structurally similar to grouped individual data, sowewill use
the same notation, with the subscript g now representing subjects or litters,
with i representing single cells or offspring that are either affected or not.
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The obvious analysis of grouped binary data would be the same as
for individual data, with logit(Pg) = Z′

gβ, simply treating the groups as
independent and multiplying their likelihood contributions

L(β) =
∏
g

⎛⎝ exp
(
Z′

gβ
)

1+ exp
(
Z′

gβ
)
⎞⎠Yg ⎛⎝ 1

1+ exp
(
Z′

gβ
)
⎞⎠Ng−Yg

The problem with this naïve analysis, however, is that it ignores the
overdispersion that can result from failure to fully account for all sources
of variability within groups in the regression model, so that the Yg are
not really binomially distributed. A parametric analysis of grouped binary
data might assume some model for the distribution of residual risks within
group. Since the group risks must still be bounded by 0 and 1, a natural
choice would be the Beta distribution, Pr(P ) = Pa−1(1 − P)b−1/B(a, b)
with parameters a and b, where B(a, b) = 	(a)	(b)/	(a + b) is the Beta
function that normalizes the distribution to integrate to 1. The beta dis-
tribution is the conjugate prior for the binomial, leading to a posterior
distribution for P given N and Y that is another beta distribution. This
is convenient, as it allows a closed-form expression for the likelihood of
the parameters (a, b) for a single group, or for a set of parameters for
comparing two or more discrete groups. Specifically, for a single group,
the likelihood is

L(a, b) =
(
	(a + b)

	(a)	(b)

)N N∏
i=1

(
	(a + ni)	(b + yi − ni)

	(a + b + yi)

)

The beta/binomial model cannot readily incorporate continuous covari-
ates, however. A simpler approach in this case is to use a marginal model
for the mean and variance of the distribution, where the mean is still given
byPg = expit(Z′

gβ) and the usual binomial variance Vg = Pg(1−Pg)/Ng is
inflated by a multiplicative factor [1+(Ng−1)σ 2], where σ 2 is the “extra-
Binomial variance”, the variance of the residual within-group risks. Fitting
this model can be accomplished using generalized estimating equations, as
described later in this chapter.

Censored survival analysis

Now suppose we have a cohort study with individual data involving
extended periods of follow-up—perhaps decades long—with individuals
entering and leaving observation at different times and their exposures and
other covariates varying over time. For example, in the Colorado Plateau
uranium miner cohort that we shall use to illustrate this section, individ-
uals join the cohort on their date of first examination by the U.S. Public
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Health Service (sometime after first employment in any of the mines) and
they leave observation either on their date of death (from lung cancer, the
cause of interest coded Y = 1, or any other cause), date last known to
be alive, or closing date of follow-up for analysis purposes (here Dec. 31,
1990). Throughout this period of observation, as long as they were work-
ing in a uranium mine, they were continuing to accumulate exposure. In
what follows, we will define Z(t) as cumulative dose of radiation up to 5
years before time t to allow for latency. Chapter 6 will explore models for
exposure–time–response relationships incorporating temporal modifiers
like age at exposure and latency in more detail.

We take the quantity to be modeled to be the hazard rate λ(t ,Z). Before
proceeding further, we need to clarify themeaning of “time.” In clinical tri-
als, where the techniques we are about to discuss were first developed, t is
generally defined as time since start of treatment. This is a natural choice
in that context, since the investigator is generally interested in making
statements about prognosis under alternative treatments. In the context
of cohort studies, however, time since start of observation—for example
in the Framingham Heart Study, some arbitrary calendar time when the
study began—may not be of particular interest. Furthermore, we are gen-
erally more interested in the effects of covariates than time, considering
the latter as a confounder to be adjusted for. Of the various time scales
that might be considered—age, calendar year, time since start of exposure,
or observation—age is generally by far the most powerful confounder, so
it is natural to adopt this as the time scale for modeling purposes. This
is not to say the other time scales are unimportant, but they can gener-
ally be incorporated into the model for covariate effects or controlled by
stratification.

Thus, the raw data for each subject i can be summarized as
{Yi , Ti ,Ei , Si ,Zi (t)}, where Yi denotes the final disease status at end of
observation at age Ti(Yi = 1 for affected, Yi = 0 for censored, that is,
not yet known to be affected), Ei denotes age at start of observation,
Si denotes stratum membership (if any stratification is to be done, say by
gender or year of birth interval), and Zi (t) the covariate history (possibly
time-dependent).

We wish to describe the random variability in the observed outcomes
in terms of a model for the true underlying rate λ(t ,Z) in relation to
age t and covariates Z. We do this in two stages, first specifying the
manner in which these two factors combine, then the specific form for
each factor separately. In terms of their joint effects, three models are in
common use:

Multiplicative: λ(t ,Z) = λ0(t)r(Z)

Additive: λ(t ,Z) = λ0(t)+ e(Z)

Accelerated: S(t ,Z) = S0[r(Z)t]
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where S(t ,Z) = Pr(T > t |Z) = exp[− ∫t0 λ(u,Z) du] is the survival func-
tion. The multiplicative model, also known as the proportional hazards
model, assumes that at any age, the effect of covariates is to multiply the
baseline hazard rate (the rate for subject with Z = 0) by some relative
risk r(Z) that depends only on covariates (but recall that these covari-
ates can be time-dependent, either intrinsically as in cumulative exposure
or by virtue of including interactions with temporal modifiers). Like-
wise, the additive hazard model assumes that the effect of covariates
is to add some excess hazard rate e(Z) depending only on the covari-
ates to the baseline age-specific rate. The accelerated failure time model
is quite different, assuming that the effect of covariates is to acceler-
ate the rate of time flow by some factor r(Z) to produce a form of
premature aging.

Breslow and Day (1987, chapter 2) provide a thorough discussion
of arguments, both theoretical and empirical, in support of the general
utility of the multiplicative model. Broadly speaking, across a range of
exposure, time scales, and confounding factors, relative risks tend to be
more nearly constant than are excess risks, allowing more parsimonious
modeling. Furthermore, as we shall see shortly, the multiplicative model
allows a form of analysis of covariate effects on relative risks r(Z) that
does not require any assumptions about the form of λ0(t), a great advan-
tage since the latter can be very strong and not of particular interest. For
these reasons, we will restrict attention in this chapter to the multiplica-
tive model. Chapter 6 will explore some of the alternatives in greater
depth.

Next we must specify the forms of r(Z) and λ0(t). Since hazard rates,
and hence relative risks, must be nonnegative, it is convenient to adopt
the loglinear form r(Z) = exp(Z′β). Here, the parameters βp represent
the logarithms of the change in the hazard rate (rather than the odds of
disease as in the previous section) per unit change of Zp, or for a binary
covariate, the log rate ratio, ln RR. Note that the model assumes that
hazard rates depend multiplicatively on multiple covariates and exponen-
tially on each continuous covariate. These assumptions can be tested and
relaxed if needed by adding additional covariates, say a quadratic term to
test for log-linearity of a single continuous covariate or a product term to
test for multiplicatively of two or more covariates, as discussed further in
Chapter 12, or by adopting some alternative form entirely, as discussed
in Chapters 6 and 13.

The baseline hazard λ0(t) can be specified parametrically or eliminated
entirely using partial likelihood. We defer the latter possibility for the
moment and suppose that we have adopted some specific mathematical
form, such as a constant λ0(t) ≡ α, Weibull λ0(t) = α0t

α1 , Gompertz
λ0(t) = exp(α0+α1t), or step-functions λ0(t) = αk for τk ≤ t < τk+1. The
full likelihood is then obtained bymultiplying the conditional probabilities
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for each individual’s outcome Yi , given their periods of observation and
covariate histories. (This assumes that censoring is uninformative, in the
sense that the probability of censoring events like deaths from competing
causes do not depend upon the parameters of the hazard rate for the cause
of interest, although they can depend upon some of the same covariates.)
These probabilities contain two parts: first, the probability that the indi-
vidual remained alive and disease free up until their event or censoring time
ti ; second, if they experienced the event, the probability that it occurred
at that instant, given that he or she was still at risk. Mathematically we
write this as

Li = Pr(Ti = t |Zi , Ei)

= Pr(Ti ≥ t |Zi , Ei) Pr(Ti = t |Ti ≥ t , Zi , Ei)

= S(t |Zi , Ei)λ(t |Zi )

where S(t |Z, E), as before, is the probability of surviving disease-free from
time E to time t (we assume that all cohort members were disease-free
at entry). Under the assumption of independent competing risks—that
those who died of other causes or were lost to follow-up were at the
same risk of the cause of interest as those who did not—then S(t |Z, E)

can be decomposed into the product of the probability that they escaped
the cause of interest and the probability that they escaped the compet-
ing risks (including loss to follow-up). This is where the assumption
of uninformative censoring is required, as the real survival probab-
ility is S(t)= exp[−�(t)−M(t)]= Sλ(t)Sμ(t), where �(t)= ∫ t

0 λ(u) du is
the cumulative hazard for the cause of interest andM(t)= ∫ t

0 μ(u) du is the
cumulative hazard for censoring As we assume the latter does not depend
on any of the parameters we wish to estimate (the relative risk parameters
β or baseline hazard parameters α for the cause of interest), this part is
essentially a constant and can be ignored. Now substituting the relative
risk model, we obtain the full likelihood

L(α,β) ∝
N∏
i=1

λ(Ti |Zi)Sλ(Ti |Zi ,Ei)

=
N∏
i=1

(
λ0(Ti)eZi (Ti )

′β
)Yi

exp
(
−
∫ Ti

Ei

λ0(t)eZi (t)
′β
)

(4.1)

Maximization of this likelihood jointly with respect to α and β is con-
ceptually straightforward using the techniques of ML described below,
although it can be computationally burdensome. In most cases, no closed-
form solution is possible, so numerical methods are needed. One special
case is worth mention, however: if λ0(t) is specified as a step-function with
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fixed intervals, then it is possible to express the MLE of λ as a function of
β leading to α̂k(β) = Yk/�iTik exp(Z′

iβ) where Tik is the time individual i
was at risk during time interval k. Substituting this into the full likelihood
yields a profile likelihood LP (β) = L[α̂(β),β] that depends only upon β.

In order to avoid making any assumptions about the form of the base-
line hazard, Cox’s (1972) seminal paper proposed a “semi-parametric”
model for λ(t ,Z) and a partial likelihood that does not involve λ0(t) at
all. The semiparametric model is of the multiplicative form λ0(t) exp(Z′β),
with λ0(t) assumed to be zero everywhere except at the times tk when
events (cases or deaths, but not censoring times) occur. The masses at
the observed event times, λk, can be thought of as infinitely dense Dirac
δ-functions (zero everywhere except at the origin, where the masses are
infinite, integrating to one), so the baseline hazard rate can be written
as λ0(t)=�kλkδ(t − tk), leading to a baseline survival function S0(t) =
exp(−�tk≤t λk), a step-function with drops at each event time.

To fit thismodel, Cox proposedwhat he later (Cox 1975) called a partial
likelihood by treating each event time as independent and multiplying the
conditional probabilities ofwhowas the case, given the setR(tk) of subjects
at risk at that time:

L(β) =
∏

i|Yi=1

Pr
(
Yi = 1

∣∣{Zj(ti)
}
j∈R′

i
,
∑

j∈Ri

Yj = 1
)

=
∏

i|Yi=1

λ(ti |Zi (ti))

�j∈Ri
λ(ti |Zj (ti))

=
∏

i|Yi=1

exp(Zi (ti))
′β

�j∈Ri
exp(Zj (ti)′β)

(4.2)

This partial likelihood is exactly the limit of the profile likelihood for
the step-function model described earlier as the interval widths became
infinitesimal (Holford 1976). Formal justification for multiplying these
conditional probabilities as if they were independent, when in fact the set
of subject of risk at any time depends on who were the cases at previ-
ous times, was given by Andersen and Gill (1982). The classical theory
is described in Kalbfleisch and Prentice (1980) and other survival analy-
sis texts. For a more formal treatment using modern “counting process”
theory, see Fleming and Harrington (1991) or Andersen et al. (1993).

This likelihood accommodates time-dependent covariates by evaluating
numerator and denominator using the covariate values at each successive
event time. This is computationally more intensive than for time-constant
covariates, however. For fixed covariates, the summation in the denomi-
nator need be computed only once for each iteration, accumulating terms
across subjects in a single pass. For time-dependent covariates, these
summations must be computed separately for each event time.
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Data from the follow-up portion of the CHS was analyzed using Cox
regression. McConnell et al. (2002a) found associations of newly diag-
nosed asthma with humidifier use and pets (especially dogs). As with the
cross-sectional data discussed above, associations with ambient pollution
required a multi-level analysis. Stratifying on air pollution, McConnell
et al. (2002b) found an association of incident asthma with participation
in team sports only in high-ozone communities; the associationwith sports
was not modified by other pollutants, however. In a separate analysis,
McConnell et al. (2003) exploited the year-to-year variation in pollu-
tion levels to demonstrate a stronger within-community association of
bronchitic symptoms among the subcohort of asthmatics with annual vari-
ation in NO2 and organic carbon levels than for the same associations of
long-term average exposures between communities.

Nested case-control studies

The same partial likelihood can also be used for nested case-control studies
(Liddell et al. 1977), simply replacing the summation over the risk set R(t)

in the denominator by the set R̃(t) comprising the case and matched con-
trols, assuming the latter are a random sample from R(t). Goldstein and
Langholz (1992) provide the asymptotic distribution theory underlying
this approach, and generalizing it to other methods of case and/or control
sampling, such as the counter-matched design described in Chapter 5.

A rough rule of thumb for the asymptotic relative efficiency (ARE)—the
ratio of variances of different estimators of β̂, or equivalently, the ratio
of sample sizes required to attain the same precision—for nested case-
control analysis relative to the full cohort is ARE=M/(M + 1) where
M is the number of controls per case (Ury 1975). Thus, 1:1 matching
yields 50% efficiency (i.e., variances of the log RR double those from
the full cohort), 1:2 matching improves this to 67%, 1:3 to 75%, and
diminishing returns thereafter. This result is strictly true only for small
relative risks (RRs), however. For estimating strong effects or fitting
complex models, additional controls can indeed be more helpful than
this relationship would imply. A general expression for the ARE can be
derived for a binary covariate with control frequency p0 from the Fisher
information,

IM(β̂) = E(OBS)
M∑

m=1

πmmeβ(M −m+ 1)
M −m+ 1+meβ

where

πm = p1

(
M

m− 1

)
pm−1
0 (1− p0)

M−m+1 + (1− p1)

(
M

m

)
pm
o (1− p0)

M−m
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Figure 4.3. Efficiency of matched case-control designs with M controls per case relative
to a full cohort analysis, as a function of the relative risk and prevalence p0 of exposure.
(Reproduced with permission from Breslow et al. 1983).

and

p1 = p0e
β

p0e
β + (1− p0)

(Breslow et al. 1983). This expression is plotted in Figure 4.3. At a relative
risk of 1, these efficiencies follow the simple M/(M+1) relationship, irre-
spective of the exposure proportion, but as the relative risk increases, more
and more controls are needed to attain the same efficiency, particularly
for rare exposures.

The following chapter provides a comparison of full cohort, nested case-
control, and a novel design known counter-matching applied to the U.S.
uranium miner cohort, illustrating the relative efficiency of these designs
with varying numbers of controls per case.

Within the CHS, a nested case-control study of incident asthma is
currently underway. Each newly diagnosed case is matched with one con-
trol who is free of the disease at the time the case occurred, selected at
random from the cohort and matched on community, age, and gender.
Intensive measurements of air pollution at the cases’ and controls’ homes,
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alongwith lung functionmeasurements and clinical examinations to better
characterize the cases’ and control’s phenotypes, which would be infea-
sible for the entire cohort, are being performed. A nested case-control
study of prevalent asthma (Langholz and Goldstein 2001; Salam et al.
2004) focused on early life exposures. This study used countermatching
to assess the effect of maternal smoking in pregnancy and in early life, as
described in the following chapter.

Poisson regression

Nowsuppose instead of individual data, we had only the numbers of events
andperson-time at risk froma cohort in various strata s definedby intervals
of age, calendar time, and various discrete exposure, confounding, and
modifying variables. As in the case of individual data, the target of interest
is still the hazard rates as the basicmeasure of event rates per unit of person-
time. For a particular group of individuals followed for a particular period
of time (hereafter calledastratum, s), weseek toestimate theiraverageevent
rate λs. The raw data for such estimation is the observed number of events
(incident cases, deaths, recurrences, etc.) Ds and the total person-time at
risk Ts in that stratum, computed as described in the previous chapter from
each individuals’ time at risk during each age/year slice of observation. The
observed hazard rate estimates are thus λ̂s = Ds/Ts with variance var(λ̂s) =
Ds/T

2
s . For finely stratified data, however, these observed rates can become

quite unstable and it is really the “true” ratewe are interested in estimating,
under the general hypothesis that similar groups should have similar rates.
To describewhatwemean by “similar,” let us characterize each stratumby
a vector of potentially relevant characteristics Zs = (Zs1, . . . ,ZsP ), usually
person-timeweighted averages of individualZip for continuous covariates.
These are thus the ingredients needed tobuild a regressionmodel for disease
rates across all the strata.

Recall from the previous chapter that, conditional on the observed
person-time at risk, the number of events follows the Poisson distribu-
tion Pr(D)= e−λT (λT )D/D!. For recurrent events like asthma attacks, this
assumes that the rates are homogeneous across individuals, so the num-
ber of events depends only the total person-time at risk, irrespective of
how this time is distributed across individuals. For nonrecurrent events
like incidence or mortality, the use of the Poisson distribution might seem
questionable, since the only possible outcomes for any individual are zero
or one, so the total number of events is bounded by the number of individu-
als at risk, whereas the Poisson distribution is unbounded. Of course, for a
rare disease, this should be a good approximation. But more importantly,
without requiring any rare disease assumption but only the piecewise
constancy of the baseline hazard, the likelihood for the parameters of a
Poisson regression model for λ(t ,Z) has exactly the same form (to within



4 Multivariate models 71

some constants) as the model for censored survival data described in the
previous section. Specifically, assuming the baseline hazard is a constant
αs within each stratum, the likelihood is obtained by treating the strata
as independent and multiplying the Poisson probabilities of the observed
numbers of events, conditional on the person-times at risk. Thus, the
group-data form of Eq. (4.1) becomes

L(α,β) =
s∏

s=1

(
αse

Zsβ
)Ds

exp
(
−αse

ZsβTs

)
(4.3)

The model is fitted by maximizing the probability of the observed data
(the “likelihood”) over the values of the parameters α and β, as described
below.

In particular, if Zs were a categorical variable that distinguished each
stratum—a fully saturated model—then using the maximization tech-
niques described below, it is easy to see that maximum of the likelihood
is obtained by βs = ln(Ds/Ts), the log of the observed rate. In restricted
models, where the number of parameters P is less than the number of
strata s, λ̂s = exp(Zs

′β̂) provides an estimate of the rates in each stratum
that provide the best fit to the observed data across all the strata.

The most recent comprehensive analysis of mortality from solid cancers
in the atomic bomb survivor cohort (Preston et al. 2003) analyses a cohort
of 86,572 individuals who were within 10 km of the hypocenters and for
whom dose estimates were available. Over the period from 1950 to 1997,
there were over 3 million person-years at risk and a total of 9355 solid
cancer deaths in this cohort. Most of the analyses of these data have used
an excess relative risk model of the form

λ(t ,Z,W) = λ0(t , W)[1+ βZeα
′W] (4.4)

where t denotes age, Z dose, and W a vector of baseline risk factors
and/or modifying factors, such as sex, city, calendar year, or age at
exposure, and λ0(t ,W) is some general function to be estimated along
with the other parameters. We will consider such models in greater detail
in Chapter 6, focusing on methods for studying the shape of the dose–
response relationship and its modification by temporal factors, but here
we restrict attention to the estimation of the coefficient β for excess rel-
ative risk per unit dose. To fit the model, the numbers of deaths Ds ,
person years Ys , and person-year-weighted means of the doses Zs and
modifiers Ws were finely cross-classified by the two cities, two genders,
23 dose categories, 17 5-year attained age categories, 14 5-year age at
exposure, 11 5-year calendar-time categories, and two categories of dis-
tance from the hypocenter—a total of about 37,000 cells with nonzero
person-time. Needless to say, with on average about 80 person years and
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Figure 4.4. Site-specific estimates of excess relative risk (ERR) per Sv in the atomic bomb
cohort. (Reproduced with permission from Preston et al. 2003).

only 0.25 deaths per cell, most of these cells are quite small, but the Poisson
model can correctly handle such sparse data. For this model, the likelihood
analogous to Eq. (4.3) can be written as

L(β,α, λ0) =
37,000∏
i=1

λDs
s exp(−λsYs)

substituting λs = λ(t̄s ,Zs ,Ws) fromEq. (4.4). The overall relative risk coef-
ficient was estimated as 0.47 ± 0.06 per Sv (i.e., a RR at 1 Gy of 1.47)
although this figure varies markedly with cancer site (Figure 4.4), sex,
age at exposure, attained age, and other factors, as we will discuss in
Chapter 6. Of the 9355 cancer deaths, this relative risk estimate translates
into about 440 excess deaths in this cohort (or about 1100 extrapolated
to all survivors). Thus, the vast majority of cancer deaths are probably
not caused by radiation, emphasizing the importance of careful modeling
of the background rates λ0(t ,W) and correct specification of the form of
the additional risk due to radiation.

A final word about the independence assumption: if the strata comprise
disjoint sets of unrelated individuals, each observed over a single time
period, then this would seem to be a reasonable assumption. It would
be questionable, however, if the sample included genetically related indi-
viduals or if there was some form of person-to-person transmission, say
by an infectious agent, or some shared unmeasured risk factors. If such
related individuals appeared in the same stratum, then the observed rates
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Ds would not be expected to follow the Poisson distribution and if they
appeared in different strata, then their rates would be correlated and one
couldn’t simply multiply their Poisson probabilities together. Analysis of
such dependent data is beyond the scope of this book (see the companion
volume (Thomas 2004) for a treatment of genetic data, for example).

A subtler form of dependencymight seem to arise if the strata are defined
by time in such a way that the same individuals can contribute person-
time to more than stratum. For survival data, this is not a problem, as the
person-time at risk can be subdivided asmuch as one likes and the contrasts
of numbers of cases against person-time at risk are orthogonal across
intervals. For recurrent events data like asthma exacerbations, however,
this would be a problem, as the number of events in one-time stratum
would depend upon the individuals’ past histories of events in the same
or previous time strata or on their common un-modeled “proneness” to
the outcome. Again, the analysis of recurrent event data is beyond the
scope of this book and we shall assume that individuals can experience
the outcome—incidence of new disease or death—only once.

A great advantage of Poisson regression is that it allows a very com-
pact form of data presentation as {Ds , Ts ,Zs} for sharing with other
investigators, without the need to address the confidentiality issues that
can arise in sharing individual data. For example, the aggregate data
supporting each of the more recent publications from the atomic bomb
survivor studies are freely available for download from http://www.rerf.jp/
library/dl_e/index.html.

Extra-Poisson variation

In the same manner as for grouped binary data, the counts of events per
group of person-time will also tend to be over-dispersed due to unmea-
sured risk factors that vary within groups (or under dispersed if the sample
includes correlated observations). The solution to this problem is similar
to that discussed earlier: either assume a parametric model for such resid-
ual variation—the natural choice being the gamma distribution, which
is conjugate to the Poisson—or use a marginal model with an “extra-
Poisson variance” term. The sampling variance of Ys is μs = λsTs, to
which one adds a term of the form σ 2μ2

s . Again, fitting the model can be
done using Generalized Estimating Equations methods. This thus provides
a convenient approach to the problems of recurrent or dependent event
data discussed above.

Principles of ML inference

Fitting of the Poisson, logistic, and Cox regression models, as well as
the more complex variants described in subsequent chapters, is generally

http://www.rerf.jp/library/dl_e/index.html
http://www.rerf.jp/library/dl_e/index.html
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based on the principle of ML introduced at the end of Chapter 3.
By a “model,” we mean a probability density function f (Y |�) for a set of
observations Yi in relation to a vector of parameters �. For example, in
ordinary linear regression, one might write f (Yi |Zi ;�) = ϕ[(Yi−Z′

iβ)/σ ],
where Zi is a vector of covariates for the ith subject, � = (β, σ 2) are the
regression coefficients and residual variance one wishes to estimate, and ϕ

denotes the normal density function. Then if a set of i = 1, . . . ,N obser-
vations are independent, one would form the likelihood function as the
product of these probabilities,

L(�) = f (Y|Z;�) =
N∏
i=1

ϕ

(
Yi − Zi

′β
σ

)
= 1√

2πσ
exp

(
−

N∑
i=1

(Yi − μ)2

2σ 2

)

which is now viewed as a function of the parameters � conditional on the
observed data, rather than the other way around. We will see shortly that
this yields an estimator of μ̂ = �iYi/N and σ̂ 2 = �i(Yi − μ)2/N .

We concentrate now on their general uses for testing hypotheses about
the parameters and for point and interval estimation. Thus, for the remain-
der of this section, we simply let Y denote the observed data and � a
generic parameter (or vector of parameters) to be estimated.

The principle of ML states that for any model, we prefer the value of
� for which the observed data is most likely (i.e., which maximizes the
likelihood function). This value is known as the ML estimate (MLE) and
denoted �̂. This is not the most likely value of � given the data, unless
all parameter values were equally likely before seeing the data. The value
which would maximize the posterior probability given the data, Pr(�|Y),
is called the posterior mode; its calculation would require specification
of a prior distribution for parameters Pr(�). Then by Bayes formula the
posterior distribution is proportional to

Pr(�|Y) = Pr(Y|�) Pr(�)

Pr(Y)
∝ L(�) Pr(�)

We shall return to this approach to estimationwhenwe discuss Bayesian
methods later, but for now will confine ourselves to ML methods.

In most cases, it turns out to be more convenient to work with the
logarithm of the likelihood rather than the likelihood itself. Because the
log transformation is monotonic, it follows that the value �̂ that maxi-
mizes the loglikelihood function �(�) = ln[L(�)] will also maximize the
likelihood L(�) itself. Since most likelihood functions are products of
contributions from a set of independent observations, the loglikelihood
becomes a sum of independent contributions, whose derivatives are more
easily found than the derivative of a product. (Since sums of indepen-
dent random variables are asymptotically normally distributed, this also
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provides the basis for first-order asymptotic distribution theory.) Further-
more, since often these contributions are members of what is known as
the “exponential family” of distributions (defined more formally below),
their loglikelihood contributions are of a simple form. The maximum of
any function is found by setting its slope (derivative) equal to zero. The
derivative of the loglikelihood is known as the score function, denoted
U(�) and the expression

U(�) = ∂�(�)

∂�
= 0

is called an estimating equation. In the example of the normally distributed
outcome, to find the MLE of μ, we would solve this equation as follows:

�(μ, σ 2) = −N ln
(√

2πσ
)
−
(

1
2σ 2

) N∑
i=1

(Yi − μ)2

Uμ(μ, σ 2) = ∂�(μ, σ 2)

∂μ
=
(

1
σ 2

) N∑
i=1

(Yi − μ) = 0

N∑
i=1

Yi −Nμ = 0

μ̂ =
N∑
i=1

Yi/N

the familiar sample mean estimator of the population mean. Similarly,
setting Uσ (μ, σ 2) to zero yields the MLE for σ 2 = �i(Yi − μ)2/N , with
the sum of squares divided by N rather than by N − 1 as in the unbiased
estimator. (MLEs are theoretically “Fisher consistent,” meaning that they
converge to the true value as the sample size goes to infinity, but are not
guaranteed to be unbiased in small samples.)

When the estimating equations cannot be solved in closed form, finding
theMLE requires iterativemethods. Themost commonly used technique is
theNewton–Raphson method, which basically constructs a better estimate
at each cycle by moving along a straight line in the direction of increasing
likelihood, as viewed from the perspective of the current estimate. The
Newton–Raphson method uses the Fisher information, the negative of the
expectation of the matrix of second derivatives,

i(�) = −E

[
∂2�(�)

∂�2

]
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Figure 4.5. Hypothetical illustration of the Newton–Raphson method. (Reproduced with
permission from Thomas 2004.)

replacing the current estimate of � by a new estimate

�′ = �+ U(�)i−1(�)

and continues by computing new values of U(�′) and i(�′) and repeating
this updating procedure until no further changes result. This process is
illustrated in Figure 4.5. Starting with an initial guess θ0, we fit a tangent
line through the curve U(θ) at that point, which has a height U(θ0) and
slope i(θ0). This tangent line crosses the θ -axis at the point θ1. Drawing
a new tangent line at θ1 and extending it back to the axis yields a new
estimate θ2 and so on.

All three models discussed earlier in this chapter require such iterative
methods for fitting. In each case, it can be shown that the score equation
can be written in a form like

U(β) =
N∑
i=1

Zi [Yi − pi(β)] = 0
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wherepi(β) = Pr(Yi = 1|Zi ) is given by the particularmodel, for example,
expit(Z′

iβ) for the logistic model. For that model,

lnpi(β) = Yi(Z′
iβ)− ln[1+ exp(Z′

iβ)],

so

Ui(β) = ∂ lnpi

∂β
= YiZi − Zie

Z′
iβ

1+ eZ′
iβ

= Zi [Yi − pi(β)]

For the Poisson model, Yi would be the observed number of cases in stra-
tum i and pi(β) the corresponding predicted number. For the full survival
likelihood, pi(β) = �0(ti) exp(Z′

iβ), where�0(ti) =
∫ ti
0 λ0(t) dt. The score

equation from the Cox conditional likelihood and the conditional logis-
tic likelihood takes a somewhat different form, interchanging the roles of
Y and Z,

U(β) =
N∑
i=1

Yi

[
Zi − E

(
Zi |

{
Zj

}
j∈Ri

)]
= 0

where

E
(
Zi |

{
Zj

}
j∈Ri

)
= Zie

Z′
iβ

�j∈Ri
Zj e

Z′
jβ

Having found the MLE, we wish to put confidence bounds around it
and to test the statistical significance of various hypotheses. Confidence
limits are usually determined in one of twoways. The first assumes that the
model is correctly specified, so that asymptotically the likelihood function
is approximately normal, and uses the asymptotic variance derived from
Fisher information, specifically,

var(�̂) = i−1(�̂)

(We will revisit the case of misspecified models in the section on gen-
eralized estimating equations below.) For a multiparameter model, the

standard error of the pth component is SE(�̂p) =
√
ipp(�̂), the pth diag-

onal element of the inverse of the i matrix. For a one-parameter model, the

standard error is simply 1
/√

i(�̂). Thus, the asymptotic (1−α) confidence

limits on �̂p are simply

�̂p ± Zα/2SE(�̂p) = �̂p ± Zα/2

[
i−1(θ̂)

]
pp

(4.5)
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Likelihood-based limits

Figure 4.6. Hypothetical illustration of confidence limits based on the likelihood function.
(a) A one-parameter model, showing Wald limits (dashed interval) and LR limits (dotted
interval). (b) A two-parameter model, showing the joint confidence region. (Reproduced
with permission from Thomas 2004.)

[see Figure 4.6(a)]. These are commonly known as Wald confidence limits
because of their connection with the Wald test described below; by con-
struction they are always symmetric around the MLE. Likelihood-based
limits are defined as those values for which the likelihood ratio test (given
below) is exactly significant. They have better coverage than Wald limits,
but require further iterative search and are not widely used in epidemiol-
ogy because of their computational difficulty. In multi-parameter models,
it may be important to show the full confidence region if the components
are highly correlated (Figure 4.6(b)), but this is difficult to do in more than
two dimensions.

Hypothesis testing is done to compare alternative models where one is
a special case of the other. Thus, for a given model form, we view the
specific models generated by different values of the parameters as a family
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of models and wish to determine whether we can reject a specific null
hypothesis H0 : � = �0. There are three tests available to do this based
on likelihood theory, the likelihood ratio (LR) test, the score test, and the
Wald test :

G2 = 2 ln(L(�̂)/L(�0)) LR test
X2 = U′(�0) i−1(�0)U(�0) Score test
Z2 = �̂′ i(�̂) �̂ Wald test

All three are asymptotically equivalent—not in the sense that they give
identical answers on any particular data set, but in the sense that in large
enough samples (asymptotically) they will have the same test size and
power. The LR test is generally the best behaved in small samples. The
score test generally converges to its asymptotic distribution faster than the
Wald test, which can be seriously misleading when the likelihood is highly
skewed. However, the Wald test has the appeal that there is a one-to-one
correspondence between the significance test and confidence limits based
on Eq. (4.5). The score test has the attraction that no iterative calculations
are required to obtain �̂. Furthermore, most simple chi square tests based
on a comparison of observed and expected events can be derived as score
tests from the appropriate likelihood. All three tests are distributed as a chi
square with df equal to the difference in dimensions between � and �0.

In some circumstances, the null hypothesis value of a parameter is
located on the boundary of the permissible parameter space. An exam-
ple of this arises in variance components models, where the null value
for a variance is zero and negative values are not permissible. In this
case, the usual asymptotic distribution theory does not apply and typi-
cally the null distribution of the LR and other tests is a mixture of chi
square distributions with differing df (Self and Liang 1987).

The chi square distribution is only appropriate for comparing nested
models, meaning one of these models is a subset of a more general model.
For example, in linear regression, model M1:Y = α + β1X1 + ε is more
general than model M0:Y = α + ε and M2:Y = α + β1X1 + β2X2 + ε is
even more general; hence, we can compare the likelihood ratio statistics
for M1 with M0 or M2 with M1 as chi squares on 1 df or M2 with M0
directly as a chi square on 2 df. However, we cannot directly compare M2
with M3 : Y = α+ β1X2 + β3X3 because they are not nested—neither is a
submodel of the other. In order to make such a comparison, we can nest
both models in an even more general one that includes both as submodels,
for example, M4 : Y = α+ β1X1 + β2X2 + β3X3 + ε. Now all the models
M0−M3 are submodels of M4, so in particular we could compare M2 and
M3 separately to M4 as 1–df tests. If, for argument sake, we were to reject
M2 and fail to reject M3, we could then conclude that M3 fits significantly
better.
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Nevertheless, we frequently wish to compare nonnested models to each
other directly, without having to compare them each separately against
somemore general alternative. This is often done in a descriptiveway using
the Akaike Information Criterion (AIC)= 2 ln(L)− 2p (Akaike 1973),
where p is the number of free parameters in the model. The subtraction of
p is intended to reward more parsimonious models, since obviously with
each additional parameter the likelihood can only increase. We therefore
prefer the model with the highest value of the AIC. A number of alterna-
tive criteria have been suggested, including Mallows (1973) Cp, the Bayes
Information Criterion (BIC)= 2 ln(L)−p ln(N) (Schwartz 1978), and the
Risk InflationCriterion (RIC)=2 ln(L)−2 ln(p) (Foster andGeorge 1994),
each of which have certain theoretical advantages (see George and
Foster (2000) for a review), but the AIC is the most widely used.

Bayesian methods

Rather than relying on the likelihood as the basis for inference, Bayesian
methods are based on posterior probabilities, Pr(�|Y). As shown in
Chapter 3, these are computed by multiplying the likelihood, Pr(Y|�) by
the prior probability of the parameters Pr(�), and normalizing by divid-
ing by c(Y)= Pr(Y)= ∫

Pr(Y|�) Pr(�)d�. The analogue of the MLE is
the posterior mode estimate �̃, the value of � that maximizes Pr(�|Y).
Maximization of this quantity does not require the normalizing constant
c(Y), but it does involve the prior distribution Pr(�), so different choices
of priors would yield different posterior estimates. For hypothesis test-
ing, the analogue of the likelihood ratio is a quantity known as the Bayes
factor (BF)

BF
(
�̃ : �0

)
= Pr(�̃|Y )

Pr(�0|Y )
÷ Pr(�̃)

Pr(�0)

which can be thought of as the relative increase provided by the data in
the odds of one model over another beyond their prior odds. For the full
model, this of course simply reduces to the likelihood ratio, but interest
generally is focused on a particular parameter θ in a complex model that
may involve other nuisance parameters or latent variables ϕ. For example,
θ may index a series of alternativemodel forms (e.g., choices of variables to
include in a regression model) and ϕ the regression coefficients in the cor-
responding models. In this case, the posterior mode is found by integrating
over these other variables, and the BF becomes

BF
(
θ̃ : θ0

)
= Pr(θ̃ |Y)

Pr(θ0|Y)
÷ Pr(θ̃)

Pr(θ0)
=

∫
Pr(Y|θ̃ ,ϕ) Pr(ϕ|θ̃ ) dϕ∫
Pr(Y|θ0,ϕ) Pr(ϕ|θ0) dϕ
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This will not generally be the same as the likelihood ratio, as it involves
integration rather than maximization over ϕ. It is, however, generally less
sensitive to the choice of priors than is the ratio of posterior probabilities.
The Bayes factor does not have the repeated sampling distribution theory
that likelihood ratios have, so its interpretation is more qualitative. Kass
and Raftery (1995) suggest the following subjective criteria: values less
than 1 would be evidence against model � relative to �0; values between
1 and 3 would be “barely worth a mention”; 3− 20 “positive evidence in
favor of model m”; 20− 150 “strong evidence”; greater than 150, “very
strong evidence.”

Fitting of Bayesian models has historically been plagued by the compu-
tational difficulty of evaluating these high-dimensional integrals over ϕ.
The last few decades however saw a revolution due to the introduction of
Markov chain Monte Carlo (MCMC) methods. These proceed by sam-
pling each unknown (parameter or latent variable) in turn, conditional on
the observed data and the current values of the other variables:

[θ1|Y, θ2, . . . , θP ],
[θ2|Y, θ1, θ3, . . . , θP ],
. . .,

[θp|Y, θ1, . . . , θp−1, θp+1, . . . , θP ],
. . .,

[θP |Y, θ1, . . . , θP−1]
and continuing in this manner for many iterations. After a sufficient
number of “burn-in” iterations to allow the distributions to stabilize, sub-
sequent sampled values are tabulated as the joint posterior distribution
Pr(�|Y). Each of the component “full conditional” distributions can be
computed as [θp|Y, θ1, . . . , θp−1, θp+1, . . . , θP ] ∝ [Y|θ1, . . . , θp, . . . , θP ] ×
[θp|θ1, . . . , θp−1, θp+1, . . . , θP ], which may be relatively easy to sample
from. For example, if θp is a mean parameter (e.g., a coefficient in a
linear regression model) and the priors are independent normal distribu-
tions, then the conditional distribution is just another univariate normal
distribution. Likewise, if θ is a residual variance with an inverse gamma
prior distribution, then its full conditional distribution is also inverse
gamma with shape parameter being the prior shape plus the degrees
of freedom of the data and scale being the prior scale plus the resid-
ual sum of squares. In situations where the full conditional distribution
is not easily sampled, one can use the Metropolis–Hastings algorithm
(Chib and Greenberg 1995), proposing a move from θ to new value
θ ′ from some distribution Q(θ → θ ′) that is easy to sample from and
then accepting the new value with probability given by the Hastings
ratio, R= min[1,π(θ ′)Q(θ ′ → θ)/π(θ)Q(θ → θ ′)], where π(θ) represents
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the true conditional distribution, otherwise retaining the previous value
and sampling again. The appeal of this method is that one need only
be able to evaluate the true conditional density at θ and θ ′, not the
full distribution. Other approaches, such as adaptive rejection sampling
(Gilks and Wilde 1992), are available and discussed in the book by Gilks
et al. (1996). These techniques are implemented in the widely used soft-
ware package WinBUGS (Spiegelhalter et al. 2003), freely available from
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.

Although Bayesianmethods have not beenwidely used in environmental
epidemiology, they are finding application to complex models such as
arise in spatial statistics, exposure measurement error, and mechanistic
models, as discussed in later chapters. They also provide a natural way
to synthesize evidence from multiple studies or multiple disciplines where
prior knowledge is available to be combined with the data at hand, as, for
example, in the field of risk assessment. Most importantly, they provide
a means for allowing for uncertainties about model form through the
technique of Bayesian model averaging discussed in Chapter 12, and for
uncertainties in computing risk estimates and probabilities of causation,
as discussed in Chapters 15 and 16.

The general linear model

The specific methods discussed earlier in this chapter are all special cases of
theGLM (Nelder andWedderburn 1972) for the exponential family of dis-
tributions. The exponential family comprises all probability distributions
that can be represented as

Pr(Y ) = exp[(Y θ − g(θ))/ϕ]/c(Y ,ϕ)

With appropriate specification of the functions g(θ) and c(Y ), most of the
commonly used distributions, including the normal, Poisson, and binomial
can be written in this form. For example, the normal density with mean
parameter θ = μ and scale parameter ϕ = σ 2 is obtained by setting

g(θ) = θ2

2
and c(Y ) = √

2πϕ exp

(
Y 2

2ϕ

)

With these substitutions, we see that

Pr(Y ) =
exp

(
Yθ − g(θ)

ϕ

)
c(Y )

=
exp

(
Yμ − μ2/2

σ 2

)
√
2πσ exp

(
Y 2

2σ 2

) =
exp

(
− (Y − μ)2

2σ 2

)
√
2πσ

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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Likewise, for the Poisson distribution,

θ = ln(λ), g(θ) = θ , ϕ = 1, and c(Y ) = 1/Y !
and for the binomial,

θ = logit(p), ϕ = 1, g(θ) = ln(1+ eθ ), and c(Y ) = 1
/(

N

Y

)
.

For purposes of regression modeling, we now set the “canonical para-
meter” θ in any of these models equal to the linear predictor Z′β. Thus,
the GLM can be written as θ = f [E(Y |Z)], where f (.) is the link func-
tion relating θ for the appropriate distribution to its mean. For example,
for logistic regression the canonical link for the binomial distribution is
g(x)= logit(x), while for Poisson regression, the canonical link is the log
transform g(x) = ln(x). For both these distributions, the scale factor ϕ is
fixed at unity, but allowing it to be a free parameter allows for the pos-
sibility of extra-binomial or extra-Poisson variation, that is, additional
variation in Y |Z that is not accounted for by the model for E(Y |Z) or the
random variation in Y around the value expected under the corresponding
distribution.

Generalized estimating equations

To fit the GLM, one can use the technique of generalized estimating
equations (GEE), which exploits only the part of the model involving
the canonical parameters, not the full distribution. Thus, the estimating
equation is given by

U(β) =
N∑
i=1

(Yi − μi(β))W i

∂μi

∂β
= 0

where μi(β) denotes the expectation of Y and Wi is a weight that depends
upon the distribution of Y . For example, for ordinary linear regression,
μi(β) = Z′

iβ,Wi = σ 2 (a constant with respect to β), and the derivatives
Di = ∂μi/∂β are simply Zi , so this reduces to the standard estimating
equation

U(β) = σ−2�i(Yi − Z′
iβ)Zi = 0

from either OLS or ML fitting. For correlated outcome data, such as
a vector of longitudinal observations for each subject (as discussed in
Chapter 7), time series for different cities (Chapter 8), or spatially corre-
lated observations (Chapter 9), Yi ,μi , andDi become vectors of correlated
variables for each independent sampling unit (e.g., individuals in the for-
mer case, cities in the latter cases), and Wi becomes a weight matrix that
describes the correlation structure of the deviations. Thus, the estimating
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equation is a sum over the independent sampling units of matrix-vector
products of the form (Yi − μi)

′WiDi .
The variance of β̂ is given by a formula known as the “sandwich

estimator” (Huber 1967; Liang and Zeger 1986):

var
(
β̂
)
= 1

N

(
N∑
i=1

Zi
′WiZi

)−1 ( N∑
i=1

Zi
′Wi (Yi − μi)

(Yi − μi)
′ WiZi

)(
N∑
i=1

Zi
′WiZi

)−1

(4.6)

This is known as the “robust” variance because it is a consistent estima-
tor of the sampling variance of β even if the model is misspecified. In
particular, although the most efficient estimator of β is obtained when
one chooses Wi to be the inverse of var(Yi), confidence intervals obtained
using an incorrect weight matrix will still have the nominal coverage rate.
This is a particularly attractive feature when one isn’t sure of what the
true correlation structure is. For example, one might suspect that a time
series has some autocorrelation structure, but is unsure of whether AR1
or AR2 or something else is correct. One could simply assume an AR1
structure, or an exchangeable correlation (all correlations the same), or
even an independence model (all correlations zero), and still be assured of
consistent estimates of both β and var(β).

Freedman (2006) notes that when the model is misspecified, one should
be more concerned about bias than variance. The sandwich estimator may
yield the right variance, but around an incorrect estimate of the param-
eter of interest or even of a meaningless parameter; but if the model is
not seriously misspecified, there may be little difference between robust
and naïve variances. While there is some wisdom in this advice, most of
the applications considered here involve misspecification of parts of the
model that are not of primary interest, but could affect the variance of the
parameters of interest. For example, a regression model for the mean of a
distribution may be correctly specified and the regression coefficients may
be the quantities of interest to an investigator, but assumptions about the
shape of the entire distribution (e.g., normality) or the covariance between
related observations (e.g., repeated observations on the same subjects in
a longitudinal or time-series study) could be misspecified. In this case,
Freedman’s critique of the sandwich estimator are less cogent.

This also applies when one has independent observations from some
over-dispersed distribution, say a binomial or Poisson distribution with
additional variation due to unmeasured variables. In standard logistic reg-
ression, one would set Wi = 1/μi(1 − μi) and in standard Poisson
regression, one would set Wi = 1/μi . To allow for the possibility of
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overdispersion, one might simply multiply these weights by an unknown
scale parameter ϕ to be estimated along with β, or use some other
function motivated by theoretical considerations. For example, if one
assumed that Ys ∼ Poisson(λTsXs), where Xs was an unobserved latent
variable having gamma distribution with mean 1 and variance ϕ, then
var(Ys) = μs(1 + ϕμs), so one might take the inverse of this quantity as
Ws . The overdispersion parameter can then be estimated from var(Ys−μs).
If the weight matrix involves parameters in the correlations, these too can
be estimated by regressing the cross-products Cij = (Yi −μi)(Yj −μi) on
the appropriate variables describing the correlation structure (Liang and
Zeger 1986).

Missing data

Missing data is a fact of life in any study, even the best designed in the most
cooperative population. In case-control or cohort studies of binary disease
endpoints or cross-sectional studies with a single outcome variable, some
exposure variables may be missing for one subject, other variables for
different subjects. Thus, few if any subjects may have complete data on all
variables and few variables may be complete for all subjects. In this case,
restricting the analysis to subjectswith complete data (known as “complete
case analysis”) or only to variables with no missing values is unlikely to
be practical; worse, it might not even be immune from bias, depending
on how the missingness arose. In studies with longitudinal measurements
of outcomes, many subjects may have missed particular observations or
dropped out before the end of the study. Here, we focus on the former
situation, deferring treatment of missing values in longitudinal studies to
Chapter 7.

Various alternatives to complete case analysis involving the use of miss-
ing indicators, fitting different parts of the model using all cases with the
data needed for that part (“available case” analysis), or some form of
imputation of the missing data have been developed. Some of these meth-
ods, like replacing missing values by the overall mean or predicted values
based on the available data, are rather ad hoc and cannot be guaranteed
to give valid answers. In this section, we begin by considering the condi-
tions under which complete data analysis is valid and then describe some
of the alternative approaches. There is a vast literature on this subject,
which we review only briefly. For a recent review, including a discus-
sion of available software see (Harel and Zhou 2007). Several textbooks
(Rubin 1987; Little and Rubin 1989a; Schafer 1997) and other reviews
(Little and Rubin 1989b; Little 1992; Greenland and Finkle 1995) provide
more comprehensive treatments.
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Missingness models

As before, let Y denote the observed data on a single outcome variable and
let Z be a vector of exposure variables, some components of which may
be missing for different subjects. (We assume the data on Y are complete,
otherwise all the data on Z would be useless for those subjects!) For the
purpose of the present discussion, we need not distinguish whether the
data arise from a cross-sectional, case-control, or cohort study, but for
simplicity let us assume that the covariates are not time-dependent. We
may also have one or more additional variables W (completely observed)
that could be related to the probability that a subject has missing data
but are not thought to be relevant to the risk of disease; to simplify the
notation, we sometimes omit the dependence on W below.

It is convenient to define a set of indicator variables M = (M1, . . . ,MP )

taking the value 0 if Zp is observed for a given subject and 1 if it missing,
and write Z = (Zobs,Zmis) for the observed and missing components of Z
for any given individual. Thus, we can write the observed data for a given
subject as (Y ,Zobs,M,W). Consider the probability of the complete data
and model parameters α in the missingness model and β in the covariate
distribution (for the time being, we ignore possible dependencies on Y

and W):

Pr(Z,M,α,β) = Pr(M|Z,α) Pr(Z,β) Pr(α,β) (4.7)

We say a variable Zp is missing at random (MAR) if Pr(Mp = 1) does
not depend on the value of Zp given the other observed variables Z(−p),
that is, Pr(Mp|Z)= Pr(Mp|Z(−p)) where Z(−p) denotes the vector of all
variables except p (Table 4.1). In a case-control study, for example, the
probability of missingness could depend on case-control status, on the
other components of Zobs, or on additional completely measured vari-
ables W, but cannot depend upon the true value of the missing data Zp.
This is a weaker condition than missing completely at random (MCAR),
which also requires that Pr(Mp = 1) be independent of any components
of Z (although it could still depend upon Y or W). Data that are not
MAR (and hence also not MCAR) are said to be nonignorably missing.

Table 4.1. Missing data models for covariate Zp

Missing data model Assumptions

Missing completely at random Pr(Mp|Y ,Z,W) = Pr(Mp|Y ,W)

Missing at random Pr(Mp|Y ,Z,W) = Pr(Mp|Y ,Z(−p),W)

Ignorable MAR and prior independence of the
parameters in pβ(Y |Z) and pα(M|Z,W)

Nonignorably missing None of the above (e.g., missingness can
depend upon unobserved covariate values
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Although the term ignorably missing is similar to MAR, it involves the
additional requirement that none of the parameters β in the disease model
Pr(Y |Z) are functionally related to any parameters α that may be needed
to describe the probability of missingness Pr(M|Y ,Z,W), that is, that
Pr(α,β) = Pr(α) Pr(β) in the notation of Eq. (4.7).

Now suppose we are interested in estimating the parameters β for the
regression of Y on Z, say the relative risk coefficients in a logistic regression
model. If we restrict the analysis to those with complete data (M = 0),
under what conditions will estimates of β be unbiased? If missingness does
not depend upon Y , there will be no problem (Little 1992). To see this,
consider the dependence of Y on Z and W among subjects with M = 0.
By Bayes formula

Pr(Y |Z,W ,M = 0) = Pr(M = 0|Y ,Z,W) Pr(Y |Z,W)/ Pr(M = 0|Z,W)

If M is independent of Y , the first term in numerator is the same as the
denominator, so Pr(Y |Z,W ,M = 0) = Pr(Y |Z,W), that is, the complete
case analysis is unbiased in this situation. It may, however, be highly
inefficient if this restriction means throwing away a high proportion of the
data. If this is unsatisfactory, or ifM depends on Y , we need to consider the
missing data mechanism. One way to do this is through full ML analysis,
incorporating a model for the missing data mechanism; such analysis can
yield valid estimates, provided the missingness model is correctly specified.

Key to the validity of the various imputation strategies discussed below
is whether missingness is ignorable. If the data are nonignorably miss-
ing, then it is possible that subjects with missing observations have
systematically larger or smaller values of Z than those actually observed.
Unfortunately, it may not be possible to determine whether this is the case
by simply looking to see whether the sets of missing and complete subjects
differed in terms Y or W, or even the other components of Z unless Zp

was highly correlated with them. Nevertheless, by including in W enough
variables that might be related to missingness, the MAR assumption can
become more plausible.

Missing data imputation

As an alternative to complete case analysis, we could try filling in the
missing Z values in some way and use them to analyze the entire data
set. The “single imputation” method entails replacing missing values by
E(Zmis|Zobs,W). This gives valid estimates of β, but the usual variance
estimator fails to adequately take account of the uncertainty in these
imputations.

The “multiple imputation” method instead generates R data sets with
random samples from Pr(Zmis|Zobs,W,Y ), estimates β(r) from each
imputed dataset, and then uses an average of the different estimates.
(This, of course, generally requires a model for the distribution of the
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missing data, although this can be avoided using some of the semipara-
metricmethods described below.) The variance of the estimator is obtained
by combining the “within sample” variance V̄w (the mean of the variance
estimates var(β̂(r)) from each imputed dataset) with the “between sample”
variance Vb (the variance among the dataset-specific estimates of β̂(r)):

var(β̂) = V̄w +
(
R + 1
R

)
Vb

In either case, E(Z|W) or Pr(Z|W ,Y ) entails fitting some model to the
data from completely observed subjects. (See Box 4.1 for a theoretical
justification of this procedure).

In the case of nonignorable missingness, the missing data model needs
to be formally included in the likelihood. One might, for example, fit a
logistic model for pγ (Y ,Zobs,W), possibly including various interaction
effects, and then add π(Zobs,W) = ln[pγ (1,Zobs,W)/pγ (0,Zobs,W)] as
an offset term in the disease model

logitpβ(Y |Z) = β ′(Zobs,Z
∗
mis)+ π(Zobs,W)

where Z∗
mis denotes an imputed value for the missing data, given (Zobs,W).

Paik (2004) describes the theoretical basis for such adjustments in the
context of matched case-control studies, assuming the distribution of
Zmis|Y ,Zobs,W is a member of the exponential family, and provides a sim-
ple way to impute missing values using standard software. For example,
if Z is normally distributed, he shows that one can impute missing case
and control values by their predicted means (given Zobs and W), simply
replacing Y by 1/2 irrespective of their case/control status. See also Lipsitz
et al. (1998); Satten and Carroll (2000); Rathouz et al. (2002); Sinha et al.
(2005) for other parametric and semi-parametric approaches to missing
data in matched case-control studies.

Regression methods are an obvious way to implement multiple impu-
tation (Rubin 1987). Using subjects with complete data, one first builds
a regression model for the variable(s) with missing values based on the
variables with no missing values, for example, for a case-control study,
one might use a linear regression model Zi ∼ N(α0 + α1Wi + α2Yi , σ 2).
One then uses this model to sample random values for those with miss-
ing data, using their predicted means and residual standard deviation. A
variant of this approach uses single imputation with the predicted mean,
adjusting the variance appropriately to allow for the uncertainty of these
imputations (Schafer and Schenker 2000). Obviously a drawback of either
approach is that they require a parametric model for the distribution of
the missing data that would not otherwise be needed for analysis of the
complete data.
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4.1 Theoretical justification for multiple imputation procedures

Consider the likelihood for the observed data (Y ,Zobs,M), for simplic-
ity, ignoring W:

Pr(Y ,M|Zobs) = Pr(M|Y ,Zobs) Pr(Y |Zobs)

= Pr(M|Y ,Zobs)

∫
Pr(Y ,Zmis|Zobs)dZmis

= pγ (M|Y ,Zobs)

∫
pβ(Y |Z)pα(Zmis|Zobs)dZmis (4.8)

Now the integral can be approximated by taking r = 1, . . . ,R random
samples of Zmis from its predictive distribution given Zobs,∫

pβ(Y |Z)pα(Zmis|Zobs)dZmis � R−1
∑

Z(r)
mis|Zobs,α̂(r)

pβ

(
Y |Zobs,Z

(r)
mis

)
(4.9)

where α̂(r) denotes a random sample of α estimates from their poste-
rior distribution (i.e., centered around their MLE with the estimated
sampling variance). To clarify the dependence on α further, we use the
factorization given in Eq. (4.7) to compute the posterior distribution
of the missing data as

Pr(Zmis|Zobs) =
∫

Pr(Zmis|Zobs,α) Pr(α|Zobs) dα (4.10)

where

Pr(α|Zobs) ∝ P(α)
∫

Pr(Z|α)dZmis

(Harel and Zhou 2007). Thus, to impute the missing data, a
fully Bayesian approach would use the following two-step approach:
first sample random values of the parameters from Pr(α|Zobs)

using Eq. (4.11); then impute the missing data by sampling from
Pr(Zmis|Zobs,α) using Eq. (4.11). The first step, however, requires
evaluation of the integral in Eq. (4.11), and might be more easily
accomplish by MCMC methods, iteratively sampling α from Pr(α|Z)

using current assignment of Zmis, then sampling new values of Zmis
using the current α value, and so on. Multiple imputation essentially
approximates this process with small samples of parameter values and
of missing data given these parameters.
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The first term in Eq. (4.11) may affect the estimation of β, depending
upon the missing data model. Suppose M depends upon W and or Z,
but not Y . Then the ignorability assumption that pα(M|Y ,Zobs,W)

does not involve β means that the multiple imputation approximation
to the likelihood [Eq. (4.11)] can be used without further consideration
of the missing data model. Likewise, if M depends upon Y but not on
Z or W, then again this term can be ignored.

To avoid such ancillary assumptions, one could use a semiparamet-
ric approach known as the “propensity score” method (Rosenbaum and
Rubin 1983). Here, the basic idea is to model the probability of missing-
ness based on the observed data (their propensity score), then stratify the
subjects into strata based on these scores, and sample values to impute
to those with missing values from the distribution of observed values
for other subjects in the same propensity score stratum. This neatly gets
around the problem in nonignorablemissingness where subjects withmiss-
ing data could have different distributions of their true values than those
with observed data.

Either of these methods has an important limitation in multivariate
applications, namely that they require what is known as a “monotone
missingness pattern,” that is, that it is possible to order the variables in
such a way that the subjects with missing values on one variable are a
proper subset of those with missing values on all subsequent variables. In
this situation, it is easy to build up models for Pr(Zmis|Zobs,W,Y ) (in the
regression approach) or Pr(M|Zobs,W,Y ) (in the propensity scoremethod)
one variable at a time, using the subjects with complete data on all previous
variables, along with imputed values for variables previously considered.
If the data have an arbitrary (nonmonotone) missingness pattern, than
more complicated techniques are required, such as using MCMC meth-
ods to sample each missing value conditional on the observed data and the
current assignment of all missing values. We will return to the problem of
nonmonotone missingness patterns in the context of longitudinal data in
Chapter 7.

Missing indicator methods

Missing data can be particularly annoying in matched case-control stud-
ies, because a matched analysis would require that if a case has a missing
value, his or her matched control also be excluded (even if the data were
complete for that subject) and vice versa if the control has a missing
value. The alternative of ignoring the matching and using all complete-
data subjects is likely to be biased, as it would even if there were no
missing data.
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A simple, but much maligned method (see Greenland and Finkle 1995
and references therein) to overcome this problem is to include the missing
value indicators M as covariates in a multiple regression along with the Z
variables (with missing values set to any convenient constant value, usu-
ally the overall mean). The missing indicators then soak up any differences
between subjects with and without a value for each variable; the missing
indicator coefficients are of no particular interest themselves, but under
appropriate conditions, the coefficient of the Z variables are unbiased esti-
mators of their true associations. Of course, the method could be applied
to unmatched data as well, but is particularly attractive for matched stud-
ies. Huberman and Langholz (1999) describe a version of this approach
that entails combining the usual conditional likelihood for complete-data
case-control pairs with unconditional likelihood contributions from pairs
with exposure information missing on either the case or the control (but
not, of course, both). The latter contributions can easily be implemented
in standard software simply by including a missingness indicator in the
model. They show that this is a valid method of analysis provided that the
complete-pairs analysis is valid and that any confounding in the incom-
plete pairs has been adequately adjusted for. Li et al. (2004) compared this
method to a complete-pairs analysis using simulation and found that the
complete-pairs performed slightly better in terms of bias and confidence
interval coverage, at the expense of some loss of power and efficiency,
and recommended caution in the use of the missing indicator method,
depending on the extent of confounding and the missing data model.



5
Some special-purpose
designs

The cohort and case-control designs and their hybrids—nested case-
control and case-cohort—are the work-horses of environmental epi-
demiology. There are circumstances, however, where special purpose
designs are appropriate, either to control biases or improve statistical
efficiency. Here, we review six such designs: two-phase case-control
designs; counter-matched case-control designs; case-crossover designs;
case-specular designs; case-parent triad and case-only designs for gene–
environment interactions. One additional design, a hybrid of ecologic
and individual-level designs, we defer to Chapter 10, after discussing the
fundamental capabilities and limitations of ecologic inference.

Two-phase case-control designs

Multistage sampling designs have been used by survey statisticians for ages
(Neyman 1938), but their introduction to the epidemiology community is
generally ascribed to a seminal paper by Emily White (1982) concerning
studies of the relationship between a rare disease and a rare exposure. The
basic design idea was also contained in a paper by Walker (1982), but
without the analytic sophistication of White’s paper. In econometrics and
other literature, the design goes by the name “double sampling.” In the
epidemiologic literature, the words “stage” and “phase” have often been
used interchangeably, but recent usage tends to favor “phase,” a conven-
tion we will adopt here. As is well known, the case-control design is the
method of choice for studying associations of a rare disease with common
exposures, and a cohort design preferred in the converse situation. If both
factors are rare, neither is very efficient, as the precision of the relative risk
estimate (and the power of the test) is limited by the number of exposed
cases, which will be very rare in this circumstance.

Consider Table 5.1a, describing the joint distribution of exposure and
disease in the source population. In a cohort study of a rare exposure
(Table 5.1b), one might try to enroll most of the exposed population
and sample a small fraction of the unexposed population. Both sam-
ples are then followed in the same way to determine their outcomes (i.e.,
assuming one is not simply relying on external population rates for com-
parison). Conversely, in a case-control design (Table 5.1c), one might try
to ascertain most of the cases in some defined population and time period



Table 5.1. Schematic representation of different sampling schemes used in epidemiology

(a) (b) (c) (d)
Population Cohort Case-control Two-phase

study study study

Exposure Y = 0 Y = 1 Total Y = 0 Y = 1 Total Y = 0 Y = 1 Y = 0 Y = 1

Z = 0 N00 N10 N+0 n00 n10 n+0 = s0N+0 n00 n10 n00 = s00N00 n10 = s10N10
Z = 1 N01 N11 N+1 n01 n11 n+1 = s1N+1 n01 n11 n01 = s01N01 n11 = s11N11

Total N0+ N0+ N++ — — n++ n0+ = s0N0+ n0+ = s1N1+ — —
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and a small fraction of unaffected individuals in that population to serve
as controls; again, determination of exposure histories is done in a sim-
ilar way for cases and controls. In both designs, the sample odds ratio
estimates the population odds ratio, provided the sampling of subjects is
unbiased with respect to the variable being measured—disease in a cohort
study, exposure in a case-control study. A two-phase case-control design
appears to violate this basic principle by sampling subjects jointly with
respect to both variables (Table 5.1d). Whereas in case-control or cohort
studies, the sampling fractions s0 and s1 cancel out in the calculation of
the odds ratio, the key to the validity of two-phase designs is that the sam-
pling fractions be explicitly taken into account in the analysis, either by
estimating them from the first phase data or by analyzing the two phases
together.

Multi-phase designs can be particularly useful in two important situ-
ations. Let Z represent the variable used for stratified sampling and X

the additional data collected in the second phase Z may represent a cat-
egorical exposure variable of interest, but additional covariates X are to
be collected as confounders or modifiers of the Y -Z relationship that is
of primary interest. Alternatively, Z may represent an easily-determined
categorical surrogate for the true exposure X, which is feasible to assess
only on a small sample, and it is the Y -X relationship that is of primary
interest. Other applications arise where one wishes to incorporate exter-
nal information on population relationships among a subset of variables
or where some variables have missing values (Cain and Breslow 1988). In
either case, the analysis is essentially the same. One uses the data from
the observed subsample, together with knowledge of the sampling frac-
tions, to estimate the joint distributions in the source population; these
are then used to estimate the parameters of interest. Variance estimation
then requires that one take account of not just the sampling variation in the
second-stage sample data, but also the variability in the sampling fractions
themselves.

There are various ways this can be done. Consider first the expanded
Table 5.2, illustrating the case of binaryX, Y , and Z data. We could easily
estimate the expected values of the unobserved quantities in the first-phase
sample by dividing the corresponding entries in the second-phase sample
by their sampling fractions: E(Nyzx) = nyzx /syz. Thus, the stratified ORs
would be given by

OR(Y ,X|Z = z) = E(N1z1)E(N0z0)

E(N1z0)E(N1z0)
=
(
n1z1n0z0

n1z0n0z1

)
÷
(
s1zs0z

s1zs0z

)
= or(Y ,X|Z = z)

where or(Y ,X|Z = z) denotes the odds ratio estimated from the second-
phase sample. Thus, the second-phase estimates of the conditional ORs
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Table 5.2. Joint distribution of disease Y , sampling surrogate Z, and other
risk factors X in a two-phase sampling design

Z X First-phase sample Second-phase sample

Y = 0 Y = 1 Y = 0 Y = 1

0 0 n000 n100
1 n001 n101
Total N00 N10 n00 = s00N00 n10 = s10N10

1 0 n010 n110
1 n011 n111
Total N01 N11 n10 = s10N10 n11 = s11N11

are unbiased because, within strata defined by Z, the two sampling frac-
tions cancel out. However, for the marginal odds ratio, OR(Y , X), this
cancellation does not occur and we have instead

OR(Y ,X) = E(N1+1)E(N0+0)

E(N1+0)E(N0+1)
=

(
n101

s10
+ n111

s11

)(
n000

s00
+ n010

s01

)
(
n100

s10
+ n110

s11

)(
n001

s00
+ n011

s01

)
The variance of the log OR can be computed in the obvious way by the
delta method, assuming the sampling fractions are fixed by design, lead-
ing to a somewhat messy expression. (Note, however, that this expression
makes no use of the data from the first-phase sample, other than to com-
pute the sampling fractions, so we would not expect it to be fully efficient.)
From this expression, one can then compute the optimal sampling frac-
tions that would minimize the var(ln(OR)) for a specified ratio of cost per
subject in phases one and two, subject to a constraint on the total subsam-
ple size n+++. Table 5.3 illustrates the results for a particular combination
of disease and surrogate exposure frequencies, sensitivity and specificity
of Z as a measurement of X, and the true Y -X odds ratio, computed from
the full likelihood described below (Thomas 2007a).

One variant of this design that frequently proves to be nearly optimal is
the so called “balanced design”, in which the target cell sizes in the table
of nyz+ are arranged to be nearly equal, that is, nyz+ = n+++/4 (Cain
and Breslow 1988; Reilly 1996; Holcroft and Spiegelman 1999). More
generally, one might aim to keep the marginal frequencies in the second
phase, ny++ and n+z+, equal and adjust the marginal association between
Y and Z in the sampling fractions so as to achieve an even more efficient
design.
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Table 5.3. Relative efficiencies of different two-phase sampling schemes

Design Sampling fractions (%) Subsample sizes (%) ARCE (%)

No sampling (100, 100, 100, 100) (74, 6, 15, 5) 100
Random sampling (22, 22, 22, 22) (74, 6,15, 5) 146.8
Outcome-based (23, 23, 19, 19) (77, 6, 13, 4) 147.5
Determinant-based ( 8, 64, 8, 64) (44, 25, 9, 22) 285
Equal allocation (6, 89, 33, 100) (25, 25, 25, 25) 328
Optimal allocation (3, 86, 19, 19) (21, 44, 26, 8) 399

Cost ratio = 16, sensitivity = specificity = 80%; predictive value of surrogate = 90%, surrogate prevalence =
20%, baseline log odds = −3, log OR = 2. (Adapted from Thomas 2007a).

We nowwish to generalize this approach in various ways: to continuous
and multivariate X variables; to exploit the information on Y and Z in the
first-phase sample; and to develop more efficient analysis procedures. The
full likelihood of the data is

L(α,β) =
∏
i,j

Pr(Z = j |Y = i)Nij

nij∏
k=1

Pr(X = xijk|Y = i,Z = j) (5.1)

These terms, of course, involve both the marginal distribution α of covari-
ates X and stratifying variables Z, as well as the disease parameters β of
real interest. We discuss below how the latter can be estimated without
requiring assumptions about the former, but first consider the situation
where X, Y , and Z are all binary, so the data can be completely repre-
sented by the counts given in Table 5.2. The full likelihood is then obtained
by summing over all possible combinations of the unobserved cell counts
Nyzx

L(β,α) =
∑

Nyzx |Nyz+
Pr(Nyzx |N)× Pr(nyzx |nyz+,Nyzx)

=
∏
y,z

Pr(Nyz+|N)
∑

Nyz|Nyz+
Pr(Nyz1|Nyz+)× Pr(nyz1|nyz+,Nyz1)

where the summation is over the range of values that are compatible with
the observed margins (Breslow and Holubkov 1997a). The first factor
within the summation is a binomial with probability Pr(X|Y , Z) and the
second factor is a central hypergeometric probability. The difficulty with
practical applications of this likelihood (beyond the purely computational
one) is that it explicitly involves the joint distribution of X and Z in the
population, which is of no particular interest and could require many
parameters and assumptions if there are multiple or continuous covari-
ates. There are three alternative approaches available for the analysis of
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two-phase case-control studies with general covariates X: weighted likeli-
hood (Flanders and Greenland 1991; Reilly and Pepe 1995; Whittemore
1997), pseudolikelihood (Breslow and Cain 1988; Scott and Wild 1991;
Schill et al. 1993), and constrained maximum likelihood (Breslow and
Holubkov 1997a, b).

The simplest of these is the “weighted likelihood approach” derived
from sampling theory, as in the simple method for 2×2×2 tables described
above. This entails weighting the loglikelihood contributions from each
stratum inversely by their sampling fractions. The derivatives of this
weighted likelihood yield what is known as theHorvitz–Thompson (1952)
estimating equations. This approach uses only the data from the second
phase, but reweights the score contributions for each stratum s (here based
on categories of Y and Z) inversely by their estimated sampling fractions
f̂s = ns/Ns :

U(β) =
∑
s

f̂sUs(β) = 0

where the total score for stratum s is just Us(β) = ∑
i∈ns Ui (β). In the

case of a logistic model for binary data, for example, the individual score
contributions are given by Ui (β) = (Yi − pi)Xi where pi = expit(X′

iβ).
The variance of β̂ is given by the sandwich estimator, which takes the
form

var(β̂) =
(
I(β̂)

)−1

⎧⎨⎩∑
s

f−2
s

⎡⎣∑
i∈ns

Ui

(
β̂
)′Ui

(
β̂
)

− 1− fs

ns

Us

(
β̂
)′Us

(
β̂
)⎤⎦⎫⎬⎭(

I
(
β̂
))−1

(Breslow and Chatterjee 1999), thereby taking advantage of the addi-
tional information about β contained in the sampling fractions themselves,
yielding a smaller standard errors than those derived from the inverse
information alone.

Applying Bayes formula, the real likelihood, Eq. (5.1), can be
rewritten as

L(α,β) =
∏
i,j

Pr(Y = i|Z = j)Nij

nij∏
k=1

Pr(Y = i|X = xijk,Z = j)

×
∏
j

Pr(Z = j |S1)
N+j

n+j∏
k=1

Pr(X = xijk|Z = j , S2) (5.2)
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where S1 and S2 denote the events that a subject was sampled in phases
1 and 2, respectively. The “pseudolikelihood” approach ignores the
terms on the second line, simply multiplying the conditional proba-
bilities logit Pr(Y = 1|Z= j , S)=α0 + δj from the first phase and logit
Pr(Y = 1|X, Z= j , S)=αj + γj +β ′X from the second phase (Fears and
Brown 1986; Breslow and Cain 1988; Schill et al. 1993), where the αs are
functions of the respective sample sizes. The resulting estimating equations
can be shown to yield consistent estimators of the parameters of inter-
est, despite this not being the true conditional likelihood. Breslow and
Cain fit the model by estimating the stratum parameters δj in [Y |Z] as
ln(N1jN0/N0jN1) and substituting these into [Y |X, Z] to obtain a profile
likelihood in β. This is easily implemented by including the logarithm of
ratios of phase 1 and 2 sample sizes as offset terms in standard logistic
regression software. Schill et al. instead maximize both parts of the pseu-
dolikelihood jointly. In practice, the two estimators are very similar. The
variance estimate based solely on the inverse information (as used by Fears
and Brown) fails to incorporate the additional information from the first
phase, however, even if the offset terms are included. Breslow and Cain
provide two versions of the more appropriate sandwich estimator; one
version is simpler but may not be positive definite if there is extensive first
phase data; the other is based on the within-stratum covariances of X
and guaranteed to be positive definite. See Breslow and Zhao (1988) for a
comparison of the different variance estimators, showing the considerable
reduction in standard errors that can result from properly incorporating
the additional information from the first stage data.

The constrained maximum likelihood approach estimates the marginal
distributions Pr(Z|S) and Pr(X|Z, S) in the second line of Eq. (5.2)
nonparametrically and maximizes the resulting likelihood subject to the
constraints that the marginal distribution of cases and controls in phase I
and their conditional distributions in phase II are fixed by design. Thus,
no assumptions are required about the distribution of Z or X. For dis-
crete covariates, a solution for random sampling in phase I was given by
Scott and Wild (1991) and extended to case-control sampling in phase
I by Breslow and Holubkov (1997a, b); Scott (2007) later provided a
generalization for continuous covariates and established its semiparamet-
ric efficiency. The variance of β̂ is given by the appropriate submatrix of
the inverse information, without requiring a sandwich estimator.

An important special case of multi-phase case-control sampling arises
in hybrid ecologic/individual level studies, in which NYZ is not observed,
but only the margins NY+ and N+Z in multiple populations. These are
then used for sampling individuals to observe nyzx . This design will be
discussed further in Chapter 10.

There is an extensive statistical and epidemiological literature on multi-
phase case-control sampling designs. Useful reviews and comparisons
of methods include Zhao and Lipsitz (1992); Breslow and Holubkov
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(1997a); Whittemore (1997); Breslow and Chatterjee (1999); Borgan et al.
(2000); Scott et al. (2007). Further results on optimal designs using one or
more of these estimation approaches are provided in Tosteson and Ware
(1990); Weinberg and Wacholder (1990); Wacholder et al. (1994); Reilly
(1996); Schaubel et al. (1997); we will revisit some of these in Chapter 11
in the context of measurement error models using a second-phase sam-
ple based on Y and a flawed surrogate Z to obtain measurements of true
exposure X. Fears and Gail (2000) consider the additional complications
when cluster sampling is used to obtain controls.

Counter-matching

The two-phase case-control designs described above are aimed at
unmatched case-control samples. In the pair-matched situation with a
dichotomous surrogate variable Z, one could imagine a two-phase design
in which one sampled from within the 2 × 2 table of Z values for the
case-control pairs (rather than individuals) in the first-stage sample. Since
the pairs that are concordant for Z are likely to be less informative about
the risk associated with true exposure X than those that are discordant
(assuming Z is a good surrogate for X), it is natural that we would want
to over-represent the discordant pairs in the second stage sample. Indeed,
if the second-stage sample were restricted to only Z-discordant pairs, one
would have a “counter-matched” design, every surrogate-exposed case
being matched with a surrogate-unexposed control and vice-versa. We
now generalize these ideas to a broader range of designs and discuss the
analysis of such studies.

Consider a nested case-control study in which one wishes to study the
relationship of some risk factorX with disease Y and one has available for
all members of the cohort a surrogate Z forX. In the standard nested case-
control design, one would sample for each case in the cohort one or more
controls at random from that case’s risk set, the set of all cohort members
who were still at risk at that time. The disadvantage of this approach is
that in some sampled risk sets, the case and control(s) will be concordant
for X and hence those matched sets will be uninformative. The counter-
matched design overcomes this difficulty by systematically mismatching
cases and controls on the exposure surrogate Z, so as to maximize the
variability in X within matched sets, thereby improving the efficiency of
the design, often quite substantially. In general, if Z has k categories, a
1:(k−1) counter-matched design would have onemember of eachmatched
set in each category of Z.

In order to account for the bias in the sampling design, it suffices to
include the sampling fractions as a function ofZ as an offset in the standard
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conditional logistic likelihood:

L(β) =
∏
i

exp(X′
i0β − ln(ni0/Ni0))∑

j∈R̃i

exp(X′
ijβ − ln(nij /Nij ))

where R̃j denotes the set comprising the case and his or her counter-
matched controls, nij and Nij the numbers of subjects in the R̃i and Ri

respectively with counter-matching variable value Zj . No adjustment to
the variance of β̂ is needed in this approach.

Although we have described this as a design for case-control studies
nested within cohorts, it could in principle also be applied to case-control
studies within a general population, provided it were possible to estimate
the numbers at risk in relation to Z. Langholz and Goldstein (2001) dis-
cuss extensions of the approach to more general stratified case-control
designs.

The WECARE study (Bernstein et al. 2004) used a counter-matched
design to investigate the effects of ionizing radiation exposure and DNA
repair genes on the risk of cancer in the contralateral breast in women
surviving a first breast cancer. (For the purposes of the present illustra-
tion, we focus on the main effect of radiation, deferring discussion of
gene–environment interactions to Chapter 12.) The exposure of interest
X is the dose to the contralateral breast from radiotherapy for the first
cancer, as reconstructed from phantom studies. The surrogate Z used for
counter-matching is a binary indicator for whether the woman received
radiotherapy or not, as recorded in the cancer registries through which the
cohort of breast cancer survivors was identified. In addition to conven-
tional matching on age and calendar year of diagnosis of the first cancer,
survival to the time of the case’s second cancer, race, and center, counter-
matching was implemented by having each matched set comprise two
radiotherapy patients and one without radiotherapy. Thus, if the case was
exposed, she was matched with one exposed control and one unexposed,
whereas if she was unexposed, she was matched with two exposed con-
trols. Table 5.4 compares the theoretical relative efficiency of this design to
a standard 1:2 matched case-control design, a 1:2 counter-matched study
with only one exposed case in each set, and a cohort analysis in which
X would be obtained on the entire cohort. Although no design based
on sampling from within the cohort could be more efficient that the full
cohort analysis, we see that the 1:2 counter-matched design can be nearly
as powerful as a full cohort analysis and substantially more powerful than
a standard nested design.

The counter-matched design is also quite efficient for testing interac-
tions (Table 5.5), although there can be some loss of efficiency for testing
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Table 5.4. Statistical power for various nested case-control and
counter-matched designs using 700 sets of 1 case and 2 controls
each. (Data from Bernstein et al. 2004.)

RR at Full Nested Counter-matched
2 Gy cohort case-control (N unexposed:exposed)

1:2 2:1

1.4 79 61 70 63
1.5 87 69 84 78
1.6 97 86 95 92
1.7 100 95 99 97

Table 5.5. Asymptotic relative efficiency for the 1:1 counter-matched and
1:1:1 hybrid design with an additional randomly selected control, relative to
a standard 1:1 matched design. (Langholz and Goldstein, 1996.)

exp(β1) 1:1 counter-matched 1:1:1 hybrid

Z X Z ×X

0 2.00 0.19 1.00 2.00 1.05 1.82
4 4.35 0.62 2.09 4.35 1.32 3.21

confounders. The relative efficiency of counter-matching depends in large
part on how good a surrogate Z is for X.

Figure 5.1 illustrates this for dichotomous Z and X variables across a
range of sensitivities and specificities (Langholz and Borgan 1995). It is
apparent that for testing the main effect of exposure and its interaction
with a covariate, there can be considerable improvements in efficiency,
particularly under the alternative. Conversely, there is a substantial
loss of efficiency for the covariate effect, but this can be recovered
by including a separate random control group (the “hybrid” design in
Table 5.5).

Table 5.6 illustrates Cox regression and nested case-control analysis of
radiation exposure in the Colorado plateau uranium miner cohort. Both
analyses use the same series of 324 lung cancer cases and the same exposure
variable, cumulative radon daughter exposure in “working level months”
(WLM), up to five years previously. For the full cohort analysis, each case
is compared with all subjects still alive at the case’s age, born in the same
year, and enrolled in the cohort by that date. For the nested case-control
analysis, 1 or 3 controls were sampled at random from the risk set for each
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Figure 5.1. Effect of sensitivity and specificity of surrogate variable Z used for counter-
matching on the efficiency for estimating the Y -X association, relative to a conventional
nested case-control design. (Data from Langholz and Borgan 1995.)

case. The counter-matched analysis led to substantially smaller standard
errors that the conventional case-control design for both the radon main
effect and its interaction with smoking, but somewhat larger standard
errors for the smoking main effect. A hybrid matched design using one
random and one counter-matched control per subject was generally less
efficient that the 1:3 counter-matched design, even for the smoking main
effect (albeit with a smaller total sample size), although it was generally
slightly more efficient at estimating all three effects than either of the 1:1
designs (albeit with a larger sample size).

Other applications of counter-matching have been discussed by
Langholz and Goldstein (1996); Cologne (1997); Steenland and Deddens
(1997); Cologne and Langholz (2003); Langholz (2003); Cologne et al.
(2004), including studies of reproductive factors in breast cancer in
the atomic bomb survivor cohort, lung cancer in the Colorado plateau
uranium miners, and gold miners.

To investigate the effect of maternal smoking on asthma prevalence and
its modification by genetic susceptibility, prevalent cases were counter-
matched to controls from the Children’s Health Study on a binary
indicator for maternal smoking during pregnancy and additional infor-
mation on smoking during and after pregnancy was obtained, along
with DNA samples (Langholz and Goldstein 2001). This study also illus-
trates counter-matching with multiple cases per stratum. Maternal and
grandmaternal smoking during pregnancy was positively associated with
early-onset asthma, but postnatal exposure was not (after controlling for
in utero exposure), nor was risk increased in those whose mothers quit
smoking before pregnancy (Li et al. 2005a). Other analyses demonstrated
significant associations with exposures in the first year of life to wood
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Table 5.6. Estimates of the effects of radon and smoking in the Colorado plateau
uranium miner cohort by different sampling designs. (Reproduced with permission
from Langholz and Goldstein 1996).

Modela Full
cohort

Random sampling Counter-matching Hybrid
1:1:1

1:1 1:3 1:1 1:3

Univariate
models
Radon (βR)

b 0.36 (0.10) 0.41 (0.19) 0.41 (0.15) 0.33 (0.11) 0.36 (0.11) 0.35 (0.11)
Smoking (βS)

c 0.16 (0.05) 0.18 (0.07) 0.20 (0.06) 0.37 (0.15) 0.23 (0.08) 0.19 (0.07)
Adjusted
modeld

Radon (βR) 0.38 (0.11) 0.42 (0.20) 0.43 (0.16) 0.39 (0.14) 0.41 (0.13) 0.44 (0.16)
Smoking (βS) 0.17 (0.05) 0.23 (0.10) 0.20 (0.07) 0.25 (0.10) 0.19 (0.07) 0.23 (0.09)

Interation
modele

Radon (βR) 0.67 (0.27) 0.51 (0.29) 0.53 (0.24) 0.54 (0.28) 0.50 (0.21) 0.62 (0.30)
Smoking (βS) 0.24 (0.08) 0.25 (0.12) 0.22 (0.08) 0.30 (0.13) 0.22 (0.079) 0.29 (0.11)
Interaction (βRS) −0.68 (0.27) −0.41 (0.70) −0.41 (0.42) −0.53 (0.46) −0.31 (0.36) −0.53 (0.42)

Number of
distinct
subjects 3,347 478 837 473 765 670

or oil smoke, cockroaches, herbicides, pesticides, farms and a negative
association with sibship size (Salam et al. 2004).

Andrieu et al. (2001) discuss the possibility of counter-matching jointly
on two interacting risk factors, such as a surrogate for a gene (say, fam-
ily history) and a surrogate for exposure. In a 1:1:1:1 counter-matched
design, each matched set would include one case and three controls, with
each combination of surrogate exposure and family history strata rep-
resented. They showed that this design was more efficient for testing
gene–environment interactions than either a standard 1:3 nested case-
control designs or 1:3 counter-matched designs that used only one of the
two factors for counter-matching.

Case-distribution studies

In this section, we consider several examples of a broad class of what
Greenland (1999b) calls “case-distribution studies.” All these designs are
characterized by the exposure distribution of a case series being compared
to a hypothetical exposure distribution representing a theoretical com-
plete population or distribution. Greenland provides a unified likelihood
framework for the analysis of such designs and a thorough discussion of
the assumptions needed for its validity. Here, we introduce the basic idea
through several examples of particular types of case-distribution studies.
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Case-crossover design

The case-crossover design was developed to study acute responses to envi-
ronmental triggers by using each subject as his own control in the spirit of a
randomized crossover trial. The ideawas first proposed byMaclure (1991)
to study precipitating events for myocardial infarction. He proposed to
assign to each observed event a comparison time at some predefined earlier
time point thatwas otherwise comparable (e.g., same day of theweek). The
analysis would then compare the frequencies or means of various expo-
sure factors at the case times versus the crossover times using a matched
analysis, just like a standard matched case-control study.

Using this design, Peters et al. (2004) found a highly significant odds
ratio of 2.9 (95% CI 2.2–3.8) for nonfatal myocardial infarctions in rela-
tion to exposure to traffic one hour prior to onset; the association was
consistent for use of public transport, private cars, motorcycles, or bicy-
cles and virtually unchanged by adjusting for level of exercise. Schwartz
(2005) used a similar approach to study ozone exposures, controlling for
weather. As will be discussed in Chapter 8, time series analyses of the
relation between short-term fluctuations in air pollution and correspond-
ing fluctuations in mortality can be quite sensitive to how one adjusts for
weather; associations with ozone are particularly sensitive because high
ozone days tend to be quite hot. Schwartz compared two case-crossover
analyses, both matching on season and individual factors, but one also
requiring the control day to have the same temperature as the case day.
The two point estimates for all-cause mortality were quite similar: 0.19%
per 10 ppb change in ozone (95% CI 0.03–0.35) without matching on
temperature but controlling for it using regression splines; 0.23% (0.01–
0.44) matching on temperature, although the latter led to somewhat wider
confidence limits.

This design entails the implicit assumption that there is no consistent
trend in exposure prevalence or intensity. In some circumstances, this can
be overcome by the use of a “bidirectional case-crossover” design (Navidi
1998), in which two crossover times are chosen, one before and one after
the time of event. For an event like death, this might seem strange, as
exposures occurring after death could not possibly be causally related and
would be meaningless for factors specific to the individual (e.g., activities)!
In other contexts, such as ambient air pollution, however, the exposure
intensities at the two crossover times could reasonably be interpreted as
provided an estimate of the population distribution of exposures expected
at the time of event under the null hypothesis. Nevertheless, the bidirec-
tional design is not immune to bias, particularly for cyclical exposures,
unless one analyzes the deviations from some smooth curve rather than
the absolute exposure intensities (Janes et al. 2005).
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Poisson process model for recurrent events

It can be shown that the case-crossover design estimates the same param-
eter as that estimated by time-series studies described in Chapter 8. To
see this, let λ(t ,Z(t)) denote the usual hazard rate at time t in relation to
exposure at time t . The likelihood is obtained by conditioning on the fact
that an event occurred at time ti for subject i and did not occur at his or
her crossover time si , hence

L(β) =
∏
i

λ(ti ,Zi(ti))

λ(ti ,Zi(ti))+ λ(si ,Zi(si))

If we assume λ(t ,Zi(t)) = λ0i exp(βZi(t)), then the baseline hazard terms
cancel out, without any requirement of homogeneity across subjects, and
we are left with the usual matched case-control comparison of relative
risk terms evaluated at the different times for the same subject. For this
cancellation to occur, however, it is necessary to assume constancy of
baseline rates over time. If instead one were to assume λ(t ,Zi(t)) = λ0(t)
Xi exp(βZi(t)), where Xi represents an unobservable “frailty” for each
subject—his relative risk, relative to other subjects with the same covariate
values at any given time—then the Xis still cancel out of the previous
likelihood but the λ0(t) terms do not. Nor can the baseline hazard function
be estimated from case-crossover data alone, but it could be estimated if
supplemented by the time-series of event counts, assuming constancy of
the population size and risk factors other than Z(t). One would also need
to assume that the exposures at case’s crossover times could be used to
estimate the distribution of population exposures at these times, at least
relative to other times. Since this could be a questionable assumption, one
might also want to include an appropriate control group to estimate the
distribution of Z(t) in the population at risk. The full likelihood is then a
combination of a Poisson likelihood for the number of events at each point
in time, multiplied by a case-control likelihood for which subject was the
case, and also multiplied by the conditional likelihood given above for the
timing of the case’s event, given that he or she experienced an event:

L(β, λ0(t)) =
∏
i

Pr(Y (t)|λ̄(t))

×
∏

i|Yi=1

Pr
(
Yi = 1|R̃i ,

{
Z̄j

}
j∈R̃i

)
×

∏
i|Yi=1

Pr
(
Yi(ti) = 1|Yi = 1, {Zi(t)}t∈T̃i

)
where λ̄(t) = ∑

j∈R̃(t)|Yj (t)=0 λ0(t) exp(βZi(t))/nR̃(t)
, R̃i is the set compri

case i and matched controls, R̃(t) the set of all subjects at risk at time t and
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T̃i the case and sampled crossover times for subject i. We might thus call
this the “case-crossover-control-crossover (C4)” design!

This idea has been more formally developed by Dewanji and Mool-
gavkar (2000; 2002) as a Poisson process model for recurrent event data
with person-specific baseline rates. By conditioning on the total number
of events for each person, the baseline hazards cancel out, leaving a like-
lihood that depends only on the time-dependent ambient exposure data
(which would be the same for all individuals at any given time). The theo-
retical connectionwith case-crossover and time-seriesmethods, alongwith
applications to air pollution data, will be described further in Chapter 8.

Case-specular design

The case-specular design is similar to the case-crossover one, except that
the comparison is spatial rather than temporal. It was first proposed by
Zaffanella et al. (1998) for the purpose of testing the hypothesis that
childhood leukemia was related to residential exposure to magnetic fields
predicted by the configuration of electric power lines near the home.
Rather than comparing the wiring configurations or magnetic field mea-
surements of the case’s home with that of a real control, a “specular”
home was imagined as having the corresponding location on the opposite
side of the street and the magnetic fields predicted by wiring configura-
tions at that location is used for comparison. (Unlike most of the other
designs, the specular home need not contain an eligible control person,
or even exist!) When applied to two earlier studies of childhood cancers,
the results supported the original conclusions of an effect of wire codes,
rather than confounding by socio-economic status or other neighborhood
characteristics (Ebi et al. 1999).

A very similar idea is being used to investigate radio frequency emissions
from cellular phones as a risk factor for brain cancers in an interna-
tional case-control study being coordinated by the International Agency
for Research on Cancer (Cardis et al. 2007). Here, the comparison is
within the individual, specifically between the estimated dose at the actual
location of the tumor in the brain to the “specular” dose at the mirror
image location on the opposite side of the brain. Because most people
habitually use cell phones on one side or the other, these estimated doses
are generally quite different at the two locations. This would provide a
valid comparison, provided handedness is unrelated to the baseline risk of
cancer on the two sides of the brain.

Langholz et al. (2007) have extended this basic idea to a comparison of
doses at multiple locations across an organ, specifically scatter radiation
doses to the contralateral breast from radiotherapy for breast cancer in
the WECARE study. For this purpose, doses were estimated to each of
eight quadrants plus the central nipple area and showed a clear gradient
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between inner and outer quadrants. There is also considerable variability
in the baseline frequency of cancer (the frequency in unirradiated women)
across the nine sectors, whichwould appear to be a recipe for confounding.
However, it can be shown that a conditional likelihood like that for a
conventional 1:8 matched case-control study with separate intercepts for
each quadrant yields a consistent estimator of the relative risk parameter.
Let Zis denote the dose to sector s in case i and si denote the sector in
which the tumor actually appeared, then the appropriate likelihood is

L(β, α) =
∏
i

exp(αsi + Zisi β)∑9
s=1 exp(αs + Zisβ)

setting α1 = 0 for identifiability. Note that no control individuals are
used in this form of analysis. Langholz et al. compared the efficiency
of this analysis to a conventional 1:2 matched case-control comparison
of average doses to the entire breast between case and the two control
individuals, a 1:2 matched case-control comparison of the doses Zisi and
Zjsi to the actual tumor location in the case i and the same location for
her matched controls j , and a 1:26 matched comparison of Zisi and all
remaining locations Zis (s �= si) for the case and all Zjs for the controls
(this last, also requiring sector-specific intercepts). The results of this com-
parison are shown in Table 5.7. The first of these analyses is generally not
valid unless an appropriately weighted dose (weighted by the baseline risk
in the different sectors) is used. Even if the correct weighted average is
used, however, this analysis does not exploit the actual tumor locations,
so is less efficient than the 1:2 or 1:26 matched comparisons of the case’s
dose at the tumor location. The relative efficiency of the remaining analy-
ses depends upon the ratio of variances in doses between subjects within

Table 5.7. Simulated bias and efficiency of the alternative case-specular
comparisons for the WECARE study

Design Bias (%) Asymptotic
relative
efficiency

α3/α1=5 σψ=1 α3/α1=5 σψ=1

Case-control (1:2)
crude average dose +20 −30 116 63
weighted average dose 0 −20 89 83
dose to tumor location 0 −20 100* 100*

Case-specular (1:8) +5 +5 27 46
Case-specular/control-specular (1:26) 0 −15 124 140

* Reference design for relative efficiency comparisons.
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matched sets and between locations within cases. In the WECARE study,
the within-subject variance is small compared to the between-subject vari-
ance (in part because the counter-matched design ensured a high degree
of discordance), so the case-only design was quite inefficient, compared
with either of the other two. Of the two, the 1:2 matched comparison of
doses at the actual tumor location is less efficient, as less information is
used, but is not sensitive to assumptions about the adjustment for baseline
risk needed in the 1:26 matched comparison. On the other hand, both
these analyses are potentially confounded by subject-specific risk factors,
whereas the case-only analysis is not.

Case-only and case-parent-triad designs

In Chapter 12, we will consider various approaches to studying interac-
tions, including gene–environment interactions. Before concluding this
section on case-distribution studies, it is worth mentioning two other
designs that are specifically intended for studying gene–environment inter-
actions. The simplest is the case-only design (sometimes called a case–case
design). This design relies on the basic result that if two factors are indepen-
dently distributed in the population at risk, theywill only be independently
distributed among cases if their joint effects on the risk of disease are
multiplicative. Thus, if we are prepared to believe the two factors are inde-
pendent in the source population, an observation that they are associated
among cases would be tantamount to a departure from a multiplicative
risk model. Now for most environmental agents, there is no particular
reason why we would expect them to be independent in the population.
However, for genes we can rely on the random assortment of alleles
at meiosis—which is not going to be influenced by subsequent environ-
mental exposures, except possibly by differential survival—so that we
might indeed be willing to assume that most genes and most environmen-
tal factors are independent. The case-only design (Piegorsch et al. 1994;
Umbach and Weinberg 1997; Weinberg and Umbach 2000; Albert et al.
2001) therefore simply tests for association between genes and exposures
among cases, without reference to any controls, as an indirect test of gene–
environment interaction on a scale of risk. Of course, it is also possible
that the gene under study has some effect on an individual’s propensity for
exposure: one is reminded of Fisher’s (1958) famous conjecture that the
association between smoking and lung cancer might be due to a gene that
confers a propensity to smoke or to become addicted and independently
an increased risk of lung cancer. [See Stolley (1991) for further discus-
sion of this historical controversy.] In such a situation, the assumption of
gene–environment independence would be suspect.
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The case-parent-triad design is widely used in genetic epidemiology
for studying the main effects of genes, but is also relevant in environ-
mental epidemiology for studying gene–environment interactions. Like
the case-crossover and case-specular designs, this design does not use
any real control subjects but instead compares the “exposure” status
(here, genotype) of the case to the distribution of hypothetical expo-
sures, here the set of genotypes the case could have inherited from his or
her parents. For study of gene–environment interactions, only the case’s
environmental exposures are used, not those of the parents (which are
unlikely to be comparable because of generational and other time-related
differences). Instead, the analysis compares the effect of the genes under
study between exposed cases and unexposed cases (Schaid 1999). We
defer the details of the analysis of such designs to Chapter 12, where
we consider gene–environment interactions. It is worth noting that this
design entails a similar assumption of gene–environment independence as
the case-only design, but somewhat weaker because all comparisons are
made within families, not between individuals, so it is sufficient to assume
gene–environment independence conditional on parental genotypes.



6
Modeling exposure–
time–response
relationships

In Chapter 4, we introduced the general linear model (GLM), and special
cases of it that are of particular importance in epidemiologic analysis of
binary disease data—logistic, Poisson, and Cox regression. In that section,
we confined attention to a generic statistical model, the canonical form for
the link function g[E(Y |Z)]=Z′β appropriate for the particular data struc-
ture. Although an extremely flexible modeling framework, it is not based
on any biological concepts, but rather chosen to yield some desirable statis-
tical properties, for example, that predicted probabilities always be in the
range [0, 1] and that the estimated model parameters β be asymptotically
normally distributed.

In environmental epidemiology, we frequently will have occasion to
want to incorporate concepts from biology into the form of our mathe-
matical models. For example, radiobiological theory suggests that cancer
dose–response from ionizing radiation is expected to be a linear-quadratic
function of dose, with an additional negative exponential factor at very
high doses due to cell killing (NAS 1990; UNSCEAR 2000). The the-
ory of multistage carcinogenesis further suggests specific forms for how
dose–response is expected to be modified by age and latency (Chapter 13).
Additional complexities come into play when analyzing extended time-
varying exposure histories. In other circumstances, we might not want to
be confined by the strictures of either a statistical or a biological model,
but simply wish to let the “data speak for themselves” in a very flexible
manner, making only minimal assumptions such as a certain degree of
smoothness. In this chapter, we develop a broader modeling framework
that will address such aims.

Although there are subtle distinctions between the ways one might want
to model individual binary, aggregate count, and survival data, it gener-
ally suffices to frame this discussion in terms of models for the hazard
rate λ(t , Z(·)) where Z(·) denotes the history of exposure (and any other
covariates) up to time t . From this, one can then express the likelihood
for any particular data structure following the general principles outlined
in Chapter 4.

Basic dose–response models

In this chapter, we will generally use the terms “exposure” and “dose”
interchangeably. From a statistical point of view, the distinction is of no
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significance, but the semantic difference is important. More precisely, the
word dose refers to the amount of some hazardous agent delivered to the
target organ, whereas exposure refers the environmental concentration to
which a person is subjected. Various steps—activity, inhalation or inges-
tion, internal deposition, metabolism, delivery to the target organ, uptake
and retention—can intervene between exposure and dose, all of which
might be modeled mathematically, as discussed in Chapter 13. Therefore,
we use the letter Z (or in Chapter 11 the letter X to distinguish true and
measured dose) to denote either quantity.

We begin by considering a broad class of parametric dose–response
models—those that follow some specific mathematical form involving one
or more parameters (e.g., slope and shape coefficients) that we wish to esti-
mate. The greater the number of parameters we allow, the more flexible
the model and the better we expect it to fit the data, but the less precisely
we expect to be able to estimate them. In the limit as the number param-
eters approaches the effective number of data points, a parametric model
would do no more than reproduce the data, without providing any insight
into its patterns. Somewhere in between these two extremes lies what we
will call “nonparametric” or “flexible” models. Or course, those are not
really without assumptions, but here we aim to make as few mathemat-
ical restrictions as possible to allow the patterns and the data to reveal
themselves.

We begin by restricting Z to be a time-constant quantity—for example,
average exposure intensity—and will extend the models to time-varying
and extended exposure histories later. We also limit attention in this
chapter to a single exposure factor, deferring discussion of unscrambling
multiple exposures and interaction effects to Chapter 12.

Parametric models

The basic hazard ratemodel we discussed in Chapter 4 took the parametric
proportional hazards form

λ(t ,Z) = λ0(t) exp(Z′β),

the exponential form for the relative risk r(Z)= λ(t , Z)/λ0(t)= exp(Z′β)

being chosen for mathematical convenience so that the hazard rate could
never be negative. However this function could, in principle, be replaced
by any mathematical function that made biological sense. More generally,
we distinguish two basic forms of hazard rate models that are commonly
used:

Relative risk model: λ(t ,Z) = λ0(t)r(Z′β)

Excess risk model: λ(t ,Z) = λ0(t)+ e(Z′β)
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where r(·) and e(·) can be any specific function, subject to the constraint
that λ(t , Z) ≥ 0 for all observed values of t and Z. Probably the most
widely used “general relative risk model” (Thomas,1981) is the linear
model r(Z′β)= 1 + Z′β, but of course there is nothing to stop us from
adding terms, for example, a linear quadratic form r(Z; β)= 1 + β1Z +
β2Z

2. Radiobiological theory suggests for ionizing radiation a general
form

r(Z; β) = 1+ (β1Z + β2Z
2) exp(−β3Z)

known as the linear-quadratic cell-killing model (NAS, 1980). The linear
term represents the probability of double-strand break being caused by a
single hit to a strand of DNA by a quantum of energy (e.g., a gamma ray or
alpha particle). The quadratic term represents the probability of two inde-
pendent traversals, each causing single-strand damage at homologous loci.
The exponential term represents the probability of radiation-induced cell
death before it can become malignant. This model is generally relatively
well behaved provided all the regression coefficients are positive. However,
if some are not significantly positive, their lower likelihood-based limits
can end up being determined by the single observation with the largest Z,
since the overall log likelihood goes to minus infinity as r(Z;β) → 0.

The background rates of most chronic diseases like cancer rise dramat-
ically with age. Before discussing models for λ0(t), it is worth considering
the behavior of the relative risk and excess risk models in terms of age–
exposure interactions. Note that in their present forms, neither model
explicitly includes any age interaction terms. If we consider their sim-
plest linear forms λ(t , Z)= λ0(t)(1 + Z′β) and λ(t ,Z)= λ0(t) + Z′β,
however, we see that each can be rewritten in the other’s form as
λ(t , Z)= λ0(t)+ Z′βλ0(t) and λ(t ,Z)= λ(t)[1+ Z′β/λ0(t)], respectively.
Thus, it follows that if the relative risk were constant with age, the excess
risk must increase with age in proportion to the background rate. Con-
versely, if the absolute risk were constant with age, the relative risk must
decline, inversely proportionally to the background rate. Of course, it is
highly likely that neither parameter is truly constant with age, but the
pattern is intermediate, absolute excess rates increasing and relative risks
decreasing with age. This is clearly shown in Figure 6.1 for solid can-
cer mortality among the atomic bomb survivors. In such a case, explicit
modeling of the exposure–age modification is needed, as discussed below.

In addition to specifying the form of the relative risk r(Z;β) or excess
rate e(Z; β), one must also specify the baseline rate λ0(t). This too can
be done parametrically or nonparametrically, the latter essentially elimi-
nating them using partial likelihood as described in Chapter 4. Since in
environmental epidemiology we are generally concerned with excess risks
that are small in comparison with background rates, and since the latter
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Figure 6.1. Excess relative risk r(Z) (left panel) and excess absolute risk e(Z) at 1 Sv by
age at exposure groups for solid cancers in the atomic bomb survivors (Reproduced with
permission from Preston et al. 2004.)

may have a very strong and complex dependency on age and other factors
that may be correlated with exposure, it is essential that baseline rates be
modeled carefully if a parametric approach is to be used. A sufficiently rich
parametric model may suffice for this purpose, subject to the constraint
that it be positive, or more precisely that the total rate (background plus
excess) be positive. For example, the EPICURE package (Preston et al.
1993) that has been widely used in modeling the atomic bomb survivor
data allows the following general form for the baseline hazard:

λ0(U) = (1+ U′α) exp(U′γ )

where U is a vector of baseline risk factors such as age, sex, calendar
year, or year of birth, and possibly additional risk factors (other than
exposure Z) and interactions between them. (Note that some variables
like age can be time varying, while others like sex are fixed.) Some of these
covariates could appear in the linear component, some in the loglinear
component, or even in both.

Sometimes an investigator may wish to use a set of external rates λ∗(t)
for comparison with an exposed cohort. However, there could be some
question about the appropriateness of this comparison (recall the dis-
cussion of the “healthy worker effect” in Chapter 2, for example). If
one thought that such a bias was similar across the entire cohort, one
might take λ0(t)=αλ∗(t), where the population/baseline rate ratio α

would be estimated jointly with the relative risk coefficients β that are
of primary interest. More generally, one might wish to allow this base-
line rate ratio to be modified by such factors U as time since start of
employment in an occupational cohort and adopt a model of the form
λ0(t , U)= λ∗(t) exp(U′γ ).
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The EPICURE package supports both relative and excess risk models,
where both the excess relative risk terms r(Z, U) and the excess absolute
risk terms e(Z, U) can include linear and/or loglinear components. Thus,
the full model can be written in the form.

λ(U, Z) = λ0(U)[1+�krk(Z, U)] +�� e�(Z, U)

= eα
′
0U[1+�kβ

′
kZ eγ

′
kU] +�� η

′
�Z eω

′
�U)

The full generality is seldom needed, but its flexibility can be very useful
in studying interactions, as we shall see in Chapter 12. For example, one
might want to allow radiation (Z) and smoking (S) to interact additively
with each other, but both multiplicatively with age:

λ0(U, Z, S) = exp(U′α)[1+ β1Z + β2S]
= λ0(U)[1+ r1(Z)+ r2(S)]

Rich as this general form of parametric model for baseline rates is, it
is still using relatively few parameters to describe what could be a very
complex dependency on several temporal dimensions and other factors,
so one might wish to adopt some less restrictive form. For example, in
Poisson regression of data cross-tabulated by categories of U and Z, one
might estimate a separate parameter λs for each stratum s of the factors in
U. Similarly, in Cox regression of individual data, one could allow λ0(t) to
have a separate value of each of the observed event times. Such models are
called “semi-parametric” because the modeling of λ0(t) is nonparametric,
while the modeling of r(Z) or e(Z)—and the combination of baseline and
excess risks—is parametric. This has the great advantage that no assump-
tions are made about the form of the baseline risk, which if violated could
have biased inferences about the excess risks that are of primary interest.
For relative risk models, this approach works very well, since one can use a
form of conditional likelihood to estimate the parameters in r(Z) directly
without actually having to estimate the baseline parameters λs or λ0(t).
Excess risk models are more difficult to treat semiparametrically because
of the constraint that λ(t) + e(Z) ≥ 0 for all t and Z, not just at the
observed event times. Furthermore, lack of orthogonality can also cause
problems with convergence to asymptotic normality if many parameters
are being estimated in λ0(t). See Borgan and Langholz (1997) for further
discussion of this problem.

However one specifies the model for λ(t , Z), fitting is done by maxi-
mum likelihood, following the general principles for likelihood formation
discussed in Chapter 4. For example, in Poisson regression, the likelihood
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Table 6.1. Estimates of mortality dose–time–response relationships for all
solid cancers combined in the atomic bomb survivors β is the slope per Sv; γ1
the percent change per decade of age at exposure; γ2 is the change per year of
attained age. (Data from Preston et al. 2004.)

Model Dose effect (β) Age at exposure (γ1) Attained age (γ2)

Relative risk 0.47 (0.37, 0.57) −31% (−42%, −20%) −0.70 (−1.4, 0.08)
Excess risk 30 (24, 36) −23% (−34%, −12%) +3.6 (3.0, 4.4)

is still written as

L(α, β) =
∏
s,z

λ(s, z)Dsz exp[−Yszλ(s, z)]

where s and z denote the levels of the stratification of U and Z, and Dsz

and Ysz the number of observed cases (or deaths) and person-years at risk
in the corresponding cells of the cross-tabulation. Table 6.1 compares the
parameter estimates for linear relative and excess risk models for all solid
tumors combined from Poisson regression of the atomic bomb survivor
data (Preston et al. 2004). The modifying effect of age at exposure is
similar on relative and absolute risk scales, declining about 20-30% per
decade. On the other hand, relative risks decline with advancing attained
age (although this decline is not significant if age at exposure is in the
model), whereas excess absolute risks increase strongly.

For leukemia, the best-fitting model is an age-at-exposure stratified
excess absolute risk model of the form

λ(t , Z,E, S) = λ0(t , S)+
[
β1EZ +

(
β2

β1E

)
Z2
]
exp

[
γE ln(t/E)+ γS

]
(Preston et al. 2004), where Z denotes radiation dose, E denotes three
strata of age at exposure (with mean age E), and S denotes sex. Thus the
dose–response is linear-quadratic with a slope that increases with age at
exposure and declines with time since exposure; the decrease with latency
is steepest in the age group 0–19 and nonsignificant thereafter.

Nonparametric models

We now turn to even more flexible ways of handling the excess risk part
of the model, for example, for visualizing the fit of the data to some
parametric dose–response model or asking whether there is any evidence
of a threshold or saturation effects.

Of course, one could always address such questions parametrically and
with greater statistical power by reserving a single parameter to test the
specific hypotheses of interest, but then any such inferences would be
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model dependent and one could never be certain that the test or estimate
did not reflect some lack of fit somewhere else in the data. There is no
substitute for “seeing” the data itself, but in high dimensional data sets,
this is easier said than done. In general, some combination of parametric
and nonparametric modeling is the best approach.

Consider, for example, the question of testing for the existence of a
threshold. Parametrically, one might test for an absolute threshold by
comparing a linear relative (or excess) risk model r(z)= 1+Zβ against a
two-parameter linear spline of the form.

r(Z) = 1+ (Z − τ)I (Z − τ)β ≡ 1+ (Z − τ)+β (6.1)

where I (u) is an indicator function taking the value 1 when the condi-
tion u is true, 0 otherwise, and (u)+ = u if u>0, otherwise 0. Here, τ

represents the threshold below which there is absolutely no increase in
risk. One can estimate τ by maximizing the likelihood jointly with respect
to τ and β, test the null hypothesis H0:τ = 0 with a likelihood ratio test,
G2 = 2 ln[L(β̂, τ)/L(β̂, τ = 0)], where β̂ denotes the restricted MLE of β
at τ = 0. Perhaps more useful, the likelihood-based confidence limits on τ

are given by the solution to

2 ln[L(β̂, τ)/L(β̂(τ ), τ)] = χ2
1−α/2

where again β̂(τ ) represents the MLE of β as a function of τ .
(Technical aside: Because this threshold model does not have continu-

ous derivatives, the conditions for asymptotics (Cox and Hinkley 1974)
do not strictly hold. Thus, for example, a plot of the likelihood as a func-
tion of τ will have an abrupt change of slope at each observed value of Z.
In large enough sets of individual data, this is of no real practical signifi-
cance, as the distribution of Z will tend to a continuum, but in smaller or
aggregate data, hypothesis tests may not have exactly their nominal size
or confidence limits their nominal coverage. A second technical point is
that the null hypothesis τ = 0 lies on the boundary of the space of allow-
able values, since negative thresholds would be meaningless. Maximum
likelihood inference in such situations has been considered by Self and
Liang (1987). In this two-parameter model with only a single constraint,
the solution is quite straight-forward: one simply uses one-tailed tests and
confidence limits, hence the α/2 in the expression for the upper confidence
limit (that is, unless τ � 0 and one is interested in finding both its upper
and lower limits).)

Some might be uncomfortable with the notion of an absolute thresh-
old and believe that nature varies continuously. Furthermore, one might
believe that inter-individual variability is a universal feature of biology: if
an absolute threshold were to exist, it would not be the same for every-
one. These ideas have led some to propose a more flexible class of models
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with the property that the slope of the dose–response is zero at Z= 0 and
the transition to a positive linear relationship is continuous. One way to
accomplish this is to propose that the threshold τ is an unobserved, latent
variable for each individual, having some distribution fθ (τ ). Then the
observable, marginal dose–response is obtained by integrating over the
unobserved person-specific thresholds:

R(Z; β, θ) =
∫ ∞

0
r(Z; β, τ)fθ (τ ) dτ = 1+ β

(
ZFθ(Z)−

∫ Z

0
τfθ (τ ) dτ

)
where Fθ(τ) denotes the cumulative distribution function of fθ (τ ). Taking
the normal or gamma distribution for fθ (τ ), it is possible to derive closed-
form expressions for this integral (see Chapter 15). As above, θ can be
estimated jointly with β by maximum likelihood.

Estimates and tests of τ (or μ) are seldom sufficient by themselves to
provide compelling evidence about the existence or not of a threshold.
It is therefore helpful to superimpose the fitted models on some kind of
plot of the observed data. A simple way to do this is just to form a fine
stratification of dose and estimate the relative risk and confidence lim-
its for each category. Figure 6.2 illustrates the categorical estimates for
all solid concerns combined among the atomic bomb survivors, together
with a smoothed dose–response curve (with confidence bands) and linear
and linear-threshold models. Visually, there is no evidence for departure
from low-dose linearity, and this is supported by the likelihood-based
tests and confidence limits from a linear threshold models. This analysis
shows that any threshold greater than 0.06 Sy can be rejected, even though
none of the individual data points in this region are statistically signif-
icant. This illustrates the trade-off between resolution on the dose axis
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Figure 6.2. Dose response for all solid cancer mortality combined in the atomic bomb sur-
vivors, 1958–1994: left panel, entire dose–response relationship; right panel, enlargement
of the region below 0.5 Sv, with upper confidence limit on a linear threshold model shown
in gray. (Reproduced with permission from Pierce et al. 2000.)
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and statistical precision on the risk axis: the more categories we form, the
more detail we can see about the possible location of a threshold, but the
more unstable each estimate becomes. It is rather like Heisenberg’s Uncer-
tainty Principle—we cannot simultaneously know both the location of a
threshold and the magnitude of the risk in the immediately surrounding
neighborhood!

The debate over risks from low-level exposures has been particularly
intense in the radiation field. Despite the apparent linearity of the dose–
response demonstrated above, several groups of scientists (Academie des
Sciences 1997; Radiation Science and Health 1998) with strong connec-
tions to the nuclear industry have argued in support of the hypothesis that
low-levels of ionizing radiation are actually protective (“hormesis”), based
on a combination of evolutionary biology and mechanistic theories about
DNA repair. Various authoritative bodies have reviewed the evidence in
support of this hypothesis and concluded that “the assumption that any
stimulatory hormetic effects from low doses of ionizing radiation will have
a significant health benefit to humans that exceeds potential detrimental
effects from the radiation exposure is unwarranted at this time” (NAS
2006). Doll (1998) provides a particularly thoughtful discussion of this
commentary. See also (Little and Muirhead 1996; Hoel and Li 1998; Lit-
tle and Muirhead 1998; Little 2000; 2002; Baker and Hoel 2003; Little
2004b) for further analyses of the evidence for threshold effects among
the atomic bomb survivors.

To get around the “uncertainty principle” problem, a rich literature on
flexible modeling strategies has evolved. A very simple strategy is to use
some form of moving average, such as

r(Z) =
∑

|Z′−Z|<δ

r̂(Z′)

a simple average of the estimated relative risks with some window of size
δ around each value of Z, or better inversely weighted by their respective
variances and/or by some function of |z − z′|. Instead, however, we will
focus on a particular class of flexible models known as “splines.” There
are many variants of this approach, including natural splines, regression
splines, basis or B-splines, and LOESS smoothers. Generalized additive
models (GAMs) allow several such functions to be combined within the
general framework of GLMs as E[f (Z)]=�jsj (Zj ), where sj (Zj ) rep-
resents a flexible model (see (Hastie and Tibshirani 1990; Green and
Silverman 1994) for comprehensive treatments). We illustrate the general
approach here with cubic splines. We have already encountered one form
of spline above, the linear spline (Figure 6.1) used to introduce the concept
of a threshold. Cubic splines generalize this in two ways: first, by using
cubic polynomials rather than linear functions, as it yields a function that
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is not only continuous but also has continuous first and second deriva-
tives, conforming better to our intuitive notion of “smoothness”; second,
rather then a single threshold τ , we allow as many change points (known
as “knots”) as needed to provide a good fit to the data. The general form
of a cubic spline can be written as

r(Z) = 1+ β1Z + β2Z
2 + β3Z

3 +
K∑

k=1

γk(Z − τk)
3+

Since each of the terms (Z − τk)
3+ is zero at their respective knot τk, it is

easy to see that the resulting function r(Z) is continuous. Likewise, since
their first and second derivatives are also zero at the corresponding knots,
r(Z)will also have continuous first and second derivatives. In practice, the
number and location of the knots is specified in advance, depending upon
the degree of flexibility or wiggliness desired, and then only the βs need to
be estimated. Note that this is no more difficult than any other multiple
regression problem, since r(Z) is linear in the coefficients β and γ .

How wiggly is too wiggly? If, for argument sake, one were to put a
knot at every data point, then the spline would fit the data perfectly but
would be so wiggly that it would be impossible to detect any patterns. To
overcome this problem, one can impose a smoothness penalty. If we define
smoothness at any point as the degree of curvature, defined as the second
derivative r ′′(Z), then a natural definition of overall smoothness is its
integral (or more precisely, the integral of the squared second derivative,
since curvature can be positive or negative, but we care only about is
magnitude),

S(β, τ ,K) =
∫
[r ′′(Z)]2 dz

This integral is easily computed, since r ′′(Z) is simply a piecewise lin-
ear function. Now if we let �(β, τ ,K) denote the log likelihood function
derived from r(Z), we can form a “penalized” loglikelihood by subtract-
ing the quantity σS(β, τ ,K) and maximize this function with respect to β,
τ , and K for whatever degree of smoothness penalty σ we wish to impose.
Furthermore, although at first blush it would appear that the penalized
log likelihood is monotonically decreasing in σ , one must remember that
β̂, τ̂ , and K̂ themselves depend upon σ , so the penalized profile likelihood
is a nonlinear function of σ . Thus, it is possible to estimate the optimal
smoothness penalty by choosing the number and location of the knots
to maximize the penalized likelihood. In this way, these choices are not
entirely arbitrary. Recent work by Robins et al. (2007) on semiparametric
regression using higher-order influence functions appears promising as a
means of deciding how many degrees of freedom to allocate to complex,
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Figure 6.3. Nonparametric estimates of the dose–response relationships for solid can-
cers and leukemia in the atomic bomb survivors. (Reproduced with permission from
Chomentowski et al. 2000.)

multidimensional confounders, while still yielding “honest” confidence
limits on the main effect of interest.

Figure 6.3 illustrates nonparametric fits to the atomic bomb survivor
data on leukemia and solid concerns using a sliding window approach,
together with confidence bounds on the fitted curve. Note that the simple
linear model for solid cancers and the linear-quadratic model for leukemia
fit easily within these bounds all the way down to zero dose, although
thresholds less than 0.25 Sv cannot be excluded for leukemia. A better
sliding windows approach was illustrated in Figure 6.2, where each of
the neighboring points was weighted by prior quadratic weights and the
inverse of their variances. For large datasets like this, there is arguably
little to choose between alternative fitting methods, which will generally
give similar results. For smaller datasets, the use of LOESS or other spline
methods may be preferable.

Splines have not been widely used in the radioepidemiologic literature,
perhaps in part because of the strong radiobiological theory supporting
the linear-quadratic cell-killing model. The approach has been very widely
used the air pollution field, however, where there is no such theoretical
basis for favoring any particular mathematical form for the dose–response
relationship. Figure 6.4, for example, provides plots using the generalized
additive model for daily mortality rates as a function of temperature and
particulate pollution levels in the city of Birmingham, AL (Schwartz 1993).
Whereas the relationship with temperature is highly nonlinear, with ele-
vated death rates at very high and very low temperatures, the air pollution
curve is remarkably linear, even at levels down to the lowest observed
pollution levels, well below the current regulatory limit. In the following
section, we will see how splines can also be used to describe the effects
of time lags between peak exposure and peak mortality, as well as other
temporal modifiers.
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A joint analysis of time-series data on daily particulate pollution levels
and mortality from the 20 largest U.S. cities in the NMMAPS project
(Daniels et al. 2000) used a hierarchical model with cubic splines to
describe the shape of the dose–response relationship (see Chapter 8 for
a general description of time series methods). For cardiovascular and res-
piratory causes of death combined, there was no evidence of departure
from a simple linear relationship, whereas for all other causes combined,
a model with a threshold at 65 μg/m3 provided a better fit. Schwartz and
Zanobetti (2000) introduced a simple approach to combining nonpara-
metric dose–response curves by inverse-variance weighting and similarly
concluded that a linear relationship provided a good fit for total mortality
down to the lowest observed levels in 10 U.S. cities. These methods have
also been applied to European data from the APHEA project ((Schwartz
et al. 2001; Samoli et al. 2003; 2005)), again confirming the linear-
ity of the particulate-mortality relationship, even after controlling for a
nonparametric smooth function of SO2 and between-city heterogeneity.

Another flexible class of models that has recently received some atten-
tion in the epidemiologic literature is “fractional polynomial models”
(Greenland 1995; Royston et al. 1999; Bagnardi et al. 2004; Royston
and Sauerbrei 2005; Faes et al. 2007; Sauerbrei et al. 2007). These are
basically polynomial regression models, but supplemented with terms of
the form Z−2, Z−1, Z−1/2, ln(Z), and Z1/2, together with product terms
of the form Zpln(Z), for greater flexibility. The model is generally imple-
mented with some form of stepwise variable selection or model averaging,
although more than two such terms are seldom needed. Logarithmic or
negative power terms cannot be included if there are subjects with zero or
negative values of Z unless some suitable constant is added. A better solu-
tion in this case is often to include an indicator variable for no exposure
and use the fractional polynomials only for exposed subjects.



122 Statistical methods in environmental epidemiology

As should be evident by now, even splines are not truly nonparamet-
ric, taking one of the several specific, albeit highly flexible, mathematical
forms, none motivated by biological considerations beyond a general
notion that nature should be smooth. As noted earlier, a truly nonparamet-
ric model would be useless as a estimate of a dose–response relationship
since it would merely reproduce the data, although it could be used as
a test of case-control differences or to avoid making assumptions about
other parts of the model, like time in a Cox model. If, however, one
were willing to make the minimal assumption that the dose response were
monotonic—never decreasing as dose increased—then one could use the
technique of “isotonic regression” (Barlow et al. 1972). Here one can
show that the best fitting monotonic relationship is a step function, with
jumps at some subset of the observed covariate values. For case-control
data, Thomas (1983a) showed that such jumps can occur only at cases’
exposures. The model is fitted using the “pool adjacent violators” algo-
rithm: starting with completely unconstrained step function with intervals
defined by the cases’ Z values, each time the estimated dose–response goes
down, one pools the two adjacent categories, and continues in this man-
ner until there are no further violations. For hypothesis testing purposes,
one can show that the chi square statistic for heterogeneity among the
final set of categories has a distribution comprised of a weighted average
of chi square distributions with various degrees of freedom, the weights
corresponding to the probability of observing the corresponding numbers
of categories under the null hypothesis of a completely flat dose–response.
These probabilities are easily worked out by a combinatorial algorithm
and have been tabulated (along with the critical values of the weighted chi
square distribution) in Barlow et al.’s textbook. As an example, Figure 6.5
shows the estimated monotonic dose–response for asbestos and lung can-
cer, showing good agreement with the fit of a simple linear relationship
(p>0.079) but not with the loglinear model (p> 0.0059; note that these
are lower bounds on the goodness-of-fit probability, for reasons explained
in Thomas (1983a)).

Neither isotonic regression nor splines are limited to binary data, the
theme on this chapter. Barlow et al., for example, discuss applications
to continuous outcome data, for which the corresponding tests become
mixtures of F -distributions. Of course, there are also situations where one
might not wish to assume monotonicity, such as for high-dose radiation.
Figure 6.6, for example, illustrates the dose–response for bone cancer
among the radium dial painters. The best fitting model for absolute risk,
constant after 5 years latency, is a quadratic cell-killing model, λ(t)= (α+
βZ2) exp(−γZ), which shows amarked down-turn in risk above about 20
Gy (2000 rad). This model fits significantly better than any model without
the cell-killing term (p= 0.05 for a linear-quadratic model) or a linear cell-
killing model (p= 0.03). Similar patterns have been observed for leukemia
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among women irradiated for cervical cancer (Boice et al. 1987), as will be
discussed below in the context of dose heterogeneity.

Both splines and isonomic regression also have multivariate general-
izations. We will defer discussion of these approaches to the following
section.
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Incorporating temporal modifiers

Previously we noted that any statement about effect modification (inter-
action) is necessarily scale-dependent: a factor that modifies the relative
risk may not modify the excess absolute risk and vice versa, or may do
so in opposite directions. Another way of saying this is that statistical
interaction represents a departure from some model for the main effects
of the factors, and the need for incorporating such statistical interactions
will depend upon the form of the main effects model used. Thus, under
the principle of parsimony, we might well prefer a main effects model
that avoids the need to add interaction terms over some other model that
requires them to obtain a decent fit. Here we consider a particular form of
interaction—between a single exposure variable and one ormore temporal
modifying factors—and defer a general treatment of interactions between
multiple exposures or between genes and exposure to Chapter 12.

There are a number of different temporal factors that could modify a
dose–response relationship: age at exposure, age at risk of disease (here-
after called “attained age”), time since exposure (“latency”), and calendar
year of birth, exposure, or risk. Of course, for extended exposures, dura-
tion, time at or since first or last exposure also become important, as
discussed in the following section, but for now we focus on an instanta-
neous exposure. Many exposures are more hazardous at younger ages,
such as iodone-131 for thyroid cancer. Most chronic diseases have some
minimum latent period following exposure before there is any increase in
risk (often quite long in the case of solid cancers). The excess or relative
risk may then rise to a peak, after which it may decline; it may go all the
way back to background levels eventually or remain somewhat elevated
indefinitely. Calendar year of exposure can be a useful surrogate for dose
when it is impossible to assess it directly. For example, cancer among radi-
ologists declined as a function of year first employed, reflecting increasing
recognition of the hazards and improvements in technique (Court Brown
and Doll 1958; Berrington et al. 2001).

What makes assessment of modification by temporal factors challenging
is the interrelationships: attained age = age at exposure + latency; year
of death = year of birth + attained age; time since first exposure = dura-
tion of exposure + time since last exposure; and so on. Similar problems
arise in age-period-cohort analysis in descriptive epidemiology (Holford
2006). Typically, one could consider any one of those variables alone,
but their apparent modifying effects could be confounded by some other
variable. Likewise, one could consider any pair of variables in one of these
triplets, but not all three simultaneously because of their multicollinear-
ity. Since our objective is generally to describe an exposure–time–response
relationship rather than to draw inferences about any particular modifier,
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it suffices to choose some subset of the variables that fit the data well, but
sometimes one subset may provide a more parsimonious description than
another, for example latency alone rather than both age at exposure and
attained age.

Inmost instances, it is reasonable to assume that at no point in time is the
risk associated with a hazardous exposure ever protective. (An exception
might be when exposure advances some events in time, leaving a trough
in its wake, as in the “harvesting” of deaths among the most chronically
ill by air pollution (Chapter 8). There was no evidence for this following
the London Fog, where death rates remained elevated for weeks after the
peak of pollution (Brunekreef and Hoek 2000), but it has been claimed to
occur following other air pollution episodes (Martin 1964).) This assump-
tion motivates a model for exposure–time–response relationships in which
time modifies specifically the excess risk part of dose–response. The gen-
eral relative risk form used in the EPICURE package discussed earlier,
λ(t , Z, W)= λ0(t)[1+ βZ exp(α′W)], lends itself naturally to this type of
assumption, where t represents attained age, Z exposure, and W one or
more a temporal modifying factors. Thus, the slope of the dose–response
relationship is β exp(γ ′W), which is always positive for any value of W
(provided β >0).

Consider, for example, modeling latency. If one wished to allow risk
to peak at some point, one could include a quadratic function in W . It
might be convenient to parameterize the model as exp[−γ1(W − γ2)

2] or
exp[−γ1 ln

2
(W/γ2), so that γ2 represents the time of maximum relative

risk after exposure, and γ1, measures how quickly risk decreases before
or after that peak. Of course, multiple temporal factors can be incorpo-
rated in this general regression framework, including interactions among
them. For example, one might ask whether those exposed at younger ages
or higher doses experienced shorter latencies. For leukemia, these ques-
tions were examined by the BEIR V committee (NAS, 1990) by adding
interaction terms between latency and age at exposure or between latency
and dose, and revealed strong modifications by age, but none by dose
(Figure 6.7). The time to the maximum excess RR/Gy increases slightly
with age at exposure from less than 5 years (the start of follow-up) among
those exposed at age 5 to about 8 years among those exposed at age 40.
Although the overall modification of level of relative risk with age is quite
significant, this modification of the location of the peak is not (p= 0.13),
and there is no trace of a modification of the peak latency by dose (i.e.,
higher doses having shorter latency). Lacking any data on the first five
years after exposure (and having only data grouped into five-year inter-
vals thereafter) severely handicaps any analyses of the time to peak risk,
however.

Themodel shown in Figure 6.7 is fully parametric in dose and in latency.
One could use flexible models for describing either or both. Consider the
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Figure 6.7. Fitted excess relative risks at 1 Gy for leukemia mortality among the atomic
bomb survivors. (Based on data from LSS report 11.)

following special cases:

RR = 1+ βZ exp[−γ1(W − γ2)
2] (6.2a)

RR = 1+ s1(Z) exp[−γ1(W − γ2)
2] (6.2b)

RR = 1+ βZ exp[s2(W)] (6.2c)

RR = 1+ s1(Z) exp[s2(W)] (6.2d)

RR = 1+ exp[s(Z, W)] (6.2e)

Equation (6.2a) is the fully parametric form shown in Figure 6.7.
Equations (6.2b) and (6.2c) replace one part of the model or the other
by a one-dimensional flexible model, such as a cubic spline. Equation
(6.2d) treats both parts flexibly, but assumes they combine multiplica-
tively. Equation (6.2e) relaxes this last assumption to allow for any form
of joint effect dose and latency.

These various models are compared in Figures 6.8 and 6.9. Both factors
are highly nonlinear, although the downturn in dose–response occurs at
doses over 2.5 Gy where there are few cases, and likewise the increasing
risk in the 5–10 year latency is based on only a single stratum of time
with relatively few cases. Modifying the form of the dose–response has
little influence on the latency curve and vice versa, so that modeling both
factors flexibly, as in Eq. (6.2d) yields estimates of f (Z) and g(W) that are
very similar to those shown in for each factor separately (with the other
modeled parametrically, as in Figure 6.8). Their joint relationship is shown
in Figure 6.9. The fit of the multiplicative model [Eq. (6.2d)] and the two-
dimensional spline [Eq. (6.2e)] are virtually identical, as indicated by the
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Figure 6.8. Flexible dose–response and latency curves for leukemia in the atomic bomb
survivors. Left panel: cubic spline for dose–response with a single knot at 3 Gy, treating
latency parametrically with terms for ln(E) and ln(T ) in the loglinear modifier in Eq. (6.2b).
Right panel: cubic spline for latency with a single knot at 15 years, treating dose–response
as linear and a term for ln(E) in the loglinear modifier in Eq. (6.2c). (Based on data from
LSS report 11.)
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Figure 6.9. Dose–time–response relationship for leukemia in the atomic bomb survivors
using cubic splines in both dose and latency, with ln(E) in the loglinear modifier, assuming
a multiplicative effect of the two factors, Eq. (6.2d). The fit of Eq. (6.2e) using a two-
dimensional spline is visually indistinguishable, as supported by the likelihood ratio tests
in Table 6.2.

comparisons of deviances in Table 6.2: the last two lines corresponds to
a change in deviance of only 0.11 on 2 df. Indeed, of the various possible
comparisons of nested alternative models, only the addition of a quadratic
term in the dose–response part of the model is statistically significant (e.g.,
5.43 on 1 df in the models with a linear term for latency). Ulm (1999)
used two-dimensional isotonic regression to describe the joint dependence
of cancer risk on total exposure and time since first exposure to “particles
not otherwise specified.”

A particularly interesting temporal interaction involves duration of
exposure or its inverse, dose rate: for the same total exposure, is a long,
low dose–rate exposure more or less hazardous than a short, intense one?
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Table 6.2. Deviances for alternative parametric, semi-parametric,
and full two-dimensional spline models for leukemia in the atomic
bomb survivors.

Dose–response model
f (Z)

Latency model
g(W)

Deviance (number of
parameters)

Linear Linear 1744.21 (8)
Linear-quadratic Linear 1738.78 (9)
Cubic spline Linear 1736.37 (11)
Linear Linear-quadratic 1743.58 (9)
Linear-quadratic Linear-quadratic 1738.17 (10)
Linear Cubic-spline 1742.16 (11)
Linear-quadratic Cubic-spline 1736.96 (12)
Cubic spline Cubic spline 1735.14 (14)
Two-dimensional spline 1735.03 (16)

For ionizing radiation, it turns out that the answer is different for high-
and low-LET radiation. Such an analysis needs to be carefully controlled
for the potential confounding effects of the other temporal variables, how-
ever. Before we can address this question, however, we need to consider
in general how to go about modeling risks from extended time-varying
exposures, which we will do in the next section.

Before leaving this topic, we need to consider some fallacies of certain
naïve analysis. Suppose, for example, that one tried to study latency by
simply plotting the distribution of intervals between exposure and disease
among cases. What this fails to acknowledge is that the distribution is
“censored”: as follow-up of the cohort increases, more and more long-
latency cases will occur. Furthermore, if one wished to make comparisons
between cases with different ages at exposure, differential censoring could
lead to biased comparisons. This simply emphasizes the importance of
using appropriate statistical methods for censored survival data for this
purpose. Even so, confounding by other temporal dimensions can distort
inferences about latency from either cohort or case control studies. These
problems have been discussed in greater detail elsewhere (Thomas 1987;
Thomas 1988).

Extended exposure histories

Few exposures in environmental epidemiology are even approximately
instantaneous like the radiation from the atomic bombs or certain acci-
dents like those discussed in the disasters section of the final chapter. Most
are chronic exposures, often extending over one’s entire lifetime.
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Many also vary in intensity over time, although often it may be diffi-
cult, if not impossible, to quantify this temporal variation: at best one can
estimate each individual’s or group’s average lifetime exposure rate. In
other circumstances—tobacco smoking comes to mind—one may be able
to determine the age at first and last exposure and the average level of expo-
sure (e.g., cigarettes per day), but not all the variations in level or dates
of intervening periods without exposure. Studies of residential exposures
(e.g., radon, air pollution, electromagnetic fields) typically obtain com-
plete residence histories (dates and addresses) and attempt to characterize
the exposure levels of each home. Usually this is more easily done for the
current residence (and possibly a few other recent or longest occupied);
the remainder must be imputed in some way, perhaps with an average
based on location or some kind of a spatial prediction model, as discussed
in Chapter 9. In all these situations, let us denote the exposure history
as Z(t)={z(u)}u< t , where z(u) denotes the exposure intensity at age u.
Note that this notation, Z(t) represents the entire history, not just some
summary exposure variable that will be used in the analysis.

Before proceeding further, we must confront the fundamental question
of how the joint effects of intensity and duration of exposure combine.
As we shall see, this question is intimately tied up with the choice of
scale for excess risk. Consider first the case of a lifelong exposure at a
constant rate z. Do we expect the excess due to exposure to increase with
age or remain constant? That depends, amongst other things, on whether
we are talking about the absolute or relative excess. Recall that in this
situation, age and duration of exposure are the same. Thus, if we think
of the natural increase in population cancer rates to be a response to a
lifetime of exposure to a “sea of carcinogens” at some essentially constant
rate z, then it would seem reasonable to assume that the excess due to an
incremental exposure would be proportional to it that is, λ(t , z)= λ0(t)+
βzλ0(t)= λ0(t)[1 + βz], that is, a constant relative risk, proportional to
intensity z, not cumulative exposureZ= zt . Here, multiplication by t is not
needed because ourmultiplication by λ0(t) serves the purpose of describing
the biological response to a lifetime of exposure. If background disease
rates increase rapidly with age (say, exponentially or as some power of
age, like most solid cancers), then why should we expect the excess due to
exposure to increase only linearly?

Of course, the biological mechanisms responsible for background cases
might be different from those causing the exposure-induced cases: perhaps
they are due to genetics, for example. If we think of the two as completely
disjoint (no interaction between exposure and background causes), then
it might make more sense to consider an excess risk model, of which the
simplest form might be a excess proportional to cumulative exposure,
λ(t , z)= λ0(t)+βzt . Here, cumulative exposure zt is simply a stand-in for
our ignorance about the basic form for the biological effect of exposure.
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The excess could be proportional to some more complex function of age,
say zf (t); or it might be nonlinear in intensity but linear in age, say g(z)t ,
or nonlinear in both, say g(z)f (t); or age and intensitymight even combine
in some non-multiplicative fashion, say h(z, t). (Of course, the same could
be said of relative risks.)

Which is the most plausible model also depends upon how we think
the effects of each increment of exposure are modified by temporal fac-
tors, as discussed in the previous section, and how they affect each other.
To consider an extreme situation, suppose we assume that the effect of
exposure at each age is manifest after a latent period of exactly τ . Then
the excess at attained age t would depend only at the exposure rate at age
t−τ and would be independent of duration of exposure. Depending upon
our choice of scale for excess risk, a constant lifelong exposure would
then yield a dose–response either of the form λ(t , z)= λ0(t)(1 + βz) or
λ0(t)+ βz.

More realistically, we might expect the effect of exposure at age u to be
spread out over some range of later ages, saywith probability density f (τ).
Thus, the excess at attained age t would represent the cumulative effects of
insults received at ages t−τ with weights f (τ). (For simplicity, we assume
for now that this weight function is not modified by age at exposure or
attained age.) But how exactly do the effects of past exposures combine?
The simplest assumption would be independently, i.e., that the excess is
simply a function of the (weighted) sum of the effects of all past exposures,

βz

∫ t

0
f (t − u) du = βzF(t)

where F(t) denotes the cumulative distribution function of the latency
distribution.

But what if the contributions of each prior increments of exposure were
not independent? What if each exacerbated the damage done by prior
exposures? Then we might think of the rate of change of risk at age t

being proportional to the product of the accumulated risk and dose at
that age, leading to the differential equation

dλ(t)
dt

= βλ(t)z(t)

whose solution is

λ(t) = exp
(
β

∫ t

0
z(u) du

)
= exp(βzt)

in other words, an exponential function of cumulative exposures. (This
derivation ignores latency and other temporal modifiers, but the basic
result would be similar.)
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With these preliminaries behind us, we can now turn to the general
case of time-varying exposures. Suppose we adopt the basic assumption
of additivity of effects of past exposures and assume that each effect is
modified by some function of age at or time since exposure f (t , u). Then
we obtain an excess risk model of the form

λ(t) = λ0(t)+ β

∫ t

0
z(u)f (t , u) dt

= λ0(t)+ βZ(t)

where Z(t) represents the time-weighted cumulative exposure given by the
integral. If f (t , u) were constant, then this would be simply cumulative
dose zt.

For the reasons discussed above, it is more appealing to model relative
risks, under the assumption that the effect of exposure parallels that of
background causes. Assuming that background causes have been essen-
tially constant over time (without loss of generality, we can set them to
unit intensity) and assuming that the same temporal modifying function
f (t , u) applies to both, we obtain

λ(t) =
∫ t

0
[1+ βz(u)] f (t , u) du

However,
∫ t

0 f (t , u) du= λ0(t), so we can rewrite this model in terms of
λ0(t) as

λ(t) = λ0(t)
[
1+ βZ(t)/λ0(t)

]
where Z(t) is again the time-weighted cumulative exposure given by the
integral in the excess risk model, but with the additional constraint that
f (t , u) must equal the derivative of λ0(t) with respect to t for all u.

Whatever form of model we adopt, it is fitted in the same way as des-
cribed in the previous section by maximum likelihood. If we are prepared
to specify the weight functions f (t ,u) exactly, say f (t , u) ≡ 1 yielding
Z̄(t) as simple cumulative dose, then we are left with a model involving
only one free parameter, β. Or f (t , u) could be some parametric function
involving parameters to be estimated, like those discussed in the previous
section. Conceptually, this raises no new issues, but then fitting is more
complicated as the likelihood requires integration of this function against
Z(t). This is easily done numerically, however.

Finally, it is also possible in principle to treat f (t , u) or g(z) nonpara-
metrically in the spirit of Eqs. (6.2b–e), for example,

λ(t , z(t)) =
∫ t

0
s1(t − u)[1+ s2(z(u))] du
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Figure 6.10. Bilinear model for latency in the Colorado Plateau uranium miner data.
(Reproduced with permission from Langholz et al. 1999.)

where s1 and s2 represent one-dimensional spline functions in latency
and exposure intensity respectively. For example, Langholz et al. (1999)
described a simple approach tomodeling latency effects for extended expo-
sures using linear splines, as shown in Figure 6.10. Here, there are three
free parameters to be estimated: (τ0, τ1, τ2), the minimum, peak, and max-
imum latency respectively. Fitting is done by evaluating the likelihood over
a grid of these three parameters, maximizing each with respect to the slope
parameter β for “effective” dose Z(τ0, τ1, τ2). In their application to the
data from the Colorado Plateau uranium miners cohort, they found the
best fit with τ0 = 0 years, τ1 = 8.5 years, and τ2 = 34 years. Subsequently.
Hauptman et al. (2001) reanalyzed these data using splines and found that
the smoothed latency curve was consistent with elevated risks between 9
and 32 years after exposure; these estimateswere not significantlymodified
by attained age, duration of exposure, dose–rate, or smoking.

Before concluding this section, let us revisit the question of intensity and
duration effects for ionizing radiation. It has long been known that the
same total dose of low-LET radiation (e.g., X-rays) delivered in multiple
fractions has a lower risk than if delivered all at once. This phenomenon
is generally ascribed to the possibility of repair of single-strand breaks
induced by one fraction before the later fractions are delivered. In classical
radiobiological theory, if the dose–response is a linear-quadratic function
representing the probability of a double-strand break being induced by
a single or two concurrent independent traversals respectively, then as
exposure duration becomes small, the quadratic term will disappear, since
the probability of two traversals occurring close enough in time for repair
not to have occurred in the interim will vanish. This is the basic principle
underlying the use of fractionated doses in radiotherapy.

Curiously, exactly the reverse phenomenon is seen with high-LET radia-
tion in both human data and various in vitro systems. Among the uranium
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miner cohorts, for example, a long low-intensity exposure appears to be
more, not less, hazardous than a short intense one for the same total
exposure. (There is some inconsistency in this finding across studies, how-
ever; for example, Grosche et al. (2006) found this effect only at high
exposures.) The biological mechanism for this phenomenon is not well
understood, but “bystander” effects (Curtis et al. 2001) are thought to
offer a possible explanation (see Chapter 13).

From the statistical modeling perspective, one could in principle think
of both phenomena as forms of effect modifications by either intensity or
duration. However, it is more appealing to model this in terms of intensity
modifications, as the alternative would entail describing the instantaneous
effect of an increment of exposure as depending on past or future events,
which gets more complicated. It is not biologically implausible, however,
as the earlier discussion of potentiation of one exposure by later expo-
sures revealed.) Thus, a simple way to incorporate intensity and duration
effects would be by allowing a nonlinear function of intensity, for exam-
ple

∫ t

0 g[Z(u)] du (possibly modified by f (t , u) as above). For example, if
we take g(z)= zα, then if α >1, we get the sparing affect of fractionation
seen with low-LET radiation, and conversely if α <1, the increased risk
for protracted exposures seen with high-LET radiation. Alternatively, if
we wished to model the phenomenon in terms of potentiation, we might
consider a model involving in terms of the form

∫ t

0

∫ u

0 z(u)z(v) dv du, again
possibly involving weights depending on u, v, and t . See Thomas (1988)
for further discussion of such models. Finally, it is worth noting that
the apparent modifying effects of intensity and duration could also be
accounted for by exposure measurements errors having a bigger effect on
intensity estimates than duration. This possibility will be discussed further
in Chapter 11, but briefly Stram et al. (1999), reanalyzing the U.S. uranium
miner data showed that the effect of low dose-rate exposures was relatively
unchanged by measurement error correction, while high dose–rate effects
increased, thereby somewhat reducing the observed dose–rate effect.

Modeling temporal modifiers for tobacco smoking

Without doubt, tobacco smoking is the strongest risk factor for many
chronic diseases, above all for lung cancer. It has been well established
by numerous epidemiologic cohort and case-control studies that the risk
increases with intensity and duration of exposure and is strongly modified
by such factors as age at starting and time since quitting. Given this wealth
of data, it is not surprising that there is a large literature on methods of
modeling the risk of lung cancer in relation to lifetime history of smoking
(Hammond 1966; Doll and Peto 1978; Peto 1986; Whittemore 1988;
Moolgavkar et al. 1989; Freedman and Navidi 1990; McKnight et al.
1999; Peto et al. 2000; Leffondre et al. 2002; Flanders et al. 2003; Dietrich
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and Hoffmann 2004; Knoke et al. 2004; Rachet et al. 2004; Vineis et
al. 2004; Hazelton et al. 2005; Thurston et al. 2005; Leffondre et al.
2006; Lubin and Caporaso 2006; Lubin et al. 2007a; 2007b). Whether
or not one views tobacco smoking as an “environmental” exposure like
the various external exposures that this book is primarily concerned with,
much can be learned aboutmethods formodeling exposure–time–response
relationships for extended exposures from this experience. Smoking has
also been shown to interact strongly with other risk factors like asbestos
(Selikoff et al. 1968), radiation (Prentice et al. 1983; Thomas et al. 1994;
Hornung et al. 1998), air pollution (Xu and Wang 1998), and arsenic
(Hazelton et al. 2001; Chen et al. 2004). Given its potential as a strong
confounder or modifier of associations with other external agents, it is
thus essential that smoking effects be modeled carefully even in studies
where other factors are of primary interest.

Using data from the British doctors study, Doll and Peto (1978) showed
that the lung cancer rate was proportional to the square of the number
of cigarettes smoked per day (+6) and years of smoking (−3.5) raised
to the 4.5 power. The addition of 6 to smoking intensity was needed to
account for the rate in nonsmokers due to other factors and the subtraction
of 3.5 years was intended to allow for the lag between the appearance
of the first fully malignant cell and death. A recent modification of the
model (Knoke et al. 2004), fitted to the American Cancer Society cohort
study added age at starting or attained age as an additional multiplicative
factor:

λ(t , Z, t0) = 2.21× 10−13(Z + 6)1.02(t − t0 − 3.5)2.35 t2.68

where Z denotes cigarettes per day, t0 age at starting, and t attained age
(alternative models replace duration in the second factor or attained age in
the last factor by age at starting, yielding similar fits). Although such results
have been widely interpreted as duration having a much more important
effect than intensity, it must be remembered that this is a model for abso-
lute risk, not relative risk. The baseline risk in nonsmokers in the ACS
cohort is best fitted by λ0(t)= 5.29 × 10−13 (t − 3.5)4.83 (Knoke et al.
2004; Thun et al. 2006). The resulting model for excess relative risk per
pack-year (PY) can thus be expressed as

ERR
PY

=
(
λ(t , Z, t0)− λ0(t)

λ0(t)[Z(t − t0)]
)
∼= c

(t − t0 − 3.5)2.35 t2.68

(t − 3.5)4.83(t − t0)

This rather complex function is plotted in Figure 6.11, showing that the
risk per pack-year increases in a nonlinear fashion, eventually declining
after an amount that is roughly double the age at starting.

Lubin et al. (2006; 2007a, b) fitted models of the form ERR=βZ · (t −
t0)·exp[g(Z, t−t0)] to a variety of other datasets, where g(Z, t−t0) included
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Figure 6.11. Predicted excess relative risk per pack year for continuing smokers from the
Knoke et al. (2004) model as a function of duration of smoking at age at starting.

various transformations of intensity or duration, the best-fitting model
being a linear-quadratic function of ln(Z). Thus, they concluded that the
ERR per pack-year increased with increasing intensity up to about 20
cigarettes per day, then declined with further increases in intensity above
that amount.

Most of these models were fitted to data only on continuing smokers.
Patterns of absolute risk for ex-smokers are more complex, generally start-
ing to level off or even declining somewhat shortly after quitting, gradually
approaching but never attaining the risk for never smokers (Freedman
and Navidi 1990; Peto et al. 2000), so that the relative risk declines with
time since quitting. While it may be tempting simply to include various
temporal modifying factors in a logistic or Cox regression model, this
approach can lead to strange results. For example, a relative risk model of
the form exp[β1Z+β2(t− t0)+β3Z ·(t− t0)+ . . .] (possibly including addi-
tional terms for time since quitting) would imply an increasing risk with
intensity (β1) even for individuals with miniscule duration and likewise
an increasing risk with duration (β2) even for individuals with miniscule
intensity. Furthermore, while a relative risk model for pack-years of the
form exp[β1PY + β2PY ·(t − t1)] with β2 negative does imply that risk
declines with time since quitting, it will continue declining indefinitely,
so that once t − t1 >β1/β2, prior smoking will actually appear beneficial!
Addition of a main effect of time since quitting does not really help, as it
would imply a reduction in risk independent of the intensity of smoking,
so that the point when ex-smokers would attain a risk lower than never
smokers simply occurs sooner for lighter than for heavier smokers. Finally,
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Figure 6.12. Dose–response relationships for leukemia following radiotherapy for cervical
cancer. (Reprinted with permission from Boice et al. 1987.)

Table 6.3. Fit of linear cell-killing models with age and latency terms to
the cervical irradiation data: cohort data includes only indicator variable
for treated or not by radiotherapy; case-control data includes doses to 14
compartments of the bone marrow, but for radiotherapy subjects only;
the combined analysis uses both data sets. (Adapted with permission from
Thomas et al. 1992b.)

Data set Dose Cell-killing Latency Age at diagnosis LR χ2 (df)

Cohort 0.22 — −1.17 −1.71 12.15
(0.22) (0.75) (1.76) (3)

Case-control 1.27 −5.11 −1.56 −10.86 9.83
(2.89) (3.44) (1.37) (7.63) (4)

Combined 1.07 −3.88 −1.00 −2.02 19.28
(1.34) (3.90) (0.42) (1.35) (4)

the interpretation of the modifying effects of age at starting, duration, time
since quitting, and attained age is complicated by the fact that they are
linearly related. For an age-matched case-control study, for example, the
sum of the first three variables must be the same for any matched set, so
any two of these three will lead to identical fits.

The fits of this model and various submodels are compared in
Figure 6.12 (risks plotted against the average dose Z=�wkZk). Since
risk is a highly nonlinear function of dose, the use of the average dose in
r(Z,β) yields a much poorer fit to the data, although the likelihood ratio
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tests comparing the various models using only the case-control data are
not significant.

Thomas et al. (1992b) later reanalyzed these data combining the detailed
dose information from the nested case-control study with the radiother-
apy present/absent comparison from the original cohort study. Since the
case-control component included only radiotherapy patients, the dose
range is restricted, and adding in the unirradiated patients considerably
improved the power to distinguished alternative dose–response models
(Table 6.3).

Modeling short-term fluctuations in exposure

While most of this chapter is concerned with the effects of long-term
changes in exposure, short-term fluctuations—on the scale of biological
processes governing tissue doses (hours, days)—can also be important if
these processes are nonlinear. Chapter 13 will develop mechanistic mod-
els for such metabolic processes, but here we sketch out an empirical
approach to this problem. Suppose the risk of disease as a function of
exposure is, as described above

∫
r[Z(t)]dt , and we approximate r(Z)

by a Taylor series r(Z) + (Z − Z)r ′(Z) + (Z − Z)2r ′′(Z)/2 + · · · Then
substituting this expression into the integral over time yields an approx-
imation β1E(Z) + β2var(Z). In other words, without having to specify
the form of the dose-response in detail, one can test for the possibility of
short-term nonlinearity simply by adding the temporal variance of expo-
sure to a simple linear risk model as an additional covariate. One could
further investigate the temporal scale of such nonlinear effects by decom-
posing the temporal variance into different time scales (e.g., hourly, daily,
weekly, seasonal, annual) and adding each of these components to the
model. Instantaneous risk models of the form r ∝ Zα(t) can generate
“threshold-like” (α >1) or “saturation-like” (α <1) behavior for short-
term exposure rates; Taylor series approximation yields metrics of the
form

∫
z(t) ln[Z(t)]dt which can be added to a model containing Z and

Z
2
without having to create a whole family of metrics with specific thresh-

olds. Indices of the form
∫
Z(t)Z′(t)dt or

∫ [Z′′(t)]2dt can be useful for
investigating the effect of rapidity of temporal fluctuations. In a similar
manner, short-term interaction effects could be investigated by adding the
temporal covariance between two exposure variables.

Analyses such as these of the CHS data revealed a significant effect of
hourly, daily, and weekly variation in ambient ozone concentrations on
FVC, where the mean level showed no assocation, whereas none of the
variances in NO2 had a significant effect beyond the mean (unpublished
data). No threshold-like effects on dose-rates, lags, or autocorrelation
effects for ozone were found, however.
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Dose heterogeneity

So far, we have acted as if the dose to a target organ were homogenous.
This may be a reasonable approximation in many instances, such as for
whole-body irradiation from the atomic bombs or for lung doses from
gaseous air pollutants. In other circumstances, however, there can be
marked variation in local dose across a target organ. For example, women
irradiated for cervical cancer receive extensive scatter radiation to the bone
marrow, leading to increased leukemia risk. An international cohort study
comparing cervical cancer patients who did and did not receive radiother-
apy found 77 leukemias among the exposed group compared with 65.83
expected, with the highest risk of acute andmyeloid leukemia occurring 1–
4 years after diagnosis of cervical cancer (28 observed vs. 13.41 expected)
(Day and Boice 1983). However, different portions of the bone marrow
receive very different doses, some relatively low on the linear-quadratic
portion of the dose–response curve, some quite high, well within the cell-
killing range. As a result, a simple average dose across the entire bone
marrow does not well describe the average leukemia risk. Boice et al.
(1987) subsequently conducted a nested case-control study within the
earlier international cohort (adding some additional centers) in order to
retrieve radiotherapy records and estimate the doses Z to each of 14 com-
partments containing proportions wk of the bone marrow. The overall
leukemia risk was then computed as a weighted average of the risk to
each compartment,

λ(t ,Z) = λ0(t)

14∑
k=1

wkr(Zk,β)

where

r(Z,β) = 1+ (β1Z + β2Z
2) exp(−βZ)

Similar issues have arisen in other studies of second breast cancers in
relation to radiotherapy for cancer in the contralateral breast (Boice et
al. 1992; Bernstein et al. 2004) and brain cancers in relation to cell
phone use (Cardis et al. 2007), as described at the end of the previous
chapter.
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Up this point, we have focused on disease incidence or mortality data—
discrete events, which by definition can only occur once. Not all traits of
interest to the epidemiologist are like that. Underlying any binary trait is
likely to be a complex system of continuous or discrete changes developing
over time. Diseases come and go, and their pattern of recurrence, particu-
larly in relation to changes in the environment, may be of interest. Often
these subtler changes in intermediate traits can shed light on biological
mechanisms or, by being closer to the immediate environmental cause,
prove to be a more sensitive endpoint. In this chapter, we discuss the anal-
ysis of biomarkers, physiological measurements, clinical symptoms, and
other traits that vary over time, either as endpoints of interest in them-
selves or as surrogates for the development of some unobservable disease
process.

We begin with the regression analysis of a continuous, normally dis-
tributed trait, measured at a single time point and its rate of change
between two observations, and then generalize to repeated observations.
For this purpose, the general linear model (GLM) framework developed
at the end of Chapter 4 will prove helpful, and we extend it to the general
linear mixed model (GLMM). This will provide a natural way to apply the
framework to categorical outcomes and multivariate outcomes, including
combinations of continuous and discrete data. We can then address ques-
tions like which change occurs first, which trait affects which, and how
this helps predict the risk of some ultimate disease incidence or death. A
final technical detail we will have to deal with is the problem of missing
data introduced in Chapter 4. This can be simply a nuisance if it occurs
randomly, but more difficult if the probability of missingness depends
upon other measured or unmeasured variables, including the true state of
the variable under study.

To illustrate these various approaches, we turn away from the exam-
ples of cancer incidence andmortality, which we have relied on in previous
chapters, and use the data from the Children’s Health Study (CHS), par-
ticularly the annual measurements of lung function, incidence of new
diagnoses of asthma, and exacerbations of various bronchitic symptoms.
One aspect of the CHS that we will defer to the following chapter is school
absences. Although conceptually similar to other forms of binary longitu-
dinal data, we shall see that such data on rapid fluctuations over time are
better analyzed by the techniques of time-series analysis. Accordingly, in
this chapter we are less concerned with deviations from a general temporal
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trend than with the evolution of the trend itself, what we shall call the
“growth curve.”

Continuous outcomes

Let Y now denote a continuous, normally distributed outcome variable.
(More precisely, it is not the trait itself but the residuals—the deviations
from some model for their mean—that will be assumed to be normally
distributed.) In Z = (Z1, . . . ,Zp), we include all the variables used to
predict Y , including the exposure variable(s) of primary interest and their
various confounders and modifiers. As before, we let i = 1, . . . , n index
the study subjects and introduce a second level of subscripts k = 1, . . . ,K
to denote the times tk of observation. But we are getting ahead of our-
selves: first let us review the standard linear regression model for single
observations on each subject, say the baseline measurements in a follow-
up study, as introduced in Chapter 4, to motivate the various extensions
leading to the GLMM. (For this purpose, we can omit the second level of
subscripts.)

Single observations

As noted in Chapter 4, the standard linear regression model requires four
basic assumptions:

1. The dependence of the mean of Y and Z is correctly specified by a linear
additive function.

2. The residuals ei = Yi − Z′
iβ are independent.

3. The residuals are normally distributed.
4. The residuals have constant variance σ 2.

The first of these assumptions can sometimes be relaxed by appropriate
transformations of either Y or Z or both. For example, if the relationship
were quadratic rather than linear, one could simply include a Z2 term
as an additional covariate; if multiplicative rather than additive, a log
transformation of Y (and possibly Z if needed) would accomplish this.
In both these cases, the dependence of E[f (Y )] on g(Z)′β remains linear
in β, so the basic form of the estimator, its variance, and significance
tests remain the same. Nonlinear regression models (meaning nonlinear
in β) are also possible and can be fitted by correctly specified maximum
likelihood or least squares in a manner similar to the general relative risk
models discussed in Chapter 6.

The last assumption—homoscedasticity of the residual variance—might
be addressed by modeling the variance and the mean jointly, using either
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maximum likelihood or weighted least squares. Suppose one had a specific
way of predicting the variance of each observation, say var(Yi |Zi ) = s2i
without requiring any free parameters. Then the weighted sum of squares
would take the formWSS(β)=�i(Yi−Z′

iβ)
2/s2i and the likelihood L(β) ∝

exp(−WSS(β)/2). Minimizing WSS(β) or maximizing L(β) again leads to
the same closed form solution,

β̂ =
(∑

i
YiZi/s

2
i

) (∑
i
Zi

′Zi/s
2
i

)−1

or in matrix notation,

β̂ = (Y′WZ)(Z′WZ)−1 and var(β̂) = n(Z′WZ)−1

where Y = (Y1, . . . ,Yn), W = diag(s21 , . . . , s
2
n), and Z = (Z1, . . . ,Zn), an

n× p matrix.
Seldom, however, can one specify the residual variance exactly. One

may know some components, specific to each observation, but there
remains some residual variance due to imperfect specification of themeans.
Thus one might choose var(Yi |Zi ) = s2i + σ 2, where σ 2 is the unknown
model misspecification variance. One might have no knowledge specific
to each subject but only a general belief that the depends in some way on
the predicted mean, for example, var(Yi |Zi ) = exp[α0+α1E(Yi |Zi )]. (The
exponential form is convenient to constrain the variance to be positive.)
Or one could adopt some general form that depends on each covariate
separately, for example, var(Yi |Zi ) = exp(Z′

iα). In general, let us denote
any of these choices by var(Yi |Zi ) = v(Zi ,α,β) where v(·) is some specific
function of involving additional variance parameters α and possibly also
the means parameters β. The joint likelihood now takes the form

L(β,α) = exp

(
−

n∑
i=1

(Yi − Zi
′β)2

ν(Zi ,α, β)
− 1

2
ln ν(Zi ,α, β)

)

which in general requires numericalmethods tomaximize. However, if one
ignored the dependence of the variance on β and maximized the likelihood
(or equivalently minimized WSS) with respect to β for any given α, then
the weighted least squares estimator given above would result. One could
then compute the residuals ei for each observation and fit them to E(e2i ) =
v(Zi ,α, β) to estimate α, holding β fixed, and repeat this process with the
new α until convergence. This procedure in general would not lead to the
joint maximum likelihood estimate (MLE) of β and α, but nevertheless
can still be shown to yield an estimator of β that is asymptotically normal
with variance given by the “sandwich estimator”, Eq. (4.6).

Although we used the score function derived from the likelihood (which
involves the assumption of normality), we do not really require that
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assumption to posit the GEE as an estimator of β. The mere fact that
it comprises a sum of independent random variables is sufficient to estab-
lish the asymptotic normality of β̂ and derive its variance. Furthermore, it
is not really even necessary that the residual variances νi be correctly spec-
ified: an incorrect specification will lead to inflated residuals and hence a
larger sandwich estimator, which will correctly reflect the full variance of
β̂ under the misspecified model. That, in fact, is ultimately the justification
for being able to ignore the possible dependency of νi on β. However if the
residual variance is correctly specified, the GEE estimator will be nearly
fully efficient, relative to the optimal MLE, and furthermore, it is possi-
ble to compute the optimal weights using a second estimating equation of
the form

n∑
i=1

[
e2i − ν(Zi ,α,β)

] [
var(e2i )

]−1 ∂νi

∂α
= 0

The asymptotic normality and sandwich estimates of the variance still
require the assumption of independence, however. This can be overcome
if the data can be organized into blocks of dependent observations that are
mutually independent. For example, in a family study, onemight treat each
family as a vector of observations, the members of which are dependent,
but different families are independent. More relevant to this chapter, we
could take repeated observations on each subject as a vector of correlated
values, but independent between subjects. The same basic form of GEE
is still used, the only difference being that the Yi are now vectors and
Wi becomes the inverse of the matrix of covariances cov(Yij ,Yik|Zij ,Zik)

among observations within a block. Of course, this assumes that the entire
data set is not just a single block of correlated observations, in which
case the effective sample size is just one and asymptotic theory would not
apply. We will return to this approach for treating longitudinal data in
Chapter 8.

Paired observations

Use of multiple observations over time accomplishes several things:

• It shifts the focus of the analysis from levels of the outcome to rates of
change.

• As a consequence, inferences are unconfounded by factors that affect
between-individual differences in level, only by those that affect rates
of change.

• The residual variance against which effects are tested is that within
rather than between individuals, and will generally be smaller, lead-
ing to a more powerful test, depending upon how widely spaced the
observation are; and
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• By serving as replicates, the precision of estimates of level is also
improved.

To develop these ideas more formally, consider the following linear model
for pairs of observations on each subject:

Yik = α0 + α1Zi + (β0 + β1Zi + eTi )tk + eBi + eWik (7.1)

where k = 1, 2, var(eBi ) = σ 2
B , var(e

T
i ) = σ 2

T , and var(eWik ) = σ 2
W . Here,

α0 + α1Zi describes the mean of the trait at baseline t = 0 and β0 + βiZi

the mean rate of change per unit t . (For now, we assume Z is constant
over time.) Then the paired differences are given by model

Yi2 − Yi1 = (β0 + β1Zi + eTi )(t2 − t1)+ eWi2 − eWi1

Thus, the residual variance of the differences is

var(Yi1 − Yi1) = (t2 − t1)
2σ 2

T + 2σ 2
W

compared with the variance of a single measurement

var(Yik) = t2k σ
2
T + σ 2

B + σ 2
W

or of the average of two measurements

var(Y i) = t̄2σ 2
T + σ 2

B + σ 2
W/2

Now suppose we code the time scale so that t̄ = 0, that is, t1 = −t2 =
�t/2. Then var(Yi2 − Yi1) = (�t)2σ 2

T + 2σ 2
W and var(Yik) = σ 2

B + σ 2
W .

Thus, the variance of the difference will be smaller than the variance of a
single measurement if σ 2

W + (�t)2σ 2
T < σ 2

B .
Now the variance of β̂1 is given by var(Yi2−Yi1)/n(�t)2 var(Zi) whereas

the variance of α̂1 estimated from a single observation per subject is
var(Yik)/n var(Zi). Thus var(α̂1) > var(β̂1) if

(�t)2σ 2
T + 2σ 2

W

(�t)2
< σ 2

B + σ 2
W

that is, if (�t)2 < 2σ 2
W/(σ 2

B + σ 2
W − σ 2

T ).
What might one expect about the relative sizes of α1 and β1? Suppose

the rate of change and its dependence on Z remained constant over the
lifetime and at birth there was no relationship between Y (0) and Z, that
is, α1 = 0. Then at time t1, we would expect Y1 = α0 + β0t1 + β1Zt1 +
error. If we had only this single observation, then we could not estimate
β1 directly without assuming α1 = 0, and so this would be equivalent to
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fitting Y1 = α∗
0 + α∗

1Z + error where α∗
1 = β1t . With this equivalence, we

find that the paired test is more powerful than the unpaired test if

t21

σ 2
B + σ 2

W

<
(�t)2

(�t)2σ 2
T + 2σ 2

W

Thus, it is clear that either test could be the more powerful, depend-
ing on the magnitude of the three variance components, the age of first
observation, and especially, the interval between the two observations.

Repeated measurements

Now suppose we have K measurements per subject at times tk. (For the
time being, we assume complete datawith all subjects observed at all times;
later we will consider the more realistic situation where some observations
are missing or some subjects drop out prematurely.) Let us again assume
that the linear model given by Eq. (7.1) applies. Note first that this is
equivalent to the following hierarchical model:

Yij = ai + bitj + eWij (7.2a)

ai = α0 + α1Zi + eBi (7.2b)

bi = β0 + β1Zi + eTi (7.2c)

where ai and bi are random person-specific intercepts and slopes respec-
tively. Thus, one could in principle proceed in a two-stage manner, first
fitting a separate regression, Eq. (7.2a), to each subject separately to
obtain estimates (âi , b̂i ) and their sampling variances νai = var(âi) and
νbi = var(b̂i), then perform weighted least squares to fit the âi and b̂i to
Eqs. (7.2bc). Here the appropriate weights would be given by 1/(vai +σ 2

B)

and 1/(vbi + σ 2
T ) respectively, which involve the unknown residual vari-

ances σ 2
B and σ 2

T , thus requiring an iterative procedure (Stram 1996). Also
note that unless the tk are centered at their mean, the âi and b̂i will be
correlated, requiring a bivariate fitting of Eqs. (7.2bc) with weights given
by (V−1

i + �−1)−1 where Vi = cov(âi , b̂i ) and � = diag(σ 2
B , σ

2
T ). Fortu-

nately, a number of programs are available to fit the full model in a single
stage, such as MLn (Kreft and de Leeuw 1998) or procedure MIXED in
the SAS package (Littel et al. 1996). For example, using SAS, one would
specify the following code:

INPUT ID TIME Z Y;
PROC MIXED;

CLASS ID TIME;
MODEL Y = Z TIME Z*TIME/SOLUTION;
RANDOM ID ID*TIME;
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Figure 7.1. Regression of individually-adjusted community-mean 4-year FEV1 growth
rates on community ambient NO2 levels in the CHS. (Adapted from data in Gauderman
et al. 2000.)

This will yield estimates of the overall intercept α0 and the coeffi-
cients of Z(α1), TIME (β0), and Z*TIME= (β1), as well as the three
residual variances SUBJECT (σ 2

B), SUBJECT*TIME (σ 2
T ), and RESID-

UAL (σ 2
W). Figure 7.1 illustrates the regression of individually adjusted

community-mean 4-year growth rates for FEV1 on community ambient
NO2 concentrations in the CHS using this form of analysis (Gauder-
man et al., 2000), showing a strong inverse relation between the two
(R2 = −0.61, p < 0.025).

In using the hierarchical mixed model (GLMM) in this way we are
assuming that all three error terms eBi , e

T
i , and eWik are normally distributed.

In some circumstances, we may be primarily interested in the growth rate
parameters β and do not wish to assume a specific model for the intercepts
ai , including linearity and normality. In this case, one could simply omit
Eq. (7.2b) and treat the ai as fixed effects—a vector of nuisance parameters,
one per subject. Table 7.1 compares the estimated parameters from the
fixed and randomeffectsmodels from theCHS (Berhane et al. 2004). (Here
we have included a third level of random effects for communities, as will
be explained in Chapter 10.) The results for both slopes and intercepts are
quite similar whether the other terms are treated as fixed or random.

Over relatively short periods of time, linearity of growth rates may be
a reasonable approximation, but over periods where subjects are devel-
oping rapidly there can be marked nonlinearity. Furthermore, covariate
values could also be varying substantially over time. For example, in the
CHS, children are observed before and after their adolescent growth spurts
(growth curves also differ markedly between boys and girls). Although
the main focus of the analysis concerns long-term effects of air pollution,
annual variation in pollution levels also influences annual growth rates.
For these reasons, we need a more general framework.
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Table 7.1. Comparison of fixed effects (columns 2 and 3) and random effects
(columns 4 and 5) estimates of the intercepts and slopes for MMEF changes
in the CHS (Reprinted with permission from Berhane et al. 2004.)

Pollutant Cross-sectional Longitudinal Full model
intercepts slopes
(%) (%)

Intercepts Slopes
(%) (%)

O3 0.80(0.93) −0.20(0.26) 1.15(1.14) −0.18(0.27)
PM10 −1.54(0.93) −0.49(0.20) −1.65(0.80) −0.45(0.21)
PM2.5 −2.62(1.58) −0.74(0.34) −2.83(1.44) −0.68(0.37)
NO2 −1.69(1.15) −0.47(0.25) −1.97(1.07) −0.46(0.27)
Acid −0.44(1.15) −0.43(0.22) −0.78(1.08) −0.41(0.24)

First consider the effects of time-dependent covariates, still assuming
linear growth rates with respect to time. A simple way to accommodate
time-dependent covariates would be to consider average levels Zi and
deviations Zik − Zi at the different levels of the model:

Yik = ai + bitk + β1
(
Zik − Zi

)+ eWik (7.3a)

ai = α0 + α1Zi + eBi (7.3b)

bi = β0 + β2Zi + eTi (7.3c)

Thus the effect of covariates can be tested at both the temporal level
[Eq. (7.3a)] and the subject level [Eqs. (7.3b,c)]. In addition to testing
H0: β1 = 0 and H1: β2 = 0, one could also test H2: β1 =β2. If H2 is not
rejected, one might set β1 =β2, thereby essentially estimating a weighted
average of the two effects (Neuhaus and Kalbfleisch 1998).

This framework is conceptually a bit unsatisfying, however, as it pos-
tulates a dependence of intercepts ai and annual observations Yik on
contributions to Zi that have yet to occur! More appealing, then, is to
focus on the annual, rather than average, rates of change and postulate
that

Yi1 = α0 + α1Zi1 + eBi

Yik − Yi,k−1 = β0 + β1Zik + eTi + eWik , k = 2, . . . , Ji

which by successive summation yields:

Yik = α0 + α1Zi0 + β0tk + β1Wik + eBi + k eTi + fik
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where

Wik =
k−1∑
�=1

Zi� and fik =
k−1∑
�=1

ei�

Thus, baseline levels are regressed on some index Zi0 of cumulative expo-
sure before the first observation and the subsequent levels are regressed
on another index Wik of cumulative exposure during the ensuing inter-
val. Also, the variance structure in this model is somewhat different from
Eq. (7.3) since the residuals fik are no longer independent: var(fik) =
(k − 1)σ 2

W and cov(fik, fi�) = (k − �)σ 2
W . As a simple approximation,

however, using standard GLMM software, one could simply adopt the
same variance structure as previously, that is, three variance components
eBi , e

T
i , and eWik , assumed to be independent with constant variances σ 2

B ,
σ 2
T , and σ 2

W , respectively. In any event, use of GEE methods would avoid
any problems of misspecification of the variance structure.

To address the problem of varying baseline growth rates with age,
we can proceed parametrically or nonparametrically. Parametrically, one
might simply add additional polynomial terms in age to Eq. (7.2a), for
example,

Yik = ai + bitk + ci t
2
k + dit

3
k + eWik

and model each of the random effects (ai , bi , ci , di) in the same manner as
Eqs. (7.2b, c), with additional regression coefficients γ , δ, and so on for Zi .
This is a very flexible model, but the individual regression coefficients
can be difficult to interpret. Supposing one were expecting a generally
sigmoidal relationship, one could still retain the cubic polynomial form of
dependence on age, but reparameterize it in terms of more interpretable
parameters, such as the peak rate of growth, bmax, the age at peak growth
rate, tmax, the baseline Y0, and maximum attained change �Y .

Y = Y0 + bmax(t − tmax)− c(t − tmax)
3

where c is the solution to a quadratic equation involving bmax and �Y .
Any or all of these four parameters could then be treated as subject-specific
random effects, each possibly regressed on covariates. However, as some
may be poorly estimated, onemight prefer to treat only one or two of them
as random or exposure-dependent and the remainder as single population
parameters.

Alternatively, one might use some form of flexible modeling approach
for the age effect, at either the individual or population level. For example,
one might treat the shape of the growth curve s(t) as a population function
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and model only individual deviations from it,

Yik = s(tk)+ αZi + eBi + eWik

but this would not allow for differences in rates of growth, only differences
in level. To accommodate this, one could add linear deviations of the form

Yik = s(tk)+ αZi + (βZi + eTi )tk + eBi + eWik

where βZitk describes the regression of individual deviations in slope on
Zi and eTi tk describes the random deviations from the population average
rate of change. Alternatively, one could model each individual’s growth
curve flexibly, say si(t), and then treat certain functionals Fp(s) of these
curves—say, the maximum rate of growth or the maximum overall change
as random effects to be modeled in terms of covariates.

Yik = si(tk)+ eWik

Fp(si) = βp0 + βp1Zi + e
p
i , p = 1, . . . ,P

For this approach to be viable, however, one must take care to avoid
overparameterizing the model by having more flexibility in the individual
growth curves than the number of observations can support. Gauderman
et al. (2004) used this approach to describe the maximum 8-year changes
in lung function in the CHS subjects using linear splines with two fixed
knots (at ages 12, 14, and 16, Figure 7.2). Berhane and Molitor (2007)
used cubic splines to model instead the population growth curves s(t) for
each community separately and then regressed the community-average
maximum attained lung volume (or other functionals like the peak growth
rate) on air pollution.
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Figure 7.2. Cubic spline estimates of lung function growth in males and females from the
CHS. (Reprinted with permission from Berhane and Molitor 2004.)
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Binary and categorical outcomes: General
linear mixed models

Now consider a trait that can be either present or absent at any time
point, say some respiratory symptom. Rather than consider only the first
transition from absence to presence in subjects with no previous history
of the trait (incidence) as in previous chapters, suppose now we were
interested in describing the entire time course of the trait. For a binary
trait, this would be fully described by the probability of transitions from
absence to presence and vice versa:

logit Pr(Yik = 1|Yi,k−1 = 0) = αk + ai + αZik

logit Pr(Yik = 0|Yi,k−1 = 1) = βk + bi + βZik

where ai and bi are random effects for subjects and αk and βk are fixed
effects for time. Categorical response can be modeled in a similar manner
with a fully saturated model given by a matrix of equations for all pos-
sible transitions Pr(Yik = r|Yi,k−1 = s), although one might prefer a more
parsimonious model by imposing certain constraints on the parameters.

To frame the problem in a more general context, let us consider the
GLMM:

θik = g(μik) = αk + ai + αZik

where, as before, μik = E(Yik|Zik) and g(μ) is the canonical link appro-
priate to the distribution of Y , for example, the logit for binary data. What
distinguishes the GLMM from the GLM discussed earlier is the addition
of the random effect ai , whose distribution is unspecified but assumed
to heave zero mean and variance σ 2. This is thus a “marginal model,”
describing the mean and variance of Y at each time for each person, rather
than the conditional model for the transition probabilities.

Unlike in linear models, the interpretation of the regression coefficients
in nonlinear exposure–response relations differs between marginal and
conditional models. Consider, for example, a logistic model of the form
E(Yik|Zik,Xi) = expit(α + βZik + Xi), where Xi denotes an unobserved
random effect for subject i (a “frailty”) having some distribution with
variance σ 2, as discussed in the sections of Chapter 4 on overdispersion.
Here, β has the interpretation of the log relative risk per unit Z for indi-
viduals with the same frailty. In the corresponding marginal model μik =
E(Yik|Zik) = expit(α+β∗Zik)with var(Yik|Zik) = μik(1−μik)(1+σ 2),β∗
estimates instead a population average log relative risk. The average risk
EX[E(Y |Z,X)] obtained from the conditional model is not exactly a logis-
tic relationship (although it has a similar shape), and its slope coefficient
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is generally has a somewhat larger than that from the marginal model,
particularly if the average response probability is near zero or one. A
quantitative example of this phenomenon for the probit model (where an
analytic solution is possible) is discussed in Chapter 15 (Figure 15.3).

Combined longitudinal and survival outcomes

In some instances, one may have longitudinal observations of some
biomarker or other continuous outcome along with a censored failure-
time disease endpoint. For example, in the CHS, each child’s lung function
is measured annually and one might want to ask whether the diagnosis of
new-onset asthma can be predicted by the history of prior lung function
measurements. Let Yik denote the longitudinal measurements, as before,
and let Di represent the binary disease endpoint, taking the value 0 until
diagnosis at time Ti . The predictors, such as air pollution Zik could be
either fixed or time-dependent. One way to relate the two outcomes might
be to introduce a latent variable process, Xi(t), representing the underly-
ing propensity to disease at any point in time, and treat the longitudinal
measurements as flawed indicators of that process. (This can be thought
of as a longitudinal form of measurement error model that will be consid-
ered in greater detail in Chapter 11.) Thus, we might specify the model in
terms of three submodels:

Xi(t) = ai + bit + α2[Zi(t)− Zi], latent biological process (7.4a)

where ai = α0 + α1Zi + eBi and bi = β0 + β1Zi + eTi

Yik = Xi(tik)+ eWik , biomarker measurement (7.4b)

λ(t) = λ0(t) exp[γ1Xi(t)+ γ2Zi(t)], disease risk (7.4c)

Here, we are assuming a linear growth curve model for the unobserved
biological process, but of course more complex parametric or nonpara-
metric models could be considered. The person-specific intercepts ai and
slopes bi are treated as random effects, regressed on covariates as before,
with coefficients and error variances to be estimated. In addition to allow-
ing inference on the effects of exposure on individual growth rates (α1,β1),
the model also provides an estimate of the dependence of disease risk on
the latent biological process (γ1), possibly after adjusting for the direct
effect of exposure on disease (γ2).

Figure 7.3 illustrates a simple descriptive analysis showing how asth-
matics have consistently lower MMEF than nonasthmatics, the earlier the
onset, the lower the lung function. In this analysis, no incident asthmatics
during the period of follow-up were included, so it cannot be determined
whether cases diagnosed at older ages already had reduced lung function
before their diagnoses. Such a question would require a more complex
analysis like that described above.
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Figure 7.3. Fitted spline curves for MMEF growth in asthmatic children, by age at onset,
and in nonasthmatic children. (Reprinted with permission from Berhane et al. 2000.)

Fitting of this model requires special purpose software. Faucett and
Thomas (1996) described an MCMC approach in which the various ran-
dom effects are sampled conditional on the data and the current estimates
of the population parameters, then these parameters are sampled from
their distributions given the sampled random effects, continuing in this
manner for many iterations. Their application to data on the incidence
of AIDS in relation to longitudinal observations of CD4 counts illustrates
the problem of informative censoring, since counts below a certain level
would mean death, leading to premature truncation of the longitudinal
observations. Thus, joint estimation of the CD4 process and AIDS inci-
dence is necessary to overcome the bias this would produce. Their estimate
of the mean slope [β0 in Eq. (7.4a), with no covariates Z in the model]
was 7% higher from the joint analysis than that from an analysis of only
the CD4 data. Likewise, the relative risk coefficient [γ1 in Eq. (7.4c)] was
35% higher than that from the naïve regression of AIDS incidence onmea-
sured CD4 counts. The AIDS incidence data thus informs the longitudinal
analysis of CD4 counts and vice versa. See Wulfsohn and Tsiatis (1997);
Faucett et al. (1998); Hogan and Laird (1998); Henderson et al. (2000)
for further discussion and applications.

Panel studies

In addition to the time-series methods discussed in the next chapter, which
are generally based on aggregate data, acute effects of air pollution or
other rapidly time-varying exposures can be studied at the individual level
using a design known as a panel study. These are essentially the same as the
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longitudinal studies for chronic effects described earlier in this chapter, but
on a shorter time scale. Typically, one or more relatively small panels of
subjects (often highly sensitive individuals like asthmatics) will be enrolled
and observed frequently (perhaps daily) over a period of a few weeks or
months. Since the burden on participants is substantial, it is not realistic
to expect the same participants to continue for long and the burden on
investigators is also heavy enough to preclude studying panels ofmore than
a few dozen at a time, but one might study several panels over different
time periods. What this design accomplishes, however, is to allow quite
intensive measurement of many acute effects at fine temporal resolution.

The typical data structuremight thus be represented as (Xpt ,Ypit ), where
Xpt denotes the air pollution exposure at time t for panel p, and Ypit

denotes the outcome variable measured for subject i at time t . A natural
linear model might then take the form

Ypit = β0 + αp + γt(p) + βXpt + epi + epit

where α and γ represent fixed effects for panel and time, respectively and
epi and epit are random effects for between-subject and within-subject
deviations with some assumed distribution (typically Gaussian). Condi-
tioning on the between-subject deviations by subtracting the subject means
of the Y s and the panel-time means from the Xs eliminates the need for
a parametric assumption about the distribution of subject-level random
effects and yields the equivalent simple regression model

Ypit − Ypi = β0 + αp + β
(
Xpt −Xp

)+ epit

The following SAS code will readily fit the full model:

INPUT PANEL ID DAY X Y;
PROC MIXED;

CLASS PANEL ID(PANEL) DAY(PANEL);
MODEL Y = X PANEL DAY/SOLUTION;
RANDOM SUBJECT= ID(PANEL);

Of course, this assumes that every subject is observed for the entire time
period, so that Xp is the same for every subject. If this is not the case, then
one should create a person-specific mean and regress the daily outcomes
on both the person-specific means and on the daily deviations from the
person-specific means. The former constitutes a between-person, the latter
a within-person estimator of the air pollution effect.

An alternative model is the “transition” model in which each response
is regressed on the residual from previous observation,

Ypit =β0 +αp + γt(p) +βXpt + η(Ypi,t−1 −βXpi,t−1)+ epit , t = 2, . . . , T
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Forming the differences between successive observations for a linearmodel
yields the equivalent form (with some reparameterization),

Ypit −Ypi,t−1 = γ ∗
t(p) +β∗(Xpt −Xpi,t−1)+ η∗Ypi,t−1 + epit , t = 2, . . . , T

SAS Proc Mixed can fit this model by replacing the RANDOM command
by the following line:

REPEATED DAY(PANEL)/TYPE=AR(1)
SUBJECT= ID(PANEL);

which assumes a first-order autocorrelation process for the residuals. A
broad menu of more complex alternative specifications is also available.
For binary outcomes, the GEE procedure GENMOD should be used
instead, which has slightly different syntax. GENMOD also produces
GEE estimates of the parameters and their variances (whatever the form
of the outcome variable). Rather than modeling the correlation structure
directly, one might also perform the analysis on the residuals from LOESS
smooths of both X and Y on date to remove spurious associations due to
confounding by season.

Although we have focused on linear models for continuous outcomes,
the general framework of GLMMs can be applied to other types of
outcomes, such as a logistic model for binary variables. This is clearly
preferable to the traditional approach to analyzing panel studies of,
say, asthma exacerbations by aggregating over subjects and treating the
panel’s daily attack rate as a continuous or Poisson variable, to be
regressed on daily pollution levels and temporal confounders like weather.
That approach fails to properly account for the dependence of events
over time, assumes a constant variance, and cannot deal with dropouts
or intermittent events, amongst other problems (Korn and Whittemore
1979).

For example, Dr. Xiao-chuan Pan and his colleagues at Beijing Medical
University (unpublished data) looked at the effects of particulate pollu-
tion in three cities of China and South Korea resulting from the annual
springtime dust storms in the Gobi Desert using a panel study design.
Three panels (one in each region), each comprising about a hundred chil-
dren, were enrolled and observed over a two-month period surrounding
the anticipated peak pollution period. Lung function tests were performed
twice daily (morning and evening). For illustration, we compare the effects
on evening peak flow (PEFR) in relation to daily PM10 levels using the data
from the two Chinese sites. Fixed covariates include age, height, and gen-
der. Presence of cough can be treated as a time-dependent covariate, but
could also be an intermediate variable on a causal pathway, so its inclu-
sion might constitute overadjustment. Table 7.2 compares the fits of the
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Table 7.2. Illustrative results from the panel study of the effects of particulate
pollution resulting from the Gobi desert dust storms on one panel of 106
children in China (unpublished data from Pan et al.)

Outcome
variable

Adjusted
for cough?

Repeated measures model Random effects model

PM10 Cough Corr(RE) PM10 Cough var(RE)

PEFR1 Yes −12.11
(1.96)

−15.51
(1.68)

0.67 −4.67
(1.77)

−14.21
(1.51)

1,848

PEFR1 No −13.24
(1.96)

— 0.67 −5.09
(1.77)

— 1,817

Cough2 N.R. −0.025
(0.008)

— 0.50 −0.031
(0.011)

— 0.036

1 Fitted using Proc Mixed with an AR(1) correlation structure (for the repeated measures analysis).
2 Logistic model fitted using Proc Genmod with an AR(1) correlation structure for the repeated
measures analysis and an exchangeable correlation structure for the random effects model.

two models for PEFR with and without adjustment and treating cough as
a binary endpoint. Although cough is strongly related to both air pollu-
tion and PEFR, adjustment for it reduces the effect of PM10 on PEFR only
slightly in either the random effects or repeated measures model.

See Sheppard (2005) and Dominici et al. (2003b) for more extensive
treatments of panel studies and their relationships with time-series, case-
crossover, and cohort studies.

Missing longitudinal data

In Chapter 4, we considered the problem of missing data on fixed expo-
sure variables in the context of case-control and cohort studies. We now
turn to the more complex problem of missing data on outcomes in longi-
tudinal studies. Here, the “complete case” analysis discussed in Chapter 4
would require restriction to those subjects with data at all observation
times; aside from possibly leading to an unacceptable loss of sample size,
this strategy is not immune to bias as we saw earlier. What is often done
is simply to omit the missing observations for each subject, but this too
can lead to bias. Although the basic principles of missing data models
and techniques for dealing with them are similar, it is helpful to review
these first and discuss different missingness patterns that can arise in the
longitudinal context. Of course, data on time-dependent exposures can
also be missing, but for simplicity, we assume the problem concerns only
the relationship between a single fixed (not time-dependent) exposure
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variableZ and a sequenceY= (Y1, . . . ,YK) of observations of a continuous
outcome variable, some of which could be missing.

Recall that we earlier defined the concepts of missing completely at
random (MCAR), missing at random (MAR), ignorably missing, and non-
ignorably missing. In longitudinal studies, we would define these concepts
as follows. Again, we introduce a missing value indicator, now as a vec-
tor M = (M1, . . . ,MK) corresponding to whether the outcome variable
is missing at each time point. Here, we define MCAR as missingness M
being independent of Y at all observation times, although it could depend
upon Z or other measured variables. MAR is defined as missingness Mk

at a given time being independent of Yk at that time, although it could
depend on Y(−k) at other times. Ignorable missingness is MAR, plus there
being no functional relation between the parameters in Pr(Y|Z;β) and
Pr(M|Y,Z;α).

Outcomes may be missing at some observation times either because
planned visits were missed or because of drop-outs from the study. We
call the former “intermittent missingness.” If the only missing values result
from drop-outs (i.e., Mk = 1 implies Mk+1 = Mk+2 = · · · = MK = 1),
we say the data have a “monotone missingness” pattern. Intermittent
missingness is likely to be ignorable in situations where the probabil-
ity of a subject missing a particular observation is unrelated to the true
value at that time (although it could be related to other measurable char-
acteristics). However, it can be awkward to deal with by some of the
standard multiple imputation strategies: there may be no easy way to
model the dependence of outcomes at a given observation time on pre-
vious times if there are many different subsets of subjects with different
subsets of the data available. Truncated observations, on the other hand,
can have more serious implications for bias if the reason for dropping
out is related to the outcome variable, for example, if children in pol-
luted communities who develop asthma are more likely to move to cleaner
air than nonasthmatics in the same communities. Fortunately, however,
the missing data imputation strategies are relatively easy to apply in this
circumstance.

Under the MAR assumption, simply ignoring the missing Y s still yields
unbiased estimators of the intercept α and slope β in the mixed model
Eq. (7.2) if maximum likelihood is used (this may not be true for GEE
methods, however). In the generalmodel involving random effects for both
ai and bi , even subjects with only a single Yk will contribute some infor-
mation towards estimation of α and β, although their individual ai or bi ,
cannot be estimated. In the model with intercepts treated as fixed effects,
only subjects with at least two observations are informative about β. These
contributions result from the information about the relevant variance com-
ponents from each deviation from the model prediction. In the two-stage
analysis described earlier, such subjects do not contribute, but for each of
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those with three or more observations, the first stage yields estimates âi
and b̂i and their variances νai = var(âi) and νbi = var(b̂i). These are then
used in weighted regressions with weights 1/(νai + σ 2

B) and 1/(νai + σ 2
B),

respectively. The subject-specific components of these weights depend on
the number and spacing of the observations, specifically inversely with
ni var(tik). Thus, the subjects who receive the heaviest weight are those
with the most complete and most widely spaced observations.

Given that all subjects contribute appropriately in the mixed model,
what is the validity of analyzing only the available observations, and is
there any need to impute the missing observations? If the data are indeed
MAR, then this analysis is unbiased and nothing further can be gained by
imputing the missing observations.

Now suppose the missingness is nonignorable, that is, that the proba-
bility that a particular observation is missing depends upon the true value
of Yk conditional on Z and the available observations of the other Y s.
The parametric (regression) and semiparametric (propensity score) meth-
ods discussed in Chapter 4 are readily applied to longitudinal data with
monotone missingness patterns, simply by building separate models for
each time based on the fixed covariates and the observations from previ-
ous times. For example, in the propensity score method, one might fit a
separate a logistic model Pr(Mk = 1|Y(−k),M(−k),Z) at each time point k,
and use this model to stratify the subjects and impute values for the miss-
ing Yk observations from the nonmissing ones at that time (Lavori et al.
1995). Fitzmaurice et al. (1994) discuss parametric regression approaches
to missing longitudinal binary outcomes assuming that Y is a member
of the exponential family; since the Y s are binary, it becomes feasible to
evaluate the full likelihood, summing over all possible combinations of
the missing data, without resorting to multiple imputation.

If the missingness pattern is not monotone, some form of likelihood-
based analysis (or multiple imputation approximation to it) is required.
Such methods are based on one of the two following factorizations of the
full likelihood:

Pr(Y,M|Z) =
{
Pr(Y|M,Z) Pr(M|Z) “Pattern mixture” models

Pr(M|Y,Z) Pr(Y|Z) “Selection” models

Pattern–mixturemodels (Little 1993; 1994; 1995b; Little andWang 1996;
Demirtas 2005) are particularly convenient for data with nonmonotone
missingness patterns, since one can reconstruct the marginal model by
averaging over all observed missingness patterns:

Pr(Y|Z) =
∑
M

Pr(Y,M|Z) =
∑
M

Pr(Y|M,Z) Pr(M|Z)
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Essentially, one stratifies the data by the pattern of missingness, fits
a separate model for each stratum, then takes a weighted average
of these stratum-specific models. The weights Pr(M|Z)= ∏

k Pr(Mk|
M1, . . . ,Mk−1,Z), are readily estimated by, say, logistic regression since
the M and Z data are completely observed. Estimation of P(Y|Z,M) is
more difficult, since by definition the full Y vector is not observed, requir-
ing some additional assumptions for identifiability. For example, suppose
Y follows a growth curve model like Eq. (7.2), so that the individual ai
and bi are estimable even if the Yi vector was incomplete. Then it might
be reasonable to assume that the means and covariances (αm,βm,�m) of
the distributions of (ai , bi) for subjects with Mi = m were “similar” for
subjects with similar missingness patterns. One can write the likelihood
contribution for a particular subject as

Pr(Yobs,M, (a, b)|Z] = Pr(Yobs|(a, b),Z,M) Pr((a, b)|Z,M) Pr(M|Z)

The first factor is a conventional growth curve model like Eq. (7.2a) using
only the observed data for subjects with a given missingness pattern. The
second factor is a model for the distribution of random coefficients as a
function of the completely observed covariate and missingness patterns.
The third might be a logistic model for the missingness probabilities as a
function of covariates. Demirtas (2005) describes a Bayesian approach to
smoothing across missingness patterns.

Selection models (Little and Rubin 1989b) model instead the marginal
probability of Y given Z directly, but supplement the likelihood with a
model for the missingness process as a function of the (potentially missing)
Y and complete Z data. The two approaches are equivalent, of course, if
the parameters of Pr(Y|Z) and Pr(Y|Z, M) are the same and the param-
eters of P(M|Y, Z) and Pr(M|Z) are the same. Little (1995b) compared
the two approaches in the context of modeling the drop-out process in a
longitudinal study. The two approaches can also be combined, using one
for part of the data and another for the rest, as described in Little (1993).
Hogan and Laird (1997) extend the pattern-mixture models approach to
joint analysis of a longitudinal continuous variable and a censored survival
endpoint that depends upon it.



8 Time-series models
for acute effects

Although most of this book is concerned with the long-term health effects
of environmental exposures, there are also short-term effects for some out-
comes. Obviously not for cancer, which is the result of a long accumulation
of carcinogenic exposures (combined with underlying genetic susceptibil-
ity), nor for such outcomes as asthma incidence or chronic obstructive
pulmonary diseases. Short-term elevations in disease rates followingmajor
population exposure events, like the London Fog that led to a doubling
of all-cause mortality (Figure 8.1) (Logan 1953; Waller et al. 1973; Bell
and Davis 2001), may be obvious and do not need sophisticated statis-
tical methods to detect them. (Although perhaps the best known, it was
not the first such epidemic of air pollution-related health effects to be rec-
ognized. Earlier events occurred in the Meuse Valley of Belgium in 1930
(Firket 1931; Nemery et al. 2001) and in Donora, PA in 1948 (Ciocco and
Thompson 1961).) However, very small relative risks that are consistently
manifest over many such episodes and many locations can also be highly
informative about acute effects, but require sensitive statistical methods
to overcome potential confounding and other problems. These methods
are the subject of this chapter.

A great advantage of time-series approaches is that comparisons across
time are unlikely to be sensitive to the types of confounders that would
affect comparisons between places or people, although they are subject
to other types of time-varying confounders. We begin by considering
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Figure 8.1. SO2 concentrations and mortality during the London fog episode of 1952.
(Reproduced with permission from Bell and Davis 2001.)
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time-series methods for looking at the relationship between daily vari-
ation in the rates of discrete disease events and daily variation in exposure
levels, allowing for variability in latency, and then extend the approaches
tomultiple time-series across different locations and ultimately to repeated
events within individuals.

Methods for a single time series

Suppose we have data from routine surveillance of a population of (essen-
tially) constant size and structure over some period of time and observe
Y (t) events at time t . Here, the time scale could be measured in any dis-
crete intervals, but for argument sake, suppose it is measured in days. Also,
suppose we have a vector of explanatory variables Z(t) measured on the
same time scale; this might include the exposure of interest (say, con-
centration of some air pollutant), as well as other potential confounders
like weather and the prevalence of influenza infections. Because the events
may be rare, many of the values of Y (t) could be zero, so rather than
using standard linear regression techniques, a more natural choice would
be Poisson regression, as discussed in Chapter 4 . Thus, we might assume
Y (t)∼ Poisson[λ(t)N ] where N is the population size and λ(t) the rate,
which we might model as λ(t) = exp(Z(t)′β). Implicit in this model is an
intercept term β0 for the constant covariate Z0(t) ≡ 1, so that the baseline
expected number of events is Neβ0 = exp(ln(N)+β0); thus, assuming it is
relatively constant over the duration of the study, the population size can
simply be included as part of the intercept term. If we could assume that
the daily counts of events were independent, then the likelihood would
be formed simply by multiplying these time-specific Poisson probabilities
together,

L(β) =
T∏

t=1

exp
(
Y (t)Z(t)′β − eZ(t)′β

)/
Y (t)!

There are several problems with this naïve formulation, however. First,
daily rates are probably not independent, so this multiplication would be
inappropriate. Second, the daily rates are doubtless not perfectly explained
by the measured covariates, so there will be additional sources of daily
variation not explained by the model. Thus, the counts would not have a
Poisson distribution but would be “overdispersed,” that is, their variance
is larger than that predicted by the Poisson distribution (equal to themean).
Third, there are likely to be other unmeasured risk factors that are cor-
related with exposure, leading to temporal confounding. Amongst these
temporal confounders could be long-term trends and seasonal variation
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in disease rates and exposures. Simply observing that disease rates tend to
be highest in winter when some pollutant is also high would not be a suffi-
cient basis for inferring a causal connection between the two—one would
be more interested in demonstrating a short-term correlation within sea-
son. Thus, these long-term and seasonal trends need to be eliminated from
the data before proceeding to a correlation analysis. Finally, the effect of
exposure on disease is unlikely to be instantaneous, but only after some
latent period that itself could be variable.

Rather than adopt the full likelihood approach described above, requir-
ing proper specification of the entire multivariate distribution of Y, let us
recast the problem in the form of a GLM by specifying only the mean and
covariance structure. The naïve Poisson regression model given above can
be written in the form

E[Y (t)]) = exp(Z(t)′β) ≡ μ(t)

var[Y (t)] = μ(t)

cov[Y (t),Y (u)] = 0 for t �= u

suggesting ways the model could be extended to address some of these
problems. First, the overdispersion problem could be solved by adopt-
ing some more general dependence of the variance upon the mean, say
v(t) ≡ var[Y (t)] = f [μ(t); σ 2], where σ 2 is an overdispersion parameter
to be estimated along with β. Likewise, the serial correlation could be
addressed by adopting some autoregressive model, perhaps a simple first-
order autocorrelation model with decay parameter ρ, also to be estimated.
The time trends and seasonal variation could be addressed by adding some
smooth function of time, s(t), to the means model. Finally, the latency
problem might be addressed by subtracting a lag parameter δ from time
in the means model. (Later we consider an extension of this known as
the “distributed lag model” to address variability in the lag.) Putting it all
together, the full model now might take the form

E[Y (t)] = exp[Z(t − δ)′β + s(t)] ≡ μ(t)

var[Y (t)] = μ(t)[1+ σ 2μ(t)] ≡ ν(t)

cov[Y (t),Y (u)] = √
ν(t)ν(u)e−ρ|t−u| ≡ S(t , u)

The generalized estimating equations (GEEs) machinery introduced in
Chapter 4 (Liang and Zeger 1986) can be used to fit such models. Suppose
we have a number of independent time series i = 1, . . . , n, say in different
locations or by taking a single long time series and breaking it up into
shorter series that would be virtually independent of each other (say, a
20-year observation period being treated as 20 independent 1-year time
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series). Then the estimating equation for β would be

U(β) =
n∑

i=1

(Yi − μi (β))
′V−1

i

(
∂μi (β)

∂β

)
= 0

where Yi = (Yi(1), . . . ,Yi(Ti)) is the vector of all the correlated event
counts in city or year i,μi the corresponding vector of means, and Vi the
matrix of covariances given above. The solution to this equation is the
estimator of β (which could include the lag parameter δ and any param-
eters in the smoothing function s(t)). The asymptotic variance of β is
then given by the “sandwich estimator,” Eq. (4.6). Parameters in the vari-
ances can in turn be estimated using GEE-2, by forming the empirical
cross-products

C(t , u) = [Y (t)− μ(t)][Y (u)− μ(u)]

and regressing these pairs of observations on the model predictions S(t , u)
given above. Thus, σ 2 could be approximately estimated as the mean
of C(t , t)/μ(t) − 1, and ρ by the regression of the log of the standard-
ized residuals ln

[
C(t , u)/

√
ν(t)ν(u)

]
on t − u. This approach has been

termed “Generalized Iteratively Re-weighted Least Squares” (Zeger 1988;
Zeger and Qaqish 1988), since in practice one iterates between an estima-
tion of the parameters in the means model using the current estimates of
the variance/covariance model, then computes these residuals and their
cross-products and re-estimates the parameters in the variance/covariance
model, until convergence.

The sandwich estimator requires multiple independent vectors of
correlated observations to estimate the “meat” of the sandwich,
n−1∑

i var[Ui (β0)]. In time series, we have essentially only a single very
long vector comprising the entire time series of correlated observations.
If β0 were known, one could estimate this by n−1��ijUi(β0)Uj (β0), but
the corresponding expression evaluated at β̂ is simply zero. An ad hoc
solution to this problem is to subdivide the time series into intervals such
as years that are at least approximately uncorrelated and take the summa-
tion only over the within-interval pairs, but this is unsatisfying, since there
is some correlation between the ends of the adjacent intervals and virtu-
ally no correlation between most of the within-interval pairs. Lumley and
Heagerty (1999) described a broad class of weighted empirical adaptive
variance estimators of the form

n−1w∗
n

n∑
i=1

n∑
j=1

wijUi(β̂)Uj (β̂)
′
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where wij are weights are some declining function of the distance between
observations, which can be chosen adaptively so as to minimize the mean
squared error.

In practice, this approach can be cumbersome because of the need to
deal with the large matrices of covariances Vi . Rather than dealing with
the serial correlation in the covariance model, a simpler approach is to
remove the source of that correlation in the means model by filtering out
the long- and medium-term variation through flexible models for Y (t) and
Z(t). There are a variety of ways of doing this, the simplest being to filter
using a simple moving average, say

Y (t) =
∑t+h

u=t−h

Y (u)

2h+ 1

for some suitable choice of averaging time h, and similarly for Z(t). More
commonly what is done is to use some form of cubic spline model like
those introduced in the previous chapter, using a large number of uni-
formly spaced knots, say one every 15 or 30 days. The assumption is
then that the residuals Y (t) − s(t) are serially uncorrelated, so ordinary
weighted least squares can be used. Since this still involves the param-
eter σ 2 in the variance model, however, an iterative procedure like the
one described above is still required. Dominici et al. (2002b) call this
“Iteratively Reweighted Filtered Least Squares.”

The choice of time scale for these filters is critical, since if one allowed
them to vary too fast, they would essentially remove all the signal of
the short-term causal effect one was looking for! On the other hand,
taking too coarse a time scale might fail to remove some temporal con-
founding. We will revisit this question under the heading of “harvesting”
later. Choice of the appropriate degree of “wiggliness” to allow for the
background temporal variation s(t), as well as adjustments for such time-
dependent covariates as weather, poses one of the biggest challenges
in time-series studies of air pollution. Recent work on semiparamet-
ric regression (Robins et al. (2007)) may offer a way forward to this
problem.

Cubic splines are essentially parametric and, without some modifica-
tions (e.g., “natural” splines), can behave poorly near the ends of a
series. Recently, nonparametric “smoothing” splines have become pop-
ular for their flexibility, the most widely used being the LOESS smoothers
(“locally estimated polynomial regression” (Cleveland and Devlin 1988)),
which have been incorporated into many statistical packages such as
S-plus. When there are multiple covariates under consideration (e.g., sev-
eral pollution variables along with seasonal and weather confounders),
these smoothers can be strung together in what are known as “general-
ized additive models” (GAMs) (Hastie and Tibshirani 1990), which take
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the form

μ(t) = Z(t)′β +
∑
j

sj [Xj(t)]

where sj (Xj ) denotes any smooth function of covariate j . (Some of these
terms could be joint functions of two or more variables, such as geo-
graphic coordinates.) An addition to nonparametric LOESS smoothers,
alternatives include smoothing splines (Green and Silverman 1994) and
parametric regression (natural- or B-splines) approaches (de Boor 1978;
Cheney and Kincaid 1999). The use of GAMs with LOESS smoothers has
become standard in the literature on the acute effects of air pollution since
they were introduced in the mid-1990s (Schwartz 1994b). However, in
about 2000, it was discovered that the default criteria used in the S-plus
package were inadequate to ensure convergence when the range of rela-
tive risks is small (as is typical in air pollution applications) and multiple
smoothers are included in the same model (also typical), and can lead
to biased estimates. This prompted several simulation studies (Dominici
et al. 2002b; Ramsay et al. 2003a, b) and re-analyses of certain major
studies like NMMAPS (Dominici et al. 2005b). These generally found that
there was some overestimation of the magnitude of the estimates (e.g., for
total nonaccidental mortality, the original method yielded an estimate of
0.41% per 10 μg/m3, which declined to 0.27% with a more stringent
convergence criterion), but the basic qualitative conclusions about the rel-
ative contributions of different pollutants and their spatial heterogeneity
were unchanged.

Although GAMs provide a flexible way of dealing with multiple con-
founders, concerns about residual confounding by risk factors like season
and weather, which can have a much more powerful effect on mortality
than does air pollution, continue to be raised (Moolgavkar 2005). One
recurring criticism is that the health effects of weather are more than the
sum of its parts, that is, temperature (particularly extremes and abrupt
changes), humidity, wind, barometric pressure, sunlight, and so on. A sug-
gested alternative to simply including these different factors in a GAM is to
classify them into 10-20 discrete “synoptic” patterns based on climatologi-
cal theory using various combinations of these factors. Pope and Kalkstein
(1996) compared the two approaches using data from the Utah Valley
and found that the synoptic method was as good or better than GAMs at
describing the effect of weather, but there was little difference between the
pollution effects estimated by the different methods. In detailed analyses
of the NMMAPS data from Philadelphia, Samet et al. (1997) compared
the synoptic approach with various other methods used to control for the
effects of weather and found little difference in the estimated pollution
effects.
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Distributed lag models

Finally, we must address the problem of latency. Obviously, not every
member of the population will be affected by an exposure event over the
same time period, so the effect on population rates can be expected to be
distributed over some range of times following the event. Equivalently,
the disease rate at a particular time can be thought of as the result of
exposures received over a distribution of times in the recent past. Since
we are modeling outcomes, not exposures, the latter is conceptually the
easier way to think about it. Thus, we might propose a model of the form

ln(λ(t)) =
�∑

δ=0

b(δ)Z(t − δ)

where � is the maximum lag to be considered and b(δ) represents an
array of regression coefficients to be estimated for the effect size at each
lag δ. In practice, however, the Zs tend to be so highly correlated that
direct estimates of b become very unstable. To overcome this difficulty,
one could assume the b(δ) represents some smooth function in δ, say a
polynomial, which rises to a peak and then declines. Thus, if we were to
write b(δ) = �K

k=0βkδ
k, where the degreeK of the polynomial is reasonably

low, then one could rewrite the previous equation as

ln(λ(t)) =
�∑

δ=0

K∑
k=0

βkδ
kZ(t − δ) =

K∑
k=0

βk

�∑
δ=0

δkZ(t − δ) =
K∑

k=0

βkZ̃k(t)

where Z̃k(t)=��
δ=0δ

kZ(t − δ) is a vector of covariates than can be
computed in advance.

This method was introduced by Schwartz (2000b) in an application to
data on deaths over age 65 in 10 cities that had daily PM10 measure-
ments. A quadratic distributed lag model showed that the excess risk was
distributed over several days, gradually declining to zero by the fifth. He
also showed that the estimate of the cumulative effect over that period was
more than double that obtained by constraining the entire effect to occur
in a single day. Applying similar methods to cause-specific mortality in
these same cities, Braga et al. (2001) showed that respiratory deaths were
generally associated with air pollution over the previous week, whereas
cardiovascular deaths were more affected by the same day’s exposure.
Zanobetti et al. (2000; 2002; 2003) described further applications to the
APHEA data.

Gilliland et al. (2001) fitted the distributed lag model to six-month
time series of school absences in relation to daily ozone concentrations
in each of the 12 communities. Figure 8.2 shows the resulting curve, aver-
aged across communities using a hierarchical model described in Berhane
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Figure 8.2. Fit of the distributed lag model for respiratory illness-related school absences in
relation to daily 10AM–6PM ozone concentrations in the CHS. (Reprinted with permission
from Gilliland et al. 2001.)

and Thomas (2002). Over the 30-day window (�= 30) considered in
this analysis, a cubic lag function (K = 3) showed a positive associa-
tion of absences with ozone concentrations up to about 17 days earlier,
significantly so over the previous 3–13-day interval.

The harvesting hypothesis

One interpretation of the association between daily fluctuations in death
rates and air pollution is that it merely reflects the advancement in the
time of death of individuals who were about to die anyway by a few days
(Schimmel and Murawski 1976). If that were the case, the public health
impact of the association would be much less important than if air pollu-
tion were causing deaths among members of the general population who,
but for that exposure, might have lived much longer to die eventually of
some unrelated cause. This hypothesis—called “harvesting” by Schimmel
and Murawski or “mortality displacement” by Zeger et al. (1999)—can
be developed more formally as follows. Suppose the population contains
a very large number of healthy individuals and a small number N(t) of
“frail” individuals on a given day t . Suppose further that some number
I (t) from the healthy population become newly frail on day t . Finally, sup-
pose that only frail individuals die, at a rate μ(t) that may depend upon
air pollution levels Z(t) on that day or some preceding day. (They may
also recover at rate ν(t) that probably does not depend on air pollution.)
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Then the size of the frail population will vary in response to air pollution
according to the simple difference equation

N(t + 1) = N(t)[1− μ(t)− ν(t)] + I (t)

Zeger et al. suggest a model in which I (t) has a Poisson distribution with
a mean process that can allow for some serial correlation (say, due to
influenza epidemics or weather patterns). By simulation, they showed that
this model—where air pollution does not cause any frailty, only deaths
among the frail subpopulation—can produce associations between mor-
tality and air pollution on time scales only up to a maximum of twice
the average time individuals spend in the frail pool, 1/(μ + ν). A similar
argument was made by Kunzli et al. (2001), who distinguished four pos-
sibilities: that air pollution increases the risk of frailty, the risk of deaths
among the frail subpopulation, both, or neither (more on their discussion
in the following section).

Schwartz (2000c) used Poisson regression with a range of averaging
times, focusing on the mid-range as most likely to be unconfounded by
long-term factors or short-term harvesting. He found that for all cause
mortality and heart attacks, the association increased with increasing
window size, whereas for chronic obstructive lung disease, the reverse
occurred (consistent with the harvesting hypothesis). Pneumonia showed
some evidence of harvesting in the first two weeks, followed by an
increase in the strength of association for periods longer than a month. See
Schwartz (2001) for a similar analysis of hospitalizations. Zanobetti et al.
(2000; 2002; 2003) applied Poisson regression methods combining gen-
eralized additive and distributed lag models to data from multiple cities in
the APHEA project and again found that harvesting could not explain the
entire association and inclusion of longer-term effects more than doubled
the overall effect of air pollution.

Zeger et al. introduced a novel “frequency domain” time-series method
(Kelsall et al. 1999) to describe the magnitude of the association at differ-
ent time scales. Suppose we represent the time series of mortality counts
by Y (t) and decompose it into a series of residuals Yk(t) = Y (t)− Yk−1(t),
representing the average mortality counts over successively finer intervals
(e.g., years, seasons, months, weeks, days). We do the same for the air pol-
lution series X(t). Then the correlation of these residuals Yk(t) and Xk(t)

describes the strength of the association at each time scale. To do this on
a continuous basis, Zeger et al. use Fourier transforms (see Box 8.1) to
decompose the series into 1, 2, . . . , T /2 day cycles (where T is the total
length of the series). Regression analysis of the amplitudes of the time
series at the different frequencies for air pollution on the corresponding
amplitudes for the air pollution series yields what they called a “frequency
domain” analysis. They then provide a “harvesting resistant” summary
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8.1 Fourier series

The Fourier series y(k) of a given time series, say Y (t), is a decom-
position into sine and cosine waves of different frequencies k =
1,…,T /2:

y(k) =
T∑

t=1

Y (t)[sin(2πkt/T )+ i cos(2πkt/T )]

where y(k) denotes a complex number yr(k)+ iyi(k). The original time
series can then be reconstructed as

Y (t) =
T /2∑
k=1

yr(k) sin(2πkt/T )−
T /2∑
k=1

yi(k) cos(2πkt/T )

Thus if we had a linear model for the original time series

Y (t) = β0 + βX(t)+ e(t)

then on the transformed frequency scale, the same model can be
written as

y(k) = β0 + βx(k)+ e′(k)

The frequency domain regression of Zeger et al. (1999) essentially
regresses y(k) on x(k) to estimate β, and estimates the contributions
from the different parts of the frequency spectrum by a weighted
regression using Gaussian kernel weights centered around the time
scale of interest. The time-domain regression of Dominici et al.
(2003a) regresses Y (t) on Xk(t), the individual sine and cosine waves
comprising the X(t) series.

estimator based on accumulating the evidence, successively throwing away
the longer-term cycles until the estimates stabilize.

The results for a 14-year time series in Philadelphia are shown in
Figure 8.3. The left-hand panel shows no association at time scales of
2–3 days, indicating no harvesting, so excluding these cycles will lead
to a larger effect estimate in these data. The right-hand panel shows the
cumulative estimates, successively excluding more of the long-term cycle
information as one moves towards the left (thus widening the confidence
bands). The harvesting-resistant estimate (the vertical bars at the left-
hand side of the panel) are 0.022 (95% CI 0.012 − 0.032) and 0.024



168 Statistical methods in environmental epidemiology

100 10 5 2 100 10 5 2

C
ha

ng
e 

in
 m

or
ta

li
ty

 p
er

 I
C

R
 o

f 
T

S
P

0.04

0.02

0.0

0.02

0.04

0.04

0.02

0.0

0.02

0.04

Figure 8.3. Time-scale specific (left) and cumulative (right) estimates of the log-relative risk
for mortality in Philadelphia 1974–88 with current-day TSP as a function of the number of
days in the cycle. (Reproduced with permission from the Zeger et al. 1999.)

(0.015 − 0.033) assuming mean times in the frail pool of 2 and 4 days
respectively.

Dominici et al. (2003a) introduced a “time-domain” variant of this
approach, again using a Fourier series decomposition of the air pollution
time series to extract different time scales of variation. These were then
taken as the independent variable in a Poisson regression of the mortality
series, essentially a more sophisticated version of the Schwartz analysis
described earlier. Their application to the four NMMAPS cities that had
daily PM10 data available yielded similar results to the earlier Zeger et al.
Philadelphia analysis. For a critique of their findings, see the accompanying
editorial (Smith 2003) and the authors’ response. Fung et al. (2005a,b)
provide some simulation studies of the performance of the method under
different frailty models.

Multiple time series

The air pollution time series literature has evolved gradually from the ear-
liest papers, typically applying Poisson regression techniques to data from
single cities, gradually incorporating various methodological advances
described above and applying them to more and more such locations—
hundreds of such publications (see Schwartz 1994a for a relatively early
review of the literature). As a result, the findings tended to be conflicting
and difficult to summarize, leading the editor of Epidemiology to call for a
moratorium on publication of single-city time-series studies (Samet 2002).

Some authors had conducted multi-center studies and attempted to
account for patterns that were seen across cities by various forms of
meta-analysis. For example, Schwartz (2000a) analyzed data from 10
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cities using a two-stage regression approach, treating the PM10 coefficients
from the first stage (city-specific time-series analyses) as the dependent
variable in the second stage, regressing these slope estimates on such city
characteristics as their average levels of various copollutants. While the
overall estimate was 0.67 per 10 μg/m3 (95% CI 0.52−0.81), adjustment
for SO2 lowered it slightly to 0.57 (0.25−0.90), adjustment for CO raised
it (0.90, CI 0.42−0.97), and adjustment for O3 changed it very little (0.69,
0.53− 1.26), although all the adjusted CIs were substantially wider.

In general, however, the choice of locations for single city analyses have
tended to be somewhat haphazard, depending upon the availability of
suitable pollution, weather, and outcome data and upon knowledge of
unique characteristics of the pollution profiles in these locations. Indeed,
some critics have argued that meta-analyses of such data could be biased
by the selection of cities that tended to show stronger relationships. The
need for a more systematic approach was met by the NMMAPS led by Dr.
Jon Samet from Johns Hopkins University and Dr. Joel Schwartz from
Harvard University (Zeger et al. 1999; Daniels et al. 2000; Dominici
et al. 2000; Samet et al. 2000a,b; Bell et al. 2004a; Dominici et al. 2004;
2006). In particular, this analysis, by being based on all of the largest
cities, avoids the potential bias of city selection in favor of those showing
associations. A parallel effort in Europe, the APHEA study was led by
Dr. Klea Katsouyanni from the University of Athens (Katsouyanni et al.
1995; 1997; Touloumi et al. 1997; Atkinson et al. 2001; Samoli et al.
2001; 2005).

The NMMAPS study surveyed mortality and hospital admissions in the
100 largest U.S. cities using a common exposure and outcome assessment
protocol (because of data limitations for some cities, the number included
in the final analyses was reduced to 88). A hierarchical modeling strategy
was developed to synthesize the results across cities and explain patterns of
differences. Given the computational intensity of the single-city analyses,
the various levels of the hierarchical model could not be fitted simultane-
ously, so each city was analyzed separately in the first stage of the analysis
to yield a vector of regression coefficients bc, which were then modeled in
the second stage (Dominici et al. 2000; Samet et al. 2000a) in relation to
a vector of potential explanatory variables Xc such as geographic region
and mix of copollutants. Dominici et al. describe a sophisticated bivari-
ate analysis of the coefficients for PM10 and O3 in the 20 largest U.S.
cities. At a one-day lag, the overall univariate PM10 effect (Figure 8.4)
was estimated at 0.48% per 10 μg/m3 (95% CI 0.05 − 0.92). Using the
proportion of the population below the poverty line, the proportion over
age 65, and the long-term mean PM10 level as covariates in the second
stage did not substantially change this estimate (0.52%, CI 0.06− 0.98),
and none of the covariate effects was significantly different from zero. In
a bivariate analysis, the standard deviations of both the PM10 and O3
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Figure 8.4. City-specific and combined relative risk estimates for the association of all-
cause mortality with particulate pollution. (Adapted with permission from Samet et al.
2000b.)

coefficients were much smaller than in separate univariate analyses (0.36
cf. 0.76 for PM10, 0.91 cf. 1.28 for O3, with the correlation between them
being−0.09). They also fitted spatial correlation models that we will defer
to following chapter.

Dominici et al. (2002a) later extended this approach to 88 cities and a
much broader set of second-stage covariates. Only the coefficient for aver-
age levels of PM10 was a significant modifier of the daily PM10 coefficient,
indicating a stronger effect in the cities with lower average pollution levels
(perhaps a saturation effect). The PM2.5/PM10 ratio was included as an
indirect test of the hypothesis that fine particles were more important (data
on PM2.5 not being as widely available on a daily basis). However, when
included with other modifiers, its estimated coefficient was negative (but
with a large variance)—the reverse of what was expected—but it vanished
when included alone in the second stage model.

Schwartz and Coull (2003) compared two different two-stage analysis
approaches for multi-pollutant models in the presence of measurement
error. Both entail estimating city-specific regression coefficients βc for Y on
X1 and γc forX2 onX1 in the first stage, then in the second stage regressing
the βc on γc. One of the two possible estimators derived from this approach
was shown to be unbiased withmoderate loss of power (relative to the case
of no measurement error), the other to be attenuated but with somewhat
less loss of power. We will describe these two estimators more formally in
Chapter 11.

An interesting variant of themulti-city time-series approach decomposes
the regression of city-specific outcomes Yct on air pollution into two terms,
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a national average trend Xt and the local deviation from the national
trend Xct −Xt (Janes et al. 2007). The authors argue that the two should
estimate the same quantity, so that differences would be symptomatic of
uncontrolled confounding. In an accompanying editorial, however, Pope
and Burnett (2007) point out that their analysis exploits neither between-
city differences in levels of pollution andmortality (because of the inclusion
of city-specific deviations in the model) nor short-term variability (because
it is focused on longer-term trends using monthly averages rather than
daily variability).

Time series for individual data

All the analyses described above were based on aggregate population rates
and average population exposure data. If data were available at an individ-
ual level, would there be any advantage to analyzing the raw data at that
level, so as to exploit between-individual as well as temporal comparisons?
Arguably there would be little to be gained from such an analysis for a
censoring event like mortality, particularly absent any data on individual
variation in exposures, but perhaps an individual-level analysis would
be more informative for recurrent events like hospitalizations, asthma
attacks, or absenteeism. This problem was considered by Rondeau et al.
(2005) in the context of school absences over a six-month period in the
Children’s Health Study cohort. Here, the data can be represented in terms
of a pair of binary time series, Yci(t), indicating whether child i in city c

was absent or not on day t , and Rci(t), indicating whether that child was
“at risk” of an absence (i.e., whether school was in session that day and,
for incidence of new absences, whether he or shewas in school the previous
day). The model then takes the form

logit Pr(Yci(t)= 1|Rci(t)= 1)=B0c + bc[Zc(t)−Zc]+β2Zc +α′Wci + eci

where B0c represents a baseline absence rate for children in community
c, bc the acute effect of air pollution in community c, β2 the chronic
effect, α the effect of subject-specific covariates Wci , and eci a random
effect for children representing their “absence proneness.” In turn, the bc
are regressed on the long-term average exposures to the same or different
pollutants in a second-level model

bc = β1 + γ′
(
Zc − Z

)
+ ec

to assess the overall acute effect β1 and its modification γ by the
overall level of pollution (or copollutants) in the community. There
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are three random effects variances in this model: s2c = var(eci), the
unexplained variability in absence rates between children within commu-
nity c; σ 2 = var(B0c), the between-communities variance in baseline rates;
and τ2 = var(ec), the between-communities variance in acute effect slopes.

Several personal characteristics, such as race, income, asthma, and
smoking, were found to be associated with illness rates. The risk on any
given day was also found to depend on the previous two days’ outcome by
including autoregressive terms in the model. The only acute effect (β1) of
air pollution was an association of all absences with PM10 using a 30-day
cubic distributed lag model, yielding a nonsignificant positive association
in the first three days and a significant positive association between days
18–28 previously. Curiously, a significant negative association was seen
with NO2 at 5- and 15-day distributed lags. This could reflect a posi-
tive effect of O3 with which it tends to be inversely correlated, but the
association of absences with O3 was not significant. There was also a sig-
nificant positive chronic associations (β2) of long-term individual absence
rates with long-term average O3 concentrations for total absences, as well
as all illness-related and respiratory absences. In contrast, there was no
chronic effect of PM10, after adjusting for its acute effect, nor was there
any modification (γ ) of acute effects by chronic exposure to the same or
different pollutants.

Comparing acute and chronic effect estimates

The previous distributed lag and harvesting discussions raise an important
question about whether the overall public health effects of air pollution
should be assessed by time series or cohort studies (Kunzli et al. 2001).
Before delving into this question theoretically, it is worth briefly summa-
rizing the findings on mortality from the few available cohort studies: the
Adventist Health Study of Smog (AHSMOG) (Abbey et al. 1999), the
American Cancer Society (ACS) study (Pope et al. 1995; 2002; Krewski
et al. 2005a), and the Harvard Six Cities study (Dockery et al. 1993).
Briefly, the AHSMOG studied mortality from 1977 to 1992 in 6638
nonsmoking Seventh Day Adventists living in California and reported
significant associations of all cause mortality with PM10 (in males and
in both sexes combined) and of lung cancer with both PM10 and O3 in
males only. The Six Cities study considered mortality over a 14- to 16-year
period in 8111 residents of six cities with diverse air pollution levels, and
found a 26% increase (95% CI 1.08–1.47) in all-cause mortality in the
most compared to the least polluted city (Figure 8.5, left), and especially
strong for lung cancer and cardiopulmonary disease. TheACS cohort com-
prised half a million adults from across the country and found significant
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associations of PM2.5 and SO2 with all-cause, cardiopulmonary, and lung
cancer mortality (Figure 8.5, right). The magnitudes of the associations
reported by these various studies were considerably larger that those esti-
mates from the various time-series studies discussed earlier in this chapter
(Table 8.1). Kunzli et al. (2001) and several other authors have pointed
out that time series studies capture only the number of excess deaths
attributable to changes in air pollution, and tell us nothing about the
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Figure 8.5. Association of total mortality with PM2.5 in the Harvard Six Cities Study (left)
and of total and cause-specific mortality with PM2.5 in the ACS cohort (right). (Reproduced
with permission from Dockery et al. 1993 and Pope et al. 2002.)

Table 8.1. Comparison of acute and chronic estimates of relative risk for
particulates on mortality

Total mortality Cardiopulmonary Lung Cancer

Time series studies
NMMAPS1 1.005 1.007 N.R.
APHEA2 1.005 1.007 N.R.

Cohort studies
AHSMOG3 1.12 (males) 2.38 (males)

0.94 (females) 1.18 1.08 (females)
Six-Cities4 1.26 1.37 1.37
ACS5 1.04 1.06 1.08

1 PM10 per 10 μg/m3 (Samet et al. 2000a) (N.R. = not reported).
2 PM10 per 10 μg/m3 (Samoli et al. 2005) (N.R.=not reported).
3 PM10 per 10 μg/m3 (Abbey et al. 1999).
4 Comparing most to the least polluted city (Dockery et al. 1993).
5 PM2.5 per 10 μg/m3 (Pope et al. 2002).
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Table 8.2. Major design features of time-series studies and cohort studies in
air pollution epidemiology. (Reproduced with permission from Kunzli et al.
2001.)

Study design issue Time-series studies Cohort studies

Outcome Counts Person-time
Exposure variance Temporal Spatial
Time from exposure to
outcome

Short (days or weeks) Cumulative (years,
lifetime)

Duration of exposure
considered

Short term Can be long term, in the
past, etc.

Frailty assessment
(underlying condition)

Indirect, by restriction,
stratification, case-crossover
design

May be investigated as
the outcome

Morbidity history of
“pollution victims”

Unknown Known

Years of life lost Assessable only for the (short)
time explained by
“harvesting” (or “mortality
displacement”)

Measured (person-time)

length of life lost as a result of these deaths (Table 8.2). Furthermore,
they reflect only the acute effects, not the cumulative effect of a lifetime
of exposure. On the other hand, cohort studies can estimate the effect of
pollution on loss of life expectancy, but cannot distinguish whether a few
individuals have lost a lot of lifetime or many individuals have lost only
little (Rabl 2003). In the frailty framework described earlier, air pollution
could in principle cause either an increase in the number of healthy people
entering the frail pool or the death rate among frail individuals (or for
that matter, the death rate in the otherwise “healthy” population). Time-
series studies are best at capturing the association of mortality among the
frail subpopulation (although as we have seen, the duration of the effect
depends upon the average length of time frail individuals spend in that
state). They do not capture as well the association between the risk of
becoming frail and air pollution, as that may well depend much more on
a lifetime history of damage than on the immediate exposure. See also
Burnett et al. (2003); Rabl (2003); Thomas (2005a); Rabl (2005; 2006)
for further discussion of these issues. We will revisit these issues in the con-
text of risk assessment and individual compensation in Chapters 15 and
16, where we discuss the estimability of excess death rates and loss of life
expectancy in the presence of unmeasurable variation in individual frailty.

A particularly promising approach to resolving this discrepancy entails a
novel design for long-term cohort studies of recurrent outcomes that com-
bines individual data on risk factors with ecologic-level time-dependent
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data on exposures (Dewanji and Moolgavkar 2000; 2002), introduced
in Chapter 5. Goldberg et al. (2005) have undertaken such a study using
CanadianMedicare files as the basis of sampling individuals with a various
chronic diseases and, using their histories of doctor’s visits, hospitaliza-
tions, and medication prescriptions, will be able to assess the effects of
air pollution on these intermediate endpoints as well as mortality in rela-
tion to their latent time-dependent frailty status. This sort of approach to
integrating acute and chronic effects offers the prospect of bringing some
real insight into the biological mechanisms relating the two (Kunzli et al.
2008).



9 Spatial models

Everything is related to everything else,
but near things are more related than distant things.

—(Tobler 1970)

Spatial models—and geographic maps in particular—have always played
a central role in the “person, place, and time” triad of descriptive epi-
demiology. Nowhere is this better illustrated than in the pioneering work
of John Snow (1855) on cholera (Figure 9.1) that led to the identification
of the Broad Street pump as the source of the epidemic and his removal of
the pump handle as arguably the most famous public health intervention
of all time.

A nearly universal feature of environmental epidemiology is that the
data are spatially distributed. Individuals’ exposures are determined in
part by where they live, work, play, or otherwise spend time. Thus, those
who are at similar locations are likely to have similar exposures. They
are also likely to have similar values of other unmeasured risk factors, so
their outcomes are also likely to be correlated. In addition to violating
the basic assumptions of independence underlying the standard statistical
methods discussed in previous chapters, this spatial dependency can itself
be a source of information about true exposures or unobserved shared
confounders.

In this chapter, we consider methods that allow for spatial dependencies
among subjects to obtain valid statistical tests and confidence limits and
to understand the nature of these spatial relationships. These methods
will also prove central to some of the methods of exposure modeling to
be discussed in Chapter 11. Implementation of these statistical methods
has been revolutionized by the development of sophisticated geographic
information system (GIS) software for managing and analyzing spatial
data.

A related aspect of discrete spatial data is sparseness. If the scale on
which spatial dependencies operate is fine, thenwithin any grid fine enough
to capture this phenomenon, one might expect to see only a few cases in
any cell, with great variability between cells. But over a fine grid, there are
many cells, so some could be expected to show marked excesses of disease
just by chance. The nonuniform distribution of the population at risk, not
to mention spatial variability in baseline risk factors, will tend to produce
the appearance of disease clustering, particularly if attention in focused
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Figure 9.1. A portion of John Snow’s (1855) map on the distribution of cholera cases in
the vicinity of the Broad Street pump in London in 1854.

(say, by the public or the media) on a particular cluster in isolation (the so-
called “Texas sharpshooter” effect explained below). Sorting out whether
the general pattern of clustering is greater than onemight expect by chance
or can be explained by known risk factors—or whether any particular
cluster may have a common cause or simply be a coincidence—are major
statistical challenges, requiring specialized techniques collectively known
as “small area statistics” or “disease clustering.”

Of course, environmental epidemiology data have both spatial and tem-
poral dimensions. In the two preceding chapters, we have considered the
temporal dimension in detail. In this chapter, we also discuss a particularly
interesting situation of dependency between the two dimensions known
as space-time clustering, which can provide evidence of person-to-person
transmission of an infectious agent or temporally restricted point-source
exposures.

Spatial statistics is a complex field with applications in many different
disciplines. For a more detailed treatment of the topic, see such text-
books as Cressie (1993); Lawson et al. (1999); Elliott et al. (2001); Waller
and Gotway (2004); Lawson (2006). Additional references specific to GIS
methods are provided below.
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Mapping exposures and disease

Spatial models have been used in epidemiology to map either exposures or
disease patterns or to correlate the two. Although at first glance, it would
seem immaterial whether the data to be mapped are exposures or diseases,
the nature of the two data sources tends to be quite different, requiring
differentmethods. For example, exposure datamight consist of a relatively
sparse, irregularly spaced set of measurements, possibly complemented by
information on sources and dispersion patterns. Disease data, on the other
hand, could take the form of a set of rates (or Poisson counts of cases and
numbers at risk or age-standardized expected counts) over an array of
geographic areas (“aereal” data) or as the coordinates of a set of cases
and suitable controls (“point process” data). Because the two are likely
to be organized in different ways, relating exposure to disease can require
rather sophisticated statistical methods. We begin by introducing a general
model for spatial correlations in normally distributed data and then its
extensions to other structures, such as Poisson counts on geographically
defined areas or case-control locations.

Continuous spatial data

Spatial models have been particularly useful in environmental epidemiol-
ogy for smoothing sparse exposure measurements so as to be able to assign
exposures to individuals at locations where no direct measurements are
available. These can also be combined with information on sources (e.g.,
point sources like toxic waste disposal sites or line sources like highways)
and sophisticated dispersionmodels, possibly taking account of hydrology
or meteorology.

Suppose for each observation of some variable Xi , i= 1, . . . , n, we have
a vector of associated covariates Zi and a location pi , generally comprising
a pair of geographical coordinates. Depending upon the context, X could
be some health outcome and Z some risk factors, or X could represent
exposure and Z a vector of predictors of exposure like source information.

To begin with, we ignore the predictors Z and consider the problem of
estimating the value of X(p) at some unmeasured point p, using only a
finite set of irregularly spaced measurements X(pi ) at other locations. We
then turn attention to how to incorporate covariates into such predictions.
Whereas some environmental epidemiology studies have relied exclusively
upon measurements (e.g., air pollution or magnetic field measurements at
subjects’ homes) and others exclusively onmodel predictions (e.g., distance
from major highways or high-tension power lines, or physical models for
predictedexposures), ingeneral, exposureassessmentis ideallybasedupona
combinationofthetwo, takingaccountoftheirrespectivespatialcovariance
and measurement error structures (Beyea 1999).
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Although one might simply use a two-dimensional generalized additive
model (GAM, see Chapters 6 and 8), the standard method in spatial statis-
tics has been “kriging.” This is based on a simple weighted average of the
available measurements in the neighborhood of any given point, with the
optimal weights being derived from the observed covariance structure of
themeasurements. Essentially, the prediction of the field at some unknown
location p is given by

X̂(p) =
∑
i

X(pi )w(p − pi )

for some suitable choice of weights w(�p). Now suppose one assumed the
observed measurements were independently normally distributed around
some unknown mean μ(p) with variance σ 2 and this mean was a sta-
tionary Gaussian random field with covariance τ2ρ(�) for pairs of points
separated by a vector �. Then it can be shown that the kriging estimator
with the vector of weights given by

w(p − pi ) = r(p)′[σ 2I + τ2R]−1

where r(p) is the vector of ρ(p−pi ) values and R is the matrix of ρ(pi−pj )

values, is the best linear predictor of X(p), that is, that which minimizes
the prediction mean squared error, E{[X̂(p) − X(p)]2}. More generally,
the weights are derived from the “variogram”

C(�) = 1
2
var[X(p)−X(p +�)]

= var[X(p)] − cov[X(p) ,X(p +�)]
= σ 2I (� = 0)+ τ2[1− ρ(�)]

which can be solved for σ 2, τ2, and ρ(�). C(�) might be estimated
nonparametrically by a simple average over pairs of points within some
window of distance � from each other

Ĉ(�) = 1
2|N(�)|

∑
i,j∈N(�)

[X(pi )−X(pi )]2

where N (�) denotes the set of pairs of observations within that win-
dow and |N(�)| the number of such pairs. Traditionally, the variogram
is presented as a function of both distance and direction, but if one
assumed that the field is isotropic (independent of direction), it might
be estimated simply as a function of distance. Parametric models, such
as ρ(�)= exp(−ρ||�||), or more complex ones taking direction into
account—an ellipsoidal function or atmospheric-physics-based dispersion
models (see Box 9.1) takingmeteorological, topographic, or other features
into account—can be fitted by maximum likelihood.
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9.1 Dispersion modeling

Atmospheric point and line source dispersionmodeling plays an impor-
tant role in air pollution exposure assessment. The basic idea is to
compute the steady-state solution to the dispersion equation

∂Z

∂t
= −∇2Z + v · ∇Z

where Z(p, t) is the concentration of a pollutant at location p and
time t , ∇Z denotes the curl operator (the sum of second partial deriva-
tives with respect to space), and v · ∇Z the dot product of the wind
speed/direction vector and the spatial gradient (the vector of first spa-
tial derivatives) of pollutant concentration. In the absence of wind,
the steady state solution reduces to a simple normal density with dis-
tance from the point source, hence the popularity of simple Gaussian
plumemodels. In the presence ofwind, amore complex ellisoidal shape
downwind of the source results. Lawson (1993) describes a family of
exponential distributions that can be used in an empirical manner to
fit measured concentrations to various transformations of distance and
direction from a point source.

Road

Wind

Residence, x

Vehicle, y u f–

For line sources like roads, one must then compute the line integral
along the length of each road segment y (see figure) and sum over
all roads h, Vh, to obtain the predicted concentration C at a receptor
site x. With variable winds, one must also integrate these results over
the probability distribution P of wind speed v and direction θ :

Ĉ(x) =
∑
h

Vh

∫ ∫
dv, dθ

dP (v, θ)
∮
dy

f
[||x − y||, v, cos(θv − ϕx→y)

]
where f (d, v, θ − ϕ) is the equilibrium solution to the dispersion
equation in terms of distance, wind velocity, and the angle between
the two vectors. Turbulence, mixing height, irregular topography
(e.g., canyons created by buildings in urban areas or mountainous
terrain), atmospheric chemistry, deposition, and other factors can
make these theoretical calculations more complex and in practice,
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they are generally evaluated using numerical methods by various soft-
ware packages, such as the California Line Source Dispersion Model
(CALINE4) model (Benson 1989) from the California Department of
Transportation.

To incorporate spatial predictors of exposure such as traffic into the
smoother, suppose we now assume that

X(pi ) = Z′
iβ + μ(pi )+ ei

where μ(p) is a Gausian random field with mean zero and covari-
ance τ2ρ(�) and ei ∼N(0, σ 2). Suppose further that we take ρ(�)=
exp(− δ||�||). Then it follows that the conditional distribution of any
particular observation, given all the others is

X̂(pi ) = E(X
(
pi )|Z,X(−i)

) = Z′
iβ + τ√

σ 2 + τ2
X(−i)

where

X(−i) =
∑

j �=i (Xj − Z′
jβ) exp(−δDij )∑

j �=i exp(−δDij )

is a weighted average of the deviations of all the other observations from
their predicted values, weighted by the exponential decay function of their
distances from pi . Its prediction uncertainty is

s2i = var
(
X̂(pi )|Z,X(−i)

)
= σ 2 − r(pi )

′[σ 2I + τ2R]−1r(pi ) (9.1)

In many applications, Xi (e.g., local air pollution measurements) will be
available only on a subset of study subjects while Zi (e.g., indicators of
local traffic density or predictions fromdispersionmodels)will be available
for the entire cohort. In situations where Zi are also available only for
the same or different subset of subjects, then co-kriging methods (Sun
1998) can be used. These entail smoothing both the X and the Z fields
simultaneously, exploiting the spatial correlations within each field as well
as the correlation at the same location between the two fields.

Conceptually, the model might be fitted by the following iterative
scheme. Initially assume observations are independent and use ordi-
nary least squares regression to estimate β and σ 2. Now for each
pair of observations, compute the cross-product of their deviations,
Cij = (Xi − Z′

iβ)(Xj − Z′
jβ). Omitting the Cii terms, regress ln(Cij ) on

ln τ2 − δDij . Compute the Y (−i) using this estimate of δ and regress
Yi − Y (−i) on Zi to obtain new estimates of β and σ 2, and repeat this
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process until convergence. A single-step procedure is implemented in the
SAS procedure MIXED, using the following code.

proc mixed;
model X = Z1–Zn/solution;
repeated/local type = sp(exp) (Px Py);

This returns estimates of the regression coefficients for each Z, the residual
variance τ2, the spatial variance σ 2, and the distance decay parameter δ.

“Land use regression” (Briggs et al. 2000) is an example of this
approach, incorporating predictors like buffers from point or line sources,
indicators for zoning types, and so on. Briggs et al. illustrate this approach
with an application to NO2 measurements in the Huddersfield portion of
the SAVIAH project.

Spatial smoothing and prediction models can also be combined, using
the predictions of a sophisticated atmospheric dispersion model as one
of the covariates in a spatial regression model. In Chapter 11, we will
discuss a measurement survey of 259 homes selected at random from
10 of the 12 communities of the Children’s Health Study (Gauderman
et al. 2005). A multi-level spatial autocorrelation model for NO2 con-
centrations was fitted, allowing for spatial dependencies both within
and between communities and incorporating several traffic-related covari-
ates. The single strongest predictor of measured NO2 concentrations was
the CO concentrations from freeway sources predicted by the CALINE4
model, but traffic-related indices (simple distance-weighted traffic counts)
significantly improved the fit of the model, presumably by correcting
for some imperfections in the physical model. The estimated between-
community spatial variance was τ2

B = 6.5 (ppb2) with decay parameter
δB = 0.0096/km, the within-community spatial variance was τ2

W = 44.3
with δW = 0.39/km, and residual (independent) variance σ 2 = 14.1. This
model could then be used to assign exposures to all subjects in the cohort,
whether or not direct measurements are available at their homes.

See Jarup (2004); Nuckols et al. (2004) for reviews of various other
applications. Williams and Ogston (2002) compared various methods
based on distance, spatially smoothed measurements, and dispersion
modeling for arsenic and copper pollution from a waste incinerator and
concluded that either of the two approaches yielded similar assessments
of exposure.

The Gaussian random field regression methods just described are
fully parametric, both in the mean and covariance structures. Bayesian
maximum entropy methods (Christakos and Li 1998) and general model-
based geostatistics (Diggle et al. 1998) provide greater flexibility in
incorporating nonlinear predictors, nonstationarity, and non-Gaussian
error distributions over simple smoothers like GAMs and kriging. For
example, the regression part of the model Z′β could be replaced by a
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flexible GAM or the Gaussian random field μ(p) by a two-dimensional
GAM. This would involve the usual trade-off between robustness and
efficiency.

Distance might be measured on various scales. Although Euclidean dis-
tance is generally used, one might want to adopt some scale that reflects
topography or prevailing winds if modeling air pollution levels (Le and
Zidek 1992), or social distance if modeling unmeasured risk factors. For
example, Brown et al. (1994) used the temporal correlation in air pollution
levels between areas to define a distance metric (Figure 9.2), performed
the spatial analysis on that scale, and then transformed back to Cartesian
coordinates to display the final results.

Of course, exposure can have both spatial and temporal dimensions,
and it can be advantageous to model the two components of variation
jointly. For example, Whitaker et al. (2005) built a Bayesian spatial-
temporal model for chlorination byproducts in drinking water for use in
an epidemiologic study of adverse reproductive outcomes (Toledano et al.
2005; Nieuwenhuijsen et al. 2008). This provided estimates of trimester-
specific exposures to trihalomethanes for each woman in the study, in a
situation where the available spatial measurements alone were too sparse
to provide robust estimates of exposure, but additional strength could
be borrowed from measurements at the same location at different times.
Gryparis et al. (2007) describe a Bayesian semiparametric latent variables
modeling approach for spatial–temporal smoothing of sparsely distributed
air pollution measurements.
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Figure 9.2. Transformation from geographical to dispersion space; locations of the avail-
able monitoring stations are indicated by the numbers, the “distance” between stations
in this representation being proportional to the temporal correlations in their pollution
measurements. (Reprinted with permission from Brown et al. 1994.)
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Designing a measurement network

One use of spatial models is for the purpose of deciding where to locate a
set of additional measurements S2 based on an existing set of measurement
locations S1 so as to maximize the informativeness of the entire network
S= S1 ∪ S2 for predicting exposures at some even larger set N of unmea-
sured locations. This generally requires first an estimate of the prediction
variance VS(p) given by Eq. (9.1) across the domain of points p of inter-
est, using spatial model parameters (σ̂ 2, τ̂2, δ̂) estimated from the available
measurements S1. This is then weighted by a “demand surface” N (p) giv-
ing the population density at which exposure estimates will be needed,
to yield an estimate of the average variance V S(N)= ∫

N(p)VS1∪S2(p) dp.
The challenge is then to choose the set S2 that would minimize V S(N)

(Diggle and Lophaven 2005; Kanaroglou et al. 2005; Thomas 2007a).
Intuitively, one would like to add measurement locations that would most
improve the predictions at those points that have the largest prediction
variance under the current network and are the most influential; thus,
one might want to select points that are not too close to the existing
measurement locations or to each other, but close to many subjects for
whom predictions will be needed. For example, suppose the demand field
is given by a discrete set of N locations of epidemiologic study subjects,
then one would seek to minimize

∑
i∈N VS1∪S2(p)i , say by choosing the

locations j from N\S1 one at a time that reduce the average variance
the most until the target number of locations has been selected. Further
improvements might then be possible by proposing to replace a randomly
selected point in S2 by a randomly selected point in N\S and accepting
the swap if it results in a reduction in V S(N). VS(P ) requires a spatial
model; estimation of the spatial decay parameter might be improved by
including some proportion of close pairs in S1US2 (Diggle and Lophaven
2005).

Of course, one must first decide howmany locations should be included
in S2, a decision that is generally constrained by cost, but one should
consider the trade-off between the measurement costs and the costs of
the main study N : there is a point of dimishing returns where fur-
ther improvement in exposure prediction is less than the improvement
in power that would result from increasing the sample size N for the
main study for the same total cost. For example, rather than minimiz-
ing the average exposure prediction variance alone, what is really needed
is to maximize the Fisher information for the relative risk parameter
β from a model that will use these predictions. This may entail select-
ing measurement locations that will maximize the precision of the most
influential points, such as those individuals predicted to be the most heav-
ily exposed. See Thomas (2007a) for further discussion of these design
trade-offs.
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Poisson count data

Now suppose Yc denotes the count of the observed number of cases in some
geographical unit c, say a rectangular grid (“lattice”) or some administra-
tive unit like census tracts (“areal” data). These units typically differ in
population size and composition, so that one would not expect similar
counts across units anyway. Let Ec denote the expected number of events
under the null hypothesis, computed in the usual way from the popula-
tion distribution as described in Chapter 3 using age/sex/race standardized
rates. Furthermore, suppose we have a vector Zc of average covariate val-
ues for subjects in each geographic unit. Following Clayton and Kaldor
(1987), we now assume that

Yc ∼ Poisson[Ec exp(Z′
cβ + μc)] (9.2)

where μc denotes a set of spatially correlated residuals not accounted for
by the modeled covariates.

A simple way of modeling the residuals is by some form of local non-
parametric process, say using a two-dimensional kernel densityK(Dcd /σ),
where D represents the distance between the centriods of regions c and
d and σ is a scale parameter that can be chosen by cross-validation. One
then estimates μc by

μc =
∑

d �=c μdK(Dcd/σ )∑
d �=c K(Dcd/σ )

However, this deterministic model provides no measure of uncertainty.
The intrinsic conditional autoregressive (CAR) process (Besag 1974)

puts this basic idea in a probabilistic framework by assuming the μs have
a multivariate normal distribution with covariances specified by an adja-
cencymatrix A consisting of binary indicators for whether a pair of regions
i and j share a common boundary. TheCARmodel can bewritten in terms
of a joint density function given by

Pr(μ) ∝ exp

(
− 1

2σ 2

∑
c∼d

(μc − μd)
2

)

where c∼ d indicates a sum over all pairs of adjacent areas. Although
this expression may not be a proper distribution (i.e., it does have a finite
integral), its conditional distributions are proper and are simple normal
densities

Pr
(
μc

∣∣μ(−c)

) ∼ N
(
μc, σ

2/nc

)
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where μc =
∑

d∈Nc
μd/nc and Nc denotes the set of nc areas adjacent to

area c. This model has only one free parameter, σ 2, so assumes that all the
residual variation is spatially correlated. For greater flexibility, Besag et al.
(1991) extended the model by allowing an additional independent deviate
δc ∼N (0, τ2) to Eq. (9.2) corresponding to extra-Poisson variation that is
spatially independent. Alternatives to assuming a normal distribution for
these terms would be some heavier-tailed distribution such as a double-
exponential (Besag et al. 1991), or a nonparametric (Clayton and Kaldor
1987; Kelsall and Diggle 1998) or mixture (Green and Richardson 2001)
distribution. One could also allow the smoothing parameters σ 2 and τ2

to vary spatially rather than be assumed to be constant across the region,
so as to better capture discontinuities in the risk surface (Knorr-Held and
Rasser 2000; Denison and Holmes 2001). More general weight matrices
could be used in place of A, say with continuous weights wij depending
upon the length of the shared boundary Scd or the distance Dcd between
their centroids, so that

E(μc|μ(−c)) = α
∑

d
wcdμd

/∑
d
wcd

and

var(μc|μ(−c)) = σ 2
∑

d
w2

cd

/(∑
d
wcd

)2
For example, one might choose wcd = exp(−ρDcd), but some restrictions
may be needed for the resulting multivariate density to be proper, that
is, for the inverse matrix cov(μ)= σ 2(I − αW)−1 to exist (Besag 1974).
Hence, instead of starting with these conditional distributions, one could
use the weights to specify the joint distribution of μ as a multivariate
normal with mean zero and covariance matrix τ2I + σ 2W(ρ). The main
difference between the two models is that the intrinsic CAR model is not
stationary (i.e., its mean is not constant across the region) whereas the
joint model assumes that the marginal means E(μi) are zero for all i. On
the other hand, fitting the intrinsic CAR model is substantially simpler
because it involves only univariate normal distributions, without the need
to invert the covariance matrix in the joint model, except for the purpose
of estimating the covariance parameters (σ 2, τ2, ρ). Lawson et al. (2000b)
describe simulations comparing these various approaches and conclude
that the independent gamma-Poisson and the parametric spatial model of
Besag et al. (1991) generally perform better than either the nonparametric
smoothing or mixture model approaches. See Pascutto et al. (2000) for a
general review of these approaches. Gotway and Wolfinger (2003) pro-
vide a comparison between marginal and conditional models for spatial
dependencies among disease rates, and Wall (2004) discusses the forms of
dependency that are implied by the different models.
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Clayton and Kaldor (1987) described an Markov chain Monte Carlo
(MCMC) approach to fitting the intrinsic conditional autocorrelation
model by treating each of the true rates μc as random variables, to be
sampled from their conditional distributions given their observed data
(Yc, Ec) and the current values of each μd for all adjacent points d ∈ Nc,
and then sampling the model parameters β, σ 2, τ2 given the current esti-
mates of all the μc. Their application to lip cancer incidence data for 56
counties of Scotland produced empirical Bayes estimates that were gener-
ally shrunk towards the overall mean relative to the maximum likelihood
ones, as might be expected. However, the spatially correlated estimates
were shrunk instead towards local means, which in some cases were higher
and in some cases lower than the overall mean or even the raw observed
rates themselves.

In Chapter 8, we described the hierarchical model for multi-city time
series data used by Dominici et al. (2000) to analyze the 20 largest U.S.
cities in the NMMAPS study. Their analysis also compared independent
and spatially correlated models for the second stage regression. Recall that
for each study, the first stage yields an estimate b̂c of the coefficient for
the effect of daily variation in air pollution on mortality counts for each
city c, along with their variances. In the second stage, these estimates are
regressed on city-specific covariates Xc, appropriately weighted by their
variances as described earlier. In the spatial version of the model, the b̂cs
are treated as a vector of correlated observations. Dominici et al. consid-
ered two variants of the spatial model, one using a spatial autocorrelation
model with correlation between being a function exp(−ρDcd) of the dis-
tance Dcd between cities c and d, the other by treating the correlation as
the same for cities in the same region, zero between regions. There was
much less variation between cities in the spatially smoothed estimates than
in the city-specific maximum likelihood estimates, as much of the appar-
ent variation in the city-specific estimates was simply random sampling
error. Under the continuous distance model, the correlation between b̂c
estimates for cities separated by the median distance was 0.61 (95% CI
0.3−0.8), stronger at the lower 25th percentile (0.86, 0.68−0.93), declin-
ing to 0.3 (0.05− 0.58) at the 75th percentile. In the regional model, the
within-region correlation was 0.68 (0.42 − 0.86). Estimates of the inter-
cepts and regression coefficients for second stage covariates and of the
between-cities variances in the b̂cs were essentially unchanged from the
independence model, however.

Maps of estimated disease rates, even geographically smoothed, do not
convey any information about the uncertainties of these estimates. To
overcome this difficulty, Jarup and Best (2003) suggest plotting posterior
probabilities that the true RR is greater than some threshold. For example,
Figure 9.3 compares prostate cancer relative risks and posterior probabil-
ities that RR> 1 at the ward level for two districts of England (Jarup
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Figure 9.3. Comparison of unsmoothed and smoothed estimates of prostate cancer rel-
ative risk in two districts of England, along with the posterior probability that RR> 1.
(Reproduced with permission from Jarup et al. 2002.)

et al. 2002). Two other districts (East Anglia and Yorkshire) that were
also examined at this same level of detail showed virtually no variation in
posterior RRs or posterior probabilities after smoothing, suggesting that
environmental causes were unlikely to play a major role. Richardson et al.
(2004) report an extensive simulation study comparing the performance
of posterior relative risk and posterior probability estimates. To mini-
mize false positive and false negative rates for calling areas “elevated”
or not, they recommend as a criterion that Pr(RR> 1) be greater than
0.7 or 0.8. This yields good power for detecting true RRs of about 1.5–
2 when the expected cell counts are about 20 or for detecting RRs of
about 3 even when based on much smaller expected counts (in the latter
case, however, the posterior RRs themselves tend to be underestimated by
about 50%).

Most maps of disease rates have been based on administrative units
rather than rectangular grids because that is the form in which aggregate
data on rates are generally available. The sizes of the units have varied
widely—countries, states, counties, census tracts, and so on—and the
degree of smoothing that results and interpretation of associations depends
upon the choice of areal unit. For example, Elliott andWartenberg (2004)
display maps of the percentage of housing before 1950 (a risk factor for
childhood exposure to lead-based paint) by census block, zip code, and
county showing how the more aggregated units tend to be dominated
by denser population centers, obscuring information about prevalence in
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more rural local areas. This observation is known as the “modifiable areal
unit problem” in geography (Openshaw 1984; Fotheringham and Wong
1991). The problem is particularly relevant to “contextual” variables used
in ecologic analyses but also affects the degree of bias resulting from aggre-
gation of individual data into groups, as discussed in the following chapter.
Here, it is important that the unit of analysis be defined in a way that
reflects the scale upon which these variables are hypothesized to act if the
resulting associations are to be interpreted causally in terms of effects on
individuals with these areas.

Individual case-control data

Now suppose we have conducted an unmatched case-control study, so
that Yi is an indicator variable for case-control status and, as before, each
individual has an associated vector of covariates Zi and a location pi .
Using the GLMM framework introduced earlier, we might assume

logit Pr(Yi = 1) = Z′
iβ + μ(pi )

where μ(p)∼CAR(C). The estimated spatial variance τ2 from this model
provides a test of whether cases tend to be closer to each other than
controls, adjusted for their covariates.

With case-control data, interest might center either on a smoothed sur-
face of residual risk μ(p) or on a test of clustering behavior. We defer the
latter to a later section of this chapter. For the former, μ(p) is generally
estimated by some form of kernel density estimator or GAM (Kelsall and
Diggle 1998), as discussed earlier in this chapter. In this approach, the con-
trols are essentially estimating the spatial density of the population at risk
(which would not be expected to be uniformly distributed) and the cases
would reflect this inhomogeneity plus any additional clustering due to spa-
tial variation in disease risk. Key to the validity of this approach, however,
is that controls be a random sample of the source population; thus, some
modification is needed when this approach is applied to matched case-
control data (Diggle et al. 2000), as described under “Tests of clustering
behavior” below.

Spatial correlations of exposure and disease

Tests of correlation with a single point source

In the absence of detailed exposure measurements or model predictions,
onemightwant simply to test the null hypothesis of no association between
aggregated disease rates and proximity to some point source. For this
purpose, Stone (1988) and Bithell and Stone (1989) introduced a simple
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nonparametric method where the regions could be ordered by distance
and one tested H0: λc ≡ λ against H1: λ1 ≥ λ2 ≥ · · · ≥ λC (with at least
one strict inequality) using isotonic regression (see Chapter 6). Morton-
Jones et al. (1999) extend this to a semiparametric approach incorporating
covariates and provide further discussion and references. Related methods
for case-control data with individuals’ locations relative to a specific point
source have been developed by Diggle (1990). The original formulation
was semiparametric, with a model of the form

λ(p) = λ0g(p)[1+ β exp(−ρ||p − p0||)]
where p denotes any point in the region, p0 the location of the point
source, g(p) a smooth function of location for background risk, fitted using
a nonparametric kernel density. Subsequent extensions include matched
case-control data (Diggle et al. 2000) and flexible modeling of excess risk
by isotonic regression (Diggle et al. 1999), amongst others.

Tests of association with spatially defined exposures

The problem of relating spatially correlated exposure data to spatially cor-
related disease outcomes requires careful consideration of the correlation
structure in both variables. For aggregate data with both variables defined
over the same lattice structure (e.g., counties), Cook and Pocock (1983)
describe a maximum likelihood method for fitting a multiple regression
model using the CAR model to allow for spatial dependence in the residu-
als. Clifford et al. (1989) address the problem by a simple calculation of the
“effective sample size” (number of aggregate units) that takes the spatial
correlation in both variables into account when evaluating the significance
of the correlation between the two variables.

Richardson et al. (1995) performed one of the first analyses regress-
ing spatially correlated disease data on spatially correlated environmental
data, using 459 local authority districts of the United Kingdom as the
observational units for incidence of childhood leukemia in relation to sur-
veys of natural background radiation (gamma and radon). Although the
results yielded no convincing associations with radiation, the paper broke
new ground methodologically by Poisson regression using environmental
covariates and a smooth spatial structure and by modeling spatial and
nonspatial residuals explicitly. These analyses revealed that the majority
of the extra-Poisson variation was due to the local spatial component and
this structure was relatively stable over time. Issues of ecologic inference
that arise in using aggregate data in such analyses will be addressed in the
following chapter.

In practice, a major problem with spatial regression analyses is differ-
ent scales of observation for exposure and disease (“spatially misaligned
data”). Disease data may consist of rates by administrative units with
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irregular boundaries, while exposures may comprise measurements at dis-
crete points or predictions from some model over a regular grid. Thus,
Jarup (2004) warns that

Attempts to assess risk by overlaying maps of exposure and disease, given the
(in)accuracy of the exposure estimates, latency periods, and migration problems, are
likely to be misleading and should be avoided.

For risk assessment purposes, he suggests instead that spatial models be
used to assess the population distribution of exposure and then apply
established exposure–response relationships to predict the population dis-
tribution of disease risks. This does not obviate the need for spatial
regression techniques, but then only in the dependent variable, since the
analysis is conditional on the estimated exposure data. For grouped data,
one might adopt a model of the form ln(λc)=Z′

cβ+Uc +Vc, as described
earlier, incorporating both independent errors Uc and spatially correlated
errors Vc. For individual data, one might model logit Pr(Yi = 1)=Z′

iβ+Vi

with spatially correlated errors at the individual level in a similar manner.
Jerrett et al. (2005) used kriging to develop smooth exposure surfaces

from23 PM2.5 and 43O3 monitors in the LosAngeles basin for assignment
of individual exposures to the 22,905 participants from that region in
the American Cancer Society cohort study of mortality. These were then
used as individual-level covariates, along with personal and aggregate-
level confounders, in a hierarchical Cox regression model that allowed for
spatial correlations (Ma et al. 2003). This multi-level modeling approach
for dealing with aggregate data will be discussed further in the following
chapter. Briefly, the hazard rate model can be written as

λcsi(t ,Z) = λ0s(t) exp(Z′
ciβ + ec)

where c indexes communities (based on zip codes), s strata (based on age,
sex, race), and i individuals, ec is a community-level random effect for
spatially correlated residual mortality risk (with zero mean and variance
and correlation between adjacent zip codes to be estimated), and Z is
a vector of exposures and confounders at individual or aggregate levels.
Elevated risks were found for all-cause, lung cancer, and cardiovascular
disease mortality in relation to PM2.5, and were not substantially affected
by adjustment for O3 or proximity to freeways. These associations were
up to three times stronger at the intra-city level than previously reported
results based on between-city comparisons (Burnett et al. 2001). Burnett
et al.’s re-analysis of the full ACS cohort data also demonstrated strong
spatial autocorrelation at the between-city level out to about 1000 km,
but this was reduced by including a smooth surface in location. Adjust-
ment for autocorrelation had little effect on the point estimates of the
sulfate effect, although the confidence interval widened. Adjustment for
the spatial smoother reduced the sulfate risk estimate more and more with
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increasing complexity of the surface, but it remained significant with a
standard error that declined in proportion to the estimated coefficient.

Although not using formal geostatistical models per se, two analyses of
the atomic bomb survivor data are revealing about the potential insights
that spatial analysis can provide. Peterson et al. (1983) analyzed cancer
mortality and Gilbert and Ohara (1984) analyzed acute radiation symp-
toms in relation to direction from the hypocenters, adjusting for distance
and shielding in the former case, for radiation dose in the latter case.
Details of their methods differ slightly, but both essentially entail a model
of the form λ(t ,P ,Z)= λ0Z(t) exp(βP ), where t denotes age, P location in
eight directions from the hypocenter, and Z strata of distance/shielding or
dose and other baseline factors. Both analyses reported significant excesses
of the studied endpoints in the WSW sector in Nagasaki. In Hiroshima,
there was a significant excess of mortality in the westerly direction (WNW
and WSW) but of symptoms in a northerly direction (NNW and NNE).

Such excesses could be due either to underestimation of doses in those
directions or to differences in other epidemiologic risk factors. The lat-
ter seems more likely for cancer, since the patterns were fairly similar
inside and outside a circle 1600 m from the hypocenter. Indeed, the par-
ticularly large excess of lung cancer in WSW Nagaski could be due to
employment in the shipyards (a source of asbestos exposure) located in
the SW portion of the city, or to differences in smoking or socioeco-
nomic status. This seems a less likely explanation for the acute symptoms,
however, which are unlikely to be caused by anything other than radia-
tion. These analyses were motivated in large part by concerns in the early
1980s about possible circular asymmetry in the Hiroshima doses due to
the shape of the bomb and its trajectory at the moment of explosion,
but subsequent dosimetry analyses have shown that any such asymmetry
would have occurred only very close to the hypocenter where there were
few survivors. The possibility of asymmetry due to subsequent fallout is
more plausible, but largely unsupported by the available measurements.
(Both bombs, being air bursts, generated relatively little fallout compared
with the surface bursts at the Nevada Test Site and the Pacific Proving
Grounds.)

These data would be worth revisiting using the modern geostatistical
methods described above. Thus, one might posit a model of the form

λ(t , Z, p, W) = λ0W(t)s1(p)
{
1+ βZ exp[γ ′W + s2(p)]

}
where s1(p) and s2(p) are spatially smooth functions (e.g., GAMs) in exact
location (not just octants of direction from the hypocenter) describing
residual spatial variation in baseline risk and excess risk due to radiation
respectively. (As before, Z represents dose and W additional confounders
and/or modifiers.) Plots of these smooth functions could then be examined
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for potential “hot spots” of risk factors or factors potentially contributing
to dose errors. To avoid the appearance of data dredging, an alternative
approach would be to use a 1 df spatial scan statistic to test for any pattern
of departure from spatial homogeneity. Work along these lines is planned
or currently underway by RERF statisticians.

Another approach to using spatial data suggested by Jarup is to use
disease maps to characterize the baseline risk in a population and then
in a prospective surveillance mode, observe changes in disease rates that
could be related to subsequent changes in exposure.

Case clustering and surveillance

Tests of clustering behavior

Various authors have proposed tests of the clustering hypothesis. One of
the earliest of these (Cuzick and Edwards 1990) is based on the proportion
of the k nearest neighbors of each case who were also cases, tested against
a null distribution obtained by randomly permuting the case-control indi-
cators. When applied to data on childhood leukemia and lymphoma, they
found significant clustering for k between 2 and 5, with themost significant
(Monte Carlo p<0.003) for k= 3. Tango (2007) subsequently provided
a multiple-testing adjusted test for the minimum p-value across choices
of k and for the same data obtained an overall significance level of only
0.085. See also Williams et al. (2001) for application of a closely related
nearest-neighbor method to these data.

Diggle et al. (2003) (and earlier papers described therein) develop the
distribution theory for the spatial correlation in inhomogeneous point
processes. Letting λ1(p) denote the marginal hazard rate in some small
neighborhood around p and λ2(p, q) denote the joint hazard rate for a
pair of events occurring in the neighborhoods of p and q respectively,
then the spatial correlation K(s) is defined as λ2(||p−q||<s)/λ1(p)λ1(q).
If the process were homogeneous, the expectation ofK(s)would be simply
πs2; values in excess of this would be indicative of spatial clustering (or
conversely, values less than this of spatial repulsion, an unlikely situation
in environmental epidemiology). The spatial correlation is estimated by

K̂(S) = 1
|A|

∑
i �=j

I (Dij < s)

λ(pi)λ(pj)

where |A| denotes the area of the study region, the numerator is an indi-
cator for whether the (i,j)-th pair is within some distance s of each other
and the marginal spatial hazard function λ(p) is estimated by a kernel
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density from the case-control locations (possibly adjusted for individual
or location-specific covariates). For matched case-control data, Chetwynd
et al. (2001) model these spatial correlations separately for cases and
controls and then take their difference. The null distribution of this statis-
tic is obtained by permuting the case-control indicators within matched
sets. Diggle et al. (2007) extend this general approach to accommodate
covariates, so as to address such questions as whether spatial clustering of
cases can be explained by known risk factors, and to obtain estimates of
exposure effects that take residual spatial dependence into account.

For grouped data, Moran’s I is the correlation of the residuals �Yc

between adjacent pairs (c ∼ d) of areas given by

I = n

2A

∑
c∼d �Yc�Yd∑

c(�Yc)2

where n is the number of areas and A is the number of adjacent pairs of
areas.

For individual data, one can test this hypothesis by computing a statistic
of the form

S =
∑

i|Yt=1

∑
j |Yj=1

f (Dij )

for some function f of distanceDij between all possible pairs of cases i and
j , and compare this observed value of the test statistic against an empirical
null distribution obtained by randomly permuting the case-control indica-
tors. The proportion of random S values that exceeds the observed value is
then the p-value. The choice of transformation f (D) is arbitrary, but can
have a big influence on the results. While f (D)=D is an obvious choice,
this gives heaviest weighted to the vast majority of pairs that are far apart
and unlikely to share a common cause. Somemeasure of “closeness,” such
as f (D)= 1/D is likely to yield a more powerful test. In particular, the
function f (D)= exp(−δD) yields a test that is asymptotically equivalent
to the score test for H0: ω2 = 0 for any fixed value of δ, but there is no
obvious way to implement a randomization test involving estimation of
unknown parameters (here δ).

This permutation test is a special case of a more general class of statistics
known as Hoeffding (1948) U -statistics, having the general form

S =
∑

i �=j
(Yi − μi)Dij (Yj − μj)

Hereμi =E(Yi |Zi ), which could take the form of a linear or logistic regres-
sion, depending on the distribution of Y . This statistic is known to be
asymptotically normally distributedwithmean zero under the null hypoth-
esis and variance that can be computed in closed form (Mantel 1967).
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Unfortunately, this theoretical advantage is not all that useful in practice,
since in even relatively large samples, the statistic can have a rather skewed
distribution. Thus, reliance on asymptotic normally gives a poor indica-
tion of its true significance and a permutation test or calculation of the
higher moments of the distribution is still needed (Siemiatycki 1978).

In using a case-control study in this way, controls are needed to provide
a reference for the expected distribution of distances between pairs of cases
under the null hypothesis of no clustering, and hence they should represent
the geographic distribution of the population at risk. They should not,
however, be geographically matched or there would be no differences to
compare! If a matched design is used (matching on nongeographic risk
factors like age, sex, race, or socio-economic status), then a matched test
should be used. The test statistic is of the same form as given earlier—a
sum over all cases of f (Dij )—but now the randomization is performed by
randomly selecting one member of each matched pair to designate as the
“case.” Using this approach, Chetwynd et al. (2001) found no evidence
of spatial clustering for childhood diabetes in a 1:2 matched case-control
study.

Space-time clustering

Essentially, the procedures described in the previous section are testing
whether case–case pairs tend to be closer to each other than random case-
or control–control pairs. Thus, the representativeness of the control group
relative to the geographic distribution of the source population of cases
is critical. A somewhat different approach applies the same type of test
statistic only to cases, testing for an association between their spatial and
temporal similarities. Suppose a disease were transmitted from person to
person, say by an infectious agent. Then one would expect pairs of cases
that shared a common cause to be close in both space and time. The first
test of this hypothesis was described by Knox (1964) based on a simple
2×2 classification of pairs of cases as “close” in space or in time. Mantel
(1967) generalized this approach to continuous functions of distances in
space and time of the form using a statistic of the form

S =
∑

i �=j
f (Dij )g(Tij )

where Dij is the spatial distance between case–case pair (i,j), Tij = |ti − tj |
is the difference in their times of diagnosis, and f and g are some prespec-
ified transformations to a scale of “closeness.” He derived the asymptotic
mean and variance of his test based on the theory ofU -statistics (see the dis-
cussion of the asymptotic normality of such tests in the previous section).
Pike and Smith (1974) showed that this test can have poor power when the
disease has a long and variable latent period and proposed a more general
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formulation over sets of members of an acquaintanceship network. Such a
network had been proposed for transmission of Hodgkin’s disease among
school children (Vianna and Polan 1973), but formal testing using such
methods did not provide strong support for the hypothesis (Grufferman
1977; Isager and Larsen 1980; Scherr et al. 1984).

Kulldorff (2001) and Rogerson (2001) consider a somewhat different
problem, namely, monitoring spatial clustering prospectively over time
looking for changes in the pattern that might signal an emerging environ-
mental hazard. Both of these involve variants of the original Knox test for
space-time clustering, with consideration of where to set the threshold for
multiple testing so as to have good power for detecting an change without
excessive numbers of false alarms.

Evaluation of specific clusters

A first step in investigating a potential cluster is to decide whether any
action is warranted. Considering the typically small number of cases, the
vaguely defined source population, the large number of possible compar-
isons that could have led to such a cluster being discovered in the first
place, the likelihood of clustering based on aggregation of well-known
risk factors, and the post-hoc reasoning that led to suspicions about a
possible environmental cause, an apparent cluster may represent nothing
more than coincidence. For example, Neutra (1990) estimated that if one
scanned the 5000 census tracts of California for “statistically significant”
(at p<0.01) excesses of each of 80 cancer sites, one might expect to find
2750 positive clusters a year! (See Box 9.2) It would clearly be infeasible
to follow each of these up and unrewarding as the yield of true positives
would be miniscule. Clearly, some more appropriate criterion is needed
to guide the decision whether further investigation of a reported cluster is
warranted.

Of course, in reality, the expected numbers would not be uniform across
cells due to variation in the number of people at risk, their age distribu-
tion, and risk factors other than the suspected environmental cause, and
there may be spatial correlations between nearby cells. Nevertheless, the
basic observation is that the distribution of the maximum of a set of Pois-
son deviates is not easily interpreted, particularly when that observation
is singled out for attention precisely because it is the largest or most sig-
nificant excess. Furthermore, the narrower the circle that is drawn around
the original cluster, the more “significant” it will appear as the denomi-
nator shrinks while the numerator remains about the same. (This is the
origin of the term “Texas sharpshooter effect,” in which a cowboy shoots
randomly at the side of a barn, then draws a bull’s-eye around his best
cluster of shots!). Because one can often find an environmental source to
blame in the neighborhood of any cluster, such post hoc interpretations
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9.2 How many clusters might one expect by chance?

Suppose in a given population, there are a total of Y cases distributed
overC geographically defined units (“cells”) and suppose for argument
sake that the population at risk were uniformly distributed, so that the
number of cases in each cell is independently Poisson distributed with
mean μ=Y/C. What is the probability of observing at least one cell
with a “significant” excess? Let ψ(y|μ) denote the cumulative Pois-
son probability Pr[Y <y|μ]=	(y,μ)/	(y) where 	(y,μ) denotes the
incomplete Gamma function. Then the probability that at least one
cluster has at least y cases is 1 − ψ(y|μ)C . Now obviously we must
do something about the multiple comparisons problem, since the more
clusters we examine, the more opportunities there are to declare a sig-
nificant excess in at least one of them. Suppose therefore that we use the
normal approximation to the Poisson distribution with a simple Bon-
ferroni correction, setting y=[μ + Zα/C

√
μ] as the critical value for

declaring significance, where [·] denotes the next larger integer. Does
this solve the problem? Yes, if a sufficiently large continuity correction
� is added to the critical value: we then obtain as the probability of at
least one cell being called significant

1−
(
	
([
μ+ Zα/C

√
μ+�

]
,μ
)

	
([
μ+ Zα/C

√
μ+�

]) )C

If�= 0, this gradually increases in a sawtooth manner with increasing
C, ultimately reaching 100% when the number of cells becomes much
larger than the total number of cases. Adding�= 1 to the critical value
keeps this probability from diverging, but the accuracy of the test size
becomes more variable with smaller and smaller cell sizes. Adding
�= 2 or using the exact Poisson critical values maintains the test size
always below the nominal value α, but usually it is much smaller (i.e.,
highly conservative).

are very dangerous and little has been learned from investigation of such
clusters (Rothman 1990). Indeed, Rothman and others have suggested that
cluster observations should not be investigated at all, and that a public
health agency might better devote its limited resources to replication of
hypotheses generated by clusters in independent settings (different regions,
different time periods).

Nevertheless, public, media, and political pressures to “do something”
might force an agency to take some action (Wartenberg 2001; Elliott
and Wartenberg 2004); indeed, notwithstanding the obvious difficul-
ties of small numbers of cases and multiple comparisons, these authors
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have argued that cluster investigations can be scientifically rewarding and
worthwhile under appropriate circumstances. As a start, one might begin
by carefully verifying the existence of the cluster—confirming the diagnosis
of cases, checking for possible double-counting, verifying the comparabil-
ity of the boundaries used for numerators and denominators, computing
standardized rate ratios against an appropriate comparison population,
and so on. If confirmed as “real” and extending beyond the time period of
the original observation, and if the numbers of cases are sufficient, and if
there is a biologically plausible hypothesis, one might then follow up with
a case-control study aimed at assessing the exposures of individuals to the
alleged source of the problem, controlling carefully for possible confound-
ing factors. Alternatively, a spatial correlation study like those described
earlier in this chapter might be considered. Wartenberg (2001) provides
a thoughtful discussion of criteria for pursuing cluster investigations, the
rationale for doing them, options for further study, and approaches to rou-
tine surveillance of clusters. These issues were also discussed at a special
meeting of the Royal Statistical Society on disease clustering and ecologic
studies (see Wakefield et al. 2001; for the introduction to a special issue
containing several papers on the subject).

Geographic information systems

The technological developments supporting the acquisition, integration,
management, visualization, mapping, and analysis of geographic data
are collectively known as GIS and have developed explosively in recent
years. Particularly, well known are the tools offered by Environmen-
tal Systems Research Institute (ESRI, http://www.esri.com/) in Redlands,
CA (the ArcGIS, ArcInfo and ArcView suite of programs). These have
been widely used in many fields, such as geography, sociology, econo-
metrics, urban planning, and so on. For authoritative treatments of the
capabilities of GIS methods, the reader is referred to such textbooks
as (Antenucci et al. 1991; Burrough and McDonnell 1998; DeMers
2000; Chrisman 2002; Maheswaran and Craglia 2004; Longley et al.
2005; Lawson 2006). The adoption of GIS methods by the environmen-
tal epidemiology community is relatively recent, with several high-profile
conferences (Krzyzanowski et al. 1995; Lawson et al. 2000a; Jarup 2004;
Pickle et al. 2006), numerous review articles (Vine et al. 1997; Beyea
1999; Jerrett et al. 2003; Krieger 2003; Willis et al. 2003b; Elliott and
Wartenberg 2004; Nuckols et al. 2004; Briggs 2005), and several text-
books (Meade et al. 1988; Elliott et al. 1992; Pascutto et al. 2000)
having been devoted to the subject. The National Cancer Institute also
hosts a public-use website on GIS resources and their uses for cancer

http://www.esri.com/
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research, http://gis.cancer.gov/, with site-specific maps of cancer mortal-
ity available at http://www3.cancer.gov/atlasplus/type.html. International
cancer incidence and mortality maps are available from the Interna-
tional Agency for Research on Cancer (Ferlay et al. 2001) (accessible at
http://www-dep.iarc.fr/).

A key step in building a GIS is the acquisition of geographically ref-
erenced data. Fortunately, this is increasingly being facilitated by the
availability of large-scale public databases, such as the U.S. Bureau of the
Census TIGER/Line files of the boundaries of census units and other man-
made features like roads, and environmental data like the Toxic Release
Inventory maintained by the U.S. Environmental Protection Agency.

Complex objects can be stored as a set of line segments denoting their
boundaries or as grid (“raster”) of points. Superimposed on the geographic
coordinates can be various kinds of “metadata” about the characteristics
of the units, such as demographic or environmental data on each census
block or dates, types, and intensities in pesticide application corridors.
An important feature of GIS is its ability to overlay different sources of
geographically coded data, perhaps containing a mixture of object types
(points, lines, areas) recorded in differing coordinate systems, and its abil-
ity to interpolate between measured locations and to compute various
kind of distance functions, buffers, polygon overlays, queries, and so on.
The ease of automating such calculations is attractive for large scale epi-
demiologic applications; for example, a study of birth defects in relation
to residence near landfills (Elliott and Wakefield 2001) used a simple dis-
tance metric to compute exposures for 1.5 million addresses in relation to
19,000 landfill sites over 16 years with two different assumptions about
lags—a total of 1011 such computations!

Another key step is translating the narrative information like residence
histories obtained from epidemiologic study subjects into geocodes that
can be overlaid on geographic databases. Again, advances in software
for address standardization and automated record linkage have greatly
facilitated this process, although manual intervention to resolve unlinked
addresses or ambiguous linkages can still be labor intensive. Computerized
digitization of maps or aerial photographs (Thomas et al. 1992c; Brody
et al. 2002; Rull and Ritz 2003) and Global Positioning Systems (GPSs)
suitable for use in precisely locating objects in the field (Scott et al. 2001;
Elgethun et al. 2003; Elgethun et al. 2007) have also revolutionized these
tasks. Wearable monitoring devices are now available that may combine
GPS devices with heart-rate monitors or other biophysical or environ-
mental instruments with continuous downloadable recording devices for
real-time time-activity studies. Needless to say, maintenance of the con-
fidentiality of such highly personal identifying information needs to be
carefully guarded and any publicly released data should have geocodes
removed or corrupted in some fashion to preclude identifying individuals.

http://gis.cancer.gov/
http://www3.cancer.gov/atlasplus/type.html
http://www-dep.iarc.fr/
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Ultimately, GIS is merely a (highly sophisticated) system for organizing
spatial data and should be considered as a tool in support of the kinds
of spatial analysis techniques discussed earlier in this chapter. A spatial
analysis of GIS data can provide a prediction model that can be used to
assign exposures (and uncertainties, as described in the Chapter 11), but
some combination of predictions and actual measurements may be the best
option. Different studies have balanced the use of sparse measurements
for model building or validation quite differently (see Beyea 1999, for
examples).

Illustrative of the complexity that is possible is an application by Gul-
liver and Briggs (2005) that used GIS to model traffic-related air pollution
exposures of children as they traveled between home and school. Var-
ious proprietary traffic and pollution models were combined with their
own models for regional and secondary pollutants, microenvironments,
and time-activity patterns to estimate individual exposures over time
(Figure 9.4). See Briggs et al. (2000); Bellander et al. (2001); Brauer et al.
(2003) for other applications of GIS methods for modeling air pollution
levels, combining available measurements with dispersion models. Van
Atten et al. (2005) discuss the general principles involved and provide an
extensive review of their applications.
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Figure 9.4. Schematic representation of the space-time exposure modeling systems
(STEMS) of Gulliver and Briggs (2005). (Reproduced with permission from Briggs 2005.)
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One particularly appealing use of GIS may be to target the selection of
subjects in multi-phase case-control or cohort studies (Elliott and Warten-
berg 2004). High-intensity exposures may be rare in the population as
a whole—so that a standard case-control design would be inefficient—
and a standard cohort design would be inefficient if the disease was also
rare. A two-stage case-control design (Chapter 5) might use GIS meth-
ods to obtain a surrogate for exposure (say residence within some buffer
surrounding an environmental exposure source) on all cases and controls
and then select subsamples to oversample cases and controls within the
highest surrogate-exposure strata. For example, Wartenberg et al. (1993)
used GIS to identify and characterize populations living near high-voltage
transmission lines for a subsequent epidemiologic study.



10 Ecologic inference

As discussed in the previous chapter, most exposures studied in environ-
mental epidemiology are geographically distributed and hence spatially
correlated. Although the ideal would be to evaluate exposure individually
(exploiting or adjusting for the spatial structure of the data as needed)
this is not always feasible. Frequently exposure can only be assigned at
some group level—by place of residence, job title, or other groupings. In
such situations, most of the information about exposure–disease associa-
tions may come from comparisons between groups rather than between
individuals.

The simplest such design is known as an ecologic correlation study,
in which disease rates (or means of some continuous outcome variable)
are regressed on the mean exposure (or prevalence of a binary exposure
variable) across the various groups under study, possibly adjusted for the
means of other confounding variables. Unfortunately, this simple idea
is potentially biased because associations across groups may not reflect
associations across individuals; this phenomenon is known as the “eco-
logic fallacy.” The term “ecologic correlation” is somewhat unfortunate,
as it implies a focus on group-level variables (what we will call “con-
textual” variables below), whereas in most applications in environmental
epidemiology the focus is really on trying to infer associations among
individual-level variables using only aggregate data.

The classic example is Durkheim’s (1951) analysis of suicide rates in the
provinces of Germany in the nineteenth century (Figure 10.1). He found
that suicide rates were highest in the counties with the highest proportion
of Protestants. If extrapolated to a comparison of hypothetical provinces
with 0% or 100% Protestants, the fitted regression line would predict a
nearly eightfold difference in suicide rates between Protestants and non-
Protestants. However, this form of comparison fails to inform us whether
it was the Protestants or non-Protestants within these parishes who were
committing suicide at higher rates, and indeed it was not implausible that it
was religious minorities in the most heavily Protestant counties who might
have the highest suicide rates, perhaps reflecting their feelings of alienation.
Durkheim also compared the suicide rates in Protestants and others at the
individual level and found the difference to be only twofold—still elevated,
but clearly indicating some bias in the ecologic estimate.

This phenomenon appears to have been first recognized in a seminal
paper in the sociology literature by Robinson (1950) and has been widely
discussed in that field (Selvin 1958), andmore recently in the epidemiologic



10 Ecologic inference 203
S

ui
ci

de
 r

at
e 

(Y
)

0

0

Proportion protestant (X )

10.80.60.40.2

10

20

30

Figure 10.1. Relation between suicide rates and religion in four groups of Prussian parishes,
1883–1990. (Adapted from Durkheim 1951.)

field thanks to a critical review by Morgenstern (1982). Differences
between individual- and group-level associations (sometimes called “cross-
level” inference) can arise because of confounding or other biases within
groups, confounding by group itself, or by effect modification by group
(Greenland and Morgenstern 1989). Thus, although ecologic correlations
can be a useful tool for hypothesis generation, epidemiologists gener-
ally feel that only studies of individual exposure–response relationships,
appropriately controlled for both individual- and group-level confounders,
can provide a secure basis for causal inference.

A major reason for the interest in ecologic inference in environmental
epidemiology is that many environmental exposures (e.g., ambient air pol-
lution) vary relatively little within geographic regions like cities, so that
case-control or cohort studies conducted within a region or even multi-
center studies adjusted for center will have little power. Furthermore, as
we shall see in the following chapter, exposure measurement error is likely
to bias individual exposure–response relationships towards the null, pos-
sibly quite severely. On the other hand, there may be a much larger range
of variation between regions (leading to better power), average popula-
tion exposure may be more readily estimated than for individuals, and
disease rates can be based on very large numbers—entire populations
rather than epidemiologic samples. In an important series of papers, these
ideas were developed by Prentice and Sheppard (1989; 1990; 1991) in
the context of evaluating the association between dietary fat and breast
cancer, a situation where ecologic correlation studies suggested a strong
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positive association that has been difficult to confirm in case-control or
cohort studies. They went on to propose a novel hybrid design, combining
between-region comparisons with surveys of exposure and confounders
in random samples from each region (Prentice and Sheppard 1995). We
will return to their design at the end of this chapter. First, however, we
consider the broad range of designs involving various combinations of
measurements of exposure, disease, and confounders at the individual
and group levels and how one might approach the analysis of clustered
data involving both levels of comparison when complete data are available
on all individuals.

Hybrid aggregate/individual designs

The fundamental problem with the ecologic correlation approach is that
the joint distribution of exposure X, disease Y , and confounders Z is not
observed. To remedy this problem, various forms of hybrid designs that
combine individual- and group-level observations have been proposed, as
mentioned at the beginning of Chapter 5. These can include single-phase
studies in which some variables are measured at one level and some at
another, or two-phase studies where aggregate data are obtained on amul-
tiple population groups and individual-level data on subsamples of each
group. These designs might also differ depending upon which variables—
exposure, disease, confounders—are obtained at each level. A useful
classification of the various possibilities is summarized in Table 10.1.

Consider first a single-phase study in which outcomes Yci and con-
founders Zci are obtained on all individuals i = 1, . . . , nc within each
of c = 1, . . . ,C “clusters” (communities, groups, job titles, even time-
periods or combinations of temporal, spatial, or other dimensions), but

Table 10.1. Conceptual classification of study designs
involving individual and aggregate comparisons
(Adapted from Kunzli and Tager 1997; Guthrie et al.
2002.)

Exposure
assessment

Design and analysis

Group Individual

Group “Ecologic”(
Y c,Xc,Zc

) “Semi-individual”(
Y ci ,Xc,Zci

)
Individual “Aggregate data”(

Y ci ,Xci ,Zci

) “Individual”
(Yci ,Xci ,Zci )
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exposureXc is available only for the clusters (the “semi-individual” design
in Table 10.1). Here, Xc might represent a measurement of exposure at
some central site, the mean of a sample of area measurements, or an aver-
age exposure predicted by some dose reconstruction model. Suppose first
that Y represents some continuous variable and consider the following
hierarchical linear mixed model (Greenland 2002):

Yci = bc + Zci
′α + eci (10.1a)

bc = β0 + β1Xc + ec (10.1b)

or equivalently [substituting Eq. (10.1b) into (10.1a)],

Yci = β0 + β1Xc + Zci
′α + eci + ec (10.2)

where eci and ec are independent, normally distributed random errors.
This model is similar in spirit to the GLMMs for longitudinal data dis-
cussed in Chapter 7, with clusters replacing individuals and individuals
replacing time points. Indeed the same techniques for fitting the models
and doing inference on their parameters can be applied. For handling lon-
gitudinal grouped data, the model can readily be expanded to a three-level
model, as used in various analyses of the CHS data:

Ycik = aci + bci tk + Z′
cikα1 + ecik (10.3a)

bci = Bc + Z′
ciα2 + eci (10.3b)

Bc = β0 + β1Xc + ec (10.3c)

or the equivalent combined model with three random error terms. Here,
time-varying confounders are adjusted for in Eq. (10.3a) and time-constant
confounders in Eq. (10.3b), but exposure effects are evaluated only at
the cluster level, Eq. (10.3c), as in the previous models, Eqs. (10.1)
and (10.2).

Now suppose the outcome is binary or survival time data and suppose
we wished to fit the corresponding logistic or hazard rate models,

logit Pr(Yci = 1) = β0 + β1Xc + Zci
′α + ec

or

λc(t ,Z) = λ0(t) exp(β1Xc + Z′
ciα + ec)

These models would be standard logistic or Cox regression models, were
it not for the additional cluster-level random effects ec, requiring special
fitting techniques. See, for example, Ma et al. (2003) for a discussion of
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random effects Cox models or Breslow (1984) for a discussion of random
effects log-linear models. The outputs of such models include estimates of
the variance of the regression coefficients α and β, which correctly reflect
the additional group-level variability, as well as an estimate of the random
effects variance itself.

Although this approach allows one to adjust the ecologic association
between exposure and outcomes at the individual level, it does not get
around the fundamental problem of the lack of knowledge of the joint
distribution of exposure and confounders. Again, were it feasible to do
so, one would have collected the Xci data on the entire sample and the
problem would be solved, but assuming this is not possible, one could
adopt a two-phase sampling design like those discussed in Chapter 5. We
defer further discussion of this idea until after the discussion of ecologic
bias in the following section.

Ecologic bias

We now investigate more formally the validity of these procedures by
comparing the parameterswewould estimate from a studywhere complete
data on the joint distribution of (Y ,X,Z) were available at the individual
level with those we would estimate from a purely ecologic correlation
study or one of the one- or two-phase hybrid designs. The basic technique
is to compute what the model for the expected grouped data would look
like from the corresponding individual-level model.

Linear models

In the classic “ecologic correlation” study, an investigator relates the rate
of disease or some average health effect Y c in a set of populations (typ-
ically geographically defined) to some measure of average exposure Xc

(Figure 10.2), possibly adjusted for further covariates Zc also measured
only at the group level. The so-called “ecologic fallacy” (Selvin 1958) or
“cross-level bias” (Firebaugh 1978) concerns the difference between the
estimated regression coefficient from such an analysis and that estimated
from individual data, that is, a regression of Yci onXci and Zci . Greenland
and Morgenstern (1989) and (Greenland 2002) describe three ways this
difference can come about: (1) by within-group confounding that acts dif-
ferentially across groups; (2) by confounding by group effects; and (3) by
effect modification by group. Omitting covariates andwriting amulti-level
model as

Yci = α + βI (Xci −Xc)+ βEXc + eci + ec
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the absence of cross-level bias can be written as βI = βE ; equivalently,
rewriting the model as

Yci = α + βIXci + (βI − βE)Xc + eci + ec

we see that the absence of cross-level bias corresponds to no effect of Xc

on Yci beyond its effect through Xci . Such a group-level effect could arise,
however, not as a direct causal effect of Xc, but by confounding by some
omitted group-level covariateZc. Thus, cross-level bias actually represents
the net effect of two separate phenomena: aggregation over individuals
and misspecification of the form of the relationship at the group level
induced by an individual level model. This understanding of ecologic bias
appears first to have been expressed by Robinson (1950) and has been
treated in numerous reviews (Selvin 1958; Morgenstern 1982; Richardson
et al. 1987; Piantadosi et al. 1988; Greenland and Morgenstern 1989;
Greenland and Robins 1994; Morgenstern 1995; Lasserre et al. 2000;
Gelman et al. 2001; Greenland 2001; 2002; Wakefield and Salway 2001).

This phenomenon is illustrated in Figure 10.2. The individual data were
simulated under the model Yci = ac + bcXci where Xci ∼ U[c, c+ 5], ac ∼
N(10− 2c, 0.52) and bc ∼ N(1, 0.12) for c = 1, . . . , 5. Thus, even though
the individual-level associations are positive in each group, the relationship
among the group means is negative. Three circumstances must combine
to produce this phenomenon: first, there must be some variation among

Exposure

D
is

ea
se

Figure 10.2. Simulated example of ecologic bias with five groups of individuals (solid gray
symbols), each showing a positive exposure–response (dashed lines), while their group
means (open symbols) show a negative exposure–response (solid line) due to confounding
by group.
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the group means Xc so that the distributions are separated horizontally;
second, there must be some variation among the intercepts ac, so that the
distributions are separated vertically; third, and most importantly, there
must be an association between Xc and ac so that the associations go in
different directions at the two levels. This example also illustrates a mod-
est degree of effect modification by group (criterion 3 of Greenland and
Morganstern), but this is not the cause of the ecologic bias in this example.
Their criterion 1—within-group confounding acting differentially across
groups—will generally lead to different slopes and is thus a special case of
criterion 3.

Models for disease rates

Suppose we now assume a model for individual risk of disease of a linear
relative risk form

λ(Xi ,Zi ) = λ0(Zi )(1+ βXi)

and consider the induced risk for a cluster of individuals c,

λc = Ei∈C[λ(Xi ,Zi )] = Ei∈C[λ0(Zi )] + βEi∈C[Xiλ0(Zi )]
≡ λ0c(1+ βX̃c) (10.4)

where

X̃c = �i∈CXiλ0(Zi )

�i∈Cλ0(Zi )

is a baseline-risk-weighted average of the individual exposures, and λ0c is
the average of the individual risks in the group. The naïve regression

λc = λ0(Zc)(1+ βXc) (10.5)

where ZCc andXc are the unweighted means of Zi andXi , fails to capture
the essence of Eq. (10.1) because λ0Zc �= λ0c and Xc �= X̃c.

If the relationship with exposure is nonlinear, say, a linear–quadratic
form λ(Xi ,Zi ) = λ0(Zi )(1 + β1Xi + β2X

2
i ), then the induced aggregate-

level association will be a linear–quadratic function of the baseline-risk-
weighted mean X̃c and variance Ṽc of individual exposures,

λc = λ0c

[
1+ β1X̃c + β2

(
X̃2

c + Ṽc

)]
Now consider a linear model for a single confounder, λ0(Zi)=

λ0(1+ αZi). Substituting this expression into Eq. (10.2), this becomes

λc = λ0
(
1+ αZc

) (
1+ βXc

)
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But the real model induced by Eq. (10.1) in this case is

λc = λ0Ei∈c [(1+ αZi) (1+ βXi)]

= λ0
[
1+ αZc + βXc + αβ

(
ZcXc + Cc

)]
(10.6)

where Cc = covi∈c(Zi ,Xi), the within-group covariance of the confound-
ing and exposure variables. (Note that we can use simple averages of X
and Z here because we are assuming the baseline risk λ0 is constant condi-
tional on Z.) It is precisely this last term that cannot be determined from
aggregate data alone, and no amount of adding additional aggregate-level
covariates in Z or X can overcome this difficulty (Lubin 2002). Of course,
this difficulty arises because of the multiplicative form we have assumed
in the linear relative risk model. A purely additive model would require
neither the product term ZcXc nor the within-county covariance term
Cc, but multiplicative (i.e., relative risk) models are more widely used in
epidemiology.

The within-group covariance could be estimated by separate
population-based samples and combined with the aggregate-level data,
as discussed later in this chapter. Alternatively, the groups could be strati-
fied more finely, so that the covariance between exposure and confounders
could be assumed to be zerowithin strata, but such finely stratified data are
seldom available for most ecologic analyses without collecting individual-
level data (whichwould defeat the purpose of doing an ecologic correlation
study in the first place).

The appeal of the linear–additive model λi = λ0 + α′Zi + βXi is that it
induces exactly the same form at the group level, λc = λ0 + α′Zc + βXc,
but of course it should be remembered that such linear models are seldom
used in epidemiology because of the strong nonlinear and multiplicative
dependence generally seen with such factors as age. Hence, most of the
analyses of individual data discussed elsewhere in this book have relied on
logistic or loglinear models, so that the higher moments and covariance
terms can become quite important in the induced models (Richardson
et al. 1987; Dobson 1988; Greenland and Robins 1994; Prentice and
Sheppard 1995; Lubin 1998). The Taylor series approximation of such
models by a linear–additive one that has been used by some to justify
ecologic analysis (e.g., Cohen 1990a) is valid only to the extent that the
within-group variances of Wi and Zi are small (Greenland 2001). Usually
these will be much larger than the between-group variances of their means,
which may be all that are available to support this claim.

In some instances, interest might focus on a “contextual” or “ecologic”
variable—one that does not vary across individuals within groups, such as
the ambient level of air pollution in a city. In this case, it would be tempting
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to argue that the association between λc and Xc from an ecologic analysis
is unconfounded because the within-group correlation of Zi andXi is zero
(sinceXi does not vary with groups). This would be incorrect, however, as
demonstrated by Greenland (2001; 2002), since both Yi and Zi are defined
at the individual level, λi being simply a form of (person-time weighted)
average of the individual Yis. Thus, differences between groups in the
average level of a risk factor could still confound the association between
disease rates and a contextual exposure variable. Indeed, one of the key
advantages of the semi-individual design discussed above is its ability to
control for confounding at the individual level, so that the association
with a contextual exposure variable is assessed using confounder-adjusted
disease rates.

Before leaving this general discussion of ecologic bias, several other
points are worth mentioning:

• Ecologic studies can bemore sensitive tomeasurement error in exposure,
although it may be less affected by measurement error in a confounder,
as discussed in the following chapter.

• Frequently, the aggregate-level data available on exposure or con-
founders is not really the population average of the individual quantities
but derived in some other way, such as inferring the average level of
smoking from tobacco sales or the average exposure to air pollution
from central-site ambient pollution measurements.

• Use of noncomparable restriction and/or standardization (e.g., age-
adjusted disease rates and crude exposure variables) can lead to greater
bias than using comparable measures (e.g., neither one being age
adjusted) and allowing for confounders instead by including them as
covariates (Rosenbaum and Rubin 1984).

• Unlike cohort and case-control studies, the means of exposure and dis-
ease (and possibly confounders) may be computed over overlapping
periods of time, so that temporal sequence cannot be established.

• Multiple predictor variables may be more highly multi-collinear at the
aggregate than at the individual level.

• Migration between groups can distort the groupmeans being compared.

Examples

Domestic radon and lung cancer

Many of the insights about the pitfalls of ecologic inference in environ-
mental epidemiology have derived from a particularly controversial series
of papers on domestic radon. In 1987, Cohen (1987) proposed to test the
linear–no-threshold hypothesis for low-dose radiation risks by means of
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Figure 10.3. Male lung cancer rates for 1601 U.S. counties by average household radon
levels. (Reproduced with permission from Richardson et al. 1995; Heath et al. 2004.)

an ecologic correlation study using lung cancer rates across U.S. counties
and household radon levels from a database of measurements he had been
assembling for many years (Cohen 1986; Cohen and Shah 1991; Cohen
et al. 1994). The results (Cohen 1990b; 1995; 2001; Cohen and Colditz
1994) showed a strong negative correlation with radon (Figure 10.3),
which could not be explained by the available county-level data on smok-
ing or other confounders. The existence of this correlation is not disputed
and has been replicated in several other countries (e.g., Haynes 1988 in
the United Kingdom), but its interpretation has been questioned by many
distinguished epidemiologists and statisticians (Greenland 1992; Stidley
and Samet 1993; Greenland and Robins 1994; Piantadosi 1994; Stidley
and Samet 1994; Doll 1998; Lubin 1998; Smith et al. 1998; Field et al.
1999; Goldsmith 1999; Gelman et al. 2001; Greenland 2001; Lubin 2002;
Puskin 2003; Van Pelt 2003; Heath et al. 2004) and expert committees
(NAS 1999; NCRP 2001), most of the full-length papers followed by
further correspondence and rejoinders too numerous to list here. Joint
analyses of case-control studies on domestic radon have clearly demon-
strated a positive relationship that is generally consistent with the findings
of the miner studies (Lubin and Boice 1997; NAS 1999; Darby et al.
2005; Krewski et al. 2005b; Krewski et al. 2006). In particular, two
parallel analyses of ecologic and case-control data (Lagarde and Persha-
gen 1999; Darby et al. 2001) demonstrated similar discrepancies, with
the ecologic studies showing negative and the case-control studies pos-
itive associations. Similar issues have arisen with more recent reports
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Figure 10.4. Prevalence of smoking by average household radon levels (left) and male lung
cancer rates by prevalence of smoking (right) for 1601 U.S. counties. (Reproduced with
permission from Heath et al. 2004.)

of ecologic associations of residential radon with childhood leukemia
(Eatough and Henshaw 1993; Steinbuch et al. 1999; Kohli et al. 2000;
Laurier et al. 2001; Evrard et al. 2005; 2006).

A central issue is the adequacy of control for confounders, notably
for smoking in the lung cancer associations. Figure 10.4 displays the
associations of smoking prevalence with radon (left) and with lung cancer
(right) at the county level, demonstrating, as expected, a strong disease-
smoking association, but only a weak (but negative) radon-smoking
association. The question is whether adjustment for smoking prevalence
alone at the group level would be adequate to control for confounding
or whether more detailed individual-level data on the joint distribution
of smoking and radon are needed. As mentioned above, no amount of
adjustment for county-level smoking data or its correlates can be counted
upon to remove confounding, even if the average values of all the relevant
individual smoking variables were available.

Cohen’s analyses are based on the simple approximation λ0c = (1−Pc)

λ0 + Pcλ1, where Pc is the prevalence of smokers (Zi = 1) and λ0 and
λ1 are the baseline rates in nonsmokers and smokers respectively. (Here,
prevalence was estimated from tobacco sales data by county.) Assuming a
constant excess relative risk α = (λ1−λ0)/λ0 for smoking and substituting
this expression into Eq. (10.2) yields

λc = λ0(1+ αPc)(1+ βXc)

But the real model induced by Eq. (10.1) includes the within-county
covariance term in Eq. (10.3), which cannot be estimated by county-
level aggregate data, so confounding by smoking cannot be completely
eliminated no matter how many county-level smoking or socioeconomic
correlates are included in the model.

The need to account for this within-community covariance arises
because of the synergistic effect of radon and smoking and would not
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be needed in a purely additive model, but the available evidence strongly
suggests a greater-than-additive (if not multiplicative) joint effect, and
Cohen’s analysis also assumes a multiplicative model. Indeed, Lubin
(2002) provides a simple simulation showing how a truly linear relation-
ship between λc and X̃c can be distorted to yield a spurious U-shaped
relationship with Xc, with a negative slope at low doses similar to that
seen in Cohen’s data.

Of course, these problems could in principle have been overcome by
using data on the joint distribution of smoking and radon (and other
confounders) from random samples of individuals within each county,
but that would be a different study (see Multilevel Designs below). Or
one could use age/sex/race/SES-adjusted disease rates and corresponding
adjusted means of smoking and radon instead of crude values, but neither
the smoking nor the radon data are available in this form.

In addition to these general issues with ecologic studies, various authors
have noted other problems with Cohen’s specific application of the
method. For example,

• The quality of the data may be suspect: there is potential selection bias
in the samples of homes that were measured; little detail is available
on the means of other aspects of smoking (duration, intensity, filters,
etc.); data on both smoking and radon generally followed the period
covered by the cancer rates; and migration, changes in ventilation, and
differences between concentration and exposure could produce system-
atic differences between the assigned county radon levels and the means
of actual exposure.

• So far, we have focused on the lack of information on the distribution of
individual-level data, particularly the joint distribution of exposure and
confounders within counties, but “contextual” variables—those that
vary between, but not within, counties can also be confounders. Three
in particular have been suggested: rural-urban status (Darby et al. 2001),
latitude (Lagarde and Pershagen 1999), and altitude (Van Pelt 2003).
In particular, Darby et al. point out that such variables would have
very little confounding effect in an appropriately matched case-control
study, but a much larger effect on ecologic correlations.

• Cohen has repeatedly argued that the association remains despite adjust-
ment for each of up to 500 socioeconomic variables and challenges the
scientific community to come up with a plausible explanation for the
finding. But such adjustment at the group level cannot be counted upon
to eliminate confounding at the individual level.

• For some analyses, the data can be quite sparse (particularly analyses
of rarer cancers), requiring a Poisson regression approach. By using an
unweighted linear regression—or worse yet, restricting the analysis to
an unrepresentative set of counties with higher rates—the results can be
severely biased.



214 Statistical methods in environmental epidemiology

A particularly trenchant observation by Pushkin (2003) was that other
smoking-related cancer sites showed a similar negative correlation with
radon, whereas the nonsmoking-related sites did not, strongly suggesting
residual confounding by smoking. These results differed from earlier anal-
yses by Cohen, likely due to his inappropriate use of unweighted regression
or exclusion of counties with zero or very low rates, which would have
affected the rarer cancers disproportionately (as noted above).

In response to these various criticisms, Cohen has frequently claimed
that his use of ecologic correlations is intended as a “test of the linear–no-
threshold hypotheses,” not as a means of estimating the low-dose slope.
Under a linear model, he argues that the mean death rate is a function
only of the mean radon concentration (but as noted above, this does not
apply to nonlinear models). Hence, the predicted positive ecologic corre-
lation remains unexplained, despite repeated attempts, rejection being a
central feature of his use of the “ScientificMethod.” Nevertheless, the pre-
dicted positive correlation only holds if the within-community covariance
of radon and confounders is zero and all between-community confounders
have been adequately controlled in the analysis. Thus, the test is not really
as sharp a test of the hypothesis as he claims. See Lubin (2002) for further
discussion of the validity of Cohen’s invocation of the scientific method.

Air pollution

In Chapter 11, some approaches to assessing inter-individual variation in
personal air pollution exposures Xci based on microenvironmental and
spatial modeling are described. However, it is arguable that for public
policy purposes, it is the “contextual” effect (Greenland 2001) of ambient
pollution that is of greatest relevance, as it is more amenable to regula-
tion than personal exposures are. Certain other confounding variables,
such as altitude or weather, likewise have meaning only as contextual
variables. Contextual variables could also interact with individual-level
exposure or confounding variables. For example, it is possible that the
effect of personal variation in exposure (due to time-activity patterns,
indoor sources, or spatial variation in outdoor pollution within a com-
munity) has a relatively larger effect in low pollution communities than
in high pollution communities. Such an effect has been particularly dis-
cussed in the context of income disparities (Pearce 2000). It is also possible
that the effect of exposure measurement error could act differently at the
different levels; see Brenner et al. (1992a); Wakefield and Elliott (1999)
for a discussion of the effect of measurement error on ecologic regres-
sions and (Greenland and Brenner 1993) for methods for correction; we
will revisit this point in the following chapter. Clayton et al. (1993) discuss
the use of spatial correlation analysis of residuals as a means of addressing
ecologic bias.
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With only 12 observations at the community level in the Children’s
Health Study, the prospects for including many such ecologic covariates
are limited and there is some danger of “overadjustment”—controlling for
variables which do not in fact have a causal effect on health outcomes, but
are simply determinants of the pollution variables that are the real causal
factors. Weather patterns, for example, are major determinants of pollu-
tion levels and thus one must think very carefully about whether they are
indeed plausible risk factors for the health outcomes. There is abundant
evidence that temperature and humidity are associated with mortality and
hospitalization rates, independent of air pollution (Schwartz 1994c), so
inclusion of such variables in the third level model might be justified. How-
ever, there is less evidence that wind is associated with health outcomes
and since it is probably an even stronger determinant of pollution level
than temperature, inclusion of wind in the model might constitute over-
adjustment. Furthermore, if temperature is measured with less error than
air pollution levels, health endpoints may bemore strongly associated with
temperature than with air pollution, even if temperature is only a deter-
minant of air pollution levels and has no direct impact on health. In an
analysis of asthma incidence using a random effects Cox model, Jerrett
et al. (2008) found that community-level humidity was a strong predictor
of community-level incidence rates, reducing the residual community ran-
dom effects variance substantially beyond that explained by personal risk
factors. Including NO2 or modeled traffic in the model further reduced
the residual community effect virtually to zero. The estimated pollution
effects become larger and their standard errors smaller after adjustment
for humidity.

Another example is provided by personal income as a potential con-
founder of the association between air pollution and growth in MMEF
(Berhane et al. 2004). Adjustment for income at the individual level
[Eq. (7.2b)] did not alter the estimate of the NO2 effect, even though
it is significantly related to the outcome. Treating income as a contextual
variable and adjusting the third-level model for the community-average
income [Eq. (7.2c)] had virtually no effect on the point estimate of the
NO2 effect, but increased the standard error substantially. Adjustment at
the school level (intermediate between individual and community) reduced
the point estimate somewhat more and increased its standard error even
more, even though the school-mean income was not itself a significant
covariate. These discrepant results indicate that one must be careful in
including community-level variables in an attempt to control for ecologic
confounding.

Confounding by ecologic variables has been explored muchmore exten-
sively in the reanalysis of the American Cancer Society cohort study (Pope
et al. 2002) of mortality in 151 metropolitain areas across the United
States. The main results of the study (Krewski et al. 2003) were described
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in the previous chapter, where we focused on spatial analyses. Here, we
focus instead on the effect of ecologic variables as potential confounders
or modifiers of the associations of sulfates with all-cause and cardio-
vascular mortality. Willis et al. (2003b) described the basic strategy for
selection of 22 contextual covariates (demographic, socioeconomic, resi-
dential segregation, access to health care, climate, physical environment,
and co-pollutants), in addition to the 25 risk factors controlled at the indi-
vidual level. Adjustment for these variables produced only relatively minor
changes in the relative risk for all-cause mortality and sulfates (Jerrett
et al. 2003), despite some highly significant associations of these variables
with mortality and/or sulfates. The strongest adjustments from the model
with no ecologic covariates (RR = 1.15) were from population change
(RR = 1.06) and SO2(RR = 1.04). However, another analysis using the
513 counties making up the larger metropolitain areas was more robust
to the effect of ecologic covariates (Willis et al. 2003a).

Latent variable models

If one were prepared to make additional modeling assumptions, it would
in principle be possible to estimate the parameters of an individual model
from purely aggregate data. Three such methods (along with one requiring
some individual data) are reviewed by Cleave et al. (1995). To give a flavor
of these approaches, we consider just one of them, the ecological logit
model for binaryX and Y data (Thomsen 1987), which introduces a latent
variable Wi for each individual. The model assumes that the marginal
probabilities Pr(Xi |Wi) and Pr(Yi |Wi) have a logistic dependence on Wi

and that theWi are independently normally distributedwith group-specific
means μc and constant variance across groups. With these assumptions, it
is then possible to estimate the joint probabilities πxyc within each group c

from the observed proportions Xc and Y c and hence infer the relationship
betweenX and Y at the individual level. Although identifiable in principle,
the model relies on strong and untestable assumptions and appears to have
led to somewhat biased estimates in an application to voter registration
data. Somewhat weaker assumptions are required when subsample data
are available on the joint distribution of X and Y for individuals within
clusters, using a maximum entropy method (Johnston and Hay 1982).
Their method is based on the iterative proportional fitting algorithm used
for fitting loglinearmodels to categorical data, here by finding values of the
unobserved πxyc that are compatible with both the observed proportions
Xc and Y c in the aggregate data and with the subsample data on (Xci ,Yci)

for each cluster. Cleave et al. provide an empirical comparison of these
various methods on housing data.
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Hierarchical models may offer a much more appealing approach to
the problem. Wakefield (2004) provides a general framework in which
the unobservable model parameters for the individual πxyc are mod-
eled in terms of a second-level model treating the πs as exchangeable
across groups. For example, letting pcx = Pr(Yi = 1|Xi = x,Ci = c), one
can approximate the marginal likelihood, summing over the unobserved
combinations Yc0 + Yc1 =Yc, as

Pr (Yc|pc0,pc1) =
Yc∑

yc0=0

Bin(yc0|Nc0,pc0)Bin(Yc − yc0|Nc1,pc1) ∼=N [μc,Vc]

where μc = Nc0pc0+Nc0pc0 and Vc = Nc0pc0(1−pc0)+Nc1pc1(1−pc1).
By itself, this likelihood is not identifiable, as it entails estimating two
parameters (the pcx) for each observation, so one must impose some struc-
ture through a prior distribution on the ps, such as a beta or logit-normal.
Suppose, for argument sake, we take θcx = logit(pcx) as having normal
distributions with a common mean θx and variance σ 2

x across groups.
Further credibility for the exchangeability assumption may be possible by
regressing the θcx on additional ecologic covariatesZc. Wakefield provides
a thorough discussion of this and other choices of priors, including models
involving spatial smoothing. Two other variants of this idea (Chambers
and Steel 2001) involve local smoothing of the group-specific parameters
across groups with similar X and Z values and a simple semiparametric
approach not relying on any Z data.

Despite their adoption in other fields and their intuitive appeal, latent
variable methods do not seem to have been used so far in epidemiologic
applications.

Multilevel designs

To overcome the lack of information on the joint distribution of expo-
sure and confounders within groups, one might use a two-phase sampling
scheme. Thus, suppose in the main study one observed only Y c and in
a substudy one observed (Xci ,Zci) for simple random samples of indi-
viduals from each group (the “aggregate data” design in Table 10.1).
In this case, one could use the subsample to build an individual-level
regression model for E(Xci |Zci) = ac + Z′

cidc, and then fit the ecologic
data to

Y c = β0 + Z
′
cα + βE

(
Xc|Zc

)
+ ec
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(Similar models are possible for binomial, Poisson, or survival time data.)
Thus, the estimates of the exposure effect are adjusted for confounders
at the cluster level, yet exploit the relationship between exposure and
confounders as assessed at the individual level, without requiring that
relationship to be constant across clusters.

This idea was first developed by Prentice and Sheppard (1995) in
the context of a loglinear model for μi(β)= Pr(Yi = 1|Xi)=p0 exp(βXi),
showing that the induced model μc(β)=E(Yc)=Ei∈c [μi(β)] could be fit-
ted by replacing μc(β) by sample averages μ̂c(β)=p0�i∈ceβXi /nc. They
provided a generalized estimating equation for this purpose,∑

c

(
Yc − μ̂c(β)

)
V̂ −1
c (β)D̂c(β) = 0

where

D̂c(β) =
(

μ̂c(β)

p0�i∈cXie
βXi /nc

)

is a vector of derivatives of μ̂c(β) and

V̂c(β) = var
(
Yi | {Xi}i∈c

) = μ̂c(β)− p2
0�i∈ce2βXi /nc

They also provide a correction for bias due to small subsample sizes. In
the presence of classical measurement error, where the true covariate X

is measured with error as Z∼N(X, σ 2), estimates of β from individual-
based cohort or case-control studies would be biased towards the null by
a factor that depends upon the measurement error variance σ 2, as dis-
cussed in the following chapter. However, Prentice and Sheppard showed
that there would be virtually no bias from using Z in place of X in their
aggregate data model if Z were available for the entire population. Even
if it was measured only on modest-sized subsamples of each group, the
bias towards the null would be much smaller than in an individual-based
study. See Guthrie and Sheppard (2001) for simulation studies describing
the performance of the Prentice and Sheppard method in the situations
of confounding, nonlinearity, nonadditivity, and measurement error, and
Guthrie et al. (2002) for extensions incorporating spatial autocorrelation.
Wakefield and Salway (2001) provide a general parametric framework,
allowing for measurement error, confounding, and spatial dependency.

Plummer and Clayton (1996) consider the design of such studies in
terms of the trade-off between the sample sizes needed for adequately
precise estimation of the group means and the number of groups needed
for fitting the aggregate data model. They conclude that the substudy
sample sizes in each group should be proportional to the corresponding
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expected number of cases in the main study, with an optimal ratio that
increases with the size of the exposure relative risk from about 0.2 for
RR = 1.5 to 2 for RR = 3.5. They also argue that the sample should be
stratified by important risk factors like age and sex. Sheppard et al. (1996)
also considered design issues and showed that increasing the number of
groups from 20 to 30 or 40 with subsamples of 100 in each yielded greater
improvements in power than corresponding increases in subsample sizes
keeping the number of groups fixed.

This need for relatively large samples in each group may be reduced by
using Bayesian methods to estimate the group means. Salway and Wake-
field (2008) describe an approach using with a Dirichlet process prior to
stabilize the estimated groupmeans from small samples using a parametric
distribution for thewithin-group values. Using data on radon and smoking
status from 77 counties in Minnesota with at least one household radon
measurement (generally quite sparse, ranging from 1 to 122 measure-
ments per county), they demonstrated that the weak negative correlation
seenwith the standard ecologic analysis became significantly positive using
their hybrid model.

The Prentice and Sheppard approach extends naturally to multiple risk
factors, although the main focus of their simulations (as well as those
of Plummer and Clayton and of Salway and Wakefield) is on a single
exposure variable, not on control of confounding. But a key advantage
of the hierarchical design is its ability to provide information on the joint
distribution of exposure and confounders that is lacking in a standard
ecological correlation study. If subsamples are not available at all, Lasserre
et al. (2000) showed by simulation that standard ecologic regressions can
be improved by including products of the marginal means for exposure
and confounders in addition to their main effects, at least for binary risk
factors.

Jackson et al. (2006; 2008) consider a different form a joint individual
and aggregate data where information on outcomes as well as predic-
tors are available from the subsamples (e.g., from a multicenter cohort
or case-control study). Their hybrid analysis combines a logistic model
for the individual data with a binomial model for aggregate data using
the outcome probabilities induced by the individual model. They pro-
vide expressions for these probabilities in relation to the proportions of
a binary covariate or the means of a continuous covariate, also incorpo-
rating information on their variances and correlation between covariates
if either are available. In an application to the data on birth weight and
water chlorination by-products described in the previous chapter, Molitor
et al. (2008) used the aggregate data to control the potential confounding
by maternal smoking and ethnicity—variables that were not available on
the individual-level dataset.
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Although the focus of most of the literature on ecologic inference
has been on geographic comparisons, the groups can be formed on any
basis, including temporal dimensions or combinations of dimensions. See
(Sheppard 2005; Stram 2005) for a discussion of the relevance of these
hybrid individual/aggregate designs to time-series studies of air pollution
and the influence of exposure measurement error, for example.



11
Measurement error and
exposure models

Exposure assessment is often one of the biggest challenges in environmen-
tal epidemiology. The topic is complex and very specific to the particular
factors under study; entire books have been written on the general princi-
ples (Checkoway et al. 1989; Armstrong et al. 1992; Steenland and Savitz
1997; Nieuwenhuijsen 2003) as well as specialized texts in specific fields
(e.g., Till and Meyer 1983 for exposures to radiation). Rather than dis-
cuss exposure assessment methodology in detail here, we briefly review the
various general types of methods that are used, so as to motivate a treat-
ment of the problem from a statistical point of view. Thus, this chapter
will discuss approaches to exposure modeling, the influence of uncertain-
ties in exposure estimates on exposure–response relations, and methods
of correction for them.

The terms “measurement error” and “misclassification” are often used
interchangeably, although generally we favor the former when considering
continuous variables and the latter for categorical variables. Despite this
similarity in concepts, however, the implications of errors and the available
methods of correction are quite different, so subsequent sections of this
chapter will treat the two situations separately.

Broadly speaking, exposure assessment methodologies fall into two
classes: direct measurement; or prediction models. Examples of direct
measurement are personal radiation dosimeters and questionnaires. Dose
reconstruction systems, based on records of environmental releases and
models for their dispersion, deposition, and uptake by humans, would
be examples of prediction models. Often, an exposure assessment proto-
col may entail elements of both types. For example, one might need to
combine area measurements of exposure concentrations in various places
where people could have been exposed with questionnaire information
about time-activity patterns to build a model for personal exposures. Mea-
surements may be spatially and temporally distributed, but so sparse in
either dimension that assignment of exposures to individuals at times
and places not directly measured may require spatial/temporal inter-
polation models, using techniques like those discussed in Chapter 9.
Determinants of exposures, such as traffic counts (for air pollutants),
power line configurations (for electromagnetic fields), or local geology
and housing characteristics (for domestic radon) may be used to build
exposure prediction models, calibrated against actual measurements.
Measurements of excretedmetabolitesmay require extensive physiological
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modeling to translate them to estimates of intake or body burdens (see
Chapter 13).

In addition to the distinction betweenmeasurement and predictionmod-
els, three other characteristics need to be borne in mind when evaluating
the implications of measurement error: whether the errors are systematic
or random; whether differential or not; and whether shared or not.

Systematic errors are those where all subjects’ exposures are biased by
a similar amount. If the nature of such errors is known, they are of less
concern because they can be corrected for systematically and may have
no influence on the association with disease anyway. For example, if it
amounts to a consistent shift in the exposure distribution by a constant
additive amount, then the slope of a exposure–response relationship will
be unchanged. (Of course, a systematic doubling of all exposures would
yield a halving of the corresponding slope coefficient.) In this chapter, we
are thus more concerned with random errors.

Loosely speaking, we say errors in exposure are differential if they
depend upon the outcome under study (a more formal definition is pro-
vided below). For example, recall bias in a case-control study arises when
cases and controls tend to recall their past exposures differently. Tech-
niques like blinding the interviewer to whether the subject is a case or
a control can help minimize this form of differential measurement error.
Of course, disease outcomes are also subject to error; likewise, we would
call disease errors differential if they were related to exposure (or other
covariates).

In settings where measurements relate to individuals, it may be rea-
sonable to assume that the errors are independent across subjects—one
person’s dosimeter is not influenced by errors in another’s. In many cir-
cumstances, however, such as when area measurements are applied to all
the people who are exposed to that area (as in a job–exposure matrix)
or when prediction models are used that have elements in common across
individuals (as in the magnitudes of releases from point sources in a disper-
sion model), measurement errors can be correlated between individuals.
In addition to the bias in effect estimates that can result from measure-
ment error, these correlations can lead to underestimation of standard
errors and exaggerated significance tests, unless properly allowed for in
the analysis.

These various exposure scenarios can have very different statistical
properties and require different approaches for allowing for uncertainties
in their exposure assignments, as discussed in the next section. Having
established this general statistical framework, we will then revisit the var-
ious dosimetry systems and describe some of them in greater detail. For a
more thorough treatment of methods of correction, see such textbooks as
(Fuller 1987; Carroll et al. 1995) and review articles (Thomas et al. 1993;
Thompson and Carter 2007).
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A general framework for exposure measurement error

No system of exposure assessment is ever perfect, so it is useful to dis-
tinguish between the “true” exposure X and the estimated exposure Z

assigned by the dosimetry system, whether based on direct measurements,
modeling, or some combination of the two. For the present purposes,
let us ignore the temporal element and assume that Xi and Zi are single
quantities for each individual i. In addition, let us assume we have some
outcome variable Yi and, in some contexts, a vector of determinants Wi

for each person’s true exposure. Finally, since in many contexts, exposure
may be assigned not to individuals but to groups, let us follow the notation
of the previous chapter and denote such clusters by the subscript c.

A very general framework for thinking about exposure measurement
issues (Clayton 1991) is displayed in Figure 11.1. In this graphical frame-
work, measured quantities are represented by boxes and unobserved
random variables and model parameters by circles. The full model is thus
composed of three submodels:

Exposure model: Pr(X|W;α, τ2)

Measurement model: Pr(Z|X; σ 2)

Disease model: Pr(Y |X;β)

(11.1)

W

Exposure
determinants

X

“True”
exposure

Z

Measured
exposure

Y

Health 
endpoint
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t2
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Disease model

Measurement model

Exposure model

Figure 11.1. Framework for exposure measurement error in the form of a Directed Acyclic
Graph.
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The specifics of each submodel will depend on the context. Analogous
to the distinction between exposure assessments based on measurements
or predictions, statisticians distinguish between two specific models for
measurement error:

• The classical error model does not involve any exposure predictors W
and in particular assumes that E(Z|X)=X, in other words, the mea-
surement instrument is calibrated in an unbiased fashion so that the
measured values are distributed around the true exposure with expecta-
tion equal to the true exposure and errors e=Z−X that are independent
of X. An example would be Z∼N(X, σ 2), but normality is not the cen-
tral feature of this model; the true doses and measurements could be
lognormally distributed, for example.

• The Berkson error model is based instead on an “instrumental vari-
able”W which influences an individual’s exposure, although individuals
with the same W could differ in their true exposures due to unmea-
sured personal characteristics. In particular, the Berksonmodel assumes
E(X|W)=W , now with errors that are independent of W . Here, W

might represent the average exposure of a group with similar char-
acteristics; for example, taking place of residence c as a grouping
characteristic, one might use the measured air pollution level Zc at a
central site or the average Xc of a sample of personal measurements in
that community. More generally, we will view the result of a model that
gives a prediction X̂(W) ≡ E(X|W;α) as a form of Berkson error model,
where W could include several variables describing sources (e.g., traffic
density), and personal modifiers (distance, household ventilation, activ-
ities, etc.). For example, X̂(W) could be the result of a linear regression
of a set of measurements Zj on a sample of individuals or locations j

of the form Zj =W′
j α̂ + ej .

Just as the exposure assessment protocol can involve a combination of
measurements and predictions, so the statistical measurement error model
can involve a combination of classical and Berkson error components. In
general, wewill call a “complex dosimetry system” unbiased if E(Z|X)=X

and E(X|W)= X̂(W).
Classical and Berksonmodels have different implications for the estima-

tion and testing of the parameters β of the exposure–response relationship
Pr(Y |X; β) that is of primary interest. The simplest case is when all the
relationships are linear and all the variables are normally distributed,
that is,

Y ∼ N(β0 + β1X,ω2)

Z ∼ N(X, σ 2)

X ∼ N(W′α, τ2)
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Of course, both the distribution of Y |X and of Z|X could depend upon
additional covariates; for example, the mean or variance of Z|X could
depend upon personal characteristics like age or measurement character-
istics like the time of day the measurement is performed. For simplicity,
we ignore such dependencies in the notation that follows.

An important distinction is between the so-called “structural” and
“functional” approaches to the problem (Pierce et al. 1992; Schafer
2001). ln Figure 11.1 and Eq. (11.1), we have described a structural
model, in which X is viewed as a random variable having some distri-
bution (possibly depending upon covariates W). In functional models, on
the other hand, X is treated as a nuisance parameter—a fixed quantity—
for each subject. A difficulty with the functional approach is the large
number of parameters, leading to a failure of asymptotic consistency
of the estimator of the exposure–response parameters, as first noted by
Neyman and Scott (1948). This problem can be overcome by treat-
ing the Xs as random variables with a distribution that depends upon
only a small number of parameters. As we shall see below, however,
progress has been made using “semiparametric” methods that treat the
distribution of X as completely unknown, to be estimated along with
the other parameters. This idea dates back to a theoretical proof of
asymptotic consistency provided by Kiefer and Wolfowitz (1956), but
no practical implementation was available until decades later. Key to the
success of these approaches is that X is still treated as a random vari-
able rather than a parameter. Whether X is treated as a parameter or
a random variable is a separate issue from whether the model is speci-
fied in terms of Pr(X|Z) directly or its separate components Pr(Z|X) and
Pr(X). Different methods discussed below use one or the other of these two
approaches.

Consider first the classical error model, with W′α ≡ μ for all subjects.
This would be appropriate for a pure measurement system, such as one
where each individual’s exposure assignment is based on some kind of a
personal dosimeter. Now, of course, we do not observe X, only Z, so we
consider the “induced” relationship between the observable variables Y

and Z:

Pr(Y |Z) =
∫

Pr(Y |X = x) Pr(X = x|Z) dx

=
∫

Pr(Y |X = x)
Pr(Z|X = x) Pr(X = x)

Pr(Z)
dx

= 1

ϕ
(

Z−μ

σ2+τ2

) ∫ ϕ

(
Y − β0 − β1x

ω2

)
ϕ

(
Z − x

σ 2

)
ϕ

(
x − μ

τ2

)
dx
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Straight-forward calculus shows that this integral is simply another normal
density with mean and variance given by:

E(Y |Z)=β0 +β1E(X|Z)=β0 +β1[μ+C(Z−μ)]= b0 + b1Z (11.2)

where

b0 = Cβ0 + (1− C)β1μ

b1 = Cβ1

with C= τ2/(σ 2 + τ2), and

var(Y |Z) = σ 2 + β2
1var(X|Z) = σ 2 + β2

1 (1− C)τ2

Thus, the regression coefficient of interest β1 is attenuated by the multi-
plicative factorC, which depends upon the ratio of the variance ofX to the
variance ofZ. The intuition behind this result is that the measurements are
“overdispersed”, with randommeasurement error superimposed on top of
the variability in the true exposures: var(Z)= var(X)+var(Z|X)= σ 2+τ2.
Thus, one can think of the X-axis as being “stretched” by the factor
1/C, while the Y -axis is left intact, leading to a flattening of the slope
of the exposure–response relationship (Figure 11.2, left). Note also that
the variance of Y |Z is also inflated by an amount that depends upon β1.

Now consider the Berkson error model (Figure 11.2, right). The deriva-
tion is similar to that given above, except that there is now no need to
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Figure 11.2. Simulated examples of classical and Berkson error. Left: classical error with
X∼N(4, 2), Z∼N(X, 2), Y∼N(X, 1), so the population regression (dotted line) has slope
β = 1; solid circles and solid line are the regression of Y on X with expected slope equal to
the population slope, β = 1; open circles and dashed line are the regression of Y on Z with
expected slope =β × 2/(2+ 2)= 0.5; this results from the overdispersion of the predictor
(arrows connecting selected X values to corresponding Z values). Right: Berkson error
with a categorical instrumental variableW taking values 3, 4, 5, 6,X∼N(W , 1),Z=E(Xw),
Y∼N(X, 1); solid markers areX, the shapes distinguishing the categories of W ; open circles
are the corresponding values of Zw; solid line is the regression of Y on X, dashed line is the
regression of Y on Zw.
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apply Bayes theorem to express Pr(X|Z) in terms of Pr(Z|X), since we
have a model for X directly, namely Pr(X|W ). As a result, it is easy to
show that

E(Y |W) = β0 + β1E(X|W) = β0 + β1X̂(W)

and

var(Y |W) = σ 2 + β2
1var(X|W) = σ 2 + β2

1τ
2

Thus, the regression coefficient of interest β1 is not attenuated at all,
although the residual variance of Y |W is inflated, as in the classical error
case, and again depends upon β.

Similar results can be derived for many other models that are widely
used in epidemiology, such as the logistic, Poisson, and Cox regression
models (Carroll et al. 2006). However, it must be appreciated that the
widely quoted result that, in classical error models, regression coefficients
are biased toward the null, whereas under Berkson error they are unbiased,
depends upon a number of assumptions including normality and linear-
ity. In addition, an implicit assumption in the whole framework is that
errors are “nondifferential.” In the epidemiological literature, this assump-
tion is often expressed as “the measurement error distribution does not
depend upon the outcome variable.” For example, in a case-control study,
recall bias—where the reported exposures would have a different relation-
ship to the truth in cases and in controls—would violate this assumption.
What this expression fails to adequately capture is that the “measurement
error distribution” Pr(X − Z) is not the same thing as the conditional
distributions of X|Z or Z|X on which the framework is based. A more
precise way of expressing the concept of nondifferential measurement
error is that “the outcome is conditionally independent of the measure-
ments given the true exposures” or equivalently Pr(Y |X, Z)= Pr(Y |X) (in
mathematical shorthand: Y⊥Z|X). In other words, if we knew the true
exposures, the measurements themselves would not provide any addi-
tional information about the outcomes. A corollary of this definition is
that Pr(Z|X,Y )= Pr(Z|X), which is the real meaning of the statement
that “measurement errors do not depend on the outcome.” However, the
converse, Pr(X|Y ,Z)= Pr(X|Z), is not true, since Y really is related to X,
not Z.

Another important special case is when all variables are binary. In the
epidemiological literature, this is generally called the problem of expo-
sure misclassification rather than exposure measurement error. For binary
variables, neither the classical nor the Berkson error models can apply,
since E(X|Z)= Pr(X= 1|Z) which cannot equal Z except in the complete
absence of error (and similarly for E(Z|X)). Nevertheless, some prop-
erties analogous to those discussed earlier are possible. Here it is more
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Table 11.1. Expected 2×2×2 table under exposure misclassification, where
S= 1+ p(ψ − 1) and p= Pr(X= 1|Y = 0)

X Z Y = 0 Y = 1

0 0 (1− p)α0 (1− p)α0/S
1 (1− α0)(1− p) (1− p)(1− α0)/S
Total 1− p (1− p)/S

1 0 p(1− α1) p(1− α1)ψ /S
1 pα1 pα1ψ /S
Total p pψ /S

Total 0 (1− p)α0 + p(1− α1) [(1− p)α0 + p(1− α1)ψ]/S
1 (1− p)(1− α0)+ pα1 [(1− p)(1− α0)+ pα1ψ]/S

convenient to specify the relationship between X and Z in terms of sen-
sitivity σ1 = Pr(Z= 1|X= 1) and specificity σ0 = Pr(Z= 0|X= 0). Thus,
we would call the misclassification nondifferential if σ1 and σ0 do not
depend on Y . Then, we express the relationship between X and Y in terms
of the true odds ratio (OR)

ψ = Pr(Y = 1|X = 1)/ Pr(Y = 0|X = 1)
Pr(Y = 1|X = 0)/ Pr(Y = 0|X = 0)

and the induced (or misclassified) OR ψ* for the relationship between
Y and Z. Table 11.1 illustrates the relationships amongst the three vari-
ables. From the bottom two rows of the table, one can easily compute the
misclassified OR as

ψ∗ = [(1− p)(1− σ0)+ pσ1ψ)][(1− p)σ0 + p(1− σ1))]
[(1− p)σ0 + p(1− σ1)ψ)][(1− p)(1− σ0)+ pσ1]

which does not have any simple expression in terms of ψ like the one
for continuous variables given earlier. Nevertheless, ψ* is always biased
toward the null, that is, ψ >ψ∗ > 1 if ψ >1 or conversely (Figure 11.3).

Some other effects of measurement error

So far, we have focused mainly on the effects of nondifferential measure-
ment error on slopes of exposure–response relationships (or relative risks
for a binary exposure variable). To recap:

• Classical error for a continuous variable generally induces a bias toward
the null in a exposure–response relationship because var(X)< var(Z).
Confidence limits will tend to shrink roughly in proportion to the esti-
mate, so that the significance test will not generally be invalidated,
although may lose power.
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Figure 11.3. Induced ORs for Y|Z as a function of the true OR for Y|X for various levels
of sensitivity and specificity, Pr(X|Z).

• Berkson error for a continuous variable may not bias the slope of
a exposure–response relationship, but only under certain restrictive
conditions (additive errors with constant variance, a linear exposure–
response, etc.). However, because var(Z)< var(X) in this model, power
will be reduced and confidence intervalswidened, relative towhatwould
have been found in the absence of error.

• Nondifferential misclassification of a binary exposure variable will
always produce a bias in the relative risk toward the null and reduce the
power of the test.

In addition, however, there can be a number of other effects, some less
obvious:

• The shape of a exposure–response relationship can be affected: for
example, multiplicative errors will tend to reduce the magnitude of
a quadratic component of a linear–quadratic dose–response curve
(Schafer and Gilbert 2006).

• Measurement errors in extended exposure histories can also distort the
influence of temporal factors like latency (Thomas 1987) and dose–rate
effects (Stram et al. 1999; Stram et al. 2000), particularly when the
magnitude of the errors varies over time.

• Nondifferential misclassification of a categorical covariate can produce
a bias away from the null for comparisons between particular pairs of
categories, and can also bias an estimate of trend away from the null
(Dosemeci et al. 1990; Flegal et al. 1991).
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• In multivariate models, nondifferential error can cause some loss of
control of confounding or distort a measure of interaction (Greenland
1980; Fung and Howe 1984; Armstrong 1998); for example, error in
one covariate can lead to transfer of some or all of a causal effect of
that variable to another better-measured one with which it is correlated
(Zeger et al. 2000).

• In ecological correlation studies, exposure associations will not neces-
sarily be biased by nondifferential misclassification of a confounder in
the way they are in individual studies (Brenner et al. 1992a; Carroll
1997), but they can be severely biased away from the null when the
exposure variable itself is misclassified (Brenner et al. 1992b).

• Errors that are correlated between individuals, such as those in a expo-
sure prediction model (e.g., a job–exposure matrix) that are shared by
some individuals, will tend to produce confidence limits that are too
narrow (Stram and Kopecky 2003).

• Blind assignment of exposure may not prevent differential misclassifi-
cation when categories with different effects are combined (Wacholder
et al. 1991).

• Relative risks (Brenner et al. 1993) and attributable risks (Vogel et al.
2005) can be overestimated by correlated misclassification of exposure
and disease, even if both errors are nondifferential.

• Methods of correction can lead to bias in the opposite direction from
the uncorrected estimate (i.e., over-correction) when the validation data
used for this purpose is itself less than perfectly measured (Flegal et al.
1991; Wacholder et al. 1993).

• Likewise, a correction for nondifferential error that assumes the errors
are uncorrelated with the true value can produce unpredictable results
when this assumption is violated, such as measures based on self-report;
in some instances, this can lead to a positive association when there
is no association with true exposure (Wacholder 1995; Armstrong
1998).

Epidemiologists have sometimes argued that if they have observed an
association between an outcome and some measured exposure that may
be subject to error or misclassification, then the true exposure–response
relationship must be even stronger than that observed. Such a claim
is not warranted by the theoretical developments described above. The
theory describes the expectation of various random variables, including
the estimates of the induced parameters b or ψ* in relation to the true
parameters β and ψ , over hypothetical replications of the study. In any
single finite dataset, the observed values of these estimates could differ
upwards or downwards, so that it is possible that the estimates of the
induced parameters could bemore extreme than for the population param-
eters for the true exposures. For example, simulation studies (Thomas
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1995) have shown that this could happen in a substantial proportion of
replicate datasets, depending upon their sample size and other factors.

Methods of correction for measurement error

Continuous exposure variables

There is a large literature onmethods of correction for measurement error,
which can be reviewed only briefly here. The appropriate method will
depend in part on the type of information available about the distribution
of measurement errors and the form of the assumed model. In general,
however, most such methods entail some form of replacement of the avail-
able data on W and/or Z by an estimate of the corresponding X and using
that estimate as if it were the truth in an analysis of its relationship to Y ,
or integration over the distribution of X given W and Z.

Parametric regression calibration

To illustrate this idea, we begin with one of the simplest approaches,
known as the “regression calibration” method (Rosner et al. 1989; 1990;
1992). This approach is appropriate for the classical error model where
information on the error distribution comes from a separate “validation”
study. Given observations of (X,Z) and (Y , Z) from separate datasets, one
first performs two regressions, E(X|Z)=α0+α1Z and E(Y|Z)= γ0+γ1Z,
and then, based on Eq. (11.2), estimates the corrected coefficient of the
regression of Y on X as β̂1 = γ̂1/α̂1, with variance

var
(
β̂1

)
= 1

α̂2
1

var
(
γ̂1
)+ γ̂ 2

1

α̂4
1

var
(
α̂1
)

When the validation data is a subset of the main study, then the covariance
between γ̂1 and α̂1 must be taken into account (Spiegelman et al. 2001).
Similar approaches can be applied in logistic or other kinds of exposure–
response models; indeed, the original regression calibration method was
introduced in the context of logistic regression for unmatched studies, but
in this case requires an assumption that the measurement error variance σ 2

is small compared with the variance of true exposures τ2. This two-stage
approach has the appeal of being relatively simple and does not require
data on all three variables for everybody (if it were, there’d be no need
for the Z data anyway, as one could simply model the Y |X relationship
directly!). The first step can also be readily extended to incorporate other
variables, nonlinearities, transformations to normality and additivity,
and so on.
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Regression substitution

A variant of this idea uses a single imputation approach, similar to that
described in Chapters 4 and 7 for dealing with missing data, but using the
estimated α coefficients to compute X̂i =E(X|Zi ; α̂) for each main study
subject and then regress the Yi on these X̂i estimates rather than on their
Zi . Honest variance estimation requires that the uncertainties in the X̂is
be taken into account, however, and in nonlinear models, this approach
cannotbecountedupontocompletelyeliminatethebiasduetomeasurement
error unless the error variance is relatively small. In general, what is needed
is EX|Z(Y |X). For example, suppose one wanted to fit a linear–quadratic
model E(Y |X)=β0 + β1X + β2X

2; then one would require both E(X|Z)

and E(X2|Z), which could be estimated by two separate regressions of the
substudy data or by computation ofE(X2|Z)=E2(X|Z)+ var(X|Z) from
a fitted model for Pr(X|Z). These problems can be avoided using multiple
imputation,generatingseveraldatasetswithXidatarandomlysampledfrom
thepredicteddistributionusingtheestimatedvar(X|Z), andthencombining
the estimates of β̂ and var(β̂) from each dataset, as described in Chapter 4
for the multiple imputation method of dealing with missing data.

SIMEX method

A remarkably simple method introduced by Cook and Stefanski (1994)
and described in the textbook by Carroll et al. (2006) is based on the ten-
dency for nondifferential classical error to attenuate a exposure–response
relationship. Essentially, one takes the observed data on (Y , Z) and adds
additional random errors to produce Z∗ =Z + e with var(e)= σ 2 − σ 2

0
(where σ 2

0 is the actual measurement error variance) across a range of val-
ues of σ 2. For each choice of σ 2, one performs the naïve regression of Y on
Z∗ to estimate βσ and then plots βσ against σ . Extrapolating the resulting
curve βσ = β̂0σ

2/(σ 2 + τ̂2) back to σ = 0 (Figure 11.4) yields an estimate
of the measurement-error corrected slope!

Parametric likelihood and quasi-likelihood methods

Now suppose one does not have individual data on (Z,X), only literature-
based estimates of σ 2 = var(X) and τ2 = var(Z|X). The obvious estimator
of the corrected slope coefficient for a linear relationship, based on
Eq. (11.2), would then be simply

β̂ = b̂Y |Z/Ĉ = b̂Y |Z

(
1+ τ̂2

σ̂ 2

)

In both this approach and the regression calibration/substitution ones, esti-
mation of the measurement error parameters is separate from estimation
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Figure 11.4. Simulated example of the use of the SIMEX method. Solid circle represents
the fitted slope coefficient β at the known measurement error standard deviation σ ; open
circles represent the fitted slopes after addition of further measurement error; the dashed
line gives the extrapolation back to no measurement error.

of the exposure–response parameters. One would expect that joint esti-
mation in a single stage would yield more efficient estimates and variance
estimates for β that properly accounted for the uncertainties in α. Suppose
one has measurements of (X, Z) on a subset of subjects S, and only (Y , Z)

on the remainder N\S. The full likelihood of the combined data is then

L(α,β, σ) =
∏
i∈S

pα,σ (Xi |Zi ,Wi)×
∏

j∈N\S

∫
pβ

(
Yj |x

)
pα,σ

(
x|Zj ,Wj

)
dx

(11.3)

where

pα,σ (X|Z,W) = pα(X|W)pσ (Z|X)∫
pα(x|W)pσ (Z|x) dx

If all these component probabilities are normal distributions, it is rela-
tively straightforward to express this likelihood in closed form, and this
turns out to be equivalent to either the regression calibration or regres-
sions substitution methods described above. See Fearn et al. (2008) for an
application to domestic radon and lung cancer, showing that the regres-
sion calibration approach provides a very good approximation to this full
likelihood.

One other special case is also worth mentioning: if Y is binary, then
there is no closed form solution if Pr(Y|X) is assumed to be logistic, but a
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closed form solution can be derived if a probit model is used instead. The
probit model can be thought of as involving a latent variable Y ∗ which is
normally distributed with mean β0 +β1X and unit variance, with Y = 1 if
Y ∗ > 0, zero otherwise. Thus, Pr(Y = 1|X)= Pr(Y ∗ > 0|X)=�(β0+β1X)

where �(·) is the standard cumulative normal distribution function. This
model is very similar in shape to the logistic function (Figure 4.1), and
with a rescaling of the coefficient β1 = 0.607α1 nearly identical to a logis-
tic with slope coefficient α1. The appeal of the probit model is that it
extends naturally to the situation where X is also a latent variable, since if
X∼N(W′α, σ 2), then Y ∗|W∼N(β0 + β1W′α, σ 2 + 1) and

Pr(Y = 1|W) = �

(
β0 + β1W′α√

σ 2 + 1

)

and analytic expressions for the joint distribution of (Y ,Z|W) are also
relatively straight-forward to derive. With this, maximum likelihood esti-
mation of β jointly with the measurement error parameters (α, σ 2, τ2) is
straight-forward.

A relatively simple approach to combined Berkson and classical error
was provided by Reeves et al. (1998). Their approach is parametric,
assuming both X and Z|X are normally distributed (on a natural or log
scale), allowing exact expressions for a normally distributed outcome or
a good approximation using the probit model for a binary outcome. In an
application to a case-control study of lung cancer in relation to domestic
radon, exposure was defined as the average concentration over a 30-
year period, during which subjects may have lived in several homes, not
all of which could be measured directly. This requires forming a time-
weighted average of E(X|Z) for directly measured homes or of Avg(X|P )
over homes in the neighborhood at location P for those homes where
direct measurements were not available. The former has a classical error
structure, the latter a Berkson error structure. Estimates of the measure-
ment error variance needed for these calculations derived from a subset
of homes with replicate measurements separated by up to 10 years. They
found thatmeasurement error correction increased the slope estimate from
0.09± 0.16 to 0.15± 0.25 per 100 Bq/m3.

Approximate solutions can be used when the measurement error vari-
ance is sufficiently small (Whittemore and Keller 1988; Carroll and
Stefanski 1990). These generally entail a first-order Taylor series expres-
sion for the score equation as a function of EX(Y |Z) and varX(Y |Z) and
solving this expected estimating equation using GEE or quasi-likelihood
methods. In fact, the regression calibration methods discussed earlier can
be seen as a special case of such approximations to the full likelihood,
replacing the nuisance parameters by estimates obtained from the valida-
tion subsample. A “pseudolikelihood” (Carroll et al. 1984; Schafer 1987)
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results from estimating the nuisance parameters (α, σ ) in the full likeli-
hood [Eq.(11.3)] using only the validation data and substituting them in
the part of the likelihood for the main study data, treating these nuisance
parameters as if they were the true values.

Semiparametric efficient estimator method

The regression calibration and likelihood-based methods all involve para-
metric assumptions about the distributions of Z|X andX (or equivalently,
about X|Z), such as normality and linearity of the relationship between
the two variables. In addition, the regression calibration method is
only approximate, requiring the additional assumption that the mea-
surement error variance is relatively small. In an effort to weaken these
requirements, there has been great interest in developing various methods
generally known as “semiparametric.” These methods take a nonparamet-
ric approach to modeling the joint distribution of (X,Z), while continuing
treat the (Y |X) relationship parametrically.

Pepe and Flemming (1991) introduced the simplest of these approaches
for the case where Z is discrete. In this case, one can write the likelihood
contribution for an individual j in the main study with unobserved X as

Pr(Yj |Zj) = E[Pr(Yj |X)|Zj ] =
∑
i∈S

I (Zj = Zi)

nS(Zj )
Pr(Yj |Xi)

where nS(Zj ) is the number of substudy subjects with Z=Zj . The overall
likelihood is thus formed as a sum of main and substudy contributions

L(β) =
∏
i∈S

Pr(Yi |Xi)×
∏

j∈N\S
Pr(Yj |Zj)

and they provide a robust sandwich estimator to allow for the additional
variability due to the estimation of Pr(X|Z) from a finite subsample for
use in Pr(Y |Z).

Carroll and Wand (1991) extended this approach to continuous Z vari-
ables approach using a kernel density estimator for the distribution of
[X|Z]. The model can be described as

Pr(Y |Z) = E[Pr(Y |X)|Z] = 1
nν

∑
i∈S

K

(
Z − Zi

σ

)
Pr(Y |Xi)

where K(·) denotes any symmetric density function like the normal with
standard deviation σ . The only nuisance parameter here is σ in the smooth-
ing kernel, for which they describe an optimal estimator under suitable
parametric assumptions. The model can be extended to include covari-
ates W in a model for Pr(X|W ). See also Roeder et al. (1996) for a
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similar approach and extensions to case-control studies with additional
covariates.

Both these methods entail additional assumptions, such as that member-
ship in the substudy is at random and unrelated to Y , that X is Missing at
Random, and that the dimensionality of W is small so that nonparametric
estimation of Pr(X|W ) is feasible. This basic approach was generalized by
Robins et al. (1995a, b) to a “semiparametric efficient estimator,” which
includes the Pepe–Flemming and Carroll–Wand ones as special cases but
relaxes these assumptions and yields the most efficient estimator in the
class of all possible semiparametric estimators. The basic idea entails using
an estimating equation combining contributions from main and substudy
contributions of the form

U(β) =
∑

i∈S uβ(Yi |Xi ,Wi)+
∑

j∈N\S ũβ(Yj |Xj ,Wj)

−
∑

i∈S
1− π(Yi ,Zi ,Wi)

π(Yi ,Zi ,Wi)
Ey|Xi

[
ũβ(y|Zi ,Wi)

]
where uβ(Y |X,W) are score contributions derived from the true
Pr(Y |X,W ) for the validation study subjects, for whom X is observed,
ũβ(Y |Z,W) is any convenient nonparametric estimator of u(Y |Z,W), and
π(Y ,Z,W) is the probability of selection into the subsample. Subtraction
of the last term ensures that the resulting estimating equation will yield
a consistent estimator of β for any choice of ũβ(Y |Z,W). The closer the
latter is to the true model, the more efficient it will be. Robins et al. also
provide an estimator that is locally fully efficient, provided the dimension-
ality of W is not too large. See Spiegelman and Casella (1997); Chatterjee
and Wacholder (2002); Sturmer et al. (2002) for simpler descriptions of
the method and comparisons of the performance of this and alternative
approaches.

Mallick et al. (2002) discuss a quite different kind of semiparametric
model in the context of a mixture of Berkson and classical errors. Like the
parametric approach of Reeves et al. discussed above, they introduce a
latent variable L such that Pr(X|L), Pr(Z|L), and Pr(L) are all parametric
lognormal distributions (at least conditional on additional predictors W ),
but treat Pr(Y |X,W ) nonparametrically as a monotonic spline function.
They also consider nonparametric Bayesian estimation of Pr(L). Appli-
cations of this approach to thyroid tumors in residents downwind of the
Nevada Test Site are described below.

Schafer (2001) and Pierce and Kellerer (2004) take yet another
approach, based on the factorization Pr(X,Z)= Pr(Z|X) Pr(X) and esti-
mating the second factor nonparametrically, assuming a parametric form
for the first. Their approaches are applicable in settings where there
is no external validation study giving direct measurements of the joint
distribution of (X, Z), but only the marginal density Pr(Z) is observed
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and the measurement error distribution Pr(Z|X) can be treated as known.
The problem then reduces to deconvoluting the integral

Pr(Z) =
∫

Pr(Z|X) Pr(X) dX

to estimate Pr(X). Schafer used maximum likelihood with nonparamet-
ric density estimation for Pr(X), an approach first suggested by Laird
(1978) and generally implemented with the E–M algorithm or variant
thereof, computationally a rather intensive process. Pierce and Kellerer
instead take a more general regression substitution approach using the
first few momemts E(Xk|Z) to substitute into a better approximation
to E[Pr(Y |X)|Z], assuming only that the distribution of X is “smooth.”
Their solution to the computational problem is somewhat complex, but
basically entails the use of Laplace approximations for log Pr(X) and
its relationship with log Pr(Z). In their application to the atomic bomb
survivor study, they assume Z|X is lognormally distributed and per-
form a sensitivity analysis with different assumptions about var(Z|X).
The results of their analysis are discussed in the applications section
below.

Bayesian methods

The Bayesian analysis of the classical measurement error model was intro-
duced by Clayton (1988) and has been greatly facilitated by the advent
of Markov chain Monte Carlo (MCMC) methods for fitting models with
many latent variables or nuisance parameters. The basic form of the model
is the same as described earlier in Figure 11.1 and Eqs. (11.1), but is sup-
plemented with prior distributions on the parameters θ = (α, β, τ2, σ 2).
Inference on the slope parameter of interest β is obtained by integrat-
ing not just over the conditional distribution of the unobserved Xs (as
in likelihood-based methods), but also over the other parameters. This
is readily accomplished by the following two-step iterative procedure: at
iteration r,

• For each subject, sample a random value of Xi from its full conditional
distribution

Pr(X(r)
i |Wi , Zi , Yi , θ(r)) ∝ Pr(Yi |Xi ; β(r))

× Pr(Xi |Wi , α(r), σ (r)) Pr(Zi |Xi ; τ (r))

• Randomly sample the model parameters from their respective full con-
ditional distributions, treating the current assignments of true exposures
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X(r) as if they were real data:

Pr(β(r+1)|Y,X(r)) ∝
{∏

i

Pr(Yi |X(r)
i ; β)

}
Pr(β)

Pr(α(r+1), σ (r+1)|X(r), W) ∝
{∏

i

Pr(X(r)
i |Wi ; α, σ)

}
Pr(α, σ)

Pr(τ (r+1)|X(r), Z) ∝
{∏

i

Pr(Zi |X(r)
i ; τ)

}
Pr(τ )

The algorithm continues for many iterations, and one tabulates the dis-
tributions of the quantities of interest (e.g., the parameters θ), following
a suitable “burn-in” period to allow for convergence in probability. If
the various component distributions are conjugate, then these conditional
distributions may be easy to sample from, but methods such as adaptive
rejection sampling (Gilks and Wilde 1992) or the Metropolis–Hastings
algorithm (Chib and Greenberg 1995) may be used to sample from arbi-
trary combinations of distributions (see Chapter 4). It is thus a very flexible
approach to fitting models of great complexity for which exact solutions
may not exist and the numerical integrations that would otherwise be
needed for maximum likelihood methods. For a full discussion of MCMC
methods, see the book (Gilks et al. 1996).

Richardson and Gilks (1993a,b) describe applications to complex mea-
surement error settings involving job–exposure matrix approaches to
occupational exposure assessment. Their scenario entails exposure assess-
ment for job titles based on area measurements that have a classical error
structure, followed by assignment of exposures to individuals given their
job titles with a Berkson error structure.

An even more complex application is provided by an analysis of the
atomic bomb survivor data taking account of the grouped nature of the
available data (Deltour et al. 1999; Little et al. 2000; Bennett et al. 2004).
Here, for each group c, defined by a range of values of estimated dose Zi ∈
[ζc, ζc+1) and strata s of other factors (age, gender, city, latency, etc.), the
challenge is to sample possible values of Xcs =Ei∈(c,s)(Xi |Zc,s), where
Zc,s is the weighted average dose provided in the dataset for that stratum.
Bennett et al.’s analysis includes such additional complexities as a flexi-
ble dose–response relationship combining linear splines at low doses with
a linear–quadratic–exponential relationship at high doses (Figure 11.5),
combined with a lognormal measurement error model and a Weibull dis-
tribution of true doses, a combination for which no closed-form solution
would be feasible.

See Muller and Roeder (1997) and Schmid and Rosner (1993) for
other examples of Bayesian measurement error approaches; the former
is notable for adopting a semiparametric approach using mixture models
to specify the distribution of true doses.
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Figure 11.5. Posterior estimates of the dose–response for leukemia (left) and solid cancer
(right) mortality among the atomic bomb survivors; insets expand the low-dose region
modeled by linear splines. (Reproduced with permission from Bennett et al. 2004.)

MCMC methods can also be applied in a non-Bayesian manner as
simply a way to approximate the likelihood. For example, one could
generate a random sample of {Xjs}s= 1,...,s values for each subject j given
Zj and then approximate the integral in the likelihood by Pr(Yj |Zj)=∑

s pβ(Y |Zjs)/S as a function of β, and then maximize this likelihood
using standard methods. An example of an application of this approach
to a complex mixture of classical and Berkson errors in the Hanford study
is described below.

Differential measurement error

Up till now, we have restricted attention to the case of nondifferen-
tial measurement error, that is, Pr(Z|Y , X)= Pr(Z|X) or equivalently
Pr(Y |X, Z)= Pr(Y |X). Now suppose this assumption does not hold, as
might easily occur, say, in a case-control study with recall bias. Given
the potential importance of differential measurement error, particularly
in case-control studies, it is surprising that this problem has received rel-
atively little attention in the statistical literature until recently (beyond
various studies of the impact of violation of the assumption of nondif-
ferential error in the standard methods). This lack of attention probably
derives in part from a fundamental problem of identifiability in the differ-
ential error case, arising from the confounding of the causal effect of X

on Y with the bias in Z|X due to Y . The full retrospective likelihood for
case-control data can be decomposed as

Pr(Z|Y ) = Pr(Y , Z)

Pr(Y )
=
∫
pβ(Y |x)pδ,τ2(Z|x, Y )pα,σ2(x) dx∫

pβ(Y |x)pα,σ2(x) dx
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where Pr(Z|X, Y ) now depends upon differential error parameters δ in
addition to the usual error variance τ2. A fully parametric model is in prin-
ciple straight-forward, although computationally burdensome and relies
on assumptions about Pr(X) that one would rather avoid. Most treat-
ments of this problem therefore rely on a pseudolikelihood approximation
to the prospective likelihood Pr(Y |Z)= ∫

pβ(Y |x)p̃σ ,τ2(x|Z, Y ) dx, where
p̃δ,τ (x|Z, Y ) is estimated from the validation substudy data on cases and
controls and treated as known. One might, for example, assume linear
model of the form Z∼N(X+δY , τ2). However, naively regressing X on Z

and Y—as in the standard regression calibration approach—is not correct
in the presence of differential error, because it effectively uses the pβ(Y |X)

factor twice—first to estimate X|Z,Y and then to fit Y |X—thereby biasing
β away from the null. Instead one must reverse the regression calibration
to fit Pr(Z|X, Y ), develop a model for Pr(X), and then combine the two
submodels to estimate

p̃(x|Z, Y ) = p
δ̂,τ̂2(Z|X, Y )p̂(X)∫

p
δ̂,τ̂2(Z|x, Y )p̂(X) dx

Here p̂(X) could inprinciple be estimated either parametrically ornonpara-
metrically, as described above in the section on the semiparametric efficient
estimator method. Since one typically knows very little about the form of
Pr(X) andhasnoparticular interest in this part of themodel, nonparametric
estimation is attractive so as to achieve robustness. However, if there are
more than about two covariates W in Pr(X|W ), this can be difficult and a
parametric model might be preferred. See Spiegelman and Casella (1997)
for examples of both approaches. Closed form expressions are possible in
the case of a probit model for binary outcomes with normally distributed
X and Z, but the estimates are somewhat biased (and variances underesti-
mated)unless theuncertainties in thenuisanceparametersareappropriately
accounted for. Although the problem of differential error is addressed in
the Carroll andWand (1991) and Pepe and Flemming (1991) papers, their
approaches both assume random, not case-control sampling, for the vali-
dation substudy, whereas the Robins et al. (1995a; 1995b) semiparametric
method is fullygeneral, andwouldevenallowtwo-phase stratified sampling
conditional on any combination of Y ,Z, and W .

In simple cases, the regression substitution and regression calibra-
tion approaches provide attractive alternatives. In the case where [Y |X],
[Z|X, Y ], and [X] are all normally distributed, the attenuated slope β∗
becomes

β∗ = σ 2β + ω2δ + δσ 2β2

2δσ 2β + ω2δ2 + σ 2δ2β2 + τ2 + σ 2
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Thus, given estimates of the parameters (δ, σ 2, ω2, τ2) from a validation
sample and β∗ from the naïve regression of Y on Z in the main study, one
could solve the resulting quadratic equation for the corrected slope coeffi-
cient β and compute a variance estimator using the delta method. To use
the regression substitution approach, one must reverse the usual regres-
sion to estimate the parameters (δ, τ2) in [Z|X, Y ] along with a model for
p̂(X), as described above, and compute an “adjusted” expectation from∫
xp̃(x|z,Y ) dx. This expectation is then used in place of Z in the analy-

sis of the main study data. Carroll et al. (1993) formalize this idea in a
pseudolikelihood method for differential error in case-control data. See
Sturmer et al. (2002) for simulation studies of the performance of regres-
sion calibration and semiparametricmethods in the presence of differential
and nondifferential error.

Multivariate models

So far, we have focused on measurement error in a single variable,
although other covariates measured without error may have been included
in one or more components of the model. As noted earlier, when multiple
factors are subject to measurement error, the usual tendency for classical
error or nondifferential misclassification to bias associations toward the
null may no longer hold. In particular, some of the causal effect of a poorly
measured variable can be transferred to a better measured variable it is
correlated with. To understand this phenomenon, consider the case where
[X] and [Z|X] are multivariate normally distributed and [Y |X] is given by
a normal linear regression with vector of slope coefficients β. Then the
multivariate generalization of the slope attenuation factor C in Eq. (11.2)
becomes

E(Y |Z) = β�(�+ T )−1Z

where �= cov(X) and T= cov(Z|X) (Armstrong et al. 1989). Zeger et
al. (2000) provide tables of the expected slopes in a bivariate model
under a variety of scenarios involving causal effects of one or both vari-
ables with a range of correlations in � and T. Many of the techniques
for measurement error correction described earlier in the univariate case
have straight-forward multivariate generalizations, although some (like
the semiparametric methods) can become unwieldy. For example, the
regression substitutionmethod can be applied by using the subsample data
to estimate E(X|Z) and then replacing Z by this quantity in the analysis
of the main study (Kuha 1994; Fraser and Stram 2001).

An interesting application of this idea is as an adjustment for uncon-
trolled confounding. Sturmer et al. (2005) treat this problem as one of
measurement error in a propensity score framework. Specifically, suppose
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one has a vector W of potential confounders that aremeasured on themain
study of the relationship between Y and some exposure of interest X, but
some larger vector of confounders V is available only on a substudy. They
first regressX on W and V in the substudy to obtain a propensity scores pw
and pv and the covariance between them. The estimated propensity scores
pw are then included in the regression of Y on X in the main study and
the estimated slope βx is corrected for the measurement error in treating
pw as a flawed surrogate for pv.

Binary exposure variables

Single imputation of X by its expectation does not work for binary vari-
ables, since a fractional value is not a valid possibility. However, one can
perform the analogous calculation on the matrix of cell counts in the 2×2
table of observed counts Nyz to obtain the table of expected counts nyx

and then analyze these as if they were the real data. As in the continuous
case, however, some adjustment to the variance is needed to account for
the uncertainty in the imputation.

The basic approach was described by Greenland and Kleinbaum (1983).
Let N= (N00, N01, N10, N11) denote the vector of observed cell counts
and n the corresponding vector of true cell counts for theX-Y relationship.
Furthermore, let M= (Mxz) where Mxz = Pr(X= x|Z= z) is the matrix
of misclassification probabilities (sensitivity and specificity), which can
be estimated from a validation subsample. Then it is easy to see that
E(N)=Mn, which suggests a natural estimator of n̂=E(n|N)= M̂−1N,
from which the OR can be computed directly. Alternatively, one could
parameterize the problem in terms of positive and negative predictive val-
ues m= (mzx) where mzx = Pr(Z= z|X= x), leading to a direct estimator
n̂=E(n|N)= m̂N, which turns out to be more efficient (Marshall 1990).
Calculation of the asymptotic variance of the OR is based on straight-
forward application of the delta method to the sampling variances of M or
m and N (Greenland 1988b). See Chen (1989); Morrissey and Spiegelman
(1999) for further discussion. Of course, multiple imputation can also
be used, as described above, where random samples of X|Z are treated
as observed data and the log ORs from several such samples then aver-
aged and the within- and between-sample variances used to compute the
variance of the log OR.

Maximum likelihood provides a direct approach to estimating both
the OR parameter and the misclassification probabilities. Suppose in
addition to the observed (Y , Z) data n, we also had an independent
“validation” sample of (X, Z) data M. Letting πyx = Pr(Y = y|X= x)
and μxz = Pr(X= x|Z= z) denote the underlying probabilities in
the tabulations n and M described above, the likelihood can be
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expressed as

L(π ,μ) =
1∏

y=0

1∏
z=0

( 1∑
x=0

πyxμxz

)Nyz

×
1∏

x=0

1∏
z=0

(μxz)
Myz

where the πs could easily be re-expressed in terms of more natural
parameters, such as the logit of the baseline risk and the log OR.

In some circumstances, no “gold standard” measurement of X may
be available, even on a substudy, but the measurement error parameters
in Z can be estimated indirectly using multiple measurements Zk if they
can be assumed to be independent conditional on X (Elton and Duffy
1983; Marshall 1989; Spiegelman et al. 2001). For example, if X, Z,
and Y are all binary with two measurements of Z, the complete data
can be viewed as the cell counts in a 2 × 2 × 2 × 2 contingency table
of (X, Z1, Z2,Y ), for which only the 2 × 2 × 2 table collapsing over X

are observed. Maximum likelihood fitting of the full model involving the
OR for the X-Y association, along with nuisance parameters for Pr(X)
and Pr(Z|X), assuming independence of [Z1, Z2|X] is straight-forward
using the E–M algorithm, as described in the section on missing data in
Chapter 4.

Aggregate, time series, and spatial studies

As noted earlier, measurement errors can have quite different effects on
analyses of aggregate data, such as time series and ecologic correlation
studies. For example, Brenner et al. (1992b) showed that nondiffer-
ential misclassification of a binary individual exposure variable—which
would be expected to produce a bias toward the null in individual-level
analyses—actually biases an ecologic association away from the null. This
essentially results from the tendency for grouping on a variable unre-
lated to exposure to shrink the misclassified group prevalences toward
the center of the distribution (as in Figure 11.2, right), while the groups’
disease rates remain unchanged, thereby increasing the slope. Using exter-
nal information on the individual-level true and false positive rates α1
and 1 − α0, respectively, Greenland and Brenner (1993) provided a sim-
ple correction to the ecologic estimate of the relative risk by regressing
Yg on E(Xg|Zg)= (Zg − (1 − α0))/(α1 − (1 − α0)), where Zg and Xg

are the true and misclassified exposure prevalence in group g, and derive
appropriate variance estimates using the delta method. This situation is
somewhat unique to binary exposure variables, however, as grouping a
continuous variable would not tend to produce this shrinkage. In a sim-
ulation study of domestic radon and lung cancer rates, Stidley and Samet
(1994) showed that the slope of the ecologic regression and its standard
error were actually reduced by nondifferential measurement error.
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Similar issues can arise in time-series analyseswhere dailymortality rates
are regressed on daily ambient pollution levels. Zeger et al. (2000) discuss
the effect of measurement error in time-series studies by computing the
induced population association from a model for individual risk. Letting
λ[t ,Xi(t)]= λ0i(t) exp(βXi(t)) denote the hazard rate for individual i in
relation to personal exposure Xi(t), the observable population rate can be
decomposed as

λ[t |Z(t)] = E
({[

λ0i (t)− λ0(t)
]+ λ0(t)

}
× exp

{
β
[
Xi(t)−X(t)

]+ [
X(t)+ Z(t)

]+ Z(t)
})

∼= λ0(t) exp[βZ(t)] + additional terms

where λ0(t) is the population average baseline risk, X(t) is the popula-
tion average personal exposure, and Z(t) is the ambient level (they also
include terms for deviations between the true and measured ambient lev-
els, the effects of measured confounders, and a smooth function in time,
which are omitted here to simplify the notation). The various additional
terms involve the covariance of individual baseline risks and individual
exposures and the variance of personal exposures, as well as any system-
atic deviations between the population average personal exposure and the
ambient concentration. They discuss the contributions of these various
terms and show that a regression on a risk-weighted average of personal
exposures

X∗(t) =
∑

i λ0i (t) Xi(t)∑
i λ0i (t)

would in principle be the desired variable to use in time-series analyses of
aggregate data. This quantity could differ appreciably fromZ(t), however,
because high risk individuals could have different exposures from the gen-
eral population and because of the contributions of indoor sources. Using
data from an intensive study of personal exposures in 178 nonsmoking
California residents (Ozkaynak et al. 1996), they estimated the potential
magnitude of these various deviations and derived a simple adjustment
for measurement error, increasing the slope of the regression on Z(t)

from 0.84 (95% CI −0.06, 1.76) to 1.42 (−0.11, 2.95) for the regres-
sion on X∗(t). In a similar vein, Brauer et al. (2002) demonstrated that
aggregation across subjects in a time-series analysis could weaken the evi-
dence for a threshold effect and lead to underestimation of the location
of a threshold, even if personal thresholds were the same across subjects
(this phenomenon is discussed further in Chapters 6 and 15). For further
discussion of the effects of measurement error in time-series, panel, and
ecological studies, see (Sheppard and Damian 2000; Guthrie et al. 2002;
Sheppard 2005; Stram 2005) and the description in the previous chapter of
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sampling designs for augmenting an ecologic studywith individual samples
from each of the areas compared.

In Chapter 8, we introduced a “meta-regression” approach to hierar-
chical modeling of multi-city time-series data (Schwartz and Coull 2003),
which we now describe more formally. Let i subscript the cities and
consider a linear regression model Yit = b0i + b1iX1it + b2iX2it + eit
where bi = (b0i , b1i , b2i )∼N3(β, �) and further suppose a classical error
model Zct∼N2(Xct , �). Instead of fitting the bivariate hierarchical model
directly, they perform two regressions for each city,

Yit = a0i + a1iZ1it + e′it and Z2ct = c0i + c1iZ1it + e′′it .

In the second stage, they then regress

â1i = β ′
1 + β ′

2ĉ1i + d ′i

They show that β̂ ′
2 is a consistent estimator of β2, even though β̂ ′

1 would be
attenuated by measurement error. Reversing the roles of the two variables
would lead to a consistent estimator of β1.

Efficient design of validation studies

For relatively simple measurement error models, it is possible to derive the
optimal sampling fraction that would minimize the variance of the cor-
rected exposure–response parameter β, subject to a constraint on the total
cost of the study. Greenland (1988a) described the basic idea for binary
exposure and disease variables and demonstrated that under some circum-
stances, the most efficient design might entail simply collecting the more
expensive measure X on a smaller study without using a two-phase (main
study/validation substudy) design at all. Spiegelman and Gray (1991)
describe similar calculations for a logistic disease model withX andZ nor-
mally distributed and provide extensive results on the dependence of the
optimal design on cost and variance ratios. See also Thomas (2007a) for
situations where closed-form optimization results are possible for various
exposure– and/or disease-based sampling schemes (all variables binary, all
continuous, binary outcomes with continuous exposures) and simulation
results for spatially correlated exposure data.

These results can be derived in a number of essentially equivalent
ways. The likelihood approach (Thomas 2007a) uses the (ββ) element
of the inverse of the full Fisher information derived from the likelihood
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[Eq. (11.3)] to derive an expression for the asymptotic unit variance

V (s, θ) ≡ var
(
β̂(1,s)

)∣∣∣
θ
= lim

N→∞Nvar
(
β̂(N ,s)

)∣∣∣
θ

per main study subject as a function of the model parameters θ and the
sampling fractions s= (syw) for the substudy subjects in each stratum of
Y and W on whom Z will be measured. The overall cost of the study is

NC(s) = N + R
∑
yw

sywE[Nwy(θ)]

where R is the ratio of per-subject costs between the validation and main
studies and C(s) is the cost per main-study subject for a given sampling
scheme. The asymptotic relative cost efficiency (relative to a “fully vali-
dated” design withX measured on everybody and no substudy, i.e., s ≡ 1)
can then be defined as

ARCE(s|θ) = V (1, θ)C(1)
V (s, θ)C(s)

The optimization then seeks to maximize this quantity with respect to the
sampling fractions for a given choice of model parameters.

Using an approach like this, Holcroft and Spiegelman (1999) showed
that a balanced design was nearly optimal across a broad range of param-
eters and provide a FORTRAN program to determine the best design for
a given set of parameters. Although some further improvement is possi-
ble by optimal sampling of the four possible combinations of W and Y

(Thomas 2007a), the optimal sample fractions depend on knowledge of
the true model parameters θ, whereas a balanced design can be expected
to perform reasonably well over a broad range of values. See also Reilly
(1996) for a range of epidemiologic applications using pilot samples to
estimate the quantities needed to determine the optimal design, Breslow
and Chatterjee (1999) for a discussion of the design of two-phase stud-
ies using semiparametric methods and Holford and Stack (1995), Wong
et al. (1999), Spiegelman et al. (2001) for designs using repeated measures
or multiple surrogates when no gold standard is available; the latter also
consider both internal and external validation study designs. Stram et al.
(1995) consider a somewhat different optimization problem, the choice of
the numbers of subjects and replicate measurements on each (effectively
holding the main study size fixed); they conclude that for a reasonable
range of variance and cost ratios for a diet validation study, four or five
replicate measurements would suffice. The reader is also reminded of the
discussion in Chapter 5 of the design of two-phase case-control studies
where the aim was to collect information on other variables (confounders,
modifiers, more detailed exposures) in the second stage.
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Some examples of complex dosimetry systems

Frequently, exposure assessment entails elements of both classical and
Berkson errors, sometimes shared, possibly differential. We call such
exposure assessment protocols “complex dosimetry systems.” We con-
clude this chapter with a narrative discussion of several examples.

Dose reconstruction for “downwinder” studies

Nevada Test Site downwinders

During the two decades following World War II, the United States
exploded hundreds of nuclear weapons above ground at the Nevada Test
Site (NTS) and the Pacific Proving Grounds in the Marshall Islands. These
tests generated large amounts of fallout, which were dispersed widely in
surrounding areas. For the NTS tests, much of this landed in western
Utah, with smaller amounts elsewhere in the western United States and,
for that matter, worldwide in even smaller quantities (NCI 1997). In addi-
tion to the military participants of the tests themselves, residents of some
areas downwind received sufficient doses to the bone marrow (from exter-
nal gamma radiation) and to the thyroid gland (primarily from internal
radioiodine I131 contamination) that associations with leukemia and thy-
roid abnormalities (cancer, benign nodules, thyroiditis, hypothyroidism,
etc.) might potentially be detectable (Gilbert et al. 1998). To investigate
this possibility two studies were conducted, a population-based case-
control study of leukemia in the entire state of Utah (Stevens et al. 1990)
and a cohort study of children clinically examined for thyroid abnormal-
ities (Kerber et al. 1993). Supporting these studies was an intensive dose
reconstruction effort (Simon et al. 1995; Till et al. 1995), which traced
the fallout from every NTS test, beginning with information about the
yield of the bomb and decay of radionuclides, modeling its atmospheric
transport and deposition on the ground, uptake by plants and grazing
animals, transfer to milk, and distribution of milk and vegetables to con-
sumers. This was combinedwith subjects’ responses (for the thyroid study)
to questions about consumption of milk from cows and backyard goats,
leafy greens, and breastfeeding or (for the leukemia study) residential his-
tory records maintained by the Mormon church, to estimate individual
doses. A unique feature of both dosimetry efforts was the use of Monte
Carlo methods to assign not just individual doses but also uncertainty esti-
mates for each dose assignment. Some elements of this complex dosimetry
system were based on various kinds of measurements, others based on
distributions of expert judgment. For each random draw for the various
unknowns (including missing or uncertain questionnaire data), a new dose
estimate could be produced for each of the study subjects, based on the
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Table 11.2. Estimates of relative risk of thyroid neoplasms (N = 19) at 1
Gy (95% CI) in children downwind of the Nevada Test Site (Adapted from
Mallick et al. 2002.)

Error model Dose distribution Dose–response model

Parametric Semiparametric

No error 9.4 (4.5−13.8) 13.8 (2.5−18.9)
Classical Normal 17.1 (8.5−24.5) 21.5 (9.4−36.7)

Semiparametric 15.8 (7.7−23.2) 19.0 (8.0−32.7)
Berkson 7.9 (3.8−11.4) 10.0 (3.1−13.2)
Mixture Normal 13.2 (5.0−23.1) 16.4 (2.2−34.8)

Semiparametric 10.9 (2.6−22.6) 14.2 (1.7−33.6)

same input parameters. Over many such realizations, a distribution of
dose estimates was obtained that properly reflected the various uncertain-
ties, and was summarized by a geometric mean and geometric standard
deviation (GSD) for each individual’s dose estimate.

For the leukemia study, the average GSDs of the dose uncertainties
was 1.15. Treating these as entirely classical error increased the slope
estimate from 1.08 per rad (95%CI 0.26–1.98) to 1.22 (0.18–2.66) allow-
ing only for uncertainties in estimates of deposition or 1.28 (0.26–2.88)
allowing also for uncertainties in residence histories. Additional adjust-
ment for shielding uncertainties using a Berkson error model increased
it to 1.40 (0.36–3.20) (Thomas 1999). For the thyroid study, the uncer-
tainties were much larger, an average GSD of 2.8. The semiparametric
classical and Berkson error mixture model described earlier (Mallick et
al. 2002) yielded the various estimates of RR at 1 Gy summarized in
Table 11.2. As expected, adjustment for measurement error assuming it
was entirely classical increased the relative risk estimate substantially. The
semiparametric model suggested substantial skewness in the distribution
of true doses, however, leading to somewhat more modest and probably
more appropriate increases in adjusted relative risks. Risk estimates were
actually reduced somewhat assuming the errors were entirely Berksonian,
and the mixture model produced intermediate results. Treating the dose–
response model semiparametrically yielded higher risks at 1 Gy under all
measurement error models.

Hanford Thyroid Disease Study

The Hanford Nuclear Reservation in southeast part of the state of Wash-
ington was the site of plutonium production for the atomic bombs during
World War II and the following decades. During this period, substantial
emissions of radionuclides, notably I131, were released from the plant and
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were deposited in local soil and rivers, eventually making it up the food
chain in a manner similar to the NTS fallout. In response to public concern
about the health risks experienced by the downwind population, a large
retrospective cohort study, known as the Hanford Thyroid Disease Study
(HTDS), was undertaken by investigators at the Fred Hutchison Cancer
Research Center in Seattle, Washington (Davis et al. 2004; Hamilton et al.
2005; Kopecky et al. 2005).

Exposure assessment for the HTDS was based on a separate project
known as the Hanford Environmental Dose Reconstruction (HEDR)
Project (Shipler et al. 1996; Napier 2002; Tatham et al. 2002; Kopecky et
al. 2004), using methods very similar to those described above for the NTS
fallout studies. The dose–response analysis, however, went far beyond
the incorporation of the GSDs of individual dose estimates, aiming to
explore the problem of additive and multiplicative, shared and unshared,
classical and Berkson-type errors, using the entire set of realizations of sim-
ulated doses. We denote by X̂s = (X̂is |Wi )i= 1,...,n the vector of all subjects’
dose estimates from Monte Carlo sample s= 1, . . . , 100, given the vari-
ous inputs Wi to each individual’s dose calculation. Stram and Kopecky
(2003) and Kopecky et al. (2004) discussed the use of these dose distribu-
tions in a formalmaximum likelihood framework for estimating the effects
of dose on thyroid abnormalities, using a Monte Carlo approximation to
the likelihood of the form

L(β) = 1
100

100∑
s=1

n∏
i=1

pβ(Y1|X̂is)

In particular, they addressed the influence of shared and unshared, mul-
tiplicative and additive errors on the bias and power of analyses using
this likelihood, and concluded that the distribution of quantifiable varia-
tion in doses between individuals was sufficient to yield adequate power
for detecting dose–response relationships expected on the basis of stud-
ies in other populations. Nevertheless, this conclusion is not without
controversy, some authors (Hoffman et al. 2006) arguing that previous
analyses had underestimated the uncertainties in various ways, notably by
neglecting the effects of classical error.

Colorado Plateau uranium miners

Another radiation example—the Colorado Plateau uranium miners—
illustrates a number of other points. Here, individual doses were assigned
using the job-exposure matrix approach, in which exposure levels were
assigned to mine-year combinations and linked to the job histories for the
individual miners in the cohort obtained from company payroll records.
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Although there are doubtless some uncertainties in the individual job histo-
ries, themajor component of uncertainty here is in the assignment of radon
daughter exposures to mines, as available measurements were very spotty;
indeed, many mines lacked any measurements at all for several years.
To address this problem, the original investigators developed an elaborate
hierarchical system, geographically clustering mines into districts within
regions within states (Lundin et al. 1971). Where an individual mine was
lacking any measurements in a given year, an average of measurements
in surrounding years was used. If the gap was too long, an average of
measurements for the same year for other mines in the same district was
used, or if these were inadequate, in the same region, or same state. Stram
et al. (1999) later formalized this somewhat ad hoc approach into a multi-
level hierarchical model, involving random effects in the means and slopes
over time at the mine, district, region, and state levels, to derive an esti-
mate of the “true” dose rate Xsrdm(t) for a given year t in a given mine
m within a given district d, region r, and state s, which combined the
available data for that combination with estimates of the posterior expec-
tations of the relevant random effects, given all the data. This also yielded
an estimate of the uncertainty of each exposure assignment. The resulting
estimates and their uncertainties were then combined with the individ-
ual miners’ work histories to yield a measurement-error-corrected dose
history xi(t) for each miner, which were used to fit various exposure–
time–response models. Typically, uncertainties were much larger in the
early years, reflecting the paucity of measurements before the hazards
were widely recognized, so this greater uncertainty had the potential to
modify the effect of such temporal modifying factors as age at expo-
sure, latency, and dose–rate/duration. In particular, the authors found
that the strong modifying effect of dose–rate (a long low dose being more
hazardous than a short intense one for the same total dose) was consider-
ably attenuated, but not completely eliminated, after adjustment for dose
uncertainties.

Use of biodosimetry in the atomic bomb survivors study

Cullings (2006) provide a historical review of the evolution of the atomic
bomb dosimetry, beginning with the pioneering work of Jablon (1971)
(see Box 11.1). As described previously, the effect of classical measurement
error is generally to attenuate the slope of a dose–response relationships
and possibly also to change its shape. One of the earliest measurement
error analyses (Prentice 1982) using Jablon’s model demonstrated that
the apparent negative quadratic term in a linear–quadratic model for this
cohort would be attenuated by allowance for multiplicative measurement
errors, while the linear term would be increased. Similar results have been
reported by several others in relation to the effects of measurement error
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on either the magnitude of the quadratic term (Jablon 1971; Gilbert 1984;
Little 2000) or the evidence for a threshold (Little and Muirhead 1996;
Hoel and Li 1998; 1998; 2004b). Other analyses of cancer mortality
among the atomic bomb survivors indicated that correction for this bias
would increase the excess relative risk per Gy by about 17% for leukemia
and by about 10% for solid cancers, assuming measurement errors were
multiplicative and lognormally distributed with a logarithmic standard
deviation of about 40% (Pierce et al. 1990). But how is one to decide how
big the error variance really is? For this one needs some external informa-
tion, as the structural error model is not identifiable using data on Z and
Y alone.

11.1 First descriptionof theeffects of errors in thephysical dosimetry
for the atomic bomb survivors

Jablon (1971) was the first to recognize the nonlinear relationship
between true and estimated doses induced by measurement error.
His quantitative model is of such importance as to merit a detailed
description, but the nonmathematical reader can safely skip this
passage.

Let Dtrue denote an individual’s true distance from the hypocen-
ter, Dest the estimated distance and H the height of the bomb at
the time of detonation. Theoretical physics considerations give the
following relationship between true dose X and “slant distance”

R=
√
D2

true +H 2:

X = f (Dtrue) = αe−R/L/R2

where the denominator corresponds to the usual inverse square law and
the exponential term is the effect of absorption by air, with “relaxation
distance”L estimated to be about 0.25 km. Below, it will be convenient
to denote by g(X) the inverse function of f (Dtrue), i.e., the distance
Dtrue corresponding to a true dose X.

Jablon treats the exposed population as being roughly uniformly dis-
tributed over a 20 km circle around the hypocenter in Hiroshima and a
linear strip in Nagasaki, so the prior distribution of distances π(Dtrue)

is proportional to Dtrue in Hiroshima and uniform in Nagasaki. The
probability of survival, based on previous work, was assumed to
be S(Dtrue)= 1/(1 + 2.33D−4

true). Combining these relations, one can
compute the posterior density of true doses given survival as

Pr(X|S) = π [g(X)]S[g(X)]dg(X)

dX
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Jablon treats the reported distances as lognormally distributed around
the true locations, so the conditional probability given the dose Z

calculated using estimated location is

Pr(X|Z, S) ∝ Pr(X|S) Pr[g(Z)|g(X)]
From this, he evaluated E(X|Z) numerically and provided an approx-
imate analytical expression for this relationship.

Jablon also considered other sources of error including the loca-
tion of the hypocenter, the form of the “9-parameter” model used for
shielding, evaluation of the parameters of the dosimetry and survival
models, and rounding error. By expressing the various uncertainties on
a log scale, he could combine them with the uncertainties in location,
expressed in meters, and showed that the overall uncertainty corre-
sponded to an effective uncertainty in location of 47 m in Hiroshima
(of which 38 was due to location) and 62 m in Nagasaki (of which 50
were due to location).
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Figure 11.6. Dose–response for chromosomal aberrations (left) and acute leukemia (right)
in the atomic bomb survivors by presence or absence of severe epilation. (Left figure
Reprinted with permission from Sposto et al. 1991, right figure based on data fromNeriishi
et al. 1991.)

One possible source of such information is the joint dependence of mul-
tiple endpoints on dose, since one of the effects of measurement error is to
induce a correlation between outcomes Y1 and Y2 conditional onZ, even if
Y1 and Y2 are independent given X. Figure 11.6 illustrates two such anal-
yses, one of the proportion of cells with chromosomal aberrations (Sposto
et al. 1991), the other of leukemia mortality (Neriishi et al. 1991), each
stratified by the presence or absence of severe epilation (the self-report
of the loss of at least two-third of the hair on the head as a symptom of
acute radiation sickness immediately after the bombing). In both cases,
the dose–response is more than twice as steep in those reporting epilation
than in those without.
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One explanation for this phenomenon is that at any given level of esti-
mated dose (based only on location and shielding), those with epilation
tended to have higher true doses than those without. Figure 11.7(left)
illustrates this by plotting E(X|Z,Y1) as a function of Z for different
assumptions about var(Z|X); at any given value of Z, those with epilation
have substantially larger average X than those without. After correction
for measurement errors, the two dose–response curves line up almost
perfectly (Figure 11.7, right).

An alternative explanation is that the two endpoints are not really inde-
pendent given true dose, that is, that there is inter-individual variation in
radiosensitivity, epilation being an indicator that an individual is more
radiosensitive. The structural error model is still not identifiable with data
only on Y1, Y2, and Z, unless one makes the additional assumption of
independence given X. Nevertheless, one can use such analyses to esti-
mate the range of possible error variances that are compatible with the
observed correlation—or conversely to estimate the possible correlation
in radiosensitivity after allowance for various degrees of measurement
error (Stram and Sposto 1991). Neriishi et al. (1991) took the former
approach and showed that the apparent 2.4-fold difference in leukemia
slopes without allowance for measurement error declined to 1.8 under the
35% error model (but still significant) and declined further to 1.6 under
the 50% error model (no longer significant). Sposto et al. (1991) took the
latter approach and found that the apparent difference in chromosome
aberrations between epilation groups was minimized at a 46–50% error,
depending upon the method used.

It is also worth commenting on the nonlinearity of the curves of E(X|Z)

in Figure 11.7 (left), as one of the effects of measurement error pointed
out earlier is the change in the shape of a dose–response relationship.
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If the true dose–response Pr(Y |X) is itself nonlinear, then calculation
of E[Pr(Y |X)|Z] for the regression substitution method will involve
the higher moments E(Xn|Z). Furthermore, if the distribution of X is
unknown or not conjugate with Z|X, then the calculation of Pr(X|Z) can
be quite complex. The earlier papers (Pierce et al. 1990; 1991; 1992)
treated Pr(X) has having a Weibull distribution, whereas more recently a
semiparametric approach (Pierce and Kellerer 2004) has been developed
(see the description of the method earlier in this chapter). Reassuringly,
the results of these new analyses yield virtually the same estimates of the
attenuation factors for leukemia and solid cancermortality as those quoted
above. These analyses also provide some further guidance as to the likely
degree of measurement error. Their current recommendation (Pierce et al.
2007) involves a combination of 40%multiplicative errors and 20% addi-
tive errors, for an overall coefficient of variation of 44%. These authors
also explain how the measurement errors are viewed as comprising a
mixture of classical and Berkson error components, the former arising
mainly from uncertainties about individuals’ locations and shielding, the
latter from the averaging done in assigning doses to subjects with similar
locations and shielding.

Recall that the publicly available data for the atomic bomb survivor
cohorts has been a grouped dataset, finely cross-classified by categories
of dose, age, calendar time, gender, city, and a few other factors, with
each cell of the tabulation containing the numbers of person-years and
cancers of each type and the mean doses. An important advantage of the
regression substitution approach is that such a tabulation can simply be
augmented by including the estimates of E(Xn|Z) for each cell so that
other investigators could easily re-analyze the data with the measurement
error corrected doses.

Like the correlation between two endpoints Y1 and Y2 given Z, mea-
surement error can also lead to overdispersion of a continuous endpoint
Y given Z. Thus, in analyzing stable chromosomal aberrations, one
might treat the observed proportion of aberrant cells Y out of N cells
scored as having an over-dispersed binomial distribution with mean
E(Y |X)=μβ(X) and variance

var(Y |X) = μβ(X)(1− μβ(X))

N
+ λ

(
N − 1
N

)
[μβ(X)]2

where λ is an overdispersion parameter that can be estimated along with
the dose–response parameters β by an appropriately weighted regression
or generalized linear models (Otake and Prentice 1984; Stram andMizuno
1989; Stram et al. 1993; Cologne et al. 1998). [This formula derives
from a model in which for at any given dose each person’s Yi has a bino-
mial distribution with parameter μi , and these person-specific μis have
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a beta distribution with variance λ; similar results apply for the Pois-
son distribution with a gamma distribution in individual rates (Otake
and Prentice, 1984).] This parameter incorporates both natural biolog-
ical variation, as well as dose measurement errors (if the uncorrected Z

were used instead ofX). Usingmeasurement-error corrected doses X̂(Z, σ)
with measurement error variance σ 2 and searching for the value of σ that
minimizes λ would then provide an estimator of the measurement error
variance. Analyses using this approach have yielded similar estimates as
those based on other methods.

Ultimately, one might imagine using biomarkers B directly as biologi-
cal dosimeters (alone or in combination with physical dosimetry), rather
than simply as a means of estimating the measurement error variance
in physical dosimetry. Given a calibration sample comprising a set of
(B, X) measurements, one could estimate μβ(B) as described above. Then
in principle one should be able to estimate the dose for an individual
with biomarker measurement B simply using the inverse of this function,
X̂(B)=μ−1

β (B). The difficulty with this classical approach, however, is
that the resulting dose estimate can be negative or nonexistent. To over-
come these difficulties, Bender et al. (1988) introduced the posteriormeans
estimator that entails integrating the likelihood of the biomarker measure-
ment over the prior distributions of doses in the target population and of
the model parameters. Cologne et al. (1998) provide a clear discussion
of the statistical issues and simulation study of the use of this approach
in epidemiologic dose–response analysis. The posterior means estimator
with a correctly specified prior distribution of doses yielded nearly the
same slope estimates as using physical dosimetry alone, with only slightly
larger standard errors, whereas the classical estimator and the posterior
means estimator with an incorrectly specified prior were both severely
biased.

A subtlety somewhat unique to the atomic bomb survivor cohort is
the interpretation of the reference population: when we speak of Pr(X),
are we referring to the distribution of true doses among all exposed or
of the survivors to 1950 who constitute the cohort being followed? The
dosimetry system that produces the estimated doses Z uses only infor-
mation on individuals’ locations and shielding, together with knowledge
of the physics of the energy distribution from the bombs; it does not
aim to exploit any biological knowledge about the chances of survival
in relation to dose. Obviously the survivors at any given level of esti-
mated dose Z will tend to have had lower true doses than those who
died before start of follow-up. (To put these numbers in perspective,
the LD50 for whole-body irradiation is about 2.5–3 Gy.) Thus, if Pr(X)

were to refer to the distribution of true doses among all exposed indi-
viduals, then one would have to include a term for the probability of
survival given true dose. This would have to rely on external data about
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survival from acute radiation sickness and medium-term consequences, as
the survivor cohort obviously contains no information to allow this to be
estimated directly. Instead, all measurement error analyses of the atomic
bomb survivor cohort have treated Pr(X) as the distribution of true doses
among the population of survivors, without further correction for survi-
vorship.

On-going work at the Radiation Effects Research Foundation aims to
exploit a variety of novel biomarkers of dose, such as in vivo mutant T-cell
frequencies (Hakoda et al. 1988), Glycophorin-A mutations, and tooth
enamel electron spin resonance measurements. These are generally avail-
able on only a small subset of survivors, requiring a two-stage approach to
the analysis, as discussed earlier. Approaches to the analysis of individual
rather than grouped data are also being explored, so as to facilitate the
use of biomarkers and incorporate spatial correlations in doses between
individuals at similar locations.

Children’s Health Study

A quite different example derives from the Children’s Health Study (CHS)
of air pollution, focusing on variation in individual exposures within com-
munities. In addition to the central site measurements made continuously
throughout the study, as used in the between-community comparisons dis-
cussed in Chapter 10, information about individual variability came from
several sources: place of residence, time-activity patterns, household char-
acteristics, traffic patterns, meteorology, and limited measurements at a
subset of locations (schools and a sample of homes) in each community.
Navidi and Lurman (1995) described the use of a “microenvironmental”
approach to incorporating some of these data into a model for indi-
vidual exposure assessment, focusing on time spent at school, at home,
and outdoors and housing characteristics relevant to each pollutant (e.g.,
air conditioning for ozone, gas stoves for NO2, and pets for partic-
ulates). Unfortunately, the extent to which true individual variability
could be quantified by these methods was somewhat limited, so there was
inadequate range of variation within communities to estimate exposure–
response relationships at that level for most pollutants. However, analyses
of between-community associations using the mean of personal exposures
instead of the ambient levels showed somewhat stronger relationships than
simply using ambient levels.

Subsequently, Gauderman et al. (2005) conducted a survey of NO2
concentrations in 289 homes, selected to represent a range of high and
low traffic exposures in 11 of the 12 communities. Using the mean of two
2-week measurements (one in summer, one in winter) for each home,
a substantial range of variation was found within communities, and
a significant within-community association with prevalent asthma was
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demonstrated for the subset of children included in this survey. For the
cohort as a whole, McConnell (2005) demonstrated an association of
asthma with residence near major roadways and with predicted pollu-
tant concentrations based on an atmospheric dispersion model (Benson
1989). No direct pollution measurements were used in this analysis,
however. These two types of information were later combined in a general
Bayesian measurement error framework by Molitor et al. (2006), similar
to that illustrated in Figure 11.1. Specifically, simple traffic metrics such
as distance to the nearest freeway, the more complex dispersion model
predictions, and the central-site long-term average concentrations, con-
stituted a vector of predictors W for the unknown true exposures X.
The available short-term measurements Z were then assumed to be log-
normally distributed around the true long-term mean, with an adjustment
for temporal variation based on the central-site data. For this analysis, the
outcome Y was eight-year rates of change in lung function growth. The
measurement error adjusted regression of Y on X for the substudy par-
ticipants was somewhat larger and more significant than either the naïve
regression of Y on W or on Z alone. It remains to be seen whether extend-
ing this model to children not in the substudy (for whom the predictors
W would be available, but not Z) would yield similar improvements.

For this to be likely, however, it would be essential to exploit the spatial
correlations in the exposure data, as discussed in Chapter 9. In a subse-
quent paper (Molitor et al. 2007), a spatial autocorrelation process was
added to both the true exposuresX and in the outcomes Y , separately at the
within- and between-community levels. Although the between-community
comparisons showed little spatial correlation in either component, the
within-community comparisons substantially improved the predictive
power of the model, particularly those for exposure. This analysis was
also restricted to the participants in the substudy, but now a much better
imputation of exposures to cohort members for whom no measurements
are available would be possible, by “borrowing strength” from measure-
ments at neighboring locations, appropriately weighted by the distance
between them.



12 Multiple risk factors and
interactions

Up to this point, we have been concerned mainly with one exposure fac-
tor at a time, although as we have seen in Chapter 6, even this can be
quite complex, particularly if there are time-related modifying factors like
latency or if exposure is extended over a long period at varying inten-
sity. We now turn our attention to the analysis of multiple risk factors,
say, two or more exposures or one exposure of primary interest together
with other confounders or modifiers. For now, we set aside the complica-
tions discussed earlier involving time-dependent exposures and focus on
the effects of two or more fixed covariates.

In Chapter 2, we distinguished between confounding and effect mod-
ification. To review, a confounder C is a variable that is related both to
the exposure E and the outcome Y and thus has the potential to induce a
spurious association between E and Y where no causal connection exists,
or to bias the magnitude of a real association upwards or downwards. A
modifier M, on the other hand, is a variable for which the magnitude of
the association between E and Y differs at different levels of M; for exam-
ple, there might be no association in one subgroup of M and a strong one
in another subgroup. This phenomenon goes by various names, such as
interaction or synergism, all meaning that the effect of two or more factors
in combination is different from what would be predicted by each factor
separately. We begin by addressing methods for dealing with confounders
and then turn our attention to effect modification.

Frequently in environmental epidemiology, we are faced with exposures
that are themselves complexmixtures of hazardous substances. Particulate
air pollution, for example, comprises a broad range of particle types,
varying in size and chemical composition, coexisting and reacting with
other gaseous pollutants. Sorting out their separate contributions to a
health effect, or even assessing the effect of the mixture as a whole where
its composition varies from place to place, can be a formidable challenge.
Often we are left with many different statistical models for the joint effects
of multiple agents that fit the data reasonably well. What then are we
to conclude about either the contribution of individual factors or their
combination?

We conclude this chapter with a discussion of interactions between two
ormore exposures or between a single exposure and a genetic susceptibility
factor. More complex pathways involving many genes and multiple expo-
sure factors they interact with are discussed in terms of “empirical”models
involving a combination of main effects and interactions. We will revisit
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this problem in the following chapter, where we take a more mechanistic
approach.

At this point, our focus is on assessing the relationship between various
risk factors and disease at the population level as the basis for risk assess-
ment in guiding environmental regulation policy in Chapter 15. We will
return to these issues in Chapter 16, where the focus shifts to the individ-
ual and we ask questions about howwe should assess whether a particular
disease in an individual with a history of exposure to an established risk
factor was caused by that exposure or by something else.

Dealing with confounders

The four basic methods for controlling confounding—restriction, strat-
ification, matching, and covariate adjustment—were introduced in
Chapters 3 and 4. An association cannot by confounded by a categori-
cal variable like sex if the analysis is restricted only to males or only to
females. Stratification extends this basic principle by reasoning that if this
is true for each gender separately, then the results of such sex-specific anal-
yses can be combined across genders to obtain an unconfounded summary
estimate. There are various ways of accomplishing this combination, such
as the comparison of standardized rates, as discussed in Chapters 3 and 4.
These techniques are collectively known as stratification, but it is worth
emphasizing that this term implies more than just dividing the sample
into strata; it is the combination of estimates across strata that is the key
concept. For a continuous variable like age, one could create categories
(say, five-year intervals) and stratify the analysis in this way, but depend-
ing upon how broad the categories are, some residual confounding could
remainwithin categories. The same applies if there are several confounders
to be controlled simultaneously.

By a similar reasoning, an association cannot be confounded if the
groups being compared—exposed and unexposed in a cohort study, cases
and controls in a case-control study—are individually matched on the
confounders, so this technique is often preferred when there are multi-
ple confounders to be controlled, particularly confounders measured on
continuous scales.

A key advantage of stratification and matching is that no assumptions
are required about the effects of the confounders. By defining separate
strata for levels of each variable jointly, the association is free of the
possibility of confounding across levels. But as the number of factors
to be controlled increases, many strata may lack any subjects in one of
the groups being compared (leaving those in the comparison group for
that stratum uninformative); correspondingly, in a matched study, the
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prospects of finding an exact match may diminish as the matching crite-
ria become more numerous or more restrictive. In this circumstance, one
might turn instead to covariate adjustment using a multivariate model,
such as logistic or Cox regression (Chapter 4). While these approaches
have the advantage of great flexibility for adjusting for multiple con-
founders, they require stronger assumptions about the joint effects of these
variables and the exposures of interest on disease.

The possibility of residual confounding can never be completely elimi-
nated in any observational study. Although one may be able to control for
all measured confounders with some degree of confidence, there may be
still other variables that have not been measured or errors in the variables
that have, which are not balanced across the comparison groups. Only
randomization can assure balance in all potential confounders simulta-
neously (Greenland 1990), and even then, this guarantee applies only in
expectation across hypothetical replications of a study, not in any single
study sample. What can be guaranteed, however, is that a statistical esti-
mation procedure based on a randomized design will yield an unbiased
estimator, in the sense that across hypothetical replications, the average
value of the estimate will equal the true value. Likewise, under the null
hypothesis, a significance test will reject at the nominal level, meaning that
a 5% significance test would reject the null hypothesis in 5% of replicate
samples.

One of themost widely usedmethods of stratified analysis is theMantel–
Haenszel estimator of the odds ratio (OR). Consider the data layout in
Table 12.1 for a hypothetical case-control study. Within any stratum s,
the OR would be computed as ψs = asds/bscs . The question is how best
to combine these estimates across strata. An obvious approach would be
to take a weighted average, weighting each contribution inversely by its
variance, so that the most precise estimates receive the heaviest weight.
Since the ORs themselves tend to have highly skewed distributions and
their variances tend to be proportional to their magnitude, Woolf (1955)
introduced a natural estimator by averaging their logarithms:

ln(ψ̂) =
∑

s ln(ψ̂s)/Vs∑
s 1/Vs

, where Vs = var
[
ln(ψ̂s)

]
= 1

as
+ 1

bs
+ 1

cs
+ 1

ds
,

with var
[
ln(ψ̂)

]
= 1∑

s 1/Vs

One difficulty with this estimator, however, is that it is undefined if
even one cell is empty. An ad hoc solution to this problem adds a small
value (conventionally 1/2) to every cell, but this then yields an estimator
that is no longer unbiased. In a classic paper, Mantel and Haenszel (1959)
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Table 12.1. Hypothetical data for a case-control study illustrating a stratified
analysis

Confounder stratum Exposure status Controls Cases Total

s= 1 Z = 0 a1 c1 v1
Z = 1 b1 d1 w1
Total t1 u1 n1

s= 2 Z = 0 a2 c2 v2
Z = 1 b2 d2 w2
Total t2 u2 n2

… … … … …
s=S Z = 0 aS cS vS

Z = 1 bS dS wS

Total tS uS nS

introduced the simple estimator

ψ̂ =
∑

s asds/ns∑
s bscs/ns

=
∑

s Gs∑
s Hs

that does not have this problem. It can be shown that this estimator is
unbiased and is nearly fully efficient relative to the maximum likelihood
estimator (Robins et al. 1986). Various estimators of its variance have
been suggested, the recommended one being

var(ln ψ̂) =
∑

s GsPs

2
(∑

s Gs

)2 +
∑

s GsQs +HsQs

2
(∑

s Gs

)2 +
∑

s HsQs

2
(∑

s Hs

)2
where Ps = (as + ds)/ns and Qs = (bs + cs)/ns . A relatively simple way
of putting a confidence limit on the estimate is the test-based procedure
(Miettinen 1985),

ÔR
1±Z1−α/2/χMH
MH

which has the attractive property that the lower limit is exactly 1 if the
test is exactly significant at any particular significance level α. TheMantel–
Haenszel significance test takes a somewhat different form from the OR
estimate,

χ2
MH =

(∑
s as −

∑
s E(as)

)2∑
s V (as)

=
(∑

s as −
∑

s tsνs/ns

)2∑
s tsusνsws/n2

s (ns − 1)
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and also has a chi square distribution on 1 df. (Analogous formulae are
available for rate data with person-time denominators, see Rothman and
Greenland (1998).

The analysis of matched case-control studies is based on the McNemar
procedure for binary exposure variables (Chapter 3) and conditional
logistic regression (Chapter 4).

Selection of confounders, model choice, and model averaging

Given the relative ease with which multivariate methods can be applied to
control for multiple confounders, a more important issue is which of the
many possible variables should be adjusted for. The basic principle is that
for a variable to be a true confounder, it must be associated with exposure
and a risk factor for disease conditional on exposure (i.e., not merely a
reflection of a direct effect of exposure on disease). Failure to adjust for
any such variable will lead to a biased estimate (upwards or downwards,
depending upon whether the two associations are in the same or opposite
directions), but adjustment for a variable that is not a confounder is also
unwise. The downside of such unnecessary adjustments is not bias but
an inflation of the variance and loss of power. Generally, adjustment for
a variable that is an independent risk factor but unrelated to exposure
has little effect, but the converse situation (matching or adjustment for a
variable that is associated with exposure but not with disease) goes under
the name of “overmatching” or “overadjustment,” and can have a severe
impact on variance and power.

Consider a hypothetical study of ambient air pollution and asthma. One
might be tempted to match on neighborhood in an attempt to control for
various nebulous aspects of socioeconomic status that are not easily mea-
sured or not even recognized. However, since individuals from the same
neighborhood would have essentially the same exposure to ambient pollu-
tion, there would be little scope for comparison of pollution levels within
neighborhoods, at least if central site measurements were to be used as
the measure of exposure. If, in fact, whatever variables neighborhood is a
surrogate for did have a causal effect on asthma risk, then failure to adjust
for it would yield biased tests and estimates. In this circumstance, one
would have to try to assess the variables that were etiologically impor-
tant in the risk of asthma across neighborhoods and control for them
instead.

How are these principles to be operationalized? Day et al. (1980)
pointed out that by judicious selection of potential confounders, it may be
possible to “explain away” any association. Clearly, an analysis strategy
that aims to accomplish this (or the converse) by systematically search-
ing for variables that would reduce (or increase) an association would be
highly biased.
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Since there is relatively little penalty associated with adjustment for
variables that are true risk factors but may not be strongly associated
with exposure, some have advocated a stepwise search for risk factors,
irrespective of their associationwith exposure. However, stepwise variable
selection procedures are well known to be unreliable for selecting the right
set of variables, and tests or confidence limits based only on a final “best
model” will fail to properly account for uncertainty about the selection of
variables.

Another strategy would be to assess separately the relationships of each
variable to exposure and to disease and only adjust for those that are
associated with both (conditional on any other variables chosen). But
in either of these approaches, exactly how are we to assess whether an
association “exists” or not? The obvious choice—statistical significance—
depends both on the magnitude of the association and on the sample size,
so true confounders may fail to be detected in small samples or variables
with only very weak observed associations might be deemed significant in
very large samples, yet have little confounding effect. The choice of sig-
nificance level in this context is quite arbitrary, but it is generally felt that
a failure to adjust for a true confounder would be a more serious error
than inclusion of a nonconfounder, so significance-based criteria should be
much more liberal than might be considered appropriate for the exposure
variables of primary interest.

These considerations have led some authors (see, e.g., Rothman and
Greenland 1998) to advocate an approach that depends upon the strength
of each variable’s associations with both exposure and disease indirectly
through their effects on the exposure–disease association of real interest.
Using this “change in estimate” criterion, the usual recommendation is
to adjust for any variable that leads to a change in the ORDE of 10%
or more, upwards or downwards, after adjusting for any other variables
that meet this criterion. Although the 10% figure is also quite arbitrary, it
has the merit of being independent of sample size and in general appears
to perform quite well. By selecting variables independently of the direc-
tion of their confounding effects, the bias noted by Day et al. above does
not arise.

Even the change in estimate criterion has some difficulties when it comes
to inference about the model parameters, however, similar to the pitfalls
in stepwise regression discussed above. In what order should variables be
tested for their effect on the exposure–disease association conditional on
other variables? Any how should the uncertainty about variable choice be
reflected in the final confidence limits and significance tests? One attractive
approach to this problem is “model averaging” (see Box 12.1) which in
principle can be applied in either a frequentist or a Bayesian fashion, but
(at least until recently) has been better developed in the Bayesian context
(Madigan and Raftery 1994; Raftery et al. 1997; Hoeting et al. 1999;
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Viallefont et al. 2001). Basically, one considers the full range of possible
adjustment models and forms a weighted average of the parameters of
interest across all of these alternative models, weighted by some measure
of the fit of each model.

An example of the use of Bayesian model averaging (BMA) is provided
by studies of the acute effects of particulate air pollution onmortality, with
uncertainty about which which measure(s) of pollution to use and which
of several weather variables to adjust for. Clyde et al. (2000) describe the
BMA methodology in detail, with an application to time series data on
mortality from Birmingham, AL, while Dominici et al. (2003b) provide
an application of similarmethods to data from Phoenix. With 8 particulate
and 20 weather variables, Dominici et al. found the posterior probability
πm for model m (see Box 12.1) was 46% for the most likely model, with
the top 25 models accounting for 87% of the total. The BMA estimate
for an interquartile range of particulates was 1.028 with a 95% poste-
rior credibility interval (CI) 1.000 − 1.045. In contrast, the single best
model yielded a CI of 1.014− 1.047, demonstrating the underestimation
of uncertainty from failure to account for model uncertainty. The poste-
rior probability of no particulate effect (the sum of πs over all models with
none of the 8 particulate variables) was 0.052, or a posterior odds of 18:1.
This compares with a prior probability of no particulate effect (assum-
ing all models were equally likely a priori) of 0.747 (=Bin(0|8, 1/28)),
or a prior odds of 0.339:1. The ratio of posterior to prior odds yields a
Bayes Factor of 54, within the range Kass and Raftery would call “strong
evidence.”

BMA can be misused, however, particularly when applied to sets of
highly correlated variables. For example, Koop andTole (2004) used BMA
to examine which of a number of highly correlated measures of particu-
lates and their gaseous co-pollutantswere responsible for the health effects.
They concluded that there was so much uncertainty about model form
that the causal constituent could not be determined with any confidence.
Thomas et al. (2007a) replied that model averaging is more appropriately
used to obtain a model with more stable predictive ability than to inter-
pret individual regression coefficients and concluded that these data still
supported a strong effect of air pollution overall, despite the uncertainty
about which constituent(s) were responsible.

Multipollutant models have been widely considered in the air pollution
literature, but mainly by exploring the fits of alternative single- and two-
pollutant models in a descriptive manner (see, e.g., Samet et al. 2000a;
Schwartz 2000a; Sarnat et al. 2001). MacLehose et al. (2007) compare
hierarchical BMA approaches to this problem with several different para-
metric and nonparametric prior models for the effects of the individual
components of a complex mixture. By using a hierarchical framework,
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12.1 Bayesian model averaging and hierarchical models

Let β represent the adjusted log OR for the exposure–disease asso-
ciation of primary interest, let � represent a vector of regression
coefficients for all P possible confounders, and let m = 1, . . . ,M =
2P index the set of all subsets of the P covariates, with corre-
sponding estimates β̂m, �̂m and sampling variance Vm = var(β̂m).
Now let

πm = Pr(m|D) ∝ Pr(m)

∫
Pr(D|m,β,�) Pr(β,�)dβ d�

be the posterior probability of model m given the data D. Then the
model-averaged estimator of β is given by β̂ = �mβ̂mπm with vari-
ance var(β̂) = �mπm[V̂m + (β̂m − β̂)2]. A good approximation to the
posterior probability is based on the Bayesian Information Criterion,
BIC = 2 lnL − P ln(n), where n is the sample size. If all the models
are a priori equally likely, then

πm
∼= exp(−BICm/2)

�m exp(−BICm/2)

When the number of variables P is large, exhaustive enumeration of
all possible models becomes computationally impractical, but Monte
Carlo methods can be used to sample the subset of more likely models
efficiently (George and McCulloch 1993; George and Foster 2000; Yi
et al. 2003). Madigan and Raftery (1994) provide an efficient way of
pruning the set of models to be considered based on the principle of
“Occam’s razor.”

Results can be summarized in terms of the posterior probability that
each variable is included in the model Pp = �mπmI(βmp �= 0) and its
posterior expectation, either marginally or conditional on being in the
model. Inference on either the set of models or the set of variables can
be accomplished using “Bayes factors” (Kass and Raftery 1995), as
described in Chapter 4.

So far, we have assumed that all the variables are “exchangeable,” in
the sense that absent any specific information to the contrary, we can-
not predict in advance that any particular variable is more or less likely
to be relevant. The approach can be extended to a multilevel model
by including “prior covariates” that could relate to either the prior
probability that a variable is in the model or the prior expectation of
its effect size. Such prior covariates do not constitute a declaration that
such variables are more or less important or quantitatively how much
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more so they might be; they simply define “exchangeability classes”
that could differ and within which we cannot make any further a priori
distinctions. Putting such prior covariates into a hierarchical regression
framework provides a flexible way of allowing for multiple types of
prior knowledge or even continuous variables. Letting Zp denote a
vector of prior covariates for parameter βp one specifies the second
level model by a pair of regression equations

logit Pr(βp �= 0) = ω′Zp

E(βp|βp �= 0) = ϕ′Zp

The entire systemof equations can be fitted bymaximizing themarginal
likelihood, L(ω, ϕ) = Pr(Y|X,Z), or by MCMC methods (Conti et al.
2003), providing estimates of πm, Pr(βp �= 0|D,Z), and E(βp|βp �=
0,D,Z).

effect estimates “borrow strength” from other similar effects. In an appli-
cation to retinal degeneration in the wives of applicators of 18 herbicides,
only one exposure showed a significant effect by maximum likelihood,
but it was substantially reduced and nonsignificant in all four hierarchical
models. In an accompanying editorial, Thomas et al. (2007b) elaborate
on the potential for incorporating prior covariates characterizing each
of the specific constituents—their sources, chemical similarities, inter-
actions with metabolizing enzymes, etc., and compare model averaging
approaches with hierarchical models for estimating a single fully saturated
model.

Where the focus is on a single exposure variable of primary interest
with uncertainty about which variables to adjust for rather than uncer-
tainty about all possible models, Crainiceanu et al. (2007) suggest a
two-stage approach: first they identify a subset of possible models for
predicting exposure and choose the one at which the deviance stabi-
lizes; then, they force these variables into the disease model and explore
the remaining variables for further improvement in the deviance. No
model averaging is done. They show by simulation that their method
yields consistent estimates of the adjusted relative risk, whereas BMA
can lead to biased estimates of both the effect size and its uncertainty,
partly because the averaging can include models that do not include vari-
ables needed to properly control for confounding, and partly because
different adjustment models can yield exposure effects with differing
interpretations.
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The performance of these various alternative approaches has been stud-
ied by simulation in a series of papers (Greenland 1993; 1994a; 1997;
1999a; 2000; Steenland et al. 2000).

Testing for interactions

Epidemiologists have long recognized thatmost diseases result froma com-
plex “web of causation” (MacMahon and Pugh 1970), whereby one or
more external agents (“exposures”) taken into the body initiate a disease
process, the outcome of which could depend upon many host factors (age,
genetic susceptibility, nutritional status, immune competence, etc.). Expo-
sures may occur over an extended period of time with some cumulative
effect, and exposure to multiple agents could have synergistic or antago-
nistic effects different from what might result from each separately. These
general notions were formalized by Rothman (1976a) in a “sufficient com-
ponent causes model,” which postulates that disease can result from any of
several sufficient causal constellations, each of which may comprise sev-
eral components (e.g., exposure plus susceptibility plus timing) that are
all necessary to make them a complete cause. This framework provides a
useful way to think about exposure to multiple exposures or risk factors.

Table 12.2 illustrates the calculation of theORs for two binary exposure
variables A and B, first estimating a separate OR for each of the possi-
ble combinations of exposure to A and/or B, relative to those exposed to
neither, then the conditional ORs for each factor specific to the level of the
other (e.g., ORA|B=0 or ORA|B=1 and similarly for ORB|A). Table 12.3
then shows the different ways such ORs might be displayed. The most
complete presentation is that given in the top panel (“Unconditional”),
which provides the effects of each combination of factors along with

Table 12.2. Calculation of joint and conditionalORs for two binary exposure
factors

Exposures Numbers of Odds ratios

A B Cases Controls AB A|B B|A
No No n00 m00 1 1 1

No Yes n01 m01
n01m00
n00m01

1
n01m00
n00m01

Yes No n10 m10
n10m00
n00m10

n10m00
n00m10

1

Yes Yes n11 m11
n11m00
n00m11

n11m01
n01m11

n11m10
n10m11
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Table 12.3. Typical presentations of ORs for two binary exposure
factors, together with an illustrative example (see text)

Exposure A Exposure B

No Yes Total

Unconditional
No 1 ORB = 2 1
Yes ORA = 0.5 ORAB = 1.5 aORA = 0.67
Total 1 aORB = 2.3 —

Conditional on A
No 1 ORB|A=0 = 2 —
Yes 1 ORB|A=1 = 3 —

Conditional on B
No 1 1 —
Yes ORA|B=0 = 0.5 ORA|B=1 = 0.75 —

the marginal effects of each factor adjusted for the other (aORA and
aORB ). The presentation of conditional ORs—though readily showing
how the effect of one variable might be modified by the other—fails to
communicate the effect of the modifying variable itself in the absence
of the other, since the latter OR is set to one. For example, suppose
ORA = 0.5, ORB = 2, and ORAB = 1.5. Then ORA|B=0 = 0.5 and
ORA|B=1 = 1.5/2 = 0.75, apparently suggesting that A is always protec-
tive, whereas the effect of the two in combination clearly is deleterious.
Conversely, ORB|A=0 = 2 and ORB|A=1 = 1.5/0.5 = 3, suggesting that
the effect of B is always deleterious, whereas the risk in those exposed to
B is actually smaller in the presence of A than in the absence of it.

Consider the hypothetical data shown in Table 12.4. In this example,
it is clear that smoking is a much larger contributor to risk than is the
environmental hazard. The two factors are not confounded, however,
since in the population at risk, the prevalence of smokers is the same in
the exposed and unexposed. The two effects on risk are multiplicative,
individuals with both factors having a relative risk of 30, the product of
the relative risks for smoking (10) and for the environmental hazard (3).

The multiplicative model just illustrated can be represented as

RRmult = RRE × RRS

where RRE is the relative risk for exposed nonsmokers relative to unex-
posed nonsmokers, and RRS is the relative risk for unexposed smokers
relative to unexposed nonsmokers. Under this model, the effect of expo-
sure is the same in both nonsmokers (RRE|NS = 3) and smokers (RRE|S =
30/10 = 3).
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Table 12.4. Hypothetical data from a cohort study of some environmental
hazard and tobacco smoking

Environmental Smoking habit Number at risk Cancer cases Relative risk
hazard

No Never 1000 10 1
No Current 1000 100 10
Yes Never 1000 30 3
Yes Current 1000 300 30

An additive model takes the form

RRadd = 1+ (RRE − 1)+ (RRS − 1)

= RRE + RRS − 1

in other words, the risk from exposure to both factors is the background
risk plus the sum of the additional risks from each factor separately. Thus,
in our hypothetical example, if the single-factor risks were the same as
before, we would have expected a relative risk for exposed smokers of
1+ (10− 1)+ (3− 1) = 12, rather than 30 as above. Under this model,
the excess relative risk (ERR=RR− 1) for exposure is the same in non-
smokers (ERRE|NS = 3 − 1 = 2) and smokers (ERRE|S = 12 − 10 = 2).
Of course, the truth could also be less than additive (e.g., a joint RR
of 11), greater than multiplicative (e.g., 50), or something in between
(e.g., 20).

In practice, neither model is likely to be exactly correct, so one might
want a more general family of models that would include both the additive
and multiplicate forms as special cases, thereby providing an alternative
against which to test the fit of each. The first such model to be proposed
was an exponential mixture (Thomas 1981) of the form

RR(E, S) = RR1−α
add × RRα

mult

which takes the additive form when α= 0 and the multiplicative form
when α = 1. Other mixture models have been suggested (Breslow and
Storer 1985; Moolgavkar and Venzon 1987; Lubin and Gaffey 1988), of
which the most consistent under arbitrary recoding of the constituent sub-
models appears to be one based on the Box–Cox transformation (Guerro
and Johnson 1982) of the form

RR(E, S) =
{

exp(β1E + β2S) if α = 0
[1+ α(β1E + β2S)]1/α if α �= 0
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Unfortunately, by combining exponential-multiplicative and linear-
additive models in this manner, comparisons of the form of joint
effect of two factors and the shape of their separate exposure–response
relationships are confounded if the variables are continuous.

Epidemiologists use the terms “effect modification” or “interaction”
to describe any departure of the observed joint risk from what might be
expected on the basis of a simple model involving only the effects of the
separate factors. Any test or estimate of interaction is thus model spe-
cific, that is, one must specify which main effects model the observed data
deviates from. For example, one could define a multiplicative interaction
relative risk as

RRInt(mult) =
RRjoint

RRE × RRS

or an additive interaction relative risk as

RRInt(add) = RRjoint − RRE − RRS + 1

For the data illustrated in Table 12.2, RRInt(mult) = 1 and RRInt(add) = 18,
indicating no departure from a multiplicative model but a large positive
deviation from an additive model. Likewise, if the joint RR were 12,
the multiplicative interaction RR would have been 0.4 and the additive
interaction would have been 0, indicating a less-than-multiplicative joint
effect and no departure from an additive model. These concepts have nat-
ural extensions to more than two risk factors, such as the inclusion of
main effects and interactions in a logistic regression model (for testing
departures from a multiplicative model). These parameters can be used
to estimate the proportion of disease among exposed individuals that is
attributable to the separate or joint action of each factor or other unknown
factors, as will be explained in Chapter 16.

Confidence limits on these derived parameters can be derived from
their asymptotic variances, in a similar manner to those for main effects
described in Chapter 4. For example, the logarithm of the multiplicative
interaction OR is simply

ln(ORInt(Mult)) = ln(ORAB)− ln(ORA)− ln(ORB)

= ln(ORA|B=1)− ln(ORA|B=0)

But var(lnORAB) = 1/m11 + 1/m00 + 1/n11 + 1/n00, and similarly for
the other terms, so

var(lnORInt(Mult)) = 1/m00 + 1/m01 + 1/m10 + 1/m11

+ 1/n00 + 1/n01 + 1/n10 + 1/n11
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In practice, one is generally looking at more than two simple binary
variables at once, so it is more convenient to use logistic regression for
the purpose of testing and estimating interaction effects, at least for test-
ing departures from a multiplicative model. To see this, note that under a
logistic model, logit Pr(Y = 1|A,B) = β0+β1A+β2B+β3A×B, the OR
is OR(A,B) = exp(β1A+ β2B + β3A×B) = ORA ×ORB ×ORInt(Mult).
In other words, one can estimate the three ORs in Table 12.2 simply
by including indicator variables for the main effects of each factor along
with their product in a logistic regression (conditional or unconditional,
depending uponwhether the study design is matched or not). Likewise, the
conditionalORs can be computed asORA|B = exp(β1+β3B) and similarly
for ORB|A. This regression framework extends naturally to incorporate
adjustment for confounders and interactions amongst more than two vari-
ables, including higher-order interactions (e.g., three-way interactions
A× B × C, etc.)

The terms “interaction,” “effect modification,” and “synergy” are often
used interchangeably, but there is an extensive literature on this subject
(Rothman 1974; 1976b; Koopman 1977; Miettinen 1982a; Rothman
and Greenland 1998). “Synergy” implies a public health impact that is
larger than the sum of the effects of each variable separately—in short,
a greater-than-additive model (a less-than-additive effect would be called
“antagonism”). “Interaction” in the statistical literature means any depar-
ture from a puremain effects model; this main effects model could take any
form, but an important case is what is known as “intrinsic” interaction in
the sense that it is not possible to represent the joint effect in terms of main
effects alone on any scale (Tukey 1949). In the biological literature, inter-
action typically is used in a different sense to refer to a biological effect that
depends jointly on two or more factors, such as an interaction between a
substrate and an enzyme that metabolizes it or between an antigen and an
antibody. Biological interactions can lead to effects at the population level
that are nevertheless indistinguishable from a simple main effects model or
could require a statistical interaction term; conversely, a statistical inter-
action might or might not imply the presence of a biological interaction.
See (Siemiatycki and Thomas 1981) for further discussion of this distinc-
tion, with examples from multistage carcinogenesis as described in the
next chapter.

For studies of gene–environment interactions, two alternative designs
are available that do not require control subjects. The case-only design
relies instead on an assumption that genotype and exposure are inde-
pendently distributed in the population at risk, so that any association
between the two factors among cases implies an interaction in risk, specif-
ically a departure from a multiplicative model. The design cannot be
used for testing main effects, however, and the assumption of gene–
environment independence is not always tenable: some genes could affect
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behavior, directly or indirectly (e.g., through family history of a genetic
disease with a modifiable environmental component). The case-parent-
triad design instead estimates a genetic relative risk by comparing the
genotypes of cases to the set of genotypes the case could have inherited,
given the genotypes of the parents. By stratifying on the exposure of the
case, differences in the genetic relative risk for exposed and unexposed
cases would indicate a gene–environment interaction, without requiring
any exposure information for the parents. This design requires a weaker
assumption of gene–environment independence, conditional on parental
genotype (i.e., within-family rather than between-family independence).
For further discussion of these approaches see (Thomas 2004).

Multiple exposures, source apportionment,
and complex mixtures

Frequently in environmental epidemiology, we are confronted with an
exposure that is really a complex mixture of many constituents. “Air pol-
lution,” for example, comprises both gaseous pollutants like oxides of
nitrogen (NOx , including NO, NO2, etc.), ozone (O3), and various acid
aerosols (HCl, H2SO4, N2NO3, etc.), as well as particulate matter of
various sizes and chemical compositions (collectively known as PM, with
sizes designated as coarse PM10, fine PM2.5, and ultrafine PM0.25). These
various components of the mixture can have different health effects, come
from different sources, and have different spatial and temporal distribu-
tions. It is thus not just an academic matter to separate their effects, since
different the public health goals (reducing mortality from specific causes,
preventing asthma exacerbations, improving lung function) may require
control of different constituents, and the regulations to accomplish these
goals may require interventions directed at different sources of pollution.

Furthermore, it is possible that the various constituents may interact
chemically or biologically. For example, NO and O3 are highly reactive,
yielding NO2 and O2; thus NO from fresh vehicle exhaust, which occurs
in high concentrations near highways, tends to deplete the background
concentrations of O3, leading to lower concentration of the latter near
highways. Depending uponwhich pollutant has the stronger health effects,
one might thus see apparently protective or deleterious effects from living
close to major highways. It is also possible that long-term exposure to
O3 sets up a chronic inflammatory process that make an individual more
sensitive to a short-term insult with PM or vice versa.

Unlike an experimental study, where it would be possible to expose ani-
mals or cell cultures to various pollutants separately and in combination in
a balanced factorial design and observe their joint effects and interactions
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directly, the epidemiologist is limited to observing these effects within the
range of combinations that are available naturally in different settings.
Typically, the various pollutant concentrationswill tend to be highly corre-
latedwith each other. In Southern California, for example, O3 is generated
by the action of intense sunlight on other pollutants and tends to be only
moderately correlated with them. PM, NO2, and acids, however, tend to
be highly correlated with each other, both spatially and temporally, with
correlations in long-term average concentrations across various locations
typically of the order of 0.8–0.9 or higher. In this circumstance, sim-
ply putting all the pollutants into a multiple regression model is unlikely
to be rewarding, as their multicollinearity will lead to highly unstable
coefficients. Before exploring various statistical approaches to address-
ing uncertainty about the selection of variables, we consider two other
approaches to this problem.

The first is known as “source apportionment” (Schauer et al. 1996;
Zheng et al. 2002). Using chemical mass balance techniques and knowl-
edge of the chemical profiles of specific sources (e.g., road dust, gasoline
and diesel vehicles, wood burning, cattle manure, manufacturing plants,
etc.), one can use the measured distribution of chemical constituents in a
complex mixture to reconstruct the proportion of the mixture that derived
from the various sources. In some situations, the availability of spatially
resolved data on specific chemical constituents, together with meteorolog-
ical data and atmospheric dispersion modeling techniques, may permit the
identification of specific point sources as well. These estimates of source
contributions may be much less correlated across different locations than
the concentrations themselves, and thus more amenable tomultiple regres-
sion modeling of their health effects. Such an analysis also yields a direct
estimate of the burden of health decrements attributable to specific pol-
lution sources, which is the ultimate goal of environmental regulations.
Nikolov et al. (2006) illustrate use of a Bayesian structural equations
approach to analyzing the dependence of heart rate variability on sources
of particulates in the Boston area.

A quite different approach is known as “genetic fingerprinting” (Roth-
man et al. 2001; Brennan 2002; Gant and Zhang 2005; Hunter 2005;
Kraft and Hunter 2005). Here the basic idea is that different constituents
of a complex mixture are metabolized by different enzymes, leading to
different health effects. As noted by Hunter,

The finding of an interaction between exposure to a complex mixture and a specific
variant of a metabolic gene ‘points the finger’ at the substrates of the gene as the causal
components of the complex mixture.

By identifying the specific genes encoding the enzymes relevant for specific
constituents that appear to most strongly modify the exposure–response
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relationship for the mixture, one can indirectly identify the constituent
that may be responsible for the observed health effect (Thomas 2007b).

The section on “Selection of confounders” above introduced the idea of
model averaging as ameans of dealing with uncertainty about model form.
There, the focus was on a particular covariate and one was interested in
obtaining an estimate of its coefficient and its variance by averaging across
the space of all possible models that included that variable. In a similar
manner, this approach can be applied to estimate the posterior distri-
bution for whole sets of variables jointly to address questions of model
selection. Extending this approach to models incorporating interaction
terms produces a space of possible models that is much larger: if there
are P variables available, then there can be 2p − 1 possible main effects
and interactions and hence 22p−1 possible models. This number can be
reduced substantially by restricting to the subset of models in which, for
any interaction effect in the model, all the constituent main effects and
lower-order interactions are also included (Chipman 1996). (In the log-
linear models literature, this is known as the set of “hierarchical” models,
but this is not to be confused with the usage of that term to describe multi-
level models adopted here.) To incorporate prior covariates in amulti-level
model, one might score the possible interactions on the basis of whether
they appeared in the same biological pathway. The result would be a set of
estimates for each term in the model and posterior probabilities or Bayes
factors for effects and for models. In particular, one might be interested in
assessing the posterior probability that any particular variable had either
a main effect or contributed to one or more interaction terms, simply by
summing the posterior probabilities over all models to which that variable
contributed. See Conti et al. (2003) for a discussion of this approach to
metabolic pathways, where the covariate vector comprises a set of main
effects and interactions (up to third order) between two exposures (well
done red meat and tobacco smoking) and six genes involved in metabo-
lizing the polycyclic aromatic hydrocarbons and heterocyclic amines they
produce through two distinct pathways.

Examples of interactions

Environment × environment

We conclude this chapter with some specific examples. First, we con-
sider the interaction between radon and tobacco smoking, an issue that is
of particular relevance for assessing the effect of domestic radon in both
case-control and ecologic studies, as well as for establishing compensation
policies for smoking and nonsmoking uranium miners with lung cancer.
Bcause the risks from domestic radon are relatively small, case-control
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studies have limited power for distinguishing alternative models for this
interaction (Lubin and Boice 1997; Krewski et al. 2005b; Krewski et al.
2006). More informative data comes from various miner cohorts, includ-
ing the Colorado plateau uranium miners. Whittemore and McMillan
(1983) found that both categorical and linearmodels for cumulative smok-
ing and radon strongly rejected an additive joint effect in favor of a multi-
plicative one. The exponential mixture of linear main effects models of the
form described earlier produced an estimate of the interaction parameter
α = 0.94. However, suchmixture parameters can have highly skewed con-
fidence limits (Moolgavkar and Venzon 1987). A subsequent reanalysis of
these data (Lubin and Gaffey 1988) yielded an estimate of the interaction
parameter of α = 0.4, apparently closer to additivity than multiplicativity,
but the likelihood ratio test rejected the additive model (χ2

1 = 9.8) and
not the multiplicative (χ2

1 = 1.1). A linear mixture showed an even more
skewed likelihood, with α = 0.1 (apparently nearly additive) but with like-
lihood ratio tests that again rejected the additive but not the multiplicative
model. More comprehensive reanalyses of the 11 available uraniumminer
cohorts by the National Academy of Sciences BEIR VI Committee (Lubin
et al. 1994; Lubin et al. 1995; NAS 1999) have generally found the joint
effect to be intermediate between additive and multiplicative.

When the temporal sequence of the two exposures was considered,
exposure to radon followed by smoking produced a significantly more-
than-multiplicative effect, whereas the reverse sequence produced a signifi-
cantly less-than-multiplicative effect (Thomas et al. 1994), suggesting that
smoking may act as a promoter of radon-initiated cells. (Similar analyses
using the mechanistic two-stage clonal expansion model of carcinogenesis
will be described in the following chapter.) These findings are compatible
with an experimental study in rats (Gray et al. 1986), which found that if
tobacco smoke exposure was applied after radon exposure, four times as
many cancers occurred as when the same total doses were applied in the
reverse sequence.

Residential studies have generally low power for testing for radon-
smoking interaction effects, but a joint analysis of the five case-control
studies with smoking data yielded a summary RR estimate of 1.18
(0.8–1.6) at 150 Bq/m3 in nonsmokers, not larger than the RR of 1.24
(1.0–1.5) in all subjects ignoring smoking (Lubin and Boice 1997), as
would be expected under an additive model. More recent re-analyses
(Krewski et al. 2005b; Krewski et al. 2006) also found no evidence of
different relative risks in nonsmokers and smokers or subgroups thereof.

Gene × environment

As an example of gene–environment interactions, we turn to the Children’s
Health Study and consider interactions between various air pollutants
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Figure 12.1. Hypothesized representation of the oxidative stress and inflammatory path-
ways for the respiratory effects of air pollution and the various genes involved. (Reprinted
with permission from Gilliland et al. 1999.)

and the genes that have been postulated to be involved in oxidative
stress and inflammatory pathways (Figure 12.1). Gilliland et al. (1999)
postulated that

respiratory effects in children from exposure to gaseous air pollutants (O3, NO2, acids)
and particulates (PM10 and PM2.5) result from chronically increased oxidative stress,
alterations in immune regulation, and repeated pathologic inflammatory responses
that overcome lung defenses to disrupt the normal regulatory and repair processes.
In this theoretical framework, the effects of O3, NO2, PM10, and PM2.5 are medi-
ated by complex, interacting, and self-enhancing processes of oxidative, radical, and
enzymatic attack on the [respiratory epithelial lining fluid] RELF, epithelial cells, and
macrophages. These processes are coupled to a persistent inflammatory response that
produces tissue damage, decreased ventilatory capacity, increased airway reactivity,
decreased macrophage clearance, and altered immune functions. The inflammatory
response, if not properly regulated, may produce tissue damage from the activity of
secreted proteases, oxidants, and radicals. Inactivation of protease inhibitors by oxi-
dant air pollutants may further enhance the damage from proteases released during
neutrophilic inflammation.

They went on to characterize the specific genes that were involved in
these processes, many of which have now been tested in a substantial
proportion of CHS subjects. The first reports (Gilliland et al. 2002a;
Gilliland et al. 2002b; Gilliland et al. 2002c) focused on the glutathione-
S-transferase superfamily of genes involved in detoxification of oxidant
species. Variants in GSTP1 were found to have a main effect on the fre-
quency and severity of respiratory illnesses, and both GSTP1 and GSTM1
on lung function growth. Furthermore, GSTM1was found to interact with
maternal smoking in pregnancy: among children with the GSTM1 null
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genotype, there were strong associations of various asthma and wheezing
endpoints with maternal smoking, but none among those with functioning
GSTM1 genotypes.

To test this hypothesis experimentally, a randomized crossover chamber
study (Gilliland et al. 2004) was conducted, in which subjects with sensi-
tivity to ragweed pollen were challenged with allergen alone and allergen
plus diesel exhaust particles in random order. Those with the GSTM1 null
genotype had significantly larger changes in IgE and histamine following
diesel particles than those with a functioning genotype, and those with
both the GSTM1 null and GSTP1 I/I genotypes at codon 105 had even
larger responses.

Asthma has also been found to be associatedwith Intracellular Adhesion
Molecule-1 haplotypes (Li et al. 2005b) and with an interaction between
ozone and Tumor Necrosis Factor (Li et al. 2006). Dietary anti-oxidant
intake has also been found to have protective effects (Gilliland et al. 2003).
So far, most of these various factors have been explored one-at-a-time or in
pairwise combinations, but there is a need for a more comprehensive treat-
ment. Interactions amongst 20 geneswere explored using a novel “Focused
Interaction Testing Framework” (Millstein et al. 2006), which identified
a three-way interaction between the genes NQO1, MPO, and CAT, all
involved in the oxidative stress pathway in whites andHispanics and repli-
cated in African-Americans and Asian-Americans. Asthma is doubtless a
complex disease with a variety of genes controlling immune and airway
responses (e.g., CD14) interacting with a broad range of endotoxins and
other allergens (Martinez 2007a, b).

Another study is examining the risk of second breast cancers in women
treated for a first breast cancer in relation to radiation dose to the untreated
breast and the ATM gene, which plays a central role in the repair of
double-strand breaks that can be induced by radiation. This study uses
a counter-matched design (Chapter 5) in which each case-control triplet
(comprising one second cancer and two unilateral cases matched on age
at diagnosis of the first, survival to the time of the second cancer, and
center) contain two women treated with radiotherapy and one without.
This design ensures that all triplets will be discordant for radiation and
therefore greatly improves the power for testing both the main effect of
radiation and gene–radiation interactions, while having negligible effect
on the power for genetic main effects. Preliminary results suggest that both
radiation and ATM genotype have relatively weak effects on their own (at
least overall, although somewhat stronger in younger women with longer
latency). However, in combination their effects were much stronger—an
interaction RR of 3.6 (95% CI 1.3–6.8) for rare variants classified as
“likely deleterious” overall, rising to 6.0 (1.2–29) in women under age 45
at diagnosis of the first cancer and 9.1 (2.0–42) in women with at least 5
years latency (J.L. Bernstein et al., Unpublished data).
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Complex pathways

Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines
(HCAs), have been postulated to be involved in the etiology of colorectal
polyps and cancer. Both PAHs and HCAs are contained in tobacco smoke
and in well-done red meat and each is metabolized by different genes,
some having the effect of activating these chemicals to potent carcinogens,
others involved in detoxifying them. Complex biological pathways, such
as these call for a comprehensive analysis of interaction effects (Thomas
2005b). The hierarchical modeling approach described in Box 12.1 pro-
vides an empirical framework for accomplishing this (Conti et al. 2003).
The following chapter will discuss more mechanistic approaches.

Ultimately, it will be essential to incorporate various markers of the
internal workings of a postulated pathway, perhaps in the form of
biomarker measurements of intermediate metabolites, external bioinfor-
matic knowledge about the structure and parameters the network, or
toxicologic assays of the biological effects of the agents under study. For
example, in a multi-city study of air pollution, one might apply stored
particulate samples from each city to cell cultures with a range of genes
experimentally knocked down to assess their genotype-specific biologi-
cal activities, and then incorporate these measurements directly into the
analysis of G×E interactions in epidemiologic data (Thomas 2007b).
See Thomas (2005); Conti et al. (2007); Parl et al. (2008); Thomas
et al. (2008) for further discussion about approaches to incorporating
biomarkers and other forms of biological knowledge into pathway-driven
analyses.
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The empiric models discussed heretofore have not explicitly incorporated
knowledge of specific biological mechanisms, although in some cases,
the form of the dose–response model may be motivated by theoretical
considerations, such as the linear-quadratic cell-killing model used in
radiobiology (see Chapter 6). In some instances, however, the underlying
disease process may be well enough understood to allow it to be described
mathematically. Probably the greatest activity along these lines has been
in the field of cancer epidemiology. Two models in particular have domi-
nated this field: the multistage model of Armitage and Doll (1954) and the
two-event clonal-expansion model of Moolgavkar and Knudson (1981).
For thorough reviews of this literature, see Whittemore and Keller (1978),
Peto (1977), Moolgavkar (1986), and Thomas (1988); here, we merely
sketch some of the basic ideas.

A few other biological systems have been modeled mathematically, such
as the insulin–glucose metabolism pathway (Bergman et al. 2003), but
few have attempted to incorporate environmental exposures. Important
exceptions are physiologically based pharmacokinetic (PBPK) models for
the metabolism of toxic agents. While we begin by treating the external
exposure at a given time as the relevant dose (as might be appropriate for,
say, ionizing radiation), later in this chapter we will consider models that
account for the metabolic activation, detoxification, and physical move-
ment of agents between compartments of the body before the active agent
reaches the tissue. This will provide a framework for allowing for the
modifying effects of various metabolic genes, providing a more mechanis-
tic basis for Gene×Environment interactions than the purely descriptive
models of the previous chapter.

Stochastic models of carcinogenesis

Armitage–Doll multistage model

The Armitage–Doll multistage model postulates that cancer arises from
a single cell that undergoes a sequence of K heritable changes (point
mutations, chromosomal rearrangements, insertions, deletions, changes
in methylation, etc.), in a particular sequence. Suppose first that the
rate of each of these mutations is constant over time, μk, k = 1, . . . ,K
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Figure 13.1. Schematic representation of the Armitage–Doll multistage model of
carcinogenesis.

(Figure 13.1) and suppose further that the rate of one or more of these
changes depends on exposure to carcinogens. From these simple assump-
tions, one can then show that the hazard rate for the incidence of
cancer (or more precisely, the appearance of the first truly malignant
cell) following continuous exposure at a constant rate X is approximately
λ(t ,X)=αtK−1∏K

k=1 (1+ βkX), where βk is the slope of the relativemuta-
tion rate for the kth step of the process per unit X. Thus, the hazard has
a power-function dependence on age and a polynomial dependence on
exposure rate with order equal to the number of dose-dependent stages.
The model does not require any inherent variation in the stage-specific
mutation rates (other than their implicit dependence on possibly time-
varying carcinogen exposures) to produce a dramatic increase in cancer
rates with age. Thus, the there is no independent aging effect, say due to
loss of immune competence (Peto et al. 1985).

The multistage model also implies that two carcinogens X1 and X2
would produce an additive effect if they act additively at the same stage
(i.e., if μk = μk0(1+βk1X1+βk2X2) and a multiplicative effect if they act
at different stages. If instead exposure is instantaneous with intensityX(u)

at age u, its effect is modified by the age at and time since exposure: if it acts
at a single stage k, then the excess relative risk at time t is approximately
proportional to

Zk(t) = X(u)
uk−1(t − u)K−k−1

tK−1

and for an extended exposure at varying dose rates, the excess relative risk
is obtained by integrating this expression over u (Whittemore 1977; Day
and Brown 1980). Analogous expressions are available for time-dependent
exposures to multiple agents acting at multiple stages (Thomas 1983b).
For example, if two stages k1 and k2 are sensitive, then the resulting risk
involves terms of the same form for the effect of each stage separately,
plus an additional term for the interaction between exposures at time u

and v of the form

t1−K

∫ t

0

∫ ν

0
X(u)X(ν)uk1−1(ν − u)k2−k1−1(t − ν)k1−1 du dν

illustrating a case of nonadditivity as discussed under extended exposure
histories in Chapter 6. These expressions are only approximations to the
far more complex exact solution of the stochastic differential equations
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(Moolgavkar 1978); the approximate expressions given above are valid
only when the mutation rates are all small.

Pierce and Mendelsohn (1999) and Pierce and Vaeth (2003) have devel-
oped an alternative formulation of the multistage model with all stages but
the last equally sensitive, as might be plausible if, say, all mutation rates
were equally dependent on exposure. They demonstrated that in this case,
the absolute excess rates for an instantaneous exposure would depend only
on attained age, not age at exposure or latency as in the case where only a
single stage is dose dependent. This prediction is generally consistent with
the pattern observed in the atomic bomb survivor cohort, as described in
greater detail in the section on Genomic Instability below.

The multistage model has also been fitted to epidemiologic data on a
wide variety of cancers and exposure factors, including lung cancer in
relation to arsenic (Brown and Chu 1983a,b), coke oven emissions (Dong
et al. 1988), and asbestos and smoking jointly (Thomas 1983b), as well
as leukemia and benzene (Crump et al. 1987) and solid cancers and radia-
tion among the atomic bomb survivors (Thomas 1990; Little et al. 1992;
Heidenreich et al. 2002a) and uranium miners (Thomas 1990; Heidenre-
ich et al. 2002a; Little et al. 2002), as well as studies of radon-exposed rats
(Heidenreich et al. 2000). Particularly notable are a series of papers on
applications to data on tobacco smoking (Brown andChu 1987; Freedman
and Navidi 1989; 1990). Chapter 6 described various empiric models for
smoking. For a constant intensity exposure z from age t0 to t1, the multi-
stage model with only a single sensitive stage k out of K would predict a
hazard rate of

λ(t) = λ0t
K−1 + λkX

∫ t1

t0

uk−1(t − u)K−k−1 du

= λ0t
K−1 + λkX

K−k−1∑
j=0

(
K − k − 1

j

)
t j

(
t
K−j−1
1 − t

K−j−1
0

)
K − j + 1

with similar but more complex expressions if multiple stages were sensi-
tive. All these expressions are simply polynomials in smoking intensity X

and age at initiation, age at cessation, and attained age. Thomas (1982;
1988) and the previously cited papers illustrate the predictions of this
model for the dependence of risk on these various factors.

Several authors (Crump et al. 1976; Peto 1977; Hoel 1979; Day and
Brown 1980; Portier and Hoel 1983) have discussed the implications
of multistage models for cancer risk assessment, which we will revisit
in Chapter 15. In particular, the “linearized multistage model” (Crump
1984; 1996) for lifetime risk R(X) data as a function of a constant
applied dose rate z in animal carcinogenity experiments has the form
R(X) = 1 − exp(−β0 − �kβkX

k), with no temporal modifiers; in most
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Figure 13.2. Schematic representation of the Moolgavkar–Knudson TSCE model.

applications only the linear or linear-quadratic terms are included and
agencies often rely on some upper confidence limits on the predicted risk
for setting safety standards.

Moolgavkar–Knudson two-stage clonal-expansion model

The Moolgavkar–Knudson two-stage clonal expansion (TSCE) model
(Moolgavkar andVenzon 1979) postulates that cancer results from a clone
of cells from which one descendent has undergone two mutational events
at rates μ1[X(t)] and μ2[X(t)], either or both of which may depend on
exposure to carcinogens (Figure 13.2). Suppose further that the clone of
intermediate cells is subject to a birth-and-death process (birth rate α,
death rate β) with net proliferation rate ρ[X(t)] = α − β that may also
depend on carcinogen exposures. (Here, “birth” refers to the division of
a stem cell into two stem cells and “death” refers to terminal differentia-
tion or apoptosis; the normal division of a stem cell into another stem cell
plus a terminally differentiated cell has no impact on the total number of
stem cells at risk and can be ignored.) The number of normal stem cells
at risk N(t) varies with age, depending on the rate of development of the
target tissue. Finally, in genetically susceptible individuals (carriers), all
cells carry the first mutation at birth.

An approximate expression for the resulting incidence rate at age t

is then

λ(t ,X) = μ2[X(t)]
∫ t

0
N(u)μ1[X(u)] exp

{∫ t

u

ρ[X(ν)] dν
}

du

for noncarriers, representing the expected number of cells with the first
mutation being created at time u, multiplied by the expected number of
descendents of each at time t , integrated over u, and then multiplied by
the second mutation rate at time t . For carriers, this reduces to

λ(t ,X) = μ2[X(t)]N(0) exp
{∫ t

0
ρ[X(ν)] dν

}
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Again, note that these expressions are only approximate solutions to the
stochastic process (Moolgavkar et al. 1988), the validity of which depends
even more strongly than in the Armitage–Doll model upon the mutation
rates being small, because with fewer mutational events, these rates must
be much higher to yield comparable cancer rates.

There have been many applications of the TSCE model to vari-
ous carcinogen exposures, including smoking (Moolgavkar et al. 1989;
Heidenreich et al. 2002b), radon (Moolgavkar et al. 1990; 1993; Luebeck
et al. 1999; Curtis et al. 2001; Heidenreich and Paretzke 2001; Little
et al. 2002; Heidenreich et al. 2004a,b), the atomic bomb survivors (Little
1996; Heidenreich et al. 1997; 2002a; Kai et al. 1997; Pierce 2003; Jacob
and Jacob 2004), plutonium in Mayak workers (Jacob et al. 2005; Jacob
et al. 2007), bone cancer in radium and plutonium in animals and humans
(Bijwaard et al. 2002; 2004; Bijwaard and Dekkers 2007), cadmium
(Stayner et al. 1995), and arsenic, radon, and smoking jointly (Hazelton
et al. 2001). As an example, the original application to the cohort of
U.S. uranium miners (Moolgavkar et al. 1993) found effects of radon
on both the first mutation and net proliferation rate of intermediate cells
(“promotion”), similar to earlier analyses of data on radon-exposed rats
(Moolgavkar et al. 1990; Heidenreich et al. 2000; Bijwaard et al. 2001).
Both analyses showed that the “inverse dose rate effect” found in the vari-
ous descriptive analyses (Chapter 6) could be accounted by this promotion
(although somemay be simply the result of their assumed nonlinear depen-
dence of the various rates on smoking and radon concentrations). Their
analysis of the miner data assumed that radon and smoking contributed
additively to the mutation rates, but nevertheless yielded predicted cumu-
lative hazard rates that showed a synergistic effect—greater than additive,
but submultiplicative. A later application to a cohort of Chinese tin miners
(Hazelton et al. 2001) exposed to arsenic as well as radon and tobacco
also found interactive effects of the three exposures: attributable risks of
20% for the interactive effect of arsenic and tobacco, 11% for arsenic and
radon, 10% for radon and tobacco, and 9% for the three-way interac-
tion, in addition to main effects, with only 9% remaining for background
factors. Although all three exposures had effects on growth and death
rates of intermediate cells, they had quite different effects on the net
proliferation rates.

The model has also been fitted to population incidence data (with no
exposure information) for breast (Moolgavkar et al. 1980) and colon can-
cers (Moolgavkar and Luebeck 1992). The latter compared the fit of the
Armitage–Doll multistage model with those of the TSCE model and an
extension involving three mutational events. They concluded that all three
models fit the data equally well, but estimates of mutation rates from
the three-stage model were more consistent with experimentally observed
values. A later analysis of SEER data (Luebeck and Moolgavkar 2002),
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however, found that two rare events followed by a common one with
clonal expansion leading to an adenomatous polyp, in turn followed
by only one more rare event leading to malignant transformation, pro-
vided a good fit. Whereas the two rare events could be homozygous
mutations in the APC gene, the common event is more likely to repre-
sent a repositioning within the colon crypt. They concluded that there is
no need to invoke genomic instability (see next section). See also Little
(1995a) for further discussion of the need for more than two stages in
such models.

Fewof these reports have provided any formal assessment of goodness of
fit, focusing instead on comparisons between alternative models. This can
be done, however, by grouping the subjects in variousways and comparing
the numbers of observed and predicted cases; for example, Moolgavkar
et al. (1993) grouped uranium miners by the temporal sequence of their
radon and smoking exposure histories and reported good agreement with
the predictions of their two-stage model.

Variants incorporating genomic instability and DNA repair

Despite the successes of the Armitage–Doll and Moolgavkar–Knudson
models, both are somewhat unsatisfying. In the multistage model, the
number of events has generally been estimated at about 5–7 for most
epithelial cancers, to account for the steep age dependency in cancer inci-
dence rates as a function of age. The specific mutational events have not
been identified, however, and it seems unlikely that there would be a single
pathway to cancer requiring these specific mutations to occur in the same
sequence on all occasions. Furthermore, it is not clear why only one or two
of these events would be related to carcinogen exposure, as is generally
required to account for the approximate linearity of most dose–response
relationships. The best observational evidence in support of the multi-
ple mutational events comes from the colorectal cancer work of Fearon
and Vogelstein (1990), who described specific chromosomal changes typ-
ically associated with the progression from normal epithelium, through
hyperplasia, metaplasia, adenoma, to carcinoma and metastases. Nev-
ertheless, many authors have questioned the need for as many as 5–7
stages when experimental biologists tend to recognize only initiation, pro-
motion, and progression. By adding clonal expansion, the Moolgavkar–
Knudson model can describe the age pattern with only two mutational
events; for colorectal cancer, they found two- or three-mutation models
with clonal expansion described the data equally well (Moolgavkar and
Luebeck, 1992).

In all these models, the mutation rates from one stage to the next and
(in the models involving clonal expansion) the birth and death rates are
assumed to be homogeneous across individuals and across cells within an
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individual. It seemsmore plausible that there would be some heterogeneity
in these rates and that in a competitive process, the more aggressive
cells would eventually tend to predominate. Evidence in support of this
hypothesis comes from experiments in which colorectal tumors have been
microdissected and the spectrum of mutations in different regions used
to infer the age of the tumor (Tsao et al. 2000). In this experiment, the
initial event is assumed to be loss of mismatch repair (MMR) capability
(e.g., mutation or loss of MLH1 or MSH2) leading to accumulation of
further mutations at a much accelerated rate. The data for those analy-
ses was obtained from the distribution microsatellite alleles in noncoding
regions: the length of the terminal expansion period is estimated using
the variance in allele lengths within loci across a tumor, whereas the
interval from loss of MMR to the start of the terminal expansion is esti-
mated using the variance of the differences between the most common
alleles and the germline, using coalescent theory. It seems reasonable to
assume that a similar process would be happening to functionally impor-
tant genes, where each additional mutation could have an influence on
the rate of subsequent mutations and/or the kinetics of these intermediate
lesions.

These considerations suggest an alternative model of carcinogenesis
incorporating the following features:

• An unlimited number of possible paths to a fullymalignant cancer clone,
each characterized by a sequence of mutational events, but with neither
the number of such events nor the specific changes being fixed.

• Each cell being at risk of a mutational, a birth, or a death event at inde-
pendent time-invariant Poisson rates that are specific to that particular
cell type and homogeneous for all cells of that type.

• Each successivemutation altering themutation, birth, and death rates of
the resulting daughter cells; the distribution of these rates may become
increasingly shifted towards more aggressive values with each successive
stage and over time for any given stage, solely as a consequence of
natural selection, without the need to postulate any systematic effect of
mutation per se in that direction.

Figure 13.3 provides a schematic representation of the model. Let Nk(t)

represent the total number of cells which have accumulated k mutations,
where N0 represents the number of normal stem cells. For simplicity, we
assume that N0 is constant over adult life, but in principle this could
be modeled deterministically based on knowledge of the growth of the
target organ as done by Moolgavkar, et al. (1980) for breast cancer, for
example. Now let Nkm represent the number of cells with k mutations of
specific types m. Let the rate of mutation per cell from type km be denoted
μkm and let the birth and death rates of type km cells be denoted αkm and
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Figure 13.3. Schematic representation of a branching process model for carcinogenesis.

βkm, respectively. Then the possible transitions have rates are given by

Pr
(
Nkm → Nkm − 1,Nk+1,m′ = 1

) = μkmNkm(t) dt

Pr (Nkm → Nkm + 1) = αkmNkm(t) dt

Pr (Nkm → Nkm − 1) = βkmNkm(t) dt

The cells generated by a mutation inherit the properties of their parent,
with some random perturbations that might be given by (say) gamma
distributions,

μk+1,m′ = μkm	(m1,m2)

αk+1,m′ = αkm	(a1, a2)

βk+1,m′ = βkm	(b1, b2)

In full generality, this model appears intractable, but a useful sim-
plification was found by Pierce and Vaeth (2003) by reducing the past
history of mutational states sr after event r of a cell to a vector of states
s = {s1, . . . , sr , . . . }. They then assumed that the hazard rate for the next
transition rate depends in some arbitrary fashion on that history and upon
exposure at that moment, but not intrinsically upon age. Then the hazard
rate for all cells at risk at time t can be written as

λ
A(t),s(t) = {λ1,s1[1+ βz(t)], . . . , λr,sr [1+ βz(t)], . . . }

where A(t) = {z(u)}u≤t represents the entire past history of exposure.
Their crucial observation was that if one then transformed the age scale
from t to t ′ = t +βX(t), where X(t)= ∫ t

0 x(u) du is cumulative dose,
the transformed rates became simply λ

A(t),s
′(t ′)= λs(t). In other words,

the age-transformed rates do not depend upon exposure, so that what-
ever complex dependency the baseline rates of cancer μ0(t) may have
on the mutational history of the population of cells, the rates μ

A
(t)

among exposed individuals will have exactly the same form on this age-
transformed scale. Thus, one can write the relative risk for cancer as
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Figure 13.4. Excess absolute (left panel) and relative (right panel) rates of solid cancers,
excluding thyroid and breast. The dotted lines show the observed effects at 1Gy for different
ages at exposure (separately for males and females on the left panel). The solid lines are
the model fits under the attained-age dependent absolute risk model (left panel) and the
conventional age-at-exposure dependent relative riskmodel (right panel). (Reproducedwith
permission from Pierce and Mendelsohn 1999.)

simply

RR(t) = μZ(t)

μ0(t)
= μ0(t + βX(t))

μ0(t)
[1+ βx(t)] (13.1)

In particular, under the multistage model, for which μ0(t) ∝ tk−1, this
leads to the expression

RR(t) =
{
1+ β

X(t)

t

}k−1

[1+ βx(t)]

the term in square brackets being trivial in most cases. Although the term
in curly brackets has a polynomial dependence on dose, for doses and ages
yielding RRs less than about 3, a linear approximation is adequate, so that
RR(t) = 1+ [β(k − 1)/t]X(t), that is, a slope coefficient that is inversely
proportional to attained age. As an empirical description of dose–time–
response relationships, this result holds quite generally without relying on
a specific choice of the number of stages, including for broad groupings of
cancers that may involve different numbers of stages. This basic idea had
been previously developed by Pierce andMendelssohn (1999), leading to a
reinterpretation of the temporal modifying factors discussed in Chapter 6
putting more emphasis on attained age rather than age at or time since
exposure. As shown in Figure 13.4, the model (left panel) fits the observed
absolute excess rates relatively well, showing only slight dependence on
age at exposure, whereas the conventional description in terms of age-
at-exposure dependent relative risks (right panel) does not fit anywhere
nearly as well.
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Little et al. (1997; 1999) have pointed out, however, that the fit of the
absolute excess risk model is not as good when extended to the full age
range and to all solid cancers (not excluding the hormone-dependent can-
cers as done by Pierce et al.). Little (personal communication) compared
the fit of the Pierce–Mendelsohn model with a general relative risk model
allowing modification by attained age (but not age at exposure or latency)
and a generalized Armitage–Doll multistage model (Little et al. 1992)
and found the fits were indistinguishable with the Pierce and Mendelsohn
restrictions, but the multistage model fitted significantly better without
these restrictions.

To illustrate the generality of the model, Pierce and Vaeth applied
Eq. (13.1) to data from the atomic bomb survivors, uranium miners, and
the American Cancer Society cohort to examine the effect of cessation
of smoking. All three provided good fits to the data with only a single
free parameter β (beyond the arbitrary dependence of baseline rates μ0(t)

on age).
Equation (13.1) is very general, applying both to instantaneous and

extended exposures. It implicitly allows for differential proliferation or
death of cells having different mutational histories and does not require
any predetermined number or sequence of mutations as the Armitage–
Doll model does. Simple generalizations allow it also to incorporate age-
dependent mutation rates or the possibility that an increment of exposure
might confer some long-lasting instability to a cell, resulting in transition
rates that depend upon not the current state of the cell but on how long
it has been in that state. However, comparing the fits of the Pierce–Vaeth
and several other variants of the multistage and two-stage models to the
atomic bomb survivor data, Heidenreich et al. (2002a) concluded that they
all yielded similar fits to the data, yet produced very different predictions
of the dependence of excess risk on age at and time since exposure, calling
into question Pierce and Vaeth’s claim that excess risks depended only on
attained age. See Pierce (2003) for a rejoinder to their specific criticism
and general comments on the aims of mechanistic modeling.

Other models that explicitly allow for destabilizing mutations have been
developed byNowak et al. (2002) and Little andWright (2003). The latter
is a generalization of the TSCE model that allows for an arbitrary number
of stages and levels of genomic instability. When applied to the U.S. pop-
ulation incidence data for colorectal cancer, the best fit was obtained with
five stages and two levels of instability. Comparison of the predicted excess
risks following an instantaneous exposure with the observed patterns in
the atomic bomb survivor data suggested that radiation might act on one
of the early destabilizing mutations (Little and Wright 2003). However,
a subsequent reanalysis of the U.S. data (Little and Li 2007) found that
the two-stage clonal expansion model, which does not involve genomic
instability, fitted the data about as well as the Nowak et al. and Little and
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Figure 13.5. Schematic representation of the coalescent model of carcinogenesis. The upper
panel shows the ancestry of all cell in a colon crypt derived from a single stem cell, including
(right) those that died. The lower panel shows the ancestry of only the subset of cells in the
tissue sample. (Reproduced with permission from Nicolas et al. 2007.)

Wright two-stage genomic instability models and significantly better than
the Little and Wright models with three or five stages.

The models described above are closely related to coalescent theory that
is widely used in population genetics to describe the common ancestry of
populations of organisms. The same mathematical models can be used to
describe the ancestry of a clonal population of cells derived from a com-
mon stem cell (Figure 13.5). A general introduction to coalescent models
in genetics is provided in the companion volume (Thomas 2004), with
references to the technical details elsewhere, but an example of its appli-
cation to clonal cell populations in colon cancer is provided by Nicholas
et al. (2007). The experimental data derives from microdissections of
colon tumors, like Tsao et al. (1999) data described above, but here using
DNA methylation as a marker of genetic changes between lineages. Thus,
the distribution of methylation states across cells within the same tumor
specimen can provide information about the age of the tumor and its evo-
lutionary history. Formal fitting of the coalescent model using Bayesian
methods allowed estimation of the number of stem cells in a colon crypt.
The authors found that this was at least 8, with posterior mode between
15 and 20, and concluded that both hyper- and hypo-methylated cells
coexist in the same crypt in a synergistic manner.

Models of bystander effects

Most of the models we have considered so far effectively treat initiating
events as occurring independently across the exposed cells. Accumulating
evidence suggests, however, that this is not the case: cells that are not
directly hit by a quantum of radiation can nevertheless undergo a trans-
formation as a result of damage to neighboring cells. This phenomenon is
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called the “bystander effect.” The mechanisms are not well understood,
but are thought to relate to some combination of inter-cellular gap–
junction communication and diffusion of signaling molecules (Hamada
et al. 2007; Morgan and Sowa 2007). In addition, directly hit cells can
exhibit an adaptive response that may contribute to the bystander effect
through the production of reactive oxygen or nitrogen species (ROS/RNS)
(Matsumoto et al. 2007; Tapio and Jacob 2007), as well as various other
effects (induced radioresistance, genomic instability, epigenetic changes,
etc.). Experimental evidence for these phenomena derives from studies in
which various biological responses are compared across in vitro cultures
irradiated in different ways: by coculturing irradiated and nonirradiated
cells; using very low-fluence alpha beams so that most cells are not hit;
using charged-particle microbeams; or by transferring culture medium
from irradiated to nonirradiated cells. Such experiments have typically
revealed a steeper dose–response at very low doses when only some cells
are irradiated than when all are, followed by a plateau at higher doses, as
well as responses in cultures that have not been irradiated at all but had
irradiated cells (or filtered medium from irradiated cultures) transplanted
into them.

In an attempt to describe these observations mathematically, Brenner
et al. (2001) postulated a model in which, for each directly hit cell, k

neighboring cells would be exposed to a bystander stimulus and some
small proportion σ of hypersensitive cells would undergo an “all or none”
transformation independent of the dose. They derive an expression for
the proportion of surviving cells following a heterogeneous exposure of
the form:

TF = νqN + σ
(
1− e−kN

)
eqN

(Figure 13.6), where TF denotes the fraction of cells transformed, N the
average number of α particle traversals per cell (proportional to dose)
and the other adjustable parameters are the probability q of a single cell
surviving and the rate ν of transformation in response to a direct hit.

The model also allows for extended exposures at low-dose rates, allow-
ing the population of hypersensitive cells to be replenished (Brenner and
Sachs 2002). Applying this verson of the model to data on radon from 11
miner cohorts, they demonstrated that it could explain both the down-
ward curvilinearity as well as the inverse dose–rate effect described in
Chapter 6, and estimated that in the range of domestic radon concentra-
tions, the majority of the excess would be due to bystander, rather than
direct effects (Brenner and Sachs 2003).

These results are controversial, however. Little and Wakeford (2001)
did a combined analysis of the uranium miner and residential radon
datasets and concluded that the ratio of low- to high-dose slopes was only
2.4–4.0, much smaller than predicted by the Brenner and Sachsmodel, and
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Figure 13.6. Extrapolation to very low doses of the prediction of the model for bystander
effects: experimental data derive from doses in the range of 10–80 cGy that would be
expected to deliver on average 1–8 alpha particle traversals per cell. (Reproduced with
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consequently that the number of cells k subject to bystander effects in their
modelwould be less than 1with an upper confidence limit of 7; they argued
that this would be incompatible with the large number of cells expected
to be in neighborhoods that have been experimentally demonstrated to
be affected, and thus that the bystander effect was unlikely to contribute
much to low-dose risks. Little (2004a) also reanalyzed the 11 uranium
miner datasets with a more sophisticated fitting method, accounting for
latency and the covariance between parameters, and found that the miner
data were equally well fitted by a simple linear relative risk model with
adjustments for age at exposure and attained age. Little et al. (2005) sub-
sequently proposed a more complex stochastic model that takes account
of spatial location and repopulation and showed that it produces similar
downward curvilinearity of the dose–response and the enhancing effect of
protraction.

Human data—or even in vitro experimental data—showing an actual
downturn in risk like that portrayed in Figure 13.6 are elusive. One excep-
tion is a report of chromosomal translocations in individuals exposed in
utero to the atomic bombs (Ohtaki et al. 2004). This study showed a
surprisingly weak association with dose overall (in light of other stud-
ies of cancer in individuals subject to fetal irradiation), except at very
low doses (<100 mSv) where there was a significant elevation in fre-
quency. Their Figure 4 (not shown) is remarkably similar to Figure 13.6,
and is fitted to essentially the same form of relationship as proposed by
Brenner and Sachs (Y =α + βXe−γZ + δX). The authors do not interpret
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their results in terms of bystander effects, since here the dominant expo-
sure would be to gamma rays, not densely ionizing particles, but instead
they consider the pool of progenitor cells as containing two subpopula-
tions, one highly sensitive to translocations but also to cell killing (the
βXe−γX term), the other less sensitive and not subject to cell killing
(the δX term).

Bystander effects can also be protective (Mothersill and Seymour 2004).
A rather complex mathematical model aims to integrate bystander effects
and adaptive response with genomic instability (Scott 2004). The basic
idea entails modeling the activation of one or more apoptosis signaling
pathways initiated by release of TGF-β by a transformed cell, leading a
complex cascade of ROS/RNS secretions by the undamaged neighboring
cells, ultimately resulting in selective elimination of the transformed cells.
The mathematical model is fitted using Bayesian Markov chain Monte
Carlo (MCMC) methods. A qualitative model based on ideas from chaos
theory that incorporates both beneficial and deleterious bystander effects
has also been suggested (Mothersill and Seymour 2003), but appears not
to be been developed quantitatively.

For an authoritative discussion of the biology of genomic instability
and its relation to bystander effects, see a recent United Nations report
(UNSCEAR 2006).

Microdosimetry models

The concept of dose that we have relied upon throughout this book
actually represents a statistical expectation of insults received across a
population of targets, for example, individual cells or DNA molecules.
In modeling the carcinogenesis process, we are really concerned with
the expected biological responses of individual cells. If this cellular-level
dose–response is nonlinear, then the organ’s dose–response will not be
simply a function of the average dose but will entail the variance and
possibly the higher moments of its distribution. A crucial biological obser-
vation (Crowther 1924) was that after low-dose exposure to X-rays a
few phages or viruses in a culture would be inactivated, while on aver-
age the culture could tolerate very large doses. The resolution of this
apparent paradox was that they received very different doses from the
same exposure, rather than that their biological responses to the same
dose varied. In radiobiology, this realization has given rise to the field
of “microdosimetry,” which aims to characterize the spatial distribution
of energy deposited by a quantum of radiation in biologically relevant
targets across its path via a stochastic theory for the transfer of discrete
quanta of energy (Rossi 1959). It thus depends critically upon the volume
of the presumed target—an entire cell, the nucleus, a chromosome, a single
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base-pair, or at the opposite extreme, a neighborhood of cells subject to
bystander effects.

Early work (Kellerer and Rossi 1972; 1978) established the “theory
of dual radiation action” in which radiation was thought to produce sub-
lesions in at a rate proportional to average (“absorbed”) dose, which could
then interactwithin some bounded region of uniform sensitivity to produce
lesions with biological effects on mutation or survival. The dose–response
at the cellular level would then be a linear-quadratic function of dose,
the linear term representing the probabilities of a single inactivating event
(e.g., a double strand break or an interaction between a sub-lesion and
an undamaged chromosome) and the quadratic term representing two
interacting events to the same site (e.g., two single-strand breaks with no
intervening repair). This idea—along with consideration of cell killing as
a exponential survival distribution—leads to the standard model that has
been used in most epidemiologic analyses of radiation effects, λ(t ,Z) =
λ0(t)[1+ (β1Z + β2Z

2) exp(−β3Z − β4Z
2)] (Chapter 6).

Goodhead (2006) provides a historical account of the development of
the field of microdosimetry and its current state based on Monte Carlo
simulation of every interaction along the path of a charged particle and
their secondary ionizations and excitations (see Box 13.1). The present
paradigm entails “clustered” damage to DNA from multiple ionizations
within a single track, with the biological effectiveness depending upon the
complexity of the damage. A spectrum of target volumes thus appears
to be relevant for different endpoints, ranging from 3 to 10 nm for initial
sub-lesions, to 0.1−0.5μm for subsequent interactions leading to lesions,
to ∼10μm for intracellular adaptive responses or several mm for inter-
cellular bystander effects.

13.1 Stochastic theory of microdosimetry

Bardies and Pihet (2000) provide a more quantitative treatment of the
standard stochastic theory. Let z denote the specific energy deposited
by a single interaction and let n represent the number of interactions
per unit volume, assumed to have a Poisson distribution with mean λ.
The dose distribution is thus a bivariate function f (z, n)with absorbed
dose D being its overall mean

D =
∞∑
n=1

n

∫ ∞

0
zf (z, n) dz = E(n|λ)E(z|n = 1) = λzF

where zF = ∫
zf (z, 1) dz is the mean energy deposited per interaction.

Also relevant is the proportion g(z) = zf (z, 1)/zF of the total energy
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density deposited at specific energy z, with mean

zD =
∫

zg(z) dz = (zF )
−1
∫

z2f (z, 1) dz

= E2(z|n = 1)+ var(z|n = 1)

Then if the biological effect of each interaction is proportional to z2, the
overall biological effect can be shown to be proportional to zDD+D

2
.

On the other hand, the quantity zF is the relevant one if the biological
effect is all-or-none, depending only the number of interactions, not
on the dose, and hence proportional to zFE(n) = zF λ. As described
earlier, this would be the appropriate way to model the response of
bystander cells.

In situationswith a nonuniformdistribution of dose (e.g., from inter-
nally deposited radionuclides), the marginal distribution of absorbed
dose is more complex

f (D|λ) =
∞∑
n=1

e−λλn

n! f

(
D

n
, n
)

where the joint probability densities f (z, n) are obtained from the
single-track densities f (z, 1) by successive convolution

f (z, n) =
∫ z

0
f (z− x, n− 1)f (x, 1) dx

Roesch (1977) showed how to overcome the computational difficulty
of these multiple convolutions using Fourier transforms. More detailed
stochastic modeling involves track-structure calculations based on
Monte Carlo simulation or analytic approximations to this process.

To date, there seems to have been little effort made to marry the fields
of stochastic modeling of the carcinogenesis process with microdosimetry
considerations, perhaps in part because the evidence for these phenom-
ena derives mainly from in vitro experiments rather than epidemiology,
but this will likely change with the increasing use of modern molecular
epidemiology tools and biomarkers. Kellerer (1996) concludes,

Microdosimetric have become indispensable to radiation therapy and to radiation
protection.… [R]isk estimates are still linked to epidemiological investigations rather
than radiobiological studies.…Microdosimetry has served as an important heuristic
guide in radiation biology, but rarely as a tool for truly quantitative analyses. More
precise radiobiological data and techniques are required. In cellular studies, the micro-
dosimetric analyses may appear more sophisticated and complex than the incomplete
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biological data would seem to warrant. Fairly crude analyses are usually adequate,
and this includes the use of LET with all its limitations. With advancing techniques of
molecular biology the situation is certain to change; sophisticated mathematical tools
and the use of microdosimetric data will become essential. [emphasis added]

An example of this marriage ofmolecular biology andmicrodosimetry is
the use of chromosomal aberration data to estimate the relative biological
effectiveness of high-energy gamma rays and neutrons for the atomic bomb
survivors (Sasaki et al. 2006).

Mechanistic models for noncancer endpoints

PBPK models

Pathway-based epidemiologic models generally entail some combination
of the following elements (Figure 13.7):

• Measured inputs in the form of genotypes G at loci thought to
be relevant to the hypothesized pathway and exposures E to their
environmental substrates.

Exposures

X1 X2 X3

Genes

Unobserved
intermediate events 

Disease

B2

Biomarker
measurements

“Topology” of
the network 

External biological
knowledge
(“Ontologies”)

Xn

B3 …

Model parameters
(genotype-specific
metabolic reaction
rates, etc.)

Z

G

Y

E

u �

Xn–1

Figure 13.7. Schematic overview of a pathway-based model for the relationship between
genes, exposures, disease, and biomarkers: boxes represent measured quantities, circles
represent unmeasured latent variables or parameters to be estimated. (Reproduced with
permission from Parl et al. 2008.)
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• A measured outcome phenotype Y—in the case of cancer, a disease
outcome and the age at diagnosis or censoring, althoughmore generally,
this could be a continuous trait or vector of traits, possibly measured
longitudinally

• Possibly, additional biomarker measurements B of intermediate states
in the postulated pathway

• Some model for the underlying unobservable pathogenic process, rep-
resented by a series of latent variables X, structured by some postulated
topology � and involving a vector of parameters θ , typically rep-
resenting rates of the intermediate steps and their dependence on
genotypes;

• Some external knowledge Z about the structure of the model and the
parameters.

Within this general paradigm, an investigator has many specific tools that
could be used to represent amodel, ranging from purely exploratorymeth-
ods like Classification and Regression Trees (Cook et al. 2004) or Neural
Networks (Chakraborty et al. 2005), to highly parametric PBPK mod-
els, with hypothesis-driven statistical approaches like hierarchical Bayes
(Conti et al. 2003) or logic regression (Kooperberg and Ruczinski 2005)
somewhere in-between. Although exploratory methods can be useful for
detecting subtle patterns in complex multi-dimensional datasets (Hoh and
Ott 2003; Moore 2003; Cook et al. 2004), they generally do not attempt
to incorporate prior knowledge about the structure of a pathway, so we
will not consider them further here. Instead, we will focus on mechanistic
and empirical methods that in one way or another allow an investigator
to formally incorporate biological knowledge (or beliefs) about specific
pathways hypothesized to be relevant to the disease and causal factors
under study.

Let θi = (θi1, θi2, . . . , θiK) denote the vector of metabolic rate parame-
ters (e.g., activation rates λ and detoxification rates μ in a linear kinetic
model or Vmax and km for a Michaelis–Menton kinetic model, described
below) involving K reactions specific to individual i with a vector geno-
types Gi = (Gi1,Gi2, . . . ,GiK) at the relevant loci, and let XiK denote the
predicted final metabolite concentration in this process. The relationships
among these variables are depicted in Figure 13.8.

Here Xik denotes the steady-state solution for metabolite k in subject i
from the system of differential equations forming the PBPK model, repre-
sented by triangles to indicate deterministic nodes in a graphical model.
For example, one might use a system of first-order linear kinetic equations
of the form

dXik

dt
= λi,k−1Xi,k−1 − (λik + μik)Xik
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Figure 13.8. Schematic representation of one intermediate step in a PBPK model for
intermediate metabolite concentrations in a metabolic model. Boxes represent measured
quantities, circles latent variables or model parameters, and triangles represent determin-
istic quantities given by the steady-state solution to the differential equations in the PBPK
model.

in which the rate of change of the concentration of the kth metabolite is
the rate at which it is generated from its predecessor minus the rate at
which it is either transformed into its successor or eliminated. This system
has the steady-state solution (setting dX/dt = 0),

Xik = Xi,k−1

(
λi,k−1

λik + μik

)
Stringing along several such linear reactions in series still preserves the
proportionality of the final metabolite concentration to the input con-
centration, with a proportionality coefficient that is simply the product
of the various fractions in parentheses. However, nonlinear reactions or
networks involving feedback loops require more complex treatment. For
example, a reaction catalyzed by an enzyme that is in limited supply can
saturate, leading to the Michaelis–Menten expression for the multiplier of
the substrate concentration in the reaction rate

λk = V
(k)
max

k
(k)
m +Xk

This would be substituted for λik orμik in the differential equations above,
depending upon whether it was an activation or detoxification reaction
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that is saturated. Either Vmax or km for a given reaction could depend
upon a person’s genotype at the relevant locus, Vmax being the maximum
reaction rate when fully saturated and km being the substrate concentra-
tion at which the reaction rate is one-half its maximum. The reaction
rate at low concentrations is thus simply Vmax/km. Solution to the sys-
tem of differential equations gives the time course of each metabolite, for
any specified input concentration history. For dose–response modeling of
some ultimate disease outcome, one might use the time-weighted average
of the metabolite concentration or its peak concentration as the relevant
tissue dose, depending upon the postulated biological effect. For most
epidemiologic purposes, however, such detailed knowledge of exposure
histories on a time-scale comparable to the metabolic processes (minutes
or hours) is not available, so the equilibrium solution in relation to aver-
age exposure is sufficient. See (Moolgavkar et al. 1999b) for a review of
pharmacokinetic and receptor-binding models.

The inputs to this system represented in Figure 13.8 comprise an individ-
ual’s exposures Ei and genotypesGi , which in turn influence that person’s
rate parameters θi . For example, one might assume that there is some
person-to-person variability in these rates among people with the same
genotype because of various other unmeasured characteristics, and adopt
a statistical model for this unobserved variability, such as a lognormal
distribution with logarithmic mean θk and logarithmic standard deviation
σk. Ideally, these genotype-specific population means and standard devi-
ations would have prior distributions that were informed by laboratory
assays of experimentally measured rates in appropriate model systems.

One might also have short-term biomarker measurements, such as
“metabolomic” measurements of intermediate metabolite concentrations
Mik or “proteomic”measurements of enzyme activity levelsPik. These also
might be assumed to be lognormally distributed around their respective
unobserved long-term average values with logarithmic standard devia-
tions τk and ωk, respectively. Finally, one might assume a logistic or
proportional hazards model for disease risk as a function of the final
metabolite concentration, for example, logit Pr(Yi = 1|XiK)=β0+β1XiK .
AnMCMCapproach to fitting this entire combination of deterministic and
stochastic models was described by Cortessis and Thomas (2003).

Their method was applied to data on colorectal polyps in relation to
two environmental exposures, consumption of well-done red meat and
tobacco smoking. Both of these are sources of two classes of known car-
cinogens (Figure 13.9), polycyclic aromatic hydrocarbons (PAHs, such as
benzo(a)pyrene) and heterocyclic amines (HCAs, such as MeIQx). These
substances are in turn converted to more potent carcinogens through
a series of activating enzymes (CYP1A2, NAT1, and NAT2 for HCA,
CYP1A1, and EPHX1 for PAHs) and detoxifying enzymes (UDP-G for
HCA, various GSTs such as GSTM3 for PAHs). The results demonstrated
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Figure 13.9. Directed acyclic graph representing the model for metabolism of well done red
meat (WDRM, X1) and tobacco smoking (X2) through a series of heterocyclic amines (Z1–
Z3) and polycyclic aromatic hydrocarbons (Z4–Z7) under the action of various metabolic
genes (G1–G6) determining the relevant enzyme activation rates λ and detoxification rates
μ. (Adapted with permission from Cortessis and Thomas 2003b and Conti et al. 2003.)

a stronger effect of smoking than of well-done red meat through both
pathways, and a stronger effect of the HCA than the PAH pathway on
polyp risk. Such inferences are based essentially on the pattern of inter-
actions of the various substrates with the relevant genes on the different
pathways.

General comments

As in any other form of statistical modeling, the analyst should be cautious
in interpretation. An pointed out by Jansen (2003),

So, the modeling of the interplay of many genes—which is the aim of complex systems
biology—is not without danger. Any model can be wrong (almost by definition), but
particularly complex (overparameterized) models have much flexibility to hide their
lack of biological relevance. (emphasis added).

A good fit to a particular model does not of course establish the truth of
the model. Instead the value of models, whether descriptive or mechanis-
tic, lies in their ability to organize a range of hypotheses into a systematic
framework in which simpler models can be tested against more complex
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alternatives. The usefulness of the multistage model of carcinogenesis, for
example, lies not in our belief that it is a completely accurate description
of the process but rather in its ability to distinguish whether a carcinogen
appears to act early or late in the process or at more than one stage. Simi-
larly, the importance of the Moolgavkar–Knudson model lies in its ability
to test whether a carcinogen acts as an “initiator” (i.e., on the mutation
rates) or a “promoter” (i.e., on proliferation rates). Such inferences can
be valuable, even if the model itself is an incomplete description of the
process, as must always be the case.

Although mechanistic models do make some testable predictions about
such things as the shape of the dose–response relationship and the
modifying effects of time-related variables, testing such patterns against
epidemiologic data tends to provide only very weak evidence in support of
the alternative models and only within the context of all the other assump-
tions involved. Generally, comparisons of alternative models (or specific
submodels) can only be accomplished by direct fitting, and visualization of
the fit to complex epidemiologic datasets can be challenging. Any mecha-
nistic interpretations of model fits should therefore consider carefully the
robustness of these conclusions to possible misspecification of other parts
of the model.
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Need for Assessment of Public Health Interventions

In 1970, the U.S. Congress enacted the Clean Air Act, empowering the
Environmental Protection Agency (EPA) to set standards for certain cat-
egories of “criteria” air pollutants. The 1990 Clean Air Act Amendment
further required EPA to report periodically to Congress on the costs and
benefits of this program. The first such report was published in 1997
and provided a retrospective assessment of the program from 1970 to
1990 (EPA 1997). In 1999, EPA published its second report (EPA 1999),
a prospective assessment of projected costs and benefits from 1990 to
2010. Although in that report it announced its intent to provide updates
every two years, this does not seem to have happened; to date, only an
“analytical blueprint” for future reports has been made publicly available
(http://www.epa.gov/oar/sect812/). Nevertheless, the 1999 report pro-
vides arguably the most cogent case in support of the past and projected
future accomplishments of the Clean Air Act. Table 14.1 summarizes the
key findings of the report, showing a four-fold ratio of benefits to costs.
Setting aside for the moment the controversial issue of the monetary valu-
ation of health benefits, it is clear that the dominant benefit assessed by the
EPA is for mortality, based on an estimate of 23,000 avoided cases over
age 30 per year (95% CI 14,000–32,000). (This calculation does not take
into account the amount of life shortening, however, a point wewill return
to later.) Congress subsequently directed the EPA to commission a report
by the National Academy of Sciences (NAS 2002), which criticized many
details about the EPA’s approach, but endorsed their main conclusions.

The U.S. EPA is not alone in making such claims. In the same year,
a panel of the World Health Organization Ministerial Conference on
Environment and Health (Kunzli et al. 2000) performed a health impact
analysis of air pollution in Austria, Switzerland, and France, conclud-
ing that 6% of all deaths were attributable to air pollution, about half
of that excess being due to pollution from motor vehicles. In addition,
they estimated that more than 25,000 chronic bronchitis cases in adults,
290,000 episodes of bronchitis in children, half a million asthma attacks,
and 16 million person-days of restricted activities could be attributed to
pollution from mobile sources. They estimated that the economic costs of
these effects added up to 1.7% of the gross domestic product of the three
countries.

http://www.epa.gov/oar/sect812/
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Table 14.1. Summary of monetized costs and benefits of the U.S.
Clean Air Act, projected to 2000 and 2010 in billions of 1990
dollars, mean and 95% CI. (Data from EPA 1999.)

2000 2010

Direct costs $19 $27
NAAQS $8.6 $14.5
Mobile sources $7.4 $9.0
Hazardous air pollutants $0.8 $0.8
Acid deposition $2.3 $2.0
Permits $0.3 $0.3

Direct benefits $71 (16, 160) $110 (26, 270)
Mortality $63 $100 (14, 250)
Chronic illness $5.8 (0.4, 18)
Hospitalization $5.1 $0.5 (0.0, 1.2)
Minor illness $1.5 (1.0, 2.2)
Welfare $3 $4.8 (3.4, 6.1)

Total benefits—costs $52 (−3, 140) $83 (−1, 240)
Benefit-cost ratio 3.7 (0.8, 8.4) 4.1 (1.0, 10)
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Figure 14.1. Projected changes in PM10 (left) and SO2 (right) concentrations in Beijing
under “business as usual” scenario (diamonds), clean energy consumption (squares), same
plus energy efficiency program (triangles), and same plus green transportation. (Reproduced
with permission from Pan et al. 2007.)

In China, Pan et al. (2007) evaluated the potential benefits from several
proposed strategies for controlling air pollution in Beijing. Figure 14.1
shows the projected changes in future levels of particulates and SO2 under
the various scenarios considered. Using these estimates, they projected
decreases of 39–287 acute excess deaths per year and 462–3242 chronic
excess deaths from the reductions in PM10 under the different scenarios,
and decreases of 400–554 short-term excess deaths from the reductions in
SO2 by the year 2030.

Such estimates are of course based on epidemiologic exposure–response
relationships inferred from observational data on groups with different
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exposure histories. How likely is it that changes in exposure would really
yield the benefits that are forecast by such methods? This is essentially a
question about “counterfactual inference” (as will be discussed further in
Chapter 16), that is, “what would the outcomes of the same epidemio-
logic study subjects have been had they been exposed to different histories
of air pollution?” Without delving into the fundamentals of causal infer-
ence at this point, this chapter will address approaches to answering this
question based on “natural experiments” in which reductions—planned
or fortuitous—in some exposure have occurred and it has been possi-
ble to observe directly the changes in health endpoints that followed. Of
course, the changes in outcomes may not actually have been caused by the
changes in exposure; other factors could have changed concurrently. Only
a randomized controlled trial could really answer the question of causality
(Greenland 1990), but this is not generally feasible for most widespread
environmental exposures. Changes in air pollution levels, for example,
require large-scale government regulation and it is not generally feasible
to randomly assign groups to receive the intervention or not. (Needless to
say, it is certainly not possible to randomize the assignment of individuals
in the population to environments!) Nevertheless, well designed “quasi-
experimental” or observational designs can provide evidence of a benefit
that would be convincing to policy makers weighing alternative control
strategies.

The problem of evaluating the benefits of various programs has been
considered for decades in the social science literature and has gener-
ally gone under the name of “intervention research” (Weiss 1972). A
pioneering book by Campbell and Stanley (1963) described a range of
study designs for program evaluation where randomized trials are not
feasible. We review some of those approaches that may be suitable for
evaluation of environmental health interventions below. Recently, the
term “accountability” has been introduced to describe research aimed
at assessing the performance of environmental regulatory policies (HEI
Accountability Working Group 2003), from regulatory action to changes
in emissions, ambient air quality, human exposure, and ultimately health
response. Here, we focus primarily on assessing the end result of this
chain—the net effect of a regulatory intervention on a population health
response—without attempting to decompose it into its constituent steps.
In particular, regulators may be interested in the effects of different
control programs. For example, the Beijing analysis described earlier
shows how different strategies can have differing effects on particulates
and SO2 and hence on health effects. An intervention that controls the
wrong source or the wrong pollutant could have no little or no effect on
health.

The ultimate use of such data in cost-benefit analysis entails economics
approaches that are beyond the scope of this book. See, for example,
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Chapter 6 of the EPA cost/benefit report (EPA 1999) and the critiques in
(NAS 2002) and (Krupnick and Morgenstern 2002).

Some “natural” and planned experiments

To set the stage for the methodological discussion that follows, we begin
with a capsule summary of a number of examples of studies of the effects
of relatively short-term changes in air pollution levels due to either inten-
tional government interventions or fortuitously due to labor strikes or
the like. This story could, of course, begin with the 1952 London fog
episode, or even the 1930 Meuse Valley and 1948 Donora PA ones
described in Chapter 8. Obviously if increases in air pollution could cause
large increases in mortality, does not it follow logically that decreases
in pollution should cause decreases in mortality? Perhaps, but this rea-
soning makes a number of assumptions than can be difficult to test. Is
the exposure–response linear? Perhaps the current levels are already at the
“no effect level,” so that further reductions would have no additional ben-
efit. (The available epidemiologic data seem to contradict the notion that
the current levels have no adverse effects, however.) Perhaps short-term
fluctuations do not translate into long-term effects due to “harvesting”
(Chapter 8). (Again, the epidemiologic evidence seems to suggest chronic
effects are even larger than those predicted by the acute effects studies.)
Perhaps homeostasic mechanisms lead to essentially the same equilibrium
response to whatever the long-term level of exposure is. Perhaps varia-
tion between individuals in their sensitivity to air pollution (due to age,
genetics, nutritional status, underlying health conditions, etc.) leads to
different associations at the individual and population levels. And so on.
Hence, it behooves us to examine whether reductions in exposure below
currently established regulatory limits will really produce a benefit of the
size predicted by the available epidemiologic data.

Observational epidemiologic studies can provide some evidence about
benefits of environmental improvements. An example is provided by a
study of CHS subjects who moved from their communities to areas with
better or worse pollution (Avol et al. 2001). The study showed a significant
improvement in lung function among those moving to areas with lower
PM10 and aworsening formoving toward higher PM10, but no correlation
with changes in ozone and only a weak, nonsignificant correlation with
changes in NO2. Such changes in exposure were not, however, the result
of the kinds of systematic interventions described in the rest of this chapter,
nor did they affect whole populations but self-selected individuals, and so
could be subject to selection bias (e.g., children with respiratory problems
being more likely to move than those in the same communities without).
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Thus, they do not constitute true “intervention” studies, but do point to
the kinds of improvements thatmight be anticipated frompopulation-wide
interventions.

Government interventions

As a result of a switch from oil to coal during the 1980, Dublin expe-
rienced a deterioration of air quality, with peaks in air pollution being
associated with increased respiratory deaths. In response, the government
banned the sale of coal within the city on September 1, 1990, leading
to a 70% decline in particulate concentrations (as measured by “black
smoke”). Clancy et al. (2002) undertook an “interrupted time-series”
analysis (Webster et al. 2002) (essentially regressing the death rates on
an indicator variable for before or after the ban, adjusting for the sea-
sonal and long-term trends, weather, respiratory epidemics, and death
rates in the rest of Ireland, as described further below), in order to esti-
mate the decline attributable specifically to the ban. The time-series of
mortality (Figure 14.2) mirrors the declines in black smoke; SO2 con-
centrations also declined, but more gradually during this period, with
no abrupt change detectable in 1990. Overall age-adjusted death rates
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Figure 14.2. Cardiovascular and respiratory mortality in Dublin before and after the ban
on coal sales (solid dots indicate winter). (Reproduced with permission from Clancy et al.
2002.)
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dropped 58% for cardiovascular and 22% for respiratory causes between
1984–90 and 1990–96, but some of this could be due to other changes
during the period. The time-series analysis yielded estimates of −10.3%
and −15.5% change for the two groups of causes, after removing the
overall time trends and adjusting for other factors (p<0.0001 for both).
These changes were larger than predicted by previous time-series analyses.

At virtually the same time (July 1990), Hong Kong undertook a similar
intervention, in this case ordering all power plants and motor vehicles to
use fuel with low sulphur content. This led to an immediate reduction in
SO2 concentrations in the polluted area by 80% and a 38% reduction in
the sulphate concentrations of particles. Two subsequent epidemiologic
publications took different approaches to evaluate the health effects of
this intervention. Hedley et al. (2002) applied time-series methods similar
to those used in Dublin to examine the effects on mortality and reported
a 3.9% reduction in respiratory deaths and a 2.0% reduction in cardio-
vascular deaths. They also calculated a gain in life expectancy of 20 days
in females and 41 days in males.

Peters et al. (1996) focused instead on respiratory symptoms in children
using the before/after exposed/control group design described in greater
detail below. In the control district, there was no change in pollution
during this period. Before the intervention, cough and sore throat were
22% more common, and wheezing 35% more common, in the polluted
than the control districts. After the intervention, therewas a greater decline
in the prevalence of symptoms in the polluted than in the control district.

Since some health effects may not be reversible, one might anticipate a
time lag between the introduction of an intervention and a demonstrable
health benefit. Roosli et al. (2005) combined information from a meta-
analysis of five studies of infant mortality and estimates of an exponential
decay parameter in a dynamic model derived from the Utah Valley and
Dublin studies to estimate the years of life lost (YLL). They estimated that
39% of the benefit occurred in the same year and 80% within five years
of the intervention, but the overall YLL (42,400 for the Swiss population,
95% CI 22,600–63,600, 4% of which was due to infant mortality) was
not particularly sensitive to the choice of decay parameter.

Typically, health improvements may be due to a range of policies rather
than any single action. Two Swiss studies illustrate different approaches
to assessing effectiveness in such a situation. The SCARPOL study (Bayer-
Oglesby et al. 2005) used three cross-sectional surveys to evaluate the
improvement in various childhood respiratory conditions between 1992
and 2001, a period during which air pollution levels declined considerably
due to a range of factors, but the design of this study did not allow them to
determine the effects of any specific changes. In contrast, SAPALDIA—a
cohort study of lung function changes in adults (Downs et al. 2007) over
roughly the same period—found a significant inverse association between
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changes in lung function and changes in PM10 across individuals. Not
surprisingly, however, the biggest improvement in air pollution occurred
in the communities with the highest baseline levels. This correlation was
so high that it was not possible to separate the effects of the reduction in
air pollution from a continuing effect of past exposures. The investigators
also did not describe the effects of any copollutants.

Labor strikes

In the 1960s, copper smelters were the source of most of the sulfate emis-
sions in the southwestern United States. Between July 1967 and April
1968, a nationwide copper smelter strike produced a particularly large
reduction in sulfate particles—about 60% in the states of Utah, Nevada,
Arizona, andNewMexico—providinganopportunity forabefore–during–
after comparison using Poisson regression time-series methods (Pope et al.
2007). Over the four-state area, total mortality decreased by 2.5% (95%
CI 1.1–4.0) during this period, adjusting for temporal trends, total mor-
tality in the seven bordering states, and national cause-specific mortality
from influenza/pneumonia, cardiovascular disease, and other respiratory
disease.

Two decades later, a 10-month strike at a steel mill in Provo, Utah,
produced a 2–3-fold reduction in the winter-time level of PM10 compared
with the year before and the year after. A corresponding 2–3-fold reduc-
tion in children’s hospitalizations for pneumonia, pleurisy, bronchitis, and
asthma was observed during winter months of the strike compared to the
winters before and after, with somewhat smaller reductions among adults
(Pope 1989).

German reunification

Before reunification, many cities of East Germany were among the most
polluted parts of Europe. The rapid economic and regulatory changes
following reunification led to a dramatic decline in particulate and SO2
concentrations, providing a unique opportunity for evaluation by compar-
ison with corresponding trends in West Germany, where no such abrupt
changes occurred. For example, one study (Frye et al. 2003) reported
a decline in TSP from 79 to 25μg/m3 in three East German communi-
ties between 1992 and 1999 and a decline in SO2 from 113 to 6μg/m3.
Another study (Heinrich et al. 2002) found similar declines in these same
pollutants, but an increase in nucleationmode (10–30 nm) particles during
this same period. Several studies, mainly of children’s respiratory symp-
toms and lung function have been reported (Kramer et al. 1999; Heinrich
et al. 2000; 2002; Frye et al. 2003), most employing some form of before-
after design with one or moreWest German control groups. These various
studies found consistently larger improvement in various health indicators
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in East than in West Germany during this period, suggesting that at least
some adverse effects are reversible.

Olympic games

The 1996 Atlanta Olympic Games provided an opportunity to exam-
ine the transient effect of a 23% decline in traffic and a 28% decline in
ozone concentrations. Friedman et al. (2001) used a before–during–after
design (with no external control group) to examine childhood asthma
acute care events. They found a significant 42% decline based on claims
in the Georgia Medicaid files (with somewhat smaller changes using
other data sources). These changes were based on a comparison of the
17-day Olympic period to a baseline that combined the four weeks before
and four weeks following the Olympics. Unfortunately, the investigators
did not report the two baseline rates separately, so it is not possible to
assess how rapidly asthma rates returned to baseline as traffic and ozone
concentrations reverted to normal.

Similar studieswere conducted before, during, and after the Beijing 2008
Olympics, but using a panel study design instead of aggregate population
records. A panel of 131 medical residents at the First Hospital of Peking
University were enrolled and studied twice in the twomonths before, twice
during, and twice in the two months following the Olympics (along with
panels of40 retires and50children). Abroad suiteofbiomarkers (of inflam-
mation, autonomic tone, endothelial function, platelet function, oxidative
stress, etc.) were measured on each occasion. In addition, interactions with
various candidate genes (e.g., GSTM1) will be studied.

As preparation for the Olympics, the government conducted a pilot test
of their proposed traffic restrictions during a 4-day period in August 2007,
permitting cars to drive only on even or odd days based on their license
plate numbers. Air pollution levels did not decline appreciably until after
the restriction period, perhaps because of concurrent changes in weather
conditions. However, a previously established panel of 40 elderly persons
was studied during the period and associations between continuouslymon-
itored heart rate variability and concurrent PM10 levels were found (Dr.
Wei Huang, personal communication).

Study designs for program evaluation

Randomized experimental designs

We begin this discussion of study designs with the ideal—albeit seldom,
if ever, feasible—design, the double-blind randomized controlled trial.
Widely used in clinical medicine and—more relevant here—in prevention
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research (e.g., Prentice et al. 2005), the basic idea is that subjects are
individually randomly assigned to the treatments being compared (possi-
bly within strata of predictive factors), and then followed in an identical
manner to observe their outcomes. To avoid bias, neither the participants
nor the researchers are aware of the treatment assignment until the codes
are revealed during the final analysis at the end of the trial. This design
is the gold standard for causal inference, as the groups are guaranteed to
be equivalent in expectation on all potential confounding factors, known
or unknown. Of course, the play of chance could mean that some risk
factor is out of balance between the groups. But lack of balance could
occur in either direction and is likely to be balanced by other risk factors
that are out of balance in the opposite direction. Hence, significance tests
and estimates are guaranteed to have the right statistical properties (nom-
inal test size, unbiased estimators, nominal confidence interval coverage,
etc.) across hypothetical replications of the study. (As an aside it is worth
noting that imbalance on known risk factors for which data have been
collected can always be adjusted for in the analysis, but as the unadjusted
analysis has, asymptotically at least, the correct statistical properties, it is
not obvious that adjustment helps and it has the potential to create bias or
lead to less efficient estimators in small samples or nonlinear models. The
question whether this is a desirable procedure has been highly controver-
sial; see, for example, Fisher 1935; Gail et al. 1988; Senn 1989; Robinson
and Jewell 1991; Gail et al. 1996; Greenland et al. 1999b).

An important variant of the randomized comparative trial is a crossover
trial. Like the observational case-crossover design described in Chapter 5,
this design relies on comparisons within rather than between subjects.
Each subject receives both treatments and their responses following
each treatment are compared. (Note the similarity to the counterfactual
approach to causal inference mentioned earlier: here, rather than hav-
ing to infer what an individual’s response to the counterfactual treatment
would have been by assuming it would be similar to those observed on
that treatment, these responses can be observed directly in a crossover
trial.) To avoid contamination effects of one treatment by another, the
order in which subjects receive the treatments is assigned at random, and
there is usually a “washout” period between application of the different
treatments. In addition to ensuring exact comparability of the treatment
comparisons, the design can be more powerful than a group compari-
son because the treatment effect is tested against a within-subject rather
than a between-subject residual variance, which will typically be smaller
(Chapter 7). However, the design is only feasible for effects that occur
soon after treatment begins and do not persist long after treatment ends.
Thus, the design is not much use for studying the long-term effects of
therapeutic or preventive interventions, or mortality.
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Individual versus group randomization

One fundamental problem with using the randomized controlled trial
approach to evaluate an environmental intervention is that such “treat-
ments” typically affect whole populations—for example, an intervention
aimed at lowering ambient air pollution levels—so that individuals within
that population aremore or less equally affected. Hence, it becomes impos-
sible to randomly assign individuals to receive the intervention or not (or
to different interventions). Of course, it still might be possible to mimic
the treatment in a controlled laboratory setting (e.g., a chamber study),
but this would not achieve the goal of finding out whether the intervention
works on population scale, and again, would only be feasible for studying
short-term effects. Although individual randomization is not possible, it
may be possible to randomize larger population groups to alternative treat-
ments. For example, whole cities might be allocated at random to receive
an intervention or not. Such a strategy has been widely used to evaluate
various social programs, such as advertising campaigns aimed at smoking
cessation or prevention of drug abuse, but no examples come to mind for
its application to government regulatory interventions to promote envi-
ronmental health. In part, this may be because regulatory agencies are
typically constrained to apply regulations uniformly across their entire
jurisdiction. Of course, individual states have some discretion to enact
their own regulations and could in principle agree to participate in such
a group randomized experiment, but this presumes a level of political
cooperation that is probably unrealistic to expect.

Nevertheless, it is worth considering in the abstract how such a study
might be performed, if only for comparison with the kinds of inferences
that can be obtained with the various nonrandomized designs discussed
below. Suppose two treatments are to be compared, say an intervention
to reduce some air pollutant (like the ban on coal sales or the use of high
sulphur fuels described earlier) versus “business as usual.” Suppose fur-
ther that a reasonable number of administrative districts are available to
participate in the study—at least twice the number of treatments to be
compared to allow for replicate observations, but hopefully many more.
These units are then assigned at random to receive the intervention or
not, possibly within strata of potential confounding factors (geographic
regions, demographic, or socioeconomic distributions, etc.). Aggregate
measures of health status after the intervention are then compared between
the intervention and control districts, for example, mortality, hospitaliza-
tion, school absence rates, and so on. Alternatively, rather than relying on
routinely gathered population health statistics, one might enroll panels of
individuals in each district and study their health outcomes (symptoms,
biomarkers, etc.) in greater detail. In either case, one must remember that
the “effective sample size” is not the total number of individuals but rather
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the number of groups being compared. Of course, the number of individ-
uals within each group will affect the statistical precision of the estimated
outcome for that group, but the precision of the intervention effect esti-
mate depends much more strongly on the number of groups. A swap in
the treatment assignment of one pair of groups could have a very large
effect on the outcome of the comparison if only a few groups are being
compared, no matter how precisely each group’s outcome is measured!

As with the randomized controlled trial of individuals, a group ran-
domized trial has the property that the estimated treatment effect and
significance test have their nominal properties guaranteed by randomiza-
tion. This is true even if by chance some risk factors turn out—by an
accident of randomization—to be out of balance between intervention and
control groups. But recall that this is a claim about the statistical prop-
erties of tests and estimators over many hypothetical replications of the
trial, not a claim that any particular trial got the right answer. Significance
tests can only estimate the probability that the observed result could have
occurred by chance had the allocation of sampling units to treatments
been different. Because the number of sampling units is typically small,
effects need to be much larger to be deemed statistically significant than
if individuals had been assigned at random; confidence intervals on the
estimated treatment effect will also tend to be much wider in a group ran-
domized trial than in an individual trial as a result of the small number of
groups being compared.

As in an individual-based trial, if one of more confounding factors turns
out to be differently distributed between the treatment groups, it is also
possible to adjust for it in the analysis. But the appropriateness of such
adjustments is likely to be more controversial because of the smaller num-
ber of degrees of freedom available, so that asymptotic arguments about
the validity of the procedure may not be applicable.

Staggered intervention design

Suppose it is not feasible to randomize individuals or groups to treatments.
We now consider a range of nonrandomized designs, dubbed “quasi-
experimental” by Campbell and Stanley (1963) in their classic text. The
first such design presumes all sampling units (“districts”) will eventually
receive the intervention, but it will be introduced at different times across
districts. Ideally, the timing of application would be assigned at random
across districts, but this may not be feasible and is not essential to the
validity of the design (but it helps). Health outcomes may be improving
over time for reasons completely unrelated to the intervention, and some
of these changes could occur abruptly at times that just happened to coin-
cide with the intervention. But it would be quite unlikely that such changes
would occur at different times in different districts in such a way as to line
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Figure 14.3. Hypothetical example of data from a staggered intervention study; dates of
intervention for each city are marked by squares.

up exactly with the timing of the intervention in each place. Hence, one
would be looking for a pattern of changes across districts like that shown
in Figure 14.3, where there is a noticeable improvement in the outcome
that coincides with the introduction of the intervention in each district.
The analysis of such data might use a time-series model of the form

E[Yi(t)] = ai + s(t)+ βZi(t)+ ei(t)

where Yi(t) denotes the aggregate measure of health outcome in district i
at time t , s(t) denotes a smooth function of time (assumed to be the same
across cities), Zi(t) an indicator function for whether the intervention is
in effect in city i at time t , and ai and ei(t) are random error terms. Here
the size of the treatment effect is given by β.

Before–after design with aggregate data (interrupted
time-series study)

The “interrupted time-series” design (Webster et al. 2002) is essentially
the same as that described in the previous section, but with only a sin-
gle sampling unit available. The analysis would use the same time-series
model (without the city-specific terms) and would estimate the treatment
effect by the magnitude of the change before and after the intervention,
after adjusting for long-term and seasonal trends and possibly other con-
founding factors (weather, influenza outbreaks, etc.). Because there is no
built-in replication like in the staggered intervention design, confidence
in a causal interpretation of an observed effect is much weaker. Multiple
independent studies of this type may provide such replication, but with-
out the advantage of a joint analysis of all the data using consistent data
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collection methods and analysis techniques. The Dublin and Hong Kong
mortality studies cited earlier are examples of this kind of analysis.

Before-after design with individual data (panel study)

Panel studies were introduced in Chapter 7, and are well suited to evalua-
tion research when it is desirable to examine the effects of the intervention
with individual rather than aggregate data, so that subtler outcomes that
may not be routinely available or intermediate variables like biomark-
ers can be studied. The design and statistical analysis is essentially the
same as described earlier, with the main comparison being of changes
in outcomes within individuals following the intervention, rather than
correlations in daily fluctuations in outcomes with daily fluctuations in
exposure. As with the interrupted time-series design for aggregate data,
however, causal interpretation of any observed changes as an effect of
the intervention is limited by there being only a single group, making it
impossible to be certain that the observed changes were not due to some
other factor that changed at the same time.

Before–after design with controls

Some of the weakness of the simple before–after designs can be remedied
by the inclusion of an unexposed control group. Here, by “unexposed” we
are referring to the intervention, not the environmental factor itself. The
control district might be as exposed as the targeted group before or after
the intervention. In either event, one would be looking for a change in the
outcome of the targeted group following the intervention that was larger
than the corresponding change in the control group. This is, in effect, a
test of group × time interaction in a two-way analysis of variance. Equiv-
alently, the design can also be seen as separate comparisons of treated
versus control groups before and after the intervention. Depending upon
whether the control group’s exposure was more like the treated group’s
before or after, one might then be looking for a difference at one time and
not at the other (Figure 14.4). The Hong Kong panel study of childhood
respiratory symptoms described earlier is an example of this type of study.

As with a randomized trial, an investigator has the option of selecting
controls to match the characteristics of the intervention group, either indi-
vidually or by groups. Of course, only characteristics that have already
been identified as potential risk factors and for which data are readily
available at the time of control selection can be matched for. Further-
more, the number of characteristics that can be effectively matched on is
limited, particularly in a group-matched setting. If whole cities are being
chosen as controls for experimental cities, for example, there may be only
a limited number to choose between; one can then only hope to select
cities that are as similar as possible to their experimental counterparts on
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Figure 14.4. Hypothetical data on exposure and health outcomes in a before–after design
with controls. The first subscript refers to the group, the second to the time period.
The treatment effect is estimated by the difference in changes over time between treated
and control groups (Y22 −Y21)− (Y12 −Y11), or equivalently by the change in between-
group differences before vs. after (Y22 −Y12)− (Y21 −Y11), both quantities being equal to
Y22 −Y21 −Y12 +Y11.

a few relevant characteristics. With individual matching, one has greater
scope for matching closely on multiple characteristics. But matching on
pre-study outcomes can be counterproductive due to the phenomenon of
regression-to-the-mean (Tu and Gilthorpe 2007): subjects with high initial
values may be only randomly high and a follow-up measurement would
be expected to be lower, with or without the intervention.

Before–during–after design

In some cases, the intervention is only temporary, as in the planned
reductions in air pollution during the 2008 Olympic Games in Beijing.
In this case, it is possible to look both for an improvement in short-
term health indicators during the intervention and a return to previous
levels of health sometime after the intervention ceases, and to study the
length of time any beneficial effect persists. Although it is possible that
some confounding factors would rise and fall in parallel with the targeted
exposure and thereby account for any observed effect, a causal inter-
pretation as an effect of the intervention itself is much more plausible
than in a simple before–after comparison. Such an inference would be
even stronger if it were possible to study a comparable control group not
exposed to the intervention but subject to the same changes in other fac-
tors, and if no such pattern of changes in outcomes were observed in that
group.
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After-only design with controls

The previous designs all presume enough advance planning to allow an
assessment the health status of a population before the intervention occurs.
The least informative situation occurs when an ex post facto analysis is
required with no basis for historical comparison. In this situation, all that
can be done is a comparison of groups exposed and not exposed to the
intervention, hoping that they would have been comparable before it, but
with no solid basis for testing this assumption. Having multiple exposed
and control groups to provide some replication and controlling for poten-
tial confounders by matching the groups in the design or by adjustment
in the analysis will somewhat enhance one’s confidence in the validity of
the comparison. Different types of control groups may also be helpful
for addressing different potential sources of bias (dubbed the “patched up
design” by Campbell and Stanley), particularly if the results from different
groups are similar, but conflicting results can be difficult to interpret.

Routine surveillance

While the assessment of the effects of specific interventions is best done by
carefully designed, targeted, prospective studies, there is also a place for
routine surveillance of exposures and health indicators, if only to build a
long-term basis for historical comparisons. Major health events like mor-
tality and hospitalizations are routinely compiled by government agencies,
and have been the mainstay of time-series analyses like those discussed in
Chapter 8. Data on subtler—but arguably more sensitive—endpoints like
asthma attacks or absenteeism are harder to come by. Longitudinal mea-
surements of certain biomarkersmight be evenmore informative. Agencies
charged with evaluating the costs and benefits of environmental regula-
tionsmight dowell to consider establishingmore such surveillance systems
long in advance of new interventions, so as to support future prospective
studies. For example, the U.S. Centers for Disease Prevention and Control
plans to develop a national environmental public health tracking network
to identify environmental hazards, track exposure to them, and assess
their health effects (http://www.cdc.gov/nceh/tracking/).

The Health Effects Institute Accountability Working Group (2003)
report provides an excellent historical account of attempts to evaluate the
health benefits of air pollution interventions and a thoughtful discussion of
research needs, as background to a subsequent Request for Applications
(HEI 2004). They call for further efforts to catalogue available national,
state, and local databases of health indicators and potential confounding
factors, and encourage further research into the feasibility of using avail-
able biomarkers and developing novel ones for health-impact assessments.
Amongst the suggestions contained in the 2004 RFA are the following:

• Prospective and retrospective studies to evaluate such targets as:
the heavy-duty low sulfur fuel rule; PM2.5 and O3 NAAQS state

http://www.cdc.gov/nceh/tracking/
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implementation plans; EPA’s air toxics control plan; Tier II regula-
tions for light and medium duty vehicles and fuels; California’s diesel
emissions reductions program; and various local initiatives.

• Methods development: techniques using data from surveillance systems;
to measure time-varying confounding factors; surrogate markers of
health effects; syntheses of preexisting studies; causal models; validation
of model-based predictions, etc.

Statistical analysis issues

VSL versus VSLY approaches

As the various cost-benefit analyses discussed at the beginning of this
chapter have shown, the most important benefit from reduced air pol-
lution is reduction in mortality. Setting aside for the moment the question
of how to assign a monetary value to a life saved, there is an important
statistical question about how the mortality benefit should be calculated.
The two competing approaches are generally known as the “value of a sta-
tistical life (VSL)” and the “value of a statistical life year (VSLY).” Both
approaches require an assessment of the number of deaths prevented or the
total number of years of life gained by changes in exposure before the eco-
nomic analysis (assigning a value to such quantities) can begin. Although
this may seem at face value like a relatively straight-forward application of
the risk assessment techniques described in the following chapter, there is
an important subtlety. Deaths can never truly be prevented, only delayed:
sooner or later, we will all die! But it makes a big difference whether
it is only postponed by a few days until one dies of the same cause one
would have anyway (the harvesting hypothesis discussed in Chapter 8),
or entirely avoided at some “premature” age until one eventually dies of
another cause unrelated to exposure. Time-series methods count all excess
deaths, but are silent about the length of life lost, whereas cohort stud-
ies reflect the change in long-term death rates due to exposure, implicitly
involving the life expectancy. For the purpose of computing the benefit
of reduced exposure, the person-years approach is obviously preferable
but was not used by EPA as the primary basis of their cost-benefit anal-
ysis because of inadequacies in the data needed for the VSLY approach.
Chapter 6 and Appendices D and H of their report (EPA 1999) provide an
extensive discussion of the issues involved and their rationale for relying
instead on the VSL approach, but it misses the following point. Assuming
there is some (possibly very large) heterogeneity in individual risk, it is not
possible to compute the number of deaths attributable to exposure with-
out making additional untestable assumptions. Under somewhat weaker
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assumptions, however, the years of life lost attributable to exposure can
be estimated. We will return to this point in Chapter 16.

Policy issues

Cost-benefit analysis

Economic estimation of the costs of an intervention is beyond the expertise
of this author and the scope of this book, as is assessment of effect of the
intervention on exposure distributions, which is usually the first step in
assessing the effects on health. Since the dominant benefit appears to be
mortality, it is worth a few words, however, about the sensitive question
of the monetary value of a premature death or life-year-lost. That it is
necessary—if somewhat distasteful—to assign such a value is obvious from
the logic of a cost-benefit calculation. Only by expressing costs and benefits
in comparable units can a ratio be computed as a dimensionless quantity.
How then should one go about it?

For decades, the dominant paradigm in economics for assigning value
to human life has been the “willingness to pay” or “willingness to accept
compensation” approach. The value of material goods is established in the
marketplace by how much people are willing to pay for them. So, the rea-
soning goes, one can establish the value of a premature death avoided or
of an additional year of life by surveying individuals and asking them how
much they would be willing to pay to avoid premature death. Numerous
such surveys have been conducted, with a range of estimates from $0.6 to
$13.5 million per premature death avoided, averaging about $4.8 million
(the figure adopted by EPA). Dividing this figure by the population life
expectancy yields a corresponding average monetary value of $137,000
per year of life saved. This figure almost certainly varies by age, how-
ever, not to mention an individual’s personal perception of their quality
of life remaining. Such factors are more difficult to estimate, however, so
are ignored in the EPA’s benefit assessment using the VSLY approach. In
principle, however, what one really seeks is an integral over all ages of
the change in the probability of surviving to each subsequent age under
different exposure scenarios, multiplied by the value assigned to a year of
life at that age, that is,

VSLY =
∫ ∞

0
f1(t)

∫ ∞

0
[S0(u|t)− S1(u|t)]V (u) du dt

where f1(t) is the age at death distribution given current exposures, Sx(u|t)
is the probability of surviving to age u given survival to age t under expo-
sure scenario x, and V (u) is the value assigned to a year of life at age u.
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Even if one were willing to assign values in this way, however, the funda-
mental difficulty with this calculation is that there is no way to estimate the
counterfactual probabilities Sx(u|t) in a heterogeneous population. Indi-
viduals dying at any given age in the presence of exposure are presumably
the more sensitive, and their remaining expectation of life, had they not
been exposed and not died as a result, would hardly be expected to be
similar to the general population at that age. We will explore this issue
further in Chapter 16.

These statistical issues aside, the whole rationale for cost-benefit calcu-
lations as a basis of public policy is highly controversial. See, for example,
Hammitt and Graham (1999); Krupnick (2002); Kaiser (2003) for policy
perspectives on the valuation of human life. For example, John Graham,
the former director of the Office of Information and Regulatory Affairs
(OIRA) in the White House Office of Management and Budget, has been
a strong advocate of the VSLY approach, counting deaths at younger
ages more heavily because they would entail more years of life lost. In
response, EPA proposed adjusting the calculation of benefits by counting
deaths above age 65 at 37%of the value assigned to deaths at younger ages.
This provoked intense criticism from senior citizens and others, calling it a
“senior death discount,” so the EPA abandoned the proposal (E. Shogren,
Los Angeles Times, May 8, 2003).

The social–political context of intervention research

The foregoing discussion should provide some idea of the highly politicized
arena in which regulatory decisions are made and their impacts evaluated.
Numerous vested interests and highly vocal advocacy groups are involved.
Opinions are highly polarized. Decisions are made not just on the basis
of science but on numerous social, political, and economic considera-
tions. Nevertheless, science has an important role to play and scientists
should contribute their expertise. But science operates in a culture that val-
ues objectivity. This can be difficult to maintain in the rough-and-tumble
world of evaluation research, with its conflicting pressures from funding
agencies, program staff, and interest groups (Weiss 1972). It may not be
easy for scientists who are used to an ivory tower environment to maintain
their objectivity in the conduct of their research and in reporting their find-
ings dispassionately without shading their results to reflect their personal
biases or to please their audience. But such objectivity is exactly what is
needed to inform public policy.

This highly polarized policy-making environment is illustrated by the
experience of the investigators conducting the Eurpoean health impact
assessment for air pollution (Kunzli et al. 2000) described at the begin-
ning of this chapter. The study was originally commissioned by the Swiss
government as part of a comprehensive assessment of the costs of traffic
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(accidents, noise, air pollution, and property damage) to provide a basis
for setting tariffs for truck traffic through Switzerland. Not surprisingly,
the resulting ten-fold increase in these fees provoked an outcry, but nev-
ertheless other countries became interested and the Swiss government
lobbied for a second study. Ultimately, France and Austria joined in the
second study, but Germany did not, as some of its scientific advisors
insisted that reliance on cohort studies led to overestimates of the risk
and that only the acute effects (time-series) studies should be used. Iron-
ically, it is now widely agreed that the latter underestimate the risks (see
the concluding portion of Chapter 8).

After reviewing the accumulated evidence about a range of health effects
from different pollutants in southern California from the CHS, Kunzli
et al. (2003) discussed two general strategies for improving the public
health impact of air pollution: reducing emissions; and reducing indi-
vidual exposures. The former include technological improvements (to
vehicle design and fuels), urban design (limiting sprawl and building bicy-
cle paths), and behavior (encouraging carpooling and forbidding idling
of school buses). The latter also include technological improvements (air
filtering in schools), urban design (separating schools from roadways),
and behavioral (reducing outdoor activity when pollution is high). They
go on to discuss some of the tensions between these alternative strate-
gies. For example, school air conditioning requires energy which could
lead to higher ambient pollution levels, whereas encouraging walking to
school could increase individual exposures, and moving to less polluted
communities in the suburbs will increase pollution from commuting. Such
trade-offs can end up pitting one interest group against another—beyond
the usual environmental quality versus economic costs debates—calling
for a visionary approach to setting public health regulatory policy.



15 Risk assessment

…a continuing concern for methods,
and especially the dissection of risk assessment,
that would do credit to a Talmudic scholar
and that threatens at times to bury
all that is good and beautiful in epidemiology
under an avalanche of mathematical trivia and neologisms.

—(Stallones 1980)

Environmental epidemiology forms one the most important pillars for
setting environmental regulations. Policy makers distinguish two types of
activities, risk assessment and risk management. Risk assessment refers
to the scientific activity of combining evidence from all relevant sources
to assess the likely health consequences of various possible regulatory
strategies and the uncertainty about these predictions. Risk management
combines this scientific advice with consideration of economic, legal,
political, and other considerations to arrive at policy recommendations.
Risk managers frequently rely on the “precautionary principle,” which
is perhaps best described in the Rio Declaration on Environment and
Development:

Where there are threats of serious or irreversible damage, lack of full scientific cer-
tainty shall not be used as a reason for postponing cost-effective measures to prevent
environmental degradation.

The application of the principle has been hotly debated, however; see
Renn (2007) for an overview of a series of talking points on this debate.
Risk management is beyond the scope of this book, however, so this
chapter will focus primarily on the use of epidemiologic evidence in the
risk assessment part of this process.

Of course, risk assessment often relies on more than just human data.
Epidemiologic data may be quite limited, or even if good human data are
available, there could be highly relevant experimental data from toxicolog-
ical studies in animals, cell cultures (e.g., mutagenicity assays), exposure
assessment, or other sources. Combination of evidence across such dis-
parate fields is more an art than a science, but we will review at least some
of the formal statistical methods that have been brought to bear on this
task later in this chapter.

Within the field of risk assessment, a further distinction is commonly
made between assessing the causality of an exposure–response relation-
ship and quantifying the magnitude of the effect. Again, the former is
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largely a judgment call, particularly where evidence from different fields
are to be synthesized. Traditionally, epidemiologists have relied on criteria
like those laid down by Sir Austin Bradford-Hill (1965) for evaluating the
causality of the smoking and lung cancer association (see Chapter 2). Vari-
ous expert bodies such as the International Agency for Research on Cancer
(IARC), the Institute of Medicine (IOM) of the U.S. National Academy of
Sciences, the U.S. Environmental Protection Agency (EPA), the National
Toxicology Program (NTP), amongst others, have developed qualita-
tive classifications of the strength of the scientific evidence. Although the
specific terminology and definitions vary, these are broadly classified as
“sufficient,” “limited,” or “inadequate” for humans and animals, supple-
mented with supporting evidence about mechanisms, chemical similarity
to established carcinogens, or other relevant data. For example, IARC
summarizes the evidence relating to cancer risk into five main categories:
carcinogenic to humans; probably carcinogenic to humans; possibly car-
cinogenic to humans; not classifiable as to carcinogenicity in humans; and
probably not carcinogenic in humans. The first three categories require
at least direct observations of cancer in humans or laboratory animals
and most agencies require multiple studies to establish a positive catego-
rization. A recent IOM Committee on compensation for veterans (IOM
2007), reviewing the proliferation of criteria for judging evidence recom-
mended the following simplified system: sufficient; equipoise and above;
below equipoise; and against. Because this activity is largely a qualitative
judgment, we will not consider it further in this chapter and will turn our
attention to risk assessment.

Risk assessment from epidemiologic data

In general, the process of risk assessment entails three steps: a meta-
analysis of the world literature to derive exposure–response relationships,
including any modifying factors and their uncertainties; exposure assess-
ment to describe the relationship between various exposure scenarios of
potential regulatory interest and the resulting distribution of exposures or
doses to human populations; and combination of the two to compute the
predicted population risk from the various regulatory scenarios. We now
consider each of these steps in turn.

Estimation of exposure–response relationships

Most of the earlier chapters of this book have been concerned with the
analysis of epidemiologic study data to infer exposure–time–response rela-
tionships. But so far, we have considered only the analysis of a single
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study, where the raw data is available to the analyst. The task of the meta-
analyst usually begins with the summaries of such analyses as reported in
the scientific literature, without further access to the raw data. Of course,
in some instances it has been possible for an analyst or an expert body
to assemble the raw data from all the important studies and perform a
combined analysis. Although a much more ambitious undertaking, such
“mega-analyses” tend to be much more informative, as they allow all the
studies to be analyzed in a comprehensive manner, using a consistent set
of variable definitions and models (at least within the limitations of the
data available from the different studies).

Risk estimates might be derived from purely empirical exposure-
response models like those described in Chapter 6 or from mechanistic
models like those in Chapter 13. The U.S. and California EPAs, for
example, rely heavily on the linearized multistage model of carcinogen-
esis (Crump 1984) described in Chapter 13 for deriving risk estimates
and confidence limits from animal carcinogenesis studies, as well as
epidemiologic data.

The National Academy of Sciences Committee on the Biological Effects
of Ionizing Radiation (BEIR IV) (NAS 1999) performed mega-analyses
of all the major cohort studies of radon exposure among uranium min-
ers and case-control studies of domestic radon exposures. Their analysis
framework entailed an empirical form of exposure–time–response model
for the miner studies that allowed for different slope coefficients across
studies, while keeping other parts of the model (the modifying effects of
age, latency, and smoking, for example) that were less well estimated com-
mon across studies. Thus, a typical model from their analysis might take
the form

λ(t , s,Z) = λs(t)[1+ bsZ(t) exp(f (t)]

where s denotes study, Z(t) denotes some empirically derived measure of
latency-weighted cumulative radon exposure (as discussed in Chapter 6),
and f (t) some empirically derived modifying effect of attained age. The
focus of the analysis is thus primarily on the estimation of the relative risk
coefficients bs and their within- and between-study variabilities.

Meta-analysis

Ideally, the estimation of an overall relative risk coefficient would be
based on a mega-analysis of all the original data, but frequently all
that is available is published analysis summaries of estimates and their
standard errors, requiring a meta-analysis. Letting Vs = var(b̂s), denote
the sampling variability of the estimate b̂s from study s, an obvious
estimator of the average relative risk coefficient would be the simple
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variance-weighted average β = �s(b̂s/Vs)/�s(1/Vs) with naïve variance
var(β) = 1/�s (1/Vs). However, this estimator assumes that all studies
are estimating the same parameter β0. More likely, there is real hetero-
geneity in the “true” parameter values βs being estimated by each study,
due to various aspects of the populations studied and methodologies used.
The random effects model assumes that these true βs are normally dis-
tributed around β0 with variance σ 2 and the study estimates b̂s are in
turn normally distributed around their respective βs with variance Vs .
Then the maximum likelihood estimate of the average risk coefficient β0 is
given by

β̂0 = �sb̂s/
(
σ̂ 2 + Vs

)
�s1/

(
σ̂ 2 + Vs

)
with model-based (inverse information) variance var(β̂0)=[�s1/
(σ̂ 2 + Vs)]−1, where the method of moments estimator of the between-
populations variance of the true βs is given by σ̂ 2 = (S− 1)−1�S

s=1[(b̂s −
β̂0)

2 −Vs] if positive, otherwise zero. (One could also use the more pre-
cise maximum likelihood estimator of σ 2, but this requires an iterative
search.) The assumption that the true βs are normally distributed may be
questionable, in which case one might want to use the robust variance
estimator

var(β̂0) = �s(b̂s − β̂0)
2/(σ̂ 2 + Vs)

2

[�s1/(σ̂ 2 + Vs)]2

While this estimator does not require the normality assumption, it may be
poorly estimated if the number of studies is small.

More importantly, the meta-analyst should seek to understand why
studies differ in their estimated risk coefficients rather than simply to
obtain an average of them. This can be done using the technique of meta-
regression (Greenland 1994b; Greenland and O’Rourke 2001), in which
the analyst constructs a vector Zs of covariates describing various aspects
of the populations (e.g., their age distributions or geographic locations)
and the study methodology (e.g., participation rates or subjective qual-
ity scores) that could potentially account for differences in results. The
assumption of a common distribution of study-specific parameters βs is
then replaced by a regression model of the form βs∼N(Z′

sμ, σ 2). In addi-
tion to providing insight into discrepant results, the model provides a
basis for estimating the risk for the specific population of interest to the
regulator that might have been derived from a hypothetical ideal study
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(provided this did not require extrapolation too far beyond the range of
the data!).

Here, for expository purposes, we have assumed that the sole parameter
of interest is the relative risk coefficient β, but in reality, there are addi-
tional uncertainties in the parameters of the latency weighting in Z(t) and
the attained age modifying function f (t), not to mention the basic form of
the model and possibly other components. Furthermore, we have assumed
that the parameter of interest is normally distributed. Such uncertainties
might be better accounted for by deriving the likelihood of the full param-
eter vectors �m for model m and the marginal likelihoods Lm or posterior
probabilities πm of each model, as described in Chapter 12.

Having derived a model from the miner data, the BEIR VI Committee
then proceeded to perform a similarmega-analysis of the case-control stud-
ies of domestic radon and to compare the twomodels. Figure 15.1 provides
a comparison of the two estimates, showing that, although the estimates
from the low-dose residential studies individually have great uncertainty
and as well as between-study variability, overall all the results are compat-
ible with the risk estimates predicted by the high-dose miner studies and,
indeed, are more compatible with those estimates than with an estimate
of no effect. They also are clearly inconsistent with the inverse relation-
ships suggested by the ecologic studies, which are potentially subject to
the various forms of “ecologic” bias discussed in Chapter 10.
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Figure 15.1. BEIR VI Committee’s analysis of the miner and residential radon studies
(Reproduced with permission from NAS 1999).
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A key element of exposure–response analysis is, of course, establishing
the basic form of the relationships—whether linear, loglinear, or involving
some threshold or saturation—and how individuals might differ in their
personal sensitivities to exposure across a population. A risk assessment
will usually take such issues into consideration, perhaps using techniques
such as those described in Chapter 6, including a range of parametric or
flexible models (splines, etc.). Since regulators are generally interested in
very low excess risks, it is commonplace to rely on the principle of low-
dose linearity. The argument goes as follows (Crump et al. 1976): suppose
the true form of the relation is r(Z) such that r ′(0) > 0 (i.e., any exposure
beyond zero produces some increase in risk); then the (unknown) true
dose–response can be approximated by a Taylor series as

r(Z) = r(0)+ Zr ′(0)+ e(Z)

where e(Z) denotes terms that become vanishingly small as Z goes to
zero. The rationale for the assumption that r ′(0)>0 is that zero exposure is
never truly attainable, so that the measured exposure is always in addition
to some background level and it is implausible that a small additional
exposure would not lead to some increase in risk. Thus, in the limit of very
small exposures, any dose–response relationship should tend to linearity.
Of course, the utility of this theoretical result depends upon how far from
the linear range the observable data are. It certainly does not follow that
linear extrapolation from the entirety of the observable data will lead to a
valid estimate of the true low-dose slope; indeed, the two could differ by
several orders of magnitude (Portier and Hoel 1983).

Inter-individual variability

Any risk assessment should, of course, incorporate what is known about
measurable modifying factors (e.g., age, sex, sensitive subpopulations like
asthmatics, etc.). But what about possible variation in sensitivity between
individuals due to unknown factors, like polygenic background variation?
First, suppose that the dose–response relationship were truly linear, but
each person i had their own slope coefficient βi , with these slopes hav-
ing some distribution across the population, say f(β). Then it follows
that the population dose–response would still be approximately linear,
R(Z)= 1+βZ with slope β =E(βi) =

∫
βf(β) dβ equal to the population

mean of these individual slopes. This approximation, however, depends
upon the risks being small enough that there is no differential survival that
would lead to premature elimination of the most sensitive members of the
population. More precisely, the distribution of slopes among survivors at
age t exposed to some level Z is given by

P(β|Z, t) ∝ S(t |Z,β)f (β) = exp [−�0(t)r(Z|β)] f (β)
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Figure 15.2. Effect of heterogeneity in slope coefficients in a linear model for individual
risk on the population average relative risk as a function of age: gamma distributed slopes
with mean 1 and variance 0.25 and a constant baseline hazard rate λ0 = 0.01.

and hence the population dose–response would become

R(Z, t) =
∫

r(Z|β)P (β|Z, t) dβ =
∫

(1+ βZ)e−�0(t)(1+βZ)f (β) dβ

The effect of this “survival of the fittest” effect is to leave the population at
risk at the highest exposure levels increasingly selected with advancing age
in favor of the less sensitive individuals, leading to an increasing downturn
with age in the population dose–response relationship, as illustrated in
Figure 15.2. This integral can be evaluated in closed form when β has
either a normal or a gamma distribution, leading to

R(Z, t) = 1+ μZ −�0(t)σ
2Z2

or

R(Z, t) = 1+ μZ

1+�0(t)σ
2Z/μ

respectively. The normal case includes some probability that β is nega-
tive, so that for sufficiently large risks, the dose–response can actually
decline with increasing exposure, but this scenario is somewhat implausi-
ble. Figure 15.2 demonstrates the case for gamma-distributed individual
slopes, which are necessarily positive.



15 Risk assessment 327

A more important situation arises when the dose–response is nonlinear,
with differences between individuals in the shape of the relationship. There
are two important cases that are amenable to closed form solution: a probit
model and a threshold model. In both cases, let us assume the risks are
low enough that differential survival over time can be ignored.

For the probit model, let us first assume Pr(Y = 1|Z) = �(αi+βZ), that
is, the relative risk per unit dose is a constant across the population, but the
level of risk varies between individuals. Furthermore, let us assume that
the intercept terms αi are normally distributed with mean μα and variance
σ 2
α . Then it can be shown that the average population dose–response takes

the form

Pr(γ = 1|Z) = �

(
μα + βZ√
1+ σ 2

α

)

Thus, the average population dose–response has the same basic form, but
the slope is attenuated by the factor in the denominator [Figure 15.3(a)].
On the other hand, if the intercept is constant, but the slopes vary between
individuals, then the average population dose–response becomes

Pr(Y = 1|Z) = �

⎛⎜⎝ α + μβZ√
1+ σ 2

β Z
2

⎞⎟⎠
In this case, the shape of the average population dose–response can be quite
different from the individual ones, being more attenuated at high doses,
but similar to that of an average individual at low doses [Figure 15.3(b)].

A second special case is the linear threshold model mentioned in
Chapter 6. As in Eq. (6.1), we assume an individual’s dose response is
given by ri(Z) = 1+ β(Z− τi)I (Z > τi), that is, there is no increased risk
until exposure exceeds an individual’s personal threshold τi , atwhich point
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each additional increment of exposure has the same effect as for everyone
else. Since both Z and τ are nonnegative, it makes sense to assume τ has a
truncated normal, lognormal, or gamma distribution. The resulting pop-
ulation dose–response relationships are shown in Figure 15.4. All these
curves have zero slope at zero exposure, but the transition to a linear
dose–response is more gradual than for any individual, the location of the
change point being determined by μ and the curvature at that point by σ 2.

Although we have focused in this discussion on the effect of heterogene-
ity on the average population risk, regulators are frequently concerned
with the risk to the most sensitive individuals or subpopulations. Absent
knowledge of specific modifying factors that can be taken into account in
the epidemiologic analysis, this becomes a somewhat speculative exercise,
and regulators usually fall back on arbitrarily chosen “safety factors” that
are little more than guesses. For example, the U.S. EPA aims to base stan-
dards not on the average risk but on the risk to the 99th percentile of the
distribution of susceptible individuals. In principle, the models described
above could be used to estimate the variance parameters σ 2, and the fit-
ted dose–response evaluated at some percentile of the distribution of the
random effects, but in most circumstances, this is unlikely to be reward-
ing. First, even for a correctly-specified model, these variances are likely
to be poorly estimated from epidemiologic data. More importantly, the
estimate of variability is critically dependent upon the form of the assumed
model for individual risk, which is not directly observable. For example, if
the true dose–response were linear-quadratic with no heterogeneity across
subjects, but one fitted a linear spline model with heterogeneity in thresh-
olds to any finite dataset, one would likely obtain a nonzero estimate of
the mean and variance of the thresholds, but the fitted upper bound on
the distribution of risks across individuals would be meaningless. As we
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have seen, heterogeneity in slopes, intercepts, or thresholds have different
effects on the population distribution of risks and there is little a priori
basis for choosing between alternative models.

Exposure assessment

The next step of the process entails an evaluation of the distribution across
the population of doses to the target organ that might result from various
alternative regulatory scenarios. (As in Chapter 6, we note that in some
situations it may be impossible to estimate distributions of actual dose
and the analysis proceeds in terms of exposure instead, particularly if only
exposure–response rather than dose–response data are available. Never-
theless, in what follows, we use the term “dose” interchangeably with
“exposure.”) We assume that Zi(t) in the previous section represents dose
as a function of time for a given individual i in the population, and let A

represent some proposed regulatory limit on population exposures. Such
limits could take many different forms, such as an upper bound on the
instantaneous ambient concentration or a target for the long-term aver-
age ambient concentration. Limits could also be imposed on the emissions
from particular sources or on some summary of the population distri-
bution of personal exposures. The latter tend to be more difficult to
implement. At issue also is whether the purpose of the regulation is to
control the population average risk (or exposure) or the maximum risk
to any individual. As discussed above, risk models might provide some
basis for distinguishing between the risks per unit exposure across sen-
sitive subgroups, in which case one might be concerned with controlling
the population average risk or the risk to the most susceptible individual.
Individuals doubtless do vary in terms of their sensitivities to any given
exposure, but often the specific modifying factors are unknown and even
the range of variability across individuals may be impossible to quantify.
On the other hand, the distribution of individual exposures under some
regulatory scenario might be more readily quantified than individual risks,
so the estimation of doses to the most heavily exposed individuals is an
important part of the process. Risk models from the epidemiologic data
might be expressed in terms of exposure (in terms of external concen-
trations) or in terms of doses to particular organs, which might depend
on such modifying factors as ventilation rates, activity levels, age, gen-
der, or other factors. The task of the exposure assessor is to provide such
translations.

This task is more difficult when the dose–response data derives from
toxicologic experiments in animals. Then various adjustments must be
made to translate the applied doses in the experimental situation to some
kind of equivalent dose to humans. This may entail consideration of such
factors as body size, metabolism, and relative lifespan. Such adjustments
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are often little more than guesswork, although some general principles
have become conventional in the risk assessment community. Depending
upon the context, for example, exposures might be computed in terms
dose per body weight or per surface area and expressed as a proportion of
normal lifespan rather than in units of calendar time. Crump et al. (1989)
compared five such scaling, all previously shown to be highly correlated
(p<0.001)with human cancer potency estimates (Allen et al. 1988), on 23
chemicals for which both human and animal risk estimates were available
and concluded that risk per unit body weight came closest to equality,
with a range of ratios from 0.36 to 1.6. (Ideally one would prefer the
index with the smallest variance in ratios, provided one had a suitable
database for deriving a correction factor for the mean ratio; the Bayesian
approach to evaluating the carcinogenity of plutonium described later in
this chapter is an example of such an approach. On this basis, the Califor-
nia EPA cancer risk assessment guidelines specify the use of a surface area
scaling instead.) Since toxicology experiments are generally performed at
the maximum tolerated dose and perhaps a few lower doses, the possi-
bility of nonlinearities due to saturation effects or biological effects that
do not occur at all at lower doses must be considered (Hoel et al. 1988).
Compartmental pharmacokinetic modeling, as discussed in Chapter 13
might be used to allow for such phenomena. For an extensive review of
the methods used by the U.S. and California EPAs for risk assessment
based on human and experimental data, see (OEHHA 2002). See also
Crump et al. (1976); Hoel (1979); Hoel et al. (1983); Portier and Hoel
(1983); Bailer andHoel (1989); Roberts et al. (2001) and the IARCmono-
graph (Moolgavkar et al. 1999a) for further discussion. Zeise et al. (2002)
provide a comprehensive discussion of current methodological challenges
and extensive references. The concluding section of this chapter describes
a Bayesian approach to combining human and animal risk estimates, given
a choice of a suitable dose metric. Ultimately the U.S. National Toxicology
Program aims to rely more on mechanism-based biological observations
than the traditional two-year rodent experiment for carcinogen risk assess-
ment (Bucher and Portier 2004), but that time appears to be some ways
away still.

Risk quantification

The final step entails computation of such quantities as the population
average lifetime risk of disease P(A) resulting from various exposure
scenarios A. These are often summarized in a single number, such as
the attributable number AN of cases due to exposure or the “unit risk
estimate”

R1 = [P(A)− P(A0)]/(A − A0) (15.1)
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where A0 represents some baseline exposure scenario (e.g., no exposure).
Provided A is sufficiently small, it is then reasonable to assume that the
excess risk from some other scenario A

′ would be proportional to the unit
risk, that is, P(A′)−P(A0) = R1(A

′ −A0). In the remainder of this section,
we describe the calculation of this lifetime risk.

Let λ(t ,A) represent some final risk model derived from the synthe-
sis of the literature, as described in the first step above, and let Z(t ,A)
denote the expected exposure at time t under regulatory scenario A, as
described in the second step above. To compute the lifetime risk, we
use lifetable calculations illustrated in Table 15.1 to compute the survival
function

S(t ,A) = exp{−∫t0(λ[t ,Z(t ,A)] + μ(t))dt}

Table 15.1. Lifetable risk assessment for exposure to 0.1 WL of radon daughters
over a lifetime based on the BEIR VI concentration model [(NAS 1999), Table A-4,
p. 151). See Table 3.1 for the baseline risks of lung cancer incidence and competing
cause mortality

Age Excess Hazard rates for Probability of Life
relative lung cancer lung cancer expectancy
risk

Baseline Exposed Exposed Attributable Exposed Lost

0–4 0.000 0.0 0.0 0.00000 0.00000 72.297 –0.131
5–9 0.019 0.0 0.0 0.00000 0.00000 67.326 –0.131

10–14 0.056 0.0 0.0 0.00000 0.00000 62.388 –0.131
15–19 0.089 0.2 0.2 0.00001 0.00000 57.458 –0.131
20–24 0.118 0.2 0.2 0.00001 0.00000 52.545 –0.131
25–29 0.142 0.4 0.5 0.00002 0.00000 47.666 –0.131
30–34 0.161 1.5 1.7 0.00008 0.00001 42.823 –0.131
35–39 0.180 4.9 5.8 0.00028 0.00004 38.018 –0.130
40–44 0.199 14.2 17.0 0.00080 0.00013 33.260 –0.130
45–49 0.218 37.6 45.8 0.00211 0.00038 28.563 –0.130
50–54 0.237 84.5 104.5 0.00467 0.00089 23.957 –0.128
55–59 0.146 162.1 185.7 0.00790 0.00100 19.491 –0.123
60–64 0.157 276.7 320.0 0.01257 0.00170 15.240 –0.114
65–69 0.085 404.3 438.7 0.01527 0.00120 11.311 –0.098
70–74 0.091 514.0 560.6 0.01625 0.00135 7.832 –0.078
75–79 0.030 572.1 589.2 0.01302 0.00038 4.933 –0.055
80–84 0.032 553.4 570.9 0.00838 0.00026 2.724 –0.034
85–89 0.033 446.5 461.4 0.00344 0.00011 1.256 –0.019
90+ 0.035 446.5 462.1 0.00238 0.00008 0.509 –0.011

Total 0.08718 0.00754
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where μ(t) denotes the risk of death from competing causes. The lifetime
risk is then computed as

P(A) =
∫ ∞

0
λ[t , Z(t ,A)]S(t ,A) dt

and the attributable number is simply AN(A) = [P(A)− P(A0)]N , where
N is the total population size. Alternatively one might use the current age
distribution N(t) of the population to compute the attributable number as

AN(A) =
∫ ∞

0
{λ[t ,Z(t ,A)] − λ[t ,Z(t ,A0)]}N(t) dt

In the event that the effect of some proposed regulatory strategy would be
instead to yield a probability distribution p[Z(t ,A)] of population expo-
sures, then one would obtain the unit risk or attributable number by
integrating these quantities over that distribution.

The validity of these calculations depends upon an assumption of inde-
pendence of competing risks, that is, that individuals dying of the cause
of interest are no more or less likely to die of other causes than other indi-
viduals. Unfortunately, with only a single cause of death observable, this
assumption is inherently untestable, although it seems likely that some
causes of death are indeed dependent. Nevertheless, the assumption is
commonly made for lack of a viable alternative.

Now it is tempting to define the unit risk as the average across subjects
of the unit risks from Eq. (15.1), but this conflates two countervailing
tendencies: on the one hand, at any given age, the hazard rate for death is
increased by exposure, but also the probability of surviving to that age is
decreased. It has therefore been argued (Thomas et al. 1992a) that a more
appropriate measure of excess risk is to integrate the excess risk at each
age attributable to exposure against the survival distribution expected in
the absence of exposure, that is,

R1 =
∫ ∞

0
{λ[t ,Z(t ,A)] − λ[t ,Z(t ,A0)]}S(t ,A0) dt/(A − A0)

A disadvantage of any of these measures of excess risk is that they take
no account of when the excess deaths occur. Two agents might cause the
same total number of deaths, but one might act at a younger age than
the other, leading to greater loss of life expectancy. Thus, an alternative
measure of impact is the expected years of life lost (EYLL), computed as

EYLL =
∫ ∞

0
(S(t ,Z0)− S(t ,Z)) dt

=
∫ ∞

0
t (λ(t ,Z0)S(t ,Z0)− λ(t ,Z)S(t ,Z)) dt

(This equality is readily demonstrated by integration by parts.)
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These calculations are illustrated in Table 15.1 for a hypothetical life-
time of exposure to domestic radon at a concentration of 0.1 WL. The
baseline incidence rates of lung cancer and death rates from competing
causes are the same as those used in introducing the lifetable method
in Table 3.1. Here, we compare those baseline calculations with those
under the exposed scenario. The excess relative risks are given by the
BEIR VI Committee’s (NAS 1999) preferred model involving modify-
ing effects of latency, concentration, and attained age, which takes
the form

ERR[t ,Z(·)] = βϕt (θ1Z5−14 + θ2Z15−24 + θ3Z25+)γZ

where β = 0.0744, ϕt is the modifying effect of attained age (1.00 for ages
<55, 0.57 for ages 55–64, 0.29 for ages 65–74, and 0.09 over age 75),
θ is the modifying effect of latency in the indicated periods prior to t

(θ1 = 1.00, θ2 = 0.78, θ3 = 0.51), and γZ is the modifying effect of
average concentration (1.0 for concentrations less than 0.5 WL, declin-
ing for higher concentrations). Here, we evaluate the risk for an average
concentration of 0.1 WL. The column headed “Lung cancer incidence,
exposed” is simply the baseline rates multiplied by 1+ERR derived from
this model at the indicated attained ages. “Probability of lung cancer”
in the exposed is computed in the same way as described in Chapter 3,
using the hazard rates for competing risks given in Table 3.1. The col-
umn headed “Attributable risk” of lung cancer is [λ(t ,Z)−λ(t , 0)]S(t ,Z).
Thus, the lifetime risk of lung cancer in the exposed is 8.718%, compared
with 8.017% for the general population, for a lifetime attributable risk
of radiation-induced lung cancer of 0.754%. (Note that this is not sim-
ply the difference of the two lifetime risks, 0.701%, because the exposed
and unexposed hazard rates are integrated over the same survival distri-
bution, that among the exposed population.) The life expectancy of the
exposed population is 72.297 years, compared with 72.427 for the unex-
posed population, or a loss of life expectancy of 0.131 years. Thus, we
would report the “unit risk” estimate as 7.5% per WL and the unit loss
of life expectancy (LLE) as 1.3 years per WL.

As before, of course, if these risks vary across individuals, either because
of variation in the distribution of personal exposures under a given sce-
nario or because of variation in individual modifying factors, then the unit
risk would have to be computed by taking a population average of this
quantity across individuals.

Recall the discussion of some of the reasons for the huge difference
between acute and chronic effects of air pollution discussed in Chapter 8.
Whether exposure effects are assessed on the basis of excess deaths or loss
of life expectancy can thus make a big difference in risk assessment. In fact,
as we will see in the following chapter, the former is not estimable with-
out making unverifiable assumptions about population homogeneity and
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biological mechanisms, although loss of life expectancy can be estimated
under less restrictive assumptions.

Another quantity frequently used in the risk assessment literature is
“Disability Adjusted Life Years (DALYs),” which adds weights to each
year of life reflecting a subjective assessment of quality of life following a
chronic illness or injury. SeeMurray and Lopez (1997); Gold et al. (2002);
Pruss et al. (2002); Steenland and Armstrong (2006) for details of methods
for calculating DALYs and Chapter 17 for their application to estimating
the global burden of environmentally caused disease. Essentially, DALY is
the years of life lost (YLL) due to prematuremortality (as described above),
plus a weighted sum of years of life lived with disability. Typical weights
range from0.81 for late stage cancer (any site) to 0.10 for untreated asthma
or 0.06 with treatment.

Uncertainty analysis

Uncertainty analysis entails consideration of multiple components of
uncertainty, including the sampling variability in the relative risk coeffi-
cient of primary interest, other parameters of the model (e.g., individual or
temporalmodifiers), between-study variability, andmodel form. Although
in principle, one could use the delta method to compute the variance ofR1,
this is difficult for a multi-parameter model, requiring the full covariance
matrix of all the parameters. Furthermore, the distributions of individual
parameters are often markedly skewed, so relying on asymptotic normal-
ity can be misleading. A simpler method is to randomly sample parameter
values from the full likelihood of all the parameters and repeat the lifetable
calculation for each sampled parameter vector, then tabulate the distribu-
tion of the resulting unit risk estimates. Such an approach was used by the
NAS BEIR V committee (NAS 1990; Thomas et al. 1992a).

Given the inevitable uncertainty about the true model form, one might
ask how one should estimate the relative risk (or any other epidemiologic
effect parameter derived from it) and an “honest” confidence interval for
it that allows for the possibility of model specification error. There is an
extensive statistical literature on this question [see, e.g., Leamur (1978)
for a review], but in practice the problem is frequently ignored. All too
often, an investigator conducts a number of different analyses and ends
up reporting only a single best-fitting model, or the one he or she has
the strongest belief in, and reports confidence limits on the parameters of
that model as if it were the “true” model. Sometimes, an investigator may
acknowledge this uncertainty about model form by reporting a range of
alternative models in the spirit of “sensitivity analyses,” but this can leave
the reader with a dilemma about which specific set of estimates to use,



15 Risk assessment 335

particularly if several models fit the data more or less equally well, yet
yield different estimates and confidence intervals. There are, however, a
number of formal approaches to this problem, such as the Bayes model
averaging method described in Chapter 12.

Combination of evidence from different disciplines

As noted at the outset, epidemiologic evidence from humans is often lim-
ited or subject to various potential biases. An example comes from the
National Academy’s BEIR IV report (NAS 1988), in which an estimate
of the carcinogenicity of plutonium in humans was sought. The available
human data is very limited—zero bone cancers among individuals occupa-
tionally exposed in theManhattan Project out of 449 and 324 person-year
(PY)-rad, for Pu238 and Pu239, respectively, excluding five years latency.
Hence, the Committee adopted an empirical Bayes approach (DuMouchel
and Harris 1983) that relied on the assumption that the ratio of carcino-
genic potencies of plutonium to various other radionuclides would be
roughly constant across species. Since there is substantially more human
data about the carcinogenicity of various isotopes of radium and extensive
animal data about plutonium, radium, and other radionuclides, it was
possible to estimate the risk of plutonium in humans from a combined
analysis, including an uncertainty analysis that incorporated the variabil-
ity in the ratios of relative carcinogenicities across species. Specifically, the
committee adopted a hierarchical relative risk model of the form

λsr(Z) = λ0s(1+ βsrZ)

log(βsr ) = μ+ αs + γr + εsr

αs ∼ N(0, σ 2
S ), γr ∼ N(0, σ 2

R), and εsr ∼ N(0, σ 2
E)

where s indexes species and r indexes radionuclides. The basic assump-
tion is thus that the ratio of slope coefficients βsr between radionuclides are
approximately constant across species (or vice-versa), with some random
deviations with logarithmic standard deviation σE. Themodel was fitted to
data from four human studies of two isotopes of radium and to six dog and
five rat studies of two isotopes of plutonium and one of radium. Note that
the extremely sparse human data on plutonium were not used in the first
stage of this analysis. On this basis, the estimated posterior distribution for
the human potency of plutoniumwas found to be approximately a gamma
distribution with 1.9 cancers out of 4700 PY-rad, that is, 	(1.9, 4700).
Now combining this with the observed human plutonium data yields an
updated posterior distribution of 	(1.9, 5149) and 	(1.9, 5024) for the
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two isotopes, barely shifted at all from those estimated from the com-
bined analysis of the human radium and animal radium and plutonium
data. More importantly, however, this analysis provides a basis for esti-
mating a posterior credibility interval on the estimated risk of 0.3 per 1,000
PY-rad (1.9/5149) ranging from 0.08 to 1.07, which takes account not just
of the sampling variability in the data but the uncertainty about the validity
of the multiplicative assumption used in the inter-species scaling.

Peters et al. (2005) describe related Bayesian methods for combining
human and toxicologic evidence with an application to the association
between low birthweight and trihalomethane exposures. Their framework
is similar to the DuMouchel and Harris one, with discipline replacing
species, allowing separate estimates of a relative risk coefficient by dis-
cipline, as well as an overall pooled estimate. In any such cross-species
comparison, however, the problems of appropriate scaling of dose dis-
cussed earlier in this chapter remain. Peters et al. use a scaling by dose per
body weight per day in a regression of the log(OR) on log(dose) for this
purpose.



16
Probability of causation
and compensation

In 1984, the U.S. Congress passed the Orphan Drug Act, which included
a provision instructing the National Institutes of Health (NIH) to estab-
lish a set of “Radioepidemiologic Tables” that could be used to resolve
various claims for compensation relating to exposure to ionizing radiation
from government programs. These included the “atomic veterans” who
had participated in nuclear weapons tests at the Nevada Test Site and the
Pacific Proving Grounds in the Marshall Islands, the “downwinders” who
were exposed to fallout from the Nevada Test Site, the uranium miners
on the Colorado Plateau who provided the raw materials for the country’s
nuclear weapons program, and various nuclear workers. In due course,
NIH established a committee that prepared such a report (NIH 1985),
under the oversight of another committee of the National Academy of
Sciences (NAS 1984). These two reports established the scientific princi-
ples that have guided the enactment of legislation setting up compensation
programs for these various groups and served as a reference for numerous
radiation-related litigations in the private and public sectors for individu-
als not covered by these programs. The Radioepidemiologic Tables were
updated in 2000 in the form of an interactive computer program (the
Interactive Radiation Epidemiology Program, IREP (Kocher et al. 2008),
available on the Internet at https://www.niosh-irep.com/irep%5Fniosh/,
again with oversight by a new committee of the National Academy of Sci-
ences (NRC 2000), which commented in depth on the scientific principles
involved.

Of course, epidemiologic evidence had been used in compensation
claims and tort litigation long before the Radioepidemiologic Tables came
into existence. Particularly influential were the enormous number of law-
suits relating to asbestos in the 1970s that threatened to bankrupt the entire
industry and spawned a series of seminal papers about the relevance of
epidemiologic evidence to individuals. Although cases of mesothelioma
were known to be caused only by asbestos—so their cause could be read-
ily established—the cause was not so clear cut for cases of lung cancer
in smokers. In 1980, Philip Enterline (1980) published a paper on this
question that defined the concept of Probability of Causation (PC) and
established the basic scientific principles for apportioning this quantity
between multiple causes. These concepts continue to be debated to this
day (Chase et al. 1985; Grimson 1987; Wraith and Mengersen 2007).

Starting in the late 1980s, Sander Greenland and Jamie Robins pub-
lished a series of theoretical papers (Greenland and Robins 1988; Robins

https://www.niosh-irep.com/irep%5Fniosh/
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and Greenland 1989; 1991) calling into question the statistical validity
of the concept of probability of causation and arguing in favor of
compensation schemes based instead on loss of life expectancy (LLE).
Their arguments are complex and subtle, but central to the concepts devel-
oped in this chapter, so will be discussed following an exposition of the
basic ideas. We begin with a discussion of what is meant by causation at
the population and individual levels, the relation between the epidemio-
logic parameter population attributable risk and the individual PC, and
how they can be apportioned between multiple causes.

Uncertainties arise at many levels of such debates: at the population
level, whether there is compelling evidence of a causal connection between
exposure and disease and the magnitude of the association; at the individ-
ual level, about the details of individual’s history of exposure and other
factors. In setting policy for resolving such claims, one must look beyond
the point estimate of a probability of causation and consider how such
uncertainties should be taken into account. Some agencies, like the U.S.
Veterans Administration have tended to take a liberal stance, awarding
compensation if some upper confidence limit attains a given threshold.
We conclude this chapter with a discussion of some of the policy implica-
tions of alternative schemes and the ways such uncertainties can be taken
into account.

Causation at the population and individual levels

The word “evidence” takes different meanings in epidemiologic, statis-
tical, general scientific, legal, and policy-making contexts and is used
in different ways to support inferences about association and causation
or recommendations about compensation policy. We begin by exploring
some general principles about the use of different kinds of evidence at
the population level, before proceeding to a discussion of the concept of
probability of causation as applied to individual compensation decisions.

Epidemiologists have long recognized a distinction between association
and causation (Chapter 2). The term “association” refers to a general
tendency for there to be a relationship between an exposure and risk of
disease (or more generally, between any risk factor and the distribution of
any outcome) across individuals within a population. Beyond the exposure
being a real cause of disease, there are many ways such an association
could arise artifactually, including lack of comparability of the individuals
being compared in terms of other risk factors (confounding), any of many
other sources of bias, or chance, as discussed in Chapter 2. Here, by
“exposure having caused disease,” we mean that, for an individual who
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was exposed and subsequently developed disease, that outcome would not
have occurred had that person not been exposed (“but for exposure” in
legal parlance). In this sense, one could define a population association as
being causal if at least some of the cases in the population would not have
occurred in the absence of exposure.

Association does not necessarily imply a causal relationship. The
inference of causality is a matter of scientific judgment that involves con-
sideration of factors beyond the statistical analysis of the data that provide
evidence of association. For many years, epidemiologists have relied on a
series of criteria first outlined by Sir Austin BradfordHill (1965), including
dose-response, temporal relationship, consistency across multiple stud-
ies, biological plausibility, lack of credible alternative explanations, and
coherence of the totality of the evidence (human or experimental). These
criteria have been used in one form or another by virtually all expert bod-
ies charged with making judgments about the scientific evidence of human
health hazards.

In recent years, a formal theory of causal inference has been developed
by a number of authors (Greenland 1990; Greenland et al. 1999a; Dawid
2000; Pearl 2000; Parascandola and Weed 2001; Maldonado and Green-
land 2002; Cox and Wermuth 2004). Much of this literature is based
on a formalization of the “but for” concept mentioned above, known
as “counterfactual inference.” In essence, one postulates the unobserv-
able outcomes an individual could have experienced in the hypothetical
scenario of having had an exposure history different from the one that
actually transpired. Individuals whose outcomes would have been the
same, whether exposed or unexposed, can be thought of as “immune”
or “doomed,” while those whose outcomes would have differed depend-
ing on their exposure status can be considered to have been “caused”
or “prevented” by exposure (Table 16.1). Because such comparisons are
made within the same individual (under hypothetically different exposure
situations), they are not subject to most of the potential biases like con-
founding that threaten the validity of real epidemiologic studies, which are
necessarily based on comparisons between individuals with different histo-
ries. Unfortunately, the comparisons can only be “thought experiments,”
but they help clarify some of the foundational principles on which the
inference of causality is based, and have suggested some novel statistical
approaches in some special situations (Hernan et al. 2000; Robins et al.
2000).

It is important to distinguish the thought processes involved in making
judgments about causality in the population and in individuals. In general,
it is necessary to have demonstrated that there can be a causal connection
between an exposure and a disease across a population before it would be
meaningful to claim a causal connection for any exposed individual who
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Table 16.1. Representation of counter-factual outcomes and their relation-
ship to observable data

Hypothetical
outcome if unexposed

Hypothetical
outcome if exposed

Observed exposed
individuals

Unaffected Affected

Unaffected Immune Caused Controls
Affected Prevented Doomed Cases
Observed unexposed

individuals
Controls Cases

has been affected. Of course, it is always possible that such a relationship
could exist in a population, but not have been demonstrated in an epi-
demiologic study because of inadequate statistical power, confounding or
other biases, or chance (see Chapter 2), or conceivably because the num-
ber of cases caused by exposure was approximately offset by the number
prevented by exposure. But one would be on shaky ground to claim a
causal connection for an individual seeking redress or compensation in
the absence of a population association.

The principles of evaluating the evidence for association and causation
at the population level have been discussed in earlier chapters. Chapters 2
and 15 have discussed the causal interpretation of epidemiologic associa-
tions and Chapter 3 outlined the basic statistical principles for judging the
statistical significance of an observed association. In the Agent Orange Act
of 1991 (Public Law 102-04 105 STAT. 11), the U.S. Congress established
as a basic ground rule for setting presumptions of causation for veterans
that “the credible evidence for an association is greater than the credi-
ble evidence against an association.” The interpretation of this language
has proven quite ambiguous, as discussed at length in a recent Institute
of Medicine report (IOM 2007). Since one can always find an alterna-
tive hypothesis with a higher likelihood than the null hypothesis, this
language cannot simply mean that the likelihood ratio is greater than 1.
Conventionally, scientists require that the alternative hypothesis be “sig-
nificantly” more likely, as judged by a formal hypothesis test, but the
level of significance (e.g., p < 0.05) is completely arbitrary. A Bayesian
framework arguably provides a more natural interpretation of this state-
ment, namely that the posterior odds in favor of the alternative hypothesis
is greater than one, but this would require a consensus about the prior
odds. In any event, it boils down to a matter of scientific judgment,
combining the results of all relevant epidemiologic data with a subjective
evaluation of their validity and any available biological or experimental
evidence.
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Attributable risk and probability of causation

So far, we have focused on what might be called the strength of the
evidence. More important for evaluating causality for individuals is the
magnitude of the relative risk. These are different concepts: there can be
strong evidence for the existence of a small excess risk, or conversely only
weak evidence for a large risk. Such factors as the study sample size and
the frequency of exposure and/or disease can cause such discrepancies.

A useful summary measure of public health impact is the population
attributable risk (PAR), defined as the proportion of disease in a popula-
tion that is attributable to (loosely, “caused by”) exposure (see Chapter 3).
This quantity is a function of both the RR and the population frequency
or distribution of exposure. More relevant in setting compensation policy
is the attributable risk among the exposed (ARE), given by the simple for-
mula (RR−1)/RR. The relationship between two quantities depends upon
the population frequency of exposure (pE):

PAR = pE(RR − 1)
pE(RR + (1− pE))

= pEARE

pEARE + 1/RR

(Levin 1953). Here, the numerator is the excess risk in the portion of the
population that is exposed and the denominator is the total risk in exposed
and unexposed subpopulations combined.

The ARE can be interpreted as the proportion of disease among exposed
individuals that is attributable to that exposure. In particular, if the
RR> 2, this implies that > 50% of all exposed cases are attributable to
exposure. Hence, in a population of similar individuals with similar expo-
sures, on average any case that develops among them is “more likely than
not” to have been caused by exposure. This is the commonly accepted
criterion in tort litigation for a plaintiff to prevail. For a specific indi-
vidual from a homogeneous population for which this RR applies, this
quantity has been called the probability of causation (PC) and is similarly
calculated as (RR−1)/RR. Of course, individuals differ in many ways. To
the extent that such differences can be quantified and a person-specific RR
estimated by some appropriate stratified analysis or statistical model, then
this would be the quantity that would be used in this calculation.

In a commentary on the original Radioepidemiologic Tables (NIH
1985), the NAS Oversight Committee (NAS 1984; Lakagos andMosteller
1986) pointed out that the PCwas not strictly speaking a probability in the
usual sense, but rather an estimate of the proportion of cancers that were
caused by exposure in a hypothetical group of similarly exposed cases, an
estimate that was then assigned to all members of the group. Therefore,
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they recommended the use of the term “assigned shares” (AS) for this
quantity.

Assigned shares for multiple causes

Chapter 12 discussed the analysis of multiple causes of disease and a range
of risk models, such as multiplicative and additive, that might be fitted
to epidemiologic data. We now consider the application of such models
to the apportionment of causation in an individual case having multiple
factors that could have been the cause, singly or jointly. Consider a group
of smokers exposed to some environmental toxin. The attributable risk
among the exposed can be decomposed as follows:

AR0 = 1/RRjoint

ARE = (RRE − 1)/RRjoint

ARS = (RRS − 1)/RRjoint

ARInt = (RRjoint − RRE − RRS + 1)/RRjoint

= RRInt(add)/RRjoint

where AR0 is the proportion of cases among exposed smokers that is
attributable to background factors unrelated to both, ARE the propor-
tion attributable to the environmental toxin alone, ARS the propor-
tion attributable to smoking acting alone, and ARInt is the additional
proportion attributable to the two factors acting in combination.

Specifically, for the hypothetical data shown in Table 12.4, we would
compute the various components of the population attributable risk as
shown in Table 16.4. Note that in both cases, the total adds up to 100%.
In the multiplicative model, one might be tempted to conclude that the

Table 16.2. Calculation of population attributable fractions under multi-
plicative and additive models

Multiplicative model Additive model

RR AR RR AR

Background 1 1/30= 3.3% 1 1/12= 8.3%
Exposure 3 (3− 1)/30= 6.7% 3 (3− 1)/12= 16.7%
Smoking 10 (10− 1)/30= 30% 10 (10− 1)/12= 75%
Interaction 30 (30− 3− 10+ 1)/30

= 60%
12 (12− 3− 10+ 1)/12

= 0%
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contribution of the environmental toxin was very small, but this would
be a wrong: combined with its interaction with smoking, the total contri-
bution of the environmental toxin is 66.7%. (Note that this is the same
ARE as for nonsmokers, 2/3= 67%, revealing that under a multiplica-
tive model, the total ARE does not depend upon smoking.) Of course, the
same calculation applied to smoking would yield an estimate of 90% for
the total attributable to that factor. If one were naively to add these two
figures, it would appear that we had accounted for more than 100%, but
of course this is simply because we had counted the interaction contribu-
tion twice. A more appropriate way to think about these calculations is
that 66.7% of cases in this group could have been prevented if the environ-
mental hazard had not occurred (or 90% if they had not smoked, or 97%
if both causes were eliminated). We will revisit this point below when we
discuss their implications for compensation policy.

In nonsmokers, there is only a single factor to consider, so we would
compute their ARE as (3 − 1)/3= 67%, the same value as the combined
attributable risks for exposure alone and acting jointly with smoking
among smokers. This is not a coincidence, but a logical consequence
of the multiplicative model: under that model, the RR for exposure is
the same for smokers and nonsmokers, so the ARE does not depend on
smoking status. In other words, if a multiplicative model holds, an indi-
vidual’s smoking status should be irrelevant in determining eligibility for
compensation.

Under a purely additive model, the ARInt becomes zero. Thus, if
RRjoint were 12 in our hypothetical example, we would obtain ARE =
2/12= 16.7% in smokers with no additional interactive component.
Among nonsmokers, however, ARE = 2/3= 67%, revealing that under
an additive model (or any less-than-multiplicative model), the ARE will
be larger for nonsmokers than for smokers.

The AREs computed in this manner have the same interpretation as
probabilities of causation for individuals who are otherwise indistin-
guishable from all cases in the group from which these parameters were
estimated. Thus, the total PC attributable to exposure is estimated by
ARE + ARInt = (RRjoint − RRS)/RRjoint or (30− 10)/30= 66.7% in our
hypothetical illustration.

The legal tradition that supports this interpretation for determining
compensation policy is based on the notion that liability for harms caused
should be based onwhether the disease would not have occurred “but for”
the fact that exposure had occurred. As explained above, the elimination
of exposure would have eliminated both the excess cases due to exposure
acting alone and those due to its joint action with smoking. Hence, both
components should be counted in a PC calculation for purposes of deciding
whether compensation should be provided to exposed cases among smok-
ers. Another legal tradition that appears to support this interpretation is



344 Statistical methods in environmental epidemiology

that compensation is due whether exposure either caused or contributed
to a disease; here, the interactive effect can be interpreted as “contributing
to” or “aggravating” a condition that may have been initially caused by
something else. Some have argued that if both entities are liable for harm
caused by their actions, then this interactive contribution should be shared
in some way. However, it is rare that both claims would be considered
concurrently, so in considering a claim for compensation for an environ-
mental toxin, the entire smoking interaction effect should be included and
conversely when a liability claim for tobacco use is considered.

In establishing a presumption, one might consider whether the defi-
nition of the class who will be entitled to compensation should involve
other factors, for example, whether lung cancer claims by exposed veter-
ans should be limited to nonsmokers. Setting aside the practical difficulties
of documenting an individual’s smoking history, compensation policy
has seldom made such restrictions (an exception is the Radiation Expo-
sure Compensation Act of 1990, subsequently amended to eliminate this
restriction). Absent evidence that exposure has no effect in smokers, the
total attributable risk for exposure will still be greater than zero for smok-
ers, even though it may be smaller than that for nonsmokers. Since the
main reason for establishing a presumption for a class in the first place
is the difficulty of computing a reliable PC estimate for individuals so a
decision has been made to compensate the entire class, it seems to defeat
the purpose to try to define separate classes based on weak epidemiologic
evidence for major differences in ARE.

Loss of life expectancy

The basic calculation of LLE was described in the previous chapter. To
recap, an individual’s life expectancy (LE) under a given exposure scenario
Z is given by

LE(Z) =
∫ ∞

0
S(t |Z) dt =

∫ ∞

0
tλ(t |Z)S(t |Z) dt

where S(t)= exp(−[∫ t

0 λ(u|Z) + μ(u)] du) is the probability of surviving
both the cause of interest λ(t |Z) and all competing causes μ(t). Thus, an
individual’s LLE attributable to exposure is simply LLE=LE(0)−LE(Z).
For this purpose, one might substitute for λ(t |Z) a fitted model derived
from epidemiologic data for the predicted hazard function given the
specifics of the individual’s exposure history. As we shall see below, how-
ever, this entails an assumption of homogeneity of the population risks
that could be questionable.
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Estimability of PCs and LLEs

In an important series of papers (Greenland and Robins 1988; Robins and
Greenland 1989a, b; 1991), Robins and Greenland have argued that the
PC is not estimable for individuals without making unverifiable assump-
tions concerning biological mechanisms and the extent of heterogeneity
between individuals. In particular, they have demonstrated scenarios in
which the relative risk could be arbitrarily close to 1 (and hence the PC
would be close to zero), yet all cases were affected by exposure in the sense
that their death times had been advanced by some small amount. They
have also shown that even the population mean of a heterogeneous distri-
bution of PCs is not estimable and that compensation schemes that pay in
proportion to the PC are neither “robust” to model misspecification nor
“economically rational.” By robust, they mean a payment scheme under
which the amounts paid to those individuals actually harmed by exposure
are the same whether the model is misspecified or not. By economically
rational, they mean that the total amounts paid to all individuals are the
same whether the model is misspecified or not. Thus, while a truly robust
scheme may be unattainable, an economically rational one would at least
pay out the same total amount under a misspecified model as would have
been paid under the correct model, even though the payments to specific
individuals might be inequitably distributed under the misspecified model.

Under somewhat weaker conditions, however, they showed that indi-
viduals’ average LLE can be validly estimated from epidemiologic data,
but not individually, conditional on their observed ages at death. Thus, a
compensation scheme based on the average LLE is robust, equitable, and
economically rational in the sense that it will yield the targeted level of
compensation on average (even if the statistical risk model is incorrect),
although it will err upwards or downwards for specific individuals.

While these points are well taken and mathematically correct, these
theoretical problems of estimability need not necessarily invalidate the
usefulness of the PC for decision making. Realistic degrees of heterogene-
ity may produce only moderate bias, and in particular, Thomas (2000)
has argued that the PC may nevertheless provide a reasonable ranking of
claims.

To develop these ideas more formally, we follow the notation of Robins
and Greenland (1989b) and let λi(t , Z) denote the hypothetical hazard
rate that individual i would experience if he were exposed to Z. Then the
individual’s true probability of causation is

pi = λi(ti ,Zi)− λi(t , 0)
λi(ti ,Zi)
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Of course, these individual hazard functions are not directly observable,
and hence neither is pi . The observable population rate is given by

λ∗(t ,Z) = E[λi(t ,Z)] =
∑

i λi(t ,Zi)Si(t ,Zi)∑
i Si(t ,Zi)

where Si(t , Z) is the corresponding individual survival function. The
“naive PC” (or “rate fraction” in the terminology of Greenland and
Robins) is given by

p̃i = λ∗(ti ,Zi)− λ∗(ti , 0)
λ∗(ti ,Zi)

which in general will not equal E(pi) if there is heterogeneity between
individuals in their baseline hazards. In fact, they show that p̃i ≤ E(pi).

Greenland and Robins also discussed models in which all individuals’
death times are advanced by an amount that depends upon exposure. For
example, suppose every case’s date of death was advanced by exposure,
but the amount that was so small that the excess relative risk (and hence
the PC) was very small. They interpret this situation as implying that
exposure “contributed to” disease in 100% of the cases—and hence some
compensation would be deserved—yet no individual would qualify under
a PC-based criterion that required at least a 50% probability.

This idea can be formalized in terms of the “accelerated failure time
model”, in which Si(t , Z)= S0i (t − Ziβ), where S0i (t) is, for argument
sake, the survival curve derived from a gamma frailty model. Under this
model with frailty variance θ = 2 and an acceleration of 2 years for all
subjects, Thomas (2000) demonstrated a pattern of declining PCs with
increasing age, the naive PC beginning to underestimate the true PC start-
ing about age 50. Thus, under this model, the true PC is not 100%, even
though the entire survival distribution has been shifted by a constant two
years.

Howmuch heterogeneity is it reasonable to expect might actually exist?
Unfortunately, for a nonrecurrent event like death, survival times of
independent individuals provide no information about the variability in
individual hazard rates. However, such information can be obtained from
study of related individuals, particularly monozygotic twins, who are
perfectly matched on genotype and tend to have experienced similar envi-
ronments (identical in utero and very similar childhood). Frailty models
can be used to estimate the variance between twin pairs in the component
of their baseline risks they share. This can be interpreted as an estimate
of the variance in baseline risks between unrelated individuals. Data on
Danish identical twins leads to an estimate of about a 7-fold range in
multiplicative factors (“frailties”) between 80% of individuals (Hougaard
et al. 1992).
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Despite the bias due to differential survival, the strongest determinants
of an individual’s PC are still dose and age at death, so it is reasonable
to inquire whether the naive PC could still be used to rank individuals.
Using the frailty variance estimate from the Danish study, Thomas (2000)
estimated the correlation between p̃i and pi as 0.995 under the accelerated
failure time model and 0.969 under the conditional proportional hazards
model. Even the correlation between the true PCs under the true acceler-
ated failure time model and that under a misspecified constant RR model
was still 0.971. Thus, it appears that the naive PC can indeed be used to
approximately rank individual’s claims.

Schemes for resolving compensation claims

The “balance of probabilities” principle in tort law has been widely inter-
preted by the courts as requiring that the point estimate of the PC (or
AS) be at least 50%. A number of authors, including the 1984 Oversight
Committee, have pointed out various inconsistencies that can arise in a
compensation scheme that provides full payment to those with greater
than 50% PC and nothing to those with PCs less than 50%. For one
thing, the difference between the treatment of two individuals with very
similar claims, one of whom had the good fortune to have an estimated
PC of 51%, the other one with the bad luck to have a PC of 49% seems
unfair, particularly view of the inherent uncertainty of these estimates.
Furthermore, situations could arise where hazardous exposures were high
enough to cause a substantial proportion of disease in exposed individuals,
yet none of them would be entitled to compensation under such a scheme.
This could provide an employer with no incentive to lower exposure levels
beyond what would be needed to avoid compensation claims, while still
allowing them to cause an unacceptable burden of disease.

Various alternative compensation schemes have been proposed, most
based on some kind of sliding scale in which the amount of compensation
awarded depends on the magnitude of the estimated PC. For example, the
1984 Oversight Committee suggested a scheme in which individuals with
PCs greater than 50% would receive full compensation, those with less
than 10% would receive none (to discourage “frivolous” claims), and the
award would be linearly scaled by the PC in the range between 10% and
50%. Such a compensation scheme was implemented by British Nuclear
Fuels Ltd and the U.K. Atomic Energy Agency even before the 1984 NIH
report (Thomas et al. 1991).

It is worth pointing out, however, that in addition to the theoretical
objections to PC-based compensation schemes raised by Greenland and
Robins, such schemes do not distinguish between those whose lives might
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have been shortened only a little or a lot. In this sense, an LLE-based
scheme is more attractive. Consider two populations with the same abso-
lute excess risk of cancer due to radiation exposure but different baseline
risks. In the high baseline risk population, the PC will be lower because it
is more likely that the cancer was caused by factors other than radiation.
On the other hand, the expected LLE due to radiation in the total popu-
lation (cases and survivors combined) would be approximately the same
in the two populations. Thus, the expected LLE due to radiation amongst
all cases would also be higher in the low-risk population. A policy based
on either the PC or the LLE would therefore correctly favor the low-risk
population but would do so differently: a PC-based policy would reward
a higher proportion of cases, but the size of the award would be the same
for compensable cases in both populations; an LLE-based policy would
reward all cases in both populations, but the average size of the award
per case would be higher in the low-risk population. Which is a more
equitable solution is an important policy decision.

Dealing with uncertainties in compensation

Estimates of either the PC or the LLE are inherently uncertain. Uncer-
tainties include (i) statistical sampling errors in the estimated relative
risk parameters, whose variance can be directly computed from the data,
(ii) various potential biases and sources of uncertainty such as measure-
ment error, dose-rate effects, and risk transport problems, where some
data may exist to suggest a reasonable range of values, and (iii) other
uncertainties for which it is impossible to justify any particular choice
of value. Setting aside the last of these, one could in principle express
the effects of chance and other quantifiable uncertainties in the form of
a confidence limit on the PC, but this raises a number of important pol-
icy implications. Some agencies such as the Veterans Administration (VA)
have used an upper confidence limit on the PC (the 99% percentile for the
VA), at least as a screening criterion to weed out claims that had very little
chance of being successful. In practice, however, few claims that attain the
VA’s screening criterion appear to have been eliminated in the subsequent
adjudication process, presumably because there is little additional infor-
mation that can be brought to bear on the question of causality that has
not already been taken into account. Hence, the upper 99% percentile is
effectively the de facto compensation criterion.

Under such a policy, are two individuals with the same point estimate
of PC = 55%, but with confidence limits (52–57%) or (45–65%), equally
deserving of compensation? What about an individual with PC = 75%
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(95% CI 0–90%), reflecting a high probability, but based on a nonsignif-
icant association? Or conversely, one with PC = 40% (95% CI 10–95%
based on a significant association), whose best estimate fails to attain the
50% criterion, but, taking account of the various uncertainties, could have
a value well over 50%?

A policy based on upper confidence limits has the merit of liberality,
in that few claimants whose true PC was greater than 50% would be
denied compensation as a result of uncertainties bringing their naïve PC
below the threshold. But this should be weighed against the anticipated
number of payments to individuals with low “true PCs” that would be
provided at the expense of all taxpayers or at the expense of other groups
who may be more deserving of government benefits. Arguably, the loss to
these other groups is individually minuscule in comparison to the benefit
to those who do merit compensation but might otherwise be denied it
under a more restrictive policy. Even under a policy which aims at equity
rather than resolving uncertainties in favor of the claimant, there should
be a reasonable balance between “false positive” and “false negative”
decisions. Using the full probability distribution produced by uncertainty
propagation methods like that used in IREP is one way of accomplishing
this.

Use of upper confidence limits also has the unsatisfactory feature of
favoring claims for which the evidence of a causal association is the weak-
est. At the individual level, for example, a claimant whose PC was 45%
with confidence limits 42–48% would lose, while one with a PC of 10%
and confidence limits 0–90%would win, even though there is stronger evi-
dence of a population association for the former than the latter. Schemes
that pay in proportion to the expected value of the PC or the posterior
probability that the PC is greater than 50% to some extent avoid this
difficulty.

Such a policy also can favor groups with the weakest evidence of
causation at the population level. Consider the following two scenarios:

1. A common cancer for which the relative risk is estimated to be 1.8
with 95% confidence limits (1.7–1.9), translating to a PC of 44% (CI
41–47%).

2. A rare cancer for which the RR was estimated at 1.1 with 95%
confidence limits (0.22–5.5), translating to a PC of 9% (CI 0–82%).

Clearly, the first case provides much stronger evidence of a causal asso-
ciation in the population (highly statistically significant), even though the
assigned share for the group as a whole is less than 50%. In the second
case, it is not at all clear that there even is a causal connection in the
population, as the association is far from statistically significant and the
estimated assigned share is much lower. Nevertheless, under a policy that
provides full compensation to those with upper 99% confidence limits
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on the assigned share of at least 50%, none of the members of the first
group would obtain compensation while all of those in the latter would
be successful. In short, such a policy would appear to reward ignorance.

This observation has important implications for the question of how
to select and group cancer sites at the stage of developing the scientific
evidence to support policy recommendations. Unnecessarily fine grouping
would tend to produce upper confidence limits on associations that are
unreasonably high in relation to what might be expected based on similar
cancers and would tend to favor compensating cancers for which there is
little or no evidence of a dose–response relationship (or even a negative
relationship) over those for which there is much stronger evidence of a pos-
itive relationship. On the other hand, for some exposures like radiation,
virtually all cancer sites may be radiosensitive, but to somewhat differ-
ent extents. Failing to group rare sites, for which significant evidence
of an association would be difficult to obtain, would unfairly penalize
individuals with these cancers under a policy of requiring a significant
association.

Questions remain about how to handle the remaining components of
uncertainty that cannot be quantified, yet undoubtedly exist to some extent
and about how such uncertainties should be addressed in resolving com-
pensation claims. While it would be impossible to anticipate all possible
sources of uncertainty, such a list for radiogenic cancers might include
differences between populations (e.g., the United States and Japan) in the
ERR coefficients that are being transported, misspecification of the form
of the fitted models, uncontrolled confounding and other biases in the epi-
demiologic studies, and so on. As noted at the beginning of this chapter,
the decision about potential causation needs to be addressed at the pop-
ulation level before considering the merits of an individual’s claim. This
includes consideration not just of the level of statistical significance, but
also such subjective features as the reliability of the epidemiologic data
base (freedom from bias, etc.), biological plausibility, and other criteria
that are widely used to assess causality in epidemiologic associations.



17 Further challenges

Reproductive endpoints

Although most of this book has been concerned with chronic diseases,
the developing fetus is particularly sensitive to environmental insults,
as is male and female fertility. Studies of the reproductive effects of
environmental exposures pose unique methodological challenges.

There are several distinct outcomes of pregnancy that are potentially of
interest:

• Spontaneous abortion and stillbirths
• Congenital anomalies
• Prematurity
• Low birth weight (small for gestational age)
• Failure to thrive after birth

In addition, various maternal conditions, such as preeclampsia, can affect
both the mother’s health and her child’s. These various endpoints can be
interrelated in complex ways. Fetuses with anomalies are more likely to
spontaneously abort, but all that may be recorded might be the sponta-
neous abortion event, not the presence of an anomaly. Indeed, a high
proportion of unrecognized pregnancies end in early fetal loss, so nei-
ther the numerators nor the denominators may be completely ascertained.
Gestational age can be an outcome in itself, a determinant of birth weight
and subsequent growth, or the consequence of some anomaly. Statistical
analysis of these interrelated endpoints requires particular care to avoid
paradoxical results.

The best way to overcome the problem of early fetal losses is to use a
cohort study design in which all women in some defined population (e.g., a
health maintenance organization) who are attempting to get pregnant are
invited to participate and enrolled in the cohort on the date of their first
positive pregnancy test. Of course, even this is no guarantee that very early
losses (within a month or so of last menstruation) will be detected, but at
least a relatively complete record of first-trimester spontaneous abortions
will be available. Such data are best treated as censored survival data,
with the endpoint being spontaneous abortion or stillbirth and a live birth
treated as a censoring event. In this analysis, gestational age is the time
scale—women entering the cohort on the date of diagnosis of the preg-
nancy to avoid bias due to early fetal loss. Thus, at each gestational age,
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the comparison is between those known to be pregnant who aborted at
that age and those whose fetuses survived beyond that point (irrespective
of whether a spontaneous abortion or stillbirth occurred later or whether
there was a congenital anomaly).

Congenital anomalies are systematically assessed only for live births,
so must be treated as binary outcomes, with gestational age handled as a
covariate. Because of the complexity of the relationship between anoma-
lies and gestational age, however, one might wish to handle that part of
the model flexibly, say with a generalized additive model, while the rela-
tionship to exposure is handled parametrically. Likewise, birth weight can
be treated a continuous outcome, adjusted parametrically or nonparamet-
rically for gestational age, or as a binary outcome using some percentile
of the distribution of birth weight by gestational age. The presence of a
congenital anomaly may be recorded for some spontaneous abortions or
stillbirths, but unless this is done systematically and blindly with respect to
exposure, there is considerable risk of ascertainment bias. For large cohort
or case-control studies, systematic ascertainment of congenital anomalies
in spontaneous abortions and stillbirths is generally only possible in sub-
samples. If available, however, such data could be used in a multilevel
model treating the presence or absence of an anomaly as a latent variable
for those who are not in the subsample.

Another common difficulty with the analysis of congenital anomaly data
is the multitude of possible anomaly types, many quite rare. As their eti-
ologies are likely to be heterogeneous, the question arises how they should
be grouped to provide sufficient numbers of events, but also be sufficiently
homogeneous. Broad categories based on organ systems and developmen-
tal stage are natural choice, but still one must decide how far down the
hierarchy to draw the line. Hierarchical Bayes models are attractive, as
one can allow an established hierarchy to determine the potential subdivi-
sions, while letting the data determine whether groups are similar enough
to be validly pooled and ensuring that the uncertainly about the degree of
pooling will be taken into account in the final variance estimates. Having
time-resolved exposure data would further inform such an analysis, as one
could test whether exposure associations are strongest during the critical
gestational ages for each endpoint.

These issues are illustrated in a study of the effects of aerial applica-
tion of the pesticide Malathion to combat an infestation with the Medfly
in the Bay Area of California in 1982–84 (Thomas et al. 1992c). A
cohort of 7450 women who were registered with one of three Kaiser–
Permanente facilities in the Bay Area and confirmed as pregnant during
the spraying period was enrolled and followed using the organization’s
clinical records. While it is possible that some women opted for care
outside the Kaiser system and their outcomes unknown, there were prob-
ably few of these as it was a prepaid comprehensive care organization.
A case-cohort design was used to compare the 933 women with adverse
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outcomes with 1,000 randomly selected cohort members with normal out-
comes. Exposure for this subsample was assessed by digitization of maps
of the spray corridors and geocoded residence histories, using an algo-
rithm to assign week-by-week exposure indices in relation to the overlap
of each spray corridor with circular buffers around each residence. Cox
regression with time-dependent covariates was used for the analysis of the
spontaneous abortion data, logistic regression for congenital anomalies,
and ordinary linear regression for birth weight and gestational age. No
associations with Malathion spraying were found for spontaneous abor-
tions, stillbirths, small for gestational age, or most categories of congenital
anomalies. There was a 2.6-fold elevated risk of gastrointestinal anoma-
lies with second-trimester exposures, but based on only 13 cases and not
specific to any particular ICD code; thus, this could be simply a chance
occurrence, considering the number of anomaly groups analyzed

Failure to conceive represents another quite different aspect of reproduc-
tive epidemiology, some of which could have an environmental etiology.
Either or both of male or female infertility could play a role. Nelson
and Bunge (1974) first reported reduced sperm densities for the period
1970–73 compared with those found two decades previously. In 1992,
Carlsen et al. (1992) reported what they interpreted as a world-wide
decline in sperm counts over the period 1938-90 based on a meta-analysis
of 61 studies that had been published to date. This conclusion gener-
ated considerable controversy and two further meta-analyses (Becker and
Berhane 1997; Swan et al. 2000), which confirmed the decline in North
America, but not in developing countries, and differed in their conclu-
sions about whether a decline was seen in Europe, depending upon their
inclusion criteria. Hypotheses concerning themarked geographic variation
and/or secular trends include environmental endocrine-disrupting chem-
icals, elevated temperature, and season, amongst other factors. Indeed,
negative correlations between sperm density and organochlorine levels in
seminal fluid have been reported (Dougherty et al. 1981), as well as with
various other environmental exposures. More recently, Sokal et al. (2006)
conducted a longitudinal analysis of specimens from donors to a sperm
bank in Los Angeles in relation to air pollution levels in the subjects’ area
of residence during three critical periods of spermatogenesis and found a
highly significant inverse associations in each period with ambient ozone
concentrations, but not with any other air pollutant, suggesting a possible
mechanism mediated by oxidative stress.

Disasters: natural and manmade

In a sense, it could be argued that most of environmental epidemiology
is concerned with disasters of one kind or another. As an observational
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science, epidemiologists do not deliberately expose subjects to hazardous
agents, so must content themselves with the aftermath of “natural experi-
ments” in which individuals have been exposed for one reason or another
for nonexperimental purposes. Of course, not all exposure scenarios that
have been studied would rise to the level that would be called “disasters,”
but many of those described earlier—the atomic bombs, the London Fog,
for example—clearly would. Kinston and Rosser (1974) define a disaster
as a “situation of massive collective stress,” and Logue et al. (1981) limit
their review to “those events which affect whole communities or a sizeable
segment of a community.” The United Nations defines a disaster as “a dis-
ruption of the human ecology that exceeds the capacity of the community
to function normally.” The U.S. Disaster Relief Act of 1974 (PL 93-288)
adopted as an operational definition any of several designated categories of
catastrophic events “which causes damage of sufficient severity and mag-
nitude to warrant major disaster assistance.” In this section, we review
several examples of epidemiologic investigations of monumental disasters
and then try to identify some common methodological challenges such
studies pose.

Some examples

Tropical cyclones and hurricanes

In November 1970, the severe tropical cyclone Bhola ripped through the
East Bengal region of the Indian subcontinent now known as Bangladesh,
killing half a million people. A rapid epidemiologic survey (Sommer and
Mosley 1972) was mounted that is still widely regarded as a model for
post-disaster needs assessment. Two surveys were conducted, the first
mounted only two weeks after the cyclone visited 18 sites over five days,
the second conducted two months later visited many more sites in greater
depth over a three-week period. The first essentially confirmed the immedi-
ate adequacy of water supplies and the absence of unexpectedmorbidity or
epidemic disease. (Contrary to popular impressions, outbreaks of infec-
tious diseases are not commonly associated with cyclones, floods, and
similar disasters (Shultz et al. 2005).) Using cluster sampling methods, the
second survey estimated the age/sex-specific death rates, and calculated
that there would have to have been at least 224,000 deaths (the official
death toll is listed at 500,000 and the true number may have been even
higher). They also estimated that 180,000 homes had been destroyed,
600,000 individuals were still homeless, and 1,000,000 dependent on
outside food aid. Data on crop and livestock losses and needs to re-
establish agricultural self-sufficiencywere also provided. Arguably, lessons
learned from this experience and the epidemiologic methods established
were responsible for the dramatically lower mortality from the cyclone
Gorky that hit the same region in 1991 (138,000 deaths) and cyclone Sidr
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in November 2007, the latter producing fewer than 5000 deaths despite
an intensity rivaling the two 1970 and 1991 ones. In the 1980s, a network
of shelters was established, but early warning systems proved inadequate
to alert the population to reach them in time for the Gorky cyclone. The
much lower death rates for the Sidr cyclone could be attributed in large
part to improvements in early warning systems. Sadly, as this book was
going to press, Cyclone Nargis hit Myanmar onMay 2–3, 2008, causing a
death toll that could exceed 100,000, illustrating that lessons about early
warnings and speedy delivery of aid could still be learned.

The United States experienced the worst hurricane season on record in
2005, with 15 tropical storms becoming hurricanes, three of these reaching
Category 5 (sustainedwinds over 155mph), and four Category 3 or higher
making landfall. One of these, HurricaneWilma, was themost intense ever
measured, but the damage from Hurricane Katrina was unprecedented,
due to the breaching of the levees surrounding New Orleans resulting in
flooding of 80% of the city. Deaths were estimated at 1000 in Louisiana
and 220 in other states, the worst since the 1928 Florida hurricane (1828
deaths) and the 1900 Galveston Texas hurricane (more than 8000 deaths,
the worst in U.S. history). With property damage in the billions of dollars,
it was also the costliest on record. For details of the public health response,
see the series ofMorbidity andMortalityWeekly Reports published by the
Centers for Disease Control (CDC 2006). Despite the potential utility of
such reports for developing guidelines for future disaster preparedness and
recovery, the CDC notes the difficulty of calculating rates because of lack
of suitable denominators, variability in reporting sites over time, lack of
specificity of numerators, and the subsequent dispersal of the population.

A review of epidemiologic methods for assessment of tropical cyclone
effects (Shultz et al. 2005) concludes that there has been little advance in
epidemiologic methods since the 1970 East Bengal studies. Most studies
have been short-term assessments, postimpact needs and surveillance of
mortality, injuries, and infectious disease. However, their cyclical nature
raises the possibility of establishing networks for continuous surveillance
in high-frequency impact zones to allow prospective, longitudinal evalu-
ation. The authors also suggest greater reliance on case-control methods
for analyzing the effects of specific storm exposure attributes and pre-
paredness behaviors, perhaps combined with more objective assessment
of physical forces, and more attention to vulnerable subgroups.

Asian tsunami

Themagnitude 9.1–9.3 Great Sumatra-Andaman Earthquake off the coast
of Indonesia onDecember 26, 2004 caused one of the worst tidal waves on
record, affecting sites around the IndianOcean as far away as Africa. Most
heavily hit was the province of Aceh in Indonesia, already reeling from
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civil conflict, where the official toll was listed as 130,000 dead and 40,000
missing, with another half a million persons homeless. Such numbers were
derived in part from a multistage cluster sample of nine affected districts
of Aceh conducted in February, March, and August of 2005 (Doocy et al.
2007). Sampling proportional to estimates of the number of internally
displaced persons was used, identifying clusters based on lists of known
displaced-persons’ locations (camps and host communities), selecting 20
clusters in each survey and 20 or 24 households with at least one survivor
within each cluster. Estimate of crude death rates ranged from 5.3% to
23.6%, depending upon location, and were highest in the very young and
elderly, and 44% higher in females than males. For contrasting views of
the utility of death toll estimates (see Fleck 2005; Thieren 2005).

California and Indonesia fires

In October 2003, a series of devastating wildfires burned more than 3000
km2 in Southern California, including several areas close to the commu-
nities participating in the Children’s Health Study. To assess the health
effects of these short-term, high-intensity exposures to the resulting par-
ticulate pollution, a special questionnaire was administered to over 6000
children in 16 communities (Kunzli et al. 2006). These outcomes were cor-
related with the daily PM10 data from the already-established central-site
monitoring stations. Risks of all respiratory symptoms, including cough,
bronchitis, wheezing, and asthma attacks, medication usage, and physi-
cian visits increased monotonically with the number of reported smoky
days and with measured PM10 levels. Interestingly, associations were
stronger for nonasthmatics, as asthmatics were more likely to wear masks
or stay indoors during the fire.

Much more massive were the peat fires in Indonesia in 1997 that pro-
duced widespread haze. Source apportionment and chemical mass balance
methods demonstrated that peat smoke could travel long distances (See
et al. 2007), producing “very unhealthy” to “hazardous” levels of carbon
monoxide and particulates, as well as greatly elevated levels of polycyclic
aromatic hydrocarbons (Kunii et al. 2002). Several epidemiologic stud-
ies (Aditama 2000; Kunii et al. 2002; Sastry 2002; Frankenberg et al.
2005) found significant differences in respiratory health between haze and
nonhaze areas as far away as Malaysia.

Bhopal

The release of about 30 tons of methyl isocyanate gas from the Union
Carbide plant upon the sleeping city of Bhopal India on December 3,
1984 caused theworst industrial disaster in history. Despite earlywarnings
before the accident, Union Carbide failed to implement adequate safety
systems or to warn the surrounding community. The actual death toll
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will probably never be known, but is estimated to have been about 3800
instantly, perhaps 2–3 times that number in the next few days, and even
more excess deaths in the following decades. The aftermath—the legal
maneuvering by Union Carbide to avoid liability, the failure to establish
a large-scale, long-term epidemiologic research program, the inadequacy
of the compensation provided to the victims—is shameful and instructive.
The history of the catastrophe and its aftermath is compelling as told by
Broughton (2005). The causality of early deaths and injuries was never in
serious dispute and these victims did eventually receive compensation from
Union Carbide in a settlement of $470 million arranged by the Supreme
Court of India (averaging $2200 to families of the dead, the rest distributed
across half a million injury claims).

Various independent epidemiologic research organizations converged
on the scene and conducted about a dozen cross-sectional surveys. For
reviews of this early literature, see (Mehta et al. 1990; Dhara 1992;
Dhara and Dhara 2002). A cohort of about 80,000 exposed survivors was
enrolled for long-term follow-up. The Indian Council ofMedical Research
coordinated this activity, but its toxicology and human health effects
reports were never released, although a few brief epidemiology papers
were (Vijayan et al. 1995; Vijayan and Sankaran 1996). A completely sep-
arate International Medical Commission on Bhopal, a group of medical
professionals, did a follow-up study ten years after the event, which was
published in the open literature (Cullinan et al. 1997; Dhara et al. 2001;
Dhara et al. 2002). With the confiscation of some Union Carbide assets,
the Indian government established the Bhopal Memorial Hospital and
ResearchCenter (BMHRC)with amandate to provide free care to exposed
victims suffering from ailments on a list of designated effects (mainly res-
piratory, gastrointestinal, ocular, or neurological). The research activity,
however, did not get established until 2004, originally with the aim of
reactivating the epidemiologic follow-up of the survivor cohort, but soon
shifted its focus to basic research. A new cohort of individuals who were in
utero during the event has been established at BMHRC, however, and has
shown significant elevations in a broad spectrum of immunologic markers
(Mishra et al. 2007).

In addition to the health effects listed above, clear associations with
chromosomal abnormalities have been demonstrated and the known geno-
toxic effect of the gas raises concern about a potential cancer risk. To date,
only one earlier study has been published (Dikshit and Kanhere 1999),
showing only moderate, nonsignificant excesses of lung and oropharnyx
cancers through 1992, but it is obviously still too early to assess this
risk. High rates of fetal loss have also been reported, concordant with
experimental studies in rats (Varma 1987). As attention shifts to chronic
effects of exposure, the question of causality becomes increasingly impor-
tant, particularly considering the dearth of epidemiologic evidence from
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other contexts about the effects of short-term exposures to this or other
toxic gasses. The difficulties of causal inference are exacerbated by the
fact that this is a cohort of survivors, and hence potentially selected
in favor of more resistant individuals. Such differential selection, if it
exists, is likely to be stronger at higher exposures, thereby diluting
exposure–response relationships relative to what would have been seen
in the entire exposed population, possibly even producing apparently pro-
tective effects of exposure! Compounding this problem is that these are
also cohorts of nonmigrants, it being likely that out-migration rates could
also be related to both exposure and health status.

Most epidemiologic publications have relied on simple exposed ver-
sus unexposed comparisons (often with control groups of questionable
comparability) or simple gradients with distance from the plant. An atmo-
spheric dispersion model has been constructed (Singh and Ghosh 1987),
but has not been used to date in any epidemiologic analyses. In lieu of
this, Dhara et al. (2002) compared a variety of individual exposure indices
combining distance, time, activity levels, and protective measures (such as
whether the windows were open or they ran outside) in various ways.
Exposure surrogates such as the number of deaths in the household were
also collected on all cohort members at the time of enrollment and have
been used in some other analyses.

World Trade Center attack

The September 11, 2001 attack on the New York World Trade Cen-
ter (WTC) produced, amongst other effects, an environmental disaster
with broad health consequences for both the exposed survivors and the
rescue workers. Exposure assessments by the U.S. Environmental Pro-
tection Agency (EPA) (Lorber et al. 2007) and independent investigators
(Landrigan et al. 2004), based on sampling of ambient air and outdoor
and indoor settled dust combined with satellite imaging and modeling
of the atmospheric plume, found extremely high concentrations of par-
ticulates, cement dust, lead, PAHs, PCBs, asbestos, synthetic vitreous
fibers, and dioxins immediately after the collapse. Levels remained sig-
nificantly elevated for several days after, although only limited data were
available during this period. The EPA assessment concluded that most
members of the general public would be unlikely to have experienced
adverse health effects from exposures beyond this period, although con-
cerns about underestimation of asbestos contamination persist. Various
epidemiologic investigations found significant associations with various
respiratory symptoms and asthma among both clean-up workers and the
general population, and low birth weight offspring of women exposed in
pregnancy (Landrigan et al. 2004; Mauer et al. 2007; Tao et al. 2007;
Wheeler et al. 2007). Experimental instillation of WTC dust samples
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into mice produced bronchial hyper-reactivity but little inflammation,
consistent with its high alkalinity. See Samet et al. (2007) for a review
and editorial comment.

Iraq civilian death toll

Following the invasion of Iraq in 2003, a team from Johns Hopkins
Bloomberg School of Public Health conducted two surveys of civilian
deaths. The first (Roberts et al. 2004) surveyed 33 clusters of 30 house-
holds each and found all-cause mortality rates during the year and a half
after the invasion to be 2.5-fold higher than in the previous year. They
estimated the total excess deaths at about 100,000, even excluding the
one outlier cluster from Fallujah that had been randomly selected, and
far more if it were included. The second survey (Burnham et al. 2006)
included 50 clusters from 16 Governorates, each comprising 40 house-
holds and estimated even more excess deaths—about 650,000 (95% CI
393,000-943,000), the vast majority due to violence. These amount to
2.5% of the total population of the study area.

Various methodological criticisms have been suggested (Bohannon
2006; Hicks 2007; von Schreeb et al. 2007), notably a concern that
smaller streets may have been underrepresented. The authors have vig-
orously rebutted these criticisms (Burnham and Roberts 2006; Roberts
and Burnham 2007). Nevertheless, these issues highlight the practical dif-
ficulties posed by research in a war zone, where, for example, protection
of the confidentiality of the respondents and the safety of the interviewers
becomes paramount.

In addition to the civilian death toll, the Gulf and Iraq wars produced
serious environmental hazards, such as pollution from the Kuwait oil well
fires (Lange et al. 2002) and depleted uranium from munitions (Pearce
and Cardis 2001).

Refugees

Although perhaps not an “environmental” disaster per se, refugees from
either massive natural disasters or armed conflicts can pose a human-
itarian crisis with serious public health consequences (Murray et al.
2002). Notable are several instances of genocide in the last few decades—
Rwanda, Bosnia, and Darfur, for example. In the latter instance, 1.6
million people had been displaced and 30,000 killed in the immediate
attacks, countless more due to starvation, communicable disease, and
other problems in the subsequent migration and encampment. Here, the
tools of descriptive epidemiology go beyond simply the description of the
numbers of persons displaced and their morbidity and mortality to guide
the provision of humanitarian relief, but can also address the legal question
of whether the situation rises to the level of “genocide.” Leaning (2004)
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describes how the 1946 Convention on the Prevention and Punishment
of the Crime of Genocide requires two elements—intent and acts—to be
present and, if met, obliges signatories to the Convention to intervene to
stop the attacks. (It is this latter requirement that makes governments so
cautious about declaring a crisis to be genocide.) Standard survey sampling
methods (Brown et al. 2001; Grais et al. 2006) can be applied to describe
the social, economic, and demographic context, estimate mortality and
nutritional status, and infer causal connections. For example, Depoortere
et al. (2004) describe cluster sampling surveys in Darfur that found death
rates before arrival at refugee camps ranging from 5.9 to 9.5 per 10,000
per day (the majority due to violence), somewhat lower in the camps (up
to 5.6 per 10,000 per day), but still above the widely used “emergency”
benchmark of 1/10,000. The authors note that when death rates are high,
entire families may disappear and hence not be reflected in numerators
or denominators, biasing estimated rates downwards. (Recall a similar
problem in the tsunami study above.) In principle, this problem could be
overcome by likelihood-based estimation based on the conditional prob-
ability of the numbers of deaths in each family given that there is at least
one survivor, but this would require additional assumptions about the
distribution of family sizes, dependency of deaths within families, and
representativeness of the sample. Furthermore, recall bias could bias esti-
mates upward or downward. Although clear operational guidelines are
lacking, epidemiologic methods can be used to make inferences about
intent to build the case for designation of a crisis as genocide. Epidemiol-
ogists and other public health workers can make valuable contributions
to addressing such situations.

Chernobyl

April 26, 1986, saw the world’s worst nuclear accident, when two explo-
sions at the Chernobyl plant in Ukraine released more than six tons
of radioisotopes, including iodine, cesium, and strontium. Naturally,
the heaviest exposures occurred to the workers at the plant itself, the
emergency and clean-up workers (“liquidators”), and immediately sur-
rounding population, 116,000 of whom were evacuated immediately,
another 220,000 after 1986. Another fivemillion persons continued to live
in contaminated areas of Belarus, Ukraine, and the Russian Federation.
The contamination was also widely dispersed across Europe (Figure 17.1).
Average thyroid doses to children under 1 year of age ranged from 0.01
mGy in Portugal to 750 mGy in parts of Belarus, while average doses
from external radiation plus ingestion of from long-lived cesium reached
10 mSv in parts of Belarus and Russia (Drozdovitch et al. 2007).

While the total burden of cancer will not be known for many years,
marked excesses of thyroid cancer have already been shown [reviewed by
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Figure 17.1. Estimated doses from radioiodine to the thyroid (left panel) and effective
whole-body doses 1986–2002 from the Chernobyl accident. (Reproduced with permission
from Drozdovitch et al. 2007.)

Cardis et al. (2006a)]. Using a case-control design, Cardis et al. (2005)
studied thyroid cancer in the Ukraine, Belarus, and the four most heavily
exposed regions of the Russian Federation, and found a strong linear dose–
response relationship [RR at 1 Gy 5.5–8.4 depending on the risk model,
compatible with an estimate of 7.7 derived from a pooled analysis of seven
other studies (Ron et al. 1995)]. The excess risk was three-times higher
in iodine deficient areas, but was reduced three-fold amongst those who
were given potassium iodide. Results for leukemia and other cancers have
so far been inconclusive.

A 2006 report by the United Nations estimated that no more than
4000 deaths would occur as a result, but the uncertainties in this number
have been subject to much criticism. For example, this number related
only to the 600,000 most heavily exposed people, with a similar num-
ber of deaths projected among the 7 million others living further away.
Applying standard dose–response models to the estimates of the dose dis-
tribution for the European population, Cardis et al. (2006a,b) estimated
that about 1000 thyroid cancers and 4000 other cancers attributable to
Chernobyl (or 0.01% of all cancer deaths) have occurred within the first
20 years after the accident, and project an ultimate toll for the popu-
lation of Europe (570 million) at 16,000 cases of thyroid cancer (95%
uncertainty interval 3,400–72,000) and 25,000 cases of other cancers
(11,000–59,000), against a background of several hundred millions. Such
an increase would be virtually impossible to detect by routine surveillance
of cancer rates, emphasizing the need for long-term follow-up of the most
heavily-exposed cohorts of liquidators, evacuees, and nearby residents
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who were not evacuated. See Sali et al. (1996); Moysich et al. (2002);
Hatch et al. (2005); Cardis (2007) for further reviews of the Chernobyl
experience.

In contrast, releases from the Three Mile Island accident in Pennsyl-
vania in March 1979 were relatively low and no convincing associations
with cancer have been found (Hatch et al. 1990). In general, most studies
have been negative, although a fewmarginally significant trends have been
found (Wing et al. 1997; Talbott et al. 2003), but see (Hatch et al. 1997)
for a critique of Wing et al.’s reanalysis of their 1990 data. These associa-
tions are potentially confounded, however, by the high levels of domestic
radon in the area (Field 2005). The event clearly generated considerable
psychological stress (Prince-Embury and Rooney 1988), and interestingly,
a weak association of cancer rates in 1982–83 with proximity to the plant
was found—weaker, but still elevated after adjustment for pre-accident
rates—but this association could not be explained by estimated radiation
doses (Hatch et al. 1991).

Similar to nuclear weapons manufacturing and testing facilities in the
United States (e.g., the Hanford (Davis et al. 2004) and Nevada Test
Site (Stevens et al. 1990; Kerber et al. 1993) studies described in earlier
chapters), the Soviet nuclear program left behind a legacy of contamina-
tion, but on a much larger scale. The Techa River cohort study (Krestinina
et al. 2007) of the population near the Mayak nuclear weapons facil-
ity at Chelyabinsk in the southern Urals found a strong association of
individual dose estimates with solid cancers (ERR/Gy = 1.0 (95% CI
0.3-1.9) in a linear dose–response model) and leukemia (ERR/Gy = 6.5
(1.8–24) excluding chronic lymphatic leukemia), accounting for about
3% of solid cancers and 68% of leukemias. Excesses of thyroid nod-
ules (RR = 1.4 comparing exposed and unexposed groups) have also
been found (Mushkacheva et al. 2006). Mayak workers themselves also
suffered excesses of lung, bone, and liver cancers (Gilbert et al. 2000;
Koshurnikova et al. 2000; Gilbert et al. 2004). Studies around the
Semipalatinsk nuclear weapons test site are on-going (Gilbert et al. 2002).

Global warming

The “Mother of All Disasters” could be the threat of global warming. The
United Nations Intergovernmental Panel on Climate Change (Houghton
et al. 2001) predicts an increase of 1.8–5.6◦C and a rise in sea levels of 9-88
cm over the next century. Evidence for the existence of the phenomenon
and the contribution of human activities (greenhouse gas emissions and
loss of carbon sinks like tropical rain forests) is compelling (Keller 2003;
2007), despite persistent skepticism from some critics. Potential human
health consequences include heat-related illnesses and deaths (like the
thousands of deaths from the 2003 European heat wave), allergic and
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infectious diseases, malnutrition, effects of extreme weather events and air
pollution, drowning from coastal flooding and consequences of popula-
tion displacement (Haines and Patz 2004). Controversy remains, however,
about some of the human health consequences such as the predicted
changes in infectious disease patterns (Taubes 1997). Time-series analyses
over several El Niño/La Niña cycles have documented strong associa-
tions with malaria and cholera incidence in Latin America and Southeast
Asia, weaker for other mosquito- and rodent-borne illnesses (Kovats et al.
2003), with potential global consequences for populations affected by
drought and other natural disasters (Bouma et al. 1997). See Patz et al.
(2005); McMichael et al. (2006) for other reviews of the evidence for
the impacts of recent regional climate change events on human health.
Methodological challenges include the long time scale over which human
activities affect climate and consequent health outcomes, the absence of
suitable control groups, the numerous potential health outcomes, and the
many nonclimate confounding variables (Patz et al. 2008).

Whether mankind can reach a consensus and commitment to deal with
the problem will be crucial to the determining the outcome for future gen-
erations. The strategy of “Contraction and Convergence” (Stott 2007) is
one such proposal for reducing carbon emissions, involving capping global
emissions at a level at or below the globe’s carrying capacity and equal
allocation of tradable carbon credits to every person in the world, while
also preserving carbon sinks like tropical rain forests. Patz et al. (2008)
discuss risk assessment strategies for predicting the effects of such inter-
vention on measures of health as disability-adjusted life years (DALYs;
Pruss et al. 2001; Zhang et al. 2007, see Chapter 15). Patz et al. point
out, for example, that prediction of effects of interventions on health
mediated through climate change often do not account for concurrent
mediating effects of such nonclimate variables as economic development
and demographic changes. The “comparative risk assessment” approach
advocated by the World Health Organization (Ezzati et al. 2002; Murray
et al. 2003) involves identifying climate-sensitive health outcomes, deter-
mining current exposure–response relationships, selecting future climate
change scenarios, and estimating the resulting attributable risk. Estimates
of the current contribution of climate change to human health number
about 5 million DALYs per year (WHO 2004), small in comparison to
tobacco (55 million) and unsafe water and sanitation (54 million) (Ezzati
et al. 2002), but of course, this is expected to rise in the future.

Methodological issues

In addition to the reviews of specific disasters or categories of disasters
mentioned above, several textbooks (Seaman 1984; Noji 1997) and gen-
eral reviews (Logue et al. 1981; Lechat 1990; Bromet and Dew 1995;
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Noji 2005) of disaster epidemiology are worth studying. One review
by Dominici et al. (2005a) is notable for its focus on methodological
challenges. In the following section, we briefly summarize some of these.

Unpredictability

Disasters like earthquakes, tsunamis, or industrial explosions, occur with
little or no advance warning, making careful planning of an epidemiologic
investigation and collection of baseline data impossibility. At the same
time, the resources needed for conducting epidemiologic research may be
diverted to more urgent tasks of rescue and recovery. Needless to say, the
safety of survey personnel and their subjects and the practical constraints
of working in a disaster area should take precedence over research needs.

Nevertheless, some types of events like tropical cyclones and wildfires
occur frequently enough in the same general area to consider setting up
surveillance systems that would provide a basis of comparison with the
health effects of a disaster when it does occur. Although established for
research purposes, not in anticipation of a disaster, the study of the effects
of the Southern California wildfires was strengthened by the availability
of established cohorts in several communities near the fires (the Children’s
Health Study described in earlier chapters), not only permitting rapid
deployment of a special-purpose field survey, but also estimates of base-
line levels of the various health endpoints. This is particularly important
as these communities had been selected specifically because of differences
in usual ambient air pollution levels and the resulting differences in health
endpoints had already been documented.

Scientific objectives

Clarity about the purposes of an epidemiologic investigation is of course
essential to select appropriate study designs, measurement tools, and
statistical analyses. Much of disaster epidemiology is concerned with col-
lecting data that will be useful for public health response—estimation of
mortality and prevalence of adverse outcomes, identifying needs for treat-
ment, predicting future disasters to develop preparedness strategies and
surveillance mechanisms. In addition, however, one might wish to char-
acterize the population at risk, determine relevant exposure factors and
risk modifiers (e.g., building characteristics, behaviors, support systems,
etc.), or predict long-term consequences.

Defining the sampling frame and sampling scheme

It is possible to do good epidemiology under difficult circumstances, as
illustrated by several of the case studies above. A key feature is the clear
definition of a sampling frame and sampling scheme to avoid the biases
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that otherwise would be inevitable if subjects selected themselves for
study (which would likely over-represent the most heavily exposed and
severely affected individuals). This requires unbiased assessment of both
numerators and denominators, a task which is often much more diffi-
cult to accomplish in developing countries. Where systematic assessment
is infeasible for the entire exposed population (let alone a suitable con-
trol population), cluster sampling methods can offer an appealing balance
between the need for a comprehensive (many clusters spread over a broad
area) and in-depth (many individuals in each cluster) assessment, perhaps
stratified by known risk factors like age.

Defining the endpoints

Objective measures of outcome and exposure are also critical, as self-
reports of each are likely to be biased, particularly if there are hopes of
compensation. Thus, objective measures like lung function testing may
be less subject to reporting bias than symptoms like cough. For some
endpoints, itmay be helpful to havemultiple, quasi-independent, measures
which can be used in latent variable or other methods for allowing for
outcome measurement error. Although the majority of studies in disaster
epidemiology are concerned with prevalence, ideally one would want to
establish a cohort (of exposed and unexposed individuals) and follow them
longitudinally to assess incidence of disease and changes in continuous
measures of health over time.

Assessing exposure–response relationships

The majority of epidemiologic studies of disasters have relied on rela-
tively simple classifications of exposure, such as exposed or not. Finding
a suitable control group that would be expected to have had compara-
ble outcomes—but for the disaster experience—can be challenging. More
attention needs to be paid to finer subgrouping within a broadly defined
exposed group by degree of exposure, so that exposure–response gradients
can be estimated. For this to be possible, it is essential that some expo-
sure assessment be conducted on spatial and temporal scales to support
such comparisons, perhaps using exposure modeling techniques to fill in
missing observations. In some circumstances, biomarkers of exposure on
samples of individuals may also be helpful. While it is likely that exposure–
response relationships will be nonlinear, large sample sizes are generally
needed to effectively test for nonlinearity and estimate threshold, satura-
tion, or other parameters of the curve. An example discussed in earlier
chapters is the assessment of the nonlinear relationship between mortality
and temperature that could be useful in predicting the consequences of
heat waves.
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Global burden of environmental diseases

As part of the World Health Organization’s Global Burden of Disease
project (Ezzati et al. 2002; 2003; Murray et al. 2003; Rodgers et al.
2004), an environmental working group (Cohen et al. 2005) estimated
the relative contributions of various environmental factors to human dis-
ease worldwide. They estimated that the two leading environmental causes
of death are unsafe water (1,730,000 excess deaths per year) and indoor
air pollution (1,619,000/year) followed by urban outdoor air pollution
(799,000/year) and lead (234,000/year). This figure for outdoor air pollu-
tion translates to about 1.2% of all deaths or 6.4 million person years of
life lost (0.5% of the total). For comparison, these “environmental” fac-
tors are outranked by underweight (9.5%of all DALYs), unsafe sex, blood
pressure, tobacco, and alcohol, with large differences in ranking between
developed and developing countries. Overall, the 19 avoidable risk factors
considered in the most recent assessment (Lopez et al. 2006) accounted
for 45% of global mortality and 36% of global morbidity, suggesting that
considerable progress could still be made by appropriate interventions.

Future challenges

It is obviously difficult to forecast what new environmental challenges
with potential impact on human health the world will face, beyond those
described earlier in this chapter. Bioterrorist attacks have yet to have
occurred on a scale meriting epidemiologic study, but there is obvious
concern about the risk and need for preparedness (Bossi et al. 2006). Mod-
ern methods of toxicogenomics (proteomics, metabolomics, siRNAs, etc.)
are being explored as part of the Environmental Genome Project and are
likely to play an increasingly important role in such investigations (Bower
and Shi 2005). Other more traditional environmental agents may continue
to merit attention, likely at lower and lower levels of exposure, pushing
the limit of what can be accomplished by epidemiologic methods (Davey
Smith and Ebrahim 2001). Investigation of susceptible subgroups is also
needed, hopefully inspiring the development of new methods for gene–
environment interactions exploiting novel molecular technologies. Finally,
globalization has importance in environmental health consequences: as
the environment is cleaned up in developing countries, the burden of dirty
work is often shifted to developing countries with weaker environmental
and occupational standards.

These new epidemiological problems will doubtless continue to chal-
lenge statisticians with novel problems that are difficult to anticipate.



17 Further challenges 367

Whereas the basic methods of multivariate, exposure–time–response, lon-
gitudinal, and time-series analysis are now well established and likely
to see only incremental refinements, methods for spatial, aggregate, and
measurement error analysis continue to be fertile areas of methodologic
research. Non- and semiparametric models are becoming more widely
used and are an exciting area of statistical methods development. Novel
study designs, such as multi-phase studies and hybrid individual/aggregate
data studies, will likely be increasingly used and their statistical properties
and optimal designmerit further study. Other long-standing problems, like
multiple hypothesis testing (Thomas et al. 1985), is becoming ever more
important as it becomes feasible to test orders of magnitude more asso-
ciations at once, such as gene–environment interactions in a genomewide
context or spatial clustering of disease. Investigators must remain skeptical
about post-hoc explanations for “interesting” but unanticipated findings
in their data and avoid publication bias by clearly distinguishing a pri-
ori hypotheses and those that arise from hypothesis generation studies.
Finally, as an observational science, the problem of residual confounding
and selection bias will always remain, but novel methods (e.g., Wakefield
2003; Greenland 2005 and references therein) may provide some realistic
bounds on the magnitude of such biases.
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