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Chapter 1 
Elementary Concepts in Statistics 

 
Overview of Elementary Concepts in Statistics. In this introduction, we will briefly 
discuss those elementary statistical concepts that provide the necessary foundations for 
more specialized expertise in any area of statistical data analysis. The selected topics 
illustrate the basic assumptions of most statistical methods and/or have been 
demonstrated in research to be necessary components of one's general understanding of 
the "quantitative nature" of reality (Nisbett, et al., 1987). Because of space limitations, we 
will focus mostly on the functional aspects of the concepts discussed and the presentation 
will be very short. Further information on each of those concepts can be found in 
statistical textbooks. Recommended introductory textbooks are: Kachigan (1986), and 
Runyon and Haber (1976); for a more advanced discussion of elementary theory and 
assumptions of statistics, see the classic books by Hays (1988), and Kendall and Stuart 
(1979).  

 
• What are variables?  
• Correlational vs. experimental 

research  
• Dependent vs. independent 

variables  
• Measurement scales  
• Relations between variables  
• Why relations between variables 

are important  
• Two basic features of every 

relation between variables  
• What is "statistical significance" 

(p-value)  
• How to determine that a result is 

"really" significant  
• Statistical significance and the 

number of analyses performed  
• Strength vs. reliability of a 

relation between variables  
• Why stronger relations between 

variables are more significant  

  

• Why significance of a relation between 
variables depends on the size of the 
sample  

• Example: "Baby boys to baby girls 
ratio"  

• Why small relations can be proven 
significant only in large samples  

• Can "no relation" be a significant 
result?  

• How to measure the magnitude 
(strength) of relations between 
variables  

• Common "general format" of most 
statistical tests  

• How the "level of statistical 
significance" is calculated  

• Why the "Normal distribution" is 
important  

• Illustration of how the normal 
distribution is used in statistical 
reasoning (induction)  

• Are all test statistics normally 
distributed?  

• How do we know the consequences of 
violating the normality assumption?  
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What are variables. Variables are things that we measure, control, or manipulate in 
research. They differ in many respects, most notably in the role they are given in our 
research and in the type of measures that can be applied to them.  
 
 
Correlational vs. experimental research. Most empirical research belongs clearly to 
one of those two general categories. In correlational research we do not (or at least try not 
to) influence any variables but only measure them and look for relations (correlations) 
between some set of variables, such as blood pressure and cholesterol level. In 
experimental research, we manipulate some variables and then measure the effects of this 
manipulation on other variables; for example, a researcher might artificially increase 
blood pressure and then record cholesterol level. Data analysis in experimental research 
also comes down to calculating "correlations" between variables, specifically, those 
manipulated and those affected by the manipulation. However, experimental data may 
potentially provide qualitatively better information: Only experimental data can 
conclusively demonstrate causal relations between variables. For example, if we found 
that whenever we change variable A then variable B changes, then we can conclude that 
"A influences B." Data from correlational research can only be "interpreted" in causal 
terms based on some theories that we have, but correlational data cannot conclusively 
prove causality.  
 
 
Dependent vs. independent variables. Independent variables are those that are 
manipulated whereas dependent variables are only measured or registered. This 
distinction appears terminologically confusing to many because, as some students say, 
"all variables depend on something." However, once you get used to this distinction, it 
becomes indispensable. The terms dependent and independent variable apply mostly to 
experimental research where some variables are manipulated, and in this sense they are 
"independent" from the initial reaction patterns, features, intentions, etc. of the subjects. 
Some other variables are expected to be "dependent" on the manipulation or experimental 
conditions. That is to say, they depend on "what the subject will do" in response. 
Somewhat contrary to the nature of this distinction, these terms are also used in studies 
where we do not literally manipulate independent variables, but only assign subjects to 
"experimental groups" based on some pre-existing properties of the subjects. For 
example, if in an experiment, males are compared with females regarding their white cell 
count (WCC), Gender could be called the independent variable and WCC the dependent 
variable.  
 
 
Measurement scales. Variables differ in "how well" they can be measured, i.e., in how 
much measurable information their measurement scale can provide. There is obviously 
some measurement error involved in every measurement, which determines the "amount 
of information" that we can obtain. Another factor that determines the amount of 
information that can be provided by a variable is its "type of measurement scale." 
Specifically variables are classified as (a) nominal, (b) ordinal, (c) interval or (d) ratio.  
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a. Nominal variables allow for only qualitative classification. That is, they can be 
measured only in terms of whether the individual items belong to some 
distinctively different categories, but we cannot quantify or even rank order those 
categories. For example, all we can say is that 2 individuals are different in terms 
of variable A (e.g., they are of different race), but we cannot say which one "has 
more" of the quality represented by the variable. Typical examples of nominal 
variables are gender, race, color, city, etc.  

b. Ordinal variables allow us to rank order the items we measure in terms of which 
has less and which has more of the quality represented by the variable, but still 
they do not allow us to say "how much more." A typical example of an ordinal 
variable is the socioeconomic status of families. For example, we know that 
upper-middle is higher than middle but we cannot say that it is, for example, 18% 
higher. Also this very distinction between nominal, ordinal, and interval scales 
itself represents a good example of an ordinal variable. For example, we can say 
that nominal measurement provides less information than ordinal measurement, 
but we cannot say "how much less" or how this difference compares to the 
difference between ordinal and interval scales.  

c. Interval variables allow us not only to rank order the items that are measured, but 
also to quantify and compare the sizes of differences between them. For example, 
temperature, as measured in degrees Fahrenheit or Celsius, constitutes an interval 
scale. We can say that a temperature of 40 degrees is higher than a temperature of 
30 degrees, and that an increase from 20 to 40 degrees is twice as much as an 
increase from 30 to 40 degrees.  

d. Ratio variables are very similar to interval variables; in addition to all the 
properties of interval variables, they feature an identifiable absolute zero point, 
thus they allow for statements such as x is two times more than y. Typical 
examples of ratio scales are measures of time or space. For example, as the Kelvin 
temperature scale is a ratio scale, not only can we say that a temperature of 200 
degrees is higher than one of 100 degrees, we can correctly state that it is twice as 
high. Interval scales do not have the ratio property. Most statistical data analysis 
procedures do not distinguish between the interval and ratio properties of the 
measurement scales.  

 
 
Relations between variables. Regardless of their type, two or more variables are 
related if in a sample of observations, the values of those variables are distributed in a 
consistent manner. In other words, variables are related if their values systematically 
correspond to each other for these observations. For example, Gender and WCC would 
be considered to be related if most males had high WCC and most females low WCC, or 
vice versa; Height is related to Weight because typically tall individuals are heavier than 
short ones; IQ is related to the Number of Errors in a test, if people with higher IQ's make 
fewer errors.  
 
 
Why relations between variables are important. Generally speaking, the ultimate 
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goal of every research or scientific analysis is finding relations between variables. The 
philosophy of science teaches us that there is no other way of representing "meaning" 
except in terms of relations between some quantities or qualities; either way involves 
relations between variables. Thus, the advancement of science must always involve 
finding new relations between variables. Correlational research involves measuring such 
relations in the most straightforward manner. However, experimental research is not any 
different in this respect. For example, the above mentioned experiment comparing WCC 
in males and females can be described as looking for a correlation between two variables: 
Gender and WCC. Statistics does nothing else but help us evaluate relations between 
variables. Actually, all of the hundreds of procedures that are described in this manual 
can be interpreted in terms of evaluating various kinds of inter-variable relations.  
 
 
Two basic features of every relation between variables. The two most elementary 
formal properties of every relation between variables are the relation's (a) magnitude (or 
"size") and (b) its reliability (or "truthfulness").  

a. Magnitude (or "size"). The magnitude is much easier to understand and measure 
than reliability. For example, if every male in our sample was found to have a 
higher WCC than any female in the sample, we could say that the magnitude of 
the relation between the two variables (Gender and WCC) is very high in our 
sample. In other words, we could predict one based on the other (at least among 
the members of our sample).  

b. Reliability (or "truthfulness"). The reliability of a relation is a much less intuitive 
concept, but still extremely important. It pertains to the "representativeness" of 
the result found in our specific sample for the entire population. In other words, it 
says how probable it is that a similar relation would be found if the experiment 
was replicated with other samples drawn from the same population. Remember 
that we are almost never "ultimately" interested only in what is going on in our 
sample; we are interested in the sample only to the extent it can provide 
information about the population. If our study meets some specific criteria (to be 
mentioned later), then the reliability of a relation between variables observed in 
our sample can be quantitatively estimated and represented using a standard 
measure (technically called p-value or statistical significance level, see the next 
paragraph).  

 
 
What is "statistical significance" (p-value). The statistical significance of a result is 
the probability that the observed relationship (e.g., between variables) or a difference 
(e.g., between means) in a sample occurred by pure chance ("luck of the draw"), and that 
in the population from which the sample was drawn, no such relationship or differences 
exist. Using less technical terms, one could say that the statistical significance of a result 
tells us something about the degree to which the result is "true" (in the sense of being 
"representative of the population"). More technically, the value of the p-value represents 
a decreasing index of the reliability of a result (see Brownlee, 1960). The higher the p-
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value, the less we can believe that the observed relation between variables in the sample 
is a reliable indicator of the relation between the respective variables in the population. 
Specifically, the p-value represents the probability of error that is involved in accepting 
our observed result as valid, that is, as "representative of the population." For example, a 
p-value of .05 (i.e.,1/20) indicates that there is a 5% probability that the relation between 
the variables found in our sample is a "fluke." In other words, assuming that in the 
population there was no relation between those variables whatsoever, and we were 
repeating experiments like ours one after another, we could expect that approximately in 
every 20 replications of the experiment there would be one in which the relation between 
the variables in question would be equal or stronger than in ours. (Note that this is not the 
same as saying that, given that there IS a relationship between the variables, we can 
expect to replicate the results 5% of the time or 95% of the time; when there is a 
relationship between the variables in the population, the probability of replicating the 
study and finding that relationship is related to the statistical power of the design. See 
also, Power Analysis). In many areas of research, the p-value of .05 is customarily treated 
as a "border-line acceptable" error level.  
 
 
How to determine that a result is "really" significant. There is no way to avoid 
arbitrariness in the final decision as to what level of significance will be treated as really 
"significant." That is, the selection of some level of significance, up to which the results 
will be rejected as invalid, is arbitrary. In practice, the final decision usually depends on 
whether the outcome was predicted a priori or only found post hoc in the course of many 
analyses and comparisons performed on the data set, on the total amount of consistent 
supportive evidence in the entire data set, and on "traditions" existing in the particular 
area of research. Typically, in many sciences, results that yield p  .05 are considered 
borderline statistically significant but remember that this level of significance still 
involves a pretty high probability of error (5%). Results that are significant at the p  .01 
level are commonly considered statistically significant, and p  .005 or p  .001 levels 
are often called "highly" significant. But remember that those classifications represent 
nothing else but arbitrary conventions that are only informally based on general research 
experience.  
 
 
Statistical significance and the number of analyses performed. Needless to say, 
the more analyses you perform on a data set, the more results will meet "by chance" the 
conventional significance level. For example, if you calculate correlations between ten 
variables (i.e., 45 different correlation coefficients), then you should expect to find by 
chance that about two (i.e., one in every 20) correlation coefficients are significant at the 
p  .05 level, even if the values of the variables were totally random and those variables 
do not correlate in the population. Some statistical methods that involve many 
comparisons, and thus a good chance for such errors, include some "correction" or 
adjustment for the total number of comparisons. However, many statistical methods 
(especially simple exploratory data analyses) do not offer any straightforward remedies to 
this problem. Therefore, it is up to the researcher to carefully evaluate the reliability of 
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unexpected findings. Many examples in this manual offer specific advice on how to do 
this; relevant information can also be found in most research methods textbooks.  
 
 
Strength vs. reliability of a relation between variables. We said before that strength 
and reliability are two different features of relationships between variables. However, 
they are not totally independent. In general, in a sample of a particular size, the larger the 
magnitude of the relation between variables, the more reliable the relation (see the next 
paragraph).  
 
 
Why stronger relations between variables are more significant. Assuming that 
there is no relation between the respective variables in the population, the most likely 
outcome would be also finding no relation between those variables in the research 
sample. Thus, the stronger the relation found in the sample, the less likely it is that there 
is no corresponding relation in the population. As you see, the magnitude and 
significance of a relation appear to be closely related, and we could calculate the 
significance from the magnitude and vice-versa; however, this is true only if the sample 
size is kept constant, because the relation of a given strength could be either highly 
significant or not significant at all, depending on the sample size (see the next 
paragraph).  
 
<> 
Why significance of a relation between variables depends on the size of the 
sample. If there are very few observations, then there are also respectively few possible 
combinations of the values of the variables, and thus the probability of obtaining by 
chance a combination of those values indicative of a strong relation is relatively high. 
Consider the following illustration. If we are interested in two variables (Gender: 
male/female and WCC: high/low) and there are only four subjects in our sample (two 
males and two females), then the probability that we will find, purely by chance, a 100% 
relation between the two variables can be as high as one-eighth. Specifically, there is a 
one-in-eight chance that both males will have a high WCC and both females a low WCC, 
or vice versa. Now consider the probability of obtaining such a perfect match by chance 
if our sample consisted of 100 subjects; the probability of obtaining such an outcome by 
chance would be practically zero. Let's look at a more general example. Imagine a 
theoretical population in which the average value of WCC in males and females is 
exactly the same. Needless to say, if we start replicating a simple experiment by drawing 
pairs of samples (of males and females) of a particular size from this population and 
calculating the difference between the average WCC in each pair of samples, most of the 
experiments will yield results close to 0. However, from time to time, a pair of samples 
will be drawn where the difference between males and females will be quite different 
from 0. How often will it happen? The smaller the sample size in each experiment, the 
more likely it is that we will obtain such erroneous results, which in this case would be 
results indicative of the existence of a relation between gender and WCC obtained from a 
population in which such a relation does not exist.  
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Example. "Baby boys to baby girls ratio." Consider the following example from 
research on statistical reasoning (Nisbett, et al., 1987). There are two hospitals: in the first 
one, 120 babies are born every day, in the other, only 12. On average, the ratio of baby 
boys to baby girls born every day in each hospital is 50/50. However, one day, in one of 
those hospitals twice as many baby girls were born as baby boys. In which hospital was it 
more likely to happen? The answer is obvious for a statistician, but as research shows, 
not so obvious for a lay person: It is much more likely to happen in the small hospital. 
The reason for this is that technically speaking, the probability of a random deviation of a 
particular size (from the population mean), decreases with the increase in the sample 
size.  
 
 
Why small relations can be proven significant only in large samples. The 
examples in the previous paragraphs indicate that if a relationship between variables in 
question is "objectively" (i.e., in the population) small, then there is no way to identify 
such a relation in a study unless the research sample is correspondingly large. Even if our 
sample is in fact "perfectly representative" the effect will not be statistically significant if 
the sample is small. Analogously, if a relation in question is "objectively" very large (i.e., 
in the population), then it can be found to be highly significant even in a study based on a 
very small sample. Consider the following additional illustration. If a coin is slightly 
asymmetrical, and when tossed is somewhat more likely to produce heads than tails (e.g., 
60% vs. 40%), then ten tosses would not be sufficient to convince anyone that the coin is 
asymmetrical, even if the outcome obtained (six heads and four tails) was perfectly 
representative of the bias of the coin. However, is it so that 10 tosses is not enough to 
prove anything? No, if the effect in question were large enough, then ten tosses could be 
quite enough. For instance, imagine now that the coin is so asymmetrical that no matter 
how you toss it, the outcome will be heads. If you tossed such a coin ten times and each 
toss produced heads, most people would consider it sufficient evidence that something is 
"wrong" with the coin. In other words, it would be considered convincing evidence that 
in the theoretical population of an infinite number of tosses of this coin there would be 
more heads than tails. Thus, if a relation is large, then it can be found to be significant 
even in a small sample.  
 
 
Can "no relation" be a significant result? The smaller the relation between variables, 
the larger the sample size that is necessary to prove it significant. For example, imagine 
how many tosses would be necessary to prove that a coin is asymmetrical if its bias were 
only .000001%! Thus, the necessary minimum sample size increases as the magnitude of 
the effect to be demonstrated decreases. When the magnitude of the effect approaches 0, 
the necessary sample size to conclusively prove it approaches infinity. That is to say, if 
there is almost no relation between two variables, then the sample size must be almost 
equal to the population size, which is assumed to be infinitely large. Statistical 
significance represents the probability that a similar outcome would be obtained if we 
tested the entire population. Thus, everything that would be found after testing the entire 
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population would be, by definition, significant at the highest possible level, and this also 
includes all "no relation" results.  
 
 
How to measure the magnitude (strength) of relations between variables. There 
are very many measures of the magnitude of relationships between variables which have 
been developed by statisticians; the choice of a specific measure in given circumstances 
depends on the number of variables involved, measurement scales used, nature of the 
relations, etc. Almost all of them, however, follow one general principle: they attempt to 
somehow evaluate the observed relation by comparing it to the "maximum imaginable 
relation" between those specific variables. Technically speaking, a common way to 
perform such evaluations is to look at how differentiated are the values of the variables, 
and then calculate what part of this "overall available differentiation" is accounted for by 
instances when that differentiation is "common" in the two (or more) variables in 
question. Speaking less technically, we compare "what is common in those variables" to 
"what potentially could have been common if the variables were perfectly related." Let us 
consider a simple illustration. Let us say that in our sample, the average index of WCC is 
100 in males and 102 in females. Thus, we could say that on average, the deviation of 
each individual score from the grand mean (101) contains a component due to the gender 
of the subject; the size of this component is 1. That value, in a sense, represents some 
measure of relation between Gender and WCC. However, this value is a very poor 
measure, because it does not tell us how relatively large this component is, given the 
"overall differentiation" of WCC scores. Consider two extreme possibilities:  

a. If all WCC scores of males were equal exactly to 100, and those of females equal 
to 102, then all deviations from the grand mean in our sample would be entirely 
accounted for by gender. We would say that in our sample, gender is perfectly 
correlated with WCC, that is, 100% of the observed differences between subjects 
regarding their WCC is accounted for by their gender.  

b. If WCC scores were in the range of 0-1000, the same difference (of 2) between 
the average WCC of males and females found in the study would account for such 
a small part of the overall differentiation of scores that most likely it would be 
considered negligible. For example, one more subject taken into account could 
change, or even reverse the direction of the difference. Therefore, every good 
measure of relations between variables must take into account the overall 
differentiation of individual scores in the sample and evaluate the relation in terms 
of (relatively) how much of this differentiation is accounted for by the relation in 
question.  

 
 
Common "general format" of most statistical tests. Because the ultimate goal of 
most statistical tests is to evaluate relations between variables, most statistical tests 
follow the general format that was explained in the previous paragraph. Technically 
speaking, they represent a ratio of some measure of the differentiation common in the 
variables in question to the overall differentiation of those variables. For example, they 
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represent a ratio of the part of the overall differentiation of the WCC scores that can be 
accounted for by gender to the overall differentiation of the WCC scores. This ratio is 
usually called a ratio of explained variation to total variation. In statistics, the term 
explained variation does not necessarily imply that we "conceptually understand" it. It is 
used only to denote the common variation in the variables in question, that is, the part of 
variation in one variable that is "explained" by the specific values of the other variable, 
and vice versa.  
 
 
How the "level of statistical significance" is calculated. Let us assume that we 
have already calculated a measure of a relation between two variables (as explained 
above). The next question is "how significant is this relation?" For example, is 40% of 
the explained variance between the two variables enough to consider the relation 
significant? The answer is "it depends." Specifically, the significance depends mostly on 
the sample size. As explained before, in very large samples, even very small relations 
between variables will be significant, whereas in very small samples even very large 
relations cannot be considered reliable (significant). Thus, in order to determine the level 
of statistical significance, we need a function that represents the relationship between 
"magnitude" and "significance" of relations between two variables, depending on the 
sample size. The function we need would tell us exactly "how likely it is to obtain a 
relation of a given magnitude (or larger) from a sample of a given size, assuming that 
there is no such relation between those variables in the population." In other words, that 
function would give us the significance (p) level, and it would tell us the probability of 
error involved in rejecting the idea that the relation in question does not exist in the 
population. This "alternative" hypothesis (that there is no relation in the population) is 
usually called the null hypothesis. It would be ideal if the probability function was linear, 
and for example, only had different slopes for different sample sizes. Unfortunately, the 
function is more complex, and is not always exactly the same; however, in most cases we 
know its shape and can use it to determine the significance levels for our findings in 
samples of a particular size. Most of those functions are related to a general type of 
function which is called normal.  
 
 
Why the "Normal distribution" is important. The "Normal distribution" is important 
because in most cases, it well approximates the function that was introduced in the 
previous paragraph (for a detailed illustration, see Are all test statistics normally 
distributed?). The distribution of many test statistics is normal or follows some form that 
can be derived from the normal distribution. In this sense, philosophically speaking, the 
Normal distribution represents one of the empirically verified elementary "truths about 
the general nature of reality," and its status can be compared to the one of fundamental 
laws of natural sciences. The exact shape of the normal distribution (the characteristic 
"bell curve") is defined by a function which has only two parameters: mean and standard 
deviation.  

A characteristic property of the Normal distribution is that 68% of all of its observations 
fall within a range of ±1 standard deviation from the mean, and a range of ±2 standard 
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deviations includes 95% of the scores. In other words, in a Normal distribution, 
observations that have a standardized value of less than -2 or more than +2 have a relative 
frequency of 5% or less. (Standardized value means that a value is expressed in terms of 
its difference from the mean, divided by the standard deviation.) If you have access to 
STATISTICA, you can explore the exact values of probability associated with different 
values in the normal distribution using the interactive Probability Calculator tool; for 
example, if you enter the Z value (i.e., standardized value) of 4, the associated probability 
computed by STATISTICA will be less than .0001, because in the normal distribution 
almost all observations (i.e., more than 99.99%) fall within the range of ±4 standard 
deviations. The animation below shows the tail area associated with other Z values.  

 

 
 
Illustration of how the normal distribution is used in statistical reasoning 
(induction). Recall the example discussed above, where pairs of samples of males and 
females were drawn from a population in which the average value of WCC in males and 
females was exactly the same. Although the most likely outcome of such experiments 
(one pair of samples per experiment) was that the difference between the average WCC 
in males and females in each pair is close to zero, from time to time, a pair of samples 
will be drawn where the difference between males and females is quite different from 0. 
How often does it happen? If the sample size is large enough, the results of such 
replications are "normally distributed" (this important principle is explained and 
illustrated in the next paragraph), and thus knowing the shape of the normal curve, we 
can precisely calculate the probability of obtaining "by chance" outcomes representing 
various levels of deviation from the hypothetical population mean of 0. If such a 
calculated probability is so low that it meets the previously accepted criterion of 
statistical significance, then we have only one choice: conclude that our result gives a 
better approximation of what is going on in the population than the "null hypothesis" 
(remember that the null hypothesis was considered only for "technical reasons" as a 
benchmark against which our empirical result was evaluated). Note that this entire 
reasoning is based on the assumption that the shape of the distribution of those 
"replications" (technically, the "sampling distribution") is normal. This assumption is 
discussed in the next paragraph.  

 
 
Are all test statistics normally distributed? Not all, but most of them are either based 
on the normal distribution directly or on distributions that are related to, and can be 
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derived from normal, such as t, F, or Chi-square. Typically, those tests require that the 
variables analyzed are themselves normally distributed in the population, that is, they 
meet the so-called "normality assumption." Many observed variables actually are 
normally distributed, which is another reason why the normal distribution represents a 
"general feature" of empirical reality. The problem may occur when one tries to use a 
normal distribution-based test to analyze data from variables that are themselves not 
normally distributed (see tests of normality in Nonparametrics or ANOVA/MANOVA ). 
In such cases we have two general choices. First, we can use some alternative 
"nonparametric" test (or so-called "distribution-free test" see, Nonparametrics); but this is 
often inconvenient because such tests are typically less powerful and less flexible in 
terms of types of conclusions that they can provide. Alternatively, in many cases we can 
still use the normal distribution-based test if we only make sure that the size of our 
samples is large enough. The latter option is based on an extremely important principle 
which is largely responsible for the popularity of tests that are based on the normal 
function. Namely, as the sample size increases, the shape of the sampling distribution 
(i.e., distribution of a statistic from the sample; this term was first used by Fisher, 1928a) 
approaches normal shape, even if the distribution of the variable in question is not 
normal. This principle is illustrated in the following animation showing a series of 
sampling distributions (created with gradually increasing sample sizes of: 2, 5, 10, 15, 
and 30) using a variable that is clearly non-normal in the population, that is, the 
distribution of its values is clearly skewed.  

 

However, as the sample size (of samples used to create the sampling distribution of the 
mean) increases, the shape of the sampling distribution becomes normal. Note that for 
n=30, the shape of that distribution is "almost" perfectly normal (see the close match of 
the fit). This principle is called the central limit theorem (this term was first used by 
Pólya, 1920; German, "Zentraler Grenzwertsatz").  

 
 
How do we know the consequences of violating the normality assumption? 
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Although many of the statements made in the preceding paragraphs can be proven 
mathematically, some of them do not have theoretical proofs and can be demonstrated 
only empirically, via so-called Monte-Carlo experiments. In these experiments, large 
numbers of samples are generated by a computer following predesigned specifications 
and the results from such samples are analyzed using a variety of tests. This way we can 
empirically evaluate the type and magnitude of errors or biases to which we are exposed 
when certain theoretical assumptions of the tests we are using are not met by our data. 
Specifically, Monte-Carlo studies were used extensively with normal distribution-based 
tests to determine how sensitive they are to violations of the assumption of normal 
distribution of the analyzed variables in the population. The general conclusion from 
these studies is that the consequences of such violations are less severe than previously 
thought. Although these conclusions should not entirely discourage anyone from being 
concerned about the normality assumption, they have increased the overall popularity of 
the distribution-dependent statistical tests in all areas of research.  
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Chapter 2 
Basic Statistics 

 

• Descriptive statistics  
o "True" Mean and Confidence Interval  
o Shape of the Distribution, Normality  

• Correlations  
o Purpose (What is Correlation?)  
o Simple Linear Correlation (Pearson r)  
o How to Interpret the Values of Correlations  
o Significance of Correlations  
o Outliers  
o Quantitative Approach to Outliers  
o Correlations in Non-homogeneous Groups  
o Nonlinear Relations between Variables  
o Measuring Nonlinear Relations  
o Exploratory Examination of Correlation Matrices  
o Casewise vs. Pairwise Deletion of Missing Data  
o How to Identify Biases Caused by the Bias due to Pairwise Deletion of 

Missing Data  
o Pairwise Deletion of Missing Data vs. Mean Substitution  
o Spurious Correlations  
o Are correlation coefficients "additive?"  
o How to Determine Whether Two Correlation Coefficients are Significant  

• t-test for independent samples  
o Purpose, Assumptions  
o Arrangement of Data  
o t-test graphs  
o More Complex Group Comparisons  

• t-test for dependent samples  
o Within-group Variation  
o Purpose  
o Assumptions  
o Arrangement of Data  
o Matrices of t-tests  
o More Complex Group Comparisons  

• Breakdown: Descriptive statistics by groups  
o Purpose  
o Arrangement of Data  
o Statistical Tests in Breakdowns  
o Other Related Data Analysis Techniques  
o Post-Hoc Comparisons of Means  
o Breakdowns vs. Discriminant Function Analysis  
o Breakdowns vs. Frequency Tables  
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o Graphical breakdowns  
• Frequency tables  

o Purpose  
o Applications  

• Crosstabulation and stub-and-banner tables  
o Purpose and Arrangement of Table  
o 2x2 Table  
o Marginal Frequencies  
o Column, Row, and Total Percentages  
o Graphical Representations of Crosstabulations  
o Stub-and-Banner Tables  
o Interpreting the Banner Table  
o Multi-way Tables with Control Variables  
o Graphical Representations of Multi-way Tables  
o Statistics in crosstabulation tables  
o Multiple responses/dichotomies  

 
Descriptive Statistics  

"True" Mean and Confidence Interval. Probably the most often used descriptive 
statistic is the mean. The mean is a particularly informative measure of the "central 
tendency" of the variable if it is reported along with its confidence intervals. As 
mentioned earlier, usually we are interested in statistics (such as the mean) from our 
sample only to the extent to which they can infer information about the population. The 
confidence intervals for the mean give us a range of values around the mean where we 
expect the "true" (population) mean is located (with a given level of certainty, see also 
Elementary Concepts). For example, if the mean in your sample is 23, and the lower and 
upper limits of the p=.05 confidence interval are 19 and 27 respectively, then you can 
conclude that there is a 95% probability that the population mean is greater than 19 and 
lower than 27. If you set the p-level to a smaller value, then the interval would become 
wider thereby increasing the "certainty" of the estimate, and vice versa; as we all know 
from the weather forecast, the more "vague" the prediction (i.e., wider the confidence 
interval), the more likely it will materialize. Note that the width of the confidence interval 
depends on the sample size and on the variation of data values. The larger the sample 
size, the more reliable its mean. The larger the variation, the less reliable the mean (see 
also Elementary Concepts). The calculation of confidence intervals is based on the 
assumption that the variable is normally distributed in the population. The estimate may 
not be valid if this assumption is not met, unless the sample size is large, say n=100 or 
more.  

Shape of the Distribution, Normality. An important aspect of the "description" of a 
variable is the shape of its distribution, which tells you the frequency of values from 
different ranges of the variable. Typically, a researcher is interested in how well the 
distribution can be approximated by the normal distribution (see the animation below for 
an example of this distribution) (see also Elementary Concepts). Simple descriptive 
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statistics can provide some information relevant to this issue. For example, if the 
skewness (which measures the deviation of the distribution from symmetry) is clearly 
different from 0, then that distribution is asymmetrical, while normal distributions are 
perfectly symmetrical. If the kurtosis (which measures "peakedness" of the distribution) 
is clearly different from 0, then the distribution is either flatter or more peaked than 
normal; the kurtosis of the normal distribution is 0.  

 

More precise information can be obtained by performing one of the tests of normality to 
determine the probability that the sample came from a normally distributed population of 
observations (e.g., the so-called Kolmogorov-Smirnov test, or the Shapiro-Wilks' W test. 
However, none of these tests can entirely substitute for a visual examination of the data 
using a histogram (i.e., a graph that shows the frequency distribution of a variable).  

 

The graph allows you to evaluate the normality of the empirical distribution because it 
also shows the normal curve superimposed over the histogram. It also allows you to 
examine various aspects of the distribution qualitatively. For example, the distribution 
could be bimodal (have 2 peaks). This might suggest that the sample is not homogeneous 
but possibly its elements came from two different populations, each more or less 
normally distributed. In such cases, in order to understand the nature of the variable in 
question, you should look for a way to quantitatively identify the two sub-samples. 
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Correlations  

Purpose (What is Correlation?) Correlation is a measure of the relation between two 
or more variables. The measurement scales used should be at least interval scales, but 
other correlation coefficients are available to handle other types of data. Correlation 
coefficients can range from -1.00 to +1.00. The value of -1.00 represents a perfect 
negative correlation while a value of +1.00 represents a perfect positive correlation. A 
value of 0.00 represents a lack of correlation.  

 

The most widely-used type of correlation coefficient is Pearson r, also called linear or 
product- moment correlation.  

Simple Linear Correlation (Pearson r). Pearson correlation (hereafter called 
correlation), assumes that the two variables are measured on at least interval scales (see 
Elementary Concepts), and it determines the extent to which values of the two variables 
are "proportional" to each other. The value of correlation (i.e., correlation coefficient) 
does not depend on the specific measurement units used; for example, the correlation 
between height and weight will be identical regardless of whether inches and pounds, or 
centimeters and kilograms are used as measurement units. Proportional means linearly 
related; that is, the correlation is high if it can be "summarized" by a straight line (sloped 
upwards or downwards).  
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This line is called the regression line or least squares line, because it is determined such 
that the sum of the squared distances of all the data points from the line is the lowest 
possible. Note that the concept of squared distances will have important functional 
consequences on how the value of the correlation coefficient reacts to various specific 
arrangements of data (as we will later see).  

How to Interpret the Values of Correlations. As mentioned before, the correlation 
coefficient (r) represents the linear relationship between two variables. If the correlation 
coefficient is squared, then the resulting value (r2, the coefficient of determination) will 
represent the proportion of common variation in the two variables (i.e., the "strength" or 
"magnitude" of the relationship). In order to evaluate the correlation between variables, it 
is important to know this "magnitude" or "strength" as well as the significance of the 
correlation.  

Significance of Correlations. The significance level calculated for each correlation is 
a primary source of information about the reliability of the correlation. As explained 
before (see Elementary Concepts), the significance of a correlation coefficient of a 
particular magnitude will change depending on the size of the sample from which it was 
computed. The test of significance is based on the assumption that the distribution of the 
residual values (i.e., the deviations from the regression line) for the dependent variable y 
follows the normal distribution, and that the variability of the residual values is the same 
for all values of the independent variable x. However, Monte Carlo studies suggest that 
meeting those assumptions closely is not absolutely crucial if your sample size is not very 
small and when the departure from normality is not very large. It is impossible to 
formulate precise recommendations based on those Monte- Carlo results, but many 
researchers follow a rule of thumb that if your sample size is 50 or more then serious 
biases are unlikely, and if your sample size is over 100 then you should not be concerned 
at all with the normality assumptions. There are, however, much more common and 
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serious threats to the validity of information that a correlation coefficient can provide; 
they are briefly discussed in the following paragraphs.  

Outliers. Outliers are atypical (by definition), infrequent observations. Because of the 
way in which the regression line is determined (especially the fact that it is based on 
minimizing not the sum of simple distances but the sum of squares of distances of data 
points from the line), outliers have a profound influence on the slope of the regression 
line and consequently on the value of the correlation coefficient. A single outlier is 
capable of considerably changing the slope of the regression line and, consequently, the 
value of the correlation, as demonstrated in the following example. Note, that as shown 
on that illustration, just one outlier can be entirely responsible for a high value of the 
correlation that otherwise (without the outlier) would be close to zero. Needless to say, 
one should never base important conclusions on the value of the correlation coefficient 
alone (i.e., examining the respective scatterplot is always recommended).  

 

Note that if the sample size is relatively small, then including or excluding specific data 
points that are not as clearly "outliers" as the one shown in the previous example may 
have a profound influence on the regression line (and the correlation coefficient). This is 
illustrated in the following example where we call the points being excluded "outliers;" 
one may argue, however, that they are not outliers but rather extreme values.  
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Typically, we believe that outliers represent a random error that we would like to be able 
to control. Unfortunately, there is no widely accepted method to remove outliers 
automatically (however, see the next paragraph), thus what we are left with is to identify 
any outliers by examining a scatterplot of each important correlation. Needless to say, 
outliers may not only artificially increase the value of a correlation coefficient, but they 
can also decrease the value of a "legitimate" correlation.  

See also Confidence Ellipse.  

Quantitative Approach to Outliers. Some researchers use quantitative methods to 
exclude outliers. For example, they exclude observations that are outside the range of ±2 
standard deviations (or even ±1.5 sd's) around the group or design cell mean. In some 
areas of research, such "cleaning" of the data is absolutely necessary. For example, in 
cognitive psychology research on reaction times, even if almost all scores in an 
experiment are in the range of 300-700 milliseconds, just a few "distracted reactions" of 
10-15 seconds will completely change the overall picture. Unfortunately, defining an 
outlier is subjective (as it should be), and the decisions concerning how to identify them 
must be made on an individual basis (taking into account specific experimental 
paradigms and/or "accepted practice" and general research experience in the respective 
area). It should also be noted that in some rare cases, the relative frequency of outliers 
across a number of groups or cells of a design can be subjected to analysis and provide 
interpretable results. For example, outliers could be indicative of the occurrence of a 
phenomenon that is qualitatively different than the typical pattern observed or expected in 
the sample, thus the relative frequency of outliers could provide evidence of a relative 
frequency of departure from the process or phenomenon that is typical for the majority of 
cases in a group. See also Confidence Ellipse.  

Correlations in Non-homogeneous Groups. A lack of homogeneity in the sample 
from which a correlation was calculated can be another factor that biases the value of the 
correlation. Imagine a case where a correlation coefficient is calculated from data points 
which came from two different experimental groups but this fact is ignored when the 
correlation is calculated. Let us assume that the experimental manipulation in one of the 
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groups increased the values of both correlated variables and thus the data from each 
group form a distinctive "cloud" in the scatterplot (as shown in the graph below).  

 

In such cases, a high correlation may result that is entirely due to the arrangement of the 
two groups, but which does not represent the "true" relation between the two variables, 
which may practically be equal to 0 (as could be seen if we looked at each group 
separately, see the following graph).  

 

If you suspect the influence of such a phenomenon on your correlations and know how to 
identify such "subsets" of data, try to run the correlations separately in each subset of 
observations. If you do not know how to identify the hypothetical subsets, try to examine 
the data with some exploratory multivariate techniques (e.g., Cluster Analysis).  

Nonlinear Relations between Variables. Another potential source of problems with 
the linear (Pearson r) correlation is the shape of the relation. As mentioned before, 
Pearson r measures a relation between two variables only to the extent to which it is 
linear; deviations from linearity will increase the total sum of squared distances from the 
regression line even if they represent a "true" and very close relationship between two 
variables. The possibility of such non-linear relationships is another reason why 
examining scatterplots is a necessary step in evaluating every correlation. For example, 
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the following graph demonstrates an extremely strong correlation between the two 
variables which is not well described by the linear function.  

 

Measuring Nonlinear Relations. What do you do if a correlation is strong but clearly 
nonlinear (as concluded from examining scatterplots)? Unfortunately, there is no simple 
answer to this question, because there is no easy-to-use equivalent of Pearson r that is 
capable of handling nonlinear relations. If the curve is monotonous (continuously 
decreasing or increasing) you could try to transform one or both of the variables to 
remove the curvilinearity and then recalculate the correlation. For example, a typical 
transformation used in such cases is the logarithmic function which will "squeeze" 
together the values at one end of the range. Another option available if the relation is 
monotonous is to try a nonparametric correlation (e.g., Spearman R, see Nonparametrics 
and Distribution Fitting) which is sensitive only to the ordinal arrangement of values, 
thus, by definition, it ignores monotonous curvilinearity. However, nonparametric 
correlations are generally less sensitive and sometimes this method will not produce any 
gains. Unfortunately, the two most precise methods are not easy to use and require a good 
deal of "experimentation" with the data. Therefore you could:  

A. Try to identify the specific function that best describes the curve. After a function 
has been found, you can test its "goodness-of-fit" to your data.  

B. Alternatively, you could experiment with dividing one of the variables into a 
number of segments (e.g., 4 or 5) of an equal width, treat this new variable as a 
grouping variable and run an analysis of variance on the data.  

Exploratory Examination of Correlation Matrices. A common first step of many 
data analyses that involve more than a very few variables is to run a correlation matrix of 
all variables and then examine it for expected (and unexpected) significant relations. 
When this is done, you need to be aware of the general nature of statistical significance 
(see Elementary Concepts); specifically, if you run many tests (in this case, many 
correlations), then significant results will be found "surprisingly often" due to pure 
chance. For example, by definition, a coefficient significant at the .05 level will occur by 
chance once in every 20 coefficients. There is no "automatic" way to weed out the "true" 
correlations. Thus, you should treat all results that were not predicted or planned with 
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particular caution and look for their consistency with other results; ultimately, though, the 
most conclusive (although costly) control for such a randomness factor is to replicate the 
study. This issue is general and it pertains to all analyses that involve "multiple 
comparisons and statistical significance." This problem is also briefly discussed in the 
context of post-hoc comparisons of means and the Breakdowns option.  

Casewise vs. Pairwise Deletion of Missing Data. The default way of deleting 
missing data while calculating a correlation matrix is to exclude all cases that have 
missing data in at least one of the selected variables; that is, by casewise deletion of 
missing data. Only this way will you get a "true" correlation matrix, where all 
correlations are obtained from the same set of observations. However, if missing data are 
randomly distributed across cases, you could easily end up with no "valid" cases in the 
data set, because each of them will have at least one missing data in some variable. The 
most common solution used in such instances is to use so-called pairwise deletion of 
missing data in correlation matrices, where a correlation between each pair of variables is 
calculated from all cases that have valid data on those two variables. In many instances 
there is nothing wrong with that method, especially when the total percentage of missing 
data is low, say 10%, and they are relatively randomly distributed between cases and 
variables. However, it may sometimes lead to serious problems.  

For example, a systematic bias may result from a "hidden" systematic distribution of 
missing data, causing different correlation coefficients in the same correlation matrix to 
be based on different subsets of subjects. In addition to the possibly biased conclusions 
that you could derive from such "pairwise calculated" correlation matrices, real problems 
may occur when you subject such matrices to another analysis (e.g., multiple regression, 
factor analysis, or cluster analysis) that expects a "true correlation matrix," with a certain 
level of consistency and "transitivity" between different coefficients. Thus, if you are 
using the pairwise method of deleting the missing data, be sure to examine the 
distribution of missing data across the cells of the matrix for possible systematic 
"patterns."  

How to Identify Biases Caused by the Bias due to Pairwise Deletion of Missing 
Data. If the pairwise deletion of missing data does not introduce any systematic bias to 
the correlation matrix, then all those pairwise descriptive statistics for one variable should 
be very similar. However, if they differ, then there are good reasons to suspect a bias. For 
example, if the mean (or standard deviation) of the values of variable A that were taken 
into account in calculating its correlation with variable B is much lower than the mean (or 
standard deviation) of those values of variable A that were used in calculating its 
correlation with variable C, then we would have good reason to suspect that those two 
correlations (A-B and A-C) are based on different subsets of data, and thus, that there is a 
bias in the correlation matrix caused by a non-random distribution of missing data.  

Pairwise Deletion of Missing Data vs. Mean Substitution. Another common 
method to avoid loosing data due to casewise deletion is the so-called mean substitution 
of missing data (replacing all missing data in a variable by the mean of that variable). 
Mean substitution offers some advantages and some disadvantages as compared to 



 25 

pairwise deletion. Its main advantage is that it produces "internally consistent" sets of 
results ("true" correlation matrices). The main disadvantages are:  

A. Mean substitution artificially decreases the variation of scores, and this decrease 
in individual variables is proportional to the number of missing data (i.e., the 
more missing data, the more "perfectly average scores" will be artificially added 
to the data set).  

B. Because it substitutes missing data with artificially created "average" data points, 
mean substitution may considerably change the values of correlations.  

Spurious Correlations. Although you cannot prove causal relations based on 
correlation coefficients (see Elementary Concepts), you can still identify so-called 
spurious correlations; that is, correlations that are due mostly to the influences of "other" 
variables. For example, there is a correlation between the total amount of losses in a fire 
and the number of firemen that were putting out the fire; however, what this correlation 
does not indicate is that if you call fewer firemen then you would lower the losses. There 
is a third variable (the initial size of the fire) that influences both the amount of losses and 
the number of firemen. If you "control" for this variable (e.g., consider only fires of a 
fixed size), then the correlation will either disappear or perhaps even change its sign. The 
main problem with spurious correlations is that we typically do not know what the 
"hidden" agent is. However, in cases when we know where to look, we can use partial 
correlations that control for (partial out) the influence of specified variables.  

Are correlation coefficients "additive?" No, they are not. For example, an average of 
correlation coefficients in a number of samples does not represent an "average 
correlation" in all those samples. Because the value of the correlation coefficient is not a 
linear function of the magnitude of the relation between the variables, correlation 
coefficients cannot simply be averaged. In cases when you need to average correlations, 
they first have to be converted into additive measures. For example, before averaging, 
you can square them to obtain coefficients of determination which are additive (as 
explained before in this section), or convert them into so-called Fisher z values, which 
are also additive.  

How to Determine Whether Two Correlation Coefficients are Significant. A test 
is available that will evaluate the significance of differences between two correlation 
coefficients in two samples. The outcome of this test depends not only on the size of the 
raw difference between the two coefficients but also on the size of the samples and on the 
size of the coefficients themselves. Consistent with the previously discussed principle, 
the larger the sample size, the smaller the effect that can be proven significant in that 
sample. In general, due to the fact that the reliability of the correlation coefficient 
increases with its absolute value, relatively small differences between large correlation 
coefficients can be significant. For example, a difference of .10 between two correlations 
may not be significant if the two coefficients are .15 and .25, although in the same 
sample, the same difference of .10 can be highly significant if the two coefficients are .80 
and .90. 
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t-test for independent samples  

Purpose, Assumptions. The t-test is the most commonly used method to evaluate the 
differences in means between two groups. For example, the t-test can be used to test for a 
difference in test scores between a group of patients who were given a drug and a control 
group who received a placebo. Theoretically, the t-test can be used even if the sample 
sizes are very small (e.g., as small as 10; some researchers claim that even smaller n's are 
possible), as long as the variables are normally distributed within each group and the 
variation of scores in the two groups is not reliably different (see also Elementary 
Concepts). As mentioned before, the normality assumption can be evaluated by looking 
at the distribution of the data (via histograms) or by performing a normality test. The 
equality of variances assumption can be verified with the F test, or you can use the more 
robust Levene's test. If these conditions are not met, then you can evaluate the differences 
in means between two groups using one of the nonparametric alternatives to the t- test 
(see Nonparametrics and Distribution Fitting).  

The p-level reported with a t-test represents the probability of error involved in accepting 
our research hypothesis about the existence of a difference. Technically speaking, this is 
the probability of error associated with rejecting the hypothesis of no difference between 
the two categories of observations (corresponding to the groups) in the population when, 
in fact, the hypothesis is true. Some researchers suggest that if the difference is in the 
predicted direction, you can consider only one half (one "tail") of the probability 
distribution and thus divide the standard p-level reported with a t-test (a "two-tailed" 
probability) by two. Others, however, suggest that you should always report the standard, 
two-tailed t-test probability.  

See also, Student's t Distribution.  

Arrangement of Data. In order to perform the t-test for independent samples, one 
independent (grouping) variable (e.g., Gender: male/female) and at least one dependent 
variable (e.g., a test score) are required. The means of the dependent variable will be 
compared between selected groups based on the specified values (e.g., male and female) 
of the independent variable. The following data set can be analyzed with a t-test 
comparing the average WCC score in males and females. 

  GENDER WCC 
case 1 
case 2 
case 3 
case 4 
case 5 

male 
male 
male 

female 
female 

111 
110 
109 
102 
104 
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  mean WCC in males = 110 
mean WCC in females = 103 

 
 

t-test graphs. In the t-test analysis, comparisons of means and measures of variation in 
the two groups can be visualized in box and whisker plots (for an example, see the graph 
below).  

 

These graphs help you to quickly evaluate and "intuitively visualize" the strength of the 
relation between the grouping and the dependent variable.  

More Complex Group Comparisons. It often happens in research practice that you 
need to compare more than two groups (e.g., drug 1, drug 2, and placebo), or compare 
groups created by more than one independent variable while controlling for the separate 
influence of each of them (e.g., Gender, type of Drug, and size of Dose). In these cases, 
you need to analyze the data using Analysis of Variance, which can be considered to be a 
generalization of the t-test. In fact, for two group comparisons, ANOVA will give results 
identical to a t-test (t**2 [df] = F[1,df] ). However, when the design is more complex, 
ANOVA offers numerous advantages that t-tests cannot provide (even if you run a series 
of t- tests comparing various cells of the design).  

 
 
 

 
t-test for dependent samples  

Within-group Variation. As explained in Elementary Concepts, the size of a relation 
between two variables, such as the one measured by a difference in means between two 
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groups, depends to a large extent on the differentiation of values within the group. 
Depending on how differentiated the values are in each group, a given "raw difference" in 
group means will indicate either a stronger or weaker relationship between the 
independent (grouping) and dependent variable. For example, if the mean WCC (White 
Cell Count) was 102 in males and 104 in females, then this difference of "only" 2 points 
would be extremely important if all values for males fell within a range of 101 to 103, 
and all scores for females fell within a range of 103 to 105; for example, we would be 
able to predict WCC pretty well based on gender. However, if the same difference of 2 
was obtained from very differentiated scores (e.g., if their range was 0-200), then we 
would consider the difference entirely negligible. That is to say, reduction of the within-
group variation increases the sensitivity of our test.  

Purpose. The t-test for dependent samples helps us to take advantage of one specific 
type of design in which an important source of within-group variation (or so-called, 
error) can be easily identified and excluded from the analysis. Specifically, if two groups 
of observations (that are to be compared) are based on the same sample of subjects who 
were tested twice (e.g., before and after a treatment), then a considerable part of the 
within-group variation in both groups of scores can be attributed to the initial individual 
differences between subjects. Note that, in a sense, this fact is not much different than in 
cases when the two groups are entirely independent (see t-test for independent samples), 
where individual differences also contribute to the error variance; but in the case of 
independent samples, we cannot do anything about it because we cannot identify (or 
"subtract") the variation due to individual differences in subjects. However, if the same 
sample was tested twice, then we can easily identify (or "subtract") this variation. 
Specifically, instead of treating each group separately, and analyzing raw scores, we can 
look only at the differences between the two measures (e.g., "pre-test" and "post test") in 
each subject. By subtracting the first score from the second for each subject and then 
analyzing only those "pure (paired) differences," we will exclude the entire part of the 
variation in our data set that results from unequal base levels of individual subjects. This 
is precisely what is being done in the t-test for dependent samples, and, as compared to 
the t-test for independent samples, it always produces "better" results (i.e., it is always 
more sensitive).  

Assumptions. The theoretical assumptions of the t-test for independent samples also 
apply to the dependent samples test; that is, the paired differences should be normally 
distributed. If these assumptions are clearly not met, then one of the nonparametric 
alternative tests should be used.  

See also, Student's t Distribution.  

Arrangement of Data. Technically, we can apply the t-test for dependent samples to 
any two variables in our data set. However, applying this test will make very little sense 
if the values of the two variables in the data set are not logically and methodologically 
comparable. For example, if you compare the average WCC in a sample of patients 
before and after a treatment, but using a different counting method or different units in 
the second measurement, then a highly significant t-test value could be obtained due to an 
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artifact; that is, to the change of units of measurement. Following, is an example of a data 
set that can be analyzed using the t-test for dependent samples.  

  WCC 
before 

WCC 
after 

case 1 
case 2 
case 3 
case 4 
case 5 

... 

111.9 
109 
143 
101 
80 
... 

113 
110 
144 
102 
80.9 

... 

  average change between WCC 
"before" and "after" = 1  

 
The average difference between the two conditions is relatively small (d=1) as compared 
to the differentiation (range) of the raw scores (from 80 to 143, in the first sample). 
However, the t-test for dependent samples analysis is performed only on the paired 
differences , "ignoring" the raw scores and their potential differentiation. Thus, the size of 
this particular difference of 1 will be compared not to the differentiation of raw scores but 
to the differentiation of the individual difference scores, which is relatively small: 0.2 
(from 0.9 to 1.1). Compared to that variability, the difference of 1 is extremely large and 
can yield a highly significant t value.  

Matrices of t-tests. t-tests for dependent samples can be calculated for long lists of 
variables, and reviewed in the form of matrices produced with casewise or pairwise 
deletion of missing data, much like the correlation matrices. Thus, the precautions 
discussed in the context of correlations also apply to t-test matrices; see:  

a. the issue of artifacts caused by the pairwise deletion of missing data in t-tests and  
b. the issue of "randomly" significant test values.  

More Complex Group Comparisons. If there are more than two "correlated samples" 
(e.g., before treatment, after treatment 1, and after treatment 2), then analysis of variance 
with repeated measures should be used. The repeated measures ANOVA can be 
considered a generalization of the t-test for dependent samples and it offers various 
features that increase the overall sensitivity of the analysis. For example, it can 
simultaneously control not only for the base level of the dependent variable, but it can 
control for other factors and/or include in the design more than one interrelated 
dependent variable (MANOVA; for additional details refer to ANOVA/MANOVA).  

 
 
 

 

  



 30 

Breakdown: Descriptive Statistics by Groups  

Purpose. The breakdowns analysis calculates descriptive statistics and correlations for 
dependent variables in each of a number of groups defined by one or more grouping 
(independent) variables.  

Arrangement of Data. In the following example data set (spreadsheet), the dependent 
variable WCC (White Cell Count) can be broken down by 2 independent variables: 
Gender (values: males and females), and Height (values: tall and short).  

  GENDER HEIGHT  WCC 
case 1 
case 2 
case 3 
case 4 
case 5 

... 

male 
male 
male 

female 
female 

... 

short 
tall 
tall 
tall 

short 
... 

101 
110 
92 

112 
95 
... 

 
The resulting breakdowns might look as follows (we are assuming that Gender was 
specified as the first independent variable, and Height as the second).  

Entire sample 
Mean=100 

SD=13 
N=120 

Males 
Mean=99 
SD=13 
N=60 

Females 
Mean=101 

SD=13 
N=60 

Tall/males 
Mean=98 
SD=13 
N=30 

Short/males 
Mean=100 

SD=13 
N=30 

Tall/females 
Mean=101 

SD=13 
N=30 

Short/females 
Mean=101 

SD=13 
N=30 

 
The composition of the "intermediate" level cells of the "breakdown tree" depends on the 
order in which independent variables are arranged. For example, in the above example, 
you see the means for "all males" and "all females" but you do not see the means for "all 
tall subjects" and "all short subjects" which would have been produced had you specified 
independent variable Height as the first grouping variable rather than the second.  

Statistical Tests in Breakdowns. Breakdowns are typically used as an exploratory 
data analysis technique; the typical question that this technique can help answer is very 
simple: Are the groups created by the independent variables different regarding the 
dependent variable? If you are interested in differences concerning the means, then the 
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appropriate test is the breakdowns one-way ANOVA (F test). If you are interested in 
variation differences, then you should test for homogeneity of variances.  

Other Related Data Analysis Techniques. Although for exploratory data analysis, 
breakdowns can use more than one independent variable, the statistical procedures in 
breakdowns assume the existence of a single grouping factor (even if, in fact, the 
breakdown results from a combination of a number of grouping variables). Thus, those 
statistics do not reveal or even take into account any possible interactions between 
grouping variables in the design. For example, there could be differences between the 
influence of one independent variable on the dependent variable at different levels of 
another independent variable (e.g., tall people could have lower WCC than short ones, 
but only if they are males; see the "tree" data above). You can explore such effects by 
examining breakdowns "visually," using different orders of independent variables, but the 
magnitude or significance of such effects cannot be estimated by the breakdown 
statistics.  

Post-Hoc Comparisons of Means. Usually, after obtaining a statistically significant F 
test from the ANOVA, one wants to know which of the means contributed to the effect 
(i.e., which groups are particularly different from each other). One could of course 
perform a series of simple t-tests to compare all possible pairs of means. However, such a 
procedure would capitalize on chance. This means that the reported probability levels 
would actually overestimate the statistical significance of mean differences. Without 
going into too much detail, suppose you took 20 samples of 10 random numbers each, 
and computed 20 means. Then, take the group (sample) with the highest mean and 
compare it with that of the lowest mean. The t-test for independent samples will test 
whether or not those two means are significantly different from each other, provided they 
were the only two samples taken. Post-hoc comparison techniques on the other hand 
specifically take into account the fact that more than two samples were taken.  

Breakdowns vs. Discriminant Function Analysis. Breakdowns can be considered as 
a first step toward another type of analysis that explores differences between groups: 
Discriminant function analysis. Similar to breakdowns, discriminant function analysis 
explores the differences between groups created by values (group codes) of an 
independent (grouping) variable. However, unlike breakdowns, discriminant function 
analysis simultaneously analyzes more than one dependent variable and it identifies 
"patterns" of values of those dependent variables. Technically, it determines a linear 
combination of the dependent variables that best predicts the group membership. For 
example, discriminant function analysis can be used to analyze differences between three 
groups of persons who have chosen different professions (e.g., lawyers, physicians, and 
engineers) in terms of various aspects of their scholastic performance in high school. One 
could claim that such analysis could "explain" the choice of a profession in terms of 
specific talents shown in high school; thus discriminant function analysis can be 
considered to be an "exploratory extension" of simple breakdowns.  

Breakdowns vs. Frequency Tables. Another related type of analysis that cannot be 
directly performed with breakdowns is comparisons of frequencies of cases (n's) between 
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groups. Specifically, often the n's in individual cells are not equal because the assignment 
of subjects to those groups typically results not from an experimenter's manipulation, but 
from subjects' pre-existing dispositions. If, in spite of the random selection of the entire 
sample, the n's are unequal, then it may suggest that the independent variables are related. 
For example, crosstabulating levels of independent variables Age and Education most 
likely would not create groups of equal n, because education is distributed differently in 
different age groups. If you are interested in such comparisons, you can explore specific 
frequencies in the breakdowns tables, trying different orders of independent variables. 
However, in order to subject such differences to statistical tests, you should use 
crosstabulations and frequency tables, Log-Linear Analysis, or Correspondence Analysis 
(for more advanced analyses on multi-way frequency tables). 

Graphical breakdowns. Graphs can often identify effects (both expected and 
unexpected) in the data more quickly and sometimes "better" than any other data analysis 
method. Categorized graphs allow you to plot the means, distributions, correlations, etc. 
across the groups of a given table (e.g., categorized histograms, categorized probability 
plots, categorized box and whisker plots). The graph below shows a categorized 
histogram which enables you to quickly evaluate and visualize the shape of the data for 
each group (group1-female, group2-female, etc.).  

 

The categorized scatterplot (in the graph below) shows the differences between patterns 
of correlations between dependent variables across the groups.  
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Additionally, if the software has a brushing facility which supports animated brushing, 
you can select (i.e., highlight) in a matrix scatterplot all data points that belong to a 
certain category in order to examine how those specific observations contribute to 
relations between other variables in the same data set.  

 

 
 
 

 
Frequency tables  
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Purpose. Frequency or one-way tables represent the simplest method for analyzing 
categorical (nominal) data (refer to Elementary Concepts). They are often used as one of 
the exploratory procedures to review how different categories of values are distributed in 
the sample. For example, in a survey of spectator interest in different sports, we could 
summarize the respondents' interest in watching football in a frequency table as follows:  

STATISTICA 
BASIC 
STATS 

FOOTBALL: "Watching football"  

Category Count 
Cumulatv 

Count Percent 
Cumulatv 
Percent 

ALWAYS : Always interested 
USUALLY : Usually interested 
SOMETIMS: Sometimes interested 
NEVER : Never interested 
Missing 

39 
16 
26 
19 
0 

39 
55 
81 

100 
100 

39.00000 
16.00000 
26.00000 
19.00000 
0.00000 

39.0000 
55.0000 
81.0000 

100.0000 
100.0000 

 
The table above shows the number, proportion, and cumulative proportion of respondents 
who characterized their interest in watching football as either (1) Always interested, (2) 
Usually interested, (3) Sometimes interested, or (4) Never interested.  

Applications. In practically every research project, a first "look" at the data usually 
includes frequency tables. For example, in survey research, frequency tables can show 
the number of males and females who participated in the survey, the number of 
respondents from particular ethnic and racial backgrounds, and so on. Responses on some 
labeled attitude measurement scales (e.g., interest in watching football) can also be nicely 
summarized via the frequency table. In medical research, one may tabulate the number of 
patients displaying specific symptoms; in industrial research one may tabulate the 
frequency of different causes leading to catastrophic failure of products during stress tests 
(e.g., which parts are actually responsible for the complete malfunction of television sets 
under extreme temperatures?). Customarily, if a data set includes any categorical data, 
then one of the first steps in the data analysis is to compute a frequency table for those 
categorical variables. 

 
 
 

 
Crosstabulation and stub-and-banner tables  

Purpose and Arrangement of Table. Crosstabulation is a combination of two (or 
more) frequency tables arranged such that each cell in the resulting table represents a 
unique combination of specific values of crosstabulated variables. Thus, crosstabulation 
allows us to examine frequencies of observations that belong to specific categories on 
more than one variable. By examining these frequencies, we can identify relations 
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between crosstabulated variables. Only categorical (nominal) variables or variables with 
a relatively small number of different meaningful values should be crosstabulated. Note 
that in the cases where we do want to include a continuous variable in a crosstabulation 
(e.g., income), we can first recode it into a particular number of distinct ranges (e.g., low, 
medium, high).  

2x2 Table. The simplest form of crosstabulation is the 2 by 2 table where two variables 
are "crossed," and each variable has only two distinct values. For example, suppose we 
conduct a simple study in which males and females are asked to choose one of two 
different brands of soda pop (brand A and brand B); the data file can be arranged like this:  

  GENDER SODA 
case 1 
case 2 
case 3 
case 4 
case 5 

... 

MALE 
FEMALE 
FEMALE 
FEMALE 

MALE 
... 

A 
B 
B 
A 
B 
... 

 
The resulting crosstabulation could look as follows.  

  SODA: A SODA: B   
GENDER: MALE  20 (40%) 30 (60%) 50 (50%) 
GENDER: FEMALE  30 (60%) 20 (40%) 50 (50%) 

  50 (50%) 50 (50%) 100 (100%) 

 
Each cell represents a unique combination of values of the two crosstabulated variables 
(row variable Gender and column variable Soda), and the numbers in each cell tell us 
how many observations fall into each combination of values. In general, this table shows 
us that more females than males chose the soda pop brand A, and that more males than 
females chose soda B. Thus, gender and preference for a particular brand of soda may be 
related (later we will see how this relationship can be measured).  

Marginal Frequencies. The values in the margins of the table are simply one-way 
(frequency) tables for all values in the table. They are important in that they help us to 
evaluate the arrangement of frequencies in individual columns or rows. For example, the 
frequencies of 40% and 60% of males and females (respectively) who chose soda A (see 
the first column of the above table), would not indicate any relationship between Gender 
and Soda if the marginal frequencies for Gender were also 40% and 60%; in that case 
they would simply reflect the different proportions of males and females in the study. 
Thus, the differences between the distributions of frequencies in individual rows (or 
columns) and in the respective margins informs us about the relationship between the 
crosstabulated variables.  
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Column, Row, and Total Percentages. The example in the previous paragraph 
demonstrates that in order to evaluate relationships between crosstabulated variables, we 
need to compare the proportions of marginal and individual column or row frequencies. 
Such comparisons are easiest to perform when the frequencies are presented as 
percentages.  

Graphical Representations of Crosstabulations. For analytic purposes, the 
individual rows or columns of a table can be represented as column graphs. However, 
often it is useful to visualize the entire table in a single graph. A two-way table can be 
visualized in a 3-dimensional histogram; alternatively, a categorized histogram can be 
produced, where one variable is represented by individual histograms which are drawn at 
each level (category) of the other variable in the crosstabulation. The advantage of the 3D 
histogram is that it produces an integrated picture of the entire table; the advantage of the 
categorized graph is that it allows us to precisely evaluate specific frequencies in each 
cell of the table.  

Stub-and-Banner Tables. Stub-and-Banner tables, or Banners for short, are a way to 
display several two-way tables in a compressed form. This type of table is most easily 
explained with an example. Let us return to the survey of sports spectators example. 
(Note that, in order simplify matters, only the response categories Always and Usually 
were tabulated in the table below.)  

STATISTICA 
BASIC 
STATS 

Stub-and-Banner Table: 
Row Percent 

Factor FOOTBALL  
ALWAYS  

FOOTBALL  
USUALLY  

Row 
Total 

BASEBALL: ALWAYS  
BASEBALL: USUALLY  

92.31 
61.54 

7.69 
38.46 

66.67 
33.33 

BASEBALL: Total  82.05 17.95 100.00 
TENNIS: ALWAYS 
TENNIS: USUALLY  

87.50 
87.50 

12.50 
12.50 

66.67 
33.33 

TENNIS: Total  87.50 12.50 100.00 
BOXING: ALWAYS 
BOXING: USUALLY  

77.78 
100.00 

22.22 
0.00 

52.94 
47.06 

BOXING : Total  88.24 11.76 100.00 

 
 

Interpreting the Banner Table. In the table above, we see the two-way tables of 
expressed interest in Football by expressed interest in Baseball, Tennis, and Boxing. The 
table entries represent percentages of rows, so that the percentages across columns will 
add up to 100 percent. For example, the number in the upper left hand corner of the 
Scrollsheet (92.31) shows that 92.31 percent of all respondents who said they are always 
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interested in watching football also said that they were always interested in watching 
baseball. Further down we can see that the percent of those always interested in watching 
football who were also always interested in watching tennis was 87.50 percent; for 
boxing this number is 77.78 percent. The percentages in the last column (Row Total) are 
always relative to the total number of cases.  

Multi-way Tables with Control Variables. When only two variables are 
crosstabulated, we call the resulting table a two-way table. However, the general idea of 
crosstabulating values of variables can be generalized to more than just two variables. For 
example, to return to the "soda" example presented earlier (see above), a third variable 
could be added to the data set. This variable might contain information about the state in 
which the study was conducted (either Nebraska or New York).  

  GENDER SODA STATE 
case 1 
case 2 
case 3 
case 4 
case 5 

... 

MALE 
FEMALE 
FEMALE 
FEMALE 

MALE 
... 

A 
B 
B 
A 
B 
... 

NEBRASKA 
NEW YORK 
NEBRASKA 
NEBRASKA 
NEW YORK 

... 

 
The crosstabulation of these variables would result in a 3-way table:  

  STATE: NEW YORK  STATE: NEBRASKA  

  SODA: A SODA: B   SODA: A SODA: B   
G:MALE  20 30 50  5 45 50 
G:FEMALE  30 20 50 45  5 50 

  50 50 100 50 50 100 

 
Theoretically, an unlimited number of variables can be crosstabulated in a single multi-
way table. However, research practice shows that it is usually difficult to examine and 
"understand" tables that involve more than 4 variables. It is recommended to analyze 
relationships between the factors in such tables using modeling techniques such as Log-
Linear Analysis or Correspondence Analysis.  

Graphical Representations of Multi-way Tables. You can produce "double 
categorized" histograms, 3D histograms,  
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or line-plots that will summarize the frequencies for up to 3 factors in a single graph.  

 

Batches (cascades) of graphs can be used to summarize higher-way tables (as shown in 
the graph below).  

 

Statistics in Crosstabulation Tables  

• General Introduction  
• Pearson Chi-square  
• Maximum-Likelihood (M-L) Chi-square  
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• Yates' correction  
• Fisher exact test  
• McNemar Chi-square  
• Coefficient Phi  
• Tetrachoric correlation  
• Coefficient of contingency (C)  
• Interpretation of contingency measures  
• Statistics Based on Ranks  
• Spearman R  
• Kendall tau  
• Sommer's d: d(X|Y), d(Y|X)  
• Gamma  
• Uncertainty Coefficients: S(X,Y), S(X|Y), S(Y|X)  

General Introduction. Crosstabulations generally allow us to identify relationships 
between the crosstabulated variables. The following table illustrates an example of a very 
strong relationship between two variables: variable Age (Adult vs. Child) and variable 
Cookie preference (A vs. B).  

  COOKIE: A  COOKIE: B    
AGE: ADULT  50  0 50 
AGE: CHILD   0 50 50 

  50 50 100 

 
All adults chose cookie A, while all children chose cookie B. In this case there is little 
doubt about the reliability of the finding, because it is hardly conceivable that one would 
obtain such a pattern of frequencies by chance alone; that is, without the existence of a 
"true" difference between the cookie preferences of adults and children. However, in real-
life, relations between variables are typically much weaker, and thus the question arises 
as to how to measure those relationships, and how to evaluate their reliability (statistical 
significance). The following review includes the most common measures of relationships 
between two categorical variables; that is, measures for two-way tables. The techniques 
used to analyze simultaneous relations between more than two variables in higher order 
crosstabulations are discussed in the context of the Log-Linear Analysis module and the 
Correspondence Analysis.  

Pearson Chi-square. The Pearson Chi-square is the most common test for significance 
of the relationship between categorical variables. This measure is based on the fact that 
we can compute the expected frequencies in a two-way table (i.e., frequencies that we 
would expect if there was no relationship between the variables). For example, suppose 
we ask 20 males and 20 females to choose between two brands of soda pop (brands A and 
B). If there is no relationship between preference and gender, then we would expect about 
an equal number of choices of brand A and brand B for each sex. The Chi-square test 
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becomes increasingly significant as the numbers deviate further from this expected 
pattern; that is, the more this pattern of choices for males and females differs.  

The value of the Chi-square and its significance level depends on the overall number of 
observations and the number of cells in the table. Consistent with the principles discussed 
in Elementary Concepts, relatively small deviations of the relative frequencies across 
cells from the expected pattern will prove significant if the number of observations is 
large.  

The only assumption underlying the use of the Chi-square (other than random selection 
of the sample) is that the expected frequencies are not very small. The reason for this is 
that, actually, the Chi-square inherently tests the underlying probabilities in each cell; 
and when the expected cell frequencies fall, for example, below 5, those probabilities 
cannot be estimated with sufficient precision. For further discussion of this issue refer to 
Everitt (1977), Hays (1988), or Kendall and Stuart (1979).  

Maximum-Likelihood Chi-square. The Maximum-Likelihood Chi-square tests the same 
hypothesis as the Pearson Chi- square statistic; however, its computation is based on 
Maximum-Likelihood theory. In practice, the M-L Chi-square is usually very close in 
magnitude to the Pearson Chi- square statistic. For more details about this statistic refer 
to Bishop, Fienberg, and Holland (1975), or Fienberg, S. E. (1977); the Log-Linear 
Analysis chapter of the manual also discusses this statistic in greater detail.  

Yates Correction. The approximation of the Chi-square statistic in small 2 x 2 tables can 
be improved by reducing the absolute value of differences between expected and 
observed frequencies by 0.5 before squaring (Yates' correction). This correction, which 
makes the estimation more conservative, is usually applied when the table contains only 
small observed frequencies, so that some expected frequencies become less than 10 (for 
further discussion of this correction, see Conover, 1974; Everitt, 1977; Hays, 1988; 
Kendall & Stuart, 1979; and Mantel, 1974).  

Fisher Exact Test. This test is only available for 2x2 tables; it is based on the following 
rationale: Given the marginal frequencies in the table, and assuming that in the 
population the two factors in the table are not related, how likely is it to obtain cell 
frequencies as uneven or worse than the ones that were observed? For small n, this 
probability can be computed exactly by counting all possible tables that can be 
constructed based on the marginal frequencies. Thus, the Fisher exact test computes the 
exact probability under the null hypothesis of obtaining the current distribution of 
frequencies across cells, or one that is more uneven.  

McNemar Chi-square. This test is applicable in situations where the frequencies in the 2 
x 2 table represent dependent samples. For example, in a before-after design study, we 
may count the number of students who fail a test of minimal math skills at the beginning 
of the semester and at the end of the semester. Two Chi-square values are reported: A/D 
and B/C. The Chi-square A/D tests the hypothesis that the frequencies in cells A and D 



 41 

(upper left, lower right) are identical. The Chi-square B/C tests the hypothesis that the 
frequencies in cells B and C (upper right, lower left) are identical.  

Coefficient Phi. The Phi-square is a measure of correlation between two categorical 
variables in a 2 x 2 table. Its value can range from 0 (no relation between factors; Chi-
square=0.0) to 1 (perfect relation between the two factors in the table). For more details 
concerning this statistic see Castellan and Siegel (1988, p. 232).  

Tetrachoric Correlation. This statistic is also only computed for (applicable to) 2 x 2 
tables. If the 2 x 2 table can be thought of as the result of two continuous variables that 
were (artificially) forced into two categories each, then the tetrachoric correlation 
coefficient will estimate the correlation between the two.  

Coefficient of Contingency. The coefficient of contingency is a Chi-square based 
measure of the relation between two categorical variables (proposed by Pearson, the 
originator of the Chi-square test). Its advantage over the ordinary Chi-square is that it is 
more easily interpreted, since its range is always limited to 0 through 1 (where 0 means 
complete independence). The disadvantage of this statistic is that its specific upper limit 
is "limited" by the size of the table; C can reach the limit of 1 only if the number of 
categories is unlimited (see Siegel, 1956, p. 201).  

Interpretation of Contingency Measures. An important disadvantage of measures of 
contingency (reviewed above) is that they do not lend themselves to clear interpretations 
in terms of probability or "proportion of variance," as is the case, for example, of the 
Pearson r (see Correlations). There is no commonly accepted measure of relation 
between categories that has such a clear interpretation.  

Statistics Based on Ranks. In many cases the categories used in the crosstabulation 
contain meaningful rank-ordering information; that is, they measure some characteristic 
on an <>ordinal scale (see Elementary Concepts). Suppose we asked a sample of 
respondents to indicate their interest in watching different sports on a 4-point scale with 
the explicit labels (1) always, (2) usually, (3) sometimes, and (4) never interested. 
Obviously, we can assume that the response sometimes interested is indicative of less 
interest than always interested, and so on. Thus, we could rank the respondents with 
regard to their expressed interest in, for example, watching football. When categorical 
variables can be interpreted in this manner, there are several additional indices that can be 
computed to express the relationship between variables.  

Spearman R. Spearman R can be thought of as the regular Pearson product-moment 
correlation coefficient (Pearson r); that is, in terms of the proportion of variability 
accounted for, except that Spearman R is computed from ranks. As mentioned above, 
Spearman R assumes that the variables under consideration were measured on at least an 
ordinal (rank order) scale; that is, the individual observations (cases) can be ranked into 
two ordered series. Detailed discussions of the Spearman R statistic, its power and 
efficiency can be found in Gibbons (1985), Hays (1981), McNemar (1969), Siegel 
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(1956), Siegel and Castellan (1988), Kendall (1948), Olds (1949), or Hotelling and Pabst 
(1936).  

Kendall tau. Kendall tau is equivalent to the Spearman R statistic with regard to the 
underlying assumptions. It is also comparable in terms of its statistical power. However, 
Spearman R and Kendall tau are usually not identical in magnitude because their 
underlying logic, as well as their computational formulas are very different. Siegel and 
Castellan (1988) express the relationship of the two measures in terms of the inequality:  

-1 < = 3 * Kendall tau - 2 * Spearman R < = 1  

More importantly, Kendall tau and Spearman R imply different interpretations: While 
Spearman R can be thought of as the regular Pearson product-moment correlation 
coefficient as computed from ranks, Kendall tau rather represents a probability. 
Specifically, it is the difference between the probability that the observed data are in the 
same order for the two variables versus the probability that the observed data are in 
different orders for the two variables. Kendall (1948, 1975), Everitt (1977), and Siegel 
and Castellan (1988) discuss Kendall tau in greater detail. Two different variants of tau 
are computed, usually called taub and tauc. These measures differ only with regard as to 
how tied ranks are handled. In most cases these values will be fairly similar, and when 
discrepancies occur, it is probably always safest to interpret the lowest value.  

Sommer's d: d(X|Y), d(Y|X). Sommer's d is an asymmetric measure of association 
related to tb (see Siegel & Castellan, 1988, p. 303-310).  

Gamma. The Gamma statistic is preferable to Spearman R or Kendall tau when the data 
contain many tied observations. In terms of the underlying assumptions, Gamma is 
equivalent to Spearman R or Kendall tau; in terms of its interpretation and computation, 
it is more similar to Kendall tau than Spearman R. In short, Gamma is also a probability; 
specifically, it is computed as the difference between the probability that the rank 
ordering of the two variables agree minus the probability that they disagree, divided by 1 
minus the probability of ties. Thus, Gamma is basically equivalent to Kendall tau, except 
that ties are explicitly taken into account. Detailed discussions of the Gamma statistic can 
be found in Goodman and Kruskal (1954, 1959, 1963, 1972), Siegel (1956), and Siegel 
and Castellan (1988).  

Uncertainty Coefficients. These are indices of stochastic dependence; the concept of 
stochastic dependence is derived from the information theory approach to the analysis of 
frequency tables and the user should refer to the appropriate references (see Kullback, 
1959; Ku & Kullback, 1968; Ku, Varner, & Kullback, 1971; see also Bishop, Fienberg, & 
Holland, 1975, p. 344-348). S(Y,X) refers to symmetrical dependence, S(X|Y) and S(Y|X) 
refer to asymmetrical dependence.  

Multiple Responses/Dichotomies. Multiple response variables or multiple 
dichotomies often arise when summarizing survey data. The nature of such variables or 
factors in a table is best illustrated with examples.  
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• Multiple Response Variables  
• Multiple Dichotomies  
• Crosstabulation of Multiple Responses/Dichotomies  
• Paired Crosstabulation of Multiple Response Variables  
• A Final Comment  

Multiple Response Variables. As part of a larger market survey, suppose you asked a 
sample of consumers to name their three favorite soft drinks. The specific item on the 
questionnaire may look like this:  

Write down your three favorite soft drinks: 
1:__________    2:__________    3:__________ 

Thus, the questionnaires returned to you will contain somewhere between 0 and 3 
answers to this item. Also, a wide variety of soft drinks will most likely be named. Your 
goal is to summarize the responses to this item; that is, to produce a table that 
summarizes the percent of respondents who mentioned a respective soft drink.  

The next question is how to enter the responses into a data file. Suppose 50 different soft 
drinks were mentioned among all of the questionnaires. You could of course set up 50 
variables - one for each soft drink - and then enter a 1 for the respective respondent and 
variable (soft drink), if he or she mentioned the respective soft drink (and a 0 if not); for 
example:  

  COKE  PEPSI SPRITE . . . . 
case 1 
case 2 
case 3 

... 

0 
1 
0 
... 

1 
1 
0 
... 

0 
0 
1 
... 

  

 
This method of coding the responses would be very tedious and "wasteful." Note that 
each respondent can only give a maximum of three responses; yet we use 50 variables to 
code those responses. (However, if we are only interested in these three soft drinks, then 
this method of coding just those three variables would be satisfactory; to tabulate soft 
drink preferences, we could then treat the three variables as a multiple dichotomy; see 
below.)  

Coding multiple response variables. Alternatively, we could set up three variables, and 
a coding scheme for the 50 soft drinks. Then we could enter the respective codes (or 
alpha labels) into the three variables, in the same way that respondents wrote them down 
in the questionnaire.  

  Resp. 1 Resp. 2 Resp. 3 
case 1 
case 2 

COKE 
SPRITE 

PEPSI 
SNAPPLE 

JOLT 
DR. PEPPER 
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case 3 
 . . . 

PERRIER 
 . . . 

GATORADE 
 . . . 

MOUNTAIN DEW 
 . . . 

 
To produce a table of the number of respondents by soft drink we would now treat Resp.1 
to Resp3 as a multiple response variable. That table could look like this:  

N=500 
Category Count Prcnt. of 

Responses 
Prcnt. of 

Cases 
COKE: Coca Cola 
PEPSI: Pepsi Cola 
MOUNTAIN: Mountain Dew  
PEPPER: Doctor Pepper 
 . . .  : . . . .  

44 
43 
81 
74 
.. 

5.23 
5.11 
9.62 
8.79 

... 

8.80 
8.60 

16.20 
14.80 

... 
  842 100.00 168.40 

 
 

Interpreting the multiple response frequency table. The total number of respondents 
was n=500. Note that the counts in the first column of the table do not add up to 500, but 
rather to 842. That is the total number of responses; since each respondent could make up 
to 3 responses (write down three names of soft drinks), the total number of responses is 
naturally greater than the number of respondents. For example, referring back to the 
sample listing of the data file shown above, the first case (Coke, Pepsi, Jolt) "contributes" 
three times to the frequency table, once to the category Coke, once to the category Pepsi, 
and once to the category Jolt. The second and third columns in the table above report the 
percentages relative to the number of responses (second column) as well as respondents 
(third column). Thus, the entry 8.80 in the first row and last column in the table above 
means that 8.8% of all respondents mentioned Coke either as their first, second, or third 
soft drink preference.  

Multiple Dichotomies. Suppose in the above example we were only interested in Coke, 
Pepsi, and Sprite. As pointed out earlier, one way to code the data in that case would be 
as follows:  

  COKE  PEPSI SPRITE . . . . 
case 1 
case 2 
case 3 

. . . 

  
1 
  

. . . 

1 
1 
  

. . . 

  
  
1 

. . . 

  

 
In other words, one variable was created for each soft drink, then a value of 1 was entered 
into the respective variable whenever the respective drink was mentioned by the 
respective respondent. Note that each variable represents a dichotomy; that is, only "1"s 
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and "not 1"s are allowed (we could have entered 1's and 0's, but to save typing we can 
also simply leave the 0's blank or missing). When tabulating these variables, we would 
like to obtain a summary table very similar to the one shown earlier for multiple response 
variables; that is, we would like to compute the number and percent of respondents (and 
responses) for each soft drink. In a sense, we "compact" the three variables Coke, Pepsi, 
and Sprite into a single variable (Soft Drink) consisting of multiple dichotomies.  

Crosstabulation of Multiple Responses/Dichotomies. All of these types of variables 
can then be used in crosstabulation tables. For example, we could crosstabulate a multiple 
dichotomy for Soft Drink (coded as described in the previous paragraph) with a multiple 
response variable Favorite Fast Foods (with many categories such as Hamburgers, Pizza, 
etc.), by the simple categorical variable Gender. As in the frequency table, the 
percentages and marginal totals in that table can be computed from the total number of 
respondents as well as the total number of responses. For example, consider the following 
hypothetical respondent:  

Gender Coke Pepsi Sprite Food1 Food2 
FEMALE  1 1   FISH PIZZA 

 
This female respondent mentioned Coke and Pepsi as her favorite drinks, and Fish and 
Pizza as her favorite fast foods. In the complete crosstabulation table she will be counted 
in the following cells of the table:  

  Food . . . 

Gender Drink  HAMBURG.  FISH PIZZA  . . . 

  
TOTAL No.  
of  RESP. 

FEMALE 
  
  
MALE 
  
  

COKE 
PEPSI 
SPRITE 
COKE 
PEPSI 
SPRITE 

  
  
  
  
  
  

X 
X 
  
  
  
  

X 
X 
  
  
  
  

  
  
  
  
  
  

2 
2 
  
  
  
  

 
This female respondent will "contribute" to (i.e., be counted in) the crosstabulation table 
a total of 4 times. In addition, she will be counted twice in the Female--Coke marginal 
frequency column if that column is requested to represent the total number of responses; 
if the marginal totals are computed as the total number of respondents, then this 
respondent will only be counted once.  

Paired Crosstabulation of Multiple Response Variables. A unique option for 
tabulating multiple response variables is to treat the variables in two or more multiple 
response variables as matched pairs. Again, this method is best illustrated with a simple 
example. Suppose we conducted a survey of past and present home ownership. We asked 
the respondents to describe their last three (including the present) homes that they 
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purchased. Naturally, for some respondents the present home is the first and only home; 
others have owned more than one home in the past. For each home we asked our 
respondents to write down the number of rooms in the respective house, and the number 
of occupants. Here is how the data for one respondent (say case number 112) may be 
entered into a data file:  

Case no. Rooms  1   2   3  No. Occ.  1   2   3  
 112    3   3   4     2   3   5  

 
This respondent owned three homes; the first had 3 rooms, the second also had 3 rooms, 
and the third had 4 rooms. The family apparently also grew; there were 2 occupants in the 
first home, 3 in the second, and 5 in the third.  

Now suppose we wanted to crosstabulate the number of rooms by the number of 
occupants for all respondents. One way to do so is to prepare three different two-way 
tables; one for each home. We can also treat the two factors in this study (Number of 
Rooms, Number of Occupants) as multiple response variables. However, it would 
obviously not make any sense to count the example respondent 112 shown above in cell 3 
Rooms - 5 Occupants of the crosstabulation table (which we would, if we simply treated 
the two factors as ordinary multiple response variables). In other words, we want to 
ignore the combination of occupants in the third home with the number of rooms in the 
first home. Rather, we would like to count these variables in pairs; we would like to 
consider the number of rooms in the first home together with the number of occupants in 
the first home, the number of rooms in the second home with the number of occupants in 
the second home, and so on. This is exactly what will be accomplished if we asked for a 
paired crosstabulation of these multiple response variables.  

A Final Comment. When preparing complex crosstabulation tables with multiple 
responses/dichotomies, it is sometimes difficult (in our experience) to "keep track" of 
exactly how the cases in the file are counted. The best way to verify that one understands 
the way in which the respective tables are constructed is to crosstabulate some simple 
example data, and then to trace how each case is counted. The example section of the 
Crosstabulation chapter in the manual employs this method to illustrate how data are 
counted for tables involving multiple response variables and multiple dichotomies. 
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Chapter 3 
ANOVA/MANOVA  

 

• Basic Ideas  
o The Partitioning of Sums of Squares  
o Multi-Factor ANOVA  
o Interaction Effects  

• Complex Designs  
o Between-Groups and Repeated Measures  
o Incomplete (Nested) Designs  

• Analysis of Covariance (ANCOVA)  
o Fixed Covariates  
o Changing Covariates  

• Multivariate Designs: MANOVA/MANCOVA  
o Between-Groups Designs  
o Repeated Measures Designs  
o Sum Scores versus MANOVA  

• Contrast Analysis and Post hoc Tests  
o Why Compare Individual Sets of Means?  
o Contrast Analysis  
o Post hoc Comparisons  

• Assumptions and Effects of Violating Assumptions  
o Deviation from Normal Distribution  
o Homogeneity of Variances  
o Homogeneity of Variances and Covariances  
o Sphericity and Compound Symmetry  

• Methods for Analysis of Variance  

 

This chapter includes a general introduction to ANOVA and a discussion of the general 
topics in the analysis of variance techniques, including repeated measures designs, 
ANCOVA, MANOVA, unbalanced and incomplete designs, contrast effects, post-hoc 
comparisons, assumptions, etc. For related topics, see also Variance Components (topics 
related to estimation of variance components in mixed model designs), Experimental 
Design/DOE (topics related to specialized applications of ANOVA in industrial settings), 
and Repeatability and Reproducibility Analysis (topics related to specialized designs for 
evaluating the reliability and precision of measurement systems). 

See also General Linear Models, General Regression Models; to analyze nonlinear 
models, see Generalized Linear Models.  

 
Basic Ideas  
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The Purpose of Analysis of Variance  

In general, the purpose of analysis of variance (ANOVA) is to test for significant 
differences between means. Elementary Concepts provides a brief introduction into the 
basics of statistical significance testing. If we are only comparing two means, then 
ANOVA will give the same results as the t test for independent samples (if we are 
comparing two different groups of cases or observations), or the t test for dependent 
samples (if we are comparing two variables in one set of cases or observations). If you 
are not familiar with those tests you may at this point want to "brush up" on your 
knowledge about those tests by reading Basic Statistics and Tables.  

Why the name analysis of variance? It may seem odd to you that a procedure that 
compares means is called analysis of variance. However, this name is derived from the 
fact that in order to test for statistical significance between means, we are actually 
comparing (i.e., analyzing) variances.  

• The Partitioning of Sums of Squares  
• Multi-Factor ANOVA  
• Interaction Effects  

For more introductory topics, see the topic name.  

• Complex Designs  
• Analysis of Covariance (ANCOVA)  
• Multivariate Designs: MANOVA/MANCOVA  
• Contrast Analysis and Post hoc Tests  
• Assumptions and Effects of Violating Assumptions  

See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA , and Experimental Design (DOE).  

The Partioning of Sums of Squares  

At the heart of ANOVA is the fact that variances can be divided up, that is, partitioned. 
Remember that the variance is computed as the sum of squared deviations from the 
overall mean, divided by n-1 (sample size minus one). Thus, given a certain n, the 
variance is a function of the sums of (deviation) squares, or SS for short. Partitioning of 
variance works as follows. Consider the following data set:  

  Group 1 Group 2 
Observation 1 
Observation 2 
Observation 3 

2 
3 
1 

6 
7 
5 

Mean 
Sums of Squares (SS) 

2 
2 

6 
2 

Overall Mean  4 
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Total Sums of Squares 28 

 
The means for the two groups are quite different (2 and 6, respectively). The sums of 
squares within each group are equal to 2. Adding them together, we get 4. If we now 
repeat these computations, ignoring group membership, that is, if we compute the total SS 
based on the overall mean, we get the number 28. In other words, computing the variance 
(sums of squares) based on the within-group variability yields a much smaller estimate of 
variance than computing it based on the total variability (the overall mean). The reason 
for this in the above example is of course that there is a large difference between means, 
and it is this difference that accounts for the difference in the SS. In fact, if we were to 
perform an ANOVA on the above data, we would get the following result:  

MAIN EFFECT  
  

SS  df  MS F p 
Effect 
Error  

24.0 
4.0 

1 
4 

24.0 
1.0 

24.0 
  

.008 
  

 
As you can see, in the above table the total SS (28) was partitioned into the SS due to 
within-group variability (2+2=4) and variability due to differences between means (28-
(2+2)=24).  

SS Error and SS Effect. The within-group variability (SS) is usually referred to as Error 
variance. This term denotes the fact that we cannot readily explain or account for it in the 
current design. However, the SS Effect we can explain. Namely, it is due to the 
differences in means between the groups. Put another way, group membership explains 
this variability because we know that it is due to the differences in means.  

Significance testing. The basic idea of statistical significance testing is discussed in 
Elementary Concepts. Elementary Concepts also explains why very many statistical test 
represent ratios of explained to unexplained variability. ANOVA is a good example of 
this. Here, we base this test on a comparison of the variance due to the between- groups 
variability (called Mean Square Effect, or MSeffect) with the within- group variability 
(called Mean Square Error, or Mserror; this term was first used by Edgeworth, 1885). 
Under the null hypothesis (that there are no mean differences between groups in the 
population), we would still expect some minor random fluctuation in the means for the 
two groups when taking small samples (as in our example). Therefore, under the null 
hypothesis, the variance estimated based on within-group variability should be about the 
same as the variance due to between-groups variability. We can compare those two 
estimates of variance via the F test (see also F Distribution), which tests whether the ratio 
of the two variance estimates is significantly greater than 1. In our example above, that 
test is highly significant, and we would in fact conclude that the means for the two groups 
are significantly different from each other.  
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Summary of the basic logic of ANOVA. To summarize the discussion up to this point, 
the purpose of analysis of variance is to test differences in means (for groups or 
variables) for statistical significance. This is accomplished by analyzing the variance, that 
is, by partitioning the total variance into the component that is due to true random error 
(i.e., within- group SS) and the components that are due to differences between means. 
These latter variance components are then tested for statistical significance, and, if 
significant, we reject the null hypothesis of no differences between means, and accept the 
alternative hypothesis that the means (in the population) are different from each other.  

Dependent and independent variables. The variables that are measured (e.g., a test 
score) are called dependent variables. The variables that are manipulated or controlled 
(e.g., a teaching method or some other criterion used to divide observations into groups 
that are compared) are called factors or independent variables. For more information on 
this important distinction, refer to Elementary Concepts.  

Multi-Factor ANOVA  

In the simple example above, it may have occurred to you that we could have simply 
computed a t test for independent samples to arrive at the same conclusion. And, indeed, 
we would get the identical result if we were to compare the two groups using this test. 
However, ANOVA is a much more flexible and powerful technique that can be applied to 
much more complex research issues.  

Multiple factors. The world is complex and multivariate in nature, and instances when a 
single variable completely explains a phenomenon are rare. For example, when trying to 
explore how to grow a bigger tomato, we would need to consider factors that have to do 
with the plants' genetic makeup, soil conditions, lighting, temperature, etc. Thus, in a 
typical experiment, many factors are taken into account. One important reason for using 
ANOVA methods rather than multiple two-group studies analyzed via t tests is that the 
former method is more efficient, and with fewer observations we can gain more 
information. Let us expand on this statement.  

Controlling for factors. Suppose that in the above two-group example we introduce 
another grouping factor, for example, Gender. Imagine that in each group we have 3 
males and 3 females. We could summarize this design in a 2 by 2 table:  

  Experimental 
Group 1 

Experimental 
Group 2 

Males 
  
  

2 
3 
1 

6 
7 
5 

Mean 2 6 
Females 
  
  

4 
5 
3 

8 
9 
7 

Mean 4 8 
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Before performing any computations, it appears that we can partition the total variance 
into at least 3 sources: (1) error (within-group) variability, (2) variability due to 
experimental group membership, and (3) variability due to gender. (Note that there is an 
additional source -- interaction -- that we will discuss shortly.) What would have 
happened had we not included gender as a factor in the study but rather computed a 
simple t test? If you compute the SS ignoring the gender factor (use the within-group 
means ignoring or collapsing across gender; the result is SS=10+10=20), you will see 
that the resulting within-group SS is larger than it is when we include gender (use the 
within- group, within-gender means to compute those SS; they will be equal to 2 in each 
group, thus the combined SS-within is equal to 2+2+2+2=8). This difference is due to the 
fact that the means for males are systematically lower than those for females, and this 
difference in means adds variability if we ignore this factor. Controlling for error 
variance increases the sensitivity (power) of a test. This example demonstrates another 
principal of ANOVA that makes it preferable over simple two-group t test studies: In 
ANOVA we can test each factor while controlling for all others; this is actually the 
reason why ANOVA is more statistically powerful (i.e., we need fewer observations to 
find a significant effect) than the simple t test.  

Interaction Effects  

There is another advantage of ANOVA over simple t-tests: ANOVA allows us to detect 
interaction effects between variables, and, therefore, to test more complex hypotheses 
about reality. Let us consider another example to illustrate this point. (The term 
interaction was first used by Fisher, 1926.)  

Main effects, two-way interaction. Imagine that we have a sample of highly 
achievement-oriented students and another of achievement "avoiders." We now create 
two random halves in each sample, and give one half of each sample a challenging test, 
the other an easy test. We measure how hard the students work on the test. The means of 
this (fictitious) study are as follows:  

  Achievement- 
oriented 

Achievement- 
avoiders 

Challenging Test 
Easy Test 

10 
5 

5 
10 

 
How can we summarize these results? Is it appropriate to conclude that (1) challenging 
tests make students work harder, (2) achievement-oriented students work harder than 
achievement- avoiders? None of these statements captures the essence of this clearly 
systematic pattern of means. The appropriate way to summarize the result would be to 
say that challenging tests make only achievement-oriented students work harder, while 
easy tests make only achievement- avoiders work harder. In other words, the type of 
achievement orientation and test difficulty interact in their effect on effort; specifically, 
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this is an example of a two-way interaction between achievement orientation and test 
difficulty. Note that statements 1 and 2 above describe so-called main effects.  

Higher order interactions. While the previous two-way interaction can be put into 
words relatively easily, higher order interactions are increasingly difficult to verbalize. 
Imagine that we had included factor Gender in the achievement study above, and we had 
obtained the following pattern of means:  

Females 
  

Achievement- 
oriented 

Achievement- 
avoiders 

Challenging Test 
Easy Test 

10 
5 

5 
10 

Males 
  

Achievement- 
oriented 

Achievement- 
avoiders 

Challenging Test 
Easy Test 

1 
6 

6 
1 

 
How could we now summarize the results of our study? Graphs of means for all effects 
greatly facilitate the interpretation of complex effects. The pattern shown in the table 
above (and in the graph below) represents a three-way interaction between factors.  

 

Thus we may summarize this pattern by saying that for females there is a two-way 
interaction between achievement-orientation type and test difficulty: Achievement-
oriented females work harder on challenging tests than on easy tests, achievement-
avoiding females work harder on easy tests than on difficult tests. For males, this 
interaction is reversed. As you can see, the description of the interaction has become 
much more involved.  

A general way to express interactions. A general way to express all interactions is to 
say that an effect is modified (qualified) by another effect. Let us try this with the two-
way interaction above. The main effect for test difficulty is modified by achievement 
orientation. For the three-way interaction in the previous paragraph, we may summarize 
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that the two-way interaction between test difficulty and achievement orientation is 
modified (qualified) by gender. If we have a four-way interaction, we may say that the 
three-way interaction is modified by the fourth variable, that is, that there are different 
types of interactions in the different levels of the fourth variable. As it turns out, in many 
areas of research five- or higher- way interactions are not that uncommon.  

 
 
 

 
Complex Designs  

Let us review the basic "building blocks" of complex designs.  

• Between-Groups and Repeated Measures  
• Incomplete (Nested) Designs  

For more introductory topics, click on the topic name.  

• Basic Ideas  
• Analysis of Covariance (ANCOVA)  
• Multivariate Designs: MANOVA/MANCOVA  
• Contrast Analysis and Post hoc Tests  
• Assumptions and Effects of Violating Assumptions  

See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA , and Experimental Design (DOE).  

Between-Groups and Repeated Measures  

When we want to compare two groups, we would use the t test for independent samples; 
when we want to compare two variables given the same subjects (observations), we 
would use the t test for dependent samples. This distinction -- dependent and independent 
samples -- is important for ANOVA as well. Basically, if we have repeated 
measurements of the same variable (under different conditions or at different points in 
time) on the same subjects, then the factor is a repeated measures factor (also called a 
within-subjects factor, because to estimate its significance we compute the within-
subjects SS). If we compare different groups of subjects (e.g., males and females; three 
strains of bacteria, etc.) then we refer to the factor as a between-groups factor. The 
computations of significance tests are different for these different types of factors; 
however, the logic of computations and interpretations is the same.  

Between-within designs. In many instances, experiments call for the inclusion of 
between-groups and repeated measures factors. For example, we may measure math 
skills in male and female students (gender, a between-groups factor) at the beginning and 
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the end of the semester. The two measurements on each student would constitute a 
within-subjects (repeated measures) factor. The interpretation of main effects and 
interactions is not affected by whether a factor is between-groups or repeated measures, 
and both factors may obviously interact with each other (e.g., females improve over the 
semester while males deteriorate).  

Incomplete (Nested) Designs  

There are instances where we may decide to ignore interaction effects. This happens 
when (1) we know that in the population the interaction effect is negligible, or (2) when a 
complete factorial design (this term was first introduced by Fisher, 1935a) cannot be used 
for economic reasons. Imagine a study where we want to evaluate the effect of four fuel 
additives on gas mileage. For our test, our company has provided us with four cars and 
four drivers. A complete factorial experiment, that is, one in which each combination of 
driver, additive, and car appears at least once, would require 4 x 4 x 4 = 64 individual test 
conditions (groups). However, we may not have the resources (time) to run all of these 
conditions; moreover, it seems unlikely that the type of driver would interact with the 
fuel additive to an extent that would be of practical relevance. Given these 
considerations, one could actually run a so-called Latin square design and "get away" 
with only 16 individual groups (the four additives are denoted by letters A, B, C, and D):  

Car   
 1   2   3   4  

Driver 1 
Driver 2 
Driver 3 
Driver 4 

A 
B 
C 
D 

B 
C 
D 
A 

C 
D 
A 
B 

D 
A 
B 
C 

 
Latin square designs (this term was first used by Euler, 1782) are described in most 
textbooks on experimental methods (e.g., Hays, 1988; Lindman, 1974; Milliken & 
Johnson, 1984; Winer, 1962), and we do not want to discuss here the details of how they 
are constructed. Suffice it to say that this design is incomplete insofar as not all 
combinations of factor levels occur in the design. For example, Driver 1 will only drive 
Car 1 with additive A, while Driver 3 will drive that car with additive C. In a sense, the 
levels of the additives factor (A, B, C, and D) are placed into the cells of the car by driver 
matrix like "eggs into a nest." This mnemonic device is sometimes useful for 
remembering the nature of nested designs.  

Note that there are several other statistical procedures which may be used to analyze 
these types of designs; see the section on Methods for Analysis of Variance for details. In 
particular the methods discussed in the Variance Components and Mixed Model 
ANOVA/ANCOVA  chapter are very efficient for analyzing designs with unbalanced 
nesting (when the nested factors have different numbers of levels within the levels of the 
factors in which they are nested), very large nested designs (e.g., with more than 200 
levels overall), or hierarchically nested designs (with or without random factors).  



 55 

 
 
 

 
Analysis of Covariance (ANCOVA)  

General Idea  

The Basic Ideas section discussed briefly the idea of "controlling" for factors and how the 
inclusion of additional factors can reduce the error SS and increase the statistical power 
(sensitivity) of our design. This idea can be extended to continuous variables, and when 
such continuous variables are included as factors in the design they are called covariates.  

• Fixed Covariates  
• Changing Covariates  

For more introductory topics, see the topic name.  

• Basic Ideas  
• Complex Designs  
• Multivariate Designs: MANOVA/MANCOVA  
• Contrast Analysis and Post hoc Tests  
• Assumptions and Effects of Violating Assumptions  

See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA , and Experimental Design (DOE).  

Fixed Covariates  

Suppose that we want to compare the math skills of students who were randomly 
assigned to one of two alternative textbooks. Imagine that we also have data about the 
general intelligence (IQ) for each student in the study. We would suspect that general 
intelligence is related to math skills, and we can use this information to make our test 
more sensitive. Specifically, imagine that in each one of the two groups we can compute 
the correlation coefficient (see Basic Statistics and Tables) between IQ and math skills. 
Remember that once we have computed the correlation coefficient we can estimate the 
amount of variance in math skills that is accounted for by IQ, and the amount of 
(residual) variance that we cannot explain with IQ (refer also to Elementary Concepts and 
Basic Statistics and Tables). We may use this residual variance in the ANOVA as an 
estimate of the true error SS after controlling for IQ. If the correlation between IQ and 
math skills is substantial, then a large reduction in the error SS may be achieved.  

Effect of a covariate on the F test. In the F test (see also F Distribution), to evaluate the 
statistical significance of between-groups differences, we compute the ratio of the 
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between- groups variance (MSeffect) over the error variance (MSerror). If MSerror becomes 
smaller, due to the explanatory power of IQ, then the overall F value will become larger.  

Multiple covariates. The logic described above for the case of a single covariate (IQ) 
can easily be extended to the case of multiple covariates. For example, in addition to IQ, 
we might include measures of motivation, spatial reasoning, etc., and instead of a simple 
correlation, compute the multiple correlation coefficient (see Multiple Regression).  

When the F value gets smaller. In some studies with covariates it happens that the F 
value actually becomes smaller (less significant) after including covariates in the design. 
This is usually an indication that the covariates are not only correlated with the dependent 
variable (e.g., math skills), but also with the between-groups factors (e.g., the two 
different textbooks). For example, imagine that we measured IQ at the end of the 
semester, after the students in the different experimental groups had used the respective 
textbook for almost one year. It is possible that, even though students were initially 
randomly assigned to one of the two textbooks, the different books were so different that 
both math skills and IQ improved differentially in the two groups. In that case, the 
covariate will not only partition variance away from the error variance, but also from the 
variance due to the between- groups factor. Put another way, after controlling for the 
differences in IQ that were produced by the two textbooks, the math skills are not that 
different. Put in yet a third way, by "eliminating" the effects of IQ, we have inadvertently 
eliminated the true effect of the textbooks on students' math skills.  

Adjusted means. When the latter case happens, that is, when the covariate is affected by 
the between-groups factor, then it is appropriate to compute so-called adjusted means. 
These are the means that one would get after removing all differences that can be 
accounted for by the covariate.  

Interactions between covariates and factors. Just as we can test for interactions 
between factors, we can also test for the interactions between covariates and between-
groups factors. Specifically, imagine that one of the textbooks is particularly suited for 
intelligent students, while the other actually bores those students but challenges the less 
intelligent ones. As a result, we may find a positive correlation in the first group (the 
more intelligent, the better the performance), but a zero or slightly negative correlation in 
the second group (the more intelligent the student, the less likely he or she is to acquire 
math skills from the particular textbook). In some older statistics textbooks this condition 
is discussed as a case where the assumptions for analysis of covariance are violated (see 
Assumptions and Effects of Violating Assumptions). However, because 
ANOVA/MANOVA uses a very general approach to analysis of covariance, you can 
specifically estimate the statistical significance of interactions between factors and 
covariates.  

Changing Covariates  

While fixed covariates are commonly discussed in textbooks on ANOVA, changing 
covariates are discussed less frequently. In general, when we have repeated measures, we 



 57 

are interested in testing the differences in repeated measurements on the same subjects. 
Thus we are actually interested in evaluating the significance of changes. If we have a 
covariate that is also measured at each point when the dependent variable is measured, 
then we can compute the correlation between the changes in the covariate and the 
changes in the dependent variable. For example, we could study math anxiety and math 
skills at the beginning and at the end of the semester. It would be interesting to see 
whether any changes in math anxiety over the semester correlate with changes in math 
skills.  

 
 
 

 
Multivariate Designs: MANOVA/MANCOVA  

• Between-Groups Designs  
• Repeated Measures Designs  
• Sum Scores versus MANOVA  

For more introductory topics, see the topic name.  

• Basic Ideas  
• Complex Designs  
• Analysis of Covariance (ANCOVA)  
• Contrast Analysis and Post hoc Tests  
• Assumptions and Effects of Violating Assumptions  

See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA , and Experimental Design (DOE).  

Between-Groups Designs  

All examples discussed so far have involved only one dependent variable. Even though 
the computations become increasingly complex, the logic and nature of the computations 
do not change when there is more than one dependent variable at a time. For example, we 
may conduct a study where we try two different textbooks, and we are interested in the 
students' improvements in math and physics. In that case, we have two dependent 
variables, and our hypothesis is that both together are affected by the difference in 
textbooks. We could now perform a multivariate analysis of variance (MANOVA) to test 
this hypothesis. Instead of a univariate F value, we would obtain a multivariate F value 
(Wilks' lambda) based on a comparison of the error variance/covariance matrix and the 
effect variance/covariance matrix. The "covariance" here is included because the two 
measures are probably correlated and we must take this correlation into account when 
performing the significance test. Obviously, if we were to take the same measure twice, 
then we would really not learn anything new. If we take a correlated measure, we gain 
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some new information, but the new variable will also contain redundant information that 
is expressed in the covariance between the variables.  

Interpreting results. If the overall multivariate test is significant, we conclude that the 
respective effect (e.g., textbook) is significant. However, our next question would of 
course be whether only math skills improved, only physics skills improved, or both. In 
fact, after obtaining a significant multivariate test for a particular main effect or 
interaction, customarily one would examine the univariate F tests (see also F 
Distribution) for each variable to interpret the respective effect. In other words, one 
would identify the specific dependent variables that contributed to the significant overall 
effect.  

Repeated Measures Designs  

If we were to measure math and physics skills at the beginning of the semester and the 
end of the semester, we would have a multivariate repeated measure. Again, the logic of 
significance testing in such designs is simply an extension of the univariate case. Note 
that MANOVA methods are also commonly used to test the significance of univariate 
repeated measures factors with more than two levels; this application will be discussed 
later in this section.  

Sum Scores versus MANOVA  

Even experienced users of ANOVA and MANOVA techniques are often puzzled by the 
differences in results that sometimes occur when performing a MANOVA on, for 
example, three variables as compared to a univariate ANOVA on the sum of the three 
variables. The logic underlying the summing of variables is that each variable contains 
some "true" value of the variable in question, as well as some random measurement error. 
Therefore, by summing up variables, the measurement error will sum to approximately 0 
across all measurements, and the sum score will become more and more reliable 
(increasingly equal to the sum of true scores). In fact, under these circumstances, 
ANOVA on sums is appropriate and represents a very sensitive (powerful) method. 
However, if the dependent variable is truly multi- dimensional in nature, then summing is 
inappropriate. For example, suppose that my dependent measure consists of four 
indicators of success in society, and each indicator represents a completely independent 
way in which a person could "make it" in life (e.g., successful professional, successful 
entrepreneur, successful homemaker, etc.). Now, summing up the scores on those 
variables would be like adding apples to oranges, and the resulting sum score will not be 
a reliable indicator of a single underlying dimension. Thus, one should treat such data as 
multivariate indicators of success in a MANOVA.  
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Contrast Analysis and Post hoc Tests  

• Why Compare Individual Sets of Means?  
• Contrast Analysis  
• Post hoc Comparisons  

For more introductory topics, see the topic name.  

• Basic Ideas  
• Complex Designs  
• Analysis of Covariance (ANCOVA)  
• Multivariate Designs: MANOVA/MANCOVA  
• Assumptions and Effects of Violating Assumptions  

See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA , and Experimental Design (DOE).  

Why Compare Individual Sets of Means?  

Usually, experimental hypotheses are stated in terms that are more specific than simply 
main effects or interactions. We may have the specific hypothesis that a particular 
textbook will improve math skills in males, but not in females, while another book would 
be about equally effective for both genders, but less effective overall for males. Now 
generally, we are predicting an interaction here: the effectiveness of the book is modified 
(qualified) by the student's gender. However, we have a particular prediction concerning 
the nature of the interaction: we expect a significant difference between genders for one 
book, but not the other. This type of specific prediction is usually tested via contrast 
analysis.  

Contrast Analysis  

Briefly, contrast analysis allows us to test the statistical significance of predicted specific 
differences in particular parts of our complex design. It is a major and indispensable 
component of the analysis of every complex ANOVA design.  

Post hoc Comparisons  

Sometimes we find effects in our experiment that were not expected. Even though in 
most cases a creative experimenter will be able to explain almost any pattern of means, it 
would not be appropriate to analyze and evaluate that pattern as if one had predicted it all 
along. The problem here is one of capitalizing on chance when performing multiple tests 
post hoc, that is, without a priori hypotheses. To illustrate this point, let us consider the 
following "experiment." Imagine we were to write down a number between 1 and 10 on 
100 pieces of paper. We then put all of those pieces into a hat and draw 20 samples (of 
pieces of paper) of 5 observations each, and compute the means (from the numbers 
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written on the pieces of paper) for each group. How likely do you think it is that we will 
find two sample means that are significantly different from each other? It is very likely! 
Selecting the extreme means obtained from 20 samples is very different from taking only 
2 samples from the hat in the first place, which is what the test via the contrast analysis 
implies. Without going into further detail, there are several so-called post hoc tests that 
are explicitly based on the first scenario (taking the extremes from 20 samples), that is, 
they are based on the assumption that we have chosen for our comparison the most 
extreme (different) means out of k total means in the design. Those tests apply 
"corrections" that are designed to offset the advantage of post hoc selection of the most 
extreme comparisons.  

 
 
 

 
Assumptions and Effects of Violating Assumptions  

• Deviation from Normal Distribution  
• Homogeneity of Variances  
• Homogeneity of Variances and Covariances  
• Sphericity and Compound Symmetry  

For more introductory topics, see the topic name.  

• Basic Ideas  
• Complex Designs  
• Analysis of Covariance (ANCOVA)  
• Multivariate Designs: MANOVA/MANCOVA  
• Contrast Analysis and Post hoc Tests  

See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA , and Experimental Design (DOE).  

Deviation from Normal Distribution  

Assumptions. It is assumed that the dependent variable is measured on at least an 
interval scale level (see Elementary Concepts). Moreover, the dependent variable should 
be normally distributed within groups.  

Effects of violations. Overall, the F test (see also F Distribution) is remarkably robust to 
deviations from normality (see Lindman, 1974, for a summary). If the kurtosis (see Basic 
Statistics and Tables) is greater than 0, then the F tends to be too small and we cannot 
reject the null hypothesis even though it is incorrect. The opposite is the case when the 
kurtosis is less than 0. The skewness of the distribution usually does not have a sizable 
effect on the F statistic. If the n per cell is fairly large, then deviations from normality do 
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not matter much at all because of the central limit theorem, according to which the 
sampling distribution of the mean approximates the normal distribution, regardless of the 
distribution of the variable in the population. A detailed discussion of the robustness of 
the F statistic can be found in Box and Anderson (1955), or Lindman (1974).  

Homogeneity of Variances  

Assumptions. It is assumed that the variances in the different groups of the design are 
identical; this assumption is called the homogeneity of variances assumption. Remember 
that at the beginning of this section we computed the error variance (SS error) by adding 
up the sums of squares within each group. If the variances in the two groups are different 
from each other, then adding the two together is not appropriate, and will not yield an 
estimate of the common within-group variance (since no common variance exists).  

Effects of violations. Lindman (1974, p. 33) shows that the F statistic is quite robust 
against violations of this assumption (heterogeneity of variances; see also Box, 1954a, 
1954b; Hsu, 1938).  

Special case: correlated means and variances. However, one instance when the F 
statistic is very misleading is when the means are correlated with variances across cells of 
the design. A scatterplot of variances or standard deviations against the means will detect 
such correlations. The reason why this is a "dangerous" violation is the following: 
Imagine that you have 8 cells in the design, 7 with about equal means but one with a 
much higher mean. The F statistic may suggest to you a statistically significant effect. 
However, suppose that there also is a much larger variance in the cell with the highest 
mean, that is, the means and the variances are correlated across cells (the higher the mean 
the larger the variance). In that case, the high mean in the one cell is actually quite 
unreliable, as is indicated by the large variance. However, because the overall F statistic 
is based on a pooled within-cell variance estimate, the high mean is identified as 
significantly different from the others, when in fact it is not at all significantly different if 
one based the test on the within-cell variance in that cell alone.  

This pattern -- a high mean and a large variance in one cell -- frequently occurs when 
there are outliers present in the data. One or two extreme cases in a cell with only 10 
cases can greatly bias the mean, and will dramatically increase the variance.  

Homogeneity of Variances and Covariances  

Assumptions. In multivariate designs, with multiple dependent measures, the 
homogeneity of variances assumption described earlier also applies. However, since there 
are multiple dependent variables, it is also required that their intercorrelations 
(covariances) are homogeneous across the cells of the design. There are various specific 
tests of this assumption.  

Effects of violations. The multivariate equivalent of the F test is Wilks' lambda. Not 
much is known about the robustness of Wilks' lambda to violations of this assumption. 
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However, because the interpretation of MANOVA results usually rests on the 
interpretation of significant univariate effects (after the overall test is significant), the 
above discussion concerning univariate ANOVA basically applies, and important 
significant univariate effects should be carefully scrutinized.  

Special case: ANCOVA. A special serious violation of the homogeneity of 
variances/covariances assumption may occur when covariates are involved in the design. 
Specifically, if the correlations of the covariates with the dependent measure(s) are very 
different in different cells of the design, gross misinterpretations of results may occur. 
Remember that in ANCOVA, we in essence perform a regression analysis within each 
cell to partition out the variance component due to the covariates. The homogeneity of 
variances/covariances assumption implies that we perform this regression analysis 
subject to the constraint that all regression equations (slopes) across the cells of the 
design are the same. If this is not the case, serious biases may occur. There are specific 
tests of this assumption, and it is advisable to look at those tests to ensure that the 
regression equations in different cells are approximately the same.  

Sphericity and Compound Symmetry  

Reasons for Using the Multivariate Approach to Repeated Measures ANOVA. In 
repeated measures ANOVA containing repeated measures factors with more than two 
levels, additional special assumptions enter the picture: The compound symmetry 
assumption and the assumption of sphericity. Because these assumptions rarely hold (see 
below), the MANOVA approach to repeated measures ANOVA has gained popularity in 
recent years (both tests are automatically computed in ANOVA/MANOVA). The 
compound symmetry assumption requires that the variances (pooled within-group) and 
covariances (across subjects) of the different repeated measures are homogeneous 
(identical). This is a sufficient condition for the univariate F test for repeated measures to 
be valid (i.e., for the reported F values to actually follow the F distribution). However, it 
is not a necessary condition. The sphericity assumption is a necessary and sufficient 
condition for the F test to be valid; it states that the within-subject "model" consists of 
independent (orthogonal) components. The nature of these assumptions, and the effects 
of violations are usually not well-described in ANOVA textbooks; in the following 
paragraphs we will try to clarify this matter and explain what it means when the results of 
the univariate approach differ from the multivariate approach to repeated measures 
ANOVA.  

The necessity of independent hypotheses. One general way of looking at ANOVA is to 
consider it a model fitting procedure. In a sense we bring to our data a set of a priori 
hypotheses; we then partition the variance (test main effects, interactions) to test those 
hypotheses. Computationally, this approach translates into generating a set of contrasts 
(comparisons between means in the design) that specify the main effect and interaction 
hypotheses. However, if these contrasts are not independent of each other, then the 
partitioning of variances runs afoul. For example, if two contrasts A and B are identical to 
each other and we partition out their components from the total variance, then we take the 
same thing out twice. Intuitively, specifying the two (not independent) hypotheses "the 
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mean in Cell 1 is higher than the mean in Cell 2" and "the mean in Cell 1 is higher than 
the mean in Cell 2" is silly and simply makes no sense. Thus, hypotheses must be 
independent of each other, or orthogonal (the term orthogonality was first used by Yates, 
1933).  

Independent hypotheses in repeated measures. The general algorithm implemented 
will attempt to generate, for each effect, a set of independent (orthogonal) contrasts. In 
repeated measures ANOVA, these contrasts specify a set of hypotheses about differences 
between the levels of the repeated measures factor. However, if these differences are 
correlated across subjects, then the resulting contrasts are no longer independent. For 
example, in a study where we measured learning at three times during the experimental 
session, it may happen that the changes from time 1 to time 2 are negatively correlated 
with the changes from time 2 to time 3: subjects who learn most of the material between 
time 1 and time 2 improve less from time 2 to time 3. In fact, in most instances where a 
repeated measures ANOVA is used, one would probably suspect that the changes across 
levels are correlated across subjects. However, when this happens, the compound 
symmetry and sphericity assumptions have been violated, and independent contrasts 
cannot be computed.  

Effects of violations and remedies. When the compound symmetry or sphericity 
assumptions have been violated, the univariate ANOVA table will give erroneous results. 
Before multivariate procedures were well understood, various approximations were 
introduced to compensate for the violations (e.g., Greenhouse & Geisser, 1959; Huynh & 
Feldt, 1970), and these techniques are still widely used.  

MANOVA approach to repeated measures. To summarize, the problem of compound 
symmetry and sphericity pertains to the fact that multiple contrasts involved in testing 
repeated measures effects (with more than two levels) are not independent of each other. 
However, they do not need to be independent of each other if we use multivariate criteria 
to simultaneously test the statistical significance of the two or more repeated measures 
contrasts. This "insight" is the reason why MANOVA methods are increasingly applied 
to test the significance of univariate repeated measures factors with more than two levels. 
We wholeheartedly endorse this approach because it simply bypasses the assumption of 
compound symmetry and sphericity altogether.  

Cases when the MANOVA approach cannot be used. There are instances (designs) 
when the MANOVA approach cannot be applied; specifically, when there are few 
subjects in the design and many levels on the repeated measures factor, there may not be 
enough degrees of freedom to perform the multivariate analysis. For example, if we have 
12 subjects and p = 4 repeated measures factors, each at k = 3 levels, then the four-way 
interaction would "consume" (k-1)p = 24 = 16 degrees of freedom. However, we have 
only 12 subjects, so in this instance the multivariate test cannot be performed.  

Differences in univariate and multivariate results. Anyone whose research involves 
extensive repeated measures designs has seen cases when the univariate approach to 
repeated measures ANOVA gives clearly different results from the multivariate 
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approach. To repeat the point, this means that the differences between the levels of the 
respective repeated measures factors are in some way correlated across subjects. 
Sometimes, this insight by itself is of considerable interest.  

 

Methods for Analysis of Variance  

Several chapters in this textbook discuss methods for performing analysis of variance. 
Although many of the available statistics overlap in the different chapters, each is best 
suited for particular applications.  

General ANCOVA/MANCOVA : This chapter includes discussions of full factorial 
designs, repeated measures designs, mutivariate design (MANOVA), designs with 
balanced nesting (designs can be unbalanced, i.e., have unequal n), for evaluating 
planned and post-hoc comparisons, etc.  

General Linear Models: This extremely comprehensive chapter discusses a complete 
implementation of the general linear model, and describes the sigma-restricted as well as 
the overparameterized approach. This chapter includes information on incomplete 
designs, complex analysis of covariance designs, nested designs (balanced or 
unbalanced), mixed model ANOVA designs (with random effects), and huge balanced 
ANOVA designs (efficiently). It also contains descriptions of six types of Sums of 
Squares.  

General Regression Models: This chapter discusses the between subject designs and 
multivariate designs which are appropriate for stepwise regression as well as discussing 
how to perform stepwise and best-subset model building (for continuous as well as 
categorical predictors).  

Mixed ANCOVA and Variance Components: This chapter includes discussions of 
experiments with random effects (mixed model ANOVA), estimating variance 
components for random effects, or large main effect designs (e.g., with factors with over 
100 levels) with or without random effects, or large designs with many factors, when you 
do not need to estimate all interactions.  

Experimental Design (DOE): This chapter includes discussions of standard 
experimental designs for industrial/manufacturing applications, including 2**(k-p)  and 
3**(k-p)  designs, central composite and non-factorial designs, designs for mixtures, D 
and A optimal designs, and designs for arbitrarily constrained experimental regions.  

Repeatability and Reproducibility Analysis (in the Process Analysis chapter): This 
section in the Process Analysis chapter includes a discussion of specialized designs for 
evaluating the reliability and precision of measurement systems; these designs usually 
include two or three random factors, and specialized statistics can be computed for 
evaluating the quality of a measurement system (typically in industrial/manufacturing 
applications).  
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Breakdown Tables (in the Basic Statistics chapter): This chapter includes discussions 
of experiments with only one factor (and many levels), or with multiple factors, when a 
complete ANOVA table is not required.  
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Chapter 4 
Association Rules 

 

• Association Rules Introductory Overview  
• Computational Procedures and Terminology  
• Tabular Representation of Associations  
• Graphical Representation of Associations  
• Interpreting and Comparing Results  

 

Association Rules Introductory Overview  

The goal of the techniques described in this section is to detect relationships or 
associations between specific values of categorical variables in large data sets. This is a 
common task in many data mining projects as well as in the data mining subcategory text 
mining. These powerful exploratory techniques have a wide range of applications in 
many areas of business practice and also research - from the analysis of consumer 
preferences or human resource management, to the history of language. These techniques 
enable analysts and researchers to uncover hidden patterns in large data sets, such as 
"customers who order product A often also order product B or C" or "employees who said 
positive things about initiative X also frequently complain about issue Y but are happy 
with issue Z." The implementation of the so-called a-priori algorithm (see Agrawal and 
Swami, 1993; Agrawal and Srikant, 1994; Han and Lakshmanan, 2001; see also Witten 
and Frank, 2000) allows you to process rapidly huge data sets for such associations, 
based on predefined "threshold" values for detection.  

How association rules work. The usefulness of this technique to address unique data 
mining problems is best illustrated in a simple example. Suppose you are collecting data 
at the check-out cash registers at a large book store. Each customer transaction is logged 
in a database, and consists of the titles of the books purchased by the respective customer, 
perhaps additional magazine titles and other gift items that were purchased, and so on. 
Hence, each record in the database will represent one customer (transaction), and may 
consist of a single book purchased by that customer, or it may consist of many (perhaps 
hundreds of) different items that were purchased, arranged in an arbitrary order 
depending on the order in which the different items (books, magazines, and so on) came 
down the conveyor belt at the cash register. The purpose of the analysis is to find 
associations between the items that were purchased, i.e., to derive association rules that 
identify the items and co-occurrences of different items that appear with the greatest (co-
)frequencies. For example, you want to learn which books are likely to be purchased by a 
customer who you know already purchased (or is about to purchase) a particular book. 
This type of information could then quickly be used to suggest to the customer those 
additional titles. You may already be "familiar" with the results of these types of 
analyses, if you are a customer of various on-line (Web-based) retail businesses; many 
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times when making a purchase on-line, the vendor will suggest similar items (to the ones 
purchased by you) at the time of "check-out", based on some rules such as "customers 
who buy book title A are also likely to purchase book title B," and so on.  

Unique data analysis requirements. Crosstabulation tables, and in particular Multiple 
Response tables can be used to analyze data of this kind. However, in cases when the 
number of different items (categories) in the data is very large (and not known ahead of 
time), and when the "factorial degree" of important association rules is not known ahead 
of time, then these tabulation facilities may be too cumbersome to use, or simply not 
applicable: Consider once more the simple "bookstore-example" discussed earlier. First, 
the number of book titles is practically unlimited. In other words, if we would make a 
table where each book title would represent one dimension, and the purchase of that book 
(yes/no) would be the classes or categories for each dimension, then the complete 
crosstabulation table would be huge and sparse (consisting mostly of empty cells). 
Alternatively, we could construct all possible two-way tables from all items available in 
the store; this would allow us to detect two-way associations (association rules) between 
items. However, the number of tables that would have to be constructed would again be 
huge, most of the two-way tables would be sparse, and worse, if there were any three-
way association rules "hiding" in the data, we would miss them completely. The a-priori 
algorithm implemented in Association Rules will not only automatically detect the 
relationships ("cross-tabulation tables") that are important (i.e., cross-tabulation tables 
that are not sparse, not containing mostly zero's), but also determine the factorial degree 
of the tables that contain the important association rules.  

To summarize, Association Rules will allow you to find rules of the kind If X then (likely) 
Y where X and Y can be single values, items, words, etc., or conjunctions of values, items, 
words, etc. (e.g., if (Car=Porsche and Gender=Male and Age<20) then (Risk=High and 
Insurance=High)). The program can be used to analyze simple categorical variables, 
dichotomous variables, and/or multiple response variables. The algorithm will determine 
association rules without requiring the user to specify the number of distinct categories 
present in the data, or any prior knowledge regarding the maximum factorial degree or 
complexity of the important associations. In a sense, the algorithm will construct cross-
tabulation tables without the need to specify the number of dimensions for the tables, or 
the number of categories for each dimension. Hence, this technique is particularly well 
suited for data and text mining of huge databases.  

 

 

Computational Procedures and Terminology  

Categorical or class variables. Categorical variables are single variables that contains 
codes or text values to denote distinct classes; for example, a variable Gender would have 
the categories Male and Female.  
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Multiple response variables. Multiple response variables usually consist of multiple 
variables (i.e., a list of variables) that can contain, for each observations, codes or text 
values describing a single "dimension" or transaction. A good example of a multiple 
response variable would be if a vendor recorded the purchases made by a customer in a 
single record, where each record could contain one or more items purchased, in arbitrary 
order. This is a typical format in which customer transaction data would be kept.  

Multiple dichotomies. In this data format, each variable would represent one item or 
category, and the dichotomous data in each variable would indicate whether or not the 
respective item or category applies to the respective case. For example, suppose a vendor 
created a data spreadsheet where each column represented one of the products available 
for purchase. Each transaction (row of the data spreadsheet) would record whether or not 
the respective customer did or did not purchase that product, i.e., whether or not the 
respective transaction involved each item.  

Association Rules: If Body then Head. The A-priori algorithm attempts to derive from 
the data association rules of the form: If "Body" then "Head", where Body and Head 
stand for simple codes or text values (items), or the conjunction of codes and text values 
(items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High); here 
the logical conjunction before the then would be the Body, and the logical conjunction 
following the then would be the Head of the association rule).  

Initial Pass Through the Data: The Support Value. First the program will scan all 
variables to determine the unique codes or text values (items) found in the variables 
selected for the analysis. In this initial pass, the relative frequencies with which the 
individual codes or text values occur in each transaction will also be computed. The 
probability that a transaction contains a particular code or text value is called Support; the 
Support value is also computed in consecutive passes through the data, as the joint 
probability (relative frequency of co-occurrence) of pairs, triplets, etc. of codes or text 
values (items), i.e., separately for the Body and Head of each association rule.  

Second Pass Through the Data: The Confidence Value; Correlation Value. After the 
initial pass through the data, all items with a support value less than some predefined 
minimum support value will be "remembered" for subsequent passes through the data: 
Specifically, the conditional probabilities will be computed for all pairs of codes or text 
values that have support values greater than the minimum support value. This conditional 
probability - that an observation (transaction) that contains a code or text value X also 
contains a code or text value Y -- is called the Confidence Value. In general (in later 
passes through the data) the confidence value denotes the conditional probability of the 
Head of the association rule, given the Body of the association rule.  

In addition, the support value will be computed for each pair of codes or text values, and 
a Correlation value based on the support values. The correlation value for a pair of codes 
or text values {X, Y} is computed as the support value for that pair, divided by the square 
root of the product of the support values for X and Y. After the second pass through the 
data those pairs of codes or text values that (1) have a confidence value that is greater 
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than some user-defined minimum confidence value, (2) have a support value that is 
greater than some user-defined minimum support value, and (3) have a correlation value 
that is greater than some minimum correlation value will be retained.  

Subsequent Passes Through The Data: Maximum Item Size in Body, Head. The data 
in subsequent steps, the data will be further scanned computing support, confidence, and 
correlation values for pairs of codes or text values (associations between single codes or 
text values), triplets of codes or text values, and so on. To reiterate, in general, at each 
association rules will be derived of the general form if "Body" then "Head", where Body 
and Head stand for simple codes or text values (items), or the conjunction of codes and 
text values (items).  

Unless the process stops because no further associations can be found that satisfy the 
minimum support, confidence, and correlation conditions, the process could continue to 

build very complex association rules 
(e.g., if X1 and X2 .. and X20 then Y1 
and Y2 ... and Y20). To avoid excessive 
complexity, additionally, the user can 
specify the maximum number of codes 
or text values (items) in the Body and 
Head of the association rules; this 
value is referred to as the maximum 
item set size in the Body and Head of an 
association rule.  

 
 

Tabular Representation of Associations  

Association rules are generated of the general form if Body then Head, where Body and 
Head stand for single codes or text values (items) or conjunctions of codes or text values 
(items; e.g., if (Car=Porsche and Age<20) then (Risk=High and Insurance=High). The 
major statistics computed for the association rules are Support (relative frequency of the 
Body or Head of the rule), Confidence (conditional probability of the Head given the 
Body of the rule), and Correlation (support for Body and Head, divided by the square 
root of the product of the support for the Body and the support for the Head). These 
statistics can be summarized in a spreadsheet, as shown below.  

This results spreadsheet shows an example of how association rules can be applied to text 
mining tasks. This analysis was performed on the paragraphs (dialog spoken by the 
characters in the play) in the first scene of Shakespeare's "All's Well That Ends Well," 
after removing a few very frequent words like is, of, etc. The values for support, 
confidence, and correlation are expressed in percent.  
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Graphical Representation of Associations  

As a result of applying Association Rules data mining techniques to large datasets rules 
of the form if "Body" then "Head" will be derived, where Body and Head stand for simple 
codes or text values (items), or the conjunction of codes and text values (items; e.g., if 
(Car=Porsche and Age<20) then (Risk=High and Insurance=High)). These rules can be 

reviewed in textual format or tables, or in graphical format (see below).  

Association Rules Networks, 2D. For example, consider the data that 
describe a (fictitious) survey of 100 patrons of sports bars and their 
preferences for watching various sports on television. This would be an 
example of simple categorical variables, where each variable represents one 
sport. For each sport, each respondent indicated how frequently s/he 
watched the respective type of sport on television. The association rules 
derived from these data could be summarized as follows:  

In this graph, the support values for the Body and Head portions of each 
association rule are indicated by the sizes and colors of each. The thickness 
of each line indicates the confidence value (conditional probability of Head 
given Body) for the respective association rule; the sizes and colors of the 
circles in the center, above the Implies label, indicate the joint support (for 
the co-occurences) of the respective Body and Head components of the 
respective association rules. Hence, in this graphical summary, the strongest 
support value was found for Swimming=Sometimes, which was associated 
Gymnastic=Sometimes, Baseball = Sometimes, and Basketball=Sometimes. 
Incidentally. Unlike simple frequency and crosstabulation tables, the 
absolute frequencies with which individual codes or text values (items) 
occur in the data are often not reflected in the association rules; instead, only 

those codes or text values (items) are retained that show sufficient values for support, 
confidence, and correlation, i.e., that co-occur with other codes or text values (items) with 
sufficient relative (co-)frequency.  

 
The results that can be summarized in 2D Association Rules networks can be relatively 
simple, or complex, as illustrated in the network shown to the left.  
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This is an example of how association rules can be applied to text 
mining tasks. This analysis was performed on the paragraphs (dialog 
spoken by the characters in the play) in the first scene of 
Shakespeare's "All's Well That Ends Well," after removing a few very 
frequent words like is, of, etc. Of course, the specific words and 
phrases removed during the data preparation phase of text (or data) 
mining projects will depend on the purpose of the research.  

Association Rules Networks, 3D. Association rules can be 
graphically summarized in 2D Association Networks, as well as 3D 
Association Networks. Shown below are some (very clear) results 
from an analysis. Respondents in a survey were asked to list their (up 

to) 3 favorite fast-foods. The association rules derived from those data are summarized in 
a 3D Association Network display.  

 
 
 
As in the 2D Association Network, the support values for the Body and Head portions of 
each association rule are indicated by the sizes and colors of each circle in the 2D. The 
thickness of each line indicates the confidence value (joint probability) for the respective 
association rule; the sizes and colors of the "floating" circles plotted against the (vertical) 
z-axis indicate the joint support (for the co-occurences) of the respective Body and Head 
components of the association rules. The plot position of each circle along the vertical z - 
axis indicates the respective confidence value. Hence, this particular graphical summary 
clearly shows two simple rules: Respondents who name Pizza as a preferred fast food 
also mention Hamburger, and vice versa.  

 
 

 

 

Interpreting and Comparing Results  

When comparing the results of applying association rules to those from simple frequency 
or cross-tabulation tables, you may notice that in some cases very high-frequency codes 
or text values (items) are not part of any association rule. This can sometimes be 
perplexing.  

To illustrate how this pattern of findings can occur, consider this example: Suppose you 
analyzed data from a survey of insurance rates for different makes of automobiles in 
America. Simple tabulation would very likely show that many people drive automobiles 
manufactured by Ford, GM, and Chrysler; however, none of these makes may be 
associated with particular patterns in insurance rates, i.e., none of these brands may be 
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involved in high-confidence, high-correlation association rules linking them to particular 
categories of insurance rates. However, when applying association rules methods, 
automobile makes which occur in the sample with relatively low frequency (e.g., 
Porsche) may be found to be associated with high insurance rates (allowing you to infer, 
for example, a rule that if Car=Porsche then Insurance=High). If you only reviewed a 
simple cross-tabulation table (make of car by insurance rate) this high-confidence 
association rule may well have gone unnoticed. 
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Chapter 5 
Boosting Trees for Regression and Classification  

 

• Boosting Trees for Regression and Classification Introductory Overview  
• Gradient Boosting Trees  
• The Problem of Overfitting; Stochastic Gradient Boosting  
• Stochastic Gradient Boosting Trees and Classification  
• Large Numbers of Categories  

 
Boosting Trees for Regression and Classification Introductory Overview  

The general computational approach of stochastic gradient boosting is also known by the 
names TreeNet (TM Salford Systems, Inc.) and MART (TM Jerill, Inc.). Over the past 
few years, this technique has emerged as one of the most powerful methods for predictive 
data mining. Some implementations of these powerful algorithms allow them to be used 
for regression as well as classification problems, with continuous and/or categorical 
predictors. Detailed technical descriptions of these methods can be found in Friedman 
(1999a, b) as well as Hastie, Tibshirani, & Friedman (2001).  

Gradient Boosting Trees  

The algorithm for Boosting Trees evolved from the application of boosting methods to 
regression trees. The general idea is to compute a sequence of (very) simple trees, where 
each successive tree is built for the prediction residuals of the preceding tree. As 
described in the General Classification and Regression Trees Introductory Overview, this 
method will build binary trees, i.e., partition the data into two samples at each split node. 
Now suppose that you were to limit the complexities of the trees to 3 nodes only: a root 
node and two child nodes, i.e., a single split. Thus, at each step of the boosting (boosting 
trees algorithm), a simple (best) partitioning of the data is determined, and the deviations 
of the observed values from the respective means (residuals for each partition) are 
computed. The next 3-node tree will then be fitted to those residuals, to find another 
partition that will further reduce the residual (error) variance for the data, given the 
preceding sequence of trees.  

It can be shown that such "additive weighted expansions" of trees can eventually produce 
an excellent fit of the predicted values to the observed values, even if the specific nature 
of the relationships between the predictor variables and the dependent variable of interest 
is very complex (nonlinear in nature). Hence, the method of gradient boosting - fitting a 
weighted additive expansion of simple trees - represents a very general and powerful 
machine learning algorithm.  
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The Problem of Overfitting; Stochastic Gradient Boosting  

One of the major problems of all machine learning algorithms is to "know when to stop," 
i.e., how to prevent the learning algorithm to fit esoteric aspects of the training data that 
are not likely to improve the predictive validity of the respective model. This issue is also 
known as the problem of overfitting. To reiterate, this is a general problem applicable to 
most machine learning algorithms used in predictive data mining. A general solution to 
this problem is to evaluate the quality of the fitted model by predicting observations in a 
test-sample of data that have not been used before to estimate the respective model(s). In 
this manner, one hopes to gage the predictive accuracy of the solution, and to detect when 
overfitting has occurred (or is starting to occur).  

A similar approach is for each consecutive simple tree to be built for only a randomly 
selected subsample of the full data set. In other words, each consecutive tree is built for 
the prediction residuals (from all preceding trees) of an independently drawn random 
sample. The introduction of a certain degree of randomness into the analysis in this 
manner can serve as a powerful safeguard against overfitting (since each consecutive tree 
is built for a different sample of observations), and yield models (additive weighted 
expansions of simple trees) that generalize well to new observations, i.e., exhibit good 
predictive validity. This technique, i.e., performing consecutive boosting computations on 
independently drawn samples of observations, is knows as stochastic gradient boosting.  

Below is a plot of the prediction error function for the training data over successive trees 
and also an independently sampled testing data set at each stage.  

 

With this graph, you can identify very quickly the point where the model (consisting of a 
certain number of successive trees) begins to overfit the data. Notice how the prediction 
error for the training data steadily decreases as more and more additive terms (trees) are 
added to the model. However, somewhere past 35 trees, the performance for 
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independently sampled testing data actually begins to deteriorate, clearly indicating the 
point where the model begins to overfit the data.  

 

Stochastic Gradient Boosting Trees and Classification  

So far, the discussion of boosting trees has exclusively focused on regression problems, 
i.e., on the prediction of a continuous dependent variable. The technique can easily be 
expanded to handle classification problems as well (this is described in detail in 
Friedman, 1999a, section 4.6; in particular, see Algorithm 6):  

First, different boosting trees are built for (fitted to) each category or class of the 
categorical dependent variable, after creating a coded variable (vector) of values for each 
class with the values 1 or 0 to indicate whether or not an observation does or does not 
belong to the respective class. In successive boosting steps, the algorithm will apply the 
logistic transformation (see also Nonlinear Estimation) to compute the residuals for 
subsequent boosting steps. To compute the final classification probabilities, the logistic 
transformation is again applied to the predictions for each 0/1 coded vector (class). This 
algorithm is described in detail in Friedman (1999a; see also Hastie, Tibshirani, and 
Freedman, 2001, for a description of this general procedure).  

Large Numbers of Categories  

Note that the procedure for applying this method to classification problems requires that 
separate sequences of (boosted) trees be built for each category or class. Hence, the 
computational effort generally becomes larger by a multiple of what it takes to solve a 
simple regression prediction problem (for a single continuous dependent variable). 
Therefore, it is not prudent to analyze categorical dependent variables (class variables) 
with more than, approximately, 100 or so classes; past that point, the computations 
performed may require an unreasonable amount of effort and time. (For example, a 
problem with 200 boosting steps and 100 categories or classes for the dependent variable 
would yield 200 * 100 = 20,000 individual trees!)  
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Chapter 6 
Canonical Analysis 

 

• General Purpose  
• Computational Methods and Results  
• Assumptions  
• General Ideas  
• Sum Scores  
• Canonical Roots/Variates  
• Number of Roots  
• Extraction of Roots  

 

General Purpose  

There are several measures of correlation to express the relationship between two or more 
variables. For example, the standard Pearson product moment correlation coefficient (r) 
measures the extent to which two variables are related; there are various nonparametric 
measures of relationships that are based on the similarity of ranks in two variables; 
Multiple Regression allows one to assess the relationship between a dependent variable 
and a set of independent variables; Multiple Correspondence Analysis is useful for 
exploring the relationships between a set of categorical variables.  

Canonical Correlation is an additional procedure for assessing the relationship between 
variables. Specifically, this analysis allows us to investigate the relationship between two 
sets of variables. For example, an educational researcher may want to compute the 
(simultaneous) relationship between three measures of scholastic ability with five 
measures of success in school. A sociologist may want to investigate the relationship 
between two predictors of social mobility based on interviews, with actual subsequent 
social mobility as measured by four different indicators. A medical researcher may want 
to study the relationship of various risk factors to the development of a group of 
symptoms. In all of these cases, the researcher is interested in the relationship between 
two sets of variables, and Canonical Correlation would be the appropriate method of 
analysis.  

In the following topics we will briefly introduce the major concepts and statistics in 
canonical correlation analysis. We will assume that you are familiar with the correlation 
coefficient as described in Basic Statistics, and the basic ideas of multiple regression as 
described in the overview section of Multiple Regression.  
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Computational Methods and Results  

Some of the computational issues involved in canonical correlation and the major results 
that are commonly reported will now be reviewed.  

Eigenvalues. When extracting the canonical roots, you will compute the eigenvalues. 
These can be interpreted as the proportion of variance accounted for by the correlation 
between the respective canonical variates. Note that the proportion here is computed 
relative to the variance of the canonical variates, that is, of the weighted sum scores of the 
two sets of variables; the eigenvalues do not tell how much variability is explained in 
either set of variables. You will compute as many eigenvalues as there are canonical 
roots, that is, as many as the minimum number of variables in either of the two sets.  

Successive eigenvalues will be of smaller and smaller size. First, compute the weights 
that maximize the correlation of the two sum scores. After this first root has been 
extracted, you will find the weights that produce the second largest correlation between 
sum scores, subject to the constraint that the next set of sum scores does not correlate 
with the previous one, and so on.  

Canonical correlations. If the square root of the eigenvalues is taken, then the resulting 
numbers can be interpreted as correlation coefficients. Because the correlations pertain to 
the canonical variates, they are called canonical correlations. Like the eigenvalues, the 
correlations between successively extracted canonical variates are smaller and smaller. 
Therefore, as an overall index of the canonical correlation between two sets of variables, 
it is customary to report the largest correlation, that is, the one for the first root. However, 
the other canonical variates can also be correlated in a meaningful and interpretable 
manner (see below).  

Significance of Roots. The significance test of the canonical correlations is 
straightforward in principle. Simply stated, the different canonical correlations are tested, 
one by one, beginning with the largest one. Only those roots that are statistically 
significant are then retained for subsequent interpretation. Actually, the nature of the 
significance test is somewhat different. First, evaluate the significance of all roots 
combined, then of the roots remaining after removing the first root, the second root, etc.  

Some authors have criticized this sequential testing procedure for the significance of 
canonical roots (e.g., Harris, 1976). However, this procedure was "rehabilitated" in a 
subsequent Monte Carlo study by Mendoza, Markos, and Gonter (1978).  

In short, the results of that study showed that this testing procedure will detect strong 
canonical correlations most of the time, even with samples of relatively small size (e.g., n 
= 50). Weaker canonical correlations (e.g., R = .3) require larger sample sizes (n > 200) 
to be detected at least 50% of the time. Note that canonical correlations of small 
magnitude are often of little practical value, as they account for very little actual 
variability in the data. This issue, as well as the sample size issue, will be discussed 
shortly.  
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Canonical weights. After determining the number of significant canonical roots, the 
question arises as to how to interpret each (significant) root. Remember that each root 
actually represents two weighted sums, one for each set of variables. One way to interpret 
the "meaning" of each canonical root would be to look at the weights for each set. These 
weights are called the canonical weights .  

In general, the larger the weight (i.e., the absolute value of the weight), the greater is the 
respective variable's unique positive or negative contribution to the sum. To facilitate 
comparisons between weights, the canonical weights are usually reported for the 
standardized variables, that is, for the z transformed variables with a mean of 0 and a 
standard deviation of 1.  

If you are familiar with multiple regression, you may interpret the canonical weights in 
the same manner as you would interpret the beta weights in a multiple regression 
equation. In a sense, they represent the partial correlations of the variables with the 
respective canonical root. If you are familiar with factor analysis, you may interpret the 
canonical weights in the same manner as you would interpret the factor score 
coefficients. To summarize, the canonical weights allow the user to understand the 
"make-up" of each canonical root, that is, it lets the user see how each variable in each set 
uniquely contributes to the respective weighted sum (canonical variate).  

Canonical Scores. Canonical weights can also be used to compute actual values of the 
canonical variates; that is, you can simply use the weights to compute the respective 
sums. Again, remember that the canonical weights are customarily reported for the 
standardized (z transformed) variables.  

Factor structure. Another way of interpreting the canonical roots is to look at the simple 
correlations between the canonical variates (or factors) and the variables in each set. 
These correlations are also called canonical factor loadings. The logic here is that 
variables that are highly correlated with a canonical variate have more in common with it. 
Therefore, you should weigh them more heavily when deriving a meaningful 
interpretation of the respective canonical variate. This method of interpreting canonical 
variates is identical to the manner in which factors are interpreted in factor analysis.  

Factor structure versus canonical weights. Sometimes, the canonical weights for a 
variable are nearly zero, but the respective loading for the variable is very high. The 
opposite pattern of results may also occur. At first, such a finding may seem 
contradictory; however, remember that the canonical weights pertain to the unique 
contribution of each variable, while the canonical factor loadings represent simple overall 
correlations. For example, suppose you included in your satisfaction survey two items 
which measured basically the same thing, namely: (1) "Are you satisfied with your 
supervisors?" and (2) "Are you satisfied with your bosses?" Obviously, these items are 
very redundant. When the program computes the weights for the weighted sums 
(canonical variates) in each set so that they correlate maximally, it only "needs" to 
include one of the items to capture the essence of what they measure. Once a large weight 
is assigned to the first item, the contribution of the second item is redundant; 
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consequently, it will receive a zero or negligibly small canonical weight. Nevertheless, if 
you then look at the simple correlations between the respective sum score with the two 
items (i.e., the factor loadings), those may be substantial for both. To reiterate, the 
canonical weights pertain to the unique contributions of the respective variables with a 
particular weighted sum or canonical variate; the canonical factor loadings pertain to the 
overall correlation of the respective variables with the canonical variate.  

Variance extracted. As discussed earlier, the canonical correlation coefficient refers to 
the correlation between the weighted sums of the two sets of variables. It tells nothing 
about how much variability (variance) each canonical root explains in the variables. 
However, you can infer the proportion of variance extracted from each set of variables by 
a particular root by looking at the canonical factor loadings. Remember that those 
loadings represent correlations between the canonical variates and the variables in the 
respective set. If you square those correlations, the resulting numbers reflect the 
proportion of variance accounted for in each variable. For each root, you can take the 
average of those proportions across variables to get an indication of how much variability 
is explained, on the average, by the respective canonical variate in that set of variables. 
Put another way, you can compute in this manner the average proportion of variance 
extracted by each root.  

Redundancy. The canonical correlations can be squared to compute the proportion of 
variance shared by the sum scores (canonical variates) in each set. If you multiply this 
proportion by the proportion of variance extracted, you arrive at a measure of 
redundancy, that is, of how redundant one set of variables is, given the other set of 
variables. In equation form, you may express the redundancy as:  

Redundancyleft = [ (loadingsleft
2)/p]*Rc

2 

Redundancyright = [ (loadingsright
2)/q]*Rc

2  

In these equations, p denotes the number of variables in the first (left) set of variables, 
and q denotes the number of variables in the second (right) set of variables; Rc

2 is the 
respective squared canonical correlation.  

Note that you can compute the redundancy of the first (left) set of variables given the 
second (right) set, and the redundancy of the second (right) set of variables, given the 
first (left) set. Because successively extracted canonical roots are uncorrelated, you could 
sum up the redundancies across all (or only the first significant) roots to arrive at a single 
index of redundancy (as proposed by Stewart and Love, 1968).  

Practical significance. The measure of redundancy is also useful for assessing the 
practical significance of canonical roots. With large sample sizes (see below), canonical 
correlations of magnitude R = .30 may become statistically significant (see above). If you 
square this coefficient (R-square = .09) and use it in the redundancy formula shown 
above, it becomes clear that such canonical roots account for only very little variability in 
the variables. Of course, the final assessment of what does and does not constitute a 
finding of practical significance is subjective by nature. However, to maintain a realistic 
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appraisal of how much actual variance (in the variables) is accounted for by a canonical 
root, it is important to always keep in mind the redundancy measure, that is, how much of 
the actual variability in one set of variables is explained by the other.  

 

 

Assumptions  

The following discussion provides only a list of the most important assumptions of 
canonical correlation analysis, and the major threats to the reliability and validity of 
results. Distributions. The tests of significance of the canonical correlations is based on 
the assumption that the distributions of the variables in the population (from which the 
sample was drawn) are multivariate normal. Little is known about the effects of 
violations of the multivariate normality assumption. However, with a sufficiently large 
sample size (see below) the results from canonical correlation analysis are usually quite 
robust.  

Sample sizes. Stevens (1986) provides a very thorough discussion of the sample sizes 
that should be used in order to obtain reliable results. As mentioned earlier, if there are 
strong canonical correlations in the data (e.g., R > .7), then even relatively small samples 
(e.g., n = 50) will detect them most of the time. However, in order to arrive at reliable 
estimates of the canonical factor loadings (for interpretation), Stevens recommends that 
there should be at least 20 times as many cases as variables in the analysis, if one wants 
to interpret the most significant canonical root only. To arrive at reliable estimates for 
two canonical roots, Barcikowski and Stevens (1975) recommend, based on a Monte 
Carlo study, to include 40 to 60 times as many cases as variables.  

Outliers. Outliers can greatly affect the magnitudes of correlation coefficients. Since 
canonical correlation analysis is based on (computed from) correlation coefficients, they 
can also seriously affect the canonical correlations. Of course, the larger the sample size, 
the smaller is the impact of one or two outliers. However, it is a good idea to examine 
various scatterplots to detect possible outliers (as shown in the example animation 
below).  
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See also Confidence Ellipse.  

Matrix Ill-Conditioning. One assumption is that the variables in the two sets should not 
be completely redundant. For example, if you included the same variable twice in one of 
the sets, then it is not clear how to assign different weights to each of them. 
Computationally, such complete redundancies will "upset" the canonical correlation 
analysis. When there are perfect correlations in the correlation matrix, or if any of the 
multiple correlations between one variable and the others is perfect (R = 1.0), then the 
correlation matrix cannot be inverted, and the computations for the canonical analysis 
cannot be performed. Such correlation matrices are said to be ill-conditioned.  

Once again, this assumption appears trivial on the surface; however, it often is "almost" 
violated when the analysis includes very many highly redundant measures, as is often the 
case when analyzing questionnaire responses.  

 

 

General Ideas  

Suppose you conduct a study in which you measure satisfaction at work with three 
questionnaire items, and satisfaction in various other domains with an additional seven 
items. The general question that you may want to answer is how satisfaction at work 
relates to the satisfaction in those other domains.  

Sum Scores  

A first approach that you might take is simply to add up the responses to the work 
satisfaction items, and to correlate that sum with the responses to all other satisfaction 
items. If the correlation between the two sums is statistically significant, we could 
conclude that work satisfaction is related to satisfaction in other domains.  
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In a way this is a rather "crude" conclusion. We still know nothing about the particular 
domains of satisfaction that are related to work satisfaction. In fact, we could potentially 
have lost important information by simply adding up items. For example, suppose there 
were two items, one measuring satisfaction with one's relationship with the spouse, the 
other measuring satisfaction with one's financial situation. Adding the two together is, 
obviously, like adding "apples to oranges." Doing so implies that a person who is 
dissatisfied with her finances but happy with her spouse is comparable overall to a person 
who is satisfied financially but not happy in the relationship with her spouse. Most likely, 
people's psychological make-up is not that simple...  

The problem then with simply correlating two sums is that one might lose important 
information in the process, and, in the worst case, actually "destroy" important 
relationships between variables by adding "apples to oranges."  

Using a weighted sum. It seems reasonable to correlate some kind of a weighted sum 
instead, so that the "structure" of the variables in the two sets is reflected in the weights. 
For example, if satisfaction with one's spouse is only marginally related to work 
satisfaction, but financial satisfaction is strongly related to work satisfaction, then we 
could assign a smaller weight to the first item and a greater weight to the second item. 
We can express this general idea in the following equation:  

a1*y1 + a2*y2 + ... + ap*yp = b1*x 1 + b2*x 2 + ... + bq*x q  

If we have two sets of variables, the first one containing p variables and the second one 
containing q variables, then we would like to correlate the weighted sums on each side of 
the equation with each other.  

Determining the weights. We have now formulated the general "model equation" for 
canonical correlation. The only problem that remains is how to determine the weights for 
the two sets of variables. It seems to make little sense to assign weights so that the two 
weighted sums do not correlate with each other. A reasonable approach to take is to 
impose the condition that the two weighted sums shall correlate maximally with each 
other.  

 

 

Canonical Roots/Variates  

In the terminology of canonical correlation analysis, the weighted sums define a 
canonical root or variate. You can think of those canonical variates (weighted sums) as 
describing some underlying "latent" variables. For example, if for a set of diverse 
satisfaction items we were to obtain a weighted sum marked by large weights for all 
items having to do with work, we could conclude that the respective canonical variate 
measures satisfaction with work.  
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Number of Roots  

So far we have pretended as if there is only one set of weights (weighted sum) that can be 
extracted from the two sets of variables. However, suppose that we had among our work 
satisfaction items particular questions regarding satisfaction with pay, and questions 
pertaining to satisfaction with one's social relationships with other employees. It is 
possible that the pay satisfaction items correlate with satisfaction with one's finances, and 
that the social relationship satisfaction items correlate with the reported satisfaction with 
one's spouse. If so, we should really derive two weighted sums to reflect this 
"complexity" in the structure of satisfaction.  

In fact, the computations involved in canonical correlation analysis will lead to more than 
one set of weighted sums. To be precise, the number of roots extracted will be equal to 
the minimum number of variables in either set. For example, if we have three work 
satisfaction items and seven general satisfaction items, then three canonical roots will be 
extracted.  

Extraction of Roots  

As mentioned before, you can extract roots so that the resulting correlation between the 
canonical variates is maximal. When extracting more than one root, each successive root 
will explain a unique additional proportion of variability in the two sets of variables. 
Therefore, successively extracted canonical roots will be uncorrelated with each other, 
and account for less and less variability.  
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Chapter 7 
CHAID Analysis  

 

• General CHAID Introductory Overview  
• Basic Tree-Building Algorithm: CHAID and Exhaustive CHAID  
• General Computation Issues of CHAID  
• CHAID, C&RT, and QUEST  

 

General CHAID Introductory Overview  

The acronym CHAID stands for Chi-squared Automatic Interaction Detector. It is one of 
the oldest tree classification methods originally proposed by Kass (1980; according to 
Ripley, 1996, the CHAID algorithm is a descendent of THAID developed by Morgan and 
Messenger, 1973). CHAID will "build" non-binary trees (i.e., trees where more than two 
branches can attach to a single root or node), based on a relatively simple algorithm that 
is particularly well suited for the analysis of larger datasets. Also, because the CHAID 
algorithm will often effectively yield many multi-way frequency tables (e.g., when 
classifying a categorical response variable with many categories, based on categorical 
predictors with many classes), it has been particularly popular in marketing research, in 
the context of market segmentation studies.  

Both CHAID and C&RT techniques will construct trees, where each (non-terminal) node 
identifies a split condition, to yield optimum prediction (of continuous dependent or 
response variables) or classification (for categorical dependent or response variables). 
Hence, both types of algorithms can be applied to analyze regression-type problems or 
classification-type.  

 

 

Basic Tree-Building Algorithm: CHAID and Exhaustive CHAID  

The acronym CHAID stands for Chi-squared Automatic Interaction Detector. This name 
derives from the basic algorithm that is used to construct (non-binary) trees, which for 
classification problems (when the dependent variable is categorical in nature) relies on 
the Chi-square test to determine the best next split at each step; for regression-type 
problems (continuous dependent variable) the program will actually compute F-tests. 
Specifically, the algorithm proceeds as follows:  

Preparing predictors. The first step is to create categorical predictors out of any 
continuous predictors by dividing the respective continuous distributions into a number 
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of categories with an approximately equal number of observations. For categorical 
predictors, the categories (classes) are "naturally" defined.  

Merging categories. The next step is to cycle through the predictors to determine for 
each predictor the pair of (predictor) categories that is least significantly different with 
respect to the dependent variable; for classification problems (where the dependent 
variable is categorical as well), it will compute a Chi-square test (Pearson Chi-square); 
for regression problems (where the dependent variable is continuous), F tests. If the 
respective test for a given pair of predictor categories is not statistically significant as 
defined by an alpha-to-merge value, then it will merge the respective predictor categories 
and repeat this step (i.e., find the next pair of categories, which now may include 
previously merged categories). If the statistical significance for the respective pair of 
predictor categories is significant (less than the respective alpha-to-merge value), then 
(optionally) it will compute a Bonferroni adjusted p-value for the set of categories for the 
respective predictor.  

Selecting the split variable. The next step is to choose the split the predictor variable 
with the smallest adjusted p-value, i.e., the predictor variable that will yield the most 
significant split; if the smallest (Bonferroni) adjusted p-value for any predictor is greater 
than some alpha-to-split value, then no further splits will be performed, and the 
respective node is a terminal node.  

Continue this process until no further splits can be performed (given the alpha-to-merge 
and alpha-to-split values).  

CHAID and Exhaustive CHAID Algorithms.  A modification to the basic CHAID 
algorithm, called Exhaustive CHAID, performs a more thorough merging and testing of 
predictor variables, and hence requires more computing time. Specifically, the merging of 
categories continues (without reference to any alpha-to-merge value) until only two 
categories remain for each predictor. The algorithm then proceeds as described above in 
the Selecting the split variable step, and selects among the predictors the one that yields 
the most significant split. For large datasets, and with many continuous predictor 
variables, this modification of the simpler CHAID algorithm may require significant 
computing time.  

 

 

General Computation Issues of CHAID  

Reviewing large trees: Unique analysis management tools. A general issue that arises 
when applying tree classification or regression methods is that the final trees can become 
very large. In practice, when the input data are complex and, for example, contain many 
different categories for classification problems, and many possible predictors for 
performing the classification, then the resulting trees can become very large. This is not 
so much a computational problem as it is a problem of presenting the trees in a manner 
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that is easily accessible to the data analyst, or for presentation to the "consumers" of the 
research.  

Analyzing ANCOVA-like designs. The classic CHAID algorithms can accommodate 
both continuous and categorical predictor. However, in practice, it is not uncommon to 
combine such variables into analysis of variance/covariance (ANCOVA) like predictor 
designs with main effects or interaction effects for categorical and continuous predictors. 
This method of analyzing coded ANCOVA-like designs is relatively new. However, it is 
easy to see how the use of coded predictor designs expands these powerful classification 
and regression techniques to the analysis of data from experimental.  

 

 

CHAID, C&RT, and QUEST  

For classification-type problems (categorical dependent variable), all three algorithms can 
be used to build a tree for prediction. QUEST is generally faster than the other two 
algorithms, however, for very large datasets, the memory requirements are usually larger, 
so using the QUEST algorithms for classification with very large input data sets may be 
impractical.  

For regression-type problems (continuous dependent variable), the QUEST algorithm is 
not applicable, so only CHAID and C&RT can be used. CHAID will build non-binary 
trees that tend to be "wider". This has made the CHAID method particularly popular in 
market research applications: CHAID often yields many terminal nodes connected to a 
single branch, which can be conveniently summarized in a simple two-way table with 
multiple categories for each variable or dimension of the table. This type of display 
matches well the requirements for research on market segmentation, for example, it may 
yield a split on a variable Income, dividing that variable into 4 categories and groups of 
individuals belonging to those categories that are different with respect to some important 
consumer-behavior related variable (e.g., types of cars most likely to be purchased). 
C&RT will always yield binary trees, which can sometimes not be summarized as 
efficiently for interpretation and/or presentation.  

As far as predictive accuracy is concerned, it is difficult to derive general 
recommendations, and this issue is still the subject of active research. As a practical 
matter, it is best to apply different algorithms, perhaps compare them with user-defined 
interactively derived trees, and decide on the most reasonably and best performing model 
based on the prediction errors. For a discussion of various schemes for combining 
predictions from different models, see, for example, Witten and Frank, 2000.  

 

 

  

  



 87 

Chapter 8 
Classification and Regression Trees (C&RT) 

 

• C&RT Introductory Overview - Basic Ideas  
• Computational Details  
• Computational Formulas  

 

Introductory Overview - Basic Ideas  

Overview 

C&RT builds classification and regression trees for predicting continuous dependent 
variables (regression) and categorical predictor variables (classification). The classic 
C&RT algorithm was popularized by Breiman et al. (Breiman, Friedman, Olshen, & 
Stone, 1984; see also Ripley, 1996). A general introduction to tree-classifiers, specifically 
to the QUEST (Quick, Unbiased, Efficient Statistical Trees) algorithm, is also presented 
in the context of the Classification Trees Analysis facilities, and much of the following 
discussion presents the same information, in only a slightly different context. Another, 
similar type of tree building algorithm is CHAID (Chi-square Automatic Interaction 
Detector; see Kass, 1980). 

Classification and Regression Problems 

There are numerous algorithms for predicting continuous variables or categorical 
variables from a set of continuous predictors and/or categorical factor effects. For 
example, in GLM (General Linear Models) and GRM (General Regression Models), you 
can specify a linear combination (design) of continuous predictors and categorical factor 
effects (e.g., with two-way and three-way interaction effects) to predict a continuous 
dependent variable. In GDA (General Discriminant Function Analysis), you can specify 
such designs for predicting categorical variables, i.e., to solve classification problems.  

Regression-type problems. Regression-type problems are generally those where one 
attempts to predict the values of a continuous variable from one or more continuous 
and/or categorical predictor variables. For example, you may want to predict the selling 
prices of single family homes (a continuous dependent variable) from various other 
continuous predictors (e.g., square footage) as well as categorical predictors (e.g., style of 
home, such as ranch, two-story, etc.; zip code or telephone area code where the property 
is located, etc.; note that this latter variable would be categorical in nature, even though it 
would contain numeric values or codes). If you used simple multiple regression, or some 
general linear model (GLM) to predict the selling prices of single family homes, you 
would determine a linear equation for these variables that can be used to compute 
predicted selling prices. There are many different analytic procedures for fitting linear 
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models (GLM, GRM, Regression), various types of nonlinear models (e.g., Generalized 
Linear/Nonlinear Models (GLZ), Generalized Additive Models (GAM), etc.), or 
completely custom-defined nonlinear models (see Nonlinear Estimation), where you can 
type in an arbitrary equation containing parameters to be estimated. CHAID also analyzes 
regression-type problems, and produces results that are similar (in nature) to those 
computed by C&RT. Note that various neural network architectures are also applicable to 
solve regression-type problems. 

Classification-type problems. Classification-type problems are generally those where 
one attempts to predict values of a categorical dependent variable (class, group 
membership, etc.) from one or more continuous and/or categorical predictor variables. 
For example, you may be interested in predicting who will or will not graduate from 
college, or who will or will not renew a subscription. These would be examples of simple 
binary classification problems, where the categorical dependent variable can only assume 
two distinct and mutually exclusive values. In other cases one might be interested in 
predicting which one of multiple different alternative consumer products (e.g., makes of 
cars) a person decides to purchase, or which type of failure occurs with different types of 
engines. In those cases there are multiple categories or classes for the categorical 
dependent variable. There are a number of methods for analyzing classification-type 
problems and to compute predicted classifications, either from simple continuous 
predictors (e.g., binomial or multinomial logit regression in GLZ), from categorical 
predictors (e.g., Log-Linear analysis of multi-way frequency tables), or both (e.g., via 
ANCOVA-like designs in GLZ or GDA). The CHAID also analyzes classification-type 
problems, and produces results that are similar (in nature) to those computed by C&RT. 
Note that various neural network architectures are also applicable to solve classification-
type problems. 

Classification and Regression Trees (C&RT) 

In most general terms, the purpose of the analyses via tree-building algorithms is to 
determine a set of if-then logical (split) conditions that permit accurate prediction or 
classification of cases.  

Classification Trees 

For example, consider the widely referenced Iris data classification problem introduced 
by Fisher [1936; see also Discriminant Function Analysis and General Discriminant 
Analysis (GDA)]. The data file Irisdat reports the lengths and widths of sepals and petals 
of three types of irises (Setosa, Versicol, and Virginic). The purpose of the analysis is to 
learn how one can discriminate between the three types of flowers, based on the four 
measures of width and length of petals and sepals. Discriminant function analysis will 
estimate several linear combinations of predictor variables for computing classification 
scores (or probabilities) that allow the user to determine the predicted classification for 
each observation. A classification tree will determine a set of logical if-then conditions 
(instead of linear equations) for predicting or classifying cases instead: 
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Th
e 
inte
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etat
ion 
of 
this 
tree 
is 

straightforward: If the petal width is less than or equal to 0.8, the respective flower would 
be classified as Setosa; if the petal width is greater than 0.8 and less than or equal to 1.75, 
then the respective flower would be classified as Virginic; else, it belongs to class 
Versicol.  

 
 

Regression Trees 

The general approach to derive predictions from few simple if-then conditions can be 
applied to regression problems as well. This example is based on the data file Poverty, 
which contains 1960 and 1970 Census figures for a random selection of 30 counties. The 
research question (for that example) was to determine the correlates of poverty, that is, 
the variables that best predict the percent of families below the poverty line in a county. 
A reanalysis of those data, using the regression tree analysis [and v-fold cross-validation, 
yields the following results: 

Again, the interpretation of these results is rather straightforward: Counties where the 
percent of households with a phone is greater than 72% have generally a lower poverty 
rate. The greatest poverty rate is evident in those counties that show less than (or equal 
to) 72% of households with a phone, and where the population change (from the 1960 
census to the 170 census) is less than -8.3 (minus 8.3). These results are straightforward, 
easily presented, and intuitively clear as well: There are some affluent counties (where 
most households have a telephone), and those generally have little poverty. Then there 
are counties that are generally less affluent, and among those the ones that shrunk most 
showed the greatest poverty rate. A quick review of the scatterplot of observed vs. 
predicted values shows how the discrimination between the latter two groups is 
particularly well "explained" by the tree model. 
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Advantages of Classification and Regression Trees (C&RT) Methods 

As mentioned earlier, there are a large number of methods that an analyst can choose 
from when analyzing classification or regression problems. Tree classification 
techniques, when they "work" and produce accurate predictions or predicted 
classifications based on few logical if-then conditions, have a number of advantages over 
many of those alternative techniques.  

Simplicity of results. In most cases, the interpretation of results summarized in a tree is 
very simple. This simplicity is useful not only for purposes of rapid classification of new 
observations (it is much easier to evaluate just one or two logical conditions, than to 
compute classification scores for each possible group, or predicted values, based on all 
predictors and using possibly some complex nonlinear model equations), but can also 
often yield a much simpler "model" for explaining why observations are classified or 
predicted in a particular manner (e.g., when analyzing business problems, it is much 
easier to present a few simple if-then statements to management, than some elaborate 
equations).  

Tree methods are nonparametric and nonlinear. The final results of using tree 
methods for classification or regression can be summarized in a series of (usually few) 
logical if-then conditions (tree nodes). Therefore, there is no implicit assumption that the 
underlying relationships between the predictor variables and the dependent variable are 
linear, follow some specific non-linear link function [e.g., see Generalized 
Linear/Nonlinear Models (GLZ)], or that they are even monotonic in nature. For 
example, some continuous outcome variable of interest could be positively related to a 
variable Income if the income is less than some certain amount, but negatively related if 
it is more than that amount (i.e., the tree could reveal multiple splits based on the same 
variable Income, revealing such a non-monotonic relationship between the variables). 
Thus, tree methods are particularly well suited for data mining tasks, where there is often 
little a priori knowledge nor any coherent set of theories or predictions regarding which 
variables are related and how. In those types of data analyses, tree methods can often 
reveal simple relationships between just a few variables that could have easily gone 
unnoticed using other analytic techniques.  

General Computation Issues and Unique Solutions of C&RT 
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The computational details involved in determining the best split conditions to construct a 
simple yet useful and informative tree are quite complex. Refer to Breiman et al. (1984) 
for a discussion of their CART® algorithm to learn more about the general theory of and 
specific computational solutions for constructing classification and regression trees. An 
excellent general discussion of tree classification and regression methods, and 
comparisons with other approaches to pattern recognition and neural networks, is 
provided in Ripley (1996).  

Avoiding Over-Fitting: Pruning, Crossvalidation, and V-fold 
Crossvalidation 

A major issue that arises when applying regression or classification trees to "real" data 
with much random error noise concerns the decision when to stop splitting. For example, 
if you had a data set with 10 cases, and performed 9 splits (determined 9 if-then 
conditions), you could perfectly predict every single case. In general, if you only split a 
sufficient number of times, eventually you will be able to "predict" ("reproduce" would 
be the more appropriate term here) your original data (from which you determined the 
splits). Of course, it is far from clear whether such complex results (with many splits) 
will replicate in a sample of new observations; most likely they will not.  

This general issue is also discussed in the literature on tree classification and regression 
methods, as well as neural networks, under the topic of "overlearning" or "overfitting." If 
not stopped, the tree algorithm will ultimately "extract" all information from the data, 
including information that is not and cannot be predicted in the population with the 
current set of predictors, i.e., random or noise variation. The general approach to 
addressing this issue is first to stop generating new split nodes when subsequent splits 
only result in very little overall improvement of the prediction. For example, if you can 
predict 90% of all cases correctly from 10 splits, and 90.1% of all cases from 11 splits, 
then it obviously makes little sense to add that 11th split to the tree. There are many such 
criteria for automatically stopping the splitting (tree-building) process. 

Once the tree building algorithm has stopped, it is always useful to further evaluate the 
quality of the prediction of the current tree in samples of observations that did not 
participate in the original computations. These methods are used to "prune back" the tree, 
i.e., to eventually (and ideally) select a simpler tree than the one obtained when the tree 
building algorithm stopped, but one that is equally as accurate for predicting or 
classifying "new" observations. 

Crossvalidation. One approach is to apply the tree computed from one set of 
observations (learning sample) to another completely independent set of observations 
(testing sample). If most or all of the splits determined by the analysis of the learning 
sample are essentially based on "random noise," then the prediction for the testing sample 
will be very poor. Hence one can infer that the selected tree is not very good (useful), and 
not of the "right size."  
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V-fold crossvalidation. Continuing further along this line of reasoning (described in the 
context of crossvalidation above), why not repeat the analysis many times over with 
different randomly drawn samples from the data, for every tree size starting at the root of 
the tree, and applying it to the prediction of observations from randomly selected testing 
samples. Then use (interpret, or accept as your final result) the tree that shows the best 
average accuracy for cross-validated predicted classifications or predicted values. In most 
cases, this tree will not be the one with the most terminal nodes, i.e., the most complex 
tree. This method for pruning a tree, and for selecting a smaller tree from a sequence of 
trees, can be very powerful, and is particularly useful for smaller data sets. It is an 
essential step for generating useful (for prediction) tree models, and because it can be 
computationally difficult to do, this method is often not found in tree classification or 
regression software.  

Reviewing Large Trees: Unique Analysis Management Tools 

Another general issue that arises when applying tree classification or regression methods 
is that the final trees can become very large. In practice, when the input data are complex 
and, for example, contain many different categories for classification problems and many 
possible predictors for performing the classification, then the resulting trees can become 
very large. This is not so much a computational problem as it is a problem of presenting 
the trees in a manner that is easily accessible to the data analyst, or for presentation to the 
"consumers" of the research.  

Analyzing ANCOVA-like Designs 

The classic (Breiman et. al., 1984) classification and regression trees algorithms can 
accommodate both continuous and categorical predictor. However, in practice, it is not 
uncommon to combine such variables into analysis of variance/covariance (ANCOVA) 
like predictor designs with main effects or interaction effects for categorical and 
continuous predictors. This method of analyzing coded ANCOVA-like designs is 
relatively new and. However, it is easy to see how the use of coded predictor designs 
expands these powerful classification and regression techniques to the analysis of data 
from experimental designs (e.g., see for example the detailed discussion of experimental 
design methods for quality improvement in the context of the Experimental Design 
module of Industrial Statistics).  

Computational Details  

The process of computing classification and regression trees can be characterized as 
involving four basic steps:  

• Specifying the criteria for predictive accuracy  
• Selecting splits  
• Determining when to stop splitting  
• Selecting the "right-sized" tree.  
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These steps are very similar to those discussed in the context of Classification Trees 
Analysis (see also Breiman et al., 1984, for more details). See also, Computational 
Formulas.  

Specifying the Criteria for Predictive Accuracy 

The classification and regression trees (C&RT) algorithms are generally aimed at 
achieving the best possible predictive accuracy. Operationally, the most accurate 
prediction is defined as the prediction with the minimum costs. The notion of costs was 
developed as a way to generalize, to a broader range of prediction situations, the idea that 
the best prediction has the lowest misclassification rate. In most applications, the cost is 
measured in terms of proportion of misclassified cases, or variance. In this context, it 
follows, therefore, that a prediction would be considered best if it has the lowest 
misclassification rate or the smallest variance. The need for minimizing costs, rather than 
just the proportion of misclassified cases, arises when some predictions that fail are more 
catastrophic than others, or when some predictions that fail occur more frequently than 
others. 

Priors. In the case of a categorical response (classification problem), minimizing costs 
amounts to minimizing the proportion of misclassified cases when priors are taken to be 
proportional to the class sizes and when misclassification costs are taken to be equal for 
every class.  

The a priori probabilities used in minimizing costs can greatly affect the classification of 
cases or objects. Therefore, care has to be taken while using the priors. If differential base 
rates are not of interest for the study, or if one knows that there are about an equal 
number of cases in each class, then one would use equal priors. If the differential base 
rates are reflected in the class sizes (as they would be, if the sample is a probability 
sample), then one would use priors estimated by the class proportions of the sample. 
Finally, if you have specific knowledge about the base rates (for example, based on 
previous research), then one would specify priors in accordance with that knowledge The 
general point is that the relative size of the priors assigned to each class can be used to 
"adjust" the importance of misclassifications for each class. However, no priors are 
required when one is building a regression tree. 

Misclassification costs. Sometimes more accurate classification of the response is 
desired for some classes than others for reasons not related to the relative class sizes. If 
the criterion for predictive accuracy is Misclassification costs, then minimizing costs 
would amount to minimizing the proportion of misclassified cases when priors are 
considered proportional to the class sizes and misclassification costs are taken to be equal 
for every class.  

Case weights. Case weights are treated strictly as case multipliers. For example, the 
misclassification rates from an analysis of an aggregated data set using case weights will 
be identical to the misclassification rates from the same analysis where the cases are 
replicated the specified number of times in the data file.  
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However, note that the use of case weights for aggregated data sets in classification 
problems is related to the issue of minimizing costs. Interestingly, as an alternative to 
using case weights for aggregated data sets, one could specify appropriate priors and/or 
misclassification costs and produce the same results while avoiding the additional 
processing required to analyze multiple cases with the same values for all variables. 
Suppose that in an aggregated data set with two classes having an equal number of cases, 
there are case weights of 2 for all cases in the first class, and case weights of 3 for all 
cases in the second class. If you specified priors of .4 and .6, respectively, specified equal 
misclassification costs, and analyzed the data without case weights, you will get the same 
misclassification rates as you would get if you specified priors estimated by the class 
sizes, specified equal misclassification costs, and analyzed the aggregated data set using 
the case weights. You would also get the same misclassification rates if you specified 
priors to be equal, specified the costs of misclassifying class 1 cases as class 2 cases to be 
2/3 of the costs of misclassifying class 2 cases as class 1 cases, and analyzed the data 
without case weights. 

Selecting Splits 

The second basic step in classification and regression trees is to select the splits on the 
predictor variables that are used to predict membership in classes of the categorical 
dependent variables, or to predict values of the continuous dependent (response) variable. 
In general terms, the split at each node will be found that will generate the greatest 
improvement in predictive accuracy. This is usually measured with some type of node 
impurity measure, which provides an indication of the relative homogeneity (the inverse 
of impurity) of cases in the terminal nodes. If all cases in each terminal node show 
identical values, then node impurity is minimal, homogeneity is maximal, and prediction 
is perfect (at least for the cases used in the computations; predictive validity for new 
cases is of course a different matter...). 

For classification problems, C&RT gives the user the choice of several impurity 
measures: The Gini index, Chi-square, or G-square. The Gini index of node impurity is 
the measure most commonly chosen for classification-type problems. As an impurity 
measure, it reaches a value of zero when only one class is present at a node. With priors 
estimated from class sizes and equal misclassification costs, the Gini measure is 
computed as the sum of products of all pairs of class proportions for classes present at the 
node; it reaches its maximum value when class sizes at the node are equal; the Gini index 
is equal to zero if all cases in a node belong to the same class. The Chi-square measure is 
similar to the standard Chi-square value computed for the expected and observed 
classifications (with priors adjusted for misclassification cost), and the G-square measure 
is similar to the maximum-likelihood Chi-square (as for example computed in the Log-
Linear module). For regression-type problems, a least-squares deviation criterion (similar 
to what is computed in least squares regression) is automatically used. Computational 
Formulas provides further computational details. 

Determining When to Stop Splitting 
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As discussed in Basic Ideas, in principal, splitting could continue until all cases are 
perfectly classified or predicted. However, this wouldn't make much sense since one 
would likely end up with a tree structure that is as complex and "tedious" as the original 
data file (with many nodes possibly containing single observations), and that would most 
likely not be very useful or accurate for predicting new observations. What is required is 
some reasonable stopping rule. In C&RT, two options are available that can be used to 
keep a check on the splitting process; namely Minimum n and Fraction of objects. 

Minimum n.  One way to control splitting is to allow splitting to continue until all 
terminal nodes are pure or contain no more than a specified minimum number of cases or 
objects. In C&RT this is done by using the option Minimum n that allows you to specify 
the desired minimum number of cases as a check on the splitting process. This option can 
be used when Prune on misclassification error, Prune on deviance, or Prune on variance 
is active as the Stopping rule for the analysis.  

Fraction of objects. Another way to control splitting is to allow splitting to continue 
until all terminal nodes are pure or contain no more cases than a specified minimum 
fraction of the sizes of one or more classes (in the case of classification problems, or all 
cases in regression problems). This option can be used when FACT-style direct stopping 
has been selected as the Stopping rule for the analysis. In C&RT, the desired minimum 
fraction can be specified as the Fraction of objects. For classification problems, if the 
priors used in the analysis are equal and class sizes are equal as well, then splitting will 
stop when all terminal nodes containing more than one class have no more cases than the 
specified fraction of the class sizes for one or more classes. Alternatively, if the priors 
used in the analysis are not equal, splitting will stop when all terminal nodes containing 
more than one class have no more cases than the specified fraction for one or more 
classes. See Loh and Vanichestakul, 1988 for details.  

Pruning and Selecting the "Right-Sized" Tree 

The size of a tree in the classification and regression trees analysis is an important issue, 
since an unreasonably big tree can only make the interpretation of results more difficult. 
Some generalizations can be offered about what constitutes the "right-sized" tree. It 
should be sufficiently complex to account for the known facts, but at the same time it 
should be as simple as possible. It should exploit information that increases predictive 
accuracy and ignore information that does not. It should, if possible, lead to greater 
understanding of the phenomena it describes. The options available in C&RT allow the 
use of either, or both, of two different strategies for selecting the "right-sized" tree from 
among all the possible trees. One strategy is to grow the tree to just the right size, where 
the right size is determined by the user, based on the knowledge from previous research, 
diagnostic information from previous analyses, or even intuition. The other strategy is to 
use a set of well-documented, structured procedures developed by Breiman et al. (1984) 
for selecting the "right-sized" tree. These procedures are not foolproof, as Breiman et al. 
(1984) readily acknowledge, but at least they take subjective judgment out of the process 
of selecting the "right-sized" tree. 
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FACT-style direct stopping. We will begin by describing the first strategy, in which the 
user specifies the size to grow the tree. This strategy is followed by selecting FACT-style 
direct stopping as the stopping rule for the analysis, and by specifying the Fraction of 
objects which allows the tree to grow to the desired size. C&RT provides several options 
for obtaining diagnostic information to determine the reasonableness of the choice of size 
for the tree. Specifically, three options are available for performing cross-validation of 
the selected tree; namely Test sample, V-fold, and Minimal cost-complexity.  

Test sample cross-validation. The first, and most preferred type of cross-validation is 
the test sample cross-validation. In this type of cross-validation, the tree is computed 
from the learning sample, and its predictive accuracy is tested by applying it to predict 
the class membership in the test sample. If the costs for the test sample exceed the costs 
for the learning sample, then this is an indication of poor cross-validation. In that case, a 
different sized tree might cross-validate better. The test and learning samples can be 
formed by collecting two independent data sets, or if a large learning sample is available, 
by reserving a randomly selected proportion of the cases, say a third or a half, for use as 
the test sample.  

In the C&RT module, test sample cross-validation is performed by specifying a sample 
identifier variable which contains codes for identifying the sample (learning or test) to 
which each case or object belongs.  

V-fold cross-validation. The second type of cross-validation available in C&RT is V-
fold cross-validation. This type of cross-validation is useful when no test sample is 
available and the learning sample is too small to have the test sample taken from it. The 
user-specified 'v' value for v-fold cross-validation (its default value is 3) determines the 
number of random subsamples, as equal in size as possible, that are formed from the 
learning sample. A tree of the specified size is computed 'v' times, each time leaving out 
one of the subsamples from the computations, and using that subsample as a test sample 
for cross-validation, so that each subsample is used (v - 1) times in the learning sample 
and just once as the test sample. The CV costs (cross-validation cost) computed for each 
of the 'v' test samples are then averaged to give the v-fold estimate of the CV costs. 

Minimal cost-complexity cross-validation pruning. In C&RT, minimal cost-
complexity cross-validation pruning is performed, if Prune on misclassification error has 
been selected as the Stopping rule. On the other hand, if Prune on deviance has been 
selected as the Stopping rule, then minimal deviance-complexity cross-validation pruning 
is performed. The only difference in the two options is the measure of prediction error 
that is used. Prune on misclassification error uses the costs that equals the 
misclassification rate when priors are estimated and misclassification costs are equal, 
while Prune on deviance uses a measure, based on maximum-likelihood principles, 
called the deviance (see Ripley, 1996). For details about the algorithms used in C&RT to 
implement Minimal cost-complexity cross-validation pruning, see also the Introductory 
Overview and Computational Methods sections of Classification Trees Analysis. 
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The sequence of trees obtained by this algorithm have a number of interesting properties. 
They are nested, because the successively pruned trees contain all the nodes of the next 
smaller tree in the sequence. Initially, many nodes are often pruned going from one tree 
to the next smaller tree in the sequence, but fewer nodes tend to be pruned as the root 
node is approached. The sequence of largest trees is also optimally pruned, because for 
every size of tree in the sequence, there is no other tree of the same size with lower costs. 
Proofs and/or explanations of these properties can be found in Breiman et al. (1984).  

Tree selection after pruning. The pruning, as discussed above, often results in a 
sequence of optimally pruned trees. So the next task is to use an appropriate criterion to 
select the "right-sized" tree from this set of optimal trees. A natural criterion would be the 
CV costs (cross-validation costs). While there is nothing wrong with choosing the tree 
with the minimum CV costs as the "right-sized" tree, oftentimes there will be several 
trees with CV costs close to the minimum. Following Breiman et al. (1984) one could use 
the "automatic" tree selection procedure and choose as the "right-sized" tree the smallest-
sized (least complex) tree whose CV costs do not differ appreciably from the minimum 
CV costs. In particular, they proposed a "1 SE rule" for making this selection, i.e., choose 
as the "right-sized" tree the smallest-sized tree whose CV costs do not exceed the 
minimum CV costs plus 1 times the standard error of the CV costs for the minimum CV 
costs tree. In C&RT, a multiple other than the 1 (the default) can also be specified for the 
SE rule. Thus, specifying a value of 0.0 would result in the minimal CV cost tree being 
selected as the "right-sized" tree. Values greater than 1.0 could lead to trees much smaller 
than the minimal CV cost tree being selected as the "right-sized" tree. One distinct 
advantage of the "automatic" tree selection procedure is that it helps to avoid "over 
fitting" and "under fitting" of the data.  

As can be been seen, minimal cost-complexity cross-validation pruning and subsequent 
"right-sized" tree selection is a truly "automatic" process. The algorithms make all the 
decisions leading to the selection of the "right-sized" tree, except for, perhaps, 
specification of a value for the SE rule. V-fold cross-validation allows you to evaluate 
how well each tree "performs" when repeatedly cross-validated in different samples 
randomly drawn from the data.  

Computational Formulas  

In Classification and Regression Trees, estimates of accuracy are computed by different 
formulas for categorical and continuous dependent variables (classification and 
regression-type problems). For classification-type problems (categorical dependent 
variable) accuracy is measured in terms of the true classification rate of the classifier, 
while in the case of regression (continuous dependent variable) accuracy is measured in 
terms of mean squared error of the predictor. 

In addition to measuring accuracy, the following measures of node impurity are used for 
classification problems: The Gini measure, generalized Chi-square measure, and 
generalized G-square measure. The Chi-square measure is similar to the standard Chi-
square value computed for the expected and observed classifications (with priors adjusted 
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for misclassification cost), and the G-square measure is similar to the maximum-
likelihood Chi-square (as for example computed in the Log-Linear module). The Gini 
measure is the one most often used for measuring purity in the context of classification 
problems, and it is described below. 

For continuous dependent variables (regression-type problems), the least squared 
deviation (LSD) measure of impurity is automatically applied. 

Estimation of Accuracy in Classification 

In classification problems (categorical dependent variable), three estimates of the 
accuracy are used: resubstitution estimate, test sample estimate, and v-fold cross-
validation. These estimates are defined here. 

Resubstitution estimate. Resubstitution estimate is the proportion of cases that are 
misclassified by the classifier constructed from the entire sample. This estimate is 
computed in the following manner: 

 

where X is the indicator function; 

X = 1, if the statement is true 

X = 0, if the statement is false 

and d (x) is the classifier. 

The resubstitution estimate is computed using the same data as used in constructing the 
classifier d . 

Test sample estimate. The total number of cases are divided into two subsamples �1 and 
��. The test sample estimate is the proportion of cases in the subsample �� which are 
misclassified by the classifier constructed from the subsample �1. This estimate is 
computed in the following way. 

Let the learning sample � of size N be partitioned into subsamples �1 and �� of sizes N 
and N2, respectively. 

 

where �� is the sub sample that is not used for constructing the classifier.  
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v-fold crossvalidation. The total number of cases are divided into v sub samples �1, ��, 
..., �v of almost equal sizes. v-fold cross validation estimate is the proportion of cases in 
the subsample � that are misclassified by the classifier constructed from the subsample 
� �v. This estimate is computed in the following way. 

Let the learning sample � of size N be partitioned into v sub samples �1, ��, ..., �v of 
almost sizes N1, N�, ..., Nv, respectively. 

 

where is computed from the sub sample � �v 
. 

Estimation of Accuracy in Regression 

In the regression problem (continuous dependent variable) three estimates of the accuracy 
are used: resubstitution estimate, test sample estimate, and v-fold cross-validation. These 
estimates are defined here. 

Resubstitution estimate. The resubstitution estimate is the estimate of the expected 
squared error using the predictor  of the continuous dependent variable. This estimate is 
computed in the following way. 

 

where  the learning sample � consists of (xi,yi),i = 1,2,...,N. The resubstitution estimate is 
computed using the same data as used in constructing the predictor d .  

Test sample estimate. The total number of cases are divided into two subsamples �1 and 
��. The test sample estimate of the mean squared error is computed in the following way:  

Let the learning sample � of size N be partitioned into subsamples �1 and �� of sizes N 
and N2, respectively. 

 

where �� is the sub-sample that is not used for constructing the predictor.  

v-fold cross-validation. The total number of cases are divided into v sub samples �1, ��, 
..., �v of almost equal sizes. The subsample � �v is used to construct the predictor d. 
Then  v-fold cross validation estimate is computed from the subsample �v in the 
following way: 
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Let the learning sample � of size N be partitioned into v sub samples �1, ��, ..., �v of 
almost sizes N1, N�, ..., Nv, respectively. 

 

where is computed from the sub sample � �v . 

Estimation of Node Impurity: Gini Measure 

The Gini measure is the measure of impurity of a node and is commonly used when the 
dependent variable is a categorical variable, defined as: 

 

if costs of misclassification are not specified, 
  

 

if costs of misclassification are specified, 

where the sum extends over all k categories. p( j / t) is the probability of category j at the 
node t and C(i / j ) is the probability of misclassifying a category  j case as category i. 

Estimation of Node Impurity: Least-Squared Deviation  

Least-squared deviation (LSD) is used as the measure of impurity of a node when the 
response variable is continuous, and is computed as: 

 

where Nw(t) is the weighted number of cases in node t, wi is the value of the weighting 
variable for case i,  fi is the value of the frequency variable,  yi is the value of the response 
variable, and y(t)  is the weighted mean for node t. 
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Chapter 9 

Classification Trees 
 

• Basic Ideas  
• Characteristics of Classification Trees  

o Hierarchical Nature of Classification Trees  
o Flexibility of Classification Trees  
o The Power and Pitfalls of Classification Trees  

• Computational Methods  
o Specifying the Criteria for Predictive Accuracy  
o Selecting Splits  
o Determining When to Stop Splitting  
o Selecting the "Right-Sized" Tree  

• A Brief Comparison of Classification Tree Programs  

 

Basic Ideas  

Classification trees are used to predict membership of cases or objects in the classes of a 
categorical dependent variable from their measurements on one or more predictor 
variables. Classification tree analysis is one of the main techniques used in so-called 
Data Mining.  

The goal of classification trees is to predict or explain responses on a categorical 
dependent variable, and as such, the available techniques have much in common with the 
techniques used in the more traditional methods of Discriminant Analysis, Cluster 
Analysis, Nonparametric Statistics, and Nonlinear Estimation. The flexibility of 
classification trees make them a very attractive analysis option, but this is not to say that 
their use is recommended to the exclusion of more traditional methods. Indeed, when the 
typically more stringent theoretical and distributional assumptions of more traditional 
methods are met, the traditional methods may be preferable. But as an exploratory 
technique, or as a technique of last resort when traditional methods fail, classification 
trees are, in the opinion of many researchers, unsurpassed.  

What are classification trees? Imagine that you want to devise a system for sorting a 
collection of coins into different classes (perhaps pennies, nickels, dimes, quarters). 
Suppose that there is a measurement on which the coins differ, say diameter, which can 
be used to devise a hierarchical system for sorting coins. You might roll the coins on 
edge down a narrow track in which a slot the diameter of a dime is cut. If the coin falls 
through the slot it is classified as a dime, otherwise it continues down the track to where a 
slot the diameter of a penny is cut. If the coin falls through the slot it is classified as a 
penny, otherwise it continues down the track to where a slot the diameter of a nickel is 
cut, and so on. You have just constructed a classification tree. The decision process used 



 102 

by your classification tree provides an efficient method for sorting a pile of coins, and 
more generally, can be applied to a wide variety of classification problems.  

The study and use of classification trees are not widespread in the fields of probability 
and statistical pattern recognition (Ripley, 1996), but classification trees are widely used 
in applied fields as diverse as medicine (diagnosis), computer science (data structures), 
botany (classification), and psychology (decision theory). Classification trees readily 
lend themselves to being displayed graphically, helping to make them easier to interpret 
than they would be if only a strict numerical interpretation were possible.  

 

Classification trees can be and sometimes are quite complex. However, graphical 
procedures can be developed to help simplify interpretation even for complex trees. If 
one's interest is mainly in the conditions that produce a particular class of response, 
perhaps a High response, a 3D Contour Plot can be produced to identify which terminal 
node of the classification tree classifies most of the cases with High responses.  

 

In the example illustrated by this 3D Contour Plot, one could "follow the branches" 
leading to terminal node 8 to obtain an understanding of the conditions leading to High 
responses.  
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Amenability to graphical display and ease of interpretation are perhaps partly responsible 
for the popularity of classification trees in applied fields, but two features that 
characterize classification trees more generally are their hierarchical nature and their 
flexibility.  

For information on techniques and issues in computing classification trees, see 
Computational Methods. See also Exploratory Data Analysis and Data Mining 
Techniques.  

 

 

Characteristics of Classification Trees  

Hierarchical Nature of Classification Trees  

Breiman et al. (1984) give a number of examples of the use of classification trees. As one 
example, when heart attack patients are admitted to a hospital, dozens of tests are often 
performed to obtain physiological measures such as heart rate, blood pressure, and so on. 
A wide variety of other information is also obtained, such as the patient's age and medical 
history. Patients subsequently can be tracked to see if they survive the heart attack, say, at 
least 30 days. It would be useful in developing treatments for heart attack patients, and in 
advancing medical theory on heart failure, if measurements taken soon after hospital 
admission could be used to identify high-risk patients (those who are not likely to survive 
at least 30 days). One classification tree that Breiman et al. (1984) developed to address 
this problem was a simple, three question decision tree. Verbally, the binary 
classification tree can be described by the statement, "If the patient's minimum systolic 
blood pressure over the initial 24 hour period is greater than 91, then if the patient's age is 
over 62.5 years, then if the patient displays sinus tachycardia, then and only then the 
patient is predicted not to survive for at least 30 days." It is easy to conjure up the image 
of a decision "tree" from such a statement. A hierarchy of questions are asked and the 
final decision that is made depends on the answers to all the previous questions. 
Similarly, the relationship of a leaf to the tree on which it grows can be described by the 
hierarchy of splits of branches (starting from the trunk) leading to the last branch from 
which the leaf hangs. The hierarchical nature of classification trees is one of their most 
basic features (but the analogy with trees in nature should not be taken too far; most 
decision trees are drawn downward on paper, so the more exact analogy in nature would 
be a decision root system leading to the root tips, hardly a poetic image).  

The hierarchical nature of classification trees is illustrated by a comparison to the 
decision-making procedure employed in Discriminant Analysis. A traditional linear 
discriminant analysis of the heart attack data would produce a set of coefficients defining 
the single linear combination of blood pressure, patient age, and sinus tachycardia 
measurements that best differentiates low risk from high risk patients. A score for each 
patient on the linear discriminant function would be computed as a composite of each 
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patient's measurements on the three predictor variables, weighted by the respective 
discriminant function coefficients. The predicted classification of each patient as a low 
risk or a high risk patient would be made by simultaneously considering the patient's 
scores on the three predictor variables. That is, suppose P (minimum systolic blood 
Pressure over the 24 hour period), A (Age in years), and T (presence of sinus 
Tachycardia: 0 = not present; 1 = present) are the predictor variables, p, a, and t, are the 
corresponding linear discriminant function coefficients, and c is the "cut point" on the 
discriminant function for separating the two classes of heart attack patients. The decision 
equation for each patient would be of the form, "if pP + aA + tT - c is less than or equal 
to zero, the patient is low risk, else the patient is in high risk."  

In comparison, the decision tree developed by Breiman et al. (1984) would have the 
following hierarchical form, where p, a, and t would be -91, -62.5, and 0, respectively, 
"If p + P is less than or equal to zero, the patient is low risk, else if a + A is less than or 
equal to zero, the patient is low risk, else if t + T is less than or equal to zero, the patient 
is low risk, else the patient is high risk." Superficially, the Discriminant Analysis and 
classification tree decision processes might appear similar, because both involve 
coefficients and decision equations. But the difference of the simultaneous decisions of 
Discriminant Analysis from the hierarchical decisions of classification trees cannot be 
emphasized enough.  

The distinction between the two approaches can perhaps be made most clear by 
considering how each analysis would be performed in Regression. Because risk in the 
example of Breiman et al. (1984) is a dichotomous dependent variable, the Discriminant 
Analysis predictions could be reproduced by a simultaneous multiple regression of risk on 
the three predictor variables for all patients. The classification tree predictions could only 
be reproduced by three separate simple regression analyses, where risk is first regressed 
on P for all patients, then risk is regressed on A for patients not classified as low risk in 
the first regression, and finally, risk is regressed on T for patients not classified as low 
risk in the second regression. This clearly illustrates the simultaneous nature of 
Discriminant Analysis decisions as compared to the recursive, hierarchical nature of 
classification trees decisions, a characteristic of classification trees that has far-reaching 
implications.  

Flexibility of Classification Trees  

Another distinctive characteristic of classification trees is their flexibility. The ability of 
classification trees to examine the effects of the predictor variables one at a time, rather 
than just all at once, has already been described, but there are a number of other ways in 
which classification trees are more flexible than traditional analyses. The ability of 
classification trees to perform univariate splits, examining the effects of predictors one at 
a time, has implications for the variety of types of predictors that can be analyzed. In the 
Breiman et al. (1984) heart attack example, blood pressure and age were continuous 
predictors, but presence of sinus tachycardia was a categorical (two-level) predictor. 
Even if sinus tachycardia was measured as a three-level categorical predictor (perhaps 
coded as 0 = not present; 1 = present; 3 = unknown or unsure), without any underlying 
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continuous dimension represented by the values assigned to its levels, univariate splits on 
the predictor variables could still be easily performed. Additional decisions would be 
added to the decision tree to exploit any additional information on risk provided by the 
additional category. To summarize, classification trees can be computed for categorical 
predictors, continuous predictors, or any mix of the two types of predictors when 
univariate splits are used.  

Traditional linear discriminant analysis requires that the predictor variables be measured 
on at least an interval scale. For classification trees based on univariate splits for ordinal 
scale predictor variables, it is interesting that any monotonic transformation of the 
predictor variables (i.e., any transformation that preserves the order of values on the 
variable) will produce splits yielding the same predicted classes for the cases or objects 
(if the C&RT-style univariate split selection method is used, see Breimen et al., 1984). 
Therefore, classification trees based on univariate splits can be computed without 
concern for whether a unit change on a continuous predictor represents a unit change on 
the dimension underlying the values on the predictor variable; it need only be assumed 
that predictors are measured on at least an ordinal scale. In short, assumptions regarding 
the level of measurement of predictor variables are less stringent.  

Classification trees are not limited to univariate splits on the predictor variables. When 
continuous predictors are indeed measured on at least an interval scale, linear 
combination splits, similar to the splits for linear discriminant analysis, can be computed 
for classification trees. However, the linear combination splits computed for 
Classification Trees do differ in important ways from the linear combination splits 
computed for Discriminant Analysis. In linear discriminant analysis the number of linear 
discriminant functions that can be extracted is the lesser of the number of predictor 
variables or the number of classes on the dependent variable minus one. The recursive 
approach implemented for Classification Treesmodule does not face this limitation. For 
example, dozens of recursive, linear combination splits potentially could be performed 
when there are dozens of predictor variables but only two classes on the dependent 
variable. This compares with the single linear combination split that could be performed 
using traditional, non-recursive Iinear discriminant analysis, which could leave a 
substantial amount of the information in the predictor variables unused.  

Now consider the situation in which there are many categories but few predictors. 
Suppose you were trying to sort coins into classes (perhaps pennies, nickels, dimes, and 
quarters) based only on thickness and diameter measurements. Using traditional linear 
discriminant analysis, at most two linear discriminant functions could be extracted, and 
the coins could be successfully sorted only if there were no more than two dimensions 
represented by linear combinations of thickness and diameter on which the coins differ. 
Again, the approach implemented for Classification Trees does not face a limitation on 
the number of linear combination splits that can be formed.  

The approach implemented for Classification Trees for linear combination splits can also 
be used as the analysis method for constructing classification trees using univariate splits. 
Actually, a univariate split is just a special case of a linear combination split. Imagine a 
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linear combination split in which the coefficients for creating the weighted composite 
were zero for all predictor variables except one. Since scores on the weighted composite 
would depend only on the scores on the one predictor variable with the nonzero 
coefficient, the resulting split would be a univariate split.  

The approach implemented for Classification Trees for the Discriminant-based 
univariate split selection method for categorical and ordered predictors and for the 
Discriminant-based linear combination split selection method for ordered predictors is 
an adaption of the algorithms used in QUEST (Quick, Unbiased, Efficient Statistical 
Trees). QUEST is a classification tree program developed by Loh and Shih (1997) that 
employs a modification of recursive quadratic discriminant analysis and includes a 
number of innovative features for improving the reliability and efficiency of the 
classification trees that it computes.  

The algorithms used in QUEST are fairly technical, but the Classification Trees module 
also offers a Split selection method option based on a conceptually simpler approach. The 
C&RT-style univariate split selection method is an adaption of the algorithms used in 
C&RT, as described by Breiman et al. (1984). C&RT (Classification And Regression 
Trees) is a classification tree program that uses an exhaustive grid search of all possible 
univariate splits to find the splits for a classification tree.  

The QUEST and C&RT analysis options compliment each other nicely. C&RT searches 
can be lengthy when there are a large number of predictor variables with many levels, 
and it is biased toward choosing predictor variables with more levels for splits, but 
because it employs an exhaustive search, it is guaranteed to find the splits producing the 
best classification (in the learning sample, but not necessarily in cross-validation 
samples).  

QUEST is fast and unbiased. The speed advantage of QUEST over C&RT is particularly 
dramatic when the predictor variables have dozens of levels (Loh & Shih, 1997, report an 
analysis completed by QUEST in 1 CPU second that took C&RT 30.5 CPU hours to 
complete). QUEST's lack of bias in variable selection for splits is also a distinct 
advantage when some predictor variable have few levels and other predictor variables 
have many levels (predictors with many levels are more likely to produce "fluke 
theories," which fit the data well but have low predictive accuracy, see Doyle, 1973, and 
Quinlan & Cameron-Jones, 1995). Finally, QUEST does not sacrifice predictive accuracy 
for speed (Lim, Loh, & Shih, 1997). Together, the QUEST and C&RT options allow one 
to fully exploit the flexibility of classification trees.  

The Power and Pitfalls of Classification Trees  

The advantages of classification trees over traditional methods such as linear 
discriminant analysis, at least in some applications, can be illustrated using a simple, 
fictitious data set. To keep the presentation even-handed, other situations in which linear 
discriminant analysis would outperform classification trees are illustrated using a second 
data set.  
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Suppose you have records of the Longitude and Latitude coordinates at which 37 storms 
reached hurricane strength for two classifications of hurricanes--Baro hurricanes and 
Trop hurricanes. The fictitious data shown below were presented for illustrative purposes 
by Elsner, Lehmiller, and Kimberlain (1996), who investigated the differences between 
baroclinic and tropical North Atlantic hurricanes.  

DATA: Barotrop.sta 3v 
LONGITUD  LATITUDE  CLASS 

59.00 
59.50 
60.00 
60.50 
61.00 
61.00 
61.50 
61.50 
62.00 
63.00 
63.50 
64.00 
64.50 
65.00 
65.00 
65.00 
65.50 
65.50 
65.50 
66.00 
66.00 
66.00 
66.50 
66.50 
66.50 
67.00 
67.50 
68.00 
68.50 
69.00 
69.00 
69.50 
69.50 
70.00 
70.50 
71.00 
71.50 

17.00 
21.00 
12.00 
16.00 
13.00 
15.00 
17.00 
19.00 
14.00 
15.00 
19.00 
12.00 
16.00 
12.00 
15.00 
17.00 
16.00 
19.00 
21.00 
13.00 
14.00 
17.00 
17.00 
18.00 
21.00 
14.00 
18.00 
14.00 
18.00 
13.00 
15.00 
17.00 
19.00 
12.00 
16.00 
17.00 
21.00 

BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
TROP 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 
BARO 

 
 

A linear discriminant analysis of hurricane Class (Baro or Trop) using Longitude and 
Latitude as predictors correctly classifies only 20 of the 37 hurricanes (54%). A 
classification tree for Class using the C&RT-style exhaustive search for univariate splits 
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option correctly classifies all 37 hurricanes. The Tree graph for the classification tree is 
shown below.  

 

The headings of the graph give the summary information that the classification tree has 2 
splits and 3 terminal nodes. Terminal nodes, or terminal leaves as they are sometimes 
called, are points on the tree beyond which no further decisions are made. In the graph 
itself, terminal nodes are outlined with dotted red lines, while the remaining decision 
nodes or split nodes are outlined with solid black lines. The tree starts with the top 
decision node, sometimes called the root node. In the graph it is labeled as node 1 in its 
top-left corner. Initially, all 37 hurricanes are assigned to the root node and tentatively 
classified as Baro hurricanes, as indicated by the Baro label in the top-right corner of the 
root node. Baro is chosen as the initial classification because there are slightly more Baro 
than Trop hurricanes, as indicated by the histogram plotted within the root node. The 
legend identifying which bars in the node histograms correspond to Baro and Trop 
hurricanes is located in the top-left corner of the graph.  

The root node is split, forming two new nodes. The text below the root node describes the 
split. It indicates that hurricanes with Longitude coordinate values of less than or equal to 
67.75 are sent to node number 2 and tentatively classified as Trop hurricanes, and that 
hurricanes with Longitude coordinate values of greater than 67.75 are assigned to node 
number 3 and classified as Baro hurricanes. The values of 27 and 10 printed above nodes 
2 and 3, respectively, indicate the number of cases sent to each of these two child nodes 
from their parent, the root node. Similarly, node 2 is subsequently split. The split is such 
that the 9 hurricanes with Longitude coordinate values of less than or equal to 62.5 are 
sent to node number 4 and classified as Baro hurricanes, and the remaining 18 hurricanes 
with Longitude coordinate values of greater than 62.5 are sent to node number 5 and 
classified as Trop hurricanes.  

The Tree graph presents all this information in a simple, straightforward way, and 
probably allows one to digest the information in much less time than it takes to read the 
two preceding paragraphs. Getting to the bottom line, the histograms plotted within the 
tree's terminal nodes show that the classification tree classifies the hurricanes perfectly. 
Each of the terminal nodes is "pure," containing no misclassified hurricanes. All the 
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information in the Tree graph is also available in the Tree structure Scrollsheet shown 
below.  

Tree Structure (barotrop.sta) 
CLASSIF. 

TREES 
Child nodes, observed class n's, 
predicted class, and split condition for each node 

  
Node 

Left  
branch 

Right 
branch 

n in cls 
BARO 

n in cls 
TROP 

Predict. 
class 

Split 
constant 

Split 
variable 

1 
2 
3 
4 
5 

2 
4 
  
  
  

3 
5 
  
  
  

19 
  9 
10 
  9 
  0 

18 
18 
  0 
  0 
18 

BARO 
TROP 
BARO 
BARO 
TROP 

-67.75 
-62.50 

  
  
  

LONGITUD 
LONGITUD 

  
  
  

 
 

Note that in the Scrollsheet nodes 3 through 5 are identified as terminal nodes because no 
split is performed at those nodes. Also note the signs of the Split constants displayed in 
the Scrollsheet, for example, -67.75 for the split at node 1. In the Tree graph, the split 
condition at node 1 is described as LONGITUD 67.75 rather than as (the equivalent) -
67.75 + LONGITUD 0. This is done simply to save space on the graph.  

When univariate splits are performed, the predictor variables can be ranked on a 0 - 100 
scale in terms of their potential importance in accounting for responses on the dependent 
variable. For this example, Longitude is clearly very important and Latitude is relatively 
unimportant.  

 

A classification tree Class using the Discriminant-based univariate split selection method 
option produces similar results. The Tree structure Scrollsheet shown for this analysis 
shows that the splits of -63.4716 and -67.7516 are quite similar to the splits found using 
the C&RT-style exhaustive search for univariate splits option, although 1 Trop hurricane 
in terminal node 2 is misclassified as Baro.  

Tree Structure (barotrop.sta) 
CLASSIF. Child nodes, observed class n's, 
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TREES predicted class, and split condition for each node 
  

Node 
Left  

branch 
Right 

branch 
n in cls 
BARO 

n in cls 
TROP 

Predict. 
class 

Split 
constant 

Split 
variable 

1 
2 
3 
4 
5 

2 
  
4 
  
  

3 
  
5 
  
  

19 
  9 
10 
  0 
10 

18 
  1 
17 
17 
0 

BARO 
BARO 
TROP 
TROP 
BARO 

-63.4716 
  

-67.7516 
  
  

LONGITUD 
  

LONGITUD 
  
  

 
 

A categorized scatterplot for Longitude and Latitude clearly shows why linear 
discriminant analysis fails so miserably at predicting Class, and why the classification 
tree succeeds so well.  

 

The plot clearly shows that there is no strong linear relationship of longitude or latitude 
coordinates with Class, or of any possible linear combination of longitude and latitude 
with Class. Class is not functionally related to longitude or latitude, at least in the linear 
sense. The LDF (Linear Discriminant Function) Split shown on the graph is almost a 
"shot in the dark" at trying to separate predicted Trop hurricanes (above the split line) 
from predicted Baro hurricanes (below the split line). The C&RT univariate splits, 
because they are not restricted to a single linear combination of longitude and latitude 
scores, find the "cut points" on the Longitude dimension that allow the best possible (in 
this case, perfect) classification of hurricane Class.  

Now we can examine a situation illustrating the pitfalls of classification tree. Suppose 
that the following hurricane data were available.  

DATA: Barotro2.sta 3v 
LONGITUD  LATITUDE  CLASS 

59.00 
59.50 

17.00 
21.00 

BARO 
BARO 
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60.00 
60.50 
61.00 
61.00 
61.50 
61.50 
62.00 
63.00 
63.50 
64.00 
64.50 
65.00 
65.00 
65.00 
65.50 
65.50 
65.50 
66.00 
66.00 
66.00 
66.50 
66.50 
66.50 
67.00 
67.50 
68.00 
68.50 
69.00 
69.00 
69.50 
69.50 
70.00 
70.50 
71.00 
71.50 

12.00 
16.00 
13.00 
15.00 
17.00 
19.00 
14.00 
15.00 
19.00 
12.00 
16.00 
12.00 
15.00 
17.00 
16.00 
19.00 
21.00 
13.00 
14.00 
17.00 
17.00 
18.00 
21.00 
14.00 
18.00 
14.00 
18.00 
13.00 
15.00 
17.00 
19.00 
12.00 
16.00 
17.00 
21.00 

TROP 
BARO 
TROP 
TROP 
BARO 
BARO 
TROP 
TROP 
BARO 
TROP 
TROP 
TROP 
TROP 
BARO 
TROP 
BARO 
BARO 
TROP 
TROP 
BARO 
BARO 
BARO 
BARO 
TROP 
BARO 
TROP 
BARO 
TROP 
TROP 
TROP 
BARO 
TROP 
TROP 
TROP 
BARO 

 
 

A linear discriminant analysis of hurricane Class (Baro or Trop) using Longitude and 
Latitude as predictors correctly classifies all 37 of the hurricanes. A classification tree 
analysis for Class using the C&RT-style exhaustive search for univariate splits option 
also correctly classifies all 37 hurricanes, but the tree requires 5 splits producing 6 
terminal nodes. Which results are easier to interpret? In the linear discriminant analysis, 
the raw canonical discriminant function coefficients for Longitude and Latitude on the 
(single) discriminant function are .122073 and -.633124, respectively, and hurricanes 
with higher longitude and lower latitude coordinates are classified as Trop. The 
interpretation would be that hurricanes in the western Atlantic at low latitudes are likely 
to be Trop hurricanes, and that hurricanes further east in the Atlantic at higher latitudes 
are likely to be Baro hurricanes.  
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The Tree graph for the classification tree analysis using the C&RT-style exhaustive 
search for univariate splits option is shown below.  

 

One could methodically describe the splits in this classification tree, exactly as was done 
in the previous example, but because there are so many splits, the interpretation would 
necessarily be more complex than the simple interpretation provided by the single 
discriminant function from the linear discrimination analysis.  

However, recall that in describing the flexibility of Classification Trees , it was noted that 
an option exists for Discriminant-based linear combination splits for ordered predictors 
using algorithms from QUEST. The Tree graph for the classification tree analysis using 
linear combination splits is shown below.  

 

Note that in this tree, just one split yields perfect prediction. Each of the terminal nodes is 
"pure," containing no misclassified hurricanes. The linear combination split used to split 
the root node into its left child node and right child node is summarized by the 
description "F(0) -.2342." This indicates that if a hurricane has a score of less than or 
equal to -.2342 on the split function--abbreviated as F(0)--then it is sent to the left child 
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node and classified as Baro, otherwise it is sent to the right child node and classified as 
Trop. The split function coefficients (.011741 for Longitude and -.060896 for Latitude) 
have the same signs and are similar in their relative magnitude to the corresponding linear 
discriminant function coefficients from the linear discriminant analysis, so the two 
analyses are functionally identical, at least in terms of their predictions of hurricane 
Class.  

The moral of this story of the power and pitfalls of classification trees is that 
classification trees are only as good as the choice of analysis option used to produce 
them. For finding models that predict well, there is no substitute for a thorough 
understanding of the nature of the relationships between the predictor and dependent 
variables.  

We have seen that classification trees analysis can be characterized as a hierarchical, 
highly flexible set of techniques for predicting membership of cases or objects in the 
classes of a categorical dependent variable from their measurements on one or more 
predictor variables. With this groundwork behind us, we now are ready to look at the 
methods for computing classification trees in greater detail.  

For information on the basic purpose of classification trees, see Basic Ideas. See also, 
Exploratory Data Analysis and Data Mining Techniques.  

 

 

Computational Methods  

The process of computing classification trees can be characterized as involving four basic 
steps:  

1. Specifying the criteria for predictive accuracy,  
2. Selecting splits,  
3. Determining when to stop splitting, and  
4. Choosing the "right-sized" tree.  

Specifying the Criteria for Predictive Accuracy  

The goal of classification tree analysis, simply stated, is to obtain the most accurate 
prediction possible. Unfortunately, an operational definition of accurate prediction is hard 
to come by. To solve the problem of defining predictive accuracy, the problem is "stood 
on its head," and the most accurate prediction is operationally defined as the prediction 
with the minimum costs. The term costs need not seem mystifying. In many typical 
applications, costs simply correspond to the proportion of misclassified cases. The notion 
of costs was developed as a way to generalize, to a broader range of prediction situations, 
the idea that the best prediction has the lowest misclassification rate.  
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The need for minimizing costs, rather than just the proportion of misclassified cases, 
arises when some predictions that fail are more catastrophic than others, or when some 
predictions that fail occur more frequently than others. The costs to a gambler of losing a 
single bet (or prediction) on which the gambler's whole fortune is at stake are greater than 
the costs of losing many bets (or predictions) on which a tiny part of the gambler's 
fortune is at stake. Conversely, the costs of losing many small bets can be larger than the 
costs of losing just a few bigger bets. One should spend proportionately more effort in 
minimizing losses on bets where losing (making errors in prediction) costs you more.  

Priors. Minimizing costs, however, does correspond to minimizing the proportion of 
misclassified cases when Priors are taken to be proportional to the class sizes and when 
Misclassification costs are taken to be equal for every class. We will address Priors first. 
Priors, or, a priori probabilities, specify how likely it is, without using any prior 
knowledge of the values for the predictor variables in the model, that a case or object will 
fall into one of the classes. For example, in an educational study of high school drop-outs, 
it may happen that, overall, there are fewer drop-outs than students who stay in school 
(i.e., there are different base rates); thus, the a priori probability that a student drops out 
is lower than that a student remains in school.  

The a priori probabilities used in minimizing costs can greatly affect the classification of 
cases or objects. If differential base rates are not of interest for the study, or if one knows 
that there are about an equal number of cases in each class, then one would use equal 
priors. If the differential base rates are reflected in the class sizes (as they would be, if the 
sample is a probability sample) then one would use priors estimated by the class 
proportions of the sample. Finally, if you have specific knowledge about the base rates 
(for example, based on previous research), then one would specify priors in accordance 
with that knowledge. For example, a priori probabilities for carriers of a recessive gene 
could be specified as twice as high as for individuals who display a disorder caused by 
the recessive gene. The general point is that the relative size of the priors assigned to 
each class can be used to "adjust" the importance of misclassifications for each class. 
Minimizing costs corresponds to minimizing the overall proportion of misclassified cases 
when Priors are taken to be proportional to the class sizes (and Misclassification costs are 
taken to be equal for every class), because prediction should be better in larger classes to 
produce an overall lower misclassification rate.  

Misclassification costs. Sometimes more accurate classification is desired for some 
classes than others for reasons unrelated to relative class sizes. Regardless of their 
relative frequency, carriers of a disease who are contagious to others might need to be 
more accurately predicted than carriers of the disease who are not contagious to others. If 
one assumes that little is lost in avoiding a non-contagious person but much is lost in not 
avoiding a contagious person, higher misclassification costs could be specified for 
misclassifying a contagious carrier as non-contagious than for misclassifying a non-
contagious person as contagious. But to reiterate, minimizing costs corresponds to 
minimizing the proportion of misclassified cases when Priors are taken to be proportional 
to the class sizes and when Misclassification costs are taken to be equal for every class.  
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Case weights. A little less conceptually, the use of case weights on a weighting variable 
as case multipliers for aggregated data sets is also related to the issue of minimizing 
costs. Interestingly, as an alternative to using case weights for aggregated data sets, one 
could specify appropriate priors and/or misclassification costs and produce the same 
results while avoiding the additional processing required to analyze multiple cases with 
the same values for all variables. Suppose that in an aggregated data set with two classes 
having an equal number of cases, there are case weights of 2 for all the cases in the first 
class, and case weights of 3 for all the cases in the second class. If you specify priors of 
.4 and .6, respectively, specify equal misclassification costs, and analyze the data without 
case weights, you will get the same misclassification rates as you would get if you 
specify priors estimated by the class sizes, specify equal misclassification costs, and 
analyze the aggregated data set using the case weights. You would also get the same 
misclassification rates if you specify priors to be equal, specify the costs of 
misclassifying class 1 cases as class 2 cases to be 2/3 of the costs of misclassifying class 
2 cases as class 1 cases, and analyze the data without case weights.  

The relationships between priors, misclassification costs, and case weights become quite 
complex in all but the simplest situations (for discussions, see Breiman et al, 1984; 
Ripley, 1996). In analyses where minimizing costs corresponds to minimizing the 
misclassification rate, however, these issues need not cause any concern. Priors, 
misclassification costs, and case weights are brought up here, however, to illustrate the 
wide variety of prediction situations that can be handled using the concept of minimizing 
costs, as compared to the rather limited (but probably typical) prediction situations that 
can be handled using the narrower (but simpler) idea of minimizing misclassification 
rates. Furthermore, minimizing costs is an underlying goal of classification tree analysis, 
and is explicitly addressed in the fourth and final basic step in classification tree analysis, 
where in trying to select the "right-sized" tree, one chooses the tree with the minimum 
estimated costs. Depending on the type of prediction problem you are trying to solve, 
understanding the idea of reduction of estimated costs may be important for 
understanding the results of the analysis.  

Selecting Splits  

The second basic step in classification tree analysis is to select the splits on the predictor 
variables which are used to predict membership in the classes of the dependent variables 
for the cases or objects in the analysis. Not surprisingly, given the hierarchical nature of 
classification trees, these splits are selected one at time, starting with the split at the root 
node, and continuing with splits of resulting child nodes until splitting stops, and the 
child nodes which have not been split become terminal nodes. Three Split selection 
methods are discussed here.  

Discriminant-based univariate splits. The first step in split selection when the 
Discriminant-based univariate splits option is chosen is to determine the best terminal 
node to split in the current tree, and which predictor variable to use to perform the split. 
For each terminal node, p-levels are computed for tests of the significance of the 
relationship of class membership with the levels of each predictor variable. For 
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categorical predictors, the p-levels are computed for Chi-square tests of independence of 
the classes and the levels of the categorical predictor that are present at the node. For 
ordered predictors, the p-levels are computed for ANOVAs of the relationship of the 
classes to the values of the ordered predictor that are present at the node. If the smallest 
computed p-level is smaller than the default Bonferoni-adjusted p-level for multiple 
comparisons of .05 (a different threshold value can be used), the predictor variable 
producing that smallest p-level is chosen to split the corresponding node. If no p-level 
smaller than the threshold p-level is found, p-levels are computed for statistical tests that 
are robust to distributional violations, such as Levene's F. Details concerning node and 
predictor variable selection when no p-level is smaller than the specified threshold are 
described in Loh and Shih (1997).  

The next step is to determine the split. For ordered predictors, the 2-means clustering 
algorithm of Hartigan and Wong (1979, see also Cluster Analysis) is applied to create 
two "superclasses" for the node. The two roots are found for a quadratic equation 
describing the difference in the means of the "superclasses" on the ordered predictor, and 
the values for a split corresponding to each root are computed. The split closest to a 
"superclass" mean is selected. For categorical predictors, dummy-coded variables 
representing the levels of the categorical predictor are constructed, and then singular 
value decomposition methods are applied to transform the dummy-coded variables into a 
set of non-redundant ordered predictors. The procedures for ordered predictors are then 
applied and the obtained split is "mapped back" onto the original levels of the categorical 
variable and represented as a contrast between two sets of levels of the categorical 
variable. Again, further details about these procedures are described in Loh and Shih 
(1997). Although complicated, these procedures reduce a bias in split selection that 
occurs when using the C&RT-style exhaustive search method for selecting splits. This is 
the bias toward selecting variables with more levels for splits, a bias which can skew the 
interpretation of the relative importance of the predictors in explaining responses on the 
dependent variable (Breiman et. al., 1984).  

Discriminant-based linear combination splits. The second split selection method is the 
Discriminant-based linear combination split option for ordered predictor variables 
(however, the predictors are assumed to be measured on at least interval scales). 
Surprisingly, this method works by treating the continuous predictors from which linear 
combinations are formed in a manner which is similar to the way categorical predictors 
are treated in the previous method. Singular value decomposition methods are used to 
transform the continuous predictors into a new set of non-redundant predictors. The 
procedures for creating "superclasses" and finding the split closest to a "superclass" mean 
are then applied, and the results are "mapped back" onto the original continuous 
predictors and represented as a univariate split on a linear combination of predictor 
variables.  

C&RT-style exhaustive search for univariate splits. The third split-selection method is 
the C&RT-style exhaustive search for univariate splits method for categorical or ordered 
predictor variables. With this method, all possible splits for each predictor variable at 
each node are examined to find the split producing the largest improvement in goodness 
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of fit (or equivalently, the largest reduction in lack of fit). What determines the domain of 
possible splits at a node? For categorical predictor variables with k levels present at a 
node, there are 2(k-1) - 1 possible contrasts between two sets of levels of the predictor. For 
ordered predictors with k distinct levels present at a node, there are k -1 midpoints 
between distinct levels. Thus it can be seen that the number of possible splits that must be 
examined can become very large when there are large numbers of predictors with many 
levels which must be examined at many nodes.  

How is improvement in goodness of fit determined? Three choices of Goodness of fit 
measures are discussed here. The Gini measure of node impurity is a measure which 
reaches a value of zero when only one class is present at a node (with priors estimated 
from class sizes and equal misclassification costs, the Gini measure is computed as the 
sum of products of all pairs of class proportions for classes present at the node; it reaches 
its maximum value when class sizes at the node are equal). The Gini measure was the 
measure of goodness of fit preferred by the developers of C&RT (Breiman et. al., 1984). 
The two other indices are the Chi-square measure, which is similar to Bartlett's Chi-
square (Bartlett, 1948), and the G-square measure, which is similar to the maximum-
likelihood Chi-square used in structural equation modeling. The C&RT-style exhaustive 
search for univariate splits method works by searching for the split that maximizes the 
reduction in the value of the selected goodness of fit measure. When the fit is perfect, 
classification is perfect.  

Determining When to Stop Splitting  

The third step in classification tree analysis is to determine when to stop splitting. One 
characteristic of classification trees is that if no limit is placed on the number of splits 
that are performed, eventually "pure" classification will be achieved, with each terminal 
node containing only one class of cases or objects. However, "pure" classification is 
usually unrealistic. Even a simple classification tree such as a coin sorter can produce 
impure classifications for coins whose sizes are distorted or if wear changes the lengths 
of the slots cut in the track. This potentially could be remedied by further sorting of the 
coins that fall into each slot, but to be practical, at some point the sorting would have to 
stop and you would have to accept that the coins have been reasonably well sorted.  

Likewise, if the observed classifications on the dependent variable or the levels on the 
predicted variable in a classification tree analysis are measured with error or contain 
"noise," it is unrealistic to continue to sort until every terminal node is "pure." Two 
options for controlling when splitting stops will be discussed here. These two options are 
linked to the choice of the Stopping rule specified for the analysis.  

Minimum n.  One option for controlling when splitting stops is to allow splitting to 
continue until all terminal nodes are pure or contain no more than a specified minimum 
number of cases or objects. The desired minimum number of cases can be specified as the 
Minimum n, and splitting will stop when all terminal nodes containing more than one 
class have no more than the specified number of cases or objects.  



 118 

Fraction of objects. Another option for controlling when splitting stops is to allow 
splitting to continue until all terminal nodes are pure or contain no more cases than a 
specified minimum fraction of the sizes of one or more classes. The desired minimum 
fraction can be specified as the Fraction of objects and, if the priors used in the analysis 
are equal and class sizes are equal, splitting will stop when all terminal nodes containing 
more than one class have no more cases than the specified fraction of the class sizes for 
one or more classes. If the priors used in the analysis are not equal, splitting will stop 
when all terminal nodes containing more than one class have no more cases than the 
specified fraction for one or more classes.  

Selecting the "Right-Sized" Tree  

After a night at the horse track, a studious gambler computes a huge classification tree 
with numerous splits that perfectly account for the win, place, show, and no show results 
for every horse in every race. Expecting to become rich, the gambler takes a copy of the 
Tree graph to the races the next night, sorts the horses racing that night using the 
classification tree, makes his or her predictions and places his or her bets, and leaves the 
race track later much less rich than had been expected. The poor gambler has foolishly 
assumed that a classification tree computed from a learning sample in which the 
outcomes are already known will perform equally well in predicting outcomes in a 
second, independent test sample. The gambler's classification tree performed poorly 
during cross-validation. The gambler's payoff might have been larger using a smaller 
classification tree that did not classify perfectly in the learning sample, but which was 
expected to predict equally well in the test sample.  

Some generalizations can be offered about what constitutes the "right-sized" 
classification tree. It should be sufficiently complex to account for the known facts, but at 
the same time it should be as simple as possible. It should exploit information that 
increases predictive accuracy and ignore information that does not. It should, if possible, 
lead to greater understanding of the phenomena which it describes. Of course, these same 
characteristics apply to any scientific theory, so we must try to be more specific about 
what constitutes the "right-sized" classification tree. One strategy is to grow the tree to 
just the right size, where the right size is determined by the user from knowledge from 
previous research, diagnostic information from previous analyses, or even intuition. The 
other strategy is to use a set of well-documented, structured procedures developed by 
Breiman et al. (1984) for selecting the "right-sized" tree. These procedures are not 
foolproof, as Breiman et al. (1984) readily acknowledge, but at least they take subjective 
judgment out of the process of selecting the "right-sized" tree.  

FACT-style direct stopping. We will begin by describing the first strategy, in which the 
researcher specifies the size to grow the classification tree. This strategy is followed by 
using FACT-style direct stopping as the Stopping rule for the analysis, and by specifying 
the Fraction of objects which allows the tree to grow to the desired size. There are 
several options for obtaining diagnostic information to determine the reasonableness of 
the choice of size for the tree. Three options for performing cross-validation of the 
selected classification tree are discussed below.  
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Test sample cross-validation. The first, and most preferred type of cross-validation is 
test sample cross-validation. In this type of cross-validation, the classification tree is 
computed from the learning sample, and its predictive accuracy is tested by applying it to 
predict class membership in the test sample. If the costs for the test sample exceed the 
costs for the learning sample (remember, costs equal the proportion of misclassified cases 
when priors are estimated and misclassification costs are equal), this indicates poor 
cross-validation and that a different sized tree might cross-validate better. The test and 
learning samples can be formed by collecting two independent data sets, or if a large 
learning sample is available, by reserving a randomly selected proportion of the cases, 
say a third or a half, for use as the test sample.  

V-fold cross-validation. This type of cross-validation is useful when no test sample is 
available and the learning sample is too small to have the test sample taken from it. A 
specified V value for V-fold cross-validation determines the number of random 
subsamples, as equal in size as possible, that are formed from the learning sample. The 
classification tree of the specified size is computed V times, each time leaving out one of 
the subsamples from the computations, and using that subsample as a test sample for 
cross-validation, so that each subsample is used V - 1 times in the learning sample and 
just once as the test sample. The CV costs computed for each of the V test samples are 
then averaged to give the V-fold estimate of the CV costs.  

Global cross-validation. In global cross-validation, the entire analysis is replicated a 
specified number of times holding out a fraction of the learning sample equal to 1 over 
the specified number of times, and using each hold-out sample in turn as a test sample to 
cross-validate the selected classification tree. This type of cross-validation is probably no 
more useful than V-fold cross-validation when FACT-style direct stopping is used, but 
can be quite useful as a method validation procedure when automatic tree selection 
techniques are used (for discussion, see Breiman et. al., 1984). This brings us to the 
second of the two strategies that can used to select the "right-sized" tree, an automatic 
tree selection method based on a technique developed by Breiman et al. (1984) called 
minimal cost-complexity cross-validation pruning.  

Minimal cost-complexity cross-validation pruning. Two methods of pruning can be 
used depending on the Stopping Rule you choose to use. Minimal cost-complexity cross-
validation pruning is performed when you decide to Prune on misclassification error (as 
a Stopping rule), and minimal deviance-complexity cross-validation pruning is performed 
when you choose to Prune on deviance (as a Stopping rule). The only difference in the 
two options is the measure of prediction error that is used. Prune on misclassification 
error uses the costs that we have discussed repeatedly (which equal the misclassification 
rate when priors are estimated and misclassification costs are equal). Prune on deviance 
uses a measure, based on maximum-likelihood principles, called the deviance (see 
Ripley, 1996). We will focus on cost-complexity cross-validation pruning (as originated 
by Breiman et. al., 1984), since deviance-complexity pruning merely involves a different 
measure of prediction error.  



 120 

The costs needed to perform cost-complexity pruning are computed as the tree is being 
grown, starting with the split at the root node up to its maximum size, as determined by 
the specified Minimum n. The learning sample costs are computed as each split is added 
to the tree, so that a sequence of generally decreasing costs (reflecting better 
classification) are obtained corresponding to the number of splits in the tree. The learning 
sample costs are called resubstitution costs to distinguish them from CV costs, because V-
fold cross-validation is also performed as each split is added to the tree. Use the 
estimated CV costs from V-fold cross-validation as the costs for the root node. Note that 
tree size can be taken to be the number of terminal nodes, because for binary trees the 
tree size starts at one (the root node) and increases by one with each added split. Now, 
define a parameter called the complexity parameter whose initial value is zero, and for 
every tree (including the first, containing only the root node), compute the value for a 
function defined as the costs for the tree plus the complexity parameter times the tree 
size. Increase the complexity parameter continuously until the value of the function for 
the largest tree exceeds the value of the function for a smaller-sized tree. Take the 
smaller-sized tree to be the new largest tree, continue increasing the complexity 
parameter continuously until the value of the function for the largest tree exceeds the 
value of the function for a smaller-sized tree, and continue the process until the root node 
is the largest tree. (Those who are familiar with numerical analysis will recognize the use 
of a penalty function in this algorithm. The function is a linear combination of costs, 
which generally decrease with tree size, and tree size, which increases linearly. As the 
complexity parameter is increased, larger trees are penalized for their complexity more 
and more, until a discrete threshold is reached at which a smaller-sized tree's higher costs 
are outweighed by the largest tree's higher complexity)  

The sequence of largest trees obtained by this algorithm have a number of interesting 
properties. They are nested, because successively pruned trees contain all the nodes of the 
next smaller tree in the sequence. Initially, many nodes are often pruned going from one 
tree to the next smaller tree in the sequence, but fewer nodes tend to be pruned as the root 
node is approached. The sequence of largest trees is also optimally pruned, because for 
every size of tree in the sequence, there is no other tree of the same size with lower costs. 
Proofs and/or explanations of these properties can be found in Breiman et al. (1984).  

Tree selection after pruning. We now select the "right-sized" tree from the sequence of 
optimally pruned trees. A natural criterion is the CV costs. While there is nothing wrong 
with choosing the tree with the minimum CV costs as the "right-sized" tree, oftentimes 
there will be several trees with CV costs close to the minimum. Breiman et al. (1984) 
make the reasonable suggestion that one should choose as the "right-sized" tree the 
smallest-sized (least complex) tree whose CV costs do not differ appreciably from the 
minimum CV costs. They proposed a "1 SE rule" for making this selection, i.e., choose as 
the "right-sized" tree the smallest-sized tree whose CV costs do not exceed the minimum 
CV costs plus 1 times the Standard error of the CV costs for the minimum CV costs tree.  

One distinct advantage of the "automatic" tree selection procedure is that it helps to avoid 
"overfitting" and "underfitting" of the data. The graph below shows a typical plot of the 
Resubstitution costs and CV costs for the sequence of successively pruned trees.  
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As shown in this graph, the Resubstitution costs (e.g., the misclassification rate in the 
learning sample) rather consistently decrease as tree size increases. The CV costs, on the 
other hand, approach the minimum quickly as tree size initially increases, but actually 
start to rise as tree size becomes very large. Note that the selected "right-sized" tree is 
close to the inflection point in the curve, that is, close to the point where the initial sharp 
drop in CV costs with increased tree size starts to level out. The "automatic" tree selection 
procedure is designed to select the simplest (smallest) tree with close to minimum CV 
costs, and thereby avoid the loss in predictive accuracy produced by "underfitting" or 
"overfitting" the data (note the similarity to the logic underlying the use of a "scree plot" 
to determine the number of factors to retain in Factor Analysis; see also Reviewing the 
Results of a Principal Components Analysis).  

As has been seen, minimal cost-complexity cross-validation pruning and subsequent 
"right-sized" tree selection is a truly "automatic" process. The algorithms make all the 
decisions leading to selection of the "right-sized" tree, except for, perhaps, specification 
of a value for the SE rule. One issue that arises with the use of such "automatic" 
procedures is how well the results replicate, where replication might involve the selection 
of trees of quite different sizes across replications, given the "automatic" selection 
process that is used. This is where global cross-validation can be very useful. As 
explained previously, in global cross-validation, the entire analysis is replicated a 
specified number of times (3 is the default) holding out a fraction of the cases to use as a 
test sample to cross-validate the selected classification tree. If the average of the costs for 
the test samples, called the global CV costs, exceeds the CV costs for the selected tree, or 
if the standard error of the global CV costs exceeds the standard error of the CV costs 
for the selected tree, this indicates that the "automatic" tree selection procedure is 
allowing too much variability in tree selection rather than consistently selecting a tree 
with minimum estimated costs.  

Classification trees and traditional methods. As can be seen in the methods used in 
computing classification trees, in a number of respects classification trees are decidedly 
different from traditional statistical methods for predicting class membership on a 
categorical dependent variable. They employ a hierarchy of predictions, with many 
predictions sometimes being applied to particular cases, to sort the cases into predicted 
classes. Traditional methods use simultaneous techniques to make one and only one class 
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membership prediction for each and every case. In other respects, such as having as its 
goal accurate prediction, classification tree analysis is indistinguishable from traditional 
methods. Time will tell if classification tree analysis has enough to commend itself to 
become as accepted as the traditional methods.  

For information on the basic purpose of classification trees, see Basic Ideas. For 
information on the hierarchical nature and flexibility of classification trees, see 
Characteristics of Classification Trees. See also, Exploratory Data Analysis and Data 
Mining Techniques.  

 

 

A Brief Comparison of Classification Tree Programs  

A variety of classification tree programs have been developed to predict membership of 
cases or objects in the classes of a categorical dependent variable from their 
measurements on one or more predictor variables. In the previous section, Computational 
Methods, we have discussed the QUEST (Loh & Shih, 1997) and C&RT (Breiman et. al., 
1984) programs for computing binary classification trees based on univariate splits for 
categorical predictor variables, ordered predictor variables (measured on at least an 
ordinal scale), or a mix of both types of predictors. We have also discussed computing 
classification trees based on linear combination splits for interval scale predictor 
variables.  

Some classification trees programs, such as FACT (Loh & Vanichestakul, 1988) and 
THAID (Morgan & Messenger, 1973, as well as the related programs AID, for Automatic 
Interaction Detection, Morgan & Sonquist, 1963, and CHAID, for Chi-Square Automatic 
Interaction Detection, Kass, 1980) perform multi-level splits rather than binary splits 
when computing classification trees. A multi-level split performs k - 1 splits (where k is 
the number of levels of the splittting variable), as compared to a binary split which 
performs one split (regardless of the number of levels of the splittting variable). 
However, it should be noted that there is no inherent advantage of multi-level splits, 
because any multi-level split can be represented as a series of binary splits, and there may 
be disadvantages of using multi-level splits. With multi-level splits, predictor variables 
can be used for splitting only once, so the resulting classification trees may be 
unrealistically short and uninteresting (Loh & Shih, 1997). A more serious problem is 
bias in variable selection for splits. This bias is possible in any program such as THAID 
(Morgan & Sonquist, 1963) that employs an exhaustive search for finding splits (for a 
discussion, see Loh & Shih, 1997). Bias in variable selection is the bias toward selecting 
variables with more levels for splits, a bias which can skew the interpretation of the 
relative importance of the predictors in explaining responses on the dependent variable 
(Breiman et. al., 1984).  

Bias in variable selection can be avoided by using the Discriminant-based (univariate or 
linear combination) split options. These options make use of the algorithms in QUEST 
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(Loh & Shih, 1997) to prevent bias in variable selection. The C&RT-style exhaustive 
search for univariate splits option is useful if one's goal is to find splits producing the best 
possible classification in the learning sample (but not necessarily in independent cross-
validiation samples). For reliable splits, as well as computational speed, the Discriminant-
based split options are recommended. For information on techniques and issues in 
computing classification trees, see the Computational Methods section.  

Building trees interactively. In contrast, another method for building trees that has 
proven popular in applied research and data exploration is based on experts' knowledge 
about the domain or area under investigation, and relies on interactive choices (for how to 
grow the tree) by such experts to arrive at "good" (valid) models for prediction or 
predictive classification. In other words, instead of building trees automatically, using 
sophisticated algorithms for choosing good predictors and splits (for growing the 
branches of the tree), a user may want to determine manually which variables to include 
in the tree, and how to split those variables to create the branches of the tree. This enables 
the user to experiment with different variables and scenarios, and ideally to derive a 
better understanding of the phenomenon under investigation by combining her or his 
expertise with the analytic capabilities and options for building the. In practice, it may 
often be most useful to combine the automatic methods for building trees with "educated 
guesses" and domain-specific expertise. You may want to grow some portions of the tree 
using automatic methods and refine and modify the tree based on your expertise. Another 
common situation where this type of combined automatic and interactive tree building is 
called for is when some variables that are chosen automatically for some splits are not 
easily observable because they cannot be measured reliably or economically (i.e., 
obtaining such measurements would be too expensive). For example, suppose the 
automatic analysis at some point selects a variable Income as a good predictor for the 
next split; however, you may not be able to obtain reliable data on income from the new 
sample to which you want to apply the results of the current analysis (e.g., for predicting 
some behavior of interest, such as whether or not the person will purchase something 
from your catalog). In this case, you may want to select a "surrogate" variable, i.e., a 
variable that you can observe easily and that is likely related or similar to variable Income 
(with respect to its predictive power; for example, a variable Number of years of 
education may be related to Income and have similar predictive power; while most 
people are reluctant to reveal their level of income, they are more likely to report their 
level of education, and hence, this latter variable is more easily measured).  
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Chapter 10 
Cluster Analysis 

 

• General Purpose  
• Statistical Significance Testing  
• Area of Application  
• Joining (Tree Clustering)  

o Hierarchical Tree  
o Distance Measures  
o Amalgamation or Linkage Rules  

• Two-way Joining  
o Introductory Overview  
o Two-way Joining  

• k-Means Clustering  
o Example  
o Computations  
o Interpretation of results  

• EM (Expectation Maximization) Clustering  
o Introductory Overview  
o The EM Algorithm  

• Finding the Right Number of Clusters in k-Means and EM Clustering: v-Fold 
Cross-Validation  

 

General Purpose  

The term cluster analysis (first used by Tryon, 1939) encompasses a number of different 
algorithms and methods for grouping objects of similar kind into respective categories. A 
general question facing researchers in many areas of inquiry is how to organize observed 
data into meaningful structures, that is, to develop taxonomies. In other words cluster 
analysis is an exploratory data analysis tool which aims at sorting different objects into 
groups in a way that the degree of association between two objects is maximal if they 
belong to the same group and minimal otherwise. Given the above, cluster analysis can 
be used to discover structures in data without providing an explanation/interpretation. In 
other words, cluster analysis simply discovers structures in data without explaining why 
they exist.  

We deal with clustering in almost every aspect of daily life. For example, a group of 
diners sharing the same table in a restaurant may be regarded as a cluster of people. In 
food stores items of similar nature, such as different types of meat or vegetables are 
displayed in the same or nearby locations. There is a countless number of examples in 
which clustering playes an important role. For instance, biologists have to organize the 
different species of animals before a meaningful description of the differences between 
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animals is possible. According to the modern system employed in biology, man belongs 
to the primates, the mammals, the amniotes, the vertebrates, and the animals. Note how in 
this classification, the higher the level of aggregation the less similar are the members in 
the respective class. Man has more in common with all other primates (e.g., apes) than it 
does with the more "distant" members of the mammals (e.g., dogs), etc. For a review of 
the general categories of cluster analysis methods, see Joining (Tree Clustering), Two-
way Joining (Block Clustering), and k-Means Clustering. In short, whatever the nature of 
your business is, sooner or later you will run into a clustering problem of one form or 
another.  

Statistical Significance Testing  

Note that the above discussions refer to clustering algorithms and do not mention 
anything about statistical significance testing. In fact, cluster analysis is not as much a 
typical statistical test as it is a "collection" of different algorithms that "put objects into 
clusters according to well defined similarity rules." The point here is that, unlike many 
other statistical procedures, cluster analysis methods are mostly used when we do not 
have any a priori hypotheses, but are still in the exploratory phase of our research. In a 
sense, cluster analysis finds the "most significant solution possible." Therefore, statistical 
significance testing is really not appropriate here, even in cases when p-levels are 
reported (as in k-means clustering).  

Area of Application  

Clustering techniques have been applied to a wide variety of research problems. Hartigan 
(1975) provides an excellent summary of the many published studies reporting the results 
of cluster analyses. For example, in the field of medicine, clustering diseases, cures for 
diseases, or symptoms of diseases can lead to very useful taxonomies. In the field of 
psychiatry, the correct diagnosis of clusters of symptoms such as paranoia, schizophrenia, 
etc. is essential for successful therapy. In archeology, researchers have attempted to 
establish taxonomies of stone tools, funeral objects, etc. by applying cluster analytic 
techniques. In general, whenever one needs to classify a "mountain" of information into 
manageable meaningful piles, cluster analysis is of great utility.  

 
 
 

 

Joining (Tree Clustering)  

• Hierarchical Tree  
• Distance Measures  
• Amalgamation or Linkage Rules  
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General Logic  

The example in the General Purpose Introduction illustrates the goal of the joining or tree 
clustering algorithm. The purpose of this algorithm is to join together objects (e.g., 
animals) into successively larger clusters, using some measure of similarity or distance. A 
typical result of this type of clustering is the hierarchical tree.  

Hierarchical Tree  

Consider a Horizontal Hierarchical Tree Plot (see graph below), on the left of the plot, 
we begin with each object in a class by itself. Now imagine that, in very small steps, we 
"relax" our criterion as to what is and is not unique. Put another way, we lower our 
threshold regarding the decision when to declare two or more objects to be members of 
the same cluster.  

 

As a result we link more and more objects together and aggregate (amalgamate) larger 
and larger clusters of increasingly dissimilar elements. Finally, in the last step, all objects 
are joined together. In these plots, the horizontal axis denotes the linkage distance (in 
Vertical Icicle Plots, the vertical axis denotes the linkage distance). Thus, for each node 
in the graph (where a new cluster is formed) we can read off the criterion distance at 
which the respective elements were linked together into a new single cluster. When the 
data contain a clear "structure" in terms of clusters of objects that are similar to each 
other, then this structure will often be reflected in the hierarchical tree as distinct 
branches. As the result of a successful analysis with the joining method, one is able to 
detect clusters (branches) and interpret those branches.  

Distance Measures  

The joining or tree clustering method uses the dissimilarities (similarities) or distances 
between objects when forming the clusters. Similarities are a set of rules that serve as 
criteria for grouping or separating items. In the previous example the rule for grouping a 
number of dinners was whether they shared the same table or not. These distances 
(similarities) can be based on a single dimension or multiple dimensions, with each 



 127 

dimension representing a rule or condition for grouping objects. For example, if we were 
to cluster fast foods, we could take into account the number of calories they contain, their 
price, subjective ratings of taste, etc. The most straightforward way of computing 
distances between objects in a multi-dimensional space is to compute Euclidean 
distances. If we had a two- or three-dimensional space this measure is the actual 
geometric distance between objects in the space (i.e., as if measured with a ruler). 
However, the joining algorithm does not "care" whether the distances that are "fed" to it 
are actual real distances, or some other derived measure of distance that is more 
meaningful to the researcher; and it is up to the researcher to select the right method for 
his/her specific application.  

Euclidean distance. This is probably the most commonly chosen type of distance. It 
simply is the geometric distance in the multidimensional space. It is computed as:  

distance(x,y) = { i (xi - yi)
2 } ½  

Note that Euclidean (and squared Euclidean) distances are usually computed from raw 
data, and not from standardized data. This method has certain advantages (e.g., the 
distance between any two objects is not affected by the addition of new objects to the 
analysis, which may be outliers). However, the distances can be greatly affected by 
differences in scale among the dimensions from which the distances are computed. For 
example, if one of the dimensions denotes a measured length in centimeters, and you then 
convert it to millimeters (by multiplying the values by 10), the resulting Euclidean or 
squared Euclidean distances (computed from multiple dimensions) can be greatly 
affected (i.e., biased by those dimensions which have a larger scale), and consequently, 
the results of cluster analyses may be very different. Generally, it is good practice to 
transform the dimensions so they have similar scales.  

Squared Euclidean distance. You may want to square the standard Euclidean distance 
in order to place progressively greater weight on objects that are further apart. This 
distance is computed as (see also the note in the previous paragraph):  

distance(x,y) = i (xi - yi)
2  

City-block (Manhattan) distance. This distance is simply the average difference across 
dimensions. In most cases, this distance measure yields results similar to the simple 
Euclidean distance. However, note that in this measure, the effect of single large 
differences (outliers) is dampened (since they are not squared). The city-block distance is 
computed as:  

distance(x,y) = i |xi - yi|  

Chebychev distance. This distance measure may be appropriate in cases when one wants 
to define two objects as "different" if they are different on any one of the dimensions. The 
Chebychev distance is computed as:  
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distance(x,y) = Maximum|xi - yi|  

Power distance. Sometimes one may want to increase or decrease the progressive weight 
that is placed on dimensions on which the respective objects are very different. This can 
be accomplished via the power distance. The power distance is computed as:  

distance(x,y) = ( i |xi - yi|
p)1/r  

where r and p are user-defined parameters. A few example calculations may demonstrate 
how this measure "behaves." Parameter p controls the progressive weight that is placed 
on differences on individual dimensions, parameter r controls the progressive weight that 
is placed on larger differences between objects. If r and p are equal to 2, then this 
distance is equal to the Euclidean distance.  

Percent disagreement. This measure is particularly useful if the data for the dimensions 
included in the analysis are categorical in nature. This distance is computed as:  

distance(x,y) = (Number of xi yi)/ i  

Amalgamation or Linkage Rules  

At the first step, when each object represents its own cluster, the distances between those 
objects are defined by the chosen distance measure. However, once several objects have 
been linked together, how do we determine the distances between those new clusters? In 
other words, we need a linkage or amalgamation rule to determine when two clusters are 
sufficiently similar to be linked together. There are various possibilities: for example, we 
could link two clusters together when any two objects in the two clusters are closer 
together than the respective linkage distance. Put another way, we use the "nearest 
neighbors" across clusters to determine the distances between clusters; this method is 
called single linkage. This rule produces "stringy" types of clusters, that is, clusters 
"chained together" by only single objects that happen to be close together. Alternatively, 
we may use the neighbors across clusters that are furthest away from each other; this 
method is called complete linkage. There are numerous other linkage rules such as these 
that have been proposed.  

Single linkage (nearest neighbor). As described above, in this method the distance 
between two clusters is determined by the distance of the two closest objects (nearest 
neighbors) in the different clusters. This rule will, in a sense, string objects together to 
form clusters, and the resulting clusters tend to represent long "chains."  

Complete linkage (furthest neighbor). In this method, the distances between clusters 
are determined by the greatest distance between any two objects in the different clusters 
(i.e., by the "furthest neighbors"). This method usually performs quite well in cases when 
the objects actually form naturally distinct "clumps." If the clusters tend to be somehow 
elongated or of a "chain" type nature, then this method is inappropriate.  
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Unweighted pair-group average. In this method, the distance between two clusters is 
calculated as the average distance between all pairs of objects in the two different 
clusters. This method is also very efficient when the objects form natural distinct 
"clumps," however, it performs equally well with elongated, "chain" type clusters. Note 
that in their book, Sneath and Sokal (1973) introduced the abbreviation UPGMA to refer 
to this method as unweighted pair-group method using arithmetic averages.  

Weighted pair-group average. This method is identical to the unweighted pair-group 
average method, except that in the computations, the size of the respective clusters (i.e., 
the number of objects contained in them) is used as a weight. Thus, this method (rather 
than the previous method) should be used when the cluster sizes are suspected to be 
greatly uneven. Note that in their book, Sneath and Sokal (1973) introduced the 
abbreviation WPGMA to refer to this method as weighted pair-group method using 
arithmetic averages.  

Unweighted pair-group centroid. The centroid of a cluster is the average point in the 
multidimensional space defined by the dimensions. In a sense, it is the center of gravity 
for the respective cluster. In this method, the distance between two clusters is determined 
as the difference between centroids. Sneath and Sokal (1973) use the abbreviation 
UPGMC to refer to this method as unweighted pair-group method using the centroid 
average.  

Weighted pair-group centroid (median). This method is identical to the previous one, 
except that weighting is introduced into the computations to take into consideration 
differences in cluster sizes (i.e., the number of objects contained in them). Thus, when 
there are (or one suspects there to be) considerable differences in cluster sizes, this 
method is preferable to the previous one. Sneath and Sokal (1973) use the abbreviation 
WPGMC to refer to this method as weighted pair-group method using the centroid 
average.  

Ward's method. This method is distinct from all other methods because it uses an 
analysis of variance approach to evaluate the distances between clusters. In short, this 
method attempts to minimize the Sum of Squares (SS) of any two (hypothetical) clusters 
that can be formed at each step. Refer to Ward (1963) for details concerning this method. 
In general, this method is regarded as very efficient, however, it tends to create clusters of 
small size.  

For an overview of the other two methods of clustering, see Two-way Joining and k-
Means Clustering.  
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Two-way Joining  

• Introductory Overview  
• Two-way Joining  

Introductory Overview  

Previously, we have discussed this method in terms of "objects" that are to be clustered 
(see Joining (Tree Clustering)). In all other types of analyses the research question of 
interest is usually expressed in terms of cases (observations) or variables. It turns out that 
the clustering of both may yield useful results. For example, imagine a study where a 
medical researcher has gathered data on different measures of physical fitness (variables) 
for a sample of heart patients (cases). The researcher may want to cluster cases (patients) 
to detect clusters of patients with similar syndromes. At the same time, the researcher 
may want to cluster variables (fitness measures) to detect clusters of measures that appear 
to tap similar physical abilities.  

Two-way Joining  

Given the discussion in the paragraph above concerning whether to cluster cases or 
variables, one may wonder why not cluster both simultaneously? Two-way joining is 
useful in (the relatively rare) circumstances when one expects that both cases and 
variables will simultaneously contribute to the uncovering of meaningful patterns of 
clusters.  

 

For example, returning to the example above, the medical researcher may want to 
identify clusters of patients that are similar with regard to particular clusters of similar 
measures of physical fitness. The difficulty with interpreting these results may arise from 
the fact that the similarities between different clusters may pertain to (or be caused by) 
somewhat different subsets of variables. Thus, the resulting structure (clusters) is by 
nature not homogeneous. This may seem a bit confusing at first, and, indeed, compared to 
the other clustering methods described (see Joining (Tree Clustering) and k-Means 
Clustering), two-way joining is probably the one least commonly used. However, some 
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researchers believe that this method offers a powerful exploratory data analysis tool (for 
more information you may want to refer to the detailed description of this method in 
Hartigan, 1975).  

 
 
 

 
k-Means Clustering  

• Example  
• Computations  
• Interpretation of results  

General logic  

This method of clustering is very different from the Joining (Tree Clustering) and Two-
way Joining. Suppose that you already have hypotheses concerning the number of 
clusters in your cases or variables. You may want to "tell" the computer to form exactly 3 
clusters that are to be as distinct as possible. This is the type of research question that can 
be addressed by the k- means clustering algorithm. In general, the k-means method will 
produce exactly k different clusters of greatest possible distinction. It should be 
mentioned that the best number of clusters k leading to the greatest separation (distance) 
is not known as a priori and must be computed from the data (see Finding the Right 
Number of Clusters).  

Example  

In the physical fitness example (see Two-way Joining), the medical researcher may have 
a "hunch" from clinical experience that her heart patients fall basically into three different 
categories with regard to physical fitness. She might wonder whether this intuition can be 
quantified, that is, whether a k-means cluster analysis of the physical fitness measures 
would indeed produce the three clusters of patients as expected. If so, the means on the 
different measures of physical fitness for each cluster would represent a quantitative way 
of expressing the researcher's hypothesis or intuition (i.e., patients in cluster 1 are high on 
measure 1, low on measure 2, etc.).  

Computations  

Computationally, you may think of this method as analysis of variance (ANOVA) "in 
reverse." The program will start with k random clusters, and then move objects between 
those clusters with the goal to 1) minimize variability within clusters and 2) maximize 
variability between clusters. In other words, the similarity rules will apply maximally to 
the members of one cluster and minimally to members belonging to the rest of the 
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clusters. This is analogous to "ANOVA in reverse" in the sense that the significance test 
in ANOVA evaluates the between group variability against the within-group variability 
when computing the significance test for the hypothesis that the means in the groups are 
different from each other. In k-means clustering, the program tries to move objects (e.g., 
cases) in and out of groups (clusters) to get the most significant ANOVA results.  

Interpretation of results  

Usually, as the result of a k-means clustering analysis, we would examine the means for 
each cluster on each dimension to assess how distinct our k clusters are. Ideally, we 
would obtain very different means for most, if not all dimensions, used in the analysis. 
The magnitude of the F values from the analysis of variance performed on each 
dimension is another indication of how well the respective dimension discriminates 
between clusters.  

 
 
 

 
EM (Expectation Maximization) Clustering  

• Introductory Overview  
• The EM Algorithm  

Introductory Overview  

The methods described here are similar to the k-Means algorithm described above, and 
you may want to review that section for a general overview of these techniques and their 
applications. The general purpose of these techniques is to detect clusters in observations 
(or variables) and to assign those observations to the clusters. A typical example 
application for this type of analysis is a marketing research study in which a number of 
consumer behavior related variables are measured for a large sample of respondents. The 
purpose of the study is to detect "market segments," i.e., groups of respondents that are 
somehow more similar to each other (to all other members of the same cluster) when 
compared to respondents that "belong to" other clusters. In addition to identifying such 
clusters, it is usually equally of interest to determine how the clusters are different, i.e., 
determine the specific variables or dimensions that vary and how they vary in regard to 
members in different clusters.  

k-means clustering. To reiterate, the classic k-Means algorithm was popularized and 
refined by Hartigan (1975; see also Hartigan and Wong, 1978). The basic operation of 
that algorithm is relatively simple: Given a fixed number of (desired or hypothesized) k 
clusters, assign observations to those clusters so that the means across clusters (for all 
variables) are as different from each other as possible.  
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Extensions and generalizations. The EM (expectation maximization) algorithm extends 
this basic approach to clustering in two important ways:  

1. Instead of assigning cases or observations to clusters to maximize the differences 
in means for continuous variables, the EM clustering algorithm computes 
probabilities of cluster memberships based on one or more probability 
distributions. The goal of the clustering algorithm then is to maximize the overall 
probability or likelihood of the data, given the (final) clusters.  

2. Unlike the classic implementation of k-means clustering, the general EM 
algorithm can be applied to both continuous and categorical variables (note that 
the classic k-means algorithm can also be modified to accommodate categorical 
variables). 

The EM Algorithm  

The EM algorithm for clustering is described in detail in Witten and Frank (2001). The 
basic approach and logic of this clustering method is as follows. Suppose you measure a 
single continuous variable in a large sample of observations. Further, suppose that the 
sample consists of two clusters of observations with different means (and perhaps 
different standard deviations); within each sample, the distribution of values for the 
continuous variable follows the normal distribution. The resulting distribution of values 
(in the population) may look like this:  

 

Mixtures of distributions.  The illustration shows two normal distributions with different 
means and different standard deviations, and the sum of the two distributions. Only the 
mixture (sum) of the two normal distributions (with different means and standard 
deviations) would be observed. The goal of EM clustering is to estimate the means and 
standard deviations for each cluster so as to maximize the likelihood of the observed data 
(distribution). Put another way, the EM algorithm attempts to approximate the observed 
distributions of values based on mixtures of different distributions in different clusters.  
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With the implementation of the EM algorithm in some computer programs, you may be 
able to select (for continuous variables) different distributions such as the normal, log-
normal, and Poisson distributions. You can select different distributions for different 
variables and, thus, derive clusters for mixtures of different types of distributions.  

Categorical variables. The EM algorithm can also accommodate categorical variables. 
The method will at first randomly assign different probabilities (weights, to be precise) to 
each class or category, for each cluster. In successive iterations, these probabilities are 
refined (adjusted) to maximize the likelihood of the data given the specified number of 
clusters.  

Classification probabilities instead of classifications. The results of EM clustering are 
different from those computed by k-means clustering. The latter will assign observations 
to clusters to maximize the distances between clusters. The EM algorithm does not 
compute actual assignments of observations to clusters, but classification probabilities. In 
other words, each observation belongs to each cluster with a certain probability. Of 
course, as a final result you can usually review an actual assignment of observations to 
clusters, based on the (largest) classification probability.  

 
 
 

 
Finding the Right Number of Clusters in k-Means and EM 
Clustering: v-Fold Cross-Validation  

An important question that needs to be answered before applying the k-means or EM 
clustering algorithms is how many clusters there are in the data. This is not known a 
priori  and, in fact, there might be no definite or unique answer as to what value k should 
take. In other words, k is a nuisance parameter of the clustering model. Luckily, an 
estimate of k can be obtained from the data using the method of cross-validation. 
Remember that the k-means and EM methods will determine cluster solutions for a 
particular user-defined number of clusters. The k-means and EM clustering techniques 
(described above) can be optimized and enhanced for typical applications in data mining. 
The general metaphor of data mining implies the situation in which an analyst searches 
for useful structures and "nuggets" in the data, usually without any strong a priori 
expectations of what the analysist might find (in contrast to the hypothesis-testing 
approach of scientific research). In practice, the analyst usually does not know ahead of 
time how many clusters there might be in the sample. For that reason, some programs 
include an implementation of a v-fold cross-validation algorithm for automatically 
determining the number of clusters in the data.  

This unique algorithm is immensely useful in all general "pattern-recognition" tasks - to 
determine the number of market segments in a marketing research study, the number of 
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distinct spending patterns in studies of consumer behavior, the number of clusters of 
different medical symptoms, the number of different types (clusters) of documents in text 
mining, the number of weather patterns in meteorological research, the number of defect 
patterns on silicon wafers, and so on.  

The v-fold cross-validation algorithm applied to clustering. The v-fold cross-
validation algorithm is described in some detail in Classification Trees and General 
Classification and Regression Trees (GC&RT). The general idea of this method is to 
divide the overall sample into a number of v folds. The same type of analysis is then 
successively applied to the observations belonging to the v-1 folds (training sample), and 
the results of the analyses are applied to sample v (the sample or fold that was not used to 
estimate the parameters, build the tree, determine the clusters, etc.; this is the testing 
sample) to compute some index of predictive validity. The results for the v replications 
are aggregated (averaged) to yield a single measure of the stability of the respective 
model, i.e., the validity of the model for predicting new observations.  

Cluster analysis is an unsupervised learning technique, and we cannot observe the (real) 
number of clusters in the data. However, it is reasonable to replace the usual notion 
(applicable to supervised learning) of "accuracy" with that of "distance." In general, we 
can apply the v-fold cross-validation method to a range of numbers of clusters in k-means 
or EM clustering, and observe the resulting average distance of the observations (in the 
cross-validation or testing samples) from their cluster centers (for k-means clustering); 
for EM clustering, an appropriate equivalent measure would be the average negative (log-
) likelihood computed for the observations in the testing samples.  

Reviewing the results of v-fold cross-validation. The results of v-fold cross-validation 
are best reviewed in a simple line graph.  

 

Shown here is the result of analyzing a data set widely known to contain three clusters of 
observations (specifically, the well-known Iris data file reported by Fisher, 1936, and 
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widely referenced in the literature on discriminant function analysis). Also shown (in the 
graph to the right) are the results for analyzing simple normal random numbers. The 
"real" data (shown to the left) exhibit the characteristic scree-plot pattern (see also Factor 
Analysis), where the cost function (in this case, 2 times the log-likelihood of the cross-
validation data, given the estimated parameters) quickly decreases as the number of 
clusters increases, but then (past 3 clusters) levels off, and even increases as the data are 
overfitted. Alternatively, the random numbers show no such pattern, in fact, there is 
basically no decrease in the cost function at all, and it quickly begins to increase as the 
number of clusters increases and overfitting occurs.  

It is easy to see from this simple illustration how useful the v-fold cross-validation 
technique, applied to k-means and EM clustering can be for determining the "right" 
number of clusters in the data.  
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Chapter 11 
Correspondence Analysis 

 

• General Purpose  
• Supplementary Points  
• Multiple Correspondence Analysis  
• Burt Tables  

 

General Purpose  

Correspondence analysis is a descriptive/exploratory technique designed to analyze 
simple two-way and multi-way tables containing some measure of correspondence 
between the rows and columns. The results provide information which is similar in nature 
to those produced by Factor Analysis techniques, and they allow one to explore the 
structure of categorical variables included in the table. The most common kind of table of 
this type is the two-way frequency crosstabulation table (see, for example, Basic 
Statistics or Log-Linear).  

In a typical correspondence analysis, a crosstabulation table of frequencies is first 
standardized, so that the relative frequencies across all cells sum to 1.0. One way to state 
the goal of a typical analysis is to represent the entries in the table of relative frequencies 
in terms of the distances between individual rows and/or columns in a low-dimensional 
space. This is best illustrated by a simple example, which will be described below. There 
are several parallels in interpretation between correspondence analysis and Factor 
Analysis, and some similar concepts will also be pointed out below.  

For a comprehensive description of this method, computational details, and its 
applications (in the English language), refer to the classic text by Greenacre (1984). 
These methods were originally developed primarily in France by Jean-Paul Benzérci in 
the early 1960's and 1970's (e.g., see Benzérci, 1973; see also Lebart, Morineau, and 
Tabard, 1977), but have only more recently gained increasing popularity in English-
speaking countries (see, for example, Carrol, Green, and Schaffer, 1986; Hoffman and 
Franke, 1986). (Note that similar techniques were developed independently in several 
countries, where they were known as optimal scaling, reciprocal averaging, optimal 
scoring, quantification method, or homogeneity analysis). In the following paragraphs, a 
general introduction to correspondence analysis will be presented.  

Overview. Suppose you collected data on the smoking habits of different employees in a 
company. The following data set is presented in Greenacre (1984, p. 55).  

  Smoking Category   
Staff (1) (2) (3) (4) Row 
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Group None Light  Medium Heavy Totals 
(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

  4 
  4 
25 
18 
10 

  2 
  3 
10 
24 
  6 

  3 
  7 
12 
33 
  7 

  2 
  4 
  4 
13 
  2 

  11 
  18 
  51 
  88 
  25 

Column Totals 61 45 62 25 193 

 
One may think of the 4 column values in each row of the table as coordinates in a 4-
dimensional space, and one could compute the (Euclidean) distances between the 5 row 
points in the 4- dimensional space. The distances between the points in the 4-dimensional 
space summarize all information about the similarities between the rows in the table 
above. Now suppose one could find a lower-dimensional space, in which to position the 
row points in a manner that retains all, or almost all, of the information about the 
differences between the rows. You could then present all information about the 
similarities between the rows (types of employees in this case) in a simple 1, 2, or 3-
dimensional graph. While this may not appear to be particularly useful for small tables 
like the one shown above, one can easily imagine how the presentation and interpretation 
of very large tables (e.g., differential preference for 10 consumer items among 100 
groups of respondents in a consumer survey) could greatly benefit from the simplification 
that can be achieved via correspondence analysis (e.g., represent the 10 consumer items 
in a two- dimensional space).  

Mass. To continue with the simpler example of the two-way table presented above, 
computationally, the program will first compute the relative frequencies for the frequency 
table, so that the sum of all table entries is equal to 1.0 (each element will be divided by 
the total, i.e., 193). One could say that this table now shows how one unit of mass is 
distributed across the cells. In the terminology of correspondence analysis, the row and 
column totals of the matrix of relative frequencies are called the row mass and column 
mass, respectively.  

Inertia . The term inertia in correspondence analysis is used by analogy with the 
definition in applied mathematics of "moment of inertia," which stands for the integral of 
mass times the squared distance to the centroid (e.g., Greenacre, 1984, p. 35). Inertia is 
defined as the total Pearson Chi-square for the two-way divided by the total sum (193 in 
the present example).  

Inertia  and row and column profiles. If the rows and columns in a table are completely 
independent of each other, the entries in the table (distribution of mass) can be 
reproduced from the row and column totals alone, or row and column profiles in the 
terminology of correspondence analysis. According to the well-known formula for 
computing the Chi-square statistic for two-way tables, the expected frequencies in a 
table, where the column and rows are independent of each other, are equal to the 
respective column total times the row total, divided by the grand total. Any deviations 
from the expected values (expected under the hypothesis of complete independence of the 
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row and column variables) will contribute to the overall Chi-square. Thus, another way 
of looking at correspondence analysis is to consider it a method for decomposing the 
overall Chi-square statistic (or Inertia=Chi- square/Total N) by identifying a small 
number of dimensions in which the deviations from the expected values can be 
represented. This is similar to the goal of Factor Analysis, where the total variance is 
decomposed, so as to arrive at a lower-dimensional representation of the variables that 
allows one to reconstruct most of the variance/covariance matrix of variables.  

Analyzing rows and columns. This simple example began with a discussion of the row-
points in the table shown above. However, one may rather be interested in the column 
totals, in which case one could plot the column points in a small-dimensional space, 
which satisfactorily reproduces the similarity (and distances) between the relative 
frequencies for the columns, across the rows, in the table shown above. In fact it is 
customary to simultaneously plot the column points and the row points in a single graph, 
to summarize the information contained in a two-way table.  

Reviewing results. Let us now look at some of the results for the table shown above. 
First, shown below are the so-called singular values , eigenvalues, percentages of inertia 
explained, cumulative percentages, and the contribution to the overall Chi- square.  

Eigenvalues and Inertia for all Dimensions 
Input Table (Rows x Columns):  5 x 4 
Total Inertia = .08519 Chi² = 16.442  
No. of 
Dims 

Singular 
Values 

Eigen- 
Values 

Perc. of 
Inertia  

Cumulatv 
Percent 

Chi 
Squares 

1 
2 
3 

.273421 

.100086 

.020337 

.074759 

.010017 

.000414 

87.75587 
11.75865 

.48547 

87.7559 
99.5145 

100.0000 

14.42851 
1.93332 
.07982 

 
Note that the dimensions are "extracted" so as to maximize the distances between the row 
or column points, and successive dimensions (which are independent of or orthogonal to 
each other) will "explain" less and less of the overall Chi-square value (and, thus, 
inertia). Thus, the extraction of the dimensions is similar to the extraction of principal 
components in Factor Analysis.  

First, it appears that, with a single dimension, 87.76% of the inertia can be "explained," 
that is, the relative frequency values that can be reconstructed from a single dimension 
can reproduce 87.76% of the total Chi-square value (and, thus, of the inertia) for this 
two-way table; two dimensions allow you to explain 99.51%.  

Maximum number of dimensions. Since the sums of the frequencies across the columns 
must be equal to the row totals, and the sums across the rows equal to the column totals, 
there are in a sense only (no. of columns-1) independent entries in each row, and (no. of 
rows-1) independent entries in each column of the table (once you know what these 
entries are, you can fill in the rest based on your knowledge of the column and row 
marginal totals). Thus, the maximum number of eigenvalues that can be extracted from a 
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two- way table is equal to the minimum of the number of columns minus 1, and the 
number of rows minus 1. If you choose to extract (i.e., interpret) the maximum number of 
dimensions that can be extracted, then you can reproduce exactly all information 
contained in the table.  

Row and column coordinates. Next look at the coordinates for the two-dimensional 
solution.  

Row Name Dim. 1 Dim. 2 
(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

-.065768 
.258958 

-.380595 
.232952 

-.201089 

.193737 

.243305 

.010660 
-.057744 
-.078911 

 
Of course, you can plot these coordinates in a two-dimensional scatterplot. Remember 
that the purpose of correspondence analysis is to reproduce the distances between the row 
and/or column points in a two-way table in a lower-dimensional display; note that, as in 
Factor Analysis, the actual rotational orientation of the axes is arbitrarily chosen so that 
successive dimensions "explain" less and less of the overall Chi-square value (or inertia). 
You could, for example, reverse the signs in each column in the table shown above, 
thereby effectively rotating the respective axis in the plot by 180 degrees.  

What is important are the distances of the points in the two-dimensional display, which 
are informative in that row points that are close to each other are similar with regard to 
the pattern of relative frequencies across the columns. If you have produced this plot you 
will see that, along the most important first axis in the plot, the Senior employees and 
Secretaries are relatively close together on the left side of the origin (scale position 0). If 
you looked at the table of relative row frequencies (i.e., frequencies standardized, so that 
their sum in each row is equal to 100%), you will see that these two groups of employees 
indeed show very similar patterns of relative frequencies across the categories of smoking 
intensity.  

Percentages of Row Totals 

  Smoking Category   
Staff 
Group 

(1) 
None 

(2) 
Light  

(3) 
Medium 

(4) 
Heavy 

Row 
Totals 

(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

36.36 
22.22 
49.02 
20.45 
40.00 

18.18 
16.67 
19.61 
27.27 
24.00 

27.27 
38.89 
23.53 
37.50 
28.00 

18.18 
22.22 
  7.84 
14.77 
  8.00 

100.00 
100.00 
100.00 
100.00 
100.00 

 
Obviously the final goal of correspondence analysis is to find theoretical interpretations 
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(i.e., meaning) for the extracted dimensions. One method that may aid in interpreting 
extracted dimensions is to plot the column points. Shown below are the column 
coordinates for the first and second dimension.  

Smoking 
category 

  
Dim. 1 

  
Dim. 2 

None 
Light 
Medium 
Heavy 

-.393308 
.099456 
.196321 
.293776 

.030492 
-.141064 
-.007359 
.197766 

 
It appears that the first dimension distinguishes mostly between the different degrees of 
smoking, and in particular between category None and the others. Thus one can interpret 
the greater similarity of Senior Managers with Secretaries, with regard to their position 
on the first axis, as mostly deriving from the relatively large numbers of None smokers in 
these two groups of employees.  

Compatibility of row and column coordinates. It is customary to summarize the row 
and column coordinates in a single plot. However, it is important to remember that in 
such plots, one can only interpret the distances between row points, and the distances 
between column points, but not the distances between row points and column points.  

 

To continue with this example, it would not be appropriate to say that the category None 
is similar to Senior Employees (the two points are very close in the simultaneous plot of 
row and column coordinates). However, as was indicated earlier, it is appropriate to make 
general statements about the nature of the dimensions, based on which side of the origin 
particular points fall. For example, because category None is the only column point on 
the left side of the origin for the first axis, and since employee group Senior Employees 
also falls onto that side of the first axis, one may conclude that the first axis separates 
None smokers from the other categories of smokers, and that Senior Employees are 
different from, for example, Junior Employees, in that there are relatively more non-
smoking Senior Employees.  
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Scaling of the coordinates (standardization options). Another important decision that 
the analyst must make concerns the scaling of the coordinates. The nature of the choice 
pertains to whether or not you want to analyze the relative row percentages, column 
percentages, or both. In the context of the example described above, the row percentages 
were shown to illustrate how the patterns of those percentages across the columns are 
similar for points which appear more closely together in the graphical display of the row 
coordinates. Put another way, the coordinates are based on the analysis of the row profile 
matrix, where the sum of the table entries in a row, across all columns, is equal to 1.0 
(each entry r ij in the row profile matrix can be interpreted as the conditional probability 
that a case belongs to column j, given its membership in row i). Thus, the coordinates are 
computed so as to maximize the differences between the points with respect to the row 
profiles (row percentages). The row coordinates are computed from the row profile 
matrix, the column coordinates are computed from the column profile matrix.  

A fourth option, Canonical standardization (see Gifi, 1981), is also provided, and it 
amounts to a standardization of the columns and rows of the matrix of relative 
frequencies. This standardization amounts to a rescaling of the coordinates based on the 
row profile standardization and the column profile standardization, and this type of 
standardization is not widely used. Note also that a variety of other custom 
standardizations can be easily performed if you have the raw eigenvalues and eigenvector 
matrices.  

Metric of coordinate system. In several places in this introduction, the term distance 
was (loosely) used to refer to the differences between the pattern of relative frequencies 
for the rows across the columns, and columns across the rows, which are to be 
reproduced in a lower-dimensional solution as a result of the correspondence analysis. 
Actually, these distances represented by the coordinates in the respective space are not 
simple Euclidean distances computed from the relative row or column frequencies, but 
rather, they are weighted distances. Specifically, the weighting that is applied is such that 
the metric in the lower- dimensional space is a Chi-square metric, provided that (1) you 
are comparing row points, and chose either row-profile standardization or both row- and 
column-profile standardization, or (2) you are comparing column points, and chose either 
column-profile standardization or both row- and column-profile standardization.  

In that case (but not if you chose the canonical standardization), the squared Euclidean 
distance between, for example, two row points i and i'  in the respective coordinate system 
of a given number of dimensions actually approximates a weighted (i.e., Chi-square) 
distance between the relative frequencies (see Hoffman and Franke, 1986, formula 21):  

dii '
2 = j (1/cj (pij /ri - p

2
i ' j /ri '))  

In this formula, dii ' stands for the squared distance between the two points, cj stands for 
the column total for the j 'th column of the standardized frequency table (where the sum of 
all entries or mass is equal to 1.0), pij stands for the individual cell entries in the 
standardized frequency table (row i, column j), r i stands for the row total for the i 'th 

column of the relative frequency table, and the summation is over the columns of the 
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table. To reiterate, only the distances between row points, and correspondingly, between 
column points are interpretable in this manner; the distances between row points and 
column points cannot be interpreted.  

Judging the quality  of a solution. A number of auxiliary statistics are reported, to aid in 
the evaluation of the quality of the respective chosen numbers of dimensions. The general 
concern here is that all (or at least most) points are properly represented by the respective 
solution, that is, that their distances to other points can be approximated to a satisfactory 
degree. Shown below are all statistics reported for the row coordinates for the example 
table discussed so far, based on a one-dimensional solution only (i.e., only one dimension 
is used to reconstruct the patterns of relative frequencies across the columns).  

Row Coordinates and Contributions to Inertia 
  
Staff Group 

Coordin. 
Dim.1 

  
Mass 

  
Quality  

Relative 
Inertia  

Inertia  
Dim.1 

Cosine² 
Dim.1 

(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

-.065768 
.258958 
-.380595 
.232952 
-.201089 

.056995 

.093264 

.264249 

.455959 

.129534 

.092232 

.526400 

.999033 

.941934 

.865346 

.031376 

.139467 

.449750 

.308354 

.071053 

.003298 

.083659 

.512006 

.330974 

.070064 

.092232 

.526400 

.999033 

.941934 

.865346 

 
 

Coordinates. The first numeric column shown in the table above contains the 
coordinates, as discussed in the previous paragraphs. To reiterate, the specific 
interpretation of these coordinates depends on the standardization chosen for the solution 
(see above). The number of dimensions is chosen by the user (in this case we chose only 
one dimension), and coordinate values will be shown for each dimension (i.e., there will 
be one column with coordinate values for each dimension).  

Mass. The Mass column contains the row totals (since these are the row coordinates) for 
the table of relative frequencies (i.e., for the table where each entry is the respective 
mass, as discussed earlier in this section). Remember that the coordinates are computed 
based on the matrix of conditional probabilities shown in the Mass column.  

Quality . The Quality column contains information concerning the quality of 
representation of the respective row point in the coordinate system defined by the 
respective numbers of dimensions, as chosen by the user. In the table shown above, only 
one dimension was chosen, and the numbers in the Quality column pertain to the quality 
of representation in the one-dimensional space. To reiterate, computationally, the goal of 
the correspondence analysis is to reproduce the distances between points in a low-
dimensional space. If you extracted (i.e., interpreted) the maximum number of 
dimensions (which is equal to the minimum of the number of rows and the number of 
columns, minus 1), you could reconstruct all distances exactly. The Quality of a point is 
defined as the ratio of the squared distance of the point from the origin in the chosen 
number of dimensions, over the squared distance from the origin in the space defined by 
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the maximum number of dimensions (remember that the metric here is Chi-square, as 
described earlier). By analogy to Factor Analysis, the quality of a point is similar in its 
interpretation to the communality for a variable in factor analysis.  

Note that the Quality measure reported is independent of the chosen method of 
standardization, and always pertains to the default standardization (i.e., the distance 
metric is Chi-square, and the quality measure can be interpreted as the "proportion of 
Chi- square accounted for" for the respective row, given the respective number of 
dimensions). A low quality means that the current number of dimensions does not well 
represent the respective row (or column). In the table shown above, the quality for the 
first row (Senior Managers) is less than .1, indicating that this row point is not well 
represented by the one- dimensional representation of the points.  

Relative inertia . The Quality of a point (see above) represents the proportion of the 
contribution of that point to the overall inertia (Chi-square) that can be accounted for by 
the chosen number of dimensions. However, it does not indicate whether or not, and to 
what extent, the respective point does in fact contribute to the overall inertia (Chi- square 
value). The relative inertia represents the proportion of the total inertia accounted for by 
the respective point, and it is independent of the number of dimensions chosen by the 
user. Note that a particular solution may represent a point very well (high Quality), but 
the same point may not contribute much to the overall inertia (e.g., a row point with a 
pattern of relative frequencies across the columns that is similar to the average pattern 
across all rows).  

Relative inertia  for each dimension. This column contains the relative contribution of 
the respective (row) point to the inertia "accounted for" by the respective dimension. 
Thus, this value will be reported for each (row or column) point, for each dimension.  

Cosine² (quality  or squared correlations with each dimension). This column contains 
the quality for each point, by dimension. The sum of the values in these columns across 
the dimensions is equal to the total Quality value discussed above (since in the example 
table above, only one dimension was chose, the values in this column are identical to the 
values in the overall Quality column). This value may also be interpreted as the 
"correlation" of the respective point with the respective dimension. The term Cosine² 
refers to the fact that this value is also the squared cosine value of the angle the point 
makes with the respective dimension (refer to Greenacre, 1984, for details concerning the 
geometric aspects of correspondence analysis).  

A note about "statistical significance." It should be noted at this point that 
correspondence analysis is an exploratory technique. Actually, the method was developed 
based on a philosophical orientation that emphasizes the development of models that fit 
the data, rather than the rejection of hypotheses based on the lack of fit (Benzecri's 
"second principle" states that "The model must fit the data, not vice versa;" see 
Greenacre, 1984, p. 10). Therefore, there are no statistical significance tests that are 
customarily applied to the results of a correspondence analysis; the primary purpose of 
the technique is to produce a simplified (low- dimensional) representation of the 
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information in a large frequency table (or tables with similar measures of 
correspondence).  

 

 

Supplementary Points  

The introductory section provides an overview of how to interpret the coordinates and 
related statistics computed in a correspondence analysis. An important aid in the 
interpretation of the results from a correspondence analysis is to include supplementary 
row or column points, that were not used to perform the original analyses. For example, 
consider the following results which are based on the example given in the introductory 
(based on Greenacre, 1984).  

Row Name Dim. 1 Dim. 2 
(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

-.065768 
.258958 

-.380595 
.232952 

-.201089 

.193737 

.243305 

.010660 
-.057744 
-.078911 

National Average -.258368 -.117648 

 
The table above shows the coordinate values (for two dimensions) computed for a 
frequency table of different types of employees by type of smoking habit. The row 
labeled National Average contains the coordinate values for the supplementary point, 
which is the national average (percentages) for the different smoking categories (which 
make up the columns of the table; those fictitious percentages reported in Greenacre 
(1984) are: Nonsmokers: 42%, light smokers: 29%, medium smokers, 20%; heavy 
smokers: 9%). If you plotted these coordinates in a two-dimensional scatterplot, along 
with the column coordinates, it would be apparent that the National Average 
supplementary row point is plotted close to the point representing the Secretaries group, 
and on the same side of the horizontal axis (first dimension) as the Nonsmokers column 
point. If you refer back to the original two-way table shown in the introductory section, 
this finding is consistent with the entries in the table of row frequencies, that is, there are 
relatively more nonsmokers among the Secretaries, and in the National Average. Put 
another way, the sample represented in the original frequency table contains more 
smokers than the national average.  

While this type of information could have been easily gleaned from the original 
frequency table (that was used as the input to the analysis), in the case of very large 
tables, such conclusions may not be as obvious.  

Quality  of representation of supplementary points. Another interesting result for 
supplementary points concerns the quality of their representation in the chosen number of 
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dimensions (see the introductory section for a more detailed discussion of the concept of 
quality of representation). To reiterate, the goal of the correspondence analysis is to 
reproduce the distances between the row or column coordinates (patterns of relative 
frequencies across the columns or rows, respectively) in a low-dimensional solution. 
Given such a solution, one may ask whether particular supplementary points of interest 
can be represented equally well in the final space, that is, whether or not their distances 
from the other points in the table can also be represented in the chosen numbers of 
dimensions. Shown below are the summary statistics for the original points, and the 
supplementary row point National Average, for the two-dimensional solution.  

  
Staff Group 

  
Quality  

Cosine² 
Dim.1 

Cosine² 
Dim.2 

(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

.892568 

.991082 

.999817 

.999810 

.998603 

.092232 

.526400 

.999033 

.941934 

.865346 

.800336 

.464682 

.000784 

.057876 

.133257 
National Average .761324 .630578 .130746 

 
The statistics reported in the table above are discussed in the introductory section. In 
short, the Quality of a row or column point is defined as the ratio of the squared distance 
of the point from the origin in the chosen number of dimensions, over the squared 
distance from the origin in the space defined by the maximum number of dimensions 
(remember that the metric here is Chi-square, as described in the introductory section). In 
a sense, the overall quality is the "proportion of squared distance-from-the-overall-
centroid accounted for." The supplementary row point National Average has a quality of 
.76, indicating that it is reasonably well represented in the two-dimensional solution. The 
Cosine² statistic is the quality "accounted for" by the respective row point, by the 
respective dimension (the sum of the Cosine² values over the respective number of 
dimensions is equal to the total Quality, see also the introductory section).  

 

 

Multiple Correspondence Analysis (MCA)  

Multiple correspondence analysis (MCA) may be considered to be an extension of simple 
correspondence analysis to more than two variables. For an introductory overview of 
simple correspondence analysis, refer to the introductory section . Multiple 
correspondence analysis is a simple correspondence analysis carried out on an indicator 
(or design) matrix with cases as rows and categories of variables as columns. Actually, 
one usually analyzes the inner product of such a matrix, called the Burt Table in an 
MCA; this will be discussed later. However, to clarify the interpretation of the results 
from a multiple correspondence analysis, it is easier to discuss the simple correspondence 
analysis of an indicator or design matrix.  
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Indicator or design matrix. Consider again the simple two-way table presented in the 
introductory section:  

  Smoking Category   
Staff 
Group 

(1) 
None 

(2) 
Light  

(3) 
Medium 

(4) 
Heavy 

Row 
Totals 

(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 

  4 
  4 
25 
18 
10 

  2 
  3 
10 
24 
  6 

  3 
  7 
12 
33 
  7 

  2 
  4 
  4 
13 
  2 

  11 
  18 
  51 
  88 
  25 

Column Totals 61 45 62 25 193 

 
Suppose you had entered the data for this table in the following manner, as an indicator 
or design matrix:  

  Staff Group Smoking 
Case 
Number 

Senior 
Manager 

Junior 
Manager 

Senior 
Employee 

Junior 
Employee 

  
Secretary 

  
None 

  
Light  

  
Medium 

  
Heavy 

1 
2 
3 
4 
5 
... 
... 
... 

191 
192 
193 

1 
1 
1 
1 
1 
. 
. 
. 
0 
0 
0 

0 
0 
0 
0 
0 
. 
. 
. 
0 
0 
0 

0 
0 
0 
0 
0 
. 
. 
. 
0 
0 
0 

0 
0 
0 
0 
0 
. 
. 
. 
0 
0 
0 

0 
0 
0 
0 
0 
. 
. 
. 
1 
1 
1 

1 
1 
1 
1 
0 
. 
. 
. 
0 
0 
0 

0 
0 
0 
0 
1 
. 
. 
. 
0 
0 
0 

0 
0 
0 
0 
0 
. 
. 
. 
1 
0 
0 

0 
0 
0 
0 
0 
. 
. 
. 
0 
1 
1 

 
Each one of the 193 total cases in the table is represented by one case in this data file. For 
each case a 1 is entered into the category where the respective case "belongs," and a 0 
otherwise. For example, case 1 represents a Senior Manager who is a None smoker. As 
can be seen in the table above, there are a total of 4 such cases in the two-way table, and 
thus there will be four cases like this in the indicator matrix. In all, there will be 193 cases 
in the indicator or design matrix.  

Analyzing the design matrix. If you now analyzed this data file (design or indicator 
matrix) shown above as if it were a two-way frequency table, the results of the 
correspondence analysis would provide column coordinates that would allow you to 
relate the different categories to each other, based on the distances between the row 
points, i.e., between the individual cases. In fact, the two-dimensional display you would 
obtain for the column coordinates would look very similar to the combined display for 
row and column coordinates, if you had performed the simple correspondence analysis on 
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the two-way frequency table (note that the metric will be different, but the relative 
positions of the points will be very similar).  

More than two variables. The approach to analyzing categorical data outlined above can 
easily be extended to more than two categorical variables. For example, the indicator or 
design matrix could contain two additional variables Male and Female, again coded 0 and 
1, to indicate the subjects' gender; and three variables could be added to indicate to which 
one of three age groups a case belongs. Thus, in the final display, one could represent the 
relationships (similarities) between Gender, Age, Smoking habits, and Occupation (Staff 
Groups).  

Fuzzy coding. It is not necessary that each case is assigned exclusively to only one 
category of each categorical variable. Rather than the 0-or-1 coding scheme, one could 
enter probabilities for membership in a category, or some other measure that represents a 
fuzzy rule for group membership. Greenacre (1984) discusses different types of coding 
schemes of this kind. For example, suppose in the example design matrix shown earlier, 
you had missing data for a few cases regarding their smoking habits. Instead of 
discarding those cases entirely from the analysis (or creating a new category Missing 
data), you could assign to the different smoking categories proportions (which should 
add to 1.0) to represent the probabilities that the respective case belongs to the respective 
category (e.g., you could enter proportions based on your knowledge about estimates for 
the national averages for the different categories).  

Interpretation of coordinates and other results. To reiterate, the results of a multiple 
correspondence analysis are identical to the results you would obtain for the column 
coordinates from a simple correspondence analysis of the design or indicator matrix. 
Therefore, the interpretation of coordinate values, quality values, cosine²'s and other 
statistics reported as the results from a multiple correspondence analysis can be 
interpreted in the same manner as described in the context of the simple correspondence 
analysis (see introductory section), however, these statistics pertain to the total inertia 
associated with the entire design matrix.  

Supplementary column points and "multiple regression" for categorical variables. 
Another application of the analysis of design matrices via correspondence analysis 
techniques is that it allows you to perform the equivalent of a Multiple Regression for 
categorical variables, by adding supplementary columns to the design matrix. For 
example, suppose you added to the design matrix shown earlier two columns to indicate 
whether or not the respective subject had or had not been ill over the past year (i.e., you 
could add one column Ill  and another column Not ill, and again enter 0's and 1's to 
indicate each subject's health status). If, in a simple correspondence analysis of the design 
matrix, you added those columns as supplementary columns to the analysis, then (1) the 
summary statistics for the quality of representation (see the introductory section) for 
those columns would give you an indication of how well you can "explain" illness as a 
function of the other variables in the design matrix, and (2) the display of the column 
points in the final coordinate system would provide an indication of the nature (e.g., 
direction) of the relationships between the columns in the design matrix and the column 
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points indicating illness; this technique (adding supplementary points to an MCA 
analysis) is also sometimes called predictive mapping.  

The Burt table. The actual computations in multiple correspondence analysis are not 
performed on a design or indicator matrix (which, potentially, may be very large if there 
are many cases), but on the inner product of this matrix; this matrix is also called the Burt 
matrix. With frequency tables, this amounts to tabulating the stacked categories against 
each other; for example the Burt for the two-way frequency table presented earlier would 
look like this.  

Employee Smoking   
(1) (2) (3) (4) (5) (1) (2) (3) (4) 

(1) Senior Managers 
(2) Junior Managers 
(3) Senior Employees 
(4) Junior Employees 
(5) Secretaries 
(1) Smoking:None 
(2) Smoking:Light 
(3) Smoking:Medium 
(4) Smoking:Heavy 

11 
0 
0 
0 
0 
4 
2 
3 
2 

0 
18 
0 
0 
0 
4 
3 
7 
4 

0 
0 

51 
0 
0 

25 
10 
12 
4 

0 
0 
0 

88 
0 

18 
24 
33 
13 

0 
0 
0 
0 

25 
10 
6 
7 
2 

4 
4 

25 
18 
10 
61 
0 
0 
0 

2 
3 

10 
24 
6 
0 

45 
0 
0 

3 
7 

12 
33 
7 
0 
0 

62 
0 

2 
4 
4 

13 
2 
0 
0 
0 

25 

 
The Burt has a clearly defined structure. In the case of two categorical variables (shown 
above), it consists of 4 partitions: (1) the crosstabulation of variable Employee against 
itself, (2) the crosstabulation of variable Employee against variable Smoking, (3), the 
crosstabulation of variable Smoking against variable Employee, and (4) the 
crosstabulation of variable Smoking against itself. Note that the matrix is symmetrical, 
and that the sum of the diagonal elements in each partition representing the 
crosstabulation of a variable against itself must be the same (e.g., there were a total of 
193 observations in the present example, and hence, the diagonal elements in the 
crosstabulation tables of variable Employee against itself, and Smoking against itself must 
also be equal to 193).  

Note that the off-diagonal elements in the partitions representing the crosstabulations of a 
variable against itself are equal to 0 in the table shown above. However, this is not 
necessarily always the case, for example, when the Burt was derived from a design or 
indicator matrix that included fuzzy coding of category membership (see above).  

 

 

Burt Tables  

The Burt table is the result of the inner product of a design or indicator matrix, and the 
multiple correspondence analysis results are identical to the results one would obtain for 
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the column points from a simple correspondence analysis of the indicator or design 
matrix (see also MCA).  

For example, suppose you had entered data concerning the Survival for different Age 
groups in different Locations like this:  

  SURVIVAL  AGE LOCATION  
Case No. NO YES LESST50 A50TO69 OVER69 TOKYO  BOSTON GLAMORGN  

1 
2 
3 
4 
... 
... 
... 

762 
763 
764 

0 
1 
0 
0 
. 
. 
. 
1 
0 
0 

1 
0 
1 
1 
. 
. 
. 
0 
1 
1 

0 
1 
0 
0 
. 
. 
. 
0 
1 
0 

1 
0 
1 
0 
. 
. 
. 
1 
0 
1 

0 
0 
0 
1 
. 
. 
. 
0 
0 
0 

0 
1 
0 
0 
. 
. 
. 
1 
0 
0 

0 
0 
1 
0 
. 
. 
. 
0 
1 
0 

1 
0 
0 
1 
. 
. 
. 
0 
0 
1 

 
In this data arrangement, for each case a 1 was entered to indicate to which category, of a 
particular set of categories, a case belongs (e.g., Survival, with the categories No and 
Yes). For example, case 1 survived (a 0 was entered for variable No, and a 1 was entered 
for variable Yes), case 1 is between age 50 and 69 (a 1 was entered for variable A50to69), 
and was observed in Glamorgn). Overall there are 764 observations in the data set.  

If you denote the data (design or indicator matrix) shown above as matrix X, then matrix 
product X'X is a Burt table); shown below is an example of a Burt table that one might 
obtain in this manner.  

SURVIVAL  AGE LOCATION    
NO YES <50 50-69 69+ TOKYO  BOSTON GLAMORGN  

SURVIVAL:NO 
SURVIVAL:YES 
  
AGE:UNDER_50 
AGE:A_50TO69 
AGE:OVER_69  
 
LOCATION:TOKYO 
LOCATION:BOSTON 
LOCATION:GLAMORGN  

210 
0 
  

68 
93 
49 

  
60 
82 
68 

0 
554 

  
212 
258 
84 

  
230 
171 
153 

68 
212 

  
280 

0 
0 
  

151 
58 
71 

93 
258 

  
0 

351 
0 
  

120 
122 
109 

49 
84 

  
0 
0 

133 
  

19 
73 
41 

  60 
230 

  
151 
120 
  19 

  
290 
    0 
    0 

  82 
171 

  
  58 
122 
  73 

  
    0 
253 
    0 

  68 
153 

  
  71 
109 
  41 

  
    0 
    0 
221 

 
 

The Burt table has a clearly defined structure. Overall, the data matrix is symmetrical. In 
the case of 3 categorical variables (as shown above), the data matrix consists 3 x 3 = 9 
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partitions, created by each variable being tabulated against itself, and against the 
categories of all other variables. Note that the sum of the diagonal elements in each 
diagonal partition (i.e., where the respective variables are tabulated against themselves) is 
constant (equal to 764 in this case).  

The off-diagonal elements in each diagonal partition in this example are all 0. If the cases 
in the design or indicator matrix are assigned to categories via fuzzy coding (i.e., if 
probabilities are used to indicate likelihood of membership in a category, rather than 0/1 
coding to indicate actual membership), then the off-diagonal elements of the diagonal 
partitions are not necessarily equal to 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 12 
Data Mining Techniques 
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• Data Mining  
• Crucial Concepts in Data Mining  
• Data Warehousing  
• On-Line Analytic Processing (OLAP)  
• Exploratory Data Analysis (EDA) and Data 

Mining Techniques  
o EDA vs. Hypothesis Testing  
o Computational EDA Techniques  
o Graphical (data visualization) EDA 

techniques  
o Verification of results of EDA  

• Neural Networks  

 

Data Mining  

Data Mining is an analytic process designed to explore data (usually large amounts of 
data - typically business or market related) in search of consistent patterns and/or 
systematic relationships between variables, and then to validate the findings by applying 
the detected patterns to new subsets of data. The ultimate goal of data mining is 
prediction - and predictive data mining is the most common type of data mining and one 
that has the most direct business applications. The process of data mining consists of 
three stages: (1) the initial exploration, (2) model building or pattern identification with 
validation/verification, and (3) deployment (i.e., the application of the model to new data 
in order to generate predictions).  

Stage 1: Exploration. This stage usually starts with data preparation which may involve 
cleaning data, data transformations, selecting subsets of records and - in case of data sets 
with large numbers of variables ("fields") - performing some preliminary feature 
selection operations to bring the number of variables to a manageable range (depending 
on the statistical methods which are being considered). Then, depending on the nature of 
the analytic problem, this first stage of the process of data mining may involve anywhere 
between a simple choice of straightforward predictors for a regression model, to elaborate 
exploratory analyses using a wide variety of graphical and statistical methods (see 
Exploratory Data Analysis (EDA)) in order to identify the most relevant variables and 
determine the complexity and/or the general nature of models that can be taken into 
account in the next stage.  

Stage 2: Model building and validation. This stage involves considering various 
models and choosing the best one based on their predictive performance (i.e., explaining 
the variability in question and producing stable results across samples). This may sound 
like a simple operation, but in fact, it sometimes involves a very elaborate process. There 
are a variety of techniques developed to achieve that goal - many of which are based on 
so-called "competitive evaluation of models," that is, applying different models to the 
same data set and then comparing their performance to choose the best. These techniques 
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- which are often considered the core of predictive data mining - include: Bagging 
(Voting, Averaging), Boosting, Stacking (Stacked Generalizations), and Meta-Learning.  

Stage 3: Deployment. That final stage involves using the model selected as best in the 
previous stage and applying it to new data in order to generate predictions or estimates of 
the expected outcome.  

The concept of Data Mining is becoming increasingly popular as a business information 
management tool where it is expected to reveal knowledge structures that can guide 
decisions in conditions of limited certainty. Recently, there has been increased interest in 
developing new analytic techniques specifically designed to address the issues relevant to 
business Data Mining (e.g., Classification Trees), but Data Mining is still based on the 
conceptual principles of statistics including the traditional Exploratory Data Analysis 
(EDA) and modeling and it shares with them both some components of its general 
approaches and specific techniques.  

However, an important general difference in the focus and purpose between Data Mining 
and the traditional Exploratory Data Analysis (EDA) is that Data Mining is more oriented 
towards applications than the basic nature of the underlying phenomena. In other words, 
Data Mining is relatively less concerned with identifying the specific relations between 
the involved variables. For example, uncovering the nature of the underlying functions or 
the specific types of interactive, multivariate dependencies between variables are not the 
main goal of Data Mining. Instead, the focus is on producing a solution that can generate 
useful predictions. Therefore, Data Mining accepts among others a "black box" approach 
to data exploration or knowledge discovery and uses not only the traditional Exploratory 
Data Analysis (EDA) techniques, but also such techniques as Neural Networks which can 
generate valid predictions but are not capable of identifying the specific nature of the 
interrelations between the variables on which the predictions are based.  

Data Mining is often considered to be "a blend of statistics, AI [artificial intelligence], 
and data base research" (Pregibon, 1997, p. 8), which until very recently was not 
commonly recognized as a field of interest for statisticians, and was even considered by 
some "a dirty word in Statistics" (Pregibon, 1997, p. 8). Due to its applied importance, 
however, the field emerges as a rapidly growing and major area (also in statistics) where 
important theoretical advances are being made (see, for example, the recent annual 
International Conferences on Knowledge Discovery and Data Mining, co-hosted by the 
American Statistical Association).  

For information on Data Mining techniques, please review the summary topics included 
below in this chapter of the Electronic Statistics Textbook. There are numerous books that 
review the theory and practice of data mining; the following books offer a representative 
sample of recent general books on data mining, representing a variety of approaches and 
perspectives:  
 
Berry, M., J., A., & Linoff, G., S., (2000). Mastering data mining. New York: Wiley. 
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Edelstein, H., A. (1999). Introduction to data mining and knowledge discovery (3rd ed). 
Potomac, MD: Two Crows Corp. 
 
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in 
knowledge discovery & data mining. Cambridge, MA: MIT Press. 
 
Han, J., Kamber, M. (2000). Data mining: Concepts and Techniques. New York: 
Morgan-Kaufman. 
 
Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning : 
Data mining, inference, and prediction. New York: Springer. 
 
Pregibon, D. (1997). Data Mining. Statistical Computing and Graphics, 7, 8.  
 
Weiss, S. M., & Indurkhya, N. (1997). Predictive data mining: A practical guide. New 
York: Morgan-Kaufman. 
 
Westphal, C., Blaxton, T. (1998). Data mining solutions. New York: Wiley. 
 
Witten, I. H., & Frank, E. (2000). Data mining. New York: Morgan-Kaufmann. 
 

Crucial Concepts in Data Mining  

Bagging (Voting, Averaging) 
The concept of bagging (voting for classification, averaging for regression-type problems 
with continuous dependent variables of interest) applies to the area of predictive data 
mining, to combine the predicted classifications (prediction) from multiple models, or 
from the same type of model for different learning data. It is also used to address the 
inherent instability of results when applying complex models to relatively small data sets. 
Suppose your data mining task is to build a model for predictive classification, and the 
dataset from which to train the model (learning data set, which contains observed 
classifications) is relatively small. You could repeatedly sub-sample (with replacement) 
from the dataset, and apply, for example, a tree classifier (e.g., C&RT and CHAID) to the 
successive samples. In practice, very different trees will often be grown for the different 
samples, illustrating the instability of models often evident with small datasets. One 
method of deriving a single prediction (for new observations) is to use all trees found in 
the different samples, and to apply some simple voting: The final classification is the one 
most often predicted by the different trees. Note that some weighted combination of 
predictions (weighted vote, weighted average) is also possible, and commonly used. A 
sophisticated (machine learning) algorithm for generating weights for weighted 
prediction or voting is the Boosting procedure.  

Boosting 
The concept of boosting applies to the area of predictive data mining, to generate 
multiple models or classifiers (for prediction or classification), and to derive weights to 
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combine the predictions from those models into a single prediction or predicted 
classification (see also Bagging).  

A simple algorithm for boosting works like this: Start by applying some method (e.g., a 
tree classifier such as C&RT or CHAID) to the learning data, where each observation is 
assigned an equal weight. Compute the predicted classifications, and apply weights to the 
observations in the learning sample that are inversely proportional to the accuracy of the 
classification. In other words, assign greater weight to those observations that were 
difficult to classify (where the misclassification rate was high), and lower weights to 
those that were easy to classify (where the misclassification rate was low). In the context 
of C&RT for example, different misclassification costs (for the different classes) can be 
applied, inversely proportional to the accuracy of prediction in each class. Then apply the 
classifier again to the weighted data (or with different misclassification costs), and 
continue with the next iteration (application of the analysis method for classification to 
the re-weighted data).  

Boosting will generate a sequence of classifiers, where each consecutive classifier in the 
sequence is an "expert" in classifying observations that were not well classified by those 
preceding it. During deployment (for prediction or classification of new cases), the 
predictions from the different classifiers can then be combined (e.g., via voting, or some 
weighted voting procedure) to derive a single best prediction or classification.  

Note that boosting can also be applied to learning methods that do not explicitly support 
weights or misclassification costs. In that case, random sub-sampling can be applied to 
the learning data in the successive steps of the iterative boosting procedure, where the 
probability for selection of an observation into the subsample is inversely proportional to 
the accuracy of the prediction for that observation in the previous iteration (in the 
sequence of iterations of the boosting procedure).  

CRISP 
See Models for Data Mining.  

Data Preparation (in Data Mining) 
Data preparation and cleaning is an often neglected but extremely important step in the 
data mining process. The old saying "garbage-in-garbage-out" is particularly applicable 
to the typical data mining projects where large data sets collected via some automatic 
methods (e.g., via the Web) serve as the input into the analyses. Often, the method by 
which the data where gathered was not tightly controlled, and so the data may contain 
out-of-range values (e.g., Income: -100), impossible data combinations (e.g., Gender: 
Male, Pregnant: Yes), and the like. Analyzing data that has not been carefully screened 
for such problems can produce highly misleading results, in particular in predictive data 
mining.  

Data Reduction (for Data Mining) 
The term Data Reduction in the context of data mining is usually applied to projects 
where the goal is to aggregate or amalgamate the information contained in large datasets 
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into manageable (smaller) information nuggets. Data reduction methods can include 
simple tabulation, aggregation (computing descriptive statistics) or more sophisticated 
techniques like clustering, principal components analysis, etc.  

See also predictive data mining, drill-down analysis.  

Deployment 
The concept of deployment in predictive data mining refers to the application of a model 
for prediction or classification to new data. After a satisfactory model or set of models 
has been identified (trained) for a particular application, one usually wants to deploy 
those models so that predictions or predicted classifications can quickly be obtained for 
new data. For example, a credit card company may want to deploy a trained model or set 
of models (e.g., neural networks, meta-learner) to quickly identify transactions which 
have a high probability of being fraudulent.  

Drill-Down Analysis  
The concept of drill-down analysis applies to the area of data mining, to denote the 
interactive exploration of data, in particular of large databases. The process of drill-down 
analyses begins by considering some simple break-downs of the data by a few variables 
of interest (e.g., Gender, geographic region, etc.). Various statistics, tables, histograms, 
and other graphical summaries can be computed for each group. Next one may want to 
"drill-down" to expose and further analyze the data "underneath" one of the 
categorizations, for example, one might want to further review the data for males from 
the mid-west. Again, various statistical and graphical summaries can be computed for 
those cases only, which might suggest further break-downs by other variables (e.g., 
income, age, etc.). At the lowest ("bottom") level are the raw data: For example, you may 
want to review the addresses of male customers from one region, for a certain income 
group, etc., and to offer to those customers some particular services of particular utility to 
that group.  

Feature Selection 
One of the preliminary stage in predictive data mining, when the data set includes more 
variables than could be included (or would be efficient to include) in the actual model 
building phase (or even in initial exploratory operations), is to select predictors from a 
large list of candidates. For example, when data are collected via automated 
(computerized) methods, it is not uncommon that measurements are recorded for 
thousands or hundreds of thousands (or more) of predictors. The standard analytic 
methods for predictive data mining, such as neural network analyses, classification and 
regression trees, generalized linear models, or general linear models become impractical 
when the number of predictors exceed more than a few hundred variables.  

Feature selection selects a subset of predictors from a large list of candidate predictors 
without assuming that the relationships between the predictors and the dependent or 
outcome variables of interest are linear, or even monotone. Therefore, this is used as a 
pre-processor for predictive data mining, to select manageable sets of predictors that are 
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likely related to the dependent (outcome) variables of interest, for further analyses with 
any of the other methods for regression and classification.  

Machine Learning 
Machine learning, computational learning theory, and similar terms are often used in the 
context of Data Mining, to denote the application of generic model-fitting or 
classification algorithms for predictive data mining. Unlike traditional statistical data 
analysis, which is usually concerned with the estimation of population parameters by 
statistical inference, the emphasis in data mining (and machine learning) is usually on the 
accuracy of prediction (predicted classification), regardless of whether or not the 
"models" or techniques that are used to generate the prediction is interpretable or open to 
simple explanation. Good examples of this type of technique often applied to predictive 
data mining are neural networks or meta-learning techniques such as boosting, etc. These 
methods usually involve the fitting of very complex "generic" models, that are not related 
to any reasoning or theoretical understanding of underlying causal processes; instead, 
these techniques can be shown to generate accurate predictions or classification in 
crossvalidation samples.  

Meta-Learning 
The concept of meta-learning applies to the area of predictive data mining, to combine 
the predictions from multiple models. It is particularly useful when the types of models 
included in the project are very different. In this context, this procedure is also referred to 
as Stacking (Stacked Generalization).  

Suppose your data mining project includes tree classifiers, such as C&RT and CHAID, 
linear discriminant analysis (e.g., see GDA), and Neural Networks. Each computes 
predicted classifications for a crossvalidation sample, from which overall goodness-of-fit 
statistics (e.g., misclassification rates) can be computed. Experience has shown that 
combining the predictions from multiple methods often yields more accurate predictions 
than can be derived from any one method (e.g., see Witten and Frank, 2000). The 
predictions from different classifiers can be used as input into a meta-learner, which will 
attempt to combine the predictions to create a final best predicted classification. So, for 
example, the predicted classifications from the tree classifiers, linear model, and the 
neural network classifier(s) can be used as input variables into a neural network meta-
classifier, which will attempt to "learn" from the data how to combine the predictions 
from the different models to yield maximum classification accuracy.  

One can apply meta-learners to the results from different meta-learners to create "meta-
meta"-learners, and so on; however, in practice such exponential increase in the amount 
of data processing, in order to derive an accurate prediction, will yield less and less 
marginal utility.  

Models for Data Mining 
In the business environment, complex data mining projects may require the coordinate 
efforts of various experts, stakeholders, or departments throughout an entire organization. 
In the data mining literature, various "general frameworks" have been proposed to serve 
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as blueprints for how to organize the process of gathering data, analyzing data, 
disseminating results, implementing results, and monitoring improvements.  

One such model, CRISP (Cross-Industry Standard Process for data mining) was proposed 
in the mid-1990s by a European consortium of companies to serve as a non-proprietary 
standard process model for data mining. This general approach postulates the following 
(perhaps not particularly controversial) general sequence of steps for data mining 
projects: 

 

Another approach - the Six Sigma methodology - is a well-structured, data-driven 
methodology for eliminating defects, waste, or quality control problems of all kinds in 
manufacturing, service delivery, management, and other business activities. This model 
has recently become very popular (due to its successful implementations) in various 
American industries, and it appears to gain favor worldwide. It postulated a sequence of, 
so-called, DMAIC steps -  

 

- that grew up from the manufacturing, quality improvement, and process control 
traditions and is particularly well suited to production environments (including 
"production of services," i.e., service industries).  

Another framework of this kind (actually somewhat similar to Six Sigma) is the approach 
proposed by SAS Institute called SEMMA - 

 

- which is focusing more on the technical activities typically involved in a data mining 
project.  

All of these models are concerned with the process of how to integrate data mining 
methodology into an organization, how to "convert data into information," how to 
involve important stake-holders, and how to disseminate the information in a form that 
can easily be converted by stake-holders into resources for strategic decision making. 
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Some software tools for data mining are specifically designed and documented to fit into 
one of these specific frameworks.  

The general underlying philosophy of StatSoft's STATISTICA Data Miner is to provide a 
flexible data mining workbench that can be integrated into any organization, industry, or 
organizational culture, regardless of the general data mining process-model that the 
organization chooses to adopt. For example, STATISTICA Data Miner can include the 
complete set of (specific) necessary tools for ongoing company wide Six Sigma quality 
control efforts, and users can take advantage of its (still optional) DMAIC-centric user 
interface for industrial data mining tools. It can equally well be integrated into ongoing 
marketing research, CRM (Customer Relationship Management) projects, etc. that follow 
either the CRISP or SEMMA approach - it fits both of them perfectly well without 
favoring either one. Also, STATISTICA Data Miner offers all the advantages of a general 
data mining oriented "development kit" that includes easy to use tools for incorporating 
into your projects not only such components as custom database gateway solutions, 
prompted interactive queries, or proprietary algorithms, but also systems of access 
privileges, workgroup management, and other collaborative work tools that allow you to 
design large scale, enterprise-wide systems (e.g., following the CRISP, SEMMA, or a 
combination of both models) that involve your entire organization.  

Predictive Data Mining 
The term Predictive Data Mining is usually applied to identify data mining projects with 
the goal to identify a statistical or neural network model or set of models that can be used 
to predict some response of interest. For example, a credit card company may want to 
engage in predictive data mining, to derive a (trained) model or set of models (e.g., neural 
networks, meta-learner) that can quickly identify transactions which have a high 
probability of being fraudulent. Other types of data mining projects may be more 
exploratory in nature (e.g., to identify cluster or segments of customers), in which case 
drill-down descriptive and exploratory methods would be applied. Data reduction is 
another possible objective for data mining (e.g., to aggregate or amalgamate the 
information in very large data sets into useful and manageable chunks).  

SEMMA  
See Models for Data Mining.  

Stacked Generalization  
See Stacking.  

Stacking (Stacked Generalization) 
The concept of stacking (short for Stacked Generalization) applies to the area of 
predictive data mining, to combine the predictions from multiple models. It is particularly 
useful when the types of models included in the project are very different.  

Suppose your data mining project includes tree classifiers, such as C&RT or CHAID, 
linear discriminant analysis (e.g., see GDA), and Neural Networks. Each computes 
predicted classifications for a crossvalidation sample, from which overall goodness-of-fit 
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statistics (e.g., misclassification rates) can be computed. 
Experience has shown that combining the predictions 
from multiple methods often yields more accurate 
predictions than can be derived from any one method 
(e.g., see Witten and Frank, 2000). In stacking, the 
predictions from different classifiers are used as input 
into a meta-learner, which attempts to combine the 
predictions to create a final best predicted classification. 
So, for example, the predicted classifications from the 

tree classifiers, linear model, and the neural network classifier(s) can be used as input 
variables into a neural network meta-classifier, which will attempt to "learn" from the 
data how to combine the predictions from the different models to yield maximum 
classification accuracy.  

Other methods for combining the prediction from multiple models or methods (e.g., from 
multiple datasets used for learning) are Boosting and Bagging (Voting).  

Text Mining  
While Data Mining is typically concerned with the detection of patterns in numeric data, 
very often important (e.g., critical to business) information is stored in the form of text. 
Unlike numeric data, text is often amorphous, and difficult to deal with. Text mining 
generally consists of the analysis of (multiple) text documents by extracting key phrases, 
concepts, etc. and the preparation of the text processed in that manner for further analyses 
with numeric data mining techniques (e.g., to determine co-occurrences of concepts, key 
phrases, names, addresses, product names, etc.).  

Voting 
See Bagging.  

 
 
 

Data Warehousing  

StatSoft defines data warehousing as a process of organizing the storage of large, 
multivariate data sets in a way that facilitates the retrieval of information for analytic 
purposes.  

The most efficient data warehousing architecture will be capable of incorporating or at 
least referencing all data available in the relevant enterprise-wide information 
management systems, using designated technology suitable for corporate data base 
management (e.g., Oracle, Sybase, MS SQL Server. Also, a flexible, high-performance 
(see the IDP technology), open architecture approach to data warehousing - that flexibly 
integrates with the existing corporate systems and allows the users to organize and 
efficiently reference for analytic purposes enterprise repositories of data of practically 
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any complexity - is offered in StatSoft enterprise systems such as SEDAS (STATISTICA 
Enterprise-wide Data Analysis System) and SEWSS (STATISTICA Enterprise-wide SPC 
System), which can also work in conjunction with STATISTICA Data Miner and 
WebSTATISTICA Server Applications.  
 

 
 
 

On-Line Analytic Processing (OLAP)  

The term On-Line Analytic Processing - OLAP (or Fast Analysis of Shared 
Multidimensional Information - FASMI) refers to technology that allows users of 
multidimensional databases to generate on-line descriptive or comparative summaries 
("views") of data and other analytic queries. Note that despite its name, analyses referred 
to as OLAP do not need to be performed truly "on-line" (or in real-time); the term applies 
to analyses of multidimensional databases (that may, obviously, contain dynamically 
updated information) through efficient "multidimensional" queries that reference various 
types of data. OLAP facilities can be integrated into corporate (enterprise-wide) database 
systems and they allow analysts and managers to monitor the performance of the business 
(e.g., such as various aspects of the manufacturing process or numbers and types of 
completed transactions at different locations) or the market. The final result of OLAP 
techniques can be very simple (e.g., frequency tables, descriptive statistics, simple cross-
tabulations) or more complex (e.g., they may involve seasonal adjustments, removal of 
outliers, and other forms of cleaning the data). Although Data Mining techniques can 
operate on any kind of unprocessed or even unstructured information, they can also be 
applied to the data views and summaries generated by OLAP to provide more in-depth 
and often more multidimensional knowledge. In this sense, Data Mining techniques could 
be considered to represent either a different analytic approach (serving different purposes 
than OLAP) or as an analytic extension of OLAP.  

 
 
 

Exploratory Data Analysis (EDA)  

EDA vs. Hypothesis Testing  

As opposed to traditional hypothesis testing designed to verify a priori hypotheses about 
relations between variables (e.g., "There is a positive correlation between the AGE of a 
person and his/her RISK TAKING disposition"), exploratory data analysis (EDA) is used 
to identify systematic relations between variables when there are no (or not complete) a 
priori  expectations as to the nature of those relations. In a typical exploratory data 
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analysis process, many variables are taken into account and compared, using a variety of 
techniques in the search for systematic patterns.  

Computational EDA techniques  

Computational exploratory data analysis methods include both simple basic statistics and 
more advanced, designated multivariate exploratory techniques designed to identify 
patterns in multivariate data sets.  

Basic statistical exploratory methods. The basic statistical exploratory methods include 
such techniques as examining distributions of variables (e.g., to identify highly skewed or 
non-normal, such as bi-modal patterns), reviewing large correlation matrices for 
coefficients that meet certain thresholds (see example above), or examining multi-way 
frequency tables (e.g., "slice by slice" systematically reviewing combinations of levels of 
control variables).  

 

Multivariate exploratory techniques. Multivariate exploratory techniques designed 
specifically to identify patterns in multivariate (or univariate, such as sequences of 
measurements) data sets include: Cluster Analysis, Factor Analysis, Discriminant 
Function Analysis, Multidimensional Scaling, Log-linear Analysis, Canonical 
Correlation, Stepwise Linear and Nonlinear (e.g., Logit) Regression, Correspondence 
Analysis, Time Series Analysis, and Classification Trees.  
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Neural Networks. Neural Networks are analytic techniques modeled after the 
(hypothesized) processes of learning in the cognitive system and the neurological 
functions of the brain and capable of predicting new observations (on specific variables) 
from other observations (on the same or other variables) after executing a process of so-
called learning from existing data.  

 

For more information, see Neural Networks; see also STATISTICA Neural Networks.  

Graphical (data visualization) EDA techniques  

A large selection of powerful exploratory data analytic techniques is also offered by 
graphical data visualization methods that can identify relations, trends, and biases 
"hidden" in unstructured data sets.  
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Brushing. Perhaps the most common 
and historically first widely used 
technique explicitly identified as 
graphical exploratory data analysis is 
brushing, an interactive method 
allowing one to select on-screen 
specific data points or subsets of data 
and identify their (e.g., common) 
characteristics, or to examine their 
effects on relations between relevant 
variables. Those relations between 
variables can be visualized by fitted 
functions (e.g., 2D lines or 3D 
surfaces) and their confidence 
intervals, thus, for example, one can examine changes in those functions by interactively 
(temporarily) removing or adding specific subsets of data. For example, one of many 
applications of the brushing technique is to select (i.e., highlight) in a matrix scatterplot 
all data points that belong to a certain category (e.g., a "medium" income level, see the 
highlighted subset in the fourth component graph of the first row in the illustration left) in 
order to examine how those specific observations contribute to relations between other 
variables in the same data set (e.g, the correlation between the "debt" and "assets" in the 
current example). If the brushing facility supports features like "animated brushing" or 
"automatic function re-fitting", one can define a dynamic brush that would move over the 
consecutive ranges of a criterion variable (e.g., "income" measured on a continuous scale 
or a discrete [3-level] scale as on the illustration above) and examine the dynamics of the 
contribution of the criterion variable to the relations between other relevant variables in 
the same data set.  
 

  

 
Other graphical EDA techniques. Other graphical exploratory analytic techniques 
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include function fitting and plotting, data smoothing, overlaying and merging of multiple 
displays, categorizing data, splitting/merging subsets of data in graphs, aggregating data 
in graphs, identifying and marking subsets of data that meet specific conditions, icon 
plots,  

 

shading, plotting confidence intervals and confidence areas (e.g., ellipses),  

 

generating tessellations, spectral planes,  
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integrated layered compressions,  

 

and projected contours, data image reduction techniques, interactive (and continuous) 
rotation  
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with animated stratification (cross-sections) of 3D displays, and selective highlighting of 
specific series and blocks of data.  

Verification of results of EDA  

The exploration of data can only serve as the first stage of data analysis and its results can 
be treated as tentative at best as long as they are not confirmed, e.g., crossvalidated, using 
a different data set (or and independent subset). If the result of the exploratory stage 
suggests a particular model, then its validity can be verified by applying it to a new data 
set and testing its fit (e.g., testing its predictive validity). Case selection conditions can be 
used to quickly define subsets of data (e.g., for estimation and verification), and for 
testing the robustness of results.  

 
 
 

Neural Networks 
(see also Neural Networks chapter)  

Neural Networks are analytic techniques modeled after the (hypothesized) processes of 
learning in the cognitive system and the neurological functions of the brain and capable 
of predicting new observations (on specific variables) from other observations (on the 
same or other variables) after executing a process of so-called learning from existing 
data. Neural Networks is one of the Data Mining techniques.  
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The first step is to design a specific network architecture (that includes a specific number 
of "layers" each consisting of a certain number of "neurons"). The size and structure of 
the network needs to match the nature (e.g., the formal complexity) of the investigated 
phenomenon. Because the latter is obviously not known very well at this early stage, this 
task is not easy and often involves multiple "trials and errors." (Now, there is, however, 
neural network software that applies artificial intelligence techniques to aid in that 
tedious task and finds "the best" network architecture.)  

The new network is then subjected to the process of "training." In that phase, neurons 
apply an iterative process to the number of inputs (variables) to adjust the weights of the 
network in order to optimally predict (in traditional terms one could say, find a "fit" to) 
the sample data on which the "training" is performed. After the phase of learning from an 
existing data set, the new network is ready and it can then be used to generate predictions.  

 

The resulting "network" developed in the process of "learning" represents a pattern 
detected in the data. Thus, in this approach, the "network" is the functional equivalent of 
a model of relations between variables in the traditional model building approach. 
However, unlike in the traditional models, in the "network," those relations cannot be 
articulated in the usual terms used in statistics or methodology to describe relations 
between variables (such as, for example, "A is positively correlated with B but only for 
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observations where the value of C is low and D is high"). Some neural networks can 
produce highly accurate predictions; they represent, however, a typical a-theoretical (one 
can say, "a black box") research approach. That approach is concerned only with practical 
considerations, that is, with the predictive validity of the solution and its applied 
relevance and not with the nature of the underlying mechanism or its relevance for any 
"theory" of the underlying phenomena.  

However, it should be mentioned that Neural Network techniques can also be used as a 
component of analyses designed to build explanatory models because Neural Networks 
can help explore data sets in search for relevant variables or groups of variables; the 
results of such explorations can then facilitate the process of model building. Moreover, 
now there is neural network software that uses sophisticated algorithms to search for the 
most relevant input variables, thus potentially contributing directly to the model building 
process.  

One of the major advantages of neural networks is that, theoretically, they are capable of 
approximating any continuous function, and thus the researcher does not need to have 
any hypotheses about the underlying model, or even to some extent, which variables 
matter. An important disadvantage, however, is that the final solution depends on the 
initial conditions of the network, and, as stated before, it is virtually impossible to 
"interpret" the solution in traditional, analytic terms, such as those used to build theories 
that explain phenomena.  

 

Some authors stress the fact that neural networks use, or one should say, are expected to 
use, massively parallel computation models. For example Haykin (1994) defines neural 
network as:  

"a massively parallel distributed processor that has a natural propensity for storing 
experiential knowledge and making it available for use. It resembles the brain in two 
respects: (1) Knowledge is acquired by the network through a learning process, and (2) 
Interneuron connection strengths known as synaptic weights are used to store the 
knowledge." (p. 2).  
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However, as Ripley (1996) points out, the vast majority of contemporary neural network 
applications run on single-processor computers and he argues that a large speed-up can 
be achieved not only by developing software that will take advantage of multiprocessor 
hardware by also by designing better (more efficient) learning algorithms.  

Neural networks is one of the methods used in Data Mining; see also Exploratory Data 
Analysis. For more information on neural networks, see Haykin (1994), Masters (1995), 
Ripley (1996), and Welstead (1994). For a discussion of neural networks as statistical 
tools, see Warner and Misra (1996). See also, STATISTICA Neural Networks.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 171 

Chapter 13 
Discriminant Function Analysis 

 

• General Purpose  
• Computational Approach  
• Stepwise Discriminant Analysis  
• Interpreting a Two-Group Discriminant Function  
• Discriminant Functions for Multiple Groups  
• Assumptions  
• Classification  

 

General Purpose  

Discriminant function analysis is used to determine which variables discriminate between 
two or more naturally occurring groups. For example, an educational researcher may 
want to investigate which variables discriminate between high school graduates who 
decide (1) to go to college, (2) to attend a trade or professional school, or (3) to seek no 
further training or education. For that purpose the researcher could collect data on 
numerous variables prior to students' graduation. After graduation, most students will 
naturally fall into one of the three categories. Discriminant Analysis could then be used to 
determine which variable(s) are the best predictors of students' subsequent educational 
choice.  

A medical researcher may record different variables relating to patients' backgrounds in 
order to learn which variables best predict whether a patient is likely to recover 
completely (group 1), partially (group 2), or not at all (group 3). A biologist could record 
different characteristics of similar types (groups) of flowers, and then perform a 
discriminant function analysis to determine the set of characteristics that allows for the 
best discrimination between the types.  

 

 

Computational Approach  

Computationally, discriminant function analysis is very similar to analysis of variance 
(ANOVA). Let us consider a simple example. Suppose we measure height in a random 
sample of 50 males and 50 females. Females are, on the average, not as tall as males, and 
this difference will be reflected in the difference in means (for the variable Height). 
Therefore, variable height allows us to discriminate between males and females with a 
better than chance probability: if a person is tall, then he is likely to be a male, if a person 
is short, then she is likely to be a female.  
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We can generalize this reasoning to groups and variables that are less "trivial." For 
example, suppose we have two groups of high school graduates: Those who choose to 
attend college after graduation and those who do not. We could have measured students' 
stated intention to continue on to college one year prior to graduation. If the means for 
the two groups (those who actually went to college and those who did not) are different, 
then we can say that intention to attend college as stated one year prior to graduation 
allows us to discriminate between those who are and are not college bound (and this 
information may be used by career counselors to provide the appropriate guidance to the 
respective students).  

To summarize the discussion so far, the basic idea underlying discriminant function 
analysis is to determine whether groups differ with regard to the mean of a variable, and 
then to use that variable to predict group membership (e.g., of new cases).  

Analysis of Variance. Stated in this manner, the discriminant function problem can be 
rephrased as a one-way analysis of variance (ANOVA) problem. Specifically, one can 
ask whether or not two or more groups are significantly different from each other with 
respect to the mean of a particular variable. To learn more about how one can test for the 
statistical significance of differences between means in different groups you may want to 
read the Overview section to ANOVA/MANOVA. However, it should be clear that, if the 
means for a variable are significantly different in different groups, then we can say that 
this variable discriminates between the groups.  

In the case of a single variable, the final significance test of whether or not a variable 
discriminates between groups is the F test. As described in Elementary Concepts and 
ANOVA /MANOVA, F is essentially computed as the ratio of the between-groups variance 
in the data over the pooled (average) within-group variance. If the between-group 
variance is significantly larger then there must be significant differences between means.  

Multiple Variables. Usually, one includes several variables in a study in order to see 
which one(s) contribute to the discrimination between groups. In that case, we have a 
matrix of total variances and covariances; likewise, we have a matrix of pooled within-
group variances and covariances. We can compare those two matrices via multivariate F 
tests in order to determined whether or not there are any significant differences (with 
regard to all variables) between groups. This procedure is identical to multivariate 
analysis of variance or MANOVA. As in MANOVA, one could first perform the 
multivariate test, and, if statistically significant, proceed to see which of the variables 
have significantly different means across the groups. Thus, even though the computations 
with multiple variables are more complex, the principal reasoning still applies, namely, 
that we are looking for variables that discriminate between groups, as evident in observed 
mean differences.  

 

 

Stepwise Discriminant Analysis  
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Probably the most common application of discriminant function analysis is to include 
many measures in the study, in order to determine the ones that discriminate between 
groups. For example, an educational researcher interested in predicting high school 
graduates' choices for further education would probably include as many measures of 
personality, achievement motivation, academic performance, etc. as possible in order to 
learn which one(s) offer the best prediction.  

Model. Put another way, we want to build a "model" of how we can best predict to which 
group a case belongs. In the following discussion we will use the term "in the model" in 
order to refer to variables that are included in the prediction of group membership, and 
we will refer to variables as being "not in the model" if they are not included.  

Forward stepwise analysis. In stepwise discriminant function analysis, a model of 
discrimination is built step-by-step. Specifically, at each step all variables are reviewed 
and evaluated to determine which one will contribute most to the discrimination between 
groups. That variable will then be included in the model, and the process starts again.  

Backward stepwise analysis. One can also step backwards; in that case all variables are 
included in the model and then, at each step, the variable that contributes least to the 
prediction of group membership is eliminated. Thus, as the result of a successful 
discriminant function analysis, one would only keep the "important" variables in the 
model, that is, those variables that contribute the most to the discrimination between 
groups.  

F to enter, F to remove. The stepwise procedure is "guided" by the respective F to enter 
and F to remove values. The F value for a variable indicates its statistical significance in 
the discrimination between groups, that is, it is a measure of the extent to which a 
variable makes a unique contribution to the prediction of group membership. If you are 
familiar with stepwise multiple regression procedures, then you may interpret the F to 
enter/remove values in the same way as in stepwise regression.  

Capitalizing on chance. A common misinterpretation of the results of stepwise 
discriminant analysis is to take statistical significance levels at face value. By nature, the 
stepwise procedures will capitalize on chance because they "pick and choose" the 
variables to be included in the model so as to yield maximum discrimination. Thus, when 
using the stepwise approach the researcher should be aware that the significance levels do 
not reflect the true alpha error rate, that is, the probability of erroneously rejecting H0 
(the null hypothesis that there is no discrimination between groups).  

 

 

Interpreting a Two-Group Discriminant Function  

In the two-group case, discriminant function analysis can also be thought of as (and is 
analogous to) multiple regression (see Multiple Regression; the two-group discriminant 
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analysis is also called Fisher linear discriminant analysis after Fisher, 1936; 
computationally all of these approaches are analogous). If we code the two groups in the 
analysis as 1 and 2, and use that variable as the dependent variable in a multiple 
regression analysis, then we would get results that are analogous to those we would 
obtain via Discriminant Analysis. In general, in the two-group case we fit a linear 
equation of the type:  

Group = a + b1*x 1 + b2*x 2 + ... + bm*x m  

where a is a constant and b1 through bm are regression coefficients. The interpretation of 
the results of a two-group problem is straightforward and closely follows the logic of 
multiple regression: Those variables with the largest (standardized) regression 
coefficients are the ones that contribute most to the prediction of group membership.  

 

 

Discriminant Functions for Multiple Groups  

When there are more than two groups, then we can estimate more than one discriminant 
function like the one presented above. For example, when there are three groups, we 
could estimate (1) a function for discriminating between group 1 and groups 2 and 3 
combined, and (2) another function for discriminating between group 2 and group 3. For 
example, we could have one function that discriminates between those high school 
graduates that go to college and those who do not (but rather get a job or go to a 
professional or trade school), and a second function to discriminate between those 
graduates that go to a professional or trade school versus those who get a job. The b 
coefficients in those discriminant functions could then be interpreted as before.  

Canonical analysis. When actually performing a multiple group discriminant analysis, 
we do not have to specify how to combine groups so as to form different discriminant 
functions. Rather, you can automatically determine some optimal combination of 
variables so that the first function provides the most overall discrimination between 
groups, the second provides second most, and so on. Moreover, the functions will be 
independent or orthogonal, that is, their contributions to the discrimination between 
groups will not overlap. Computationally, you will perform a canonical correlation 
analysis (see also Canonical Correlation) that will determine the successive functions 
and canonical roots (the term root refers to the eigenvalues that are associated with the 
respective canonical function). The maximum number of functions will be equal to the 
number of groups minus one, or the number of variables in the analysis, whichever is 
smaller.  

Interpreting the discriminant functions. As before, we will get b (and standardized 
beta) coefficients for each variable in each discriminant (now also called canonical) 
function, and they can be interpreted as usual: the larger the standardized coefficient, the 
greater is the contribution of the respective variable to the discrimination between groups. 
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(Note that we could also interpret the structure coefficients; see below.) However, these 
coefficients do not tell us between which of the groups the respective functions 
discriminate. We can identify the nature of the discrimination for each discriminant 
(canonical) function by looking at the means for the functions across groups. We can also 
visualize how the two functions discriminate between groups by plotting the individual 
scores for the two discriminant functions (see the example graph below).  

 

In this example, Root (function) 1 seems to discriminate mostly between groups Setosa, 
and Virginic and Versicol combined. In the vertical direction (Root 2), a slight trend of 
Versicol points to fall below the center line (0) is apparent.  

Factor structure matrix. Another way to determine which variables "mark" or define a 
particular discriminant function is to look at the factor structure. The factor structure 
coefficients are the correlations between the variables in the model and the discriminant 
functions; if you are familiar with factor analysis (see Factor Analysis) you may think of 
these correlations as factor loadings of the variables on each discriminant function.  

Some authors have argued that these structure coefficients should be used when 
interpreting the substantive "meaning" of discriminant functions. The reasons given by 
those authors are that (1) supposedly the structure coefficients are more stable, and (2) 
they allow for the interpretation of factors (discriminant functions) in the manner that is 
analogous to factor analysis. However, subsequent Monte Carlo research (Barcikowski & 
Stevens, 1975; Huberty, 1975) has shown that the discriminant function coefficients and 
the structure coefficients are about equally unstable, unless the n is fairly large (e.g., if 
there are 20 times more cases than there are variables). The most important thing to 
remember is that the discriminant function coefficients denote the unique (partial) 
contribution of each variable to the discriminant function(s), while the structure 
coefficients denote the simple correlations between the variables and the function(s). If 
one wants to assign substantive "meaningful" labels to the discriminant functions (akin to 
the interpretation of factors in factor analysis), then the structure coefficients should be 
used (interpreted); if one wants to learn what is each variable's unique contribution to the 
discriminant function, use the discriminant function coefficients (weights).  
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Significance of discriminant functions. One can test the number of roots that add 
significantly to the discrimination between group. Only those found to be statistically 
significant should be used for interpretation; non-significant functions (roots) should be 
ignored.  

Summary. To summarize, when interpreting multiple discriminant functions, which arise 
from analyses with more than two groups and more than one variable, one would first test 
the different functions for statistical significance, and only consider the significant 
functions for further examination. Next, we would look at the standardized b coefficients 
for each variable for each significant function. The larger the standardized b coefficient, 
the larger is the respective variable's unique contribution to the discrimination specified 
by the respective discriminant function. In order to derive substantive "meaningful" 
labels for the discriminant functions, one can also examine the factor structure matrix 
with the correlations between the variables and the discriminant functions. Finally, we 
would look at the means for the significant discriminant functions in order to determine 
between which groups the respective functions seem to discriminate.  

 

 

Assumptions  

As mentioned earlier, discriminant function analysis is computationally very similar to 
MANOVA, and all assumptions for MANOVA mentioned in ANOVA/MANOVA  apply. 
In fact, you may use the wide range of diagnostics and statistical tests of assumption that 
are available to examine your data for the discriminant analysis.  

Normal distribution.  It is assumed that the data (for the variables) represent a sample 
from a multivariate normal distribution. You can examine whether or not variables are 
normally distributed with histograms of frequency distributions. However, note that 
violations of the normality assumption are usually not "fatal," meaning, that the resultant 
significance tests etc. are still "trustworthy." You may use specific tests for normality in 
addition to graphs.  

Homogeneity of variances/covariances. It is assumed that the variance/covariance 
matrices of variables are homogeneous across groups. Again, minor deviations are not 
that important; however, before accepting final conclusions for an important study it is 
probably a good idea to review the within-groups variances and correlation matrices. In 
particular a scatterplot matrix can be produced and can be very useful for this purpose. 
When in doubt, try re-running the analyses excluding one or two groups that are of less 
interest. If the overall results (interpretations) hold up, you probably do not have a 
problem. You may also use the numerous tests available to examine whether or not this 
assumption is violated in your data. However, as mentioned in ANOVA/MANOVA, the 
multivariate Box M test for homogeneity of variances/covariances is particularly sensitive 
to deviations from multivariate normality, and should not be taken too "seriously."  
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Correlations between means and variances. The major "real" threat to the validity of 
significance tests occurs when the means for variables across groups are correlated with 
the variances (or standard deviations). Intuitively, if there is large variability in a group 
with particularly high means on some variables, then those high means are not reliable. 
However, the overall significance tests are based on pooled variances, that is, the average 
variance across all groups. Thus, the significance tests of the relatively larger means 
(with the large variances) would be based on the relatively smaller pooled variances, 
resulting erroneously in statistical significance. In practice, this pattern may occur if one 
group in the study contains a few extreme outliers, who have a large impact on the 
means, and also increase the variability. To guard against this problem, inspect the 
descriptive statistics, that is, the means and standard deviations or variances for such a 
correlation.  

The matrix ill-conditioning problem. Another assumption of discriminant function 
analysis is that the variables that are used to discriminate between groups are not 
completely redundant. As part of the computations involved in discriminant analysis, you 
will invert the variance/covariance matrix of the variables in the model. If any one of the 
variables is completely redundant with the other variables then the matrix is said to be ill-
conditioned, and it cannot be inverted. For example, if a variable is the sum of three other 
variables that are also in the model, then the matrix is ill-conditioned.  

Tolerance values. In order to guard against matrix ill-conditioning, constantly check the 
so-called tolerance value for each variable. This tolerance value is computed as 1 minus 
R-square of the respective variable with all other variables included in the current model. 
Thus, it is the proportion of variance that is unique to the respective variable. You may 
also refer to Multiple Regression to learn more about multiple regression and the 
interpretation of the tolerance value. In general, when a variable is almost completely 
redundant (and, therefore, the matrix ill-conditioning problem is likely to occur), the 
tolerance value for that variable will approach 0.  

 

 

Classification  

Another major purpose to which discriminant analysis is applied is the issue of predictive 
classification of cases. Once a model has been finalized and the discriminant functions 
have been derived, how well can we predict to which group a particular case belongs?  

A priori  and post hoc predictions. Before going into the details of different estimation 
procedures, we would like to make sure that this difference is clear. Obviously, if we 
estimate, based on some data set, the discriminant functions that best discriminate 
between groups, and then use the same data to evaluate how accurate our prediction is, 
then we are very much capitalizing on chance. In general, one will always get a worse 
classification when predicting cases that were not used for the estimation of the 
discriminant function. Put another way, post hoc predictions are always better than a 
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priori  predictions. (The trouble with predicting the future a priori is that one does not 
know what will happen; it is much easier to find ways to predict what we already know 
has happened.) Therefore, one should never base one's confidence regarding the correct 
classification of future observations on the same data set from which the discriminant 
functions were derived; rather, if one wants to classify cases predictively, it is necessary 
to collect new data to "try out" (cross-validate) the utility of the discriminant functions.  

Classification functions. These are not to be confused with the discriminant functions. 
The classification functions can be used to determine to which group each case most 
likely belongs. There are as many classification functions as there are groups. Each 
function allows us to compute classification scores for each case for each group, by 
applying the formula:  

Si = ci + wi1*x 1 + wi2*x 2 + ... + wim*x m  

In this formula, the subscript i denotes the respective group; the subscripts 1, 2, ..., m 
denote the m variables; ci is a constant for the i 'th group, wij is the weight for the j 'th 
variable in the computation of the classification score for the i 'th group; xj is the observed 
value for the respective case for the j 'th variable. Si is the resultant classification score.  

We can use the classification functions to directly compute classification scores for some 
new observations.  

Classification of cases. Once we have computed the classification scores for a case, it is 
easy to decide how to classify the case: in general we classify the case as belonging to the 
group for which it has the highest classification score (unless the a priori classification 
probabilities are widely disparate; see below). Thus, if we were to study high school 
students' post-graduation career/educational choices (e.g., attending college, attending a 
professional or trade school, or getting a job) based on several variables assessed one 
year prior to graduation, we could use the classification functions to predict what each 
student is most likely to do after graduation. However, we would also like to know the 
probability that the student will make the predicted choice. Those probabilities are called 
posterior probabilities, and can also be computed. However, to understand how those 
probabilities are derived, let us first consider the so-called Mahalanobis distances.  

Mahalanobis distances. You may have read about these distances in other parts of the 
manual. In general, the Mahalanobis distance is a measure of distance between two points 
in the space defined by two or more correlated variables. For example, if there are two 
variables that are uncorrelated, then we could plot points (cases) in a standard two-
dimensional scatterplot; the Mahalanobis distances between the points would then be 
identical to the Euclidean distance; that is, the distance as, for example, measured by a 
ruler. If there are three uncorrelated variables, we could also simply use a ruler (in a 3-D 
plot) to determine the distances between points. If there are more than 3 variables, we 
cannot represent the distances in a plot any more. Also, when the variables are correlated, 
then the axes in the plots can be thought of as being non-orthogonal; that is, they would 
not be positioned in right angles to each other. In those cases, the simple Euclidean 
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distance is not an appropriate measure, while the Mahalanobis distance will adequately 
account for the correlations.  

Mahalanobis distances and classification. For each group in our sample, we can 
determine the location of the point that represents the means for all variables in the 
multivariate space defined by the variables in the model. These points are called group 
centroids. For each case we can then compute the Mahalanobis distances (of the 
respective case) from each of the group centroids. Again, we would classify the case as 
belonging to the group to which it is closest, that is, where the Mahalanobis distance is 
smallest.  

Posterior classification probabilities. Using the Mahalanobis distances to do the 
classification, we can now derive probabilities. The probability that a case belongs to a 
particular group is basically proportional to the Mahalanobis distance from that group 
centroid (it is not exactly proportional because we assume a multivariate normal 
distribution around each centroid). Because we compute the location of each case from 
our prior knowledge of the values for that case on the variables in the model, these 
probabilities are called posterior probabilities. In summary, the posterior probability is 
the probability, based on our knowledge of the values of other variables, that the 
respective case belongs to a particular group. Some software packages will automatically 
compute those probabilities for all cases (or for selected cases only for cross-validation 
studies).  

A priori classification probabilities. There is one additional factor that needs to be 
considered when classifying cases. Sometimes, we know ahead of time that there are 
more observations in one group than in any other; thus, the a priori probability that a case 
belongs to that group is higher. For example, if we know ahead of time that 60% of the 
graduates from our high school usually go to college (20% go to a professional school, 
and another 20% get a job), then we should adjust our prediction accordingly: a priori, 
and all other things being equal, it is more likely that a student will attend college that 
choose either of the other two options. You can specify different a priori probabilities, 
which will then be used to adjust the classification of cases (and the computation of 
posterior probabilities) accordingly.  

In practice, the researcher needs to ask him or herself whether the unequal number of 
cases in different groups in the sample is a reflection of the true distribution in the 
population, or whether it is only the (random) result of the sampling procedure. In the 
former case, we would set the a priori probabilities to be proportional to the sizes of the 
groups in our sample, in the latter case we would specify the a priori probabilities as 
being equal in each group. The specification of different a priori probabilities can greatly 
affect the accuracy of the prediction.  

Summary of the prediction. A common result that one looks at in order to determine 
how well the current classification functions predict group membership of cases is the 
classification matrix. The classification matrix shows the number of cases that were 
correctly classified (on the diagonal of the matrix) and those that were misclassified.  
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Another word of caution. To reiterate, post hoc predicting of what has happened in the 
past is not that difficult. It is not uncommon to obtain very good classification if one uses 
the same cases from which the classification functions were computed. In order to get an 
idea of how well the current classification functions "perform," one must classify (a 
priori ) different cases, that is, cases that were not used to estimate the classification 
functions. You can include or exclude cases from the computations; thus, the 
classification matrix can be computed for "old" cases as well as "new" cases. Only the 
classification of new cases allows us to assess the predictive validity of the classification 
functions (see also cross-validation); the classification of old cases only provides a useful 
diagnostic tool to identify outliers or areas where the classification function seems to be 
less adequate.  

Summary. In general Discriminant Analysis is a very useful tool (1) for detecting the 
variables that allow the researcher to discriminate between different (naturally occurring) 
groups, and (2) for classifying cases into different groups with a better than chance 
accuracy. 
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Chapter  14 
Distribution Fitting  

 

• General Purpose  
• Fit of the Observed Distribution  
• Types of Distributions  

o Bernoulli Distribution  
o Beta Distribution  
o Binomial Distribution  
o Cauchy Distribution  
o Chi-square Distribution  
o Exponential Distribution  
o Extreme Value Distribution  
o F Distribution  
o Gamma Distribution  
o Geometric Distribution  
o Gompertz Distribution  
o Laplace Distribution  
o Logistic Distribution  
o Log-normal Distribution  
o Normal Distribution  
o Pareto Distribution  
o Poisson Distribution  
o Rayleigh Distribution  
o Rectangular Distribution  
o Student's t Distribution  
o Weibull Distribution  

 
General Purpose  

In some research applications one can formulate hypotheses about the specific 
distribution of the variable of interest. For example, variables whose values are 
determined by an infinite number of independent random events will be distributed 
following the normal distribution: one can think of a person's height as being the result of 
very many independent factors such as numerous specific genetic predispositions, early 
childhood diseases, nutrition, etc. (see the animation below for an example of the normal 
distribution). As a result, height tends to be normally distributed in the U.S. population. 
On the other hand, if the values of a variable are the result of very rare events, then the 
variable will be distributed according to the Poisson distribution (sometimes called the 
distribution of rare events). For example, industrial accidents can be thought of as the 
result of the intersection of a series of unfortunate (and unlikely) events, and their 
frequency tends to be distributed according to the Poisson distribution. These and other 
distributions are described in greater detail in the respective glossary topics.  
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Another common application where distribution fitting procedures are useful is when one 
wants to verify the assumption of normality before using some parametric test (see 
General Purpose of Nonparametric Tests). For example, you may want to use the 
Kolmogorov-Smirnov test for normality or the Shapiro-Wilks' W test to test for 
normality.  

 

 

Fit of the Observed Distribution  

For predictive purposes it is often desirable to understand the shape of the underlying 
distribution of the population. To determine this underlying distribution, it is common to 
fit the observed distribution to a theoretical distribution by comparing the frequencies 
observed in the data to the expected frequencies of the theoretical distribution (i.e., a Chi-
square goodness of fit test). In addition to this type a test, some software packages also 
allow you to compute Maximum Likelihood tests and Method of Matching Moments (see 
Fitting Distributions by Moments in the Process Analysis chapter) tests.  

Which Distribution to use. As described above, certain types of variables follow 
specific distributions. Variables whose values are determined by an infinite number of 
independent random events will be distributed following the normal distribution, whereas 
variables whose values are the result of an extremely rare event would follow the Poisson 
distribution. The major distributions that have been proposed for modeling survival or 
failure times are the exponential (and linear exponential) distribution, the Weibull 
distribution of extreme events, and the Gompertz distribution. The section on types of 
distributions contains a number of distributions generally giving a brief example of what 
type of data would most commonly follow a specific distribution as well as the 
probability density functin (pdf) for each distribution.  

 

 

Types of Distributions  

Bernoulli Distribution . This distribution best describes all situations where a "trial" is 
made resulting in either "success" or "failure," such as when tossing a coin, or when 
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modeling the success or failure of a surgical procedure. The Bernoulli distribution is 
defined as:  

f(x) = px *(1-p)1-x,    for x � {0,1}  

where  

p is the probability that a particular event (e.g., success) will occur. 
 

 

Beta Distribution. The beta distribution arises from a transformation of the F 
distribution and is typically used to model the distribution of order statistics. Because the 
beta distribution is bounded on both sides, it is often used for representing processes with 
natural lower and upper limits. For examples, refer to Hahn and Shapiro (1967). The beta 
distribution is defined as:  

f(x) = �(�+�)/[�(�)�(�)] * x�-1*(1-x)�-1,    for 0 < x < 1, � > 0, � > 0  

where  

� is the Gamma function 

�, � are the shape parameters (Shape1 and Shape2, respectively) 

 

The animation above shows the beta distribution as the two shape parameters change.  

 

 

Binomial Distribution. The binomial distribution is useful for describing distributions of 
binomial events, such as the number of males and females in a random sample of 
companies, or the number of defective components in samples of 20 units taken from a 
production process. The binomial distribution is defined as:  

f(x) = [n!/(x!*(n-x)!)]*p x * qn-x,    for x = 0,1,2,...,n  

where  
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p is the probability that the respective event will occur 

q is equal to 1-p  

n is the maximum number of independent trials.  
 

 

Cauchy Distribution. The Cauchy distribution is interesting for theoretical reasons. 
Although its mean can be taken as zero, since it is symmetrical about zero, the 
expectation, variance, higher moments, and moment generating function do not exist. The 
Cauchy distribution is defined as:  

f(x) = 1/(�*�*{1+[(x- �)/ �]2}),    for 0 < �  

where  

� is the location parameter (median) 

� is the scale parameter 

� is the constant Pi (3.1415...) 

 

The animation above shows the changing shape of the Cauchy distribution when the 
location parameter equals 0 and the scale parameter equals 1, 2, 3, and 4.  

 

 

Chi-square Distribution. The sum of � independent squared random variables, each 
distributed following the standard normal distribution, is distributed as Chi-square with � 
degrees of freedom. This distribution is most frequently used in the modeling of random 
variables (e.g., representing frequencies) in statistical applications. The Chi-square 
distribution is defined by:  

f(x) = {1/[2�/2* �(�/2)]} * [x (�/2)-1 * e-x/2],    for � = 1, 2, ..., 0 < x  

where  

� is the degrees of freedom  
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e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

� (gamma) is the Gamma function.  

 

The above animation shows the shape of the Chi-square distribution as the degrees of 
freedom increase (1, 2, 5, 10, 25 and 50).  

 

 

Exponential Distribution. If T is the time between occurrences of rare events that 
happen on the average with a rate l per unit of time, then T is distributed exponentially 
with parameter � (lambda). Thus, the exponential distribution is frequently used to 
model the time interval between successive random events. Examples of variables 
distributed in this manner would be the gap length between cars crossing an intersection, 
life-times of electronic devices, or arrivals of customers at the check-out counter in a 
grocery store. The exponential distribution function is defined as:  

f(x) = �*e-�x    for 0 � x < �, � > 0  

where  

� 
is an exponential function parameter (an alternative parameterization is scale 
parameter b=1/�) 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 
 
 

Extreme Value. The extreme value distribution is often used to model extreme events, 
such as the size of floods, gust velocities encountered by airplanes, maxima of stock 
marked indices over a given year, etc.; it is also often used in reliability testing, for 
example in order to represent the distribution of failure times for electric circuits (see 
Hahn and Shapiro, 1967). The extreme value (Type I) distribution has the probability 
density function:  

f(x) = 1/b * e^[-(x-a)/b] * e^{-e^[-(x-a)/b]},    f or -� < x < �, b > 0  
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where  

a is the location parameter 

b is the scale parameter 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 
 

 

F Distribution. Snedecor's F distribution is most commonly used in tests of variance 
(e.g., ANOVA). The ratio of two chi-squares divided by their respective degrees of 
freedom is said to follow an F distribution. The F distribution (for x > 0) has the 
probability density function (for � = 1, 2, ...; � = 1, 2, ...):  

f(x) = [�{(�+�)/2}]/[�(�/2)�(�/2)] * (�/�)(�/2) * x [(�/2)-1] * {1+[(�/�)*x]} [-(�+�)/2],    
for 0 � x < � �=1,2,..., �=1,2,...  

where  

�, � are the shape parameters, degrees of freedom 

� is the Gamma function 

 

The animation above shows various tail areas (p-values) for an F distribution with both 
degrees of freedom equal to 10.  

 

 

Gamma Distribution. The probability density function of the exponential distribution 
has a mode of zero. In many instances, it is known a priori that the mode of the 
distribution of a particular random variable of interest is not equal to zero (e.g., when 
modeling the distribution of the life-times of a product such as an electric light bulb, or 
the serving time taken at a ticket booth at a baseball game). In those cases, the gamma 
distribution is more appropriate for describing the underlying distribution. The gamma 
distribution is defined as:  

f(x) = {1/[b�(c)]}*[x/b] c-1*e-x/b    for 0 � x, c > 0  
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where  

� is the Gamma function  

c is the Shape parameter 

b is the Scale parameter. 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 

The animation above shows the gamma distribution as the shape parameter changes from 
1 to 6.  

 

 

Geometric Distribution. If independent Bernoulli trials are made until a "success" 
occurs, then the total number of trials required is a geometric random variable. The 
geometric distribution is defined as:  

f(x) = p*(1-p)x,    for x = 1,2,...  

where  

p is the probability that a particular event (e.g., success) will occur. 
 

 

Gompertz Distribution. The Gompertz distribution is a theoretical distribution of 
survival times. Gompertz (1825) proposed a probability model for human mortality, 
based on the assumption that the "average exhaustion of a man's power to avoid death to 
be such that at the end of equal infinetely small intervals of time he lost equal portions of 
his remaining power to oppose destruction which he had at the commencement of these 
intervals" (Johnson, Kotz, Blakrishnan, 1995, p. 25). The resultant hazard function:  

r(x)=Bcx,    for x � 0, B > 0, c � 1  

is often used in survival analysis. See Johnson, Kotz, Blakrishnan (1995) for additional 
details.  
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Laplace Distribution. For interesting mathematical applications of the Laplace 
distribution see Johnson and Kotz (1995). The Laplace (or Double Exponential) 
distribution is defined as:  

f(x) = 1/(2b) * e[-(|x-a|/b)],    for -� < x < �  

where  

a is the location parameter (mean) 

b is the scale parameter  

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 

The graphic above shows the changing shape of the Laplace distribution when the 
location parameter equals 0 and the scale parameter equals 1, 2, 3, and 4.  

 

 

Logistic Distribution. The logistic distribution is used to model binary responses (e.g., 
Gender) and is commonly used in logistic regression. The logistic distribution is defined 
as:  

f(x) = (1/b) * e[-(x-a)/b] * {1+e[-(x-a)/b]}^-2 ,    for -� < x < �, 0 < b  

where  

a is the location parameter (mean) 

b is the scale parameter 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 
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The graphic above shows the changing shape of the logistic distribution when the 
location parameter equals 0 and the scale parameter equals 1, 2, and 3.  

 

 

Log-normal Distribution. The log-normal distribution is often used in simulations of 
variables such as personal incomes, age at first marriage, or tolerance to poison in 
animals. In general, if x is a sample from a normal distribution, then y = ex is a sample 
from a log-normal distribution. Thus, the log-normal distribution is defined as:  

f(x) = 1/[x�(2)1/2] * e-[log(x)-�]**2/2�**2 ,    for 0 < x < �, � > 0, � > 0  

where  

� is the scale parameter 

� is the shape parameter 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 

The animation above shows the log-normal distribution with mu equal to 0 and sigma 
equals .10, .30, .50, .70, and .90.  

 

 

Normal Distribution. The normal distribution (the "bell-shaped curve" which is 
symmetrical about the mean) is a theoretical function commonly used in inferential 
statistics as an approximation to sampling distributions (see also Elementary Concepts). 
In general, the normal distribution provides a good model for a random variable, when:  
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1. There is a strong tendency for the variable to take a central value;  
2. Positive and negative deviations from this central value are equally likely;  
3. The frequency of deviations falls off rapidly as the deviations become larger.  

As an underlying mechanism that produces the normal distribution, one may think of an 
infinite number of independent random (binomial) events that bring about the values of a 
particular variable. For example, there are probably a nearly infinite number of factors 
that determine a person's height (thousands of genes, nutrition, diseases, etc.). Thus, 
height can be expected to be normally distributed in the population. The normal 
distribution function is determined by the following formula:  

f(x) = 1/[(2*�)1/2*�] * e**{-1/2*[(x- �)/�]2 },    for -� < x < �  

where  

� is the mean  

� is the standard deviation  

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

� is the constant Pi (3.14...) 

 

The animation above shows several tail areas of the standard normal distribution (i.e., the 
normal distribution with a mean of 0 and a standard deviation of 1). The standard normal 
distribution is often used in hypothesis testing.  

 

 

Pareto Distribution. The Pareto distribution is commonly used in monitoring production 
processes (see Quality Control and Process Analysis). For example, a machine which 
produces copper wire will occasionally generate a flaw at some point along the wire. The 
Pareto distribution can be used to model the length of wire between successive flaws. The 
standard Pareto distribution is defined as:  

f(x) = c/xc+1,    for 1 � x, c < 0  

where  
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c is the shape parameter 

 

The animation above shows the Pareto distribution for the shape parameter equal to 1, 2, 
3, 4, and 5.  

 

 

Poisson Distribution. The Poisson distribution is also sometimes referred to as the 
distribution of rare events. Examples of Poisson distributed variables are number of 
accidents per person, number of sweepstakes won per person, or the number of 
catastrophic defects found in a production process. It is defined as:  

f(x) = (�x*e-�)/x!,    for x = 0,1,2,..., 0 < �  

where  

� (lambda) is the expected value of x (the mean)  

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 
 

 

Rayleigh Distribution. If two independent variables y1 and y2 are independent from each 
other and normally distributed with equal variance, then the variable x = �(y1

2+ y2
2) will 

follow the Rayleigh distribution. Thus, an example (and appropriate metaphor) for such a 
variable would be the distance of darts from the target in a dart-throwing game, where the 
errors in the two dimensions of the target plane are independent and normally distributed. 
The Rayleigh distribution is defined as:  

f(x) = x/b2 * e^[-(x2/2b2)],    for 0 � x < �, b > 0  

where  

b is the scale parameter 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

  

  



 192 

 

The graphic above shows the changing shape of the Rayleigh distribution when the scale 
parameter equals 1, 2, and 3.  

 

 

Rectangular Distribution. The rectangular distribution is useful for describing random 
variables with a constant probability density over the defined range a<b.  

f(x) = 1/(b-a),    for a<x<b 
       = 0 ,           elsewhere  

where  

a<b are constants. 
 

 

Student's t Distribution. The student's t distribution is symmetric about zero, and its 
general shape is similar to that of the standard normal distribution. It is most commonly 
used in testing hypothesis about the mean of a particular population. The student's t 
distribution is defined as (for n = 1, 2, . . .):  

f(x) = �[(�+1)/2] / �(�/2) * (�*�)-1/2 * [1 + (x2/�)-(�+1)/2  

where  

� is the shape parameter, degrees of freedom 

� is the Gamma function 

� is the constant Pi (3.14 . . .) 
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The shape of the student's t distribution is determined by the degrees of freedom. As 
shown in the animation above, its shape changes as the degrees of freedom increase.  

 

 

Weibull Distribution. As described earlier, the exponential distribution is often used as a 
model of time-to-failure measurements, when the failure (hazard) rate is constant over 
time. When the failure probability varies over time, then the Weibull distribution is 
appropriate. Thus, the Weibull distribution is often used in reliability testing (e.g., of 
electronic relays, ball bearings, etc.; see Hahn and Shapiro, 1967). The Weibull 
distribution is defined as:  

f(x) = c/b*(x/b)(c-1) * e[-(x/b)^c] ,    for 0 � x < �, b > 0, c > 0  

where  

b is the scale parameter 

c is the shape parameter 

e is the base of the natural logarithm, sometimes called Euler's e (2.71...) 

 

The animation above shows the Weibull distribution as the shape parameter increases (.5, 
1, 2, 3, 4, 5, and 10).  
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o Residuals Analysis  
o Box-Cox Transformations of Dependent Variables  

 
DOE Overview  

Experiments in Science and Industry  

Experimental methods are widely used in research as well as in industrial settings, 
however, sometimes for very different purposes. The primary goal in scientific research 
is usually to show the statistical significance of an effect that a particular factor exerts on 
the dependent variable of interest (for details concerning the concept of statistical 
significance see Elementary Concepts).  

In industrial settings, the primary goal is usually to extract the maximum amount of 
unbiased information regarding the factors affecting a production process from as few 
(costly) observations as possible. While in the former application (in science) analysis of 
variance (ANOVA) techniques are used to uncover the interactive nature of reality, as 
manifested in higher-order interactions of factors, in industrial settings interaction effects 
are often regarded as a "nuisance" (they are often of no interest; they only complicate the 
process of identifying important factors).  

Differences in techniques  

These differences in purpose have a profound effect on the techniques that are used in the 
two settings. If you review a standard ANOVA text for the sciences, for example the 
classic texts by Winer (1962) or Keppel (1982), you will find that they will primarily 
discuss designs with up to, perhaps, five factors (designs with more than six factors are 
usually impractical; see the ANOVA/MANOVA  chapter). The focus of these discussions 
is how to derive valid and robust statistical significance tests. However, if you review 
standard texts on experimentation in industry (Box, Hunter, and Hunter, 1978; Box and 
Draper, 1987; Mason, Gunst, and Hess, 1989; Taguchi, 1987) you will find that they will 
primarily discuss designs with many factors (e.g., 16 or 32) in which interaction effects 
cannot be evaluated, and the primary focus of the discussion is how to derive unbiased 
main effect (and, perhaps, two-way interaction) estimates with a minimum number of 
observations.  

This comparison can be expanded further, however, a more detailed description of 
experimental design in industry will now be discussed and other differences will become 
clear. Note that the General Linear Models and ANOVA/MANOVA chapters contain 
detailed discussions of typical design issues in scientific research; the General Linear 
Model procedure is a very comprehensive implementation of the general linear model 
approach to ANOVA/MANOVA (univariate and multivariate ANOVA). There are of 
course applications in industry where general ANOVA designs, as used in scientific 
research, can be immensely useful. You may want to read the General Linear Models and 
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ANOVA/MANOVA chapters to gain a more general appreciation of the range of methods 
encompassed by the term Experimental Design.  

Overview  

The general ideas and principles on which experimentation in industry is based, and the 
types of designs used will be discussed in the following paragraphs. The following 
paragraphs are meant to be introductory in nature. However, it is assumed that you are 
familiar with the basic ideas of analysis of variance and the interpretation of main effects 
and interactions in ANOVA. Otherwise, it is strongly recommend that you read the 
Introductory Overview section for ANOVA/MANOVA and the General Linear Models 
chapter.  

General Ideas  

In general, every machine used in a production process allows its operators to adjust 
various settings, affecting the resultant quality of the product manufactured by the 
machine. Experimentation allows the production engineer to adjust the settings of the 
machine in a systematic manner and to learn which factors have the greatest impact on 
the resultant quality. Using this information, the settings can be constantly improved until 
optimum quality is obtained. To illustrate this reasoning, here are a few examples:  

Example 1: Dyestuff manufacture. Box and Draper (1987, page 115) report an 
experiment concerned with the manufacture of certain dyestuff. Quality in this context 
can be described in terms of a desired (specified) hue and brightness and maximum fabric 
strength. Moreover, it is important to know what to change in order to produce a different 
hue and brightness should the consumers' taste change. Put another way, the 
experimenter would like to identify the factors that affect the brightness, hue, and 
strength of the final product. In the example described by Box and Draper, there are 6 
different factors that are evaluated in a 2**(6-0) design (the 2**(k-p) notation is 
explained below). The results of the experiment show that the three most important 
factors determining fabric strength are the Polysulfide index, Time, and Temperature (see 
Box and Draper, 1987, page 116). One can summarize the expected effect (predicted 
means) for the variable of interest (i.e., fabric strength in this case) in a so- called cube-
plot. This plot shows the expected (predicted) mean fabric strength for the respective low 
and high settings for each of the three variables (factors).  
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Example 1.1: Screening designs. In the previous example, 6 different factors were 
simultaneously evaluated. It is not uncommon, that there are very many (e.g., 100) 
different factors that may potentially be important. Special designs (e.g., Plackett-Burman 
designs, see Plackett and Burman, 1946) have been developed to screen such large 
numbers of factors in an efficient manner, that is, with the least number of observations 
necessary. For example, you can design and analyze an experiment with 127 factors and 
only 128 runs (observations); still, you will be able to estimate the main effects for each 
factor, and thus, you can quickly identify which ones are important and most likely to 
yield improvements in the process under study.  

Example 2: 3**3 design. Montgomery (1976, page 204) describes an experiment 
conducted in order identify the factors that contribute to the loss of soft drink syrup due 
to frothing during the filling of five- gallon metal containers. Three factors where 
considered: (a) the nozzle configuration, (b) the operator of the machine, and (c) the 
operating pressure. Each factor was set at three different levels, resulting in a complete 
3**(3-0) experimental design (the 3**(k-p) notation is explained below).  

 

Moreover, two measurements were taken for each combination of factor settings, that is, 
the 3**(3-0) design was completely replicated once.  
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Example 3: Maximizing yield of a chemical reaction. The yield of many chemical 
reactions is a function of time and temperature. Unfortunately, these two variables often 
do not affect the resultant yield in a linear fashion. In other words, it is not so that "the 
longer the time, the greater the yield" and "the higher the temperature, the greater the 
yield." Rather, both of these variables are usually related in a curvilinear fashion to the 
resultant yield.  

 

Thus, in this example your goal as experimenter would be to optimize the yield surface 
that is created by the two variables: time and temperature.  

Example 4: Testing the effectiveness of four fuel additives. Latin square designs are 
useful when the factors of interest are measured at more than two levels, and the nature of 
the problem suggests some blocking. For example, imagine a study of 4 fuel additives on 
the reduction in oxides of nitrogen (see Box, Hunter, and Hunter, 1978, page 263). You 
may have 4 drivers and 4 cars at your disposal. You are not particularly interested in any 
effects of particular cars or drivers on the resultant oxide reduction; however, you do not 
want the results for the fuel additives to be biased by the particular driver or car. Latin 
square designs allow you to estimate the main effects of all factors in the design in an 
unbiased manner. With regard to the example, the arrangement of treatment levels in a 
Latin square design assures that the variability among drivers or cars does not affect the 
estimation of the effect due to different fuel additives.  

Example 5: Improving surface uniformity in the manufacture of polysilicon wafers. 
The manufacture of reliable microprocessors requires very high consistency in the 
manufacturing process. Note that in this instance, it is equally, if not more important to 
control the variability of certain product characteristics than it is to control the average 
for a characteristic. For example, with regard to the average surface thickness of the 
polysilicon layer, the manufacturing process may be perfectly under control; yet, if the 
variability of the surface thickness on a wafer fluctuates widely, the resultant microchips 
will not be reliable. Phadke (1989) describes how different characteristics of the 
manufacturing process (such as deposition temperature, deposition pressure, nitrogen 
flow, etc.) affect the variability of the polysilicon surface thickness on wafers. However, 
no theoretical model exists that would allow the engineer to predict how these factors 
affect the uniformness of wafers. Therefore, systematic experimentation with the factors 
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is required to optimize the process. This is a typical example where Taguchi robust 
design methods would be applied.  

Example 6: Mixture designs. Cornell (1990, page 9) reports an example of a typical 
(simple) mixture problem. Specifically, a study was conducted to determine the optimum 
texture of fish patties as a result of the relative proportions of different types of fish 
(Mullet, Sheepshead, and Croaker) that made up the patties. Unlike in non-mixture 
experiments, the total sum of the proportions must be equal to a constant, for example, to 
100%. The results of such experiments are usually graphically represented in so-called 
triangular (or ternary) graphs.  

 

In general, the overall constraint -- that the three components must sum to a constant -- is 
reflected in the triangular shape of the graph (see above).  

Example 6.1: Constrained mixture designs. It is particularly common in mixture 
designs that the relative amounts of components are further constrained (in addition to the 
constraint that they must sum to, for example, 100%). For example, suppose we wanted 
to design the best-tasting fruit punch consisting of a mixture of juices from five fruits. 
Since the resulting mixture is supposed to be a fruit punch, pure blends consisting of the 
pure juice of only one fruit are necessarily excluded. Additional constraints may be 
placed on the "universe" of mixtures due to cost constraints or other considerations, so 
that one particular fruit cannot, for example, account for more than 30% of the mixtures 
(otherwise the fruit punch would be too expensive, the shelf-life would be compromised, 
the punch could not be produced in large enough quantities, etc.). Such so-called 
constrained experimental regions present numerous problems, which, however, can be 
addressed.  
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In general, under those conditions, one seeks to design an experiment that can potentially 
extract the maximum amount of information about the respective response function (e.g., 
taste of the fruit punch) in the experimental region of interest.  

Computational Problems  

There are basically two general issues to which Experimental Design is addressed:  

1. How to design an optimal experiment, and  
2. How to analyze the results of an experiment.  

With regard to the first question, there are different considerations that enter into the 
different types of designs, and they will be discussed shortly. In the most general terms, 
the goal is always to allow the experimenter to evaluate in an unbiased (or least biased) 
way, the consequences of changing the settings of a particular factor, that is, regardless of 
how other factors were set. In more technical terms, you attempt to generate designs 
where main effects are unconfounded among themselves, and in some cases, even 
unconfounded with the interaction of factors.  

Components of Variance, Denominator Synthesis  

There are several statistical methods for analyzing designs with random effects (see 
Methods for Analysis of Variance). The Variance Components and Mixed Model 
ANOVA/ANCOVA  chapter discusses numerous options for estimating variance 
components for random effects, and for performing approximate F tests based on 
synthesized error terms.  

Summary  

Experimental methods are finding increasing use in manufacturing to optimize the 
production process. Specifically, the goal of these methods is to identify the optimum 
settings for the different factors that affect the production process. In the discussion so 
far, the major classes of designs that are typically used in industrial experimentation have 
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been introduced: 2**(k-p) (two-level, multi-factor) designs, screening designs for large 
numbers of factors, 3**(k-p) (three-level, multi-factor) designs (mixed designs with 2 
and 3 level factors are also supported), central composite (or response surface) designs, 
Latin square designs, Taguchi robust design analysis, mixture designs, and special 
procedures for constructing experiments in constrained experimental regions. 
Interestingly, many of these experimental techniques have "made their way" from the 
production plant into management, and successful implementations have been reported in 
profit planning in business, cash-flow optimization in banking, etc. (e.g., see Yokyama 
and Taguchi, 1975).  

These techniques will now be described in greater detail in the following sections:  

1. 2**(k-p) Fractional Factorial Designs  
2. 2**(k-p) Maximally Unconfounded and Minimum Aberration Designs  
3. 3**(k-p) , Box-Behnken, and Mixed 2 and 3 Level Factorial Designs  
4. Central Composite and Non-Factorial Response Surface Designs  
5. Latin Square Designs  
6. Taguchi Methods: Robust Design Experiments  
7. Mixture designs and triangular surfaces  
8. Designs for constrained surfaces and mixtures  
9. Constructing D- and A-optimal designs for surfaces and mixtures  

 
2**(k-p) Fractional Factorial Designs at 2 Levels  

Basic Idea  

In many cases, it is sufficient to consider the factors affecting the production process at 
two levels. For example, the temperature for a chemical process may either be set a little 
higher or a little lower, the amount of solvent in a dyestuff manufacturing process can 
either be slightly increased or decreased, etc. The experimenter would like to determine 
whether any of these changes affect the results of the production process. The most 
intuitive approach to study those factors would be to vary the factors of interest in a full 
factorial design, that is, to try all possible combinations of settings. This would work fine, 
except that the number of necessary runs in the experiment (observations) will increase 
geometrically. For example, if you want to study 7 factors, the necessary number of runs 
in the experiment would be 2**7 = 128. To study 10 factors you would need 2**10 = 
1,024 runs in the experiment. Because each run may require time-consuming and costly 
setting and resetting of machinery, it is often not feasible to require that many different 
production runs for the experiment. In these conditions, fractional factorials are used that 
"sacrifice" interaction effects so that main effects may still be computed correctly.  

Generating the Design  

A technical description of how fractional factorial designs are constructed is beyond the 
scope of this introduction. Detailed accounts of how to design 2**(k-p) experiments can 
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be found, for example, in Bayne and Rubin (1986), Box and Draper (1987), Box, Hunter, 
and Hunter (1978), Montgomery (1991), Daniel (1976), Deming and Morgan (1993), 
Mason, Gunst, and Hess (1989), or Ryan (1989), to name only a few of the many text 
books on this subject. In general, it will successively "use" the highest-order interactions 
to generate new factors. For example, consider the following design that includes 11 
factors but requires only 16 runs (observations).  

Design: 2**(11-7), Resolution III 

Run A B C D E F G H I  J K  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 
1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 

1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 
1 
1 

-1 
-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 

1 
-1 
1 

-1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 
1 

-1 
1 

-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 
1 

-1 
-1 
1 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 

 
 

Reading the design. The design displayed above should be interpreted as follows. Each 
column contains +1's or -1's to indicate the setting of the respective factor (high or low, 
respectively). So for example, in the first run of the experiment, set all factors A through 
K to the plus setting (e.g., a little higher than before); in the second run, set factors A, B, 
and C to the positive setting, factor D to the negative setting, and so on. Note that there 
are numerous options provided to display (and save) the design using notation other than 
±1 to denote factor settings. For example, you may use actual values of factors (e.g., 90 
degrees Celsius and 100 degrees Celsius) or text labels (Low temperature, High 
temperature).  

Randomizing the runs. Because many other things may change from production run to 
production run, it is always a good practice to randomize the order in which the 
systematic runs of the designs are performed.  

The Concept of Design Resolution  

The design above is described as a 2**(11-7) design of resolution III (three). This means 
that you study overall k = 11 factors (the first number in parentheses); however, p = 7 of 
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those factors (the second number in parentheses) were generated from the interactions of 
a full 2**[(11-7) = 4] factorial design. As a result, the design does not give full 
resolution; that is, there are certain interaction effects that are confounded with (identical 
to) other effects. In general, a design of resolution R is one where no l-way interactions 
are confounded with any other interaction of order less than R-l. In the current example, 
R is equal to 3. Here, no l = 1 level interactions (i.e., main effects) are confounded with 
any other interaction of order less than R-l = 3-1 = 2. Thus, main effects in this design are 
confounded with two- way interactions; and consequently, all higher-order interactions 
are equally confounded. If you had included 64 runs, and generated a 2**(11-5) design, 
the resultant resolution would have been R = IV (four). You would have concluded that 
no l=1-way interaction (main effect) is confounded with any other interaction of order 
less than R-l = 4-1 = 3. In this design then, main effects are not confounded with two-way 
interactions, but only with three-way interactions. What about the two-way interactions? 
No l=2-way interaction is confounded with any other interaction of order less than R-l = 
4-2 = 2. Thus, the two-way interactions in that design are confounded with each other.  

Plackett-Burman (Hadamard Matrix) Designs for Screening  

When one needs to screen a large number of factors to identify those that may be 
important (i.e., those that are related to the dependent variable of interest), one would like 
to employ a design that allows one to test the largest number of factor main effects with 
the least number of observations, that is to construct a resolution III design with as few 
runs as possible. One way to design such experiments is to confound all interactions with 
"new" main effects. Such designs are also sometimes called saturated designs, because 
all information in those designs is used to estimate the parameters, leaving no degrees of 
freedom to estimate the error term for the ANOVA. Because the added factors are created 
by equating (aliasing, see below), the "new" factors with the interactions of a full 
factorial design, these designs always will have 2**k runs (e.g., 4, 8, 16, 32, and so on). 
Plackett and Burman (1946) showed how full factorial design can be fractionalized in a 
different manner, to yield saturated designs where the number of runs is a multiple of 4, 
rather than a power of 2. These designs are also sometimes called Hadamard matrix 
designs. Of course, you do not have to use all available factors in those designs, and, in 
fact, sometimes you want to generate a saturated design for one more factor than you are 
expecting to test. This will allow you to estimate the random error variability, and test for 
the statistical significance of the parameter estimates.  

Enhancing Design Resolution via Foldover  

One way in which a resolution III design can be enhanced and turned into a resolution IV 
design is via foldover (e.g., see Box and Draper, 1987, Deming and Morgan, 1993): 
Suppose you have a 7-factor design in 8 runs:  

Design: 2**(7-4) design 

Run A B C D E F G 

1 1 1 1 1 1 1 1 
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2 
3 
4 
5 
6 
7 
8 

1 
1 
1 

-1 
-1 
-1 
-1 

1 
-1 
-1 
1 
1 

-1 
-1 

-1 
1 

-1 
1 

-1 
1 

-1 

1 
-1 
-1 
-1 
-1 
1 
1 

-1 
1 

-1 
-1 
1 

-1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 

 
 

This is a resolution III design, that is, the two-way interactions will be confounded with 
the main effects. You can turn this design into a resolution IV design via the Foldover 
(enhance resolution) option. The foldover method copies the entire design and appends it 
to the end, reversing all signs:  

Design: 2**(7-4) design (+Foldover) 

  
Run 

  
A 

  
B 

  
C 

  
D 

  
E 

  
F 

  
G 

New: 
H 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 

1 
-1 
1 

-1 
1 

-1 
1 

-1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 
1 
1 

-1 
-1 

1 
-1 
1 

-1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 
1 

-1 
1 

-1 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 
1 

-1 
-1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

 
 

Thus, the standard run number 1 was -1, -1, -1, 1, 1, 1, -1; the new run number 9 (the first 
run of the "folded-over" portion) has all signs reversed: 1, 1, 1, -1, -1, -1, 1. In addition to 
enhancing the resolution of the design, we also have gained an 8'th factor (factor H), 
which contains all +1's for the first eight runs, and -1's for the folded-over portion of the 
new design. Note that the resultant design is actually a 2**(8-4) design of resolution IV 
(see also Box and Draper, 1987, page 160).  

Aliases of Interactions: Design Generators  
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To return to the example of the resolution R = III  design, now that you know that main 
effects are confounded with two-way interactions, you may ask the question, "Which 
interaction is confounded with which main effect?"  

  
  
  
Factor 

Fractional Design Generators 
2**(11-7) design 

(Factors are denoted by numbers) 
Alias 

  5 
  6 
  7 
  8 
  9 
10 
11 

   123 
  234 
  134 
  124 
1234 
    12 
    13 

 
 

Design generators. The design generators shown above are the "key" to how factors 5 
through 11 were generated by assigning them to particular interactions of the first 4 
factors of the full factorial 2**4 design. Specifically, factor 5 is identical to the 123 
(factor 1 by factor 2 by factor 3) interaction. Factor 6 is identical to the 234 interaction, 
and so on. Remember that the design is of resolution III (three), and you expect some 
main effects to be confounded with some two-way interactions; indeed, factor 10 (ten) is 
identical to the 12 (factor 1 by factor 2) interaction, and factor 11 (eleven) is identical to 
the 13 (factor 1 by factor 3) interaction. Another way in which these equivalencies are 
often expressed is by saying that the main effect for factor 10 (ten) is an alias for the 
interaction of 1 by 2. (The term alias was first used by Finney, 1945).  

To summarize, whenever you want to include fewer observations (runs) in your 
experiment than would be required by the full factorial 2**k design, you "sacrifice" 
interaction effects and assign them to the levels of factors. The resulting design is no 
longer a full factorial but a fractional factorial.  

The fundamental identity. Another way to summarize the design generators is in a 
simple equation. Namely, if, for example, factor 5 in a fractional factorial design is 
identical to the 123 (factor 1 by factor 2 by factor 3) interaction, then it follows that 
multiplying the coded values for the 123 interaction by the coded values for factor 5 will 
always result in +1 (if all factor levels are coded ±1); or:  

I = 1235  

where I stands for +1 (using the standard notation as, for example, found in Box and 
Draper, 1987). Thus, we also know that factor 1 is confounded with the 235 interaction, 
factor 2 with the 135, interaction, and factor 3 with the 125 interaction, because, in each 
instance their product must be equal to 1. The confounding of two-way interactions is 
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also defined by this equation, because the 12 interaction multiplied by the 35 interaction 
must yield 1, and hence, they are identical or confounded. Therefore, one can summarize 
all confounding in a design with such a fundamental identity equation.  

Blocking  

In some production processes, units are produced in natural "chunks" or blocks. You 
want to make sure that these blocks do not bias your estimates of main effects. For 
example, you may have a kiln to produce special ceramics, but the size of the kiln is 
limited so that you cannot produce all runs of your experiment at once. In that case you 
need to break up the experiment into blocks. However, you do not want to run positive 
settings of all factors in one block, and all negative settings in the other. Otherwise, any 
incidental differences between blocks would systematically affect all estimates of the 
main effects of the factors of interest. Rather, you want to distribute the runs over the 
blocks so that any differences between blocks (i.e., the blocking factor) do not bias your 
results for the factor effects of interest. This is accomplished by treating the blocking 
factor as another factor in the design. Consequently, you "lose" another interaction effect 
to the blocking factor, and the resultant design will be of lower resolution. However, 
these designs often have the advantage of being statistically more powerful, because they 
allow you to estimate and control the variability in the production process that is due to 
differences between blocks.  

Replicating the Design  

It is sometimes desirable to replicate the design, that is, to run each combination of factor 
levels in the design more than once. This will allow you to later estimate the so-called 
pure error in the experiment. The analysis of experiments is further discussed below; 
however, it should be clear that, when replicating the design, one can compute the 
variability of measurements within each unique combination of factor levels. This 
variability will give an indication of the random error in the measurements (e.g., due to 
uncontrolled factors, unreliability of the measurement instrument, etc.), because the 
replicated observations are taken under identical conditions (settings of factor levels). 
Such an estimate of the pure error can be used to evaluate the size and statistical 
significance of the variability that can be attributed to the manipulated factors.  

Partial replications. When it is not possible or feasible to replicate each unique 
combination of factor levels (i.e., the full design), one can still gain an estimate of pure 
error by replicating only some of the runs in the experiment. However, one must be 
careful to consider the possible bias that may be introduced by selectively replicating 
only some runs. If one only replicates those runs that are most easily repeated (e.g., 
gathers information at the points where it is "cheapest"), one may inadvertently only 
choose those combinations of factor levels that happen to produce very little (or very 
much) random variability -- causing one to underestimate (or overestimate) the true 
amount of pure error. Thus, one should carefully consider, typically based on your 
knowledge about the process that is being studied, which runs should be replicated, that 
is, which runs will yield a good (unbiased) estimate of pure error.  
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Adding Center Points  

Designs with factors that are set at two levels implicitly assume that the effect of the 
factors on the dependent variable of interest (e.g., fabric Strength) is linear. It is 
impossible to test whether or not there is a non-linear (e.g., quadratic) component in the 
relationship between a factor A and a dependent variable, if A is only evaluated at two 
points (.i.e., at the low and high settings). If one suspects that the relationship between the 
factors in the design and the dependent variable is rather curve-linear, then one should 
include one or more runs where all (continuous) factors are set at their midpoint. Such 
runs are called center-point runs (or center points), since they are, in a sense, in the center 
of the design (see graph).  

 

Later in the analysis (see below), one can compare the measurements for the dependent 
variable at the center point with the average for the rest of the design. This provides a 
check for curvature (see Box and Draper, 1987): If the mean for the dependent variable at 
the center of the design is significantly different from the overall mean at all other points 
of the design, then one has good reason to believe that the simple assumption that the 
factors are linearly related to the dependent variable, does not hold.  

Analyzing the Results of a 2**(k-p) Experiment  

Analysis of variance. Next, one needs to determine exactly which of the factors 
significantly affected the dependent variable of interest. For example, in the study 
reported by Box and Draper (1987, page 115), it is desired to learn which of the factors 
involved in the manufacture of dyestuffs affected the strength of the fabric. In this 
example, factors 1 (Polysulfide), 4 (Time), and 6 (Temperature) significantly affected the 
strength of the fabric. Note that to simplify matters, only main effects are shown below.  

ANOVA; Var.:STRENGTH; R-sqr = .60614; Adj:.56469 (fabrico.sta) 

  2**(6-0) design; MS Residual = 3.62509 
DV: STRENGTH  

  SS df MS F p 
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(1)POLYSUFD 
(2)REFLUX 
(3)MOLES 
(4)TIME 
(5)SOLVENT 
(6)TEMPERTR 
Error 
Total SS 

48.8252 
7.9102 
.1702 

142.5039 
2.7639 

115.8314 
206.6302 
524.6348 

1 
1 
1 
1 
1 
1 

57 
63 

48.8252 
7.9102 
.1702 

142.5039 
2.7639 

115.8314 
3.6251 

  

13.46867 
2.18206 
.04694 

39.31044 
.76244 

31.95269 
  
  

.000536 

.145132 

.829252 

.000000 

.386230 

.000001 
  
  

Pure error and lack of fit. If the experimental design is at least partially replicated, then 
one can estimate the error variability for the experiment from the variability of the 
replicated runs. Since those measurements were taken under identical conditions, that is, 
at identical settings of the factor levels, the estimate of the error variability from those 
runs is independent of whether or not the "true" model is linear or non-linear in nature, or 
includes higher-order interactions. The error variability so estimated represents pure 
error, that is, it is entirely due to unreliabilities in the measurement of the dependent 
variable. If available, one can use the estimate of pure error to test the significance of the 
residual variance, that is, all remaining variability that cannot be accounted for by the 
factors and their interactions that are currently in the model. If, in fact, the residual 
variability is significantly larger than the pure error variability, then one can conclude 
that there is still some statistically significant variability left that is attributable to 
differences between the groups, and hence, that there is an overall lack of fit of the 
current model.  

ANOVA; Var.:STRENGTH; R-sqr = .58547; Adj:.56475 (fabrico.sta) 

  2**(3-0) design; MS Pure Error = 3.594844 
DV: STRENGTH  

  SS df MS F p 
(1)POLYSUFD 
(2)TIME 
(3)TEMPERTR 
Lack of Fit 
Pure Error 
Total SS 

48.8252 
142.5039 
115.8314 
16.1631 

201.3113 
524.6348 

1 
1 
1 
4 

56 
63 

48.8252 
142.5039 
115.8314 

4.0408 
3.5948 

  

13.58200 
39.64120 
32.22154 
1.12405 

  
  

.000517 

.000000 

.000001 

.354464 
  
  

For example, the table above shows the results for the three factors that were previously 
identified as most important in their effect on fabric strength; all other factors where 
ignored in the analysis. As you can see in the row with the label Lack of Fit, when the 
residual variability for this model (i.e., after removing the three main effects) is compared 
against the pure error estimated from the within-group variability, the resulting F test is 
not statistically significant. Therefore, this result additionally supports the conclusion 
that, indeed, factors Polysulfide, Time, and Temperature significantly affected resultant 
fabric strength in an additive manner (i.e., there are no interactions). Or, put another way, 
all differences between the means obtained in the different experimental conditions can 
be sufficiently explained by the simple additive model for those three variables.  
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Parameter or effect estimates. Now, look at how these factors affected the strength of 
the fabrics.  

  Effect Std.Err.  t (57) p 
Mean/Interc. 
(1)POLYSUFD 
(2)REFLUX 
(3)MOLES 
(4)TIME 
(5)SOLVENT 
(6)TEMPERTR  

11.12344 
1.74688 
.70313 
.10313 

2.98438 
-.41562 
2.69062 

.237996 

.475992 

.475992 

.475992 

.475992 

.475992 

.475992 

46.73794 
3.66997 
1.47718 
.21665 

6.26980 
-.87318 
5.65267 

.000000 

.000536 

.145132 

.829252 

.000000 

.386230 

.000001 

 
 

The numbers above are the effect or parameter estimates. With the exception of the 
overall Mean/Intercept, these estimates are the deviations of the mean of the negative 
settings from the mean of the positive settings for the respective factor. For example, if 
you change the setting of factor Time from low to high, then you can expect an 
improvement in Strength by 2.98; if you set the value for factor Polysulfd to its high 
setting, you can expect a further improvement by 1.75, and so on.  

As you can see, the same three factors that were statistically significant show the largest 
parameter estimates; thus the settings of these three factors were most important for the 
resultant strength of the fabric.  

For analyses including interactions, the interpretation of the effect parameters is a bit 
more complicated. Specifically, the two-way interaction parameters are defined as half 
the difference between the main effects of one factor at the two levels of a second factor 
(see Mason, Gunst, and Hess, 1989, page 127); likewise, the three-way interaction 
parameters are defined as half the difference between the two-factor interaction effects at 
the two levels of a third factor, and so on.  

Regression coefficients. One can also look at the parameters in the multiple regression 
model (see Multiple Regression). To continue this example, consider the following 
prediction equation:  

Strength = const + b1 *x1 +... + b6 *x6  

Here x1 through x6 stand for the 6 factors in the analysis. The Effect Estimates shown 
earlier also contains these parameter estimates:  

    
Coeff. 

Std.Err.  
Coeff. 

-95.% 
Cnf.Limt  

+95.% 
Cnf.Limt  

Mean/Interc. 
(1)POLYSUFD 
(2)REFLUX 

11.12344 
.87344 
.35156 

.237996 

.237996 

.237996 

10.64686 
.39686 

-.12502 

11.60002 
1.35002 
.82814 
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(3)MOLES 
(4)TIME 
(5)SOLVENT 
(6)TEMPERTR  

.05156 
1.49219 
-.20781 
1.34531 

.237996 

.237996 

.237996 

.237996 

-.42502 
1.01561 
-.68439 
.86873 

.52814 
1.96877 
.26877 

1.82189 

 
 

Actually, these parameters contain little "new" information, as they simply are one-half 
of the parameter values (except for the Mean/Intercept) shown earlier. This makes sense 
since now, the coefficient can be interpreted as the deviation of the high-setting for the 
respective factors from the center. However, note that this is only the case if the factor 
values (i.e., their levels) are coded as -1 and +1, respectively. Otherwise, the scaling of 
the factor values will affect the magnitude of the parameter estimates. In the example 
data reported by Box and Draper (1987, page 115), the settings or values for the different 
factors were recorded on very different scales:  

data file: FABRICO.STA [ 64 cases with 9 variables ] 
2**(6-0) Design, Box & Draper, p. 117 

  POLYSUF
D 

REFLU
X 

MOLE
S 

TIM
E 

SOLVEN
T 

TEMPERT
R 

STRENGT
H 

HU
E 

BRIGTHN
S 

1 
2 
3 
4 
5 
6 
7 
8 
9 
1
0 
1
1 
1
2 
1
3 
1
4 
1
5 
. . 
. 

6 
7 
6 
7 
6 
7 
6 
7 
6 
7 
6 
7 
6 
7 
6 

. . . 

150 
150 
170 
170 
150 
150 
170 
170 
150 
150 
170 
170 
150 
150 
170 
. . . 

1.8 
1.8 
1.8 
1.8 
2.4 
2.4 
2.4 
2.4 
1.8 
1.8 
1.8 
1.8 
2.4 
2.4 
2.4 
. . . 

24 
24 
24 
24 
24 
24 
24 
24 
36 
36 
36 
36 
36 
36 
36 
. . . 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
. . . 

120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
. . . 

  3.4 
  9.7 
  7.4 
10.6 
  6.5 
  7.9 
10.3 
  9.5 
14.3 
10.5 
  7.8 
17.2 
  9.4 
12.1 
  9.5 
. . . 

15.0 
  5.0 
23.0 
  8.0 
20.0 
  9.0 
13.0 
  5.0 
23.0 
  1.0 
11.0 
  5.0 
15.0 
  8.0 
15.0 
. . . 

36.0 
35.0 
37.0 
34.0 
30.0 
32.0 
28.0 
38.0 
40.0 
32.0 
32.0 
28.0 
34.0 
26.0 
30.0 
. . . 

Shown below are the regression coefficient estimates based on the uncoded original 
factor values:  

  Regressn 
Coeff. 

  
Std.Err.  

  
t (57) 

  
p 
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Mean/Interc. 
(1)POLYSUFD 
(2)REFLUX 
(3)MOLES 
(4)TIME 
(5)SOLVENT 
(6)TEMPERTR  

-46.0641 
1.7469 
.0352 
.1719 
.2487 

-.0346 
.2691 

8.109341 
.475992 
.023800 
.793320 
.039666 
.039666 
.047599 

-5.68037 
3.66997 
1.47718 
.21665 

6.26980 
-.87318 
5.65267 

.000000 

.000536 

.145132 

.829252 

.000000 

.386230 

.000001 

 
 

Because the metric for the different factors is no longer compatible, the magnitudes of the 
regression coefficients are not compatible either. This is why it is usually more 
informative to look at the ANOVA parameter estimates (for the coded values of the 
factor levels), as shown before. However, the regression coefficients can be useful when 
one wants to make predictions for the dependent variable, based on the original metric of 
the factors.  

Graph Options  

Diagnostic plots of residuals. To start with, before accepting a particular "model" that 
includes a particular number of effects (e.g., main effects for Polysulfide, Time, and 
Temperature in the current example), one should always examine the distribution of the 
residual values. These are computed as the difference between the predicted values (as 
predicted by the current model) and the observed values. You can compute the histogram 
for these residual values, as well as probability plots (as shown below).  

 

The parameter estimates and ANOVA table are based on the assumption that the 
residuals are normally distributed (see also Elementary Concepts). The histogram 
provides one way to check (visually) whether this assumption holds. The so-called 
normal probability plot is another common tool to assess how closely a set of observed 
values (residuals in this case) follows a theoretical distribution. In this plot the actual 
residual values are plotted along the horizontal X-axis; the vertical Y-axis shows the 
expected normal values for the respective values, after they were rank-ordered. If all 
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values fall onto a straight line, then one can be satisfied that the residuals follow the 
normal distribution.  

Pareto chart of effects. The Pareto chart of effects is often an effective tool for 
communicating the results of an experiment, in particular to laymen.  

 

In this graph, the ANOVA effect estimates are sorted from the largest absolute value to 
the smallest absolute value. The magnitude of each effect is represented by a column, and 
often, a line going across the columns indicates how large an effect has to be (i.e., how 
long a column must be) to be statistically significant.  

Normal probability plot of effects. Another useful, albeit more technical summary 
graph, is the normal probability plot of the estimates. As in the normal probability plot of 
the residuals, first the effect estimates are rank ordered, and then a normal z score is 
computed based on the assumption that the estimates are normally distributed. This z 
score is plotted on the Y-axis; the observed estimates are plotted on the X-axis (as shown 
below).  

 

Square and cube plots. These plots are often used to summarize predicted values for the 
dependent variable, given the respective high and low setting of the factors. The square 
plot (see below) will show the predicted values (and, optionally, their confidence 
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intervals) for two factors at a time. The cube plot will show the predicted values (and, 
optionally, confidence intervals) for three factors at a time.  

 

Interaction plots. A general graph for showing the means is the standard interaction plot, 
where the means are indicated by points connected by lines. This plot (see below) is 
particularly useful when there are significant interaction effects in the model.  

 

Surface and contour plots. When the factors in the design are continuous in nature, it is 
often also useful to look at surface and contour plots of the dependent variable as a 
function of the factors.  
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These types of plots will further be discussed later in this section, in the context of 3**(k-
p), and central composite and response surface designs.  

Summary  

2**(k-p) designs are the "workhorse" of industrial experiments. The impact of a large 
number of factors on the production process can simultaneously be assessed with relative 
efficiency (i.e., with few experimental runs). The logic of these types of experiments is 
straightforward (each factor has only two settings).  

Disadvantages. The simplicity of these designs is also their major flaw. As mentioned 
before, underlying the use of two-level factors is the belief that the resultant changes in 
the dependent variable (e.g., fabric strength) are basically linear in nature. This is often 
not the case, and many variables are related to quality characteristics in a non-linear 
fashion. In the example above, if you were to continuously increase the temperature 
factor (which was significantly related to fabric strength), you would of course eventually 
hit a "peak," and from there on the fabric strength would decrease as the temperature 
increases. While this types of curvature in the relationship between the factors in the 
design and the dependent variable can be detected if the design included center point 
runs, one cannot fit explicit nonlinear (e.g., quadratic) models with 2**(k-p) designs 
(however, central composite designs will do exactly that).  

Another problem of fractional designs is the implicit assumption that higher-order 
interactions do not matter; but sometimes they do, for example, when some other factors 
are set to a particular level, temperature may be negatively related to fabric strength. 
Again, in fractional factorial designs, higher-order interactions (greater than two-way) 
particularly will escape detection.  
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2**(k-p) Maximally Unconfounded and Minimum 
Aberration Designs  

Basic Idea  

2**( k-p) fractional factorial designs are often used in industrial experimentation because 
of the economy of data collection that they provide. For example, suppose an engineer 
needed to investigate the effects of varying 11 factors, each with 2 levels, on a 
manufacturing process. Let us call the number of factors k, which would be 11 for this 
example. An experiment using a full factorial design, where the effects of every 
combination of levels of each factor are studied, would require 2**( k) experimental runs, 
or 2048 runs for this example. To minimize the data collection effort, the engineer might 
decide to forego investigation of higher-order interaction effects of the 11 factors, and 
focus instead on identifying the main effects of the 11 factors and any low-order 
interaction effects that could be estimated from an experiment using a smaller, more 
reasonable number of experimental runs. There is another, more theoretical reason for not 
conducting huge, full factorial 2 level experiments. In general, it is not logical to be 
concerned with identifying higher-order interaction effects of the experimental factors, 
while ignoring lower-order nonlinear effects, such as quadratic or cubic effects, which 
cannot be estimated if only 2 levels of each factor are employed. So althrough practical 
considerations often lead to the need to design experiments with a reasonably small 
number of experimental runs, there is a logical justification for such experiments.  

The alternative to the 2**( k) full factorial design is the 2**( k-p) fractional factorial 
design, which requires only a "fraction" of the data collection effort required for full 
factorial designs. For our example with k=11 factors, if only 64 experimental runs can be 
conducted, a 2**(11-5) fractional factorial experiment would be designed with 2**6 = 64 
experimental runs. In essence, a k-p = 6 way full factorial experiment is designed, with 
the levels of the p factors being "generated" by the levels of selected higher order 
interactions of the other 6 factors. Fractional factorials "sacrifice" higher order interaction 
effects so that lower order effects may still be computed correctly. However, different 
criteria can be used in choosing the higher order interactions to be used as generators, 
with different criteria sometimes leading to different "best" designs.  

2**( k-p) fractional factorial designs can also include blocking factors. In some 
production processes, units are produced in natural "chunks" or blocks. To make sure that 
these blocks do not bias your estimates of the effects for the k factors, blocking factors 
can be added as additional factors in the design. Consequently, you may "sacrifice" 
additional interaction effects to generate the blocking factors, but these designs often 
have the advantage of being statistically more powerful, because they allow you to 
estimate and control the variability in the production process that is due to differences 
between blocks.  

Design Criteria  
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Many of the concepts discussed in this overview are also addressed in the Overview of 
2**(k-p) Fractional factorial designs. However, a technical description of how fractional 
factorial designs are constructed is beyond the scope of either introductory overview. 
Detailed accounts of how to design 2**( k-p) experiments can be found, for example, in 
Bayne and Rubin (1986), Box and Draper (1987), Box, Hunter, and Hunter (1978), 
Montgomery (1991), Daniel (1976), Deming and Morgan (1993), Mason, Gunst, and 
Hess (1989), or Ryan (1989), to name only a few of the many text books on this subject.  

In general, the 2**(k-p) maximally unconfounded and minimum aberration designs 
techniques will successively select which higher-order interactions to use as generators 
for the p factors. For example, consider the following design that includes 11 factors but 
requires only 16 runs (observations).  

Design: 2**(11-7), Resolution III 

Run A B C D E F G H I  J K  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 
1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 

1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 
1 
1 

-1 
-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 

1 
-1 
1 

-1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 
1 

-1 
1 

-1 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 
1 

-1 
-1 
1 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 

-1 
-1 
1 
1 

 
 

Interpreting the design. The design displayed in the Scrollsheet above should be 
interpreted as follows. Each column contains +1's or -1's to indicate the setting of the 
respective factor (high or low, respectively). So for example, in the first run of the 
experiment, all factors A through K are set to the higher level, and in the second run, 
factors A, B, and C are set to the higher level, but factor D is set to the lower level, and so 
on. Notice that the settings for each experimental run for factor E can be produced by 
multiplying the respective settings for factors A, B, and C. The A x B x C interaction 
effect therefore cannot be estimated independently of the factor E effect in this design 
because these two effects are confounded. Likewise, the settings for factor F can be 
produced by multiplying the respective settings for factors B, C, and D. We say that ABC 
and BCD are the generators for factors E and F, respectively.  
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The maximum resolution design criterion. In the Scrollsheet shown above, the design 
is described as a 2**(11-7) design of resolution III (three). This means that you study 
overall k = 11 factors, but p = 7 of those factors were generated from the interactions of a 
full 2**[(11-7) = 4] factorial design. As a result, the design does not give full resolution; 
that is, there are certain interaction effects that are confounded with (identical to) other 
effects. In general, a design of resolution R is one where no l-way interactions are 
confounded with any other interaction of order less than R - l. In the current example, R is 
equal to 3. Here, no l = 1-way interactions (i.e., main effects) are confounded with any 
other interaction of order less than R - l = 3 -1 = 2. Thus, main effects in this design are 
unconfounded with each other, but are confounded with two-factor interactions; and 
consequently, with other higher-order interactions. One obvious, but nevertheless very 
important overall design criterion is that the higher-order interactions to be used as 
generators should be chosen such that the resolution of the design is as high as possible.  

The maximum unconfounding design criterion. Maximizing the resolution of a design, 
however, does not by itself ensure that the selected generators produce the "best" design. 
Consider, for example, two different resolution IV designs. In both designs, main effects 
would be unconfounded with each other and 2-factor interactions would be 
unconfounded with main effects, i.e, no l = 2-way interactions are confounded with any 
other interaction of order less than R - l = 4 - 2 = 2. The two designs might be different, 
however, with regard to the degree of confounding for the 2-factor interactions. For 
resolution IV designs, the "crucial order," in which confounding of effects first appears, 
is for 2-factor interactions. In one design, none of the "crucial order," 2-factor 
interactions might be unconfounded with all other 2-factor interactions, while in the other 
design, virtually all of the 2-factor interactions might be unconfounded with all of the 
other 2-factor interactions. The second "almost resolution V" design would be preferable 
to the first "just barely resolution IV" design. This suggests that even though the 
maximum resolution design criterion should be the primary criterion, a subsidiary 
criterion might be that generators should be chosen such that the maximum number of 
interactions of less than or equal to the crucial order, given the resolution, are 
unconfounded with all other interactions of the crucial order. This is called the maximum 
unconfounding design criterion, and is one of the optional, subsidiary design criterion to 
use in a search for a 2**(k-p) design.  

The minimum aberration design criterion. The miniminum aberration design criterion 
is another optional, subsidiary criterion to use in a search for a 2**(k-p) design. In some 
respects, this criterion is similar to the maximum unconfounding design criterion. 
Technically, the minimum aberration design is defined as the design of maximum 
resolution "which minimizes the number of words in the defining relation that are of 
minimum length" (Fries & Hunter, 1980). Less technically, the criterion apparently 
operates by choosing generators that produce the smallest number of pairs of confounded 
interactions of the crucial order. For example, the minimum aberration resolution IV 
design would have the minimum number of pairs of confounded 2-factor interactions.  

To illustrate the difference between the maximum unconfounding and minimum 
aberration criteria, consider the maximally unconfounded 2**(9-4) design and the 
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minimum aberration 2**(9-4) design, as for example, listed in Box, Hunter, and Hunter 
(1978). If you compare these two designs, you will find that in the maximally 
unconfounded design, 15 of the 36 2-factor interactions are unconfounded with any other 
2-factor interactions, while in the minimum aberration design, only 8 of the 36 2-factor 
interactions are unconfounded with any other 2-factor interactions. The minimum 
aberration design, however, produces 18 pairs of confounded interactions, while the 
maximally unconfounded design produces 21 pairs of confounded interactions. So, the 
two criteria lead to the selection of generators producing different "best" designs.  

Fortunately, the choice of whether to use the maximum unconfounding criterion or the 
minimum aberration criterion makes no difference in the design which is selected (except 
for, perhaps, relabeling of the factors) when there are 11 or fewer factors, with the single 
exception of the 2**(9-4) design described above (see Chen, Sun, & Wu, 1993). For 
designs with more than 11 factors, the two criteria can lead to the selection of very 
different designs, and for lack of better advice, we suggest using both criteria, comparing 
the designs that are produced, and choosing the design that best suits your needs. We will 
add, editorially, that maximizing the number of totally unconfounded effects often makes 
more sense than minimizing the number of pairs of confounded effects.  

Summary  

2**(k-p) fractional factorial designs are probably the most frequently used type of design 
in industrial experimentation. Things to consider in designing any 2**( k-p) fractional 
factorial experiment include the number of factors to be investigated, the number of 
experimental runs, and whether there will be blocks of experimental runs. Beyond these 
basic considerations, one should also take into account whether the number of runs will 
allow a design of the required resolution and degree of confounding for the crucial order 
of interactions, given the resolution.  

 

 

 
3**(k-p), Box-Behnken, and Mixed 2 and 3 Level Factorial 
Designs  

Overview  

In some cases, factors that have more than 2 levels have to be examined. For example, if 
one suspects that the effect of the factors on the dependent variable of interest is not 
simply linear, then, as discussed earlier (see 2**(k-p) designs), one needs at least 3 levels 
in order to test for the linear and quadratic effects (and interactions) for those factors. 
Also, sometimes some factors may be categorical in nature, with more than 2 categories. 
For example, you may have three different machines that produce a particular part.  
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Designing 3**(k-p) Experiments  

The general mechanism of generating fractional factorial designs at 3 levels (3**(k-p) 
designs) is very similar to that described in the context of 2**(k-p) designs. Specifically, 
one starts with a full factorial design, and then uses the interactions of the full design to 
construct "new" factors (or blocks) by making their factor levels identical to those for the 
respective interaction terms (i.e., by making the new factors aliases of the respective 
interactions).  

For example, consider the following simple 3**(3-1) factorial design:  

3**(3-1) fractional factorial  
design, 1 block , 9 runs 

Standard 
Run 

  
A 

  
B 

  
C 

1 
2 
3 
4 
5 
6 
7 
8 
9 

0 
0 
0 
1 
1 
1 
2 
2 
2 

0 
1 
2 
0 
1 
2 
0 
1 
2 

0 
2 
1 
2 
1 
0 
1 
0 
2 

As in the case of 2**(k-p) designs, the design is constructed by starting with the full 3-
1=2 factorial design; those factors are listed in the first two columns (factors A and B). 
Factor C is constructed from the interaction AB of the first two factors. Specifically, the 
values for factor C are computed as  

C = 3 - mod3 (A+B)  

Here, mod3(x) stands for the so-called modulo-3 operator, which will first find a number y 
that is less than or equal to x, and that is evenly divisible by 3, and then compute the 
difference (remainder) between number y and x. For example, mod3(0) is equal to 0, 
mod3(1) is equal to 1, mod3(3) is equal to 0, mod3(5) is equal to 2 (3 is the largest number 
that is less than or equal to 5, and that is evenly divisible by 3; finally, 5-3=2), and so on.  

Fundamental identity. If you apply this function to the sum of columns A and B shown 
above, you will obtain the third column C. Similar to the case of 2**(k-p) designs (see 
2**(k-p) designs for a discussion of the fundamental identity in the context of 2**(k-p) 
designs), this confounding of interactions with "new" main effects can be summarized in 
an expression:  

0 = mod3 (A+B+C)  
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If you look back at the 3**(3-1) design shown earlier, you will see that, indeed, if you 
add the numbers in the three columns they will all sum to either 0, 3, or 6, that is, values 
that are evenly divisible by 3 (and hence: mod3(A+B+C)=0). Thus, one could write as a 
shortcut notation ABC=0, in order to summarize the confounding of factors in the 
fractional 3**(k-p) design.  

Some of the designs will have fundamental identities that contain the number 2 as a 
multiplier; e.g.,  

0 = mod3 (B+C*2+D+E*2+F)  

This notation can be interpreted exactly as before, that is, the modulo3 of the sum 
B+2*C+D+2*E+F  must be equal to 0. The next example shows such an identity.  

An Example 3**(4-1) Design in 9 Blocks  

Here is the summary for a 4-factor 3-level fractional factorial design in 9 blocks, that 
requires only 27 runs.  

SUMMARY: 3**(4-1) fractional factorial 
Design generators: ABCD 
Block generators: AB,AC2 
Number of factors (independent variables): 4 
Number of runs (cases, experiments): 27 
Number of blocks: 9 

This design will allow you to test for linear and quadratic main effects for 4 factors in 27 
observations, which can be gathered in 9 blocks of 3 observations each. The fundamental 
identity or design generator for the design is ABCD, thus the modulo3 of the sum of the 
factor levels across the four factors is equal to 0. The fundamental identity also allows 
you to determine the confounding of factors and interactions in the design (see McLean 
and Anderson, 1984, for details).  

Unconfounded Effects (experi3.sta) 
List of uncorrelated factors and interactions 
3**(4-1) fractional factorial design, 9 blocks, 27 runs 

EXPERIM.  
DESIGN 

Unconf. Effects 
(excl. blocks) 

Unconfounded if 
blocks included? 

1 
2 
3 
4 
5 
6 
7 
8 

(1)A     (L) 
     A    (Q) 
(2)B     (L) 
     B    (Q) 
(3)C     (L) 
     C    (Q) 
(4)D     (L) 
     D    (Q) 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
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As you can see, in this 3**(4-1) design the main effects are not confounded with each 
other, even when the experiment is run in 9 blocks.  

Box-Behnken Designs  

In the case of 2**(k-p) designs, Plackett and Burman (1946) developed highly 
fractionalized designs to screen the maximum number of (main) effects in the least 
number of experimental runs. The equivalent in the case of 3**(k-p) designs are the so-
called Box-Behnken designs (Box and Behnken, 1960; see also Box and Draper, 1984). 
These designs do not have simple design generators (they are constructed by combining 
two-level factorial designs with incomplete block designs), and have complex 
confounding of interaction. However, the designs are economical and therefore 
particularly useful when it is expensive to perform the necessary experimental runs.  

Analyzing the 3**(k-p) Design  

The analysis of these types of designs proceeds basically in the same way as was 
described in the context of 2**(k-p) designs. However, for each effect, one can now test 
for the linear effect and the quadratic (non-linear effect). For example, when studying the 
yield of chemical process, then temperature may be related in a non-linear fashion, that 
is, the maximum yield may be attained when the temperature is set at the medium level. 
Thus, non-linearity often occurs when a process performs near its optimum.  

ANOVA Parameter Estimates  

To estimate the ANOVA parameters, the factors levels for the factors in the analysis are 
internally recoded so that one can test the linear and quadratic components in the 
relationship between the factors and the dependent variable. Thus, regardless of the 
original metric of factor settings (e.g., 100 degrees C, 110 degrees C, 120 degrees C), 
you can always recode those values to -1, 0, and +1 to perform the computations. The 
resultant ANOVA parameter estimates can be interpreted analogously to the parameter 
estimates for 2**(k-p) designs.  

For example, consider the following ANOVA results:  

Factor Effect Std.Err.  t (69) p 
Mean/Interc. 
BLOCKS(1) 
BLOCKS(2) 
(1)TEMPERAT (L)  
TEMPERAT     (Q) 
(2)TIME (L) 
TIME     (Q) 
(3)SPEED (L) 
SPEED     (Q) 
     1L by 2L 
     1L by 2Q 

103.6942 
.8028 

-1.2307 
-.3245 
-.5111 
.0017 
.0045 

-10.3073 
-3.7915 
3.9256 
.4384 

.390591 
1.360542 
1.291511 
.977778 
.809946 
.977778 
.809946 
.977778 
.809946 

1.540235 
1.371941 

265.4805 
.5901 

-.9529 
-.3319 
-.6311 
.0018 
.0056 

-10.5415 
-4.6812 
2.5487 
.3195 

0.000000 
.557055 
.343952 
.740991 
.530091 
.998589 
.995541 
.000000 
.000014 
.013041 
.750297 
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     1Q by 2L 
     1Q by 2Q 

.4747 
-2.7499 

1.371941 
.995575 

.3460 
-2.7621 

.730403 

.007353 

Main-effect estimates. By default, the Effect estimate for the linear effects (marked by 
the L next to the factor name) can be interpreted as the difference between the average 
response at the low and high settings for the respective factors. The estimate for the 
quadratic (non-linear) effect (marked by the Q next to the factor name) can be interpreted 
as the difference between the average response at the center (medium) settings and the 
combined high and low settings for the respective factors.  

Interaction effect estimates. As in the case of 2**(k-p) designs, the linear-by-linear 
interaction effect can be interpreted as half the difference between the linear main effect 
of one factor at the high and low settings of another. Analogously, the interactions by the 
quadratic components can be interpreted as half the difference between the quadratic 
main effect of one factor at the respective settings of another; that is, either the high or 
low setting (quadratic by linear interaction), or the medium or high and low settings 
combined (quadratic by quadratic interaction).  

In practice, and from the standpoint of "interpretability of results," one would usually try 
to avoid quadratic interactions. For example, a quadratic-by-quadratic A-by-B interaction 
indicates that the non- linear effect of factor A is modified in a nonlinear fashion by the 
setting of B. This means that there is a fairly complex interaction between factors present 
in the data that will make it difficult to understand and optimize the respective process. 
Sometimes, performing nonlinear transformations (e.g., performing a log transformation) 
of the dependent variable values can remedy the problem.  

Centered and non-centered polynomials. As mentioned above, the interpretation of the 
effect estimates applies only when you use the default parameterization of the model. In 
that case, you would code the quadratic factor interactions so that they become 
maximally "untangled" from the linear main effects.  

Graphical Presentation of Results  

The same diagnostic plots (e.g., of residuals) are available for 3**(k-p) designs as were 
described in the context of 2**(k-p) designs. Thus, before interpreting the final results, 
one should always first look at the distribution of the residuals for the final fitted model. 
The ANOVA assumes that the residuals (errors) are normally distributed.  

Plot of means. When an interaction involves categorical factors (e.g., type of machine, 
specific operator of machine, and some distinct setting of the machine), then the best way 
to understand interactions is to look at the respective interaction plot of means.  
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Surface plot. When the factors in an interaction are continuous in nature, you may want 
to look at the surface plot that shows the response surface applied by the fitted model. 
Note that this graph also contains the prediction equation (in terms of the original metric 
of factors), that produces the respective response surface.  

Designs for Factors at 2 and 3 Levels  

You can also generate standard designs with 2 and 3 level factors. Specifically, you can 
generate the standard designs as enumerated by Connor and Young for the US National 
Bureau of Standards (see McLean and Anderson, 1984). The technical details of the 
method used to generate these designs are beyond the scope of this introduction. 
However, in general the technique is, in a sense, a combination of the procedures 
described in the context of 2**(k-p) and 3**(k-p) designs. It should be noted however, 
that, while all of these designs are very efficient, they are not necessarily orthogonal with 
respect to all main effects. This is, however, not a problem, if one uses a general 
algorithm for estimating the ANOVA parameters and sums of squares, that does not 
require orthogonality of the design.  

The design and analysis of these experiments proceeds along the same lines as discussed 
in the context of 2**(k-p)  and 3**(k-p) experiments.  

 

 

 
Central Composite and Non-Factorial Response Surface 
Designs  

Overview  

The 2**(k-p)  and 3**(k-p)  designs all require that the levels of the factors are set at, for 
example, 2 or 3 levels. In many instances, such designs are not feasible, because, for 
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example, some factor combinations are constrained in some way (e.g., factors A and B 
cannot be set at their high levels simultaneously). Also, for reasons related to efficiency, 
which will be discussed shortly, it is often desirable to explore the experimental region of 
interest at particular points that cannot be represented by a factorial design.  

The designs (and how to analyze them) discussed in this section all pertain to the 
estimation (fitting) of response surfaces, following the general model equation:  

y = b0 +b1 *x1 +...+bk *xk + b12 *x1 *x2 +b13 *x1 *x3 +...+bk-1,k *xk-1 *xk + b11 *x1² +...+bkk 
*x k²  

Put into words, one is fitting a model to the observed values of the dependent variable y, 
that include (1) main effects for factors x1 , ..., xk, (2) their interactions (x1*x2, x1*x3, ... ,xk-

1*xk), and (3) their quadratic components (x1**2, ..., xk**2 ). No assumptions are made 
concerning the "levels" of the factors, and you can analyze any set of continuous values 
for the factors.  

There are some considerations concerning design efficiency and biases, which have led to 
standard designs that are ordinarily used when attempting to fit these response surfaces, 
and those standard designs will be discussed shortly (e.g., see Box, Hunter, and Hunter, 
1978; Box and Draper, 1987; Khuri and Cornell, 1987; Mason, Gunst, and Hess, 1989; 
Montgomery, 1991). But, as will be discussed later, in the context of constrained surface 
designs and D- and A-optimal designs, these standard designs can sometimes not be used 
for practical reasons. However, the central composite design analysis options do not 
make any assumptions about the structure of your data file, that is, the number of distinct 
factor values, or their combinations across the runs of the experiment, and, hence, these 
options can be used to analyze any type of design, to fit to the data the general model 
described above.  

Design Considerations  

Orthogonal designs. One desirable characteristic of any design is that the main effect 
and interaction estimates of interest are independent of each other. For example, suppose 
you had a two- factor experiments, with both factors at two levels. Your design consists 
of four runs:  

  A B 

Run 1 
Run 2 
Run 3 
Run 4 

1 
1 

-1 
-1 

1 
1 

-1 
-1 
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For the first two runs, both factors A and B are set at their high levels (+1). In the last two 
runs, both are set at their low levels (-1). Suppose you wanted to estimate the independent 
contributions of factors A and B to the prediction of the dependent variable of interest. 
Clearly this is a silly design, because there is no way to estimate the A main effect and the 
B main effect. One can only estimate one effect -- the difference between Runs 1+2 vs. 
Runs 3+4 -- which represents the combined effect of A and B.  

The point here is that, in order to assess the independent contributions of the two factors, 
the factor levels in the four runs must be set so that the "columns" in the design (under A 
and B in the illustration above) are independent of each other. Another way to express 
this requirement is to say that the columns of the design matrix (with as many columns as 
there are main effect and interaction parameters that one wants to estimate) should be 
orthogonal (this term was first used by Yates, 1933). For example, if the four runs in the 
design are arranged as follows:  

  A B 

Run 1 
Run 2 
Run 3 
Run 4 

1 
1 

-1 
-1 

1 
-1 
1 

-1 

 
 

then the A and B columns are orthogonal. Now you can estimate the A main effect by 
comparing the high level for A within each level of B, with the low level for A within 
each level of B; the B main effect can be estimated in the same way.  

Technically, two columns in a design matrix are orthogonal if the sum of the products of 
their elements within each row is equal to zero. In practice, one often encounters 
situations, for example due to loss of some data in some runs or other constraints, where 
the columns of the design matrix are not completely orthogonal. In general, the rule here 
is that the more orthogonal the columns are, the better the design, that is, the more 
independent information can be extracted from the design regarding the respective effects 
of interest. Therefore, one consideration for choosing standard central composite designs 
is to find designs that are orthogonal or near-orthogonal.  

Rotatable designs. The second consideration is related to the first requirement, in that it 
also has to do with how best to extract the maximum amount of (unbiased) information 
from the design, or specifically, from the experimental region of interest. Without going 
into details (see Box, Hunter, and Hunter, 1978; Box and Draper, 1987, Chapters 14; see 
also Deming and Morgan, 1993, Chapter 13), it can be shown that the standard error for 
the prediction of dependent variable values is proportional to:  

(1 + f(x)' * (X'X)¨¹ * f(x))**½  
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where f(x) stands for the (coded) factor effects for the respective model (f(x) is a vector, 
f(x)' is the transpose of that vector), and X is the design matrix for the experiment, that is, 
the matrix of coded factor effects for all runs; X'X**-1 is the inverse of the crossproduct 
matrix. Deming and Morgan (1993) refer to this expression as the normalized 
uncertainty; this function is also related to the variance function as defined by Box and 
Draper (1987). The amount of uncertainty in the prediction of dependent variable values 
depends on the variability of the design points, and their covariance over the runs. (Note 
that it is inversely proportional to the determinant of X'X; this issue is further discussed in 
the section on D- and A-optimal designs).  

The point here is that, again, one would like to choose a design that extracts the most 
information regarding the dependent variable, and leaves the least amount of uncertainty 
for the prediction of future values. It follows, that the amount of information (or 
normalized information according to Deming and Morgan, 1993) is the inverse of the 
normalized uncertainty.  

For the simple 4-run orthogonal experiment shown earlier, the information function is 
equal to  

Ix = 4/(1 + x1² + x2²)  

where x1 and x2 stand for the factor settings for factors A and B, respectively (see Box and 
Draper, 1987).  

 

Inspection of this function in a plot (see above) shows that it is constant on circles 
centered at the origin. Thus any kind of rotation of the original design points will 
generate the same amount of information, that is, generate the same information function. 
Therefore, the 2-by-2 orthogonal design in 4 runs shown earlier is said to be rotatable.  

As pointed out before, in order to estimate the second order, quadratic, or non-linear 
component of the relationship between a factor and the dependent variable, one needs at 
least 3 levels for the respective factors. What does the information function look like for a 
simple 3-by-3 factorial design, for the second-order quadratic model as shown at the 
beginning of this section?  
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As it turns out (see Box and Draper, 1987 and Montgomery, 1991; refer also to the 
manual), this function looks more complex, contains "pockets" of high-density 
information at the edges (which are probably of little particular interest to the 
experimenter), and clearly it is not constant on circles around the origin. Therefore, it is 
not rotatable, meaning different rotations of the design points will extract different 
amounts of information from the experimental region.  

Star-points and rotatable second-order designs. It can be shown that by adding so-
called star- points to the simple (square or cube) 2-level factorial design points, one can 
achieve rotatable, and often orthogonal or nearly orthogonal designs. For example, 
adding to the simple 2-by-2 orthogonal design shown earlier the following points, will 
produce a rotatable design.  

  A B 
Run 1 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 
Run 7 
Run 8 
Run 9 
Run 10 

 1 
 1 
-1 
-1 
-1.414 
 1.414 
 0 
 0 
 0 
 0 

 1 
-1 
 1 
-1 
 0 
 0 
-1.414 
 1.414 
 0 
 0 

 
 

The first four runs in this design are the previous 2-by-2 factorial design points (or square 
points or cube points); runs 5 through 8 are the so-called star points or axial points, and 
runs 9 and 10 are center points.  
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The information function for this design for the second-order (quadratic) model is 
rotatable, that is, it is constant on the circles around the origin.  

Alpha for Rotatability and Orthogonality  

The two design characteristics discussed so far -- orthogonality and rotatability -- depend 
on the number of center points in the design and on the so-called axial distance  
(alpha), which is the distance of the star points from the center of the design (i.e., 1.414 
in the design shown above). It can be shown (e.g., see Box, Hunter, and Hunter, 1978; 
Box and Draper, 1987, Khuri and Cornell, 1987; Montgomery, 1991) that a design is 
rotatable if:  

= ( nc )
¼  

where nc stands for the number of cube points in the design (i.e., points in the factorial 
portion of the design).  

A central composite design is orthogonal, if one chooses the axial distance so that:  

= {[( nc + ns + n0 )
½ - nc

½]² * nc/4}¼  

where 
nc  is the number of cube points in the design 
ns  is the number of star points in the design 
n0  is the number of center points in the design 

To make a design both (approximately) orthogonal and rotatable, one would first choose 
the axial distance for rotatability, and then add center points (see Kkuri and Cornell, 
1987), so that:  

n0 4*nc
½ + 4 - 2k  

where k stands for the number of factors in the design.  
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Finally, if blocking is involved, Box and Draper (1987) give the following formula for 
computing the axial distance to achieve orthogonal blocking, and in most cases also 
reasonable information function contours, that is, contours that are close to spherical:  

= [k*(l+ns0/ns)/(1+nc0/nc)]
½  

where 
ns0  is the number of center points in the star portion of the design 
ns   is the number of non-center star points in the design 
nc0  is the number of center points in the cube portion of the design 
nc   is the number of non-center cube points in the design 

Available Standard Designs  

The standard central composite designs are usually constructed from a 2**(k-p) design 
for the cube portion of the design, which is augmented with center points and star points. 
Box and Draper (1987) list a number of such designs.  

Small composite designs. In the standard designs, the cube portion of the design is 
typically of resolution V (or higher). This is, however, not necessary, and in cases when 
the experimental runs are expensive, or when it is not necessary to perform a statistically 
powerful test of model adequacy, then one could choose for the cube portion designs of 
resolution III. For example, it could be constructed from highly fractionalized Plackett-
Burman designs. Hartley (1959) described such designs.  

Analyzing Central Composite Designs  

The analysis of central composite designs proceeds in much the same way as for the 
analysis of 3**(k-p) designs. You fit to the data the general model described above; for 
example, for two variables you would fit the model:  

y = b0 + b1*x 1 + b2*x 2 + b12*x 1*x 2 + b11*x 1
2 + b22*x 2

2  

The Fitted Response Surface  

The shape of the fitted overall response can best be summarized in graphs and you can 
generate both contour plots and response surface plots (see examples below) for the fitted 
model.  
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Categorized Response Surfaces  

You can fit 3D surfaces to your data, categorized by some other variable. For example, if 
you replicated a standard central composite design 4 times, it may be very informative to 
see how similar the surfaces are when fitted to each replication.  

 

This would give you a graphical indication of the reliability of the results and where (e.g., 
in which region of the surface) deviations occur. 
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Clearly, the third replication produced a different surface. In replications 1, 2, and 4, the 
fitted surfaces are very similar to each other. Thus, one should investigate what could 
have caused this noticeable difference in the third replication of the design.  

 

 

 
Latin Square Designs  

Overview  

Latin square designs (the term Latin square was first used by Euler, 1782) are used when 
the factors of interest have more than two levels and you know ahead of time that there 
are no (or only negligible) interactions between factors. For example, if you wanted to 
examine the effect of 4 fuel additives on reduction in oxides of nitrogen and had 4 cars 
and 4 drivers at your disposal, then you could of course run a full 4 x 4 x 4 factorial 
design, resulting in 64 experimental runs. However, you are not really interested in any 
(minor) interactions between the fuel additives and drivers, fuel additives and cars, or 
cars and drivers. You are mostly interested in estimating main effects, in particular the 
one for the fuel additives factor. At the same time, you want to make sure that the main 
effects for drivers and cars do not affect (bias) your estimate of the main effect for the 
fuel additive.  

If you labeled the additives with the letters A, B, C, and D, the Latin square design that 
would allow you to derive unconfounded main effects estimates could be summarized as 
follows (see also Box, Hunter, and Hunter, 1978, page 263):  
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  Car 
Driver  1 2 3 4 

1 
2 
3 
4 

A 
D 
B 
C 

B 
C 
D 
A 

D 
A 
C 
B 

C 
B 
A 
D 

 
Latin Square Designs  

The example shown above is actually only one of the three possible arrangements in 
effect estimates. These "arrangements" are also called Latin square. The example above 
constitutes a 4 x 4 Latin square; and rather than requiring the 64 runs of the complete 
factorial, you can complete the study in only 16 runs.  

Greco-Latin square. A nice feature of Latin Squares is that they can be superimposed to 
form what are called Greco-Latin squares (this term was first used by Fisher and Yates, 
1934). For example, the following two 3 x 3 Latin squares can be superimposed to form a 
Greco-Latin square:  

 

In the resultant Greco-Latin square design, you can evaluate the main effects of four 3-
level factors (row factor, column factor, Roman letters, Greek letters) in only 9 runs.  

Hyper-Greco Latin square. For some numbers of levels, there are more than two 
possible Latin square arrangements. For example, there are three possible arrangements 
for 4-level Latin squares. If all three of them are superimposed, you get a Hyper-Greco 
Latin square design. In that design you can estimate the main effects of all five 4-level 
factors with only 16 runs in the experiment.  

Analyzing the Design  

Analyzing Latin square designs is straightforward. Also, plots of means can be produced 
to aid in the interpretation of results.  

Very Large Designs, Random Effects, Unbalanced Nesting  

Note that there are several other statistical methods that can also analyze these types of 
designs; see the section on Methods for Analysis of Variance for details. In particular the 
Variance Components and Mixed Model ANOVA/ANCOVA chapter discusses very 
efficient methods for analyzing designs with unbalanced nesting (when the nested factors 
have different numbers of levels within the levels of the factors in which they are nested), 
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very large nested designs (e.g., with more than 200 levels overall), or hierarchically 
nested designs (with or without random factors).  

 

 

 
Taguchi Methods: Robust Design Experiments  

Overview  

Applications. Taguchi methods have become increasingly popular in recent years. The 
documented examples of sizable quality improvements that resulted from 
implementations of these methods (see, for example, Phadke, 1989; Noori, 1989) have 
added to the curiosity among American manufacturers. In fact, some of the leading 
manufacturers in this country have begun to use these methods with usually great 
success. For example, AT&T is using these methods in the manufacture of very large 
scale integrated (VLSI) circuits; also, Ford Motor Company has gained significant quality 
improvements due to these methods (American Supplier Institute, 1984 to 1988). 
However, as the details of these methods are becoming more widely known, critical 
appraisals are also beginning to appear (for example, Bhote, 1988; Tribus and Szonyi, 
1989).  

Overview. Taguchi robust design methods are set apart from traditional quality control 
procedures (see Quality Control and Process Analysis) and industrial experimentation in 
various respects. Of particular importance are:  

1. The concept of quality loss functions,  
2. The use of signal-to-noise (S/N) ratios, and  
3. The use of orthogonal arrays.  

These basic aspects of robust design methods will be discussed in the following sections. 
Several books have recently been published on these methods, for example, Peace 
(1993), Phadke (1989), Ross (1988), and Roy (1990), to name a few, and it is 
recommended that you refer to those books for further specialized discussions. 
Introductory overviews of Taguchi's ideas about quality and quality improvement can 
also be found in Barker (1986), Garvin (1987), Kackar (1986), and Noori (1989).  

Quality and Loss Functions  

What is quality. Taguchi's analysis begins with the question of how to define quality. It 
is not easy to formulate a simple definition of what constitutes quality; however, when 
your new car stalls in the middle of a busy intersection -- putting yourself and other 
motorists at risk -- you know that your car is not of high quality. Put another way, the 
definition of the inverse of quality is rather straightforward: it is the total loss to you and 
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society due to functional variations and harmful side effects associated with the 
respective product. Thus, as an operational definition, you can measure quality in terms 
of this loss, and the greater the quality loss the lower the quality.  

Discontinuous (step-shaped) loss function. You can formulate hypotheses about the 
general nature and shape of the loss function. Assume a specific ideal point of highest 
quality; for example, a perfect car with no quality problems. It is customary in statistical 
process control (SPC; see also Process Analysis) to define tolerances around the nominal 
ideal point of the production process. According to the traditional view implied by 
common SPC methods, as long as you are within the manufacturing tolerances you do 
not have a problem. Put another way, within the tolerance limits the quality loss is zero; 
once you move outside the tolerances, the quality loss is declared to be unacceptable. 
Thus, according to traditional views, the quality loss function is a discontinuous step 
function: as long as you are within the tolerance limits, quality loss is negligible; when 
you step outside those tolerances, quality loss becomes unacceptable.  

Quadratic loss function. Is the step function implied by common SPC methods a good 
model of quality loss? Return to the "perfect automobile" example. Is there a difference 
between a car that, within one year after purchase, has nothing wrong with it, and a car 
where minor rattles develop, a few fixtures fall off, and the clock in the dashboard breaks 
(all in-warranty repairs, mind you...)? If you ever bought a new car of the latter kind, you 
know very well how annoying those admittedly minor quality problems can be. The point 
here is that it is not realistic to assume that, as you move away from the nominal 
specification in your production process, the quality loss is zero as long as you stay 
within the set tolerance limits. Rather, if you are not exactly "on target," then loss will 
result, for example in terms of customer satisfaction. Moreover, this loss is probably not a 
linear function of the deviation from nominal specifications, but rather a quadratic 
function (inverted U). A rattle in one place in your new car is annoying, but you would 
probably not get too upset about it; add two more rattles, and you might declare the car 
"junk." Gradual deviations from the nominal specifications do not produce proportional 
increments in loss, but rather squared increments.  

Conclusion: Controlling variability. If, in fact, quality loss is a quadratic function of the 
deviation from a nominal value, then the goal of your quality improvement efforts should 
be to minimize the squared deviations or variance of the product around nominal (ideal) 
specifications, rather than the number of units within specification limits (as is done in 
traditional SPC procedures).  

Signal-to-Noise (S/N) Ratios  

Measuring quality loss. Even though you have concluded that the quality loss function 
is probably quadratic in nature, you still do not know precisely how to measure quality 
loss. However, you know that whatever measure you decide upon should reflect the 
quadratic nature of the function.  
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Signal, noise, and control factors. The product of ideal quality should always respond in 
exactly the same manner to the signals provided by the user. When you turn the key in 
the ignition of your car you expect that the starter motor turns and the engine starts. In the 
ideal-quality car, the starting process would always proceed in exactly the same manner -
- for example, after three turns of the starter motor the engine comes to life. If, in 
response to the same signal (turning the ignition key) there is random variability in this 
process, then you have less than ideal quality. For example, due to such uncontrollable 
factors as extreme cold, humidity, engine wear, etc. the engine may sometimes start only 
after turning over 20 times and finally not start at all. This example illustrates the key 
principle in measuring quality according to Taguchi: You want to minimize the 
variability in the product's performance in response to noise factors while maximizing the 
variability in response to signal factors.  

Noise factors are those that are not under the control of the operator of a product. In the 
car example, those factors include temperature changes, different qualities of gasoline, 
engine wear, etc. Signal factors are those factors that are set or controlled by the operator 
of the product to make use of its intended functions (turning the ignition key to start the 
car).  

Finally, the goal of your quality improvement effort is to find the best settings of factors 
under your control that are involved in the production process, in order to maximize the 
S/N ratio; thus, the factors in the experiment represent control factors.  

S/N ratios. The conclusion of the previous paragraph is that quality can be quantified in 
terms of the respective product's response to noise factors and signal factors. The ideal 
product will only respond to the operator's signals and will be unaffected by random 
noise factors (weather, temperature, humidity, etc.). Therefore, the goal of your quality 
improvement effort can be stated as attempting to maximize the signal-to-noise (S/N) 
ratio for the respective product. The S/N ratios described in the following paragraphs 
have been proposed by Taguchi (1987).  

Smaller-the-better. In cases where you want to minimize the occurrences of some 
undesirable product characteristics, you would compute the following S/N ratio:  

Eta = -10 * log10 [(1/n) * (yi
2)]     for i = 1 to no. vars     see outer arrays  

Here, Eta is the resultant S/N ratio; n is the number of observations on the particular 
product, and y is the respective characteristic. For example, the number of flaws in the 
paint on an automobile could be measured as the y variable and analyzed via this S/N 
ratio. The effect of the signal factors is zero, since zero flaws is the only intended or 
desired state of the paint on the car. Note how this S/N ratio is an expression of the 
assumed quadratic nature of the loss function. The factor 10 ensures that this ratio 
measures the inverse of "bad quality;" the more flaws in the paint, the greater is the sum 
of the squared number of flaws, and the smaller (i.e., more negative) the S/N ratio. Thus, 
maximizing this ratio will increase quality.  
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Nominal-the-best. Here, you have a fixed signal value (nominal value), and the variance 
around this value can be considered the result of noise factors:  

Eta = 10 * log10 (Mean2/Variance)  

This signal-to-noise ratio could be used whenever ideal quality is equated with a 
particular nominal value. For example, the size of piston rings for an automobile engine 
must be as close to specification as possible to ensure high quality.  

Larger-the-better. Examples of this type of engineering problem are fuel economy 
(miles per gallon) of an automobile, strength of concrete, resistance of shielding 
materials, etc. The following S/N ratio should be used:  

Eta = -10 * log10 [(1/n) * (1/yi
2)]     for i = 1 to no. vars     see outer arrays  

Signed target. This type of S/N ratio is appropriate when the quality characteristic of 
interest has an ideal value of 0 (zero), and both positive and negative values of the quality 
characteristic may occur. For example, the dc offset voltage of a differential operational 
amplifier may be positive or negative (see Phadke, 1989). The following S/N ratio should 
be used for these types of problems:  

Eta = -10 * log10(s
2)     for i = 1 to no. vars     see outer arrays 

where s2 stands for the variance of the quality characteristic across the measurements 
(variables).  

Fraction defective. This S/N ratio is useful for minimizing scrap, minimizing the percent 
of patients who develop side-effects to a drug, etc. Taguchi also refers to the resultant Eta 
values as Omegas; note that this S/N ratio is identical to the familiar logit transformation 
(see also Nonlinear Estimation):  

Eta = -10 * log10[p/(1-p)]  

where 
p is the proportion defective 

Ordered categories (the accumulation analysis). In some cases, measurements on a 
quality characteristic can only be obtained in terms of categorical judgments. For 
example, consumers may rate a product as excellent, good, average, or below average. In 
that case, you would attempt to maximize the number of excellent or good ratings. 
Typically, the results of an accumulation analysis are summarized graphically in a 
stacked bar plot.  

Orthogonal Arrays  
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The third aspect of Taguchi robust design methods is the one most similar to traditional 
techniques. Taguchi has developed a system of tabulated designs (arrays) that allow for 
the maximum number of main effects to be estimated in an unbiased (orthogonal) 
manner, with a minimum number of runs in the experiment. Latin square designs, 2**(k-
p) designs (Plackett-Burman designs, in particular), and Box-Behnken designs main are 
also aimed at accomplishing this goal. In fact, many of the standard orthogonal arrays 
tabulated by Taguchi are identical to fractional two-level factorials, Plackett-Burman 
designs, Box-Behnken designs, Latin square, Greco-Latin squares, etc.  

Analyzing Designs  

Most analyses of robust design experiments amount to a standard ANOVA of the 
respective S/N ratios, ignoring two-way or higher-order interactions. However, when 
estimating error variances, one customarily pools together main effects of negligible size.  

Analyzing S/N ratios in standard designs. It should be noted at this point that, of 
course, all of the designs discussed up to this point (e.g., 2**(k-p), 3**(k-p) , mixed 2 and 
3 level factorials, Latin squares, central composite designs) can be used to analyze S/N 
ratios that you computed. In fact, the many additional diagnostic plots and other options 
available for those designs (e.g., estimation of quadratic components, etc.) may prove 
very useful when analyzing the variability (S/N ratios) in the production process.  

Plot of means. A visual summary of the experiment is the plot of the average Eta (S/N 
ratio) by factor levels. In this plot, the optimum setting (i.e., largest S/N ratio) for each 
factor can easily be identified.  

Verification experiments. For prediction purposes, you can compute the expected S/N 
ratio given a user-defined combination of settings of factors (ignoring factors that were 
pooled into the error term). These predicted S/N ratios can then be used in a verification 
experiment, where the engineer actually sets the machine accordingly and compares the 
resultant observed S/N ratio with the predicted S/N ratio from the experiment. If major 
deviations occur, one must conclude that the simple main effect model is not appropriate.  

In those cases, Taguchi (1987) recommends transforming the dependent variable to 
accomplish additivity of factors, that is, to "make" the main effects model fit. Phadke 
(1989, Chapter 6) also discusses in detail methods for achieving additivity of factors.  

Accumulation Analysis  

When analyzing ordered categorical data, ANOVA is not appropriate. Rather, you 
produce a cumulative plot of the number of observations in a particular category. For 
each level of each factor, you plot the cumulative proportion of the number of defectives. 
Thus, this graph provides valuable information concerning the distribution of the 
categorical counts across the different factor settings.  

Summary  
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To briefly summarize, when using Taguchi methods you first need to determine the 
design or control factors that can be set by the designer or engineer. Those are the factors 
in the experiment for which you will try different levels. Next, you decide to select an 
appropriate orthogonal array for the experiment. Next, you need to decide on how to 
measure the quality characteristic of interest. Remember that most S/N ratios require that 
multiple measurements are taken in each run of the experiment; for example, the 
variability around the nominal value cannot otherwise be assessed. Finally, you conduct 
the experiment and identify the factors that most strongly affect the chosen S/N ratio, and 
you reset your machine or production process accordingly.  

 

 

 
Mixture Designs and Triangular Surfaces  

Overview  

Special issues arise when analyzing mixtures of components that must sum to a constant. 
For example, if you wanted to optimize the taste of a fruit-punch, consisting of the juices 
of 5 fruits, then the sum of the proportions of all juices in each mixture must be 100%. 
Thus, the task of optimizing mixtures commonly occurs in food-processing, refining, or 
the manufacturing of chemicals. A number of designs have been developed to address 
specifically the analysis and modeling of mixtures (see, for example, Cornell, 1990a, 
1990b; Cornell and Khuri, 1987; Deming and Morgan, 1993; Montgomery, 1991).  

Triangular Coordinates  

The common manner in which mixture proportions can be summarized is via triangular 
(ternary) graphs. For example, suppose you have a mixture that consists of 3 components 
A, B, and C. Any mixture of the three components can be summarized by a point in the 
triangular coordinate system defined by the three variables.  

For example, take the following 6 different mixtures of the 3 components.  

A B C 
1 
0 
0 
0.5 
0.5 
0 

0 
1 
0 
0.5 
0 
0.5 

0 
0 
1 
0 
0.5 
0.5 
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The sum for each mixture is 1.0, so the values for the components in each mixture can be 
interpreted as proportions. If you graph these data in a regular 3D scatterplot, it becomes 
apparent that the points form a triangle in the 3D space. Only the points inside the 
triangle where the sum of the component values is equal to 1 are valid mixtures. 
Therefore, one can simply plot only the triangle to summarize the component values 
(proportions) for each mixture.  

 

To read-off the coordinates of a point in the triangular graph, you would simply "drop" a 
line from each respective vertex to the side of the triangle below.  

 

At the vertex for the particular factor, there is a pure blend, that is, one that only contains 
the respective component. Thus, the coordinates for the vertex point is 1 (or 100%, or 
however else the mixtures are scaled) for the respective component, and 0 (zero) for all 
other components. At the side opposite to the respective vertex, the value for the 
respective component is 0 (zero), and .5 (or 50%, etc.) for the other components.  

Triangular Surfaces and Contours  

One can now add to the triangle a fourth dimension, that is perpendicular to the first 
three. Using that dimension, one could plot the values for a dependent variable, or 
function (surface) that was fit to the dependent variable. Note that the response surface 
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can either be shown in 3D, where the predicted response (Taste rating) is indicated by the 
distance of the surface from the triangular plane, or it can be indicated in a contour plot 
where the contours of constant height are plotted on the 2D triangle.  

 

It should be mentioned at this point that you can produce categorized ternary graphs. 
These are very useful, because they allow you to fit to a dependent variable (e.g., Taste) a 
response surface, for different levels of a fourth component.  

The Canonical Form of Mixture Polynomials  

Fitting a response surface to mixture data is, in principle, done in the same manner as 
fitting surfaces to, for example, data from central composite designs. However, there is 
the issue that mixture data are constrained, that is, the sum of all component values must 
be constant.  

Consider the simple case of two factors A and B. One may want to fit the simple linear 
model:  

y = b0 + bA*x A + bB*x B  

Here y stands for the dependent variable values, bA and bB stand for the regression 
coefficients, xA and xB stand for the values of the factors. Suppose that xA and xB must 
sum to 1; you can multiple b0 by 1=(xA + xB):  

y = (b0*x A + b0*xB) + bA*x A + bB*x B  

or:  

y = b'A*x A + b'B*x B  

where b'A = b0 + bA and b'B = b0 + bB. Thus, the estimation of this model comes down to 
fitting a no- intercept multiple regression model. (See also Multiple Regression, for 
details concerning multiple regression.)  
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Common Models for Mixture Data  

The quadratic and cubic model can be similarly simplified (as illustrated for the simple 
linear model above), yielding four standard models that are customarily fit to the mixture 
data. Here are the formulas for the 3-variable case for those models (see Cornell, 1990, 
for additional details).  

Linear model: 

y = b1*x 1 + b2*x 2 + b3*x 3  

Quadratic model: 

y = b1*x 1 + b2*x 2 + b3*x 3 + b12*x 1*x 2 + b13*x 1*x 3 + b23*x 2*x 3  

Special cubic model: 

y = b1*x 1 + b2*x 2 + b3*x 3 + b12*x 1*x 2 + b13*x 1*x 3 + b23*x 2*x 3 + b123*x 1*x 2*x 3  

Full cubic model: 

y = b1*x 1 + b2*x 2 + b3*x 3 + b12*x 1*x 2 + b13*x 1*x 3 + b23*x 2*x 3 + d12*x 1*x 2*(x 1 - x2) + 
d13*x 1*x 3*(x 1 - x3) + d23*x 2*x 3*(x 2 - x3) + b123*x 1*x 2*x 3  

(Note that the dij 's are also parameters of the model.)  

Standard Designs for Mixture Experiments  

Two different types of standard designs are commonly used for experiments with 
mixtures. Both of them will evaluate the triangular response surface at the vertices (i.e., 
the corners of the triangle) and the centroids (sides of the triangle). Sometimes, those 
designs are enhanced with additional interior points.  

Simplex-lattice designs. In this arrangement of design points, m+1 equally spaced 
proportions are tested for each factor or component in the model:  

xi = 0, 1/m, 2/m, ..., 1     i = 1,2,...,q  

and all combinations of factor levels are tested. The resulting design is called a {q,m} 
simplex lattice design. For example, a {q=3, m=2} simplex lattice design will include the 
following mixtures:  

A B C 
1 
0 
0 

0 
1 
0 

0 
0 
1 
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.5 

.5 
0 

.5 
0 
.5 

0 
.5 
.5 

 
 

A {q=3,m=3} simplex lattice design will include the points:  

A B C 
1 
0 
0 

1/3 
1/3 
0 

2/3 
2/3 
0 

1/3 

0 
1 
0 

2/3 
0 

1/3 
1/3 
0 

2/3 
1/3 

0 
0 
1 
0 

2/3 
2/3 
0 

1/3 
1/3 
1/3 

 
 

Simplex-centroid designs. An alternative arrangement of settings introduced by Scheffé 
(1963) is the so-called simplex-centroid design. Here the design points correspond to all 
permutations of the pure blends (e.g., 1 0 0; 0 1 0; 0 0 1), the permutations of the binary 
blends (½ ½ 0; ½ 0 ½; 0 ½ ½), the permutations of the blends involving three 
components, and so on. For example, for 3 factors the simplex centroid design consists of 
the points:  

A B C 
1 
0 
0 

1/2 
1/2 
0 

1/3 

0 
1 
0 

1/2 
0 

1/2 
1/3 

0 
0 
1 
0 

1/2 
1/2 
1/3 

 
 

Adding interior points. These designs are sometimes augmented with interior points 
(see Khuri and Cornell, 1987, page 343; Mason, Gunst, Hess; 1989; page 230). For 
example, for 3 factors one could add the interior points:  
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A B C 

2/3 
1/6 
1/6 

1/6 
2/3 
1/6 

1/6 
1/6 
2/3 

 
 

If you plot these points in a scatterplot with triangular coordinates; one can see how these 
designs evenly cover the experimental region defined by the triangle.  

Lower Constraints  

The designs described above all require vertex points, that is, pure blends consisting of 
only one ingredient. In practice, those points may often not be valid, that is, pure blends 
cannot be produced because of cost or other constraints. For example, suppose you 
wanted to study the effect of a food- additive on the taste of the fruit-punch. The 
additional ingredient may only be varied within small limits, for example, it may not 
exceed a certain percentage of the total. Clearly, a fruit punch that is a pure blend, 
consisting only of the additive, would not be a fruit punch at all, or worse, may be toxic. 
These types of constraints are very common in many applications of mixture 
experiments.  

Let us consider a 3-component example, where component A is constrained so that xA

.3. The total of the 3-component mixture must be equal to 1. This constraint can be 
visualized in a triangular graph by a line at the triangular coordinate for xA=.3, that is, a 
line that is parallel to the triangle's edge opposite to the A vertex point.  

 

One can now construct the design as before, except that one side of the triangle is defined 
by the constraint. Later, in the analysis, one can review the parameter estimates for the 
so-called pseudo-components, treating the constrained triangle as if it were a full triangle.  
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Multiple constraints. Multiple lower constraints can be treated analogously, that is, you 
can construct the sub-triangle within the full triangle, and then place the design points in 
that sub-triangle according to the chosen design.  

Upper and Lower Constraints  

When there are both upper and lower constraints (as is often the case in experiments 
involving mixtures), then the standard simplex-lattice and simplex-centroid designs can 
no longer be constructed, because the subregion defined by the constraints is no longer a 
triangle. There is a general algorithm for finding the vertex and centroid points for such 
constrained designs.  

 

Note that you can still analyze such designs by fitting the standard models to the data.  

Analyzing Mixture Experiments  

The analysis of mixture experiments amounts to a multiple regression with the intercept 
set to zero. As explained earlier, the mixture constraint -- that the sum of all components 
must be constant -- can be accommodated by fitting multiple regression models that do 
not include an intercept term. If you are not familiar with multiple regression, you may 
want to review at this point Multiple Regression.  

The specific models that are usually considered were described earlier. To summarize, 
one fits to the dependent variable response surfaces of increasing complexity, that is, 
starting with the linear model, then the quadratic model, special cubic model, and full 
cubic model. Shown below is a table with the number of terms or parameters in each 
model, for a selected number of components (see also Table 4, Cornell, 1990):  

  Model (Degree of Polynomial) 
No. of 
Comp. 

  
Linear  

  
Quadr. 

Special 
Cubic 

Full 
Cubic 

2 
3 

2 
3 

  3 
  6 

  -- 
  7 

  -- 
  10 
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4 
5 
6 
7 
8 

4 
5 
6 
7 
8 

10 
15 
21 
28 
36 

14 
25 
41 
63 
92 

  20 
  35 
  56 
  84 
120 

 
 

Analysis of Variance  

To decide which of the models of increasing complexity provides a sufficiently good fit 
to the observed data, one usually compares the models in a hierarchical, stepwise fashion. 
For example, consider a 3- component mixture to which the full cubic model was fitted.  

ANOVA; Var.:DV (mixt4.sta)  

  3 Factor mixture design; Mixture total=1., 14 Runs 
Sequential fit of models of increasing complexity 

  
Model 

SS 
Effect 

df 
Effect 

MS 
Effect 

SS 
Error  

df 
Error  

MS 
Error  

  
F 

  
p 

  
R-sqr 

R-sqr 
Adj.  

Linear 
Quadratic 
Special Cubic 
Cubic 
Total Adjusted 

44.755 
30.558 

.719 
8.229 

91.627 

2 
3 
1 
3 

13 

22.378 
10.186 

.719 
2.743 
7.048 

46.872 
16.314 
15.596 
7.367 

  

11 
8 
7 
4 
  

4.2611 
2.0393 
2.2279 
1.8417 

  

5.2516 
4.9949 
.3225 

1.4893 
  

.0251 

.0307 

.5878 

.3452 
  

.4884 

.8220 

.8298 

.9196 
  

.3954 

.7107 

.6839 

.7387 
  

 
 

First, the linear model was fit to the data. Even though this model has 3 parameters, one 
for each component, this model has only 2 degrees of freedom. This is because of the 
overall mixture constraint, that the sum of all component values is constant. The 
simultaneous test for all parameters of this model is statistically significant 
(F(2,11)=5.25; p<.05). The addition of the 3 quadratic model parameters (b12*x1*x2, 
b13*x1*x3, b23*x2*x3) further significantly improves the fit of the model (F(3,8)=4.99; 
p<.05). However, adding the parameters for the special cubic and cubic models does not 
significantly improve the fit of the surface. Thus one could conclude that the quadratic 
model provides an adequate fit to the data (of course, pending further examination of the 
residuals for outliers, etc.).  

R-square. The R-square value can be interpreted as the proportion of variability around 
the mean for the dependent variable, that can be accounted for by the respective model. 
(Note that for non- intercept models, some multiple regression programs will only 
compute the R-square value pertaining to the proportion of variance around 0 (zero) 
accounted for by the independent variables; for more information, see Kvalseth, 1985; 
Okunade, Chang, and Evans, 1993.)  
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Pure error and lack of fit. The usefulness of the estimate of pure error for assessing the 
overall lack of fit was discussed in the context of central composite designs. If some runs 
in the design were replicated, then one can compute an estimate of error variability based 
only on the variability between replicated runs. This variability provides a good 
indication of the unreliability in the measurements, independent of the model that was fit 
to the data, since it is based on identical factor settings (or blends in this case). One can 
test the residual variability after fitting the current model against this estimate of pure 
error. If this test is statistically significant, that is, if the residual variability is 
significantly larger than the pure error variability, then one can conclude that, most likely, 
there are additional significant differences between blends that cannot be accounted for 
by the current model. Thus, there may be an overall lack of fit of the current model. In 
that case, try a more complex model, perhaps by only adding individual terms of the next 
higher-order model (e.g., only the b13*x1*x3 to the linear model).  

Parameter Estimates  

Usually, after fitting a particular model, one would next review the parameter estimates. 
Remember that the linear terms in mixture models are constrained, that is, the sum of the 
components must be constant. Hence, independent statistical significance tests for the 
linear components cannot be performed.  

Pseudo-Components  

To allow for scale-independent comparisons of the parameter estimates, during the 
analysis, the component settings are customarily recoded to so-called pseudo-components 
so that (see also Cornell, 1993, Chapter 3):  

x'i = (xi-Li)/(Total-L)  

Here, x'i stands for the i 'th pseudo-component, xi stands for the original component value, 
Li stands for the lower constraint (limit) for the i 'th component, L stands for the sum of all 
lower constraints (limits) for all components in the design, and Total is the mixture total.  

The issue of lower constraints was also discussed earlier in this section. If the design is a 
standard simplex-lattice or simplex-centroid design (see above), then this transformation 
amounts to a rescaling of factors so as to form a sub-triangle (sub-simplex) as defined by 
the lower constraints. However, you can compute the parameter estimates based on the 
original (untransformed) metric of the components in the experiment. If you want to use 
the fitted parameter values for prediction purposes (i.e., to predict dependent variable 
values), then the parameters for the untransformed components are often more convenient 
to use. Note that the results dialog for mixture experiments contains options to make 
predictions for the dependent variable for user-defined values of the components, in their 
original metric.  

Graph Options  
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Surface and contour plots. The respective fitted model can be visualized in triangular 
surface plots or contour plots, which, optionally, can also include the respective fitted 
function.  

 

Note that the fitted function displayed in the surface and contour plots always pertains to 
the parameter estimates for the pseudo-components.  

Categorized surface plots. If your design involves replications (and the replications are 
coded in your data file), then you can use 3D Ternary Plots to look at the respective fit, 
replication by replication.  

 

Of course, if you have other categorical variables in your study (e.g., operator or 
experimenter; machine, etc.) you can also categorize the 3D surface plot by those 
variables.  

Trace plots. One aid for interpreting the triangular response surface is the so-called trace 
plot. Suppose you looked at the contour plot of the response surface for three 
components. Then, determine a reference blend for two of the components, for example, 
hold the values for A and B at 1/3 each. Keeping the relative proportions of A and B 
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constant (i.e., equal proportions in this case), you can then plot the estimated response 
(values for the dependent variable) for different values of C.  

 

If the reference blend for A and B is 1:1, then the resulting line or response trace is the 
axis for factor C; that is, the line from the C vertex point connecting with the opposite 
side of the triangle at a right angle. However, trace plots for other reference blends can 
also be produced. Typically, the trace plot contains the traces for all components, given 
the current reference blend.  

Residual plots. Finally, it is important, after deciding on a model, to review the 
prediction residuals, in order to identify outliers or regions of misfit-fit. In addition, one 
should review the standard normal probability plot of residuals and the scatterplot of 
observed versus predicted values. Remember that the multiple regression analysis (i.e., 
the process of fitting the surface) assumes that the residuals are normally distributed, and 
one should carefully review the residuals for any apparent outliers.  

 

 

 
Designs for Constrained Surfaces and Mixtures  

Overview  

As mentioned in the context of mixture designs, it often happens in real-world studies 
that the experimental region of interest is constrained, that is, that not all factors settings 
can be combined with all settings for the other factors in the study. There is an algorithm 
suggested by Piepel (1988) and Snee (1985) for finding the vertices and centroids for 
such constrained regions.  

Designs for Constrained Experimental Regions  
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When in an experiment with many factors, there are constraints concerning the possible 
values of those factors and their combinations, it is not clear how to proceed. A 
reasonable approach is to include in the experiments runs at the extreme vertex points and 
centroid points of the constrained region, which should usually provide good coverage of 
the constrained experimental region (e.g., see Piepel, 1988; Snee, 1975). In fact, the 
mixture designs reviewed in the previous section provide examples for such designs, 
since they are typically constructed to include the vertex and centroid points of the 
constrained region that consists of a triangle (simplex).  

Linear Constraints  

One general way in which one can summarize most constraints that occur in real world 
experimentation is in terms of a linear equation (see Piepel, 1988):  

A1x1 + A2x2 + ... + Aqxq + A0 0  

Here, A0, .., Aq are the parameters for the linear constraint on the q factors, and x1,.., xq 
stands for the factor values (levels) for the q factors. This general formula can 
accommodate even very complex constraints. For example, suppose that in a two-factor 
experiment the first factor must always be set at least twice as high as the second, that is, 
x1 2*x2. This simple constraint can be rewritten as x1-2*x2 0. The ratio constraint 2*x1 
/x2  1 can be rewritten as 2*x1 - x2 0, and so on.  

The problem of multiple upper and lower constraints on the component values in 
mixtures was discussed earlier, in the context of mixture experiments. For example, 
suppose in a three-component mixture of fruit juices, the upper and lower constraints on 
the components are (see example 3.2, in Cornell 1993):  

40% Watermelon (x1) 80% 
10% Pineapple (x2) 50% 
10% Orange (x3) 30% 

These constraints can be rewritten as linear constraints into the form:  

Watermelon: 
  

x1-40 0 
-x1+80 0 

Pineapple: 
  

x2-10 0 
-x2+50 0 

Orange: 
  

x3-10 0 
-x3+30 0 
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Thus, the problem of finding design points for mixture experiments with components 
with multiple upper and lower constraints is only a special case of general linear 
constraints.  

The Piepel & Snee Algorithm  

For the special case of constrained mixtures, algorithms such as the XVERT algorithm 
(see, for example, Cornell, 1990) are often used to find the vertex and centroid points of 
the constrained region (inside the triangle of three components, tetrahedron of four 
components, etc.). The general algorithm proposed by Piepel (1988) and Snee (1979) for 
finding vertices and centroids can be applied to mixtures as well as non-mixtures. The 
general approach of this algorithm is described in detail by Snee (1979).  

Specifically, it will consider one-by-one each constraint, written as a linear equation as 
described above. Each constraint represents a line (or plane) through the experimental 
region. For each successive constraint you will evaluate whether or not the current (new) 
constraint crosses into the current valid region of the design. If so, new vertices will be 
computed which define the new valid experimental region, updated for the most recent 
constraint. It will then check whether or not any of the previously processed constraints 
have become redundant, that is, define lines or planes in the experimental region that are 
now entirely outside the valid region. After all constraints have been processed, it will 
then compute the centroids for the sides of the constrained region (of the order requested 
by the user). For the two-dimensional (two-factor) case, one can easily recreate this 
process by simply drawing lines through the experimental region, one for each constraint; 
what is left is the valid experimental region.  
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For more information, see Piepel (1988) or Snee (1979).  

Choosing Points for the Experiment  

Once the vertices and centroids have been computed, you may face the problem of 
having to select a subset of points for the experiment. If each experimental run is costly, 
then it may not be feasible to simply run all vertex and centroid points. In particular, 
when there are many factors and constraints, then the number of centroids can quickly get 
very large.  

If you are screening a large number of factors, and are not interested in non-linear effects, 
then choosing the vertex points only will usually yield good coverage of the experimental 
region. To increase statistical power (to increase the degrees of freedom for the ANOVA 
error term), you may also want to include a few runs with the factors set at the overall 
centroid of the constrained region.  

If you are considering a number of different models that you might fit once the data have 
been collected, then you may want to use the D- and A-optimal design options. Those 
options will help you select the design points that will extract the maximum amount of 
information from the constrained experimental region, given your models.  
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Analyzing Designs for Constrained Surfaces and Mixtures  

As mentioned in the section on central composite designs and mixture designs, once the 
constrained design points have been chosen for the final experiment, and the data for the 
dependent variables of interest have been collected, the analysis of these designs can 
proceed in the standard manner.  

For example, Cornell (1990, page 68) describes an experiment of three plasticizers, and 
their effect on resultant vinyl thickness (for automobile seat covers). The constraints for 
the three plasticizers components x1, x2, and x3 are:  

.409 x1 .849 

.000 x2 .252 

.151 x3 .274 
 

(Note that these values are already rescaled, so that the total for each mixture must be 
equal to 1.) The vertex and centroid points generated are:  

x1 x2 x3 
.8490 
.7260 
.4740 
.5970 
.6615 
.7875 
.6000 
.5355 
.7230 

.0000 

.0000 

.2520 

.2520 

.1260 

.0000 

.1260 

.2520 

.1260 

.1510 

.2740 

.2740 

.1510 

.2125 

.2125 

.2740 

.2125 

.1510 
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Constructing D- and A-Optimal Designs  

Overview  

In the sections on standard factorial designs (see 2**(k-p) Fractional Factorial Designs 
and 3**(k-p), Box Behnken, and Mixed 2 and 3 Level Factorial Designs) and Central 
Composite Designs, the property of orthogonality of factor effects was discussed. In 
short, when the factor level settings for two factors in an experiment are uncorrelated, 
that is, when they are varied independently of each other, then they are said to be 
orthogonal to each other. (If you are familiar with matrix and vector algebra, two column 
vectors X1 and X2 in the design matrix are orthogonal if X1'*X2= 0). Intuitively, it should 
be clear that one can extract the maximum amount of information regarding a dependent 
variable from the experimental region (the region defined by the settings of the factor 
levels), if all factor effects are orthogonal to each other. Conversely, suppose one ran a 
four-run experiment for two factors as follows:  

  x1 x2 

Run 1 
Run 2 
Run 3 
Run 4 

 1 
 1 
-1 
-1 

 1 
 1 
-1 
-1 

 
 

Now the columns of factor settings for X1 and X2 are identical to each other (their 
correlation is 1), and there is no way in the results to distinguish between the main effect 
for X1 and X2.  

The D- and A-optimal design procedures provide various options to select from a list of 
valid (candidate) points (i.e., combinations of factor settings) those points that will 
extract the maximum amount of information from the experimental region, given the 
respective model that you expect to fit to the data. You need to supply the list of 
candidate points, for example the vertex and centroid points computed by the Designs for 
constrained surface and mixtures option, specify the type of model you expect to fit to 
the data, and the number of runs for the experiment. It will then construct a design with 
the desired number of cases, that will provide as much orthogonality between the 
columns of the design matrix as possible.  

The reasoning behind D- and A-optimality is discussed, for example, in Box and Draper 
(1987, Chapter 14). The different algorithms used for searching for optimal designs are 
described in Dykstra (1971), Galil and Kiefer (1980), and Mitchell (1974a, 1974b). A 
detailed comparison study of the different algorithms is discussed in Cook and 
Nachtsheim (1980).  
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Basic Ideas  

A technical discussion of the reasoning (and limitations) of D- and A-optimal designs is 
beyond the scope of this introduction. However, the general ideas are fairly straight-
forward. Consider again the simple two-factor experiment in four runs.  

  x1 x2 

Run 1 
Run 2 
Run 3 
Run 4 

 1 
 1 
-1 
-1 

 1 
 1 
-1 
-1 

 
 

As mentioned above, this design, of course, does not allow one to test, independently, the 
statistical significance of the two variables' contribution to the prediction of the 
dependent variable. If you computed the correlation matrix for the two variables, they 
would correlate at 1:  

  x1 x2 

x1 
x2 

1.0 
1.0 

1.0 
1.0 

 
 

Normally, one would run this experiment so that the two factors are varied independently 
of each other:  

  x1 x2 

Run 1 
Run 2 
Run 3 
Run 4 

 1 
 1 
-1 
-1 

 1 
-1 
 1 
-1 

 
 

Now the two variables are uncorrelated, that is, the correlation matrix for the two factors 
is:  

  x1 x2 
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x1 
x2 

1.0 
0.0 

0.0 
1.0 

 
 

Another term that is customarily used in this context is that the two factors are 
orthogonal. Technically, if the sum of the products of the elements of two columns 
(vectors) in the design (design matrix) is equal to 0 (zero), then the two columns are 
orthogonal.  

The determinant of the design matrix. The determinant D of a square matrix (like the 
2-by-2 correlation matrices shown above) is a specific numerical value, that reflects the 
amount of independence or redundancy between the columns and rows of the matrix. For 
the 2-by-2 case, it is simply computed as the product of the diagonal elements minus the 
off-diagonal elements of the matrix (for larger matrices the computations are more 
complex). For example, for the two matrices shown above, the determinant D is:  

D1 = 
  

|1.0 1.0| 
|1.0 1.0| 

= 1*1 - 1*1 = 0 
  

D2 = 
  

|1.0 0.0| 
|0.0 1.0| 

= 1*1 - 0*0 = 1 
  

 
 

Thus, the determinant for the first matrix computed from completely redundant factor 
settings is equal to 0. The determinant for the second matrix, when the factors are 
orthogonal, is equal to 1.  

D-optimal designs. This basic relationship extends to larger design matrices, that is, the 
more redundant the vectors (columns) of the design matrix, the closer to 0 (zero) is the 
determinant of the correlation matrix for those vectors; the more independent the 
columns, the larger is the determinant of that matrix. Thus, finding a design matrix that 
maximizes the determinant D of this matrix means finding a design where the factor 
effects are maximally independent of each other. This criterion for selecting a design is 
called the D-optimality criterion.  

Matrix notation. Actually, the computations are commonly not performed on the 
correlation matrix of vectors, but on the simple cross-product matrix. In matrix notation, 
if the design matrix is denoted by X, then the quantity of interest here is the determinant 
of X'X (X- transposed times X). Thus, the search for D-optimal designs aims to maximize 
|X'X|, where the vertical lines (|..|) indicate the determinant.  
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A-optimal designs. Looking back at the computations for the determinant, another way 
to look at the issue of independence is to maximize the diagonal elements of the X'X 
matrix, while minimizing the off-diagonal elements. The so-called trace criterion or A-
optimality criterion expresses this idea. Technically, the A-criterion is defined as:  

A = trace(X'X)-1  

where trace stands for the sum of the diagonal elements (of the (X'X)-1 matrix).  

The information function. It should be mentioned at this point that D-optimal designs 
minimize the expected prediction error for the dependent variable, that is, those designs 
will maximize the precision of prediction, and thus the information (which is defined as 
the inverse of the error) that is extracted from the experimental region of interest.  

Measuring Design Efficiency  

A number of standard measures have been proposed to summarize the efficiency of a 
design.  

D-efficiency. This measure is related to the D-optimality criterion:  

D-efficiency = 100 * (|X'X|1/p/N)  

Here, p is the number of factor effects in the design (columns in X), and N is the number 
of requested runs. This measure can be interpreted as the relative number of runs (in 
percent) that would be required by an orthogonal design to achieve the same value of the 
determinant |X'X|. However, remember that an orthogonal design may not be possible in 
many cases, that is, it is only a theoretical "yard-stick." Therefore, you should use this 
measure rather as a relative indicator of efficiency, to compare other designs of the same 
size, and constructed from the same design points candidate list. Also note that this 
measure is only meaningful (and will only be reported) if you chose to recode the factor 
settings in the design (i.e., the factor settings for the design points in the candidate list), 
so that they have a minimum of -1 and a maximum of +1.  

A-efficiency. This measure is related to the A-optimality criterion:  

A-efficiency = 100 * p/trace(N*(X'X)-1)  

Here, p stands for the number of factor effects in the design, N is the number of requested 
runs, and trace stands for the sum of the diagonal elements (of (N*(X'X)-1) ). This 
measure can be interpreted as the relative number of runs (in percent) that would be 
required by an orthogonal design to achieve the same value of the trace of (X'X)-1. 
However, again you should use this measure as a relative indicator of efficiency, to 
compare other designs of the same size and constructed from the same design points 
candidate list; also this measure is only meaningful if you chose to recode the factor 
settings in the design to the -1 to +1 range.  
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G-efficiency. This measure is computed as:  

G-efficiency = 100 * square root(p/N)/M  

Again, p stands for the number of factor effects in the design and N is the number of 
requested runs; M (sigmaM) stands for the maximum standard error for prediction across 
the list of candidate points. This measure is related to the so-called G- optimality 
criterion; G-optimal designs are defined as those that will minimize the maximum value 
of the standard error of the predicted response.  

Constructing Optimal Designs  

The optimal design facilities will "search for" optimal designs, given a list of "candidate 
points." Put another way, given a list of points that specifies which regions of the design 
are valid or feasible, and given a user-specified number of runs for the final experiment, 
it will select points to optimize the respective criterion. This "searching for" the best 
design is not an exact method, but rather an algorithmic procedure that employs certain 
search strategies to find the best design (according to the respective optimality criterion).  

The search procedures or algorithms that have been proposed are described below (for a 
review and detailed comparison, see Cook and Nachtsheim, 1980). They are reviewed 
here in the order of speed, that is, the Sequential or Dykstra method is the fastest method, 
but often most likely to fail, that is, to yield a design that is not optimal (e.g., only locally 
optimal; this issue will be discussed shortly).  

Sequential or Dykstra method. This algorithm is due to Dykstra (1971). Starting with 
an empty design, it will search through the candidate list of points, and choose in each 
step the one that maximizes the chosen criterion. There are no iterations involved, they 
will simply pick the requested number of points sequentially. Thus, this method is the 
fastest of the ones discussed. Also, by default, this method is used to construct the initial 
designs for the remaining methods.  

Simple exchange (Wynn-Mitchell) method. This algorithm is usually attributed to 
Mitchell and Miller (1970) and Wynn (1972). The method starts with an initial design of 
the requested size (by default constructed via the sequential search algorithm described 
above). In each iteration, one point (run) in the design will be dropped from the design 
and another added from the list of candidate points. The choice of points to be dropped or 
added is sequential, that is, at each step the point that contributes least with respect to the 
chosen optimality criterion (D or A) is dropped from the design; then the algorithm 
chooses a point from the candidate list so as to optimize the respective criterion. The 
algorithm stops when no further improvement is achieved with additional exchanges.  

DETMAX algorithm (exchange with excursions). This algorithm, due to Mitchell 
(1974b), is probably the best known and most widely used optimal design search 
algorithm. Like the simple exchange method, first an initial design is constructed (by 
default, via the sequential search algorithm described above). The search begins with a 
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simple exchange as described above. However, if the respective criterion (D or A) does 
not improve, the algorithm will undertake excursions. Specifically, the algorithm will add 
or subtract more than one point at a time, so that, during the search, the number of points 
in the design may vary between ND+ Nexcursion and ND- Nexcursion, where ND is the 
requested design size, and Nexcursion refers to the maximum allowable excursion, as 
specified by the user. The iterations will stop when the chosen criterion (D or A) no 
longer improves within the maximum excursion.  

Modified Fedorov (simultaneous switching). This algorithm represents a modification 
(Cook and Nachtsheim, 1980) of the basic Fedorov algorithm described below. It also 
begins with an initial design of the requested size (by default constructed via the 
sequential search algorithm). In each iteration, the algorithm will exchange each point in 
the design with one chosen from the candidate list, so as to optimize the design according 
to the chosen criterion (D or A). Unlike the simple exchange algorithm described above, 
the exchange is not sequential, but simultaneous. Thus, in each iteration each point in the 
design is compared with each point in the candidate list, and the exchange is made for the 
pair that optimizes the design. The algorithm terminates when there are no further 
improvements in the respective optimality criterion.  

Fedorov (simultaneous switching). This is the original simultaneous switching method 
proposed by Fedorov (see Cook and Nachtsheim, 1980). The difference between this 
procedure and the one described above (modified Fedorov) is that in each iteration only a 
single exchange is performed, that is, in each iteration all possible pairs of points in the 
design and those in the candidate list are evaluated. The algorithm will then exchange the 
pair that optimizes the design (with regard to the chosen criterion). Thus, it is easy to see 
that this algorithm potentially can be somewhat slow, since in each iteration ND*NC 
comparisons are performed, in order to exchange a single point.  

General Recommendations  

If you think about the basic strategies represented by the different algorithms described 
above, it should be clear that there are usually no exact solutions to the optimal design 
problem. Specifically, the determinant of the X'X matrix (and trace of its inverse) are 
complex functions of the list of candidate points. In particular, there are usually several 
"local minima" with regard to the chosen optimality criterion; for example, at any point 
during the search a design may appear optimal unless you simultaneously discard half of 
the points in the design and choose certain other points from the candidate list; but, if you 
only exchange individual points or only a few points (via DETMAX), then no 
improvement occurs.  

Therefore, it is important to try a number of different initial designs and algorithms. If 
after repeating the optimization several times with random starts the same, or very 
similar, final optimal design results, then you can be reasonably sure that you are not 
"caught" in a local minimum or maximum.  
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Also, the methods described above vary greatly with regard to their ability to get 
"trapped" in local minima or maxima. As a general rule, the slower the algorithm (i.e., the 
further down on the list of algorithms described above), the more likely is the algorithm 
to yield a truly optimal design. However, note that the modified Fedorov algorithm will 
practically perform just as well as the unmodified algorithm (see Cook and Nachtsheim, 
1980); therefore, if time is not a consideration, we recommend the modified Fedorov 
algorithm as the best method to use.  

D-optimality and A-optimality. For computational reasons (see Galil and Kiefer, 1980), 
updating the trace of a matrix (for the A-optimality criterion) is much slower than 
updating the determinant (for D-optimality). Thus, when you choose the A-optimality 
criterion, the computations may require significantly more time as compared to the D-
optimality criterion. Since in practice, there are many other factors that will affect the 
quality of an experiment (e.g., the measurement reliability for the dependent variable), we 
generally recommend that you use the D optimality criterion. However, in difficult design 
situations, for example, when there appear to be many local maxima for the D criterion, 
and repeated trials yield very different results, you may want to run several optimization 
trials using the A criterion to learn more about the different types of designs that are 
possible.  

Avoiding Matrix Singularity  

It may happen during the search process that it cannot compute the inverse of the X'X 
matrix (for A-optimality), or that the determinant of the matrix becomes almost 0 (zero). 
At that point, the search can usually not continue. To avoid this situation, perform the 
optimization based on an augmented X'X matrix:  

X'Xaugmented = X'X + *(X 0'X0/N0)  

where X0 stands for the design matrix constructed from the list of all N0 candidate points, 
and (alpha) is a user-defined small constant. Thus, you can turn off this feature by 
setting to 0 (zero).  

"Repairing" Designs  

The optimal design features can be used to "repair" designs. For example, suppose you 
ran an orthogonal design, but some data were lost (e.g., due to equipment malfunction), 
and now some effects of interest can no longer be estimated. You could of course make 
up the lost runs, but suppose you do not have the resources to redo them all. In that case, 
you can set up the list of candidate points from among all valid points for the 
experimental region, add to that list all the points that you have already run, and instruct 
it to always force those points into the final design (and never to drop them out; you can 
mark points in the candidate list for such forced inclusion). It will then only consider to 
exclude those points from the design that you did not actually run. In this manner you 
can, for example, find the best single run to add to an existing experiment, that would 
optimize the respective criterion.  
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Constrained Experimental Regions and Optimal Design  

A typical application of the optimal design features is to situations when the experimental 
region of interest is constrained. As described earlier in this section, there are facilities for 
finding vertex and centroid points for linearly constrained regions and mixtures. Those 
points can then be submitted as the candidate list for constructing an optimal design of a 
particular size for a particular model. Thus, these two facilities combined provide a very 
powerful tool to cope with the difficult design situation when the design region of interest 
is subject to complex constraints, and one wants to fit particular models with the least 
number of runs.  

 

 

 
Special Topics  

The following sections introduce several analysis techniques. The sections describe 
Response/desirability profiling, conducting Residual analyses, and performing Box-Cox 
transformations of the dependent variable.  

See also ANOVA/MANOVA , Methods for Analysis of Variance, and Variance 
Components and Mixed Model ANOVA/ANCOVA.  

Profiling Predicted Responses and Response Desirability   

Basic Idea. A typical problem in product development is to find a set of conditions, or 
levels of the input variables, that produces the most desirable product in terms of its 
characteristics, or responses on the output variables. The procedures used to solve this 
problem generally involve two steps: (1) predicting responses on the dependent, or Y 
variables, by fitting the observed responses using an equation based on the levels of the 
independent, or X variables, and (2) finding the levels of the X variables which 
simultaneously produce the most desirable predicted responses on the Y variables. 
Derringer and Suich (1980) give, as an example of these procedures, the problem of 
finding the most desirable tire tread compound. There are a number of Y variables, such 
as PICO Abrasion Index, 200 percent modulus, elongation at break, and hardness. The 
characteristics of the product in terms of the response variables depend on the 
ingredients, the X variables, such as hydrated silica level, silane coupling agent level, and 
sulfur. The problem is to select the levels for the X's which will maximize the desirability 
of the responses on the Y's. The solution must take into account the fact that the levels for 
the X's that maximize one response may not maximize a different response.  

When analyzing 2**(k-p) (two-level factorial) designs, 2-level screening designs, 2**(k-
p) maximally unconfounded and minimum aberration designs, 3**(k-p) and Box Behnken 
designs, Mixed 2 and 3 level designs, central composite designs, and mixture designs, 
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Response/desirability profiling allows you to inspect the response surface produced by 
fitting the observed responses using an equation based on levels of the independent 
variables.  

Prediction Profiles. When you analyze the results of any of the designs listed above, a 
separate prediction equation for each dependent variable (containing different 
coefficients but the same terms) is fitted to the observed responses on the respective 
dependent variable. Once these equations are constructed, predicted values for the 
dependent variables can be computed at any combination of levels of the predictor 
variables. A prediction profile for a dependent variable consists of a series of graphs, one 
for each independent variable, of the predicted values for the dependent variable at 
different levels of one independent variable, holding the levels of the other independent 
variables constant at specified values, called current values. If appropriate current values 
for the independent variables have been selected, inspecting the prediction profile can 
show which levels of the predictor variables produce the most desirable predicted 
response on the dependent variable.  

One might be interested in inspecting the predicted values for the dependent variables 
only at the actual levels at which the independent variables were set during the 
experiment. Alternatively, one also might be interested in inspecting the predicted values 
for the dependent variables at levels other than the actual levels of the independent 
variables used during the experiment, to see if there might be intermediate levels of the 
independent variables that could produce even more desirable responses. Also, returning 
to the Derringer and Suich (1980) example, for some response variables, the most 
desirable values may not necessarily be the most extreme values, for example, the most 
desirable value of elongation may fall within a narrow range of the possible values.  

Response Desirability. Different dependent variables might have different kinds of 
relationships between scores on the variable and the desirability of the scores. Less filling 
beer may be more desirable, but better tasting beer can also be more desirable--lower 
"fillingness" scores and higher "taste" scores are both more desirable. The relationship 
between predicted responses on a dependent variable and the desirability of responses is 
called the desirability function. Derringer and Suich (1980) developed a procedure for 
specifying the relationship between predicted responses on a dependent variable and the 
desirability of the responses, a procedure that provides for up to three "inflection" points 
in the function. Returning to the tire tread compound example described above, their 
procedure involved transforming scores on each of the four tire tread compound outcome 
variables into desirability scores that could range from 0.0 for undesirable to 1.0 for very 
desirable. For example, their desirability function for hardness of the tire tread compound 
was defined by assigning a desirability value of 0.0 to hardness scores below 60 or above 
75, a desirability value of 1.0 to mid-point hardness scores of 67.5, a desirability value 
that increased linearly from 0.0 up to 1.0 for hardness scores between 60 and 67.5 and a 
desirability value that decreased linearly from 1.0 down to 0.0 for hardness scores 
between 67.5 and 75.0. More generally, they suggested that procedures for defining 
desirability functions should accommodate curvature in the "falloff" of desirability 
between inflection points in the functions.  
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After transforming the predicted values of the dependent variables at different 
combinations of levels of the predictor variables into individual desirability scores, the 
overall desirability of the outcomes at different combinations of levels of the predictor 
variables can be computed. Derringer and Suich (1980) suggested that overall desirability 
be computed as the geometric mean of the individual desirabilities (which makes intuitive 
sense, because if the individual desirability of any outcome is 0.0, or unacceptable, the 
overall desirability will be 0.0, or unacceptable, no matter how desirable the other 
individual outcomes are--the geometric mean takes the product of all of the values, and 
raises the product to the power of the reciprocal of the number of values). Derringer and 
Suich's procedure provides a straightforward way for transforming predicted values for 
multiple dependent variables into a single overall desirability score. The problem of 
simultaneously optimization of several response variables then boils down to selecting 
the levels of the predictor variables that maximize the overall desirability of the responses 
on the dependent variables.  

Summary. When one is developing a product whose characteristics are known to depend 
on the "ingredients" of which it is constituted, producing the best product possible 
requires determining the effects of the ingredients on each characteristic of the product, 
and then finding the balance of ingredients that optimizes the overall desirability of the 
product. In data analytic terms, the procedure that is followed to maximize product 
desirability is to (1) find adequate models (i.e., prediction equations) to predict 
characteristics of the product as a function of the levels of the independent variables, and 
(2) determine the optimum levels of the independent variables for overall product quality. 
These two steps, if followed faithfully, will likely lead to greater success in product 
improvement than the fabled, but statistically dubious technique of hoping for accidental 
breakthroughs and discoveries that radically improve product quality.  

Residuals Analysis  

Basic Idea. Extended residuals analysis is a collection of methods for inspecting 
different residual and predicted values, and thus to examine the adequacy of the 
prediction model, the need for transformations of the variables in the model, and the 
existence of outliers in the data.  

Residuals are the deviations of the observed values on the dependent variable from the 
predicted values, given the current model. The ANOVA models used in analyzing 
responses on the dependent variable make certain assumptions about the distributions of 
residual (but not predicted) values on the dependent variable. These assumptions can be 
summarized by saying that the ANOVA model assumes normality, linearity, 
homogeneity of variances and covariances, and independence of residuals. All of these 
properties of the residuals for a dependent variable can be inspected using Residuals 
analysis.  

Box-Cox Transformations of Dependent Variables  
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Basic Idea. It is assumed in analysis of variance that the variances in the different groups 
(experimental conditions) are homogeneous, and that they are uncorrelated with the 
means. If the distribution of values within each experimental condition is skewed, and the 
means are correlated with the standard deviations, then one can often apply an 
appropriate power transformation to the dependent variable to stabilize the variances, and 
to reduce or eliminate the correlation between the means and standard deviations. The 
Box-Cox transformation is useful for selecting an appropriate (power) transformation of 
the dependent variable.  

Selecting the Box-Cox transformation option will produce a plot of the Residual Sum of 
Squares, given the model, as a function of the value of lambda, where lambda is used to 
define a transformation of the dependent variable,  

y' = ( y**(lambda) - 1 ) / ( g**(lambda-1) * lambda) if lambda 0 

y' = g * natural log(y) if lambda = 0 

in which g is the geometric mean of the dependent variable and all values of the 
dependent variable are non-negative. The value of lambda for which the Residual Sum of 
Squares is a minimum is the maximum likelihood estimate for this parameter. It produces 
the variance stabilizing transformation of the dependent variable that reduces or 
eliminates the correlation between the group means and standard deviations.  

In practice, it is not important that you use the exact estimated value of lambda for 
transforming the dependent variable. Rather, as a rule of thumb, one should consider the 
following transformations: 

Approximate 
lambda 

Suggested 
transorfmation of y 

-1    
-0.5 
 0    
 0.5 
 1    

Reciprocal 
Reciprocal square root 
Natural logarithm 
Square root 
None 

 
 

For additional information regarding this family of transformations, see Box and Cox 
(1964), Box and Draper (1987), and Maddala (1977).  
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Chapter 16 
Principal Components and Factor Analysis 

 

• General Purpose  
• Basic Idea of Factor Analysis as a Data Reduction Method  
• Factor Analysis as a Classification Method  
• Miscellaneous Other Issues and Statistics  

 
General Purpose  

The main applications of factor analytic techniques are: (1) to reduce the number of 
variables and (2) to detect structure in the relationships between variables, that is to 
classify variables. Therefore, factor analysis is applied as a data reduction or structure 
detection method (the term factor analysis was first introduced by Thurstone, 1931). The 
topics listed below will describe the principles of factor analysis, and how it can be 
applied towards these two purposes. We will assume that you are familiar with the basic 
logic of statistical reasoning as described in Elementary Concepts. Moreover, we will 
also assume that you are familiar with the concepts of variance and correlation; if not, we 
advise that you read the Basic Statistics chapter at this point.  

There are many excellent books on factor analysis. For example, a hands-on how-to 
approach can be found in Stevens (1986); more detailed technical descriptions are 
provided in Cooley and Lohnes (1971); Harman (1976); Kim and Mueller, (1978a, 
1978b); Lawley and Maxwell (1971); Lindeman, Merenda, and Gold (1980); Morrison 
(1967); or Mulaik (1972). The interpretation of secondary factors in hierarchical factor 
analysis, as an alternative to traditional oblique rotational strategies, is explained in detail 
by Wherry (1984).  

Confirmatory factor analysis. Structural Equation Modeling (SEPATH) allows you to 
test specific hypotheses about the factor structure for a set of variables, in one or several 
samples (e.g., you can compare factor structures across samples).  

Correspondence analysis. Correspondence analysis is a descriptive/exploratory 
technique designed to analyze two-way and multi-way tables containing some measure of 
correspondence between the rows and columns. The results provide information which is 
similar in nature to those produced by factor analysis techniques, and they allow one to 
explore the structure of categorical variables included in the table. For more information 
regarding these methods, refer to Correspondence Analysis.  

 

 

Basic Idea of Factor Analysis as a Data Reduction Method  
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Suppose we conducted a (rather "silly") study in which we measure 100 people's height 
in inches and centimeters. Thus, we would have two variables that measure height. If in 
future studies, we want to research, for example, the effect of different nutritional food 
supplements on height, would we continue to use both measures? Probably not; height is 
one characteristic of a person, regardless of how it is measured.  

Let us now extrapolate from this "silly" study to something that one might actually do as 
a researcher. Suppose we want to measure people's satisfaction with their lives. We 
design a satisfaction questionnaire with various items; among other things we ask our 
subjects how satisfied they are with their hobbies (item 1) and how intensely they are 
pursuing a hobby (item 2). Most likely, the responses to the two items are highly 
correlated with each other. (If you are not familiar with the correlation coefficient, we 
recommend that you read the description in Basic Statistics - Correlations) Given a high 
correlation between the two items, we can conclude that they are quite redundant.  

Combining Two Variables into a Single Factor. One can summarize the correlation 
between two variables in a scatterplot. A regression line can then be fitted that represents 
the "best" summary of the linear relationship between the variables. If we could define a 
variable that would approximate the regression line in such a plot, then that variable 
would capture most of the "essence" of the two items. Subjects' single scores on that new 
factor, represented by the regression line, could then be used in future data analyses to 
represent that essence of the two items. In a sense we have reduced the two variables to 
one factor. Note that the new factor is actually a linear combination of the two variables.  

Principal Components Analysis. The example described above, combining two 
correlated variables into one factor, illustrates the basic idea of factor analysis, or of 
principal components analysis to be precise (we will return to this later). If we extend the 
two-variable example to multiple variables, then the computations become more 
involved, but the basic principle of expressing two or more variables by a single factor 
remains the same.  

Extracting Principal Components. We do not want to go into the details about the 
computational aspects of principal components analysis here, which can be found 
elsewhere (references were provided at the beginning of this section). However, 
basically, the extraction of principal components amounts to a variance maximizing 
(varimax) rotation of the original variable space. For example, in a scatterplot we can 
think of the regression line as the original X axis, rotated so that it approximates the 
regression line. This type of rotation is called variance maximizing because the criterion 
for (goal of) the rotation is to maximize the variance (variability) of the "new" variable 
(factor), while minimizing the variance around the new variable (see Rotational 
Strategies).  

Generalizing to the Case of Multiple Variables. When there are more than two 
variables, we can think of them as defining a "space," just as two variables defined a 
plane. Thus, when we have three variables, we could plot a three- dimensional 
scatterplot, and, again we could fit a plane through the data.  
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With more than three variables it becomes impossible to illustrate the points in a 
scatterplot, however, the logic of rotating the axes so as to maximize the variance of the 
new factor remains the same.  

Multiple orthogonal factors. After we have found the line on which the variance is 
maximal, there remains some variability around this line. In principal components 
analysis, after the first factor has been extracted, that is, after the first line has been drawn 
through the data, we continue and define another line that maximizes the remaining 
variability, and so on. In this manner, consecutive factors are extracted. Because each 
consecutive factor is defined to maximize the variability that is not captured by the 
preceding factor, consecutive factors are independent of each other. Put another way, 
consecutive factors are uncorrelated or orthogonal to each other.  

How many Factors to Extract? Remember that, so far, we are considering principal 
components analysis as a data reduction method, that is, as a method for reducing the 
number of variables. The question then is, how many factors do we want to extract? Note 
that as we extract consecutive factors, they account for less and less variability. The 
decision of when to stop extracting factors basically depends on when there is only very 
little "random" variability left. The nature of this decision is arbitrary; however, various 
guidelines have been developed, and they are reviewed in Reviewing the Results of a 
Principal Components Analysis under Eigenvalues and the Number-of- Factors Problem.  

Reviewing the Results of a Principal Components Analysis. Without further ado, let us 
now look at some of the standard results from a principal components analysis. To 
reiterate, we are extracting factors that account for less and less variance. To simplify 
matters, one usually starts with the correlation matrix, where the variances of all variables 
are equal to 1.0. Therefore, the total variance in that matrix is equal to the number of 
variables. For example, if we have 10 variables each with a variance of 1 then the total 
variability that can potentially be extracted is equal to 10 times 1. Suppose that in the 
satisfaction study introduced earlier we included 10 items to measure different aspects of 
satisfaction at home and at work. The variance accounted for by successive factors would 
be summarized as follows:  
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STATISTICA  
FACTOR 
ANALYSIS  

Eigenvalues (factor.sta) 
Extraction: Principal components 

  
  

Value 
  

Eigenval 
% total  

Variance 
Cumul. 

Eigenval 
Cumul. 

%  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6.118369 
1.800682 
.472888 
.407996 
.317222 
.293300 
.195808 
.170431 
.137970 
.085334 

61.18369 
18.00682 
4.72888 
4.07996 
3.17222 
2.93300 
1.95808 
1.70431 
1.37970 
.85334 

6.11837 
7.91905 
8.39194 
8.79993 
9.11716 
9.41046 
9.60626 
9.77670 
9.91467 

10.00000 

61.1837 
79.1905 
83.9194 
87.9993 
91.1716 
94.1046 
96.0626 
97.7670 
99.1467 

100.0000 

 
 

Eigenvalues 
In the second column (Eigenvalue) above, we find the variance on the new factors that 
were successively extracted. In the third column, these values are expressed as a percent 
of the total variance (in this example, 10). As we can see, factor 1 accounts for 61 percent 
of the variance, factor 2 for 18 percent, and so on. As expected, the sum of the 
eigenvalues is equal to the number of variables. The third column contains the cumulative 
variance extracted. The variances extracted by the factors are called the eigenvalues. This 
name derives from the computational issues involved.  

Eigenvalues and the Number-of-Factors Problem 
Now that we have a measure of how much variance each successive factor extracts, we 
can return to the question of how many factors to retain. As mentioned earlier, by its 
nature this is an arbitrary decision. However, there are some guidelines that are 
commonly used, and that, in practice, seem to yield the best results.  

The Kaiser criterion. First, we can retain only factors with eigenvalues greater than 1. In 
essence this is like saying that, unless a factor extracts at least as much as the equivalent 
of one original variable, we drop it. This criterion was proposed by Kaiser (1960), and is 
probably the one most widely used. In our example above, using this criterion, we would 
retain 2 factors (principal components).  

The scree test. A graphical method is the scree test first proposed by Cattell (1966). We 
can plot the eigenvalues shown above in a simple line plot.  
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Cattell suggests to find the place where the smooth decrease of eigenvalues appears to 
level off to the right of the plot. To the right of this point, presumably, one finds only 
"factorial scree" -- "scree" is the geological term referring to the debris which collects on 
the lower part of a rocky slope. According to this criterion, we would probably retain 2 or 
3 factors in our example.  

Which criterion to use. Both criteria have been studied in detail (Browne, 1968; Cattell 
& Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; Tucker, Koopman & 
Linn, 1969). Theoretically, one can evaluate those criteria by generating random data 
based on a particular number of factors. One can then see whether the number of factors 
is accurately detected by those criteria. Using this general technique, the first method 
(Kaiser criterion) sometimes retains too many factors, while the second technique (scree 
test) sometimes retains too few; however, both do quite well under normal conditions, 
that is, when there are relatively few factors and many cases. In practice, an additional 
important aspect is the extent to which a solution is interpretable. Therefore, one usually 
examines several solutions with more or fewer factors, and chooses the one that makes 
the best "sense." We will discuss this issue in the context of factor rotations below.  

Principal Factors Analysis 
Before we continue to examine the different aspects of the typical output from a principal 
components analysis, let us now introduce principal factors analysis. Let us return to our 
satisfaction questionnaire example to conceive of another "mental model" for factor 
analysis. We can think of subjects' responses as being dependent on two components. 
First, there are some underlying common factors, such as the "satisfaction-with-hobbies" 
factor we looked at before. Each item measures some part of this common aspect of 
satisfaction. Second, each item also captures a unique aspect of satisfaction that is not 
addressed by any other item.  

Communalities. If this model is correct, then we should not expect that the factors will 
extract all variance from our items; rather, only that proportion that is due to the common 
factors and shared by several items. In the language of factor analysis, the proportion of 
variance of a particular item that is due to common factors (shared with other items) is 
called communality. Therefore, an additional task facing us when applying this model is 
to estimate the communalities for each variable, that is, the proportion of variance that 
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each item has in common with other items. The proportion of variance that is unique to 
each item is then the respective item's total variance minus the communality. A common 
starting point is to use the squared multiple correlation of an item with all other items as 
an estimate of the communality (refer to Multiple Regression for details about multiple 
regression). Some authors have suggested various iterative "post-solution improvements" 
to the initial multiple regression communality estimate; for example, the so-called 
MINRES method (minimum residual factor method; Harman & Jones, 1966) will try 
various modifications to the factor loadings with the goal to minimize the residual 
(unexplained) sums of squares.  

Principal factors vs. principal components. The defining characteristic then that 
distinguishes between the two factor analytic models is that in principal components 
analysis we assume that all variability in an item should be used in the analysis, while in 
principal factors analysis we only use the variability in an item that it has in common 
with the other items. A detailed discussion of the pros and cons of each approach is 
beyond the scope of this introduction (refer to the general references provided in 
Principal components and Factor Analysis - Introductory Overview). In most cases, these 
two methods usually yield very similar results. However, principal components analysis 
is often preferred as a method for data reduction, while principal factors analysis is often 
preferred when the goal of the analysis is to detect structure (see Factor Analysis as a 
Classification Method).  

 

 

Factor Analysis as a Classification Method  

Let us now return to the interpretation of the standard results from a factor analysis. We 
will henceforth use the term factor analysis generically to encompass both principal 
components and principal factors analysis. Let us assume that we are at the point in our 
analysis where we basically know how many factors to extract. We may now want to 
know the meaning of the factors, that is, whether and how we can interpret them in a 
meaningful manner. To illustrate how this can be accomplished, let us work "backwards," 
that is, begin with a meaningful structure and then see how it is reflected in the results of 
a factor analysis. Let us return to our satisfaction example; shown below is the correlation 
matrix for items pertaining to satisfaction at work and items pertaining to satisfaction at 
home.  

STATISTICA  
FACTOR 
ANALYSIS  

Correlations (factor.sta) 
Casewise deletion of MD 

n=100 
Variable WORK_1 WORK_2 WORK_3 HOME_1 HOME_2 HOME_3 
WORK_1 
WORK_2 
WORK_3 
HOME_1 

1.00 
.65 
.65 
.14 

.65 
1.00 
.73 
.14 

.65 

.73 
1.00 
.16 

.14 

.14 

.16 
1.00 

.15 

.18 

.24 

.66 

.14 

.24 

.25 

.59 
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HOME_2 
HOME_3 

.15 

.14 
.18 
.24 

.24 

.25 
.66 
.59 

1.00 
.73 

.73 
1.00 

 
The work satisfaction items are highly correlated amongst themselves, and the home 
satisfaction items are highly intercorrelated amongst themselves. The correlations across 
these two types of items (work satisfaction items with home satisfaction items) is 
comparatively small. It thus seems that there are two relatively independent factors 
reflected in the correlation matrix, one related to satisfaction at work, the other related to 
satisfaction at home.  

Factor Loadings. Let us now perform a principal components analysis and look at the 
two-factor solution. Specifically, let us look at the correlations between the variables and 
the two factors (or "new" variables), as they are extracted by default; these correlations 
are also called factor loadings.  

STATISTICA  
FACTOR 
ANALYSIS  

Factor Loadings (Unrotated) 
Principal components 

  
Variable Factor 1 Factor 2 
WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

.654384 

.715256 

.741688 

.634120 

.706267 

.707446 

.564143 

.541444 

.508212 
-.563123 
-.572658 
-.525602 

Expl.Var 
Prp.Totl 

2.891313 
.481885 

1.791000 
.298500 

 
Apparently, the first factor is generally more highly correlated with the variables than the 
second factor. This is to be expected because, as previously described, these factors are 
extracted successively and will account for less and less variance overall.  

Rotating the Factor Structure. We could plot the factor loadings shown above in a 
scatterplot. In that plot, each variable is represented as a point. In this plot we could rotate 
the axes in any direction without changing the relative locations of the points to each 
other; however, the actual coordinates of the points, that is, the factor loadings would of 
course change. In this example, if you produce the plot it will be evident that if we were 
to rotate the axes by about 45 degrees we might attain a clear pattern of loadings 
identifying the work satisfaction items and the home satisfaction items.  

Rotational strategies. There are various rotational strategies that have been proposed. 
The goal of all of these strategies is to obtain a clear pattern of loadings, that is, factors 
that are somehow clearly marked by high loadings for some variables and low loadings 
for others. This general pattern is also sometimes referred to as simple structure (a more 
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formalized definition can be found in most standard textbooks). Typical rotational 
strategies are varimax, quartimax, and equamax.  

We have described the idea of the varimax rotation before (see Extracting Principal 
Components), and it can be applied to this problem as well. As before, we want to find a 
rotation that maximizes the variance on the new axes; put another way, we want to obtain 
a pattern of loadings on each factor that is as diverse as possible, lending itself to easier 
interpretation. Below is the table of rotated factor loadings.  

STATISTICA  
FACTOR 
ANALYSIS  

Factor Loadings (Varimax normalized) 
Extraction: Principal components 

  
Variable Factor 1 Factor 2 
WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

.862443 

.890267 

.886055 

.062145 

.107230 

.140876 

.051643 

.110351 

.152603 

.845786 

.902913 

.869995 
Expl.Var 
Prp.Totl 

2.356684 
.392781 

2.325629 
.387605 

 
 

Interpreting the Factor Structure. Now the pattern is much clearer. As expected, the 
first factor is marked by high loadings on the work satisfaction items, the second factor is 
marked by high loadings on the home satisfaction items. We would thus conclude that 
satisfaction, as measured by our questionnaire, is composed of those two aspects; hence 
we have arrived at a classification of the variables.  

Consider another example, this time with four additional Hobby/Misc variables added to 
our earlier example.  
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In the plot of factor loadings above, 10 variables were reduced to three specific factors, a 
work factor, a home factor and a hobby/misc. factor. Note that factor loadings for each 
factor are spread out over the values of the other two factors but are high for its own 
values. For example, the factor loadings for the hobby/misc variables (in green) have 
both high and low "work" and "home" values, but all four of these variables have high 
factor loadings on the "hobby/misc" factor.  

Oblique Factors. Some authors (e.g., Catell & Khanna; Harman, 1976; Jennrich & 
Sampson, 1966; Clarkson & Jennrich, 1988) have discussed in some detail the concept of 
oblique (non-orthogonal) factors, in order to achieve more interpretable simple structure. 
Specifically, computational strategies have been developed to rotate factors so as to best 
represent "clusters" of variables, without the constraint of orthogonality of factors. 
However, the oblique factors produced by such rotations are often not easily interpreted. 
To return to the example discussed above, suppose we would have included in the 
satisfaction questionnaire above four items that measured other, "miscellaneous" types of 
satisfaction. Let us assume that people's responses to those items were affected about 
equally by their satisfaction at home (Factor 1) and at work (Factor 2). An oblique 
rotation will likely produce two correlated factors with less-than- obvious meaning, that 
is, with many cross-loadings.  

Hierarchical Factor Analysis. Instead of computing loadings for often difficult to 
interpret oblique factors, you can use a strategy first proposed by Thompson (1951) and 
Schmid and Leiman (1957), which has been elaborated and popularized in the detailed 
discussions by Wherry (1959, 1975, 1984). In this strategy, you first identify clusters of 
items and rotate axes through those clusters; next the correlations between those (oblique) 
factors is computed, and that correlation matrix of oblique factors is further factor-
analyzed to yield a set of orthogonal factors that divide the variability in the items into 
that due to shared or common variance (secondary factors), and unique variance due to 
the clusters of similar variables (items) in the analysis (primary factors). To return to the 
example above, such a hierarchical analysis might yield the following factor loadings:  

STATISTICA  
FACTOR 
ANALYSIS  

Secondary & Primary Factor Loadings 
  
  

Factor Second. 1 Primary 1 Primary 2 
WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 
MISCEL_1 
MISCEL_2 
MISCEL_3 
MISCEL_4 

.483178 

.570953 

.565624 

.535812 

.615403 

.586405 

.780488 

.734854 

.776013 

.714183 

.649499 

.687056 

.656790 

.117278 

.079910 

.065512 

.466823 

.464779 

.439010 

.455157 

.187074 

.140627 

.115461 

.630076  

.668880 

.626730 

.280141 

.238512 

.303672 

.228351 
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Careful examination of these loadings would lead to the following conclusions:  

1. There is a general (secondary) satisfaction factor that likely affects all types of 
satisfaction measured by the 10 items;  

2. There appear to be two primary unique areas of satisfaction that can best be 
described as satisfaction with work and satisfaction with home life.  

Wherry (1984) discusses in great detail examples of such hierarchical analyses, and how 
meaningful and interpretable secondary factors can be derived.  

Confirmatory Factor Analysis. Over the past 15 years, so-called confirmatory methods 
have become increasingly popular (e.g., see Jöreskog and Sörbom, 1979). In general, one 
can specify a priori, a pattern of factor loadings for a particular number of orthogonal or 
oblique factors, and then test whether the observed correlation matrix can be reproduced 
given these specifications. Confirmatory factor analyses can be performed via Structural 
Equation Modeling (SEPATH).  

 

 

Miscellaneous Other Issues and Statistics  

Factor Scores. We can estimate the actual values of individual cases (observations) for 
the factors. These factor scores are particularly useful when one wants to perform further 
analyses involving the factors that one has identified in the factor analysis.  

Reproduced and Residual Correlations. An additional check for the appropriateness of 
the respective number of factors that were extracted is to compute the correlation matrix 
that would result if those were indeed the only factors. That matrix is called the 
reproduced correlation matrix. To see how this matrix deviates from the observed 
correlation matrix, one can compute the difference between the two; that matrix is called 
the matrix of residual correlations. The residual matrix may point to "misfits," that is, to 
particular correlation coefficients that cannot be reproduced appropriately by the current 
number of factors.  

Matrix Ill-conditioning. If, in the correlation matrix there are variables that are 100% 
redundant, then the inverse of the matrix cannot be computed. For example, if a variable 
is the sum of two other variables selected for the analysis, then the correlation matrix of 
those variables cannot be inverted, and the factor analysis can basically not be performed. 
In practice this happens when you are attempting to factor analyze a set of highly 
intercorrelated variables, as it, for example, sometimes occurs in correlational research 
with questionnaires. Then you can artificially lower all correlations in the correlation 
matrix by adding a small constant to the diagonal of the matrix, and then restandardizing 
it. This procedure will usually yield a matrix that now can be inverted and thus factor-
analyzed; moreover, the factor patterns should not be affected by this procedure. 
However, note that the resulting estimates are not exact.  
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Chapter 17 

General Discriminant Analysis (GDA) 
 

• Introductory Overview  
• Advantages of GDA  

 

Introductory Overview  

General Discriminant Analysis (GDA) is called a "general" discriminant analysis because 
it applies the methods of the general linear model (see also General Linear Models 
(GLM)) to the discriminant function analysis problem. A general overview of 
discriminant function analysis, and the traditional methods for fitting linear models with 
categorical dependent variables and continuous predictors, is provided in the context of 
Discriminant Analysis. In GDA, the discriminant function analysis problem is "recast" as 
a general multivariate linear model, where the dependent variables of interest are 
(dummy-) coded vectors that reflect the group membership of each case. The remainder 
of the analysis is then performed as described in the context of General Regression 
Models (GRM), with a few additional features noted below.  

 
 

Advantages of GDA  

Specifying models for predictor variables and predictor effects. One advantage of 
applying the general linear model to the discriminant analysis problem is that you can 
specify complex models for the set of predictor variables. For example, you can specify 
for a set of continuous predictor variables, a polynomial regression model, response 
surface model, factorial regression, or mixture surface regression (without an intercept). 
Thus, you could analyze a constrained mixture experiment (where the predictor variable 
values must sum to a constant), where the dependent variable of interest is categorical in 
nature. In fact, GDA does not impose any particular restrictions on the type of predictor 
variable (categorical or continuous) that can be used, or the models that can be specified. 
However, when using categorical predictor variables, caution should be used (see "A note 
of caution for models with categorical predictors, and other advanced techniques" below). 

Stepwise and best-subset analyses. In addition to the traditional stepwise analyses for 
single continuous predictors provided in Discriminant Analysis, General Discriminant 
Analysis makes available the options for stepwise and best-subset analyses provided in 
General Regression Models (GRM). Specifically, you can request stepwise and best-
subset selection of predictors or sets of predictors (in multiple-degree of freedom effects, 
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involving categorical predictors), based on the F-to-enter and p-to-enter statistics 
(associated with the multivariate Wilks' Lambda test statistic). In addition, when a cross-
validation sample is specified, best-subset selection can also be based on the 
misclassification rates for the cross-validation sample; in other words, after estimating the 
discriminant functions for a given set of predictors, the misclassification rates for the 
cross-validation sample are computed, and the model (subset of predictors) that yields the 
lowest misclassification rate for the cross-validation sample is chosen. This is a powerful 
technique for choosing models that may yield good predictive validity, while avoiding 
overfitting of the data (see also Neural Networks). 

Desirability profiling of posterior classification probabilities. Another unique option 
of General Discriminant Analysis (GDA) is the inclusion of Response/desirability 
profiler options. These options are described in some detail in the context of 
Experimental Design (DOE). In short, the predicted response values for each dependent 
variable are computed, and those values can be combined into a single desirability score. 
A graphical summary can then be produced to show the "behavior" of the predicted 
responses and the desirability score over the ranges of values for the predictor variables. 
In GDA, you can profile both simple predicted values (like in General Regression 
Models) for the coded dependent variables (i.e., dummy-coded categories of the 
categorical dependent variable), and you can also profile posterior prediction 
probabilities. This unique latter option allows you to evaluate how different values for the 
predictor variables affect the predicted classification of cases, and is particularly useful 
when interpreting the results for complex models that involve categorical and continuous 
predictors and their interactions.  

A note of caution for models with categorical predictors, and other advanced 
techniques. General Discriminant Analysis provides functionality that makes this 
technique a general tool for classification and data mining. However, most -- if not all -- 
textbook treatments of discriminant function analysis are limited to simple and stepwise 
analyses with single degree of freedom continuous predictors. No "experience" (in the 
literature) exists regarding issues of robustness and effectiveness of these techniques, 
when they are generalized in the manner provided in this very powerful analysis. The use 
of best-subset methods, in particular when used in conjunction with categorical predictors 
or when using the misclassification rates in a cross-validation sample for choosing the 
best subset of predictors, should be considered a heuristic search method, rather than a 
statistical analysis technique. 

The use of categorical predictor variables. The use of categorical predictor variables or 
effects in a discriminant function analysis model may be (statistically) questionable. For 
example, you can use GDA to analyze a 2 by 2 frequency table, by specifying one 
variable in the 2 by 2 table as the dependent variable, and the other as the predictor. 
Clearly, the (ab)use of GDA in this manner would be silly (although, interestingly, in 
most cases you will get results that are generally compatible with those you would get by 
computing a simple Chi-square test for the 2 by 2 table). On the other hand, if you only 
consider the parameter estimates computed by GDA as the least squares solution to a set 
of linear (prediction) equations, then the use of categorical predictors in GDA is fully 
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justified; moreover, it is not uncommon in applied research to be confronted with a 
mixture of continuous and categorical predictors (e.g., income or age which are 
continuous, along with occupational status, which is categorical) for predicting a 
categorical dependent variable. In those cases, it can be very instructive to consider 
specific models involving the categorical predictors, and possibly interactions between 
categorical and continuous predictors for classifying observations. However, to reiterate, 
the use of categorical predictor variables in discriminant function analysis is not widely 
documented, and you should proceed cautiously before accepting the results of statistical 
significance tests, and before drawing final conclusions from your analyses. Also 
remember that there are alternative methods available to perform similar analyses, 
namely, the multinomial logit models available in Generalized Linear Models (GLZ), and 
the methods for analyzing multi-way frequency tables in Log-Linear.  
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Chapter 18 
General Linear Models (GLM) 

 

• Basic Ideas: The General Linear Model  
o Historical background  
o The purpose of multiple regression  
o Computations for solving the multiple regression equation  
o Extension of multiple regression to the general linear model  
o The sigma-restricted vs. overparameterized model  
o Summary of computations 

• Types of Analyses  
o Between-subject designs  
o Within-subject (repeated measures) designs  
o Multivariate designs 

• Estimation and Hypothesis Testing  
o Whole model tests  
o Six types of sums of squares  
o Error terms for tests  
o Testing specific hypotheses  
o Testing hypotheses for repeated measures and dependent variables 

 
This chapter describes the use of the general linear model in a wide variety of statistical 
analyses. If you are unfamiliar with the basic methods of ANOVA and regression in 
linear models, it may be useful to first review the basic information on these topics in 
Elementary Concepts. A detailed discussion of univariate and multivariate ANOVA 
techniques can also be found in the ANOVA/MANOVA chapter.  

Basic Ideas: The General Linear Model  

The following topics summarize the historical, mathematical, and computational 
foundations for the general linear model. For a basic introduction to ANOVA 
(MANOVA, ANCOVA) techniques, refer to ANOVA/MANOVA; for an introduction to 
multiple regression, see Multiple Regression; for an introduction to the design an analysis 
of experiments in applied (industrial) settings, see Experimental Design.  

Historical Background  

The roots of the general linear model surely go back to the origins of mathematical 
thought, but it is the emergence of the theory of algebraic invariants in the 1800's that 
made the general linear model, as we know it today, possible. The theory of algebraic 
invariants developed from the groundbreaking work of 19th century mathematicians such 
as Gauss, Boole, Cayley, and Sylvester. The theory seeks to identify those quantities in 
systems of equations which remain unchanged under linear transformations of the 
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variables in the system. Stated more imaginatively (but in a way in which the originators 
of the theory would not consider an overstatement), the theory of algebraic invariants 
searches for the eternal and unchanging amongst the chaos of the transitory and the 
illusory. That is no small goal for any theory, mathematical or otherwise.  

The wonder of it all is the theory of algebraic invariants was successful far beyond the 
hopes of its originators. Eigenvalues, eigenvectors, determinants, matrix decomposition 
methods; all derive from the theory of algebraic invariants. The contributions of the 
theory of algebraic invariants to the development of statistical theory and methods are 
numerous, but a simple example familiar to even the most casual student of statistics is 
illustrative. The correlation between two variables is unchanged by linear transformations 
of either or both variables. We probably take this property of correlation coefficients for 
granted, but what would data analysis be like if we did not have statistics that are 
invariant to the scaling of the variables involved? Some thought on this question should 
convince you that without the theory of algebraic invariants, the development of useful 
statistical techniques would be nigh impossible.  

The development of the linear regression model in the late 19th century, and the 
development of correlational methods shortly thereafter, are clearly direct outgrowths of 
the theory of algebraic invariants. Regression and correlational methods, in turn, serve as 
the basis for the general linear model. Indeed, the general linear model can be seen as an 
extension of linear multiple regression for a single dependent variable. Understanding the 
multiple regression model is fundamental to understanding the general linear model, so 
we will look at the purpose of multiple regression, the computational algorithms used to 
solve regression problems, and how the regression model is extended in the case of the 
general linear model. A basic introduction to multiple regression methods and the 
analytic problems to which they are applied is provided in the Multiple Regression.  

 

 

The Purpose of Multiple Regression  

The general linear model can be seen as an extension of linear multiple regression for a 
single dependent variable, and understanding the multiple regression model is 
fundamental to understanding the general linear model. The general purpose of multiple 
regression (the term was first used by Pearson, 1908) is to quantify the relationship 
between several independent or predictor variables and a dependent or criterion variable. 
For a detailed introduction to multiple regression, also refer to the Multiple Regression 
chapter. For example, a real estate agent might record for each listing the size of the 
house (in square feet), the number of bedrooms, the average income in the respective 
neighborhood according to census data, and a subjective rating of appeal of the house. 
Once this information has been compiled for various houses it would be interesting to see 
whether and how these measures relate to the price for which a house is sold. For 
example, one might learn that the number of bedrooms is a better predictor of the price 
for which a house sells in a particular neighborhood than how "pretty" the house is 
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(subjective rating). One may also detect "outliers," for example, houses that should really 
sell for more, given their location and characteristics.  

Personnel professionals customarily use multiple regression procedures to determine 
equitable compensation. One can determine a number of factors or dimensions such as 
"amount of responsibility" (Resp) or "number of people to supervise" (No_Super) that 
one believes to contribute to the value of a job. The personnel analyst then usually 
conducts a salary survey among comparable companies in the market, recording the 
salaries and respective characteristics (i.e., values on dimensions) for different positions. 
This information can be used in a multiple regression analysis to build a regression 
equation of the form:  

Salary = .5*Resp + .8*No_Super  

Once this so-called regression equation has been determined, the analyst can now easily 
construct a graph of the expected (predicted) salaries and the actual salaries of job 
incumbents in his or her company. Thus, the analyst is able to determine which position 
is underpaid (below the regression line) or overpaid (above the regression line), or paid 
equitably.  

In the social and natural sciences multiple regression procedures are very widely used in 
research. In general, multiple regression allows the researcher to ask (and hopefully 
answer) the general question "what is the best predictor of ...". For example, educational 
researchers might want to learn what are the best predictors of success in high-school. 
Psychologists may want to determine which personality variable best predicts social 
adjustment. Sociologists may want to find out which of the multiple social indicators best 
predict whether or not a new immigrant group will adapt and be absorbed into society.  

 

 

Computations for Solving the Multiple Regression Equation  

A one dimensional surface in a two dimensional or two-variable space is a line defined 
by the equation Y = b0 + b1X. According to this equation, the Y variable can be expressed 
in terms of or as a function of a constant (b0) and a slope (b1) times the X variable. The 
constant is also referred to as the intercept, and the slope as the regression coefficient. For 
example, GPA may best be predicted as 1+.02*IQ. Thus, knowing that a student has an 
IQ of 130 would lead us to predict that her GPA would be 3.6 (since, 1+.02*130=3.6). In 
the multiple regression case, when there are multiple predictor variables, the regression 
surface usually cannot be visualized in a two dimensional space, but the computations are 
a straightforward extension of the computations in the single predictor case. For example, 
if in addition to IQ we had additional predictors of achievement (e.g., Motivation, Self-
discipline) we could construct a linear equation containing all those variables. In general 
then, multiple regression procedures will estimate a linear equation of the form:  
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Y = b0 + b1X1 + b2X2 + ... + bkXk  

where k is the number of predictors. Note that in this equation, the regression coefficients 
(or b1 … bk coefficients) represent the independent contributions of each in dependent 
variable to the prediction of the dependent variable. Another way to express this fact is to 
say that, for example, variable X1 is correlated with the Y variable, after controlling for all 
other independent variables. This type of correlation is also referred to as a partial 
correlation (this term was first used by Yule, 1907). Perhaps the following example will 
clarify this issue. One would probably find a significant negative correlation between hair 
length and height in the population (i.e., short people have longer hair). At first this may 
seem odd; however, if we were to add the variable Gender into the multiple regression 
equation, this correlation would probably disappear. This is because women, on the 
average, have longer hair than men; they also are shorter on the average than men. Thus, 
after we remove this gender difference by entering Gender into the equation, the 
relationship between hair length and height disappears because hair length does not make 
any unique contribution to the prediction of height, above and beyond what it shares in 
the prediction with variable Gender. Put another way, after controlling for the variable 
Gender, the partial correlation between hair length and height is zero.  

The regression surface (a line in simple regression, a plane or higher-dimensional surface 
in multiple regression) expresses the best prediction of the dependent variable (Y), given 
the independent variables (X's). However, nature is rarely (if ever) perfectly predictable, 
and usually there is substantial variation of the observed points from the fitted regression 
surface. The deviation of a particular point from the nearest corresponding point on the 
predicted regression surface (its predicted value) is called the residual value. Since the 
goal of linear regression procedures is to fit a surface, which is a linear function of the X 
variables, as closely as possible to the observed Y variable, the residual values for the 
observed points can be used to devise a criterion for the "best fit." Specifically, in 
regression problems the surface is computed for which the sum of the squared deviations 
of the observed points from that surface are minimized. Thus, this general procedure is 
sometimes also referred to as least squares estimation. (see also the description of 
weighted least squares estimation).  

The actual computations involved in solving regression problems can be expressed 
compactly and conveniently using matrix notation. Suppose that there are n observed 
values of Y and n associated observed values for each of k different X variables. Then Yi, 
Xik, and ei can represent the ith observation of the Y variable, the ith observation of each 
of the X variables, and the ith unknown residual value, respectively. Collecting these 
terms into matrices we have  
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The multiple regression model in matrix notation then can be expressed as  

Y = Xb + e  

where b is a column vector of 1 (for the intercept) + k unknown regression coefficients. 
Recall that the goal of multiple regression is to minimize the sum of the squared 
residuals. Regression coefficients that satisfy this criterion are found by solving the set of 
normal equations  

X'Xb  = X'Y   

When the X variables are linearly independent (i.e., they are nonredundant, yielding an 
X'X  matrix which is of full rank) there is a unique solution to the normal equations. 
Premultiplying both sides of the matrix formula for the normal equations by the inverse 
of X'X  gives  

(X'X)-1X'Xb = (X'X) -1X'Y   

or  

b = (X'X) -1X'Y   

This last result is very satisfying in view of its simplicity and its generality. With regard 
to its simplicity, it expresses the solution for the regression equation in terms just 2 
matrices (X and Y) and 3 basic matrix operations, (1) matrix transposition, which 
involves interchanging the elements in the rows and columns of a matrix, (2) matrix 
multiplication, which involves finding the sum of the products of the elements for each 
row and column combination of two conformable (i.e., multipliable) matrices, and (3) 
matrix inversion, which involves finding the matrix equivalent of a numeric reciprocal, 
that is, the matrix that satisfies  

A-1AA=A   

for a matrix A.  

It took literally centuries for the ablest mathematicians and statisticians to find a 
satisfactory method for solving the linear least square regression problem. But their 
efforts have paid off, for it is hard to imagine a simpler solution.  

With regard to the generality of the multiple regression model, its only notable limitations 
are that (1) it can be used to analyze only a single dependent variable, (2) it cannot 
provide a solution for the regression coefficients when the X variables are not linearly 
independent and the inverse of X'X  therefore does not exist. These restrictions, however, 
can be overcome, and in doing so the multiple regression model is transformed into the 
general linear model.  
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Extension of Multiple Regression to the General Linear Model  

One way in which the general linear model differs from the multiple regression model is 
in terms of the number of dependent variables that can be analyzed. The Y vector of n 
observations of a single Y variable can be replaced by a Y matrix of n observations of m 
different Y variables. Similarly, the b vector of regression coefficients for a single Y 
variable can be replaced by a b matrix of regression coefficients, with one vector of b 
coefficients for each of the m dependent variables. These substitutions yield what is 
sometimes called the multivariate regression model, but it should be emphasized that the 
matrix formulations of the multiple and multivariate regression models are identical, 
except for the number of columns in the Y and b matrices. The method for solving for the 
b coefficients is also identical, that is, m different sets of regression coefficients are 
separately found for the m different dependent variables in the multivariate regression 
model.  

The general linear model goes a step beyond the multivariate regression model by 
allowing for linear transformations or linear combinations of multiple dependent 
variables. This extension gives the general linear model important advantages over the 
multiple and the so-called multivariate regression models, both of which are inherently 
univariate (single dependent variable) methods. One advantage is that multivariate tests 
of significance can be employed when responses on multiple dependent variables are 
correlated. Separate univariate tests of significance for correlated dependent variables are 
not independent and may not be appropriate. Multivariate tests of significance of 
independent linear combinations of multiple dependent variables also can give insight 
into which dimensions of the response variables are, and are not, related to the predictor 
variables. Another advantage is the ability to analyze effects of repeated measure factors. 
Repeated measure designs, or within-subject designs, have traditionally been analyzed 
using ANOVA techniques. Linear combinations of responses reflecting a repeated 
measure effect (for example, the difference of responses on a measure under differing 
conditions) can be constructed and tested for significance using either the univariate or 
multivariate approach to analyzing repeated measures in the general linear model.  

A second important way in which the general linear model differs from the multiple 
regression model is in its ability to provide a solution for the normal equations when the 
X variables are not linearly independent and the inverse of X'X  does not exist. 
Redundancy of the X variables may be incidental (e.g., two predictor variables might 
happen to be perfectly correlated in a small data set), accidental (e.g., two copies of the 
same variable might unintentionally be used in an analysis) or designed (e.g., indicator 
variables with exactly opposite values might be used in the analysis, as when both Male 
and Female predictor variables are used in representing Gender). Finding the regular 
inverse of a non-full-rank matrix is reminiscent of the problem of finding the reciprocal 
of 0 in ordinary arithmetic. No such inverse or reciprocal exists because division by 0 is 
not permitted. This problem is solved in the general linear model by using a generalized 
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inverse of the X'X matrix in solving the normal equations. A generalized inverse is any 
matrix that satisfies  

AA -A = A  

for a matrix A.  

A generalized inverse is unique and is the same as the regular inverse only if the matrix A 
is full rank. A generalized inverse for a non-full-rank matrix can be computed by the 
simple expedient of zeroing the elements in redundant rows and columns of the matrix. 
Suppose that an X'X  matrix with r non-redundant columns is partitioned as  

 

where A11 is an r by r matrix of rank r. Then the regular inverse of A11 exists and a 
generalized inverse of X'X  is  

 

where each 0 (null) matrix is a matrix of 0's (zeroes) and has the same dimensions as the 
corresponding A matrix.  

In practice, however, a particular generalized inverse of X'X  for finding a solution to the 
normal equations is usually computed using the sweep operator (Dempster, 1960). This 
generalized inverse, called a g2 inverse, has two important properties. One is that zeroing 
of the elements in redundant rows is unnecessary. Another is that partitioning or 
reordering of the columns of X'X is unnecessary, so that the matrix can be inverted "in 
place."  

There are infinitely many generalized inverses of a non-full-rank X'X  matrix, and thus, 
infinitely many solutions to the normal equations. This can make it difficult to understand 
the nature of the relationships of the predictor variables to responses on the dependent 
variables, because the regression coefficients can change depending on the particular 
generalized inverse chosen for solving the normal equations. It is not cause for dismay, 
however, because of the invariance properties of many results obtained using the general 
linear model.  

A simple example may be useful for illustrating one of the most important invariance 
properties of the use of generalized inverses in the general linear model. If both Male and 
Female predictor variables with exactly opposite values are used in an analysis to 
represent Gender, it is essentially arbitrary as to which predictor variable is considered to 
be redundant (e.g., Male can be considered to be redundant with Female, or vice versa). 
No matter which predictor variable is considered to be redundant, no matter which 
corresponding generalized inverse is used in solving the normal equations, and no matter 
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which resulting regression equation is used for computing predicted values on the 
dependent variables, the predicted values and the corresponding residuals for males and 
females will be unchanged. In using the general linear model, one must keep in mind that 
finding a particular arbitrary solution to the normal equations is primarily a means to the 
end of accounting for responses on the dependent variables, and not necessarily an end in 
itself.  

 

 

Sigma-Restricted and Overparameterized Model  

Unlike the multiple regression model, which is usually applied to cases where the X 
variables are continuous, the general linear model is frequently applied to analyze any 
ANOVA or MANOVA design with categorical predictor variables, any ANCOVA or 
MANCOVA design with both categorical and continuous predictor variables, as well as 
any multiple or multivariate regression design with continuous predictor variables. To 
illustrate, Gender is clearly a nominal level variable (anyone who attempts to rank order 
the sexes on any dimension does so at his or her own peril in today's world). There are 
two basic methods by which Gender can be coded into one or more (non-offensive) 
predictor variables, and analyzed using the general linear model.  

Sigma-restricted model (coding of categorical predictors). Using the first method, 
males and females can be assigned any two arbitrary, but distinct values on a single 
predictor variable. The values on the resulting predictor variable will represent a 
quantitative contrast between males and females. Typically, the values corresponding to 
group membership are chosen not arbitrarily but rather to facilitate interpretation of the 
regression coefficient associated with the predictor variable. In one widely used strategy, 
cases in the two groups are assigned values of 1 and -1 on the predictor variable, so that if 
the regression coefficient for the variable is positive, the group coded as 1 on the 
predictor variable will have a higher predicted value (i.e., a higher group mean) on the 
dependent variable, and if the regression coefficient is negative, the group coded as -1 on 
the predictor variable will have a higher predicted value on the dependent variable. An 
additional advantage is that since each group is coded with a value one unit from zero, 
this helps in interpreting the magnitude of differences in predicted values between 
groups, because regression coefficients reflect the units of change in the dependent 
variable for each unit change in the predictor variable. This coding strategy is aptly called 
the sigma-restricted parameterization, because the values used to represent group 
membership (1 and -1) sum to zero.  

Note that the sigma-restricted parameterization of categorical predictor variables usually 
leads to X'X matrices which do not require a generalized inverse for solving the normal 
equations. Potentially redundant information, such as the characteristics of maleness and 
femaleness, is literally reduced to full-rank by creating quantitative contrast variables 
representing differences in characteristics.  
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Overparameterized model (coding of categorical predictors). The second basic 
method for recoding categorical predictors is the indicator variable approach. In this 
method a separate predictor variable is coded for each group identified by a categorical 
predictor variable. To illustrate, females might be assigned a value of 1 and males a value 
of 0 on a first predictor variable identifying membership in the female Gender group, and 
males would then be assigned a value of 1 and females a value of 0 on a second predictor 
variable identifying membership in the male Gender group. Note that this method of 
recoding categorical predictor variables will almost always lead to X'X matrices with 
redundant columns, and thus require a generalized inverse for solving the normal 
equations. As such, this method is often called the overparameterized model for 
representing categorical predictor variables, because it results in more columns in the X'X 
than are necessary for determining the relationships of categorical predictor variables to 
responses on the dependent variables.  

True to its description as general, the general linear model can be used to perform 
analyses with categorical predictor variables which are coded using either of the two 
basic methods that have been described.  

 

 

Summary of Computations  

To conclude this discussion of the ways in which the general linear model extends and 
generalizes regression methods, the general linear model can be expressed as  

YM = Xb + e  

Here Y, X, b, and e are as described for the multivariate regression model and M is an m x 
s matrix of coefficients defining s linear transformation of the dependent variables. The 
normal equations are  

X'Xb = X'YM   

and a solution for the normal equations is given by  

b = (X'X) -X'YM   

Here the inverse of X'X  is a generalized inverse if X'X  contains redundant columns.  

Add a provision for analyzing linear combinations of multiple dependent variables, add a 
method for dealing with redundant predictor variables and recoded categorical predictor 
variables, and the major limitations of multiple regression are overcome by the general 
linear model.  
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Types of Analyses  

A wide variety of types of designs can be analyzed using the general linear model. In 
fact, the flexibility of the general linear model allows it to handle so many different types 
of designs that it is difficult to develop simple typologies of the ways in which these 
designs might differ. Some general ways in which designs might differ can be suggested, 
but keep in mind that any particular design can be a "hybrid" in the sense that it could 
have combinations of features of a number of different types of designs.  

In the following discussion, references will be made to the design matrix X, as well as 
sigma-restricted and overparameterized model coding. For an explanation of this 
terminology, refer to the section entitled Basic Ideas: The General Linear Model, or, for 
a brief summary, to the Summary of computations section.  

A basic discussion to univariate and multivariate ANOVA techniques can also be found 
in the ANOVA/MANOVA chapter; a discussion of mutiple regression methods is also 
provided in the Multiple Regression chapter.  

Between-Subject Designs  

• Overview  
• One-way ANOVA  
• Main effect ANOVA  
• Factorial ANOVA  
• Nested designs  
• Balanced ANOVA  
• Simple regression  
• Multiple regression  
• Factorial regression  
• Polynomial regression  
• Response surface regression  
• Mixture surface regression  
• Analysis of covariance (ANCOVA)  
• Separate slopes designs  
• Homogeneity of slopes  
• Mixed-model ANOVA and ANCOVA  

Overview. The levels or values of the predictor variables in an analysis describe the 
differences between the n subjects or the n valid cases that are analyzed. Thus, when we 
speak of the between subject design (or simply the between design) for an analysis, we 
are referring to the nature, number, and arrangement of the predictor variables.  
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Concerning the nature or type of predictor variables, between designs which contain only 
categorical predictor variables can be called ANOVA (analysis of variance) designs, 
between designs which contain only continuous predictor variables can be called 
regression designs, and between designs which contain both categorical and continuous 
predictor variables can be called ANCOVA (analysis of covariance) designs. Further, 
continuous predictors are always considered to have fixed values, but the levels of 
categorical predictors can be considered to be fixed or to vary randomly. Designs which 
contain random categorical factors are called mixed-model designs (see the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter).  

Between designs may involve only a single predictor variable and therefore be described 
as simple (e.g., simple regression) or may employ numerous predictor variables (e.g., 
multiple regression).  

Concerning the arrangement of predictor variables, some between designs employ only 
"main effect" or first-order terms for predictors, that is, the values for different predictor 
variables are independent and raised only to the first power. Other between designs may 
employ higher-order terms for predictors by raising the values for the original predictor 
variables to a power greater than 1 (e.g., in polynomial regression designs), or by forming 
products of different predictor variables (i.e., interaction terms). A common arrangement 
for ANOVA designs is the full-factorial design, in which every combination of levels for 
each of the categorical predictor variables is represented in the design. Designs with some 
but not all combinations of levels for each of the categorical predictor variables are aptly 
called fractional factorial designs. Designs with a hierarchy of combinations of levels for 
the different categorical predictor variables are called nested designs.  

These basic distinctions about the nature, number, and arrangement of predictor variables 
can be used in describing a variety of different types of between designs. Some of the 
more common between designs can now be described.  

One-Way ANOVA. A design with a single categorical predictor variable is called a one-
way ANOVA design. For example, a study of 4 different fertilizers used on different 
individual plants could be analyzed via one-way ANOVA, with four levels for the factor 
Fertilizer.  

In genera, consider a single categorical predictor variable A with 1 case in each of its 3 
categories. Using the sigma-restricted coding of A into 2 quantitative contrast variables, 
the matrix X defining the between design is  

 

That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the intercept), 
the case in group A1 is assigned a value of 1 on X1 and a value 0 on X2, the case in group 
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A2 is assigned a value of 0 on X1 and a value 1 on X2, and the case in group A3 is assigned 
a value of -1 on X1 and a value -1 on X2. Of course, any additional cases in any of the 3 
groups would be coded similarly. If there were 1 case in group A1, 2 cases in group A2, 
and 1 case in group A3, the X matrix would be  

 

where the first subscript for A gives the replicate number for the cases in each group. For 
brevity, replicates usually are not shown when describing ANOVA design matrices.  

Note that in one-way designs with an equal number of cases in each group, sigma-
restricted coding yields X1 … Xk variables all of which have means of 0.  

Using the overparameterized model to represent A, the X matrix defining the between 
design is simply  

 

These simple examples show that the X matrix actually serves two purposes. It specifies 
(1) the coding for the levels of the original predictor variables on the X variables used in 
the analysis as well as (2) the nature, number, and arrangement of the X variables, that is, 
the between design.  

Main Effect ANOVA.  Main effect ANOVA designs contain separate one-way ANOVA 
designs for 2 or more categorical predictors. A good example of main effect ANOVA 
would be the typical analysis performed on screening designs as described in the context 
of the Experimental Design chapter.  

Consider 2 categorical predictor variables A and B each with 2 categories. Using the 
sigma-restricted coding, the X matrix defining the between design is  
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Note that if there are equal numbers of cases in each group, the sum of the cross-products 
of values for the X1 and X2 columns is 0, for example, with 1 case in each group 
(1*1)+(1*-1)+(-1*1)+(-1*-1)=0. Using the overparameterized model, the matrix X 
defining the between design is  

 

Comparing the two types of coding, it can be seen that the overparameterized coding 
takes almost twice as many values as the sigma-restricted coding to convey the same 
information.  

Factorial ANOVA.  Factorial ANOVA designs contain X variables representing 
combinations of the levels of 2 or more categorical predictors (e.g., a study of boys and 
girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) design). In particular, 
full-factorial designs represent all possible combinations of the levels of the categorical 
predictors. A full-factorial design with 2 categorical predictor variables A and B each 
with 2 levels each would be called a 2 x 2 full-factorial design. Using the sigma-restricted 
coding, the X matrix for this design would be  

 

Several features of this X matrix deserve comment. Note that the X1 and X2 columns 
represent main effect contrasts for one variable, (i.e., A and B, respectively) collapsing 
across the levels of the other variable. The X3 column instead represents a contrast 
between different combinations of the levels of A and B. Note also that the values for X3 
are products of the corresponding values for X1 and X2. Product variables such as X3 

represent the multiplicative or interaction effects of their factors, so X3 would be said to 
represent the 2-way interaction of A and B. The relationship of such product variables to 
the dependent variables indicate the interactive influences of the factors on responses 
above and beyond their independent (i.e., main effect) influences on responses. Thus, 
factorial designs provide more information about the relationships between categorical 
predictor variables and responses on the dependent variables than is provided by 
corresponding one-way or main effect designs.  

When many factors are being investigated, however, full-factorial designs sometimes 
require more data than reasonably can be collected to represent all possible combinations 
of levels of the factors, and high-order interactions between many factors can become 
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difficult to interpret. With many factors, a useful alternative to the full-factorial design is 
the fractional factorial design. As an example, consider a 2 x 2 x 2 fractional factorial 
design to degree 2 with 3 categorical predictor variables each with 2 levels. The design 
would include the main effects for each variable, and all 2-way interactions between the 
three variables, but would not include the 3-way interaction between all three variables. 
Using the overparameterized model, the X matrix for this design is  

 

The 2-way interactions are the highest degree effects included in the design. These types 
of designs are discussed in detail the 2**(k-p) Fractional Factorial Designs section of the 
Experimental Design chapter.  

Nested ANOVA Designs. Nested designs are similar to fractional factorial designs in 
that all possible combinations of the levels of the categorical predictor variables are not 
represented in the design. In nested designs, however, the omitted effects are lower-order 
effects. Nested effects are effects in which the nested variables never appear as main 
effects. Suppose that for 2 variables A and B with 3 and 2 levels, respectively, the design 
includes the main effect for A and the effect of B nested within the levels of A. The X 
matrix for this design using the overparameterized model is  

 

Note that if the sigma-restricted coding were used, there would be only 2 columns in the 
X matrix for the B nested within A effect instead of the 6 columns in the X matrix for this 
effect when the overparameterized model coding is used (i.e., columns X4 through X9). 
The sigma-restricted coding method is overly-restrictive for nested designs, so only the 
overparameterized model is used to represent nested designs.  

Balanced ANOVA. Most of the between designs discussed in this section can be 
analyzed much more efficiently, when they are balanced, i.e., when all cells in the 
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ANOVA design have equal n, when there are no missing cells in the design, and, if 
nesting is present, when the nesting is balanced so that equal numbers of levels of the 
factors that are nested appear in the levels of the factor(s) that they are nested in. In that 
case, the X'X  matrix (where X stands for the design matrix) is a diagonal matrix, and 
many of the computations necessary to compute the ANOVA results (such as matrix 
inversion) are greatly simplified.  

Simple Regression. Simple regression designs involve a single continuous predictor 
variable. If there were 3 cases with values on a predictor variable P of, say, 7, 4, and 9, 
and the design is for the first-order effect of P, the X matrix would be  

 

and using P for X1 the regression equation would be  

Y = b0 + b1P  

If the simple regression design is for a higher-order effect of P, say the quadratic effect, 
the values in the X1 column of the design matrix would be raised to the 2nd power, that is, 
squared  

 

and using P2 for X1 the regression equation would be  

Y = b0 + b1P
2  

The sigma-restricted and overparameterized coding methods do not apply to simple 
regression designs and any other design containing only continuous predictors (since 
there are no categorical predictors to code). Regardless of which coding method is 
chosen, values on the continuous predictor variables are raised to the desired power and 
used as the values for the X variables. No recoding is performed. It is therefore sufficient, 
in describing regression designs, to simply describe the regression equation without 
explicitly describing the design matrix X.  

Multiple Regression. Multiple regression designs are to continuous predictor variables 
as main effect ANOVA designs are to categorical predictor variables, that is, multiple 
regression designs contain the separate simple regression designs for 2 or more 
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continuous predictor variables. The regression equation for a multiple regression design 
for the first-order effects of 3 continuous predictor variables P, Q, and R would be  

Y = b0 + b1P + b2Q + b3R  

Factorial Regression. Factorial regression designs are similar to factorial ANOVA 
designs, in which combinations of the levels of the factors are represented in the design. 
In factorial regression designs, however, there may be many more such possible 
combinations of distinct levels for the continuous predictor variables than there are cases 
in the data set. To simplify matters, full-factorial regression designs are defined as 
designs in which all possible products of the continuous predictor variables are 
represented in the design. For example, the full-factorial regression design for two 
continuous predictor variables P and Q would include the main effects (i.e., the first-
order effects) of P and Q and their 2-way P by Q interaction effect, which is represented 
by the product of P and Q scores for each case. The regression equation would be  

Y = b0 + b1P + b2Q + b3P*Q  

Factorial regression designs can also be fractional, that is, higher-order effects can be 
omitted from the design. A fractional factorial design to degree 2 for 3 continuous 
predictor variables P, Q, and R would include the main effects and all 2-way interactions 
between the predictor variables  

Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  

Polynomial Regression. Polynomial regression designs are designs which contain main 
effects and higher-order effects for the continuous predictor variables but do not include 
interaction effects between predictor variables. For example, the polynomial regression 
design to degree 2 for three continuous predictor variables P, Q, and R would include the 
main effects (i.e., the first-order effects) of P, Q, and R and their quadratic (i.e., second-
order) effects, but not the 2-way interaction effects or the P by Q by R 3-way interaction 
effect.  

Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2  

Polynomial regression designs do not have to contain all effects up to the same degree for 
every predictor variable. For example, main, quadratic, and cubic effects could be 
included in the design for some predictor variables, and effects up the fourth degree could 
be included in the design for other predictor variables.  

Response Surface Regression. Quadratic response surface regression designs are a 
hybrid type of design with characteristics of both polynomial regression designs and 
fractional factorial regression designs. Quadratic response surface regression designs 
contain all the same effects of polynomial regression designs to degree 2 and additionally 
the 2-way interaction effects of the predictor variables. The regression equation for a 
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quadratic response surface regression design for 3 continuous predictor variables P, Q, 
and R would be  

Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2 + b7P*Q + b8P*R + b9Q*R  

These types of designs are commonly employed in applied research (e.g., in industrial 
experimation), and a detailed discussion of these types of designs is also presented in the 
Experimental Design chapter (see Central composite designs).  

Mixture Surface Regression. Mixture surface regression designs are identical to 
factorial regression designs to degree 2 except for the omission of the intercept. Mixtures, 
as the name implies, add up to a constant value; the sum of the proportions of ingredients 
in different recipes for some material all must add up 100%. Thus, the proportion of one 
ingredient in a material is redundant with the remaining ingredients. Mixture surface 
regression designs deal with this redundancy by omitting the intercept from the design. 
The design matrix for a mixture surface regression design for 3 continuous predictor 
variables P, Q, and R would be  

Y = b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  

These types of designs are commonly employed in applied research (e.g., in industrial 
experimentation), and a detailed discussion of these types of designs is also presented in 
the Experimental Design chapter (see Mixture designs and triangular surfaces).  

Analysis of Covariance. In general, between designs which contain both categorical and 
continuous predictor variables can be called ANCOVA designs. Traditionally, however, 
ANCOVA designs have referred more specifically to designs in which the first-order 
effects of one or more continuous predictor variables are taken into account when 
assessing the effects of one or more categorical predictor variables. A basic introduction 
to analysis of covariance can also be found in the Analysis of covariance (ANCOVA) 
topic of the ANOVA/MANOVA chapter.  

To illustrate, suppose a researcher wants to assess the influences of a categorical 
predictor variable A with 3 levels on some outcome, and that measurements on a 
continuous predictor variable P, known to covary with the outcome, are available. If the 
data for the analysis are  
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then the sigma-restricted X matrix for the design that includes the separate first-order 
effects of P and A would be  

 

The b2 and b3 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3  

represent the influences of group membership on the A categorical predictor variable, 
controlling for the influence of scores on the P continuous predictor variable. Similarly, 
the b1 coefficient represents the influence of scores on P controlling for the influences of 
group membership on A. This traditional ANCOVA analysis gives a more sensitive test 
of the influence of A to the extent that P reduces the prediction error, that is, the residuals 
for the outcome variable.  

The X matrix for the same design using the overparameterized model would be  

 

The interpretation is unchanged except that the influences of group membership on the A 
categorical predictor variables are represented by the b2, b3 and b4 coefficients in the 
regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4  

Separate Slope Designs. The traditional analysis of covariance (ANCOVA) design for 
categorical and continuous predictor variables is inappropriate when the categorical and 
continuous predictors interact in influencing responses on the outcome. The appropriate 
design for modeling the influences of the predictors in this situation is called the separate 
slope design. For the same example data used to illustrate traditional ANCOVA, the 
overparameterized X matrix for the design that includes the main effect of the three-level 
categorical predictor A and the 2-way interaction of P by A would be  
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The b4, b5, and b6 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6  

give the separate slopes for the regression of the outcome on P within each group on A, 
controlling for the main effect of A.  

As with nested ANOVA designs, the sigma-restricted coding of effects for separate slope 
designs is overly restrictive, so only the overparameterized model is used to represent 
separate slope designs. In fact, separate slope designs are identical in form to nested 
ANOVA designs, since the main effects for continuous predictors are omitted in separate 
slope designs.  

Homogeneity of Slopes. The appropriate design for modeling the influences of 
continuous and categorical predictor variables depends on whether the continuous and 
categorical predictors interact in influencing the outcome. The traditional analysis of 
covariance (ANCOVA) design for continuous and categorical predictor variables is 
appropriate when the continuous and categorical predictors do not interact in influencing 
responses on the outcome, and the separate slope design is appropriate when the 
continuous and categorical predictors do interact in influencing responses. The 
homogeneity of slopes designs can be used to test whether the continuous and categorical 
predictors interact in influencing responses, and thus, whether the traditional ANCOVA 
design or the separate slope design is appropriate for modeling the effects of the 
predictors. For the same example data used to illustrate the traditional ANCOVA and 
separate slope designs, the overparameterized X matrix for the design that includes the 
main effect of P, the main effect of the three-level categorical predictor A, and the 2-way 
interaction of P by A would be  

 

If the b5, b6, or b7 coefficient in the regression equation  
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Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7  

is non-zero, the separate slope model should be used. If instead all 3 of these regression 
coefficients are zero the traditional ANCOVA design should be used.  

The sigma-restricted X matrix for the homogeneity of slopes design would be  

 

Using this X matrix, if the b4, or b5 coefficient in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  

is non-zero, the separate slope model should be used. If instead both of these regression 
coefficients are zero the traditional ANCOVA design should be used.  

Mixed Model ANOVA and ANCOVA.  Designs which contain random effects for one 
or more categorical predictor variables are called mixed-model designs. Random effects 
are classification effects where the levels of the effects are assumed to be randomly 
selected from an infinite population of possible levels. The solution for the normal 
equations in mixed-model designs is identical to the solution for fixed-effect designs (i.e., 
designs which do not contain Random effects. Mixed-model designs differ from fixed-
effect designs only in the way in which effects are tested for significance. In fixed-effect 
designs, between effects are always tested using the mean squared residual as the error 
term. In mixed-model designs, between effects are tested using relevant error terms based 
on the covariation of random sources of variation in the design. Specifically, this is done 
using Satterthwaite's method of denominator synthesis (Satterthwaite, 1946), which finds 
the linear combinations of sources of random variation that serve as appropriate error 
terms for testing the significance of the respective effect of interest. A basic discussion of 
these types of designs, and methods for estimating variance components for the random 
effects can also be found in the Variance Components and Mixed Model 
ANOVA/ANCOVA chapter.  

Mixed-model designs, like nested designs and separate slope designs, are designs in 
which the sigma-restricted coding of categorical predictors is overly restrictive. Mixed-
model designs require estimation of the covariation between the levels of categorical 
predictor variables, and the sigma-restricted coding of categorical predictors suppresses 
this covariation. Thus, only the overparameterized model is used to represent mixed-
model designs (some programs will use the sigma-restricted approach and a so-called 
"restricted model" for random effects; however, only the overparameterized model as 
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described in General Linear Models applies to both balanced and unbalanced designs, as 
well as designs with missing cells; see Searle, Casella, & McCullock, 1992, p. 127). It is 
important to recognize, however, that sigma-restricted coding can be used to represent 
any between design, with the exceptions of mixed-model, nested, and separate slope 
designs. Furthermore, some types of hypotheses can only be tested using the sigma-
restricted coding (i.e., the effective hypothesis, Hocking, 1996), thus the greater 
generality of the overparameterized model for representing between designs does not 
justify it being used exclusively for representing categorical predictors in the general 
linear model.  

 

 

Within-Subject (Repeated Measures) Designs  

• Overview  
• One-way within-subject designs  
• Multi-way within-subject designs  
• The multivariate approach to Repeated Measures  
• Doubly multivariate within-subject designs 

Overview. It is quite common for researchers to administer the same test to the same 
subjects repeatedly over a period of time or under varying circumstances. In essence, one 
is interested in examining differences within each subject, for example, subjects' 
improvement over time. Such designs are referred to as within-subject designs or 
repeated measures designs. A basic introduction to repeated measures designs is also 
provided in the Between-groups and repeated measures topic of the ANOVA/MANOVA 
chapter.  

For example, imagine that one wants to monitor the improvement of students' algebra 
skills over two months of instruction. A standardized algebra test is administered after 
one month (level 1 of the repeated measures factor), and a comparable test is 
administered after two months (level 2 of the repeated measures factor). Thus, the 
repeated measures factor (Time) has 2 levels.  

Now, suppose that scores for the 2 algebra tests (i.e., values on the Y1 and Y2 variables at 
Time 1 and Time 2, respectively) are transformed into scores on a new composite variable 
(i.e., values on the T1), using the linear transformation  

T = YM   

where M is an orthonormal contrast matrix. Specifically, if  
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then the difference of the mean score on T1 from 0 indicates the improvement (or 
deterioration) of scores across the 2 levels of Time.  

One-Way Within-Subject Designs. The example algebra skills study with the Time 
repeated measures factor (see also within-subjects design Overview) illustrates a one-way 
within-subject design. In such designs, orthonormal contrast transformations of the scores 
on the original dependent Y variables are performed via the M transformation 
(orthonormal transformations correspond to orthogonal rotations of the original variable 
axes). If any b0 coefficient in the regression of a transformed T variable on the intercept is 
non-zero, this indicates a change in responses across the levels of the repeated measures 
factor, that is, the presence of a main effect for the repeated measure factor on responses.  

What if the between design includes effects other than the intercept? If any of the b1 
through bk coefficients in the regression of a transformed T variable on X are non-zero, 
this indicates a different change in responses across the levels of the repeated measures 
factor for different levels of the corresponding between effect, i.e., the presence of a 
within by between interaction effect on responses.  

The same between-subject effects that can be tested in designs with no repeated-measures 
factors can also be tested in designs that do include repeated-measures factors. This is 
accomplished by creating a transformed dependent variable which is the sum of the 
original dependent variables divided by the square root of the number of original 
dependent variables. The same tests of between-subject effects that are performed in 
designs with no repeated-measures factors (including tests of the between intercept) are 
performed on this transformed dependent variable.  

Multi-Way Within-Subject Designs. Suppose that in the example algebra skills study 
with the Time repeated measures factor (see the within-subject designs Overview), 
students were given a number problem test and then a word problem test on each testing 
occasion. Test could then be considered as a second repeated measures factor, with scores 
on the number problem tests representing responses at level 1 of the Test repeated 
measure factor, and scores on the word problem tests representing responses at level 2 of 
the Test repeated measure factor. The within subject design for the study would be a 2 
(Time) by 2 (Test) full-factorial design, with effects for Time, Test, and the Time by Test 
interaction.  

To construct transformed dependent variables representing the effects of Time, Test, and 
the Time by Test interaction, three respective M transformations of the original dependent 
Y variables are performed. Assuming that the original Y variables are in the order Time 1 
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- Test 1, Time 1 - Test 2, Time 2 - Test 1, and Time 2 - Test 2, the M matrices for the 
Time, Test, and the Time by Test interaction would be  

 

The differences of the mean scores on the transformed T variables from 0 are then used to 
interpret the corresponding within-subject effects. If the b0 coefficient in the regression of 
a transformed T variable on the intercept is non-zero, this indicates a change in responses 
across the levels of a repeated measures effect, that is, the presence of the corresponding 
main or interaction effect for the repeated measure factors on responses.  

Interpretation of within by between interaction effects follow the same procedures as for 
one-way within designs, except that now within by between interactions are examined for 
each within effect by between effect combination.  

Multivariate Approach to Repeated Measures. When the repeated measures factor has 
more than 2 levels, then the M matrix will have more than a single column. For example, 
for a repeated measures factor with 3 levels (e.g., Time 1, Time 2, Time 3), the M matrix 
will have 2 columns (e.g., the two transformations of the dependent variables could be (1) 
Time 1 vs. Time 2 and Time 3 combined, and (2) Time 2 vs. Time 3). Consequently, the 
nature of the design is really multivariate, that is, there are two simultaneous dependent 
variables, which are transformations of the original dependent variables. Therefore, when 
testing repeated measures effects involving more than a single degree of freedom (e.g., a 
repeated measures main effect with more than 2 levels), you can compute multivariate 
test statistics to test the respective hypotheses. This is a different (and usually the 
preferred) approach than the univariate method that is still widely used. For a further 
discussion of the multivariate approach to testing repeated measures effects, and a 
comparison to the traditional univariate approach, see the Sphericity and compound 
symmetry topic of the ANOVA/MANOVA chapter.  

Doubly Multivariate Designs. If the product of the number of levels for each within-
subject factor is equal to the number of original dependent variables, the within-subject 
design is called a univariate repeated measures design. The within design is univariate 
because there is one dependent variable representing each combination of levels of the 
within-subject factors. Note that this use of the term univariate design is not to be 
confused with the univariate and multivariate approach to the analysis of repeated 
measures designs, both of which can be used to analyze such univariate (single-
dependent-variable-only) designs. When there are two or more dependent variables for 
each combination of levels of the within-subject factors, the within-subject design is 
called a multivariate repeated measures design, or more commonly, a doubly multivariate 
within-subject design. This term is used because the analysis for each dependent measure 
can be done via the multivariate approach; so when there is more than one dependent 
measure, the design can be considered doubly-multivariate.  
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Doubly multivariate design are analyzed using a combination of univariate repeated 
measures and multivariate analysis techniques. To illustrate, suppose in an algebra skills 
study, tests are administered three times (repeated measures factor Time with 3 levels). 
Two test scores are recorded at each level of Time: a Number Problem score and a Word 
Problem score. Thus, scores on the two types of tests could be treated as multiple 
measures on which improvement (or deterioration) across Time could be assessed. M 
transformed variables could be computed for each set of test measures, and multivariate 
tests of significance could be performed on the multiple transformed measures, as well as 
on the each individual test measure.  

Multivariate Designs  

Overview. When there are multiple dependent variables in a design, the design is said to 
be multivariate. Multivariate measures of association are by nature more complex than 
their univariate counterparts (such as the correlation coefficient, for example). This is 
because multivariate measures of association must take into account not only the 
relationships of the predictor variables with responses on the dependent variables, but 
also the relationships among the multiple dependent variables. By doing so, however, 
these measures of association provide information about the strength of the relationships 
between predictor and dependent variables independent of the dependent variable 
interrelationships. A basic discussion of multivariate designs is also presented in the 
Multivariate Designs topic in the ANOVA/MANOVA chapter.  

The most commonly used multivariate measures of association all can be expressed as 
functions of the eigenvalues of the product matrix  

E-1H  

where E is the error SSCP matrix (i.e., the matrix of sums of squares and cross-products 
for the dependent variables that are not accounted for by the predictors in the between 
design), and H is a hypothesis SSCP matrix (i.e., the matrix of sums of squares and cross-
products for the dependent variables that are accounted for by all the predictors in the 
between design, or the sums of squares and cross-products for the dependent variables 
that are accounted for by a particular effect). If  

�i = the ordered eigenvalues of E-1H, if E-1 exists 

then the 4 commonly used multivariate measures of association are  

Wilks' lambda = �[1/(1+�i)]  

Pillai's trace = ��i/(1+�i)  

Hotelling-Lawley trace = ��i  

Roy's largest root = �1  
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These 4 measures have different upper and lower bounds, with Wilks' lambda perhaps 
being the most easily interpretable of the 4 measures. Wilks' lambda can range from 0 to 
1, with 1 indicating no relationship of predictors to responses and 0 indicating a perfect 
relationship of predictors to responses. 1 - Wilks' lambda can be interpreted as the 
multivariate counterpart of a univariate R-squared, that is, it indicates the proportion of 
generalized variance in the dependent variables that is accounted for by the predictors.  

The 4 measures of association are also used to construct multivariate tests of significance. 
These multivariate tests are covered in detail in a number of sources (e.g., Finn, 1974; 
Tatsuoka, 1971).  

 
 
 

 

Estimation and Hypothesis Testing  

The following sections discuss details concerning hypothesis testing in the context of 
STATISTICA's VGLM module, for example, how the test for the overall model fit is 
computed, the options for computing tests for categorical effects in unbalanced or 
incomplete designs, how and when custom-error terms can be chosen, and the logic of 
testing custom-hypotheses in factorial or regression designs.  

Whole model tests  

Partitioning Sums of Squares. A fundamental principle of least squares methods is that 
variation on a dependent variable can be partitioned, or divided into parts, according to 
the sources of the variation. Suppose that a dependent variable is regressed on one or 
more predictor variables, and that for covenience the dependent variable is scaled so that 
its mean is 0. Then a basic least squares identity is that the total sum of squared values on 
the dependent variable equals the sum of squared predicted values plus the sum of 
squared residual values. Stated more generally,  

�(y - y-bar)2 = �(y-hat - y-bar)2 + �(y - y-hat)2  

where the term on the left is the total sum of squared deviations of the observed values on 
the dependent variable from the dependent variable mean, and the respective terms on the 
right are (1) the sum of squared deviations of the predicted values for the dependent 
variable from the dependent variable mean and (2) the sum of the squared deviations of 
the observed values on the dependent variable from the predicted values, that is, the sum 
of the squared residuals. Stated yet another way,  

Total SS = Model SS + Error SS  
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Note that the Total SS is always the same for any particular data set, but that the Model 
SS and the Error SS depend on the regression equation. Assuming again that the 
dependent variable is scaled so that its mean is 0, the Model SS and the Error SS can be 
computed using  

Model SS = b'X'Y   

Error SS = Y'Y - b'X'Y   

Testing the Whole Model. Given the Model SS and the Error SS, one can perform a test 
that all the regression coefficients for the X variables (b1 through bk) are zero. This test is 
equivalent to a comparison of the fit of the regression surface defined by the predicted 
values (computed from the whole model regression equation) to the fit of the regression 
surface defined solely by the dependent variable mean (computed from the reduced 
regression equation containing only the intercept). Assuming that X'X is full-rank, the 
whole model hypothesis mean square  

MSH = (Model SS)/k  

is an estimate of the variance of the predicted values. The error mean square  

s2 = MSE = (Error SS)/(n-k-1)  

is an unbiased estimate of the residual or error variance. The test statistic is  

F = MSH/MSE  

where F has (k, n - k - 1) degrees of freedom.  

If X'X is not full rank, r + 1 is substituted for k, where r is the rank or the number of non-
redundant columns of X'X .  

Note that in the case of non-intercept models, some multiple regression programs will 
compute the full model test based on the proportion of variance around 0 (zero) 
accounted for by the predictors; for more information (see Kvålseth, 1985; Okunade, 
Chang, and Evans, 1993), while other will actually compute both values (i.e., based on 
the residual variance around 0, and around the respective dependent variable means.  

Limitations of Whole Model Tests. For designs such as one-way ANOVA or simple 
regression designs, the whole model test by itself may be sufficient for testing general 
hypotheses about whether or not the single predictor variable is related to the outcome. In 
more complex designs, however, hypotheses about specific X variables or subsets of X 
variables are usually of interest. For example, one might want to make inferences about 
whether a subset of regression coefficients are 0, or one might want to test whether 
subpopulation means corresponding to combinations of specific X variables differ. The 
whole model test is usually insufficient for such purposes.  
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A variety of methods have been developed for testing specific hypotheses. Like whole 
model tests, many of these methods rely on comparisons of the fit of different models 
(e.g., Type I, Type II, and the effective hypothesis sums of squares). Other methods 
construct tests of linear combinations of regression coefficients in order to test mean 
differences (e.g., Type III, Type IV, and Type V sums of squares). For designs that 
contain only first-order effects of continuous predictor variables (i.e., multiple regression 
designs), many of these methods are equivalent (i.e., Type II through Type V sums of 
squares all test the significance of partial regression coefficients). However, there are 
important distinctions between the different hypothesis testing techniques for certain 
types of ANOVA designs (i.e., designs with unequal cell n's and/or missing cells).  

All methods for testing hypotheses, however, involve the same hypothesis testing 
strategy employed in whole model tests, that is, the sums of squares attributable to an 
effect (using a given criterion) is computed, and then the mean square for the effect is 
tested using an appropriate error term.  

 

 

Six types of sums of squares  

• Contained effects  
• Type I sums of squares  
• Type II sums of squares  
• Type III sums of squares  
• Type IV sums of squares  
• Type V sums of squares  
• Type VI (effective hypothesis) sums of squares  

When there are categorical predictors in the model, arranged in a factorial ANOVA 
design, then one is typically interested in the main effects for and interaction effects 
between the categorical predictors. However, when the design is not balanced (has 
unequal cell n's, and consequently, the coded effects for the categorical factors are 
usually correlated), or when there are missing cells in a full factorial ANOVA design, 
then there is ambiguity regarding the specific comparisons between the (population, or 
least-squares) cell means that constitute the main effects and interactions of interest. 
These issues are discussed in great detail in Milliken and Johnson (1986), and if you 
routinely analyze incomplete factorial designs, you should consult their discussion of 
various problems and approaches to solving them.  

In addition to the widely used methods that are commonly labeled Type I, II, III , and IV 
sums of squares (see Goodnight, 1980), we also offer different methods for testing effects 
in incomplete designs, that are widely used in other areas (and traditions) of research.  

Type V sums of squares. Specifically, we propose the term Type V sums of squares to 
denote the approach that is widely used in industrial experimentation, to analyze 
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fractional factorial designs; these types of designs are discussed in detail in the 2**(k-p) 
Fractional Factorial Designs section of the Experimental Design chapter. In effect, for 
those effects for which tests are performed all population marginal means (least squares 
means) are estimable.  

Type VI sums of squares. Second, in keeping with the Type i labeling convention, we 
propose the term Type VI sums of squares to denote the approach that is often used in 
programs that only implement the sigma-restricted model (which is not well suited for 
certain types of designs; we offer a choice between the sigma-restricted and 
overparameterized model models). This approach is identical to what is described as the 
effective hypothesis method in Hocking (1996).  

Contained Effects. The following descriptions will use the term contained effect. An 
effect E1 (e.g., A * B interaction) is contained in another effect E2 if:  

• Both effects involve the same continuous predictor variable (if included in the 
model; e.g., A * B * X would be contained in A * C * X, where A, B, and C are 
categorical predictors, and X is a continuous predictor); or  

• E2 has more categorical predictors than does E1, and, if E1 includes any 
categorical predictors, they also appear in E2 (e.g., A * B would be contained in 
the A * B * C interaction).  

Type I Sums of Squares. Type I sums of squares involve a sequential partitioning of the 
whole model sums of squares. A hierarchical series of regression equations are estimated, 
at each step adding an additional effect into the model. In Type I sums of squares, the 
sums of squares for each effect are determined by subtracting the predicted sums of 
squares with the effect in the model from the predicted sums of squares for the preceding 
model not including the effect. Tests of significance for each effect are then performed on 
the increment in the predicted sums of squares accounted for by the effect. Type I sums 
of squares are therefore sometimes called sequential or hierarchical sums of squares.  

Type I sums of squares are appropriate to use in balanced (equal n) ANOVA designs in 
which effects are entered into the model in their natural order (i.e., any main effects are 
entered before any two-way interaction effects, any two-way interaction effects are 
entered before any three-way interaction effects, and so on). Type I sums of squares are 
also useful in polynomial regression designs in which any lower-order effects are entered 
before any higher-order effects. A third use of Type I sums of squares is to test 
hypotheses for hierarchically nested designs, in which the first effect in the design is 
nested within the second effect, the second effect is nested within the third, and so on.  

One important property of Type I sums of squares is that the sums of squares attributable 
to each effect add up to the whole model sums of squares. Thus, Type I sums of squares 
provide a complete decomposition of the predicted sums of squares for the whole model. 
This is not generally true for any other type of sums of squares. An important limitation 
of Type I sums of squares, however, is that the sums of squares attributable to a specific 
effect will generally depend on the order in which the effects are entered into the model. 
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This lack of invariance to order of entry into the model limits the usefulness of Type I 
sums of squares for testing hypotheses for certain designs (e.g., fractional factorial 
designs).  

Type II Sums of Squares. Type II sums of squares are sometimes called partially 
sequential sums of squares. Like Type I sums of squares, Type II sums of squares for an 
effect controls for the influence of other effects. Which other effects to control for, 
however, is determined by a different criterion. In Type II sums of squares, the sums of 
squares for an effect is computed by controlling for the influence of all other effects of 
equal or lower degree. Thus, sums of squares for main effects control for all other main 
effects, sums of squares for two-way interactions control for all main effects and all other 
two-way interactions, and so on.  

Unlike Type I sums of squares, Type II sums of squares are invariant to the order in 
which effects are entered into the model. This makes Type II sums of squares useful for 
testing hypotheses for multiple regression designs, for main effect ANOVA designs, for 
full-factorial ANOVA designs with equal cell ns, and for hierarchically nested designs.  

There is a drawback to the use of Type II sums of squares for factorial designs with 
unequal cell ns. In these situations, Type II sums of squares test hypotheses that are 
complex functions of the cell ns that ordinarily are not meaningful. Thus, a different 
method for testing hypotheses is usually preferred.  

Type III Sums of Squares. Type I and Type II sums of squares usually are not 
appropriate for testing hypotheses for factorial ANOVA designs with unequal ns. For 
ANOVA designs with unequal ns, however, Type III sums of squares test the same 
hypothesis that would be tested if the cell ns were equal, provided that there is at least 
one observation in every cell. Specifically, in no-missing-cell designs, Type III sums of 
squares test hypotheses about differences in subpopulation (or marginal) means. When 
there are no missing cells in the design, these subpopulation means are least squares 
means, which are the best linear-unbiased estimates of the marginal means for the design 
(see, Milliken and Johnson, 1986).  

Tests of differences in least squares means have the important property that they are 
invariant to the choice of the coding of effects for categorical predictor variables (e.g., the 
use of the sigma-restricted or overparameterized model) and to the choice of the 
particular g2 inverse of X'X  used to solve the normal equations. Thus, tests of linear 
combinations of least squares means in general, including Type III tests of differences in 
least squares means, are said to not depend on the parameterization of the design. This 
makes Type III sums of squares useful for testing hypotheses for any design for which 
Type I or Type II sums of squares are appropriate, as well as for any unbalanced 
ANOVA design with no missing cells.  

The Type III sums of squares attributable to an effect is computed as the sums of squares 
for the effect controlling for any effects of equal or lower degree and orthogonal to any 
higher-order interaction effects (if any) that contain it. The orthogonality to higher-order 
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containing interactions is what gives Type III sums of squares the desirable properties 
associated with linear combinations of least squares means in ANOVA designs with no 
missing cells. But for ANOVA designs with missing cells, Type III sums of squares 
generally do not test hypotheses about least squares means, but instead test hypotheses 
that are complex functions of the patterns of missing cells in higher-order containing 
interactions and that are ordinarily not meaningful. In this situation Type V sums of 
squares or tests of the effective hypothesis (Type VI sums of squares) are preferred.  

Type IV Sums of Squares. Type IV sums of squares were designed to test "balanced" 
hypotheses for lower-order effects in ANOVA designs with missing cells. Type IV sums 
of squares are computed by equitably distributing cell contrast coefficients for lower-
order effects across the levels of higher-order containing interactions.  

Type IV sums of squares are not recommended for testing hypotheses for lower-order 
effects in ANOVA designs with missing cells, even though this is the purpose for which 
they were developed. This is because Type IV sum-of-squares are invariant to some but 
not all g2 inverses of X'X  that could be used to solve the normal equations. Specifically, 
Type IV sums of squares are invariant to the choice of a g2 inverse of X'X given a 
particular ordering of the levels of the categorical predictor variables, but are not 
invariant to different orderings of levels. Furthermore, as with Type III sums of squares, 
Type IV sums of squares test hypotheses that are complex functions of the patterns of 
missing cells in higher-order containing interactions and that are ordinarily not 
meaningful.  

Statisticians who have examined the usefulness of Type IV sums of squares have 
concluded that Type IV sums of squares are not up to the task for which they were 
developed:  

• Milliken & Johnson (1992, p. 204) write: "It seems likely that few, if any, of the 
hypotheses tested by the Type IV analysis of [some programs] will be of 
particular interest to the experimenter."  

• Searle (1987, p. 463-464) writes: "In general, [Type IV] hypotheses determined in 
this nature are not necessarily of any interest."; and (p. 465) "This characteristic of 
Type IV sums of squares for rows depending on the sequence of rows establishes 
their non-uniqueness, and this in turn emphasizes that the hypotheses they are 
testing are by no means necessarily of any general interest."  

• Hocking (1985, p. 152), in an otherwise comprehensive introduction to general 
linear models, writes: "For the missing cell problem, [some programs] offers a 
fourth analysis, Type IV, which we shall not discuss."  

So, we recommend that you use the Type IV sums of squares solution with caution, and 
that you understand fully the nature of the (often non-unique) hypotheses that are being 
testing, before attempting interpretations of the results. Furthermore, in ANOVA designs 
with no missing cells, Type IV sums of squares are always equal to Type III sums of 
squares, so the use of Type IV sums of squares is either (potentially) inappropriate, or 
unnecessary, depending on the presence of missing cells in the design.  



 308 

Type V Sums of Squares. Type V sums of squares were developed as an alternative to 
Type IV sums of squares for testing hypotheses in ANOVA designs in missing cells. 
Also, this approach is widely used in industrial experimentation, to analyze fractional 
factorial designs; these types of designs are discussed in detail in the 2**(k-p) Fractional 
Factorial Designs section of the Experimental Design chapter. In effect, for effects for 
which tests are performed all population marginal means (least squares means) are 
estimable.  

Type V sums of squares involve a combination of the methods employed in computing 
Type I and Type III sums of squares. Specifically, whether or not an effect is eligible to 
be dropped from the model is determined using Type I procedures, and then hypotheses 
are tested for effects not dropped from the model using Type III procedures. Type V 
sums of squares can be illustrated by using a simple example. Suppose that the effects 
considered are A, B, and A by B, in that order, and that A and B are both categorical 
predictors with, say, 3 and 2 levels, respectively. The intercept is first entered into the 
model. Then A is entered into the model, and its degrees of freedom are determined (i.e., 
the number of non-redundant columns for A in X'X , given the intercept). If A's degrees of 
freedom are less than 2 (i.e., its number of levels minus 1), it is eligible to be dropped. 
Then B is entered into the model, and its degrees of freedom are determined (i.e., the 
number of non-redundant columns for B in X'X , given the intercept and A). If B's degrees 
of freedom are less than 1 (i.e., its number of levels minus 1), it is eligible to be dropped. 
Finally, A by B is entered into the model, and its degrees of freedom are determined (i.e., 
the number of non-redundant columns for A by B in X'X , given the intercept, A, and B). If 
B's degrees of freedom are less than 2 (i.e., the product of the degrees of freedom for its 
factors if there were no missing cells), it is eligible to be dropped. Type III sums of 
squares are then computed for the effects that were not found to be eligible to be dropped, 
using the reduced model in which any eligible effects are dropped. Tests of significance, 
however, use the error term for the whole model prior to dropping any eligible effects.  

Note that Type V sums of squares involve determining a reduced model for which all 
effects remaining in the model have at least as many degrees of freedom as they would 
have if there were no missing cells. This is equivalent to finding a subdesign with no 
missing cells such that the Type III sums of squares for all effects in the subdesign reflect 
differences in least squares means.  

Appropriate caution should be exercised when using Type V sums of squares. Dropping 
an effect from a model is the same as assuming that the effect is unrelated to the outcome 
(see, e.g., Hocking, 1996). The reasonableness of the assumption does not necessarily 
insure its validity, so when possible the relationships of dropped effects to the outcome 
should be inspected. It is also important to note that Type V sums of squares are not 
invariant to the order in which eligibility for dropping effects from the model is 
evaluated. Different orders of effects could produce different reduced models.  

In spite of these limitations, Type V sums of squares for the reduced model have all the 
same properties of Type III sums of squares for ANOVA designs with no missing cells. 
Even in designs with many missing cells (such as fractional factorial designs, in which 
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many high-order interaction effects are assumed to be zero), Type V sums of squares 
provide tests of meaningful hypotheses, and sometimes hypotheses that cannot be tested 
using any other method.  

Type VI (Effective Hypothesis) Sums of Squares. Type I through Type V sums of 
squares can all be viewed as providing tests of hypotheses that subsets of partial 
regression coefficients (controlling for or orthogonal to appropriate additional effects) are 
zero. Effective hypothesis tests (developed by Hocking, 1996) are based on the 
philosophy that the only unambiguous estimate of an effect is the proportion of 
variability on the outcome that is uniquely attributable to the effect. The 
overparameterized coding of effects for categorical predictor variables generally cannot 
be used to provide such unique estimates for lower-order effects. Effective hypothesis 
tests, which we propose to call Type VI sums of squares, use the sigma-restricted coding 
of effects for categorical predictor variables to provide unique effect estimates even for 
lower-order effects.  

The method for computing Type VI sums of squares is straightforward. The sigma-
restricted coding of effects is used, and for each effect, its Type VI sums of squares is the 
difference of the model sums of squares for all other effects from the whole model sums 
of squares. As such, the Type VI sums of squares provide an unambiguous estimate of 
the variability of predicted values for the outcome uniquely attributable to each effect.  

In ANOVA designs with missing cells, Type VI sums of squares for effects can have 
fewer degrees of freedom than they would have if there were no missing cells, and for 
some missing cell designs, can even have zero degrees of freedom. The philosophy of 
Type VI sums of squares is to test as much as possible of the original hypothesis given 
the observed cells. If the pattern of missing cells is such that no part of the original 
hypothesis can be tested, so be it. The inability to test hypotheses is simply the price one 
pays for having no observations at some combinations of the levels of the categorical 
predictor variables. The philosophy is that it is better to admit that a hypothesis cannot be 
tested than it is to test a distorted hypothesis which may not meaningfully reflect the 
original hypothesis.  

Type VI sums of squares cannot generally be used to test hypotheses for nested ANOVA 
designs, separate slope designs, or mixed-model designs, because the sigma-restricted 
coding of effects for categorical predictor variables is overly restrictive in such designs. 
This limitation, however, does not diminish the fact that Type VI sums of squares can b  

 

 

Error terms for tests  

Lack-of-Fit Tests using Pure Error. Whole model tests and tests based on the 6 types 
of sums of squares use the mean square residual as the error term for tests of significance. 
For certain types of designs, however, the residual sum of squares can be further 
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partitioned into meaningful parts which are relevant for testing hypotheses. One such 
type of design is a simple regression design in which there are subsets of cases all having 
the same values on the predictor variable. For example, performance on a task could be 
measured for subjects who work on the task under several different room temperature 
conditions. The test of significance for the Temperature effect in the linear regression of 
Performance on Temperature would not necessarily provide complete information on 
how Temperature relates to Performance; the regression coefficient for Temperature only 
reflects its linear effect on the outcome.  

One way to glean additional information from this type of design is to partition the 
residual sums of squares into lack-of-fit and pure error components. In the example just 
described, this would involve determining the difference between the sum of squares that 
cannot be predicted by Temperature levels, given the linear effect of Temperature 
(residual sums of squares) and the pure error; this difference would be the sums of 
squares associated with the lack-of-fit (in this example, of the linear model). The test of 
lack-of-fit, using the mean square pure error as the error term, would indicate whether 
non-linear effects of Temperature are needed to adequately model Tempature's influence 
on the outcome. Further, the linear effect could be tested using the pure error term, thus 
providing a more sensitive test of the linear effect independent of any possible nonlinear 
effect.  

Designs with Zero Degrees of Freedom for Error. When the model degrees of freedom 
equal the number of cases or subjects, the residual sums of squares will have zero degrees 
of freedom and preclude the use of standard hypothesis tests. This sometimes occurs for 
overfitted designs (designs with many predictors, or designs with categorical predictors 
having many levels). However, in some designed experiments, such as experiments using 
split-plot designs or highly fractionalized factorial designs as commonly used in 
industrial experimentation, it is no accident that the residual sum of squares has zero 
degrees of freedom. In such experiments, mean squares for certain effects are planned to 
be used as error terms for testing other effects, and the experiment is designed with this in 
mind. It is entirely appropriate to use alternatives to the mean square residual as error 
terms for testing hypotheses in such designs.  

Tests in Mixed Model Designs. Designs which contain random effects for one or more 
categorical predictor variables are called mixed-model designs. These types of designs, 
and the analysis of those designs, is also described in detail in the Variance Components 
and Mixed Model ANOVA/ANCOVA chapter. Random effects are classification effects 
where the levels of the effects are assumed to be randomly selected from an infinite 
population of possible levels. The solution for the normal equations in mixed-model 
designs is identical to the solution for fixed-effect designs (i.e., designs which do not 
contain random effects). Mixed-model designs differ from fixed-effect designs only in 
the way in which effects are tested for significance. In fixed-effect designs, between 
effects are always tested using the mean square residual as the error term. In mixed-
model designs, between effects are tested using relevant error terms based on the 
covariation of sources of variation in the design. Also, only the overparameterized model 
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is used to code effects for categorical predictors in mixed-models, because the sigma-
restricted model is overly restrictive.  

The covariation of sources of variation in the design is estimated by the elements of a 
matrix called the Expected Mean Squares (EMS) matrix. This non-square matrix contains 
elements for the covariation of each combination of pairs of sources of variation and for 
each source of variation with Error. Specifically, each element is the mean square for one 
effect (indicated by the column) that is expected to be accounted by another effect 
(indicated by the row), given the observed covariation in their levels. Note that expected 
mean squares can be computing using any type of sums of squares from Type I through 
Type V. Once the EMS matrix is computed, it is used to the solve for the linear 
combinations of sources of random variation that are appropriate to use as error terms for 
testing the significance of the respective effects. This is done using Satterthwaite's 
method of denominator synthesis (Satterthwaite, 1946). Detailed discussions of methods 
for testing effects in mixed-models, and related methods for estimating variance 
components for random effects, can be found in the Variance Components and Mixed 
Model ANOVA/ANCOVA chapter.  

 

 

Testing Specific Hypotheses  

Whole model tests and tests based on sums of squares attributable to specific effects 
illustrate two general types of hypotheses that can be tested using the general linear 
model. Still, there may be other types of hypotheses the researcher wishes to test that do 
not fall into either of these categories. For example, hypotheses about subsets of effects 
may be of interest, or hypotheses involving comparisons of specific levels of categorical 
predictor variables may be of interest.  

Estimability of Hypotheses. Before considering tests of specific hypotheses of this sort, 
it is important to address the issue of estimability. A test of a specific hypothesis using 
the general linear model must be framed in terms of the regression coefficients for the 
solution of the normal equations. If the X'X matrix is less than full rank, the regression 
coefficients depend on the particular g2 inverse used for solving the normal equations, 
and the regression coefficients will not be unique. When the regression coefficients are 
not unique, linear functions (f) of the regression coefficients having the form  

f = Lb   

where L is a vector of coefficients, will also in general not be unique. However, Lb for an 
L which satisfies  

L  = L(X'X) -X'X   

is invariant for all possible g2 inverses, and is therefore called an estimable function.  
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The theory of estimability of linear functions is an advanced topic in the theory of 
algebraic invariants (Searle, 1987, provides a comprehensive introduction), but its 
implications are clear enough. One instance of non-estimability of a hypothesis has been 
encountered in tests of the effective hypothesis which have zero degrees of freedom. On 
the other hand, Type III sums of squares for categorical predictor variable effects in 
ANOVA designs with no missing cells (and the least squares means in such designs) 
provide an example of estimable functions which do not depend on the model 
parameterization (i.e., the particular g2 inverse used to solve the normal equations). The 
general implication of the theory of estimability of linear functions is that hypotheses 
which cannot be expressed as linear combinations of the rows of X (i.e., the combinations 
of observed levels of the categorical predictor variables) are not estimable, and therefore 
cannot be tested. Stated another way, we simply cannot test specific hypotheses that are 
not represented in the data. The notion of estimability is valuable because the test for 
estimability makes explicit which specific hypotheses can be tested and which cannot.  

Linear Combinations of Effects. In multiple regression designs, it is common for 
hypotheses of interest to involve subsets of effects. In mixture designs, for example, one 
might be interested in simultaneously testing whether the main effect and any of the two-
way interactions involving a particular predictor variable are non-zero. It is also common 
in multiple regression designs for hypotheses of interest to involves comparison of 
slopes. For example, one might be interested in whether the regression coefficients for 
two predictor variables differ. In both factorial regression and factorial ANOVA designs 
with many factors, it is often of interest whether sets of effects, say, all three-way and 
higher-order interactions, are nonzero.  

Tests of these types of specific hypotheses involve (1) constructing one or more Ls 
reflecting the hypothesis, (2) testing the estimability of the hypothesis by determining 
whether  

L  = L(X'X) -X'X   

and if so, using (3)  

(Lb)'<L(X'X) -L') -1(Lb)   

to estimate the sums of squares accounted for by the hypothesis. Finally, (4) the 
hypothesis is tested for significance using the usual mean square residual as the error 
term. To illustrate this 4-step procedure, suppose that a test of the difference in the 
regression slopes is desired for the (intercept plus) 2 predictor variables in a first-order 
multiple regression design. The coefficients for L would be  

L  = [0 1 -1]  

(note that the first coefficient 0 excludes the intercept from the comparison) for which Lb 
is estimable if the 2 predictor variables are not redundant with each other. The hypothesis 
sums of squares reflect the difference in the partial regression coefficients for the 2 
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predictor variables, which is tested for significance using the mean square residual as the 
error term.  

Planned Comparisons of Least Square Means. Usually, experimental hypotheses are 
stated in terms that are more specific than simply main effects or interactions. We may 
have the specific hypothesis that a particular textbook will improve math skills in males, 
but not in females, while another book would be about equally effective for both genders, 
but less effective overall for males. Now generally, we are predicting an interaction here: 
the effectiveness of the book is modified (qualified) by the student's gender. However, we 
have a particular prediction concerning the nature of the interaction: we expect a 
significant difference between genders for one book, but not the other. This type of 
specific prediction is usually tested by testing planned comparisons of least squares 
means (estimates of the population marginal means), or as it is sometimes called, contrast 
analysis.  

Briefly, contrast analysis allows us to test the statistical significance of predicted specific 
differences in particular parts of our complex design. The 4-step procedure for testing 
specific hypotheses is used to specify and test specific predictions. Contrast analysis is a 
major and indispensable component of the analysis of many complex experimental 
designs (see also for details).  

To learn more about the logic and interpretation of contrast analysis refer to the 
ANOVA/MANOVA chapter Overview section.  

Post-Hoc Comparisons. Sometimes we find effects in an experiment that were not 
expected. Even though in most cases a creative experimenter will be able to explain 
almost any pattern of means, it would not be appropriate to analyze and evaluate that 
pattern as if one had predicted it all along. The problem here is one of capitalizing on 
chance when performing multiple tests post-hoc, that is, without a priori hypotheses. To 
illustrate this point, let us consider the following "experiment." Imagine we were to write 
down a number between 1 and 10 on 100 pieces of paper. We then put all of those pieces 
into a hat and draw 20 samples (of pieces of paper) of 5 observations each, and compute 
the means (from the numbers written on the pieces of paper) for each group. How likely 
do you think it is that we will find two sample means that are significantly different from 
each other? It is very likely! Selecting the extreme means obtained from 20 samples is 
very different from taking only 2 samples from the hat in the first place, which is what 
the test via the contrast analysis implies. Without going into further detail, there are 
several so-called post-hoc tests that are explicitly based on the first scenario (taking the 
extremes from 20 samples), that is, they are based on the assumption that we have chosen 
for our comparison the most extreme (different) means out of k total means in the design. 
Those tests apply "corrections" that are designed to offset the advantage of post-hoc 
selection of the most extreme comparisons. Whenever one finds unexpected results in an 
experiment one should use those post-hoc procedures to test their statistical 
significance.  
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Testing hypotheses for repeated measures and dependent variables  

In the discussion of different hypotheses that can be tested using the general linear model, 
the tests have been described as tests for "the dependent variable" or "the outcome." This 
has been done solely to simplify the discussion. When there are multiple dependent 
variables reflecting the levels of repeated measure factors, the general linear model 
performs tests using orthonormalized M-transformations of the dependent variables. 
When there are multiple dependent variables but no repeated measure factors, the general 
linear model performs tests using the hypothesis sums of squares and cross-products for 
the multiple dependent variables, which are tested against the residual sums of squares 
and cross-products for the multiple dependent variables. Thus, the same hypothesis 
testing procedures which apply to univariate designs with a single dependent variable 
also apply to repeated measure and multivariate designs.  
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Chapter 19  
Generalized Additive Models (GAM) 

 
 

• Additive models  
 

• Generalized linear models 
 

• Distributions and link functions  
 

• Generalized additive models  
 

• Estimating the non-parametric function of predictors via scatterplot smoothers 
 

• A specific example: The generalized additive logistic model 
 

• Fitting generalized additive models  
 

• Interpreting the results 
 

• Degrees of freedom 
 

• A Word of Caution 
 
 

 

The methods available in Generalized Additive Models are implementations of techniques 
developed and popularized by Hastie and Tibshirani (1990). A detailed description of 
these and related techniques, the algorithms used to fit these models, and discussions of 
recent research in this area of statistical modeling can also be found in Schimek (2000). 

Additive models. The methods described in this section represent a generalization of 
multiple regression (which is a special case of general linear models). Specifically, in 
linear regression, a linear least-squares fit is computed for a set of predictor or X 
variables, to predict a dependent Y variable. The well known linear regression equation 
with m predictors, to predict a dependent variable Y, can be stated as: 

Y = b0 + b1*X 1 + ... + bm*X m 

Where Y stands for the (predicted values of the) dependent variable, X1through Xm 
represent the m values for the predictor variables, and b0, and b1 through bm are the 
regression coefficients estimated by multiple regression. A generalization of the multiple 
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regression model would be to maintain the additive nature of the model, but to replace the 
simple terms of the linear equation bi*X i with fi(X i) where fi is a non-parametric function 
of the predictor Xi.  In other words, instead of a single coefficient for each variable 
(additive term) in the model, in additive models an unspecified (non-parametric) function 
is estimated for each predictor, to achieve the best prediction of the dependent variable 
values. 

Generalized linear models.To summarize the basic idea, the generalized linear model 
differs from the general linear model (of which multiple regression is a special case) in 
two major respects: First, the distribution of the dependent or response variable can be 
(explicitly) non-normal, and does not have to be continuous, e.g., it can be binomial; 
second, the dependent variable values are predicted from a linear combination of 
predictor variables, which are "connected" to the dependent variable via a link function. 
The general linear model for a single dependent variable can be considered a special case 
of the generalized linear model: In the general linear model the dependent variable values 
are expected to follow the normal distribution, and the link function is a simple identity 
function (i.e., the linear combination of values for the predictor variables is not 
transformed).   

To illustrate, in the general linear model a response variable Y is linearly associated with 
values on the X variables while the relationship in the generalized linear model is 
assumed to be  

Y = g(b0 + b1*X 1 + ... + bm*X m) 

where g(…) is a function. Formally, the inverse function of g(…), say gi(…), is called the 
link function; so that: 

gi(muY) = b0 + b1*X 1 + ... + bm*X m 

where mu-Y stands for the expected value of Y. 

Distributions and link functions. Generalized Additive Models allows you to choose 
from a wide variety of distributions for the dependent variable, and link functions for the 
effects of the predictor variables on the dependent variable (see McCullagh and Nelder, 
1989; Hastie and Tibshirani, 1990; see also GLZ Introductory Overview - Computational 
Approach for a discussion of link functions and distributions):  

Normal, Gamma, and Poisson distributions: 

Log link: f(z) = log(z) 

Inverse link: f(z) = 1/z 

Identity link: f(z) = z 

Binomial distributions: 
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Logit link: f(z)=log(z/(1-z)) 

Generalized additive models. We can combine the notion of additive models with 
generalized linear models, to derive the notion of generalized additive models, as: 

gi(muY) = �i(f i(X i))  

In other words, the purpose of generalized additive models is to maximize the quality of 
prediction of a dependent variable Y from various distributions, by estimating unspecific 
(non-parametric) functions of the predictor variables which are "connected" to the 
dependent variable via a link function. 

 

Estimating the non-parametric function of predictors via scatterplot smoothers. A 
unique aspect of generalized additive models are the non-parametric functions fi of the 
predictor variables Xi. Specifically, instead of some kind of simple or complex 
parametric functions, Hastie and Tibshirani (1990) discuss various general scatterplot 
smoothers that can be applied to the X variable values, with the target criterion to 
maximize the quality of prediction of the (transformed) Y variable values. One such 
scatterplot smoother is the cubic smoothing splines smoother, which generally produces a 
smooth generalization of the relationship between the two variables in the scatterplot. 
 Computational details regarding this smoother can be found in Hastie and Tibshirani 
(1990; see also Schimek, 2000).   

To summarize, instead of estimating single parameters (like the regression weights in 
multiple regression), in generalized additive models, we find a general unspecific (non-
parametric) function that relates the predicted (transformed) Y values to the predictor 
values.   

A specific example: The generalized additive logistic model. Let us consider a specific 
example of the generalized additive models: A generalization of the logistic (logit) model 
for binary dependent variable values. As also described in detail in the context of 
Nonlinear Estimation and Generalized Linear/Nonlinear Models, the logistic regression 
model for binary responses can be written as follows: 

  

y=exp(b0+b1*x 1+...+bm*x m)/{1+exp(b0+b1*x 1+...+bm*x m)} 

Note that the distribution of the dependent variable is assumed to be binomial, i.e., the 
response variable can only assume the values 0 or 1 (e.g., in a market research study, the 
purchasing decision would be binomial: The customer either did or did not make a 
particular purchase). We can apply the logistic link function to the probability p (ranging 
between 0  and 1) so that: 
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p' = log {p/(1-p)}  

By applying the logistic link function, we can now rewrite the model as: 

p' = b0 + b1*X 1  + ... + bm*X m  

Finally, we substitute the simple single-parameter additive terms to derive the generalized 
additive logistic model: 

p' = b0 + f1(X1) + ... + fm(Xm)  

An example application of the this model can be found in Hastie and Tibshirani (1990). 

Fitting generalized additive models. Detailed descriptions of how generalized additive 
models are fit to data can be found in Hastie and Tibshirani (1990), as well as Schimek 
(2000, p. 300). In general there are two separate iterative operations involved in the 
algorithm, which are usually labeled the outer and inner loop. The purpose of the outer 
loop is to maximize the overall fit of the model, by minimizing the overall likelihood of 
the data given the model (similar to the maximum likelihood estimation procedures as 
described in, for example,  the context of Nonlinear Estimation). The purpose of the inner 
loop is to refine the scatterplot smoother, which is the cubic splines smoother. The 
smoothing is performed with respect to the partial residuals; i.e., for every predictor k, the 
weighted cubic spline fit is found that best represents the relationship between variable k 
and the (partial) residuals computed by removing the effect of all other j predictors (j � 
k). The iterative estimation procedure will terminate, when the likelihood of the data 
given the model can not be improved.  

 

Interpreting the results. Many of the standard results statistics computed by 
Generalized Additive Models are similar to those customarily reported by linear or 
nonlinear model fitting procedures. For example, predicted and residual values for the 
final model can be computed, and various graphs of the residuals can be displayed to help 
the user identify possible outliers, etc. Refer also to the description of the residual 
statistics computed by Generalized Linear/Nonlinear Models for details. 

The main result of interest, of course, is how the predictors are related to the dependent 
variable. Scatterplots can be computed showing the smoothed predictor variable values 
plotted against the partial residuals, i.e., the residuals after removing the effect of all other 
predictor variables.   
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This plot allows you to evaluate the nature of the relationship between the predictor with 
the residualized (adjusted) dependent variable values (see Hastie & Tibshirani, 1990; in 
particular formula 6.3), and hence the nature of the influence of the respective predictor 
in the overall model.   

Degrees of freedom. To reiterate, the generalized additive models approach replaces the 
simple products of (estimated) parameter values times the predictor values with a cubic 
spline smoother for each predictor. When estimating a single parameter value, we lose 
one degree of freedom, i.e., we add one degree of freedom to the overall model. It is not 
clear how many degrees of freedom are lost due to estimating the cubic spline smoother 
for each variable. Intuitively, a smoother can either be very smooth, not following the 
pattern of data in the scatterplot very closely, or it can be less smooth, following the 
pattern of the data more closely. In the most extreme case, a simple line would be very 
smooth, and require us to estimate a single slope parameter, i.e., we would use one degree 
of freedom to fit the smoother (simple straight line); on the other hand, we could force a 
very "non-smooth" line to connect each actual data point, in which case we could "use-
up" approximately as many degrees of freedom as there are points in the plot. 
Generalized Additive Models allows you to specify the degrees of freedom for the cubic 
spline smoother; the fewer degrees of freedom you specify, the smoother is the cubic 
spline fit to the partial residuals, and typically, the worse is the overall fit of the model. 
The issue of degrees of freedom for smoothers is discussed in detail in Hastie and 
Tibshirani (1990). 
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A word of caution. Generalized additive models are very flexible, and can provide an 
excellent fit in the presence of nonlinear relationships and significant noise in the 
predictor variables. However, note that because of this flexibility, one must be extra 
cautious not to over-fit the data, i.e., apply an overly complex model (with many degrees 
of freedom) to data so as to produce a good fit that likely will not replicate in subsequent 
validation studies. Also, compare the quality of the fit obtained from Generalized 
Additive Models to the fit obtained via Generalized Linear/Nonlinear Models. In other 
words, evaluate whether the added complexity (generality) of generalized additive 
models (regression smoothers) is necessary in order to obtain a satisfactory fit to the data. 
Often, this is not the case, and given a comparable fit of the models, the simpler 
generalized linear model is preferable to the more complex generalized additive model. 
These issues are discussed in greater detail in Hastie and Tibshirani (1990). 

Another issue to keep in mind pertains to the interpretability of results obtained from 
(generalized) linear models vs. generalized additive models. Linear models are easily 
understood, summarized, and communicated to others (e.g., in technical reports). 
Moreover, parameter estimates can be used to predict or classify new cases in a simple 
and straightforward manner. Generalized additive models are not easily interpreted, in 
particular when they involve complex nonlinear effects of some or all of the predictor 
variables (and, of course, it is in those instances where generalized additive models may 
yield a better fit than generalized linear models). To reiterate, it is usually preferable to 
rely on a simple well understood model for predicting future cases, than on a complex 
model that is difficult to interpret and summarize. 
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Chapter 20 

Generalized Linear Models (GLZ) 
 

• Basic Ideas  
• Computational Approach  
• Types of Analyses  

o Between-subject Designs 
• Model Building  
• Interpretation of Results and Diagnostics  

 
This chapter describes the use of the generalized linear model for analyzing linear and 
non-linear effects of continuous and categorical predictor variables on a discrete or 
continuous dependent variable. If you are unfamiliar with the basic methods of regression 
in linear models, it may be useful to first review the basic information on these topics in 
the Elementary Concepts chapter. Discussion of the ways in which the linear regression 
model is extended by the general linear model can be found in the General Linear Models 
chapter.  

For additional information about generalized linear models, see also Dobson (1990), 
Green and Silverman (1994), or McCullagh and Nelder (1989).  

 

Basic Ideas  

The Generalized Linear Model (GLZ) is a generalization of the general linear model (see, 
e.g., the General Linear Models, Multiple Regression, and ANOVA/MANOVA chapters). 
In its simplest form, a linear model specifies the (linear) relationship between a 
dependent (or response) variable Y, and a set of predictor variables, the X's, so that  

Y = b0 + b1X1 + b2X2 + ... + bkXk  

In this equation b0 is the regression coefficient for the intercept and the bi values are the 
regression coefficients (for variables 1 through k) computed from the data.  

So for example, one could estimate (i.e., predict) a person's weight as a function of the 
person's height and gender. You could use linear regression to estimate the respective 
regression coefficients from a sample of data, measuring height, weight, and observing 
the subjects' gender. For many data analysis problems, estimates of the linear 
relationships between variables are adequate to describe the observed data, and to make 
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reasonable predictions for new observations (see the Multiple Regression chapter for 
additional details).  

However, there are many relationships that cannot adequately be summarized by a simple 
linear equation, for two major reasons:  

Distribution of dependent variable. First, the dependent variable of interest may have a 
non-continuous distribution, and thus, the predicted values should also follow the 
respective distribution; any other predicted values are not logically possible. For 
example, a researcher may be interested in predicting one of three possible discrete 
outcomes (e.g., a consumer's choice of one of three alternative products). In that case, the 
dependent variable can only take on 3 distinct values, and the distribution of the 
dependent variable is said to be multinomial. Or suppose you are trying to predict 
people's family planning choices, specifically, how many children families will have, as a 
function of income and various other socioeconomic indicators. The dependent variable -
- number of children -- is discrete (i.e., a family may have 1, 2, or 3 children and so on, 
but cannot have 2.4 children), and most likely the distribution of that variable is highly 
skewed (i.e., most families have 1, 2, or 3 children, fewer will have 4 or 5, very few will 
have 6 or 7, and so on). In this case it would be reasonable to assume that the dependent 
variable follows a Poisson distribution.  

Link function. A second reason why the linear (multiple regression) model might be 
inadequate to describe a particular relationship is that the effect of the predictors on the 
dependent variable may not be linear in nature. For example, the relationship between a 
person's age and various indicators of health is most likely not linear in nature: During 
early adulthood, the (average) health status of people who are 30 years old as compared 
to the (average) health status of people who are 40 years old is not markedly different. 
However, the difference in health status of 60 year old people and 70 year old people is 
probably greater. Thus, the relationship between age and health status is likely non-linear 
in nature. Probably some kind of a power function would be adequate to describe the 
relationship between a person's age and health, so that each increment in years of age at 
older ages will have greater impact on health status, as compared to each increment in 
years of age during early adulthood. Put in other words, the link between age and health 
status is best described as non-linear, or as a power relationship in this particular 
example.  

The generalized linear model can be used to predict responses both for dependent 
variables with discrete distributions and for dependent variables which are nonlinearly 
related to the predictors.  

 

 

 
Computational Approach  
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To summarize the basic ideas, the generalized linear model differs from the general 
linear model (of which, for example, multiple regression is a special case) in two major 
respects: First, the distribution of the dependent or response variable can be (explicitly) 
non-normal, and does not have to be continuous, i.e., it can be binomial, multinomial, or 
ordinal multinomial (i.e., contain information on ranks only); second, the dependent 
variable values are predicted from a linear combination of predictor variables, which are 
"connected" to the dependent variable via a link function. The general linear model for a 
single dependent variable can be considered a special case of the generalized linear 
model: In the general linear model the dependent variable values are expected to follow 
the normal distribution, and the link function is a simple identity function (i.e., the linear 
combination of values for the predictor variables is not transformed).  

To illustrate, in the general linear model a response variable Y is linearly associated with 
values on the X variables by  

Y = b0 + b1X1 + b2X2 + ... + bkXk) + e  

(where e stands for the error variability that cannot be accounted for by the predictors; 
note that the expected value of e is assumed to be 0), while the relationship in the 
generalized linear model is assumed to be  

Y = g (b0 + b1X1 + b2X2 + ... + bkXk + e  

where e is the error, and g(…) is a function. Formally, the inverse function of g(…), say 
f(…), is called the link function; so that:  

f(muy) = b0 + b1X1 + b2X2 + ... + bkXk  

where muy stands for the expected value of y.  

Link functions and distributions. Various link functions (see McCullagh and Nelder, 
1989) can be chosen, depending on the assumed distribution of the y variable values:  

Normal, Gamma, Inverse normal, and Poisson distributions:  

Identity link: f(z) = z 
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Log link: f(z) = log(z) 

 

Power link: f(z) = za, for a given a 

 

Binomial, and Ordinal Multinomial distributions:  
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Logit link: f(z)=log(z/(1-z)) 

Probit link: f(z)=invnorm(z) where invnorm is the inverse 
of the standard normal 
cumulative distribution function. 

Complementary log-log link: f(z)=log(-log(1-z)) 

 

Log-log link: f(z)=-log(-log(z)) 

 

Multinomial distribution:  

Generalized logit link: f(z1|z2,…,zc)=log(x1/(1-z1-…-zc)) 

where the model has c+1 categories. 

Estimation in the generalized linear model. The values of the parameters (b0 through bk 
and the scale parameter) in the generalized linear model are obtained by maximum 
likelihood (ML) estimation, which requires iterative computational procedures. There are 
many iterative methods for ML estimation in the generalized linear model, of which the 
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Newton-Raphson and Fisher-Scoring methods are among the most efficient and widely 
used (see Dobson,1990). The Fisher-scoring (or iterative re-weighted least squares) 
method in particular provides a unified algorithm for all generalized linear models, as 
well as providing the expected variance-covariance matrix of parameter estimates as a 
byproduct of its computations.  

Statistical significance testing Tests for the significance of the effects in the model can 
be performed via the Wald statistic, the likelihood ratio (LR), or score statistic. Detailed 
descriptions of these tests can be found in McCullagh and Nelder (1989). The Wald 
statistic (e.g., see Dobson,1990), which is computed as the generalized inner product of 
the parameter estimates with the respective variance-covariance matrix, is an easily 
computed, efficient statistic for testing the significance of effects. The score statistic is 
obtained from the generalized inner product of the score vector with the Hessian matrix 
(the matrix of the second-order partial derivatives of the maximum likelihood parameter 
estimates). The likelihood ratio (LR) test requires the greatest computational effort 
(another iterative estimation procedure) and is thus not as fast as the first two methods; 
however, the LR test provides the most asymptotically efficient test known. For details 
concerning these different test statistics, see Agresti(1996), McCullagh and Nelder(1989), 
and Dobson(1990).  

Diagnostics in the generalized linear model. The two basic types of residuals are the 
so-called Pearson residuals and deviance residuals. Pearson residuals are based on the 
difference between observed responses and the predicted values; deviance residuals are 
based on the contribution of the observed responses to the log-likelihood statistic. In 
addition, leverage scores, studentized residuals, generalized Cook's D, and other 
observational statistics (statistics based on individual observations) can be computed. For 
a description and discussion of these statistics, see Hosmer and Lemeshow (1989).  

 

 

 
Types of Analyses  

The design for an analysis can include effects for continuous as well as categorical 
predictor variables. Designs may include polynomials for continuous predictors (e.g., 
squared or cubic terms) as well as interaction effects (i.e., product terms) for continuous 
predictors. For categorical predictor variables, one can fit ANOVA-like designs, 
including full factorial, nested, and fractional factorial designs, etc. Designs can be 
incomplete (i.e., involve missing cells), and effects for categorical predictor variables can 
be represented using either the sigma-restricted parameterization or the 
overparameterized (i.e., indicator variable) representation of effects.  

The topics below give complete descriptions of the types of designs that can be analyzed 
using the generalized linear model, as well as types of designs that can be analyzed using 
the general linear model.  
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Signal detection theory. The list of designs shown below is by no means 
comprehensive, i.e., it does not describe all possible research problems to which the 
generalized linear model can be applied. For example, an important application of the 
generalized linear model is the estimation of parameters for Signal detection theory 
(SDT) models. SDT is an application of statistical decision theory used to detect a signal 
embedded in noise. SDT is used in psychophysical studies of detection, recognition, and 
discrimination, and in other areas such as medical research, weather forecasting, survey 
research, and marketing research. For example, DeCarlo (1998) shows how signal 
detection models based on different underlying distributions can easily be considered by 
using the generalized linear model with different link functions.  

For discussion of the generalized linear model and the link functions which it uses, see 
Computational Approaches.  

Between-Subject Designs  

• Overview  
• One-way ANOVA  
• Main effect ANOVA  
• Factorial ANOVA  
• Nested designs  
• Simple regression  
• Multiple regression  
• Factorial regression  
• Polynomial regression  
• Response surface regression  
• Mixture surface regression  
• Analysis of covariance (ANCOVA)  
• Separate slopes designs  
• Homogeneity of slopes  

Overview. The levels or values of the predictor variables in an analysis describe the 
differences between the n subjects or the n valid cases that are analyzed. Thus, when we 
speak of the between subject design (or simply the between design) for an analysis, we 
are referring to the nature, number, and arrangement of the predictor variables.  

Concerning the nature or type of predictor variables, between designs which contain only 
categorical predictor variables can be called ANOVA (analysis of variance) designs, 
between designs which contain only continuous predictor variables can be called 
regression designs, and between designs which contain both categorical and continuous 
predictor variables can be called ANCOVA (analysis of covariance) designs. Further, 
continuous predictors are always considered to have fixed values, but the levels of 
categorical predictors can be considered to be fixed or to vary randomly. Designs which 
contain random categorical factors are called mixed-model designs (see the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter).  
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Between designs may involve only a single predictor variable and therefore be described 
as simple (e.g., simple regression) or may employ numerous predictor variables (e.g., 
multiple regression).  

Concerning the arrangement of predictor variables, some between designs employ only 
"main effect" or first-order terms for predictors, that is, the values for different predictor 
variables are independent and raised only to the first power. Other between designs may 
employ higher-order terms for predictors by raising the values for the original predictor 
variables to a power greater than 1 (e.g., in polynomial regression designs), or by forming 
products of different predictor variables (i.e., interaction terms). A common arrangement 
for ANOVA designs is the full-factorial design, in which every combination of levels for 
each of the categorical predictor variables is represented in the design. Designs with some 
but not all combinations of levels for each of the categorical predictor variables are aptly 
called fractional factorial designs. Designs with a hierarchy of combinations of levels for 
the different categorical predictor variables are called nested designs.  

These basic distinctions about the nature, number, and arrangement of predictor variables 
can be used in describing a variety of different types of between designs. Some of the 
more common between designs can now be described.  

One-Way ANOVA. A design with a single categorical predictor variable is called a one-
way ANOVA design. For example, a study of 4 different fertilizers used on different 
individual plants could be analyzed via one-way ANOVA, with four levels for the factor 
Fertilizer.  

In genera, consider a single categorical predictor variable A with 1 case in each of its 3 
categories. Using the sigma-restricted coding of A into 2 quantitative contrast variables, 
the matrix X defining the between design is  

 

That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the intercept), 
the case in group A1 is assigned a value of 1 on X1 and a value 0 on X2, the case in group 
A2 is assigned a value of 0 on X1 and a value 1 on X2, and the case in group A3 is assigned 
a value of -1 on X1 and a value -1 on X2. Of course, any additional cases in any of the 3 
groups would be coded similarly. If there were 1 case in group A1, 2 cases in group A2, 
and 1 case in group A3, the X matrix would be  
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where the first subscript for A gives the replicate number for the cases in each group. For 
brevity, replicates usually are not shown when describing ANOVA design matrices.  

Note that in one-way designs with an equal number of cases in each group, sigma-
restricted coding yields X1 … Xk variables all of which have means of 0.  

Using the overparameterized model to represent A, the X matrix defining the between 
design is simply  

 

These simple examples show that the X matrix actually serves two purposes. It specifies 
(1) the coding for the levels of the original predictor variables on the X variables used in 
the analysis as well as (2) the nature, number, and arrangement of the X variables, that is, 
the between design.  

Main Effect ANOVA.  Main effect ANOVA designs contain separate one-way ANOVA 
designs for 2 or more categorical predictors. A good example of main effect ANOVA 
would be the typical analysis performed on screening designs as described in the context 
of the Experimental Design chapter.  

Consider 2 categorical predictor variables A and B each with 2 categories. Using the 
sigma-restricted coding, the X matrix defining the between design is  

 

Note that if there are equal numbers of cases in each group, the sum of the cross-products 
of values for the X1 and X2 columns is 0, for example, with 1 case in each group 
(1*1)+(1*-1)+(-1*1)+(-1*-1)=0. Using the overparameterized model, the matrix X 
defining the between design is  
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Comparing the two types of coding, it can be seen that the overparameterized coding 
takes almost twice as many values as the sigma-restricted coding to convey the same 
information.  

Factorial ANOVA.  Factorial ANOVA designs contain X variables representing 
combinations of the levels of 2 or more categorical predictors (e.g., a study of boys and 
girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) design). In particular, 
full-factorial designs represent all possible combinations of the levels of the categorical 
predictors. A full-factorial design with 2 categorical predictor variables A and B each 
with 2 levels each would be called a 2 x 2 full-factorial design. Using the sigma-restricted 
coding, the X matrix for this design would be  

 

Several features of this X matrix deserve comment. Note that the X1 and X2 columns 
represent main effect contrasts for one variable, (i.e., A and B, respectively) collapsing 
across the levels of the other variable. The X3 column instead represents a contrast 
between different combinations of the levels of A and B. Note also that the values for X3 
are products of the corresponding values for X1 and X2. Product variables such as X3 

represent the multiplicative or interaction effects of their factors, so X3 would be said to 
represent the 2-way interaction of A and B. The relationship of such product variables to 
the dependent variables indicate the interactive influences of the factors on responses 
above and beyond their independent (i.e., main effect) influences on responses. Thus, 
factorial designs provide more information about the relationships between categorical 
predictor variables and responses on the dependent variables than is provided by 
corresponding one-way or main effect designs.  

When many factors are being investigated, however, full-factorial designs sometimes 
require more data than reasonably can be collected to represent all possible combinations 
of levels of the factors, and high-order interactions between many factors can become 
difficult to interpret. With many factors, a useful alternative to the full-factorial design is 
the fractional factorial design. As an example, consider a 2 x 2 x 2 fractional factorial 
design to degree 2 with 3 categorical predictor variables each with 2 levels. The design 
would include the main effects for each variable, and all 2-way interactions between the 
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three variables, but would not include the 3-way interaction between all three variables. 
Using the overparameterized model, the X matrix for this design is  

 

The 2-way interactions are the highest degree effects included in the design. These types 
of designs are discussed in detail the 2**(k-p) Fractional Factorial Designs section of the 
Experimental Design chapter.  

Nested ANOVA Designs. Nested designs are similar to fractional factorial designs in 
that all possible combinations of the levels of the categorical predictor variables are not 
represented in the design. In nested designs, however, the omitted effects are lower-order 
effects. Nested effects are effects in which the nested variables never appear as main 
effects. Suppose that for 2 variables A and B with 3 and 2 levels, respectively, the design 
includes the main effect for A and the effect of B nested within the levels of A. The X 
matrix for this design using the overparameterized model is  

 

Note that if the sigma-restricted coding were used, there would be only 2 columns in the 
X matrix for the B nested within A effect instead of the 6 columns in the X matrix for this 
effect when the overparameterized model coding is used (i.e., columns X4 through X9). 
The sigma-restricted coding method is overly-restrictive for nested designs, so only the 
overparameterized model is used to represent nested designs.  

Simple Regression. Simple regression designs involve a single continuous predictor 
variable. If there were 3 cases with values on a predictor variable P of, say, 7, 4, and 9, 
and the design is for the first-order effect of P, the X matrix would be  
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and using P for X1 the regression equation would be  

Y = b0 + b1P  

If the simple regression design is for a higher-order effect of P, say the quadratic effect, 
the values in the X1 column of the design matrix would be raised to the 2nd power, that is, 
squared  

 

and using P2 for X1 the regression equation would be  

Y = b0 + b1P
2  

The sigma-restricted and overparameterized coding methods do not apply to simple 
regression designs and any other design containing only continuous predictors (since 
there are no categorical predictors to code). Regardless of which coding method is 
chosen, values on the continuous predictor variables are raised to the desired power and 
used as the values for the X variables. No recoding is performed. It is therefore sufficient, 
in describing regression designs, to simply describe the regression equation without 
explicitly describing the design matrix X.  

Multiple Regression. Multiple regression designs are to continuous predictor variables 
as main effect ANOVA designs are to categorical predictor variables, that is, multiple 
regression designs contain the separate simple regression designs for 2 or more 
continuous predictor variables. The regression equation for a multiple regression design 
for the first-order effects of 3 continuous predictor variables P, Q, and R would be  

Y = b0 + b1P + b2Q + b3R  

Factorial Regression. Factorial regression designs are similar to factorial ANOVA 
designs, in which combinations of the levels of the factors are represented in the design. 
In factorial regression designs, however, there may be many more such possible 
combinations of distinct levels for the continuous predictor variables than there are cases 
in the data set. To simplify matters, full-factorial regression designs are defined as 
designs in which all possible products of the continuous predictor variables are 
represented in the design. For example, the full-factorial regression design for two 
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continuous predictor variables P and Q would include the main effects (i.e., the first-
order effects) of P and Q and their 2-way P by Q interaction effect, which is represented 
by the product of P and Q scores for each case. The regression equation would be  

Y = b0 + b1P + b2Q + b3P*Q  

Factorial regression designs can also be fractional, that is, higher-order effects can be 
omitted from the design. A fractional factorial design to degree 2 for 3 continuous 
predictor variables P, Q, and R would include the main effects and all 2-way interactions 
between the predictor variables  

Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  

Polynomial Regression. Polynomial regression designs are designs which contain main 
effects and higher-order effects for the continuous predictor variables but do not include 
interaction effects between predictor variables. For example, the polynomial regression 
design to degree 2 for three continuous predictor variables P, Q, and R would include the 
main effects (i.e., the first-order effects) of P, Q, and R and their quadratic (i.e., second-
order) effects, but not the 2-way interaction effects or the P by Q by R 3-way interaction 
effect.  

Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2  

Polynomial regression designs do not have to contain all effects up to the same degree for 
every predictor variable. For example, main, quadratic, and cubic effects could be 
included in the design for some predictor variables, and effects up the fourth degree could 
be included in the design for other predictor variables.  

Response Surface Regression. Quadratic response surface regression designs are a 
hybrid type of design with characteristics of both polynomial regression designs and 
fractional factorial regression designs. Quadratic response surface regression designs 
contain all the same effects of polynomial regression designs to degree 2 and additionally 
the 2-way interaction effects of the predictor variables. The regression equation for a 
quadratic response surface regression design for 3 continuous predictor variables P, Q, 
and R would be  

Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2 + b7P*Q + b8P*R + b9Q*R  

These types of designs are commonly employed in applied research (e.g., in industrial 
experimentation), and a detailed discussion of these types of designs is also presented in 
the Experimental Design chapter (see Central composite designs).  

Mixture Surface Regression. Mixture surface regression designs are identical to 
factorial regression designs to degree 2 except for the omission of the intercept. Mixtures, 
as the name implies, add up to a constant value; the sum of the proportions of ingredients 
in different recipes for some material all must add up 100%. Thus, the proportion of one 
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ingredient in a material is redundant with the remaining ingredients. Mixture surface 
regression designs deal with this redundancy by omitting the intercept from the design. 
The design matrix for a mixture surface regression design for 3 continuous predictor 
variables P, Q, and R would be  

Y = b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  

These types of designs are commonly employed in applied research (e.g., in industrial 
experimation), and a detailed discussion of these types of designs is also presented in the 
Experimental Design chapter (see Mixture designs and triangular surfaces).  

Analysis of Covariance. In general, between designs which contain both categorical and 
continuous predictor variables can be called ANCOVA designs. Traditionally, however, 
ANCOVA designs have referred more specifically to designs in which the first-order 
effects of one or more continuous predictor variables are taken into account when 
assessing the effects of one or more categorical predictor variables. A basic introduction 
to analysis of covariance can also be found in the Analysis of covariance (ANCOVA) 
topic of the ANOVA/MANOVA chapter.  

To illustrate, suppose a researcher wants to assess the influences of a categorical 
predictor variable A with 3 levels on some outcome, and that measurements on a 
continuous predictor variable P, known to covary with the outcome, are available. If the 
data for the analysis are  

 

then the sigma-restricted X matrix for the design that includes the separate first-order 
effects of P and A would be  

 

The b2 and b3 coefficients in the regression equation  
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Y = b0 + b1X1 + b2X2 + b3X3  

represent the influences of group membership on the A categorical predictor variable, 
controlling for the influence of scores on the P continuous predictor variable. Similarly, 
the b1 coefficient represents the influence of scores on P controlling for the influences of 
group membership on A. This traditional ANCOVA analysis gives a more sensitive test 
of the influence of A to the extent that P reduces the prediction error, that is, the residuals 
for the outcome variable.  

The X matrix for the same design using the overparameterized model would be  

 

The interpretation is unchanged except that the influences of group membership on the A 
categorical predictor variables are represented by the b2, b3 and b4 coefficients in the 
regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4  

Separate Slope Designs. The traditional analysis of covariance (ANCOVA) design for 
categorical and continuous predictor variables is inappropriate when the categorical and 
continuous predictors interact in influencing responses on the outcome. The appropriate 
design for modeling the influences of the predictors in this situation is called the separate 
slope design. For the same example data used to illustrate traditional ANCOVA, the 
overparameterized X matrix for the design that includes the main effect of the three-level 
categorical predictor A and the 2-way interaction of P by A would be  

 

The b4, b5, and b6 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6  
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give the separate slopes for the regression of the outcome on P within each group on A, 
controlling for the main effect of A.  

As with nested ANOVA designs, the sigma-restricted coding of effects for separate slope 
designs is overly restrictive, so only the overparameterized model is used to represent 
separate slope designs. In fact, separate slope designs are identical in form to nested 
ANOVA designs, since the main effects for continuous predictors are omitted in separate 
slope designs.  

Homogeneity of Slopes. The appropriate design for modeling the influences of 
continuous and categorical predictor variables depends on whether the continuous and 
categorical predictors interact in influencing the outcome. The traditional analysis of 
covariance (ANCOVA) design for continuous and categorical predictor variables is 
appropriate when the continuous and categorical predictors do not interact in influencing 
responses on the outcome, and the separate slope design is appropriate when the 
continuous and categorical predictors do interact in influencing responses. The 
homogeneity of slopes designs can be used to test whether the continuous and categorical 
predictors interact in influencing responses, and thus, whether the traditional ANCOVA 
design or the separate slope design is appropriate for modeling the effects of the 
predictors. For the same example data used to illustrate the traditional ANCOVA and 
separate slope designs, the overparameterized X matrix for the design that includes the 
main effect of P, the main effect of the three-level categorical predictor A, and the 2-way 
interaction of P by A would be  

 

If the b5, b6, or b7 coefficient in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7  

is non-zero, the separate slope model should be used. If instead all 3 of these regression 
coefficients are zero the traditional ANCOVA design should be used.  

The sigma-restricted X matrix for the homogeneity of slopes design would be  
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Using this X matrix, if the b4, or b5 coefficient in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  

is non-zero, the separate slope model should be used. If instead both of these regression 
coefficients are zero the traditional ANCOVA design should be used.  

 

 

 
<>Model Building  

In addition to fitting the whole model for the specified type of analysis, different methods 
for automatic model building can be employed in analyses using the generalized linear 
model. Specifically, forward entry, backward removal, forward stepwise, and backward 
stepwise procedures can be performed, as well as best-subset search procedures. In 
forward methods of selection of effects to include in the model (i.e., forward entry and 
forward stepwise methods), score statistics are compared to select new (significant) 
effects. The Wald statistic can be used for backward removal methods (i.e., backward 
removal and backward stepwise, when effects are selected for removal from the model).  

The best subsets search method can be based on three different test statistics: the score 
statistic, the model likelihood, and the AIC (Akaike Information Criterion, see Akaike, 
1973). Note that, since the score statistic does not require iterative computations, best 
subset selection based on the score statistic is computationally fastest, while selection 
based on the other two statistics usually provides more accurate results; see McCullagh 
and Nelder(1989), for additional details.  

 

 

 
Interpretation of Results and Diagnostics  
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Simple estimation and test statistics may not be sufficient for adequate interpretation of 
the effects in an analysis. Especially for higher order (e.g., interaction) effects, inspection 
of the observed and predicted means can be invaluable for understanding the nature of an 
effect. Plots of these means (with error bars) can be useful for quickly grasping the role 
of the effects in the model.  

Inspection of the distributions of variables is critically important when using the 
generalized linear model. Histograms and probability plots for variables, and scatterplots 
showing the relationships between observed values, predicted values, and residuals (e.g., 
Pearson residuals, deviance residuals, studentized residuals, differential Chi-square 
statistics, differential deviance statistics, and generalized Cook's D) provide invaluable 
model-checking tools.  
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Chapter 21 
General Regression Models (GRM) 

 

• Basic Ideas: The Need for Simple Models  
• Model Building in GSR  
• Types of Analyses  

o Between Subject Designs  
o Multivariate Designs  

• Building the Whole Model  
o Partitioning Sums of Squares  
o Testing the Whole Model  
o Limitations of Whole Models  

• Building Models via Stepwise Regression  
• Building Models via Best-Subset Regression  

 
This chapter describes the use of the general linear model for finding the "best" linear 
model from a number of possible models. If you are unfamiliar with the basic methods of 
ANOVA and regression in linear models, it may be useful to first review the basic 
information on these topics in Elementary Concepts. A detailed discussion of univariate 
and multivariate ANOVA techniques can also be found in the ANOVA/MANOVA chapter; 
a discussion of multiple regression methods is also provided in the Multiple Regression 
chapter. Discussion of the ways in which the linear regression model is extended by the 
general linear model can be found in the General Linear Models chapter.  

 
Basic Ideas: The Need for Simple Models  

A good theory is the end result of a winnowing process. We start with a comprehensive 
model that includes all conceivable, testable influences on the phenomena under 
investigation. Then we test the components of the initial comprehensive model, to 
identify the less comprehensive submodels that adequately account for the phenomena 
under investigation. Finally from these candidate submodels, we single out the simplest 
submodel, which by the principle of parsimony we take to be the "best" explanation for 
the phenomena under investigation.  

We prefer simple models not just for philosophical but also for practical reasons. Simple 
models are easier to put to test again in replication and cross-validation studies. Simple 
models are less costly to put into practice in predicting and controlling the outcome in the 
future. The philosophical reasons for preferring simple models should not be 
downplayed, however. Simpler models are easier to understand and appreciate, and 
therefore have a "beauty" that their more complicated counterparts often lack.  

The entire winnowing process described above is encapsulated in the model-building 
techniques of stepwise and best-subset regression. The use of these model-building 
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techniques begins with the specification of the design for a comprehensive "whole 
model." Less comprehensive submodels are then tested to determine if they adequately 
account for the outcome under investigation. Finally, the simplest of the adequate is 
adopted as the "best."  

 

 

 
Model Building in GSR  

Unlike the multiple regression model, which is used to analyze designs with continuous 
predictor variables, the general linear model can be used to analyze any ANOVA design 
with categorical predictor variables, any ANCOVA design with both categorical and 
continuous predictor variables, as well as any regression design with continuous predictor 
variables. Effects for categorical predictor variables can be coded in the design matrix X 
using either the overparameterized model or the sigma-restricted model.  

Only the sigma-restricted parameterization can be used for model-building. True to 
its description as general, the general linear model can be used to analyze designs with 
effects for categorical predictor variables which are coded using either parameterization 
method. In many uses of the general linear model, it is arbitrary whether categorical 
predictors are coded using the sigma-restricted or the overparameterized coding. When 
one desires to build models, however, the use of the overparameterized model is 
unsatisfactory; lower-order effects for categorical predictor variables are redundant with 
higher-order containing interactions, and therefore cannot be fairly evaluated for 
inclusion in the model when higher-order containing interactions are already in the 
model.  

This problem does not occur when categorical predictors are coded using the sigma-
restricted parameterization, so only the sigma-restricted parameterization is necessary in 
general stepwise regression.  

Designs which cannot be represented using the sigma-restricted parameterization. 
The sigma-restricted parameterization can be used to represent most, but not all types of 
designs. Specifically, the designs which cannot be represented using the sigma-restricted 
parameterization are designs with nested effects, such as nested ANOVA and separate 
slope, and random effects. Any other type of ANOVA, ANCOVA, or regression design 
can be represented using the sigma-restricted parameterization, and can therefore be 
analyzed with general stepwise regression.  

Model building for designs with multiple dependent variables. Stepwise and best-
subset model-building techniques are well-developed for regression designs with a single 
dependent variable (e.g., see Cooley and Lohnes, 1971; Darlington, 1990; Hocking 
Lindeman, Merenda, and Gold, 1980; Morrison, 1967; Neter, Wasserman, and Kutner, 
1985; Pedhazur, 1973; Stevens, 1986; Younger, 1985). Using the sigma-restricted 
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parameterization and general linear model methods, these model-building techniques can 
be readily applied to any ANOVA design with categorical predictor variables, any 
ANCOVA design with both categorical and continuous predictor variables, as well as any 
regression design with continuous predictor variables. Building models for designs with 
multiple dependent variables, however, involves considerations that are not typically 
addressed by the general linear model. Model-building techniques for designs with 
multiple dependent variables are available with Structural Equation Modeling.  

 

 

 
Types of Analyses  

A wide variety of types of designs can be represented using the sigma-restricted coding 
of the design matrix X, and any such design can be analyzed using the general linear 
model. The following topics describe these different types of designs and how they differ. 
Some general ways in which designs might differ can be suggested, but keep in mind that 
any particular design can be a "hybrid" in the sense that it could have combinations of 
features of a number of different types of designs.  

Between-subject designs  

• Overview  
• Simple regression  
• Multiple regression  
• Factorial regression  
• Polynomial regression  
• Response surface regression  
• Mixture surface regression  
• One-way ANOVA  
• Main effect ANOVA  
• Factorial ANOVA  
• Analysis of covariance (ANCOVA)  
• Homogeneity of slopes  

Overview. The levels or values of the predictor variables in an analysis describe the 
differences between the n subjects or the n valid cases that are analyzed. Thus, when we 
speak of the between subject design (or simply the between design) for an analysis, we 
are referring to the nature, number, and arrangement of the predictor variables.  

Concerning the nature or type of predictor variables, between designs which contain only 
categorical predictor variables can be called ANOVA (analysis of variance) designs, 
between designs which contain only continuous predictor variables can be called 
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regression designs, and between designs which contain both categorical and continuous 
predictor variables can be called ANCOVA (analysis of covariance) designs.  

Between designs may involve only a single predictor variable and therefore be described 
as simple (e.g., simple regression) or may employ numerous predictor variables (e.g., 
multiple regression).  

Concerning the arrangement of predictor variables, some between designs employ only 
"main effect" or first-order terms for predictors, that is, the values for different predictor 
variables are independent and raised only to the first power. Other between designs may 
employ higher-order terms for predictors by raising the values for the original predictor 
variables to a power greater than 1 (e.g., in polynomial regression designs), or by forming 
products of different predictor variables (i.e., interaction terms). A common arrangement 
for ANOVA designs is the full-factorial design, in which every combination of levels for 
each of the categorical predictor variables is represented in the design. Designs with some 
but not all combinations of levels for each of the categorical predictor variables are aptly 
called fractional factorial designs.  

These basic distinctions about the nature, number, and arrangement of predictor variables 
can be used in describing a variety of different types of between designs. Some of the 
more common between designs can now be described.  

Simple Regression. Simple regression designs involve a single continuous predictor 
variable. If there were 3 cases with values on a predictor variable P of, say, 7, 4, and 9, 
and the design is for the first-order effect of P, the X matrix would be  

 

and using P for X1 the regression equation would be  

Y = b0 + b1P  

If the simple regression design is for a higher-order effect of P, say the quadratic effect, 
the values in the X1 column of the design matrix would be raised to the 2nd power, that is, 
squared  

 

and using P2 for X1 the regression equation would be  
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Y = b0 + b1P
2  

In regression designs, values on the continuous predictor variables are raised to the 
desired power and used as the values for the X variables. No recoding is performed. It is 
therefore sufficient, in describing regression designs, to simply describe the regression 
equation without explicitly describing the design matrix X.  

Multiple Regression. Multiple regression designs are to continuous predictor variables 
as main effect ANOVA designs are to categorical predictor variables, that is, multiple 
regression designs contain the separate simple regression designs for 2 or more 
continuous predictor variables. The regression equation for a multiple regression design 
for the first-order effects of 3 continuous predictor variables P, Q, and R would be  

Y = b0 + b1P + b2Q + b3R  

A discussion of multiple regression methods is also provided in the Multiple Regression 
chapter.  

Factorial Regression. Factorial regression designs are similar to factorial ANOVA 
designs, in which combinations of the levels of the factors are represented in the design. 
In factorial regression designs, however, there may be many more such possible 
combinations of distinct levels for the continuous predictor variables than there are cases 
in the data set. To simplify matters, full-factorial regression designs are defined as 
designs in which all possible products of the continuous predictor variables are 
represented in the design. For example, the full-factorial regression design for two 
continuous predictor variables P and Q would include the main effects (i.e., the first-
order effects) of P and Q and their 2-way P by Q interaction effect, which is represented 
by the product of P and Q scores for each case. The regression equation would be  

Y = b0 + b1P + b2Q + b3P*Q  

Factorial regression designs can also be fractional, that is, higher-order effects can be 
omitted from the design. A fractional factorial design to degree 2 for 3 continuous 
predictor variables P, Q, and R would include the main effects and all 2-way interactions 
between the predictor variables  

Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  

Polynomial Regression. Polynomial regression designs are designs which contain main 
effects and higher-order effects for the continuous predictor variables but do not include 
interaction effects between predictor variables. For example, the polynomial regression 
design to degree 2 for three continuous predictor variables P, Q, and R would include the 
main effects (i.e., the first-order effects) of P, Q, and R and their quadratic (i.e., second-
order) effects, but not the 2-way interaction effects or the P by Q by R 3-way interaction 
effect.  
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Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2  

Polynomial regression designs do not have to contain all effects up to the same degree for 
every predictor variable. For example, main, quadratic, and cubic effects could be 
included in the design for some predictor variables, and effects up the fourth degree could 
be included in the design for other predictor variables.  

Response Surface Regression. Quadratic response surface regression designs are a 
hybrid type of design with characteristics of both polynomial regression designs and 
fractional factorial regression designs. Quadratic response surface regression designs 
contain all the same effects of polynomial regression designs to degree 2 and additionally 
the 2-way interaction effects of the predictor variables. The regression equation for a 
quadratic response surface regression design for 3 continuous predictor variables P, Q, 
and R would be  

Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2 + b7P*Q + b8P*R + b9Q*R  

These types of designs are commonly employed in applied research (e.g., in industrial 
experimentation), and a detailed discussion of these types of designs is also presented in 
the Experimental Design chapter (see Central composite designs).  

Mixture Surface Regression. Mixture surface regression designs are identical to 
factorial regression designs to degree 2 except for the omission of the intercept. Mixtures, 
as the name implies, add up to a constant value; the sum of the proportions of ingredients 
in different recipes for some material all must add up 100%. Thus, the proportion of one 
ingredient in a material is redundant with the remaining ingredients. Mixture surface 
regression designs deal with this redundancy by omitting the intercept from the design. 
The design matrix for a mixture surface regression design for 3 continuous predictor 
variables P, Q, and R would be  

Y = b1P + b2P
2 + b3Q + b4P*Q + b5P*R + b6Q*R  

These types of designs are commonly employed in applied research (e.g., in industrial 
experimentation), and a detailed discussion of these types of designs is also presented in 
the Experimental Design chapter (see Mixture designs and triangular surfaces).  

One-Way ANOVA. A design with a single categorical predictor variable is called a one-
way ANOVA design. For example, a study of 4 different fertilizers used on different 
individual plants could be analyzed via one-way ANOVA, with four levels for the factor 
Fertilizer.  

Consider a single categorical predictor variable A with 1 case in each of its 3 categories. 
Using the sigma-restricted coding of A into 2 quantitative contrast variables, the matrix X 
defining the between design is  
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That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the intercept), 
the case in group A1 is assigned a value of 1 on X1 and a value 0 on X2, the case in group 
A2 is assigned a value of 0 on X1 and a value 1 on X2, and the case in group A3 is assigned 
a value of -1 on X1 and a value -1 on X2. Of course, any additional cases in any of the 3 
groups would be coded similarly. If there were 1 case in group A1, 2 cases in group A2, 
and 1 case in group A3, the X matrix would be  

 

where the first subscript for A gives the replicate number for the cases in each group. For 
brevity, replicates usually are not shown when describing ANOVA design matrices.  

Note that in one-way designs with an equal number of cases in each group, sigma-
restricted coding yields X1 … Xk variables all of which have means of 0.  

These simple examples show that the X matrix actually serves two purposes. It specifies 
(1) the coding for the levels of the original predictor variables on the X variables used in 
the analysis as well as (2) the nature, number, and arrangement of the X variables, that is, 
the between design.  

Main Effect ANOVA. Main effect ANOVA designs contain separate one-way ANOVA 
designs for 2 or more categorical predictors. A good example of main effect ANOVA 
would be the typical analysis performed on screening designs as described in the context 
of the Experimental Design chapter.  

Consider 2 categorical predictor variables A and B each with 2 categories. Using the 
sigma-restricted coding, the X matrix defining the between design is  
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Note that if there are equal numbers of cases in each group, the sum of the cross-products 
of values for the X1 and X2 columns is 0, for example, with 1 case in each group 
(1*1)+(1*-1)+(-1*1)+(-1*-1)=0.  

Factorial ANOVA. Factorial ANOVA designs contain X variables representing 
combinations of the levels of 2 or more categorical predictors (e.g., a study of boys and 
girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) design). In particular, 
full-factorial designs represent all possible combinations of the levels of the categorical 
predictors. A full-factorial design with 2 categorical predictor variables A and B each 
with 2 levels would be called a 2 x 2 full-factorial design. Using the sigma-restricted 
coding, the X matrix for this design would be  

 

Several features of this X matrix deserve comment. Note that the X1 and X2 columns 
represent main effect contrasts for one variable, (i.e., A and B, respectively) collapsing 
across the levels of the other variable. The X3 column instead represents a contrast 
between different combinations of the levels of A and B. Note also that the values for X3 
are products of the corresponding values for X1 and X2. Product variables such as X3 

represent the multiplicative or interaction effects of their factors, so X3 would be said to 
represent the 2-way interaction of A and B. The relationship of such product variables to 
the dependent variables indicate the interactive influences of the factors on responses 
above and beyond their independent (i.e., main effect) influences on responses. Thus, 
factorial designs provide more information about the relationships between categorical 
predictor variables and responses on the dependent variables than is provided by 
corresponding one-way or main effect designs.  

When many factors are being investigated, however, full-factorial designs sometimes 
require more data than reasonably can be collected to represent all possible combinations 
of levels of the factors, and high-order interactions between many factors can become 
difficult to interpret. With many factors, a useful alternative to the full-factorial design is 
the fractional factorial design. As an example, consider a 2 x 2 x 2 fractional factorial 
design to degree 2 with 3 categorical predictor variables each with 2 levels. The design 
would include the main effects for each variable, and all 2-way interactions between the 
three variables, but would not include the 3-way interactions between all three variables. 
These types of designs are discussed in detail in the 2**(k-p) Fractional Factorial 
Designs section of the Experimental Design chapter.  

Analysis of Covariance. In general, between designs which contain both categorical and 
continuous predictor variables can be called ANCOVA designs. Traditionally, however, 
ANCOVA designs have referred more specifically to designs in which the first-order 
effects of one or more continuous predictor variables are taken into account when 
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assessing the effects of one or more categorical predictor variables. A basic introduction 
to analysis of covariance can also be found in the Analysis of covariance (ANCOVA) 
topic of the ANOVA/MANOVA chapter.  

To illustrate, suppose a researcher wants to assess the influences of a categorical 
predictor variable A with 3 levels on some outcome, and that measurements on a 
continuous predictor variable P, known to covary with the outcome, are available. If the 
data for the analysis are  

 

then the sigma-restricted X matrix for the design that includes the separate first-order 
effects of P and A would be  

 

The b2 and b3 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3  

represent the influences of group membership on the A categorical predictor variable, 
controlling for the influence of scores on the P continuous predictor variable. Similarly, 
the b1 coefficient represents the influence of scores on P controlling for the influences of 
group membership on A. This traditional ANCOVA analysis gives a more sensitive test 
of the influence of A to the extent that P reduces the prediction error, that is, the residuals 
for the outcome variable.  

Homogeneity of Slopes. The appropriate design for modeling the influences of 
continuous and categorical predictor variables depends on whether the continuous and 
categorical predictors interact in influencing the outcome. The traditional analysis of 
covariance (ANCOVA) design for continuous and categorical predictor variables is 
appropriate when the continuous and categorical predictors do not interact in influencing 
responses on the outcome. The homogeneity of slopes designs can be used to test whether 
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the continuous and categorical predictors interact in influencing responses. For the same 
example data used to illustrate the traditional ANCOVA design, the sigma-restricted X 
matrix for the homogeneity of slopes design would be  

 

Using this design matrix X, if the b4 and b5 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  

are zero, the simpler traditional ANCOVA design should be used.  

Multivariate Designs Overview  

When there are multiple dependent variables in a design, the design is said to be 
multivariate. Multivariate measures of association are by nature more complex than their 
univariate counterparts (such as the correlation coefficient, for example). This is because 
multivariate measures of association must take into account not only the relationships of 
the predictor variables with responses on the dependent variables, but also the 
relationships among the multiple dependent variables. By doing so, however, these 
measures of association provide information about the strength of the relationships 
between predictor and dependent variables independent of the dependent variables 
interrelationships. A basic discussion of multivariate designs is also presented in the 
Multivariate Designs topic in the ANOVA/MANOVA chapter.  

The most commonly used multivariate measures of association all can be expressed as 
functions of the eigenvalues of the product matrix  

E-1H  

where E is the error SSCP matrix (i.e., the matrix of sums of squares and cross-products 
for the dependent variables that are not accounted for by the predictors in the between 
design), and H is a hypothesis SSCP matrix (i.e., the matrix of sums of squares and cross-
products for the dependent variables that are accounted for by all the predictors in the 
between design, or the sums of squares and cross-products for the dependent variables 
that are accounted for by a particular effect). If  

�i = the ordered eigenvalues of E-1H, if E-1 exists 
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then the 4 commonly used multivariate measures of association are  

Wilks' lambda = �[1/(1+�i)]  

Pillai's trace = ��i/(1+�i)  

Hotelling-Lawley trace = ��i  

Roy's largest root = �1  

These 4 measures have different upper and lower bounds, with Wilks' lambda perhaps 
being the most easily interpretable of the four measures. Wilks' lambda can range from 0 
to 1, with 1 indicating no relationship of predictors to responses and 0 indicating a perfect 
relationship of predictors to responses. 1 - Wilks' lambda can be interpreted as the 
multivariate counterpart of a univariate R-squared, that is, it indicates the proportion of 
generalized variance in the dependent variables that is accounted for by the predictors.  

The 4 measures of association are also used to construct multivariate tests of significance. 
These multivariate tests are covered in detail in a number of sources (e.g., Finn, 1974; 
Tatsuoka, 1971).  

 

 

 
Building the Whole Model  

The following sections discuss details for building and testing hypotheses about the 
"whole model", for example, how sums of squares are partitioned and how the overall fit 
for the whole model is tested.  

Partitioning Sums of Squares  

A fundamental principle of least squares methods is that variation on a dependent 
variable can be partitioned, or divided into parts, according to the sources of the 
variation. Suppose that a dependent variable is regressed on one or more predictor 
variables, and that for convenience the dependent variable is scaled so that its mean is 0. 
Then a basic least squares identity is that the total sum of squared values on the 
dependent variable equals the sum of squared predicted values plus the sum of squared 
residual values. Stated more generally,  

�(y - y-bar)2 = �(y-hat - y-bar)2 + �(y - y-hat)2  

where the term on the left is the total sum of squared deviations of the observed values on 
the dependent variable from the dependent variable mean, and the respective terms on the 
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right are (1) the sum of squared deviations of the predicted values for the dependent 
variable from the dependent variable mean and (2) the sum of the squared deviations of 
the observed values on the dependent variable from the predicted values, that is, the sum 
of the squared residuals. Stated yet another way,  

Total SS = Model SS + Error SS  

Note that the Total SS is always the same for any particular data set, but that the Model 
SS and the Error SS depend on the regression equation. Assuming again that the 
dependent variable is scaled so that its mean is 0, the Model SS and the Error SS can be 
computed using  

Model SS = b'X'Y   

Error SS = Y'Y - b'X'Y   

Testing the Whole Model  

Given the Model SS and the Error SS, one can perform a test that all the regression 
coefficients for the X variables (b1 through bk, excluding the b0 coefficient for the 
intercept) are zero. This test is equivalent to a comparison of the fit of the regression 
surface defined by the predicted values (computed from the whole model regression 
equation) to the fit of the regression surface defined solely by the dependent variable 
mean (computed from the reduced regression equation containing only the intercept). 
Assuming that X'X  is full-rank, the whole model hypothesis mean square  

MSH = (Model SS)/k  

where k is the number of columns of X (excluding the intercept column), is an estimate of 
the variance of the predicted values. The error mean square  

s2 = MSE = (Error SS)/(n-k-1)  

where n is the number of observations, is an unbiased estimate of the residual or error 
variance. The test statistic is  

F = MSH/MSE  

where F has (k, n - k - 1) degrees of freedom.  

If X'X is not full rank, r + 1 is substituted for k, where r is the rank or the number of non-
redundant columns of X'X .  

If the whole model test is not significant the analysis is complete; the whole model is 
concluded to fit the data no better than the reduced model using the dependent variable 
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mean alone. It is futile to seek a submodel which adequately fits the data when the whole 
model is inadequate.  

Note that in the case of non-intercept models, some multiple regression programs will 
only compute the full model test based on the proportion of variance around 0 (zero) 
accounted for by the predictors; for more information (see Kvålseth, 1985; Okunade, 
Chang, and Evans, 1993). Other programs will actually compute both values (i.e., based 
on the residual variance around 0, and around the respective dependent variable means.  

Limitations of Whole Models  

For designs such as one-way ANOVA or simple regression designs, the whole model test 
by itself may be sufficient for testing general hypotheses about whether or not the single 
predictor variable is related to the outcome. In complex designs, however, finding a 
statistically significant test of whole model fit is often just the first step in the analysis; 
one then seeks to identify simpler submodels that fit the data equally well (see the section 
on Basic ideas: The need for simple models). It is to this task, the search for submodels 
that fit the data well, that stepwise and best-subset regression are devoted.  

 

 

 
Building Models via Stepwise Regression  

Stepwise model-building techniques for regression designs with a single dependent 
variable are described in numerous sources (e.g., see Darlington, 1990; Hocking, 1966, 
Lindeman, Merenda, and Gold, 1980; Morrison, 1967; Neter, Wasserman, and Kutner, 
1985; Pedhazur, 1973; Stevens, 1986; Younger, 1985). The basic procedures involve (1) 
identifying an initial model, (2) iteratively "stepping," that is, repeatedly altering the 
model at the previous step by adding or removing a predictor variable in accordance with 
the "stepping criteria," and (3) terminating the search when stepping is no longer possible 
given the stepping criteria, or when a specified maximum number of steps has been 
reached. The following topics provide details on the use of stepwise model-building 
procedures.  

The Initial Model in Stepwise Regression. The initial model is designated the model at 
Step 0. The initial model always includes the regression intercept (unless the No intercept 
option has been specified.). For the backward stepwise and backward removal methods, 
the initial model also includes all effects specified to be included in the design for the 
analysis. The initial model for these methods is therefore the whole model.  

For the forward stepwise and forward entry methods, the initial model always includes 
the regression intercept (unless the No intercept option has been specified.). The initial 
model may also include 1 or more effects specified to be forced into the model. If j is the 
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number of effects specified to be forced into the model, the first j effects specified to be 
included in the design are entered into the model at Step 0 . Any such effects are not 
eligible to be removed from the model during subsequent Steps.  

Effects may also be specified to be forced into the model when the backward stepwise 
and backward removal methods are used. As in the forward stepwise and forward entry 
methods, any such effects are not eligible to be removed from the model during 
subsequent Steps.  

The Forward Entry Method. The forward entry method is a simple model-building 
procedure. At each Step after Step 0, the entry statistic is computed for each effect 
eligible for entry in the model. If no effect has a value on the entry statistic which 
exceeds the specified critical value for model entry, then stepping is terminated, 
otherwise the effect with the largest value on the entry statistic is entered into the model. 
Stepping is also terminated if the maximum number of steps is reached.  

The Backward Removal Method. The backward removal method is also a simple 
model-building procedure. At each Step after Step 0, the removal statistic is computed for 
each effect eligible to be removed from the model. If no effect has a value on the removal 
statistic which is less than the critical value for removal from the model, then stepping is 
terminated, otherwise the effect with the smallest value on the removal statistic is 
removed from the model. Stepping is also terminated if the maximum number of steps is 
reached.  

The Forward Stepwise Method. The forward stepwise method employs a combination 
of the procedures used in the forward entry and backward removal methods. At Step 1 
the procedures for forward entry are performed. At any subsequent step where 2 or more 
effects have been selected for entry into the model, forward entry is performed if 
possible, and backward removal is performed if possible, until neither procedure can be 
performed and stepping is terminated. Stepping is also terminated if the maximum 
number of steps is reached.  

The Backward Stepwise Method. The backward stepwise method employs a 
combination of the procedures used in the forward entry and backward removal methods. 
At Step 1 the procedures for backward removal are performed. At any subsequent step 
where 2 or more effects have been selected for entry into the model, forward entry is 
performed if possible, and backward removal is performed if possible, until neither 
procedure can be performed and stepping is terminated. Stepping is also terminated if the 
maximum number of steps is reached.  

Entry and Removal Criteria. Either critical F values or critical p values can be 
specified to be used to control entry and removal of effects from the model. If p values 
are specified, the actual values used to control entry and removal of effects from the 
model are 1 minus the specified p values. The critical value for model entry must exceed 
the critical value for removal from the model. A maximum number of Steps can also be 
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specified. If not previously terminated, stepping stops when the specified maximum 
number of Steps is reached.  

 

 

 
Building Models via Best-Subset Regression  

All-possible-subset regression can be used as an alternative to or in conjunction with 
stepwise methods for finding the "best" possible submodel.  

Neter, Wasserman, and Kutner (1985) discuss the use of all-possible-subset regression in 
conjunction with stepwise regression "A limitation of the stepwise regression search 
approach is that it presumes there is a single "best" subset of X variables and seeks to 
identify it. As noted earlier, there is often no unique "best" subset. Hence, some 
statisticians suggest that all possible regression models with a similar number of X 
variables as in the stepwise regression solution be fitted subsequently to study whether 
some other subsets of X variables might be better." (p. 435). This reasoning suggests that 
after finding a stepwise solution, the "best" of all the possible subsets of the same number 
of effects should be examined to determine if the stepwise solution is among the "best." If 
not, the stepwise solution is suspect.  

All-possible-subset regression can also be used as an alternative to stepwise regression. 
Using this approach, one first decides on the range of subset sizes that could be 
considered to be useful. For example, one might expect that inclusion of at least 3 effects 
in the model is necessary to adequately account for responses, and also might expect 
there is no advantage to considering models with more than 6 effects. Only the "best" of 
all possible subsets of 3, 4, 5, and 6 effects are then considered.  

Note that several different criteria can be used for ordering subsets in terms of 
"goodness." The most often used criteria are the subset multiple R-square, adjusted R-
square, and Mallow's Cp statistics. When all-possible-subset regression is used in 
conjunction with stepwise methods, the subset multiple R-square statistic allows direct 
comparisons of the "best" subsets identified using each approach.  

The number of possible submodels increases very rapidly as the number of effects in the 
whole model increases, and as subset size approaches half of the number of effects in the 
whole model. The amount of computation required to perform all-possible-subset 
regression increases as the number of possible submodels increases, and holding all else 
constant, also increases very rapidly as the number of levels for effects involving 
categorical predictors increases, thus resulting in more columns in the design matrix X. 
For example, all possible subsets of up to a dozen or so effects could certainly 
theoretically be computed for a design that includes two dozen or so effects all of which 
have many levels, but the computation would be very time consuming (e.g., there are 
about 2.7 million different ways to select 12 predictors from 24 predictors, i.e., 2.7 
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million models to evaluate just for subset size 12). Simpler is generally better when using 
all-possible-subset regression.  
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Chapter 22 

Selected Topics in Graphical Analytic Techniques 
 
 

 
Brief Overviews of Types of Graphs 

2D Graphs 
  Bar/Column 
  Bar Dev 
  Bar Left Y 
  Bar Right Y 
  Bar Top 
  Bar X 
  Box 
  Detrended Probability 
  Half-Normal 

Probability 
  Hanging Bar 

Histograms 
  Histograms 
  Line 
  Pie Charts 
  Probability 
  Probability-Probability 
  Quantile-Quantile 
  Range 
  Scatterplots 
  Sequential/Stacked 
  Voronoi Scatterplot 

 
3D XYZ Graphs 

  Contour 
  Deviation 
  Scatterplots 
  Space 

  Spectral 
  Trace 

 
3D Sequential Graphs 

  Bivariate Histograms 
  Box 
  Range 
  Raw Data 

Contour/Discrete 
  Sequential Contour 
  Sequential Surface 
  Raw Data Spikes 
  Raw Data Surface 

 
4D/Ternary Graphs 

  Scatterplots 
  3D Ternary 
  Contour/Area 
  Contour/Line 
  3D Deviation 
  3D Space 

 
2D Categorized Graphs 

  Detrended Probability 
  Half-Normal Probability 
  Normal Probability 
  Probability-Probability 
  Quantile-Quantile 

 

3D Categorized Graphs 
  Contour 
  Deviation 
  Scatterplots 
  Space 
  Spectral 
  Surface 

 
Ternary Categorized 
Graphs 

  Ternary Contour/Area 
  Ternary Contour/Line 
  Ternary Scatterplot 

 
nD/Icon Graphs 

  Chernoff Faces 
  Columns 
  Lines 
  Pies 
  Polygons 
  Profiles 
  Stars 
  Sun Rays 

 
Matrix Graphs  

  Columns 
  Lines 
  Scatterplot 

 
Representative Visualization Techniques 

• Categorized Graphs  
o What are Categorized Graphs?  
o Categorization Methods  
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o Histograms  
o Scatterplots  
o Probability Plots  
o Quantile-Quantile Plots  
o Probability-Probability Plots  
o Line Plots  
o Box Plots  
o Pie Charts  
o Missing/Range Data Points Plots  
o 3D Plots  
o Ternary Plots  

• Brushing  
• Smoothing Bivariate Distributions  
• Layered Compression  
• Projections of 3D data sets  
• Icon Plots  

o Analyzing Icon Plots  
o Taxonomy of Icon Plots  
o Standardization of Values  
o Applications  
o Related Graphs  
o Graph Type  
o Mark Icons  

• Data Reduction  
• Data Rotation (in 3D space)  

 

Categorized Graphs  

One of the most important, general, and also powerful analytic methods involves dividing 
("splitting") the data set into categories in order compare the patterns of data between the 
resulting subsets. This common technique is known under a variety of terms (such as 
breaking down, grouping, categorizing, splitting, slicing, drilling-down, or conditioning) 
and it is used both in exploratory data analyses and hypothesis testing. For example: A 
positive relation between the age and the risk of a heart attack may be different in males 
and females (it may be stronger in males). A promising relation between taking a drug 
and a decrease of the cholesterol level may be present only in women with a low blood 
pressure and only in their thirties and forties. The process capability indices or capability 
histograms can be different for periods of time supervised by different operators. The 
regression slopes can be different in different experimental groups. 

There are many computational techniques that capitalize on grouping and that are 
designed to quantify the differences that the grouping will reveal (e.g., 
ANOVA/MANOVA ). However, graphical techniques (such as categorized graphs 
discussed in this section) offer unique advantages that cannot be substituted by any 
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computational method alone: they can reveal patterns that cannot be easily quantified 
(e.g., complex interactions, exceptions, anomalies) and they provide unique, 
multidimensional, global analytic perspectives to explore or "mine" the data. 

What are Categorized Graphs?  

Categorized graphs (the term first used in STATISTICA software by StatSoft in 1990; also 
recently called Trellis graphs, by Becker, Cleveland, and Clark, at Bell Labs) produce a 
series of 2D, 3D, ternary, or nD graphs (such as histograms, scatterplots, line plots, 
surface plots, ternary scatterplots, etc.), one for each selected category of cases (i.e., 
subset of cases), for example, respondents from New York, Chicago, Dallas, etc. These 
"component" graphs are placed sequentially in one display, allowing for comparisons 
between the patterns of data shown in graphs for each of the requested groups (e.g., 
cities).  

A variety of methods can be used to select the subsets; the simplest of them is using a 
categorical variable (e.g., a variable City, with three values New York, Chicago, and 
Dallas). For example, the following graph shows histograms of a variable representing 
self-reported stress levels in each of the three cities.  

 

One could conclude that the data suggest that people who live in Dallas are less likely to 
report being stressed, while the patterns (distributions) of stress reporting in New York 
and Chicago are quite similar.  

Categorized graphs in some software systems (e.g., in STATISTICA) also support two-
way or multi-way categorizations, where not one criterion (e.g., City) but two or more 
criteria (e.g., City and Time of the day) are used to create the subsets. Two-way 
categorized graphs can be thought of as "crosstabulations of graphs" where each 
component graph represents a cross-section of one level of one grouping variable (e.g., 
City) and one level of the other grouping variable (e.g., Time).  
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Adding this second factor reveals that the patterns of stress reporting in New York and 
Chicago are actually quite different when the Time of questioning is taken into 
consideration, whereas the Time factor makes little difference in Dallas.  

Categorized graphs vs. matrix graphs. Matrix graphs also produce displays containing 
multiple component graphs; however, each of those component graphs are (or can be) 
based on the same set of cases and the graphs are generated for all combinations of 
variables from one or two lists. Categorized graphs require a selection of variables that 
normally would be selected for non-categorized graphs of the respective type (e.g., two 
variables for a scatterplot). However, in categorized plots, you also need to specify at 
least one grouping variable (or some criteria to be used for sorting the observations into 
the categories) that contains information on group membership of each case (e.g., 
Chicago, Dallas). That grouping variable will not be included in the graph directly (i.e., it 
will not be plotted) but it will serve as a criterion for dividing all analyzed cases into 
separate graphs. As illustrated above, one graph will be created for each group (category) 
identified by the grouping variable.  

Common vs. Independent scaling. Each individual category graph may be scaled 
according to its own range of values (independent scaling),  
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or all graphs may be scaled to a common scale wide enough to accommodate all values in 
all of the category graphs.  

 

Common scaling allows the analyst to make comparisons of ranges and distributions of 
values among categories. However, if the ranges of values in graph categories are 
considerably different (causing a very wide common scale), then some of the graphs may 
be difficult to examine. The use of independent scaling may make it easier to spot trends 
and specific patterns within categories, but it may be more difficult to make comparisons 
of ranges of values among categories.  

Categorization Methods  

There are five general methods of categorization of values and they will be reviewed 
briefly in this section: Integer mode, Categories, Boundaries, Codes, and Multiple 
subsets. Note that the same methods of categorization can be used to categorize cases into 
component graphs and to categorize cases within component graphs (e.g., in histograms 
or box plots).  

Integer Mode. When you use Integer Mode, integer values of the selected grouping 
variable will be used to define the categories, and one graph will be created for all cases 
that belong each category (defined by those integer values). If the selected grouping 
variable contains non-integer values, the software will usually truncate each encountered 
value of the selected grouping variable to an integer value.  
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Categories. With this mode of categorization, you will specify the number of categories 
which you wish to use. The software will divide the entire range of values of the selected 
grouping variable (from minimum to maximum) into the requested number of equal 
length intervals.  

 

Boundaries. The Boundaries method will also create interval categorization, however, 
the intervals can be of arbitrary (e.g., uneven) width as defined by custom interval 
boundaries (for example, "less than –10," "greater than or equal to –10 but less than 0," 
"greater than or equal to 0 but less than 10," and "equal to or greater than 10").  
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Codes. Use this method if the selected grouping variable contains "codes" (i.e., specific, 
meaningful values such as Male, Female) from which you want to specify the categories.  

 

Multiple subsets. This method allows you to custom-define the categories and enables 
you to use more than one variable to define the category. In other words, categorizations 
based on multiple subset definitions of categories may not represent distributions of 
specific (individual) variables but distributions of frequencies of specific "events" defined 
by particular combinations of values of several variables (and defined by conditions 
which may involve any number of variables from the current data set). For example, you 
might specify six categories based on combinations of three variables Gender, Age, and 
Employment.  

 

Histograms  

In general, histograms are used to examine frequency distributions of values of variables. 
For example, the frequency distribution plot shows which specific values or ranges of 
values of the examined variable are most frequent, how differentiated the values are, 
whether most observations are concentrated around the mean, whether the distribution is 
symmetrical or skewed, whether it is multimodal (i.e., has two or more peaks) or 
unimodal, etc. Histograms are also useful for evaluating the similarity of an observed 
distribution with theoretical or expected distributions.  
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Categorized Histograms allow you to produce histograms broken down by one or more 
categorical variables, or by any other one or more sets of logical categorization rules (see 
Categorization Methods).  

There are two major reasons why frequency distributions are of interest.  

• One may learn from the shape of the distribution about the nature of the examined 
variable (e.g., a bimodal distribution may suggest that the sample is not 
homogeneous and consists of observations that belong to two populations that are 
more or less normally distributed).  

• Many statistics are based on assumptions about the distributions of analyzed 
variables; histograms help one to test whether those assumptions are met.  

Often, the first step in the analysis of a new data set is to run histograms on all variables.  

Histograms vs. Breakdown. Categorized Histograms provide information similar to 
breakdowns (e.g., mean, median, minimum, maximum, differentiation of values, etc.; see 
the Basic Statistics and Tables chapter). Although specific (numerical) descriptive 
statistics are easier to read in a table, the overall shape and global descriptive 
characteristics of a distribution are much easier to examine in a graph. Moreover, the 
graph provides qualitative information about the distribution that cannot be fully 
represented by any single index. For example, the overall skewed distribution of income 
may indicate that the majority of people have an income that is much closer to the 
minimum than maximum of the range of income. Moreover, when broken down by 
gender and ethnic background, this characteristic of the income distribution may be found 
to be more pronounced in certain subgroups. Although this information will be contained 
in the index of skewness (for each sub-group), when presented in the graphical form of a 
histogram, the information is usually more easily recognized and remembered. The 
histogram may also reveal "bumps" that may represent important facts about the specific 
social stratification of the investigated population or anomalies in the distribution of 
income in a particular group caused by a recent tax reform.  

Categorized histograms and scatterplots. A useful application of the categorization 
methods for continuous variables is to represent the simultaneous relationships between 
three variables. Shown below is a scatterplot for two variables Load 1 and Load 2.  
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Now suppose you would like to add a third variable (Output) and examine how it is 
distributed at different levels of the joint distribution of Load 1 and Load 2. The 
following graph could be produced:  

 

In this graph, Load 1 and Load 2 are both categorized into 5 intervals, and within each 
combination of intervals the distribution for variable Output is computed. Note that the 
"box" (parallelogram) encloses approximately the same observations (cases) in both 
graphs shown above.  

Scatterplots  

In general, two-dimensional scatterplots are used to visualize relations between two 
variables X and Y (e.g., weight and height). In scatterplots, individual data points are 
represented by point markers in two-dimensional space, where axes represent the 
variables. The two coordinates (X and Y) which determine the location of each point 
correspond to its specific values on the two variables. If the two variables are strongly 
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related, then the data points form a systematic shape (e.g., a straight line or a clear curve). 
If the variables are not related, then the points form a round "cloud."  

The categorized scatterplot option allows you to produce scatterplots categorized by one 
or more variables. Via the Multiple Subsets method (see Categorization Methods), you 
can also categorize the scatterplot based on logical selection conditions that define each 
category or group of observations.  

Categorized scatterplots offer a powerful exploratory and analytic technique for 
investigating relationships between two or more variables within different sub-groups.  

Homogeneity of Bivariate Distributions (Shapes of Relations). Scatterplots are 
typically used to identify the nature of relations between two variables (e.g., blood 
pressure and cholesterol level), because they can provide much more information than a 
correlation coefficient.  

For example, a lack of homogeneity in the sample from which a correlation was 
calculated can bias the value of the correlation. Imagine a case where a correlation 
coefficient is calculated from data points which came from two different experimental 
groups, but this fact was ignored when the correlation was calculated. Suppose the 
experimental manipulation in one of the groups increased the values of both correlated 
variables, and thus the data from each group form a distinctive "cloud" in the scatterplot 
(as shown in the following illustration).  

 

In this example, the high correlation is entirely due to the arrangement of the two groups, 
and it does not represent the "true" relation between the two variables, which is 
practically equal to 0 (as could be seen if one looked at each group separately).  

If you suspect that such pattern may exist in your data and you know how to identify the 
possible "subsets" of data, then producing a categorized scatterplot  
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may yield a more accurate picture of the strength of the relationship between the X and Y 
variable, within each group (i.e., after controlling for group membership).  

Curvilinear Relations. Curvilinearity is another aspect of the relationships between 
variables which can be examined in scatterplots. There are no "automatic" or easy-to-use 
tests to measure curvilinear relationships between variables: The standard Pearson r 
coefficient measures only linear relations; some nonparametric correlations such as the 
Spearman R can measure curvilinear relations, but not non-monotonous relations. 
Examining scatterplots allows one to identify the shape of relations, so that later an 
appropriate data transformation can be chosen to "straighten" the data or choose an 
appropriate nonlinear estimation equation to be fit.  

For more information, refer to the chapters on Basic Statistics, Nonparametrics and 
Distributions, Multiple Regression, and Nonlinear Estimation.  

Probability Plots  

Three types of categorized probability plots are Normal, Half-Normal, and Detrended. 
Normal probability plots provide a quick way to visually inspect to what extent the 
pattern of data follows a normal distribution.  

Via categorized probability plots, one can examine how closely the distribution of a 
variable follows the normal distribution in different sub-groups.  
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Categorized normal probability plots provide an efficient tool to examine the normality 
aspect of group homogeneity.  

 

Quantile-Quantile Plots  

The categorized Quantile-Quantile (or Q-Q) plot is useful for finding the best fitting 
distribution within a family of distributions.  

 

With Categorized Q-Q plots, a series of Quantile-Quantile (or Q-Q) plots, one for each 
category of cases identified by the X or X and Y category variables (or identified by the 
Multiple Subset criteria, see Categorization Methods) are produced. Examples of 
distributions which are used for Q-Q plots are the Exponential Distribution, Extreme 
Distribution, Normal, Rayleigh, Beta, Gamma, Lognormal, and Weibull distributions.  

Probability-Probability Plots  

The categorized Probability-Probability (or P-P) plot is useful for determining how well a 
specific theoretical distribution fits the observed data. This type of graph includes a series 
of Probability-Probability (or P-P) plots, one for each category of cases identified by the 
X or X and Y category variables (or identified by the Multiple Subset criteria, see 
Categorization Methods).  
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In the P-P plot, the observed cumulative distribution function (the proportion of non-
missing values x) is plotted against a theoretical cumulative distribution function in 
order to assess the fit of the theoretical distribution to the observed data. If all points in 
this plot fall onto a diagonal line (with intercept 0 and slope 1), then you can conclude 
that the theoretical cumulative distribution adequately approximates the observed 
distribution.  

If the data points do not all fall on the diagonal line, then you can use this plot to visually 
assess where the data do and do not follow the distribution (e.g., if the points form an S 
shape along the diagonal line, then the data may need to be transformed in order to bring 
them to the desired distribution pattern).  

Line Plots  

In line plots, individual data points are connected by a line. Line plots provide a simple 
way to visually present a sequence of many values (e.g., stock market quotes over a 
number of days). The categorized Line Plots graph is useful when one wants to view such 
data broken down (categorized) by a grouping variable (e.g., closing stock quotes on 
Mondays, Tuesdays, etc.) or some other logical criteria involving one or more other 
variables (e.g., closing quotes only for those days when two other stocks and the Dow 
Jones index went up, versus all other closing quotes; see Categorization Methods).  
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Box Plots  

In Box Plots (the term first used by Tukey, 1970), ranges of values of a selected variable 
(or variables) are plotted separately for groups of cases defined by values of up to three 
categorical (grouping) variables, or as defined by Multiple Subsets categories.  

The central tendency (e.g., median or mean), and range or variation statistics (e.g., 
quartiles, standard errors, or standard deviations) are computed for each group of cases, 
and the selected values are presented in one of five styles (Box Whiskers, Whiskers, 
Boxes, Columns, or High-Low Close). Outlier data points can also be plotted (see the 
sections on outliers and extremes).  

For example, in the following graph, outliers (in this case, points greater or less than 1.5 
times the inter-quartile range) indicate a particularly "unfortunate" flaw in an otherwise 
nearly perfect combination of factors:  

 

However, in the following graph, no outliers or extreme values are evident.  

 

There are two typical applications for box plots: (a) showing ranges of values for 
individual items, cases or samples (e.g., a typical MIN-MAX plot for stocks or 
commodities or aggregated sequence data plots with ranges), and (b) showing variation 
of scores in individual groups or samples (e.g., box and whisker plots presenting the 



 369 

mean for each sample as a point inside the box, standard errors as the box, and standard 
deviations around the mean as a narrower box or a pair of "whiskers").  

Box plots showing variation of scores allow one to quickly evaluate and "intuitively 
envision" the strength of the relation between the grouping and dependent variable. 
Specifically, assuming that the dependent variable is normally distributed, and knowing 
what proportion of observations fall, for example, within ±1 or ±2 standard deviations 
from the mean (see Elementary Concepts), one can easily evaluate the results of an 
experiment and say that, for example, the scores in about 95% of cases in experimental 
group 1 belong to a different range than scores in about 95% of cases in group 2.  

In addition, so-called trimmed means (this term was first used by Tukey, 1962) may be 
plotted by excluding a user-specified percentage of cases from the extremes (i.e., tails) of 
the distribution of cases.  

Pie Charts  

The pie chart is one of the most common graph formats used for representing proportions 
or values of variables. This graph allows you to produce pie charts broken down by one 
or more other variables (e.g., grouping variables such as gender) or categorized according 
to some logical selection conditions that identify Multiple Subsets (see Categorization 
Methods).  

For purposes of this discussion, categorized pie charts will always be interpreted as 
frequency pie charts (as opposed to data pie charts). This type of pie chart (sometimes 
called a frequency pie chart) interprets data like a histogram. It categorizes all values of 
the selected variable following the selected categorization technique and then displays the 
relative frequencies as pie slices of proportional sizes. Thus, these pie charts offer an 
alternative method to display frequency histogram data (see the section on Categorized 
Histograms).  

 

Pie-Scatterplots. Another useful application of categorized pie charts is to represent the 
relative frequency distribution of a variable at each "location" of the joint distribution of 
two other variables. Here is an example:  
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Note that pies are only drawn in "places" where there are data. Thus, the graph shown 
above takes on the appearance of a scatterplot (of variables L1 and L2), with the 
individual pies as point markers. However, in addition to the information contained in a 
simple scatterplot, each pie shows the relative distribution of a third variable at the 
respective location (i.e., Low, Medium, and High Quality).  

Missing/Range Data Points Plots  

This graph produces a series of 2D graphs (one for each category of cases identified by 
the grouping variables or by the Multiple Subset criteria; see Categorization Methods) of 
missing data points and/or user-specified "out of range" points from which you can 
visualize the pattern or distribution of missing data (and/or user-specified "out of range" 
points) within each subset of cases (category).  

 

This graph is useful in exploratory data analysis to determine the extent of missing 
(and/or "out of range") data and whether the patterns of those data occur randomly.  

3D Plots  
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This type of graph allows you to produce 3D scatterplots (space plots, spectral plots, 
deviation plots, and trace plots), contour plots, and surface plots for subsets of cases 
defined by the specified categories of a selected variable or categories determined by 
user-defined case selection conditions (see Categorization Methods). Thus, the general 
purpose of this plot is to facilitate comparisons between groups or categories regarding 
the relationships between three or more variables.  

 

Applications. In general, 3D XYZ graphs summarize the interactive relationships 
between three variables. The different ways in which data can be categorized (in a 
Categorized Graph) allow one to review those relationships contingent on some other 
criterion (e.g., group membership).  

For example, from the categorized surface plot shown below, one can conclude that the 
setting of the tolerance level in an apparatus does not affect the investigated relationship 
between the measurements (Depend1, Depend2, and Height) unless the setting is 3.  

 

The effect is more salient when you switch to the contour plot representation.  
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Ternary Plots  

A categorized ternary plot can be used to examine relations between three or more 
dimensions where three of those dimensions represent components of a mixture (i.e., the 
relations between them is constrained such that the values of the three variables add up to 
the same constant for each case) for each level of a grouping variable.  

 

In ternary plots, the triangular coordinate systems are used to plot four (or more) 
variables (the components X, Y, and Z, and the responses V1, V2, etc.) in two 
dimensions (ternary scatterplots or contours) or three dimensions (ternary surface plots). 
In order to produce ternary graphs, the relative proportions of each component within 
each case are constrained to add up to the same value (e.g., 1).  

In a categorized ternary plot, one component graph is produced for each level of the 
grouping variable (or user-defined subset of data) and all the component graphs are 
arranged in one display to allow for comparisons between the subsets of data (categories).  

Applications. A typical application of this graph is when the measured response(s) from 
an experiment depends on the relative proportions of three components (e.g., three 
different chemicals) which are varied in order to determine an optimal combination of 
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those components (e.g., in mixture designs). This type of graph can also be used for other 
applications where relations between constrained variables need to be compared across 
categories or subsets of data.  

 

 
 
 

Brushing  

Perhaps the most common and historically first widely used technique explicitly 
identified as graphical exploratory data analysis is brushing, an interactive method 
allowing one to select on-screen specific data points or subsets of data and identify their 
(e.g., common) characteristics, or to examine their effects on relations between relevant 
variables (e.g., in scatterplot matrices) or to identify (e.g., label) outliers.  

Those relations between variables can be visualized by fitted functions (e.g., 2D lines or 
3D surfaces) and their confidence intervals, thus, for example, one can examine changes 
in those functions by interactively (temporarily) removing or adding specific subsets of 
data. For example, one of many applications of the brushing technique is to select (i.e., 
highlight) in a matrix scatterplot all data points that belong to a certain category (e.g., a 
"medium" income level, see the highlighted subset in the upper right component graph in 
illustration below):  
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in order to examine how those specific observations contribute to relations between other 
variables in the same data set (e.g, the correlation between the "debt" and "assets" in the 
current example).  

If the brushing facility supports features like "animated brushing" (see example below) or 
"automatic function re-fitting," one can define a dynamic brush that would move over the 
consecutive ranges of a criterion variable (e.g., "income" measured on a continuous scale 
and not a discrete scale as in the illustration to the above) and examine the dynamics of 
the contribution of the criterion variable to the relations between other relevant variables 
in the same data set.  

  

 
 

 
 
 

Smoothing Bivariate Distributions  

Three-dimensional histograms are used to visualize crosstabulations of values in two 
variables. They can be considered to be a conjunction of two simple (i.e., univariate) 
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histograms, combined such that the frequencies of co-occurrences of values on the two 
analyzed variables can be examined. In a most common format of this graph, a 3D bar is 
drawn for each "cell" of the crosstabulation table and the height of the bar represents the 
frequency of values for the respective cell of the table. Different methods of 
categorization can be used for each of the two variables for which the bivariate 
distribution is visualized (see below).  

 

If the software provides smoothing facilities, you can fit surfaces to 3D representations of 
bivariate frequency data. Thus, every 3D histogram can be turned into a smoothed 
surface. This technique is of relatively little help if applied to a simple pattern of 
categorized data (such as the histogram that was shown above).  
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However, if applied to more complex patterns of frequencies, it may provide a valuable 
exploratory technique,  

 

allowing identification of regularities which are less salient when examining the standard 
3D histogram representations (e.g., see the systematic surface "wave-patterns" shown on 
the smoothed histogram above).  

 
 
 

Layered Compression  

When layered compression is used, the main graph plotting area is reduced in size to 
leave space for Margin Graphs in the upper and right side of the display (and a miniature 
graph in the corner). These smaller Margin Graphs represent vertically and horizontally 
compressed images (respectively) of the main graph.  

In 2D graphs, layered compression is an exploratory data analysis technique that may 
facilitate the identification of otherwise obscured trends and patterns in 2-dimensional 
data sets. For example, in the following illustration  
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(based on an example discussed by Cleveland, 1993), it can be seen that the number of 
sunspots in each cycle decays more slowly than it rises at the onset of each cycle. This 
tendency is not readily apparent when examining the standard line plot; however, the 
compressed graph uncovers the hidden pattern.  

 
 
 

Projections of 3D data sets  

Contour plots generated by projecting surfaces (created from multivariate, typically 
three-variable, data sets) offer a useful method to explore and analytically examine the 
shapes of surfaces.  

 

  



 378 

As compared to surface plots, they may be less effective to quickly visualize the overall 
shape of 3D data structures,  

 

however, their main advantage is that they allow for precise examination and analysis of 
the shape of the surface  

 

(Contour Plots display a series of undistorted horizontal "cross sections" of the surface).  

 
 
 

Icon Plots  

Icon Graphs represent cases or units of observation as multidimensional symbols and 
they offer a powerful although not easy to use exploratory technique. The general idea 
behind this method capitalizes on the human ability to "automatically" spot complex 
(sometimes interactive) relations between multiple variables if those relations are 
consistent across a set of instances (in this case "icons"). Sometimes the observation (or a 
"feeling") that certain instances are "somehow similar" to each other comes before the 
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observer (in this case an analyst) can articulate which specific variables are responsible 
for the observed conisistency (Lewicki, Hill, & Czyzewska, 1992). However, further 
analysis that focuses on such intuitively spotted consistencies can reveal the specific 
nature of the relevant relations between variables.  

 

The basic idea of icon plots is to represent individual units of observation as particular 
graphical objects where values of variables are assigned to specific features or 
dimensions of the objects (usually one case = one object). The assignment is such that the 
overall appearance of the object changes as a function of the configuration of values.  

 

Thus, the objects are given visual "identities" that are unique for configurations of values 
and that can be identified by the observer. Examining such icons may help to discover 
specific clusters of both simple relations and interactions between variables.  

Analyzing Icon Plots  

The "ideal" design of the analysis of icon plots consists of five phases:  

1. Select the order of variables to be analyzed. In many cases a random starting 
sequence is the best solution. You may also try to enter variables based on the 
order in a multiple regression equation, factor loadings on an interpretable factor 
(see the Factor Analysis chapter), or a similar multivariate technique. That 
method may simplify and "homogenize" the general appearance of the icons 
which may facilitate the identification of non-salient patterns. It may also, 
however, make some interactive patterns more difficult to find. No universal 
recommendations can be given at this point, other than to try the quicker (random 
order) method before getting involved in the more time-consuming method.  
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2. Look for any potential regularities, such as similarities between groups of icons, 
outliers, or specific relations between aspects of icons (e.g., "if the first two rays 
of the star icon are long, then one or two rays on the other side of the icon are 
usually short"). The Circular type of icon plots is recommended for this phase.  

3. If any regularities are found, try to identify them in terms of the specific variables 
involved.  

4. Reassign variables to features of icons (or switch to one of the sequential icon 
plots) to verify the identified structure of relations (e.g., try to move the related 
aspects of the icon closer together to facilitate further comparisons). In some 
cases, at the end of this phase it is recommended to drop the variables that appear 
not to contribute to the identified pattern.  

5. Finally, use a quantitative method (such as a regression method, nonlinear 
estimation, discriminant function analysis, or cluster analysis) to test and quantify 
the identified pattern or at least some aspects of the pattern.  

Taxonomy of Icon Plots  

Most icon plots can be assigned to one of two categories: circular and sequential.  

Circular icons. Circular icon plots (star plots, sun ray plots, polygon icons) follow a 
"spoked wheel" format where values of variables are represented by distances between 
the center ("hub") of the icon and its edges.  

 

Those icons may help to identify interactive relations between variables because the 
overall shape of the icon may assume distinctive and identifiable overall patterns 
depending on multivariate configurations of values of input variables.  

In order to translate such "overall patterns" into specific models (in terms of relations 
between variables) or verify specific observations about the pattern, it is helpful to switch 
to one of the sequential icon plots which may prove more efficient when one already 
knows what to look for.  

Sequential icons. Sequential icon plots (column icons, profile icons, line icons) follow a 
simpler format where individual symbols are represented by small sequence plots (of 
different types).  
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The values of consecutive variables are represented in those plots by distances between 
the base of the icon and the consecutive break points of the sequence (e.g., the height of 
the columns shown above). Those plots may be less efficient as a tool for the initial 
exploratory phase of icon analysis because the icons may look alike. However, as 
mentioned before, they may be helpful in the phase when some hypothetical pattern has 
already been revealed and one needs to verify it or articulate it in terms of relations 
between individual variables.  

Pie icons. Pie icon plots fall somewhere in-between the previous two categories; all icons 
have the same shape (pie) but are sequentially divided in a different way according to the 
values of consecutive variables.  

 

From a functional point of view, they belong rather to the sequential than circular 
category, although they can be used for both types of applications.  

Chernoff faces. This type of icon is a category by itself. Cases are visualized by 
schematic faces such that relative values of variables selected for the graph are 
represented by variations of specific facial features.  
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Due to its unique features, it is considered by some researchers as an ultimate exploratory 
multivariate technique that is capable of revealing hidden patterns of interrelations 
between variables that cannot be uncovered by any other technique. This statement may 
be an exaggeration, however. Also, it must be admitted that Chernoff Faces is a method 
that is difficult to use, and it requires a great deal of experimentation with the assignment 
of variables to facial features. See also Data Mining Techniques.  

Standardization of Values  

Except for unusual cases when you intend for the icons to reflect the global differences in 
ranges of values between the selected variables, the values of the variables should be 
standardized once to assure within-icon compatibility of value ranges. For example, 
because the largest value sets the global scaling reference point for the icons, then if there 
are variables that are in a range of much smaller order, they may not appear in the icon at 
all, e.g., in a star plot, the rays that represent them will be too short to be visible.  

Applications  

Icon plots are generally applicable (1) to situations where one wants to find systematic 
patterns or clusters of observations, and (2) when one wants to explore possible complex 
relationships between several variables. The first type of application is similar to cluster 
analysis; that is, it can be used to classify observations.  

For example, suppose you studied the personalities of artists, and you recorded the scores 
for several artists on a number of personality questionnaires. The icon plot may help you 
determine whether there are natural clusters of artists distinguished by particular patterns 
of scores on different questionnaires (e.g., you may find that some artists are very 
creative, undisciplined, and independent, while a second group is particularly intelligent, 
disciplined, and concerned with publicly-acknowledged success).  

The second type of application -- the exploration of relationships between several 
variables -- is more similar to factor analysis; that is, it can be used to detect which 
variables tend to "go together." For example, suppose you were studying the structure of 
people’s perception of cars. Several subjects completed detailed questionnaires rating 
different cars on numerous dimensions. In the data file, the average ratings on each 
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dimension (entered as the variables) for each car (entered as cases or observations) are 
recorded.  

When you now study the Chernoff faces (each face representing the perceptions for one 
car), it may occur to you that smiling faces tend to have big ears; if price was assigned to 
the amount of smile and acceleration to the size of ears, then this "discovery" means that 
fast cars are more expensive. This, of course, is only a simple example; in real-life 
exploratory data analyses, non-obvious complex relationships between variables may 
become apparent.  

Related Graphs  

Matrix plots visualize relations between variables from one or two lists. If the software 
allows you to mark selected subsets, matrix plots may provide information similar to that 
in icon plots.  

If the software allows you to create and identify user-defined subsets in scatterplots, 
simple 2D scatterplots can be used to explore the relationships between two variables; 
likewise, when exploring the relationships between three variables, 3D scatterplots 
provide an alternative to icon plots.  

Graph Type  

There are various types of Icon Plots.  

Chernoff Faces. A separate "face" icon is drawn for each case; relative values of the 
selected variables for each case are assigned to shapes and sizes of individual facial 
features (e.g., length of nose, angle of eyebrows, width of face).  

 

For more information see Chernoff Faces in Taxonomy of Icon Plots.  

Stars. Star Icons is a circular type of icon plot. A separate star-like icon is plotted for 
each case; relative values of the selected variables for each case are represented 
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(clockwise, starting at 12:00) by the length of individual rays in each star. The ends of the 
rays are connected by a line.  

 

Sun Rays. Sun Ray Icons is a circular type of icon plot. A separate sun-like icon is 
plotted for each case; each ray represents one of the selected variables (clockwise, 
starting at 12:00), and the length of the ray represents the relative value of the respective 
variable. Data values of the variables for each case are connected by a line.  

 

Polygons. Polygon Icons is a circular type of icon plot. A separate polygon icon is 
plotted for each case; relative values of the selected variables for each case are 
represented by the distance from the center of the icon to consecutive corners of the 
polygon (clockwise, starting at 12:00).  
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Pies. Pie Icons is a circular type of icon plot. Data values for each case are plotted as a 
pie chart (clockwise, starting at 12:00); relative values of selected variables are 
represented by the size of the pie slices.  

 

Columns. Column Icons is a sequential type of icon plot. An individual column graph is 
plotted for each case; relative values of the selected variables for each case are 
represented by the height of consecutive columns.  
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Lines. Line Icons is a sequential type of icon plot.  

 

An individual line graph is plotted for each case; relative values of the selected variables 
for each case are represented by the height of consecutive break points of the line above 
the baseline.  

Profiles. Profile Icons is a sequential type of icon plot. An individual area graph is 
plotted for each case; relative values of the selected variables for each case are 
represented by the height of consecutive peaks of the profile above the baseline.  

 

Mark Icons  

If the software allows you to specify multiple subsets, it is useful to specify the cases 
(subjects) whose icons will be marked (i.e., frames will be placed around the selected 
icons) in the plot.  
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The line patterns of frames which identify specific subsets should be listed in the legend 
along with the case selection conditions. The following graph shows an example of 
marked subsets.  

 

All cases (observations) which meet the condition specified in Subset 1 (i.e., cases for 
which the value of variable Iristype is equal to Setosa and for which the case number is 
less than 100) are marked with a specific frame around the selected icons.  

All cases which meet the condition outlined in Subset 2 (i.e., cases for which the value of 
Iristype is equal to Virginic and for which the case number is less than 100) are assigned 
a different frame around the selected icons.  

 
 
 

Data Reduction  
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Sometimes plotting an extremely large data set, can obscure an existing pattern (see the 
animation below). When you have a very large data file, it can be useful to plot only a 
subset of the data, so that the pattern is not hidden by the number of point markers.  

 

Some software products offer methods for data reduction (or optimizing) which can be 
useful in these instances. Ideally, a data reduction option will allow you to specify an 
integer value n less than the number of cases in the data file. Then the software will 
randomly select approximately n cases from the available cases and create the plot based 
on these cases only.  

Note that such data set (or sample size) reduction methods effectively draw a random 
sample from the current data set. Obviously, the nature of such data reduction is entirely 
different than when data are selectively reduced only to a specific subset or split into 
subgroups based on certain criteria (e.g., such as gender, region, or cholesterol level). The 
latter methods can be implemented interactively (e.g., using animated brushing facilities), 
or other techniques (e.g., categorized graphs or case selection conditions). All these 
methods can further aid in identifying patterns in large data sets.  

 
 
 

Data Rotation (in 3D space)  

Changing the viewpoint for 3D scatterplots (e.g., simple, spectral, or space plots) may 
prove to be an effective exploratory technique since it can reveal patterns that are easily 
obscured unless you look at the "cloud" of data points from an appropriate angle (see the 
animation below).  
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Some software products offer interactive perspective, rotation, and continuous spinning 
controls which can be useful in these instances. Ideally, these controls will allow you to 
adjust the graph's angle and perspective to find the most informative location of the 
"viewpoint" for the graph as well as allowing you to control the vertical and horizontal 
rotation of the graph.  

While these facilities are useful for initial exploratory data analysis, they can also be 
quite beneficial in exploring the factorial space (see Factor Analysis) and exploring the 
dimensional space (see Multidimensional Scaling).  
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Chapter 23 
Independent Components Analysis 

 

Introductory Overview  

Independent Component Analysis is a well established and reliable statistical method that 
performs signal separation. Signal separation is a frequently occurring problem and is 
central to Statistical Signal Processing, which has a wide range of applications in many 
areas of technology ranging from Audio and Image Processing to Biomedical Signal 
Processing, Telecommunications, and Econometrics.  

Imagine being in a room with a crowd of people and two speakers giving presentations at 
the same time. The crowed is making comments and noises in the background. We are 
interested in what the speakers say and not the comments emanating from the crowd. 
There are two microphones at different locations, recording the speakers' voices as well 
as the noise coming from the crowed. Our task is to separate the voice of each speaker 
while ignoring the background noise (see illustration below).  

 

This is a classic example of the Independent Component Analysis, a well established 
stochastic technique. ICA can be used as a method of Blind Source Separation, meaning 
that it can separate independent signals from linear mixtures with virtually no prior 
knowledge on the signals. An example is decomposition of Electro or 
Magnetoencephalographic signals. In computational Neuroscience, ICA has been used 
for Feature Extraction, in which case it seems to adequately model the basic cortical 
processing of visual and auditory information. New application areas are being 
discovered at an increasing pace.  
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Chapter 24 
Multiple Regression 

 

• General Purpose  
• Computational Approach  

o Least Squares  
o The Regression Equation  
o Unique Prediction and Partial Correlation  
o Predicted and Residual Scores  
o Residual Variance and R-square  
o Interpreting the Correlation Coefficient R  

• Assumptions, Limitations, and Practical Considerations  
o Assumption of Linearity  
o Normality Assumption  
o Limitations  
o Choice of the number of variables  
o Multicollinearity and matrix ill-conditioning  
o Fitting centered polynomial models  
o The importance of residual analysis  

 

General Purpose  

The general purpose of multiple regression (the term was first used by Pearson, 1908) is 
to learn more about the relationship between several independent or predictor variables 
and a dependent or criterion variable. For example, a real estate agent might record for 
each listing the size of the house (in square feet), the number of bedrooms, the average 
income in the respective neighborhood according to census data, and a subjective rating 
of appeal of the house. Once this information has been compiled for various houses it 
would be interesting to see whether and how these measures relate to the price for which 
a house is sold. For example, one might learn that the number of bedrooms is a better 
predictor of the price for which a house sells in a particular neighborhood than how 
"pretty" the house is (subjective rating). One may also detect "outliers," that is, houses 
that should really sell for more, given their location and characteristics.  

Personnel professionals customarily use multiple regression procedures to determine 
equitable compensation. One can determine a number of factors or dimensions such as 
"amount of responsibility" (Resp) or "number of people to supervise" (No_Super) that 
one believes to contribute to the value of a job. The personnel analyst then usually 
conducts a salary survey among comparable companies in the market, recording the 
salaries and respective characteristics (i.e., values on dimensions) for different positions. 
This information can be used in a multiple regression analysis to build a regression 
equation of the form:  
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Salary = .5*Resp + .8*No_Super  

Once this so-called regression line has been determined, the analyst can now easily 
construct a graph of the expected (predicted) salaries and the actual salaries of job 
incumbents in his or her company. Thus, the analyst is able to determine which position 
is underpaid (below the regression line) or overpaid (above the regression line), or paid 
equitably.  

In the social and natural sciences multiple regression procedures are very widely used in 
research. In general, multiple regression allows the researcher to ask (and hopefully 
answer) the general question "what is the best predictor of ...". For example, educational 
researchers might want to learn what are the best predictors of success in high-school. 
Psychologists may want to determine which personality variable best predicts social 
adjustment. Sociologists may want to find out which of the multiple social indicators best 
predict whether or not a new immigrant group will adapt and be absorbed into society.  

See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  

 

 

Computational Approach  

The general computational problem that needs to be solved in multiple regression 
analysis is to fit a straight line to a number of points.  

 

In the simplest case -- one dependent and one independent variable -- one can visualize 
this in a scatterplot.  

• Least Squares  
• The Regression Equation  
• Unique Prediction and Partial Correlation  
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• Predicted and Residual Scores  
• Residual Variance and R-square  
• Interpreting the Correlation Coefficient R  

See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  

Least Squares. In the scatterplot, we have an independent or X variable, and a dependent 
or Y variable. These variables may, for example, represent IQ (intelligence as measured 
by a test) and school achievement (grade point average; GPA), respectively. Each point 
in the plot represents one student, that is, the respective student's IQ and GPA. The goal 
of linear regression procedures is to fit a line through the points. Specifically, the 
program will compute a line so that the squared deviations of the observed points from 
that line are minimized. Thus, this general procedure is sometimes also referred to as 
least squares estimation.  

See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  

The Regression Equation. A line in a two dimensional or two-variable space is defined 
by the equation Y=a+b*X; in full text: the Y variable can be expressed in terms of a 
constant (a) and a slope (b) times the X variable. The constant is also referred to as the 
intercept, and the slope as the regression coefficient or B coefficient. For example, GPA 
may best be predicted as 1+.02*IQ. Thus, knowing that a student has an IQ of 130 would 
lead us to predict that her GPA would be 3.6 (since, 1+.02*130=3.6).  

For example, the animation below shows a two dimensional regression equation plotted 
with three different confidence intervals (90%, 95% and 99%).  

 

In the multivariate case, when there is more than one independent variable, the regression 
line cannot be visualized in the two dimensional space, but can be computed just as 
easily. For example, if in addition to IQ we had additional predictors of achievement 
(e.g., Motivation, Self- discipline) we could construct a linear equation containing all 
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those variables. In general then, multiple regression procedures will estimate a linear 
equation of the form:  

Y = a + b1*X 1 + b2*X 2 + ... + bp*X p  

Unique Prediction and Partial Correlation. Note that in this equation, the regression 
coefficients (or B coefficients) represent the independent contributions of each 
independent variable to the prediction of the dependent variable. Another way to express 
this fact is to say that, for example, variable X1 is correlated with the Y variable, after 
controlling for all other independent variables. This type of correlation is also referred to 
as a partial correlation (this term was first used by Yule, 1907). Perhaps the following 
example will clarify this issue. One would probably find a significant negative correlation 
between hair length and height in the population (i.e., short people have longer hair). At 
first this may seem odd; however, if we were to add the variable Gender into the multiple 
regression equation, this correlation would probably disappear. This is because women, 
on the average, have longer hair than men; they also are shorter on the average than men. 
Thus, after we remove this gender difference by entering Gender into the equation, the 
relationship between hair length and height disappears because hair length does not make 
any unique contribution to the prediction of height, above and beyond what it shares in 
the prediction with variable Gender. Put another way, after controlling for the variable 
Gender, the partial correlation between hair length and height is zero.  

Predicted and Residual Scores. The regression line expresses the best prediction of the 
dependent variable (Y), given the independent variables (X). However, nature is rarely (if 
ever) perfectly predictable, and usually there is substantial variation of the observed 
points around the fitted regression line (as in the scatterplot shown earlier). The deviation 
of a particular point from the regression line (its predicted value) is called the residual 
value.  

Residual Variance and R-square. The smaller the variability of the residual values 
around the regression line relative to the overall variability, the better is our prediction. 
For example, if there is no relationship between the X and Y variables, then the ratio of 
the residual variability of the Y variable to the original variance is equal to 1.0. If X and Y 
are perfectly related then there is no residual variance and the ratio of variance would be 
0.0. In most cases, the ratio would fall somewhere between these extremes, that is, 
between 0.0 and 1.0. 1.0 minus this ratio is referred to as R-square or the coefficient of 
determination. This value is immediately interpretable in the following manner. If we 
have an R-square of 0.4 then we know that the variability of the Y values around the 
regression line is 1-0.4 times the original variance; in other words we have explained 
40% of the original variability, and are left with 60% residual variability. Ideally, we 
would like to explain most if not all of the original variability. The R-square value is an 
indicator of how well the model fits the data (e.g., an R-square close to 1.0 indicates that 
we have accounted for almost all of the variability with the variables specified in the 
model).  
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Interpreting the Correlation Coefficient R. Customarily, the degree to which two or 
more predictors (independent or X variables) are related to the dependent (Y) variable is 
expressed in the correlation coefficient R, which is the square root of R-square. In 
multiple regression, R can assume values between 0 and 1. To interpret the direction of 
the relationship between variables, one looks at the signs (plus or minus) of the 
regression or B coefficients. If a B coefficient is positive, then the relationship of this 
variable with the dependent variable is positive (e.g., the greater the IQ the better the 
grade point average); if the B coefficient is negative then the relationship is negative 
(e.g., the lower the class size the better the average test scores). Of course, if the B 
coefficient is equal to 0 then there is no relationship between the variables.  

 

 

Assumptions, Limitations, Practical Considerations  

• Assumption of Linearity  
• Normality Assumption  
• Limitations  
• Choice of the number of variables  
• Multicollinearity and matrix ill-conditioning  
• The importance of residual analysis  

Assumption of Linearity. First of all, as is evident in the name multiple linear 
regression, it is assumed that the relationship between variables is linear. In practice this 
assumption can virtually never be confirmed; fortunately, multiple regression procedures 
are not greatly affected by minor deviations from this assumption. However, as a rule it is 
prudent to always look at bivariate scatterplot of the variables of interest. If curvature in 
the relationships is evident, one may consider either transforming the variables, or 
explicitly allowing for nonlinear components.  

See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  

Normality Assumption. It is assumed in multiple regression that the residuals (predicted 
minus observed values) are distributed normally (i.e., follow the normal distribution). 
Again, even though most tests (specifically the F-test) are quite robust with regard to 
violations of this assumption, it is always a good idea, before drawing final conclusions, 
to review the distributions of the major variables of interest. You can produce histograms 
for the residuals as well as normal probability plots, in order to inspect the distribution of 
the residual values.  

Limitations. The major conceptual limitation of all regression techniques is that one can 
only ascertain relationships, but never be sure about underlying causal mechanism. For 
example, one would find a strong positive relationship (correlation) between the damage 
that a fire does and the number of firemen involved in fighting the blaze. Do we conclude 
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that the firemen cause the damage? Of course, the most likely explanation of this 
correlation is that the size of the fire (an external variable that we forgot to include in our 
study) caused the damage as well as the involvement of a certain number of firemen (i.e., 
the bigger the fire, the more firemen are called to fight the blaze). Even though this 
example is fairly obvious, in real correlation research, alternative causal explanations are 
often not considered.  

Choice of the Number of Variables. Multiple regression is a seductive technique: "plug 
in" as many predictor variables as you can think of and usually at least a few of them will 
come out significant. This is because one is capitalizing on chance when simply including 
as many variables as one can think of as predictors of some other variable of interest. 
This problem is compounded when, in addition, the number of observations is relatively 
low. Intuitively, it is clear that one can hardly draw conclusions from an analysis of 100 
questionnaire items based on 10 respondents. Most authors recommend that one should 
have at least 10 to 20 times as many observations (cases, respondents) as one has 
variables, otherwise the estimates of the regression line are probably very unstable and 
unlikely to replicate if one were to do the study over.  

Multicollinearity and Matrix Ill-Conditioning. This is a common problem in many 
correlation analyses. Imagine that you have two predictors (X variables) of a person's 
height: (1) weight in pounds and (2) weight in ounces. Obviously, our two predictors are 
completely redundant; weight is one and the same variable, regardless of whether it is 
measured in pounds or ounces. Trying to decide which one of the two measures is a 
better predictor of height would be rather silly; however, this is exactly what one would 
try to do if one were to perform a multiple regression analysis with height as the 
dependent (Y) variable and the two measures of weight as the independent (X) variables. 
When there are very many variables involved, it is often not immediately apparent that 
this problem exists, and it may only manifest itself after several variables have already 
been entered into the regression equation. Nevertheless, when this problem occurs it 
means that at least one of the predictor variables is (practically) completely redundant 
with other predictors. There are many statistical indicators of this type of redundancy 
(tolerances, semi-partial R, etc., as well as some remedies (e.g., Ridge regression).  

Fitting Centered Polynomial Models. The fitting of higher-order polynomials of an 
independent variable with a mean not equal to zero can create difficult multicollinearity 
problems. Specifically, the polynomials will be highly correlated due to the mean of the 
primary independent variable. With large numbers (e.g., Julian dates), this problem is 
very serious, and if proper protections are not put in place, can cause wrong results! The 
solution is to "center" the independent variable (sometimes, this procedures is referred to 
as "centered polynomials"), i.e., to subtract the mean, and then to compute the 
polynomials. See, for example, the classic text by Neter, Wasserman, & Kutner (1985, 
Chapter 9), for a detailed discussion of this issue (and analyses with polynomial models 
in general).  

The Importance of Residual Analysis. Even though most assumptions of multiple 
regression cannot be tested explicitly, gross violations can be detected and should be 
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dealt with appropriately. In particular outliers (i.e., extreme cases) can seriously bias the 
results by "pulling" or "pushing" the regression line in a particular direction (see the 
animation below), thereby leading to biased regression coefficients. Often, excluding just 
a single extreme case can yield a completely different set of results.  
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Chapter 25 
Log-Linear Analysis of Frequency Tables 

 

• General Purpose  
• Two-way Frequency Tables  
• Multi-Way Frequency Tables  
• The Log-Linear Model  
• Goodness-of-fit  
• Automatic Model Fitting  

 
General Purpose  

One basic and straightforward method for analyzing data is via crosstabulation. For 
example, a medical researcher may tabulate the frequency of different symptoms by 
patients' age and gender; an educational researcher may tabulate the number of high 
school drop-outs by age, gender, and ethnic background; an economist may tabulate the 
number of business failures by industry, region, and initial capitalization; a market 
researcher may tabulate consumer preferences by product, age, and gender; etc. In all of 
these cases, the major results of interest can be summarized in a multi-way frequency 
table, that is, in a crosstabulation table with two or more factors.  

Log-Linear provides a more "sophisticated" way of looking at crosstabulation tables. 
Specifically, you can test the different factors that are used in the crosstabulation (e.g., 
gender, region, etc.) and their interactions for statistical significance (see Elementary 
Concepts for a discussion of statistical significance testing). The following text will 
present a brief introduction to these methods, their logic, and interpretation.  

Correspondence analysis is a descriptive/exploratory technique designed to analyze two-
way and multi-way tables containing some measure of correspondence between the rows 
and columns. The results provide information which is similar in nature to those 
produced by Factor Analysis techniques, and they allow one to explore the structure of 
the categorical variables included in the table.  

 

 

Two-way Frequency Tables  

Let us begin with the simplest possible crosstabulation, the 2 by 2 table. Suppose we 
were interested in the relationship between age and the graying of people's hair. We took 
a sample of 100 subjects, and determined who does and does not have gray hair. We also 
recorded the approximate age of the subjects. The results of this study may be 
summarized as follows:  

  



 399 

Age Gray 
Hair  Below 40 40 or older Total 

No 
Yes 

40 
20 

  5 
35 

45 
55 

Total 60 40 100 

While interpreting the results of our little study, let us introduce the terminology that will 
allow us to generalize to complex tables more easily.  

Design variables and response variables. In multiple regression (Multiple Regression) 
or analysis of variance (ANOVA/MANOVA ) one customarily distinguishes between 
independent and dependent variables. Dependent variables are those that we are trying to 
explain, that is, that we hypothesize to depend on the independent variables. We could 
classify the factors in the 2 by 2 table accordingly: we may think of hair color (gray, not 
gray) as the dependent variable, and age as the independent variable. Alternative terms 
that are often used in the context of frequency tables are response variables and design 
variables, respectively. Response variables are those that vary in response to the design 
variables. Thus, in the example table above, hair color can be considered to be the 
response variable, and age the design variable.  

Fitting marginal frequencies. Let us now turn to the analysis of our example table. We 
could ask ourselves what the frequencies would look like if there were no relationship 
between variables (the null hypothesis). Without going into details, intuitively one could 
expect that the frequencies in each cell would proportionately reflect the marginal 
frequencies (Totals). For example, consider the following table:  

Age Gray 
Hair  Below 40 40 or older Total 

No 
Yes 

27 
33 

18 
22 

45 
55 

Total 60 40 100 

In this table, the proportions of the marginal frequencies are reflected in the individual 
cells. Thus, 27/33=18/22=45/55 and 27/18=33/22=60/40. Given the marginal 
frequencies, these are the cell frequencies that we would expect if there were no 
relationship between age and graying. If you compare this table with the previous one 
you will see that the previous table does reflect a relationship between the two variables: 
There are more than expected (under the null hypothesis) cases below age 40 without 
gray hair, and more cases above age 40 with gray hair.  

This example illustrates the general principle on which the log-linear analysis is based: 
Given the marginal totals for two (or more) factors, we can compute the cell frequencies 
that would be expected if the two (or more) factors are unrelated. Significant deviations 
of the observed frequencies from those expected frequencies reflect a relationship 
between the two (or more) variables.  
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Model fitting approach. Let us now rephrase our discussion of the 2 by 2 table so far. 
We can say that fitting the model of two variables that are not related (age and hair color) 
amounts to computing the cell frequencies in the table based on the respective marginal 
frequencies (totals). Significant deviations of the observed table from those fitted 
frequencies reflect the lack of fit of the independence (between two variables) model. In 
that case we would reject that model for our data, and instead accept the model that 
allows for a relationship or association between age and hair color.  

 

 

Multi-way Frequency Tables  

The reasoning presented for the analysis of the 2 by 2 table can be generalized to more 
complex tables. For example, suppose we had a third variable in our study, namely 
whether or not the individuals in our sample experience stress at work. Because we are 
interested in the effect of stress on graying, we will consider Stress as another design 
variable. (Note that, if our study were concerned with the effect of gray hair on 
subsequent stress, variable stress would be the response variable, and hair color would be 
the design variable.). The resultant table is a three- way frequency table.  

Fitting models. We can apply our previous reasoning to analyze this table. Specifically, 
we could fit different models that reflect different hypotheses about the data. For 
example, we could begin with a model that hypothesizes independence between all 
factors. As before, the expected frequencies in that case would reflect the respective 
marginal frequencies. If any significant deviations occur, we would reject this model.  

Interaction effects. Another conceivable model would be that age is related to hair color, 
and stress is related to hair color, but the two (age and stress) factors do not interact in 
their effect. In that case, we would need to simultaneously fit the marginal totals for the 
two-way table of age by hair color collapsed across levels of stress, and the two-way 
table of stress by hair color collapsed across the levels of age. If this model does not fit 
the data, we would have to conclude that age, stress, and hair color all are interrelated. 
Put another way, we would conclude that age and stress interact in their effect on 
graying.  

The concept of interaction here is analogous to that used in analysis of variance (ANOVA 
/MANOVA ). For example, the age by stress interaction could be interpreted such that the 
relationship of age to hair color is modified by stress. While age brings about only little 
graying in the absence of stress, age is highly related when stress is present. Put another 
way, the effects of age and stress on graying are not additive, but interactive.  

If you are not familiar with the concept of interaction, we recommend that you read the 
Introductory Overview to ANOVA/MANOVA.  Many aspects of the interpretation of 
results from a log-linear analysis of a multi-way frequency table are very similar to 
ANOVA.  
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Iterative proportional fitting. The computation of expected frequencies becomes 
increasingly complex when there are more than two factors in the table. However, they 
can be computed, and, therefore, we can easily apply the reasoning developed for the 2 
by 2 table to complex tables. The commonly used method for computing the expected 
frequencies is the so-called iterative proportional fitting procedure.  

The Log-Linear Model  

The term log-linear derives from the fact that one can, through logarithmic 
transformations, restate the problem of analyzing multi-way frequency tables in terms 
that are very similar to ANOVA. Specifically, one may think of the multi-way frequency 
table to reflect various main effects and interaction effects that add together in a linear 
fashion to bring about the observed table of frequencies. Bishop, Fienberg, and Holland 
(1974) provide details on how to derive log- linear equations to express the relationship 
between factors in a multi-way frequency table.  

Goodness-of-Fit  

In the previous discussion we have repeatedly made reference to the "significance" of 
deviations of the observed frequencies from the expected frequencies. One can evaluate 
the statistical significance of the goodness-of-fit of a particular model via a Chi-square 
test. You can compute two types of Chi-squares, the traditional Pearson Chi-square 
statistic and the maximum likelihood ratio Chi-square statistic (the term likelihood ratio 
was first introduced by Neyman and Pearson, 1931; the term maximum likelihood was 
first used by Fisher, 1922a). In practice, the interpretation and magnitude of those two 
Chi-square statistics are essentially identical. Both tests evaluate whether the expected 
cell frequencies under the respective model are significantly different from the observed 
cell frequencies. If so, the respective model for the table is rejected.  

Reviewing and plotting residual frequencies. After one has chosen a model for the 
observed table, it is always a good idea to inspect the residual frequencies, that is, the 
observed minus the expected frequencies. If the model is appropriate for the table, then 
all residual frequencies should be "random noise," that is, consist of positive and negative 
values of approximately equal magnitudes that are distributed evenly across the cells of 
the table.  

Statistical significance of effects. The Chi-squares of models that are hierarchically 
related to each other can be directly compared. For example, if we first fit a model with 
the age by hair color interaction and the stress by hair color interaction, and then fit a 
model with the age by stress by hair color (three-way) interaction, then the second model 
is a superset of the previous model. We could evaluate the difference in the Chi-square 
statistics, based on the difference in the degrees of freedom; if the differential Chi-square 
statistic is significant, then we would conclude that the three-way interaction model 
provides a significantly better fit to the observed table than the model without this 
interaction. Therefore, the three-way interaction is statistically significant.  
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In general, two models are hierarchically related to each other if one can be produced 
from the other by either adding terms (variables or interactions) or deleting terms (but not 
both at the same time).  

Automatic Model Fitting  

When analyzing four- or higher-way tables, finding the best fitting model can become 
increasingly difficult. You can use automatic model fitting options to facilitate the search 
for a "good model" that fits the data. The general logic of this algorithm is as follows. 
First, fit a model with no relationships between factors; if that model does not fit (i.e., the 
respective Chi- square statistic is significant), then it will fit a model with all two-way 
interactions. If that model does not fit either, then the program will fit all three-way 
interactions, and so on. Let us assume that this process found the model with all two-way 
interactions to fit the data. The program will then proceed to eliminate all two-way 
interactions that are not statistically significant. The resulting model will be the one that 
includes the least number of interactions necessary to fit the observed table.  
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Chapter 26 
Multivariate Adaptive Regression Splines 

(MARSplines) 
 

• Introductory Overview  
o Regression Problems  
o Multivariate Adaptive Regression Splines  
o Model Selection and Pruning  
o Applications  

• Technical Notes: The MARSplines Algorithm  
• Technical Notes: The MARSplines Model  

Introductory Overview  

Multivariate Adaptive Regression Splines (MARSplines) is an implementation of 
techniques popularized by Friedman (1991) for solving regression-type problems (see 
also, Multiple Regression), with the main purpose to predict the values of a continuous 
dependent or outcome variable from a set of independent or predictor variables. There are 
a large number of methods available for fitting models to continuous variables, such as a 
linear regression [e.g., Multiple Regression, General Linear Model (GLM)], nonlinear 
regression (Generalized Linear/Nonlinear Models), regression trees (see Classification 
and Regression Trees), CHAID, Neural Networks, etc.  (see also Hastie, Tishirani, and 
Friedman, 2001, for an overview).  

Multivariate Adaptive Regression Splines (MARSplines) is a nonparametric regression 
procedure that makes no assumption about the underlying functional relationship between 
the dependent and independent variables. Instead, MARSplines constructs this relation 
from a set of coefficients and basis functions that are entirely "driven" from the 
regression data. In a sense, the method is based on the "divide and conquer" strategy, 
which partitions the input space into regions, each with its own regression equation. This 
makes MARSplines particularly suitable for problems with higher input dimensions (i.e., 
with more than 2 variables), where the curse of dimensionality would likely create 
problems for other techniques. 

The MARSplines technique has become particularly popular in the area of data mining 
because it does not assume or impose any particular type or class of relationship (e.g., 
linear, logistic, etc.) between the predictor variables and the dependent (outcome) 
variable of interest. Instead, useful models (i.e., models that yield accurate predictions) 
can be derived even in situations where the relationship between the predictors and the 
dependent variables is non-monotone and difficult to approximate with parametric 
models. For more information about this technique and how it compares to other methods 
for nonlinear regression (or regression trees), see Hastie, Tishirani, and Friedman (2001). 



 404 

Regression Problems  

Regression problems are used to determine the relationship between a set of dependent 
variables (also called output, outcome, or response variables) and one or more 
independent variables (also known as input or predictor variables). The dependent 
variable is the one whose values you want to predict, based on the values of the 
independent (predictor) variables. For instance, one might be interested in the number of 
car accidents on the roads, which can be caused by 1) bad weather and 2) drunk driving. 
In this case one might write, for example,  

Number_of_Accidents =  Some Constant + 0.5*Bad_Weather + 2.0*Drunk_Driving 

The variable Number of Accidents is the dependent variable that is thought to be caused 
by (among other variables) Bad Weather and Drunk Driving (hence the name dependent 
variable). Note that the independent variables are multiplied by factors, i.e., 0.5 and 2.0. 
These are known as regression coefficients. The larger these coefficients, the stronger the 
influence of the independent variables on the dependent variable. If the two predictors in 
this simple (fictitious) example were measured on the same scale (e.g., if the variables 
were standardized to a mean of 0.0 and standard deviation 1.0), then Drunk Driving could 
be inferred to contribute 4 times more to car accidents than Bad Weather. (If the variables 
are not measured on the same scale, then direct comparisons between these coefficients 
are not meaningful, and, usually, some other standardized measure of predictor 
"importance" is included in the results.)   

For additional details regarding these types of statistical models, refer to Multiple 
Regression or General Linear Models (GLM), as well as General Regression Models 
(GRM). In general, the social and natural sciences regression procedures are widely used 
in research. Regression allows the researcher to ask (and hopefully answer) the general 
question "what is the best predictor of ..." For example, educational researchers might 
want to learn what the best predictors of success in high-school are. Psychologists may 
want to determine which personality variable best predicts social adjustment. Sociologists 
may want to find out which of the multiple social indicators best predict whether a new 
immigrant group will adapt and be absorbed into society. 

Multivariate Adaptive Regression Splines  

The car accident example we considered previously is a typical application for linear 
regression, where the response variable is hypothesized to depend linearly on the 
predictor variables. Linear regression also falls into the category of so-called parametric 
regression, which assumes that the nature of the relationships (but not the specific 
parameters) between the dependent and independent variables is known a priori (e.g., is 
linear). By contrast, nonparametric regression (see Nonparametrics) does not make any 
such assumption as to how the dependent variables are related to the predictors. Instead it 
allows the regression function to be "driven" directly from data. 
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Multivariate Adaptive Regression Splines (MARSplines) is a nonparametric regression 
procedure that makes no assumption about the underlying functional relationship between 
the dependent and independent variables. Instead, MARSplines constructs this relation 
from a set of coefficients and so-called basis functions that are entirely determined from 
the regression data. You can think of the general "mechanism" by which the MARSplines 
algorithm operates as multiple piecewise linear regression (see Nonlinear Estimation), 
where each breakpoint (estimated from the data) defines the "region of application" for a 
particular (very simple) linear regression equation. 

Basis functions. Specifically, MARSplines uses two-sided truncated functions of the form 
(as shown below) as basis functions for linear or nonlinear expansion, which 
approximates the relationships between the response and predictor variables.  

 

Shown above is a simple example of two basis functions (t-x)+ and (x-t)+ (adapted from 
Hastie, et al., 2001, Figure 9.9). Parameter t is the knot of the basis functions (defining 
the "pieces" of the piecewise linear regression); these knots (parameters) are also 
determined from the data. The "+" signs next to the terms (t-x) and (x-t) simply denote 
that only positive results of the respective equations are considered; otherwise the 
respective functions evaluate to zero. This can also be seen in the illustration. 

The MARSplines model. The basis functions together with the model parameters 
(estimated via least squares estimation) are combined to produce the predictions given the 
inputs. The general MARSplines model equation (see Hastie et al., 2001, equation 9.19) is 
given as: 

 

where the summation is over the M nonconstant terms in the model (further details 
regarding the model are also provided in Technical Notes). To summarize, y is predicted 
as a function of the predictor variables X (and their interactions); this function consists of 
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an intercept parameter ( ) and the weighted (by ) sum of one or more basis 

functions , of the kind illustrated earlier. You can also think of this model as 
"selecting" a weighted sum of basis functions from the set of (a large number of) basis 
functions that span all values of each predictor (i.e., that set would consist of one basis 
function, and parameter t, for each distinct value for each predictor variable). The 
MARSplines algorithm then searches over the space of all inputs and predictor values 
(knot locations t) as well as interactions between variables. During this search, an 
increasingly larger number of basis functions are added to the model (selected from the 
set of possible basis functions), to maximize an overall least squares goodness-of-fit 
criterion. As a result of these operations, MARSplines automatically determines the most 
important independent variables as well as the most significant interactions among them. 
The details of this algorithm are further described in Technical Notes, as well as in Hastie 
et al., 2001). 

Categorical predictors. In practice, both continuous and categorical predictors could be 
used, and will often yield useful results. However, the basic MARSplines algorithm 
assumes that the predictor variables are continuous in nature, and, for example, the 
computed knots program will usually not coincide with actual class codes found in the 
categorical predictors. For a detailed discussion of categorical predictor variables in 
MARSplines, see Friedman (1993). 

Multiple dependent (outcome) variables. The MARSplines algorithm can be applied to 
multiple dependent (outcome) variables. In this case, the algorithm will determine a 
common set of basis functions in the predictors, but estimate different coefficients for 
each dependent variable. This method of treating multiple outcome variables is not unlike 
some neural networks architectures, where multiple outcome variables can be predicted 
from common neurons and hidden layers; in the case of MARSplines, multiple outcome 
variables are predicted from common basis functions, with different coefficients. 

MARSplines and classification problems. Because MARSplines can handle multiple 
dependent variables, it is easy to apply the algorithm to classification problems as well. 
First, code the classes in the categorical response variable into multiple indicator 
variables (e.g., 1 = observation belongs to class k, 0 = observation does not belong to 
class k); then apply the MARSplines algorithm to fit a model, and compute predicted 
(continuous) values or scores; finally, for prediction, assign each case to the class for 
which the highest score is predicted (see also Hastie, Tibshirani, and Freedman, 2001, for 
a description of this procedure). Note that this type of application will yield heuristic 
classifications that may work very well in practice, but is not based on a statistical model 
for deriving classification probabilities. 

Model Selection and Pruning  

In general, nonparametric models are adaptive and can exhibit a high degree of flexibility 
that may ultimately result in overfitting if no measures are taken to counteract it. 
Although such models can achieve zero error on training data, they have the tendency to 
perform poorly when presented with new observations or instances (i.e., they do not 
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generalize well to the prediction of "new" cases). MARSplines, like most methods of this 
kind, tend to overfit the data as well. To combat this problem, MARSplines uses a pruning 
technique (similar to pruning in classification trees) to limit the complexity of the model 
by reducing the number of its basis functions. 

MARSplines as a predictor (feature) selection method. This feature - the selection of 
and pruning of basis functions - makes this method a very powerful tool for predictor 
selection. The MARSplines algorithm will pick up only those basis functions (and those 
predictor variables) that make a "sizeable" contribution to the prediction (refer to 
Technical Notes for details).  

Applications  

Multivariate Adaptive Regression Splines (MARSplines) have become very popular 
recently for finding predictive models for "difficult" data mining problems, i.e., when the 
predictor variables do not exhibit simple and/or monotone relationships to the dependent 
variable of interest. Alternative models or approaches that you can consider for such 
cases are CHAID, Classification and Regression Trees, or any of the many Neural 
Networks architectures available. Because of the specific manner in which MARSplines 
selects predictors (basis functions) for the model, it does generally "well" in situations 
where regression-tree models are also appropriate, i.e., where hierarchically organized 
successive splits on the predictor variables yield good (accurate) predictions. In fact, 
instead of considering this technique as a generalization of multiple regression (as it was 
presented in this introduction), you may consider MARSplines as a generalization of 
regression trees, where the "hard" binary splits are replaced by "smooth" basis functions. 
Refer to Hastie, Tibshirani, and Friedman (2001) for additional details. 

 

Technical Notes: The MARSplines Algorithm  

Implementing MARSplines involves a two step procedure that is applied successively 
until a desired model is found. In the first step, we build the model, i.e. increase its 
complexity by adding basis functions until a preset (user-defined) maximum level of 
complexity has been reached. Then we begin a backward procedure to remove the least 
significant basis functions from the model, i.e. those whose removal will lead to the least 
reduction in the (least-squares) goodness of fit. This algorithm is implemented as follows: 

1. Start with the simplest model involving only the constant basis function. 
2. Search the space of basis functions, for each variable and for all possible knots, 

and add those which maximize a certain measure of goodness of fit (minimize 
prediction error). 

3. Step 2 is recursively applied until a model of pre-determined maximum 
complexity is derived. 

4. Finally, in the last stage, a pruning procedure is applied where those basis 
functions are removed that contribute least to the overall (least squares) goodness of 
fit. 
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Technical Notes: The Multivariate Adaptive Regression 
Splines (MARSplines) Model  

The MARSplines algorithm builds models from two sided truncated functions of the 
predictors (x) of the form: 

 

These serve as basis functions for linear or nonlinear expansion that approximates some 
true underlying function f(x). 

The MARSplines model for a dependent (outcome) variable y, and M terms , can be 
summarized in the following equation: 

 

where the summation is over the M terms in the model, and �o and �m are parameters of 
the model (along with the knots t for each basis function, which are also estimated from 
the data). Function H is defined as: 

 

where xv(k,m) is the predictor in the k'th of the m'th product. For order of interactions 
K=1, the model is additive and for K=2 the model pairwise interactive.  

During forward stepwise, a number of basis functions are added to the model according 
to a pre-determined maximum which should be considerably larger (twice as much at 
least) than the optimal (best least-squares fit). 

After implementing the forward stepwise selection of basis functions, a backward 
procedure is applied in which the model is pruned by removing those basis functions that 
are associated with the smallest increase in the (least squares) goodness-of-fit. A least 
squares error function (inverse of goodness-of-fit) is computed. The so-called 
Generalized Cross Validation error is a measure of the goodness of fit that takes into 
account not only the residual error but also the model complexity as well. It is given by 
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with  

 

where N is the number of cases in the data set, d is the effective degrees of freedom, 
which is equal to the number of independent basis functions. The quantity c is the penalty 
for adding a basis function. Experiments have shown that the best value for C can be 
found somewhere in the range 2 < d < 3 (see Hastie et al., 2001). 
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Chapter 27 
Machine Learning 

 

• Introductory Overview  
• Support Vector Machines (SVM)  
• Naive Bayes  
• k-Nearest Neighbors (KNN)  

 
Machine Learning Introductory Overview  

Machine Learning includes a number of advanced statistical methods for handling 
regression and classification tasks with multiple dependent and independent variables. 
These methods include Support Vector Machines (SVM) for regression and 
classification, Naive Bayes for classification, and k-Nearest Neighbours (KNN) for 
regression and classification. Detailed discussions of these techniques can be found in 
Hastie, Tibshirani, & Freedman (2001); a specialized comprehensive introduction to 
support vector machines can also be found in Cristianini and Shawe-Taylor (2000).  

Support Vector Machines (SVM)  

This method performs regression and classification tasks by constructing nonlinear 
decision boundaries. Because of the nature of the feature space in which these boundaries 
are found, Support Vector Machines can exhibit a large degree of flexibility in handling 
classification and regression tasks of varied complexities. There are several types of 
Support Vector models including linear, polynomial, RBF, and sigmoid.  

Naive Bayes  

This is a well established Bayesian method primarily formulated for performing 
classification tasks. Given its simplicity, i.e., the assumption that the independent 
variables are statistically independent, Naive Bayes models are effective classification 
tools that are easy to use and interpret. Naive Bayes is particularly appropriate when the 
dimensionality of the independent space (i.e., number of input variables) is high (a 
problem known as the curse of dimensionality). For the reasons given above, Naive 
Bayes can often outperform other more sophisticated classification methods. A variety of 
methods exist for modeling the conditional distributions of the inputs including normal, 
lognormal, gamma, and Poisson.  

k-Nearest Neighbors  

k-Nearest Neighbors is a memory-based method that, in contrast to other statistical 
methods, requires no training (i.e., no model to fit). It falls into the category of Prototype 
Methods. It functions on the intuitive idea that close objects are more likely to be in the 
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same category. Thus, in KNN, predictions are based on a set of prototype examples that 
are used to predict new (i.e., unseen) data based on the majority vote (for classification 
tasks) and averaging (for regression) over a set of k-nearest prototypes (hence the name k-
nearest neighbors).  
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Chapter 28 
Multidimensional Scaling 

 

• General Purpose  
• Logic of MDS  
• Computational Approach  
• How many dimensions to specify?  
• Interpreting the Dimensions  
• Applications  
• MDS and Factor Analysis  

 

General Purpose  

Multidimensional scaling (MDS) can be considered to be an alternative to factor analysis 
(see Factor Analysis). In general, the goal of the analysis is to detect meaningful 
underlying dimensions that allow the researcher to explain observed similarities or 
dissimilarities (distances) between the investigated objects. In factor analysis, the 
similarities between objects (e.g., variables) are expressed in the correlation matrix. With 
MDS one may analyze any kind of similarity or dissimilarity matrix, in addition to 
correlation matrices.  

Logic of MDS  

The following simple example may demonstrate the logic of an MDS analysis. Suppose 
we take a matrix of distances between major US cities from a map. We then analyze this 
matrix, specifying that we want to reproduce the distances based on two dimensions. As a 
result of the MDS analysis, we would most likely obtain a two-dimensional 
representation of the locations of the cities, that is, we would basically obtain a two-
dimensional map.  

In general then, MDS attempts to arrange "objects" (major cities in this example) in a 
space with a particular number of dimensions (two-dimensional in this example) so as to 
reproduce the observed distances. As a result, we can "explain" the distances in terms of 
underlying dimensions; in our example, we could explain the distances in terms of the 
two geographical dimensions: north/south and east/west.  

Orientation of axes. As in factor analysis, the actual orientation of axes in the final 
solution is arbitrary. To return to our example, we could rotate the map in any way we 
want, the distances between cities remain the same. Thus, the final orientation of axes in 
the plane or space is mostly the result of a subjective decision by the researcher, who will 
choose an orientation that can be most easily explained. To return to our example, we 
could have chosen an orientation of axes other than north/south and east/west; however, 
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that orientation is most convenient because it "makes the most sense" (i.e., it is easily 
interpretable).  

 

 

Computational Approach  

MDS is not so much an exact procedure as rather a way to "rearrange" objects in an 
efficient manner, so as to arrive at a configuration that best approximates the observed 
distances. It actually moves objects around in the space defined by the requested number 
of dimensions, and checks how well the distances between objects can be reproduced by 
the new configuration. In more technical terms, it uses a function minimization algorithm 
that evaluates different configurations with the goal of maximizing the goodness-of-fit 
(or minimizing "lack of fit").  

Measures of goodness-of-fit: Stress. The most common measure that is used to evaluate 
how well (or poorly) a particular configuration reproduces the observed distance matrix is 
the stress measure. The raw stress value Phi of a configuration is defined by:  

Phi = [dij - f ( ij)]
2  

In this formula, dij stands for the reproduced distances, given the respective number of 
dimensions, and ij (deltaij) stands for the input data (i.e., observed distances). The 
expression f ( ij) indicates a nonmetric, monotone transformation of the observed input 
data (distances). Thus, it will attempt to reproduce the general rank-ordering of distances 
between the objects in the analysis.  

There are several similar related measures that are commonly used; however, most of 
them amount to the computation of the sum of squared deviations of observed distances 
(or some monotone transformation of those distances) from the reproduced distances. 
Thus, the smaller the stress value, the better is the fit of the reproduced distance matrix to 
the observed distance matrix.  

Shepard diagram. One can plot the reproduced distances for a particular number of 
dimensions against the observed input data (distances). This scatterplot is referred to as a 
Shepard diagram. This plot shows the reproduced distances plotted on the vertical (Y) 
axis versus the original similarities plotted on the horizontal (X) axis (hence, the generally 
negative slope). This plot also shows a step-function. This line represents the so- called 
D-hat values, that is, the result of the monotone transformation f( ) of the input data. If 
all reproduced distances fall onto the step-line, then the rank-ordering of distances (or 
similarities) would be perfectly reproduced by the respective solution (dimensional 
model). Deviations from the step-line indicate lack of fit.  
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How Many Dimensions to Specify?  

If you are familiar with factor analysis, you will be quite aware of this issue. If you are 
not familiar with factor analysis, you may want to read the Factor Analysis section in the 
manual; however, this is not necessary in order to understand the following discussion. In 
general, the more dimensions we use in order to reproduce the distance matrix, the better 
is the fit of the reproduced matrix to the observed matrix (i.e., the smaller is the stress). In 
fact, if we use as many dimensions as there are variables, then we can perfectly reproduce 
the observed distance matrix. Of course, our goal is to reduce the observed complexity of 
nature, that is, to explain the distance matrix in terms of fewer underlying dimensions. To 
return to the example of distances between cities, once we have a two-dimensional map it 
is much easier to visualize the location of and navigate between cities, as compared to 
relying on the distance matrix only.  

Sources of misfit. Let us consider for a moment why fewer factors may produce a worse 
representation of a distance matrix than would more factors. Imagine the three cities A, B, 
and C, and the three cities D, E, and F; shown below are their distances from each other.  

  A B C   D E F 
A 
B 
C 

0 
90 
90 

  
0 

90 

  
  
0 

  D 
E 
F 

0 
90 

180 

  
0 

90 

  
  
0 

 
 

In the first matrix, all cities are exactly 90 miles apart from each other; in the second 
matrix, cities D and F are 180 miles apart. Now, can we arrange the three cities (objects) 
on one dimension (line)? Indeed, we can arrange cities D, E, and F on one dimension:  

D---90 miles---E---90 miles---F  

D is 90 miles away from E, and E is 90 miles away form F; thus, D is 90+90=180 miles 
away from F. If you try to do the same thing with cities A, B, and C you will see that 
there is no way to arrange the three cities on one line so that the distances can be 
reproduced. However, we can arrange those cities in two dimensions, in the shape of a 
triangle:  

A 
90 miles   90 miles 

B 90 miles C 
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Arranging the three cities in this manner, we can perfectly reproduce the distances 
between them. Without going into much detail, this small example illustrates how a 
particular distance matrix implies a particular number of dimensions. Of course, "real" 
data are never this "clean," and contain a lot of noise, that is, random variability that 
contributes to the differences between the reproduced and observed matrix.  

Scree test. A common way to decide how many dimensions to use is to plot the stress 
value against different numbers of dimensions. This test was first proposed by Cattell 
(1966) in the context of the number-of-factors problem in factor analysis (see Factor 
Analysis); Kruskal and Wish (1978; pp. 53-60) discuss the application of this plot to 
MDS.  

Cattell suggests to find the place where the smooth decrease of stress values (eigenvalues 
in factor analysis) appears to level off to the right of the plot. To the right of this point 
one finds, presumably, only "factorial scree" -- "scree" is the geological term referring to 
the debris which collects on the lower part of a rocky slope.  

Interpretability of configuration. A second criterion for deciding how many 
dimensions to interpret is the clarity of the final configuration. Sometimes, as in our 
example of distances between cities, the resultant dimensions are easily interpreted. At 
other times, the points in the plot form a sort of "random cloud," and there is no 
straightforward and easy way to interpret the dimensions. In the latter case one should try 
to include more or fewer dimensions and examine the resultant final configurations. 
Often, more interpretable solutions emerge. However, if the data points in the plot do not 
follow any pattern, and if the stress plot does not show any clear "elbow," then the data 
are most likely random "noise."  

 

 

Interpreting the Dimensions  

The interpretation of dimensions usually represents the final step of the analysis. As 
mentioned earlier, the actual orientations of the axes from the MDS analysis are arbitrary, 
and can be rotated in any direction. A first step is to produce scatterplots of the objects in 
the different two-dimensional planes.  
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Three-dimensional solutions can also be illustrated graphically, however, their 
interpretation is somewhat more complex.  

 

In addition to "meaningful dimensions," one should also look for clusters of points or 
particular patterns and configurations (such as circles, manifolds, etc.). For a detailed 
discussion of how to interpret final configurations, see Borg and Lingoes (1987), Borg 
and Shye (in press), or Guttman (1968).  

Use of multiple regression techniques. An analytical way of interpreting dimensions 
(described in Kruskal & Wish, 1978) is to use multiple regression techniques to regress 
some meaningful variables on the coordinates for the different dimensions. Note that this 
can easily be done via Multiple Regression.  

 

 

Applications  

The "beauty" of MDS is that we can analyze any kind of distance or similarity matrix. 
These similarities can represent people's ratings of similarities between objects, the 
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percent agreement between judges, the number of times a subjects fails to discriminate 
between stimuli, etc. For example, MDS methods used to be very popular in 
psychological research on person perception where similarities between trait descriptors 
were analyzed to uncover the underlying dimensionality of people's perceptions of traits 
(see, for example Rosenberg, 1977). They are also very popular in marketing research, in 
order to detect the number and nature of dimensions underlying the perceptions of 
different brands or products & Carmone, 1970).  

In general, MDS methods allow the researcher to ask relatively unobtrusive questions 
("how similar is brand A to brand B") and to derive from those questions underlying 
dimensions without the respondents ever knowing what is the researcher's real interest.  

 

 

MDS and Factor Analysis  

Even though there are similarities in the type of research questions to which these two 
procedures can be applied, MDS and factor analysis are fundamentally different methods. 
Factor analysis requires that the underlying data are distributed as multivariate normal, 
and that the relationships are linear. MDS imposes no such restrictions. As long as the 
rank-ordering of distances (or similarities) in the matrix is meaningful, MDS can be used. 
In terms of resultant differences, factor analysis tends to extract more factors 
(dimensions) than MDS; as a result, MDS often yields more readily, interpretable 
solutions. Most importantly, however, MDS can be applied to any kind of distances or 
similarities, while factor analysis requires us to first compute a correlation matrix. MDS 
can be based on subjects' direct assessment of similarities between stimuli, while factor 
analysis requires subjects to rate those stimuli on some list of attributes (for which the 
factor analysis is performed).  

In summary, MDS methods are applicable to a wide variety of research designs because 
distance measures can be obtained in any number of ways (for different examples, refer 
to the references provided at the beginning of this section).  
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Chapter 29 
Neural Networks 

 

• Preface  
• Applications for Neural Networks  
• The Biological Inspiration  
• The Basic Artificial Model  
• Using a Neural Network  
• Gathering Data for Neural Networks  

o Summary  
• Pre- and Post-processing  
• Multilayer Perceptrons  

o Training Multilayer Perceptrons  
o The Back Propagation Algorithm  
o Over-learning and Generalization  
o Data Selection  
o Insights into MLP Training  
o Other MLP Training Algorithms  

• Radial Basis Function Networks  
• Probabilistic Neural Networks  
• Generalized Regression Neural Networks  
• Linear Networks  
• SOFM Networks  
• Classification in Neural Networks  

o Classification Statistics  
• Regression Problems in Neural Networks  
• Time Series Prediction in Neural Networks  
• Variable Selection and Dimensionality Reduction  
• Ensembles and Resampling  
• Recommended Textbooks  

 
Many concepts related to the neural networks methodology are best explained if they are 
illustrated with applications of a specific neural network program. Therefore, this chapter 
contains many references to STATISTICA Neural Networks (in short, ST Neural 
Networks, a neural networks application available from StatSoft), a particularly 
comprehensive neural network tool.  

 
Preface  

Neural networks have seen an explosion of interest over the last few years, and are being 
successfully applied across an extraordinary range of problem domains, in areas as 
diverse as finance, medicine, engineering, geology and physics. Indeed, anywhere that 
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there are problems of prediction, classification or control, neural networks are being 
introduced. This sweeping success can be attributed to a few key factors:  

• Power. Neural networks are very sophisticated modeling techniques capable of 
modeling extremely complex functions. In particular, neural networks are 
nonlinear (a term which is discussed in more detail later in this section). For 
many years linear modeling has been the commonly used technique in most 
modeling domains since linear models have well-known optimization strategies. 
Where the linear approximation was not valid (which was frequently the case) the 
models suffered accordingly. Neural networks also keep in check the curse of 
dimensionality problem that bedevils attempts to model nonlinear functions with 
large numbers of variables.  

• Ease of use. Neural networks learn by example. The neural network user gathers 
representative data, and then invokes training algorithms to automatically learn 
the structure of the data. Although the user does need to have some heuristic 
knowledge of how to select and prepare data, how to select an appropriate neural 
network, and how to interpret the results, the level of user knowledge needed to 
successfully apply neural networks is much lower than would be the case using 
(for example) some more traditional nonlinear statistical methods.  

Neural networks are also intuitively appealing, based as they are on a crude low-level 
model of biological neural systems. In the future, the development of this neurobiological 
modeling may lead to genuinely intelligent computers.  
 

Applications for Neural Networks  

Neural networks are applicable in virtually every situation in which a relationship 
between the predictor variables (independents, inputs) and predicted variables 
(dependents, outputs) exists, even when that relationship is very complex and not easy to 
articulate in the usual terms of "correlations" or "differences between groups." A few 
representative examples of problems to which neural network analysis has been applied 
successfully are:  

• Detection of medical phenomena. A variety of health-related indices (e.g., a 
combination of heart rate, levels of various substances in the blood, respiration 
rate) can be monitored. The onset of a particular medical condition could be 
associated with a very complex (e.g., nonlinear and interactive) combination of 
changes on a subset of the variables being monitored. Neural networks have been 
used to recognize this predictive pattern so that the appropriate treatment can be 
prescribed.  

• Stock market prediction. Fluctuations of stock prices and stock indices are 
another example of a complex, multidimensional, but in some circumstances at 
least partially-deterministic phenomenon. Neural networks are being used by 
many technical analysts to make predictions about stock prices based upon a large 
number of factors such as past performance of other stocks and various economic 
indicators.  
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• Credit assignment. A variety of pieces of information are usually known about 
an applicant for a loan. For instance, the applicant's age, education, occupation, 
and many other facts may be available. After training a neural network on 
historical data, neural network analysis can identify the most relevant 
characteristics and use those to classify applicants as good or bad credit risks.  

• Monitoring the condition of machinery. Neural networks can be instrumental in 
cutting costs by bringing additional expertise to scheduling the preventive 
maintenance of machines. A neural network can be trained to distinguish between 
the sounds a machine makes when it is running normally ("false alarms") versus 
when it is on the verge of a problem. After this training period, the expertise of 
the network can be used to warn a technician of an upcoming breakdown, before 
it occurs and causes costly unforeseen "downtime."  

• Engine management. Neural networks have been used to analyze the input of 
sensors from an engine. The neural network controls the various parameters 
within which the engine functions, in order to achieve a particular goal, such as 
minimizing fuel consumption. 

 

The Biological Inspiration  

Neural networks grew out of research in Artificial Intelligence; specifically, attempts to 
mimic the fault-tolerance and capacity to learn of biological neural systems by modeling 
the low-level structure of the brain (see Patterson, 1996). The main branch of Artificial 
Intelligence research in the 1960s -1980s produced Expert Systems. These are based 
upon a high-level model of reasoning processes (specifically, the concept that our 
reasoning processes are built upon manipulation of symbols). It became rapidly apparent 
that these systems, although very useful in some domains, failed to capture certain key 
aspects of human intelligence. According to one line of speculation, this was due to their 
failure to mimic the underlying structure of the brain. In order to reproduce intelligence, 
it would be necessary to build systems with a similar architecture.  

The brain is principally composed of a very large number (circa 10,000,000,000) of 
neurons, massively interconnected (with an average of several thousand interconnects per 
neuron, although this varies enormously). Each neuron is a specialized cell which can 
propagate an electrochemical signal. The neuron has a branching input structure (the 
dendrites), a cell body, and a branching output structure (the axon). The axons of one cell 
connect to the dendrites of another via a synapse. When a neuron is activated, it fires an 
electrochemical signal along the axon. This signal crosses the synapses to other neurons, 
which may in turn fire. A neuron fires only if the total signal received at the cell body 
from the dendrites exceeds a certain level (the firing threshold).  

The strength of the signal received by a neuron (and therefore its chances of firing) 
critically depends on the efficacy of the synapses. Each synapse actually contains a gap, 
with neurotransmitter chemicals poised to transmit a signal across the gap. One of the 
most influential researchers into neurological systems (Donald Hebb) postulated that 
learning consisted principally in altering the "strength" of synaptic connections. For 
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example, in the classic Pavlovian conditioning experiment, where a bell is rung just 
before dinner is delivered to a dog, the dog rapidly learns to associate the ringing of a bell 
with the eating of food. The synaptic connections between the appropriate part of the 
auditory cortex and the salivation glands are strengthened, so that when the auditory 
cortex is stimulated by the sound of the bell the dog starts to salivate. Recent research in 
cognitive science, in particular in the area of nonconscious information processing, have 
further demonstrated the enormous capacity of the human mind to infer ("learn") simple 
input-output covariations from extremely complex stimuli (e.g., see Lewicki, Hill, and 
Czyzewska, 1992).  

Thus, from a very large number of extremely simple processing units (each performing a 
weighted sum of its inputs, and then firing a binary signal if the total input exceeds a 
certain level) the brain manages to perform extremely complex tasks. Of course, there is a 
great deal of complexity in the brain which has not been discussed here, but it is 
interesting that artificial neural networks can achieve some remarkable results using a 
model not much more complex than this.  

 

The Basic Artificial Model  

To capture the essence of biological neural systems, an artificial neuron is defined as 
follows:  

• It receives a number of inputs (either from original data, or from the output of 
other neurons in the neural network). Each input comes via a connection that has 
a strength (or weight); these weights correspond to synaptic efficacy in a 
biological neuron. Each neuron also has a single threshold value. The weighted 
sum of the inputs is formed, and the threshold subtracted, to compose the 
activation of the neuron (also known as the post-synaptic potential, or PSP, of the 
neuron).  

• The activation signal is passed through an activation function (also known as a 
transfer function) to produce the output of the neuron.  

If the step activation function is used (i.e., the neuron's output is 0 if the input is less than 
zero, and 1 if the input is greater than or equal to 0) then the neuron acts just like the 
biological neuron described earlier (subtracting the threshold from the weighted sum and 
comparing with zero is equivalent to comparing the weighted sum to the threshold). 
Actually, the step function is rarely used in artificial neural networks, as will be 
discussed. Note also that weights can be negative, which implies that the synapse has an 
inhibitory rather than excitatory effect on the neuron: inhibitory neurons are found in the 
brain.  

This describes an individual neuron. The next question is: how should neurons be 
connected together? If a network is to be of any use, there must be inputs (which carry 
the values of variables of interest in the outside world) and outputs (which form 
predictions, or control signals). Inputs and outputs correspond to sensory and motor 
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nerves such as those coming from the eyes and leading to the hands. However, there also 
can be hidden neurons that play an internal role in the network. The input, hidden and 
output neurons need to be connected together.  

The key issue here is feedback (Haykin, 1994). A simple network has a feedforward 
structure: signals flow from inputs, forwards through any hidden units, eventually 
reaching the output units. Such a structure has stable behavior. However, if the network is 
recurrent (contains connections back from later to earlier neurons) it can be unstable, and 
has very complex dynamics. Recurrent networks are very interesting to researchers in 
neural networks, but so far it is the feedforward structures that have proved most useful in 
solving real problems.  

A typical feedforward network has neurons arranged in a distinct layered topology. The 
input layer is not really neural at all: these units simply serve to introduce the values of 
the input variables. The hidden and output layer neurons are each connected to all of the 
units in the preceding layer. Again, it is possible to define networks that are partially-
connected to only some units in the preceding layer; however, for most applications fully-
connected networks are better.  

 

When the network is executed (used), the input variable values are placed in the input 
units, and then the hidden and output layer units are progressively executed. Each of them 
calculates its activation value by taking the weighted sum of the outputs of the units in 
the preceding layer, and subtracting the threshold. The activation value is passed through 
the activation function to produce the output of the neuron. When the entire network has 
been executed, the outputs of the output layer act as the output of the entire network.  

 

Using a Neural Network  

The previous section describes in simplified terms how a neural network turns inputs into 
outputs. The next important question is: how do you apply a neural network to solve a 
problem?  

The type of problem amenable to solution by a neural network is defined by the way they 
work and the way they are trained. Neural networks work by feeding in some input 
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variables, and producing some output variables. They can therefore be used where you 
have some known information, and would like to infer some unknown information (see 
Patterson, 1996; Fausett, 1994). Some examples are:  

Stock market prediction. You know last week's stock prices and today's DOW, 
NASDAQ, or FTSE index; you want to know tomorrow's stock prices.  

Credit assignment. You want to know whether an applicant for a loan is a good or bad 
credit risk. You usually know applicants' income, previous credit history, etc. (because 
you ask them these things).  

Control. You want to know whether a robot should turn left, turn right, or move forwards 
in order to reach a target; you know the scene that the robot's camera is currently 
observing.  

Needless to say, not every problem can be solved by a neural network. You may wish to 
know next week's lottery result, and know your shoe size, but there is no relationship 
between the two. Indeed, if the lottery is being run correctly, there is no fact you could 
possibly know that would allow you to infer next week's result. Many financial 
institutions use, or have experimented with, neural networks for stock market prediction, 
so it is likely that any trends predictable by neural techniques are already discounted by 
the market, and (unfortunately), unless you have a sophisticated understanding of that 
problem domain, you are unlikely to have any success there either!  

Therefore, another important requirement for the use of a neural network therefore is that 
you know (or at least strongly suspect) that there is a relationship between the proposed 
known inputs and unknown outputs. This relationship may be noisy (you certainly would 
not expect that the factors given in the stock market prediction example above could give 
an exact prediction, as prices are clearly influenced by other factors not represented in the 
input set, and there may be an element of pure randomness) but it must exist.  

In general, if you use a neural network, you won't know the exact nature of the 
relationship between inputs and outputs - if you knew the relationship, you would model 
it directly. The other key feature of neural networks is that they learn the input/output 
relationship through training. There are two types of training used in neural networks, 
with different types of networks using different types of training. These are supervised 
and unsupervised training, of which supervised is the most common and will be discussed 
in this section (unsupervised learning is described in a later section).  

In supervised learning, the network user assembles a set of training data. The training 
data contains examples of inputs together with the corresponding outputs, and the 
network learns to infer the relationship between the two. Training data is usually taken 
from historical records. In the above examples, this might include previous stock prices 
and DOW, NASDAQ, or FTSE indices, records of previous successful loan applicants, 
including questionnaires and a record of whether they defaulted or not, or sample robot 
positions and the correct reaction.  
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The neural network is then trained using one of the supervised learning algorithms (of 
which the best known example is back propagation, devised by Rumelhart et. al., 1986), 
which uses the data to adjust the network's weights and thresholds so as to minimize the 
error in its predictions on the training set. If the network is properly trained, it has then 
learned to model the (unknown) function that relates the input variables to the output 
variables, and can subsequently be used to make predictions where the output is not 
known.  

 

Gathering Data for Neural Networks  

Once you have decided on a problem to solve using neural networks, you will need to 
gather data for training purposes. The training data set includes a number of cases, each 
containing values for a range of input and output variables. The first decisions you will 
need to make are: which variables to use, and how many (and which) cases to gather.  

The choice of variables (at least initially) is guided by intuition. Your own expertise in 
the problem domain will give you some idea of which input variables are likely to be 
influential. As a first pass, you should include any variables that you think could have an 
influence - part of the design process will be to whittle this set down.  

Neural networks process numeric data in a fairly limited range. This presents a problem if 
data is in an unusual range, if there is missing data, or if data is non-numeric. Fortunately, 
there are methods to deal with each of these problems. Numeric data is scaled into an 
appropriate range for the network, and missing values can be substituted for using the 
mean value (or other statistic) of that variable across the other available training cases 
(see Bishop, 1995).  

Handling non-numeric data is more difficult. The most common form of non-numeric 
data consists of nominal-value variables such as Gender={Male, Female}. Nominal-
valued variables can be represented numerically. However, neural networks do not tend 
to perform well with nominal variables that have a large number of possible values.  

For example, consider a neural network being trained to estimate the value of houses. The 
price of houses depends critically on the area of a city in which they are located. A 
particular city might be subdivided into dozens of named locations, and so it might seem 
natural to use a nominal-valued variable representing these locations. Unfortunately, it 
would be very difficult to train a neural network under these circumstances, and a more 
credible approach would be to assign ratings (based on expert knowledge) to each area; 
for example, you might assign ratings for the quality of local schools, convenient access 
to leisure facilities, etc.  

Other kinds of non-numeric data must either be converted to numeric form, or discarded. 
Dates and times, if important, can be converted to an offset value from a starting 
date/time. Currency values can easily be converted. Unconstrained text fields (such as 
names) cannot be handled and should be discarded.  
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The number of cases required for neural network training frequently presents difficulties. 
There are some heuristic guidelines, which relate the number of cases needed to the size 
of the network (the simplest of these says that there should be ten times as many cases as 
connections in the network). Actually, the number needed is also related to the 
(unknown) complexity of the underlying function which the network is trying to model, 
and to the variance of the additive noise. As the number of variables increases, the 
number of cases required increases nonlinearly, so that with even a fairly small number 
of variables (perhaps fifty or less) a huge number of cases are required. This problem is 
known as "the curse of dimensionality," and is discussed further later in this chapter.  

For most practical problem domains, the number of cases required will be hundreds or 
thousands. For very complex problems more may be required, but it would be a rare 
(even trivial) problem which required less than a hundred cases. If your data is sparser 
than this, you really don't have enough information to train a network, and the best you 
can do is probably to fit a linear model. If you have a larger, but still restricted, data set, 
you can compensate to some extent by forming an ensemble of networks, each trained 
using a different resampling of the available data, and then average across the predictions 
of the networks in the ensemble.  

Many practical problems suffer from data that is unreliable: some variables may be 
corrupted by noise, or values may be missing altogether. Neural networks are also noise 
tolerant. However, there is a limit to this tolerance; if there are occasional outliers far 
outside the range of normal values for a variable, they may bias the training. The best 
approach to such outliers is to identify and remove them (either discarding the case, or 
converting the outlier into a missing value). If outliers are difficult to detect, a city block 
error function (see Bishop, 1995) may be used, but this outlier-tolerant training is 
generally less effective than the standard approach.  

Summary  

Choose variables that you believe may be influential  

Numeric and nominal variables can be handled. Convert other variables to one of these 
forms, or discard.  

Hundreds or thousands of cases are required; the more variables, the more cases.  

Cases with missing values can be used, if necessary, but outliers may cause problems - 
check your data. Remove outliers if possible. If you have sufficient data, discard cases 
with missing values.  

If the volume of the data available is small, consider using ensembles and resampling.  

 

Pre- and Post-processing  
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All neural networks take numeric input and produce numeric output. The transfer 
function of a unit is typically chosen so that it can accept input in any range, and 
produces output in a strictly limited range (it has a squashing effect). Although the input 
can be in any range, there is a saturation effect so that the unit is only sensitive to inputs 
within a fairly limited range. The illustration below shows one of the most common 
transfer functions, the logistic function (also sometimes referred to as the sigmoid 
function, although strictly speaking it is only one example of a sigmoid - S-shaped - 
function). In this case, the output is in the range (0,1), and the input is sensitive in a range 
not much larger than (-1,+1). The function is also smooth and easily differentiable, facts 
that are critical in allowing the network training algorithms to operate (this is the reason 
why the step function is not used in practice).  

 

The limited numeric response range, together with the fact that information has to be in 
numeric form, implies that neural solutions require preprocessing and post-processing 
stages to be used in real applications (see Bishop, 1995). Two issues need to be 
addressed:  

Scaling. Numeric values have to be scaled into a range that is appropriate for the 
network. Typically, raw variable values are scaled linearly. In some circumstances, non-
linear scaling may be appropriate (for example, if you know that a variable is 
exponentially distributed, you might take the logarithm). Non-linear scaling is not 
supported in ST Neural Networks. Instead, you should scale the variable using 
STATISTICA's data transformation facilities before transferring the data to ST Neural 
Networks.  

Nominal variables. Nominal variables may be two-state (e.g., Gender={Male,Female}) 
or many-state (i.e., more than two states). A two-state nominal variable is easily 
represented by transformation into a numeric value (e.g., Male=0, Female=1). Many-state 
nominal variables are more difficult to handle. They can be represented using an ordinal 
encoding (e.g., Dog=0,Budgie=1,Cat=2) but this implies a (probably) false ordering on 
the nominal values - in this case, that Budgies are in some sense midway between Dogs 
and Cats. A better approach, known as one-of-N encoding, is to use a number of numeric 
variables to represent the single nominal variable. The number of numeric variables 
equals the number of possible values; one of the N variables is set, and the others cleared 
(e.g., Dog={1,0,0}, Budgie={0,1,0}, Cat={0,0,1}). ST Neural Networks has facilities to 
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convert both two-state and many-state nominal variables for use in the neural network. 
Unfortunately, a nominal variable with a large number of states would require a 
prohibitive number of numeric variables for one-of-N encoding, driving up the network 
size and making training difficult. In such a case it is possible (although unsatisfactory) to 
model the nominal variable using a single numeric ordinal; a better approach is to look 
for a different way to represent the information.  

Prediction problems may be divided into two main categories:  

Classification. In classification, the objective is to determine to which of a number of 
discrete classes a given input case belongs. Examples include credit assignment (is this 
person a good or bad credit risk), cancer detection (tumor, clear), signature recognition 
(forgery, true). In all these cases, the output required is clearly a single nominal variable. 
The most common classification tasks are (as above) two-state, although many-state tasks 
are also not unknown.  

Regression. In regression, the objective is to predict the value of a (usually) continuous 
variable: tomorrow's stock price, the fuel consumption of a car, next year's profits. In this 
case, the output required is a single numeric variable.  

Neural networks can actually perform a number of regression and/or classification tasks 
at once, although commonly each network performs only one. In the vast majority of 
cases, therefore, the network will have a single output variable, although in the case of 
many-state classification problems, this may correspond to a number of output units (the 
post-processing stage takes care of the mapping from output units to output variables). If 
you do define a single network with multiple output variables, it may suffer from cross-
talk (the hidden neurons experience difficulty learning, as they are attempting to model at 
least two functions at once). The best solution is usually to train separate networks for 
each output, then to combine them into an ensemble so that they can be run as a unit.  

 

Multilayer Perceptrons  

This is perhaps the most popular network architecture in use today, due originally to 
Rumelhart and McClelland (1986) and discussed at length in most neural network 
textbooks (e.g., Bishop, 1995). This is the type of network discussed briefly in previous 
sections: the units each perform a biased weighted sum of their inputs and pass this 
activation level through a transfer function to produce their output, and the units are 
arranged in a layered feedforward topology. The network thus has a simple interpretation 
as a form of input-output model, with the weights and thresholds (biases) the free 
parameters of the model. Such networks can model functions of almost arbitrary 
complexity, with the number of layers, and the number of units in each layer, determining 
the function complexity. Important issues in Multilayer Perceptrons (MLP) design 
include specification of the number of hidden layers and the number of units in these 
layers (see Haykin, 1994; Bishop, 1995).  
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The number of input and output units is defined by the problem (there may be some 
uncertainty about precisely which inputs to use, a point to which we will return later. 
However, for the moment we will assume that the input variables are intuitively selected 
and are all meaningful). The number of hidden units to use is far from clear. As good a 
starting point as any is to use one hidden layer, with the number of units equal to half the 
sum of the number of input and output units. Again, we will discuss how to choose a 
sensible number later.  

Training Multilayer Perceptrons   

Once the number of layers, and number of units in each layer, has been selected, the 
network's weights and thresholds must be set so as to minimize the prediction error made 
by the network. This is the role of the training algorithms. The historical cases that you 
have gathered are used to automatically adjust the weights and thresholds in order to 
minimize this error. This process is equivalent to fitting the model represented by the 
network to the training data available. The error of a particular configuration of the 
network can be determined by running all the training cases through the network, 
comparing the actual output generated with the desired or target outputs. The differences 
are combined together by an error function to give the network error. The most common 
error functions are the sum squared error (used for regression problems), where the 
individual errors of output units on each case are squared and summed together, and the 
cross entropy functions (used for maximum likelihood classification).  

In traditional modeling approaches (e.g., linear modeling) it is possible to algorithmically 
determine the model configuration that absolutely minimizes this error. The price paid for 
the greater (non-linear) modeling power of neural networks is that although we can adjust 
a network to lower its error, we can never be sure that the error could not be lower still.  

A helpful concept here is the error surface. Each of the N weights and thresholds of the 
network (i.e., the free parameters of the model) is taken to be a dimension in space. The 
N+1th dimension is the network error. For any possible configuration of weights the 
error can be plotted in the N+1th dimension, forming an error surface. The objective of 
network training is to find the lowest point in this many-dimensional surface.  

In a linear model with sum squared error function, this error surface is a parabola (a 
quadratic), which means that it is a smooth bowl-shape with a single minimum. It is 
therefore "easy" to locate the minimum.  

Neural network error surfaces are much more complex, and are characterized by a 
number of unhelpful features, such as local minima (which are lower than the 
surrounding terrain, but above the global minimum), flat-spots and plateaus, saddle-
points, and long narrow ravines.  

It is not possible to analytically determine where the global minimum of the error surface 
is, and so neural network training is essentially an exploration of the error surface. From 
an initially random configuration of weights and thresholds (i.e., a random point on the 
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error surface), the training algorithms incrementally seek for the global minimum. 
Typically, the gradient (slope) of the error surface is calculated at the current point, and 
used to make a downhill move. Eventually, the algorithm stops in a low point, which may 
be a local minimum (but hopefully is the global minimum).  

The Back Propagation Algorithm  

The best-known example of a neural network training algorithm is back propagation (see 
Patterson, 1996; Haykin, 1994; Fausett, 1994). Modern second-order algorithms such as 
conjugate gradient descent and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 
1997) (both included in ST Neural Networks) are substantially faster (e.g., an order of 
magnitude faster) for many problems, but back propagation still has advantages in some 
circumstances, and is the easiest algorithm to understand. We will introduce this now, 
and discuss the more advanced algorithms later. There are also heuristic modifications of 
back propagation which work well for some problem domains, such as quick 
propagation (Fahlman, 1988) and Delta-Bar-Delta (Jacobs, 1988) and are also included 
in ST Neural Networks.  

In back propagation, the gradient vector of the error surface is calculated. This vector 
points along the line of steepest descent from the current point, so we know that if we 
move along it a "short" distance, we will decrease the error. A sequence of such moves 
(slowing as we near the bottom) will eventually find a minimum of some sort. The 
difficult part is to decide how large the steps should be.  

Large steps may converge more quickly, but may also overstep the solution or (if the 
error surface is very eccentric) go off in the wrong direction. A classic example of this in 
neural network training is where the algorithm progresses very slowly along a steep, 
narrow, valley, bouncing from one side across to the other. In contrast, very small steps 
may go in the correct direction, but they also require a large number of iterations. In 
practice, the step size is proportional to the slope (so that the algorithms settles down in a 
minimum) and to a special constant: the learning rate. The correct setting for the learning 
rate is application-dependent, and is typically chosen by experiment; it may also be time-
varying, getting smaller as the algorithm progresses.  

The algorithm is also usually modified by inclusion of a momentum term: this 
encourages movement in a fixed direction, so that if several steps are taken in the same 
direction, the algorithm "picks up speed", which gives it the ability to (sometimes) escape 
local minimum, and also to move rapidly over flat spots and plateaus.  

The algorithm therefore progresses iteratively, through a number of epochs. On each 
epoch, the training cases are each submitted in turn to the network, and target and actual 
outputs compared and the error calculated. This error, together with the error surface 
gradient, is used to adjust the weights, and then the process repeats. The initial network 
configuration is random, and training stops when a given number of epochs elapses, or 
when the error reaches an acceptable level, or when the error stops improving (you can 
select which of these stopping conditions to use).  



 430 

Over-learning and Generalization  

One major problem with the approach outlined above is that it doesn't actually minimize 
the error that we are really interested in - which is the expected error the network will 
make when new cases are submitted to it. In other words, the most desirable property of a 
network is its ability to generalize to new cases. In reality, the network is trained to 
minimize the error on the training set, and short of having a perfect and infinitely large 
training set, this is not the same thing as minimizing the error on the real error surface - 
the error surface of the underlying and unknown model (see Bishop, 1995).  

The most important manifestation of this distinction is the problem of over-learning, or 
over-fitting. It is easiest to demonstrate this concept using polynomial curve fitting rather 
than neural networks, but the concept is precisely the same.  

A polynomial is an equation with terms containing only constants and powers of the 
variables. For example:  

y=2x+3 
y=3x2+4x+1  

Different polynomials have different shapes, with larger powers (and therefore larger 
numbers of terms) having steadily more eccentric shapes. Given a set of data, we may 
want to fit a polynomial curve (i.e., a model) to explain the data. The data is probably 
noisy, so we don't necessarily expect the best model to pass exactly through all the points. 
A low-order polynomial may not be sufficiently flexible to fit close to the points, whereas 
a high-order polynomial is actually too flexible, fitting the data exactly by adopting a 
highly eccentric shape that is actually unrelated to the underlying function. See 
illustration below.  

 

Neural networks have precisely the same problem. A network with more weights models 
a more complex function, and is therefore prone to over-fitting. A network with less 
weights may not be sufficiently powerful to model the underlying function. For example, 
a network with no hidden layers actually models a simple linear function.  

How then can we select the right complexity of network? A larger network will almost 
invariably achieve a lower error eventually, but this may indicate over-fitting rather than 
good modeling.  

The answer is to check progress against an independent data set, the selection set. Some 
of the cases are reserved, and not actually used for training in the back propagation 
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algorithm. Instead, they are used to keep an independent check on the progress of the 
algorithm. It is invariably the case that the initial performance of the network on training 
and selection sets is the same (if it is not at least approximately the same, the division of 
cases between the two sets is probably biased). As training progresses, the training error 
naturally drops, and providing training is minimizing the true error function, the selection 
error drops too. However, if the selection error stops dropping, or indeed starts to rise, 
this indicates that the network is starting to overfit the data, and training should cease. 
When over-fitting occurs during the training process like this, it is called over-learning. 
In this case, it is usually advisable to decrease the number of hidden units and/or hidden 
layers, as the network is over-powerful for the problem at hand. In contrast, if the 
network is not sufficiently powerful to model the underlying function, over-learning is 
not likely to occur, and neither training nor selection errors will drop to a satisfactory 
level.  

The problems associated with local minima, and decisions over the size of network to 
use, imply that using a neural network typically involves experimenting with a large 
number of different networks, probably training each one a number of times (to avoid 
being fooled by local minima), and observing individual performances. The key guide to 
performance here is the selection error. However, following the standard scientific 
precept that, all else being equal, a simple model is always preferable to a complex 
model, you can also select a smaller network in preference to a larger one with a 
negligible improvement in selection error.  

A problem with this approach of repeated experimentation is that the selection set plays a 
key role in selecting the model, which means that it is actually part of the training 
process. Its reliability as an independent guide to performance of the model is therefore 
compromised - with sufficient experiments, you may just hit upon a lucky network that 
happens to perform well on the selection set. To add confidence in the performance of the 
final model, it is therefore normal practice (at least where the volume of training data 
allows it) to reserve a third set of cases - the test set. The final model is tested with the 
test set data, to ensure that the results on the selection and training set are real, and not 
artifacts of the training process. Of course, to fulfill this role properly the test set should 
be used only once - if it is in turn used to adjust and reiterate the training process, it 
effectively becomes selection data!  

This division into multiple subsets is very unfortunate, given that we usually have less 
data than we would ideally desire even for a single subset. We can get around this 
problem by resampling. Experiments can be conducted using different divisions of the 
available data into training, selection, and test sets. There are a number of approaches to 
this subset, including random (monte-carlo) resampling, cross-validation, and bootstrap. 
If we make design decisions, such as the best configuration of neural network to use, 
based upon a number of experiments with different subset examples, the results will be 
much more reliable. We can then either use those experiments solely to guide the 
decision as to which network types to use, and train such networks from scratch with new 
samples (this removes any sampling bias); or, we can retain the best networks found 
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during the sampling process, but average their results in an ensemble, which at least 
mitigates the sampling bias.  

To summarize, network design (once the input variables have been selected) follows a 
number of stages:  

• Select an initial configuration (typically, one hidden layer with the number of 
hidden units set to half the sum of the number of input and output units).  

• Iteratively conduct a number of experiments with each configuration, retaining 
the best network (in terms of selection error) found. A number of experiments are 
required with each configuration to avoid being fooled if training locates a local 
minimum, and it is also best to resample.  

• On each experiment, if under-learning occurs (the network doesn't achieve an 
acceptable performance level) try adding more neurons to the hidden layer(s). If 
this doesn't help, try adding an extra hidden layer.  

• If over-learning occurs (selection error starts to rise) try removing hidden units 
(and possibly layers).  

• Once you have experimentally determined an effective configuration for your 
networks, resample and generate new networks with that configuration.  

Data Selection  

All the above stages rely on a key assumption. Specifically, the training, verification and 
test data must be representative of the underlying model (and, further, the three sets must 
be independently representative). The old computer science adage "garbage in, garbage 
out" could not apply more strongly than in neural modeling. If training data is not 
representative, then the model's worth is at best compromised. At worst, it may be 
useless. It is worth spelling out the kind of problems which can corrupt a training set:  

The future is not the past. Training data is typically historical. If circumstances have 
changed, relationships which held in the past may no longer hold.  

All eventualities must be covered. A neural network can only learn from cases that are 
present. If people with incomes over $100,000 per year are a bad credit risk, and your 
training data includes nobody over $40,000 per year, you cannot expect it to make a 
correct decision when it encounters one of the previously-unseen cases. Extrapolation is 
dangerous with any model, but some types of neural network may make particularly poor 
predictions in such circumstances.  

A network learns the easiest features it can. A classic (possibly apocryphal) illustration 
of this is a vision project designed to automatically recognize tanks. A network is trained 
on a hundred pictures including tanks, and a hundred not. It achieves a perfect 100% 
score. When tested on new data, it proves hopeless. The reason? The pictures of tanks are 
taken on dark, rainy days; the pictures without on sunny days. The network learns to 
distinguish the (trivial matter of) differences in overall light intensity. To work, the 
network would need training cases including all weather and lighting conditions under 
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which it is expected to operate - not to mention all types of terrain, angles of shot, 
distances...  

Unbalanced data sets. Since a network minimizes an overall error, the proportion of 
types of data in the set is critical. A network trained on a data set with 900 good cases and 
100 bad will bias its decision towards good cases, as this allows the algorithm to lower 
the overall error (which is much more heavily influenced by the good cases). If the 
representation of good and bad cases is different in the real population, the network's 
decisions may be wrong. A good example would be disease diagnosis. Perhaps 90% of 
patients routinely tested are clear of a disease. A network is trained on an available data 
set with a 90/10 split. It is then used in diagnosis on patients complaining of specific 
problems, where the likelihood of disease is 50/50. The network will react over-
cautiously and fail to recognize disease in some unhealthy patients. In contrast, if trained 
on the "complainants" data, and then tested on "routine" data, the network may raise a 
high number of false positives. In such circumstances, the data set may need to be crafted 
to take account of the distribution of data (e.g., you could replicate the less numerous 
cases, or remove some of the numerous cases), or the network's decisions modified by the 
inclusion of a loss matrix (Bishop, 1995). Often, the best approach is to ensure even 
representation of different cases, then to interpret the network's decisions accordingly.  

Insights into MLP Training   

More key insights into MLP behavior and training can be gained by considering the type 
of functions they model. Recall that the activation level of a unit is the weighted sum of 
the inputs, plus a threshold value. This implies that the activation level is actually a 
simple linear function of the inputs. The activation is then passed through a sigmoid (S-
shaped) curve. The combination of the multi-dimensional linear function and the one-
dimensional sigmoid function gives the characteristic sigmoid cliff response of a first 
hidden layer MLP unit (the figure below illustrates the shape plotted across two inputs. 
An MLP unit with more inputs has a higher-dimensional version of this functional 
shape). Altering the weights and thresholds alters this response surface. In particular, 
both the orientation of the surface, and the steepness of the sloped section, can be altered. 
A steep slope corresponds to large weight values: doubling all weight values gives the 
same orientation but a different slope.  
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A multi-layered network combines a number of these response surfaces together, through 
repeated linear combination and non-linear activation functions. The next figure 
illustrates a typical response surface for a network with only one hidden layer, of two 
units, and a single output unit, on the classic XOR problem. Two separate sigmoid 
surfaces have been combined into a single U-shaped surface.  

During network training, the weights and thresholds are first initialized to small, random 
values. This implies that the units' response surfaces are each aligned randomly with low 
slope: they are effectively uncommitted. As training progresses, the units' response 
surfaces are rotated and shifted into appropriate positions, and the magnitudes of the 
weights grow as they commit to modeling particular parts of the target response surface.  

In a classification problem, an output unit's task is to output a strong signal if a case 
belongs to its class, and a weak signal if it doesn't. In other words, it is attempting to 
model a function that has magnitude one for parts of the pattern-space that contain its 
cases, and magnitude zero for other parts.  

 

This is known as a discriminant function in pattern recognition problems. An ideal 
discriminant function could be said to have a plateau structure, where all points on the 
function are either at height zero or height one.  

If there are no hidden units, then the output can only model a single sigmoid-cliff with 
areas to one side at low height and areas to the other high. There will always be a region 
in the middle (on the cliff) where the height is in-between, but as weight magnitudes are 
increased, this area shrinks.  

A sigmoid-cliff like this is effectively a linear discriminant. Points to one side of the cliff 
are classified as belonging to the class, points to the other as not belonging to it. This 
implies that a network with no hidden layers can only classify linearly-separable 
problems (those where a line - or, more generally in higher dimensions, a hyperplane - 
can be drawn which separates the points in pattern space).  

A network with a single hidden layer has a number of sigmoid-cliffs (one per hidden 
unit) represented in that hidden layer, and these are in turn combined into a plateau in the 
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output layer. The plateau has a convex hull (i.e., there are no dents in it, and no holes 
inside it). Although the plateau is convex, it may extend to infinity in some directions 
(like an extended peninsular). Such a network is in practice capable of modeling 
adequately most real-world classification problems.  

 

The figure above shows the plateau response surface developed by an MLP to solve the 
XOR problem: as can be seen, this neatly sections the space along a diagonal.  

A network with two hidden layers has a number of plateaus combined together - the 
number of plateaus corresponds to the number of units in the second layer, and the 
number of sides on each plateau corresponds to the number of units in the first hidden 
layer. A little thought shows that you can represent any shape (including concavities and 
holes) using a sufficiently large number of such plateaus.  

A consequence of these observations is that an MLP with two hidden layers is 
theoretically sufficient to model any problem (there is a more formal proof, the 
Kolmogorov Theorem). This does not necessarily imply that a network with more layers 
might not more conveniently or easily model a particular problem. In practice, however, 
most problems seem to yield to a single hidden layer, with two an occasional resort and 
three practically unknown.  

A key question in classification is how to interpret points on or near the cliff. The 
standard practice is to adopt some confidence levels (the accept and reject thresholds) 
that must be exceeded before the unit is deemed to have made a decision. For example, if 
accept/reject thresholds of 0.95/0.05 are used, an output unit with an output level in 
excess of 0.95 is deemed to be on, below 0.05 it is deemed to be off, and in between it is 
deemed to be undecided.  

A more subtle (and perhaps more useful) interpretation is to treat the network outputs as 
probabilities. In this case, the network gives more information than simply a decision: it 
tells us how sure (in a formal sense) it is of that decision. There are modifications to 
MLPs that allow the neural network outputs to be interpreted as probabilities, which 
means that the network effectively learns to model the probability density function of the 
class. However, the probabilistic interpretation is only valid under certain assumptions 
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about the distribution of the data (specifically, that it is drawn from the family of 
exponential distributions; see Bishop, 1995). Ultimately, a classification decision must 
still be made, but a probabilistic interpretation allows a more formal concept of minimum 
cost decision making to be evolved.  

Other MLP Training Algorithms   

Earlier in this section, we discussed how the back propagation algorithm performs 
gradient descent on the error surface. Speaking loosely, it calculates the direction of 
steepest descent on the surface, and jumps down the surface a distance proportional to the 
learning rate and the slope, picking up momentum as it maintains a consistent direction. 
As an analogy, it behaves like a blindfold kangaroo hopping in the most obvious 
direction. Actually, the descent is calculated independently on the error surface for each 
training case, and in random order, but this is actually a good approximation to descent 
on the composite error surface. Other MLP training algorithms work differently, but all 
use a strategy designed to travel towards a minimum as quickly as possible.  

More sophisticated techniques for non-linear function optimization have been in use for 
some time. These methods include conjugate gradient descent, quasi-Newton, and 
Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997), which are very successful 
forms of two types of algorithm: line search and model-trust region approaches. They are 
collectively known as second order training algorithms.  

A line search algorithm works as follows: pick a sensible direction to move in the multi-
dimensional landscape. Then project a line in that direction, locate the minimum along 
that line (it is relatively trivial to locate a minimum along a line, by using some form of 
bisection algorithm), and repeat. What is a sensible direction in this context? An obvious 
choice is the direction of steepest descent (the same direction that would be chosen by 
back propagation). Actually, this intuitively obvious choice proves to be rather poor. 
Having minimized along one direction, the next line of steepest descent may spoil the 
minimization along the initial direction (even on a simple surface like a parabola a large 
number of line searches may be necessary). A better approach is to select conjugate or 
non-interfering directions - hence conjugate gradient descent (Bishop, 1995).  

The idea here is that, once the algorithm has minimized along a particular direction, the 
second derivative along that direction should be kept at zero. Conjugate directions are 
selected to maintain this zero second derivative on the assumption that the surface is 
parabolic (speaking roughly, a nice smooth surface). If this condition holds, N epochs are 
sufficient to reach a minimum. In reality, on a complex error surface the conjugacy 
deteriorates, but the algorithm still typically requires far less epochs than back 
propagation, and also converges to a better minimum (to settle down thoroughly, back 
propagation must be run with an extremely low learning rate).  

Quasi-Newton training is based on the observation that the direction pointing directly 
towards the minimum on a quadratic surface is the so-called Newton direction. This is 
very expensive to calculate analytically, but quasi-Newton iteratively builds up a good 
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approximation to it. Quasi-Newton is usually a little faster than conjugate gradient 
descent, but has substantially larger memory requirements and is occasionally 
numerically unstable.  

A model-trust region approach works as follows: instead of following a search direction, 
assume that the surface is a simple shape such that the minimum can be located (and 
jumped to) directly - if the assumption is true. Try the model out and see how good the 
suggested point is. The model typically assumes that the surface is a nice well-behaved 
shape (e.g., a parabola), which will be true if sufficiently close to a minima. Elsewhere, 
the assumption may be grossly violated, and the model could choose wildly inappropriate 
points to move to. The model can only be trusted within a region of the current point, and 
the size of this region isn't known. Therefore, choose new points to test as a compromise 
between that suggested by the model and that suggested by a standard gradient-descent 
jump. If the new point is good, move to it, and strengthen the role of the model in 
selecting a new point; if it is bad, don't move, and strengthen the role of the gradient 
descent step in selecting a new point (and make the step smaller). Levenberg-Marquardt 
uses a model that assumes that the underlying function is locally linear (and therefore has 
a parabolic error surface).  

Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963; Bishop, 1995) is typically the 
fastest of the training algorithms, although unfortunately it has some important 
limitations, specifically: it can only be used on single output networks, can only be used 
with the sum squared error function, and has memory requirements proportional to W2 
(where W is the number of weights in the network; this makes it impractical for 
reasonably big networks). Conjugate gradient descent is nearly as good, and doesn't 
suffer from these restrictions.  

Back propagation can still be useful, not least in providing a quick (if not 
overwhelmingly accurate) solution. It is also a good choice if the data set is very large, 
and contains a great deal of redundant data. Back propagation's case-by-case error 
adjustment means that data redundancy does it no harm (for example, if you double the 
data set size by replicating every case, each epoch will take twice as long, but have the 
same effect as two of the old epochs, so there is no loss). In contrast, Levenberg-
Marquardt, quasi-Newton, and conjugate gradient descent all perform calculations using 
the entire data set, so increasing the number of cases can significantly slow each epoch, 
but does not necessarily improve performance on that epoch (not if data is redundant; if 
data is sparse, then adding data will make each epoch better). Back propagation can also 
be equally good if the data set is very small, for there is then insufficient information to 
make a highly fine-tuned solution appropriate (a more advanced algorithm may achieve a 
lower training error, but the selection error is unlikely to improve in the same way). 
Finally, the second order training algorithms seem to be very prone to stick in local 
minima in the early phases - for this reason, we recommend the practice of starting with a 
short burst of back propagation, before switching to a second order algorithm.  

There are variations on back propagation (quick propagation, Fahlman, 1988, and Delta-
bar-Delta, Jacobs, 1988) that are designed to deal with some of the limitations on this 
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technique. In most cases, they are not significantly better than back propagation, and 
sometimes they are worse (relative performance is application-dependent). They also 
require more control parameters than any of the other algorithms, which makes them 
more difficult to use, so they are not described in further detail in this section.  

 

Radial Basis Function Networks  

We have seen in the last section how an MLP models the response function using the 
composition of sigmoid-cliff functions - for a classification problem, this corresponds to 
dividing the pattern space up using hyperplanes. The use of hyperplanes to divide up 
space is a natural approach - intuitively appealing, and based on the fundamental 
simplicity of lines.  

An equally appealing and intuitive approach is to divide up space using circles or (more 
generally) hyperspheres. A hypersphere is characterized by its center and radius. More 
generally, just as an MLP unit responds (non-linearly) to the distance of points from the 
line of the sigmoid-cliff, in a radial basis function network (Broomhead and Lowe, 1988; 
Moody and Darkin, 1989; Haykin, 1994) units respond (non-linearly) to the distance of 
points from the center represented by the radial unit. The response surface of a single 
radial unit is therefore a Gaussian (bell-shaped) function, peaked at the center, and 
descending outwards. Just as the steepness of the MLP's sigmoid curves can be altered, 
so can the slope of the radial unit's Gaussian. See the next illustration below.  

 

MLP units are defined by their weights and threshold, which together give the equation 
of the defining line, and the rate of fall-off of the function from that line. Before 
application of the sigmoid activation function, the activation level of the unit is 
determined using a weighted sum, which mathematically is the dot product of the input 
vector and the weight vector of the unit; these units are therefore referred to as dot 
product units. In contrast, a radial unit is defined by its center point and a radius. A point 
in N dimensional space is defined using N numbers, which exactly corresponds to the 
number of weights in a dot product unit, so the center of a radial unit is stored as weights. 
The radius (or deviation) value is stored as the threshold. It is worth emphasizing that the 
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weights and thresholds in a radial unit are actually entirely different to those in a dot 
product unit, and the terminology is dangerous if you don't remember this: Radial 
weights really form a point, and a radial threshold is really a deviation.  

A radial basis function network (RBF), therefore, has a hidden layer of radial units, each 
actually modeling a Gaussian response surface. Since these functions are nonlinear, it is 
not actually necessary to have more than one hidden layer to model any shape of 
function: sufficient radial units will always be enough to model any function. The 
remaining question is how to combine the hidden radial unit outputs into the network 
outputs? It turns out to be quite sufficient to use a linear combination of these outputs 
(i.e., a weighted sum of the Gaussians) to model any nonlinear function. The standard 
RBF has an output layer containing dot product units with indentity activation function 
(see Haykin, 1994; Bishop, 1995).  

RBF networks have a number of advantages over MLPs. First, as previously stated, they 
can model any nonlinear function using a single hidden layer, which removes some 
design-decisions about numbers of layers. Second, the simple linear transformation in the 
output layer can be optimized fully using traditional linear modeling techniques, which 
are fast and do not suffer from problems such as local minima which plague MLP 
training techniques. RBF networks can therefore be trained extremely quickly (i.e., orders 
of magnitude faster than MLPs).  

On the other hand, before linear optimization can be applied to the output layer of an 
RBF network, the number of radial units must be decided, and then their centers and 
deviations must be set. Although faster than MLP training, the algorithms to do this are 
equally prone to discover sub-optimal combinations. Other features that distinguish RBF 
performance from MLPs are due to the differing approaches to modeling space, with 
RBFs "clumpy" and MLPs "planey."  

Other features which distinguish RBF performance from MLPs are due to the differing 
approaches to modeling space, with RBFs "clumpy" and MLPs "planey."  

Experience indicates that the RBF's more eccentric response surface requires a lot more 
units to adequately model most functions. Of course, it is always possible to draw shapes 
that are most easily represented one way or the other, but the balance does not favor 
RBFs. Consequently, an RBF solution will tend to be slower to execute and more space 
consuming than the corresponding MLP (but it was much faster to train, which is 
sometimes more of a constraint).  

The clumpy approach also implies that RBFs are not inclined to extrapolate beyond 
known data: the response drops off rapidly towards zero if data points far from the 
training data are used. Often the RBF output layer optimization will have set a bias level, 
hopefully more or less equal to the mean output level, so in fact the extrapolated output is 
the observed mean - a reasonable working assumption. In contrast, an MLP becomes 
more certain in its response when far-flung data is used. Whether this is an advantage or 
disadvantage depends largely on the application, but on the whole the MLP's uncritical 
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extrapolation is regarded as a bad point: extrapolation far from training data is usually 
dangerous and unjustified.  

RBFs are also more sensitive to the curse of dimensionality, and have greater difficulties 
if the number of input units is large: this problem is discussed further in a later section.  

As mentioned earlier, training of RBFs takes place in distinct stages. First, the centers 
and deviations of the radial units must be set; then the linear output layer is optimized.  

Centers should be assigned to reflect the natural clustering of the data. The two most 
common methods are:  

Sub-sampling. Randomly-chosen training points are copied to the radial units. Since 
they are randomly selected, they will represent the distribution of the training data in a 
statistical sense. However, if the number of radial units is not large, the radial units may 
actually be a poor representation (Haykin, 1994).  

K-Means algorithm. This algorithm (Bishop, 1995) tries to select an optimal set of 
points that are placed at the centroids of clusters of training data. Given K radial units, it 
adjusts the positions of the centers so that:  

• Each training point belongs to a cluster center, and is nearer to this center than to 
any other center;  

• Each cluster center is the centroid of the training points that belong to it.  

Once centers are assigned, deviations are set. The size of the deviation (also known as a 
smoothing factor) determines how spiky the Gaussian functions are. If the Gaussians are 
too spiky, the network will not interpolate between known points, and the network loses 
the ability to generalize. If the Gaussians are very broad, the network loses fine detail. 
This is actually another manifestation of the over/under-fitting dilemma. Deviations 
should typically be chosen so that Gaussians overlap with a few nearby centers. Methods 
available are:  

Explicit. Choose the deviation yourself.  

Isotropic. The deviation (same for all units) is selected heuristically to reflect the number 
of centers and the volume of space they occupy (Haykin, 1994).  

K-Nearest Neighbor. Each unit's deviation is individually set to the mean distance to its 
K nearest neighbors (Bishop, 1995). Hence, deviations are smaller in tightly packed areas 
of space, preserving detail, and higher in sparse areas of space (interpolating where 
necessary).  

Once centers and deviations have been set, the output layer can be optimized using the 
standard linear optimization technique: the pseudo-inverse (singular value 
decomposition) algorithm (Haykin, 1994; Golub and Kahan, 1965).  
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However, RBFs as described above suffer similar problems to Multilayer Perceptrons if 
they are used for classification - the output of the network is a measure of distance from a 
decision hyperplane, rather than a probabilistic confidence level. We may therefore 
choose to modify the RBF by including an output layer with logistic or softmax 
(normalized exponential) outputs, which is capable of probability estimation. We lose the 
advantage of fast linear optimization of the output layer; however, the non-linear output 
layer still has a relatively well-behaved error surface, and can be optimized quite quickly 
using a fast iterative algorithm such as conjugate gradient descent.  

Radial basis functions can also be hybridized in a number of ways. The radial layer (the 
hidden layer) can be trained using the Kohonen and Learned Vector Quantization training 
algorithms, which are alternative methods of assigning centers to reflect the spread of 
data, and the output layer (whether linear or otherwise) can be trained using any of the 
iterative dot product algorithms.  

 

Probabilistic Neural Networks  

Elsewhere, we briefly mentioned that, in the context of classification problems, a useful 
interpretation of network outputs was as estimates of probability of class membership, in 
which case the network was actually learning to estimate a probability density function 
(p.d.f.). A similar useful interpretation can be made in regression problems if the output 
of the network is regarded as the expected value of the model at a given point in input-
space. This expected value is related to the joint probability density function of the output 
and inputs.  

Estimating probability density functions from data has a long statistical history (Parzen, 
1962), and in this context fits into the area of Bayesian statistics. Conventional statistics 
can, given a known model, inform us what the chances of certain outcomes are (e.g., we 
know that a unbiased die has a 1/6th chance of coming up with a six). Bayesian statistics 
turns this situation on its head, by estimating the validity of a model given certain data. 
More generally, Bayesian statistics can estimate the probability density of model 
parameters given the available data. To minimize error, the model is then selected whose 
parameters maximize this p.d.f.  

In the context of a classification problem, if we can construct estimates of the p.d.f.s of 
the possible classes, we can compare the probabilities of the various classes, and select 
the most-probable. This is effectively what we ask a neural network to do when it learns a 
classification problem - the network attempts to learn (an approximation to) the p.d.f.  

A more traditional approach is to construct an estimate of the p.d.f. from the data. The 
most traditional technique is to assume a certain form for the p.d.f. (typically, that it is a 
normal distribution), and then to estimate the model parameters. The normal distribution 
is commonly used as the model parameters (mean and standard deviation) can be 
estimated using analytical techniques. The problem is that the assumption of normality is 
often not justified.  
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An alternative approach to p.d.f. estimation is kernel-based approximation (see Parzen, 
1962; Speckt, 1990; Speckt, 1991; Bishop, 1995; Patterson, 1996). We can reason loosely 
that the presence of particular case indicates some probability density at that point: a 
cluster of cases close together indicate an area of high probability density. Close to a 
case, we can have high confidence in some probability density, with a lesser and 
diminishing level as we move away. In kernel-based estimation, simple functions are 
located at each available case, and added together to estimate the overall p.d.f. Typically, 
the kernel functions are each Gaussians (bell-shapes). If sufficient training points are 
available, this will indeed yield an arbitrarily good approximation to the true p.d.f.  

This kernel-based approach to p.d.f. approximation is very similar to radial basis function 
networks, and motivates the probabilistic neural network (PNN) and generalized 
regression neural network (GRNN), both devised by Speckt (1990 and 1991). PNNs are 
designed for classification tasks, and GRNNs for regression. These two types of network 
are really kernel-based approximation methods cast in the form of neural networks.  

In the PNN, there are at least three layers: input, radial, and output layers. The radial units 
are copied directly from the training data, one per case. Each models a Gaussian function 
centered at the training case. There is one output unit per class. Each is connected to all 
the radial units belonging to its class, with zero connections from all other radial units. 
Hence, the output units simply add up the responses of the units belonging to their own 
class. The outputs are each proportional to the kernel-based estimates of the p.d.f.s of the 
various classes, and by normalizing these to sum to 1.0 estimates of class probability are 
produced.  

The basic PNN can be modified in two ways.  

First, the basic approach assumes that the proportional representation of classes in the 
training data matches the actual representation in the population being modeled (the so-
called prior probabilities). For example, in a disease-diagnosis network, if 2% of the 
population has the disease, then 2% of the training cases should be positives. If the prior 
probability is different from the level of representation in the training cases, then the 
network's estimate will be invalid. To compensate for this, prior probabilities can be 
given (if known), and the class weightings are adjusted to compensate.  

Second, any network making estimates based on a noisy function will inevitably produce 
some misclassifications (there may be disease victims whose tests come out normal, for 
example). However, some forms of misclassification may be regarded as more expensive 
mistakes than others (for example, diagnosing somebody healthy as having a disease, 
which simply leads to exploratory surgery may be inconvenient but not life-threatening; 
whereas failing to spot somebody who is suffering from disease may lead to premature 
death). In such cases, the raw probabilities generated by the network can be weighted by 
loss factors, which reflect the costs of misclassification. A fourth layer can be specified in 
PNNs which includes a loss matrix. This is multiplied by the probability estimates in the 
third layer, and the class with lowest estimated cost is selected. (Loss matrices may also 
be attached to other types of classification network).  
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The only control factor that needs to be selected for probabilistic neural network training 
is the smoothing factor (i.e., the radial deviation of the Gaussian functions). As with RBF 
networks, this factor needs to be selected to cause a reasonable amount of overlap - too 
small deviations cause a very spiky approximation which cannot generalize, too large 
deviations smooth out detail. An appropriate figure is easily chosen by experiment, by 
selecting a number which produces a low selection error, and fortunately PNNs are not 
too sensitive to the precise choice of smoothing factor.  

The greatest advantages of PNNs are the fact that the output is probabilistic (which 
makes interpretation of output easy), and the training speed. Training a PNN actually 
consists mostly of copying training cases into the network, and so is as close to 
instantaneous as can be expected.  

The greatest disadvantage is network size: a PNN network actually contains the entire set 
of training cases, and is therefore space-consuming and slow to execute.  

PNNs are particularly useful for prototyping experiments (for example, when deciding 
which input parameters to use), as the short training time allows a great number of tests 
to be conducted in a short period of time.  

 

Generalized Regression Neural Networks  

Generalized regression neural networks (GRNNs) work in a similar fashion to PNNs, but 
perform regression rather than classification tasks (see Speckt, 1991; Patterson, 1996; 
Bishop, 1995). As with the PNN, Gaussian kernel functions are located at each training 
case. Each case can be regarded, in this case, as evidence that the response surface is a 
given height at that point in input space, with progressively decaying evidence in the 
immediate vicinity. The GRNN copies the training cases into the network to be used to 
estimate the response on new points. The output is estimated using a weighted average of 
the outputs of the training cases, where the weighting is related to the distance of the 
point from the point being estimated (so that points nearby contribute most heavily to the 
estimate).  

The first hidden layer in the GRNN contains the radial units. A second hidden layer 
contains units that help to estimate the weighted average. This is a specialized procedure. 
Each output has a special unit assigned in this layer that forms the weighted sum for the 
corresponding output. To get the weighted average from the weighted sum, the weighted 
sum must be divided through by the sum of the weighting factors. A single special unit in 
the second layer calculates the latter value. The output layer then performs the actual 
divisions (using special division units). Hence, the second hidden layer always has 
exactly one more unit than the output layer. In regression problems, typically only a 
single output is estimated, and so the second hidden layer usually has two units.  

The GRNN can be modified by assigning radial units that represent clusters rather than 
each individual training case: this reduces the size of the network and increases execution 
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speed. Centers can be assigned using any appropriate algorithm (i.e., sub-sampling, K-
means or Kohonen).  

GRNNs have advantages and disadvantages broadly similar to PNNs - the difference 
being that GRNNs can only be used for regression problems, whereas PNNs are used for 
classification problems. A GRNN trains almost instantly, but tends to be large and slow 
(although, unlike PNNs, it is not necessary to have one radial unit for each training case, 
the number still needs to be large). Like an RBF network, a GRNN does not extrapolate.  

 

Linear Networks  

A general scientific principal is that a simple model should always be chosen in 
preference to a complex model if the latter does not fit the data better. In terms of 
function approximation, the simplest model is the linear model, where the fitted function 
is a hyperplane. In classification, the hyperplane is positioned to divide the two classes (a 
linear discriminant function); in regression, it is positioned to pass through the data. A 
linear model is typically represented using an NxN matrix and an Nx1 bias vector.  

A neural network with no hidden layers, and an output with dot product synaptic function 
and identity activation function, actually implements a linear model. The weights 
correspond to the matrix, and the thresholds to the bias vector. When the network is 
executed, it effectively multiplies the input by the weights matrix then adds the bias 
vector.  

The linear network provides a good benchmark against which to compare the 
performance of your neural networks. It is quite possible that a problem that is thought to 
be highly complex can actually be solved as well by linear techniques as by neural 
networks. If you have only a small number of training cases, you are probably anyway 
not justified in using a more complex model.  

 

SOFM Networks  

Self Organizing Feature Map (SOFM, or Kohonen) networks are used quite differently to 
the other networks. Whereas all the other networks are designed for supervised learning 
tasks, SOFM networks are designed primarily for unsupervised learning (see Kohonen, 
1982; Haykin, 1994; Patterson, 1996; Fausett, 1994).  

Whereas in supervised learning the training data set contains cases featuring input 
variables together with the associated outputs (and the network must infer a mapping 
from the inputs to the outputs), in unsupervised learning the training data set contains 
only input variables.  
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At first glance this may seem strange. Without outputs, what can the network learn? The 
answer is that the SOFM network attempts to learn the structure of the data.  

One possible use is therefore in exploratory data analysis. The SOFM network can learn 
to recognize clusters of data, and can also relate similar classes to each other. The user 
can build up an understanding of the data, which is used to refine the network. As classes 
of data are recognized, they can be labeled, so that the network becomes capable of 
classification tasks. SOFM networks can also be used for classification when output 
classes are immediately available - the advantage in this case is their ability to highlight 
similarities between classes.  

A second possible use is in novelty detection. SOFM networks can learn to recognize 
clusters in the training data, and respond to it. If new data, unlike previous cases, is 
encountered, the network fails to recognize it and this indicates novelty.  

A SOFM network has only two layers: the input layer, and an output layer of radial units 
(also known as the topological map layer). The units in the topological map layer are laid 
out in space - typically in two dimensions (although ST Neural Networks also supports 
one-dimensional Kohonen networks).  

SOFM networks are trained using an iterative algorithm. Starting with an initially-
random set of radial centers, the algorithm gradually adjusts them to reflect the clustering 
of the training data. At one level, this compares with the sub-sampling and K-Means 
algorithms used to assign centers in RBF and GRNN networks, and indeed the SOFM 
algorithm can be used to assign centers for these types of networks. However, the 
algorithm also acts on a different level.  

The iterative training procedure also arranges the network so that units representing 
centers close together in the input space are also situated close together on the topological 
map. You can think of the network's topological layer as a crude two-dimensional grid, 
which must be folded and distorted into the N-dimensional input space, so as to preserve 
as far as possible the original structure. Clearly any attempt to represent an N-
dimensional space in two dimensions will result in loss of detail; however, the technique 
can be worthwhile in allowing the user to visualize data which might otherwise be 
impossible to understand.  

The basic iterative Kohonen algorithm simply runs through a number of epochs, on each 
epoch executing each training case and applying the following algorithm:  

• Select the winning neuron (the one who's center is nearest to the input case);  
• Adjust the winning neuron to be more like the input case (a weighted sum of the 

old neuron center and the training case).  

The algorithm uses a time-decaying learning rate, which is used to perform the weighted 
sum and ensures that the alterations become more subtle as the epochs pass. This ensures 
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that the centers settle down to a compromise representation of the cases which cause that 
neuron to win.  

The topological ordering property is achieved by adding the concept of a neighborhood to 
the algorithm. The neighborhood is a set of neurons surrounding the winning neuron. The 
neighborhood, like the learning rate, decays over time, so that initially quite a large 
number of neurons belong to the neighborhood (perhaps almost the entire topological 
map); in the latter stages the neighborhood will be zero (i.e., consists solely of the 
winning neuron itself). In the Kohonen algorithm, the adjustment of neurons is actually 
applied not just to the winning neuron, but to all the members of the current 
neighborhood.  

The effect of this neighborhood update is that initially quite large areas of the network are 
"dragged towards" training cases - and dragged quite substantially. The network develops 
a crude topological ordering, with similar cases activating clumps of neurons in the 
topological map. As epochs pass the learning rate and neighborhood both decrease, so 
that finer distinctions within areas of the map can be drawn, ultimately resulting in fine-
tuning of individual neurons. Often, training is deliberately conducted in two distinct 
phases: a relatively short phase with high learning rates and neighborhood, and a long 
phase with low learning rate and zero or near-zero neighborhood.  

Once the network has been trained to recognize structure in the data, it can be used as a 
visualization tool to examine the data. The Win Frequencies Datasheet (counts of the 
number of times each neuron wins when training cases are executed) can be examined to 
see if distinct clusters have formed on the map. Individual cases are executed and the 
topological map observed, to see if some meaning can be assigned to the clusters (this 
usually involves referring back to the original application area, so that the relationship 
between clustered cases can be established). Once clusters are identified, neurons in the 
topological map are labeled to indicate their meaning (sometimes individual cases may be 
labeled, too). Once the topological map has been built up in this way, new cases can be 
submitted to the network. If the winning neuron has been labeled with a class name, the 
network can perform classification. If not, the network is regarded as undecided.  

SOFM networks also make use of the accept threshold, when performing classification. 
Since the activation level of a neuron in a SOFM network is the distance of the neuron 
from the input case, the accept threshold acts as a maximum recognized distance. If the 
activation of the winning neuron is greater than this distance, the SOFM network is 
regarded as undecided. Thus, by labeling all neurons and setting the accept threshold 
appropriately, a SOFM network can act as a novelty detector (it reports undecided only if 
the input case is sufficiently dissimilar to all radial units).  

SOFM networks are inspired by some known properties of the brain. The cerebral cortex 
is actually a large flat sheet (about 0.5m squared; it is folded up into the familiar 
convoluted shape only for convenience in fitting into the skull!) with known topological 
properties (for example, the area corresponding to the hand is next to the arm, and a 
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distorted human frame can be topologically mapped out in two dimensions on its 
surface).  

 

Classification in ST Neural Networks  

In classification problems, the purpose of the network is to assign each case to one of a 
number of classes (or, more generally, to estimate the probability of membership of the 
case in each class). Nominal output variables are used to indicate a classification 
problem. The nominal values correspond to the various classes.  

Nominal variables are normally represented in networks using one of two techniques, the 
first of which is only available for two-state variables; these techniques are: two-state, 
one-of-N. In two-state representation, a single node corresponds to the variable, and a 
value of 0.0 is interpreted as one state, and a value of 1.0 as the other. In one-of-N 
encoding, one unit is allocated for each state, with a particular state represented by 1.0 on 
that particular unit, and 0.0 on the others.  

Input nominal variables are easily converted using the above methods, both during 
training and during execution. Target outputs for units corresponding to nominal 
variables are also easily determined during training. However, more effort is required to 
determine the output class assigned by a network during execution.  

The output units each have continuous activation values between 0.0 and 1.0. In order to 
definitely assign a class from the outputs, the network must decide if the outputs are 
reasonably close to 0.0 and 1.0. If they are not, the class is regarded as undecided.  

Confidence levels (the accept and reject thresholds) decide how to interpret the network 
outputs. These thresholds can be adjusted to make the network more or less fussy about 
when to assign a classification. The interpretation differs slightly for two-state and one-
of-N representation:  

Two-state. If the unit output is above the accept threshold, the 1.0 class is deemed to be 
chosen. If the output is below the reject threshold, the 0.0 class is chosen. If the output is 
between the two thresholds, the class is undecided.  

One-of-N. A class is selected if the corresponding output unit is above the accept 
threshold and all the other output units are below the reject threshold. If this condition is 
not met, the class is undecided.  

For one-of-N encoding, the use of thresholds is optional. If not used, the "winner-takes-
all" algorithm is used (the highest activation unit gives the class, and the network is never 
undecided). There is one peculiarity when dealing with one-of-N encoding. On first 
reading, you might expect a network with accept and reject thresholds set to 0.5 is 
equivalent to a "winner takes all" network. Actually, this is not the case for one-of-N 
encoded networks (it is the case for two-state). You can actually set the accept threshold 
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lower than the reject threshold, and only a network with accept 0.0 and reject 1.0 is 
equivalent to a winner-takes-all network. This is true since the algorithm for assigning a 
class is actually:  

• Select the unit with the highest output. If this unit has output greater than or equal 
to the accept threshold, and all other units have output less than the reject 
threshold, assign the class represented by that unit.  

With an accept threshold of 0.0, the winning unit is bound to be accepted, and with a 
reject threshold of 1.0, none of the other units can possibly be rejected, so the algorithm 
reduces to a simple selection of the winning unit. In contrast, if both accept and reject are 
set to 0.5, the network may return undecided (if the winner is below 0.5, or any of the 
losers are above 0.5).  

Although this concept takes some getting used to, it does allow you to set some subtle 
conditions. For example, accept/reject 0.3/0.7 can be read as: "select the class using the 
winning unit, provided it has an output level at least 0.3, and none of the other units have 
activation above 0.7" - in other words, the winner must show some significant level of 
activation, and the losers mustn't, for a decision to be reached.  

If the network's output unit activations are probabilities, the range of possible output 
patterns is of course restricted, as they must sum to 1.0. In that case, winner-takes-all is 
equivalent to setting accept and reject both to 1/N, where N is the number of classes. The 
above discussion covers the assignment of classifications in most types of network: 
MLPs, RBFs, linear and Cluster. However, SOFM networks work quite differently.  

In a SOFM network, the winning node in the topological map (output) layer is the one 
with the lowest activation level (which measures the distance of the input case from the 
point stored by the unit). Some or all of the units in the topological map may be labeled, 
indicating an output class. If the distance is small enough, then the case is assigned to the 
class (if one is given). The accept threshold indicates the largest distance which will 
result in a positive classification. If an input case is further than this distance away from 
the winning unit, or if the winning unit is unlabelled (or its label doesn't match one of the 
output variable's nominal values) then the case is unclassified. The reject threshold is not 
used in SOFM networks.  

The discussion on non-SOFM networks has assumed that a positive classification is 
indicated by a figure close to 1.0, and a negative classification by a figure close to 0.0. 
This is true if the logistic output activation function is used, and is convenient as 
probabilities range from 0.0 to 1.0. However, in some circumstances a different range 
may be used. Also, sometimes ordering is reversed, with smaller outputs indicating 
higher confidence.  

First, the range values used are actually the min/mean and max/SD values stored for each 
variable. With a logistic output activation function, the default values 0.0 and 1.0 are fine. 
Some authors actually recommend using the hyperbolic tangent activation function, 
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which has the range (-1.0,+1.0) . Training performance may be enhanced because this 
function (unlike the logistic function) is symmetrical. Alternatively (and we recommend 
this practice) use hyperbolic tangent activation function in hidden layers, but not in the 
output layer.  

Ordering is typically reversed in two situations. We have just discussed one of these: 
SOFM networks, where the output is a distance measure, with a small value indicating 
greater confidence. The same is true in the closely-related Cluster networks. The second 
circumstance is the use of a loss matrix (which may be added at creation time to PNNs, 
and also manually joined to other types of network). When a loss matrix is used, the 
network outputs indicate the expected cost if each class is selected, and the objective is to 
select the class with the lowest cost. In this case, we would normally expect the accept 
threshold to be smaller than the reject threshold.  

Classification Statistics  

When selecting accept/reject thresholds, and assessing the classification ability of the 
network, the most important indicator is the classification summary spreadsheet. This 
shows how many cases were correctly classified, incorrectly classified, or unclassified. 
You can also use the confusion matrix spreadsheet to break down how many cases 
belonging to each class were assigned to another class. All these figures can be 
independently reported for the training, selection and test sets.  

 

Regression Problems in ST Neural Networks  

In regression problems, the objective is to estimate the value of a continuous output 
variable, given the known input variables. Regression problems can be solved using the 
following network types: MLP, RBF, GRNN and Linear. Regression problems are 
represented by data sets with non-nominal (standard numeric) output(s).  

A particularly important issue in regression is output scaling, and extrapolation effects.  

The most common neural network architectures have outputs in a limited range (e.g., 
(0,1) for the logistic activation function). This presents no difficulty for classification 
problems, where the desired output is in such a range. However, for regression problems 
there clearly is an issue to be resolved, and some of the consequences are quite subtle.  

This subject is discussed below.  

As a first pass, we can apply a scaling algorithm to ensure that the network's output will 
be in a sensible range. The simplest scaling function is minimax: this finds the minimum 
and maximum values of a variable in the training data, and performs a linear 
transformation (using a shift and a scale factor) to convert the values into the target range 
(typically [0.0,1.0]). If this is used on a continuous output variable, then we can guarantee 
that all training values will be converted into the range of possible outputs of the network, 

  



 450 

and so the network can be trained. We also know that the network's output will be 
constrained to lie within this range. This may or may not be regarded as a good thing, 
which brings us to the subject of extrapolation.  

 

Consider the figure above. Here, we are trying to estimate the value of y from the value 
of x. A curve has to be fitted that passes through the available data points. We can 
probably easily agree on the illustrated curve, which is approximately the right shape, and 
this will allow us to estimate y given inputs in the range represented by the solid line 
where we can interpolate.  

However, what about a point well to the right of the data points? There are two possible 
approaches to estimating y for this point. First, we might decide to extrapolate: projecting 
the trend of the fitted curve onwards. Second, we might decide that we don't really have 
sufficient evidence to assign any value, and therefore assign the mean output value 
(which is probably the best estimate we have lacking any other evidence).  

Let us assume that we are using an MLP. Using minimax as suggested above is highly 
restrictive. First, the curve is not extrapolated, however close to the training data we may 
be (if we are only a little bit outside the training data, extrapolation may well be 
justified). Second, it does not estimate the mean either - it actually saturates at either the 
minimum or maximum, depending on whether the estimated curve was rising or falling 
as it approached this region.  

There are a number of approaches to correct this deficiency in an MLP:  

First, we can replace the logistic output activation function with a linear activation 
function, which simply passes on the activation level unchanged (N.B. only the activation 
functions in the output layer are changed; the hidden layers still use logistic or hyperbolic 
activation functions). The linear activation function does not saturate, and so can 
extrapolate further (the network will still saturate eventually as the hidden units saturate). 
A linear activation function in an MLP can cause some numerical difficulties for the back 
propagation algorithm, however, and if this is used a low learning rate (below 0.1) must 
be used. This approach may be appropriate if you want to extrapolate.  

Second, you can alter the target range for the minimax scaling function (for example, to 
[0.1,0.9]). The training cases are then all mapped to levels that correspond to only the 
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middle part of the output units' output range. Interestingly, if this range is small, with 
both figures close to 0.5, it corresponds to the middle part of the sigmoid curve that is 
nearly linear, and the approach is then quite similar to using a linear output layer. Such a 
network can then perform limited extrapolation, but eventually saturates. This has quite a 
nice intuitive interpretation: extrapolation is justified for a certain distance, and then 
should be curtailed.  

If may have occurred to you that if the first approach is used, and linear units are placed 
in the output layer, there is no need to use a scaling algorithm at all, since the units can 
achieve any output level without scaling. However, in reality the entire removal of 
scaling presents difficulties to the training algorithms. It implies that different weights in 
the network operate on very different scales, which makes both initialization of weights 
and (some) training more complex. It is therefore not recommended that you turn off 
scaling unless the output range is actually very small and close to zero. The same 
argument actually justifies the use of scaling during preprocessing for MLPs (where, in 
principal, the first hidden layer weights could simply be adjusted to perform any scaling 
required).  

The above discussion focused on the performance of MLPs in regression, and particularly 
their behavior with respect to extrapolation. Networks using radial units (RBFs and 
GRNNs) perform quite differently, and need different treatment.  

Radial networks are inherently incapable of extrapolation. As the input case gets further 
from the points stored in the radial units, so the activation of the radial units decays and 
(ultimately) the output of the network decays. An input case located far from the radial 
centers will generate a zero output from all hidden units. The tendency not to extrapolate 
can be regarded as good (depending on your problem-domain and viewpoint), but the 
tendency to decay to a zero output (at first sight) is not. If we decide to eschew 
extrapolation, then what we would like to see reported at highly novel input points is the 
mean. In fact, the RBF has a bias value on the output layer, and sets this to a convenient 
value, which hopefully approximates the sample mean. Then, the RBF will always output 
the mean if asked to extrapolate.  

Using the mean/SD scaling function with radial networks in regression problems, the 
training data is scaled so that its output mean corresponds to 0.0, with other values scaled 
according to the output standard deviation, and the bias is expected to be approximately 
zero. As input points are executed outside the range represented in the radial units, the 
output of the network tends back towards the mean.  

The performance of a regression network can be examined in a number of ways.  

1. The output of the network for each case (or any new case you choose to test) can 
be submitted to the network. If part of the data set, the residual errors can also be 
generated.  

2. Summary statistics can be generated. These include the mean and standard 
deviation of both the training data values and the prediction error. One would 



 452 

generally expect to see a prediction error mean extremely close to zero (it is, after 
all, possible to get a zero prediction error mean simply by estimating the mean 
training data value, without any recourse to the input variables or a neural 
network at all). The most significant value is the prediction error standard 
deviation. If this is no better than the training data standard deviation, then the 
network has performed no better than a simple mean estimator. A ratio of the 
prediction error SD to the training data SD significantly below 1.0 indicates good 
regression performance, with a level below 0.1 often said (heuristically) to 
indicate good regression. This regression ratio (or, more accurately, one minus 
this ratio) is sometimes referred to as the explained variance of the model.  

The regression statistics also include the Pearson-R correlation coefficient 
between the network's prediction and the observed values. In linear modeling, the 
Pearson-R correlation between the predictor variable and the predicted is often 
used to express correlation - if a linear model is fitted, this is identical to the 
correlation between the model's prediction and the observed values (or, to the 
negative of it). Thus, this gives you a convenient way to compare the neural 
network's accuracy with that of your linear models.  

3. A view of the response surface can be generated. The network's actual response 
surface is, of course, constructed in N+1 dimensions, where N is the number of 
input units, and the last dimension plots the height. It is clearly impossible to 
directly visualize this surface where N is anything greater than two (which it 
invariably is). 

 

Time Series Prediction in ST Neural Networks  

In time series problems, the objective is to predict ahead the value of a variable that 
varies in time, using previous values of that and/or other variables (see Bishop, 1995)  

Typically the predicted variable is continuous, so that time series prediction is usually a 
specialized form of regression. However, without this restriction, time series can also do 
prediction of nominal variables (i.e,. classification).  

It is also usual to predict the next value in a series from a fixed number of previous values 
(looking ahead a single time step). When the next value in a series is generated, further 
values can be estimated by feeding the newly-estimated value back into the network 
together with other previous values: time series projection. Obviously, the reliability of 
projection drops the more steps ahead one tries to predict, and if a particular distance 
ahead is required, it is probably better to train a network specifically for that degree of 
lookahead.  

Any type of network can be used for time series prediction (the network type must, 
however, be appropriate for regression or classification, depending on the problem type). 
The network can also have any number of input and output variables. However, most 
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commonly there is a single variable that is both the input and (with the lookahead taken 
into account) the output. Configuring a network for time series usage alters the way that 
data is pre-processed (i.e., it is drawn from a number of sequential cases, rather than a 
single case), but the network is executed and trained just as for any other problem.  

The time series training data set therefore typically has a single variable, and this has type 
input/output (i.e., it is used both for network input and network output).  

The most difficult concept in time series handling is the interpretation of training, 
selection, test and ignored cases. For standard data sets, each case is independent, and 
these meanings are clear. However, with a time series network each pattern of inputs and 
outputs is actually drawn from a number of cases, determined by the network's Steps and 
Lookahead parameters. There are two consequences of this:  

The input pattern's type is taken from the type of the output case. For example, in a data 
set containing some cases, the first two ignored and the third test, with Steps=2 and 
Lookahead=1, the first usable pattern has type Test, and draws its inputs from the first 
two cases, and its output from the third. Thus, the first two cases are used in the test set 
even though they are marked Ignore. Further, any given case may be used in three 
patterns, and these may be any of training, selection and test patterns. In some sense, data 
actually leaks between training, selection and test sets. To isolate the three sets entirely, 
contiguous blocks of train, verify or test cases would need to be constructed, separated by 
the appropriate number of ignore cases.  

The first few cases can only be used as inputs for patterns. When selecting cases for time 
series use, the case number selected is always the output case. The first few clearly 
cannot be selected (as this would require further cases before the beginning of the data 
set), and are not available.  

 

Variable Selection and Dimensionality Reduction  

The most common approach to dimensionality reduction is principal components analysis 
(see Bishop, 1995; Bouland and Kamp, 1988). This is a linear transformation that locates 
directions of maximum variance in the original input data, and rotates the data along 
these axes. Typically, the first principal components contain most information. Principal 
component analysis can be represented in a linear network. PCA can often extract a very 
small number of components from quite high-dimensional original data and still retain 
the important structure.  

The preceding sections on network design and training have all assumed that the input 
and output layers are fixed; that is, that we know what variables will be input to the 
network, and what output is expected. The latter is always (at least, for supervised 
learning problems) known. However, the selection of inputs is far more difficult (see 
Bishop, 1995). Often, we do not know which of a set of candidate input variables are 
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actually useful, and the selection of a good set of inputs is complicated by a number of 
important considerations:  

Curse of dimensionality. Each additional input unit in a network adds another 
dimension to the space in which the data cases reside. We are attempting to fit a response 
surface to this data. Thought of in this way, there must be sufficient data points to 
populate an N dimensional space sufficiently densely to be able to see the structure. The 
number of points needed to do this properly grows very rapidly with the dimensionality 
(roughly, in proportion to 2N for most modelling techniques). Most forms of neural 
network (in particular, MLPs) actually suffer less from the curse of dimensionality than 
some other methods, as they can concentrate on a lower-dimensional section of the high-
dimensional space (for example, by setting the outgoing weights from a particular input 
to zero, an MLP can entirely ignore that input). Nevertheless, the curse of dimensionality 
is still a problem, and the performance of a network can certainly be improved by 
eliminating unnecessary input variables. Indeed, even input variables that carry a small 
amount of information may sometimes be better eliminated if this reduces the curse of 
dimensionality.  

Inter-dependency of variables. It would be extremely useful if each candidate input 
variable could be independently assessed for usefulness, so that the most useful ones 
could be extracted. Unfortunately, it is seldom possible to do this, and two or more 
interdependent variables may together carry significant information that a subset would 
not. A classic example is the two-spirals problem, where two classes of data are laid out 
in an interlocking spiral pattern in two dimensions. Either variable alone carries no useful 
information (the two classes appear wholly intermixed), but with the two variables 
together the two classes can be perfectly distinguished. Thus, variables cannot, in general, 
be independently selected.  

Redundancy of variables. Often a number of variables can carry to some extent or other 
the same information. For example, the height and weight of people might in many 
circumstances carry similar information, as these two variables are correlated. It may be 
sufficient to use as inputs some subset of the correlated variables, and the choice of 
subset may be arbitrary. The superiority of a subset of correlated variables over the full 
set is a consequence of the curse of dimensionality.  

Selection of input variables is therefore a critical part of neural network design. You can 
use a combination of your own expert knowledge of the problem domain, and standard 
statistical tests to make some selection of variables before starting to use Neural 
Networks. Once you begin using Neural Networks, various combinations of inputs can be 
tried. You can experimentally add and remove various combinations, building new 
networks for each. You can also conduct Sensitivity Analysis, which rates the importance 
of variable with respect to a particular model.  

When experimenting in this fashion, the probabilistic and generalized regression 
networks are extremely useful. Although slow to execute, compared with the more 
compact MLPs and RBFs, they train almost instantaneously - and when iterating through 
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a large number of input variable combinations, you will need to repeatedly build 
networks. Moreover, PNNs and GRNNs are both (like RBFs) examples of radially-based 
networks (i.e., they have radial units in the first layer, and build functions from a 
combination of Gaussians). This is an advantage when selecting input variables because 
radially-based networks actually suffer more from the curse of dimensionality than 
linearly-based networks.  

To explain this statement, consider the effect of adding an extra, perfectly spurious input 
variable to a network. A linearly-based network such as an MLP can learn to set the 
outgoing weights of the spurious input unit to 0, thus ignoring the spurious input (in 
practice, the initially-small weights will just stay small, while weights from relevant 
inputs diverge). A radially-based network such as a PNN or GRNN has no such luxury: 
clusters in the relevant lower-dimensional space get smeared out through the irrelevant 
dimension, requiring larger numbers of units to encompass the irrelevant variability. A 
network that suffers from poor inputs actually has an advantage when trying to eliminate 
such inputs.  

This form of experimentation is time-consuming, and several feature selection algorithms 
exist, including the genetic algorithm (Goldberg, 1989). Genetic Algorithms are very 
good at this kind of problem, having a capability to search through large numbers of 
combinations where there may be interdependencies between variables.  

Another approach to dealing with dimensionality problems, which may be an alternative 
or a complement to variable selection, is dimensionality reduction. In dimensionality 
reduction, the original set of variables is processed to produce a new and smaller set of 
variables that contains (one hopes) as much information as possible from the original set. 
As an example, consider a data set where all the points lie on a plane in a three 
dimensional space. The intrinsic dimensionality of the data is said to be two (as all the 
information actually resides in a two-dimensional sub-space). If this plane can be 
discovered, the neural network can be presented with a lower dimensionality input, and 
stands a better chance of working correctly.  

 

Ensembles and Resampling  

We have already discussed the problem of over-learning, which can compromise the 
ability of neural networks to generalize successfully to new data. An important approach 
to improve performance is to form ensembles of neural networks. The member networks' 
predictions are averaged (or combined by voting) to form the ensemble's prediction. 
Frequently, ensemble formation is combined with resampling of the data set. This 
approach can significantly improve generalization performance. Resampling can also be 
useful for improved estimation of network generalization performance. 

To explain why resampling and ensembles are so useful, it is helpful to formulate the 
neural network training process in statistical terms (Bishop, 1995). We regard the 
problem as that of estimating an unknown nonlinear function, which has additive noise, 
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on the basis of a limited data set of examples, D. There are several sources of error in our 
neural network's predictions. First, and unavoidably, even a "perfect" network that 
exactly modeled the underlying function would make errors due to the noise. However, 
there is also error due to the fact that we need to fit the neural network model using the 
finite sample data set, D. This remaining error can be split into two components, the 
model bias and variance. The bias is the average error that a particular model training 
procedure will make across different particular data sets (drawn from the unknown 
function's distribution). The variance reflects the sensitivity of the modeling procedure to 
a particular choice of data set. 

We can trade off bias versus variance. At one extreme, we can arbitrarily select a 
function that entirely ignores the data. This has zero variance, but presumably high bias, 
since we have not actually taken into account the known aspects of the problem at all. At 
the opposite extreme, we can choose a highly complex function that can fit every point in 
a particular data set, and thus has zero bias, but high variance as this complex function 
changes shape radically to reflect the exact points in a given data set. The high bias, low 
variance solutions can have low complexity (e.g., linear models), whereas the low bias, 
high variance solutions have high complexity. In neural networks, the low complexity 
models have smaller numbers of units. 

How does this relate to ensembles and resampling? We necessarily divide the data set 
into subsets for training, selection, and test. Intuitively, this is a shame, as not all the data 
gets used for training. If we resample, using a different split of data each time, we can 
build multiple neural networks, and all the data gets used for training at least some of 
them. If we then form the networks into an ensemble, and average the predictions, an 
extremely useful result occurs. Averaging across the models reduces the variance, 
without increasing the bias. Arguably, we can afford to build higher bias models than we 
would otherwise tolerate (i.e., higher complexity models), on the basis that ensemble 
averaging can then mitigate the resulting variance. 

The generalization performance of an ensemble can be better than that of the best 
member network, although this does depend on how good the other networks in the 
ensemble are. Unfortunately, it is not possible to show whether this is actually the case 
for a given ensemble. However, there are some reassuring pieces of theory to back up the 
use of ensembles. 

First, it can be shown (Bishop, 1995) that, on the assumption that the ensemble members' 
errors have zero mean and are uncorrelated, the ensemble reduces the error by a factor of 
N, where N is the number of members. In practice, of course, these errors are not 
uncorrelated. An important corollary is that an ensemble is more effective when the 
members are less correlated, and we might intuitively expect that to be the case if diverse 
network types and structures are used.  

Second, and perhaps more significantly, it can be shown that the expected error of the 
ensemble is at least as good as the average expected error of the members, and usually 
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better. Typically, some useful reduction in error does occur. There is of course a cost in 
processing speed, but for many applications this is not particularly problematic. 

There are a number of approaches to resampling available. 

The simplest approach is random (monte carlo) resampling, where the training, selection 
and test sets are simply drawn at random from the data set, keeping the sizes of the 
subsets constant. Alternatively, you CAN sometimes resample the training and selection 
set, but keep the test set the same, to support a simple direct comparison of results. The 
second approach is the popular cross-validation algorithm. Here, the data set is divided 
into a number of equal sized divisions. A number of neural networks are created. For 
each of these, one division is used for the test data, and the others are used for training 
and selection. In the most extreme version of this algorithm, leave-one-out cross 
validation, N divisions are made, where N is the number of cases in the data set, and on 
each division the network is trained on all bar one of the cases, and tested on the single 
case that is omitted. This allows the training algorithm to use virtually the entire data set 
for training, but is obviously very intensive. 

The third approach is bootstrap sampling. In the bootstrap, a new training set is formed 
by sampling with replacement from the available data set. In sampling with replacement, 
cases are drawn at random from the data set, with equal probability, and any one case 
may be selected any number of times. Typically the bootstrap set has the same number of 
cases as the data set, although this is not a necessity. Due to the sampling process, it is 
likely that some of the original cases will not be selected, and these can be used to form a 
test set, whereas other cases will have been duplicated. 

The bootstrap procedure replicates, insofar as is possible with limited data, the idea of 
drawing multiple data sets from the original distribution. Once again, the effect can be to 
generate a number of models with low bias, and to average out the variance. Ensembles 
can also be beneficial at averaging out bias. If we include different network types and 
configurations in an ensemble, it may be that different networks make systematic errors 
in different parts of the input space. Averaging these differently configured networks may 
iron out some of this bias. 

 

Recommended Textbooks  

Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford: University Press. 
Extremely well-written, up-to-date. Requires a good mathematical background, but 
rewards careful reading, putting neural networks firmly into a statistical context.  

Carling, A. (1992). Introducing Neural Networks. Wilmslow, UK: Sigma Press. A 
relatively gentle introduction. Starting to show its age a little, but still a good starting 
point.  
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Fausett, L. (1994). Fundamentals of Neural Networks. New York: Prentice Hall. A well-
written book, with very detailed worked examples to explain how the algorithms 
function.  
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: 
Macmillan Publishing. A comprehensive book, with an engineering perspective. Requires 
a good mathematical background, and contains a great deal of background theory.  
Patterson, D. (1996). Artificial Neural Networks. Singapore: Prentice Hall. Good wide-
ranging coverage of topics, although less detailed than some other books.  
Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University 
Press. A very good advanced discussion of neural networks, firmly putting them in the 
wider context of statistical modeling.  
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Chapter 30 
Nonlinear Estimation 

 

• General Purpose  
• Estimating Linear and Nonlinear Models  
• Common Nonlinear Regression Models  

o Intrinsically Linear Regression Models  
o Intrinsically Nonlinear Regression Models  

• Nonlinear Estimation Procedures  
o Least Squares Estimation  
o Loss Functions  
o Weighted Least Squares  
o Maximum Likelihood  
o Maximum likelihood and probit/logit models  
o Function Minimization Algorithms  
o Start Values, Step Sizes, Convergence Criteria  
o Penalty Functions, Constraining Parameters  
o Local Minima  
o Quasi-Newton Method  
o Simplex Procedure  
o Hooke-Jeeves Pattern Moves  
o Rosenbrock Pattern Search  
o Hessian Matrix and Standard Errors  

• Evaluating the Fit of the Model  
o Proportion of Variance Explained  
o Goodness-of-fit Chi-square  
o Plot of Observed vs. Predicted Values  
o Normal and Half-Normal Probability Plots  
o Plot of the Fitted Function  
o Variance/Covariance Matrix for Parameters  

 

General Purpose  

In the most general terms, Nonlinear Estimation will compute the relationship between a 
set of independent variables and a dependent variable. For example, we may want to 
compute the relationship between the dose of a drug and its effectiveness, the relationship 
between training and subsequent performance on a task, the relationship between the 
price of a house and the time it takes to sell it, etc. You may recognize research issues in 
these examples that are commonly addressed by such techniques as multiple regression 
(see, Multiple Regression) or analysis of variance (see, ANOVA/MANOVA). In fact, you 
may think of Nonlinear Estimation as a generalization of those methods. Specifically, 
multiple regression (and ANOVA) assumes that the relationship between the independent 
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variable(s) and the dependent variable is linear in nature. Nonlinear Estimation leaves it 
up to you to specify the nature of the relationship; for example, you may specify the 
dependent variable to be a logarithmic function of the independent variable(s), an 
exponential function, a function of some complex ratio of independent measures, etc. 
(However, if all variables of interest are categorical in nature, or can be converted into 
categorical variables, you may also consider Correspondence Analysis.)  

When allowing for any type of relationship between the independent variables and the 
dependent variable, two issues raise their heads. First, what types of relationships "make 
sense", that is, are interpretable in a meaningful manner? Note that the simple linear 
relationship is very convenient in that it allows us to make such straightforward 
interpretations as "the more of x (e.g., the higher the price of a house), the more there is 
of y (the longer it takes to sell it); and given a particular increase in x, a proportional 
increase in y can be expected." Nonlinear relationships cannot usually be interpreted and 
verbalized in such a simple manner. The second issue that needs to be addressed is how 
to exactly compute the relationship, that is, how to arrive at results that allow us to say 
whether or not there is a nonlinear relationship as predicted.  

Let us now discuss the nonlinear regression problem in a somewhat more formal manner, 
that is, introduce the common terminology that will allow us to examine the nature of 
these techniques more closely, and how they are used to address important questions in 
various research domains (medicine, social sciences, physics, chemistry, pharmacology, 
engineering, etc.).  

 

 

Estimating Linear and Nonlinear Models  

Technically speaking, Nonlinear Estimation is a general fitting procedure that will 
estimate any kind of relationship between a dependent (or response variable), and a list of 
independent variables. In general, all regression models may be stated as:  

y = F(x1, x2, ... , xn)  

In most general terms, we are interested in whether and how a dependent variable is 
related to a list of independent variables; the term F(x...) in the expression above means 
that y, the dependent or response variable, is a function of the x's, that is, the independent 
variables.  

An example of this type of model would be the linear multiple regression model as 
described in Multiple Regression. For this model, we assume the dependent variable to be 
a linear function of the independent variables, that is:  

y = a + b1*x 1 + b2*x 2 + ... + bn*x n  
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If you are not familiar with multiple linear regression, you may want to read the 
introductory section to Multiple Regression at this point (however, it is not necessary to 
understand all of the nuances of multiple linear regression techniques in order to 
understand the methods discussed here).  

Nonlinear Estimation allows you to specify essentially any type of continuous or 
discontinuous regression model. Some of the most common nonlinear models are probit, 
logit, exponential growth, and breakpoint regression. However, you can also define any 
type of regression equation to fit to your data. Moreover, you can specify either standard 
least squares estimation, maximum likelihood estimation (where appropriate), or, again, 
define your own "loss function" (see below) by defining the respective equation.  

In general, whenever the simple linear regression model does not appear to adequately 
represent the relationships between variables, then the nonlinear regression model 
approach is appropriate. See the following topics for overviews of the common nonlinear 
regression models, nonlinear estimation procedures, and evaluation of the fit of the data 
to the nonlinear model.  

Common Nonlinear Regression Models  

• Intrinsically Linear Regression Models  
• Intrinsically Nonlinear Regression Models  

Intrinsically Linear Regression Models  

Polynomial Regression. A common "nonlinear" model is polynomial regression. We put 
the term nonlinear in quotes here because the nature of this model is actually linear. For 
example, suppose we measure in a learning experiment subjects' physiological arousal 
and their performance on a complex tracking task. Based on the well-known Yerkes-
Dodson law we could expect a curvilinear relationship between arousal and performance; 
this expectation can be expressed in the regression equation:  

Performance = a + b1*Arousal + b2*Arousal2  

In this equation, a represents the intercept, and b1 and b2 are regression coefficients. The 
non-linearity of this model is expressed in the term Arousal2. However, the nature of the 
model is still linear, except that when estimating it, we would square the measure of 
arousal. These types of models, where we include some transformation of the 
independent variables in a linear equation, are also referred to as models that are 
nonlinear in the variables.  

Models that are nonlinear in the parameters. To contrast the example above, consider 
the relationship between a human's age from birth (the x variable) and his or her growth 
rate (the y variable). Clearly, the relationship between these two variables in the first year 
of a person's life (when most growth occurs) is very different than during adulthood 
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(when almost no growth occurs). Thus, the relationship could probably best be expressed 
in terms of some negative exponential function:  

Growth = exp(-b1*Age)  

If you plotted this relationship for a particular estimate of the regression coefficient you 
would obtain a curve that looks something like this.  

 

Note that the nature of this model is no longer linear, that is, the expression shown above 
does not simply represent a linear regression model, with some transformation of the 
independent variable. This type of model is said to be nonlinear in the parameters.  

Making nonlinear models linear. In general, whenever a regression model can be 
"made" into a linear model, this is the preferred route to pursue (for estimating the 
respective model). The linear multiple regression model (see Multiple Regression) is very 
well understood mathematically, and, from a pragmatic standpoint, is most easily 
interpreted. Therefore, returning to the simple exponential regression model of Growth as 
a function of Age shown above, we could convert this nonlinear regression equation into 
a linear one by simply taking the logarithm of both sides of the equations, so that:  

log(Growth) = -b1*Age  

If we now substitute log(Growth) with y, we have the standard linear regression model as 
shown earlier (without the intercept which was ignored here to simplify matters). Thus, 
we could log-transform the Growth rate data and then use Multiple Regression to 
estimate the relationship between Age and Growth, that is, compute the regression 
coefficient b1.  

Model adequacy. Of course, by using the "wrong" transformation, one could end up with 
an inadequate model. Therefore, after "linearizing" a model such as the one shown above, 
it is particularly important to use extensive residual statistics in Multiple Regression.  

Intrinsically Nonlinear Regression Models  
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Some regression models which cannot be transformed into linear ones, can only be 
estimated via Nonlinear Estimation. In the growth rate example above, we purposely 
"forgot" about the random error in the dependent variable. Of course, the growth rate is 
affected by very many other variables (other than time), and we can expect a considerable 
amount of random (residual) fluctuation around the fitted line. If we add this error or 
residual variability to the model, we could rewrite it as follows:  

Growth = exp(-b1*Age) + error  

Additive error. In this model we assume that the error variability is independent of age, 
that is, that the amount of residual error variability is the same at any age. Because the 
error term in this model is additive, you can no longer linearize this model by taking the 
logarithm of both sides. If for a given data set, you were to log-transform variable 
Growth anyway and fit the simple linear model, then you would find that the residuals 
from the analysis would no longer be evenly distributed over the range of variable Age; 
and thus, the standard linear regression analysis (via Multiple Regression) would no 
longer be appropriate. Therefore, the only way to estimate the parameters for this model 
is via Nonlinear Estimation.  

Multiplicative error. To "defend" our previous example, in this particular instance it is 
not likely that the error variability is constant at all ages, that is, that the error is additive. 
Most likely, there is more random and unpredictable fluctuation of the growth rate at the 
earlier ages than the later ages, when growth comes to a virtual standstill anyway. Thus, a 
more realistic model including the error would be:  

Growth = exp(-b1*Age) * error  

Put in words, the greater the age, the smaller the term exp(-b1*Age), and, consequently, 
the smaller the resultant error variability. If we now take the log of both sides of the 
equation, the residual error term will become an additive factor in a linear equation, and 
we can go ahead and estimate b1 via standard multiple regression.  

Log (Growth) = -b1*Age + error  

Let us now consider some regression models (that are nonlinear in their parameters) 
which cannot be "made into" linear models through simple transformations of the raw 
data.  

General Growth Model. The general growth model, is similar to the example that we 
previously considered:  

y = b0 + b1*exp(b2*x) + error  

This model is commonly used in studies of any kind of growth (y), when the rate of 
growth at any given point in time (x) is proportional to the amount of growth remaining. 
The parameter b0 in this model represents the maximum growth value. A typical example 
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where this model would be adequate is when one wants to describe the concentration of a 
substance (e.g., in water) as a function of elapsed time.  

Models for Binary Responses: Probit & Logit. It is not uncommon that a dependent or 
response variable is binary in nature, that is, that it can have only two possible values. For 
example, patients either do or do not recover from an injury; job applicants either succeed 
or fail at an employment test, subscribers to a journal either do or do not renew a 
subscription, coupons may or may not be returned, etc. In all of these cases, one may be 
interested in estimating a model that describes the relationship between one or more 
continuous independent variable(s) to the binary dependent variable.  

Using linear regression. Of course, one could use standard multiple regression 
procedures to compute standard regression coefficients. For example, if one studied the 
renewal of journal subscriptions, one could create a y variable with 1's and 0's, where 1 
indicates that the respective subscriber renewed, and 0 indicates that the subscriber did 
not renew. However, there is a problem: Multiple Regression does not "know" that the 
response variable is binary in nature. Therefore, it will inevitably fit a model that leads to 
predicted values that are greater than 1 or less than 0. However, predicted values that are 
greater than 1 or less than 0 are not valid; thus, the restriction in the range of the binary 
variable (e.g., between 0 and 1) is ignored if one uses the standard multiple regression 
procedure.  

Continuous response functions. We could rephrase the regression problem so that, rather 
than predicting a binary variable, we are predicting a continuous variable that naturally 
stays within the 0-1 bounds. The two most common regression models that accomplish 
exactly this are the logit and the probit regression models.  

Logit regression. In the logit regression model, the predicted values for the dependent 
variable will never be less than (or equal to) 0, or greater than (or equal to) 1, regardless 
of the values of the independent variables. This is accomplished by applying the 
following regression equation, which actually has some "deeper meaning" as we will see 
shortly (the term logit was first used by Berkson, 1944):  

y = exp(b0 + b1*x 1 + ... + bn*x n)/{1 + exp(b0 + b1*x 1 + ... + bn*x n)}  

One can easily recognize that, regardless of the regression coefficients or the magnitude 
of the x values, this model will always produce predicted values (predicted y's) in the 
range of 0 to 1.  

The name logit stems from the fact that one can easily linearize this model via the logit 
transformation. Suppose we think of the binary dependent variable y in terms of an 
underlying continuous probability p, ranging from 0 to 1. We can then transform that 
probability p as:  

p' = loge{p/(1-p)}  



 465 

This transformation is referred to as the logit or logistic transformation. Note that p' can 
theoretically assume any value between minus and plus infinity. Since the logit transform 
solves the issue of the 0/1 boundaries for the original dependent variable (probability), we 
could use those (logit transformed) values in an ordinary linear regression equation. In 
fact, if we perform the logit transform on both sides of the logit regression equation stated 
earlier, we obtain the standard linear regression model:  

p' = b0 + b1*x 1 + b2*x 2 + ... + bn*x n  

Probit regression. One may consider the binary response variable to be the result of a 
normally distributed underlying variable that actually ranges from minus infinity to 
positive infinity. For example, a subscriber to a journal can feel very strongly about not 
renewing a subscription, be almost undecided, "tend towards" renewing the subscription, 
or feel very much in favor of renewing the subscription. In any event, all that we (the 
publisher of the journal) will see is the binary response of renewal or failure to renew the 
subscription. However, if we set up the standard linear regression equation based on the 
underlying "feeling" or attitude we could write:  

feeling... = b0 + b1*x 1 + ...  

which is, of course, the standard regression model. It is reasonable to assume that these 
feelings are normally distributed, and that the probability p of renewing the subscription 
is about equal to the relative space under the normal curve. Therefore, if we transform 
each side of the equation so as to reflect normal probabilities, we obtain:  

NP(feeling...) = NP(b0 + b1*x 1 + ...)  

where NP stands for normal probability (space under the normal curve), as tabulated in 
practically all statistics texts. The equation shown above is also referred to as the probit 
regression model. (The term probit was first used by Bliss, 1934.)  

General Logistic Regression Model. The general logistic model can be stated as:  

y = b0/{1 + b1*exp(b2*x)}  

You can think of this model as an extension of the logit or logistic model for binary 
responses. However, while the logit model restricts the dependent response variable to 
only two values, this model allows the response to vary within a particular lower and 
upper limit. For example, suppose we are interested in the population growth of a species 
that is introduced to a new habitat, as a function of time. The dependent variable would 
be the number of individuals of that species in the respective habitat. Obviously, there is 
a lower limit on the dependent variable, since fewer than 0 individuals cannot exist in the 
habitat; however, there also is most likely an upper limit that will be reached at some 
point in time.  
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Drug Responsiveness and Half-Maximal Response. In pharmacology, the following 
model is often used to describe the effects of different dose levels of a drug:  

y = b0 - b0/{1 + (x/b2)
b
1}  

In this model, x is the dose level (usually in some coded form, so that x 1) and y is the 
responsiveness, in terms of the percent of maximum possible responsiveness. The 
parameter b0 then denotes the expected response at the level of dose saturation and b2 is 
the concentration that produces a half- maximal response; the parameter b1 determines 
the slope of the function.  

Discontinuous Regression Models 
Piecewise linear regression. It is not uncommon that the nature of the relationship 
between one or more independent variables and a dependent variable changes over the 
range of the independent variables. For example, suppose we monitor the per-unit 
manufacturing cost of a particular product as a function of the number of units 
manufactured (output) per month. In general, the more units per month we produce, the 
lower is our per-unit cost, and this linear relationship may hold over a wide range of 
different levels of production output. However, it is conceivable that above a certain 
point, there is a discontinuity in the relationship between these two variables. For 
example, the per-unit cost may decrease relatively less quickly when older (less efficient) 
machines have to be put on-line in order to cope with the larger volume. Suppose that the 
older machines go on-line when the production output rises above 500 units per month; 
we may specify a regression model for cost-per-unit as:  

y = b0 + b1*x*(x 500) + b2*x*(x > 500)  

In this formula, y stands for the estimated per-unit cost; x is the output per month. The 
expressions (x 500) and (x > 500) denote logical conditions that evaluate to 0 if false, 
and to 1 if true. Thus, this model specifies a common intercept (b0), and a slope that is 
either equal to b1 (if x 500 is true, that is, equal to 1) or b2 (if x > 500 is true, that is, 
equal to 1).  

Instead of specifying the point where the discontinuity in the regression line occurs (at 
500 units per months in the example above), one could also estimate that point. For 
example, one might have noticed or suspected that there is a discontinuity in the cost-per-
unit at one particular point; however, one may not know where that point is. In that case, 
simply replace the 500 in the equation above with an additional parameter (e.g., b3).  

Breakpoint regression. One could also adjust the equation above to reflect a "jump" in 
the regression line. For example, imagine that, after the older machines are put on-line, 
the per-unit-cost jumps to a higher level, and then slowly goes down as volume continues 
to increase. In that case, simply specify an additional intercept (b3), so that:  

y = (b0 + b1*x)*(x 500) + (b3 + b2*x)*(x > 500)  
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Comparing groups. The method described here to estimate different regression equations 
in different domains of the independent variable can also be used to distinguish between 
groups. For example, suppose in the example above, there are three different plants; to 
simplify the example, let us ignore the breakpoint for now. If we coded the three plants in 
a grouping variable by using the values 1, 2, and 3, we could simultaneously estimate 
three different regression equations by specifying:  

y = (xp=1)*(b10 + b11*x) + (xp=2)*(b20 + b21*x) + (xp=3)*(b30 + b31*x)  

In this equation, xp denotes the grouping variable containing the codes that identify each 
plant, b10, b20, and b30 are the three different intercepts, and b11, b21, and b31 refer to the 
slope parameters (regression coefficients) for each plant. One could compare the fit of the 
common regression model without considering the different groups (plants) with this 
model in order to determine which model is more appropriate.  

 

 

Nonlinear Estimation Procedures  

• Least Squares Estimation  
• Loss Functions  
• Weighted Least Squares  
• Maximum Likelihood  
• Maximum likelihood and probit/logit models  
• Function Minimization Algorithms  
• Start Values, Step Sizes, Convergence Criteria  
• Penalty Functions, Constraining Parameters  
• Local Minima  
• Quasi-Newton Method  
• Simplex Procedure  
• Hooke-Jeeves Pattern Moves  
• Rosenbrock Pattern Search  
• Hessian Matrix and Standard Errors  

Least Squares Estimation. Some of the more common nonlinear regression models are 
reviewed in Common Nonlinear Regression Models. Now, the question arises as to how 
these models are estimated. If you are familiar with linear regression techniques (as 
described in Multiple Regression) or analysis of variance (ANOVA) techniques (as 
described in ANOVA/MANOVA), then you may be aware of the fact that all of those 
methods use so-called least squares estimation procedures. In the most general terms, 
least squares estimation is aimed at minimizing the sum of squared deviations of the 
observed values for the dependent variable from those predicted by the model. (The term 
least squares was first used by Legendre, 1805.)  
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Loss Functions. In standard multiple regression we estimate the regression coefficients 
by "finding" those coefficients that minimize the residual variance (sum of squared 
residuals) around the regression line. Any deviation of an observed score from a 
predicted score signifies some loss in the accuracy of our prediction, for example, due to 
random noise (error). Therefore, we can say that the goal of least squares estimation is to 
minimize a loss function; specifically, this loss function is defined as the sum of the 
squared deviation about the predicted values (the term loss was first used by Wald, 1939). 
When this function is at its minimum, then we get the same parameter estimates 
(intercept, regression coefficients) as we would in Multiple Regression; because of the 
particular loss functions that yielded those estimates, we can call the estimates least 
squares estimates.  

Phrased in this manner, there is no reason why you cannot consider other loss functions. 
For example, rather than minimizing the sum of squared deviations, why not minimize 
the sum of absolute deviations? Indeed, this is sometimes useful in order to "de-
emphasize" outliers. Relative to all other residuals, a large residual will become much 
larger when squared. However, if one only takes the absolute value of the deviations, 
then the resulting regression line will most likely be less affected by outliers.  

There are several function minimization methods that can be used to minimize any kind 
of loss function. For more information, see:  

• Weighted Least Squares  
• Maximum Likelihood  
• Maximum likelihood and probit/logit models  
• Function Minimization Algorithms  
• Start Values, Step Sizes, Convergence Criteria  
• Penalty Functions, Constraining Parameters  
• Local Minima  
• Quasi-Newton Method  
• Simplex Procedure  
• Hooke-Jeeves Pattern Moves  
• Rosenbrock Pattern Search  
• Hessian Matrix and Standard Errors  

Weighted Least Squares. In addition to least squares and absolute deviation regression 
(see above), weighted least squares estimation is probably the most commonly used 
technique. Ordinary least squares techniques assume that the residual variance around the 
regression line is the same across all values of the independent variable(s). Put another 
way, it is assumed that the error variance in the measurement of each case is identical. 
Often, this is not a realistic assumption; in particular, violations frequently occur in 
business, economic, or biological applications.  

For example, suppose we wanted to study the relationship between the projected cost of 
construction projects, and the actual cost. This may be useful in order to gage the 
expected cost overruns. In this case it is reasonable to assume that the absolute magnitude 
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(dollar amount) by which the estimates are off, is proportional to the size of the project. 
Thus, we would use a weighted least squares loss function to fit a linear regression 
model. Specifically, the loss function would be (see, for example, Neter, Wasserman, & 
Kutner, 1985, p. 168):  

Loss = (Obs-Pred)2 * (1/x2)  

In this equation, the loss function first specifies the standard least squares loss function 
(Observed minus Predicted squared; i.e., the squared residual), and then weighs this loss 
by the inverse of the squared value of the independent variable (x) for each case. In the 
actual estimation, you sum up the value of the loss function for each case (e.g., 
construction project), as specified above, and estimate the parameters that minimize that 
sum. To return to our example, the larger the project (x) the less weight is placed on the 
deviation from the predicted value (cost). This method will yield more stable estimates of 
the regression parameters (for more details, see Neter, Wasserman, & Kutner, 1985).  

Maximum Likelihood. An alternative to the least squares loss function (see above) is to 
maximize the likelihood or log-likelihood function (or to minimize the negative log-
likelihood function; the term maximum likelihood was first used by Fisher, 1922a). In 
most general terms, the likelihood function is defined as:  

L = F(Y,Model) = i
n
= 1 {p [y i, Model Parameters(xi)]}  

In theory, we can compute the probability (now called L, the likelihood) of the specific 
dependent variable values to occur in our sample, given the respective regression model. 
Provided that all observations are independent of each other, this likelihood is the 

geometric sum ( , across i = 1 to n cases) of probabilities for each individual 
observation (i) to occur, given the respective model and parameters for the x values. (The 
geometric sum means that we would multiply out the individual probabilities across 
cases.) It is also customary to express this function as a natural logarithm, in which case 
the geometric sum becomes a regular arithmetic sum ( , across i = 1 to n cases).  

Given the respective model, the larger the likelihood of the model, the larger is the 
probability of the dependent variable values to occur in the sample. Therefore, the greater 
the likelihood, the better is the fit of the model to the data. The actual computations for 
particular models here can become quite complicated because we need to "track" 
(compute) the probabilities of the y-values to occur (given the model and the respective x- 
values). As it turns out, if all assumptions for standard multiple regression are met (as 
described in the Multiple Regression chapter in the manual), then the standard least 
squares estimation method (see above) will yield results identical to the maximum 
likelihood method. If the assumption of equal error variances across the range of the x 
variable(s) is violated, then the weighted least squares method described earlier will yield 
maximum likelihood estimates.  
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Maximum Likelihood and Probit/Logit Models. The maximum likelihood function has 
been "worked out" for probit and logit regression models. Specifically, the loss function 
for these models is computed as the sum of the natural log of the logit or probit likelihood 
L1 so that:  

log(L1) = i
n
= 1 [yi*log(pi ) + (1-yi )*log(1-pi )]  

where 
log(L1) is the natural log of the (logit or probit) likelihood (log-likelihood) for the current 
model 
yi is the observed value for case i 
pi is the expected (predicted or fitted) probability (between 0 and 1)  

The log-likelihood of the null model (L0), that is, the model containing the intercept only 
(and no regression coefficients) is computed as:  

log(L0) = n0*(log(n0/n)) + n1*(log(n1/n))  

where 
log(L0) is the natural log of the (logit or probit) likelihood of the null model (intercept 
only) 
n0 is the number of observations with a value of 0 (zero) 
n1 is the number of observations with a value of 1 
n is the total number of observations  

Function Minimization Algorithms. Now that we have discussed different regression 
models, and the loss functions that can be used to estimate them, the only "mystery" that 
is left is how to minimize the loss functions (to find the best fitting set of parameters), 
and how to estimate the standard errors of the parameter estimates. There is one very 
efficient algorithm (quasi-Newton) that approximates the second-order derivatives of the 
loss function to guide the search for the minimum (i.e., for the best parameter estimates, 
given the respective loss function). In addition, there are several more general function 
minimization algorithms that follow different search strategies (which do not depend on 
the second-order derivatives). These strategies are sometimes more effective for 
estimating loss functions with local minima; therefore, these methods are often 
particularly useful to find appropriate start values for the estimation via the quasi-Newton 
method.  

In all cases, you can compute the standard errors of the parameter estimates. These 
standard errors are based on the second-order partial derivatives for the parameters, 
which are computed via finite difference approximation.  

If you are not interested in how the minimization of the loss function is done, only that it 
can be done, you may skip the following paragraphs. However, you may find it useful to 
know a little about these procedures in case your regression model "refuses" to be fit to 
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the data. In that case, the iterative estimation procedure will fail to converge, producing 
ever "stranger" (e.g., very large or very small) parameter estimates.  

In the following paragraphs we will first discuss some general issues involved in 
unconstrained optimization, and then briefly review the methods used. For more detailed 
discussions of these procedures you may refer to Brent (1973), Gill and Murray (1974), 
Peressini, Sullivan, and Uhl (1988), and Wilde and Beightler (1967). For specific 
algorithms, see Dennis and Schnabel (1983), Eason and Fenton (1974), Fletcher (1969), 
Fletcher and Powell (1963), Fletcher and Reeves (1964), Hooke and Jeeves (1961), 
Jacoby, Kowalik, and Pizzo (1972), and Nelder and Mead (1964).  

Start Values, Step Sizes, Convergence Criteria. A common aspect of all estimation 
procedures is that they require the user to specify some start values, initial step sizes, and 
a criterion for convergence . All methods will begin with a particular set of initial 
estimates (start values), which will be changed in some systematic manner from iteration 
to iteration; in the first iteration, the step size determines by how much the parameters 
will be moved. Finally, the convergence criterion determines when the iteration process 
will stop. For example, the process may stop when the improvements in the loss function 
from iteration to iteration are less than a specific amount.  

Penalty Functions, Constraining Parameters. These estimation procedures are 
unconstrained in nature. When this happens, it will move parameters around without any 
regard for whether or not permissible values result. For example, in the course of logit 
regression we may get estimated values that are equal to 0.0, in which case the logarithm 
cannot be computed (since the log of 0 is undefined). When this happens, it will assign a 
penalty to the loss function, that is, a very large value. As a result, the various estimation 
procedures usually move away from the regions that produce those functions. However, 
in some circumstances, the estimation will "get stuck," and as a result, you would see a 
very large value of the loss function. This could happen, if, for example, the regression 
equation involves taking the logarithm of an independent variable which has a value of 
zero for some cases (in which case the logarithm cannot be computed).  

If you wish to constrain a procedure, then this constraint must be specified in the loss 
function as a penalty function (assessment). By doing this, you may control what 
permissible values of the parameters to be estimated may be manipulated. For example, if 
two parameters (a and b) are to be constrained to be greater than or equal to zero, then 
one must assess a large penalty to these parameters if this condition is not met. Below is 
an example of a user-specified regression and loss function, including a penalty 
assessment designed to "penalize" the parameters a and/or b if either one is not greater 
than or equal to zero:  

Estimated function: v3 = a + b*v1 + (c*v2) 
Loss function: L = (obs - pred)**2 + (a<0)*100000 + (b<0)*100000  

Local Minima. The most "treacherous" threat to unconstrained function minimization is 
local minima. For example, a particular loss function may become slightly larger, 
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regardless of how a particular parameter is moved. However, if the parameter were to be 
moved into a completely different place, the loss function may actually become smaller. 
You can think of such local minima as local "valleys" or minor "dents" in the loss 
function. However, in most practical applications, local minima will produce 
"outrageous" and extremely large or small parameter estimates with very large standard 
errors. In those cases, specify different start values and try again. Also note, that the 
Simplex method (see below) is particularly "smart" in avoiding such minima; therefore, 
this method may be particularly suited in order to find appropriate start values for 
complex functions.  

Quasi-Newton Method. As you may remember, the slope of a function at a particular 
point can be computed as the first- order derivative of the function (at that point). The 
"slope of the slope" is the second-order derivative, which tells us how fast the slope is 
changing at the respective point, and in which direction. The quasi-Newton method will, 
at each step, evaluate the function at different points in order to estimate the first-order 
derivatives and second-order derivatives. It will then use this information to follow a path 
towards the minimum of the loss function.  

Simplex Procedure. This algorithm does not rely on the computation or estimation of the 
derivatives of the loss function. Instead, at each iteration the function will be evaluated at 
m+1 points in the m dimensional parameter space. For example, in two dimensions (i.e., 
when there are two parameters to be estimated), it will evaluate the function at three 
points around the current optimum. These three points would define a triangle; in more 
than two dimensions, the "figure" produced by these points is called a Simplex. 
Intuitively, in two dimensions, three points will allow us to determine "which way to go," 
that is, in which direction in the two dimensional space to proceed in order to minimize 
the function. The same principle can be applied to the multidimensional parameter space, 
that is, the Simplex will "move" downhill; when the current step sizes become too 
"crude" to detect a clear downhill direction, (i.e., the Simplex is too large), the Simplex 
will "contract" and try again.  

An additional strength of this method is that when a minimum appears to have been 
found, the Simplex will again be expanded to a larger size to see whether the respective 
minimum is a local minimum. Thus, in a way, the Simplex moves like a smooth single 
cell organism down the loss function, contracting and expanding as local minima or 
significant ridges are encountered.  

Hooke-Jeeves Pattern Moves. In a sense this is the simplest of all algorithms. At each 
iteration, this method first defines a pattern of points by moving each parameter one by 
one, so as to optimize the current loss function. The entire pattern of points is then shifted 
or moved to a new location; this new location is determined by extrapolating the line 
from the old base point in the m dimensional parameter space to the new base point. The 
step sizes in this process are constantly adjusted to "zero in" on the respective optimum. 
This method is usually quite effective, and should be tried if both the quasi-Newton and 
Simplex methods (see above) fail to produce reasonable estimates.  
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Rosenbrock Pattern Search. Where all other methods fail, the Rosenbrock Pattern 
Search method often succeeds. This method will rotate the parameter space and align one 
axis with a ridge (this method is also called the method of rotating coordinates); all other 
axes will remain orthogonal to this axis. If the loss function is unimodal and has 
detectable ridges pointing towards the minimum of the function, then this method will 
proceed with sure-footed accuracy towards the minimum of the function. However, note 
that this search algorithm may terminate early when there are several constraint 
boundaries (resulting in the penalty value; see above) that intersect, leading to a 
discontinuity in the ridges.  

Hessian Matrix and Standard Errors. The matrix of second-order (partial) derivatives 
is also called the Hessian matrix. It turns out that the inverse of the Hessian matrix 
approximates the variance/covariance matrix of parameter estimates. Intuitively, there 
should be an inverse relationship between the second-order derivative for a parameter and 
its standard error: If the change of the slope around the minimum of the function is very 
sharp, then the second-order derivative will be large; however, the parameter estimate 
will be quite stable in the sense that the minimum with respect to the parameter is clearly 
identifiable. If the second-order derivative is nearly zero, then the change in the slope 
around the minimum is zero, meaning that we can practically move the parameter in any 
direction without greatly affecting the loss function. Thus, the standard error of the 
parameter will be very large.  

The Hessian matrix (and asymptotic standard errors for the parameters) can be computed 
via finite difference approximation. This procedure yields very precise asymptotic 
standard errors for all estimation methods.  

 

 

Evaluating the Fit of the Model  

After estimating the regression parameters, an essential aspect of the analysis is to test the 
appropriateness of the overall model. For example, if one specified a linear regression 
model, but the relationship is intrinsically non-linear, then the parameter estimates 
(regression coefficients) and the estimated standard errors of those estimates may be 
significantly "off." Let us review some of the ways to evaluate the appropriateness of a 
model.  

• Proportion of Variance Explained  
• Goodness-of-fit Chi-square  
• Plot of Observed vs. Predicted Values  
• Normal and Half-Normal Probability Plots  
• Plot of the Fitted Function  
• Variance/Covariance Matrix for Parameters  
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Proportion of Variance Explained. Regardless of the model, one can always compute 
the total variance of the dependent variable (total sum of squares, SST), the proportion of 
variance due to the residuals (error sum of squares, SSE), and the proportion of variance 
due to the regression model (regression sum of squares, SSR=SST-SSE). The ratio of the 
regression sum of squares to the total sum of squares (SSR/SST) explains the proportion 
of variance accounted for in the dependent variable (y) by the model; thus, this ratio is 
equivalent to the R-square (0 R-square  1, the coefficient of determination). Even 
when the dependent variable is not normally distributed across cases, this measure may 
help evaluate how well the model fits the data.  

Goodness-of-fit Chi-square. For probit and logit regression models, you may use 
maximum likelihood estimation (i.e., maximize the likelihood function). As it turns out, 
one can directly compare the likelihood L0 for the null model where all slope parameters 
are zero, with the likelihood L1 of the fitted model. Specifically, one can compute the 
Chi-square statistic for this comparison as:  

Chi-square = -2 * (log(L0) - log(L1))  

The degrees of freedom for this Chi-square value are equal to the difference in the 
number of parameters for the null and the fitted model; thus, the degrees of freedom will 
be equal to the number of independent variables in the logit or probit regression. If the p- 
level associated with this Chi-square is significant, then we can say that the estimated 
model yields a significantly better fit to the data than the null model, that is, that the 
regression parameters are statistically significant.  

Plot of Observed vs. Predicted Values. It is always a good idea to inspect a scatterplot 
of predicted vs. observed values. If the model is appropriate for the data, then we would 
expect the points to roughly follow a straight line; if the model is incorrectly specified, 
then this plot will indicate a non-linear pattern.  

Normal and Half-Normal Probability Plots. The normal probability plot of residual 
will give us an indication of whether or not the residuals (i.e., errors) are normally 
distributed.  

Plot of the Fitted Function. For models involving two or three variables (one or two 
predictors) it is useful to plot the fitted function using the final parameter estimates. Here 
is an example of a 3D plot with two predictor variables:  
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This type of plot represents the most direct visual check of whether or not a model fits the 
data, and whether there are apparent outliers.  

Variance/Covariance Matrix for Parameters. When a model is grossly misspecified, 
or the estimation procedure gets "hung up" in a local minimum, the standard errors for 
the parameter estimates can become very large. This means that regardless of how the 
parameters were moved around the final values, the resulting loss function did not change 
much. Also, the correlations between parameters may become very large, indicating that 
parameters are very redundant; put another way, when the estimation algorithm moved 
one parameter away from the final value, then the increase in the loss function could be 
almost entirely compensated for by moving another parameter. Thus, the effect of those 
two parameters on the loss function was very redundant.  
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Chapter 31 
Nonparametric Statistics 

 

• General Purpose  
• Brief Overview of Nonparametric Procedures  
• When to Use Which Method  
• Nonparametric Correlations  

 
General Purpose  

Brief review of the idea of significance testing. To understand the idea of 
nonparametric statistics (the term nonparametric was first used by Wolfowitz, 1942) first 
requires a basic understanding of parametric statistics. The Elementary Concepts chapter 
of the manual introduces the concept of statistical significance testing based on the 
sampling distribution of a particular statistic (you may want to review that chapter before 
reading on). In short, if we have a basic knowledge of the underlying distribution of a 
variable, then we can make predictions about how, in repeated samples of equal size, this 
particular statistic will "behave," that is, how it is distributed. For example, if we draw 
100 random samples of 100 adults each from the general population, and compute the 
mean height in each sample, then the distribution of the standardized means across 
samples will likely approximate the normal distribution (to be precise, Student's t 
distribution with 99 degrees of freedom; see below). Now imagine that we take an 
additional sample in a particular city ("Tallburg") where we suspect that people are taller 
than the average population. If the mean height in that sample falls outside the upper 95% 
tail area of the t distribution then we conclude that, indeed, the people of Tallburg are 
taller than the average population.  

Are most variables normally distributed? In the above example we relied on our 
knowledge that, in repeated samples of equal size, the standardized means (for height) 
will be distributed following the t distribution (with a particular mean and variance). 
However, this will only be true if in the population the variable of interest (height in our 
example) is normally distributed, that is, if the distribution of people of particular heights 
follows the normal distribution (the bell-shape distribution).  
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For many variables of interest, we simply do not know for sure that this is the case. For 
example, is income distributed normally in the population? -- probably not. The incidence 
rates of rare diseases are not normally distributed in the population, the number of car 
accidents is also not normally distributed, and neither are very many other variables in 
which a researcher might be interested.  

For more information on the normal distribution, see Elementary Concepts; for 
information on tests of normality, see Normality tests.  

Sample size. Another factor that often limits the applicability of tests based on the 
assumption that the sampling distribution is normal is the size of the sample of data 
available for the analysis (sample size; n). We can assume that the sampling distribution 
is normal even if we are not sure that the distribution of the variable in the population is 
normal, as long as our sample is large enough (e.g., 100 or more observations). However, 
if our sample is very small, then those tests can be used only if we are sure that the 
variable is normally distributed, and there is no way to test this assumption if the sample 
is small.  

Problems in measurement. Applications of tests that are based on the normality 
assumptions are further limited by a lack of precise measurement. For example, let us 
consider a study where grade point average (GPA) is measured as the major variable of 
interest. Is an A average twice as good as a C average? Is the difference between a B and 
an A average comparable to the difference between a D and a C average? Somehow, the 
GPA is a crude measure of scholastic accomplishments that only allows us to establish a 
rank ordering of students from "good" students to "poor" students. This general 
measurement issue is usually discussed in statistics textbooks in terms of types of 
measurement or scale of measurement. Without going into too much detail, most 
common statistical techniques such as analysis of variance (and t- tests), regression, etc. 
assume that the underlying measurements are at least of interval, meaning that equally 
spaced intervals on the scale can be compared in a meaningful manner (e.g, B minus A is 
equal to D minus C). However, as in our example, this assumption is very often not 
tenable, and the data rather represent a rank ordering of observations (ordinal) rather than 
precise measurements.  
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Parametric and nonparametric methods. Hopefully, after this somewhat lengthy 
introduction, the need is evident for statistical procedures that allow us to process data of 
"low quality," from small samples, on variables about which nothing is known 
(concerning their distribution). Specifically, nonparametric methods were developed to 
be used in cases when the researcher knows nothing about the parameters of the variable 
of interest in the population (hence the name nonparametric). In more technical terms, 
nonparametric methods do not rely on the estimation of parameters (such as the mean or 
the standard deviation) describing the distribution of the variable of interest in the 
population. Therefore, these methods are also sometimes (and more appropriately) called 
parameter-free methods or distribution-free methods. 

 

Brief Overview of Nonparametric Methods  

Basically, there is at least one nonparametric equivalent for each parametric general type 
of test. In general, these tests fall into the following categories:  

• Tests of differences between groups (independent samples);  
• Tests of differences between variables (dependent samples);  
• Tests of relationships between variables.  

Differences between independent groups. Usually, when we have two samples that we 
want to compare concerning their mean value for some variable of interest, we would use 
the t-test for independent samples); nonparametric alternatives for this test are the Wald-
Wolfowitz runs test, the Mann-Whitney U test, and the Kolmogorov-Smirnov two-sample 
test. If we have multiple groups, we would use analysis of variance (see 
ANOVA/MANOVA; the nonparametric equivalents to this method are the Kruskal-Wallis 
analysis of ranks and the Median test.  

Differences between dependent groups. If we want to compare two variables measured 
in the same sample we would customarily use the t-test for dependent samples (in Basic 
Statistics for example, if we wanted to compare students' math skills at the beginning of 
the semester with their skills at the end of the semester). Nonparametric alternatives to 
this test are the Sign test and Wilcoxon's matched pairs test. If the variables of interest are 
dichotomous in nature (i.e., "pass" vs. "no pass") then McNemar's Chi-square test is 
appropriate. If there are more than two variables that were measured in the same sample, 
then we would customarily use repeated measures ANOVA. Nonparametric alternatives 
to this method are Friedman's two-way analysis of variance and Cochran Q test (if the 
variable was measured in terms of categories, e.g., "passed" vs. "failed"). Cochran Q is 
particularly useful for measuring changes in frequencies (proportions) across time.  

Relationships between variables. To express a relationship between two variables one 
usually computes the correlation coefficient. Nonparametric equivalents to the standard 
correlation coefficient are Spearman R, Kendall Tau, and coefficient Gamma (see 
Nonparametric correlations). If the two variables of interest are categorical in nature 
(e.g., "passed" vs. "failed" by "male" vs. "female") appropriate nonparametric statistics 
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for testing the relationship between the two variables are the Chi-square test, the Phi 
coefficient, and the Fisher exact test. In addition, a simultaneous test for relationships 
between multiple cases is available: Kendall coefficient of concordance. This test is often 
used for expressing inter-rater agreement among independent judges who are rating 
(ranking) the same stimuli.  

Descriptive statistics. When one's data are not normally distributed, and the 
measurements at best contain rank order information, then computing the standard 
descriptive statistics (e.g., mean, standard deviation) is sometimes not the most 
informative way to summarize the data. For example, in the area of psychometrics it is 
well known that the rated intensity of a stimulus (e.g., perceived brightness of a light) is 
often a logarithmic function of the actual intensity of the stimulus (brightness as 
measured in objective units of Lux). In this example, the simple mean rating (sum of 
ratings divided by the number of stimuli) is not an adequate summary of the average 
actual intensity of the stimuli. (In this example, one would probably rather compute the 
geometric mean.) Nonparametrics and Distributions will compute a wide variety of 
measures of location (mean, median, mode, etc.) and dispersion (variance, average 
deviation, quartile range, etc.) to provide the "complete picture" of one's data.  

 

 

When to Use Which Method  

It is not easy to give simple advice concerning the use of nonparametric procedures. Each 
nonparametric procedure has its peculiar sensitivities and blind spots. For example, the 
Kolmogorov-Smirnov two-sample test is not only sensitive to differences in the location 
of distributions (for example, differences in means) but is also greatly affected by 
differences in their shapes. The Wilcoxon matched pairs test assumes that one can rank 
order the magnitude of differences in matched observations in a meaningful manner. If 
this is not the case, one should rather use the Sign test. In general, if the result of a study 
is important (e.g., does a very expensive and painful drug therapy help people get 
better?), then it is always advisable to run different nonparametric tests; should 
discrepancies in the results occur contingent upon which test is used, one should try to 
understand why some tests give different results. On the other hand, nonparametric 
statistics are less statistically powerful (sensitive) than their parametric counterparts, and 
if it is important to detect even small effects (e.g., is this food additive harmful to 
people?) one should be very careful in the choice of a test statistic.  

Large data sets and nonparametric methods. Nonparametric methods are most 
appropriate when the sample sizes are small. When the data set is large (e.g., n > 100) it 
often makes little sense to use nonparametric statistics at all. The Elementary Concepts 
chapter of the manual briefly discusses the idea of the central limit theorem. In a nutshell, 
when the samples become very large, then the sample means will follow the normal 
distribution even if the respective variable is not normally distributed in the population, 
or is not measured very well. Thus, parametric methods, which are usually much more 
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sensitive (i.e., have more statistical power) are in most cases appropriate for large 
samples. However, the tests of significance of many of the nonparametric statistics 
described here are based on asymptotic (large sample) theory; therefore, meaningful tests 
can often not be performed if the sample sizes become too small. Please refer to the 
descriptions of the specific tests to learn more about their power and efficiency. 

 

 

Nonparametric Correlations  

The following are three types of commonly used nonparametric correlation coefficients 
(Spearman R, Kendall Tau, and Gamma coefficients). Note that the chi-square statistic 
computed for two-way frequency tables, also provides a careful measure of a relation 
between the two (tabulated) variables, and unlike the correlation measures listed below, it 
can be used for variables that are measured on a simple nominal scale.  

Spearman R. Spearman R (Siegel & Castellan, 1988) assumes that the variables under 
consideration were measured on at least an ordinal (rank order) scale, that is, that the 
individual observations can be ranked into two ordered series. Spearman R can be 
thought of as the regular Pearson product moment correlation coefficient, that is, in terms 
of proportion of variability accounted for, except that Spearman R is computed from 
ranks.  

Kendall tau. Kendall tau is equivalent to Spearman R with regard to the underlying 
assumptions. It is also comparable in terms of its statistical power. However, Spearman R 
and Kendall tau are usually not identical in magnitude because their underlying logic as 
well as their computational formulas are very different. Siegel and Castellan (1988) 
express the relationship of the two measures in terms of the inequality:  

-1 � 3 * Kendall tau - 2 * Spearman R � 1  

More importantly, Kendall tau and Spearman R imply different interpretations: Spearman 
R can be thought of as the regular Pearson product moment correlation coefficient, that 
is, in terms of proportion of variability accounted for, except that Spearman R is 
computed from ranks. Kendall tau, on the other hand, represents a probability, that is, it is 
the difference between the probability that in the observed data the two variables are in 
the same order versus the probability that the two variables are in different orders.  

Gamma. The Gamma statistic (Siegel & Castellan, 1988) is preferable to Spearman R or 
Kendall tau when the data contain many tied observations. In terms of the underlying 
assumptions, Gamma is equivalent to Spearman R or Kendall tau; in terms of its 
interpretation and computation it is more similar to Kendall tau than Spearman R. In 
short, Gamma is also a probability; specifically, it is computed as the difference between 
the probability that the rank ordering of the two variables agree minus the probability that 
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they disagree, divided by 1 minus the probability of ties. Thus, Gamma is basically 
equivalent to Kendall tau, except that ties are explicitly taken into account.  
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Chapter 32 
Partial Least Squares (PLS) 

 

• Basic Ideas  
• Computational Approach  

o Basic Model  
o NIPALS Algorithm  
o SIMPLS Algorithm  

• Training and Verification (Crossvalidation) Samples  
• Types of Analyses  

o Between-subject Designs  
o Distance Graphs  

 

This chapter describes the use of partial least squares regression analysis. If you are 
unfamiliar with the basic methods of regression in linear models, it may be useful to first 
review the information on these topics in Elementary Concepts. The different designs 
discussed in this chapter are also described in the context of General Linear Models, 
Generalized Linear Models, and General Stepwise Regression.  

 

Basic Ideas 

Partial least squares regression is an extension of the multiple linear regression model 
(see, e.g., Multiple Regression or General Stepwise Regression). In its simplest form, a 
linear model specifies the (linear) relationship between a dependent (response) variable Y, 
and a set of predictor variables, the X's, so that  

Y = b0 + b1X1 + b2X2 + ... + bpXp  

In this equation b0 is the regression coefficient for the intercept and the bi values are the 
regression coefficients (for variables 1 through p) computed from the data.  

So for example, one could estimate (i.e., predict) a person's weight as a function of the 
person's height and gender. You could use linear regression to estimate the respective 
regression coefficients from a sample of data, measuring height, weight, and observing 
the subjects' gender. For many data analysis problems, estimates of the linear 
relationships between variables are adequate to describe the observed data, and to make 
reasonable predictions for new observations (see Multiple Regression or General 
Stepwise Regression for additional details).  
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The multiple linear regression model has been extended in a number of ways to address 
more sophisticated data analysis problems. The multiple linear regression model serves as 
the basis for a number of multivariate methods such as discriminant analysis (i.e., the 
prediction of group membership from the levels of continuous predictor variables), 
principal components regression (i.e., the prediction of responses on the dependent 
variables from factors underlying the levels of the predictor variables), and canonical 
correlation (i.e., the prediction of factors underlying responses on the dependent 
variables from factors underlying the levels of the predictor variables). These multivariate 
methods all have two important properties in common. These methods impose 
restrictions such that (1) factors underlying the Y and X variables are extracted from the 
Y'Y and X'X  matrices, respectively, and never from cross-product matrices involving 
both the Y and X variables, and (2) the number of prediction functions can never exceed 
the minimum of the number of Y variables and X variables.  

Partial least squares regression extends multiple linear regression without imposing the 
restrictions employed by discriminant analysis, principal components regression, and 
canonical correlation. In partial least squares regression, prediction functions are 
represented by factors extracted from the Y'XX'Y matrix. The number of such prediction 
functions that can be extracted typically will exceed the maximum of the number of Y 
and X variables.  

In short, partial least squares regression is probably the least restrictive of the various 
multivariate extensions of the multiple linear regression model. This flexibility allows it 
to be used in situations where the use of traditional multivariate methods is severely 
limited, such as when there are fewer observations than predictor variables. Furthermore, 
partial least squares regression can be used as an exploratory analysis tool to select 
suitable predictor variables and to identify outliers before classical linear regression.  

Partial least squares regression has been used in various disciplines such as chemistry, 
economics, medicine, psychology, and pharmaceutical science where predictive linear 
modeling, especially with a large number of predictors, is necessary. Especially in 
chemometrics, partial least squares regression has become a standard tool for modeling 
linear relations between multivariate measurements (de Jong, 1993).  

 

 

 
Computational Approach  

Basic Model  

As in multiple linear regression, the main purpose of partial least squares regression is to 
build a linear model, Y=XB+E, where Y is an n cases by m variables response matrix, X 
is an n cases by p variables predictor (design) matrix, B is a p by m regression coefficient 
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matrix, and E is a noise term for the model which has the same dimensions as Y. Usually, 
the variables in X and Y are centered by subtracting their means and scaled by dividing 
by their standard deviations. For more information about centering and scaling in partial 
least squares regression, you can refer to Geladi and Kowalsky(1986).  

Both principal components regression and partial least squares regression produce factor 
scores as linear combinations of the original predictor variables, so that there is no 
correlation between the factor score variables used in the predictive regression model. 
For example, suppose we have a data set with response variables Y (in matrix form) and a 
large number of predictor variables X (in matrix form), some of which are highly 
correlated. A regression using factor extraction for this type of data computes the factor 
score matrix T=XW for an appropriate weight matrix W, and then considers the linear 
regression model Y=TQ+E, where Q is a matrix of regression coefficients (loadings) for 
T, and E is an error (noise) term. Once the loadings Q are computed, the above regression 
model is equivalent to Y=XB+E, where B=WQ, which can be used as a predictive 
regression model.  

Principal components regression and partial least squares regression differ in the methods 
used in extracting factor scores. In short, principal components regression produces the 
weight matrix W reflecting the covariance structure between the predictor variables, 
while partial least squares regression produces the weight matrix W reflecting the 
covariance structure between the predictor and response variables.  

For establishing the model, partial least squares regression produces a p by c weight 
matrix W for X such that T=XW, i.e., the columns of W are weight vectors for the X 
columns producing the corresponding n by c factor score matrix T. These weights are 
computed so that each of them maximizes the covariance between responses and the 
corresponding factor scores. Ordinary least squares procedures for the regression of Y on 
T are then performed to produce Q, the loadings for Y (or weights for Y) such that 
Y=TQ+E. Once Q is computed, we have Y=XB+E, where B=WQ, and the prediction 
model is complete.  

One additional matrix which is necessary for a complete description of partial least 
squares regression procedures is the p by c factor loading matrix P which gives a factor 
model X=TP+F, where F is the unexplained part of the X scores. We now can describe 
the algorithms for computing partial least squares regression.  

NIPALS Algorithm  

The standard algorithm for computing partial least squares regression components (i.e., 
factors) is nonlinear iterative partial least squares (NIPALS). There are many variants of 
the NIPALS algorithm which normalize or do not normalize certain vectors. The 
following algorithm, which assumes that the X and Y variables have been transformed to 
have means of zero, is considered to be one of most efficient NIPALS algorithms.  

For each h=1,…,c, where A0=X'Y, M0=X'X, C0=I , and c given,  
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1. compute qh, the dominant eigenvector of Ah'Ah  
2. wh=GhAhqh, wh=wh/||wh||, and store wh into W as a column  
3. ph=Mhwh, ch=wh'M hwh, ph=ph/ch, and store ph into P as a column  
4. qh=Ah'wh/ch, and store qh into Q as a column  
5. Ah+1=Ah - chphqh'  and Bh+1=Mh - chphph'   
6. Ch+1=Ch - whph'   

The factor scores matrix T is then computed as T=XW and the partial least squares 
regression coefficients B of Y on X are computed as B=WQ.  

SIMPLS Algorithm  

An alternative estimation method for partial least squares regression components is the 
SIMPLS algorithm (de Jong, 1993), which can be described as follows.  

For each h=1,…,c, where A0=X'Y, M0=X'X , C0=I , and c given,  

1. compute qh, the dominant eigenvector of Ah'Ah  
2. wh=Ahqh, ch=wh'M hwh, wh=wh/sqrt(ch), and store wh into W as a column  
3. ph=Mhwh, and store ph into P as a column  
4. qh=Ah'wh, and store qh into Q as a column  
5. vh=Chph, and vh=vh/||vh||  
6. Ch+1=Ch - vhvh'  and Mh+1=Mh - phph'   
7. Ah+1=ChAh  

Similarly to NIPALS, the T of SIMPLS is computed as T=XW and B for the regression 
of Y on X is computed as B=WQ'.  
 

 

 
Training (Analysis) and Verification (Cross-Validation) 
Samples  

A very important step when fitting models to be used for prediction of future observation 
is to verify (cross-validate) the results, i.e., to apply the current results to a new set of 
observations that was not used to compute those results (estimate the parameters). Some 
software programs offer very flexible methods for computing detailed predicted value 
and residual statistics for observations (1) that were not used in the computations for 
fitting the current model and have observed values for the dependent variables (the so-
called cross-validation sample), and (2) that were not used in the computations for fitting 
the current model, and have missing data for the dependent variables (prediction 
sample).  
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Types of analyses  

The design for an analysis can include effects for continuous as well as categorical 
predictor variables. Designs may include polynomials for continuous predictors (e.g., 
squared or cubic terms) as well as interaction effects (i.e., product terms) for continuous 
predictors. For categorical predictor, one can fit ANOVA-like designs, including full 
factorial, nested, and fractional factorial designs, etc. Designs can be incomplete (i.e., 
involve missing cells), and effects for categorical predictor variables can be represented 
using either the sigma-restricted parameterization or the overparameterized (i.e., indicator 
variable) representation of effects.  

The topics below give complete descriptions of the types of designs that can be analyzed 
using partial least squares regression, as well as types of designs that can be analyzed 
using the general linear model.  

Between-Subject Designs  

• Overview  
• One-way ANOVA  
• Main effect ANOVA  
• Factorial ANOVA  
• Nested designs  
• Simple regression  
• Multiple regression  
• Factorial regression  
• Polynomial regression  
• Response surface regression  
• Analysis of covariance (ANCOVA)  
• Separate slopes designs  
• Homogeneity of slopes  

Overview. The levels or values of the predictor variables in an analysis describe the 
differences between the n subjects or the n valid cases that are analyzed. Thus, when we 
speak of the between subject design (or simply the between design) for an analysis, we 
are referring to the nature, number, and arrangement of the predictor variables.  

Concerning the nature or type of predictor variables, between designs which contain only 
categorical predictor variables can be called ANOVA (analysis of variance) designs, 
between designs which contain only continuous predictor variables can be called 
regression designs, and between designs which contain both categorical and continuous 
predictor variables can be called ANCOVA (analysis of covariance) designs. Further, 
continuous predictors are always considered to have fixed values, but the levels of 
categorical predictors can be considered to be fixed or to vary randomly. Designs which 
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contain random categorical factors are called mixed-model designs (see the Variance 
Components and Mixed Model ANOVA/ANCOVA chapter).  

Between designs may involve only a single predictor variable and therefore be described 
as simple (e.g., simple regression) or may employ numerous predictor variables (e.g., 
multiple regression).  

Concerning the arrangement of predictor variables, some between designs employ only 
"main effect" or first-order terms for predictors, that is, the values for different predictor 
variables are independent and raised only to the first power. Other between designs may 
employ higher-order terms for predictors by raising the values for the original predictor 
variables to a power greater than 1 (e.g., in polynomial regression designs), or by forming 
products of different predictor variables (i.e., interaction terms). A common arrangement 
for ANOVA designs is the full-factorial design, in which every combination of levels for 
each of the categorical predictor variables is represented in the design. Designs with some 
but not all combinations of levels for each of the categorical predictor variables are aptly 
called fractional factorial designs. Designs with a hierarchy of combinations of levels for 
the different categorical predictor variables are called nested designs.  

These basic distinctions about the nature, number, and arrangement of predictor variables 
can be used in describing a variety of different types of between designs. Some of the 
more common between designs can now be described.  

One-Way ANOVA. A design with a single categorical predictor variable is called a one-
way ANOVA design. For example, a study of 4 different fertilizers used on different 
individual plants could be analyzed via one-way ANOVA, with four levels for the factor 
Fertilizer.  

In genera, consider a single categorical predictor variable A with 1 case in each of its 3 
categories. Using the sigma-restricted coding of A into 2 quantitative contrast variables, 
the matrix X defining the between design is  

 

That is, cases in groups A1, A2, and A3 are all assigned values of 1 on X0 (the intercept), 
the case in group A1 is assigned a value of 1 on X1 and a value 0 on X2, the case in group 
A2 is assigned a value of 0 on X1 and a value 1 on X2, and the case in group A3 is assigned 
a value of -1 on X1 and a value -1 on X2. Of course, any additional cases in any of the 3 
groups would be coded similarly. If there were 1 case in group A1, 2 cases in group A2, 
and 1 case in group A3, the X matrix would be  
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where the first subscript for A gives the replicate number for the cases in each group. For 
brevity, replicates usually are not shown when describing ANOVA design matrices.  

Note that in one-way designs with an equal number of cases in each group, sigma-
restricted coding yields X1 … Xk variables all of which have means of 0.  

Using the overparameterized model to represent A, the X matrix defining the between 
design is simply  

 

These simple examples show that the X matrix actually serves two purposes. It specifies 
(1) the coding for the levels of the original predictor variables on the X variables used in 
the analysis as well as (2) the nature, number, and arrangement of the X variables, that is, 
the between design.  

Main Effect ANOVA.  Main effect ANOVA designs contain separate one-way ANOVA 
designs for 2 or more categorical predictors. A good example of main effect ANOVA 
would be the typical analysis performed on screening designs as described in the context 
of the Experimental Design chapter.  

Consider 2 categorical predictor variables A and B each with 2 categories. Using the 
sigma-restricted coding, the X matrix defining the between design is  

 

Note that if there are equal numbers of cases in each group, the sum of the cross-products 
of values for the X1 and X2 columns is 0, for example, with 1 case in each group 
(1*1)+(1*-1)+(-1*1)+(-1*-1)=0. Using the overparameterized model, the matrix X 
defining the between design is  
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Comparing the two types of coding, it can be seen that the overparameterized coding 
takes almost twice as many values as the sigma-restricted coding to convey the same 
information.  

Factorial ANOVA.  Factorial ANOVA designs contain X variables representing 
combinations of the levels of 2 or more categorical predictors (e.g., a study of boys and 
girls in four age groups, resulting in a 2 (Gender) x 4 (Age Group) design). In particular, 
full-factorial designs represent all possible combinations of the levels of the categorical 
predictors. A full-factorial design with 2 categorical predictor variables A and B each 
with 2 levels each would be called a 2 x 2 full-factorial design. Using the sigma-restricted 
coding, the X matrix for this design would be  

 

Several features of this X matrix deserve comment. Note that the X1 and X2 columns 
represent main effect contrasts for one variable, (i.e., A and B, respectively) collapsing 
across the levels of the other variable. The X3 column instead represents a contrast 
between different combinations of the levels of A and B. Note also that the values for X3 
are products of the corresponding values for X1 and X2. Product variables such as X3 

represent the multiplicative or interaction effects of their factors, so X3 would be said to 
represent the 2-way interaction of A and B. The relationship of such product variables to 
the dependent variables indicate the interactive influences of the factors on responses 
above and beyond their independent (i.e., main effect) influences on responses. Thus, 
factorial designs provide more information about the relationships between categorical 
predictor variables and responses on the dependent variables than is provided by 
corresponding one-way or main effect designs.  

When many factors are being investigated, however, full-factorial designs sometimes 
require more data than reasonably can be collected to represent all possible combinations 
of levels of the factors, and high-order interactions between many factors can become 
difficult to interpret. With many factors, a useful alternative to the full-factorial design is 
the fractional factorial design. As an example, consider a 2 x 2 x 2 fractional factorial 
design to degree 2 with 3 categorical predictor variables each with 2 levels. The design 
would include the main effects for each variable, and all 2-way interactions between the 
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three variables, but would not include the 3-way interaction between all three variables. 
Using the overparameterized model, the X matrix for this design is  

 

The 2-way interactions are the highest degree effects included in the design. These types 
of designs are discussed in detail the 2**(k-p) Fractional Factorial Designs section of the 
Experimental Design chapter.  

Nested ANOVA Designs. Nested designs are similar to fractional factorial designs in 
that all possible combinations of the levels of the categorical predictor variables are not 
represented in the design. In nested designs, however, the omitted effects are lower-order 
effects. Nested effects are effects in which the nested variables never appear as main 
effects. Suppose that for 2 variables A and B with 3 and 2 levels, respectively, the design 
includes the main effect for A and the effect of B nested within the levels of A. The X 
matrix for this design using the overparameterized model is  

 

Note that if the sigma-restricted coding were used, there would be only 2 columns in the 
X matrix for the B nested within A effect instead of the 6 columns in the X matrix for this 
effect when the overparameterized model coding is used (i.e., columns X4 through X9). 
The sigma-restricted coding method is overly-restrictive for nested designs, so only the 
overparameterized model is used to represent nested designs.  

Simple Regression. Simple regression designs involve a single continuous predictor 
variable. If there were 3 cases with values on a predictor variable P of, say, 7, 4, and 9, 
and the design is for the first-order effect of P, the X matrix would be  
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and using P for X1 the regression equation would be  

Y = b0 + b1P  

If the simple regression design is for a higher-order effect of P, say the quadratic effect, 
the values in the X1 column of the design matrix would be raised to the 2nd power, that is, 
squared  

 

and using P2 for X1 the regression equation would be  

Y = b0 + b1P
2  

The sigma-restricted and overparameterized coding methods do not apply to simple 
regression designs and any other design containing only continuous predictors (since 
there are no categorical predictors to code). Regardless of which coding method is 
chosen, values on the continuous predictor variables are raised to the desired power and 
used as the values for the X variables. No recoding is performed. It is therefore sufficient, 
in describing regression designs, to simply describe the regression equation without 
explicitly describing the design matrix X.  

Multiple Regression. Multiple regression designs are to continuous predictor variables 
as main effect ANOVA designs are to categorical predictor variables, that is, multiple 
regression designs contain the separate simple regression designs for 2 or more 
continuous predictor variables. The regression equation for a multiple regression design 
for the first-order effects of 3 continuous predictor variables P, Q, and R would be  

Y = b0 + b1P + b2Q + b3R  

Factorial Regression. Factorial regression designs are similar to factorial ANOVA 
designs, in which combinations of the levels of the factors are represented in the design. 
In factorial regression designs, however, there may be many more such possible 
combinations of distinct levels for the continuous predictor variables than there are cases 
in the data set. To simplify matters, full-factorial regression designs are defined as 
designs in which all possible products of the continuous predictor variables are 
represented in the design. For example, the full-factorial regression design for two 
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continuous predictor variables P and Q would include the main effects (i.e., the first-
order effects) of P and Q and their 2-way P by Q interaction effect, which is represented 
by the product of P and Q scores for each case. The regression equation would be  

Y = b0 + b1P + b2Q + b3P*Q  

Factorial regression designs can also be fractional, that is, higher-order effects can be 
omitted from the design. A fractional factorial design to degree 2 for 3 continuous 
predictor variables P, Q, and R would include the main effects and all 2-way interactions 
between the predictor variables  

Y = b0 + b1P + b2Q + b3R + b4P*Q + b5P*R + b6Q*R  

Polynomial Regression. Polynomial regression designs are designs which contain main 
effects and higher-order effects for the continuous predictor variables but do not include 
interaction effects between predictor variables. For example, the polynomial regression 
design to degree 2 for three continuous predictor variables P, Q, and R would include the 
main effects (i.e., the first-order effects) of P, Q, and R and their quadratic (i.e., second-
order) effects, but not the 2-way interaction effects or the P by Q by R 3-way interaction 
effect.  

Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2  

Polynomial regression designs do not have to contain all effects up to the same degree for 
every predictor variable. For example, main, quadratic, and cubic effects could be 
included in the design for some predictor variables, and effects up the fourth degree could 
be included in the design for other predictor variables.  

Response Surface Regression. Quadratic response surface regression designs are a 
hybrid type of design with characteristics of both polynomial regression designs and 
fractional factorial regression designs. Quadratic response surface regression designs 
contain all the same effects of polynomial regression designs to degree 2 and additionally 
the 2-way interaction effects of the predictor variables. The regression equation for a 
quadratic response surface regression design for 3 continuous predictor variables P, Q, 
and R would be  

Y = b0 + b1P + b2P
2 + b3Q + b4Q

2 + b5R + b6R
2 + b7P*Q + b8P*R + b9Q*R  

These types of designs are commonly employed in applied research (e.g., in industrial 
experimentation), and a detailed discussion of these types of designs is also presented in 
the Experimental Design chapter (see Central composite designs).  

Analysis of Covariance. In general, between designs which contain both categorical and 
continuous predictor variables can be called ANCOVA designs. Traditionally, however, 
ANCOVA designs have referred more specifically to designs in which the first-order 
effects of one or more continuous predictor variables are taken into account when 
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assessing the effects of one or more categorical predictor variables. A basic introduction 
to analysis of covariance can also be found in the Analysis of covariance (ANCOVA) 
topic of the ANOVA/MANOVA chapter.  

To illustrate, suppose a researcher wants to assess the influences of a categorical 
predictor variable A with 3 levels on some outcome, and that measurements on a 
continuous predictor variable P, known to covary with the outcome, are available. If the 
data for the analysis are  

 

then the sigma-restricted X matrix for the design that includes the separate first-order 
effects of P and A would be  

 

The b2 and b3 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3  

represent the influences of group membership on the A categorical predictor variable, 
controlling for the influence of scores on the P continuous predictor variable. Similarly, 
the b1 coefficient represents the influence of scores on P controlling for the influences of 
group membership on A. This traditional ANCOVA analysis gives a more sensitive test 
of the influence of A to the extent that P reduces the prediction error, that is, the residuals 
for the outcome variable.  

The X matrix for the same design using the overparameterized model would be  
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The interpretation is unchanged except that the influences of group membership on the A 
categorical predictor variables are represented by the b2, b3 and b4 coefficients in the 
regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4  

Separate Slope Designs. The traditional analysis of covariance (ANCOVA) design for 
categorical and continuous predictor variables is inappropriate when the categorical and 
continuous predictors interact in influencing responses on the outcome. The appropriate 
design for modeling the influences of the predictors in this situation is called the separate 
slope design. For the same example data used to illustrate traditional ANCOVA, the 
overparameterized X matrix for the design that includes the main effect of the three-level 
categorical predictor A and the 2-way interaction of P by A would be  

 

The b4, b5, and b6 coefficients in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6  

give the separate slopes for the regression of the outcome on P within each group on A, 
controlling for the main effect of A.  

As with nested ANOVA designs, the sigma-restricted coding of effects for separate slope 
designs is overly restrictive, so only the overparameterized model is used to represent 
separate slope designs. In fact, separate slope designs are identical in form to nested 
ANOVA designs, since the main effects for continuous predictors are omitted in separate 
slope designs.  

Homogeneity of Slopes. The appropriate design for modeling the influences of 
continuous and categorical predictor variables depends on whether the continuous and 
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categorical predictors interact in influencing the outcome. The traditional analysis of 
covariance (ANCOVA) design for continuous and categorical predictor variables is 
appropriate when the continuous and categorical predictors do not interact in influencing 
responses on the outcome, and the separate slope design is appropriate when the 
continuous and categorical predictors do interact in influencing responses. The 
homogeneity of slopes designs can be used to test whether the continuous and categorical 
predictors interact in influencing responses, and thus, whether the traditional ANCOVA 
design or the separate slope design is appropriate for modeling the effects of the 
predictors. For the same example data used to illustrate the traditional ANCOVA and 
separate slope designs, the overparameterized X matrix for the design that includes the 
main effect of P, the main effect of the three-level categorical predictor A, and the 2-way 
interaction of P by A would be  

 

If the b5, b6, or b7 coefficient in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7  

is non-zero, the separate slope model should be used. If instead all 3 of these regression 
coefficients are zero the traditional ANCOVA design should be used.  

The sigma-restricted X matrix for the homogeneity of slopes design would be  

 

Using this X matrix, if the b4, or b5 coefficient in the regression equation  

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  

is non-zero, the separate slope model should be used. If instead both of these regression 
coefficients are zero the traditional ANCOVA design should be used.  
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Distance Graphs  

A graphic technique that is useful in analyzing Partial Least Squares designs is a distance 
graph. These graphs allow you to compute and plot distances from the origin (zero for all 
dimensions) for the predicted and residual statistics, loadings, and weights for the 
respective number of components.  

 

Based on Euclidean distances, these observation plots can be helpful in determining 
major contributors to the prediction of the conceptual variable(s) (plotting weights) as 
well as outliers that have a disproportionate influence (relative to the other observation) 
on the results (plotting residual values).  
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Chapter 33 

Power Analysis 
 

• General Purpose  
• Power Analysis and Sample Size Calculation in Experimental Design  

o Sampling Theory  
o Hypothesis Testing Logic  
o Calculating Power  
o Calculating Required Sample Size  
o Graphical Approaches to Power Analysis  

• Noncentrality Interval Estimation and the Evaluation of Statistical Models  
o Inadequacies of the Hypothesis Testing Approach  
o Advantages of Interval Estimation  
o Reasons Why Interval Estimates are Seldom Reported  
o Replacing Traditional Hypothesis Tests with Interval Estimates  

General Purpose  

The techniques of statistical power analysis, sample size estimation, and advanced 
techniques for confidence interval estimation are discussed here. The main goal of first 
the two techniques is to allow you to decide, while in the process of designing an 
experiment, (a) how large a sample is needed to enable statistical judgments that are 
accurate and reliable and (b) how likely your statistical test will be to detect effects of a 
given size in a particular situation. The third technique is useful in implementing 
objectives a and b and in evaluating the size of experimental effects in practice.  

Performing power analysis and sample size estimation is an important aspect of 
experimental design, because without these calculations, sample size may be too high or 
too low. If sample size is too low, the experiment will lack the precision to provide 
reliable answers to the questions it is investigating. If sample size is too large, time and 
resources will be wasted, often for minimal gain.  

In some power analysis software programs, a number of graphical and analytical tools are 
available to enable precise evaluation of the factors affecting power and sample size in 
many of the most commonly encountered statistical analyses. This information can be 
crucial to the design of a study that is cost-effective and scientifically useful.  

Noncentrality interval estimation procedures and other sophisticated confidence interval 
procedures provide some sophisticated confidence interval methods for analyzing the 
importance of an observed experimental result. An increasing number of influential 
statisticians are suggesting that confidence interval estimation should augment or replace 
traditional hypothesis testing approaches in the analysis of experimental data.  
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Power Analysis and Sample Size Calculation in 
Experimental Design  

There is a growing recognition of the importance of power analysis and sample size 
calculation in the proper design of experiments. Click on the links below for a discussion 
of the fundamental ideas behind these methods.  

• Sampling Theory  
• Hypothesis Testing Logic  
• Calculating Power  
• Calculating Required Sample Size  
• Graphical Approaches to Power Analysis  

Sampling Theory. In most situations in statistical analysis, we do not have access to an 
entire statistical population of interest, either because the population is too large, is not 
willing to be measured, or the measurement process is too expensive or time-consuming 
to allow more than a small segment of the population to be observed. As a result, we 
often make important decisions about a statistical population on the basis of a relatively 
small amount of sample data.  

Typically, we take a sample and compute a quantity called a statistic in order to estimate 
some characteristic of a population called a parameter.  

For example, suppose a politician is interested in the proportion of people who currently 
favor her position on a particular issue. Her constituency is a large city with a population 
of about 1,500,000 potential voters. In this case, the parameter of interest, which we 
might call , is the proportion of people in the entire population who favor the 
politician's position. The politician is going to commission an opinion poll, in which a 
(hopefully) random sample of people will be asked whether or not they favor her 
position. The number (call it N) of people to be polled will be quite small, relative to the 
size of the population. Once these people have been polled, the proportion of them 
favoring the politician's position will be computed. This proportion, which is a statistic, 
can be called p.  

One thing is virtually certain before the study is ever performed: p will not be equal to 
! Because p involves "the luck of the draw," it will deviate from . The amount by which 
p is wrong, i.e., the amount by which it deviates from , is called sampling error.  

In any one sample, it is virtually certain there will be some sampling error (except in 
some highly unusual circumstances), and that we will never be certain exactly how large 
this error is. If we knew the amount of the sampling error, this would imply that we also 
knew the exact value of the parameter, in which case we would not need to be doing the 
opinion poll in the first place.  
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In general, the larger the sample size N, the smaller sampling error tends to be. (One can 
never be sure what will happen in a particular experiment, of course.) If we are to make 
accurate decisions about a parameter like , we need to have an N large enough so that 
sampling error will tend to be "reasonably small." If N is too small, there is not much 
point in gathering the data, because the results will tend to be too imprecise to be of much 
use.  

On the other hand, there is also a point of diminishing returns beyond which increasing N 
provides little benefit. Once N is "large enough" to produce a reasonable level of 
accuracy, making it larger simply wastes time and money.  

So some key decisions in planning any experiment are, "How precise will my parameter 
estimates tend to be if I select a particular sample size?" and "How big a sample do I need 
to attain a desirable level of precision?"  

The purpose of Power Analysis and Sample Size Estimation is to provide you with the 
statistical methods to answer these questions quickly, easily, and accurately. A good 
statistical software program will provide simple dialogs for performing power 
calculations and sample size estimation for many of the classic statistical procedures as 
well as special noncentral distribution routines to allow the advanced user to perform a 
variety of additional calculations.  

Hypothesis Testing. Suppose that the politician was interested in showing that more 
than the majority of people supported her position. Her question, in statistical terms: "Is 

> .50?" Being an optimist, she believes that it is.  

In statistics, the following strategy is quite common. State as a "statistical null 
hypothesis" something that is the logical opposite of what you believe. Call this 
hypothesis H0. Gather data. Then, using statistical theory, show from the data that it is 
likely H0 is false, and should be rejected.  

By rejecting H0, you support what you actually believe. This kind of situation, which is 
typical in many fields of research, for example, is called "Reject-Support testing," (RS 
testing) because rejecting the null hypothesis supports the experimenter's theory.  

The null hypothesis is either true or false, and the statistical decision process is set up so 
that there are no "ties." The null hypothesis is either rejected or not rejected. 
Consequently, before undertaking the experiment, we can be certain that only 4 possible 
things can happen. These are summarized in the table below  

State of the World 
  

HO H1 

H0 Correct 
Acceptance 

Type II Error 

 Decision 

H1 Type I Error Correct 
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 Rejection 

Note that there are two kinds of errors represented in the table. Many statistics textbooks 
present a point of view that is common in the social sciences, i.e., that , the Type I 

error rate, must be kept at or below .05, and that, if at all possible, , the Type II error 

rate, must be kept low as well. "Statistical power," which is equal to 1 - , must be kept 
correspondingly high. Ideally, power should be at least .80 to detect a reasonable 
departure from the null hypothesis.  

The conventions are, of course, much more rigid with respect to than with respect to . 
For example, in the social sciences seldom, if ever, is allowed to stray above the 
magical .05 mark.  

Significance Testing (RS/AS). In the context of significance testing, we can define two 
basic kinds of situations, reject-support (RS) (discussed above) and accept-support (AS). 
In RS testing, the null hypothesis is the opposite of what the researcher actually believes, 
and rejecting it supports the researcher's theory. In a two group RS experiment involving 
comparison of the means of an experimental and control group, the experimenter believes 
the treatment has an effect, and seeks to confirm it through a significance test that rejects 
the null hypothesis.  

In the RS situation, a Type I error represents, in a sense, a "false positive" for the 
researcher's theory. From society's standpoint, such false positives are particularly 
undesirable. They result in much wasted effort, especially when the false positive is 
interesting from a theoretical or political standpoint (or both), and as a result stimulates a 
substantial amount of research. Such follow-up research will usually not replicate the 
(incorrect) original work, and much confusion and frustration will result.  

In RS testing, a Type II error is a tragedy from the researcher's standpoint, because a 
theory that is true is, by mistake, not confirmed. So, for example, if a drug designed to 
improve a medical condition is found (incorrectly) not to produce an improvement 
relative to a control group, a worthwhile therapy will be lost, at least temporarily, and an 
experimenter's worthwhile idea will be discounted.  

As a consequence, in RS testing, society, in the person of journal editors and reviewers, 
insists on keeping low. The statistically well-informed researcher makes it a top 

priority to keep low as well. Ultimately, of course, everyone benefits if both error 
probabilities are kept low, but unfortunately there is often, in practice, a trade-off 
between the two types of error.  

The RS situation is by far the more common one, and the conventions relevant to it have 
come to dominate popular views on statistical testing. As a result, the prevailing views on 
error rates are that relaxing beyond a certain level is unthinkable, and that it is up to the 
researcher to make sure statistical power is adequate. One might argue how appropriate 
these views are in the context of RS testing, but they are not altogether unreasonable.  
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In AS testing, the common view on error rates we described above is clearly 
inappropriate. In AS testing, H0 is what the researcher actually believes, so accepting it 
supports the researcher's theory. In this case, a Type I error is a false negative for the 
researcher's theory, and a Type II error constitutes a false positive. Consequently, acting 
in a way that might be construed as highly virtuous in the RS situation, for example, 
maintaining a very low Type I error rate like .001, is actually "stacking the deck" in favor 
of the researcher's theory in AS testing.  

In both AS and RS situations, it is easy to find examples where significance testing seems 
strained and unrealistic. Consider first the RS situation. In some such situations, it is 
simply not possible to have very large samples. An example that comes to mind is social 
or clinical psychological field research. Researchers in these fields sometimes spend 
several days interviewing a single subject. A year's research may only yield valid data 
from 50 subjects. Correlational tests, in particular, have very low power when samples 
are that small. In such a case, it probably makes sense to relax beyond .05, if it means 
that reasonable power can be achieved.  

On the other hand, it is possible, in an important sense, to have power that is too high. For 
example, one might be testing the hypothesis that two population means are equal (i.e., 
Mu1 = Mu2) with sample sizes of a million in each group. In this case, even with trivial 
differences between groups, the null hypothesis would virtually always be rejected.  

The situation becomes even more unnatural in AS testing. Here, if N is too high, the 
researcher almost inevitably decides against the theory, even when it turns out, in an 
important sense, to be an excellent approximation to the data. It seems paradoxical indeed 
that in this context experimental precision seems to work against the researcher.  

To summarize:  

In Reject-Support research:  

1. The researcher wants to reject H0.  
2. Society wants to control Type I error.  
3. The researcher must be very concerned about Type II error.  
4. High sample size works for the researcher.  
5. If there is "too much power," trivial effects become "highly significant." 

In Accept-Support research:  

1. The researcher wants to accept H0.  
2. "Society" should be worrying about controlling Type II error, although it 

sometimes gets confused and retains the conventions applicable to RS testing.  
3. The researcher must be very careful to control Type I error.  
4. High sample size works against the researcher.  
5. If there is "too much power," the researcher's theory can be "rejected" by a 

significance test even though it fits the data almost perfectly. 
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Calculating Power. Properly designed experiments must ensure that power will be 
reasonably high to detect reasonable departures from the null hypothesis. Otherwise, an 
experiment is hardly worth doing. Elementary textbooks contain detailed discussions of 
the factors influencing power in a statistical test. These include  

1. What kind of statistical test is being performed. Some statistical tests are 
inherently more powerful than others.  

2. Sample size. In general, the larger the sample size, the larger the power. However, 
generally increasing sample size involves tangible costs, both in time, money, and 
effort. Consequently, it is important to make sample size "large enough," but not 
wastefully large.  

3. The size of experimental effects. If the null hypothesis is wrong by a substantial 
amount, power will be higher than if it is wrong by a small amount.  

4. The level of error in experimental measurements. Measurement error acts like 
"noise" that can bury the "signal" of real experimental effects. Consequently, 
anything that enhances the accuracy and consistency of measurement can increase 
statistical power. 

 
 
Calculating Required Sample Size To ensure a statistical test will have adequate 
power, one usually must perform special analyses prior to running the experiment, to 
calculate how large an N is required.  

Let's briefly examine the kind of statistical theory that lies at the foundation of the 
calculations used to estimate power and sample size. Return to the original example of 
the politician, contemplating how large an opinion poll should be taken to suit her 
purposes.  

Statistical theory, of course, cannot tell us what will  happen with any particular opinion 
poll. However, through the concept of a sampling distribution, it can tell us what will 
tend to happen in the long run, over many opinion polls of a particular size.  

A sampling distribution is the distribution of a statistic over repeated samples. Consider 
the sample proportion p resulting from an opinion poll of size N, in the situation where 
the population proportion is exactly .50. Sampling distribution theory tells us that p 
will have a distribution that can be calculated from the binomial theorem. This 
distribution, for reasonably large N, and for values of p not too close to 0 or 1, looks very 
much like a normal distribution with a mean of and a standard deviation (called the 
"standard error of the proportion") of  

�p = (�(1-�)/N)**1/2  
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Suppose, for example, the politician takes an opinion poll based on an N of 100. Then the 
distribution of p, over repeated samples, will look like this if = .5.  

 

The values are centered around .5, but a small percentage of values are greater than .6 or 
less than .4. This distribution of values reflects the fact that an opinion poll based on a 
sample of 100 is an imperfect indicator of the population proportion .  

If p were a "perfect" estimate of , the standard error of the proportion would be zero, 
and the sampling distribution would be a spike located at 0.5. The spread of the sampling 
distribution indicates how much "noise" is mixed in with the "signal" generated by the 
parameter.  

Notice from the equation for the standard error of the proportion that, as N increases, the 
standard error of the proportion gets smaller. If N becomes large enough, we can be very 
certain that our estimate p will be a very accurate one.  

Suppose the politician uses a decision criterion as follows. If the observed value of p is 
greater than .58, she will decide that the null hypothesis that is less than or equal to .50 
is false. This rejection rule is diagrammed below.  
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One may, by adding up all the probabilities (computable from the binomial distribution), 
determine that the probability of rejecting the null hypothesis when p = .50 is .044. 
Hence, this decision rule controls the Type I Error rate, , at or below .044. It turns out, 
this is the lowest decision criterion that maintains at or below .05.  

However, the politician is also concerned about power in this situation, because it is by 
rejecting the null hypothesis that she is able to support the notion that she has public 
opinion on her side.  

Suppose that 55% of the people support the politician, that is, that = .55 and the null 
hypothesis is actually false. In this case, the correct decision is to reject the null 
hypothesis. What is the probability that she will obtain a sample proportion greater than 
the "cut-off" value of .58 required to reject the null hypothesis?  

In the figure below, we have superimposed the sampling distribution for p when = .55. 
Clearly, only a small percentage of the time will the politician reach the correct decision 
that she has majority support. The probability of obtaining a p greater than .58 is only 
.241.  
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Needless to say, there is no point in conducting an experiment in which, if your position 
is correct, it will only be verified 24.1% of the time! In this case a statistician would say 
that the significance test has "inadequate power to detect a departure of 5 percentage 
points from the null hypothesized value."  

The crux of the problem lies in the width of the two distributions in the preceding figure. 
If the sample size were larger, the standard error of the proportion would be smaller, and 
there would be little overlap between the distributions. Then it would be possible to find a 
decision criterion that provides a low and high power.  

The question is, "How large an N is necessary to produce a power that is reasonably 
high" in this situation, while maintaining at a reasonably low value.  

One could, of course, go through laborious, repetitive calculations in order to arrive at 
such a sample size. However, a good software program will perform them automatically, 
with just a few clicks of the mouse. Moreover, for each analytic situation that it handles, 
it will provide extensive capabilities for analyzing and graphing the theoretical 
relationships between power, sample size, and the variables that affect them. Assuming 
that the user will be employing the well known chi-square test, rather than the exact 
binomial test, suppose that the politician decides that she requires a power of .80 to detect 
a p of .80. It turns out, a sample size of 607 will yield a power of exactly .8009. (The 
actual alpha of this test, which has a nominal level of .05, is .0522 in this situation.)  

 
 
Graphical Approaches to Power Analysis. In the preceding discussion, we arrived at 
a necessary sample size of 607 under the assumption that p is precisely .80. In practice, of 
course, we would be foolish to perform only one power calculation, based on one 
hypothetical value. For example, suppose the function relating required sample size to p 
is particularly steep in this case. It might then be that the sample size required for a p of 
.70 is much different than that required to reliably detect a p of .80.  

  



 506 

Intelligent analysis of power and sample size requires the construction, and careful 
evaluation, of graphs relating power, sample size, the amount by which the null 
hypothesis is wrong (i.e., the experimental effect), and other factors such as Type I error 
rate.  

In the example discussed in the preceding section, the goal, from the standpoint of the 
politician, is to plan a study that can decide, with a low probability of error, whether the 
support level is greater than .50. Graphical analysis can shed a considerable amount of 
light on the capabilities of a statistical test to provide the desired information under such 
circumstances.  

For example, the researcher could plot power against sample size, under the assumption 
that the true level is .55, i.e., 55%. The user might start with a graph that covers a very 
wide range of sample sizes, to get a general idea of how the statistical test behaves. The 
following graph shows power as a function of sample sizes ranging from 20 to 2000, 
using a "normal approximation" to the exact binomial distribution.  

 

The previous graph demonstrates that power reaches an acceptable level (often 
considered to be between .80 and .90) at a sample size of approximately 600.  

Remember, however, that this calculation is based on the supposition that the true value 
of p is .55. It may be that the shape of the curve relating power and sample size is very 
sensitive to this value. The question immediately arises, "how sensitive is the slope of 
this graph to changes in the actual value of p?  

There are a number of ways to address this question. One can plot power vs. sample size 
for other values of p, for example. Below is a graph of power vs. sample size for p = .6.  
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One can see immediately in the preceding graph that the improvement in power for 
increases in N occurs much more rapidly for p = .6 than for p = .55. The difference is 
striking if you merge the two graphs into one, as shown below.  

 

In planning a study, particularly when a grant proposal must be submitted with a 
proposed sample size, one must estimate what constitutes a reasonable minimum effect 
that one wishes to detect, a minimum power to detect that effect, and the sample size that 
will achieve that desired level of power. This sample size can be obtained by analyzing 
the above graphs (additionally, some software packages can calculate it directly). For 
example, if the user requests the minimum sample size required to achieve a power of .90 
when p = .55, some programs can calculate this directly. The result is reported in a 
spreadsheet, as below,  

  
One Proportion, Z 
(or Chi-Square) Test 
H0: Pi < = Pi0 
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Value 

Null Hypothesized Proportion (Pi0) .5000 

Population Proportion (Pi) .5500 

Alpha (Nominal) .0500 

Required Power .9000 

Required Sample Size (N) 853.0000 

Actual Alpha (Exact) .0501 

Power (Normal Approximation) .9001 

Power (Exact) .9002 

For a given level of power, a graph of sample size vs. p can show how sensitive the 
required sample size is to the actual value of p. This can be important in gauging how 
sensitive the estimate of a required sample size is. For example, the following graph 
shows values of N needed to achieve a power of .90 for various values of p, when the null 
hypothesis is that p = .50  

 

The preceding graph demonstrates how the required N drops off rapidly as p varies from 
.55 to .60. To be able to reliably detect a difference of .05 (from the null hypothesized 
value of .50) requires an N greater than 800, but reliable detection of a difference of .10 
requires an N of only around 200. Obviously, then, required sample size is somewhat 
difficult to pinpoint in this situation. It is much better to be aware of the overall 
performance of the statistical test against a range of possibilities before beginning an 
experiment, than to be informed of an unpleasant reality after the fact. For example, 
imagine that the experimenter had estimated the required sample size on the basis of 
reliably (with power of .90) detecting a p of .6. The experimenter budgets for a sample 
size of, say, 220, and imagines that minor departures of p from .6 will not require 
substantial differences in N. Only later does the experimenter realize that a small change 
in requires a huge increase in N , and that the planning for the experiment was optimistic. 
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In some such situations, a "window of opportunity" may close before the sample size can 
be adjusted upward.  

Across a wide variety of analytic situations, Power analysis and sample size estimation 
involve steps that are fundamentally the same.  

1. The type of analysis and null hypothesis are specified  
2. Power and required sample size for a reasonable range of effects is investigated.  
3. The sample size required to detect a reasonable experimental effect (i.e., departure 

from the null hypothesis), with a reasonable level of power, is calculated, while 
allowing for a reasonable margin of error.  

 
 

Noncentrality Interval Estimation and the Evaluation of 
Statistical Models  

Power Analysis and Interval Estimation includes a number of confidence intervals that 
are not widely available in general purpose statistics packages. Several of these are 
discussed within a common theoretical framework, called "noncentrality interval 
estimation," by Steiger and Fouladi (1997). In this section, we briefly review some of the 
basic rationale behind the emerging popularity of confidence intervals.  

Inadequacies of the Hypothesis Testing Approach. Strictly speaking, the outcome 
of a significance test is the dichotomous decision whether or not to reject the null 
hypothesis. This dichotomy is inherently dissatisfying to many scientists who use the null 
hypothesis as a statement of no effect, and are more interested in knowing how big an 
effect is than whether it is (precisely) zero. This has led to behavior like putting one, two, 
or three asterisks next to results in tables, or listing p levels next to results, when, in fact, 
such numbers, across (or sometimes even within!) studies need not be monotonically 
related to the best estimates of strength of experimental effects, and hence can be 
extremely misleading. Some writers (e.g., Guttman, 1977) view asterisk-placing behavior 
as inconsistent with the foundations of significance testing logic.  

Probability levels can deceive about the "strength" of a result, especially when presented 
without supporting information. For example, if, in an ANOVA table, one effect had a p 
level of .019, and the other a p level of .048, it might be an error to conclude that the 
statistical evidence supported the view that the first effect was stronger than the second. 
A meaningful interpretation would require additional information. To see why, suppose 
someone reports a p level of .001. This could be representative of a trivial population 
effect combined with a huge sample size, or a powerful population effect combined with 
a moderate sample size, or a huge population effect with a small sample. Similarly a p 
level of .075 could represent a powerful effect operating with a small sample, or a tiny 
effect with a huge sample. Clearly then, we need to be careful when comparing p levels.  
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In Accept-Support testing, which occurs frequently in the context of model fitting in 
factor analysis or "causal modeling," significance testing logic is basically inappropriate. 
Rejection of an "almost true" null hypothesis in such situations frequently has been 
followed by vague statements that the rejection shouldn't be taken too seriously. Failure 
to reject a null hypothesis usually results in a demand by a vigilant journal editor for 
cumbersome power calculations. Such problems can be avoided to some extent by using 
confidence intervals.  

 
 
Advantages of Interval Estimation. Much research is exploratory. The fundamental 
questions in exploratory research are "What is our best guess for the size of the 
population effect?" and "How precisely have we determined the population effect size 
from our sample data?" Significance testing fails to answer these questions directly. 
Many a researcher, faced with an "overwhelming rejection" of a null hypothesis, cannot 
resist the temptation to report that it was "significant well beyond the .001 level." Yet it is 
widely agreed that a p level following a significance test can be a poor vehicle for 
conveying what we have learned about the strength of population effects.  

Confidence interval estimation provides a convenient alternative to significance testing in 
most situations. Consider the 2-tailed hypothesis of no difference between means. Recall 
first that the significance test rejects at the significance level if and only if the 1 - 
confidence interval for the mean difference excludes the value zero. Thus the significance 
test can be performed with the confidence interval. Most undergraduate texts in 
behavioral statistics show how to compute such a confidence interval. The interval is 
exact under the assumptions of the standard t test. However, the confidence interval 
contains information about experimental precision that is not available from the result of 
a significance test. Assuming we are reasonably confident about the metric of the data, it 
is much more informative to state a confidence interval on Mu1 - Mu2 than it is to give 
the p level for the t test of the hypothesis that Mu1 - Mu2 = 0 In summary, we might say 
that, in general, a confidence interval conveys more information, in a more naturally 
usable form, than a significance test.  

This is seen most clearly when confidence intervals from several studies are graphed 
alongside one another, as in the figure below  
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The figure shows confidence intervals for the difference between means for 3 
experiments, all performed in the same domain, using measures with approximately the 
same variability. Experiments 1 and 3 yield a confidence interval that fails to include 
zero. For these experiments, the null hypothesis was rejected. The second experiment 
yields a confidence interval that includes zero, so the null hypothesis of no difference is 
not rejected. A significance testing approach would yield the impression that the second 
experiment did not agree with the first and the third.  

The confidence intervals suggest a different interpretation, however. The first experiment 
had a very large sample size, and very high precision of measurement, reflected in a very 
narrow confidence interval. In this experiment, a small effect was found, and determined 
with such high precision that the null hypothesis of no difference could be rejected at a 
stringent significance level.  

The second experiment clearly lacked precision, and this is reflected in the very wide 
confidence interval. Evidently, the sample size was too small. It may well be that the 
actual effect in conditions assessed in the second experiment was larger than that in the 
first experiment, but the experimental precision was simply inadequate to detect it.  

The third experiment found an effect that was statistically significant, and perhaps 
substantially higher than the first experiment, although this is partly masked by the lower 
level of precision, reflected in a confidence interval that, though narrower than 
Experiment 2, is substantially wider than Experiment 1.  

Suppose the 3 experiments involved testing groups for differences in IQ. In the final 
analysis, we may have had too much power in Experiment 1, as we are declaring "highly 
significant" a rather miniscule effect substantially less than a single IQ point. We had far 
too little power in Experiment 2. Experiment 3 seems about right.  

Many of the arguments we have made on behalf of confidence intervals have been made 
by others as cogently as we have made them here. Yet, confidence intervals are seldom 
reported in the literature. Most important, as we demonstrate in the succeeding sections, 
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there are several extremely useful confidence intervals that virtually never are reported. 
In what follows, we discuss why the intervals are seldom reported.  

 
 
Reasons Why Interval Estimates are Seldom Reported. In spite of the obvious 
advantages of interval estimates, they are seldom employed in published articles in many 
areas of science. On those infrequent occasions when interval estimates are reported, they 
are often not the optimal ones. There are several reasons for this status quo:  

Tradition.  Traditional approaches to statistics emphasize significance testing much more 
than interval estimation.  

Pragmatism. In RS situations, interval estimates are sometimes embarrassing. When 
they are narrow but close to zero, they suggest that a "highly significant" result may be 
statistically significant but trivial. When they are wide, they betray a lack of experimental 
precision.  

Ignorance. Many people are simply unaware of some of the very valuable interval 
estimation procedures that are available. For example, many textbooks on multivariate 
analysis never mention that it is possible to compute a confidence interval on the squared 
multiple correlation coefficient.  

Lack of availability.  Some of the most desirable interval estimation procedures are 
computer intensive, and have not been implemented in major statistical packages. This 
has made it less likely that anyone will try the procedure.  

 
 
Replacing Traditional Hypothesis Tests with Interval Estimates. There are a 
number of confidence interval procedures that can replace and/or augment the traditional 
hypothesis tests used in classical testing situations. For a review of these techniques, see 
Steiger & Fouladi (1997).  

Analysis of Variance. One area where confidence intervals have seldom been employed 
is in assessing strength of effects in the Analysis of Variance (ANOVA).  

For example, suppose you are reading a paper, which reports that, in a 1-Way ANOVA, 
with 4 groups, and N = 60 per group, an F statistic was found that is significant at the .05 
level ("F = 2.70, p =.0464"). This result is statistically significant, but how meaningful is 
it in a practical sense? What have we learned about the size of the experimental effects?  

Fleischman (1980) discusses a technique for setting a confidence interval on the overall 
effect size in the Analysis of Variance. This technique allows one to set a confidence 
interval on the RMSSE, the root-mean-square standardized effect. Standardized effects 
are reported in standard deviation units, and are hence remain constant when the unit of 
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measurement changes. So, for example, an experimental effect reported in pounds would 
be different from the same effect reported in kilograms, whereas the standardized effect 
would be the same in each case. In the case of the data mentioned above, the F statistic 
that is significant at the .05 level yields a 90% confidence interval for the RMSSE that 
ranges from .0190 to .3139. The lower limit of this interval stands for a truly mediocre 
effect, less than 1/50th of a standard deviation. The upper limit of the interval represents 
effects on the order of 1/3 of a standard deviation, moderate but not overwhelming. It 
seems, then, that the results from this study need not imply really strong experimental 
effects, even though the effects are statistically "significant."  

Multiple Regression. The squared multiple correlation is reported frequently as an index 
of the overall strength of a prediction equation. After fitting a regression equation, the 
most natural questions to ask are, (a) "How effective is the regression equation at 
predicting the criterion?" and (b) "How precisely has this effectiveness been 
determined?"  

Hence, one very common statistical application that practically cries out for a confidence 
interval is multiple regression analysis. Publishing an observed squared multiple R 
together with the result of a hypothesis test that the population squared multiple 
correlation is zero, conveys little of the available statistical information. A confidence 
interval on the populations squared multiple correlation is much more informative.  

One software package computes exact confidence intervals for the population squared 
multiple correlation, following the approach of Steiger and Fouladi (1992). As an 
example, suppose a criterion is predicted from 45 independent observations on 5 
variables and the observed squared multiple correlation is .40. In this case a 95% 
confidence interval for the population squared multiple correlation ranges from .095 to 
.562! A 95% lower confidence limit is at .129. On the other hand the sample multiple 
correlation value is significant "beyond the .001 level," because the p level is .0009, and 
the shrunken estimator is .327. Clearly, it is far more impressive to state that "the squared 
multiple R value is significant at the .001 level" than it is to state that "we are 95% 
confident that the population squared multiple correlation is between .095 and .562." But 
we believe the latter statement conveys the quality and meaning of the statistical result 
more accurately than the former.  

Some writers, like Lee (1972), prefer a lower confidence limit, or "statistical lower 
bound" on the squared multiple correlation to a confidence interval. The rationale, 
apparently, is that one is primarily interested in assuring that the percentage of variance 
"accounted for" in the regression equation exceeds some value. Although we understand 
the motivation behind this view, we hesitate to accept it. The confidence interval, in fact, 
contains a lower bound, but also includes an upper bound, and, in the interval width, a 
measure of precision of estimation. It seems to us that adoption of a lower confidence 
limit can lead to a false sense of security, and reduces that amount of information 
available in the model assessment process.  
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Sampling plans are discussed in detail in Duncan (1974) and Montgomery (1985); most 
process capability procedures (and indices) were only recently introduced to the US from 
Japan (Kane, 1986), however, they are discussed in three excellent recent hands-on books 
by Bohte (1988), Hart and Hart (1989), and Pyzdek (1989); detailed discussions of these 
methods can also be found in Montgomery (1991).  

Step-by-step instructions for the computation and interpretation of capability indices are 
also provided in the Fundamental Statistical Process Control Reference Manual 
published by the ASQC (American Society for Quality Control) and AIAG (Automotive 
Industry Action Group, 1991; referenced as ASQC/AIAG, 1991). Repeatability and 
reproducibility (R & R) methods are discussed in Grant and Leavenworth (1980), Pyzdek 
(1989) and Montgomery (1991); a more detailed discussion of the subject (of variance 
estimation) is also provided in Duncan (1974).  

Step-by-step instructions on how to conduct and analyze R & R experiments are 
presented in the Measurement Systems Analysis Reference Manual published by 
ASQC/AIAG (1990). In the following topics, we will briefly introduce the purpose and 
logic of each of these procedures. For more information on analyzing designs with 
random effects and for estimating components of variance, see the Variance Components 
chapter.  

 
Sampling Plans  

• General Purpose  
• Computational Approach  
• Means for H0 and H1  
• Alpha and Beta Error Probabilities  
• Fixed Sampling Plans  
• Sequential Sampling Plans  
• Summary  

General Purpose  

A common question that quality control engineers face is to determine how many items 
from a batch (e.g., shipment from a supplier) to inspect in order to ensure that the items 
(products) in that batch are of acceptable quality. For example, suppose we have a 
supplier of piston rings for small automotive engines that our company produces, and our 
goal is to establish a sampling procedure (of piston rings from the delivered batches) that 
ensures a specified quality. In principle, this problem is similar to that of on-line quality 
control discussed in Quality Control. In fact, you may want to read that section at this 
point to familiarize yourself with the issues involved in industrial statistical quality 
control.  

Acceptance sampling. The procedures described here are useful whenever we need to 
decide whether or not a batch or lot of items complies with specifications, without having 
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to inspect 100% of the items in the batch. Because of the nature of the problem -- whether 
or not to accept a batch -- these methods are also sometimes discussed under the heading 
of acceptance sampling.  

Advantages over 100% inspection. An obvious advantage of acceptance sampling over 
100% inspection of the batch or lot is that reviewing only a sample requires less time, 
effort, and money. In some cases, inspection of an item is destructive (e.g., stress testing 
of steel), and testing 100% would destroy the entire batch. Finally, from a managerial 
standpoint, rejecting an entire batch or shipment (based on acceptance sampling) from a 
supplier, rather than just a certain percent of defective items (based on 100% inspection) 
often provides a stronger incentive to the supplier to adhere to quality standards.  

Computational Approach  

In principle, the computational approach to the question of how large a sample to take is 
straightforward. Elementary Concepts discusses the concept of the sampling distribution. 
Briefly, if we were to take repeated samples of a particular size from a population of, for 
example, piston rings and compute their average diameters, then the distribution of those 
averages (means) would approach the normal distribution with a particular mean and 
standard deviation (or standard error; in sampling distributions the term standard error is 
preferred, in order to distinguish the variability of the means from the variability of the 
items in the population). Fortunately, we do not need to take repeated samples from the 
population in order to estimate the location (mean) and variability (standard error) of the 
sampling distribution. If we have a good idea (estimate) of what the variability (standard 
deviation or sigma) is in the population, then we can infer the sampling distribution of the 
mean. In principle, this information is sufficient to estimate the sample size that is needed 
in order to detect a certain change in quality (from target specifications). Without going 
into the details about the computational procedures involved, let us next review the 
particular information that the engineer must supply in order to estimate required sample 
sizes.  

Means for H0 and H1  

To formalize the inspection process of, for example, a shipment of piston rings, we can 
formulate two alternative hypotheses: First, we may hypothesize that the average piston 
ring diameters comply with specifications. This hypothesis is called the null hypothesis 
(H0). The second and alternative hypothesis (H1) is that the diameters of the piston rings 
delivered to us deviate from specifications by more than a certain amount. Note that we 
may specify these types of hypotheses not just for measurable variables such as diameters 
of piston rings, but also for attributes. For example, we may hypothesize (H1) that the 
number of defective parts in the batch exceeds a certain percentage. Intuitively, it should 
be clear that the larger the difference between H0 and H1, the smaller the sample 
necessary to detect this difference (see Elementary Concepts).  

Alpha and Beta Error Probabilities  
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To return to the piston rings example, there are two types of mistakes that we can make 
when inspecting a batch of piston rings that has just arrived at our plant. First, we may 
erroneously reject H0, that is, reject the batch because we erroneously conclude that the 
piston ring diameters deviate from target specifications. The probability of committing 
this mistake is usually called the alpha error probability. The second mistake that we can 
make is to erroneously not reject H0 (accept the shipment of piston rings), when, in fact, 
the mean piston ring diameter deviates from the target specification by a certain amount. 
The probability of committing this mistake is usually called the beta error probability. 
Intuitively, the more certain we want to be, that is, the lower we set the alpha and beta 
error probabilities, the larger the sample will have to be; in fact, in order to be 100% 
certain, we would have to measure every single piston ring delivered to our company.  

Fixed Sampling Plans  

To construct a simple sampling plan, we would first decide on a sample size, based on the 
means under H0/H1 and the particular alpha and beta error probabilities. Then, we would 
take a single sample of this fixed size and, based on the mean in this sample, decide 
whether to accept or reject the batch. This procedure is referred to as a fixed sampling 
plan.  

Operating characteristic (OC) curve. The power of the fixed sampling plan can be 
summarized via the operating characteristic curve. In that plot, the probability of rejecting 
H0 (and accepting H1) is plotted on the Y axis, as a function of an actual shift from the 
target (nominal) specification to the respective values shown on the X axis of the plot (see 
example below). This probability is, of course, one minus the beta error probability of 
erroneously rejecting H1 and accepting H0; this value is referred to as the power of the 
fixed sampling plan to detect deviations. Also indicated in this plot are the power 
functions for smaller sample sizes.  

 

Sequential Sampling Plans  

As an alternative to the fixed sampling plan, we could randomly choose individual piston 
rings and record their deviations from specification. As we continue to measure each 
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piston ring, we could keep a running total of the sum of deviations from specification. 
Intuitively, if H1 is true, that is, if the average piston ring diameter in the batch is not on 
target, then we would expect to observe a slowly increasing or decreasing cumulative 
sum of deviations, depending on whether the average diameter in the batch is larger or 
smaller than the specification, respectively. It turns out that this kind of sequential 
sampling of individual items from the batch is a more sensitive procedure than taking a 
fixed sample. In practice, we continue sampling until we either accept or reject the batch.  

Using a sequential sampling plan. Typically, we would produce a graph in which the 
cumulative deviations from specification (plotted on the Y-axis) are shown for 
successively sampled items (e.g., piston rings, plotted on the X-axis). Then two sets of 
lines are drawn in this graph to denote the "corridor" along which we will continue to 
draw samples, that is, as long as the cumulative sum of deviations from specifications 
stays within this corridor, we continue sampling.  

 

If the cumulative sum of deviations steps outside the corridor we stop sampling. If the 
cumulative sum moves above the upper line or below the lowest line, we reject the batch. 
If the cumulative sum steps out of the corridor to the inside, that is, if it moves closer to 
the center line, we accept the batch (since this indicates zero deviation from 
specification). Note that the inside area starts only at a certain sample number; this 
indicates the minimum number of samples necessary to accept the batch (with the current 
error probability).  

Summary  

To summarize, the idea of (acceptance) sampling is to use statistical "inference" to accept 
or reject an entire batch of items, based on the inspection of only relatively few items 
from that batch. The advantage of applying statistical reasoning to this decision is that we 
can be explicit about the probabilities of making a wrong decision.  

Whenever possible, sequential sampling plans are preferable to fixed sampling plans 
because they are more powerful. In most cases, relative to the fixed sampling plan, using 
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sequential plans requires fewer items to be inspected in order to arrive at a decision with 
the same degree of certainty.  

 

 

 
Process (Machine) Capability Analysis  

• Introductory Overview  
• Computational Approach  
• Process Capability Indices  
• Process Performance vs. Process Capability  
• Using Experiments to Improve Process Capability  
• Testing the Normality Assumption  
• Tolerance Limits  

Introductory Overview  

See also, Non-Normal Distributions.  

Quality Control describes numerous methods for monitoring the quality of a production 
process. However, once a process is under control the question arises, "to what extent 
does the long-term performance of the process comply with engineering requirements or 
managerial goals?" For example, to return to our piston ring example, how many of the 
piston rings that we are using fall within the design specification limits? In more general 
terms, the question is, "how capable is our process (or supplier) in terms of producing 
items within the specification limits?" Most of the procedures and indices described here 
were only recently introduced to the US by Ford Motor Company (Kane, 1986). They 
allow us to summarize the process capability in terms of meaningful percentages and 
indices.  

In this topic, the computation and interpretation of process capability indices will first be 
discussed for the normal distribution case. If the distribution of the quality characteristic 
of interest does not follow the normal distribution, modified capability indices can be 
computed based on the percentiles of a fitted non-normal distribution.  

Order of business. Note that it makes little sense to examine the process capability if the 
process is not in control. If the means of successively taken samples fluctuate widely, or 
are clearly off the target specification, then those quality problems should be addressed 
first. Therefore, the first step towards a high-quality process is to bring the process under 
control, using the charting techniques available in Quality Control.  

Computational Approach  
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Once a process is in control, we can ask the question concerning the process capability. 
Again, the approach to answering this question is based on "statistical" reasoning, and is 
actually quite similar to that presented earlier in the context of sampling plans. To return 
to the piston ring example, given a sample of a particular size, we can estimate the 
standard deviation of the process, that is, the resultant ring diameters. We can then draw a 
histogram of the distribution of the piston ring diameters. As we discussed earlier, if the 
distribution of the diameters is normal, then we can make inferences concerning the 
proportion of piston rings within specification limits.  

 

(For non-normal distributions, see Percentile Method. Let us now review some of the 
major indices that are commonly used to describe process capability.  

Capability Analysis - Process Capability Indices  

Process range. First, it is customary to establish the ± 3 sigma limits around the nominal 
specifications. Actually, the sigma limits should be the same as the ones used to bring the 
process under control using Shewhart control charts (see Quality Control). These limits 
denote the range of the process (i.e., process range). If we use the ± 3 sigma limits then, 
based on the normal distribution, we can estimate that approximately 99% of all piston 
rings fall within these limits.  

Specification limits LSL, USL. Usually, engineering requirements dictate a range of 
acceptable values. In our example, it may have been determined that acceptable values 
for the piston ring diameters would be 74.0 ± .02 millimeters. Thus, the lower 
specification limit (LSL) for our process is 74.0 - 0.02 = 73.98; the upper specification 
limit (USL) is 74.0 + 0.02 = 74.02. The difference between USL and LSL is called the 
specification range.  

Potential capability (Cp). This is the simplest and most straightforward indicator of 
process capability. It is defined as the ratio of the specification range to the process range; 
using ± 3 sigma limits we can express this index as:  

Cp = (USL-LSL)/(6*Sigma)  
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Put into words, this ratio expresses the proportion of the range of the normal curve that 
falls within the engineering specification limits (provided that the mean is on target, that 
is, that the process is centered, see below).  

Bhote (1988) reports that prior to the widespread use of statistical quality control 
techniques (prior to 1980), the normal quality of US manufacturing processes was 
approximately Cp = .67. This means that the two 33/2 percent tail areas of the normal 
curve fall outside specification limits. As of 1988, only about 30% of US processes are at 
or below this level of quality (see Bhote, 1988, p. 51). Ideally, of course, we would like 
this index to be greater than 1, that is, we would like to achieve a process capability so 
that no (or almost no) items fall outside specification limits. Interestingly, in the early 
1980's the Japanese manufacturing industry adopted as their standard Cp = 1.33! The 
process capability required to manufacture high-tech products is usually even higher than 
this; Minolta has established a Cp index of 2.0 as their minimum standard (Bhote, 1988, 
p. 53), and as the standard for its suppliers. Note that high process capability usually 
implies lower, not higher costs, taking into account the costs due to poor quality. We will 
return to this point shortly.  

Capability ratio (C r). This index is equivalent to Cp; specifically, it is computed as 1/Cp 
(the inverse of Cp).  

Lower/upper potential capability: Cpl, Cpu. A major shortcoming of the Cp (and Cr) 
index is that it may yield erroneous information if the process is not on target, that is, if it 
is not centered. We can express non-centering via the following quantities. First, upper 
and lower potential capability indices can be computed to reflect the deviation of the 
observed process mean from the LSL and USL.. Assuming ± 3 sigma limits as the 
process range, we compute:  

Cpl = (Mean - LSL)/3*Sigma  
and  
Cpu = (USL - Mean)/3*Sigma  

Obviously, if these values are not identical to each other, then the process is not centered.  

Non-centering correction (K). We can correct Cp for the effects of non-centering. 
Specifically, we can compute:  

K=abs(D - Mean)/(1/2*(USL - LSL))  

where  

D = (USL+LSL)/2.  

This correction factor expresses the non-centering (target specification minus mean) 
relative to the specification range.  
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Demonstrated excellence (Cpk). Finally, we can adjust Cp for the effect of non-centering 
by computing:  

Cpk = (1-k)*Cp  

If the process is perfectly centered, then k is equal to zero, and Cpk is equal to Cp. 
However, as the process drifts from the target specification, k increases and Cpk becomes 
smaller than Cp.  

Potential Capability II: C pm. A recent modification (Chan, Cheng, & Spiring, 1988) to 
Cp is directed at adjusting the estimate of sigma for the effect of (random) non-centering. 
Specifically, we may compute the alternative sigma (Sigma2) as:  

Sigma2 = {  (xi - TS)2/(n-1)}½  

where:  
Sigma2 is the alternative estimate of sigma 
xi          is the value of the i 'th observation in the sample 
TS        is the target or nominal specification 
n           is the number of observations in the sample  

We may then use this alternative estimate of sigma to compute Cp as before; however, we 
will refer to the resultant index as Cpm.  

Process Performance vs. Process Capability  

When monitoring a process via a quality control chart (e.g., the X-bar and R-chart; 
Quality Control) it is often useful to compute the capability indices for the process. 
Specifically, when the data set consists of multiple samples, such as data collected for the 
quality control chart, then one can compute two different indices of variability in the data. 
One is the regular standard deviation for all observations, ignoring the fact that the data 
consist of multiple samples; the other is to estimate the process's inherent variation from 
the within-sample variability. For example, when plotting X-bar and R-charts one may 
use the common estimator R-bar/d2 for the process sigma (e.g., see Duncan, 1974; 
Montgomery, 1985, 1991). Note however, that this estimator is only valid if the process 
is statistically stable. For a detailed discussion of the difference between the total process 
variation and the inherent variation refer to ASQC/AIAG reference manual 
(ASQC/AIAG, 1991, page 80).  

When the total process variability is used in the standard capability computations, the 
resulting indices are usually referred to as process performance indices (as they describe 
the actual performance of the process), while indices computed from the inherent 
variation (within- sample sigma) are referred to as capability indices (since they describe 
the inherent capability of the process).  

Using Experiments to Improve Process Capability  
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As mentioned before, the higher the Cp index, the better the process -- and there is 
virtually no upper limit to this relationship. The issue of quality costs, that is, the losses 
due to poor quality, is discussed in detail in the context of Taguchi robust design methods 
(see Experimental Design). In general, higher quality usually results in lower costs 
overall; even though the costs of production may increase, the losses due to poor quality, 
for example, due to customer complaints, loss of market share, etc. are usually much 
greater. In practice, two or three well-designed experiments carried out over a few weeks 
can often achieve a Cp of 5 or higher. If you are not familiar with the use of designed 
experiments, but are concerned with the quality of a process, we strongly recommend that 
you review the methods detailed in Experimental Design.  

Testing the Normality Assumption  

The indices we have just reviewed are only meaningful if, in fact, the quality 
characteristic that is being measured is normally distributed. A specific test of the 
normality assumption (Kolmogorov-Smirnov and Chi-square test of goodness-of-fit) is 
available; these tests are described in most statistics textbooks, and they are also 
discussed in greater detail in Nonparametrics and Distribution Fitting.  

A visual check for normality is to examine the probability-probability and quantile- 
quantile plots for the normal distribution. For more information, see Process Analysis and 
Non-Normal Distributions.  

Tolerance Limits  

Before the introduction of process capability indices in the early 1980's, the common 
method for estimating the characteristics of a production process was to estimate and 
examine the tolerance limits of the process (see, for example, Hald, 1952). The logic of 
this procedure is as follows. Let us assume that the respective quality characteristic is 
normally distributed in the population of items produced; we can then estimate the lower 
and upper interval limits that will ensure with a certain level of confidence (probability) 
that a certain percent of the population is included in those limits. Put another way, 
given:  

1. a specific sample size (n),  
2. the process mean,  
3. the process standard deviation (sigma),  
4. a confidence level, and  
5. the percent of the population that we want to be included in the interval,  

we can compute the corresponding tolerance limits that will satisfy all these parameters. 
You can also compute parameter-free tolerance limits that are not based on the 
assumption of normality (Scheffe & Tukey, 1944, p. 217; Wilks, 1946, p. 93; see also 
Duncan, 1974, or Montgomery, 1985, 1991).  

See also, Non-Normal Distributions.  
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Gage Repeatability and Reproducibility  

• Introductory Overview  
• Computational Approach  
• Plots of Repeatability and Reproducibility  
• Components of Variance  
• Summary  

Introductory Overview  

Gage repeatability and reproducibility analysis addresses the issue of precision of 
measurement. The purpose of repeatability and reproducibility experiments is to 
determine the proportion of measurement variability that is due to (1) the items or parts 
being measured (part-to-part variation), (2) the operator or appraiser of the gages 
(reproducibility), and (3) errors (unreliabilities) in the measurements over several trials 
by the same operators of the same parts (repeatability). In the ideal case, all variability in 
measurements will be due to the part-to- part variation, and only a negligible proportion 
of the variability will be due to operator reproducibility and trial-to-trial repeatability.  

To return to the piston ring example , if we require detection of deviations from target 
specifications of the magnitude of .01 millimeters, then we obviously need to use gages 
of sufficient precision. The procedures described here allow the engineer to evaluate the 
precision of gages and different operators (users) of those gages, relative to the variability 
of the items in the population.  

You can compute the standard indices of repeatability, reproducibility, and part-to-part 
variation, based either on ranges (as is still common in these types of experiments) or 
from the analysis of variance (ANOVA) table (as, for example, recommended in 
ASQC/AIAG, 1990, page 65). The ANOVA table will also contain an F test (statistical 
significance test) for the operator-by-part interaction, and report the estimated variances, 
standard deviations, and confidence intervals for the components of the ANOVA model.  

Finally, you can compute the respective percentages of total variation, and report so-
called percent-of-tolerance statistics. These measures are briefly discussed in the 
following sections of this introduction. Additional information can be found in Duncan 
(1974), Montgomery (1991), or the DataMyte Handbook (1992); step-by-step 
instructions and examples are also presented in the ASQC/AIAG Measurement systems 
analysis reference manual (1990) and the ASQC/AIAG Fundamental statistical process 
control reference manual (1991).  
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Note that there are several other statistical procedures which may be used to analyze 
these types of designs; see the section on Methods for Analysis of Variance for details. In 
particular the methods discussed in the Variance Components and Mixed Model 
ANOVA/ANCOVA  chapter are very efficient for analyzing very large nested designs 
(e.g., with more than 200 levels overall), or hierarchically nested designs (with or without 
random factors).  

Computational Approach  

One may think of each measurement as consisting of the following components:  

1. a component due to the characteristics of the part or item being measured,  
2. a component due to the reliability of the gage, and  
3. a component due to the characteristics of the operator (user) of the gage.  

The method of measurement (measurement system) is reproducible if different users of 
the gage come up with identical or very similar measurements. A measurement method is 
repeatable if repeated measurements of the same part produces identical results. Both of 
these characteristics -- repeatability and reproducibility -- will affect the precision of the 
measurement system.  

We can design an experiment to estimate the magnitudes of each component, that is, the 
repeatability, reproducibility, and the variability between parts, and thus assess the 
precision of the measurement system. In essence, this procedure amounts to an analysis 
of variance (ANOVA) on an experimental design which includes as factors different parts, 
operators, and repeated measurements (trials). We can then estimate the corresponding 
variance components (the term was first used by Daniels, 1939) to assess the 
repeatability (variance due to differences across trials), reproducibility (variance due to 
differences across operators), and variability between parts (variance due to differences 
across parts). If you are not familiar with the general idea of ANOVA, you may want to 
refer to ANOVA/MANOVA. In fact, the extensive features provided there can also be used 
to analyze repeatability and reproducibility studies.  

Plots of Repeatability and Reproducibility  

There are several ways to summarize via graphs the findings from a repeatability and 
reproducibility experiment. For example, suppose we are manufacturing small kilns that 
are used for drying materials for other industrial production processes. The kilns should 
operate at a target temperature of around 100 degrees Celsius. In this study, 5 different 
engineers (operators) measured the same sample of 8 kilns (parts), three times each (three 
trials). We can plot the mean ratings of the 8 parts by operator. If the measurement 
system is reproducible, then the pattern of means across parts should be quite consistent 
across the 5 engineers who participated in the study.  

R and S charts. Quality Control discusses in detail the idea of R (range) and S (sigma) 
plots for controlling process variability. We can apply those ideas here and produce a plot 
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of ranges (or sigmas) by operators or by parts; these plots will allow us to identify 
outliers among operators or parts. If one operator produced particularly wide ranges of 
measurements, we may want to find out why that particular person had problems 
producing reliable measurements (e.g., perhaps he or she failed to understand the 
instructions for using the measurement gage).  

 

Analogously, producing an R chart by parts may allow us to identify parts that are 
particularly difficult to measure reliably; again, inspecting that particular part may give 
us some insights into the weaknesses in our measurement system.  

 

Repeatability and reproducibility summary plot. The summary plot shows the 
individual measurements by each operator; specifically, the measurements are shown in 
terms of deviations from the respective average rating for the respective part. Each trial is 
represented by a point, and the different measurement trials for each operator for each 
part are connected by a vertical line. Boxes drawn around the measurements give us a 
general idea of a particular operator's bias (see graph below).  
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Components of Variance (see also the Variance Components chapter)  

Percent of Process Variation and Tolerance. The Percent Tolerance allows you to 
evaluate the performance of the measurement system with regard to the overall process 
variation, and the respective tolerance range. You can specify the tolerance range (Total 
tolerance for parts) and the Number of sigma intervals. The latter value is used in the 
computations to define the range (spread) of the respective (repeatability, reproducibility, 
part-to- part, etc.) variability. Specifically, the default value (5.15) defines 5.15 times the 
respective sigma estimate as the respective range of values; if the data are normally 
distributed, then this range defines 99% of the space under the normal curve, that is, the 
range that will include 99% of all values (or reproducibility/repeatability errors) due to 
the respective source of variation.  

Percent of process variation. This value reports the variability due to different sources 
relative to the total variability (range) in the measurements.  

Analysis of Variance. Rather than computing variance components estimates based on 
ranges, an accurate method for computing these estimates is based on the ANOVA mean 
squares (see Duncan, 1974, ASQC/AIAG, 1990 ).  

One may treat the three factors in the R & R experiment (Operator, Parts, Trials) as 
random factors in a three-way ANOVA model (see also General ANOVA/MANOVA). For 
details concerning the different models that are typically considered, refer to 
ASQC/AIAG (1990, pages 92-95), or to Duncan (1974, pages 716-734). Customarily, it 
is assumed that all interaction effects by the trial factor are non-significant. This 
assumption seems reasonable, since, for example, it is difficult to imagine how the 
measurement of some parts will be systematically different in successive trials, in 
particular when parts and trials are randomized.  

However, the Operator by Parts interaction may be important. For example, it is 
conceivable that certain less experienced operators will be more prone to particular 
biases, and hence will arrive at systematically different measurements for particular parts. 
If so, then one would expect a significant two-way interaction (again, refer to General 
ANOVA/MANOVA if you are not familiar with ANOVA terminology).  
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In the case when the two-way interaction is statistically significant, then one can 
separately estimate the variance components due to operator variability, and due to the 
operator by parts variability  

In the case of significant interactions, the combined repeatability and reproducibility 
variability is defined as the sum of three components: repeatability (gage error), operator 
variability, and the operator-by-part variability.  

If the Operator by Part interaction is not statistically significant a simpler additive model 
can be used without interactions.  

Summary  

To summarize, the purpose of the repeatability and reproducibility procedures is to allow 
the quality control engineer to assess the precision of the measurement system (gages) 
used in the quality control process. Obviously, if the measurement system is not 
repeatable (large variability across trials) or reproducible (large variability across 
operators) relative to the variability between parts, then the measurement system is not 
sufficiently precise to be used in the quality control efforts. For example, it should not be 
used in charts produced via Quality Control, or product capability analyses and 
acceptance sampling procedures via Process Analysis.  

 

 

 
Non-Normal Distributions  

• Introductory Overview  
• Fitting Distributions by Moments  
• Assessing the Fit: Quantile and Probability Plots  
• Non-Normal Process Capability Indices (Percentile Method)  

Introductory Overview  

General Purpose. The concept of process capability is described in detail in the Process 
Capability Overview. To reiterate, when judging the quality of a (e.g., production) 
process it is useful to estimate the proportion of items produced that fall outside a 
predefined acceptable specification range. For example, the so-called Cp index is 
computed as:  

Cp - (USL-LSL)/(6*sigma)  

where sigma is the estimated process standard deviation, and USL and LSL are the upper 
and lower specification limits, respectively. If the distribution of the respective quality 
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characteristic or variable (e.g., size of piston rings) is normal, and the process is perfectly 
centered (i.e., the mean is equal to the design center), then this index can be interpreted as 
the proportion of the range of the standard normal curve (the process width) that falls 
within the engineering specification limits. If the process is not centered, an adjusted 
index Cpk is used instead.  

Non-Normal Distributions. You can fit non-normal distributions to the observed 
histogram, and compute capability indices based on the respective fitted non-normal 
distribution (via the percentile method). In addition, instead of computing capability 
indices by fitting specific distributions, you can compute capability indices based on two 
different general families of distributions -- the Johnson distributions (Johnson, 1965; see 
also Hahn and Shapiro, 1967) and Pearson distributions (Johnson, Nixon, Amos, and 
Pearson, 1963; Gruska, Mirkhani, and Lamberson, 1989; Pearson and Hartley, 1972) -- 
which allow the user to approximate a wide variety of continuous distributions. For all 
distributions, the user can also compute the table of expected frequencies, the expected 
number of observations beyond specifications, and quantile-quantile and probability-
probability plots. The specific method for computing process capability indices from 
these distributions is described in Clements (1989).  

Quantile-quantile plots and probability-probability  plots. There are various methods 
for assessing the quality of respective fit to the observed data. In addition to the table of 
observed and expected frequencies for different intervals, and the Kolmogorov-Smirnov 
and Chi-square goodness-of-fit tests, you can compute quantile and probability plots for 
all distributions. These scatterplots are constructed so that if the observed values follow 
the respective distribution, then the points will form a straight line in the plot. These plots 
are described further below.  

Fitting Distributions by Moments  

In addition to the specific continuous distributions described above, you can fit general 
"families" of distributions -- the so-called Johnson and Pearson curves -- with the goal to 
match the first four moments of the observed distribution.  

General approach. The shapes of most continuous distributions can be sufficiently 
summarized in the first four moments. Put another way, if one fits to a histogram of 
observed data a distribution that has the same mean (first moment), variance (second 
moment), skewness (third moment) and kurtosis (fourth moment) as the observed data, 
then one can usually approximate the overall shape of the distribution very well. Once a 
distribution has been fitted, one can then calculate the expected percentile values under 
the (standardized) fitted curve, and estimate the proportion of items produced by the 
process that fall within the specification limits.  

Johnson curves. Johnson (1949) described a system of frequency curves that represents 
transformations of the standard normal curve (see Hahn and Shapiro, 1967, for details). 
By applying these transformations to a standard normal variable, a wide variety of non- 
normal distributions can be approximated, including distributions which are bounded on 
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either one or both sides (e.g., U-shaped distributions). The advantage of this approach is 
that once a particular Johnson curve has been fit, the normal integral can be used to 
compute the expected percentage points under the respective curve. Methods for fitting 
Johnson curves, so as to approximate the first four moments of an empirical distribution, 
are described in detail in Hahn and Shapiro, 1967, pages 199-220; and Hill, Hill, and 
Holder, 1976.  

Pearson curves. Another system of distributions was proposed by Karl Pearson (e.g., see 
Hahn and Shapiro, 1967, pages 220-224). The system consists of seven solutions (of 12 
originally enumerated by Pearson) to a differential equation which also approximate a 
wide range of distributions of different shapes. Gruska, Mirkhani, and Lamberson (1989) 
describe in detail how the different Pearson curves can be fit to an empirical distribution. 
A method for computing specific Pearson percentiles is also described in Davis and 
Stephens (1983).  

Assessing the Fit: Quantile and Probability Plots  

For each distribution, you can compute the table of expected and observed frequencies 
and the respective Chi-square goodness-of-fit test, as well as the Kolmogorov-Smirnov d 
test. However, the best way to assess the quality of the fit of a theoretical distribution to 
an observed distribution is to review the plot of the observed distribution against the 
theoretical fitted distribution. There are two standard types of plots used for this purpose: 
Quantile- quantile plots and probability-probability plots.  

Quantile-quantile plots. In quantile-quantile plots (or Q-Q plots for short), the observed 
values of a variable are plotted against the theoretical quantiles. To produce a Q-Q plot, 
you first sort the n observed data points into ascending order, so that:  

x1 x2 ... xn  

These observed values are plotted against one axis of the graph; on the other axis the plot 
will show:  

F-1 ((i-radj)/(n+nadj))  

where i is the rank of the respective observation, radj and nadj are adjustment factors ( 
0.5) and F-1 denotes the inverse of the probability integral for the respective standardized 
distribution. The resulting plot (see example below) is a scatterplot of the observed values 
against the (standardized) expected values, given the respective distribution. Note that, in 
addition to the inverse probability integral value, you can also show the respective 
cumulative probability values on the opposite axis, that is, the plot will show not only the 
standardized values for the theoretical distribution, but also the respective p-values.  
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A good fit of the theoretical distribution to the observed values would be indicated by this 
plot if the plotted values fall onto a straight line. Note that the adjustment factors radj and 
nadj ensure that the p-value for the inverse probability integral will fall between 0 and 1, 
but not including 0 and 1 (see Chambers, Cleveland, Kleiner, and Tukey, 1983).  

Probability-probability plots. In probability-probability plots (or P-P plots for short) the 
observed cumulative distribution function is plotted against the theoretical cumulative 
distribution function. As in the Q-Q plot, the values of the respective variable are first 
sorted into ascending order. The i 'th observation is plotted against one axis as i/n (i.e., the 
observed cumulative distribution function), and against the other axis as F(x(i)), where 
F(x(i)) stands for the value of the theoretical cumulative distribution function for the 
respective observation x(i). If the theoretical cumulative distribution approximates the 
observed distribution well, then all points in this plot should fall onto the diagonal line (as 
in the graph below).  

 

Non-Normal Process Capability Indices (Percentile Method)  

As described earlier, process capability indices are generally computed to evaluate the 
quality of a process, that is, to estimate the relative range of the items manufactured by 
the process (process width) with regard to the engineering specifications. For the 
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standard, normal- distribution-based, process capability indices, the process width is 
typically defined as 6 times sigma, that is, as plus/minus 3 times the estimated process 
standard deviation. For the standard normal curve, these limits (zl = -3 and zu = +3) 
translate into the 0.135 percentile and 99.865 percentile, respectively. In the non-normal 
case, the 3 times sigma limits as well as the mean (zM = 0.0) can be replaced by the 
corresponding standard values, given the same percentiles, under the non- normal curve. 
This procedure is described in detail by Clements (1989).  

Process capability indices. Shown below are the formulas for the non-normal process 
capability indices:  

Cp = (USL-LSL)/(Up-Lp)  

CpL = (M-LSL)/(M-Lp)  

CpU = (USL-M)/(Up-M)  

Cpk = Min(CpU, CpL)  

In these equations, M represents the 50'th percentile value for the respective fitted 
distribution, and Up and Lp are the 99.865 and .135 percentile values, respectively, if the 
computations are based on a process width of ±3 times sigma. Note that the values for Up 
and Lp may be different, if the process width is defined by different sigma limits (e.g., ±2 
times sigma).  

 

Weibull and Reliability/Failure Time Analysis  

• General Purpose  
• The Weibull Distribution  
• Censored Observations  
• Two- and three-parameter Weibull Distribution  
• Parameter Estimation  
• Goodness of Fit Indices  
• Interpreting Results  
• Grouped Data  
• Modified Failure Order for Multiple-Censored Data  
• Weibull CDF, reliability, and hazard functions  

A key aspect of product quality is product reliability. A number of specialized techniques 
have been developed to quantify reliability and to estimate the "life expectancy" of a 
product. Standard references and textbooks describing these techniques include Lawless 
(1982), Nelson (1990), Lee (1980, 1992), and Dodson (1994); the relevant functions of 
the Weibull distribution (hazard, CDF, reliability) are also described in the Weibull CDF, 
reliability, and hazard functions section. Note that very similar statistical procedures are 
used in the analysis of survival data (see also the description of Survival Analysis), and, 
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for example, the descriptions in Lee's book (Lee, 1992) are primarily addressed to 
biomedical research applications. An excellent overview with many examples of 
engineering applications is provided by Dodson (1994).  

General Purpose  

The reliability of a product or component constitutes an important aspect of product 
quality. Of particular interest is the quantification of a product's reliability, so that one 
can derive estimates of the product's expected useful life. For example, suppose you are 
flying a small single engine aircraft. It would be very useful (in fact vital) information to 
know what the probability of engine failure is at different stages of the engine's "life" 
(e.g., after 500 hours of operation, 1000 hours of operation, etc.). Given a good estimate 
of the engine's reliability, and the confidence limits of this estimate, one can then make a 
rational decision about when to swap or overhaul the engine.  

The Weibull Distribution  

A useful general distribution for describing failure time data is the Weibull distribution 
(see also Weibull CDF, reliability, and hazard functions). The distribution is named after 
the Swedish professor Waloddi Weibull, who demonstrated the appropriateness of this 
distribution for modeling a wide variety of different data sets (see also Hahn and Shapiro, 
1967; for example, the Weibull distribution has been used to model the life times of 
electronic components, relays, ball bearings, or even some businesses).  

Hazard function and the bathtub curve. It is often meaningful to consider the function 
that describes the probability of failure during a very small time increment (assuming that 
no failures have occurred prior to that time). This function is called the hazard function 
(or, sometimes, also the conditional failure, intensity, or force of mortality function), and 
is generally defined as:  

h(t) = f(t)/(1-F(t))  

where h(t) stands for the hazard function (of time t), and f(t) and F(t) are the probability 
density and cumulative distribution functions, respectively. The hazard (conditional 
failure) function for most machines (components, devices) can best be described in terms 
of the "bathtub" curve: Very early during the life of a machine, the rate of failure is 
relatively high (so-called Infant Mortality Failures); after all components settle, and the 
electronic parts are burned in, the failure rate is relatively constant and low. Then, after 
some time of operation, the failure rate again begins to increase (so-called Wear-out 
Failures), until all components or devices will have failed.  

For example, new automobiles often suffer several small failures right after they were 
purchased. Once these have been "ironed out," a (hopefully) long relatively trouble-free 
period of operation will follow. Then, as the car reaches a particular age, it becomes more 
prone to breakdowns, until finally, after 20 years and 250000 miles, practically all cars 
will have failed. A typical bathtub hazard function is shown below.  
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The Weibull distribution is flexible enough for modeling the key stages of this typical 
bathtub-shaped hazard function. Shown below are the hazard functions for shape 
parameters c=.5, c=1, c=2, and c=5.  

 

Clearly, the early ("infant mortality") "phase" of the bathtub can be approximated by a 
Weibull hazard function with shape parameter c<1; the constant hazard phase of the 
bathtub can be modeled with a shape parameter c=1, and the final ("wear-out") stage of 
the bathtub with c>1.  

Cumulative distribution and reliability functions.  Once a Weibull distribution (with a 
particular set of parameters) has been fit to the data, a number of additional important 
indices and measures can be estimated. For example, you can compute the cumulative 
distribution function (commonly denoted as F(t)) for the fitted distribution, along with 
the standard errors for this function. Thus, you can determine the percentiles of the 
cumulative survival (and failure) distribution, and, for example, predict the time at which 
a predetermined percentage of components can be expected to have failed.  

The reliability function (commonly denoted as R(t)) is the complement to the cumulative 
distribution function (i.e., R(t)=1-F(t)); the reliability function is also sometimes referred 
to as the survivorship or survival function (since it describes the probability of not failing 
or of surviving until a certain time t; e.g., see Lee, 1992). Shown below is the reliability 
function for the Weibull distribution, for different shape parameters.  
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For shape parameters less than 1, the reliability decreases sharply very early in the 
respective product's life, and then slowly thereafter. For shape parameters greater than 1, 
the initial drop in reliability is small, and then the reliability drops relatively sharply at 
some point later in time. The point where all curves intersect is called the characteristic 
life: regardless of the shape parameter, 63.2 percent of the population will have failed at 
or before this point (i.e., R(t) = 1-0.632 = .368). This point in time is also equal to the 
respective scale parameter b of the two-parameter Weibull distribution (with = 0; 
otherwise it is equal to b+).  

The formulas for the Weibull cumulative distribution, reliability, and hazard functions are 
shown in the Weibull CDF, reliability, and hazard functions section.  

Censored Observations  

In most studies of product reliability, not all items in the study will fail. In other words, 
by the end of the study the researcher only knows that a certain number of items have not 
failed for a particular amount of time, but has no knowledge of the exact failure times 
(i.e., "when the items would have failed"). Those types of data are called censored 
observations. The issue of censoring, and several methods for analyzing censored data 
sets, are also described in great detail in the context of Survival Analysis. Censoring can 
occur in many different ways.  

Type I and II censoring. So-called Type I censoring describes the situation when a test 
is terminated at a particular point in time, so that the remaining items are only known not 
to have failed up to that time (e.g., we start with 100 light bulbs, and terminate the 
experiment after a certain amount of time). In this case, the censoring time is often fixed, 
and the number of items failing is a random variable. In Type II censoring the experiment 
would be continued until a fixed proportion of items have failed (e.g., we stop the 
experiment after exactly 50 light bulbs have failed). In this case, the number of items 
failing is fixed, and time is the random variable.  

Left and right censoring. An additional distinction can be made to reflect the "side" of 
the time dimension at which censoring occurs. In the examples described above, the 
censoring always occurred on the right side (right censoring), because the researcher 
knows when exactly the experiment started, and the censoring always occurs on the right 
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side of the time continuum. Alternatively, it is conceivable that the censoring occurs on 
the left side (left censoring). For example, in biomedical research one may know that a 
patient entered the hospital at a particular date, and that s/he survived for a certain 
amount of time thereafter; however, the researcher does not know when exactly the 
symptoms of the disease first occurred or were diagnosed.  

Single and multiple censoring. Finally, there are situations in which censoring can occur 
at different times (multiple censoring), or only at a particular point in time (single 
censoring). To return to the light bulb example, if the experiment is terminated at a 
particular point in time, then a single point of censoring exists, and the data set is said to 
be single-censored. However, in biomedical research multiple censoring often exists, for 
example, when patients are discharged from a hospital after different amounts (times) of 
treatment, and the researcher knows that the patient survived up to those (differential) 
points of censoring.  

The methods described in this section are applicable primarily to right censoring, and 
single- as well as multiple-censored data.  

Two- and three-parameter Weibull distribution  

The Weibull distribution is bounded on the left side. If you look at the probability density 
function, you can see that that the term x- must be greater than 0. In most cases, the 
location parameter (theta) is known (usually 0): it identifies the smallest possible 
failure time. However, sometimes the probability of failure of an item is 0 (zero) for 
some time after a study begins, and in that case it may be necessary to estimate a location 
parameter that is greater than 0. There are several methods for estimating the location 
parameter of the three-parameter Weibull distribution. To identify situations when the 
location parameter is greater than 0, Dodson (1994) recommends to look for downward 
of upward sloping tails on a probability plot (see below), as well as large (>6) values for 
the shape parameter after fitting the two-parameter Weibull distribution, which may 
indicate a non-zero location parameter.  

Parameter Estimation  

Maximum likelihood estimation. Standard iterative function minimization methods can 
be used to compute maximum likelihood parameter estimates for the two- and three 
parameter Weibull distribution. The specific methods for estimating the parameters are 
described in Dodson (1994); a detailed description of a Newton-Raphson iterative 
method for estimating the maximum likelihood parameters for the two-parameter 
distribution is provided in Keats and Lawrence (1997).  

The estimation of the location parameter for the three-parameter Weibull distribution 
poses a number of special problems, which are detailed in Lawless (1982). Specifically, 
when the shape parameter is less than 1, then a maximum likelihood solution does not 
exist for the parameters. In other instances, the likelihood function may contain more 
than one maximum (i.e., multiple local maxima). In the latter case, Lawless basically 
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recommends using the smallest failure time (or a value that is a little bit less) as the 
estimate of the location parameter.  

Nonparametric (rank-based) probability plots. One can derive a descriptive estimate 
of the cumulative distribution function (regardless of distribution) by first rank-ordering 
the observations, and then computing any of the following expressions:  

Median rank:  

F(t) = (j-0.3)/(n+0.4)  

Mean rank:  

F(t) = j/(n+1)  

White's plotting position:  

F(t) = (j-3/8)/(n+1/4)  

where j denotes the failure order (rank; for multiple-censored data a weighted average 
ordered failure is computed; see Dodson, p. 21), and n is the total number of 
observations. One can then construct the following plot.  

 

Note that the horizontal Time axis is scaled logarithmically; on the vertical axis the 
quantity log(log(100/(100-F(t))) is plotted (a probability scale is shown on the left-y 
axis). From this plot the parameters of the two-parameter Weibull distribution can be 
estimated; specifically, the shape parameter is equal to the slope of the linear fit-line, and 
the scale parameter can be estimated as exp(-intercept/slope).  

Estimating the location parameter from probability plots. It is apparent in the plot 
shown above that the regression line provides a good fit to the data. When the location 
parameter is misspecified (e.g., not equal to zero), then the linear fit is worse as compared 
to the case when it is appropriately specified. Therefore, one can compute the probability 
plot for several values of the location parameter, and observe the quality of the fit. These 
computations are summarized in the following plot.  
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Here the common R-square measure (correlation squared) is used to express the quality 
of the linear fit in the probability plot, for different values of the location parameter 
shown on the horizontal x axis (this plot is based on the example data set in Dodson, 
1994, Table 2.9). This plot is often very useful when the maximum likelihood estimation 
procedure for the three-parameter Weibull distribution fails, because it shows whether or 
not a unique (single) optimum value for the location parameter exists (as in the plot 
shown above).  

Hazard plotting. Another method for estimating the parameters for the two-parameter 
Weibull distribution is via hazard plotting (as discussed earlier, the hazard function 
describes the probability of failure during a very small time increment, assuming that no 
failures have occurred prior to that time). This method is very similar to the probability 
plotting method. First plot the cumulative hazard function against the logarithm of the 
survival times; then fit a linear regression line and compute the slope and intercept of that 
line. As in probability plotting, the shape parameter can then be estimated as the slope of 
the regression line, and the scale parameter as exp(-intercept/slope). See Dodson (1994) 
for additional details; see also Weibull CDF, reliability, and hazard functions.  

Method of moments. This method -- to approximate the moments of the observed 
distribution by choosing the appropriate parameters for the Weibull distribution -- is also 
widely described in the literature. In fact, this general method is used for fitting the 
Johnson curves general non-normal distribution to the data, to compute non-normal 
process capability indices (see Fitting Distributions by Moments). However, the method 
is not suited for censored data sets, and is therefore not very useful for the analysis of 
failure time data.  

Comparing the estimation methods. Dodson (1994) reports the result of a Monte Carlo 
simulation study, comparing the different methods of estimation. In general, the 
maximum likelihood estimates proved to be best for large sample sizes (e.g., n>15), 
while probability plotting and hazard plotting appeared to produce better (more accurate) 
estimates for smaller samples.  

A note of caution regarding maximum likelihood based confidence limits. Many 
software programs will compute confidence intervals for maximum likelihood estimates, 
and for the reliability function based on the standard errors of the maximum likelihood 



 539 

estimates. Dodson (1994) cautions against the interpretation of confidence limits 
computed from maximum likelihood estimates, or more precisely, estimates that involve 
the information matrix for the estimated parameters. When the shape parameter is less 
than 2, the variance estimates computed for maximum likelihood estimates lack accuracy, 
and it is advisable to compute the various results graphs based on nonparametric 
confidence limits as well.  

Goodness of Fit Indices  

A number of different tests have been proposed for evaluating the quality of the fit of the 
Weibull distribution to the observed data. These tests are discussed and compared in 
detail in Lawless (1982).  

Hollander-Proschan. This test compares the theoretical reliability function to the 
Kaplan-Meier estimate. The actual computations for this test are somewhat complex, and 
you may refer to Dodson (1994, Chapter 4) for a detailed description of the 
computational formulas. The Hollander-Proschan test is applicable to complete, single-
censored, and multiple-censored data sets; however, Dodson (1994) cautions that the test 
may sometimes indicate a poor fit when the data are heavily single-censored. The 
Hollander-Proschan C statistic can be tested against the normal distribution (z).  

Mann-Scheuer-Fertig. This test, proposed by Mann, Scheuer, and Fertig (1973), is 
described in detail in, for example, Dodson (1994) or Lawless (1982). The null 
hypothesis for this test is that the population follows the Weibull distribution with the 
estimated parameters. Nelson (1982) reports this test to have reasonably good power, and 
this test can be applied to Type II censored data. For computational details refer to 
Dodson (1994) or Lawless (1982); the critical values for the test statistic have been 
computed based on Monte Carlo studies, and have been tabulated for n (sample sizes) 
between 3 and 25.  

Anderson-Darling. The Anderson-Darling procedure is a general test to compare the fit 
of an observed cumulative distribution function to an expected cumulative distribution 
function. However, this test is only applicable to complete data sets (without censored 
observations). The critical values for the Anderson-Darling statistic have been tabulated 
(see, for example, Dodson, 1994, Table 4.4) for sample sizes between 10 and 40; this test 
is not computed for n less than 10 and greater than 40.  

Interpreting Results  

Once a satisfactory fit of the Weibull distribution to the observed failure time data has 
been obtained, there are a number of different plots and tables that are of interest to 
understand the reliability of the item under investigation. If a good fit for the Weibull 
cannot be established, distribution-free reliability estimates (and graphs) should be 
reviewed to determine the shape of the reliability function.  
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Reliability plots. This plot will show the estimated reliability function along with the 
confidence limits.  

 

Note that nonparametric (distribution-free) estimates and their standard errors can also be 
computed and plotted.  

Hazard plots. As mentioned earlier, the hazard function describes the probability of 
failure during a very small time increment (assuming that no failures have occurred prior 
to that time). The plot of hazard as a function of time gives valuable information about 
the conditional failure probability.  

Percentiles of the reliability function. Based on the fitted Weibull distribution, one can 
compute the percentiles of the reliability (survival) function, along with the confidence 
limits for these estimates (for maximum likelihood parameter estimates). These estimates 
are particularly valuable for determining the percentages of items that can be expected to 
have failed at particular points in time.  

Grouped Data  

In some cases, failure time data are presented in grouped form. Specifically, instead of 
having available the precise failure time for each observation, only aggregate information 
is available about the number of items that failed or were censored in a particular time 
interval. Such life-table data input is also described in the context of the Survival Analysis 
chapter. There are two general approaches for fitting the Weibull distribution to grouped 
data.  

First, one can treat the tabulated data as if they were continuous. In other words, one can 
"expand" the tabulated values into continuous data by assuming (1) that each observation 
in a given time interval failed exactly at the interval mid-point (interpolating out "half a 
step" for the last interval), and (2) that censoring occurred after the failures in each 
interval (in other words, censored observations are sorted after the observed failures). 
Lawless (1982) advises that this method is usually satisfactory if the class intervals are 
relatively narrow.  
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Alternatively, you may treat the data explicitly as a tabulated life table, and use a 
weighted least squares methods algorithm (based on Gehan and Siddiqui, 1973; see also 
Lee, 1992) to fit the Weibull distribution (Lawless, 1982, also describes methods for 
computing maximum likelihood parameter estimates from grouped data).  

Modified Failure Order for Multiple-Censored Data  

For multiple-censored data a weighted average ordered failure is calculated for each 
failure after the first censored data point. These failure orders are then used to compute 
the median rank, to estimate the cumulative distribution function.  

The modified failure order j is computed as (see Dodson 1994):  

Ij = ((n+1)-Op)/(1+c)  

where:  

Ij      is the increment for the j'th failure 
n      is the total number of data points 
Op   is the failure order of the previous observation (and Oj = Op + Ij) 
c      is the number of data points remaining in the data set, including the current data 
point  

The median rank is then computed as:  

F(t) = (Ij -0.3)/(n+0.4)  

where I j denotes the modified failure order, and n is the total number of observations.  

Weibull CDF, Reliability, and Hazard  

Density function. The Weibull distribution (Weibull, 1939, 1951; see also Lieblein, 
1955) has density function (for positive parameters b, c, and ):  

f(x) = c/b*[(x- )/b]c-1 * e^{-[(x- )/b]c} 
< x,  b > 0,  c > 0  

where 
b     is the scale parameter of the distribution 
c     is the shape parameter of the distribution 

   is the location parameter of the distribution 
e     is the base of the natural logarithm, sometimes called Euler's e (2.71...)  

Cumulative distribution function (CDF). The Weibull distribution has the cumulative 
distribution function (for positive parameters b, c, and ):  
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F(x) = 1 - exp{-[(x- )/b]c}   

using the same notation and symbols as described above for the density function.  

Reliability function. The Weibull reliability function is the complement of the 
cumulative distribution function:  

R(x) = 1 - F(x)  

Hazard function. The hazard function describes the probability of failure during a very 
small time increment, assuming that no failures have occurred prior to that time. The 
Weibull distribution has the hazard function (for positive parameters b, c, and ):  

h(t) = f(t)/R(t) = [c*(x- )(c-1)] / bc  

using the same notation and symbols as described above for the density and reliability 
functions.  

Cumulative hazard function. The Weibull distribution has the cumulative hazard 
function (for positive parameters b, c, and ):  

H(t) = (x- ) / bc  

using the same notation and symbols as described above for the density and reliability 
functions.  
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Chapter 35 

Quality Control Charts  

 

• General Purpose  
• General Approach  
• Establishing Control Limits  
• Common Types of Charts  
• Short Run Control Charts  

o Short Run Charts for Variables  
o Short Run Charts for Attributes  

• Unequal Sample Sizes  
• Control Charts for Variables vs. Charts for Attributes  
• Control Charts for Individual Observations  
• Out-of-Control Process: Runs Tests  
• Operating Characteristic (OC) Curves  
• Process Capability Indices  
• Other Specialized Control Charts  

 
General Purpose  

In all production processes, we need to monitor the extent to which our products meet 
specifications. In the most general terms, there are two "enemies" of product quality: (1) 
deviations from target specifications, and (2) excessive variability around target 
specifications. During the earlier stages of developing the production process, designed 
experiments are often used to optimize these two quality characteristics (see 
Experimental Design); the methods provided in Quality Control are on-line or in-process 
quality control procedures to monitor an on-going production process. For detailed 
descriptions of these charts and extensive annotated examples, see Buffa (1972), Duncan 
(1974) Grant and Leavenworth (1980), Juran (1962), Juran and Gryna (1970), 
Montgomery (1985, 1991), Shirland (1993), or Vaughn (1974). Two recent excellent 
introductory texts with a "how-to" approach are Hart & Hart (1989) and Pyzdek (1989); 
two recent German language texts on this subject are Rinne and Mittag (1995) and Mittag 
(1993).  

 

 

General Approach  

The general approach to on-line quality control is straightforward: We simply extract 
samples of a certain size from the ongoing production process. We then produce line 
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charts of the variability in those samples, and consider their closeness to target 
specifications. If a trend emerges in those lines, or if samples fall outside pre-specified 
limits, then we declare the process to be out of control and take action to find the cause of 
the problem. These types of charts are sometimes also referred to as Shewhart control 
charts (named after W. A. Shewhart who is generally credited as being the first to 
introduce these methods; see Shewhart, 1931).  

Interpreting the chart.  The most standard display actually contains two charts (and two 
histograms); one is called an X-bar chart, the other is called an R chart.  

 

In both line charts, the horizontal axis represents the different samples; the vertical axis 
for the X-bar chart represents the means for the characteristic of interest; the vertical axis 
for the R chart represents the ranges. For example, suppose we wanted to control the 
diameter of piston rings that we are producing. The center line in the X-bar chart would 
represent the desired standard size (e.g., diameter in millimeters) of the rings, while the 
center line in the R chart would represent the acceptable (within-specification) range of 
the rings within samples; thus, this latter chart is a chart of the variability of the process 
(the larger the variability, the larger the range). In addition to the center line, a typical 
chart includes two additional horizontal lines to represent the upper and lower control 
limits (UCL, LCL, respectively); we will return to those lines shortly. Typically, the 
individual points in the chart, representing the samples, are connected by a line. If this 
line moves outside the upper or lower control limits or exhibits systematic patterns across 
consecutive samples (see Runs Tests), then a quality problem may potentially exist.  

 

 

Establishing Control Limits  

Even though one could arbitrarily determine when to declare a process out of control 
(that is, outside the UCL-LCL range), it is common practice to apply statistical principles 
to do so. Elementary Concepts discusses the concept of the sampling distribution, and the 
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characteristics of the normal distribution. The method for constructing the upper and 
lower control limits is a straightforward application of the principles described there.  

Example. Suppose we want to control the mean of a variable, such as the size of piston 
rings. Under the assumption that the mean (and variance) of the process does not change, 
the successive sample means will be distributed normally around the actual mean. 
Moreover, without going into details regarding the derivation of this formula, we also 
know (because of the central limit theorem, and thus approximate normal distribution of 
the means; see, for example, Hoyer and Ellis, 1996) that the distribution of sample means 
will have a standard deviation of Sigma (the standard deviation of individual data points 
or measurements) over the square root of n (the sample size). It follows that 

approximately 95% of the sample means will fall within the limits ± 1.96 * 
Sigma/Square Root(n) (refer to Elementary Concepts for a discussion of the 
characteristics of the normal distribution and the central limit theorem). In practice, it is 
common to replace the 1.96 with 3 (so that the interval will include approximately 99% 
of the sample means), and to define the upper and lower control limits as plus and minus 
3 sigma limits, respectively.  

General case. The general principle for establishing control limits just described applies 
to all control charts. After deciding on the characteristic we want to control, for example, 
the standard deviation, we estimate the expected variability of the respective 
characteristic in samples of the size we are about to take. Those estimates are then used to 
establish the control limits on the chart.  

 

 

Common Types of Charts  

The types of charts are often classified according to the type of quality characteristic that 
they are supposed to monitor: there are quality control charts for variables and control 
charts for attributes. Specifically, the following charts are commonly constructed for 
controlling variables:  

• X-bar chart. In this chart the sample means are plotted in order to control the 
mean value of a variable (e.g., size of piston rings, strength of materials, etc.).  

• R chart. In this chart, the sample ranges are plotted in order to control the 
variability of a variable.  

• S chart. In this chart, the sample standard deviations are plotted in order to 
control the variability of a variable.  

• S**2 chart. In this chart, the sample variances are plotted in order to control the 
variability of a variable.  

For controlling quality characteristics that represent attributes of the product, the 
following charts are commonly constructed:  
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• C chart. In this chart (see example below), we plot the number of defectives (per 
batch, per day, per machine, per 100 feet of pipe, etc.). This chart assumes that 
defects of the quality attribute are rare, and the control limits in this chart are 
computed based on the Poisson distribution (distribution of rare events).  

 

• U chart. In this chart we plot the rate of defectives, that is, the number of 
defectives divided by the number of units inspected (the n; e.g., feet of pipe, 
number of batches). Unlike the C chart, this chart does not require a constant 
number of units, and it can be used, for example, when the batches (samples) are 
of different sizes.  

• Np chart. In this chart, we plot the number of defectives (per batch, per day, per 
machine) as in the C chart. However, the control limits in this chart are not based 
on the distribution of rare events, but rather on the binomial distribution. 
Therefore, this chart should be used if the occurrence of defectives is not rare 
(e.g., they occur in more than 5% of the units inspected). For example, we may 
use this chart to control the number of units produced with minor flaws.  

• P chart. In this chart, we plot the percent of defectives (per batch, per day, per 
machine, etc.) as in the U chart. However, the control limits in this chart are not 
based on the distribution of rare events but rather on the binomial distribution (of 
proportions). Therefore, this chart is most applicable to situations where the 
occurrence of defectives is not rare (e.g., we expect the percent of defectives to be 
more than 5% of the total number of units produced).  

All of these charts can be adapted for short production runs (short run charts), and for 
multiple process streams.  
 

 

Short Run Charts  

The short run control chart, or control chart for short production runs, plots observations 
of variables or attributes for multiple parts on the same chart. Short run control charts 
were developed to address the requirement that several dozen measurements of a process 
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must be collected before control limits are calculated. Meeting this requirement is often 
difficult for operations that produce a limited number of a particular part during a 
production run.  

For example, a paper mill may produce only three or four (huge) rolls of a particular kind 
of paper (i.e., part) and then shift production to another kind of paper. But if variables, 
such as paper thickness, or attributes, such as blemishes, are monitored for several dozen 
rolls of paper of, say, a dozen different kinds, control limits for thickness and blemishes 
could be calculated for the transformed (within the short production run) variable values 
of interest. Specifically, these transformations will rescale the variable values of interest 
such that they are of compatible magnitudes across the different short production runs (or 
parts). The control limits computed for those transformed values could then be applied in 
monitoring thickness, and blemishes, regardless of the types of paper (parts) being 
produced. Statistical process control procedures could be used to determine if the 
production process is in control, to monitor continuing production, and to establish 
procedures for continuous quality improvement.  

For additional discussions of short run charts refer to Bothe (1988), Johnson (1987), or 
Montgomery (1991).  

Short Run Charts for Variables  

Nominal chart, target chart. There are several different types of short run charts. The 
most basic are the nominal short run chart, and the target short run chart. In these charts, 
the measurements for each part are transformed by subtracting a part-specific constant. 
These constants can either be the nominal values for the respective parts (nominal short 
run chart), or they can be target values computed from the (historical) means for each part 
(Target X-bar and R chart). For example, the diameters of piston bores for different 
engine blocks produced in a factory can only be meaningfully compared (for determining 
the consistency of bore sizes) if the mean differences between bore diameters for 
different sized engines are first removed. The nominal or target short run chart makes 
such comparisons possible. Note that for the nominal or target chart it is assumed that the 
variability across parts is identical, so that control limits based on a common estimate of 
the process sigma are applicable.  

Standardized short run chart. If the variability of the process for different parts cannot 
be assumed to be identical, then a further transformation is necessary before the sample 
means for different parts can be plotted in the same chart. Specifically, in the 
standardized short run chart the plot points are further transformed by dividing the 
deviations of sample means from part means (or nominal or target values for parts) by 
part-specific constants that are proportional to the variability for the respective parts. For 
example, for the short run X-bar and R chart, the plot points (that are shown in the X-bar 
chart) are computed by first subtracting from each sample mean a part specific constant 
(e.g., the respective part mean, or nominal value for the respective part), and then 
dividing the difference by another constant, for example, by the average range for the 
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respective chart. These transformations will result in comparable scales for the sample 
means for different parts.  

Short Run Charts for Attributes   

For attribute control charts (C, U, Np, or P charts), the estimate of the variability of the 
process (proportion, rate, etc.) is a function of the process average (average proportion, 
rate, etc.; for example, the standard deviation of a proportion p is equal to the square root 
of p*(1- p)/n). Hence, only standardized short run charts are available for attributes. For 
example, in the short run P chart, the plot points are computed by first subtracting from 
the respective sample p values the average part p's, and then dividing by the standard 
deviation of the average p's.  

 

 

Unequal Sample Sizes  

When the samples plotted in the control chart are not of equal size, then the control limits 
around the center line (target specification) cannot be represented by a straight line. For 
example, to return to the formula Sigma/Square Root(n) presented earlier for computing 
control limits for the X-bar chart, it is obvious that unequal n's will lead to different 
control limits for different sample sizes. There are three ways of dealing with this 
situation.  

Average sample size. If one wants to maintain the straight-line control limits (e.g., to 
make the chart easier to read and easier to use in presentations), then one can compute the 
average n per sample across all samples, and establish the control limits based on the 
average sample size. This procedure is not "exact," however, as long as the sample sizes 
are reasonably similar to each other, this procedure is quite adequate.  

Variable control limits. Alternatively, one may compute different control limits for each 
sample, based on the respective sample sizes. This procedure will lead to variable control 
limits, and result in step-chart like control lines in the plot. This procedure ensures that 
the correct control limits are computed for each sample. However, one loses the 
simplicity of straight-line control limits.  

Stabilized (normalized) chart. The best of two worlds (straight line control limits that 
are accurate) can be accomplished by standardizing the quantity to be controlled (mean, 
proportion, etc.) according to units of sigma. The control limits can then be expressed in 
straight lines, while the location of the sample points in the plot depend not only on the 
characteristic to be controlled, but also on the respective sample n's. The disadvantage of 
this procedure is that the values on the vertical (Y) axis in the control chart are in terms of 
sigma rather than the original units of measurement, and therefore, those numbers cannot 
be taken at face value (e.g., a sample with a value of 3 is 3 times sigma away from 
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specifications; in order to express the value of this sample in terms of the original units of 
measurement, we need to perform some computations to convert this number back).  

 

 

Control Charts for Variables vs. Charts for Attributes  

Sometimes, the quality control engineer has a choice between variable control charts and 
attribute control charts.  

Advantages of attribute control charts. Attribute control charts have the advantage of 
allowing for quick summaries of various aspects of the quality of a product, that is, the 
engineer may simply classify products as acceptable or unacceptable, based on various 
quality criteria. Thus, attribute charts sometimes bypass the need for expensive, precise 
devices and time-consuming measurement procedures. Also, this type of chart tends to be 
more easily understood by managers unfamiliar with quality control procedures; 
therefore, it may provide more persuasive (to management) evidence of quality problems.  

Advantages of variable control charts. Variable control charts are more sensitive than 
attribute control charts (see Montgomery, 1985, p. 203). Therefore, variable control 
charts may alert us to quality problems before any actual "unacceptables" (as detected by 
the attribute chart) will occur. Montgomery (1985) calls the variable control charts 
leading indicators of trouble that will sound an alarm before the number of rejects (scrap) 
increases in the production process.  

Control Chart for Individual Observations  

Variable control charts can by constructed for individual observations taken from the 
production line, rather than samples of observations. This is sometimes necessary when 
testing samples of multiple observations would be too expensive, inconvenient, or 
impossible. For example, the number of customer complaints or product returns may only 
be available on a monthly basis; yet, one would like to chart those numbers to detect 
quality problems. Another common application of these charts occurs in cases when 
automated testing devices inspect every single unit that is produced. In that case, one is 
often primarily interested in detecting small shifts in the product quality (for example, 
gradual deterioration of quality due to machine wear). The CUSUM, MA, and EWMA 
charts of cumulative sums and weighted averages discussed below may be most 
applicable in those situations.  

 

 

Out-Of-Control Process: Runs Tests  
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As mentioned earlier in the introduction, when a sample point (e.g., mean in an X-bar 
chart) falls outside the control lines, one has reason to believe that the process may no 
longer be in control. In addition, one should look for systematic patterns of points (e.g., 
means) across samples, because such patterns may indicate that the process average has 
shifted. These tests are also sometimes referred to as AT&T runs rules (see AT&T, 1959) 
or tests for special causes (e.g., see Nelson, 1984, 1985; Grant and Leavenworth, 1980; 
Shirland, 1993). The term special or assignable causes as opposed to chance or common 
causes was used by Shewhart to distinguish between a process that is in control, with 
variation due to random (chance) causes only, from a process that is out of control, with 
variation that is due to some non-chance or special (assignable) factors (cf. Montgomery, 
1991, p. 102).  

As the sigma control limits discussed earlier, the runs rules are based on "statistical" 
reasoning. For example, the probability of any sample mean in an X-bar control chart 
falling above the center line is equal to 0.5, provided (1) that the process is in control 
(i.e., that the center line value is equal to the population mean), (2) that consecutive 
sample means are independent (i.e., not auto-correlated), and (3) that the distribution of 
means follows the normal distribution. Simply stated, under those conditions there is a 
50-50 chance that a mean will fall above or below the center line. Thus, the probability 
that two consecutive means will fall above the center line is equal to 0.5 times 0.5 = 0.25.  

Accordingly, the probability that 9 consecutive samples (or a run of 9 samples) will fall 
on the same side of the center line is equal to 0.5**9 = .00195. Note that this is 
approximately the probability with which a sample mean can be expected to fall outside 
the 3- times sigma limits (given the normal distribution, and a process in control). 
Therefore, one could look for 9 consecutive sample means on the same side of the center 
line as another indication of an out-of-control condition. Refer to Duncan (1974) for 
details concerning the "statistical" interpretation of the other (more complex) tests.  

Zone A, B, C. Customarily, to define the runs tests, the area above and below the chart 
center line is divided into three "zones."  
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By default, Zone A is defined as the area between 2 and 3 times sigma above and below 
the center line; Zone B is defined as the area between 1 and 2 times sigma, and Zone C is 
defined as the area between the center line and 1 times sigma.  

9 points in Zone C or beyond (on one side of central line). If this test is positive (i.e., if 
this pattern is detected), then the process average has probably changed. Note that it is 
assumed that the distribution of the respective quality characteristic in the plot is 
symmetrical around the mean. This is, for example, not the case for R charts, S charts, or 
most attribute charts. However, this is still a useful test to alert the quality control 
engineer to potential shifts in the process. For example, successive samples with less-
than-average variability may be worth investigating, since they may provide hints on how 
to decrease the variation in the process.  

6 points in a row steadily increasing or decreasing. This test signals a drift in the 
process average. Often, such drift can be the result of tool wear, deteriorating 
maintenance, improvement in skill, etc. (Nelson, 1985).  

14 points in a row alternating up and down. If this test is positive, it indicates that two 
systematically alternating causes are producing different results. For example, one may 
be using two alternating suppliers, or monitor the quality for two different (alternating) 
shifts.  

2 out of 3 points in a row in Zone A or beyond. This test provides an "early warning" 
of a process shift. Note that the probability of a false-positive (test is positive but process 
is in control) for this test in X-bar charts is approximately 2%.  

4 out of 5 points in a row in Zone B or beyond. Like the previous test, this test may be 
considered to be an "early warning indicator" of a potential process shift. The false- 
positive error rate for this test is also about 2%.  

15 points in a row in Zone C (above and below the center line). This test indicates a 
smaller variability than is expected (based on the current control limits).  

8 points in a row in Zone B, A, or beyond, on either side of the center line (without 
points in Zone C). This test indicates that different samples are affected by different 
factors, resulting in a bimodal distribution of means. This may happen, for example, if 
different samples in an X-bar chart where produced by one of two different machines, 
where one produces above average parts, and the other below average parts.  

 

 

Operating Characteristic (OC) Curves  

A common supplementary plot to standard quality control charts is the so-called 
operating characteristic or OC curve (see example below). One question that comes to 
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mind when using standard variable or attribute charts is how sensitive is the current 
quality control procedure? Put in more specific terms, how likely is it that you will not 
find a sample (e.g., mean in an X-bar chart) outside the control limits (i.e., accept the 
production process as "in control"), when, in fact, it has shifted by a certain amount? This 

probability is usually referred to as the (beta) error probability, that is, the probability of 
erroneously accepting a process (mean, mean proportion, mean rate defectives, etc.) as 
being "in control." Note that operating characteristic curves pertain to the false-
acceptance probability using the sample-outside-of- control-limits criterion only, and not 
the runs tests described earlier.  

 

Operating characteristic curves are extremely useful for exploring the power of our 
quality control procedure. The actual decision concerning sample sizes should depend not 
only on the cost of implementing the plan (e.g., cost per item sampled), but also on the 
costs resulting from not detecting quality problems. The OC curve allows the engineer to 
estimate the probabilities of not detecting shifts of certain sizes in the production quality.  

Process Capability Indices  

For variable control charts, it is often desired to include so-called process capability 
indices in the summary graph. In short, process capability indices express (as a ratio) the 
proportion of parts or items produced by the current process that fall within user-
specified limits (e.g., engineering tolerances).  

For example, the so-called Cp index is computed as:  

Cp = (USL-LSL)/(6*sigma)  

where sigma is the estimated process standard deviation, and USL and LSL are the upper 
and lower specification (engineering) limits, respectively. If the distribution of the 
respective quality characteristic or variable (e.g., size of piston rings) is normal, and the 
process is perfectly centered (i.e., the mean is equal to the design center), then this index 
can be interpreted as the proportion of the range of the standard normal curve (the 
process width) that falls within the engineering specification limits. If the process is not 
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centered, an adjusted index Cpk is used instead. For a "capable" process, the Cp index 
should be greater than 1, that is, the specification limits would be larger than 6 times the 
sigma limits, so that over 99% of all items or parts produced could be expected to fall 
inside the acceptable engineering specifications. For a detailed discussion of this and 
other indices, refer to Process Analysis.  

 

 

Other Specialized Control Charts  

The types of control charts mentioned so far are the "workhorses" of quality control, and 
they are probably the most widely used methods. However, with the advent of 
inexpensive desktop computing, procedures requiring more computational effort have 
become increasingly popular.  

X-bar Charts For Non-Normal Data. The control limits for standard X-bar charts are 
constructed based on the assumption that the sample means are approximately normally 
distributed. Thus, the underlying individual observations do not have to be normally 
distributed, since, as the sample size increases, the distribution of the means will become 
approximately normal (i.e., see discussion of the central limit theorem in the Elementary 
Concepts; however, note that for R, S¸ and S**2 charts, it is assumed that the individual 
observations are normally distributed). Shewhart (1931) in his original work 
experimented with various non-normal distributions for individual observations, and 
evaluated the resulting distributions of means for samples of size four. He concluded that, 
indeed, the standard normal distribution-based control limits for the means are 
appropriate, as long as the underlying distribution of observations are approximately 
normal. (See also Hoyer and Ellis, 1996, for an introduction and discussion of the 
distributional assumptions for quality control charting.)  

However, as Ryan (1989) points out, when the distribution of observations is highly 
skewed and the sample sizes are small, then the resulting standard control limits may 
produce a large number of false alarms (increased alpha error rate), as well as a larger 
number of false negative ("process-is-in-control") readings (increased beta-error rate). 
You can compute control limits (as well as process capability indices) for X-bar charts 
based on so-called Johnson curves(Johnson, 1949), which allow to approximate the 
skewness and kurtosis for a large range of non-normal distributions (see also Fitting 
Distributions by Moments, in Process Analysis). These non- normal X-bar charts are 
useful when the distribution of means across the samples is clearly skewed, or otherwise 
non-normal.  

Hotelling T**2 Chart.  When there are multiple related quality characteristics (recorded 
in several variables), we can produce a simultaneous plot (see example below) for all 
means based on Hotelling multivariate T**2  statistic (first proposed by Hotelling, 1947).  
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Cumulative Sum (CUSUM) Chart. The CUSUM chart was first introduced by Page 
(1954); the mathematical principles involved in its construction are discussed in Ewan 
(1963), Johnson (1961), and Johnson and Leone (1962).  

 

If one plots the cumulative sum of deviations of successive sample means from a target 
specification, even minor, permanent shifts in the process mean will eventually lead to a 
sizable cumulative sum of deviations. Thus, this chart is particularly well-suited for 
detecting such small permanent shifts that may go undetected when using the X-bar chart. 
For example, if, due to machine wear, a process slowly "slides" out of control to produce 
results above target specifications, this plot would show a steadily increasing (or 
decreasing) cumulative sum of deviations from specification.  

To establish control limits in such plots, Barnhard (1959) proposed the so-called V- mask, 
which is plotted after the last sample (on the right). The V-mask can be thought of as the 
upper and lower control limits for the cumulative sums. However, rather than being 
parallel to the center line; these lines converge at a particular angle to the right, producing 
the appearance of a V rotated on its side. If the line representing the cumulative sum 
crosses either one of the two lines, the process is out of control.  
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Moving Average (MA) Chart. To return to the piston ring example, suppose we are 
mostly interested in detecting small trends across successive sample means. For example, 
we may be particularly concerned about machine wear, leading to a slow but constant 
deterioration of quality (i.e., deviation from specification). The CUSUM chart described 
above is one way to monitor such trends, and to detect small permanent shifts in the 
process average. Another way is to use some weighting scheme that summarizes the 
means of several successive samples; moving such a weighted mean across the samples 
will produce a moving average chart (as shown in the following graph).  

 

Exponentially-weighted Moving Average (EWMA) Chart. The idea of moving 
averages of successive (adjacent) samples can be generalized. In principle, in order to 
detect a trend we need to weight successive samples to form a moving average; however, 
instead of a simple arithmetic moving average, we could compute a geometric moving 
average (this chart (see graph below) is also called Geometric Moving Average chart, see 
Montgomery, 1985, 1991).  

 

Specifically, we could compute each data point for the plot as:  

zt = *x-bart + (1- )*z t-1  
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In this formula, each point zt is computed as (lambda) times the respective mean x-bart, 

plus one minus times the previous (computed) point in the plot. The parameter 
(lambda) here should assume values greater than 0 and less than 1. Without going into 
detail (see Montgomery, 1985, p. 239), this method of averaging specifies that the weight 
of historically "old" sample means decreases geometrically as one continues to draw 
samples. The interpretation of this chart is much like that of the moving average chart, 
and it allows us to detect small shifts in the means, and, therefore, in the quality of the 
production process.  

Regression Control Charts. Sometimes we want to monitor the relationship between 
two aspects of our production process. For example, a post office may want to monitor 
the number of worker-hours that are spent to process a certain amount of mail. These two 
variables should roughly be linearly correlated with each other, and the relationship can 
probably be described in terms of the well-known Pearson product-moment correlation 
coefficient r. This statistic is also described in Basic Statistics. The regression control 
chart contains a regression line that summarizes the linear relationship between the two 
variables of interest. The individual data points are also shown in the same graph. Around 
the regression line we establish a confidence interval within which we would expect a 
certain proportion (e.g., 95%) of samples to fall. Outliers in this plot may indicate 
samples where, for some reason, the common relationship between the two variables of 
interest does not hold.  

 

Applications. There are many useful applications for the regression control chart. For 
example, professional auditors may use this chart to identify retail outlets with a greater 
than expected number of cash transactions given the overall volume of sales, or grocery 
stores with a greater than expected number of coupons redeemed, given the total sales. In 
both instances, outliers in the regression control charts (e.g., too many cash transactions; 
too many coupons redeemed) may deserve closer scrutiny.  

Pareto Chart Analysis. Quality problems are rarely spread evenly across the different 
aspects of the production process or different plants. Rather, a few "bad apples" often 
account for the majority of problems. This principle has come to be known as the Pareto 
principle, which basically states that quality losses are mal-distributed in such a way that 
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a small percentage of possible causes are responsible for the majority of the quality 
problems. For example, a relatively small number of "dirty" cars are probably responsible 
for the majority of air pollution; the majority of losses in most companies result from the 
failure of only one or two products. To illustrate the "bad apples", one plots the Pareto 
chart,  

 

which simply amounts to a histogram showing the distribution of the quality loss (e.g., 
dollar loss) across some meaningful categories; usually, the categories are sorted into 
descending order of importance (frequency, dollar amounts, etc.). Very often, this chart 
provides useful guidance as to where to direct quality improvement efforts.  
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Chapter 36 

Reliability and Item Analysis 

 

• General Introduction  
• Basic Ideas  
• Classical Testing Model  
• Reliability  
• Sum Scales  
• Cronbach's Alpha  
• Split-Half Reliability  
• Correction for Attenuation  
• Designing a Reliable Scale  

 
This chapter discusses the concept of reliability of measurement as used in social 
sciences (but not in industrial statistics or biomedical research). The term reliability used 
in industrial statistics denotes a function describing the probability of failure (as a 
function of time). For a discussion of the concept of reliability as applied to product 
quality (e.g., in industrial statistics), please refer to the section on Reliability/Failure 
Time Analysis in the Process Analysis chapter (see also the section Repeatability and 
Reproducibility in the same chapter and the chapter Survival/Failure Time Analysis). For 
a comparison between these two (very different) concepts of reliability, see Reliability.  

 
General Introduction  

In many areas of research, the precise measurement of hypothesized processes or 
variables (theoretical constructs) poses a challenge by itself. For example, in psychology, 
the precise measurement of personality variables or attitudes is usually a necessary first 
step before any theories of personality or attitudes can be considered. In general, in all 
social sciences, unreliable measurements of people's beliefs or intentions will obviously 
hamper efforts to predict their behavior. The issue of precision of measurement will also 
come up in applied research, whenever variables are difficult to observe. For example, 
reliable measurement of employee performance is usually a difficult task; yet, it is 
obviously a necessary precursor to any performance-based compensation system.  

In all of these cases, Reliability & Item Analysis may be used to construct reliable 
measurement scales, to improve existing scales, and to evaluate the reliability of scales 
already in use. Specifically, Reliability & Item Analysis will aid in the design and 
evaluation of sum scales, that is, scales that are made up of multiple individual 
measurements (e.g., different items, repeated measurements, different measurement 
devices, etc.). You can compute numerous statistics that allows you to build and evaluate 
scales following the so-called classical testing theory model.  
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The assessment of scale reliability is based on the correlations between the individual 
items or measurements that make up the scale, relative to the variances of the items. If 
you are not familiar with the correlation coefficient or the variance statistic, we 
recommend that you review the respective discussions provided in the Basic Statistics 
section.  

The classical testing theory model of scale construction has a long history, and there are 
many textbooks available on the subject. For additional detailed discussions, you may 
refer to, for example, Carmines and Zeller (1980), De Gruitjer and Van Der Kamp 
(1976), Kline (1979, 1986), or Thorndyke and Hagen (1977). A widely acclaimed 
"classic" in this area, with an emphasis on psychological and educational testing, is 
Nunally (1970).  

Testing hypotheses about relationships between items and tests. Using Structural 
Equation Modeling and Path Analysis (SEPATH), you can test specific hypotheses about 
the relationship between sets of items or different tests (e.g., test whether two sets of 
items measure the same construct, analyze multi-trait, multi-method matrices, etc.).  

 

 

Basic Ideas  

Suppose we want to construct a questionnaire to measure people's prejudices against 
foreign- made cars. We could start out by generating a number of items such as: "Foreign 
cars lack personality," "Foreign cars all look the same," etc. We could then submit those 
questionnaire items to a group of subjects (for example, people who have never owned a 
foreign-made car). We could ask subjects to indicate their agreement with these 
statements on 9-point scales, anchored at 1=disagree and 9=agree.  

True scores and error. Let us now consider more closely what we mean by precise 
measurement in this case. We hypothesize that there is such a thing (theoretical construct) 
as "prejudice against foreign cars," and that each item "taps" into this concept to some 
extent. Therefore, we may say that a subject's response to a particular item reflects two 
aspects: first, the response reflects the prejudice against foreign cars, and second, it will 
reflect some esoteric aspect of the respective question. For example, consider the item 
"Foreign cars all look the same." A subject's agreement or disagreement with that 
statement will partially depend on his or her general prejudices, and partially on some 
other aspects of the question or person. For example, the subject may have a friend who 
just bought a very different looking foreign car.  

Testing hypotheses about relationships between items and tests. To test specific 
hypotheses about the relationship between sets of items or different tests (e.g., whether 
two sets of items measure the same construct, analyze multi- trait, multi-method matrices, 
etc.) use Structural Equation Modeling (SEPATH).  
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Classical Testing Model  

To summarize, each measurement (response to an item) reflects to some extent the true 
score for the intended concept (prejudice against foreign cars), and to some extent 
esoteric, random error. We can express this in an equation as: 
X = tau + error 
In this equation, X refers to the respective actual measurement, that is, subject's response 
to a particular item; tau is commonly used to refer to the true score, and error refers to 
the random error component in the measurement.  

 

 

Reliability  

In this context the definition of reliability is straightforward: a measurement is reliable if 
it reflects mostly true score, relative to the error. For example, an item such as "Red 
foreign cars are particularly ugly" would likely provide an unreliable measurement of 
prejudices against foreign- made cars. This is because there probably are ample 
individual differences concerning the likes and dislikes of colors. Thus, this item would 
"capture" not only a person's prejudice but also his or her color preference. Therefore, the 
proportion of true score (for prejudice) in subjects' response to that item would be 
relatively small.  

Measures of reliability. From the above discussion, one can easily infer a measure or 
statistic to describe the reliability of an item or scale. Specifically, we may define an 
index of reliability in terms of the proportion of true score variability that is captured 
across subjects or respondents, relative to the total observed variability. In equation form, 
we can say:  

Reliability = 2
(true score) / 

2
(total observed)  

 

 

Sum Scales  

What will happen when we sum up several more or less reliable items designed to 
measure prejudice against foreign-made cars? Suppose the items were written so as to 
cover a wide range of possible prejudices against foreign-made cars. If the error 
component in subjects' responses to each question is truly random, then we may expect 
that the different components will cancel each other out across items. In slightly more 
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technical terms, the expected value or mean of the error component across items will be 
zero. The true score component remains the same when summing across items. 
Therefore, the more items are added, the more true score (relative to the error score) will 
be reflected in the sum scale.  

Number of items and reliability. This conclusion describes a basic principle of test 
design. Namely, the more items there are in a scale designed to measure a particular 
concept, the more reliable will the measurement (sum scale) be. Perhaps a somewhat 
more practical example will further clarify this point. Suppose you want to measure the 
height of 10 persons, using only a crude stick as the measurement device. Note that we 
are not interested in this example in the absolute correctness of measurement (i.e., in 
inches or centimeters), but rather in the ability to distinguish reliably between the 10 
individuals in terms of their height. If you measure each person only once in terms of 
multiples of lengths of your crude measurement stick, the resultant measurement may not 
be very reliable. However, if you measure each person 100 times, and then take the 
average of those 100 measurements as the summary of the respective person's height, 
then you will be able to make very precise and reliable distinctions between people 
(based solely on the crude measurement stick).  

Let us now look at some of the common statistics that are used to estimate the reliability 
of a sum scale.  

 

 

Cronbach's Alpha  

To return to the prejudice example, if there are several subjects who respond to our items, 
then we can compute the variance for each item, and the variance for the sum scale. The 
variance of the sum scale will be smaller than the sum of item variances if the items 
measure the same variability between subjects, that is, if they measure some true score. 
Technically, the variance of the sum of two items is equal to the sum of the two variances 
minus (two times) the covariance, that is, the amount of true score variance common to 
the two items.  

We can estimate the proportion of true score variance that is captured by the items by 
comparing the sum of item variances with the variance of the sum scale. Specifically, we 
can compute:  

= (k/(k-1)) * [1- (s2
i)/s

2
sum]  

This is the formula for the most common index of reliability, namely, Cronbach's 
coefficient alpha ( ). In this formula, the si**2 's denote the variances for the k 
individual items; ssum**2  denotes the variance for the sum of all items. If there is no true 
score but only error in the items (which is esoteric and unique, and, therefore, 
uncorrelated across subjects), then the variance of the sum will be the same as the sum of 
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variances of the individual items. Therefore, coefficient alpha will be equal to zero. If all 
items are perfectly reliable and measure the same thing (true score), then coefficient 

alpha is equal to 1. (Specifically, 1- (si**2)/ssum**2  will become equal to (k-1)/k; if we 
multiply this by k/(k-1) we obtain 1.)  

Alternative terminology. Cronbach's alpha, when computed for binary (e.g., true/false) 
items, is identical to the so-called Kuder-Richardson-20 formula of reliability for sum 
scales. In either case, because the reliability is actually estimated from the consistency of 
all items in the sum scales, the reliability coefficient computed in this manner is also 
referred to as the internal-consistency reliability.  

 

 

Split-Half Reliability  

An alternative way of computing the reliability of a sum scale is to divide it in some 
random manner into two halves. If the sum scale is perfectly reliable, we would expect 
that the two halves are perfectly correlated (i.e., r = 1.0). Less than perfect reliability will 
lead to less than perfect correlations. We can estimate the reliability of the sum scale via 
the Spearman-Brown split half coefficient:  

rsb = 2rxy /(1+rxy)  

In this formula, rsb is the split-half reliability coefficient, and rxy represents the correlation 
between the two halves of the scale.  

 

 

Correction for Attenuation  

Let us now consider some of the consequences of less than perfect reliability. Suppose 
we use our scale of prejudice against foreign-made cars to predict some other criterion, 
such as subsequent actual purchase of a car. If our scale correlates with such a criterion, it 
would raise our confidence in the validity of the scale, that is, that it really measures 
prejudices against foreign-made cars, and not something completely different. In actual 
test design, the validation of a scale is a lengthy process that requires the researcher to 
correlate the scale with various external criteria that, in theory, should be related to the 
concept that is supposedly being measured by the scale.  

How will validity be affected by less than perfect scale reliability? The random error 
portion of the scale is unlikely to correlate with some external criterion. Therefore, if the 
proportion of true score in a scale is only 60% (that is, the reliability is only .60), then the 
correlation between the scale and the criterion variable will be attenuated, that is, it will 
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be smaller than the actual correlation of true scores. In fact, the validity of a scale is 
always limited by its reliability.  

Given the reliability of the two measures in a correlation (i.e., the scale and the criterion 
variable), we can estimate the actual correlation of true scores in both measures. Put 
another way, we can correct the correlation for attenuation:  

rxy,corrected = rxy /(rxx*r yy)
½  

In this formula, rxy,corrected stands for the corrected correlation coefficient, that is, it is the 
estimate of the correlation between the true scores in the two measures x and y. The term 
rxy denotes the uncorrected correlation, and rxx and ryy denote the reliability of measures 
(scales) x and y. You can compute the attenuation correction based on specific values, or 
based on actual raw data (in which case the reliabilities of the two measures are estimated 
from the data).  

 

 

Designing a Reliable Scale  

After the discussion so far, it should be clear that, the more reliable a scale, the better 
(e.g., more valid) the scale. As mentioned earlier, one way to make a sum scale more 
valid is by adding items. You can compute how many items would have to be added in 
order to achieve a particular reliability, or how reliable the scale would be if a certain 
number of items were added. However, in practice, the number of items on a 
questionnaire is usually limited by various other factors (e.g., respondents get tired, 
overall space is limited, etc.). Let us return to our prejudice example, and outline the 
steps that one would generally follow in order to design the scale so that it will be 
reliable:  

Step 1: Generating items. The first step is to write the items. This is essentially a 
creative process where the researcher makes up as many items as possible that seem to 
relate to prejudices against foreign-made cars. In theory, one should "sample items" from 
the domain defined by the concept. In practice, for example in marketing research, focus 
groups are often utilized to illuminate as many aspects of the concept as possible. For 
example, we could ask a small group of highly committed American car buyers to 
express their general thoughts and feelings about foreign-made cars. In educational and 
psychological testing, one commonly looks at other similar questionnaires at this stage of 
the scale design, again, in order to gain as wide a perspective on the concept as possible.  

Step 2: Choosing items of optimum difficulty. In the first draft of our prejudice 
questionnaire, we will include as many items as possible. We then administer this 
questionnaire to an initial sample of typical respondents, and examine the results for each 
item. First, we would look at various characteristics of the items, for example, in order to 
identify floor or ceiling effects. If all respondents agree or disagree with an item, then it 
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obviously does not help us discriminate between respondents, and thus, it is useless for 
the design of a reliable scale. In test construction, the proportion of respondents who 
agree or disagree with an item, or who answer a test item correctly, is often referred to as 
the item difficulty. In essence, we would look at the item means and standard deviations 
and eliminate those items that show extreme means, and zero or nearly zero variances.  

Step 3: Choosing internally consistent items. Remember that a reliable scale is made 
up of items that proportionately measure mostly true score; in our example, we would 
like to select items that measure mostly prejudice against foreign-made cars, and few 
esoteric aspects we consider random error. To do so, we would look at the following:  

STATISTICA  
RELIABL. 
ANALYSIS  

Summary for scale: Mean=46.1100 Std.Dv.=8.26444 Valid n:100 
Cronbach alpha: .794313 Standardized alpha: .800491 

Average inter-item corr.: .297818 
  

variable 
Mean if 
deleted 

Var. if  
deleted 

StDv. if 
deleted 

Itm-Totl  
Correl. 

Squared 
Multp. R  

Alpha if  
deleted 

ITEM1  
ITEM2  
ITEM3  
ITEM4  
ITEM5  
ITEM6  
ITEM7  
ITEM8  
ITEM9  

ITEM10  

41.61000 
41.37000 
41.41000 
41.63000 
41.52000 
41.56000 
41.46000 
41.33000 
41.44000 
41.66000 

51.93790 
53.79310 
54.86190 
56.57310 
64.16961 
62.68640 
54.02840 
53.32110 
55.06640 
53.78440 

7.206795 
7.334378 
7.406882 
7.521509 
8.010593 
7.917474 
7.350401 
7.302130 
7.420674 
7.333785 

.656298 

.666111 

.549226 

.470852 

.054609 

.118561 

.587637 

.609204 

.502529 

.572875 

.507160 

.533015 

.363895 

.305573 

.057399 

.045653 

.443563 

.446298 

.328149 

.410561 

.752243 

.754692 

.766778 

.776015 

.824907 

.817907 

.762033 

.758992 

.772013 

.763314 

 
 

Shown above are the results for 10 items. Of most interest to us are the three right-most 
columns. They show us the correlation between the respective item and the total sum 
score (without the respective item), the squared multiple correlation between the 
respective item and all others, and the internal consistency of the scale (coefficient alpha) 
if the respective item would be deleted. Clearly, items 5 and 6 "stick out," in that they are 
not consistent with the rest of the scale. Their correlations with the sum scale are .05 and 
.12, respectively, while all other items correlate at .45 or better. In the right-most column, 
we can see that the reliability of the scale would be about .82 if either of the two items 
were to be deleted. Thus, we would probably delete the two items from this scale.  

Step 4: Returning to Step 1. After deleting all items that are not consistent with the 
scale, we may not be left with enough items to make up an overall reliable scale 
(remember that, the fewer items, the less reliable the scale). In practice, one often goes 
through several rounds of generating items and eliminating items, until one arrives at a 
final set that makes up a reliable scale.  

Tetrachoric correlations. In educational and psychological testing, it is common to use 
yes/no type items, that is, to prompt the respondent to answer either yes or no to a 
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question. An alternative to the regular correlation coefficient in that case is the so-called 
tetrachoric correlation coefficient. Usually, the tetrachoric correlation coefficient is 
larger than the standard correlation coefficient, therefore, Nunally (1970, p. 102) 
discourages the use of this coefficient for estimating reliabilities. However, it is a widely 
used statistic (e.g., in mathematical modeling). 
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Chapter 37 
Structural Equation Modeling  

 

• A Conceptual Overview  
• The Basic Idea Behind Structural Modeling  
• Structural Equation Modeling and the Path Diagram  

 
A Conceptual Overview  

Structural Equation Modeling is a very general, very powerful multivariate analysis 
technique that includes specialized versions of a number of other analysis methods as 
special cases. We will assume that you are familiar with the basic logic of statistical 
reasoning as described in Elementary Concepts. Moreover, we will also assume that you 
are familiar with the concepts of variance, covariance, and correlation; if not, we advise 
that you read the Basic Statistics section at this point. Although it is not absolutely 
necessary, it is highly desirable that you have some background in factor analysis before 
attempting to use structural modeling.  

Major applications of structural equation modeling include:  

1. causal modeling, or path analysis, which hypothesizes causal relationships among 
variables and tests the causal models with a linear equation system. Causal 
models can involve either manifest variables, latent variables, or both;  

2. confirmatory factor analysis, an extension of factor analysis in which specific 
hypotheses about the structure of the factor loadings and intercorrelations are 
tested;  

3. second order factor analysis, a variation of factor analysis in which the 
correlation matrix of the common factors is itself factor analyzed to provide 
second order factors;  

4. regression models, an extension of linear regression analysis in which regression 
weights may be constrained to be equal to each other, or to specified numerical 
values;  

5. covariance structure models, which hypothesize that a covariance matrix has a 
particular form. For example, you can test the hypothesis that a set of variables all 
have equal variances with this procedure;  

6. correlation structure models, which hypothesize that a correlation matrix has a 
particular form. A classic example is the hypothesis that the correlation matrix has 
the structure of a circumplex (Guttman, 1954; Wiggins, Steiger, & Gaelick, 
1981).  

Many different kinds of models fall into each of the above categories, so structural 
modeling as an enterprise is very difficult to characterize.  
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Most structural equation models can be expressed as path diagrams. Consequently even 
beginners to structural modeling can perform complicated analyses with a minimum of 
training.  

 

 

The Basic Idea Behind Structural Modeling  

One of the fundamental ideas taught in intermediate applied statistics courses is the effect 
of additive and multiplicative transformations on a list of numbers. Students are taught 
that, if you multiply every number in a list by some constant K, you multiply the mean of 
the numbers by K. Similarly, you multiply the standard deviation by the absolute value 
of K.  

For example, suppose you have the list of numbers 1,2,3. These numbers have a mean of 
2 and a standard deviation of 1. Now, suppose you were to take these 3 numbers and 
multiply them by 4. Then the mean would become 8, and the standard deviation would 
become 4, the variance thus 16.  

The point is, if you have a set of numbers X related to another set of numbers Y by the 
equation Y = 4X, then the variance of Y must be 16 times that of X, so you can test the 
hypothesis that Y and X are related by the equation Y = 4X indirectly by comparing the 
variances of the Y and X variables.  

This idea generalizes, in various ways, to several variables inter-related by a group of 
linear equations. The rules become more complex, the calculations more difficult, but the 
basic message remains the same -- you can test whether variables are interrelated 
through a set of linear relationships by examining the variances and covariances of the 
variables.  

Statisticians have developed procedures for testing whether a set of variances and 
covariances in a covariance matrix fits a specified structure. The way structural modeling 
works is as follows:  

1. You state the way that you believe the variables are inter-related, often with the 
use of a path diagram.  

2. You work out, via some complex internal rules, what the implications of this are 
for the variances and covariances of the variables.  

3. You test whether the variances and covariances fit this model of them.  
4. Results of the statistical testing, and also parameter estimates and standard errors 

for the numerical coefficients in the linear equations are reported.  
5. On the basis of this information, you decide whether the model seems like a good 

fit to your data.  
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There are some important, and very basic logical points to remember about this process. 
First, although the mathematical machinery required to perform structural equations 
modeling is extremely complicated, the basic logic is embodied in the above 5 steps. 
Below, we diagram the process.  

 
Second, we must remember that it is unreasonable to expect a structural model to fit 
perfectly — for a number of reasons. A structural model with linear relations is only an 
approximation. The world is unlikely to be linear. Indeed, the true relations between 
variables are probably nonlinear. Moreover, many of the statistical assumptions are 
somewhat questionable as well. The real question is not so much, "Does the model fit 
perfectly?" but rather, "Does it fit well enough to be a useful approximation to reality, 
and a reasonable explanation of the trends in our data?"  

Third, we must remember that simply because a model fits the data well does not mean 
that the model is necessarily correct. One cannot prove that a model is true — to assert 
this is the fallacy of affirming the consequent. For example, we could say "If Joe is a cat, 
Joe has hair." However, "Joe has hair" does not imply Joe is a cat. Similarly, we can say 
that "If a certain causal model is true, it will fit the data." However, the model fitting the 
data does not necessarily imply the model is the correct one. There may be another model 
that fits the data equally well.  

 

 

Structural Equation Modeling and the Path Diagram  
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Path Diagrams play a fundamental role in structural modeling. Path diagrams are like 
flowcharts. They show variables interconnected with lines that are used to indicate causal 
flow.  

One can think of a path diagram as a device for showing which variables cause changes 
in other variables. However, path diagrams need not be thought of strictly in this way. 
They may also be given a narrower, more specific interpretation.  

Consider the classic linear regression equation  

Y = aX + e  

Any such equation may be represented in a path diagram as follows:  

 

Such diagrams establish a simple isomorphism. All variables in the equation system are 
placed in the diagram, either in boxes or ovals. Each equation is represented on the 
diagram as follows: All independent variables (the variables on the right side of an 
equation) have arrows pointing to the dependent variable. The weighting coefficient is 
placed above the arrow. The above diagram shows a simple linear equation system and 
its path diagram representation.  

Notice that, besides representing the linear equation relationships with arrows, the 
diagrams also contain some additional aspects. First, the variances of the independent 
variables, which we must know in order to test the structural relations model, are shown 
on the diagrams using curved lines without arrowheads attached. We refer to such lines 
as wires. Second, some variables are represented in ovals, others in rectangular boxes. 
Manifest variables are placed in boxes in the path diagram. Latent variables are placed in 
an oval or circle. For example, the variable E in the above diagram can be thought of as a 
linear regression residual when Y is predicted from X. Such a residual is not observed 
directly, but calculated from Y and X, so we treat it as a latent variable and place it in an 
oval.  

The example discussed above is an extremely simple one. Generally, we are interested in 
testing models that are much more complicated than these. As the equation systems we 
examine become increasingly complicated, so do the covariance structures they imply. 



 570 

Ultimately, the complexity can become so bewildering that we lose sight of some very 
basic principles. For one thing the train of reasoning which supports testing causal 
models with linear structural equations testing has several weak links. The variables may 
be non-linear. They may be linearly related for reasons unrelated to what we commonly 
view as causality. The ancient adage, "correlation is not causation" remains true, even if 
the correlation is complex and multivariate. What causal modeling does allow us to do is 
examine the extent to which data fail to agree with one reasonably viable consequence of 
a model of causality. If the linear equations system isomorphic to the path diagram does 
fit the data well, it is encouraging, but hardly proof of the truth of the causal model.  

Although path diagrams can be used to represent causal flow in a system of variables, 
they need not imply such a causal flow. Such diagrams may be viewed as simply an 
isomorphic representation of a linear equations system. As such, they can convey linear 
relationships when no causal relations are assumed. Hence, although one might interpret 
the diagram in the above figure to mean that "X causes Y," the diagram can also be 
interpreted as a visual representation of the linear regression relationship between X and 
Y.  
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Chapter 38 
Survival/Failure Time Analysis 

 

• General Information  
• Censored Observations  
• Analytic Techniques  
• Life Table Analysis  

o Number of Cases at Risk  
o Proportion Failing  
o Proportion surviving  
o Cumulative Proportion Surviving (Survival Function)  
o Probability Density  
o Hazard rate  
o Median survival time  
o Required sample sizes  

• Distribution Fitting  
o General Introduction  
o Estimation  
o Goodness-of-fit  
o Plots  

• Kaplan-Meier Product-Limit Estimator  
• Comparing Samples  

o General Introduction  
o Available tests  
o Choosing a two-sample test  
o Multiple sample test  
o Unequal proportions of censored data  

• Regression Models  
o General Introduction  
o Cox's Proportional Hazard Model  
o Cox's Proportional Hazard Model with Time-Dependent Covariates  
o Exponential Regression  
o Normal and Log-Normal Regression  
o Stratified Analyses  

 
General Information  

These techniques were primarily developed in the medical and biological sciences, but 
they are also widely used in the social and economic sciences, as well as in engineering 
(reliability and failure time analysis).  

Imagine that you are a researcher in a hospital who is studying the effectiveness of a new 
treatment for a generally terminal disease. The major variable of interest is the number of 
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days that the respective patients survive. In principle, one could use the standard 
parametric and nonparametric statistics for describing the average survival, and for 
comparing the new treatment with traditional methods (see Basic Statistics and 
Nonparametrics and Distribution Fitting). However, at the end of the study there will be 
patients who survived over the entire study period, in particular among those patients 
who entered the hospital (and the research project) late in the study; there will be other 
patients with whom we will have lost contact. Surely, one would not want to exclude all 
of those patients from the study by declaring them to be missing data (since most of them 
are "survivors" and, therefore, they reflect on the success of the new treatment method). 
Those observations, which contain only partial information are called censored 
observations (e.g., "patient A survived at least 4 months before he moved away and we 
lost contact;" the term censoring was first used by Hald, 1949).  

 

 

Censored Observations  

In general, censored observations arise whenever the dependent variable of interest 
represents the time to a terminal event, and the duration of the study is limited in time. 
Censored observations may occur in a number of different areas of research. For 
example, in the social sciences we may study the "survival" of marriages, high school 
drop-out rates (time to drop-out), turnover in organizations, etc. In each case, by the end 
of the study period, some subjects will still be married, will not have dropped out, or are 
still working at the same company; thus, those subjects represent censored observations.  

In economics we may study the "survival" of new businesses or the "survival" times of 
products such as automobiles. In quality control research, it is common practice to study 
the "survival" of parts under stress (failure time analysis).  

 

 

Analytic Techniques  

Essentially, the methods offered in Survival Analysis address the same research questions 
as many of the other procedures; however, all methods in Survival Analysis will handle 
censored data. The life table, survival distribution, and Kaplan-Meier survival function 
estimation are all descriptive methods for estimating the distribution of survival times 
from a sample. Several techniques are available for comparing the survival in two or 
more groups. Finally, Survival Analysis offers several regression models for estimating 
the relationship of (multiple) continuous variables to survival times.  
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Life Table Analysis  

The most straightforward way to describe the survival in a sample is to compute the Life 
Table. The life table technique is one of the oldest methods for analyzing survival (failure 
time) data (e.g., see Berkson & Gage, 1950; Cutler & Ederer, 1958; Gehan, 1969). This 
table can be thought of as an "enhanced" frequency distribution table. The distribution of 
survival times is divided into a certain number of intervals. For each interval we can then 
compute the number and proportion of cases or objects that entered the respective 
interval "alive," the number and proportion of cases that failed in the respective interval 
(i.e., number of terminal events, or number of cases that "died"), and the number of cases 
that were lost or censored in the respective interval.  

Based on those numbers and proportions, several additional statistics can be computed:  

• Number of Cases at Risk  
• Proportion Failing  
• Proportion surviving  
• Cumulative Proportion Surviving (Survival Function)  
• Probability Density  
• Hazard rate  
• Median survival time  
• Required sample sizes  

Number of Cases at Risk. This is the number of cases that entered the respective 
interval alive, minus half of the number of cases lost or censored in the respective 
interval.  

Proportion Failing. This proportion is computed as the ratio of the number of cases 
failing in the respective interval, divided by the number of cases at risk in the interval.  

Proportion Surviving. This proportion is computed as 1 minus the proportion failing.  

Cumulative Proportion Surviving (Survival Function). This is the cumulative 
proportion of cases surviving up to the respective interval. Since the probabilities of 
survival are assumed to be independent across the intervals, this probability is computed 
by multiplying out the probabilities of survival across all previous intervals. The resulting 
function is also called the survivorship or survival function.  

Probability Density. This is the estimated probability of failure in the respective interval, 
computed per unit of time, that is:  

Fi = (Pi-Pi+1) /hi  

In this formula, Fi is the respective probability density in the i'th interval, Pi is the 
estimated cumulative proportion surviving at the beginning of the i'th interval (at the end 
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of interval i-1), Pi+1 is the cumulative proportion surviving at the end of the i'th interval, 
and hi is the width of the respective interval.  

Hazard Rate. The hazard rate (the term was first used by Barlow, 1963) is defined as the 
probability per time unit that a case that has survived to the beginning of the respective 
interval will fail in that interval. Specifically, it is computed as the number of failures per 
time units in the respective interval, divided by the average number of surviving cases at 
the mid-point of the interval.  

Median Survival Time. This is the survival time at which the cumulative survival 
function is equal to 0.5. Other percentiles (25th and 75th percentile) of the cumulative 
survival function can be computed accordingly. Note that the 50th percentile (median) for 
the cumulative survival function is usually not the same as the point in time up to which 
50% of the sample survived. (This would only be the case if there were no censored 
observations prior to this time).  

Required Sample Sizes. In order to arrive at reliable estimates of the three major 
functions (survival, probability density, and hazard) and their standard errors at each time 
interval the minimum recommended sample size is 30.  

 

 

Distribution Fitting  

• General Introduction  
• Estimation  
• Goodness-of-fit  
• Plots  

General Introduction. In summary, the life table gives us a good indication of the 
distribution of failures over time. However, for predictive purposes it is often desirable to 
understand the shape of the underlying survival function in the population. The major 
distributions that have been proposed for modeling survival or failure times are the 
exponential (and linear exponential) distribution, the Weibull distribution of extreme 
events, and the Gompertz distribution.  

Estimation. The parameter estimation procedure (for estimating the parameters of the 
theoretical survival functions) is essentially a least squares linear regression algorithm 
(see Gehan & Siddiqui, 1973). A linear regression algorithm can be used because all four 
theoretical distributions can be "made linear" by appropriate transformations. Such 
transformations sometimes produce different variances for the residuals at different 
times, leading to biased estimates.  

Goodness-of-Fit. Given the parameters for the different distribution functions and the 
respective model, we can compute the likelihood of the data. One can also compute the 
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likelihood of the data under the null model, that is, a model that allows for different 
hazard rates in each interval. Without going into details, these two likelihoods can be 
compared via an incremental Chi-square test statistic. If this Chi-square is statistically 
significant, then we conclude that the respective theoretical distribution fits the data 
significantly worse than the null model; that is, we reject the respective distribution as a 
model for our data.  

Plots. You can produce plots of the survival function, hazard, and probability density for 
the observed data and the respective theoretical distributions. These plots provide a quick 
visual check of the goodness-of-fit of the theoretical distribution. The example plot below 
shows an observed survivorship function and the fitted Weibull distribution.  

 

Specifically, the three lines in this plot denote the theoretical distributions that resulted 
from three different estimation procedures (least squares and two methods of weighted 
least squares).  

Kaplan-Meier Product-Limit Estimator  

Rather than classifying the observed survival times into a life table, we can estimate the 
survival function directly from the continuous survival or failure times. Intuitively, 
imagine that we create a life table so that each time interval contains exactly one case. 
Multiplying out the survival probabilities across the "intervals" (i.e., for each single 
observation) we would get for the survival function:  

S(t) = j
t
= 1 [(n-j)/(n-j+1)] ( j )  

In this equation, S(t) is the estimated survival function, n is the total number of cases, and 

denotes the multiplication (geometric sum) across all cases less than or equal to t; 
(j) is a constant that is either 1 if the j 'th case is uncensored (complete), and 0 if it is 
censored. This estimate of the survival function is also called the product-limit estimator, 
and was first proposed by Kaplan and Meier (1958). An example plot of this function is 
shown below.  



 576 

 

The advantage of the Kaplan-Meier Product-Limit method over the life table method for 
analyzing survival and failure time data is that the resulting estimates do not depend on 
the grouping of the data (into a certain number of time intervals). Actually, the Product-
Limit method and the life table method are identical if the intervals of the life table 
contain at most one observation.  

 

 

Comparing Samples  

• General Introduction  
• Available tests  
• Choosing a two-sample test  
• Multiple sample test  
• Unequal proportions of censored data  

General Introduction. One can compare the survival or failure times in two or more 
samples. In principle, because survival times are not normally distributed, nonparametric 
tests that are based on the rank ordering of survival times should be applied. A wide 
range of nonparametric tests can be used in order to compare survival times; however, the 
tests cannot "handle" censored observations.  

Available Tests. The following five different (mostly nonparametric) tests for censored 
data are available: Gehan's generalized Wilcoxon test, the Cox-Mantel test, the Cox's F 
test , the log-rank test, and Peto and Peto's generalized Wilcoxon test. A nonparametric 
test for the comparison of multiple groups is also available. Most of these tests are 
accompanied by appropriate z- values (values of the standard normal distribution); these 
z-values can be used to test for the statistical significance of any differences between 
groups. However, note that most of these tests will only yield reliable results with fairly 
large samples sizes; the small sample "behavior" is less well understood.  
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Choosing a Two Sample Test. There are no widely accepted guidelines concerning 
which test to use in a particular situation. Cox's F test tends to be more powerful than 
Gehan's generalized Wilcoxon test when:  

1. Sample sizes are small (i.e., n per group less than 50);  
2. If samples are from an exponential or Weibull;  
3. If there are no censored observations (see Gehan & Thomas, 1969).  

Lee, Desu, and Gehan (1975) compared Gehan's test to several alternatives and showed 
that the Cox-Mantel test and the log-rank test are more powerful (regardless of censoring) 
when the samples are drawn from a population that follows an exponential or Weibull 
distribution; under those conditions there is little difference between the Cox-Mantel test 
and the log-rank test. Lee (1980) discusses the power of different tests in greater detail.  

Multiple Sample Test. There is a multiple-sample test that is an extension (or 
generalization) of Gehan's generalized Wilcoxon test, Peto and Peto's generalized 
Wilcoxon test, and the log-rank test. First, a score is assigned to each survival time using 
Mantel's procedure (Mantel, 1967); next a Chi- square value is computed based on the 
sums (for each group) of this score. If only two groups are specified, then this test is 
equivalent to Gehan's generalized Wilcoxon test, and the computations will default to that 
test in this case.  

Unequal Proportions of Censored Data. When comparing two or more groups it is very 
important to examine the number of censored observations in each group. Particularly in 
medical research, censoring can be the result of, for example, the application of different 
treatments: patients who get better faster or get worse as the result of a treatment may be 
more likely to drop out of the study, resulting in different numbers of censored 
observations in each group. Such systematic censoring may greatly bias the results of 
comparisons. 

 

Regression Models  

• General Introduction  
• Cox's Proportional Hazard Model  
• Cox's Proportional Hazard Model with Time-Dependent Covariates  
• Exponential Regression  
• Normal and Log-Normal Regression  
• Stratified Analyses  

General Introduction  

A common research question in medical, biological, or engineering (failure time) 
research is to determine whether or not certain continuous (independent) variables are 
correlated with the survival or failure times. There are two major reasons why this 
research issue cannot be addressed via straightforward multiple regression techniques (as 
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available in Multiple Regression): First, the dependent variable of interest 
(survival/failure time) is most likely not normally distributed -- a serious violation of an 
assumption for ordinary least squares multiple regression. Survival times usually follow 
an exponential or Weibull distribution. Second, there is the problem of censoring, that is, 
some observations will be incomplete.  

Cox's Proportional Hazard Model  

The proportional hazard model is the most general of the regression models because it is 
not based on any assumptions concerning the nature or shape of the underlying survival 
distribution. The model assumes that the underlying hazard rate (rather than survival 
time) is a function of the independent variables (covariates); no assumptions are made 
about the nature or shape of the hazard function. Thus, in a sense, Cox's regression model 
may be considered to be a nonparametric method. The model may be written as:  

h{(t), (z1, z2, ..., zm)} = h0(t)*exp(b1*z1 + ... + bm*zm)  

where h(t,...) denotes the resultant hazard, given the values of the m covariates for the 
respective case (z1, z2, ..., zm) and the respective survival time (t). The term h0(t) is called 
the baseline hazard; it is the hazard for the respective individual when all independent 
variable values are equal to zero. We can linearize this model by dividing both sides of 
the equation by h0(t) and then taking the natural logarithm of both sides:  

log[h{(t), (z...)}/h0(t)] = b1*z1 + ... + bm*zm  

We now have a fairly "simple" linear model that can be readily estimated.  

Assumptions. While no assumptions are made about the shape of the underlying hazard 
function, the model equations shown above do imply two assumptions. First, they specify 
a multiplicative relationship between the underlying hazard function and the log-linear 
function of the covariates. This assumption is also called the proportionality assumption. 
In practical terms, it is assumed that, given two observations with different values for the 
independent variables, the ratio of the hazard functions for those two observations does 
not depend on time. The second assumption of course, is that there is a log-linear 
relationship between the independent variables and the underlying hazard function.  

Cox's Proportional Hazard Model with Time-Dependent Covariates  

An assumption of the proportional hazard model is that the hazard function for an 
individual (i.e., observation in the analysis) depends on the values of the covariates and 
the value of the baseline hazard. Given two individuals with particular values for the 
covariates, the ratio of the estimated hazards over time will be constant -- hence the name 
of the method: the proportional hazard model. The validity of this assumption may often 
be questionable. For example, age is often included in studies of physical health. Suppose 
you studied survival after surgery. It is likely, that age is a more important predictor of 
risk immediately after surgery, than some time after the surgery (after initial recovery). In 
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accelerated life testing one sometimes uses a stress covariate (e.g., amount of voltage) 
that is slowly increased over time until failure occurs (e.g., until the electrical insulation 
fails; see Lawless, 1982, page 393). In this case, the impact of the covariate is clearly 
dependent on time. The user can specify arithmetic expressions to define covariates as 
functions of several variables and survival time.  

Testing the Proportionality Assumption. As indicated by the previous examples, there 
are many applications where it is likely that the proportionality assumption does not hold. 
In that case, one can explicitly define covariates as functions of time. For example, the 
analysis of a data set presented by Pike (1966) consists of survival times for two groups 
of rats that had been exposed to a carcinogen (see also Lawless, 1982, page 393, for a 
similar example). Suppose that z is a grouping variable with codes 1 and 0 to denote 
whether or not the respective rat was exposed. One could then fit the proportional hazard 
model:  

h(t,z) = h0(t)*exp{b1*z + b2*[z*log(t)-5.4]}  

Thus, in this model the conditional hazard at time t is a function of (1) the baseline hazard 
h0, (2) the covariate z, and (3) of z times the logarithm of time. Note that the constant 5.4 
is used here for scaling purposes only: the mean of the logarithm of the survival times in 
this data set is equal to 5.4. In other words, the conditional hazard at each point in time is 
a function of the covariate and time; thus, the effect of the covariate on survival is 
dependent on time; hence the name time-dependent covariate. This model allows one to 
specifically test the proportionality assumption. If parameter b2 is statistically significant 
(e.g., if it is at least twice as large as its standard error), then one can conclude that, 
indeed, the effect of the covariate z on survival is dependent on time, and, therefore, that 
the proportionality assumption does not hold.  

Exponential Regression  

Basically, this model assumes that the survival time distribution is exponential, and 
contingent on the values of a set of independent variables (zi). The rate parameter of the 
exponential distribution can then be expressed as:  

S(z) = exp(a + b1*z1 + b2*z2 + ... + bm*zm)  

S(z) denotes the survival times, a is a constant, and the bi's are the regression parameters.  

Goodness-of-fit. The Chi-square goodness-of-fit value is computed as a function of the 
log-likelihood for the model with all parameter estimates (L1), and the log-likelihood of 
the model in which all covariates are forced to 0 (zero; L0). If this Chi-square value is 
significant, we reject the null hypothesis and assume that the independent variables are 
significantly related to survival times.  

Standard exponential order statistic. One way to check the exponentiality assumption 
of this model is to plot the residual survival times against the standard exponential order 
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statistic theta. If the exponentiality assumption is met, then all points in this plot will be 
arranged roughly in a straight line.  

Normal and Log-Normal Regression  

In this model, it is assumed that the survival times (or log survival times) come from a 
normal distribution; the resulting model is basically identical to the ordinary multiple 
regression model, and may be stated as:  

t = a + b1*z1 + b2*z2 + ... + bm*zm  

where t denotes the survival times. For log-normal regression, t is replaced by its natural 
logarithm. The normal regression model is particularly useful because many data sets can 
be transformed to yield approximations of the normal distribution. Thus, in a sense this is 
the most general fully parametric model (as opposed to Cox's proportional hazard model 
which is non-parametric), and estimates can be obtained for a variety of different 
underlying survival distributions.  

Goodness-of-fit. The Chi-square value is computed as a function of the log-likelihood 
for the model with all independent variables (L1), and the log-likelihood of the model in 
which all independent variables are forced to 0 (zero, L0).  

Stratified Analyses  

The purpose of a stratified analysis is to test the hypothesis whether identical regression 
models are appropriate for different groups, that is, whether the relationships between the 
independent variables and survival are identical in different groups. To perform a 
stratified analysis, one must first fit the respective regression model separately within 
each group. The sum of the log-likelihoods from these analyses represents the log-
likelihood of the model with different regression coefficients (and intercepts where 
appropriate) in different groups. The next step is to fit the requested regression model to 
all data in the usual manner (i.e., ignoring group membership), and compute the log-
likelihood for the overall fit. The difference between the log-likelihoods can then be 
tested for statistical significance (via the Chi-square statistic).  
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Chapter 39 
Text Mining  

 

• Introductory Overview  
• Some Typical Applications for Text Mining  
• Approaches to Text Mining  
• Issues and Considerations for "Numericizing" Text  
• Transforming Word Frequencies  
• Latent Semantic Indexing via Singular Value Decomposition  
• Incorporating Text Mining Results in Data Mining Projects  

 
Text Mining Introductory Overview  

The purpose of Text Mining is to process unstructured (textual) information, extract 
meaningful numeric indices from the text, and, thus, make the information contained in 
the text accessible to the various data mining (statistical and machine learning) 
algorithms. Information can be extracted to derive summaries for the words contained in 
the documents or to compute summaries for the documents based on the words contained 
in them. Hence, you can analyze words, clusters of words used in documents, etc., or you 
could analyze documents and determine similarities between them or how they are 
related to other variables of interest in the data mining project. In the most general terms, 
text mining will "turn text into numbers" (meaningful indices), which can then be 
incorporated in other analyses such as predictive data mining projects, the application of 
unsupervised learning methods (clustering), etc. These methods are described and 
discussed in great detail in the comprehensive overview work by Manning and Schütze 
(2002), and for an in-depth treatment of these and related topics as well as the history of 
this approach to text mining, we highly recommend that source.  

Some Typical Applications for Text Mining  

Unstructured text is very common, and in fact may represent the majority of information 
available to a particular research or data mining project.  

Analyzing open-ended survey responses. In survey research (e.g., marketing), it is not 
uncommon to include various open-ended questions pertaining to the topic under 
investigation. The idea is to permit respondents to express their "views" or opinions 
without constraining them to particular dimensions or a particular response format. This 
may yield insights into customers' views and opinions that might otherwise not be 
discovered when relying solely on structured questionnaires designed by "experts." For 
example, you may discover a certain set of words or terms that are commonly used by 
respondents to describe the pro's and con's of a product or service (under investigation), 
suggesting common misconceptions or confusion regarding the items in the study.  
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Automatic processing of messages, emails, etc. Another common application for text 
mining is to aid in the automatic classification of texts. For example, it is possible to 
"filter" out automatically most undesirable "junk email" based on certain terms or words 
that are not likely to appear in legitimate messages, but instead identify undesirable 
electronic mail. In this manner, such messages can automatically be discarded. Such 
automatic systems for classifying electronic messages can also be useful in applications 
where messages need to be routed (automatically) to the most appropriate department or 
agency; e.g., email messages with complaints or petitions to a municipal authority are 
automatically routed to the appropriate departments; at the same time, the emails are 
screened for inappropriate or obscene messages, which are automatically returned to the 
sender with a request to remove the offending words or content.  

Analyzing warranty or insurance claims, diagnostic interviews, etc. In some business 
domains, the majority of information is collected in open-ended, textual form. For 
example, warranty claims or initial medical (patient) interviews can be summarized in 
brief narratives, or when you take your automobile to a service station for repairs, 
typically, the attendant will write some notes about the problems that you report and what 
you believe needs to be fixed. Increasingly, those notes are collected electronically, so 
those types of narratives are readily available for input into text mining algorithms. This 
information can then be usefully exploited to, for example, identify common clusters of 
problems and complaints on certain automobiles, etc. Likewise, in the medical field, 
open-ended descriptions by patients of their own symptoms might yield useful clues for 
the actual medical diagnosis.  

Investigating competitors by crawling their web sites. Another type of potentially very 
useful application is to automatically process the contents of Web pages in a particular 
domain. For example, you could go to a Web page, and begin "crawling" the links you 
find there to process all Web pages that are referenced. In this manner, you could 
automatically derive a list of terms and documents available at that site, and hence 
quickly determine the most important terms and features that are described. It is easy to 
see how these capabilities could efficiently deliver valuable business intelligence about 
the activities of competitors.  

Approaches to Text Mining  

To reiterate, text mining can be summarized as a process of "numericizing" text. At the 
simplest level, all words found in the input documents will be indexed and counted in 
order to compute a table of documents and words, i.e., a matrix of frequencies that 
enumerates the number of times that each word occurs in each document. This basic 
process can be further refined to exclude certain common words such as "the" and "a" 
(stop word lists) and to combine different grammatical forms of the same words such as 
"traveling," "traveled," "travel," etc. (stemming). However, once a table of (unique) 
words (terms) by documents has been derived, all standard statistical and data mining 
techniques can be applied to derive dimensions or clusters of words or documents, or to 
identify "important" words or terms that best predict another outcome variable of interest.  
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Using well-tested methods and understanding the results of text mining. Once a data 
matrix has been computed from the input documents and words found in those 
documents, various well-known analytic techniques can be used for further processing 
those data including methods for clustering, factoring, or predictive data mining (see, for 
example, Manning and Schütze, 2002).  

"Black-box" approaches to text mining and extraction of concepts. There are text 
mining applications which offer "black-box" methods to extract "deep meaning" from 
documents with little human effort (to first read and understand those documents). These 
text mining applications rely on proprietary algorithms for presumably extracting 
"concepts" from text, and may even claim to be able to summarize large numbers of text 
documents automatically, retaining the core and most important meaning of those 
documents. While there are numerous algorithmic approaches to extracting "meaning 
from documents," this type of technology is very much still in its infancy, and the 
aspiration to provide meaningful automated summaries of large numbers of documents 
may forever remain elusive. We urge skepticism when using such algorithms because 1) 
if it is not clear to the user how those algorithms work, it cannot possibly be clear how to 
interpret the results of those algorithms, and 2) the methods used in those programs are 
not open to scrutiny, for example by the academic community and peer review and, 
hence, one simply doesn't know how well they might perform in different domains. As a 
final thought on this subject, you may consider this concrete example: Try the various 
automated translation services available via the Web that can translate entire paragraphs 
of text from one language into another. Then translate some text, even simple text, from 
your native language to some other language and back, and review the results. Almost 
every time, the attempt to translate even short sentences to other languages and back 
while retaining the original meaning of the sentence produces humorous rather than 
accurate results. This illustrates the difficulty of automatically interpreting the meaning of 
text.  

Text mining as document search. There is another type of application that is often 
described and referred to as "text mining" - the automatic search of large numbers of 
documents based on key words or key phrases. This is the domain of, for example, the 
popular internet search engines that have been developed over the last decade to provide 
efficient access to Web pages with certain content. While this is obviously an important 
type of application with many uses in any organization that needs to search very large 
document repositories based on varying criteria, it is very different from what has been 
described here.  

Issues and Considerations for "Numericizing" Text  

Large numbers of small documents vs. small numbers of large documents. Examples 
of scenarios using large numbers of small or moderate sized documents were given 
earlier (e.g., analyzing warranty or insurance claims, diagnostic interviews, etc.). On the 
other hand, if your intent is to extract "concepts" from only a few documents that are very 
large (e.g., two lengthy books), then statistical analyses are generally less powerful 
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because the "number of cases" (documents) in this case is very small while the "number 
of variables" (extracted words) is very large.  

Excluding certain characters, short words, numbers, etc. Excluding numbers, certain 
characters, or sequences of characters, or words that are shorter or longer than a certain 
number of letters can be done before the indexing of the input documents starts. You may 
also want to exclude "rare words," defined as those that only occur in a small percentage 
of the processed documents.  

Include lists, exclude lists (stop-words). Specific list of words to be indexed can be 
defined; this is useful when you want to search explicitly for particular words, and 
classify the input documents based on the frequencies with which those words occur. 
Also, "stop-words," i.e., terms that are to be excluded from the indexing can be defined. 
Typically, a default list of English stop words includes "the", "a", "of", "since," etc, i.e., 
words that are used in the respective language very frequently, but communicate very 
little unique information about the contents of the document.  

Synonyms and phrases. Synonyms, such as "sick" or "ill", or words that are used in 
particular phrases where they denote unique meaning can be combined for indexing. For 
example, "Microsoft Windows" might be such a phrase, which is a specific reference to 
the computer operating system, but has nothing to do with the common use of the term 
"Windows" as it might, for example, be used in descriptions of home improvement 
projects.  

Stemming algorithms. An important pre-processing step before indexing of input 
documents begins is the stemming of words. The term "stemming" refers to the reduction 
of words to their roots so that, for example, different grammatical forms or declinations 
of verbs are identified and indexed (counted) as the same word. For example, stemming 
will ensure that both "traveling" and "traveled" will be recognized by the text mining 
program as the same word.  

Support for different languages. Stemming, synonyms, the letters that are permitted in 
words, etc. are highly language dependent operations. Therefore, support for different 
languages is important.  

Transforming Word Frequencies  

Once the input documents have been indexed and the initial word frequencies (by 
document) computed, a number of additional transformations can be performed to 
summarize and aggregate the information that was extracted.  

Log-frequencies. First, various transformations of the frequency counts can be 
performed. The raw word or term frequencies generally reflect on how salient or 
important a word is in each document. Specifically, words that occur with greater 
frequency in a document are better descriptors of the contents of that document. 
However, it is not reasonable to assume that the word counts themselves are proportional 
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to their importance as descriptors of the documents. For example, if a word occurs 1 time 
in document A, but 3 times in document B, then it is not necessarily reasonable to 
conclude that this word is 3 times as important a descriptor of document B as compared 
to document A. Thus, a common transformation of the raw word frequency counts (wf) is 
to compute:  

f(wf) = 1+ log(wf), for wf > 0  

This transformation will "dampen" the raw frequencies and how they will affect the 
results of subsequent computations.  

Binary frequencies. Likewise, an even simpler transformation can be used that 
enumerates whether a term is used in a document; i.e.:  

f(wf) = 1, for wf > 0  

The resulting documents-by-words matrix will contain only 1s and 0s to indicate the 
presence or absence of the respective words. Again, this transformation will dampen the 
effect of the raw frequency counts on subsequent computations and analyses.  

Inverse document frequencies. Another issue that you may want to consider more 
carefully and reflect in the indices used in further analyses are the relative document 
frequencies (df) of different words. For example, a term such as "guess" may occur 
frequently in all documents, while another term such as "software" may only occur in a 
few. The reason is that one might make "guesses" in various contexts, regardless of the 
specific topic, while "software" is a more semantically focused term that is only likely to 
occur in documents that deal with computer software. A common and very useful 
transformation that reflects both the specificity of words (document frequencies) as well 
as the overall frequencies of their occurrences (word frequencies) is the so-called inverse 
document frequency (for the i'th word and j'th document):  

 

In this formula (see also formula 15.5 in Manning and Schütze, 2002), N is the total 
number of documents, and dfi is the document frequency for the i 'th word (the number of 
documents that include this word). Hence, it can be seen that this formula includes both 
the dampening of the simple word frequencies via the log function (described above), and 
also includes a weighting factor that evaluates to 0 if the word occurs in all documents 
(log(N/N=1)=0), and to the maximum value when a word only occurs in a single 
document (log(N/1)=log(N)). It can easily be seen how this transformation will create 
indices that both reflect the relative frequencies of occurrences of words, as well as their 
semantic specificities over the documents included in the analysis.  
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Latent Semantic Indexing via Singular Value Decomposition  

As described above, the most basic result of the initial indexing of words found in the 
input documents is a frequency table with simple counts, i.e., the number of times that 
different words occur in each input document. Usually, one would transform those raw 
counts to indices that better reflect the (relative) "importance" of words and/or their 
semantic specificity in the context of the set of input documents (see the discussion of 
inverse document frequencies, above).  

A common analytic tool for interpreting the "meaning" or "semantic space" described by 
the words that were extracted, and hence by the documents that were analyzed, is to 
create a mapping of the word and documents into a common space, computed from the 
word frequencies or transformed word frequencies (e.g., inverse document frequencies). 
In general, here is how it works:  

Suppose you indexed a collection of customer reviews of their new automobiles (e.g., for 
different makes and models). You may find that every time a review includes the word 
"gas-mileage," it also includes the term "economy." Further, when reports include the 
word "reliability" they also include the term "defects" (e.g., make reference to "no 
defects"). However, there is no consistent pattern regarding the use of the terms 
"economy" and "reliability," i.e., some documents include either one or both. In other 
words, these four words "gas-mileage" and "economy," and "reliability" and "defects," 
describe two independent dimensions - the first having to do with the overall operating 
cost of the vehicle, the other with the quality and workmanship. The idea of latent 
semantic indexing is to identify such underlying dimensions (of "meaning"), into which 
the words and documents can be mapped. As a result, we may identify the underlying 
(latent) themes described or discussed in the input documents, and also identify the 
documents that mostly deal with economy, reliability, or both. Hence, we want to map 
the extracted words or terms and input documents into a common latent semantic space.  

Singular value decomposition. The use of singular value decomposition in order to 
extract a common space for the variables and cases (observations) is used in various 
statistical techniques, most notably in Correspondence Analysis. The technique is also 
closely related to Principal Components Analysis and Factor Analysis. In general, the 
purpose of this technique is to reduce the overall dimensionality of the input matrix 
(number of input documents by number of extracted words) to a lower-dimensional 
space, where each consecutive dimension represents the largest degree of variability 
(between words and documents) possible. Ideally, you might identify the two or three 
most salient dimensions, accounting for most of the variability (differences) between the 
words and documents and, hence, identify the latent semantic space that organizes the 
words and documents in the analysis. In some way, once such dimensions can be 
identified, you have extracted the underlying "meaning" of what is contained (discussed, 
described) in the documents.  

Incorporating Text Mining Results in Data Mining Projects  
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After significant (e.g., frequent) words have been extracted from a set of input 
documents, and/or after singular value decomposition has been applied to extract salient 
semantic dimensions, typically the next and most important step is to use the extracted 
information in a data mining project.  

Graphics (visual data mining methods). Depending on the purpose of the analyses, in 
some instances the extraction of semantic dimensions alone can be a useful outcome if it 
clarifies the underlying structure of what is contained in the input documents. For 
example, a study of new car owners' comments about their vehicles may uncover the 
salient dimensions in the minds of those drivers when they think about or consider their 
automobile (or how they "feel" about it). For marketing research purposes, that in itself 
can be a useful and significant result. You can use the graphics (e.g., 2D scatterplots or 
3D scatterplots) to help you visualize and identify the semantic space extracted from the 
input documents.  

Clustering and factoring. You can use cluster analysis methods to identify groups of 
documents (e.g., vehicle owners who described their new cars), to identify groups of 
similar input texts. This type of analysis also could be extremely useful in the context of 
market research studies, for example of new car owners. You can also use Factor 
Analysis and Principal Components and Classification Analysis (to factor analyze words 
or documents).  

Predictive data mining. Another possibility is to use the raw or transformed word counts 
as predictor variables in predictive data mining projects.  
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Chapter 40 

Time Series Analysis 
 

• General Introduction  
• Two Main Goals  
• Identifying Patterns in Time Series Data  

o Systematic pattern and random noise  
o Two general aspects of time series patterns  
o Trend Analysis  
o Analysis of Seasonality  

• ARIMA (Box & Jenkins) and Autocorrelations  
o General Introduction  
o Two Common Processes  
o ARIMA Methodology  
o Identification Phase  
o Parameter Estimation  
o Evaluation of the Model  

• Interrupted Time Series  
• Exponential Smoothing  

o General Introduction  
o Simple Exponential Smoothing  
o Choosing the Best Value for Parameter a (alpha)  
o Indices of Lack of Fit (Error)  
o Seasonal and Non-seasonal Models With or Without Trend  

• Seasonal Decomposition (Census I)  
o General Introduction  
o Computations  

• X-11 Census method II seasonal adjustment  
o Seasonal Adjustment: Basic Ideas and Terms  
o The Census II Method  
o Results Tables Computed by the X-11 Method  
o Specific Description of all Results Tables Computed by the X-11 Method  

• Distributed Lags Analysis  
o General Purpose  
o General Model  
o Almon Distributed Lag  

• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  

o General Introduction  
o Basic Notation and Principles  
o Results for Each Variable  
o The Cross-periodogram, Cross-density, Quadrature-density, and Cross-

amplitude  
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o Squared Coherency, Gain, and Phase Shift  
o How the Example Data were Created  

• Spectrum Analysis - Basic Notations and Principles  
o Frequency and Period  
o The General Structural Model  
o A Simple Example  
o Periodogram  
o The Problem of Leakage  
o Padding the Time Series  
o Tapering  
o Data Windows and Spectral Density Estimates  
o Preparing the Data for Analysis  
o Results when no Periodicity in the Series Exists  

• Fast Fourier Transformations  
o General Introduction  
o Computation of FFT in Time Series  

 
In the following topics, we will first review techniques used to identify patterns in time 
series data (such as smoothing and curve fitting techniques and autocorrelations), then we 
will introduce a general class of models that can be used to represent time series data and 
generate predictions (autoregressive and moving average models). Finally, we will 
review some simple but commonly used modeling and forecasting techniques based on 
linear regression. For more information on these topics, see the topic name below.  

   

General Introduction  

In the following topics, we will review techniques that are useful for analyzing time 
series data, that is, sequences of measurements that follow non-random orders. Unlike the 
analyses of random samples of observations that are discussed in the context of most 
other statistics, the analysis of time series is based on the assumption that successive 
values in the data file represent consecutive measurements taken at equally spaced time 
intervals.  

Detailed discussions of the methods described in this section can be found in Anderson 
(1976), Box and Jenkins (1976), Kendall (1984), Kendall and Ord (1990), Montgomery, 
Johnson, and Gardiner (1990), Pankratz (1983), Shumway (1988), Vandaele (1983), 
Walker (1991), and Wei (1989).  

   

Two Main Goals  
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There are two main goals of time series analysis: (a) identifying the nature of the 
phenomenon represented by the sequence of observations, and (b) forecasting (predicting 
future values of the time series variable). Both of these goals require that the pattern of 
observed time series data is identified and more or less formally described. Once the 
pattern is established, we can interpret and integrate it with other data (i.e., use it in our 
theory of the investigated phenomenon, e.g., sesonal commodity prices). Regardless of 
the depth of our understanding and the validity of our interpretation (theory) of the 
phenomenon, we can extrapolate the identified pattern to predict future events.  

 

 

 
Identifying Patterns in Time Series Data  

• Systematic pattern and random noise  
• Two general aspects of time series patterns  
• Trend Analysis  
• Analysis of Seasonality  

For more information on simple autocorrelations (introduced in this section) and other 
auto correlations, see Anderson (1976), Box and Jenkins (1976), Kendall (1984), 
Pankratz (1983), and Vandaele (1983). See also:  

• ARIMA (Box & Jenkins) and Autocorrelations  
• Interrupted Time Series  
• Exponential Smoothing  
• Seasonal Decomposition (Census I)  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Distributed Lags Analysis  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Basic Notations and Principles  
• Fast Fourier Transformations  

Systematic Pattern and Random Noise  

As in most other analyses, in time series analysis it is assumed that the data consist of a 
systematic pattern (usually a set of identifiable components) and random noise (error) 
which usually makes the pattern difficult to identify. Most time series analysis techniques 
involve some form of filtering out noise in order to make the pattern more salient.  

Two General Aspects of Time Series Patterns  
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Most time series patterns can be described in terms of two basic classes of components: 
trend and seasonality. The former represents a general systematic linear or (most often) 
nonlinear component that changes over time and does not repeat or at least does not 
repeat within the time range captured by our data (e.g., a plateau followed by a period of 
exponential growth). The latter may have a formally similar nature (e.g., a plateau 
followed by a period of exponential growth), however, it repeats itself in systematic 
intervals over time. Those two general classes of time series components may coexist in 
real-life data. For example, sales of a company can rapidly grow over years but they still 
follow consistent seasonal patterns (e.g., as much as 25% of yearly sales each year are 
made in December, whereas only 4% in August).  

 

This general pattern is well illustrated in a "classic" Series G data set (Box and Jenkins, 
1976, p. 531) representing monthly international airline passenger totals (measured in 
thousands) in twelve consecutive years from 1949 to 1960 (see example data file G.sta 
and graph above). If you plot the successive observations (months) of airline passenger 
totals, a clear, almost linear trend emerges, indicating that the airline industry enjoyed a 
steady growth over the years (approximately 4 times more passengers traveled in 1960 
than in 1949). At the same time, the monthly figures will follow an almost identical 
pattern each year (e.g., more people travel during holidays then during any other time of 
the year). This example data file also illustrates a very common general type of pattern in 
time series data, where the amplitude of the seasonal changes increases with the overall 
trend (i.e., the variance is correlated with the mean over the segments of the series). This 
pattern which is called multiplicative seasonality indicates that the relative amplitude of 
seasonal changes is constant over time, thus it is related to the trend.  

Trend Analysis  

There are no proven "automatic" techniques to identify trend components in the time 
series data; however, as long as the trend is monotonous (consistently increasing or 
decreasing) that part of data analysis is typically not very difficult. If the time series data 
contain considerable error, then the first step in the process of trend identification is 
smoothing.  



 592 

Smoothing. Smoothing always involves some form of local averaging of data such that 
the nonsystematic components of individual observations cancel each other out. The most 
common technique is moving average smoothing which replaces each element of the 
series by either the simple or weighted average of n surrounding elements, where n is the 
width of the smoothing "window" (see Box & Jenkins, 1976; Velleman & Hoaglin, 
1981). Medians can be used instead of means. The main advantage of median as 
compared to moving average smoothing is that its results are less biased by outliers 
(within the smoothing window). Thus, if there are outliers in the data (e.g., due to 
measurement errors), median smoothing typically produces smoother or at least more 
"reliable" curves than moving average based on the same window width. The main 
disadvantage of median smoothing is that in the absence of clear outliers it may produce 
more "jagged" curves than moving average and it does not allow for weighting.  

In the relatively less common cases (in time series data), when the measurement error is 
very large, the distance weighted least squares smoothing or negative exponentially 
weighted smoothing techniques can be used. All those methods will filter out the noise 
and convert the data into a smooth curve that is relatively unbiased by outliers (see the 
respective sections on each of those methods for more details). Series with relatively few 
and systematically distributed points can be smoothed with bicubic splines.  

Fitting a function. Many monotonous time series data can be adequately approximated 
by a linear function; if there is a clear monotonous nonlinear component, the data first 
need to be transformed to remove the nonlinearity. Usually a logarithmic, exponential, or 
(less often) polynomial function can be used.  

Analysis of Seasonality  

Seasonal dependency (seasonality) is another general component of the time series 
pattern. The concept was illustrated in the example of the airline passengers data above. It 
is formally defined as correlational dependency of order k between each i 'th element of 
the series and the (i-k)'th element (Kendall, 1976) and measured by autocorrelation (i.e., a 
correlation between the two terms); k is usually called the lag. If the measurement error is 
not too large, seasonality can be visually identified in the series as a pattern that repeats 
every k elements.  

Autocorrelation correlogram. Seasonal patterns of time series can be examined via 
correlograms. The correlogram (autocorrelogram) displays graphically and numerically 
the autocorrelation function (ACF), that is, serial correlation coefficients (and their 
standard errors) for consecutive lags in a specified range of lags (e.g., 1 through 30). 
Ranges of two standard errors for each lag are usually marked in correlograms but 
typically the size of auto correlation is of more interest than its reliability (see Elementary 
Concepts) because we are usually interested only in very strong (and thus highly 
significant) autocorrelations.  

Examining correlograms. While examining correlograms one should keep in mind that 
autocorrelations for consecutive lags are formally dependent. Consider the following 
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example. If the first element is closely related to the second, and the second to the third, 
then the first element must also be somewhat related to the third one, etc. This implies 
that the pattern of serial dependencies can change considerably after removing the first 
order auto correlation (i.e., after differencing the series with a lag of 1).  

 

Partial autocorrelations. Another useful method to examine serial dependencies is to 
examine the partial autocorrelation function (PACF) - an extension of autocorrelation, 
where the dependence on the intermediate elements (those within the lag) is removed. In 
other words the partial autocorrelation is similar to autocorrelation, except that when 
calculating it, the (auto) correlations with all the elements within the lag are partialled out 
(Box & Jenkins, 1976; see also McDowall, McCleary, Meidinger, & Hay, 1980). If a lag 
of 1 is specified (i.e., there are no intermediate elements within the lag), then the partial 
autocorrelation is equivalent to auto correlation. In a sense, the partial autocorrelation 
provides a "cleaner" picture of serial dependencies for individual lags (not confounded by 
other serial dependencies).  

Removing serial dependency. Serial dependency for a particular lag of k can be 
removed by differencing the series, that is converting each i 'th element of the series into 
its difference from the (i-k)''th element. There are two major reasons for such 
transformations.  
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First, one can identify the hidden nature of seasonal dependencies in the series. 
Remember that, as mentioned in the previous paragraph, autocorrelations for consecutive 
lags are interdependent. Therefore, removing some of the autocorrelations will change 
other auto correlations, that is, it may eliminate them or it may make some other 
seasonalities more apparent.  

The other reason for removing seasonal dependencies is to make the series stationary 
which is necessary for ARIMA  and other techniques.  

 

 

 
ARIMA   

• General Introduction  
• Two Common Processes  
• ARIMA Methodology  
• Identification Phase  
• Parameter Estimation  
• Evaluation of the Model  

For more information on Time Series methods, see also:  

�  Identifying Patterns in Time Series Data  
�  Interrupted Time Series  
�  Exponential Smoothing  
�  Seasonal Decomposition (Census I)  
�  X-11 Census method II seasonal adjustment  
�  X-11 Census method II result tables  
�  Distributed Lags Analysis  
�  Single Spectrum (Fourier) Analysis  
�  Cross-spectrum Analysis  
�  Basic Notations and Principles  
�  Fast Fourier Transformations  

General Introduction  

The modeling and forecasting procedures discussed in the Identifying Patterns in Time 
Series Data, involved knowledge about the mathematical model of the process. However, 
in real-life research and practice, patterns of the data are unclear, individual observations 
involve considerable error, and we still need not only to uncover the hidden patterns in 
the data but also generate forecasts. The ARIMA methodology developed by Box and 
Jenkins (1976) allows us to do just that; it has gained enormous popularity in many areas 
and research practice confirms its power and flexibility (Hoff, 1983; Pankratz, 1983; 

  



 595 

Vandaele, 1983). However, because of its power and flexibility, ARIMA is a complex 
technique; it is not easy to use, it requires a great deal of experience, and although it often 
produces satisfactory results, those results depend on the researcher's level of expertise 
(Bails & Peppers, 1982). The following sections will introduce the basic ideas of this 
methodology. For those interested in a brief, applications-oriented (non- mathematical), 
introduction to ARIMA methods, we recommend McDowall, McCleary, Meidinger, and 
Hay (1980).  

Two Common Processes  

Autoregressive process. Most time series consist of elements that are serially dependent 
in the sense that one can estimate a coefficient or a set of coefficients that describe 
consecutive elements of the series from specific, time-lagged (previous) elements. This 
can be summarized in the equation:  

xt = + 1*x (t-1) + 2*x (t-2) + 3*x (t-3) + ... +  

Where: 
                 is a constant (intercept), and 
 1, 2, 3   are the autoregressive model parameters.  

Put in words, each observation is made up of a random error component (random shock, 
) and a linear combination of prior observations.  

Stationarity requirement. Note that an autoregressive process will only be stable if the 
parameters are within a certain range; for example, if there is only one autoregressive 
parameter then is must fall within the interval of -1 < < 1. Otherwise, past effects would 
accumulate and the values of successive xt' s would move towards infinity, that is, the 
series would not be stationary. If there is more than one autoregressive parameter, similar 
(general) restrictions on the parameter values can be defined (e.g., see Box & Jenkins, 
1976; Montgomery, 1990).  

Moving average process. Independent from the autoregressive process, each element in 
the series can also be affected by the past error (or random shock) that cannot be 
accounted for by the autoregressive component, that is:  

xt = µ + t - 1* (t-1) - 2* (t-2) - 3* (t-3) - ...  

Where: 
 µ                is a constant, and 
 1, 2, 3  are the moving average model parameters.  

Put in words, each observation is made up of a random error component (random shock, 
) and a linear combination of prior random shocks.  
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Invertibility requirement. Without going into too much detail, there is a "duality" 
between the moving average process and the autoregressive process (e.g., see Box & 
Jenkins, 1976; Montgomery, Johnson, & Gardiner, 1990), that is, the moving average 
equation above can be rewritten (inverted) into an autoregressive form (of infinite order). 
However, analogous to the stationarity condition described above, this can only be done 
if the moving average parameters follow certain conditions, that is, if the model is 
invertible. Otherwise, the series will not be stationary.  

ARIMA Methodology  

Autoregressive moving average model. The general model introduced by Box and 
Jenkins (1976) includes autoregressive as well as moving average parameters, and 
explicitly includes differencing in the formulation of the model. Specifically, the three 
types of parameters in the model are: the autoregressive parameters (p), the number of 
differencing passes (d), and moving average parameters (q). In the notation introduced by 
Box and Jenkins, models are summarized as ARIMA (p, d, q); so, for example, a model 
described as (0, 1, 2) means that it contains 0 (zero) autoregressive (p) parameters and 2 
moving average (q) parameters which were computed for the series after it was 
differenced once.  

Identification. As mentioned earlier, the input series for ARIMA needs to be stationary, 
that is, it should have a constant mean, variance, and autocorrelation through time. 
Therefore, usually the series first needs to be differenced until it is stationary (this also 
often requires log transforming the data to stabilize the variance). The number of times 
the series needs to be differenced to achieve stationarity is reflected in the d parameter 
(see the previous paragraph). In order to determine the necessary level of differencing, 
one should examine the plot of the data and autocorrelogram. Significant changes in level 
(strong upward or downward changes) usually require first order non seasonal (lag=1) 
differencing; strong changes of slope usually require second order non seasonal 
differencing. Seasonal patterns require respective seasonal differencing (see below). If 
the estimated autocorrelation coefficients decline slowly at longer lags, first order 
differencing is usually needed. However, one should keep in mind that some time series 
may require little or no differencing, and that over differenced series produce less stable 
coefficient estimates.  

At this stage (which is usually called Identification phase, see below) we also need to 
decide how many autoregressive (p) and moving average (q) parameters are necessary to 
yield an effective but still parsimonious model of the process (parsimonious means that it 
has the fewest parameters and greatest number of degrees of freedom among all models 
that fit the data). In practice, the numbers of the p or q parameters very rarely need to be 
greater than 2 (see below for more specific recommendations).  

Estimation and Forecasting. At the next step (Estimation), the parameters are estimated 
(using function minimization procedures, see below; for more information on 
minimization procedures see also Nonlinear Estimation), so that the sum of squared 
residuals is minimized. The estimates of the parameters are used in the last stage 
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(Forecasting) to calculate new values of the series (beyond those included in the input 
data set) and confidence intervals for those predicted values. The estimation process is 
performed on transformed (differenced) data; before the forecasts are generated, the 
series needs to be integrated (integration is the inverse of differencing) so that the 
forecasts are expressed in values compatible with the input data. This automatic 
integration feature is represented by the letter I in the name of the methodology (ARIMA 
= Auto-Regressive Integrated Moving Average).  

The constant in ARIMA models. In addition to the standard autoregressive and moving 
average parameters, ARIMA models may also include a constant, as described above. 
The interpretation of a (statistically significant) constant depends on the model that is fit. 
Specifically, (1) if there are no autoregressive parameters in the model, then the expected 

value of the constant is , the mean of the series; (2) if there are autoregressive 
parameters in the series, then the constant represents the intercept. If the series is 
differenced, then the constant represents the mean or intercept of the differenced series; 
For example, if the series is differenced once, and there are no autoregressive parameters 
in the model, then the constant represents the mean of the differenced series, and 
therefore the linear trend slope of the un-differenced series.  

Identification  

Number of parameters to be estimated. Before the estimation can begin, we need to 
decide on (identify) the specific number and type of ARIMA parameters to be estimated. 
The major tools used in the identification phase are plots of the series, correlograms of 
auto correlation (ACF), and partial autocorrelation (PACF). The decision is not 
straightforward and in less typical cases requires not only experience but also a good deal 
of experimentation with alternative models (as well as the technical parameters of 
ARIMA). However, a majority of empirical time series patterns can be sufficiently 
approximated using one of the 5 basic models that can be identified based on the shape of 
the autocorrelogram (ACF) and partial auto correlogram (PACF). The following brief 
summary is based on practical recommendations of Pankratz (1983); for additional 
practical advice, see also Hoff (1983), McCleary and Hay (1980), McDowall, McCleary, 
Meidinger, and Hay (1980), and Vandaele (1983). Also, note that since the number of 
parameters (to be estimated) of each kind is almost never greater than 2, it is often 
practical to try alternative models on the same data.  

1. One autoregressive (p) parameter: ACF - exponential decay; PACF - spike at lag 
1, no correlation for other lags.  

2. Two autoregressive (p) parameters: ACF - a sine-wave shape pattern or a set of 
exponential decays; PACF - spikes at lags 1 and 2, no correlation for other lags.  

3. One moving average (q) parameter: ACF - spike at lag 1, no correlation for other 
lags; PACF - damps out exponentially.  

4. Two moving average (q) parameters: ACF - spikes at lags 1 and 2, no correlation 
for other lags; PACF - a sine-wave shape pattern or a set of exponential decays.  

5. One autoregressive (p) and one moving average (q) parameter: ACF - 
exponential decay starting at lag 1; PACF - exponential decay starting at lag 1.  
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Seasonal models. Multiplicative seasonal ARIMA is a generalization and extension of 
the method introduced in the previous paragraphs to series in which a pattern repeats 
seasonally over time. In addition to the non-seasonal parameters, seasonal parameters for 
a specified lag (established in the identification phase) need to be estimated. Analogous 
to the simple ARIMA parameters, these are: seasonal autoregressive (ps), seasonal 
differencing (ds), and seasonal moving average parameters (qs). For example, the model 
(0,1,2)(0,1,1) describes a model that includes no autoregressive parameters, 2 regular 
moving average parameters and 1 seasonal moving average parameter, and these 
parameters were computed for the series after it was differenced once with lag 1, and 
once seasonally differenced. The seasonal lag used for the seasonal parameters is usually 
determined during the identification phase and must be explicitly specified.  

The general recommendations concerning the selection of parameters to be estimated 
(based on ACF and PACF) also apply to seasonal models. The main difference is that in 
seasonal series, ACF and PACF will show sizable coefficients at multiples of the 
seasonal lag (in addition to their overall patterns reflecting the non seasonal components 
of the series).  

Parameter Estimation  

There are several different methods for estimating the parameters. All of them should 
produce very similar estimates, but may be more or less efficient for any given model. In 
general, during the parameter estimation phase a function minimization algorithm is used 
(the so-called quasi-Newton method; refer to the description of the Nonlinear 
Estimationmethod) to maximize the likelihood (probability) of the observed series, given 
the parameter values. In practice, this requires the calculation of the (conditional) sums of 
squares (SS) of the residuals, given the respective parameters. Different methods have 
been proposed to compute the SS for the residuals: (1) the approximate maximum 
likelihood method according to McLeod and Sales (1983), (2) the approximate maximum 
likelihood method with backcasting, and (3) the exact maximum likelihood method 
according to Melard (1984).  

Comparison of methods. In general, all methods should yield very similar parameter 
estimates. Also, all methods are about equally efficient in most real-world time series 
applications. However, method 1 above, (approximate maximum likelihood, no 
backcasts) is the fastest, and should be used in particular for very long time series (e.g., 
with more than 30,000 observations). Melard's exact maximum likelihood method 
(number 3 above) may also become inefficient when used to estimate parameters for 
seasonal models with long seasonal lags (e.g., with yearly lags of 365 days). On the other 
hand, you should always use the approximate maximum likelihood method first in order 
to establish initial parameter estimates that are very close to the actual final values; thus, 
usually only a few iterations with the exact maximum likelihood method (3, above) are 
necessary to finalize the parameter estimates.  

Parameter standard errors. For all parameter estimates, you will compute so-called 
asymptotic standard errors. These are computed from the matrix of second-order partial 
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derivatives that is approximated via finite differencing (see also the respective discussion 
in Nonlinear Estimation).  

Penalty value. As mentioned above, the estimation procedure requires that the 
(conditional) sums of squares of the ARIMA residuals be minimized. If the model is 
inappropriate, it may happen during the iterative estimation process that the parameter 
estimates become very large, and, in fact, invalid. In that case, it will assign a very large 
value (a so-called penalty value) to the SS. This usually "entices" the iteration process to 
move the parameters away from invalid ranges. However, in some cases even this 
strategy fails, and you may see on the screen (during the Estimation procedure) very 
large values for the SS in consecutive iterations. In that case, carefully evaluate the 
appropriateness of your model. If your model contains many parameters, and perhaps an 
intervention component (see below), you may try again with different parameter start 
values.  

Evaluation of the Model  

Parameter estimates. You will report approximate t values, computed from the 
parameter standard errors (see above). If not significant, the respective parameter can in 
most cases be dropped from the model without affecting substantially the overall fit of 
the model.  

Other quality criteria. Another straightforward and common measure of the reliability 
of the model is the accuracy of its forecasts generated based on partial data so that the 
forecasts can be compared with known (original) observations.  

 

However, a good model should not only provide sufficiently accurate forecasts, it should 
also be parsimonious and produce statistically independent residuals that contain only 
noise and no systematic components (e.g., the correlogram of residuals should not reveal 
any serial dependencies). A good test of the model is (a) to plot the residuals and inspect 
them for any systematic trends, and (b) to examine the autocorrelogram of residuals 
(there should be no serial dependency between residuals).  
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Analysis of residuals. The major concern here is that the residuals are systematically 
distributed across the series (e.g., they could be negative in the first part of the series and 
approach zero in the second part) or that they contain some serial dependency which may 
suggest that the ARIMA model is inadequate. The analysis of ARIMA residuals 
constitutes an important test of the model. The estimation procedure assumes that the 
residual are not (auto-) correlated and that they are normally distributed.  

Limitations. The ARIMA method is appropriate only for a time series that is stationary 
(i.e., its mean, variance, and autocorrelation should be approximately constant through 
time) and it is recommended that there are at least 50 observations in the input data. It is 
also assumed that the values of the estimated parameters are constant throughout the 
series.  

Interrupted Time Series ARIMA  

A common research questions in time series analysis is whether an outside event affected 
subsequent observations. For example, did the implementation of a new economic policy 
improve economic performance; did a new anti-crime law affect subsequent crime rates; 
and so on. In general, we would like to evaluate the impact of one or more discrete events 
on the values in the time series. This type of interrupted time series analysis is described 
in detail in McDowall, McCleary, Meidinger, & Hay (1980). McDowall, et. al., 
distinguish between three major types of impacts that are possible: (1) permanent abrupt, 
(2) permanent gradual, and (3) abrupt temporary. See also:  

• Identifying Patterns in Time Series Data  
• ARIMA   
• Exponential Smoothing  
• Seasonal Decomposition (Census I)  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Distributed Lags Analysis  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Basic Notations and Principles  
• Fast Fourier Transformations  

 

 
 

Exponential Smoothing  

• General Introduction  
• Simple Exponential Smoothing  
• Choosing the Best Value for Parameter a (alpha)  
• Indices of Lack of Fit (Error)  
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• Seasonal and Non-seasonal Models With or Without Trend  

See also:  

• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations  
• Interrupted Time Series  
• Seasonal Decomposition (Census I)  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Distributed Lags Analysis  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Basic Notations and Principles  
• Fast Fourier Transformations  

General Introduction  

Exponential smoothing has become very popular as a forecasting method for a wide 
variety of time series data. Historically, the method was independently developed by 
Brown and Holt. Brown worked for the US Navy during World War II, where his 
assignment was to design a tracking system for fire-control information to compute the 
location of submarines. Later, he applied this technique to the forecasting of demand for 
spare parts (an inventory control problem). He described those ideas in his 1959 book on 
inventory control. Holt's research was sponsored by the Office of Naval Research; 
independently, he developed exponential smoothing models for constant processes, 
processes with linear trends, and for seasonal data.  

Gardner (1985) proposed a "unified" classification of exponential smoothing methods. 
Excellent introductions can also be found in Makridakis, Wheelwright, and McGee 
(1983), Makridakis and Wheelwright (1989), Montgomery, Johnson, & Gardiner (1990).  

Simple Exponential Smoothing  

A simple and pragmatic model for a time series would be to consider each observation as 
consisting of a constant (b) and an error component (epsilon), that is: Xt = b + t. The 
constant b is relatively stable in each segment of the series, but may change slowly over 
time. If appropriate, then one way to isolate the true value of b, and thus the systematic or 
predictable part of the series, is to compute a kind of moving average, where the current 
and immediately preceding ("younger") observations are assigned greater weight than the 
respective older observations. Simple exponential smoothing accomplishes exactly such 
weighting, where exponentially smaller weights are assigned to older observations. The 
specific formula for simple exponential smoothing is:  

St = *X t + (1- )*St-1  
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When applied recursively to each successive observation in the series, each new 
smoothed value (forecast) is computed as the weighted average of the current observation 
and the previous smoothed observation; the previous smoothed observation was 
computed in turn from the previous observed value and the smoothed value before the 
previous observation, and so on. Thus, in effect, each smoothed value is the weighted 
average of the previous observations, where the weights decrease exponentially 
depending on the value of parameter (alpha). If is equal to 1 (one) then the previous 
observations are ignored entirely; if is equal to 0 (zero), then the current observation is 
ignored entirely, and the smoothed value consists entirely of the previous smoothed value 
(which in turn is computed from the smoothed observation before it, and so on; thus all 
smoothed values will be equal to the initial smoothed value S0). Values of in-between 
will produce intermediate results.  

Even though significant work has been done to study the theoretical properties of (simple 
and complex) exponential smoothing (e.g., see Gardner, 1985; Muth, 1960; see also 
McKenzie, 1984, 1985), the method has gained popularity mostly because of its 
usefulness as a forecasting tool. For example, empirical research by Makridakis et al. 
(1982, Makridakis, 1983), has shown simple exponential smoothing to be the best choice 
for one-period-ahead forecasting, from among 24 other time series methods and using a 
variety of accuracy measures (see also Gross and Craig, 1974, for additional empirical 
evidence). Thus, regardless of the theoretical model for the process underlying the 
observed time series, simple exponential smoothing will often produce quite accurate 
forecasts.  

Choosing the Best Value for Parameter (alpha)  

Gardner (1985) discusses various theoretical and empirical arguments for selecting an 
appropriate smoothing parameter. Obviously, looking at the formula presented above, 
should fall into the interval between 0 (zero) and 1 (although, see Brenner et al., 1968, for 
an ARIMA  perspective, implying 0< <2). Gardner (1985) reports that among 
practitioners, an smaller than .30 is usually recommended. However, in the study by 
Makridakis et al. (1982), values above .30 frequently yielded the best forecasts. After 
reviewing the literature on this topic, Gardner (1985) concludes that it is best to estimate 
an optimum from the data (see below), rather than to "guess" and set an artificially low 
value.  

Estimating the best value from the data. In practice, the smoothing parameter is 
often chosen by a grid search of the parameter space; that is, different solutions for are 
tried starting, for example, with = 0.1 to = 0.9, with increments of 0.1. Then is 
chosen so as to produce the smallest sums of squares (or mean squares) for the residuals 
(i.e., observed values minus one-step-ahead forecasts; this mean squared error is also 
referred to as ex post mean squared error, ex post MSE for short).  

Indices of Lack of Fit (Error)  
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The most straightforward way of evaluating the accuracy of the forecasts based on a 
particular value is to simply plot the observed values and the one-step-ahead forecasts. 
This plot can also include the residuals (scaled against the right Y-axis), so that regions of 
better or worst fit can also easily be identified.  

 

This visual check of the accuracy of forecasts is often the most powerful method for 
determining whether or not the current exponential smoothing model fits the data. In 
addition, besides the ex post MSE criterion (see previous paragraph), there are other 
statistical measures of error that can be used to determine the optimum parameter (see 
Makridakis, Wheelwright, and McGee, 1983):  

Mean error: The mean error (ME) value is simply computed as the average error value 
(average of observed minus one-step-ahead forecast). Obviously, a drawback of this 
measure is that positive and negative error values can cancel each other out, so this 
measure is not a very good indicator of overall fit.  

Mean absolute error: The mean absolute error (MAE) value is computed as the average 
absolute error value. If this value is 0 (zero), the fit (forecast) is perfect. As compared to 
the mean squared error value, this measure of fit will "de-emphasize" outliers, that is, 
unique or rare large error values will affect the MAE less than the MSE value.  

Sum of squared error (SSE), Mean squared error. These values are computed as the 
sum (or average) of the squared error values. This is the most commonly used lack-of-fit 
indicator in statistical fitting procedures.  

Percentage error (PE). All the above measures rely on the actual error value. It may 
seem reasonable to rather express the lack of fit in terms of the relative deviation of the 
one-step-ahead forecasts from the observed values, that is, relative to the magnitude of 
the observed values. For example, when trying to predict monthly sales that may 
fluctuate widely (e.g., seasonally) from month to month, we may be satisfied if our 
prediction "hits the target" with about ±10% accuracy. In other words, the absolute errors 
may be not so much of interest as are the relative errors in the forecasts. To assess the 
relative error, various indices have been proposed (see Makridakis, Wheelwright, and 
McGee, 1983). The first one, the percentage error value, is computed as:  
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PEt = 100*(Xt - Ft )/Xt  

where Xt is the observed value at time t, and Ft is the forecasts (smoothed values).  

Mean percentage error (MPE). This value is computed as the average of the PE values.  

Mean absolute percentage error (MAPE). As is the case with the mean error value 
(ME, see above), a mean percentage error near 0 (zero) can be produced by large positive 
and negative percentage errors that cancel each other out. Thus, a better measure of 
relative overall fit is the mean absolute percentage error. Also, this measure is usually 
more meaningful than the mean squared error. For example, knowing that the average 
forecast is "off" by ±5% is a useful result in and of itself, whereas a mean squared error 
of 30.8 is not immediately interpretable.  

Automatic search for best parameter. A quasi-Newton function minimization 
procedure (the same as in ARIMA  is used to minimize either the mean squared error, 
mean absolute error, or mean absolute percentage error. In most cases, this procedure is 
more efficient than the grid search (particularly when more than one parameter must be 
determined), and the optimum parameter can quickly be identified.  

The first smoothed value S0. A final issue that we have neglected up to this point is the 
problem of the initial value, or how to start the smoothing process. If you look back at the 
formula above, it is evident that one needs an S0 value in order to compute the smoothed 
value (forecast) for the first observation in the series. Depending on the choice of the 
parameter (i.e., when is close to zero), the initial value for the smoothing process can 
affect the quality of the forecasts for many observations. As with most other aspects of 
exponential smoothing it is recommended to choose the initial value that produces the 
best forecasts. On the other hand, in practice, when there are many leading observations 
prior to a crucial actual forecast, the initial value will not affect that forecast by much, 
since its effect will have long "faded" from the smoothed series (due to the exponentially 
decreasing weights, the older an observation the less it will influence the forecast).  

Seasonal and Non-seasonal Models With or Without Trend  

The discussion above in the context of simple exponential smoothing introduced the basic 
procedure for identifying a smoothing parameter, and for evaluating the goodness-of-fit 
of a model. In addition to simple exponential smoothing, more complex models have 
been developed to accommodate time series with seasonal and trend components. The 
general idea here is that forecasts are not only computed from consecutive previous 
observations (as in simple exponential smoothing), but an independent (smoothed) trend 
and seasonal component can be added. Gardner (1985) discusses the different models in 
terms of seasonality (none, additive, or multiplicative) and trend (none, linear, 
exponential, or damped).  

Additive and multiplicative seasonality. Many time series data follow recurring 
seasonal patterns. For example, annual sales of toys will probably peak in the months of 
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November and December, and perhaps during the summer (with a much smaller peak) 
when children are on their summer break. This pattern will likely repeat every year, 
however, the relative amount of increase in sales during December may slowly change 
from year to year. Thus, it may be useful to smooth the seasonal component 
independently with an extra parameter, usually denoted as (delta). Seasonal 
components can be additive in nature or multiplicative. For example, during the month of 
December the sales for a particular toy may increase by 1 million dollars every year. 
Thus, we could add to our forecasts for every December the amount of 1 million dollars 
(over the respective annual average) to account for this seasonal fluctuation. In this case, 
the seasonality is additive. Alternatively, during the month of December the sales for a 
particular toy may increase by 40%, that is, increase by a factor of 1.4. Thus, when the 
sales for the toy are generally weak, than the absolute (dollar) increase in sales during 
December will be relatively weak (but the percentage will be constant); if the sales of the 
toy are strong, than the absolute (dollar) increase in sales will be proportionately greater. 
Again, in this case the sales increase by a certain factor, and the seasonal component is 
thus multiplicative in nature (i.e., the multiplicative seasonal component in this case 
would be 1.4). In plots of the series, the distinguishing characteristic between these two 
types of seasonal components is that in the additive case, the series shows steady seasonal 
fluctuations, regardless of the overall level of the series; in the multiplicative case, the 
size of the seasonal fluctuations vary, depending on the overall level of the series.  

The seasonal smoothing parameter . In general the one-step-ahead forecasts are 
computed as (for no trend models, for linear and exponential trend models a trend 
component is added to the model; see below):  

Additive model:  

Forecastt = St + It-p  

Multiplicative model:  

Forecastt = St*I t-p  

In this formula, St stands for the (simple) exponentially smoothed value of the series at 
time t, and It-p stands for the smoothed seasonal factor at time t minus p (the length of the 
season). Thus, compared to simple exponential smoothing, the forecast is "enhanced" by 
adding or multiplying the simple smoothed value by the predicted seasonal component. 
This seasonal component is derived analogous to the St value from simple exponential 
smoothing as:  

Additive model:  

It = It-p + *(1- )*et  

Multiplicative model:  
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It = It-p + *(1- )*et/St  

Put in words, the predicted seasonal component at time t is computed as the respective 
seasonal component in the last seasonal cycle plus a portion of the error (et; the observed 
minus the forecast value at time t). Considering the formulas above, it is clear that 
parameter can assume values between 0 and 1. If it is zero, then the seasonal 
component for a particular point in time is predicted to be identical to the predicted 
seasonal component for the respective time during the previous seasonal cycle, which in 
turn is predicted to be identical to that from the previous cycle, and so on. Thus, if is 
zero, a constant unchanging seasonal component is used to generate the one-step-ahead 
forecasts. If the parameter is equal to 1, then the seasonal component is modified 
"maximally" at every step by the respective forecast error (times (1- ), which we will 
ignore for the purpose of this brief introduction). In most cases, when seasonality is 
present in the time series, the optimum parameter will fall somewhere between 0 (zero) 
and 1(one).  

Linear, exponential, and damped trend. To remain with the toy example above, the 
sales for a toy can show a linear upward trend (e.g., each year, sales increase by 1 million 
dollars), exponential growth (e.g., each year, sales increase by a factor of 1.3), or a 
damped trend (during the first year sales increase by 1 million dollars; during the second 
year the increase is only 80% over the previous year, i.e., $800,000; during the next year 
it is again 80% less than the previous year, i.e., $800,000 * .8 = $640,000; etc.). Each 
type of trend leaves a clear "signature" that can usually be identified in the series; shown 
below in the brief discussion of the different models are icons that illustrate the general 
patterns. In general, the trend factor may change slowly over time, and, again, it may 

make sense to smooth the trend component with a separate parameter (denoted 

[gamma] for linear and exponential trend models, and [phi] for damped trend models).  

The trend smoothing parameters (linear and exponential trend) and (damped 
trend). Analogous to the seasonal component, when a trend component is included in the 
exponential smoothing process, an independent trend component is computed for each 
time, and modified as a function of the forecast error and the respective parameter. If the 

parameter is 0 (zero), than the trend component is constant across all values of the time 
series (and for all forecasts). If the parameter is 1, then the trend component is modified 
"maximally" from observation to observation by the respective forecast error. Parameter 

values that fall in-between represent mixtures of those two extremes. Parameter is a 
trend modification parameter, and affects how strongly changes in the trend will affect 
estimates of the trend for subsequent forecasts, that is, how quickly the trend will be 
"damped" or increased.  
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Classical Seasonal Decomposition (Census Method 1)  

• General Introduction  
• Computations  

See also:  

• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations  
• Interrupted Time Series  
• Exponential Smoothing  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Distributed Lags Analysis  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Basic Notations and Principles  
• Fast Fourier Transformations  

General Introduction  

Suppose you recorded the monthly passenger load on international flights for a period of 
12 years ( see Box & Jenkins, 1976). If you plot those data, it is apparent that (1) there 
appears to be a linear upwards trend in the passenger loads over the years, and (2) there is 
a recurring pattern or seasonality within each year (i.e., most travel occurs during the 
summer months, and a minor peak occurs during the December holidays). The purpose of 
the seasonal decomposition method is to isolate those components, that is, to de-compose 
the series into the trend effect, seasonal effects, and remaining variability. The "classic" 
technique designed to accomplish this decomposition is known as the Census I method. 
This technique is described and discussed in detail in Makridakis, Wheelwright, and 
McGee (1983), and Makridakis and Wheelwright (1989).  

General model. The general idea of seasonal decomposition is straightforward. In 
general, a time series like the one described above can be thought of as consisting of four 
different components: (1) A seasonal component (denoted as St, where t stands for the 
particular point in time) (2) a trend component (Tt), (3) a cyclical component (Ct), and (4) 
a random, error, or irregular component (It). The difference between a cyclical and a 
seasonal component is that the latter occurs at regular (seasonal) intervals, while cyclical 
factors have usually a longer duration that varies from cycle to cycle. In the Census I 
method, the trend and cyclical components are customarily combined into a trend-cycle 
component (TCt). The specific functional relationship between these components can 
assume different forms. However, two straightforward possibilities are that they combine 
in an additive or a multiplicative fashion:  

Additive model:  
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Xt = TCt + St + It  

Multiplicative model:  

Xt = Tt*C t*St*I t  

Here Xt stands for the observed value of the time series at time t. Given some a priori 
knowledge about the cyclical factors affecting the series (e.g., business cycles), the 
estimates for the different components can be used to compute forecasts for future 
observations. (However, the Exponential smoothing method, which can also incorporate 
seasonality and trend components, is the preferred technique for forecasting purposes.)  

Additive and multiplicative seasonality. Let us consider the difference between an 
additive and multiplicative seasonal component in an example: The annual sales of toys 
will probably peak in the months of November and December, and perhaps during the 
summer (with a much smaller peak) when children are on their summer break. This 
seasonal pattern will likely repeat every year. Seasonal components can be additive or 
multiplicative in nature. For example, during the month of December the sales for a 
particular toy may increase by 3 million dollars every year. Thus, we could add to our 
forecasts for every December the amount of 3 million to account for this seasonal 
fluctuation. In this case, the seasonality is additive. Alternatively, during the month of 
December the sales for a particular toy may increase by 40%, that is, increase by a factor 
of 1.4. Thus, when the sales for the toy are generally weak, then the absolute (dollar) 
increase in sales during December will be relatively weak (but the percentage will be 
constant); if the sales of the toy are strong, then the absolute (dollar) increase in sales will 
be proportionately greater. Again, in this case the sales increase by a certain factor, and 
the seasonal component is thus multiplicative in nature (i.e., the multiplicative seasonal 
component in this case would be 1.4). In plots of series, the distinguishing characteristic 
between these two types of seasonal components is that in the additive case, the series 
shows steady seasonal fluctuations, regardless of the overall level of the series; in the 
multiplicative case, the size of the seasonal fluctuations vary, depending on the overall 
level of the series.  

Additive and multiplicative trend-cycle. We can extend the previous example to 
illustrate the additive and multiplicative trend-cycle components. In terms of our toy 
example, a "fashion" trend may produce a steady increase in sales (e.g., a trend towards 
more educational toys in general); as with the seasonal component, this trend may be 
additive (sales increase by 3 million dollars per year) or multiplicative (sales increase by 
30%, or by a factor of 1.3, annually) in nature. In addition, cyclical components may 
impact sales; to reiterate, a cyclical component is different from a seasonal component in 
that it usually is of longer duration, and that it occurs at irregular intervals. For example, 
a particular toy may be particularly "hot" during a summer season (e.g., a particular doll 
which is tied to the release of a major children's movie, and is promoted with extensive 
advertising). Again such a cyclical component can effect sales in an additive manner or 
multiplicative manner.  
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Computations  

The Seasonal Decomposition (Census I) standard formulas are shown in Makridakis, 
Wheelwright, and McGee (1983), and Makridakis and Wheelwright (1989).  

 

Moving average. First a moving average is computed for the series, with the moving 
average window width equal to the length of one season. If the length of the season is 
even, then the user can choose to use either equal weights for the moving average or 
unequal weights can be used, where the first and last observation in the moving average 
window are averaged.  

Ratios or differences. In the moving average series, all seasonal (within-season) 
variability will be eliminated; thus, the differences (in additive models) or ratios (in 
multiplicative models) of the observed and smoothed series will isolate the seasonal 
component (plus irregular component). Specifically, the moving average is subtracted 
from the observed series (for additive models) or the observed series is divided by the 
moving average values (for multiplicative models).  

Seasonal components. The seasonal component is then computed as the average (for 
additive models) or medial average (for multiplicative models) for each point in the 
season.  
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(The medial average of a set of values is the mean after the smallest and largest values 
are excluded). The resulting values represent the (average) seasonal component of the 
series.  

Seasonally adjusted series. The original series can be adjusted by subtracting from it 
(additive models) or dividing it by (multiplicative models) the seasonal component.  

 

The resulting series is the seasonally adjusted series (i.e., the seasonal component will be 
removed).  

Trend-cycle component. Remember that the cyclical component is different from the 
seasonal component in that it is usually longer than one season, and different cycles can 
be of different lengths. The combined trend and cyclical component can be approximated 
by applying to the seasonally adjusted series a 5 point (centered) weighed moving 
average smoothing transformation with the weights of 1, 2, 3, 2, 1.  

Random or irregular component. Finally, the random or irregular (error) component 
can be isolated by subtracting from the seasonally adjusted series (additive models) or 
dividing the adjusted series by (multiplicative models) the trend-cycle component.  

 

 

 
X-11 Census Method II Seasonal Adjustment  

The general ideas of seasonal decomposition and adjustment are discussed in the context 
of the Census I seasonal adjustment method (Seasonal Decomposition (Census I)). The 
Census method II (2) is an extension and refinement of the simple adjustment method. 
Over the years, different versions of the Census method II evolved at the Census Bureau; 
the method that has become most popular and is used most widely in government and 
business is the so-called X-11 variant of the Census method II (see Hiskin, Young, & 
Musgrave, 1967). Subsequently, the term X-11 has become synonymous with this refined 
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version of the Census method II. In addition to the documentation that can be obtained 
from the Census Bureau, a detailed summary of this method is also provided in 
Makridakis, Wheelwright, and McGee (1983) and Makridakis and Wheelwright (1989).  

For more information on this method, see the following topics:  

• Seasonal Adjustment: Basic Ideas and Terms  
• The Census II Method  
• Results Tables Computed by the X-11 Method  
• Specific Description of all Results Tables Computed by the X-11 Method  

For more information on other Time Series methods, see Time Series Analysis - Index 
and the following topics:  

• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations  
• Interrupted Time series  
• Exponential Smoothing  
• Seasonal Decomposition (Census I)  
• Distributed Lags Analysis  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Basic Notations and Principles  
• Fast Fourier Transformations  

Seasonal Adjustment: Basic Ideas and Terms.  

Suppose you recorded the monthly passenger load on international flights for a period of 
12 years ( see Box & Jenkins, 1976). If you plot those data, it is apparent that (1) there 
appears to be an upwards linear trend in the passenger loads over the years, and (2) there 
is a recurring pattern or seasonality within each year (i.e., most travel occurs during the 
summer months, and a minor peak occurs during the December holidays). The purpose of 
seasonal decomposition and adjustment is to isolate those components, that is, to de-
compose the series into the trend effect, seasonal effects, and remaining variability. The 
"classic" technique designed to accomplish this decomposition was developed in the 
1920's and is also known as the Census I method (see the Census I overview section). 
This technique is also described and discussed in detail in Makridakis, Wheelwright, and 
McGee (1983), and Makridakis and Wheelwright (1989).  

General model. The general idea of seasonal decomposition is straightforward. In 
general, a time series like the one described above can be thought of as consisting of four 
different components: (1) A seasonal component (denoted as St, where t stands for the 
particular point in time) (2) a trend component (Tt), (3) a cyclical component (Ct), and (4) 
a random, error, or irregular component (It). The difference between a cyclical and a 
seasonal component is that the latter occurs at regular (seasonal) intervals, while cyclical 
factors usually have a longer duration that varies from cycle to cycle. The trend and 
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cyclical components are customarily combined into a trend-cycle component (TCt). The 
specific functional relationship between these components can assume different forms. 
However, two straightforward possibilities are that they combine in an additive or a 
multiplicative fashion:  

Additive Model:  

Xt = TCt + St + It  

Multiplicative Model:  

Xt = Tt*C t*St*I t  

Where:  

Xt represents the observed value of the time series at time t.  

Given some a priori knowledge about the cyclical factors affecting the series (e.g., 
business cycles), the estimates for the different components can be used to compute 
forecasts for future observations. (However, the Exponential smoothing method, which 
can also incorporate seasonality and trend components, is the preferred technique for 
forecasting purposes.)  

Additive and multiplicative seasonality. Consider the difference between an additive 
and multiplicative seasonal component in an example: The annual sales of toys will 
probably peak in the months of November and December, and perhaps during the 
summer (with a much smaller peak) when children are on their summer break. This 
seasonal pattern will likely repeat every year. Seasonal components can be additive or 
multiplicative in nature. For example, during the month of December the sales for a 
particular toy may increase by 3 million dollars every year. Thus, you could add to your 
forecasts for every December the amount of 3 million to account for this seasonal 
fluctuation. In this case, the seasonality is additive. Alternatively, during the month of 
December the sales for a particular toy may increase by 40%, that is, increase by a factor 
of 1.4. Thus, when the sales for the toy are generally weak, then the absolute (dollar) 
increase in sales during December will be relatively weak (but the percentage will be 
constant); if the sales of the toy are strong, then the absolute (dollar) increase in sales will 
be proportionately greater. Again, in this case the sales increase by a certain factor, and 
the seasonal component is thus multiplicative in nature (i.e., the multiplicative seasonal 
component in this case would be 1.4). In plots of series, the distinguishing characteristic 
between these two types of seasonal components is that in the additive case, the series 
shows steady seasonal fluctuations, regardless of the overall level of the series; in the 
multiplicative case, the size of the seasonal fluctuations vary, depending on the overall 
level of the series.  

Additive and multiplicative trend-cycle. The previous example can be extended to 
illustrate the additive and multiplicative trend-cycle components. In terms of the toy 
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example, a "fashion" trend may produce a steady increase in sales (e.g., a trend towards 
more educational toys in general); as with the seasonal component, this trend may be 
additive (sales increase by 3 million dollars per year) or multiplicative (sales increase by 
30%, or by a factor of 1.3, annually) in nature. In addition, cyclical components may 
impact sales. To reiterate, a cyclical component is different from a seasonal component in 
that it usually is of longer duration, and that it occurs at irregular intervals. For example, 
a particular toy may be particularly "hot" during a summer season (e.g., a particular doll 
which is tied to the release of a major children's movie, and is promoted with extensive 
advertising). Again such a cyclical component can effect sales in an additive manner or 
multiplicative manner.  

The Census II Method  

The basic method for seasonal decomposition and adjustment outlined in the Basic Ideas 
and Terms topic can be refined in several ways. In fact, unlike many other time-series 
modeling techniques (e.g., ARIMA ) which are grounded in some theoretical model of an 
underlying process, the X-11 variant of the Census II method simply contains many ad 
hoc features and refinements, that over the years have proven to provide excellent 
estimates for many real-world applications (see Burman, 1979, Kendal & Ord, 1990, 
Makridakis & Wheelwright, 1989; Wallis, 1974). Some of the major refinements are 
listed below.  

Trading-day adjustment. Different months have different numbers of days, and 
different numbers of trading-days (i.e., Mondays, Tuesdays, etc.). When analyzing, for 
example, monthly revenue figures for an amusement park, the fluctuation in the different 
numbers of Saturdays and Sundays (peak days) in the different months will surely 
contribute significantly to the variability in monthly revenues. The X-11 variant of the 
Census II method allows the user to test whether such trading-day variability exists in the 
series, and, if so, to adjust the series accordingly.  

Extreme values. Most real-world time series contain outliers, that is, extreme 
fluctuations due to rare events. For example, a strike may affect production in a particular 
month of one year. Such extreme outliers may bias the estimates of the seasonal and trend 
components. The X-11 procedure includes provisions to deal with extreme values through 
the use of "statistical control principles," that is, values that are above or below a certain 
range (expressed in terms of multiples of sigma, the standard deviation) can be modified 
or dropped before final estimates for the seasonality are computed.  

Multiple refinements. The refinement for outliers, extreme values, and different 
numbers of trading-days can be applied more than once, in order to obtain successively 
improved estimates of the components. The X-11 method applies a series of successive 
refinements of the estimates to arrive at the final trend-cycle, seasonal, and irregular 
components, and the seasonally adjusted series.  

Tests and summary statistics. In addition to estimating the major components of the 
series, various summary statistics can be computed. For example, analysis of variance 
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tables can be prepared to test the significance of seasonal variability and trading-day 
variability (see above) in the series; the X-11 procedure will also compute the percentage 
change from month to month in the random and trend-cycle components. As the duration 
or span in terms of months (or quarters for quarterly X-11) increases, the change in the 
trend-cycle component will likely also increase, while the change in the random 
component should remain about the same. The width of the average span at which the 
changes in the random component are about equal to the changes in the trend-cycle 
component is called the month (quarter) for cyclical dominance, or MCD (QCD) for 
short. For example, if the MCD is equal to 2 then one can infer that over a 2 month span 
the trend-cycle will dominate the fluctuations of the irregular (random) component. These 
and various other results are discussed in greater detail below.  

Result Tables Computed by the X-11 Method  

The computations performed by the X-11 procedure are best discussed in the context of 
the results tables that are reported. The adjustment process is divided into seven major 
steps, which are customarily labeled with consecutive letters A through G.  

A. Prior adjustment (monthly seasonal adjustment only). Before any seasonal 
adjustment is performed on the monthly time series, various prior user- defined 
adjustments can be incorporated. The user can specify a second series that 
contains prior adjustment factors; the values in that series will either be subtracted 
(additive model) from the original series, or the original series will be divided by 
these values (multiplicative model). For multiplicative models, user-specified 
trading-day adjustment weights can also be specified. These weights will be used 
to adjust the monthly observations depending on the number of respective 
trading-days represented by the observation.  

B. Preliminary estimation of trading-day variation (monthly X-11) and weights. 
Next, preliminary trading-day adjustment factors (monthly X-11 only) and 
weights for reducing the effect of extreme observations are computed.  

C. Final estimation of trading-day variation and irregular weights (monthly X- 
11). The adjustments and weights computed in B above are then used to derive 
improved trend-cycle and seasonal estimates. These improved estimates are used 
to compute the final trading-day factors (monthly X-11 only) and weights.  

D. Final estimation of seasonal factors, trend-cycle, irregular, and seasonally 
adjusted series. The final trading-day factors and weights computed in C above 
are used to compute the final estimates of the components.  

E. Modified original, seasonally adjusted, and irregular series. The original and 
final seasonally adjusted series, and the irregular component are modified for 
extremes. The resulting modified series allow the user to examine the stability of 
the seasonal adjustment.  

F. Month (quarter) for cyclical dominance (MCD, QCD), moving average, and 
summary measures. In this part of the computations, various summary measures 
(see below) are computed to allow the user to examine the relative importance of 
the different components, the average fluctuation from month-to-month (quarter-
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to-quarter), the average number of consecutive changes in the same direction 
(average number of runs), etc.  

G. Charts. Finally, you will compute various charts (graphs) to summarize the 
results. For example, the final seasonally adjusted series will be plotted, in 
chronological order, or by month (see below).  

Specific Description of all Result Tables Computed by the X-11 Method  

In each part A through G of the analysis (see Results Tables Computed by the X-11 
Method), different result tables are computed. Customarily, these tables are numbered, 
and also identified by a letter to indicate the respective part of the analysis. For example, 
table B 11 shows the initial seasonally adjusted series; C 11 is the refined seasonally 
adjusted series, and D 11 is the final seasonally adjusted series. Shown below is a list of 
all available tables. Those tables identified by an asterisk (*) are not available 
(applicable) when analyzing quarterly series. (Also, for quarterly adjustment, some of the 
computations outlined below are slightly different; for example instead of a 12-term 
[monthly] moving average, a 4-term [quarterly] moving average is applied to compute 
the seasonal factors; the initial trend-cycle estimate is computed via a centered 4-term 
moving average, the final trend-cycle estimate in each part is computed by a 5-term 
Henderson average.)  

Following the convention of the Bureau of the Census version of the X-11 method, three 
levels of printout detail are offered: Standard (17 to 27 tables), Long (27 to 39 tables), 
and Full (44 to 59 tables). In the description of each table below, the letters S, L, and F 
are used next to each title to indicate, which tables will be displayed and/or printed at the 
respective setting of the output option. (For the charts, two levels of detail are available: 
Standard and All.)  

See the table name below, to obtain more information about that table.  

*A 1. Original Series(S) 

* A 2. Prior Monthly Adjustment (S)Factors 

* A 3. Original Series Adjusted by Prior Monthly Adjustment Factors(S) 

* A 4. Prior Trading Day Adjustment Factors(S) 

B 1. Prior Adjusted Series or Original Series(S) 

B 2. Trend-cycle (L ) 

B 3. Unmodified S-I Differences or Ratios(F) 

B 4. Replacement Values for Extreme S-I Differences (Ratios)(F) 

B 5. Seasonal Factors(F) 

B 6. Seasonally Adjusted Series(F) 

B 7. Trend-cycle(L) 

B 8. Unmodified S-I Differences (Ratios)(F) 

B 9. Replacement Values for Extreme S-I Differences (Ratios)(F) 
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B 10. Seasonal Factors(L) 

B 11. Seasonally Adjusted Series(F) 

B 12. (not used)  

B 13. Irregular Series (L) 

Tables B 14 through B 16, B18, and B19: Adjustment for trading-day 
variation. These tables are only available when analyzing monthly series. 
Different months contain different numbers of days of the week (i.e., Mondays, 
Tuesdays, etc.). In some series, the variation in the different numbers of trading-
days may contribute significantly to monthly fluctuations (e.g., the monthly 
revenues of an amusement park will be greatly influenced by the number of 
Saturdays/Sundays in each month). The user can specify initial weights for each 
trading-day (see A 4), and/or these weights can be estimated from the data (the 
user can also choose to apply those weights conditionally, i.e., only if they 
explain a significant proportion of variance). 

* B 14. Extreme Irregular Values Excluded from Trading-day Regression (L) 

* B 15. Preliminary Trading-day Regression (L) 

* B 16. Trading-day Adjustment Factors Derived from Regression Coefficients 
(F) 

B 17. Preliminary Weights for Irregular Component(L) 

* B 18. Trading-day Factors Derived from Combined Daily Weights (F) 

* B 19. Original Series Adjusted for Trading-day and Prior Variation(F) 

C 1. Original Series Modified by Preliminary Weights and Adjusted for 
Trading-day and Prior Variation (L) 

C 2. Trend-cycle (F) 

C 3. (not used)  

C 4. Modified S-I Differences (Ratios) (F) 

C 5. Seasonal Factors(F) 

C 6. Seasonally Adjusted Series(F) 

C 7. Trend-cycle(L) 

C 8. (not used)  

C 9. Modified S-I Differences (Ratios)(F 

C 10. Seasonal Factors (L) 

C 11. Seasonally Adjusted Series (F>   

C 12. (not used)  

C 13. Irregular Series (S) 

Tables C 14 through C 16, C 18, and C 19: Adjustment for trading-day 
variation. These tables are only available when analyzing monthly series, and 
when adjustment for trading-day variation is requested. In that case, the trading-
day adjustment factors are computed from the refined adjusted series, analogous 
to the adjustment performed in part B (B 14 through B 16, B 18 and B 19).  

* C 14. Extreme Irregular Values Excluded from Trading-day Regression (S) 
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* C 15. Final Trading-day Regression (S) 

* C 16. Final Trading-day Adjustment Factors Derived from Regression X11 
output: Coefficients (S) 

C 17. Final Weights for Irregular Component (S) 

* C 18. Final Trading-day Factors Derived From Combined Daily Weights (S) 

* C 19. Original Series Adjusted for Trading-day and Prior Variation (S) 

D 1. Original Series Modified by Final Weights and Adjusted for Trading-day 
and Prior Variation (L) 

D 2. Trend-cycle 

D 3. (not used)  

D 4. Modified S-I Differences (Ratios) (F) 

D 5. Seasonal Factors (F) 

D 6. Seasonally Adjusted Series (F) 

D 7. Trend-cycle (L) 

D 8. Final Unmodified S-I Differences (Ratios) (S) 

D 9. Final Replacement Values for Extreme S-I Differences (Ratios) (S) 

D 10. Final Seasonal Factors (S) 

D 11. Final Seasonally Adjusted Series (S) 

D 12. Final Trend-cycle (S) 

D 13. Final Irregular (S) 

E 1. Modified Original Series (S) 

E 2. Modified Seasonally Adjusted Series (S) 

E 3. Modified Irregular Series (S) 

E 4. Differences (Ratios) of Annual Totals (S) 

E 5. Differences (Percent Changes) in Original Series (S) 

E 6. Differences (Percent Changes) in Final Seasonally Adjusted Series (S) 

F 1. MCD (QCD) Moving Average (S) 

F 2. Summary Measures (S) 

G 1. Chart (S) 

G 2. Chart (S) 

G 3. Chart (A) 

G 4. Chart (A) 
 

 
 

Distributed Lags Analysis Introductory Overview  

• General Purpose  
• General Model  
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• Almon Distributed Lag  

For more information on other Time Series methods, see Time Series Analysis - Index 
and the following topics:  

• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations ARIMA Introductory Overview  
• Interrupted Time Series  
• Exponential Smoothing  
• Seasonal Decomposition (Census I)  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Basic Notations and Principles  
• Fast Fourier Transformations  

General Purpose  

Distributed lags analysis is a specialized technique for examining the relationships 
between variables that involve some delay. For example, suppose that you are a 
manufacturer of computer software, and you want to determine the relationship between 
the number of inquiries that are received, and the number of orders that are placed by 
your customers. You could record those numbers monthly for a one year period, and then 
correlate the two variables. However, obviously inquiries will precede actual orders, and 
one can expect that the number of orders will follow the number of inquiries with some 
delay. Put another way, there will be a (time) lagged correlation between the number of 
inquiries and the number of orders that are received.  

Time-lagged correlations are particularly common in econometrics. For example, the 
benefits of investments in new machinery usually only become evident after some time. 
Higher income will change people's choice of rental apartments, however, this 
relationship will be lagged because it will take some time for people to terminate their 
current leases, find new apartments, and move. In general, the relationship between 
capital appropriations and capital expenditures will be lagged, because it will require 
some time before investment decisions are actually acted upon.  

In all of these cases, we have an independent or explanatory variable that affects the 
dependent variables with some lag. The distributed lags method allows you to investigate 
those lags.  

Detailed discussions of distributed lags correlation can be found in most econometrics 
textbooks, for example, in Judge, Griffith, Hill, Luetkepohl, and Lee (1985), Maddala 
(1977), and Fomby, Hill, and Johnson (1984). In the following paragraphs we will 
present a brief description of these methods. We will assume that you are familiar with 
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the concept of correlation (see Basic Statistics), and the basic ideas of multiple regression 
(see Multiple Regression).  

General Model  

Suppose we have a dependent variable y and an independent or explanatory variable x 
which are both measured repeatedly over time. In some textbooks, the dependent variable 
is also referred to as the endogenous variable, and the independent or explanatory 
variable the exogenous variable. The simplest way to describe the relationship between 
the two would be in a simple linear relationship:  

Yt = i*x t-i  

In this equation, the value of the dependent variable at time t is expressed as a linear 
function of x measured at times t, t-1, t-2, etc. Thus, the dependent variable is a linear 
function of x, and x is lagged by 1, 2, etc. time periods. The beta weights (i) can be 
considered slope parameters in this equation. You may recognize this equation as a 
special case of the general linear regression equation (see the Multiple 
Regressionoverview). If the weights for the lagged time periods are statistically 
significant, we can conclude that the y variable is predicted (or explained) with the 
respective lag.  

Almon Distributed Lag  

A common problem that often arises when computing the weights for the multiple linear 
regression model shown above is that the values of adjacent (in time) values in the x 
variable are highly correlated. In extreme cases, their independent contributions to the 
prediction of y may become so redundant that the correlation matrix of measures can no 
longer be inverted, and thus, the beta weights cannot be computed. In less extreme cases, 
the computation of the beta weights and their standard errors can become very imprecise, 
due to round-off error. In the context of Multiple Regression this general computational 
problem is discussed as the multicollinearity or matrix ill-conditioning issue.  

Almon (1965) proposed a procedure that will reduce the multicollinearity in this case. 
Specifically, suppose we express each weight in the linear regression equation in the 
following manner:  

i = 0 + 1*i + ... + q*i
q  

Almon could show that in many cases it is easier (i.e., it avoids the multicollinearity 
problem) to estimate the alpha values than the beta weights directly. Note that with this 
method, the precision of the beta weight estimates is dependent on the degree or order of 
the polynomial approximation.  

Misspecifications. A general problem with this technique is that, of course, the lag length 
and correct polynomial degree are not known a priori. The effects of misspecifications of 
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these parameters are potentially serious (in terms of biased estimation). This issue is 
discussed in greater detail in Frost (1975), Schmidt and Waud (1973), Schmidt and 
Sickles (1975), and Trivedi and Pagan (1979).  

 
Single Spectrum (Fourier) Analysis  

Spectrum analysis is concerned with the exploration of cyclical patterns of data. The 
purpose of the analysis is to decompose a complex time series with cyclical components 
into a few underlying sinusoidal (sine and cosine) functions of particular wavelengths. 
The term "spectrum" provides an appropriate metaphor for the nature of this analysis: 
Suppose you study a beam of white sun light, which at first looks like a random (white 
noise) accumulation of light of different wavelengths. However, when put through a 
prism, we can separate the different wave lengths or cyclical components that make up 
white sun light. In fact, via this technique we can now identify and distinguish between 
different sources of light. Thus, by identifying the important underlying cyclical 
components, we have learned something about the phenomenon of interest. In essence, 
performing spectrum analysis on a time series is like putting the series through a prism in 
order to identify the wave lengths and importance of underlying cyclical components. As 
a result of a successful analysis one might uncover just a few recurring cycles of different 
lengths in the time series of interest, which at first looked more or less like random noise.  

A much cited example for spectrum analysis is the cyclical nature of sun spot activity 
(e.g., see Bloomfield, 1976, or Shumway, 1988). It turns out that sun spot activity varies 
over 11 year cycles. Other examples of celestial phenomena, weather patterns, 
fluctuations in commodity prices, economic activity, etc. are also often used in the 
literature to demonstrate this technique. To contrast this technique with ARIMA  or 
Exponential Smoothing, the purpose of spectrum analysis is to identify the seasonal 
fluctuations of different lengths, while in the former types of analysis, the length of the 
seasonal component is usually known (or guessed) a priori and then included in some 
theoretical model of moving averages or autocorrelations.  

The classic text on spectrum analysis is Bloomfield (1976); however, other detailed 
discussions can be found in Jenkins and Watts (1968), Brillinger (1975), Brigham (1974), 
Elliott and Rao (1982), Priestley (1981), Shumway (1988), or Wei (1989).  

For more information, see Time Series Analysis - Index and the following topics:  

• Basic Notations and Principles  
• Fast Fourier Transformations  
• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations ARIMA Introductory Overview  
• Interrupted Time Series  
• Distributed Lags Analysis  
• Seasonal Decomposition (Census I)  
• Exponential Smoothing  
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• Cross-spectrum Analysis  

 
Cross-spectrum Analysis  

• General Introduction  
• Basic Notation and Principles  
• Results for Each Variable  
• The Cross-periodogram, Cross-density, Quadrature-density, and Cross-amplitude  
• Squared Coherency, Gain, and Phase Shift  
• How the Example Data were Created  

For more information, see Time Series Analysis - Index and the following topics:  

• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations ARIMA Introductory Overview  
• Interrupted Time Series  
• Exponential Smoothing Seasonal Decomposition (Census I)  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Distributed Lags analysis  
• Single Spectrum (Fourier) Analysis  
• Basic Notations and Principles  
• Fast Fourier Transformations  

General Introduction  

Cross-spectrum analysis is an extension of Single Spectrum (Fourier) Analysis to the 
simultaneous analysis of two series. In the following paragraphs, we will assume that you 
have already read the introduction to single spectrum analysis. Detailed discussions of 
this technique can be found in Bloomfield (1976), Jenkins and Watts (1968), Brillinger 
(1975), Brigham (1974), Elliott and Rao (1982), Priestley (1981), Shumway (1988), or 
Wei (1989).  

Strong periodicity in the series at the respective frequency. A much cited example for 
spectrum analysis is the cyclical nature of sun spot activity (e.g., see Bloomfield, 1976, or 
Shumway, 1988). It turns out that sun spot activity varies over 11 year cycles. Other 
examples of celestial phenomena, weather patterns, fluctuations in commodity prices, 
economic activity, etc. are also often used in the literature to demonstrate this technique.  

The purpose of cross-spectrum analysis is to uncover the correlations between two series 
at different frequencies. For example, sun spot activity may be related to weather 
phenomena here on earth. If so, then if we were to record those phenomena (e.g., yearly 
average temperature) and submit the resulting series to a cross-spectrum analysis together 
with the sun spot data, we may find that the weather indeed correlates with the sunspot 
activity at the 11 year cycle. That is, we may find a periodicity in the weather data that is 
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"in-sync" with the sun spot cycles. One can easily think of other areas of research where 
such knowledge could be very useful; for example, various economic indicators may 
show similar (correlated) cyclical behavior; various physiological measures likely will 
also display "coordinated" (i.e., correlated) cyclical behavior, and so on.  

Basic Notation and Principles  

A simple example 
Consider the following two series with 16 cases:  

  VAR1 VAR2 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1.000 
1.637 
1.148 
-.058 
-.713 
-.383 
.006 

-.483 
-1.441 
-1.637 
-.707 
.331 
.441 

-.058 
-.006 
.924 

-.058 
-.713 
-.383 
.006 

-.483 
-1.441 
-1.637 
-.707 
.331 
.441 

-.058 
-.006 
.924 

1.713 
1.365 
.266 

 
 

At first sight it is not easy to see the relationship between the two series. However, as 
shown below the series were created so that they would contain two strong correlated 
periodicities. Shown below are parts of the summary from the cross-spectrum analysis 
(the spectral estimates were smoothed with a Parzen window of width 3).  

Indep.(X): VAR1 
Dep.(Y): VAR2 

  
Frequncy 

  
Period 

X 
Density 

Y 
Density 

Cross 
Density 

Cross 
Quad 

Cross 
Amplit.  

0.000000 
.062500 
.125000 
.187500 
.250000 
.312500 
.375000 
.437500 
.500000 

  
16.00000 
8.00000 
5.33333 
4.00000 
3.20000 
2.66667 
2.28571 
2.00000 

.000000 
8.094709 
.058771 

3.617294 
.333005 
.091897 
.052575 
.040248 
.037115 

.024292 
7.798284 
.100936 

3.845154 
.278685 
.067630 
.036056 
.026633 

0.000000 

-.00000 
2.35583 
-.04755 

-2.92645 
-.26941 
-.07435 
-.04253 
-.03256 
0.00000 

0.00000 
-7.58781 

.06059 
2.31191 
.14221 
.02622 
.00930 
.00342 

0.00000 

.000000 
7.945114 
.077020 

3.729484 
.304637 
.078835 
.043539 
.032740 

0.000000 
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Results for Each Variable  

The complete summary contains all spectrum statistics computed for each variable, as 
described in the Single Spectrum (Fourier) Analysis overview section. Looking at the 
results shown above, it is clear that both variables show strong periodicities at the 
frequencies .0625 and .1875.  

Cross-periodogram, Cross-Density, Quadrature-density, Cross-amplitude  

Analogous to the results for the single variables, the complete summary will also display 
periodogram values for the cross periodogram. However, the cross-spectrum consists of 
complex numbers that can be divided into a real and an imaginary part. These can be 
smoothed to obtain the cross-density and quadrature density (quad density for short) 
estimates, respectively. (The reasons for smoothing, and the different common weight 
functions for smoothing are discussed in the Single Spectrum (Fourier) Analysis.) The 
square root of the sum of the squared cross-density and quad-density values is called the 
cross- amplitude. The cross-amplitude can be interpreted as a measure of covariance 
between the respective frequency components in the two series. Thus we can conclude 
from the results shown in the table above that the .0625 and .1875 frequency components 
in the two series covary.  

Squared Coherency, Gain, and Phase Shift  

There are additional statistics that can be displayed in the complete summary.  

Squared coherency. One can standardize the cross-amplitude values by squaring them 
and dividing by the product of the spectrum density estimates for each series. The result 
is called the squared coherency, which can be interpreted similar to the squared 
correlation coefficient (see Correlations - Overview), that is, the coherency value is the 
squared correlation between the cyclical components in the two series at the respective 
frequency. However, the coherency values should not be interpreted by themselves; for 
example, when the spectral density estimates in both series are very small, large 
coherency values may result (the divisor in the computation of the coherency values will 
be very small), even though there are no strong cyclical components in either series at the 
respective frequencies.  

Gain. The gain value is computed by dividing the cross-amplitude value by the spectrum 
density estimates for one of the two series in the analysis. Consequently, two gain values 
are computed, which can be interpreted as the standard least squares regression 
coefficients for the respective frequencies.  

Phase shift. Finally, the phase shift estimates are computed as tan**-1 of the ratio of the 
quad density estimates over the cross-density estimate. The phase shift estimates (usually 
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denoted by the Greek letter ) are measures of the extent to which each frequency 
component of one series leads the other.  

How the Example Data were Created  

Now, let us return to the example data set presented above. The large spectral density 
estimates for both series, and the cross-amplitude values at frequencies = 0.0625 and 
= .1875 suggest two strong synchronized periodicities in both series at those frequencies. 
In fact, the two series were created as:  

v1 = cos(2* *.0625*(v0-1)) + .75*sin(2* *.2*(v0-1))  

v2 = cos(2* *.0625*(v0+2)) + .75*sin(2* *.2*(v0+2))  

(where v0 is the case number). Indeed, the analysis presented in this overview reproduced 
the periodicity "inserted" into the data very well.  

 
Spectrum Analysis - Basic Notation and Principles  

• Frequency and Period  
• The General Structural Model  
• A Simple Example  
• Periodogram  
• The Problem of Leakage  
• Padding the Time Series  
• Tapering  
• Data Windows and Spectral Density Estimates  
• Preparing the Data for Analysis  
• Results when no Periodicity in the Series Exists  

For more information, see Time Series Analysis - Index and the following topics:  

• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations ARIMA Introductory Overview  
• Interrupted Time Series  
• Exponential Smoothing  
• Seasonal Decomposition (Census I)  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Distributed Lags Analysis  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Fast Fourier Transformations  
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Frequency and Period  

The "wave length" of a sine or cosine function is typically expressed in terms of the 
number of cycles per unit time (Frequency), often denoted by the Greek letter nu ( ; 
some text books also use f). For example, the number of letters handled in a post office 
may show 12 cycles per year: On the first of every month a large amount of mail is sent 
(many bills come due on the first of the month), then the amount of mail decreases in the 
middle of the month, then it increases again towards the end of the month. Therefore, 
every month the fluctuation in the amount of mail handled by the post office will go 
through a full cycle. Thus, if the unit of analysis is one year, then n would be equal to 12, 
as there would be 12 cycles per year. Of course, there will likely be other cycles with 
different frequencies. For example, there might be annual cycles ( =1), and perhaps 
weekly cycles <( =52 weeks per year).  

The period T of a sine or cosine function is defined as the length of time required for one 
full cycle. Thus, it is the reciprocal of the frequency, or: T = 1/ . To return to the mail 
example in the previous paragraph, the monthly cycle, expressed in yearly terms, would 
be equal to 1/12 = 0.0833. Put into words, there is a period in the series of length 0.0833 
years.  

The General Structural Model  

As mentioned before, the purpose of spectrum analysis is to decompose the original 
series into underlying sine and cosine functions of different frequencies, in order to 
determine those that appear particularly strong or important. One way to do so would be 
to cast the issue as a linear Multiple Regression problem, where the dependent variable is 
the observed time series, and the independent variables are the sine functions of all 
possible (discrete) frequencies. Such a linear multiple regression model may be written 
as:  

xt = a0 + [ak*cos( k*t) + bk*sin( k*t)]    (for k = 1 to q)  

Following the common notation from classical harmonic analysis, in this equation 

(lambda) is the frequency expressed in terms of radians per unit time, that is: = 2*
* k, where is the constant pi=3.14... and k = k/q. What is important here is to 
recognize that the computational problem of fitting sine and cosine functions of different 
lengths to the data can be considered in terms of multiple linear regression. Note that the 
cosine parameters ak and sine parameters bk are regression coefficients that tell us the 
degree to which the respective functions are correlated with the data. Overall there are q 
different sine and cosine functions; intuitively (as also discussed in Multiple Regression), 
it should be clear that we cannot have more sine and cosine functions than there are data 
points in the series. Without going into detail, if there are N data points in the series, then 
there will be N/2+1 cosine functions and N/2-1 sine functions. In other words, there will 
be as many different sinusoidal waves as there are data points, and we will be able to 
completely reproduce the series from the underlying functions. (Note that if the number 
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of cases in the series is odd, then the last data point will usually be ignored; in order for a 
sinusoidal function to be identified, you need at least two points: the high peak and the 
low peak.)  

To summarize, spectrum analysis will identify the correlation of sine and cosine 
functions of different frequency with the observed data. If a large correlation (sine or 
cosine coefficient) is identified, one can conclude that there is a strong periodicity of the 
respective frequency (or period) in the data.  

Complex numbers (real and imaginary numbers). In many text books on spectrum 
analysis, the structural model shown above is presented in terms of complex numbers, 
that is, the parameter estimation process is described in terms of the Fourier transform of 
a series into real and imaginary parts. Complex numbers are the superset that includes all 
real and imaginary numbers. Imaginary numbers, by definition, are numbers that are 
multiplied by the constant i, where i is defined as the square root of -1. Obviously, the 
square root of -1 does not exist, hence the term imaginary number; however, meaningful 
arithmetic operations on imaginary numbers can still be performed (e.g., [i*2]**2= -4). It 
is useful to think of real and imaginary numbers as forming a two dimensional plane, 
where the horizontal or X-axis represents all real numbers, and the vertical or Y-axis 
represents all imaginary numbers. Complex numbers can then be represented as points in 
the two- dimensional plane. For example, the complex number 3+i*2 can be represented 
by a point with coordinates {3,2} in this plane. One can also think of complex numbers 
as angles, for example, one can connect the point representing a complex number in the 
plane with the origin (complex number 0+i*0), and measure the angle of that vector to 
the horizontal line. Thus, intuitively one can see how the spectrum decomposition 
formula shown above, consisting of sine and cosine functions, can be rewritten in terms 
of operations on complex numbers. In fact, in this manner the mathematical discussion 
and required computations are often more elegant and easier to perform; which is why 
many text books prefer the presentation of spectrum analysis in terms of complex 
numbers.  

A Simple Example  

Shumway (1988) presents a simple example to clarify the underlying "mechanics" of 
spectrum analysis. Let us create a series with 16 cases following the equation shown 
above, and then see how we may "extract" the information that was put in it. First, create 
a variable and define it as:  

x = 1*cos(2* *.0625*(v0-1)) + .75*sin(2* *.2*(v0-1))  

This variable is made up of two underlying periodicities: The first at the frequency of 
=.0625 (or period 1/=16; one observation completes 1/16'th of a full cycle, and a full 
cycle is completed every 16 observations) and the second at the frequency of =.2 (or 
period of 5). The cosine coefficient (1.0) is larger than the sine coefficient (.75). The 
spectrum analysis summary is shown below.  
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  Spectral analysis:VAR1 (shumex.sta) 
No. of cases: 16 

  
t 

Freq- 
uency 

  
Period 

Cosine 
Coeffs 

Sine 
Coeffs 

Period- 
ogram 

0 
1 
2 
3 
4 
5 
6 
7 
8 

.0000 

.0625 

.1250 

.1875 

.2500 

.3125 

.3750 

.4375 

.5000 

  
16.00 
8.00 
5.33 
4.00 
3.20 
2.67 
2.29 
2.00 

.000 
1.006 
.033 
.374 

-.144 
-.089 
-.075 
-.070 
-.068 

0.000 
.028 
.079 
.559 

-.144 
-.060 
-.031 
-.014 
0.000 

.000 
8.095  
.059  

3.617  
.333  
.092  
.053  
.040  
.037 

 
Let us now review the columns. Clearly, the largest cosine coefficient can be found for 
the .0625 frequency. A smaller sine coefficient can be found at frequency = .1875. Thus, 
clearly the two sine/cosine frequencies which were "inserted" into the example data file 
are reflected in the above table.  

Periodogram  

The sine and cosine functions are mutually independent (or orthogonal); thus we may 
sum the squared coefficients for each frequency to obtain the periodogram. Specifically, 
the periodogram values above are computed as:  

Pk = sine coefficientk
2 + cosine coefficientk

2 * N/2  

where Pk is the periodogram value at frequency k and N is the overall length of the 
series. The periodogram values can be interpreted in terms of variance (sums of squares) 
of the data at the respective frequency or period. Customarily, the periodogram values are 
plotted against the frequencies or periods.  

 

The Problem of Leakage  
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In the example above, a sine function with a frequency of 0.2 was "inserted" into the 
series. However, because of the length of the series (16), none of the frequencies reported 
exactly "hits" on that frequency. In practice, what often happens in those cases is that the 
respective frequency will "leak" into adjacent frequencies. For example, one may find 
large periodogram values for two adjacent frequencies, when, in fact, there is only one 
strong underlying sine or cosine function at a frequency that falls in-between those 
implied by the length of the series. There are three ways in which one can approach the 
problem of leakage:  

• By padding the series one may apply a finer frequency "roster" to the data,  
• By tapering the series prior to the analysis one may reduce leakage, or  
• By smoothing the periodogram one may identify the general frequency "regions" 

or (spectral densities) that significantly contribute to the cyclical behavior of the 
series.  

See below for descriptions of each of these approaches.  

Padding the Time Series  

Because the frequency values are computed as N/t (the number of units of times) one may 
simply pad the series with a constant (e.g., zeros) and thereby introduce smaller 
increments in the frequency values. In a sense, padding allows one to apply a finer roster 
to the data. In fact, if we padded the example data file described in the example above 
with ten zeros, the results would not change, that is, the largest periodogram peaks would 
still occur at the frequency values closest to .0625 and .2. (Padding is also often desirable 
for computational efficiency reasons; see below.)  

Tapering  

The so-called process of split-cosine-bell tapering is a recommended transformation of 
the series prior to the spectrum analysis. It usually leads to a reduction of leakage in the 
periodogram. The rationale for this transformation is explained in detail in Bloomfield 
(1976, p. 80-94). In essence, a proportion (p) of the data at the beginning and at the end 
of the series is transformed via multiplication by the weights:  

wt = 0.5*{1-cos[ *(t - 0.5)/m]}     (for t=0 to m-1) 
wt = 0.5*{1-cos[ *(N - t + 0.5)/m]}     (for t=N-m to N-1)  

where m is chosen so that 2*m/N is equal to the proportion of data to be tapered (p).  

Data Windows and Spectral Density Estimates  

In practice, when analyzing actual data, it is usually not of crucial importance to identify 
exactly the frequencies for particular underlying sine or cosine functions. Rather, because 
the periodogram values are subject to substantial random fluctuation, one is faced with 
the problem of very many "chaotic" periodogram spikes. In that case, one would like to 
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find the frequencies with the greatest spectral densities, that is, the frequency regions, 
consisting of many adjacent frequencies, that contribute most to the overall periodic 
behavior of the series. This can be accomplished by smoothing the periodogram values 
via a weighted moving average transformation. Suppose the moving average window is 
of width m (which must be an odd number); the following are the most commonly used 
smoothers (note: p = (m-1)/2).  

Daniell (or equal weight) window. The Daniell window (Daniell 1946) amounts to a 
simple (equal weight) moving average transformation of the periodogram values, that is, 
each spectral density estimate is computed as the mean of the m/2 preceding and 
subsequent periodogram values.  

Tukey window. In the Tukey (Blackman and Tukey, 1958) or Tukey-Hanning window 
(named after Julius Von Hann), for each frequency, the weights for the weighted moving 
average of the periodogram values are computed as:  

wj = 0.5 + 0.5*cos( *j/p)    (for j=0 to p) 
w-j = wj    (for j 0)  

Hamming window. In the Hamming (named after R. W. Hamming) window or Tukey-
Hamming window (Blackman and Tukey, 1958), for each frequency, the weights for the 
weighted moving average of the periodogram values are computed as:  

wj = 0.54 + 0.46*cos( *j/p)    (for j=0 to p) 
w-j = wj    (for j 0)  

Parzen window. In the Parzen window (Parzen, 1961), for each frequency, the weights 
for the weighted moving average of the periodogram values are computed as:  

wj = 1-6*(j/p)2 + 6*(j/p)3    (for j = 0 to p/2) 
wj = 2*(1-j/p)3    (for j = p/2 + 1 to p) 
w-j = wj    (for j 0)  

Bartlett window. In the Bartlett window (Bartlett, 1950) the weights are computed as:  

wj = 1-(j/p)    (for j = 0 to p) 
w-j = wj    (for j 0)  

With the exception of the Daniell window, all weight functions will assign the greatest 
weight to the observation being smoothed in the center of the window, and increasingly 
smaller weights to values that are further away from the center. In many cases, all of 
these data windows will produce very similar results  

Preparing the Data for Analysis  
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Let us now consider a few other practical points in spectrum analysis. Usually, one wants 
to subtract the mean from the series, and detrend the series (so that it is stationary) prior 
to the analysis. Otherwise the periodogram and density spectrum will mostly be 
"overwhelmed" by a very large value for the first cosine coefficient (for frequency 0.0). 
In a sense, the mean is a cycle of frequency 0 (zero) per unit time; that is, it is a constant. 
Similarly, a trend is also of little interest when one wants to uncover the periodicities in 
the series. In fact, both of those potentially strong effects may mask the more interesting 
periodicities in the data, and thus both the mean and the trend (linear) should be removed 
from the series prior to the analysis. Sometimes, it is also useful to smooth the data prior 
to the analysis, in order to "tame" the random noise that may obscure meaningful periodic 
cycles in the periodogram.  

Results when no Periodicity in the Series Exists  

Finally, what if there are no recurring cycles in the data, that is, if each observation is 
completely independent of all other observations? If the distribution of the observations 
follows the normal distribution, such a time series is also referred to as a white noise 
series (like the white noise one hears on the radio when tuned in-between stations). A 
white noise input series will result in periodogram values that follow an exponential 
distribution. Thus, by testing the distribution of periodogram values against the 
exponential distribution, one may test whether the input series is different from a white 
noise series. In addition, the you can also request to compute the Kolmogorov-Smirnov 
one-sample d statistic (see also Nonparametrics and Distributions for more details).  

Testing for white noise in certain frequency bands. Note that you can also plot the 
periodogram values for a particular frequency range only. Again, if the input is a white 
noise series with respect to those frequencies (i.e., it there are no significant periodic 
cycles of those frequencies), then the distribution of the periodogram values should again 
follow an exponential distribution.  

 

 

 
Fast Fourier Transforms (FFT)  

• General Introduction  
• Computation of FFT in Time Series  

For more information, see Time Series Analysis - Index and the following topics:  

• Identifying Patterns in Time Series Data  
• ARIMA (Box & Jenkins) and Autocorrelations ARIMA Introductory Overview  
• Interrupted Time Series  
• Exponential Smoothing  
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• Seasonal Decomposition (Census I)  
• X-11 Census method II seasonal adjustment  
• X-11 Census method II result tables  
• Distributed Lags Analysis  
• Single Spectrum (Fourier) Analysis  
• Cross-spectrum Analysis  
• Basic Notations and Principles  

General Introduction  

The interpretation of the results of spectrum analysis is discussed in the Basic Notation 
and Principles topic, however, we have not described how it is done computationally. Up 
until the mid-1960s the standard way of performing the spectrum decomposition was to 
use explicit formulae to solve for the sine and cosine parameters. The computations 
involved required at least N**2 (complex) multiplications. Thus, even with today's high-
speed computers , it would be very time consuming to analyze even small time series 
(e.g., 8,000 observations would result in at least 64 million multiplications).  

The time requirements changed drastically with the development of the so-called fast 
Fourier transform algorithm, or FFT for short. In the mid-1960s, J.W. Cooley and J.W. 
Tukey (1965) popularized this algorithm which, in retrospect, had in fact been discovered 
independently by various individuals. Various refinements and improvements of this 
algorithm can be found in Monro (1975) and Monro and Branch (1976). Readers 
interested in the computational details of this algorithm may refer to any of the texts cited 
in the overview. Suffice it to say that via the FFT algorithm, the time to perform a 
spectral analysis is proportional to N*log2(N) -- a huge improvement.  

However, a draw-back of the standard FFT algorithm is that the number of cases in the 
series must be equal to a power of 2 (i.e., 16, 64, 128, 256, ...). Usually, this necessitated 
padding of the series, which, as described above, will in most cases not change the 
characteristic peaks of the periodogram or the spectral density estimates. In cases, 
however, where the time units are meaningful, such padding may make the interpretation 
of results more cumbersome.  

Computation of FFT in Time Series  

The implementation of the FFT algorithm allows you to take full advantage of the 
savings afforded by this algorithm. On most standard computers, series with over 
100,000 cases can easily be analyzed. However, there are a few things to remember when 
analyzing series of that size.  

As mentioned above, the standard (and most efficient) FFT algorithm requires that the 
length of the input series is equal to a power of 2. If this is not the case, additional 
computations have to be performed. It will use the simple explicit computational 
formulas as long as the input series is relatively small, and the number of computations 
can be performed in a relatively short amount of time. For long time series, in order to 
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still utilize the FFT algorithm, an implementation of the general approach described by 
Monro and Branch (1976) is used. This method requires significantly more storage space, 
however, series of considerable length can still be analyzed very quickly, even if the 
number of observations is not equal to a power of 2.  

For time series of lengths not equal to a power of 2, we would like to make the following 
recommendations: If the input series is small to moderately sized (e.g., only a few 
thousand cases), then do not worry. The analysis will typically only take a few seconds 
anyway. In order to analyze moderately large and large series (e.g., over 100,000 cases), 
pad the series to a power of 2 and then taper the series during the exploratory part of your 
data analysis.  
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Chapter 41 
Variance Components and Mixed Model 

ANOVA/ANCOVA  

 

• Basic Ideas  
o Properties of Random Effects  

• Estimation of Variance Components (Technical Overview)  
o Estimating the Variation of Random Factors  
o Estimating Components of Variation  
o Testing the Significance of Variance Components  
o Estimating the Population Intraclass Correlation  

 
The Variance Components and Mixed Model ANOVA/ANCOVA chapter describes a 
comprehensive set of techniques for analyzing research designs that include random 
effects; however, these techniques are also well suited for analyzing large main effect 
designs (e.g., designs with over 200 levels per factor), designs with many factors where 
the higher order interactions are not of interest, and analyses involving case weights.  

There are several chapters in this textbook that will discuss Analysis of Variance for 
factorial or specialized designs. For a discussion of these chapters and the types of 
designs for which they are best suited refer to the section on Methods for Analysis of 
Variance. Note, however, that the General Linear Models chapter describes how to 
analyze designs with any number and type of between effects and compute ANOVA-
based variance component estimates for any effect in a mixed-model analysis.  

 
Basic Ideas  

Experimentation is sometimes mistakenly thought to involve only the manipulation of 
levels of the independent variables and the observation of subsequent responses on the 
dependent variables. Independent variables whose levels are determined or set by the 
experimenter are said to have fixed effects. There is a second class of effects, however, 
which is often of great interest to the researcher, Random effects are classification effects 
where the levels of the effects are assumed to be randomly selected from an infinite 
population of possible levels. Many independent variables of research interest are not 
fully amenable to experimental manipulation, but nevertheless can be studied by 
considering them to have random effects. For example, the genetic makeup of individual 
members of a species cannot at present be (fully) experimentally manipulated, yet it is of 
great interest to the geneticist to assess the genetic contribution to individual variation on 
outcomes such as health, behavioral characteristics, and the like. As another example, a 
manufacturer might want to estimate the components of variation in the characteristics of 
a product for a random sample of machines operated by a random sample of operators. 
The statistical analysis of random effects is accomplished by using the random effect 
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model, if all of the independent variables are assumed to have random effects, or by using 
the mixed model, if some of the independent variables are assumed to have random 
effects and other independent variables are assumed to have fixed effects.  

Properties of random effects. To illustrate some of the properties of random effects, 
suppose you collected data on the amount of insect damage done to different varieties of 
wheat. It is impractical to study insect damage for every possible variety of wheat, so to 
conduct the experiment, you randomly select four varieties of wheat to study. Plant 
damage is rated for up to a maximum of four plots per variety. Ratings are on a 0 (no 
damage) to 10 (great damage) scale. The following data for this example are presented in 
Milliken and Johnson (1992, p. 237).  

DATA: wheat.sta 3v 
VARIETY  PLOT  DAMAGE  

A 
A 
A 
B 
B 
B 
B 
C 
C 
C 
C 
D 
D 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

3.90 
4.05 
4.25 
3.60 
4.20 
4.05 
3.85 
4.15 
4.60 
4.15 
4.40 
3.35 
3.80 

 
 

To determine the components of variation in resistance to insect damage for Variety and 
Plot, an ANOVA can first be performed. Perhaps surprisingly, in the ANOVA, Variety 
can be treated as a fixed or as a random factor without influencing the results (provided 
that Type I Sums of squares are used and that Variety is always entered first in the 
model). The Spreadsheet below shows the ANOVA results of a mixed model analysis 
treating Variety as a fixed effect and ignoring Plot, i.e., treating the plot-to-plot variation 
as a measure of random error.  

ANOVA Results: DAMAGE (wheat.sta) 
  
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error  

MS 
Error  

  
F 

  
p 

{1}VARIETY  Fixed 3 .270053 9 .056435 4.785196 .029275 
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Another way to perform the same mixed model analysis is to treat Variety as a fixed effect 
and Plot as a random effect. The Spreadsheet below shows the ANOVA results for this 
mixed model analysis.  

ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  

  df error computed using Satterthwaite method 
  
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error  

MS 
Error  

  
F 

  
p 

{1}VARIETY  
{2}PLOT  

Fixed 
Random 

3 
9 

.270053 

.056435 
9 

----- 
.056435 

----- 
4.785196 

----- 
.029275 

----- 

 
 

The Spreadsheet below shows the ANOVA results for a random effect model treating 
Plot as a random effect nested within Variety, which is also treated as a random effect.  

ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  

  df error computed using Satterthwaite method 
  
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error  

MS 
Error  

  
F 

  
p 

{1}VARIETY  
{2}PLOT  

Random 
Random 

3 
9 

.270053 

.056435 
9 

----- 
.056435 

----- 
4.785196 

----- 
.029275 

----- 

 
 

As can be seen, the tests of significance for the Variety effect are identical in all three 
analyses (and in fact, there are even more ways to produce the same result). When 
components of variance are estimated, however, the difference between the mixed model 
(treating Variety as fixed) and the random model (treating Variety as random) becomes 
apparent. The Spreadsheet below shows the variance component estimates for the mixed 
model treating Variety as a fixed effect.  

Components of Variance (wheat.sta) 

  Mean Squares Type: 1 
Source DAMAGE  
{2}PLOT  
Error 

.056435 
0.000000 
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The Spreadsheet below shows the variance component estimates for the random effects 
model treating Variety and Plot as random effects.  

Components of Variance (wheat.sta) 

  Mean Squares Type: 1 
Source DAMAGE  
{1}VARIETY  
{2}PLOT 
Error 

.067186 

.056435 
0.000000 

 
 

As can be seen, the difference in the two sets of estimates is that a variance component is 
estimated for Variety only when it is considered to be a random effect. This reflects the 
basic distinction between fixed and random effects. The variation in the levels of random 
factors is assumed to be representative of the variation of the whole population of 
possible levels. Thus, variation in the levels of a random factor can be used to estimate 
the population variation. Even more importantly, covariation between the levels of a 
random factor and responses on a dependent variable can be used to estimate the 
population component of variance in the dependent variable attributable to the random 
factor. The variation in the levels of fixed factors is instead considered to be arbitrarily 
determined by the experimenter (i.e., the experimenter can make the levels of a fixed 
factor vary as little or as much as desired). Thus, the variation of a fixed factor cannot be 
used to estimate its population variance, nor can the population covariance with the 
dependent variable be meaningfully estimated. With this basic distinction between fixed 
effects and random effects in mind, we now can look more closely at the properties of 
variance components.  

 

 
Estimation of Variance Components (Technical Overview)  

The basic goal of variance component estimation is to estimate the population covariation 
between random factors and the dependent variable. Depending on the method used to 
estimate variance components, the population variances of the random factors can also be 
estimated, and significance tests can be performed to test whether the population 
covariation between the random factors and the dependent variable are nonzero.  

Estimating the variation of random factors. The ANOVA method provides an 
integrative approach to estimating variance components, because ANOVA techniques 
can be used to estimate the variance of random factors, to estimate the components of 
variance in the dependent variable attributable to the random factors, and to test whether 
the variance components differ significantly from zero. The ANOVA method for 
estimating the variance of the random factors begins by constructing the Sums of squares 
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and cross products (SSCP) matrix for the independent variables. The sums of squares and 
cross products for the random effects are then residualized on the fixed effects, leaving 
the random effects independent of the fixed effects, as required in the mixed model (see, 
for example, Searle, Casella, & McCulloch, 1992). The residualized Sums of squares and 
cross products for each random factor are then divided by their degrees of freedom to 
produce the coefficients in the Expected mean squares matrix. Nonzero off-diagonal 
coefficients for the random effects in this matrix indicate confounding, which must be 
taken into account when estimating the population variance for each factor. For the 
wheat.sta data, treating both Variety and Plot as random effects, the coefficients in the 
Expected mean squares matrix show that the two factors are at least somewhat 
confounded. The Expected mean squares Spreadsheet is shown below.  

Expected Mean Squares (wheat.sta) 
  Mean Squares Type: 1 
  
Source 

Effect 
(F/R) 

  
VARIETY  

  
PLOT  

  
Error  

{1}VARIETY  
{2}PLOT 
Error  

Random 
Random 

  

3.179487 
  
  

1.000000 
1.000000 

  

1.000000 
1.000000 
1.000000 

 
 

The coefficients in the Expected mean squares matrix are used to estimate the population 
variation of the random effects by equating their variances to their expected mean 
squares. For example, the estimated population variance for Variety using Type I Sums of 
squares would be 3.179487 times the Mean square for Variety plus 1 times the Mean 
square for Plot plus 1 times the Mean square for Error.  

The ANOVA method provides an integrative approach to estimating variance 
components, but it is not without problems (i.e., ANOVA estimates of variance 
components are generally biased, and can be negative, even though variances, by 
definition, must be either zero or positive). An alternative to ANOVA estimation is 
provided by maximum likelihood estimation. Maximum likelihood methods for estimating 
variance components are based on quadratic forms, and typically, but not always, require 
iteration to find a solution. Perhaps the simplest form of maximum likelihood estimation 
is MIVQUE(0) estimation. MIVQUE(0) produces Minimum Variance Quadratic 
Unbiased Estimators (i.e., MIVQUE). In MIVQUE(0) estimation, there is no weighting of 
the random effects (thus the 0 [zero] after MIVQUE), so an iterative solution for 
estimating variance components is not required. MIVQUE(0) estimation begins by 
constructing the Quadratic sums of squares (SSQ) matrix. The elements for the random 
effects in the SSQ matrix can most simply be described as the sums of squares of the 
sums of squares and cross products for each random effect in the model (after 
residualization on the fixed effects). The elements of this matrix provide coefficients, 
similar to the elements of the Expected Mean Squares matrix, which are used to estimate 
the covariances among the random factors and the dependent variable. The SSQ matrix 
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for the wheat.sta data is shown below. Note that the nonzero off-diagonal element for 
Variety and Plot again shows that the two random factors are at least somewhat 
confounded.  

MIVQUE(0) Variance Component Estimation (wheat.sta) 
  SSQ Matrix 
Source VARIETY  PLOT  Error  DAMAGE  
{1}VARIETY  
{2}PLOT 
Error  

31.90533 
9.53846 
9.53846 

9.53846 
12.00000 
12.00000 

9.53846 
12.00000 
12.00000 

2.418964 
1.318077 
1.318077 

 
 

Restricted Maximum Likelihood (REML) and Maximum Likelihood (ML) variance 
component estimation methods are closely related to MIVQUE(0). In fact, in the program, 
REML and ML use MIVQUE(0) estimates as start values for an iterative solution for the 
variance components, so the elements of the SSQ matrix serve as initial estimates of the 
covariances among the random factors and the dependent variable for both REML and 
ML.  

 

 
Estimating components of variation. For ANOVA methods for estimating variance 
components, a solution is found for the system of equations relating the estimated 
population variances and covariances among the random factors to the estimated 
population covariances between the random factors and the dependent variable. The 
solution then defines the variance components. The Spreadsheet below shows the Type I 
Sums of squares estimates of the variance components for the wheat.sta data.  

Components of Variance (wheat.sta) 
  Mean Squares Type: 1 
Source DAMAGE  
{1}VARIETY  
{2}PLOT 
Error  

0.067186 
0.056435 
0.000000 

 
 

MIVQUE(0) variance components are estimated by inverting the partition of the SSQ 
matrix that does not include the dependent variable (or finding the generalized inverse, 
for singular matrices), and postmultiplying the inverse by the dependent variable column 
vector. This amounts to solving the system of equations that relates the dependent 
variable to the random independent variables, taking into account the covariation among 
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the independent variables. The MIVQUE(0) estimates for the wheat.sta data are listed in 
the Spreadsheet shown below.  

MIVQUE(0) Variance Component Estimation (wheat.sta) 
  Variance Components 
Source DAMAGE  
{1}VARIETY 
{2}PLOT 
Error  

0.056376 
0.065028 
0.000000 

 
 

REML and ML variance components are estimated by iteratively optimizing the 
parameter estimates for the effects in the model. REML differs from ML in that the 
likelihood of the data is maximized only for the random effects, thus REML is a restricted 
solution. In both REMLandMLestimation, an iterative solution is found for the weights 
for the random effects in the model that maximize the likelihood of the data. The program 
uses MIVQUE(0)) estimates as the start values for both REML and ML estimation, so the 
relation between these three techniques is close indeed. The statistical theory underlying 
maximum likelihood variance component estimation techniques is an advanced topic 
(Searle, Casella, & McCulloch, 1992, is recommended as an authoritative and 
comprehensive source). Implementation of maximum likelihood estimation algorithms, 
furthermore, is difficult (see, for example, Hemmerle & Hartley, 1973, and Jennrich & 
Sampson, 1976, for descriptions of these algorithms), and faulty implementation can lead 
to variance component estimates that lie outside the parameter space, converge 
prematurely to nonoptimal solutions, or give nonsensical results. Milliken and Johnson 
(1992) noted all of these problems with the commercial software packages they used to 
estimate variance components.  

The basic idea behind both REML and ML estimation is to find the set of weights for the 
random effects in the model that minimize the negative of the natural logarithm times the 
likelihood of the data (the likelihood of the data can vary from zero to one, so minimizing 
the negative of the natural logarithm times the likelihood of the data amounts to 
maximizing the probability, or the likelihood, of the data). The logarithm of the 
REMLlikelihood and the REML variance component estimates for the wheat.sta data are 
listed in the last row of the Iteration history Spreadsheet shown below.  

Iteration History (wheat.sta) 
  Variable: DAMAGE  
Iter.  Log LL  Error  VARIETY   
1 
2 
3 
4 
5 

-2.30618 
-2.25253 
-2.25130 
-2.25088 
-2.25081 

.057430 

.057795 

.056977 

.057005 

.057006 

.068746 

.073744 

.072244 

.073138 

.073160 
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6 
7 

-2.25081 
-2.25081 

.057003 

.057003 
.073155 
.073155 

 
 

The logarithm of the MLlikelihood and the ML estimates for the variance components for 
the wheat.sta data are listed in the last row of the Iteration history Spreadsheet shown 
below.  

Iteration History (wheat.sta) 
  Variable: DAMAGE  
Iter.  Log LL  Error  VARIETY   
1 
2 
3 
4 
5 
6 

-2.53585 
-2.48382 
-2.48381 
-2.48381 
-2.48381 
-2.48381 

.057454 

.057427 

.057492 

.057491 

.057492 

.057492 

.048799 

.048541 

.048639 

.048552 

.048552 

.048552 

 

 
 

As can be seen, the estimates of the variance components for the different methods are 
quite similar. In general, components of variance using different estimation methods tend 
to agree fairly well (see, for example, Swallow & Monahan, 1984).  

 

 
Testing the significance of variance components. When maximum likelihood 
estimation techniques are used, standard linear model significance testing techniques may 
not be applicable. ANOVA techniques such as decomposing sums of squares and testing 
the significance of effects by taking ratios of mean squares are appropriate for linear 
methods of estimation, but generally are not appropriate for quadratic methods of 
estimation. When ANOVA methods are used for estimation, standard significance testing 
techniques can be employed, with the exception that any confounding among random 
effects must be taken into account.  

To test the significance of effects in mixed or random models, error terms must be 
constructed that contain all the same sources of random variation except for the variation 
of the respective effect of interest. This is done using Satterthwaite's method of 
denominator synthesis (Satterthwaite, 1946), which finds the linear combinations of 
sources of random variation that serve as appropriate error terms for testing the 
significance of the respective effect of interest. The Spreadsheet below shows the 
coefficients used to construct these linear combinations for testing the Variety and Plot 
effects.  
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Denominator Synthesis: Coefficients (MS Type: 1) (wheat.sta) 

  The synthesized MS Errors are linear 
combinations of the resp. MS effects 

Effect (F/R) VARIETY  PLOT  Error  
{1}VARIETY 
{2}PLOT  

Random 
Random 

  
  

1.000000 
  

  
1.000000 

 
 

The coefficients show that the Mean square for Variety should be tested against the Mean 
square for Plot, and that the Mean square for Plot should be tested against the Mean 
square for Error. Referring back to the Expected mean squares Spreadsheet, it is clear 
that the denominator synthesis has identified appropriate error terms for testing the 
Variety and Plot effects. Although this is a simple example, in more complex analyses 
with various degrees of confounding among the random effects, the denominator 
synthesis can identify appropriate error terms for testing the random effects that would 
not be readily apparent.  

To perform the tests of significance of the random effects, ratios of appropriate Mean 
squares are formed to compute F statistics and p levels for each effect. Note that in 
complex analyses the degrees of freedom for random effects can be fractional rather than 
integer values, indicating that fractions of sources of variation were used in synthesizing 
appropriate error terms for testing the random effects. The Spreadsheet displaying the 
results of the ANOVA for the Variety and Plot random effects is shown below. Note that 
for this simple design the results are identical to the results presented earlier in the 
Spreadsheet for the ANOVA treating Plot as a random effect nested within Variety.  

ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  

  df error computed using Satterthwaite method 
  
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error  

MS 
Error  

  
F 

  
p 

{1}VARIETY  
{2}PLOT  

Fixed 
Random 

3 
9 

.270053 

.056435 
9 

----- 
.056435 

----- 
4.785196 

----- 
.029275 

----- 

 
 

As shown in the Spreadsheet, the Variety effect is found to be significant at p < .05, but 
as would be expected, the Plot effect cannot be tested for significance because plots 
served as the basic unit of analysis. If data on samples of plants taken within plots were 
available, a test of the significance of the Plot effect could be constructed.  

Appropriate tests of significance for MIVQUE(0) variance component estimates 
generally cannot be constructed, except in special cases (see Searle, Casella, & 
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McCulloch, 1992). Asymptotic (large sample) tests of significance of REML and ML 
variance component estimates, however, can be constructed for the parameter estimates 
from the final iteration of the solution. The Spreadsheet below shows the asymptotic 
(large sample) tests of significance for the REML estimates for the wheat.sta data.  

Restricted Maximum Likelihood Estimates (wheat.sta) 

  Variable: DAMAGE 
-2*Log(Likelihood)=4.50162399 

  
Effect 

Variance 
Comp. 

Asympt. 
Std.Err.  

Asympt. 
z 

Asympt. 
p 

{1}VARIETY  
Error  

.073155 

.057003 
.078019 
.027132 

.937656 
2.100914 

.348421 

.035648 

 
 

The Spreadsheet below shows the asymptotic (large sample) tests of significance for the 
ML estimates for the wheat.sta data.  

Maximum Likelihood Estimates (wheat.sta) 

  Variable: DAMAGE 
-2*Log(Likelihood)=4.96761616 

  
Effect 

Variance 
Comp. 

Asympt. 
Std.Err.  

Asympt. 
z 

Asympt. 
p 

{1}VARIETY  
Error  

.048552 

.057492 
.050747 
.027598 

.956748 
2.083213 

.338694 

.037232 

 
 

It should be emphasized that the asymptotic tests of significance for REML and ML 
variance component estimates are based on large sample sizes, which certainly is not the 
case for the wheat.sta data. For this data set, the tests of significance from both analyses 
agree in suggesting that the Variety variance component does not differ significantly 
from zero.  

For basic information on ANOVA in linear models, see also Elementary Concepts.  

 

Estimating the population intraclass correlation. Note that if the variance component 
estimates for the random effects in the model are divided by the sum of all components 
(including the error component), the resulting percentages are population intraclass 
correlation coefficients for the respective effects.  
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Chapter 42 
Distribution Tables 

Compared to probability calculators (e.g., the one included in STATISTICA), the 
traditional format of distribution tables such as those presented below, has the advantage 
of showing many values simultaneously and, thus, enables the user to examine and 
quickly explore ranges of probabilities.  

 
• Z Table 
• t Table 
• Chi-Square Table 
• F Tables for: 

  

o alpha=.10 
o alpha=.05 

o alpha=.025 
o alpha=.01 

Note that all table values were calculated using the distribution facilities in STATISTICA 
BASIC, and they were verified against other published tables.  

 
Standard Normal (Z) Table  

 

The Standard Normal distribution is used in various hypothesis tests including tests on 
single means, the difference between two means, and tests on proportions. The Standard 
Normal distribution has a mean of 0 and a standard deviation of 1. The animation above 
shows various (left) tail areas for this distribution. For more information on the Normal 
Distribution as it is used in statistical testing, see the chapter on Elementary Concepts. 
See also, the Normal Distribution.  

As shown in the illustration below, the values inside the given table represent the areas 
under the standard normal curve for values between 0 and the relative z-score. For 
example, to determine the area under the curve between 0 and 2.36, look in the 
intersecting cell for the row labeled 2.30 and the column labeled 0.06. The area under the 
curve is .4909. To determine the area between 0 and a negative value, look in the 
intersecting cell of the row and column which sums to the absolute value of the number 
in question. For example, the area under the curve between -1.3 and 0 is equal to the area 
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under the curve between 1.3 and 0, so look at the cell on the 1.3 row and the 0.00 column 
(the area is 0.4032).  

Area between 0 and z 

 
  0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 
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2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 

 

Student's t Table  

 

The Shape of the Student's t distribution is determined by the degrees of freedom. As 
shown in the animation above, its shape changes as the degrees of freedom increases. For 
more information on how this distribution is used in hypothesis testing, see t-test for 
independent samples and t-test for dependent samples in the chapter on Basic Statistics 
and Tables. See also, Student's t Distribution. As indicated by the chart below, the areas 
given at the top of this table are the right tail areas for the t-value inside the table. To 
determine the 0.05 critical value from the t-distribution with 6 degrees of freedom, look 
in the 0.05 column at the 6 row: t(.05,6) = 1.943180.  

t table with right tail probabilities  

 

df\p 0.40  0.25  0.10  0.05  0.025  0.01  0.005  0.0005  

1  0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192 

2  0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991 

3  0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240 

4  0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103 

5  0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688 
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6  0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588 

7  0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079 

8  0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413 

9  0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809 

10  0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869 

  

11  0.259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370 

12  0.259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178 

13  0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208 

14  0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405 

15  0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728 

  

16  0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150 

17  0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651 

18  0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216 

19  0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834 

20  0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495 

  

21  0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193 

22  0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921 

23  0.256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676 

24  0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454 

25  0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251 

  

26  0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066 

27  0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896 

28  0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739 

29  0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594 

30  0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460 
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inf  0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905 

 

Chi-Square Table  

 

Like the Student's t-Distribution, the Chi-square distribtuion's shape is determined by its 
degrees of freedom. The animation above shows the shape of the Chi-square distribution 
as the degrees of freedom increase (1, 2, 5, 10, 25 and 50). For examples of tests of 
hypothesis which use the Chi-square distribution, see Statistics in crosstabulation tables 
in the Basic Statistics and Tables chapter as well as the Nonlinear Estimation chapter. See 
also, Chi-square Distribution. As shown in the illustration below, the values inside this 
table are critical values of the Chi-square distribution with the corresponding degrees of 
freedom. To determine the value from a Chi-square distribution (with a specific degree of 
freedom) which has a given area above it, go to the given area column and the desired 
degree of freedom row. For example, the .25 critical value for a Chi-square with 4 
degrees of freedom is 5.38527. This means that the area to the right of 5.38527 in a Chi-
square distribution with 4 degrees of freedom is .25.  

Right tail areas for the Chi-square Distribution  

 

df\a
rea .995  .990  .975  .950  .900  .750  .500  .250  .100  .050  .025  .010  .005  

1  0.000
04 

0.000
16 

0.000
98 

0.003
93 

0.015
79 

0.101
53 

0.454
94 

1.323
30 

2.705
54 

3.841
46 

5.023
89 

6.634
90 

7.879
44 

2  0.010
03 

0.020
10 

0.050
64 

0.102
59 

0.210
72 

0.575
36 

1.386
29 

2.772
59 

4.605
17 

5.991
46 

7.377
76 

9.210
34 

10.59
663 

3  0.071
72 

0.114
83 

0.215
80 

0.351
85 

0.584
37 

1.212
53 

2.365
97 

4.108
34 

6.251
39 

7.814
73 

9.348
40 

11.34
487 

12.83
816 

4  0.206
99 

0.297
11 

0.484
42 

0.710
72 

1.063
62 

1.922
56 

3.356
69 

5.385
27 

7.779
44 

9.487
73 

11.14
329 

13.27
670 

14.86
026 

5  0.411 0.554 0.831 1.145 1.610 2.674 4.351 6.625 9.236 11.07 12.83 15.08 16.74
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74 30 21 48 31 60 46 68 36 050 250 627 960 

  

6  0.675
73 

0.872
09 

1.237
34 

1.635
38 

2.204
13 

3.454
60 

5.348
12 

7.840
80 

10.64
464 

12.59
159 

14.44
938 

16.81
189 

18.54
758 

7  0.989
26 

1.239
04 

1.689
87 

2.167
35 

2.833
11 

4.254
85 

6.345
81 

9.037
15 

12.01
704 

14.06
714 

16.01
276 

18.47
531 

20.27
774 

8  1.344
41 

1.646
50 

2.179
73 

2.732
64 

3.489
54 

5.070
64 

7.344
12 

10.21
885 

13.36
157 

15.50
731 

17.53
455 

20.09
024 

21.95
495 

9  1.734
93 

2.087
90 

2.700
39 

3.325
11 

4.168
16 

5.898
83 

8.342
83 

11.38
875 

14.68
366 

16.91
898 

19.02
277 

21.66
599 

23.58
935 

10 2.155
86 

2.558
21 

3.246
97 

3.940
30 

4.865
18 

6.737
20 

9.341
82 

12.54
886 

15.98
718 

18.30
704 

20.48
318 

23.20
925 

25.18
818 

  

11 2.603
22 

3.053
48 

3.815
75 

4.574
81 

5.577
78 

7.584
14 

10.34
100 

13.70
069 

17.27
501 

19.67
514 

21.92
005 

24.72
497 

26.75
685 

12 3.073
82 

3.570
57 

4.403
79 

5.226
03 

6.303
80 

8.438
42 

11.34
032 

14.84
540 

18.54
935 

21.02
607 

23.33
666 

26.21
697 

28.29
952 

13 3.565
03 

4.106
92 

5.008
75 

5.891
86 

7.041
50 

9.299
07 

12.33
976 

15.98
391 

19.81
193 

22.36
203 

24.73
560 

27.68
825 

29.81
947 

14 4.074
67 

4.660
43 

5.628
73 

6.570
63 

7.789
53 

10.16
531 

13.33
927 

17.11
693 

21.06
414 

23.68
479 

26.11
895 

29.14
124 

31.31
935 

15 4.600
92 

5.229
35 

6.262
14 

7.260
94 

8.546
76 

11.03
654 

14.33
886 

18.24
509 

22.30
713 

24.99
579 

27.48
839 

30.57
791 

32.80
132 

  

16 5.142
21 

5.812
21 

6.907
66 

7.961
65 

9.312
24 

11.91
222 

15.33
850 

19.36
886 

23.54
183 

26.29
623 

28.84
535 

31.99
993 

34.26
719 

17 5.697
22 

6.407
76 

7.564
19 

8.671
76 

10.08
519 

12.79
193 

16.33
818 

20.48
868 

24.76
904 

27.58
711 

30.19
101 

33.40
866 

35.71
847 

18 6.264
80 

7.014
91 

8.230
75 

9.390
46 

10.86
494 

13.67
529 

17.33
790 

21.60
489 

25.98
942 

28.86
930 

31.52
638 

34.80
531 

37.15
645 

19 6.843
97 

7.632
73 

8.906
52 

10.11
701 

11.65
091 

14.56
200 

18.33
765 

22.71
781 

27.20
357 

30.14
353 

32.85
233 

36.19
087 

38.58
226 

20 7.433
84 

8.260
40 

9.590
78 

10.85
081 

12.44
261 

15.45
177 

19.33
743 

23.82
769 

28.41
198 

31.41
043 

34.16
961 

37.56
623 

39.99
685 

  

21 8.033
65 

8.897
20 

10.28
290 

11.59
131 

13.23
960 

16.34
438 

20.33
723 

24.93
478 

29.61
509 

32.67
057 

35.47
888 

38.93
217 

41.40
106 

22 8.642 9.542 10.98 12.33 14.04 17.23 21.33 26.03 30.81 33.92 36.78 40.28 42.79
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72 49 232 801 149 962 704 927 328 444 071 936 565 

23 9.260
42 

10.19
572 

11.68
855 

13.09
051 

14.84
796 

18.13
730 

22.33
688 

27.14
134 

32.00
690 

35.17
246 

38.07
563 

41.63
840 

44.18
128 

24 9.886
23 

10.85
636 

12.40
115 

13.84
843 

15.65
868 

19.03
725 

23.33
673 

28.24
115 

33.19
624 

36.41
503 

39.36
408 

42.97
982 

45.55
851 

25 10.51
965 

11.52
398 

13.11
972 

14.61
141 

16.47
341 

19.93
934 

24.33
659 

29.33
885 

34.38
159 

37.65
248 

40.64
647 

44.31
410 

46.92
789 

  

26 11.16
024 

12.19
815 

13.84
390 

15.37
916 

17.29
188 

20.84
343 

25.33
646 

30.43
457 

35.56
317 

38.88
514 

41.92
317 

45.64
168 

48.28
988 

27 11.80
759 

12.87
850 

14.57
338 

16.15
140 

18.11
390 

21.74
940 

26.33
634 

31.52
841 

36.74
122 

40.11
327 

43.19
451 

46.96
294 

49.64
492 

28 12.46
134 

13.56
471 

15.30
786 

16.92
788 

18.93
924 

22.65
716 

27.33
623 

32.62
049 

37.91
592 

41.33
714 

44.46
079 

48.27
824 

50.99
338 

29 13.12
115 

14.25
645 

16.04
707 

17.70
837 

19.76
774 

23.56
659 

28.33
613 

33.71
091 

39.08
747 

42.55
697 

45.72
229 

49.58
788 

52.33
562 

30 13.78
672 

14.95
346 

16.79
077 

18.49
266 

20.59
923 

24.47
761 

29.33
603 

34.79
974 

40.25
602 

43.77
297 

46.97
924 

50.89
218 

53.67
196 

 

F Distribution Tables  

 

The F distribution is a right-skewed distribution used most commonly in Analysis of 
Variance (see ANOVA/MANOVA ). The F distribution is a ratio of two Chi-square 
distributions, and a specific F distribution is denoted by the degrees of freedom for the 
numerator Chi-square and the degrees of freedom for the denominator Chi-square. An 
example of the F(10,10) distribution is shown in the animation above. When referencing the 
F distribution, the numerator degrees of freedom are always given first, as switching the 
order of degrees of freedom changes the distribution (e.g., F(10,12) does not equal F(12,10)). 
For the four F tables below, the rows represent denominator degrees of freedom and the 
columns represent numerator degrees of freedom. The right tail area is given in the name 
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of the table. For example, to determine the .05 critical value for an F distribution with 10 
and 12 degrees of freedom, look in the 10 column (numerator) and 12 row (denominator) 
of the F Table for alpha=.05. F(.05, 10, 12) = 2.7534.  

F Table for alpha=.10 .  

 
df
2/
df
1 

1 2  3  4  5  6  7  8  9  10  12  15  20  24  30  40  60  12
0  

IN
F  

1  

39.
86
34
6 

49.
50
00
0 

53.
59
32
4 

55.
83
29
6 

57.
24
00
8 

58.
20
44
2 

58.
90
59
5 

59.
43
89
8 

59.
85
75
9 

60.
19
49
8 

60.
70
52
1 

61.
22
03
4 

61.
74
02
9 

62.
00
20
5 

62.
26
49
7 

62.
52
90
5 

62.
79
42
8 

63.
06
06
4 

63.
32
81
2 

2  
8.5
26
32 

9.0
00
00 

9.1
61
79 

9.2
43
42 

9.2
92
63 

9.3
25
53 

9.3
49
08 

9.3
66
77 

9.3
80
54 

9.3
91
57 

9.4
08
13 

9.4
24
71 

9.4
41
31 

9.4
49
62 

9.4
57
93 

9.4
66
24 

9.4
74
56 

9.4
82
89 

9.4
91
22 

3  
5.5
38
32 

5.4
62
38 

5.3
90
77 

5.3
42
64 

5.3
09
16 

5.2
84
73 

5.2
66
19 

5.2
51
67 

5.2
40
00 

5.2
30
41 

5.2
15
62 

5.2
00
31 

5.1
84
48 

5.1
76
36 

5.1
68
11 

5.1
59
72 

5.1
51
19 

5.1
42
51 

5.1
33
70 

4  
4.5
44
77 

4.3
24
56 

4.1
90
86 

4.1
07
25 

4.0
50
58 

4.0
09
75 

3.9
78
97 

3.9
54
94 

3.9
35
67 

3.9
19
88 

3.8
95
53 

3.8
70
36 

3.8
44
34 

3.8
30
99 

3.8
17
42 

3.8
03
61 

3.7
89
57 

3.7
75
27 

3.7
60
73 

5  
4.0
60
42 

3.7
79
72 

3.6
19
48 

3.5
20
20 

3.4
52
98 

3.4
04
51 

3.3
67
90 

3.3
39
28 

3.3
16
28 

3.2
97
40 

3.2
68
24 

3.2
38
01 

3.2
06
65 

3.1
90
52 

3.1
74
08 

3.1
57
32 

3.1
40
23 

3.1
22
79 

3.1
05
00 

  

6  
3.7
75
95 

3.4
63
30 

3.2
88
76 

3.1
80
76 

3.1
07
51 

3.0
54
55 

3.0
14
46 

2.9
83
04 

2.9
57
74 

2.9
36
93 

2.9
04
72 

2.8
71
22 

2.8
36
34 

2.8
18
34 

2.7
99
96 

2.7
81
17 

2.7
61
95 

2.7
42
29 

2.7
22
16 

7  
3.5
89
43 

3.2
57
44 

3.0
74
07 

2.9
60
53 

2.8
83
34 

2.8
27
39 

2.7
84
93 

2.7
51
58 

2.7
24
68 

2.7
02
51 

2.6
68
11 

2.6
32
23 

2.5
94
73 

2.5
75
33 

2.5
55
46 

2.5
35
10 

2.5
14
22 

2.4
92
79 

2.4
70
79 

8  
3.4
57
92 

3.1
13
12 

2.9
23
80 

2.8
06
43 

2.7
26
45 

2.6
68
33 

2.6
24
13 

2.5
89
35 

2.5
61
24 

2.5
38
04 

2.5
01
96 

2.4
64
22 

2.4
24
64 

2.4
04
10 

2.3
83
02 

2.3
61
36 

2.3
39
10 

2.3
16
18 

2.2
92
57 

9  
3.3
60
30 

3.0
06
45 

2.8
12
86 

2.6
92
68 

2.6
10
61 

2.5
50
86 

2.5
05
31 

2.4
69
41 

2.4
40
34 

2.4
16
32 

2.3
78
88 

2.3
39
62 

2.2
98
32 

2.2
76
83 

2.2
54
72 

2.2
31
96 

2.2
08
49 

2.1
84
27 

2.1
59
23 
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10  
3.2
85
02 

2.9
24
47 

2.7
27
67 

2.6
05
34 

2.5
21
64 

2.4
60
58 

2.4
13
97 

2.3
77
15 

2.3
47
31 

2.3
22
60 

2.2
84
05 

2.2
43
51 

2.2
00
74 

2.1
78
43 

2.1
55
43 

2.1
31
69 

2.1
07
16 

2.0
81
76 

2.0
55
42 

  

11  
3.2
25
20 

2.8
59
51 

2.6
60
23 

2.5
36
19 

2.4
51
18 

2.3
89
07 

2.3
41
57 

2.3
04
00 

2.2
73
50 

2.2
48
23 

2.2
08
73 

2.1
67
09 

2.1
23
05 

2.1
00
01 

2.0
76
21 

2.0
51
61 

2.0
26
12 

1.9
99
65 

1.9
72
11 

12  
3.1
76
55 

2.8
06
80 

2.6
05
52 

2.4
80
10 

2.3
94
02 

2.3
31
02 

2.2
82
78 

2.2
44
57 

2.2
13
52 

2.1
87
76 

2.1
47
44 

2.1
04
85 

2.0
59
68 

2.0
35
99 

2.0
11
49 

1.9
86
10 

1.9
59
73 

1.9
32
28 

1.9
03
61 

13  
3.1
36
21 

2.7
63
17 

2.5
60
27 

2.4
33
71 

2.3
46
72 

2.2
82
98 

2.2
34
10 

2.1
95
35 

2.1
63
82 

2.1
37
63 

2.0
96
59 

2.0
53
16 

2.0
06
98 

1.9
82
72 

1.9
57
57 

1.9
31
47 

1.9
04
29 

1.8
75
91 

1.8
46
20 

14  
3.1
02
21 

2.7
26
47 

2.5
22
22 

2.3
94
69 

2.3
06
94 

2.2
42
56 

2.1
93
13 

2.1
53
90 

2.1
21
95 

2.0
95
40 

2.0
53
71 

2.0
09
53 

1.9
62
45 

1.9
37
66 

1.9
11
93 

1.8
85
16 

1.8
57
23 

1.8
28
00 

1.7
97
28 

15  
3.0
73
19 

2.6
95
17 

2.4
89
79 

2.3
61
43 

2.2
73
02 

2.2
08
08 

2.1
58
18 

2.1
18
53 

2.0
86
21 

2.0
59
32 

2.0
17
07 

1.9
72
22 

1.9
24
31 

1.8
99
04 

1.8
72
77 

1.8
45
39 

1.8
16
76 

1.7
86
72 

1.7
55
05 

  

16  
3.0
48
11 

2.6
68
17 

2.4
61
81 

2.3
32
74 

2.2
43
76 

2.1
78
33 

2.1
28
00 

2.0
87
98 

2.0
55
33 

2.0
28
15 

1.9
85
39 

1.9
39
92 

1.8
91
27 

1.8
65
56 

1.8
38
79 

1.8
10
84 

1.7
81
56 

1.7
50
75 

1.7
18
17 

17  
3.0
26
23 

2.6
44
64 

2.4
37
43 

2.3
07
75 

2.2
18
25 

2.1
52
39 

2.1
01
69 

2.0
61
34 

2.0
28
39 

2.0
00
94 

1.9
57
72 

1.9
11
69 

1.8
62
36 

1.8
36
24 

1.8
09
01 

1.7
80
53 

1.7
50
63 

1.7
19
09 

1.6
85
64 

18  
3.0
06
98 

2.6
23
95 

2.4
16
01 

2.2
85
77 

2.1
95
83 

2.1
29
58 

2.0
78
54 

2.0
37
89 

2.0
04
67 

1.9
76
98 

1.9
33
34 

1.8
86
81 

1.8
36
85 

1.8
10
35 

1.7
82
69 

1.7
53
71 

1.7
23
22 

1.6
90
99 

1.6
56
71 

19  
2.9
89
90 

2.6
05
61 

2.3
97
02 

2.2
66
30 

2.1
75
96 

2.1
09
36 

2.0
58
02 

2.0
17
10 

1.9
83
64 

1.9
55
73 

1.9
11
70 

1.8
64
71 

1.8
14
16 

1.7
87
31 

1.7
59
24 

1.7
29
79 

1.6
98
76 

1.6
65
87 

1.6
30
77 

20  
2.9
74
65 

2.5
89
25 

2.3
80
09 

2.2
48
93 

2.1
58
23 

2.0
91
32 

2.0
39
70 

1.9
98
53 

1.9
64
85 

1.9
36
74 

1.8
92
36 

1.8
44
94 

1.7
93
84 

1.7
66
67 

1.7
38
22 

1.7
08
33 

1.6
76
78 

1.6
43
26 

1.6
07
38 

  

21  
2.9
60
96 

2.5
74
57 

2.3
64
89 

2.2
33
34 

2.1
42
31 

2.0
75
12 

2.0
23
25 

1.9
81
86 

1.9
47
97 

1.9
19
67 

1.8
74
97 

1.8
27
15 

1.7
75
55 

1.7
48
07 

1.7
19
27 

1.6
88
96 

1.6
56
91 

1.6
22
78 

1.5
86
15 

22  
2.9
48
58 

2.5
61
31 

2.3
51
17 

2.2
19
27 

2.1
27
94 

2.0
60
50 

2.0
08
40 

1.9
66
80 

1.9
32
73 

1.9
04
25 

1.8
59
25 

1.8
11
06 

1.7
58
99 

1.7
31
22 

1.7
02
08 

1.6
71
38 

1.6
38
85 

1.6
04
15 

1.5
66
78 
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23  
2.9
37
36 

2.5
49
29 

2.3
38
73 

2.2
06
51 

2.1
14
91 

2.0
47
23 

1.9
94
92 

1.9
53
12 

1.9
18
88 

1.8
90
25 

1.8
44
97 

1.7
96
43 

1.7
43
92 

1.7
15
88 

1.6
86
43 

1.6
55
35 

1.6
22
37 

1.5
87
11 

1.5
49
03 

24  
2.9
27
12 

2.5
38
33 

2.3
27
39 

2.1
94
88 

2.1
03
03 

2.0
35
13 

1.9
82
63 

1.9
40
66 

1.9
06
25 

1.8
77
48 

1.8
31
94 

1.7
83
08 

1.7
30
15 

1.7
01
85 

1.6
72
10 

1.6
40
67 

1.6
07
26 

1.5
71
46 

1.5
32
70 

25  
2.9
17
74 

2.5
28
31 

2.3
17
02 

2.1
84
24 

2.0
92
16 

2.0
24
06 

1.9
71
38 

1.9
29
25 

1.8
94
69 

1.8
65
78 

1.8
20
00 

1.7
70
83 

1.7
17
52 

1.6
88
98 

1.6
58
95 

1.6
27
18 

1.5
93
35 

1.5
57
03 

1.5
17
60 

  

26  
2.9
09
13 

2.5
19
10 

2.3
07
49 

2.1
74
47 

2.0
82
18 

2.0
13
89 

1.9
61
04 

1.9
18
76 

1.8
84
07 

1.8
55
03 

1.8
09
02 

1.7
59
57 

1.7
05
89 

1.6
77
12 

1.6
46
82 

1.6
14
72 

1.5
80
50 

1.5
43
68 

1.5
03
60 

27  
2.9
01
19 

2.5
10
61 

2.2
98
71 

2.1
65
46 

2.0
72
98 

2.0
04
52 

1.9
51
51 

1.9
09
09 

1.8
74
27 

1.8
45
11 

1.7
98
89 

1.7
49
17 

1.6
95
14 

1.6
66
16 

1.6
35
60 

1.6
03
20 

1.5
68
59 

1.5
31
29 

1.4
90
57 

28  
2.8
93
85 

2.5
02
76 

2.2
90
60 

2.1
57
14 

2.0
64
47 

1.9
95
85 

1.9
42
70 

1.9
00
14 

1.8
65
20 

1.8
35
93 

1.7
89
51 

1.7
39
54 

1.6
85
19 

1.6
56
00 

1.6
25
19 

1.5
92
50 

1.5
57
53 

1.5
19
76 

1.4
78
41 

29  
2.8
87
03 

2.4
95
48 

2.2
83
07 

2.1
49
41 

2.0
56
58 

1.9
87
81 

1.9
34
52 

1.8
91
84 

1.8
56
79 

1.8
27
41 

1.7
80
81 

1.7
30
60 

1.6
75
93 

1.6
46
55 

1.6
15
51 

1.5
82
53 

1.5
47
21 

1.5
08
99 

1.4
67
04 

30  
2.8
80
69 

2.4
88
72 

2.2
76
07 

2.1
42
23 

2.0
49
25 

1.9
80
33 

1.9
26
92 

1.8
84
12 

1.8
48
96 

1.8
19
49 

1.7
72
70 

1.7
22
27 

1.6
67
31 

1.6
37
74 

1.6
06
48 

1.5
73
23 

1.5
37
57 

1.4
98
91 

1.4
56
36 

  

40  
2.8
35
35 

2.4
40
37 

2.2
26
09 

2.0
90
95 

1.9
96
82 

1.9
26
88 

1.8
72
52 

1.8
28
86 

1.7
92
90 

1.7
62
69 

1.7
14
56 

1.6
62
41 

1.6
05
15 

1.5
74
11 

1.5
41
08 

1.5
05
62 

1.4
67
16 

1.4
24
76 

1.3
76
91 

60  
2.7
91
07 

2.3
93
25 

2.1
77
41 

2.0
40
99 

1.9
45
71 

1.8
74
72 

1.8
19
39 

1.7
74
83 

1.7
38
02 

1.7
07
01 

1.6
57
43 

1.6
03
37 

1.5
43
49 

1.5
10
72 

1.4
75
54 

1.4
37
34 

1.3
95
20 

1.3
47
57 

1.2
91
46 

12
0 

2.7
47
81 

2.3
47
34 

2.1
29
99 

1.9
92
30 

1.8
95
87 

1.8
23
81 

1.7
67
48 

1.7
21
96 

1.6
84
25 

1.6
52
38 

1.6
01
20 

1.5
45
00 

1.4
82
07 

1.4
47
23 

1.4
09
38 

1.3
67
60 

1.3
20
34 

1.2
64
57 

1.1
92
56 

in
f 

2.7
05
54 

2.3
02
59 

2.0
83
80 

1.9
44
86 

1.8
47
27 

1.7
74
11 

1.7
16
72 

1.6
70
20 

1.6
31
52 

1.5
98
72 

1.5
45
78 

1.4
87
14 

1.4
20
60 

1.3
83
18 

1.3
41
87 

1.2
95
13 

1.2
39
95 

1.1
68
60 

1.0
00
00 
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F Table for alpha=.05 .  

 
df
2/
df
1 

1 2  3  4  5  6  7  8  9  10  12  15  20  24  30  40  60  12
0  

IN
F  

1  

16
1.4
47
6 

19
9.5
00
0 

21
5.7
07
3 

22
4.5
83
2 

23
0.1
61
9 

23
3.9
86
0 

23
6.7
68
4 

23
8.8
82
7 

24
0.5
43
3 

24
1.8
81
7 

24
3.9
06
0 

24
5.9
49
9 

24
8.0
13
1 

24
9.0
51
8 

25
0.0
95
1 

25
1.1
43
2 

25
2.1
95
7 

25
3.2
52
9 

25
4.3
14
4 

2  
18.
51
28 

19.
00
00 

19.
16
43 

19.
24
68 

19.
29
64 

19.
32
95 

19.
35
32 

19.
37
10 

19.
38
48 

19.
39
59 

19.
41
25 

19.
42
91 

19.
44
58 

19.
45
41 

19.
46
24 

19.
47
07 

19.
47
91 

19.
48
74 

19.
49
57 

3  
10.
12
80 

9.5
52
1 

9.2
76
6 

9.1
17
2 

9.0
13
5 

8.9
40
6 

8.8
86
7 

8.8
45
2 

8.8
12
3 

8.7
85
5 

8.7
44
6 

8.7
02
9 

8.6
60
2 

8.6
38
5 

8.6
16
6 

8.5
94
4 

8.5
72
0 

8.5
49
4 

8.5
26
4 

4  
7.7
08
6 

6.9
44
3 

6.5
91
4 

6.3
88
2 

6.2
56
1 

6.1
63
1 

6.0
94
2 

6.0
41
0 

5.9
98
8 

5.9
64
4 

5.9
11
7 

5.8
57
8 

5.8
02
5 

5.7
74
4 

5.7
45
9 

5.7
17
0 

5.6
87
7 

5.6
58
1 

5.6
28
1 

5  
6.6
07
9 

5.7
86
1 

5.4
09
5 

5.1
92
2 

5.0
50
3 

4.9
50
3 

4.8
75
9 

4.8
18
3 

4.7
72
5 

4.7
35
1 

4.6
77
7 

4.6
18
8 

4.5
58
1 

4.5
27
2 

4.4
95
7 

4.4
63
8 

4.4
31
4 

4.3
98
5 

4.3
65
0 

  

6  
5.9
87
4 

5.1
43
3 

4.7
57
1 

4.5
33
7 

4.3
87
4 

4.2
83
9 

4.2
06
7 

4.1
46
8 

4.0
99
0 

4.0
60
0 

3.9
99
9 

3.9
38
1 

3.8
74
2 

3.8
41
5 

3.8
08
2 

3.7
74
3 

3.7
39
8 

3.7
04
7 

3.6
68
9 

7  
5.5
91
4 

4.7
37
4 

4.3
46
8 

4.1
20
3 

3.9
71
5 

3.8
66
0 

3.7
87
0 

3.7
25
7 

3.6
76
7 

3.6
36
5 

3.5
74
7 

3.5
10
7 

3.4
44
5 

3.4
10
5 

3.3
75
8 

3.3
40
4 

3.3
04
3 

3.2
67
4 

3.2
29
8 

8  
5.3
17
7 

4.4
59
0 

4.0
66
2 

3.8
37
9 

3.6
87
5 

3.5
80
6 

3.5
00
5 

3.4
38
1 

3.3
88
1 

3.3
47
2 

3.2
83
9 

3.2
18
4 

3.1
50
3 

3.1
15
2 

3.0
79
4 

3.0
42
8 

3.0
05
3 

2.9
66
9 

2.9
27
6 

9  
5.1
17
4 

4.2
56
5 

3.8
62
5 

3.6
33
1 

3.4
81
7 

3.3
73
8 

3.2
92
7 

3.2
29
6 

3.1
78
9 

3.1
37
3 

3.0
72
9 

3.0
06
1 

2.9
36
5 

2.9
00
5 

2.8
63
7 

2.8
25
9 

2.7
87
2 

2.7
47
5 

2.7
06
7 

10  
4.9
64
6 

4.1
02
8 

3.7
08
3 

3.4
78
0 

3.3
25
8 

3.2
17
2 

3.1
35
5 

3.0
71
7 

3.0
20
4 

2.9
78
2 

2.9
13
0 

2.8
45
0 

2.7
74
0 

2.7
37
2 

2.6
99
6 

2.6
60
9 

2.6
21
1 

2.5
80
1 

2.5
37
9 
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11  
4.8
44
3 

3.9
82
3 

3.5
87
4 

3.3
56
7 

3.2
03
9 

3.0
94
6 

3.0
12
3 

2.9
48
0 

2.8
96
2 

2.8
53
6 

2.7
87
6 

2.7
18
6 

2.6
46
4 

2.6
09
0 

2.5
70
5 

2.5
30
9 

2.4
90
1 

2.4
48
0 

2.4
04
5 

12  
4.7
47
2 

3.8
85
3 

3.4
90
3 

3.2
59
2 

3.1
05
9 

2.9
96
1 

2.9
13
4 

2.8
48
6 

2.7
96
4 

2.7
53
4 

2.6
86
6 

2.6
16
9 

2.5
43
6 

2.5
05
5 

2.4
66
3 

2.4
25
9 

2.3
84
2 

2.3
41
0 

2.2
96
2 

13  
4.6
67
2 

3.8
05
6 

3.4
10
5 

3.1
79
1 

3.0
25
4 

2.9
15
3 

2.8
32
1 

2.7
66
9 

2.7
14
4 

2.6
71
0 

2.6
03
7 

2.5
33
1 

2.4
58
9 

2.4
20
2 

2.3
80
3 

2.3
39
2 

2.2
96
6 

2.2
52
4 

2.2
06
4 

14  
4.6
00
1 

3.7
38
9 

3.3
43
9 

3.1
12
2 

2.9
58
2 

2.8
47
7 

2.7
64
2 

2.6
98
7 

2.6
45
8 

2.6
02
2 

2.5
34
2 

2.4
63
0 

2.3
87
9 

2.3
48
7 

2.3
08
2 

2.2
66
4 

2.2
22
9 

2.1
77
8 

2.1
30
7 

15  
4.5
43
1 

3.6
82
3 

3.2
87
4 

3.0
55
6 

2.9
01
3 

2.7
90
5 

2.7
06
6 

2.6
40
8 

2.5
87
6 

2.5
43
7 

2.4
75
3 

2.4
03
4 

2.3
27
5 

2.2
87
8 

2.2
46
8 

2.2
04
3 

2.1
60
1 

2.1
14
1 

2.0
65
8 

  

16  
4.4
94
0 

3.6
33
7 

3.2
38
9 

3.0
06
9 

2.8
52
4 

2.7
41
3 

2.6
57
2 

2.5
91
1 

2.5
37
7 

2.4
93
5 

2.4
24
7 

2.3
52
2 

2.2
75
6 

2.2
35
4 

2.1
93
8 

2.1
50
7 

2.1
05
8 

2.0
58
9 

2.0
09
6 

17  
4.4
51
3 

3.5
91
5 

3.1
96
8 

2.9
64
7 

2.8
10
0 

2.6
98
7 

2.6
14
3 

2.5
48
0 

2.4
94
3 

2.4
49
9 

2.3
80
7 

2.3
07
7 

2.2
30
4 

2.1
89
8 

2.1
47
7 

2.1
04
0 

2.0
58
4 

2.0
10
7 

1.9
60
4 

18  
4.4
13
9 

3.5
54
6 

3.1
59
9 

2.9
27
7 

2.7
72
9 

2.6
61
3 

2.5
76
7 

2.5
10
2 

2.4
56
3 

2.4
11
7 

2.3
42
1 

2.2
68
6 

2.1
90
6 

2.1
49
7 

2.1
07
1 

2.0
62
9 

2.0
16
6 

1.9
68
1 

1.9
16
8 

19  
4.3
80
7 

3.5
21
9 

3.1
27
4 

2.8
95
1 

2.7
40
1 

2.6
28
3 

2.5
43
5 

2.4
76
8 

2.4
22
7 

2.3
77
9 

2.3
08
0 

2.2
34
1 

2.1
55
5 

2.1
14
1 

2.0
71
2 

2.0
26
4 

1.9
79
5 

1.9
30
2 

1.8
78
0 

20  
4.3
51
2 

3.4
92
8 

3.0
98
4 

2.8
66
1 

2.7
10
9 

2.5
99
0 

2.5
14
0 

2.4
47
1 

2.3
92
8 

2.3
47
9 

2.2
77
6 

2.2
03
3 

2.1
24
2 

2.0
82
5 

2.0
39
1 

1.9
93
8 

1.9
46
4 

1.8
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3 

1.8
43
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21  
4.3
24
8 

3.4
66
8 

3.0
72
5 

2.8
40
1 

2.6
84
8 

2.5
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7 

2.4
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6 

2.4
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5 

2.3
66
0 

2.3
21
0 

2.2
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4 

2.1
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7 

2.0
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0 

2.0
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0 

2.0
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2 

1.9
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5 

1.9
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5 

1.8
65
7 

1.8
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7 
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4.3
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9 

3.4
43
4 

3.0
49
1 

2.8
16
7 

2.6
61
3 

2.5
49
1 

2.4
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8 

2.3
96
5 

2.3
41
9 

2.2
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7 

2.2
25
8 

2.1
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8 

2.0
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7 

2.0
28
3 

1.9
84
2 

1.9
38
0 

1.8
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4 

1.8
38
0 

1.7
83
1 
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4.2
79
3 

3.4
22
1 

3.0
28
0 

2.7
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5 

2.6
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0 

2.5
27
7 

2.4
42
2 

2.3
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8 
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1 

2.2
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7 
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6 

2.1
28
2 

2.0
47
6 

2.0
05
0 

1.9
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5 

1.9
13
9 

1.8
64
8 

1.8
12
8 

1.7
57
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24  
4.2
59
7 

3.4
02
8 

3.0
08
8 

2.7
76
3 

2.6
20
7 

2.5
08
2 

2.4
22
6 

2.3
55
1 

2.3
00
2 

2.2
54
7 

2.1
83
4 

2.1
07
7 

2.0
26
7 

1.9
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8 

1.9
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0 

1.8
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0 

1.8
42
4 

1.7
89
6 

1.7
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0 
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4.2
41
7 

3.3
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2 

2.9
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2 

2.7
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7 

2.6
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0 

2.4
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4 

2.4
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7 

2.3
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1 

2.2
82
1 

2.2
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5 

2.1
64
9 

2.0
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9 
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5 
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3 

1.9
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2 

1.8
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8 

1.8
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7 

1.7
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4 

1.7
11
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4.2
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2 

3.3
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0 

2.9
75
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42
6 

2.5
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8 
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1 
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3 
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7 
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9 
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6 
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8 
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0 
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7 

1.7
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8 
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6 

27  
4.2
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3.3
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2.7
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8 
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9 
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2.3
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2 
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3 

2.2
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1 

2.2
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3 

2.1
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3 

2.0
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8 

1.9
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6 

1.9
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9 

1.8
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2 

1.8
36
1 

1.7
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1 

1.7
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6 

1.6
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7 

28  
4.1
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0 

3.3
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4 

2.9
46
7 

2.7
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1 

2.5
58
1 

2.4
45
3 

2.3
59
3 

2.2
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3 

2.2
36
0 

2.1
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0 

2.1
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9 

2.0
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1 

1.9
58
6 
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14
7 

1.8
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7 

1.8
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3 

1.7
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9 

1.7
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8 
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1 

29  
4.1
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0 

3.3
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7 

2.9
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0 

2.7
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4 
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4 
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4 
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46
3 
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3 
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2.1
76
8 

2.1
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5 

2.0
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1.7
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1.6
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6 

30  
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3.3
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2.6
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6 

2.5
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6 

2.4
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5 

2.3
34
3 

2.2
66
2 

2.2
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7 

2.1
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6 

2.0
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1 

2.0
14
8 

1.9
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7 

1.8
87
4 

1.8
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9 

1.7
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8 

1.7
39
6 

1.6
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5 

1.6
22
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4.0
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7 

3.2
31
7 

2.8
38
7 

2.6
06
0 

2.4
49
5 

2.3
35
9 

2.2
49
0 

2.1
80
2 

2.1
24
0 

2.0
77
2 

2.0
03
5 

1.9
24
5 

1.8
38
9 

1.7
92
9 

1.7
44
4 

1.6
92
8 

1.6
37
3 

1.5
76
6 

1.5
08
9 

60  
4.0
01
2 

3.1
50
4 

2.7
58
1 

2.5
25
2 

2.3
68
3 

2.2
54
1 

2.1
66
5 

2.0
97
0 

2.0
40
1 

1.9
92
6 

1.9
17
4 

1.8
36
4 

1.7
48
0 

1.7
00
1 

1.6
49
1 

1.5
94
3 

1.5
34
3 

1.4
67
3 

1.3
89
3 
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0 

3.9
20
1 

3.0
71
8 

2.6
80
2 

2.4
47
2 

2.2
89
9 

2.1
75
0 

2.0
86
8 

2.0
16
4 

1.9
58
8 

1.9
10
5 

1.8
33
7 

1.7
50
5 

1.6
58
7 

1.6
08
4 

1.5
54
3 

1.4
95
2 

1.4
29
0 

1.3
51
9 

1.2
53
9 

in
f 

3.8
41
5 

2.9
95
7 

2.6
04
9 

2.3
71
9 

2.2
14
1 

2.0
98
6 

2.0
09
6 

1.9
38
4 

1.8
79
9 

1.8
30
7 

1.7
52
2 

1.6
66
4 

1.5
70
5 

1.5
17
3 

1.4
59
1 

1.3
94
0 

1.3
18
0 

1.2
21
4 

1.0
00
0 

 
F Table for alpha=.025 .  
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df
2/
df
1 

1 2  3  4  5  6  7  8  9  10  12  15  20  24  30  40  60  12
0  

IN
F  

1  

64
7.7
89
0 

79
9.5
00
0 

86
4.1
63
0 

89
9.5
83
3 

92
1.8
47
9 

93
7.1
11
1 

94
8.2
16
9 

95
6.6
56
2 

96
3.2
84
6 

96
8.6
27
4 

97
6.7
07
9 

98
4.8
66
8 

99
3.1
02
8 

99
7.2
49
2 

10
01.
41
4 

10
05.
59
8 

10
09.
80
0 

10
14.
02
0 

10
18.
25
8 

2  
38.
50
63 

39.
00
00 

39.
16
55 

39.
24
84 

39.
29
82 

39.
33
15 

39.
35
52 

39.
37
30 

39.
38
69 

39.
39
80 

39.
41
46 

39.
43
13 

39.
44
79 

39.
45
62 

39.
46
5 

39.
47
3 

39.
48
1 

39.
49
0 

39.
49
8 

3  
17.
44
34 

16.
04
41 

15.
43
92 

15.
10
10 

14.
88
48 

14.
73
47 

14.
62
44 

14.
53
99 

14.
47
31 

14.
41
89 

14.
33
66 

14.
25
27 

14.
16
74 

14.
12
41 

14.
08
1 

14.
03
7 

13.
99
2 

13.
94
7 

13.
90
2 

4  
12.
21
79 

10.
64
91 

9.9
79
2 

9.6
04
5 

9.3
64
5 

9.1
97
3 

9.0
74
1 

8.9
79
6 

8.9
04
7 

8.8
43
9 

8.7
51
2 

8.6
56
5 

8.5
59
9 

8.5
10
9 

8.4
61 

8.4
11 

8.3
60 

8.3
09 

8.2
57 

5  
10.
00
70 

8.4
33
6 

7.7
63
6 

7.3
87
9 

7.1
46
4 

6.9
77
7 

6.8
53
1 

6.7
57
2 

6.6
81
1 

6.6
19
2 

6.5
24
5 

6.4
27
7 

6.3
28
6 

6.2
78
0 

6.2
27 

6.1
75 

6.1
23 

6.0
69 

6.0
15 

  

6  
8.8
13
1 

7.2
59
9 

6.5
98
8 

6.2
27
2 

5.9
87
6 

5.8
19
8 

5.6
95
5 

5.5
99
6 

5.5
23
4 

5.4
61
3 

5.3
66
2 

5.2
68
7 

5.1
68
4 

5.1
17
2 

5.0
65 

5.0
12 

4.9
59 

4.9
04 

4.8
49 

7  
8.0
72
7 

6.5
41
5 

5.8
89
8 

5.5
22
6 

5.2
85
2 

5.1
18
6 

4.9
94
9 

4.8
99
3 

4.8
23
2 

4.7
61
1 

4.6
65
8 

4.5
67
8 

4.4
66
7 

4.4
15
0 

4.3
62 

4.3
09 

4.2
54 

4.1
99 

4.1
42 

8  
7.5
70
9 

6.0
59
5 

5.4
16
0 

5.0
52
6 

4.8
17
3 

4.6
51
7 

4.5
28
6 

4.4
33
3 

4.3
57
2 

4.2
95
1 

4.1
99
7 

4.1
01
2 

3.9
99
5 

3.9
47
2 

3.8
94 

3.8
40 

3.7
84 

3.7
28 

3.6
70 

9  
7.2
09
3 

5.7
14
7 

5.0
78
1 

4.7
18
1 

4.4
84
4 

4.3
19
7 

4.1
97
0 

4.1
02
0 

4.0
26
0 

3.9
63
9 

3.8
68
2 

3.7
69
4 

3.6
66
9 

3.6
14
2 

3.5
60 

3.5
05 

3.4
49 

3.3
92 

3.3
33 

10  
6.9
36
7 

5.4
56
4 

4.8
25
6 

4.4
68
3 

4.2
36
1 

4.0
72
1 

3.9
49
8 

3.8
54
9 

3.7
79
0 

3.7
16
8 

3.6
20
9 

3.5
21
7 

3.4
18
5 

3.3
65
4 

3.3
11 

3.2
55 

3.1
98 

3.1
40 

3.0
80 

  

11  6.7 5.2 4.6 4.2 4.0 3.8 3.7 3.6 3.5 3.5 3.4 3.3 3.2 3.1 3.1 3.0 3.02.9 2.8
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24
1 

55
9 

30
0 

75
1 

44
0 

80
7 

58
6 

63
8 

87
9 

25
7 

29
6 

29
9 

26
1 

72
5 

18 61 04 44 83 

12  
6.5
53
8 

5.0
95
9 

4.4
74
2 

4.1
21
2 

3.8
91
1 

3.7
28
3 

3.6
06
5 

3.5
11
8 

3.4
35
8 

3.3
73
6 

3.2
77
3 

3.1
77
2 

3.0
72
8 

3.0
18
7 

2.9
63 

2.9
06 

2.8
48 

2.7
87 

2.7
25 

13  
6.4
14
3 

4.9
65
3 

4.3
47
2 

3.9
95
9 

3.7
66
7 

3.6
04
3 

3.4
82
7 

3.3
88
0 

3.3
12
0 

3.2
49
7 

3.1
53
2 

3.0
52
7 

2.9
47
7 

2.8
93
2 

2.8
37 

2.7
80 

2.7
20 

2.6
59 

2.5
95 

14  
6.2
97
9 

4.8
56
7 

4.2
41
7 

3.8
91
9 

3.6
63
4 

3.5
01
4 

3.3
79
9 

3.2
85
3 

3.2
09
3 

3.1
46
9 

3.0
50
2 

2.9
49
3 

2.8
43
7 

2.7
88
8 

2.7
32 

2.6
74 

2.6
14 

2.5
52 

2.4
87 

15  
6.1
99
5 

4.7
65
0 

4.1
52
8 

3.8
04
3 

3.5
76
4 

3.4
14
7 

3.2
93
4 

3.1
98
7 

3.1
22
7 

3.0
60
2 

2.9
63
3 

2.8
62
1 

2.7
55
9 

2.7
00
6 

2.6
44 

2.5
85 

2.5
24 

2.4
61 

2.3
95 

  

16  
6.1
15
1 

4.6
86
7 

4.0
76
8 

3.7
29
4 

3.5
02
1 

3.3
40
6 

3.2
19
4 

3.1
24
8 

3.0
48
8 

2.9
86
2 

2.8
89
0 

2.7
87
5 

2.6
80
8 

2.6
25
2 

2.5
68 

2.5
09 

2.4
47 

2.3
83 

2.3
16 

17  
6.0
42
0 

4.6
18
9 

4.0
11
2 

3.6
64
8 

3.4
37
9 

3.2
76
7 

3.1
55
6 

3.0
61
0 

2.9
84
9 

2.9
22
2 

2.8
24
9 

2.7
23
0 

2.6
15
8 

2.5
59
8 

2.5
02 

2.4
42 

2.3
80 

2.3
15 

2.2
47 

18  
5.9
78
1 

4.5
59
7 

3.9
53
9 

3.6
08
3 

3.3
82
0 

3.2
20
9 

3.0
99
9 

3.0
05
3 

2.9
29
1 

2.8
66
4 

2.7
68
9 

2.6
66
7 

2.5
59
0 

2.5
02
7 

2.4
45 

2.3
84 

2.3
21 

2.2
56 

2.1
87 

19  
5.9
21
6 

4.5
07
5 

3.9
03
4 

3.5
58
7 

3.3
32
7 

3.1
71
8 

3.0
50
9 

2.9
56
3 

2.8
80
1 

2.8
17
2 

2.7
19
6 

2.6
17
1 

2.5
08
9 

2.4
52
3 

2.3
94 

2.3
33 

2.2
70 

2.2
03 

2.1
33 

20  
5.8
71
5 

4.4
61
3 

3.8
58
7 

3.5
14
7 

3.2
89
1 

3.1
28
3 

3.0
07
4 

2.9
12
8 

2.8
36
5 

2.7
73
7 

2.6
75
8 

2.5
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1 

2.4
64
5 

2.4
07
6 

2.3
49 

2.2
87 

2.2
23 

2.1
56 
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85 
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5.8
26
6 

4.4
19
9 

3.8
18
8 

3.4
75
4 

3.2
50
1 

3.0
89
5 

2.9
68
6 

2.8
74
0 

2.7
97
7 

2.7
34
8 

2.6
36
8 

2.5
33
8 

2.4
24
7 

2.3
67
5 
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08 
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46 

2.1
82 

2.1
14 
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42 
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5.7
86
3 

4.3
82
8 

3.7
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9 

3.4
40
1 

3.2
15
1 
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6 
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33
8 
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2 

2.7
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8 

2.6
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8 

2.6
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7 

2.4
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4 
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89
0 
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5 
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72 
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10 
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45 
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76 
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03 
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49
8 
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49
2 

3.7
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5 

3.4
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3 
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5 
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2 
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3 
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31
3 
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2 
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9 

2.4
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5 

2.3
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7 

2.2
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9 

2.2
39 

2.1
76 
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11 
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41 

1.9
68 

24  
5.7
16
6 

4.3
18
7 

3.7
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1 

3.3
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4 
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8 

2.9
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6 
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8 
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7 
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6 
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4 
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3 
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46 

2.0
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2.0
10 

1.9
35 
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25  
5.6
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94
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