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1

Introduction

S urvival analysis is a collection of statistical methods used to address

questions that have to do with whether and when an event of interest

takes place. Precisely, it is ‘‘the analysis of data that correspond to the

time from a well-defined time origin until the occurrence of some

particular event or end-point’’ (Collett, 1994, p. 1). Time-to-event data

are ubiquitous in social work research. For instance, child welfare

researchers and practitioners are concerned about the length of time

children stay in foster homes because federal law (i.e., the Adoption and

Safe Families Act, Public Law 105-89) requires reasonable efforts to find

homes for foster children within 12months that are safe, permanent, and

provide adequate nutrition. In studying welfare reform, researchers

are concerned about factors affecting the length of time recipients use

Temporary Assistance for Needy Families (TANF) because the Personal

Responsibility and Work Opportunity Reconciliation Act (Public Law

104–193) mandates a lifetime limit of 60 months for any recipient using

TANF. In evaluating mental health treatment interventions, researchers

and practitioners closely monitor the timing of relapse of targeted

problems because reducing the incidences and determining the timing

of relapse are key measures of the interventions’ effectiveness.

In all these instances, the timing of event occurrence is a key interest

in research. Because the time-to-event data involve censoring, a crucial

difference of this type of data from cross-sectional data, conventional
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statistical approaches cannot be readily employed. Definition and details

of censoring will be provided in Chapter 2. At the present time, let’s

simply consider censoring as a problem of incomplete data, that is,

researchers cannot observe the entire histories of the targeted event for

all study subjects and are unable to determine exactly the timing of event

occurrence for a portion of study subjects. At any point by which

researchers conclude their data collection, they always have a group of

subjects whose exact times of having a defined event are unknown. The

fact that the event has not yet occurred for certain subjects at the time

when data collection is completed does not exclude the possibility that

such an event will occur to them in the future. What the researchers

observe from the data set is that the time to event for the censored

subjects is greater than a certain number of time units (say months);

and among them, some will experience the event in the future, and some

will never experience it. In this setting, time to event is known to be

censored at a specific value.

In quantitative research, data analysts typically conduct univariate,

bivariate, and multivariate analyses to test research hypotheses. After

data collection, they typically begin with a univariate analysis by using

statistics such as mean, median, or standard deviation to discern central

tendency or dispersion of the study variables; they then conduct bivariate

analysis such as an independent-sample t test, chi-square test, correla-

tion analysis, or analysis of variance (ANOVA) to examine the associa-

tion between an outcome variable and an explanatory variable; and

finally, they test research hypotheses regarding the net impact of an

explanatory variable on the outcome variable by conducting a multi-

variate analysis such as an ordinary least squares (OLS) regression—that

is, by controlling for all other explanatory variables they ask how much

change they observe in the outcome by changing one unit in the expla-

natory variable (Guo, 2008).

Because of censoring, all approaches described above are invalid in

analysis of time-to-event data. Instead, researchers should use a special

type of statistical model, known as survival analysis, to analyze such data.

Specifically, instead of using mean, median, and standard deviation,

researchers should use quantiles (such as the 50 percentile or 75 percen-

tile) of survivor function estimated by a Kaplan-Meier (or a life-table

method) to conduct univariate analysis; use the estimated variance

(equivalently the estimated standard error) of the quantile, such as that
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estimated by Greenwood’s estimator, to perform a special type of

bivariate tests (i.e., the log-rank and Wilcoxon tests) to discern whether

group differences observed on survivor functions are statistically signifi-

cant; and use a special type of regression model such as a discrete-time

model, a Cox proportional hazards model, or a parametric regression

model to conduct multivariate analysis.

Describing this type of statistical analysis (i.e., modified models

designed to handle censoring induced by the time-to-event data) is the

central theme of this book. The term survival analysis comes from

biomedical researchers because the methods originate from biomedical

interests in studying mortality, or patients’ survival times between the

time of diagnosis of certain disease and death. Indeed, the first survival

analysis was conducted approximately 350 years ago, when John Graunt

(1620–1674, son of a London draper) derived the very first life table and

published his famous paper ‘‘Natural and Political Observations Made

Upon the Bills of Mortality’’ in 1662. In this landmark work that might

today be considered biostatistical research, Graunt investigated the risk

inherent in the processes of birth, marriage, and death (i.e., the demo-

graphic dynamics) and employed weekly reports on the numbers and

causes of death in suburban London to compare one disease with

another and one year with another by calculating mortality statistics

(Everitt, 2005a).

Survival analysis has different names in different disciplines; sociolo-

gists call it event history analysis (Tuma & Hannan, 1984; Yamaguchi,

1991), economists call it duration analysis or transition analysis (Greene,

2003; Heckman & Singer, 1985), and engineering researchers call it

lifetime or failure-time analysis (Lawless, 1982). Among them, survival

analysis is most popularly used, and for this reason this book adopts

the term.

Ever since the publication of the seminal paper of Cox (1972) that

signified a milestone of modern survival analysis, an enormous number

of textbooks and journal articles have discussed the statistical theories

and application issues of survival analysis. This book aims to accomplish

two objectives in describing survival analysis: (a) to make the statistical

principles and application strategies more accessible to general

researchers, and (b) to illustrate the applications of survival analysis to

social work research. Hence, the book was designed to fit strictly the

definition of the Pocket Guides to Social Work Research Methods. For
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this reason, I will avoid derivations of statistical theorems, though I will

offer important references for this kind of information. It is recom-

mended that readers who need to find methodological details consult

these texts.

WHY AND WHEN SURVIVAL ANALYSIS IS NEEDED

The dependent variable of any survival analysis typically contains two

pieces of information, which makes it categorically different from the

dependent variables used in conventional statistical analysis. The first

piece of such data is a continuous variable recording the actual time

(days, months, quarters, or years) the study subjects experience a change

process, and the second piece is a dichotomous variable indicating a

change of state (i.e., changing from state 1, ‘‘the absence of a defined

event,’’ to state 2, ‘‘the presence of such an event’’). Although in practice,

the categorical piece of the dependent variable may have various names

(i.e., it’s sometimes called event code, and sometimes called censoring

code), the dependent variables of all survival models share this feature of

dual-piece information, and because of this, the analysis is also called a

continuous-duration-and-discrete-state model.

The first task in any statistical analysis is to choose an appropriate

statistical method that fits the type of research questions asked and the

nature of data researchers have at hand. As explained earlier, because

of censoring, conventional statistical models are invalid in analysis of

time-to-event data, and researchers must employ survival analysis in

these cases. To answer the question of when and why an analysis needs

to apply a survival model, I created a hypothetical sample of seven

TANF recipients whose lengths of time of using the TANF program

during a 12-month study period were accurately recorded. Of these

seven recipients, we know exact time of using TANF only for subjects

A, C, and E. For subject F, by the time the 12-month study window

ends, we have not observed event occurrence (i.e., exiting from the

TANF roll); the only information available to us is that the subject’s

length of using TANF is greater than 12 months. For subjects B and D,

because they moved to other states, we don’t know whether they

continued to use TANF in those states. Subject G could not remember

exactly when she had started to use TANF at the time of data
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collection; however, we knew that subject G had one child 14 months

old, so her length of time using TANF could not be greater than 14

months because having a dependent child is a basic requirement for

eligibility to receive TANF. Of these seven recipients, event times for

subjects B, D, F, and G are censored. If our study window is shortened

to 6 months (i.e., if we are more interested in whether subjects exited

from TANF within 6 months than 12 months), then the event time for

subject E is also censored.

With these kinds of data and within the conventional statistical

procedures, researchers have the following two choices of analytical

models, and each has noteworthy limitations:

1. Researchers run a logistic regression model to seek predictors of the

proportion of subjects exiting the program within a fixed time

period (i.e., either a 6-month period or a 12-month period). Using

logistic regression, researchers know that 2 of the 7 recipients

(28.6%) used TANF fewer than 6 months, or that 5 of the 7

recipients (71.4%) used TANF fewer than 12 months, and whether

G

F

E

D

C

B

A

Exact time
starting to use
TANF unknown

Moved to
another state

Moved to
another state

Month

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.1 Length of time using TANF for hypothetical sample of seven recipients.
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one recipient whose length of time is shorter than 12 months is

unknown. Using this model, researchers cannot distinguish long-

time users such as subject A (or F) from short-time users such as

subject C. In conducting a longitudinal inquiry, the most important

research question is not ‘‘how many’’ or ‘‘what is the proportion

exiting TANF’’ but ‘‘when’’ and ‘‘how long’’ it took them to exit.

A logistic regression cannot answer this type of timing question.

2. Researchers run an OLS regression to seek length of stay on TANF.

In such a model, subjects B, D, and F are problematic if one uses 12

months as a study window; and all subjects except C become pro-

blematic if one uses 6 months as a window. Event times for these

subjects are censored, and the multiple regression analysis would treat

these subjects’ event times as completely observed and noncensored.

Researchers using survival analysis may have different substantive

interests in different study contexts. However, they all share a common

interest: describing whether events occur and when events occur. Because

of this characteristic, Singer and Willett (2003) recommend conducting

‘‘the whether and when test’’ to determine whether a research question

calls for the use of survival analysis. If a research question includes either

word—whether or when—the research probably needs to use survival

analysis. Using this test, Singer andWillett illustrate three different types

of research questions (i.e., a study examining time to relapse among

recently treated alcoholics, a study investigating how long special edu-

cators stay in teaching and factors associated with teachers’ decision to

stay or leave, and a study determining the age at which young Americans

start to have suicide ideation) that all pass the ‘‘whether and when test,’’

and they show the importance of using survival analysis rather than

conventional models in these studies.

SIGNIFICANCE OF CONDUCTING SURVIVAL ANALYSIS

The foremost importance of conducting survival analysis is the need to

understand change and the unique advantage of longitudinal inquiry

over cross-sectional inquiry. The distinguishing feature of a longitudinal

inquiry is that the response variable of interest and a set of explanatory

variables (factors and/or covariates) in such studies are measured
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repeatedly over time. The main objective of a longitudinal inquiry is to

characterize change in the response variable over time and to determine

the covariates most associated with any change (Everitt, 2005b).

Precisely, when social and health researchers use the term longitu-

dinal inquiry, they refer to three characteristics distinguishing it from

cross-sectional inquiry. First, it signifies a shift from the point-in-time

perspective to a cohort or time-series perspective. As such, selection bias

due to a narrowed focus on a single time segment is overcome. Second, it

aims to explain the effect of time on a particular outcome for individuals

under study by explicitly disentangling three types of effects: age, period,

and cohort (Fienberg & Mason, 1979). In this setting, age reflects phy-

siological change during a life process; period denotes the date of the

outcome, and if the outcome varies with period whether the variation is

likely due to some underlying factor that affects the outcome and varies

in the same way for the entire population under study; and cohort refers

to generational effects caused by factors that only affect particular groups

when their outcome level changes with time (Holford, 2005). And

finally, longitudinal inquiry employs analytical methods specifically

designed to respond to challenges imposed by the longitudinal data,

such as survival models that address the censoring problem, growth

curve analysis that corrects for clustering effect, and autoregressive

time series models that correct for temporal autocorrelations. Among

the three features (i.e., addressing the censoring problem, correcting the

clustering effect, and correcting the temporal autocorrelations), devel-

opment and application of longitudinal models plays a critical role.

The roots of scientific interest in studying change date back 2,500 years

to the ancient Greek philosopher Heraclitus, who claimed, ‘‘You could not

step twice into the same river, for other waters are ever flowing onto you’’

(Wikipedia, 2008). Robust analytic methods (particularly those for

studying change in social behavioral phenomena), however, were not

available until very recently. Survival analysis is one of such methods

developed to facilitate analysis of longitudinal data, particularly data

produced by cohort designs, and it has proven to be useful for addressing

many research questions concerning timing-of-event occurrence.

To provide a sense of the importance and utility of survival analysis

in social work research, I show below examples drawn from the literature

across a variety of social work areas. Survival analysis is suitable to all

these studies, and indeed, shows unique advantages over cross-sectional
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analysis. The research questions of these studies all center on timing-

of-event occurrence; as a consequence, the implications drawn by these

studies are profound to policy making, knowledge building, and prac-

tices that are evidence-based.

Example 1: Assessing the speed of foster children’s reunification with

family using a cohort approach that overcomes the selection bias embedded

in the point-in-time approach. Up to the late 1980s, the dominant

approach in evaluating foster care outcomes in child welfare research

was cross-sectional or point-in-time. Goerge (1990) criticized the point-

in-time approach, particularly the selection bias embedded in the Mars

and Engler study evaluating number of children exiting from substitute

care, and employed survival analysis to evaluate factors affecting the

children’s reunification with family. The most significant contribution

Goerge’s study makes is to employ administrative data to follow a group

of children who entered foster care at approximately the same time (i.e.,

using a cohort approach), and to examine factors affecting the ‘‘speed’’

with which they achieved family reunification. As such, the study enables

researchers to answer the key question puzzling most policy makers and

child welfare practitioners: why did certain groups of foster children

reunify with their families at earlier time points (i.e., stayed in foster care

for a shorter period of time, or have a faster speed of making the change

from staying in foster care to achieving family reunification) than other

groups? Because data collected with a cohort approach inevitably involve

censoring, Goerge employed a parametric approach of survival analysis

(i.e., a method described in Chapter 5 of this book). Results of such

analysis have proved to be fruitful.

Example 2: Assessing foster care outcomes using the Cox proportional

hazards model. Ever since Goerge’s work, child welfare researchers have

employed survival analysis to address a variety of questions directly

concerning the safety, well-being, and permanency issues of foster chil-

dren and have produced numerous studies using the Cox proportional

hazards model (i.e., a method described in Chapter 4 of this book).

Indeed, studying the timing at which various foster care outcomes occur

is one of the most vibrant areas in social work research using survival

analysis. Guo and Wells (2003) identified, by the time they concluded

their study, 10 studies that used the Cox proportional hazards model to

study the length of stay in foster care prior to exit or length of stay at

home prior to entry or reentry into foster care. Table 1.1 displays the
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Table 1.1 Previous Studies of Foster Care Outcomes That Employed Cox Proportional-Hazards Model

References Research
Objective

Data Source Sample Dependent
Variable

Significant Independent
Variables

• Benedict,
White, &
Stallings,
1987

• Benedict &
White, 1991

To examine the
impact of selected
child, family, and
agency service
factors in explaining
children’s length
of stay in foster care

Social service
records
from Maryland
State
Social Services
Department

A random sample of
689 children in
three
predominantly
urban/suburban
jurisdictions in
Maryland between
1/1/1980 and 12/31/
1983. The random
sample was
stratified for age at
entry, race, and
jurisdiction

Length of stay in
foster
care for the first
time from the day of
placement until the
day of reunification,
adoption, or
placement with
guardianship
using June 1986 as a
censoring point
(i.e., an observation
window of 2.5 to
6 years)

Finding from the 1987
publication:

• African American
children did not differ
significantly in length of
stay from white children

Findings from the 1991
publication:

• Child factors:
Developmental delay
Placed with relative
Poor school grades

• Family factors:
Previous use of child
protective services
Uncooperative
Wants child back

• Services needed to
implement plan:
Parenting education
Regular visiting
Guardianship

continued



Table 1.1 (Continued)

References Research
Objective

Data Source Sample Dependent
Variable

Significant Independent
Variables

McMurtry &
Lie, 1992

To understand how
children’s
characteristics affect
their placement
outcomes and how
long it takes to
achieve the
outcomes

Review of written
case records drawn
from the central
office of the
Arizona Foster
Care Review
Board

A stratified random
sample (stratified by
calendar year of
entry) of 775
children who
entered foster care
in Maricopa
County, Arizona,
between 1/1/1979
and 12/31/1984 and
stayed in foster care
for at least 6 months

Length of stay in
foster care analyzed
by four types of exit:
return home,
adoption, other
success, and failure.
The censoring point
in the study was
12/31/1986 (i.e. an
observation
window of 2 to 8
years)

Exit ‘‘Return home’’:

• Ethnicity ‘‘Black’’
• Presence of disability
• Child reason for initial
placement

Exit ‘‘Adoption’’:

• Age at time of first
placement

• Presence of disability
• Number of siblings in
foster care

• Family pays part of
foster care costs

• Parental visitation during
first 2 years in care

Exit ‘‘Other Success’’:

• Age at time of first
placement

• Child reason for initial
placement

• Parental visitation during
first two years in care



Exit ‘‘Failure’’:

• Ethnicity ‘‘Black’’
• Age at time of first
placement

• Presence of disability

• Fraser,
Pecora,
Popuang, &
Haapala,
1992

• Fraser,
Jenson,
Kifer, &
Popuang,
1994

To identify risk
factors associated
with service failure
for children whose
families
participated in the
HOMEBUILDERS
model of Intensive
Family Preservation
Services

Service data
collected from a
prospective study
of child welfare
clients

A sample of 409
children coming
from 312 families
that participated
in the
HOMEBUILDERS
program located in
four sites in the state
of Washington

Service failure event
that was defined as
time staying at
home, recorded in
elapsed days, to any
placement in
substitute care. The
study used a 1-year
follow-up period

• Child in home at intake

• Parental desire to
prevent placement low

• Child’s physical needs
high

• Child is between ages
13 & 17

• Ethnic minority

• Mean goal achievement

• Parental mental health
poor

• Child has at least one
prior placement

Courtney,
1994

To explore the
child, family, and
foster care system
variables that are
associated with the
timing of
reunification

Administrative
data from
California’s Foster
Care Information
System

A random sample of
8,748 children from
all children who
entered foster care
in California
between January
1988 and May 1991

Duration of the first
foster care episode
within a 3-year
period with the exit
event defined as
reunification

For children initially placed
with non-kin:

• Home from which the
child was removed:
other relative

• Health: health problems

• Poverty: AFDC eligible

continued



Table 1.1 (Continued)

References Research
Objective

Data Source Sample Dependent
Variable

Significant Independent
Variables

• Removal reason: sexual
abuse

• Age at entry: 4–6, 7–12
• Ethnicity: African
Americans

• Interactions: ethnicity by
age; ethnicity by
region; remove
reason by age

For children initially placed
with kin:

• Preplacement services:
no services

• Home from which the
child was removed: both
parents

• Poverty: AFDC eligible

• Region: rural
• Ethnicity: Latino; other
ethnicity

• Interactions: ethnicity by
age; ethnicity by region



Courtney,
1995

To explore the
effects of selected
child, family, and
foster care system
factors on reentry

Administrative
data from
California’s Foster
Care Information
System

A criterion sample
of 6,831 children
who were
discharged from a
first episode in
foster care in
California between
1/1/1988 and 6/30/
1988. Criteria used
to select cases:
children had been
returned to
biological parents
or other kin; age 16
years or younger at
the time of
discharge

The timing of
reentry into foster
care within 3 years

• Age at exit from care:
7–12 years

• Ethnicity: African
American

• Health problems

• Poverty: AFDC eligible

• Last placement before
discharge: Kin/guardian

• Placement stability:
number of placements

• Time in care before
discharge:

* 4–6 months
* 7–12 months
* 13–24 months
* Over 24 months

Courtney &
Wong, 1996

To examine the
relationships
between child,
family, and service
factors and the
timing of three exits
(i.e., discharge to
family or guardian,
adoption, and
running away) from
substitute care

Administrative data
generated by child
welfare authorities
in California

A criterion sample
of 8,625 children
from the cohort of
children who
entered a first
episode in the foster
care system in
California between
1/1/80 and 6/30/80.
Criteria for sample
selection: one child

Duration in foster
care within a
window of 4.5 to 5
years. Three types of
exits were analyzed:
discharge to family
or guardian,
adoption, and
running away

Discharge to family or
guardians:

• Age at entry
• Ethnicity: African
American

• Health problems

• Poverty: AFDC eligible

• Preplacement services

• Removal reason: sexual
abuse

continued



Table 1.1 (Continued)

References Research
Objective

Data Source Sample Dependent
Variable

Significant Independent
Variables

from each sibling
group, age 16 or
younger at entry,
and children with
valid data

• Removal reason:
physical abuse

• Removal reason: other
reasons

• Region: rural
• Type of placement:
group home

• Type of placement:
guardian

• Type of placement:
kinship home

Adoption:

• Age at entry
• Ethnicity: Latino
• Ethnicity: African
American

• Health problems

• Poverty: AFDC eligible

• Preplacement services

• Preplacement services

• Removal reason:
physical abuse



• Removal reason: other
reasons

• Region: rural
• Region: Los Angeles
• Type of placement:
group home

• Type of placement:
guardian

• Type of placement:
kinship home

Running away:

• Age at entry
• Gender: female

• Removal reason: other
reasons

• Type of placement:
group home

• Type of placement:
kinship home

Fraser,
Walton,
Lewis, Pecora,
& Walton,
1996

To describe findings
from an evaluation
of a program
developed to
reunify foster

Public agency’s
child-in-custody
placement history
data plus
reports from the

A random sample of
57 children whose
families received an
experimental family
reunification service

The timing of
reunification and
returning to foster
care within 455
consecutive days

Reunification during the
90-day service period
in the FRS treatment
group:

• Child age

continued



children with their
biological parents

caregivers and
caseworkers

and 53 children
whose families
received ‘‘routine
services’’ from four
child welfare
districts across the
state of Utah. Study
families were
randomly assigned
to either the
experimental or the
control condition.
The sampling frame
consisted of 41.1%
of all children in
foster care in those
districts

• Percentage of time spent
teaching parenting and
family problem-solving
skills

• Percent of time spent in
making referrals

Returning to foster care
after initial reunification in
the FRS treatment group:

• Child initial placement
related to
ungovernability

• Primary caretaker is
employed

• Primary caretaker age

• Number of children
previously placed out in
the family

• Number of prior
placements

• Average goal
achievement during FRS

Table 1.1 (Continued)

References Research
Objective

Data Source Sample Dependent
Variable

Significant Independent
Variables



• Percent of time spent in
making referrals

• Percent of time spent
teaching parenting and
family problem-solving
skills

Wells & Guo,
1999

To examine
questions
pertaining to the
child, family, and
placement use
characteristics
associated with
timing of
reunification, and
for those who are
reunified, reentry
into foster care

Administrative
data available
from the county
public agency’s
computerized
management
information
system

A criterion sample
of 2,616 children
from all children
who entered into
foster care in
Cuyahoga County,
Ohio in 1992 and in
1993. Three criteria
were used to select
cases: placement
status, date of
placement, and age
at placement

The timing of
reunification within
24 months for the
reunification study,
and the timing of
reentry within 12
months for the
reentry study

Reunification:

• Cohort 1992
• Ethnicity: African
American

• Presence of health
problems

• Home – child removed:
both parents

• Home – child removed:
other

• Placement reason: neglect

• Placement reason:
dependency

• First placement type:
hospital

• Interaction: age by
African American
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Reentry:

• Ethnicity: African
American

• First placement reason:
physical abuse

• Number of moves in the
first placement

• Last placement type:
foster home

• Last placement type:
group home

Glisson, Bailey,
& Post, 2000

To identify child,
family, and service
characteristics that
predict the time
children spend in
state custody in
several regions of
Tennessee

Service records
and additional data
collected by the
research team
weekly on-site over
a3-year period

A random sample of
700 children from
those children who
entered state custody
over a 1-year period
in five children’s
service regions in
middle and east
Tennessee

Hazard rate
(duration) of
reunification within
a 3-year period

Main variables:

• Child race African
American

• Child disabilities

• Child sexually abused

• Child Behavioral Checklist
externalizing score

• Family structure
precustody: Relative-other

• Having siblings in custody

• Reason for custody:
unruly/delinquent

• County: urban

Table 1.1 (Continued)
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Interactions:

• Reason for custody
dependent/neglect-other
by age

• Reason for custody
unruly-delinquent by age

• Reason for custody
unruly-delinquent by
gender

• TRF externalizing portion
score by age

• CBCL internalizing
portion score by parental
alcohol and drug abuse

Kemp &
Bodonyi, 2000

To examine length of
stay and permanency
outcome (legalized
adoption or
guardianship) of
legally free children
who were first placed
into out-of-home care
as infants, focusing
specifically on gender
and racial and ethnic
background as
predictors of
permanency
outcomes

The Washington
State Department
of Children and
Family Services
(DCFS) manage-
ment information
system, case record
reviews, and
individual
interviews with
DCFS caseworkers
and supervisors

A sample of 458
legally free children
who were infants
(< 1 year old) on the
date they were placed
in care. The sample
was drawn from a
larger sample
(n = 1,417) that
included all children
identifiable as legally
free in Washington
State on June 15,
1995

Length of stay in
foster care before
achieving
permanency (i.e.,
legalized adoption or
guardianship) within
a one-year study
window

• Gender: Male

• Race: African American

• Race: Hispanic



features of each of the studies, listed by year of publication, along with a

common set of parameters: the research objective, the source of data, the

features of the sample, the dependent variable (i.e., length of time and

event of interest), and the independent variables having a statistically

significant relation to the dependent variable. Notice that significant

predictors of timing of desirable foster care outcomes (such as timing

of reunification), or of timing of undesirable foster care outcomes (such

as timing of entry or reentry into foster care) are important information

about an accountable child welfare practice, and such studies are feasible

only because they employ survival analysis.

Example 3: Evaluating multilevel influences of factors affecting foster

care outcome using corrective Cox proportional hazards models. A third

level of progress made in child welfare research using survival analysis is

the implementation of the corrective Cox proportional hazards model

that controls for the clustering effect or autocorrelation. Like conven-

tional statistical models, all survival models assume that study observa-

tions in the data set are independent, that is, there is no autocorrelation

among the event times (Allison, 1995; Lin, 1994). When this assumption

is violated and researchers ignore the violation and use the uncorrected

Cox regression in the analysis, the tests of statistical significance are

biased, and the bias occurs in ways that cannot be predicted beforehand.

The autocorrelation problem is likely to be present in child welfare data.

For example, foster care data may include children from the same family

who exit or reenter foster care at roughly the same time. Placement of

siblings in the same home is mandated bymany states or is the preference

of many public agencies (Hegar, 1988; Smith, 1996). One study finds

that over 70% of sibling pairs are placed together initially and that almost

half remain together through the study period (Staff & Fein, 1992).

Using the WLW model (i.e., a marginal approach to correct for auto-

correlation within the framework of the Cox regression, described in

Chapter 6 of this book), Guo andWells (2003) analyze reunification that

controls for sibling group effects and show the importance of being

sensitive to the independent-observations assumption and the useful-

ness of the corrective Cox regression. Autocorrelation may exist in other

types of child welfare data, and a corrective strategy is needed whenever

researchers aim to test multilevel influences of factors affecting the event

durations. Brown (2005) employs the LWA model, another type of

marginal approach under the framework of Cox regression, to assess
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the role of individual-, community-, and agency-level characteristics,

particularly their cross-level interactions, in the process of making decisions

about placement outcomes.

Example 4: Studying the timing of exit from receipt of Aid to Families

with Dependent Children (AFDC) or from receipt of TANF. Survival

analysis is widely employed in poverty and welfare-policy research, and

perhaps is one of the leading methods suitable for answering research

questions concerning welfare dynamics. One such prominent study is

Bane and Ellwood (1994), which reveals important findings about

lengths of time using AFDC, and factors affecting AFDC dynamics.

Many of these findings remained unknown to policy makers and practi-

tioners at the time Bane and Ellwood published their study, and the

study became one of the important sources that initiated the debate

about pros and cons of welfare reform enacted in the United States in

1996. Bane and Ellwood’s work analyzed the 21-year sample of the Panel

Study of Income Dynamics (PSID), a longitudinal study that began with

a sample of 5,000 families in 1968, by using the discrete-time model of

survival analysis (i.e., a method described in Chapter 3 of this book). The

central questions the authors pose are these: ‘‘How long do female heads

with children stay on AFDC? What are the characteristics of those who

receive welfare income for relatively long versus short periods of time?

How and to what do people leave welfare, and how common is moving

from welfare to work?’’ (Bane & Ellwood, 1994, p. 29). Using survival

analysis, the authors found that although the majority of AFDC recipi-

ents used the program for a short period of time, a small proportion of

recipients used the program for an extremely long period of time. This

finding is provocative and motivates researchers and policy makers to

think about reasons that welfare does not appear to serve the function of

a transitional program and why ‘‘dependency on welfare’’ occurs:

‘‘Critical questions arise as to behavior: is long-term use a function of

weak incentives to work, of a felt need to stay at home to nurture

children, of illness, of a ‘culture of poverty’ created by welfare ‘depen-

dency’? Important value questions arise: is it appropriate for the

government to provide an alternative source of support to paid labor

market work that allows single parents to stay home, caring for their

children?’’ (Bane & Ellwood, 1994, p. 28). Using the same data as PSID

and a similar survival model (i.e., a discrete-time model of multinomial

logistic regression that allows the researcher to investigate multiple exit
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outcomes and competing risks), Harris (1993) found slightly different

dynamics of welfare to work: a majority of women work while they are

on welfare, more than two-thirds of welfare exits occur through work,

and a large family size impedes particularly rapid job exits from welfare.

The numerous studies using survival analysis to assess the impacts of

welfare reform attest to its popularity in this line of research and illumi-

nate the significance and advantages of using this type of method.

Example 5: Studying family dynamics and the timing of marriage,

cohabitation, and dissolution of a relationship. There is a general tendency

among Americans to delay marriage. Despite this delay, young people

continue to set up households with opposite-sex partners. In fact, most

of the decline in numbers of people married by age 25 in the past few

decades is offset by entry into cohabitation, and the recent decline in

rates of entry into remarriage are fully compensated for by increasing

rates of cohabitation. Cohabitation is now the modal path of entry into

marriage (Brown, 2000). How do cohabiting couples make decisions

about their relationships, and what factors affect the timing of coha-

biting couples to marry, to separate, or to remain together? Social work

practitioners working with families, couples, and children are concerned

with this question because the instability of family dynamics exerts

adverse consequences on fragile populations, such as women, minorities,

and children. Survival analysis is the dominant approach applied in this

area (Brown, 2000; Lichter, Qian, & Mellott, 2006; Lopoo & Western,

2005; Osborne, Manning, & Smock, 2004) and has proven to be robust

and effective.

Example 6: Assessing treatment effectiveness in evaluations of mental

health service programs. Survival analysis is an efficient tool widely

employed in program evaluation, particularly in evaluating mental

health services, substance abuse treatment services, and psychiatric ser-

vice programs. Using the Kaplan-Meier product limit method (i.e., an

approach described in Chapter 2 of this book), in conjunction with

propensity score matching that is designed to correct for selection bias

induced by observational data, Guo, Barth, and Gibbons (2006) reveal

that substance abuse treatment is associated with a greater risk of

continued involvement of families with child welfare services. Taking

another example, Guo, Biegel, Johnsen, and Dyches (2001) confirmed

that community-based mobile crisis services resulted in a lower rate of

hospitalization than hospital-based interventions, a study that employed

24 Survival Analysis



the Cox regression. Although mobile crisis services were widely consid-

ered to be an integral part of an effective emergency mental health service

system, and the modern concept of mobile crisis services was about a

quarter century old by the beginning of the twenty-first century, little

effort had been directed to formal evaluation of such programs until the

study by Guo et al. using effective survival modeling.

This book assumes that readers have knowledge about multiple

regression analysis and logistic regression and that they understand

basic matrix algebra. However, it has been written in such a way that

readers can skip some technical or mathematical expositions without

loss of understanding about important concepts and application prin-

ciples. The book is organized as follows. Chapter 2 highlights key con-

cepts of survival analysis and reviews univariate and bivariate approaches

to time-to-event data. Chapters 3 to 5 review three multivariate

approaches: the discrete-time models, the Cox proportional hazards

model, and parametric models. Among the three, the Cox proportional

hazards model is the most important and widely applied approach.

Chapter 6 reviews recent advances in survival analysis, namely, the

approaches designed to handle multivariate failure time data and that

allow researchers to perform a multilevel survival analysis. Chapter 7

reviews computing procedures offered by popular software packages

(i.e., SAS, SPSS, and Stata) for conducting survival analysis. Chapter 8

provides concluding remarks.
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2

Key Concepts and Descriptive

Approaches

This chapter reviews key concepts of survival analysis, two descrip-

tive methods (i.e., the life-table approach and the Kaplan-Meier

estimate of survivor function), and graphic approaches. Methods

described in this chapter are typically employed at the beginning stage

of a quantitative inquiry of time-to-event data, although almost all

concepts described in this chapter are important in understanding the

entire survival analysis method.

KEY CONCEPTS

1. Censoring

As noted earlier, censoring is the fundamental concept distinguishing

survival analysis from conventional statistical methods. So what is cen-

soring? Censoring refers to data incompletion. It occurs when exact

event times are known for only a portion of the study subjects, and the

remainder of the event times is known only to exceed (or to be less than)

a certain value.
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There are three basic forms of censoring: right-hand censoring,

left-hand censoring, and random censoring. Recall Figure 1.1, the

length of time using TANF for a hypothetical example of seven

TANF recipients. Right-hand censoring refers to the situation in

which the ending point of a ‘‘spell’’ or episode is unknown, or the

event of interest has not yet occurred at the end of data collection.

Suppose we define our study window as 12 months; subject F is right-

hand censored because at the ending point of collecting time-to-event

data within 12 months, the event of exiting from TANF had not

occurred for the subject. The only information known to us is that

the ending point of the actual spell for this subject is greater than

12 months. Likewise, if we define our study window as 6 months, then

subjects A, B, E, and F are right-hand censored, and the only informa-

tion known to us is that these subjects’ length of time for the event to

occur is greater than 6 months.

Left-hand censoring refers to the situation in which the origin or the

starting point of a spell is unknown. Consider recipient G who did not

remember exactly when she had started to use TANF; however, recipient

G had a child 14 months old, so the researcher knew that her length of

time using TANF could not be greater than 14 months, because having a

dependent child is a requirement for being eligible to receive TANF. In

this case, all we know about the length of time G has used TANF is fewer

than 14 months; therefore, the length of using TANF for G is left-hand

censored at 14 months.

In random censoring, the researcher observes both the origin and

ending points, but the observation is terminated for reasons other

than the event of interest. For instance, in a 12-month study window,

we observed both the starting and ending points for recipients B and

D, but the termination of the two observations was not because the

two cases exited from the TANF roll but because they moved to other

states. In other words, the observed lengths of time are not exactly the

true times of using TANF. Both subjects may or may not continue to

use TANF in other states. In this case, the length of time for B and D

within a 12-month study window is random censored. Notice that if

our study window is shortened to 6 months, then only D is random

censored.

A comment about random censoring is warranted. In a child

welfare study, foster children may exit foster care for different reasons,
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or they may accomplish different outcomes: some of them exit foster

care because they reunify with their biological parents, some exit

because they are adopted by adoptive families, some exit because

they join guardianship, and some exit because they reach age 18 and

are emancipated from foster care. Random censoring refers to any of

these events (or reasons) that is different from the event of interest

defined by the study. In a study defining reunification as the event of

interest, a termination of foster care that is not due to reunification

with the biological family (i.e., termination due to any of the three

other reasons: adoption, guardianship, emancipation) is defined as

random censoring. Likewise, if a study defines guardianship as the

event of interest, then termination due to reunification, adoption, or

emancipation is randomly censored.

Standard survival methods can only handle right-hand censoring

and random censoring, though the parametric models described in

Chapter 5 can accommodate analysis of data with left-hand censoring.

Therefore, a common practice in most social behavioral applications of

survival analysis is to exclude subjects with left-hand censoring from the

analysis.

Statistical analysis following the tradition of Fisher (1935/1971) often

assumes a mechanism of randomization under certain contexts (Guo &

Fraser, 2010). This is also true for random censoring. Precisely,

researchers should assume that random censoring is noninformative;

that is, the censoring mechanism is under the researcher’s control and

is out of the study subject’s control. When random censoring is under

the study subject’s control, it then would appear to have patterns among

the event times; that is, there would be a systematic difference between

the probability of having the defined event and the probability of being

censored. When this happens, we call it informative random censoring. To

understand the violation of the assumption about noninformative

random censoring, consider the following hypothetical examples.

Suppose four subjects dropped out of a study on relapse of alcoholics.

If these subjects drop out because of moving to other cities and the

change of residential places is not related to the study, these four subjects

are considered a case of noninformative random censoring. If they drop

out because they start drinking again and stop notifying investigators of

their whereabouts (i.e., censoring is under the study subjects’ control),

then these subjects are considered a case of informative random
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censoring. In a study of length of time Ph. D. students take to complete

their degree, if the researcher has good reason to suspect that those who

drop out of the study are among those who would take a longer time to

finish the degree, then these students’ random censoring is informative.

In a study of length of time subjects remain in marriage, if the

researcher has information to believe that those who drop out of the

study are more likely to get divorced, then the censoring is informative.

For more discussion about the nature and examples of informative

random censoring, readers are referred to Allison (1995) and Singer

and Willett (2003).

Almost all models of survival analysis assume noninformative

random censoring. Violation of this assumption leads to serious bias in

model estimation. Unfortunately, no formal test has been developed to

detect the violation, and the problem of informative censoring is rela-

tively intractable. Allison (1995, pp. 249–252), however, suggests a

procedure of sensitivity analysis that allows analysts to check whether

the noninformative random censoring is tenable in a given study based

on the analysis model.

The above three forms of censoring are most common in social

behavioral data. There are other terms used in the typology of censoring,

such as Type I and Type II censoring (Allison, 1995), or other forms of

censuring such as interval censoring (Collett, 1994; Hosmer & Lemeshow,

1999). For simplicity of exposition, I do not discuss these issues in this

book; readers who are interested in definition and analytic procedures

about these types of censoring may find details in the aforementioned

references.

2. Dependent Variable, Origin of Time,
and Study Window

A typical survival analysis begins with data management. That is, the

analyst uses existing data to create the dependent variable. As mentioned

earlier, the dependent variable of survival analysis comprises two pieces of

information: one is the continuous variable showing the length of time a

subject takes to experience the change (i.e., a change from the time origin

to experiencing the event or to becoming right-hand censored, and the

variable is measured in a metric of days, months, quarters, or years), and

the other is a dichotomous variable indicating censoring status.
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Figure 1.1 is a graphic representation of study time (also known as

analysis time) after the data management. A noteworthy feature of the

graph is that all study times are standardized to a common origin of

time, or time zero. Typically, the raw data do not look like that shown in

Figure 1.1. The lengths of time for different study subjects are most likely

to appear at different calendar times. Panel A of Figure 2.1 shows the

same event histories for the seven hypothetical TANF recipients but is

more representative of the real data the analyst has at hand. Specifically,

all recipients did not start to use TANF at exactly the same time. Thus,

the first data management the analyst conducts is to standardize the time

origin, or to make all subjects’ starting time zero. Next, the analyst

deletes subjects who do not meet the requirement for eligibility of

current analysis from the study, such as deleting recipient G (i.e., the

left-hand censored subject) from the data set. And finally, based on the

definition of the study window, the analyst calculates and creates the

duration variable and censoring code. The final data ready for survival

analysis after data management look more like Panel B of Figure 2.1.

Note that in this figure, subject G is no longer included, and all durations

are standardized to a common origin or time 0.

The conversion from Panel A to Panel B in Figure 2.1 is referred to

as a conversion of patient time to study time by biostatistician

(Collett, 1994), which is an important work of data management. To

do this the analyst typically employs data-management functions

offered by a software package to create the two variables defining the

dependent variable. The simplest case scenario is that there are only

two variables indicating starting and ending dates of an event, and

both variables are coded in a date format (day/month/year, or other

types). The analyst then needs to use time functions in programming

(such as YRMODA in SPSS) to create the duration variable, and use

additional variable(s) indicating reason for exit and the definition of

the study window (i.e., 12 months or 6 months) to create the cen-

soring code. Table 2.1 exhibits the input variables (i.e., starting date,

ending date, and reason for exit) and output variables after data

management (i.e., duration and censoring code) to illustrate the

above process. Note that the randomly censored subjects (B and D)

and the right-hand censored subject F all have a value 1 on the

censoring code, suggesting that the data management treats random

censoring the same as right-hand censoring.
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Figure 2.1 Illustration of censoring: Length of time using TANF.
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The actual data management could be more complicated than the

above scenario, in which I use only the simplest scenario of two date

variables and one reason-of-exit variable. In practice, the analyst is likely

to use more information to create the dependent variable, depending on

the structure of input data and the nature of data generation (i.e.,

administrative data or survey data). In any case, in this process

researchers should exercise caution to examine all information available

to the study and carefully check the resultant duration and censoring

code to ensure the accuracy of data management. It is usually a cumber-

some and complex process if one employs multiwave panel data to create

the dependent variable. In such cases, what the analyst does is actually a

reconstruction of event history for each subject from retrospective

information across all waves, and therefore, one must examine several

variables across all study waves to see whether the event occurs for each

study subject.

Note that different software packages use different conventions to

specify censoring or event codes in the analysis. Since event occurrence

means that the observed duration is not censored, the analyst needs to

specify different values between packages. For instance, SAS uses a

censoring code, so a subject who is censored should have a value 1 on

the censoring code, and a subject who is not censored (equivalently, the

duration for this subject indicates event occurrence) should have a value

Table 2.1 Exhibit of the Input Variables and the Creation of Dependent Variable

ID Starting Date Ending Date Reason for Exit
Duration
(Months)

Censoring
Code

A FEB/Year 1 JAN/Year 2 Exit from using
TANF

11 0

B MAY/Year 1 DEC/Year 1 Move to
another State

7 1

C MAY/Year 1 OCT/Year 1 Exit from using
TANF

5 0

D MAR/Year 1 JUL/Year 1 Move to
another State

4 1

E APR/Year 1 DEC/Year 1 Exit from using
TANF

8 0

F FEB/Year 1 MAR/Year 2 Exit from using
TANF

13 1

Note: TANF=Temporary Assistance for Needy Families.
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0 on the censoring code. In contrast, SPSS and Stata use an event code

that has just the opposite value of a censoring code. Under SPSS/Stata,

the analyst should use value 1 to indicate event occurrence, and value 0

to indicate censoring. Using the same data set in different packages, the

analyst must be careful about what value the package requires and

specify such value carefully. Taking the hypothetical data as an example,

suppose a censoring code named CENSOR is created for the six subjects

as follows: CENSOR= 1 if the subject is randomly censored or right-

hand censored; and CENSOR=0 otherwise. When running SAS, the

analyst specifies CENSOR(1) to indicate that the variable CENSOR is the

censoring code and value 1 indicates censoring. When running SPSS or

Stata, the analysis can still use the same variable CENSOR but should

specify a different value, because SPSS and Stata require knowing which

variable and value indicate event occurrence. Since event occurrence is

just the opposite of not being censored, the analyst should specify

CENSOR(0) in SPSS/Stata.

Defining a study’s origin of time and standardizing such origin as

time 0 require deliberation. The origin of study time in many research

contexts is not as clear as it appears. For instance, a biomedical study

may define the onset of a disease as the origin of time. In practice,

however, the researcher typically uses the time of diagnosis of the disease

as time 0 because the exact onset of disease is difficult to define and to

operationalize. Allison (1995) suggests that researchers use the following

three rules to choose the origin of time: (a) choose a time origin that

marks the onset of continuous exposure to risk of having the event—

using this rule, one may argue that diagnosis of disease signifies the onset

of treatment, although it does not represent the true onset of disease; (b)

choose the time of being randomly assigned to the treatment condition

as the time origin for experimental studies—a time point that logically

indicates the onset of an intervention; and (c) choose the time that has

the strongest effect on experiencing the change under study—that is,

among several possible origins, the researcher should choose one that is

most sensitive to the risk or likelihood of having the event.

Closely related to the choice of time origin is the decision to define

the length of the study window. A study window standardizes the time

period within which the researcher observes the change. In any given

study, some subjects take a long time to experience the change, and some

take a short time to do so. It is an important research question to
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understand characteristics (i.e., explanatory variables that are statisti-

cally significant) associated with subjects who take different times to

experience the change. To make such an investigation valid, the analyst

must give all study subjects an equal chance (or equal baseline risk) of

having the event. Although survival analysis focuses on change rate (i.e.,

hazard rate) rather than the proportion of subjects who experienced the

change, the decision about the study window affects whether the esti-

mated hazard rates are meaningful. To some extent, the decision about

the study window is arbitrary, but such an arbitrary decision affects the

findings. Suppose that none of the TANF recipients in a study sample

exits the program within 3 months; then a study window of 3 months

would not allow observance of any occurrence of event within 3 months,

and therefore, 100% of the study subjects would be censored. In such a

context, the hazard rate is the same for all study subjects and the results

about change are not meaningful. In the other extreme, if the study

window is too long, that is, if only one recipient out of a sample of 1,000

subjects used the TANF program for 60 months, then a study window of

60 months makes 99.9% subjects uncensored; and therefore, results of

the estimated change rate from this study are not comparable to studies

using a shorter study window. The decision about a study window is also

determined by the convention other researchers use in the substantive

area, and by research questions. For instance, child welfare researchers

often employ 12 months to study foster care outcomes because federal

law requires making permanent arrangements for foster children within

12 months. If a new study aims to compare the change rate of accom-

plishing reunification in a specific sample to prior studies that use a 12-

month window, then a shorter or longer window (i.e., either a 6-month

or 18-month window) is not appropriate. In short, researchers should

carefully choose a study window by looking into the length of window

employed by prior studies, the nature of the research questions, and the

type of available data. Andmore frequently, the final decision is made on

a basis of balancing all these factors.

3. Important Functions Describing
a Survival Distribution

The study times of all subjects from a sample form a distri-

bution, known as a survival distribution. Using statistics to reveal
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characteristics of a survival distribution is the fundamental task of

survival analysis. Biostatisticians have developed important functions

to characterize survival distributions and have derived rigorous the-

ories to show relationships among these functions. Although different

distributions may have different parameters, the relationships among

these functions remain the same. In this subsection, I review impor-

tant functions, which serve as building blocks for the entire survival

analysis.

Hazard Function. The most important function of survival analysis is

the hazard function or hazard rate. Formally, the hazard function is an

instantaneous probability measuring rate of change. It can be expressed

as a ratio of conditional probability for the event to occur within an

extremely small time interval (i.e., when the time interval approaches

zero or is infinitesimal) over the time interval, as follows:

hðtÞ ¼ lim
dt!0

Pr t � T < tþ dtjT � tf g
dt

The numerator of this ratio is the conditional probability of having the

event at time t + dt; that is, given that the event has not yet occurred at

time t (equivalently, the study time T is greater than t), what is the

probability of having the event in the time interval of t + dt? The instan-

taneous probability further defines such a ratio as a limit, that is, a

quantity when dt approaches infinitesimal. By this definition, the

hazard function h(t) measures rate of change at time t. Unlike prob-

ability defined in other contexts, hazard rates can exceed value 1. Note

that in survival analysis, the researcher is interested in length of study

time T. A hazard function formally converts duration T to rate of change

at time t. Under this definition, a long duration T is associated with a

small value of hazard rate h(t) because it takes a long time to make a

change and the change rate is slow; and likewise, a short duration T is

associated with a large value of hazard rate h(t) because it takes a short

time to make a change and the change rate is fast. Hazard function is a

formal way to represent change and can be interpreted as speed of

change.

Probability Density Function (PDF). This is a popular statistic mea-

suring a distribution, commonly known as a frequency distribution.
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Denoted as f(t), a PDF is similar to h(t) but the numerator of the formula

is an unconditional probability:

f ðtÞ ¼ lim
dt!0

¼ Pr t � T < tþ dtf g
dt

:

Distribution Function or Cumulative Distribution Function (CDF).

This is another popular statistic measuring a distribution. Denoted as

F(t), a CDF informs the probability that length of time T is less than or

equal to any given value t. It is a definite integral of PDF, from time 0

(i.e., the onset of risk) to time t:

FðtÞ ¼ Pr T � tf g¼
Z t

0
f ðuÞdu:

Survivor Function. Having defined hazard function h(t), PDF f(t),

and CDF F(t), we now are able to define another important function of

survival analysis, that is, the survivor function S(t).1 It measures the

probability of not having the event (surviving to, or remaining in the

subject set of having no event) by time t:

SðtÞ ¼ Pr T � tf g¼1� FðtÞ

The label of ‘‘survivor’’ sounds strange, but it is analogous to a subject

whose event of interest has not yet occurred at a given time point.

Remember that survival analysis originates from studies of mortality,

in which context the event of interest is death, and therefore, subjects

who have not had the event are survivors. Thus, we use survivor function

to measure the probability of not having had the defined event by time t.

The Integrated Hazard Function or Cumulative Hazard Function. The

cumulative hazard function is the total number of subjects who would be

expected to have the event up until time t. Denoted as H(t), the cumu-

lative hazard is a definitive integral of the hazard function h(t), from time

0 (i.e., the onset of risk) to time t:

HðtÞ ¼
Z t

0
hðuÞdu:

The above functions (i.e., the hazard function h(t), PDF f(t), CDF

F(t), survivor function S(t), and the cumulative hazard function H(t))
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are equivalent ways to describe a continuous probability distribution.

Biostatisticians have proved certain relationships among these functions.

The most important relationship is that one can express h(t) as a func-

tion of f(t), S(t), F(f), and H(t). Precisely, the following relationships

exist:

hðtÞ ¼ f ðtÞ
SðTÞ ¼ f ðtÞ

1� FðtÞ ¼ � d

dt
log SðtÞf g:

The relationship between S(t) and H(t) is as follows: SðtÞ ¼ exp �H ðtÞf g
or H ðtÞ ¼ �log SðtÞ.

The above functions are formal ways to describe a survival dis-

tribution depicted by a given sample. Researchers use these functions

to describe sample data; conduct univariate, bivariate, and multi-

variate analysis; and draw statistical inferences of survival distribution

in the population from which the sample is drawn. Putting them

together, what do empirical researchers really need to know about

these functions? In this regard, at least the following four issues are

important.

First, the most frequently encountered functions are h(t) and S(t).

We use these functions to describe change rate at a given time t and the

total number of subjects who do not have the event at a given time t. The

basic idea of estimating h(t) and S(t) comes from the life-table method,

the oldest approach to time-to-event data, dating back to 1662. In a life

table, the time intervals are large and discrete, but in the above discus-

sion, we define these functions by treating the increment of time t as

infinitesimal (i.e., dt�> 0); and therefore, the timing of change is

rigorously and precisely treated as a continuous variable. The Kaplan-

Meier method is another important approach, and even more popular

than the life-table method, for estimating the survivor function S(t),

though the method does not estimate the hazard function h(t). Using

either method, researchers can perform a univariate analysis to describe

sample survival distribution or perform a bivariate analysis to compare

survival distributions between groups and discern whether differences

observed from the sample on the survival distribution between groups

are statistically significant.

Second, a discrete-time model (i.e., the method described in

Chapter 3) employs the probability of having the defined event in
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person-time data to approximate the hazard rate. The purpose of con-

ducting a discrete-time model is the same as for other multivariate

models (i.e., the Cox proportional hazards model and parametric

models), but it uses probability as a proxy for the hazard rate.

Third, most functions discussed above can be plotted in a graph that

uses study time as the horizontal axis. The purpose of employing graphic

approaches in survival analysis is twofold: one is to describe a sample

survival distribution (i.e., to conduct a univariate analysis) or to com-

pare survival distributions between groups (i.e., to conduct a bivariate

analysis); and the second purpose is to evaluate the nature of the sample

survival distribution and to discern whether certain assumptions

embedded in a specific model are appropriate. These graphic approaches

will be reviewed shortly in this chapter.

Finally, when an estimation method or model does not have

specific parameters (i.e., mathematically derived unknown quantities

in the population) to describe the survival distribution, we call the

method a nonparametric method. Examples of nonparametric

methods include the life-table method, the Kaplan-Meier estimation,

and the discrete-time model. When a model does explicitly use para-

meters to describe the survival distribution (i.e., the distribution is

known to have additional parameters other than h(t), f(t), F(t), S(t),

or H(t), and these additional parameters are called shape and scale

parameters), we call the modeling process a parametric method.

Examples of the parametric method include the Weibull, exponential,

log-normal, log-logistic models, and more. I will review some of these

models in Chapter 5. When a model makes assumptions about the

hazard rate but does not use additional parameters to describe the

distribution of survival times, we refer to the method as a semipara-

metric method. An example of the semiparametric method is the Cox

regression. Because no parameters are required to describe the dis-

tribution, which is often unknown, the semiparametric models are

also called distribution-free models. This feature is one of the advan-

tages offered by the Cox regression and explains why the model is so

popular among survival analysts. With a distribution-free model, the

researchers do not have to make strong and restrictive assumptions

about the survival distribution under study and may apply the Cox

regression anyway. I will review this type of distribution-free model in

Chapter 4.
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THE LIFE-TABLE METHOD

A life table is an extension of the traditional frequency table that displays

survival functions such as the estimated hazard function and estimated

survivor function for individual-level or aggregate data. Although life

tables can be constructed on individual-level data, the method is typi-

cally employed with aggregate data.

A typical life table based on aggregate data is shown in Table 2.2. This

table uses hypothetical data depicting foster children’s experience of

exiting foster care to achieve family reunification within a study

window of 12 months. A total of 310 children comprise the sample.

The life table first groups the sample subjects by using a monthly interval.

Hence, a total of 13 time intervals appears in the table. The lower bound

of the time interval is inclusive, and the upper bound is exclusive. For

instance, the very first time interval of the table is [0, 1), meaning that this

interval shows survival experience for study children within a time

interval bounded by exactly 0 month and less than 1 month. All 310

children enter in the first interval, as no event of reunification occurs at

the beginning of the study window or time 0. The column labeled

‘‘number entering this interval’’ simply shows the total number of study

subjects who enter the interval, which forms the basis, but not exactly

the same number, of risk set for calculating the hazard rate. The

column labeled ‘‘number failed’’ indicates the number of subjects who

Table 2.2 Exhibit of the Construction of a Life Table

Interval 
(Lower, 
Upper)

Number 
Entering 

This 
Interval

Number 
Failed

Number 
Censored

Effective 
Sample 

Size

Conditional 
Probability 
of Failure Survivor Hazard

0, 1 310 11 14 303 0.0363 1.0000 0.036975
1, 2 285 6 24 273 0.0220 0.9637 0.022222
2, 3 255 10 24 243 0.0412 0.9425 0.042017
3, 4 221 11 8 217 0.0507 0.9037 0.052009
…
12, + 126 0 126 63 0 0.7022 .

=310-.5(14)

=285-.5(24)
=11/303

=6/273 Always = 1.0000 for 
the beginning 
interval.

=(1-.0363)*1

=(1-.0220)*.9637

=11/{[310-
(11+14)]+.5(11+14)}

=6/{[285-
(6+24)]+.5(6+24)}

=11/{[221-
(11+8)]+.5(11+8)}

=0+126/2=63
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have the event within this interval. Note that the term ‘‘failed’’ is synon-

ymous with ‘‘event occurred’’; in survival analysis, just like the term

‘‘died,’’ failed or failure is a special terminology indicating event occur-

rence. There are 11 children who reunified within the very first month.

The column labeled ‘‘number censored’’ indicates the number of subjects

who are censored; for the very first interval, 14 children are censored. The

life-table method assumes that all failures and censorings occur exactly at

the midpoint of the time interval. With this assumption, the life table

then calculates survivor and hazard functions, along with additional

statistics such as ‘‘effective sample size’’ and ‘‘conditional probability of

failure.’’ The exact formula and illustration of the calculation of these

statistics are shown below.

1. Effective sample size is the number of subjects who had not yet failed

at the start of the interval. The formula for calculating statistics in

this column is effective sample size = number entering� .5(number

censored); for the last interval: effective sample size = number

failed + .5(number censored). To illustrate, Table 2.2 shows that for

the interval [0,1), effective sample size = 310� .5(14) = 303; and for

the last interval [12+), effective sample size = 0 + .5(126) = 63.

2. Conditional probability of failure is an estimate of probability that a

subject fails in the interval, given that he or she has not yet failed at

the start of the interval. The formula for calculating statistics in this

column is conditional probability of failure = (number failed)/effec-

tive sample size). To illustrate, Table 2.2 shows that for the interval

[0,1), conditional probability of failure = 11/303 = .0363.

3. Survivor function is the probability of not having the event at a time

greater than or equal to the starting point of the interval among all

study subjects. The formula for calculating statistics in this column is

survivor function = (1� conditional probability of the previous

interval) � (survivor function of the previous interval); and the

survivor function is constrained to be value 1.0000 for the first

interval, meaning all subjects survive to, and hence do not have the

event at, the beginning of the study. To illustrate, Table 2.2 shows that

for the interval [0,1), the survivor function is 1.0000; for the interval

[1,2), the survivor function = (1� .0363) � 1.0000 = .9637;

and for the interval [2,3), the survivor function = (1� .0220) �
.9637 = .9425.
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4. Hazard function is an estimate of hazard function (or the rate of

change) at the midpoint of the interval. The formula for calculating

statistics in this column is number failed/{[number entering�
(number failed + number censored)] + .5 (number failed + number

censored)}. To illustrate, Table 2.2 shows that for the interval [0,1),

the hazard function is 11/{[310� (11 + 14)] + .5 (11 + 14)} =

.036975; and for the interval [3,4), the hazard function is

11/{221� (11 + 8) + .5(11 + 8)} = .052009. The calculation of

hazard function is worthy of explanation. Two important features

distinguish the survival analysis from conventional calculation of

probability. First, the denominator of the formula is the risk set that

serves as a base for calculating the instantaneous probability. Note

that the risk set takes number of censored subjects into considera-

tion; it does not throw away the information known to the researcher

about the number of censored subjects. And additionally, the

denominator is the total number of subjects entering the interval

minus half the subjects who either have the event or are censored in

the interval. This sophistication in approximating hazard function

started from the very first life table established in 1662 and signified

the birth of a new branch of statistical analysis (i.e., the survival

analysis) that carefully takes censoring into consideration and esti-

mates rate of change for the time-to-event data. This is a seminal

contribution made by John Graunt, and it has been followed and

refined by biostatisticians since then.

Different software packages may present the life table in a

slightly different fashion. For instance, SAS does not show the column of

‘‘number entering this interval,’’ but the user can calculate it as .5(number

censored)+ effective sample size. Almost all packages also offer estimation

of standard error (S.E.) associated with a survivor function, which permits

a statistical test of the research hypothesis about difference in survivor

functions between groups. Since this topic is similar to that depicting the

calculation of S.E. for survivor function estimated by the Kaplan-Meier

approach, I will describe it in the next section.

What are the primary functions offered by the life table? How useful is a

table like this? First, the life table is a descriptive tool for time-to-event data

containing censored failure times. The analyst can use a life table to obtain

an estimate of median survivor time, which is the time that divides
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the sample into two halves, such that 50% of sample subjects survive to, or

do not have the event by, this time point; and 50% of the sample subjects

exit the system or have the event before this time point. In this example, it

happens that amedian survivor time is not applicable because 70.22%of the

subjects survive to the last time interval. Under this condition, a descriptive

statistic equivalent to themedian survivor time called a quantile can be used

instead. For instance, the survivor function for the time interval [1,2) is

.9637 and for the time interval [2,3) is .9425. Hence, we know that the 95th

percentile of the survivor function is between 2 and 3 months. For this

sample, 5% of the children achieved family reunification before approxi-

mately 2.5 months, and another 95% took more than 2.5 months to have

the event or be censored. As noted earlier, because of censoring, the median

defined by conventional statistics cannot be employed in the time-to-event

data. Suppose that in another data set, an analyst obtains a ‘‘median survivor

time’’ of 5.49months; this suggests that 50%of the sample subjects take 5.49

months or less to have the event, and another 50% take more than 5.49

months to have the event or be censored.

Second, the life table offers a practical means for comparing survivor

functions by group—a first bivariate test of the hypothesis about group

differences. Suppose the estimated median survivor time for achieving

reunification from an empirical sample for African American children is

5.49 months, and that for non-African American children is 3.00

months. With these estimated statistics, the researcher knows that

African American children take a longer time and hence are more

difficult than other children to reunify. Using additional statistics such

as S.E. associated with the median times, the analyst can further perform

a significance test to determine to what extent the observed difference is

statistically significant.

Third, the life table permits researchers to gauge the nature of hazard

function before running a multivariate model. Many parametric models

assume certain types of hazard function, and the choices include a

constant hazard rate over time, a piecewise constant hazard rate, and

more. A life table, in conjunction with the plot of hazard function over

time, provides important information that helps the analyst to choose an

appropriate parametric model.

Last, the analyst can use the estimated survivor functions to predict the

likelihood of having the event in the future, given that the event has not yet

occurred at a given time. Specifically, one can predict the probability of
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having the event nmonths later, given that the event has not yet occurred

at the start of time interval i, by applying the following equation:

PðT > iþ njT > iÞ ¼ Siþn

Si
:

To illustrate, I take a numerical example as follows: knowing that 3

months after entry into foster care, David has not yet reunified, what is

the probability that he will remain in care for another 6 months (i.e., or

remain in foster care exactly at the beginning of the interval starting with

3 + 6= 9 months)? To answer this question, we need to check the sur-

vivor functions from a life table suitable to David’s experience. Suppose

we find from such a table that the survivor function for the interval

[3,4) = .9037, and the survival function for the interval [9,10) = .7757.

Applying the above equation, we find that

P ¼ Siþn

Si
¼ :7757

:9037
¼ :8584:

Or it’s 85.84% likely that David will remain in care for another 6months,

and his chance of reunifying between month 3 and month 9 is

1� .8584 = .1416 or 14.2%.

THE KAPLAN-MEIER ESTIMATE
OF SURVIVOR FUNCTION

Also known as the product-limit estimator, the Kaplan-Meier estimate of

survivor function is more popular than the life-table method and is the

dominant approach to estimating survivor function among biomedical

researchers. This estimator incorporates information from all the observa-

tions available, both uncensored and censored, by considering survival to

any point in time as a series of steps defined by the observed survival and

censored times. Greenwood’s formula estimating the variance (hence the

standard error) of survivor function allows analysts to compare survival

distributions between groups to conduct a significance test. The

Greenwood approach is based on a first-order Taylor series expansion

(Hosmer & Lemeshow, 1999).

Table 2.3 exhibits the estimation method of the Kaplan-Meier

approach with an illustrating data set. Suppose in a child welfare study,
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a researcher observed the lengths of time staying in foster home for a

hypothetical sample of 14 children within a 12-month period. Of the 14

children, 7 are censored and their lengths of time are labeled with *. Like

the life-table method, the Kaplan-Meier estimator creates a series of time

intervals first, but the intervals are formed in such a way that each interval

is only for subjects who have the event within the time interval. By this

definition, censored subjects do not contribute to the creation of time

intervals in the table. This is the case for subjects who are censored, for

instance, at month 3 and month 7.

The Kaplan-Meier method begins by sorting the event times in an

ascending order and creating time intervals in such a way that each

interval j contains only subjects who have event times in the interval. Let

nj denote the number of subjects entering interval j, and dj denote the

number of events occurring within j. The table shows that, initially, all 14

subject enter time interval [0,1); since no event occurs in this interval,

dj=0. All 14 subjects then enter the second interval [1, 5) and nj remains

14. Since one subject exited foster care within this interval, dj for [1, 5)= 1.

Note how the Kaplan-Meier approach handles the censored subjects.

Although censored subjects do not contribute to the formation of time

Table 2.3 Exhibit of the Kaplan-Meier Estimate of the Survivor Function

Lengths of time (in months) staying in foster home for a sample of 14 children
(* indicates censoring):

1 3* 3* 5 6 7* 7* 8 8 9 10* 12 12* 12*

Estimated Survivor Function and Its 95% Confidence Interval:

Time
Intervalj nj dj [1-(dj/nj)] Ŝ(t) S.E. {Ŝ(t)} 95% C.I.

[0,1) 14 0 1.0000 1.0000 0.0000
[1,5) 14 1 0.9286 0.9286 0.0688 0.7937 1.0000*
[5,6) 11 1 0.9091 0.8442 0.1019 0.6443 1.0000*
[5,8) 10 1 0.9000 0.7597 0.1218 0.5210 0.9984
[8,9) 7 2 0.7143 0.5427 0.1562 0.2365 0.8488
[9,12) 5 1 0.8000 0.4341 0.1582 0.1240 0.7443
[12+) 3 1 0.6667 0.2894 0.1584 0.0000* 0.5999

* This value is forced to be the maximum of upper bound 1.0000 or the minimum
of the lower bound 0.000 because the estimated value is greater than 1.0000 or less
than 0.0000.
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intervals, their information is not thrown away. The number of censored

subjects affects the value of nj for each j. Taking the time interval [5,6) as an

example, we see that of the 14 children, 1 has an event time of 1 month, 2

have censored times of 3 months; therefore, by the beginning of month 5

there are 14� (1+ 2) = 11 subjects who enter the interval [5,6), which

makes nj=11 for this interval. The remaining entries for the columns nj
and dj can be calculated in a similar fashion.

The most important estimates of the Kaplan-Meier method are

the estimated survivor function ŜðtÞ, its standard error S.E.{Ŝ ðtÞ},
and the estimated 95% confidence interval of ŜðtÞ. 1� dj

nj

h i
is

an intermediate statistic useful for estimating ŜðtÞ. The formulas

for calculating all these statistics are shown below with numeric

illustrations.

1. The calculation of the intermediate statistic is simply 1� dj
nj

h i
. That is,

for the interval [1, 5), 1� dj
nj

h i
¼ 1� 1

14

� � ¼ :9286, and for the interval

[5, 6), 1� dj
nj

h i
¼ 1� 1

11

� � ¼ :9091, and so on.

2. The Kaplan-Meier estimate of survivor function for each j can be

obtained by using the following equation:

ŜðtÞ ¼
Y
j:tj�t

1� dj

nj

� �
:

For instance, for the interval [5,6), ŜðtÞ ¼
Y
j:tj�t

1� dj
nj

� �
¼ 1� :9286�

:9091 ¼ :8442; and for the interval [8,9), ŜðtÞ ¼
Y
j:tj�t

1� dj
nj

� �
¼ 1�

:9286� :9091� :9000� :7143 ¼ :5427.

Note that the above calculation (i.e., multiplication of multiple survival

probabilities) gives the method its label of product-limit estimator.

3. The Greenwood formulas for calculating the variance and standard error

of ŜðtÞare as follows:

S:E: ŜðtÞ
n o

»½ŜðtÞ�
Xk
j¼1

dj

njðnj � djÞ

8<
:

9=
;

1=2

:
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var ŜðtÞ
n o

» ½Ŝ ðtÞ �2
Xk

j¼1

dj

njðnj � djÞ :

By definition, S.E.{ŜðtÞ} is the square root of Var{ŜðtÞ}. For the interval
[5,6), the calculation of S.E.{ŜðtÞ} is

S:E: ŜðtÞ
n o

»½ŜðtÞ�
Xk
j¼1

dj

njðnj � djÞ

8<
:

9=
;

1=2

¼:8442
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0þ 1

14ð14�1Þ þ 1
11ð11�1Þ

q
¼ :1019:

And finally,

4. The calculation of the 95% confidence interval of the estimated ŜðtÞ is as
follows: Ŝ(t) + 1.96 � S.E.{Ŝ(t)}. For the interval [5,6), the lower bound of

the 95% confidence interval is .8442� 1.96(.1019) = .6443, and the upper

bound of the confidence interval is .8442 + 1.96(.1019) = 1.043. Since the

confidence interval should not exceed a value of 1.0000, we constrained the

estimated upper bound to be 1.0000.

The analyst can use the Kaplan-Meier estimate of survivor function

in several ways. First, all utilities of estimated survivor functions pro-

vided by the life-table method remain valid in the current context. The

analyst can use the Kaplan-Meier method to obtain the median survivor

time (i.e., the 50th percentile of the survivor function) or other quantiles

such as a 90th percentile or 75th percentile of the survivor function. A

95% confidence interval for each of these quantiles can be further

attached.

Second, the analyst can employ the estimated ŜðtÞand its esti-

mated standard error to perform a significance test about group

difference. Doing so, the analyst basically tests a research hypothesis

of ‘‘H1: the survivor functions between two groups are not equal’’

versus the null hypothesis of ‘‘H0: there is no difference in the

survivor functions between two groups.’’ The following significance

tests are developed based on Greenwood’s estimate of the standard

error of ŜðtÞ: the log-rank test, the Wilcoxon test, the Breslow test,
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and the Tarone-Ware test. Most software packages provide results of

one or more of these tests. For each test, if the analyst sets up a

significance level of a= .05, and if the observed p-value of a test is

less than .05, then the analyst can reject H0. The analyst then con-

cludes that the difference in the survivor functions between groups is

statistically significant. If the observed p-value is greater than .05,

then the analyst fails to reject the null hypothesis and concludes that

the difference in the survivor functions between groups is not sta-

tistically significant. Computing packages usually use the log-rank

test as a default. Among different tests, which one should the analyst

use to draw a final conclusion? Collett (1994, pp. 44–45) describes

issues that need to be considered when different tests lead to dif-

ferent conclusions. For instance, Collett suggests that when the

proportional hazard assumption seems valid (i.e., when observed

survivor functions do not cross in the survivor plot), the log-rank

test is more appropriate. We will discuss this assumption in detail in

Chapter 4.

GRAPHIC APPROACHES

The estimated survivor function ŜðtÞand hazard functionĥðtÞfrom the

life-table method and the estimated survivor function ŜðtÞfrom the

Kaplan-Meier method can be further plotted to produce graphics. In

these graphics, each estimated statistic is used as the vertical axis, and the

study time is used as the horizontal axis. Based on equations about the

cumulative hazard function Ĥ ðtÞ ¼ �log Ŝ ðtÞ, the analyst can further

produce a cumulative hazard plot or ‘‘log-log survivor plot.’’ Most soft-

ware packages provide graphic functions to facilitate this job. Graphic

approaches may be employed to accomplish two goals.

The first goal of using graphics is to have a visual representation of

the change process, so that the shape of study subjects’ survival distribu-

tion, hazard rate, and differences on these functions between groups can

be visually examined. The presentation of graphics is a supplement to

univariate and bivariate statistics but provides an effective, efficient, and

succinct presentation of study results.

The second goal for using graphics is to check tenability of assumptions

embedded inmultivariatemodels so that the researcher can gaugewhether
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applying a specific model is appropriate. The researcher may employ the

plot of cumulative hazard function (also known as the Nelson-Aalen

cumulative hazard plot), or a ‘‘log-log survivor plot’’ (i.e., a plot defining

log[-log S(t)] as the vertical axis, and log t as thehorizontal axis),2 or a plotof

survivor functions ŜðtÞfor several groups to check whether the hazard rate
increases with time, whether there is sufficient evidence to suggest that the

survival distribution follows a certain typeof parametricmodel, orwhether

the proportionality assumption embedded in the Cox regression is valid.

These methods will be illustrated in Chapters 4 and 5.

AN ILLUSTRATING EXAMPLE

This section presents an example to show the application of descriptive

approaches described in this chapter. The example comes from a larger

study investigating the impact of welfare reform on reunification by

using three entry cohorts of children who received foster care services

prior to and after welfare reform (Wells & Guo, 2003, 2004, 2006).

To distinguish the current study, which basically aims to illustrate

methodology of survival analysis, from the original study, I used an

80% random sample of the larger study. This example is used for

methodological illustration throughout the book.

The substantive interest of this study is to investigate whether chil-

dren placed in foster care prior to welfare reform return home more

quickly than do children placed in foster care after reform. The study

grew out of a concern that welfare reformwould have a negative effect on

families involved in the child welfare system or families at high risk of

such involvement. It also examines whether specific factors such as a

child’s mother’s loss of cash assistance show a stronger relationship to

the speed with which a child returns home after reform than before.

This study employed a staggered prospective multiple-cohort design.

Three entry cohorts of study children (n = 1,278) receiving foster care

services in Cuyahoga, Ohio, comprise the sample: children of the prere-

form cohort entered foster care between 10/1/1995 and 3/31/1996,

children of the first postreform cohort entered care between 10/1/1998

and 3/31/1999, and children of the second postreform cohort entered

care between 10/1/2000 and 3/1/2001. The staggered prospective mul-

tiple-cohort design disentangles the period effect, such as the policy
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impact of welfare reform, from the cohort effect. With this design, we are

able to test the research hypothesis that children placed in foster care

prior to welfare reform return home more quickly than do children

placed in foster care after reform.

In addition to the entry-cohort variable, the study employs the

following explanatory variables: child age at entry (grouped as 0, 1–3,

4–7, 8–11, and 12–16), gender, race (grouped as African American and

others), reason for placement (categorized as physical abuse, neglect,

dependency, and other), first placement type (categorized as kinship

care, foster care, and other), mother’s income from TANF and wages

(operationalized as total monthly average income prior to child’s exit

from foster care), and percentage of mother’s income from wages (oper-

ationalized as the proportion of mother’s total income from wages prior

to child’s exit from foster care).

We impose a study window of 12 months. That is, regardless of the

point at which the child entered foster care during the recruitment period

of October 1 to March 31, we follow each child for 12 months to see

whether the study event occurred within the 12-month period. If the event

occurred, then the child is coded as noncensored; if the event did not

occur by the end of a 12-month period, then the child is coded as censored

(i.e., a type of right-hand censoring). The primary event of interest for this

study is reunification with family. By this definition, all other types of exits

from the foster care within 12months, such as exits due to guardianship or

adoption, are coded as censored (i.e., a type of random censoring). In

Chapter 3, I will use this example to illustrate survival analysis of multiple

exits, at which place I’ll introduce additional events of interest. Because of

censoring and the time-to-event nature of data, we chose to use survival

analysis as a primary analytic method for this study.

Like other quantitative research, the first task of a survival analysis is

to conduct univariate and bivariate analyses. Table 2.4 presents results of

these analyses. The column headed ‘‘% or M(SD)’’ presents descriptive

statistics of explanatory variables. These statistics are produced by con-

ventional methods for descriptive analysis; that is, the column shows

percentage distribution for categorical variables, and mean (standard

deviation) for continuous variables. These statistics allow us to examine

distributional patterns of the explanatory variables.

The primary interest lies in the univariate and bivariate analysis of

the dependent variable: child’s length of time in foster care prior to
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Table 2.4 Example of the Impact of Welfare Reform on Reunification—Sample
Descriptive Statistics and 90th Percentile of Survivor Function Estimated by
the Kaplan-Meier Method

Variable % or M(SD)
The 90th Percentile of
the Survivor Function

Entry cohort
Prereform 24.3% 3.06
Postreform 1 33.0% 5.29

Postreform 2 42.7% 6.28

Child age at entry
0 27.6% 6.47*
1–3 19.5% 4.83*
4–7 20.2% 6.14*
8–11 17.2% 3.45*

12–16 3.0% 4.14*

Child gender
Male 49.9% 5.52

Female 50.1% 4.50

Child race
African American 74.7% 5.98*

Other 25.3% 3.78*

Reason for placement
Physical abuse 11.2% 2.60***
Neglect 65.6% 5.91***
Dependency 13.5% 5.26***

Other 9.7% 4.70***

First placement type
Kinship 49.5% 4.86
Foster 42.6% 4.90

Other 7.9% 5.91

Mother’s income from TANF &
wages
(Total monthly average prior

to exit)
312.53 (465.72)

$0–299 66.6% 7.98***
$300–999 25.7% 3.22***
$1000–1999 6.0% 5.29***
� $2000 1.6% 0.23***

% mother’s income from wages
(prior to exit)

49.05 (45.99)

continued
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reunification with censoring. To fulfill this goal, I ran the Kaplan-Meier

estimation of survivor curve for the whole sample, and ran the same

analysis for each study variable. I employed the Breslow test to determine

whether differences on survivor functions between groups are statisti-

cally significant. I plotted survivor curves based on the Kaplan-Meier

estimation as well as hazard curves. Note that the hazard functions were

not estimated by the Kaplan-Meier estimation. Running SAS Proc

Lifetest, the hazard function is estimated by the life-table method.

Running Stata sts graph, hazard, the hazard function is also estimated

by the life-table method, but the hazard curve is further smoothed by

additional procedures within Stata.

Because more than 50% of the study children were still in foster care

by the end of the 12-month window, the median survivor function is

notmeaningful. In other words, the only information we know from the

data is that the median is greater than 12 months. Therefore, I chose the

90th percentile of the survivor function as a replacement for the

median. As shown by the third column of Table 2.4, the 90th percentiles

of the survivor function for the three cohorts are as follows: 3.06months

for the prereform cohort (ec = 1), 5.29 months for the first postreform

cohort (ec = 2), and 6.28 months for the second postreform cohort

(ec = 3). The 90th percentile survivor function can be interpreted as

the length of time it takes for 10% of the study children to reunify. Thus,

for instance, it takes 3.06 months for 10% of the prereform cohort to

achieve reunification. The bivairate analysis confirms the direction of

the welfare-reform impact on reunification hypothesized by the study;

that is, children placed in foster care prior to welfare reform return

home more quickly than do children placed in foster care after reform.

However, the Breslow test shows that the differences in survivor func-

tions among the three cohorts are not statistically significant. There are

Table 2.4 (Continued)

0%–24.9% 45.4% 4.11
25%–49.9% 5.2% 6.54
50%–74.9% 5.6% 3.91
75%–100% 43.9% 6.47

* p< .05, ** p< .01, *** p< .001, Breslow (Generalized Wilcoxon) Test.
Note: % or M(SD)=percentage distribution for categorical variables, and mean (standard
deviation) for continuous variables.
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many reasons that this finding is not statistically significant. Among

other things, the current investigation is bivariate and does not control

for other covariates. We need to conduct further analysis, particularly

multivariate modeling, to test the research hypothesis.

Figure 2.2 shows two survivor plots: Panel A was produced by SAS

Proc Lifetest, and Panel B was produced by Stata sts graph. The survivor

curve shows that at the beginning of the study window or time 0, all

study children (100%) are in foster care and no event (reunification with

family) occurs for any child. As the study (analysis) time goes by, the

proportion of children remaining in foster care gradually decreases. Of

the three survivor curves being compared, the curve on the top indicates

the slowest speed of change, and the curve on the bottom indicates the

fastest speed of change. The plot shows a clear pattern—that is, at most

time points, the proportion of children remaining in foster care for the

second postreform cohort (ec = 3) is the highest, the proportion

remaining in care for the first postreform cohort (ec = 2) is the second

highest, and the proportion remaining in care for the prereform cohort

(ec = 1) is the lowest. Thus, the plot indicates that foster children who

entered foster care after welfare reform reunify at a slower speed than

those who entered care before welfare reform. Again, the differences are

not statistically significant using a bivariate test, and it’s important to test

the differences using a multivariate model.

Figure 2.3 presents hazard plots produced by SAS and Stata. Notice

that a high value of hazard function at a specific time point indicates a fast

speed of change at that time. The hazard plot shows a similar pattern as

that of the survivor plot, though it also indicates that the change rate is

not constant over the 12-month period. The most important message the

hazard plot conveys is that the prereform cohort tends to have high

hazards in the earlier period (i.e., around month 2), while the two postre-

form cohorts tend to have high hazard rates in the later period of the

study window (i.e., after month 8) and accelerate the speed after that. This

pattern is more clearly shown by the smoothed plot (i.e., Panel B).

The bivariate analysis (Table 2.4) reveals other important predictors

of a fast reunification. In general, older children reunified at a faster speed

than younger children (p< .05 from the Breslow test); African American

children had more difficulty in reunifying than other children (p< .05);

children placed because of physical abuse reunified at a faster speed than

other children (p< .001); and most important, income (i.e., both cash
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assistance and wages) matters—children whose mothers had a total

monthly average income of more than $2,000 had the fastest speed of

reunifying; and the impact of income on reunification speed is probably

nonlinear because the 90th percentiles for the four groups of children

whose mothers fall into different income categories change in a nonlinear

fashion (p< .001). To some extent, the bivariate test partially confirms

the second research hypothesis proposed by the study, that is, a child’s

mother’s loss of cash assistance impacts the speed of reunification.

Additional survivor and hazard plots could be produced for this

study; it would be especially worthwhile to examine these functions for

variables that are statistically significant. I did not do this work for

simplicity of presentation.
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3

The Discrete-Time Models

This chapter reviews the first type of multivariate model analyzing

time-to-event data: the discrete-time models. The primary feature

of this type of model is its approximation of hazard rate by using

probability estimated from a person-time data set. When the study

focuses on a single event, the analyst uses a binary logistic regression to

estimate the probability. When the study focuses onmultiple events (i.e.,

termination of study time due to more than one reason), the analyst uses

a multinomial logit regression to estimate multiple probabilities. The

discrete-time model of multiple events is also known as competing-risks

analysis. In this chapter, I first provide an overview of the discrete-time

models. Next I describe data conversion and the binary logistic regres-

sion for analyzing a single event. And finally I review issues related to

data conversion and the multinomial logit model for analyzing multiple

events.

OVERVIEW

The basic idea of discrete-time modeling is simple: applying a logit

model to a well-defined data set that pools together individuals’ event

histories, using probability of event occurrence based on such data as a

proxy of hazard rate, and then estimating regression coefficients of
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predictor variables on the probability of event occurrence. The discrete-

time model was developed by Paul Allison (1982). According to Allison

(1995, pp. 211–212), in a discrete-time model, ‘‘each individual’s history

is broken down into a set of discrete time units that are treated as distinct

observations. After pooling these observations, the next step is to esti-

mate a binary regression model predicting whether an event did or did

not occur in each time unit.’’

Why and when do we need to apply this method? In general, most

analyses suitable to the Cox regression can be implemented with

discrete-time models. The advantage of using this method is that the

procedure is simply an extension of running logistic regression and is

easy for users to apply. The model offers an effective approach to

handling time-varying covariates—a central task for most studies using

longitudinal data.

The disadvantage is that as a discrete-timemodel, it uses week, month,

quarter, or year as a time unit; as such, it measures change rate in a coarse

manner and inevitably causes the study to lose information. For instance,

in a discrete-time model using month as a unit, a subject with event time

of 1 day is treated the same as another whose length of time is 30 days. This

does not seem to be a serious problem for longitudinal data collected from

a multiwave panel study, or for studies in which the event times are not

truly measured as a continuous variable, or for event times that are

not sensitive to the coarseness of time metric. When any of these issues

becomes a concern, however, the analyst may consider using a

continuous-timemodel such as the Cox regression or a parametricmodel.

A comment on the differences and similarities between probability

and hazard rate is warranted. Probability commonly quantifies the scale of

uncertainty and informs the researcher as to the extent an event of interest

occurs out of a given risk set. As such, it measures likelihood of event

occurrence within a narrowly defined time segment—or is more applic-

able to cross-sectional data. A hazard rate measures rate of change and is

more applicable to longitudinal data. Hazard rate is also a probability, but

is a special type of probability. Known as an instantaneous probability, the

hazard rate measures the probability limit when the time increment

approaches infinitesimal. In general, the two concepts cannot and

should not be confused. Only under well-defined contexts, such as in

discrete-time modeling when researchers have converted individual-level

data to person-time data, can the two concepts be used interchangeably.
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Indeed, using probability as a proxy of hazard rate is an innovative

contribution by Allison that simplifies complicated research issues.

Hence, the key to discrete-timemodeling is to create awell-defined data

set. Precisely, the modeling process involves the following steps: (a) define

the event of interest, a study window, a unit of time interval, and censoring;

(b) convert person data into person-time data; and (c) run a binary logistic

regression (or a multinomial logit model, if analyzing multiple events)

based on the person-time data. The first step has been discussed in

Chapter 2, so in the following discussion, I focus on steps 2 and 3.

CONVERTING PERSON DATA INTO PERSON-TIME DATA

Most data sets in social work research are organized as person-level data.

That is, in such data sets, each study subject contributes one and only one

data line. The discrete-time model should be applied to person-time

data. Thus, the first work the analyst conducts is converting person data

into person-time data.

The conversion involves several steps. First, based on the study time,

the analyst creates multiple data lines for each study subject based on the

definitions of the study window, the time interval, and censoring.

Suppose a study defines 1 year as a study window and a quarter as a

discrete time unit. Then a person whose study time is 1 year contributes

four data lines to the person-time file, a person whose study time is 2

quarters contributes two data lines, and so on.

Next, the analyst codes the dependent variable of the logistic regres-

sion for the time-person data. The coding should follow the information

about the study time and the censoring code originally observed in the

person-level data. In a binary logistic regression, the dependent variable

is typically dichotomous, such that Y = 1, if the event occurs, and Y = 2

otherwise. The coding values are arbitrary, and the analyst can always

specify the value indicating event occurrence when running the logistic

regression. In this text, I choose to use values 1 and 2, and use 1 to

indicate event occurrence. The discrete-time model gives an event-

occurrence code only to the person-time at which the event occurs.

Thus, if a person has a study time of 1 year (i.e., 4 quarters) and

contributes four data lines, the dependent variable Y is coded as ‘‘no

event’’ or value 2 for the first three data lines, and only for the fourth data
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line is Y coded as ‘‘event’’ or value 1. Note how the discrete-time model

handles censoring. If a subject has a study time of three quarters with a

random censoring, then the subject contributes three data lines to the

person-time data, and none of the three lines has an ‘‘event’’ code or

value 1 for Y. If a subject has a study time of 1 year and the study time is

censored at the end of the study window, then the subject contributes

four data lines, and none of the four lines has a value 1 for Y. If a subject

has a study time of 1 year but actually has the event at the end of the study

window (i.e., not censored), then the subject contributes four data lines

and only the last data line has an ‘‘event’’ code or value 1 for Y.

Finally, the analyst codes the independent variable of the person-time

data. If an independent variable is time fixed (e.g., gender, race, age at

entry, etc.), then the same value shown in the person data for a specific

subject would appear on all data lines on this variable in the person-time

data. A great advantage of using the discrete-time model is its ability to

analyze time-varying covariates. A time-varying covariate is also called a

time-dependent variable in the literature; and likewise, a time-fixed vari-

able is called a time-constant or time-independent variable. Time-varying

covariates are those that may change value over the course of observation.

Incorporating time-varying covariates in a study makes the investigation

truly dynamic, that is, it looks into the relationship between the dependent

variable (i.e., the timing of the event occurrence) and an independent

variable from a truly changing perspective. Suppose our data set shows

that a study child’s mother’s average quarterly income changes over a

1-year study window and the child’s study time is 4 quarters; the income

variable of the person-time data will show different values on the four data

lines, with each measuring mother’s income in a specific quarter.

To illustrate the data conversion for analyzing a single event, I use the

same example presented in Chapter 2. Recall that in this study, I define

reunification within 12 months as the event of interest. A child who

either terminated the study time for reasons other than reunification or

did not reunify by the end of the 12-month window is defined as

censored. I also decide to use 2 months as the time interval. I refer to

this interval as a bi-monthly interval throughout this chapter. Here

I chose a bi-monthly interval as the time metric based on the considera-

tion that a quarter would be too coarse, and a month would be too fine,

resulting in person-time data that would be too large. Additionally, prior

studies show that staying in foster care less than 2 months is considered
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short term. With a bi-monthly metric, the study can sufficiently distin-

guish between short-term and long-term placements.

Table 3.1 exhibits a portion of the person-level data, a file repre-

senting a typical structure researchers see from common data files. In

this data file, I have 1,278 study subjects; hence, each subject has one and

only one data line, and there are 1,278 data lines in total. The variable

losp1 is the length of time a child stays in foster care measured in days,

and the variable cen_r is the censoring code (cen_r = 1, if censored; and

cen_r = 0, if the event occurs).

After data conversion, I obtain a person-time data file. A portion of

the person-time file is shown in Table 3.2. The variable reunify is the

dependent variable for the logistic regression: reunify = 1, event occur-

rence; and reunify = 2, no event. The variable bm is a variable indicating

the order of the current bi-month, such that 1 signifies the first bi-

month, 2 the second, and so on. The variable black is a time-fixed

variable indicating child race; as such, it does not change values across

the data lines for each child.

In this data file, each data line represents ‘‘1 person bi-month,’’ and

two data lines represent ‘‘2 person bi-months.’’ Therefore, ‘‘2 person bi-

months’’ could mean two different things: it could mean one person

staying in foster care for two bi-months (i.e., 4 months), or two persons

each staying for one bi-month (i.e., 2 months).

The 1,278 subjects contribute 6,112 data lines or 6,112 bi-months in

total. These 6,112 person bi-months form a risk set for the discrete-time

modeling. Timing of reunification within a 12-month study window for

Table 3.1 Exhibit of a Person-Data File (n = 1,278)

Obs id losp1 cen_r

1 1 129.00 1
2 2 180.00 0
3 3 1.00 0
. . .
10 10 258.00 0
11 11 365.25 1
. . .

Obs: observed data line.
id: identification number.
losp1: length of stay in the first spell of foster care (days).
cen_r: censoring code (1 censored, 0 event reunification).
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1,278 children has transformed to a problem of calculating probability of

reunification out of 6,112 bi-monthly exposure times. The probability of

reunification based on the person-time data (i.e., the proportion of

occurred events out of the risk set of 6,112 person bi-months) is not a

hazard rate per se, but a good proxy of a hazard rate.

Note how the person-time file handles censoring and codes events.

The first study child (id = 1) stayed in foster care for 129 days (losp1 =

129) or more than 4 months; therefore, this subject contributes three

data lines (3 bi-months) in the person-time file; since this child’s time is

censored (cen_r = 1), reunify is coded 2 or no event. Three study subjects

(id = 2, 3, and 10, respectively) have noncensored data because their

cen_r = 0; hence, all these subjects have an event code (reunify = 1), but

the value only applies to their very last data lines.

Note that the subject whose id = 3 stayed in foster care for only 1 day,

but this child is treated the same as a child who stayed in foster care for 60

days. This is the limitation of discrete-time modeling due to the coarse

time metric noted earlier.

Tables 3.3 and 3.4 illustrate the conversion of a time-varying cov-

ariate from person-level data to person-time data for the same study

Table 3.2 Exhibit of a Person-Time Data File After Data Conversion (n = 6,112)

Obs id losp1 cen_r black bm reunify

1 1 129.00 1 1 1 2
2 1 129.00 1 1 2 2
3 1 129.00 1 1 3 2

4 2 180.00 0 0 1 2
5 2 180.00 0 0 2 2
6 2 180.00 0 0 3 1

7 3 1. 00 0 0 1 1

31 10 258.00 0 1 1 2
32 10 258.00 0 1 2 2
33 10 258.00 0 1 3 2
34 10 258.00 0 1 4 2
35 10 258.00 0 1 5 1

36 11 365.25 1 1 1 2
37 11 365.25 1 1 2 2
38 11 365.25 1 1 3 2
39 11 365.25 1 1 4 2
40 11 365.25 1 1 5 2
41 11 365.25 1 1 6 2

reunify   1 = reunified 
             2 = no 

bm  Bi-month indicator 
black a time-fixed variable.

Event 
(reunification) 
occurred in each 
of these time- 
intervals .

Limitation of discrete-time: 
LOS = 1 day is treated same 
as LOS = 60 days.
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Table 3.3 Exhibit of Time-Varying Covariates (i.e., Bi-Monthly Welfare Cash
Assistance) Shown by a Person-Level Data File (n = 1,278)

Obs id bmc1 bmc2 bmc3 bmc4 bmc5 bmc6 losp1 cen_r

1 1 0.00 0.00 0.00 0.00 0.00 0.00 129.00 1
2 2 0.00 0.00 0.00 0.00 0.00 0.00 180.00 0
3 3 322.09 322.09 0.00 0.00 0.00 0.00 1.00 0

. . .
10 10 479.41 479.41 472.54 465.66 465.66 465.66 258.00 0
11 11 0.00 0.00 0.00 0.00 0.00 0.00 365.25 1
. . .

Obs: observed data line.
id: identification number.
bmc1: Dollar amount of cash assistance received in the1st bi-month (i.e., months 1 and 2)
with a 2-month lag.

bmc2: Dollar amount of cash assistance received in the 2nd bi-month (i.e., months 3 and 4)
with a 2-month lag . . .

bmc6: Dollar amount of cash assistance received in the 6th bi-month (i.e., months 11 and
12) with lag.

Table 3.4 Exhibit of a Time-Varying Covariate Shown by the Person-
Time Data File After Data Conversion (n = 6,112)

Obs id bm reunify cuse

1 1 1 2 0.00
2 1 2 2 0.00
3 1 3 2 0.00
4 2 1 2 0.00
5 2 2 2 0.00
6 2 3 1 0.00
7 3 1 1 322.09

31 10 1 2 479.41
32 10 2 2 479.41
33 10 3 2 472.54
34 10 4 2 465.66
35 10 5 1 465.66
36 11 1 2 0.00
37 11 2 2 0.00
38 11 3 2 0.00
39 11 4 2 0.00
40 11 5 2 0.00
41 11 6 2 0.00

Obs: observed data line.
id: identification number.
bm: bi-month indicator.
reunify: a binary variable indicating event occurrence.
cuse: A time-varying covariate measuring dollar amount of cash assistance.



sample. Table 3.3 is the person-level file. In this file, variables bmc1 to

bmc6 are time-varying variables indicating the dollar amount the

child’s mother received from AFDC cash assistance in each of the 6

bi-months. After the data conversion, all six variables are combined

into one variable called cuse in the person-time file (see Table 3.4), but

the time-varying information appears on different data lines for dif-

ferent children.

The conversion of person data to person-time data requires intensive

and careful work of data management. Typically, it requires application

of powerful programming functions offered by a computing package.

Depending on the nature of the person-level data, programming to fulfill

this task may become challenging. Students of survival analysis may use

this challenge to strengthen their programming skills and take the

opportunity to learn more about a software package. There are good

references that show programming commands useful to the data con-

version (e.g., Allison, 1995, pp. 212–221, for SAS users; Guo, 1992, for

SPSS users; and StataCorp, 2007, pp. 21-22, and Cleves, Gould, and

Gutierrez, 2004, for Stata users).

BINARY LOGISTIC REGRESSION

After creating the person-time data, the analyst can run a binary logistic

regression on the data set to estimate the discrete-time model. This

section reviews statistical principles and application issues pertaining

to binary logistic regression. The information can be found in most

textbooks dealing with this topic.

Denoting the binary dependent variable as Yi (Yi = 1, if the event

occurs at a specific person-time unit, and Yi = 0, if the event does not

occur) for the ith unit (i = 1, . . . N), the vector of independent variables

as Xi, and the vector of regression parameters as �, a binary logistic

regression depicts the probability of event occurrence as follows:

PðYijXi ¼ xiÞ ¼ EðYiÞ ¼ exi�

1þ exi�
¼ 1

1þ e�xi�

This is a nonlinear model, meaning that the dependent variable Yi is

not a linear function of the vector of the independent variables xi.

However, by using an appropriate link function such as a logit function,
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we can express the model as a generalized linear model (McCullaph &

Nelder, 1989). A link function in the current context refers to a process of

variable transformation. Although Yi is not a linear function of xi, its

transformed variable through the logit function (i.e., the natural loga-

rithm of odds or log{P(Yi)/[1-P(Yi)]}) becomes a linear function of xi:

log eð P

1� P
Þ ¼ xi�

where P denotes P(Yi).

The logistic regression model is estimated with a maximum like-

lihood estimator. To ease the exposition, I now assume that there are

only two independent variables, x1 and x2. The log likelihood function of

the logistic regression model with two independent variables can be

expressed as follows:

log elð�0; �1Þ ¼
Xn
i¼1

Yið�0 þ �1x1i þ �2x2iÞ�

Xn
i¼1

log e½1þ expð�0 þ �1x1i þ �2x2iÞ�

The partial derivative of log ‘ with respect to b maximizes the

likelihood function. In practice, the problems are seldom solved ana-

lytically, and we often rely on a numerical procedure to find estimates

of b. Long (1997, pp. 56–57) described three numerical estimators: the

Newton-Raphson method, the scoring method, and the B-triple-H

(BHHH) method. Typically, a numerical method involves the fol-

lowing: (a) insert starting values (i.e., ‘‘guesses’’) of �0, �1, and �2 in

the right-hand side of the above equation to obtain a first guess of

log ‘; (b) insert a different set of �0, �1, and �2 into the right-hand side

equation to obtain a second guess of log ‘; by comparing the new log ‘

with the old one, the analyst knows the direction for trying the next set

of �0, �1, and �2; the process from step (a) to step (b) is called an

iteration; (c) replicate the above process several times (i.e., run several

iterations) until the largest value of log ‘ is obtained (i.e., the max-

imum log likelihood function) or until the difference in log ‘ between

two iterations is no longer greater than a predetermined criterion

value, such as 0.000001.
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Estimated values of �0, �1, and �2 (i.e., �̂0; �̂1 and �̂2) are logistic

regression coefficients at which the likelihood of reproducing sample

observations is maximized.

As in running OLS regression or other multivariate models, the

analyst must be sensitive to the nature of the data at hand and the

possibility of violating assumptions. Routine diagnostic analyses, such

as tests of multicollinearity, tests of influential observations, and sensi-

tivity analyses should be used to assess the fit of the final model to the

data. A number of statistics have been developed to assess the goodness-

of-fit of the model. Details of goodness-of-fit indices for a logistic

regression model can be found in textbooks on logistic regression or

limited dependent variable analysis (for instance, Kutner, Nachtsheim, &

Neter, 2004; Long, 1997). Here I summarize a few indices and include

cautionary statements for their use.

1. Pearson chi-square goodness-of-fit test. This is a test that detects major

departures from a logistic response function. Large values of the test statistic

(i.e., those associated with a small or significant p value) indicate that the

logistic response function is not appropriate. However, it is important to

note that the test is not sensitive to small departures (Kutner et al., 2004).

2. Chi-square test of all coefficients. This test is a likelihood ratio test and

analogous to the F test for linear regression models. We can perform a chi-

square test using the log-likelihood ratio, as follows:

Model Chi-square ¼ 2 log-likelihood of the full model

-2 log-likelihood of the model with intercept only

If the Model Chi-square > w2 (1 – a, df = number of independent vari-

ables), then we reject the null hypothesis stating that all coefficients except

the intercept are equal to zero. As a test of models estimated by the

maximum likelihood approach, a large sample is required to perform the

likelihood ratio test and this test is problematic when the sample is small.

3. Hosmer-Lemeshow goodness-of-fit test. This test first classifies the sample

into small groups (e.g., g groups) and then calculates a test statistic using the
Pearson chi-squares from the 2 x g tables of observed and estimated expected

frequencies. A test statistic that is less than w2 (1–a, df = g-2) indicates a
goodmodel fit. The Hosmer-Lemeshow test is sensitive to sample size. That
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is, in the process of reducing the data through grouping, we may miss an

important deviation from fit due to a small number of individual data

points. Hence we advocate that before concluding that a model fits you

should perform an analysis of the individual residuals and relevant diag-

nostic statistics (Hosmer & Lemeshow, 1989, p. 144).

4. Pseudo-R2. Because the logistic regression model is estimated by a non-

least-squares estimator, the common linear measure of the proportion of the

variation in the dependent variable that is explained by the predictor variables

(i.e., the coefficient of determination R2) is not available. However, several

pseudo R2s for logistic regression model have been developed by analogy to

the formula defining R2 for the linear regression model. These pseudo R2s
include Efron’s, McFadden’s, adjusted McFadden’s, Cox and Snell’s,

Nagelkerke/Cragg and Uhler’s, McKelvey and Zavoina’s, count R2, and
adjusted count R2. In general, a higher value in a pseudo R2 indicates a better

fit. However, researchers should be aware of several limitations of pseudo R2

measures and interpret their findings with caution. UCLA Academic

Technology Services (2008) presented a detailed description of each of these

pseudo R2s and concluded:

Pseudo R-squares cannot be interpreted independently or compared

across datasets: they are valid and useful in evaluating multiple models

predicting the same outcome on the same dataset. In other words, a

pseudo R-squared statistic without context has little meaning. A pseudo

R-square only has meaning when compared to another pseudo R-square of

the same type. On the same data, predicting the same outcome. In this

situation, the higher pseudo R-square indicates which model better pre-

dicts the outcome.

AN ILLUSTRATING EXAMPLE OF THE DISCRETE-TIME
MODEL ANALYZING A SINGLE EVENT

In this section, I present an illustrating example of the discrete-time

model analyzing a single event. The example applies binary logistic

regression to person-time data. The data conversion has been discussed

in the first section of this chapter. For substantive discussion of the study

issues, research questions, and hypotheses, readers may revisit the illus-

trating example presented in Chapter 2.
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Recall that the primary interest of this study is to test the hypothesis

that welfare reform creates difficulties for children in reunifying with

their families when those families experience material hardship. To test

this hypothesis, the study employs two variables to measure material

hardship and the impact of welfare reform: one is a time-varying cov-

ariate of mother’s income from TANF and wages, and the other is the

percentage of mother’s income from wages. Acknowledging that it takes

time for material hardship to have an impact on reunification, the study

employs a 2-month lag on the above two variables. Thus, the child’s

study time is linked to the mother’s total income and the percentage of

that income from wages at a point 2 months earlier.

Table 3.5 presents the results of the discrete-time model of reuni-

fication within 12 months. The model has a good fit to data, as

indicated by the model chi-square that is statistically significant. The

odds ratio can be interpreted in a conventional fashion as one does for

logistic regression. The result does not show significant differences

among the three cohorts, though it confirms that children of the

postreform cohorts are less likely to reunify than their prereform

counterparts: other things being equal, the chance of reunification

for children of the second postreform cohort is 21.6% lower than that

for children of the prereform cohort (i.e., (1 – .784)� 100 = 21.6%),

and the chance of reunification for children of the first postreform

cohort is 7.4% lower than that for children of the first prereform

cohort (i.e., (1 – .926)� 100 = 7.4%).

With regard to the two mother income-related variables, the results

indicate that mother’s total income from TANF and wages affects the

odds of reunification. The results show that other things being equal,

every $100 increase in the mother’s monthly income 2 months earlier

increases the odds of reunification by 4.3% (p<.01). The percentage of

mother’s income due to wages is not statistically significant, though the

results show that other things being equal, every 10 percentage point

increase in the percentage of income due wages decreases the odds of

reunification by 0.1%.

The estimated discrete-time model finds two other important vari-

ables that are statistically significant: age at entry (p<.05) and reason for

placement (p<.01, p<.05). In general, infants and children who were

placed for reasons of neglect or other have the lowest odds for

reunification.
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Table 3.5 Estimated Discrete-Time Model of Reunification within 12 Months—
A Binary Logistic Regression Based on the Person-Time Data Set

Chapter 3: Binary Logit

Variable B Odds Ratio

Entry cohort (prereform)
Postreform 1 �.077 .926
Postreform 2 �.244 .784

Child age at entry (8–11)
0 �.419 * .658
1–3 �.147 .863
4–7 �.287 .751
12–16 �.167 .846

Child gender (male)
Female .099 1.105

Child race (other)
African American �.214 .807

Reason for placement (physical abuse)
Neglect �.725 ** .485
Dependency �.463 * .629
Other �.733** .480

First placement type (kinship)
Foster .173 1.189
Other �.197 .821

Mother’s income from TANF & wages
(2-month lag, time varying, in $100) .042 ** 1.043

% mother’s income due to wages
(2-months lag, time varying, 10% points) �.001 .999

Bi-month indicator (6)
1 �.377 * .249
2 �.200 .297
3 �.013 .358
4 �.513 ** .217
5 .089 .396

Constant �2.188

Model chi-square (df) 141.45 (20)**
Number of study subjects 1,278
Number of subject bi-months 6,112

*p<.05, ** p<.01.
Reference group is shown in parentheses for a categorical variable.
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The estimatedmodel also includes five bi-monthly dummy variables.

The model shows that these time variables vary substantially in the

12-month period, and two of them (the first and fifth bi-months) are

statistically significant. Results suggest that the probability of reunifica-

tion at each bi-month is not constant. Thus, if we run a parametric

model, an exponential model is probably not appropriate because the

exponential model assumes a constant hazard rate throughout the study

period, and this data set may have violated this assumption.

DISCRETE-TIME MODEL ANALYZING MULTIPLE EXITS

The discrete-time-multiple-exits model follows a similar procedure as

that for the discrete-time-single-exit model. That is, the analyst needs to

convert the person-level data into person-time data and then run a

multinomial logit model instead of a binary logistic regression using

the person-time data. This section highlights issues that are unique to

this type of modeling.

The distinguishing feature of the multiple-exits model is that it

analyzes more than one exit or event as the events of interest simulta-

neously. As such, the model allows the analyst to investigate competing

risks. In foster care research, children who exit from foster care because

of reunification are likely to have quite different determinants from

those who exit because of adoption, or because of guardianship, or

because of emancipation. The multiple-exits model provides an analytic

tool to answer research questions that deal with more than one reason

for children exiting the system, and helps to determine how these reasons

differ.

Data conversion for the multiple-exits model is the same as for the

single-exit model, except that the analyst needs to code multiple values

for the dependent variable of the multinomial logit model.

To illustrate, I use the same data as for the previous example but add

an exit outcome, ‘‘guardianship.’’ In the previous example, the event of

interest was reunification; in this context, if a child exits foster care due

to guardianship, then the child’s event time is censored. In the current

context, I use two events to define exit outcomes—guardianship and

reunification—and treat all other types of exit, such as adoption or

moving to other states, as random censoring.
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Specifically, the coding scheme for the dependent variable is as follows:

the dependent variable event = 1, if the child’s study time is not censored

and the exit outcome is reunification; event = 2, if the child’s study time is

not censored and the exit outcome is guardianship; and event = 3, if the

child’s study time is right-hand censored or randomly censored. Table 3.6

shows a portion of the person-time data for the multiple-exits model,

which was converted from person-level data.

Amultinomial logitmodel uses the probability of having outcome Y= k

(k = 1, 2, . . . K-1) as the dependent variable and can be expressed as follows:

PkðYi ¼ kjxiÞ ¼ expð�0
kxiÞXK

k¼1

expð�0
kxiÞ

where the vector of independent variables is denoted as xi, and the

vector of regression parameters for the kth outcome is denoted as

Table 3.6 Exhibit of a Person-Time Data File with Multiple Exits

Obs: observed data line.
id: identification number.
bm: bi-month indicator.
event: dependent variable indicating occurrence of events or censoring.
cuse: A time-varying covariate measuring dollar amount of cash assistance.

id bm cuse

1 1 1 3 0. 00

2 1 2 3 0. 00

3 1 3 3 0. 00

4 2 1 3 0. 00

5 2 2 3 0. 00

6 2 3 1 0. 00

7 4 1 3 397. 66

8 4 2 3 198. 83

9 4 3 2 0. 00

31 10 1 3 479. 41

32 10 2 3 479. 41

33 10 3 3 472. 54

34 10 4 3 465. 66

35 10 5 1 465. 66

event : 1 = reunification
  2 = guardianship
  3 = no event
      (censored) 

Reunification

Guardianship

Obs event
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�k. Choosing category K as a reference group (i.e., �K = 0), we can

express log odds or logit as a linear function of the vector of

independent variables as

log
PkðxiÞ
PKðxiÞ ¼ �

0
kxi; k ¼ 1; : : : ; K � 1:

Table 3.7 Estimated Discrete-Time Model of Multiple Exits (Reunification and
Guardianship) within 12 Months—A Multinomial Logit Model Based on the
Person-Time Data Set

Chapter 3: Multiple Exits - Multinomial Logit Model

Variable
Reunification
Odds Ratio

Guardianship
Odds Ratio

Entry cohort (prereform)
Postreform 1 0.930 0.674*
Postreform 2 0.786 0.352**

Child age at entry (8�11)
0 0.652* 1.513
1�3 0.866 1.058
4�7 0.743 0.935
12�16 0.848 1.010

Child gender (male)
Female 1.112 1.139

Child race (other)
African American 0.789 0.815

Reason for placement (physical abuse)
Neglect 0.491** 1.166
Dependency 0.634* 1.342
Other 0.479** 1.244

First placement type (kinship)
Foster 1.119 0.211**
Other 0.783 0.049**

Mother’s income from TANF & wages
(2-month lag, time varying, in $100) 1.050** 1.003

% mother’s income due to wages
(2-months lag, time varying, 10% points) 0.966 0.917**

Bi-month indicator (continuous variable) 1.305** 1.137**

Likelihood ratio 3328
Number of study subjects 1,278
Number of subject bi-months 6,112

*p< .05, ** p< .01.
Reference group is shown in parentheses for categorical variables.
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Note that in this model, a separate parameter vector bk is estimated for

each K–1 logit. Thus, if you have K outcomes, the model estimates K–1

sets of regression coefficients.

Analysts may assess the fit of a multinomial logit mode in a similar

fashion as for a binary logistic regression and interpret the odds ratio as

they do for a binary model.

Table 3.7 presents results of the estimated discrete-time model

examining reunification and guardianship. A test based on the estimated

model likelihood ratio indicates that the model has a decent fit to data.

Results show that clearly, the odds of reunification and the odds of

guardianship are indeed associated with different sets of determinants.

For reunification, the significant explanatory variables are age (p<.05),

reason for placement (p<.01, p<.05), mother’s income from TANF and

wages (p<.01), and the bi-month indicator. For guardianship, the sig-

nificant explanatory variables are entry cohort (p<.05, p<.01), first

placement type (p<.01), percentage of mother’s income due to wages

(p<.01), and the bi-month indicator (p<.01). The results in general

confirm the research hypothesis, that is, children who entered foster care

after welfare reform are less likely to join guardians than their prereform

counterparts, an increase in mother’s income from TANF and wages

improves the likelihood of family reunification, and an increase in the

percentage of mother’s income due to wages decreases the likelihood of

the child joining guardians. And finally, the model shows that the hazard

rate of either family reunification or joining guardians is not constant

over the study period.

For additional application examples of the discrete-time-multiple-

exits model, readers are referred to Harris (1993) and Shook (1999).
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4

The Cox Proportional

Hazards Model

This chapter describes the Cox proportional hazards model (also

known as Cox regression). The model was first proposed by Sir

David Cox in his famous paper ‘‘Regression Models and Life Tables’’ in

1972. Cox regression is one of the most important developments in

contemporary statistics. His paper is the most highly cited journal article

in the entire literature of statistics (Allison, 1995).

THE PROPORTIONALHAZARDSMODEL ANDTHE PARTIAL
LIKELIHOOD METHOD

There are several reasons that the Cox regression is so important and

widely applied in biomedical, engineering, economic, social, and beha-

vioral sciences. First, prior to the Cox regression, the leading approach to

multivariate survival analysis was the parametric model, which requires

the analyst to know the nature of the survival distribution being studied

and to be sure the chosen model does not violate assumptions embedded

in certain types of parametric distributions. The Cox regression is a

distribution-free model and does not require such information.

Second, the main estimation method Cox developed is partial likelihood,
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which is innovative in several ways. Among other things, it allows the

user to estimate the regression coefficients of the proportional hazards

model without having to specify the baseline hazard function (again, it is

a distribution-free approach), and the estimates depend only on the

ranks of the event times, not their numerical values. Because the model

depends only on ranks, any monotonic transformation of the event

times will leave the coefficient estimates unchanged. Third, the Cox

regression is the very first model that permits the user to incorporate

the time-varying covariates in survival analysis. The parametric model

cannot incorporate time-varying covariates; the discrete-time model

allows users to do this job, but the method was developed after Cox’s

work. And fourth, with appropriate specifications, the Cox regression

can be employed to answer challenging research questions. Innovative

models based on the Cox regression include competing risks analysis, the

nonproportional hazards model, creation of time-varying covariates that

allow a time-fixed covariate to interact with event time, and more.

The proportional hazard model can be expressed as

hiðtÞ ¼ h0ðtÞexpð�1xi1 þ . . .þ �kxikÞ ð4:1Þ

where hi(t) is the dependent variable (operationalized as the hazard rate

at time t for subject i), x1 to xk are k independent variables or covariates,

and �1 to �k are the regression coefficients; h0(t) is a baseline hazard

function and is left unspecified. The baseline hazard function can be

thought of as the hazard function for an individual whose covariates all

have values of 0.

The model of (4.1) can be expressed in the following form by taking

the logarithm of both sides of the equation:

log hiðtÞ ¼ �ðtÞ þ �1xi1 þ . . .�kxik:

Two features of the model are worth noting: (a) the model dos not

require assumptions about the underlying distribution of the survival

times (i.e., no matter what the actual form of the survival distribution

is—exponential, Weibull, Gompertz, standard gamma, generalized

gamma, log-normal, or log-logistic—the analyst can run the same Cox

regression model for all); and (b) the model assumes a constant ratio of

the hazards for any two individuals.
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The second feature gives the model its name: proportional hazards

model. Because there is no requirement for understanding the under-

lying survival distribution, and because of the proportional hazards

assumption, the model is also known as a semiparametric model, to

distinguish it from the parametric models such as those discussed in

Chapter 5, and from the nonparametric models such as a life table,

Kaplan-Meier estimate, and discrete-time models.

The proportional hazards assumption is that the hazard for any indivi-

dual in a sample is a fixed proportion of the hazard for any other individual,

and the ratio of the two hazards is constant over time. Precisely, it means

that in a log(hazard) plot, the log(hazard) curves for any two individuals

should be strictly parallel. What is important here is that with this assump-

tion, h0(t), the baseline hazard function cancels out from the formula

expressing a hazard ratio for any two individuals i and j, as follows:

hiðtÞ
hjðtÞ ¼ h0expð�1xi1 þ :::þ �kxikÞ

h0expð�1xj1 þ :::þ �kxjkÞ
¼ exp½�1ðxi1 � xj1Þ þ :::þ �kðxik � xjkÞ�

Because of this feature, the analyst can estimate � coefficients of the

model without having to specify the baseline hazard function h0(t).

Because h0(t) cancels out, Cox developed a method called partial

likelihood estimation, which discards the baseline function and treats

only the second part of the equation [i.e., expð�1xi1 þ . . .þ �kxikÞ] as
though it were an ordinary likelihood function. He calls this function a

‘‘partial likelihood.’’ The estimation method aims to maximize the partial

likelihood function.

Understanding how partial likelihood estimation operates is not

crucial to applying the Cox regression. However, based on my teaching

experiences, I find that this is a great opportunity for students not only to

gain a solid grasp of the Cox regression but also to acquire basic

knowledge about maximum likelihood—the fundamental estimator of

contemporary statistics! Students should not be scared away by max-

imum likelihood as it is an important method that a serious quantitative

researcher in the twenty-first century cannot afford to ignore.

Recall Chapter 3 where I described three steps in maximum like-

lihood estimation for a binary logistic regression. Basic concepts used in

that process, such as the likelihood function to be maximized, starting
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values, iteration, convergence, and convergence criteria, can be better

understood through the following description of the partial likelihood

method. My description below follows Allison (1995, pp. 122–126); it

assumes no ties in the event times, and there is only one independent

variable x used in the model.

All maximum likelihood approaches begin with developing a like-

lihood function the estimator aims to maximize. So our first task is to

develop the partial likelihood function. To do so, let’s first sort the data

in an ascending order by the study time T, so that the first subject in our

sample has the shortest study time or highest hazard rate h1, the second

subject has the next shortest study time or second highest hazard rate h2,

and so on, until the last or the nth subject who has the longest study time

or lowest hazard rate hn. From equation (4.1), the hazard function for the

first subject can be expressed as

h1ðtÞ ¼ h0ðtÞexpð�x1Þ

where x1 denotes the value of x for subject 1. Likewise, we can have a

similar expression of hazard functions for all subjects. Taking the sum of

hazards over all sample subjects, we obtain a risk set as

h1ðtÞ þ h2ðtÞ þ . . . hnðtÞ

The likelihood for individual 1 to have the event at time t is simply the

ratio of hazard over the risk set, or is the hazard for subject 1 at time t

divided by the sum of the hazards for all subjects who are at risk of having

the event at time t. That is,

L1 ¼ h1ðtÞ
h1ðtÞ þ h2ðtÞ þ :::hnðtÞ

¼ h0expð�x1Þ
h0expð�x1Þ þ h0expð�x2Þ þ :::þ h0expð�xnÞ

¼ expð�x1Þ
expð�x1Þ þ expð�x2Þ þ :::þ expð�xnÞ

So the likelihood for subject 1 becomes a partial likelihood. Three

important features of the partial likelihood are noteworthy: (a) the

baseline hazard is canceled out; (b) as a result, the likelihood function

is solely expressed by �x—the coefficient to be estimated and the
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predictor; and (c) the model carefully takes the information of censored

cases into account when building the likelihood function—censored

cases are not excluded, and their information (i.e., the hazard functions)

is built into the construction of the risk set.

Writing the partial likelihoods for each of the n subjects and multi-

plying all these partial likelihoods together, we obtain the sample partial

likelihood:

PL ¼
Yn
i¼1

Li ¼ L1
�L2�. . .� Ln

where each censored subject j has a likelihood of value 1, or L0j ¼ 1. Putting
together and expressing the individuals’ likelihood functions by their�x, we

obtain the formal expression of the sample partial likelihood function:

PL ¼
Yn
i¼1

e�xi

Xn
j¼1

Yije
�xi

2
66664

3
77775

�i

ð4:2Þ

whereYi j= 1 if tj>ti; andYij= 0 if tj< ti. HereYij serves as a switcher (i.e., on

and off ), indicates that the study times are rank ordered, and signifies that

the estimating algorithm should not use the information for those whose

events occurred at a point earlier than the current ith subject in the calcula-

tion of the risk set (i.e., the formation of denominators). This makes sense

because those who already had the events have exited the set and are no

longer elements of the risk set. In equation (4.2), di is the censoring code
and takes the value of 0 or 1. If di = 0 (i.e., the study time is censored), then

the whole partial likelihood for this subject equals value 1—that is,

L ðcensored Þ ¼
e�xi

Xn
j¼1

Yije
�xi

2
66664

3
77775

0

¼ 1;

Otherwise, the likelihood takes a non-one value.
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It’s a convention in statistics to take the logarithm of the likelihood

function (i.e., to take the log on both sides of equation (4.2)). Doing so,

the log PL we seek to maximize becomes

log PL ¼
Xn
i¼1

�i �xi � log ð
Xn
j¼1

Yije
�xjÞ

2
4

3
5 ð4:3Þ

With this log partial likelihood function, the analyst can search for the

best estimate of �. The analyst typically inserts a starting value of �

into the right-hand side of the equation to obtain a first ‘‘guess’’ of log

PL. Through several iterations, the analyst finds that further modifi-

cation of � is no longer necessary because the difference between the

current log PL and the log PL obtained from the previous iteration is

less than a predetermined value called the convergence criterion,

typically a very small value such as .000001. Then the analyst stops

searching, and the � so obtained is the best that maximizes log PL.

Using this �, the likelihood of reproducing the sample data is max-

imum or optimal.

To aid in a full understanding of the partial likelihood algorithm,

I developed an Excel program using a data set originally published by

Collett (1994), but slightly modified by Allison (1995, p. 123). The

variable SURV is the study time or survival time in months, beginning

with the month of surgery, for 45 breast cancer patients, and the variable

DEAD is the event code (DEAD = 1, if died; DEAD = 0, if censored).

Table 4.1 shows the Excel program. The electronic version of the Excel

sheet can be downloaded from the companion Web page of this book.

Readers need to download the program and type a trial value for � into

the red cell. The value shown in the blue cell is the log PL associated with

the �. After a few rounds of trials or iterations, the user obtains the

highest or maximized value of log PL.

Readers are encouraged to do this exercise. The program provides

readers with a visual tool that allows them to have hands-on experience

with the maximum likelihood approach. I also encourage readers to pay

attention to the setup of the Excel program, that is, pay attention to key

Excel functions, and compare the cell functions with equation (4.3). By

doing so, they will gain a solid understanding of the Cox regression and

its partial likelihood estimator.
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In practice, researchers seldom have just one independent variable.

With more than one independent variable, the estimation of partial like-

lihood has to employ a numeric approach such as a Newton-Raphson

algorithm. To describe this method is beyond the scope of this book.

Readers who are interested in this topic may consult Allison (1995, p. 83).

TIES, MODEL FIT, AND DIAGNOSIS

In the above description of the partial likelihood estimator, I assume that

study times are not tied. This is certainly not realistic. In practice, two or

more subjects may have exactly the same value on study time. When

Table 4.1 An Excel Program Illustrating the Partial Likelihood Method

SURV DEAD X exp(BX) (Likelihood)i –85.01497806 0.909 Iteration B Log PL Trial of B
11909.0790133716.3–938184.2115 –85.03106272 Starting value 1
22909.

0
186901095.3–938184.2118 –86.900471 >1

5.03909.

0

474621265.3–938184.21101 –85.37631751 <1
1.04909.

0

906733335.3–938184.21131 –86.52919769 <.5
7.05909.

0

413596305.3–938184.21181 –85.10597875 >.5
8.06909.

0

344741283.4–10132 –85.03932324 >.7
9.07909.

0

91075064.3–938184.21142 –85.01515182 >.8
59.08909.

0

14456824.3–938184.21152 –85.01824654 >.9
29.09909.

0

733686593.3–938184.21162 –85.01520404 <.95
19.001909.

0

602495163.3–938184.21113 –85.01497872 <.92
809.011909.

0

556892623.3–938184.21153 –85.01498139 <.91
909.021909.

0

406117982.3–938184.21104 –85.01497806 0.000000659

909.

0

839437152.3–938184.21114

909.

0

719852121.4–10174 Criterion=.000001
909.

0

987109591.3–938184.21184

909.

0

399011451.3–938184.21105 This spreadsheet program illustrates
909.

0

862794011.3–938184.21195 the  calculation of partial likelihood
909.

0

892498460.3–938184.21116 for a Cox model with one predictor.
909.

0

419111710.3–938184.21186 The input data come from
909.

0

103139578.3–10196 "Output 5.4: Survival Times for 
909.

0

010007   Breast Cancer Patients"
909.

0

548675429.2–938184.21117    [Allison, (1995), p.123].
909.

0

010017

909.

0

0938184.21067 Note That There Are No Ties in Survival Times
909.

0

0100001

909.

0

0100101   To use this program, enter your trial 
909.

0

0938184.210501     value for B into the red cell.  You will 
909.

0

0938184.210701     obtain the partial likelihood function
909.

0

0938184.210901      from the blue cell.
909.

0

737111915.2–938184.211311
909.

0

0938184.210611
909.

0

700394343.2–938184.211811
909.

0

212675242.2–938184.211341
909.

0

202023930.3–101841
909.

0

0938184.210451
909.

0

0938184.210261
909.

0

426591307.2–101181
909.

0

0938184.210881
909.

0

0100891
909.

0

0100802
909.

0

0100212
909.

0

0938184.210212
909.

0

0938184.210712
909.

0

0100422
909.

0

0938184.210522
–85.01497806

=D2*((M2*E2)–
LN(SUM(F2:F46)))

= DEAD*[BX–
ln(sum(expBX))]

The Cox Proportional Hazards Model 79



study times are tied, the analyst needs to choose an appropriate method

to handle ties.

Several methods have been developed to take care of tied times. The

basic idea for all these methods is to consider true time-ordering among

tied subjects. The Breslowmethod assumes that the observed ties occurred

sequentially, and this method is used as the default in popular software

packages (such as SAS). The Exactmethod considers all possible orderings;

that is, if there are five tied times, it considers all possible orderings (i.e., a

total of 5! = 120 orderings) to estimate the Cox regression. The Efron

method also considers all possible underlying orderings that might exist

but uses a numeric approximation to simplify the computations. And the

Discrete method assumes that tied times are discrete. For a given study,

how does the analyst choose a method to handle ties? Allison (1995, p.

137) summarizes six points to answer this question. In general, the Efron

method is highly recommended, although the Exact and Discrete methods

also produce good and virtually the same results in many study contexts.

In the mid-1990s when Allison wrote his text, computing time was not as

fast as it is today; therefore, running time (particularly the time it takes for

a large study) was a concern. However, running time should not be a

problem with today’s fast-speed computers.

Table 4.2 presents the results of the Cox regression for the same

illustrating example introduced in Chapter 2. The table compares the

results of estimated coefficients and standard errors among three methods

handling ties: Breslow, Efron, and Exact. Note that results from the Efron

and Exact methods are exactly the same, whereas the estimated coeffi-

cients and standard errors estimated by Breslow are slightly different from

the other two methods. Given the recommendations provided by the

literature, I suggest that users always choose the Efron method.

To determine whether an estimated Cox model fits the data to an

acceptable degree, the analyst often performs a model chi-square test.

The test is similar to that for a binary logistic regression (see

Chapter 3). Basically, it performs a likelihood ratio test to compare

–2 log likelihoods between a model with all independent variables and a

null model. The test statistic is subject to a chi-square distribution with

a given degree of freedom (i.e., the number of independent variables

included). A p-value <.05 of the test statistic (i.e., the model chi-

square, sometime labeled a model Wald chi-square in some packages)

indicates a good model fit. Under such a condition, the analyst
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Table 4.2 Comparing Results of Estimated Cox Regression Model Among Three
Methods for Handling Ties

Chapter 4: Cox - ties

Variable Breslow Efron Exact
B (S.E.) B (S.E.) B (S.E.)

Entry cohort (prereform)
Postreform 1 .0378(.1599) .0382(.1599) .0382(.1599)
Postreform 2 –.1174(.1572) –.1167(.1572) –.1167(.1572)

Child age at entry (8–11)
0 –.3770(.1942) –.3781(.1943) –.3781(.1943)
1–3 –.0594(.1860) –.0598(.1860) –.0598(.1860)
4–7 –.2222(.1828) –.2226(.1828) –.2226(.1828)
12–16 –.1132(.1953) –.1134(.1953) –.1134(.1953)

Child gender (male)
Female .1187(.1171) .1188(.1171) .1188(.1171)

Child race (other)
African American –.2319(.1303) –.2323(.1303) –.2323(.1303)

Reason for placement
(physical abuse)

Neglect –.5923(,1600)** –.5941(.1596)** –.5941(.1596)**
Dependency –.3344(.2192) –.3354(.2192) –.3354(.2192)
Other –.6451(.2476)** –.6473(.2476)** –.6473(.2476)**

First placement type
(kinship)

Foster .1467(.1279) .1468(.1279) .1468(.1279)
Other –.1872(.2633) –.1875(.2633) –.1875(.2633)

Mother’s income from
TANF & wages (in $100)

(Monthly average prior
to exit)

.0715(.0105)** .0716(.0105)** .0716(.0105)**

% mother’s income due
to wages (in 10% points)

(Monthly average prior
to exit)

–.0578(.0155)** –.0578(.0155)** –.0578(.0155)**

Model Wald
Chi-square (df)

109.50(15)** 109.89(15)** 109.89(15)**

*p<.05, ** p<.01.
Reference group is shown in parentheses for categorical variables.
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concludes that the current model can reject the null hypothesis that all

the regression coefficients equal zero, and equivalently, at least one

coefficient that is not equal to zero. Hence, the model is acceptable.

Diagnosis of the Cox regression refers to checking whether the propor-

tional hazards assumption is tenable for a given data set. That is, it tests

whether the ratio of hazard rates for any two study individuals is constant

over time. The primary tool to facilitate this test is the log-log survivor plot

(i.e., a plot defining log[�log S(t)] or�log[�log S(t)] as the vertical axis, and

log t as the horizontal axis, where t denotes study time). See Chapter 2 for

more discussion of this plot. Researchers may do the plot by independent

variables (say one plot is for a comparison of log[�log S(t)] curves between

males and females, the second plot is for the comparison of curves among

racial groups, and so on). If they find that the plotted lines for a given

independent variable are reasonably parallel, then they conclude that the

proportional-hazards assumption has not been violated.

It’s worth noting that the literature does not provide clear guidelines

on the importance of the proportional-hazards assumption to the Cox

regression, and what to do if there is evidence suggesting that such an

assumption is violated. In early applications of the Cox regression,

researchers typically presented the log-log survivor plots to justify their

use of the model; and in practice, when researchers found that the

assumption was violated in their data set, they were hesitant to apply

the model. However, Allison (1995) personally thinks that the concern

about the proportionality assumption is often excessive; and whenever a

Cox regression includes time-varying covariates, the proportionality

assumption is violated. Allison (1995, pp. 154–155) states: ‘‘The reason

people focus so much attention on the PH assumption is that the model

is named for that property. At the same time, they often ignore such

critical questions as: Are all the relevant covariates included? Is the

censoring mechanism noninformative? Is measurement error in the

covariates acceptably low? . . . It’s unlikely that the PH assumption is

ever exactly satisfied, but that’s true of nearly all statistical assumptions.’’

TIME-VARYING COVARIATES

Incorporating time-varying covariates into the Cox regression is simple,

and most software packages provide programming functions that allow
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users to specify the variables signifying time varying. Formally, the Cox

regression with time-varying covariates can be expressed as

log hiðtÞ ¼ �ðtÞ þ �1xi1 þ �2xi2ðtÞ;

where x2(t) is a covariate that varies in value for each individual with

time t. Themodel indicates that the hazard at time t depends on the value

of time-fixed variable x1, and the value of the time-varying variable x2 at

time t. x2(t) can be defined using information about the study subjects

prior to time t, thereby allowing for lagged or cumulative values of some

variables.

Running a Cox regression with time-varying covariates requires

programming to inform the software package which variables are time-

varying. Computing packages follow different conventions to do the job.

For instance, both SAS and SPSS require a single-record data file (also

known as a ‘‘wide’’ file, or multivariate file) in which each study subject

occupies one data line, and the time-varying information is organized by

several variables. Suppose we have a time-varying variable about a child’s

mother’s income at different time points in a 12-month study window.

Mother’s income is time-varying in the current context. Suppose that a

study collects mother’s income every other month during the study

window; hence the data contain six pieces of income information.

A single-record data file organizes the six pieces of income information

as six separate variables.

In contrast, Stata requires a multiple-record data file (also known

as a ‘‘long’’ file, or univariate file). The distinguishing feature of this

type of file is that each study individual occupies one or more data

line, depending on the number of time-varying pieces of information

available in the data set and the subject’s length of study time. Using

the same hypothetical case of six pieces of time-varying income infor-

mation, Stata requires a child having six data lines, if his study time is

12 months; and requires a child having only three data lines, if his

study time is 6 months. Stata stset is the command to implement data

management of this kind.

The key task in modeling the impact of a time-varying covariate on

event occurrence is to link the independent variable at a specific time to

the study time. The analyst needs to check the user’s guide of a software

package and follow the rules to specify the Cox regression. The syntax
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files using SAS and Stata for the illustrating example presented in the

next section are available on the companion Web page of this book.

Estimating the partial likelihood for models with time-varying cov-

ariates is time consuming. However, this is no longer a problem in

today’s applications of such models, thanks to the tremendous progress

made in computer technology. However, a proportional hazards model

with time-varying covariates becomes complex, and researchers should

carefully examine the research questions and seek a best strategy to use

the time-varying information. There are different ways to use the time-

varying information and the best solution may not necessarily be a Cox

regression with time-varying covariates. This issue will be revisited in the

section discussing application issues.

AN ILLUSTRATING EXAMPLE OF THE COX REGRESSION

To illustrate the application of the Cox regression, I present results of

applying the model to the same study used earlier about foster children’s

timing of reunification within 12 months, where three entry cohorts

are compared, and mother’s income-related variables are employed.

Table 4.3 presents results of the estimated model.

Results show that the reunification model fits the data well, as

reflected in the model chi-square of 84.35 (df ¼ 15, p<.000).

An estimated hazard ratio is simply the exponent of the estimated

regression coefficient, and it is a convention among researchers using the

Cox regression to present hazard ratios rather than regression coeffi-

cients. The model shows that, other things being equal, the hazard of

reunification for children who entered foster care at age 0 is only about

66% of the hazard for children who entered care at ages 8–11 (p<.05).

Alternatively, the hazard ratio can be interpreted as the relative differ-

ence in speed of reunification, as, other things being equal, the reunifica-

tion speed for infants (i.e., those who entered care at age 0) is 34% (i.e.,

(1 – .66)� 100 ¼ 34%) slower than that of children who entered care at

ages 8–11. For a continuous variable, one may interpret the hazard ratio

in a similar fashion. Taking mother’s income as an example, the model

shows that, other things being equal, for every $100 increase in mother’s

income from TANF and wages, the hazard of reunification goes up by an

estimated 4.1% (p<.01). Alternatively, the finding may be interpreted as,
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other things being equal, every $100 increase in mother’s income from

TANF and wages increases reunification speed by 4.1%.

Comparing the Cox regression to the discrete-time model (i.e., com-

paring the current table to Table 3.5), we find that the two models

provide almost identical findings. This implies that the substantive

findings of this study about significant predictors of reunification

speed, the magnitudes of influence of significant predictors, and the

importance of mother’s income to reunification are strong; and both

models are probably appropriate to the study sample, given that the

findings are consistent.

Table 4.3 Estimated Cox Proportional Hazards Model with Time-Varying
Covariates

Chapter 4: TV

Variable Hazard Ratio

Entry cohort (prereform)
Postreform 1 0.956
Postreform 2 0.825

Child age at entry (8–11)
0 0.660 *
1–3 0.876
4–7 0.759
12–16 0.876

Child gender (male)
Female 1.103

Child race (other)
African American 0.801+

Reason for placement (physical abuse)
Neglect 0.492 **
Dependency 0.640 *
Other 0.487 **

First placement type (kinship)
Foster 1.125
Other 0.802

Mother’s income from TANF & wages (in $100)
(Time-varying) 1.041 **

% mother’s income due to wages (in 10% points)
(Time-varying) 0.0978

Model Wald Chi-square (df) 84.35(15)**

+p<.1, *p<.05, **p<.01.
Reference group is shown in parentheses for categorical variables.
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APPLICATION ISSUES

This section examines application issues researchers commonly encounter

in projects that employ the Cox proportional hazards model. To become a

skillful user of the Cox regression, the analyst needs to be cautious about

the type and nature of research questions, important modeling features

suggested by prior studies from both the substantive and statistical areas,

how the current model answers the research questions and what addi-

tional works need to be done, and effective and efficient presentation of

the study findings.

1. Testing Interactive Effects

A statistical analysis often tests significant interactions. An interaction

means that the impact of an independent variable on hazard rate varies

by the level of another independent variable. Other terms used inter-

changeably with interaction include buffering, moderating, or joint effects.

An interaction effect should be conceptually distinguished from a med-

iation effect (Baron & Kenny, 1986).

In a Cox regression, the analyst simply creates a product term of two

independent variables and includes the product term, in addition to the

two original variables, in the equation. Suppose analysts need to test the

interaction of x2 and x3; they create a product term of the two variables

(i.e., x4= (x2) � (x3)), and include the original variables and the product

term in the Cox regression, as

hiðtÞ ¼ h0ðtÞexpð�1x1i þ �2x2i þ �3x3i þ �4x4iÞ

By doing so, the analyst finds that the estimated coefficient �̂2 is the

main effect of x2, the estimated coefficient �̂3 is the main effect of x2, and

the estimated coefficient �̂4 is the interactive effect of x2 and x3.

Ideally, testing interactive effects should be guided by prior studies or

research questions. However, if the study is new and few prior studies

exist in the field, the analyst may use a data-driven approach to search all

possible interactions and present the final model that includes only

significant interactions.

Because an interactive effect involves three regression coefficients

(i.e., the coefficients of the two main variables plus the coefficient of the

product term), hazard ratios are not good for a meaningful presentation
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in the current context. The researcher may consider using a graph to

present such an interactive effect. Figure 4.1 shows an example. The

figure is a reprint of that presented by Wells and Guo (2004), in which

the authors found that the mother’s average monthly total income

interacts with the entry cohort (p<.05). With such a figure, the inter-

active effect can be clearly interpreted as follows:

In this figure, the speed of reunification was set at one for children from

the postreform sample whose mothers had no income. The speed of

reunification for all other children is compared with that group,

controlling for other variables in the analysis besides the interaction

term. Based on this convention, the figure highlights two comparisons:

the effect of average monthly total postplacement income differs by

sample, so that, for example, a one-dollar increase in a mother’s income

increases the speed with which her child returns home to a greater

extent in the postreform sample than in the prereform sample; and

there are large differences in speed of reunification for children whose

mothers have the same relatively large income ($2,500) between

samples. For example, children with mothers who had this income

level in the prereform sample spent approximately 3.5 months in care

(a speed of five), compared with 1 month in care (a speed of 17) for

children in the postreform sample. (Wells & Guo, 2004, pp. 85–87)

The interaction figure was produced by using the three estimated

regression coefficients. Denoting ‘‘entry cohort’’ as x1 and its estimated

coefficient as �̂1, ‘‘mother’s income’’ as x2 and its estimated coefficient as

�̂2, the interaction as x1x2 and its estimated coefficient as �̂3, we basically

extracted the three coefficients from the output (i.e., only these three

coefficients) and omitted all other estimated coefficients not used for

creation of the interaction figure. From the output, we found that

�̂1 ¼ :3781573, �̂2 ¼ :0011429, and �̂3 ¼ �:000662. Thus, the estimated

hazard rate of reunification for a child who has zero values on all other

variables (i.e., by constraining all other variables to be zero) is as follows:

ĥðtÞ ¼ expð:3781573x1 þ :0011429x2 � :000662x1x2Þ:

Using an Excel program, we set up the above equation and inserted

different values for x1 and x2 into the equation to let the entry cohort be
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the prereform cohort and postreform cohort, and to let income have

values of $0, $100, $500, $1,000, $1,500, $2,000, and $2,500. The calcula-

tion was based on all possible combinations of values from these two

variables. Thus, the above process produced a total of 2 � 7¼ 14 values.

Plotting these values by using the Excel’s graphic program, we finally

obtained the interaction graph shown as Figure 4.1.

2. Model-Predicted Survivor Curves

An efficient and effective presentation of study results estimated by a Cox

regression may involve the use of model-predicted survivor curves. This

curve is similar to those depicted in Chapter 2. The difference is that in

Chapter 2, the survivor curves of different groups were estimated by the

Kaplan-Meier method, a bivariate approach that does not control for all

other covariates. With an estimated Cox regression, we now can present

a similar survivor plot but control all other variables (i.e., variables are

important to be controlled for but do not serve the purpose of investi-

gating a particular effect the study centers on).
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Figure 4.1 Example of presenting interactive effect based on estimated Cox
regression.
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Most computing software packages offer graphic functions to produce

model-based survivor curves and more. Allison (1995, pp. 165–173)

describes how the BASELINE key word is used in SAS Proc Phreg to fulfill

this task. Specifically, based on an estimated Cox model, the analyst can

employ the following equation to obtain themodel-predicted survivor curve:

SiðtÞ ¼ ½S0 ðtÞ � exp ð�1x1þ�2x2 þ�3x3þ�4x4 Þ

where the Coxmodel includes four independent variables. The predicted

curves specify the mean value of three variables (i.e., x1, x2, and x3) and

allow the variable of interest (i.e., x4) to have different values.

Figures 4.2 and 4.3 show the model-predicted curves of a similar

estimated Cox model presented in the illustrating example of the prior
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Figure 4.2 Example of model-predicted survivor curves: The impact of mother’s
average monthly total income from AFDC or TANF or wages on reunification.
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section.1 Figure 4.2 shows the impact of income on reunification speed.

To plot the model-predicted survivor curve, I used sample mean values

for all variables used in the Cox regression (i.e., entry cohort, age,

gender, etc.) but allowed mother’s monthly total income from AFDC

or TANF or wages to have five different values. Hence, the figure shows

the survival experiences for five groups of children whose mothers have

different incomes. In this figure, the bottom curve is the survival

experience for children whose mothers’ monthly income is $1,000,

and the plot indicates that this group has the fastest speed in achieving

reunification. The top curve is the survival experience for children

whose mothers’ monthly income is 0, and the plot indicates that this

group has the slowest speed in achieving reunification. Figure 4.3
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Figure 4.3 Example of model-predicted survivor curves: Racial and gender
differences on reunification.
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shows similar survivor curves for four groups who have different

characteristics on gender and race.

3. Strategies for Using Time-Varying Covariates

Consider a hypothetical data set containing the following variables and

observed values for one subject:

In this hypothetical data, LOS is length of time (in months) a study

child stays in a mental health treatment program; event indicates event

occurrence (¼ 1) or censored (¼ 0); Age is the age at entry measured in

years; Sex ¼ 1 if the study child is male and Sex = 0 if the study child is

female; Race = 1 if the study child is African American and Race ¼ 0 if the

study child is of another race; Program ¼ 1 if the study child is in a

residential treatment program and Program ¼ 0 if the study child is in

other programs; and B1 to B18 are 18 dummy variables measuring dis-

turbance behavior in each of the18-month study windows (e.g., B1 = 1 if

the child’s disturbance behavior is positive in the first month; and B1¼ 0 if

the child’s disturbance behavior is not positive in the first month; the

remainder of these variables are coded in the same way but measure

disturbance behavior from months 2 to 18).

Thus, the 18 dummy variables may be used as a time-varying covariate

in the study and linked to event times to examine the impact of dis-

turbance behavior on length of stay in the program. With this kind of

data, the analyst has at least five choices or models in which to use the

time-varying information.

Model 1: specify the disturbance behavior as a time-varying covariate

and link the study time to the behavior variable in the current

month;

Model 2: specify the disturbance behavior as a time-varying covariate but

use a 1 month lag, that is, link the study time to the behavior

ID LOS Event Age Sex Race Program B1 B2 B3 B4 B5 B6 B7 B8 . . . B18
1 8 1 5.1 1 1 0 0 1 1 0 1 1 0 1 . . . 0
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variable 1 month earlier; the rationale of using a lagged variable

is that it takes 1 month for the behavior variable to have an

impact on the length of stay in the program;

Model 3: specify the disturbance behavior as a time-varying covariate

but link the study time to the behavior variable for both the

current month and 1 month earlier; this is a specification

combining the previous two methods;

Model 4: specify the disturbance behavior as a time-fixed covariate but

operate the variable as a number of cumulative positive months

prior to exit or being censored; for the illustrated child, the

analyst finds that by the time the child exited the program (i.e.,

in the eighth month), the child had a count of cumulative

positive months of 5; specifically, based on variables B1 to B18,
the analyst creates 18 variables CPM1 to CPM18 to count the

number of cumulative positive months; the illustrated child’s

data on these new variables look like the following:

Model 5: specify the disturbance behavior as a time-fixed covariate but

operate the variable as a proportion of positive months prior

to exit or being censored; for the illustrated child, the value

on this variable is (1þ1þ1þ1þ1)/8 = .625; or 62.5% of the

time during which the child stayed in the program, the child

showed positive disturbance behavior.

Among the five, the first three models employ time-varying covariates,

and each model links the disturbance behavior to the study time based

on different conceptual considerations (i.e., is it the current behavior, or

the 1 month lagged behavior, or behavior in both the current and the lagged

months that affects the length of stay?). So the decision about choosingwhich

model to use should be made on the basis of the researcher’s conceptual

model. Nonetheless, the two time-fixed models capture the same kinds of

information and look into the relationship between behavior and length of

stay also on a changing ormoving basis. Therefore, the last twomodels, albeit

time fixed, may not be a bad idea.

CPM1 CPM2 CPM3 CPM4 CPM5 CPM6 CPM7 CPM8 . . . CPM18
0 1 2 2 3 4 4 5. . . . . .
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I created an artificial sample of 70 subjects on all the variables

discussed above and ran all five Cox regressions using the artificial

data. Results of these estimated models are shown in Table 4.4 and

indicate that the last two models using time-fixed behavior measures

work equally as well as the first three models.

The above example is based on artificial data, and the results may not

be the same if we run these models in other data sets. However, the

example sufficiently shows that time-varying information may be used

differently; and as a consequence, the analyst does not have to use the

time-varying information as time-varying covariates in a Cox regression.

Indeed, researchers face many choices in modeling the longitudinal data

and should examine their research questions and data in a careful

manner, choosing a strategy that makes best sense, both conceptually

and statistically.

4. Analysis of Competing Risks

In Chapter 3 I showed how to use a multinomial logit model to analyze

competing risks. The same analysis can be implemented with the Cox

regression. Basically, the analysis conducts separate Cox regressions, one

Table 4.4 Estimated Hazard Ratios of Five Models Using Different Strategies to
Incorporate Time-Varying Covariates (Based on Hypothetical Data, n = 70)

Variable Model
1

Model
2

Model
3

Model
4

Model
5

Age 1.11 1.1 1.08 1.05 1.07
Gender Male (Female
is reference)

0.87 0.84 0.95 1.22 1.09

Race African American
(Other is reference)

.45** .46* .40** .52* .48*

Program Residential (Other
is reference)

.45** .44** .44** .36** .38**

Current Behavior .04**** .08***
Behavior 1 Month Lag .08*** .15***
Number of Cumulative
Positive Months Prior to Exit

.61***

Proportion of Positive
Behavior Prior to Exit

.03***

*** p<.001, ** p<.01, * p<.05.
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at a time; each time the analyst codes one exit event as the event of interest

and treats other types of exits as censoring. Taking the multiple-exits study

illustrated in Chapter 3 as an example, to analyze competing risks of

reunification and guardianship, the analyst needs to run two separate

Cox models: the first model defines reunification as the event of interest

and all other types of exits including guardianship and right-hand cen-

soring as censoring; the second model defines guardianship as the event of

interest and all other types of exits including reunification and right-hand

censoring as censoring. After obtaining the estimated Cox models for both

events, the analyst compares the significant coefficients between the two

models to conduct a competing risks analysis; particularly, one examines

whether the timing of having either event is associated with different

determinants and probes why this is the case. For more information on

conducting competing risks analysis with a Cox regression, readers are

referred to Allison (1995, chapter 6).

5. Nonproportional Hazards Model

In some cases, researchers need to test whether the impact of an independent

variable on the timing of event occurrence changes over time. That is, even

though the independent variable is not time-varying, the researcher may

create a time-varying covariate and test its interaction with the study time.

The model can be easily established by including an interaction term (i.e., a

product of an independent variable and the study time) in the equation. As

depicted earlier, whenever the analyst introduces time-varying covariates

into a Cox regression, the model is no longer proportional hazards because

the impact of time-varying covariates changes at different rates for different

individuals, and the ratios of their hazards cannot remain constant. Hence,

models of this type are called nonproportional hazards models.

Formally, suppose t is study time, and x is a time-fixed variable; the

analyst creates a product term xt and includes the term in the equation.

Doing so, the model becomes

log hðtÞ ¼ �ðtÞ þ �1x1 þ �2xt:

Factoring out the x, we obtain

log hðtÞ ¼ �ðtÞ þ ð�1 þ �2tÞx:
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The model shows that the effect of x on log h(t) is ð�1 þ �2tÞ. If �2 is
positive, then the effect of x increases linearly with time; if it is negative,

the effect decreases linearly with time. By this setup, �1 can be inter-

preted as the effect of x at time 0, the origin of the process (Allison,

1995).

The nonproportional hazards model is useful for testing theoretically

derived hypotheses about influences of certain covariates, particularly

about their time-varying nature. In program evaluation, researchers may

use this model to test hypotheses about the time-varying impact of

treatment, that is, to test whether the impact of treatment changes over

time. For more information about nonproportional hazards model,

readers are referred to Allison (1995, pp. 154–161).

6. Incorporating Sampling Weights
into the Cox Regression

Many projects in social work research involve the use of national samples

(e.g., the National Survey of Child and Adolescent Well-Being or

NSCAW) that employ nonequal probabilities in sample selection for

different study subjects. When conducting statistical analysis, researchers

need to incorporate the sampling weights into the inferences so that the

final findings are applicable to the original population the sample aims to

represent. The Cox regression can be easily modified to incorporate

sampling weights. Special software programs such as SUDAAN were

designed to handle this type of data, known as complex sampling.

Common software packages such as Stata can also be used, with appro-

priate specification of key words, to adjust sampling weights. These

programs accomplish the goal by applying sampling weights to the partial

likelihood function. Incorporating sampling weights, the partial likeli-

hood equation (4.2) becomes

PL ¼
Yn
i¼1

e�xi

Xn
j¼1

wjYije
�xi

2
66664

3
77775

�iwi

where wi or wj is the sampling weight for subject i or j (RTI, 2002).

The Cox Proportional Hazards Model 95



7. Statistical Power Analysis

Ever since the seminal work of Cohen (1988), statistical power analysis

has become a routine procedure of statistical analysis in the social

behavioral sciences. It is often a required piece for grant applications

and is also a crucial component of critical review of prior studies.

A power analysis deals with four elements: the sample size N, the

statistical significance or probability of making a type I error a, the
statistical power or the ability to reject a false hypothesis (i.e., 1–�,

where � is the probability of making a type II error), and effect size.

Different statistical analyses define effect size differently. In survival

analysis, particularly in applications of the Cox regression, effect size

refers to hazard ratio. Hence, if a study finds a hazard ratio of 2 between

treated and control participants on having a certain event, the researcher

may conclude that the hazard rate for treated participants is twice as fast

as (or 100% faster than) the hazard rate for controls to have the event.

Then the researcher wonders whether the study’s finding about this

effect size has adequate power, that is, whether the study can adequately

reject a false hypothesis about no difference in the hazard rates between

the two groups of participants. Typically, researchers fix the statistical

significance at .05 and a statistical power at .80. In this context, two types

of power analysis emerge: (a) at the planning stage of a new study, the

researcher asks: to accomplish a statistical significance of .05, a statistical

power of .80, and an effect size of 2, howmany study participants (N) are

needed? and (b) in a critical review study, the reviewer asks: given the

sample size N, a statistical significance of .05, and the study’s finding of

effect size 2, does the study have an adequate power of .80? For applying

statistical power analysis to social work research, readers are referred to

Dattalo (2008), which is a comprehensive guide for determining sample

size to maintain adequate statistical power for most analytical models.

The framework of power analysis for the Cox regression was devel-

oped by Schoenfeld (1983); the author basically focused on a binary or

categorical covariate to define effect size. Hsieh and Lavori (2000)

extended Schoenfeld’s work to the case of continuous covariates. Stata

offers two computing procedures for power analysis and determination

of needed sample size: for power analysis in the context of the Cox

regression, it offers a program called stpower cox; and for power analysis

in a more general context of survival modeling (i.e., comparing two
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survivor functions using the log-rank test or the exponential test, as well

as power analysis for the Cox regression), it offers a program called

stpower. Users may also find free software packages computing power

and sample size on the Internet. For instance, the program PS developed

by Dupont and Plummer (2004) is such a free package. Power analysis

for the Cox regression is just one of several functions provided by PS, and

the software is user friendly. For a comprehensive overview of statistical

power analysis for survival modeling and illustrations, readers are

referred to Collett (1994, chapter 9).
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5

The Parametric Models

Prior to the Cox regression, the parametric models were the leading

approaches to multivariate analysis of time-to-event data. The

advantages of parametric models include the following: (a) they allow

the user to run models including left-hand and interval censorings; and

(b) when assumptions about survival distribution are tenable, the esti-

mates provided by the model are usually good, unbiased, and efficient.

The disadvantages of these models are these: (a) they cannot be used to

analyze time-varying covariates; and (b) they require prior knowledge

about the nature of the survival distribution being analyzed; if such

information is not available, the user must assume that the empirical

distribution being analyzed is the same distribution suggested by the

parametric model; and when such an assumption is not valid and the

actual distribution is not the same kind of distribution suggested by the

model, the user obtains misleading and biased results. Because of these

reasons, parametric models have been replaced by the Cox model in

practice.

In this book, I provide a brief review of the parametric models for

two reasons: (a) this is the method from which the contemporary

survival analysis originates; particularly, the model is an extension of

the traditional ordinary least squares (OLS) regression; understanding

the main features of parametric models helps users understand the

fundamental concepts of survival analysis as well as important statistical
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concepts in general; and (b) the parametric models can be used to solve

unique problems, such as handling left-hand and interval censorings;

one of interesting parametric models is the piecewise exponential model,

which is widely applied by social, health, and behavioral scientists.

This chapter follows Allison (1995, chapter 4). For more detailed

information about the parametric models, readers are referred to Collett

(1994), and Hosmer and Lemeshow (1999).

THE LINKAGE BETWEEN OLS REGRESSION
AND THE PARAMETRIC MODELS

A natural starting point to learn parametric models is to consider the

setup of an OLS regression. Let Y = X � + e represent a population

regression model, where Y is an (n � 1) vector of the dependent variable

for the n participants, X is an (n � p) matrix containing a unit column

(i.e., all elements in the column take value 1) and p – 1 independent

variables, e is an (n � 1) vector of the error term, and � is a (p � 1)

vector of regression coefficients containing one intercept and p – 1

slopes. Assuming repeated sampling and fixed X, and e ~ iid, N(0,

�2In), where In is an (n � n) identity matrix and �2 is a scalar, so that

�2In=E(ee
0) is the variance-covariance matrix of the error term.With the

observed data of Y and X, we can use the least-squares criterion to choose

the estimate of the coefficient vector � that makes the sum of the squared

errors of the error vector e a minimum; that is, we minimize the quad-

ratic form of the error vector. The least-squares estimator then provides

an optimizing vector � , that is,

� ¼ ðX 0X Þ �1X
0
Y:

If we have sample data and use lower-case letters to represent sample

variables and statistics, we have the sample estimated vector of regression

coefficients as

b ¼ ðx0
xÞ �1x

0
y:

One of the crucial assumptions embedded in the OLS regression is

that the dependent variable Y and the error term e in Y = X � + e are
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subject to a normal distribution. If we relax this assumption by allowing

Y and the error term e to follow other types of parametric distributions

and use a maximum likelihood estimator instead of least-squares, then

the model becomes a parametric model.

Parametric distributions are distributions whose mathematic prop-

erties (i.e., relationships among key statistics such as central tendency,

quantiles, and dispersion) have been revealed by a few known func-

tions and parameters. By this definition, a normal distribution is also a

parametric distribution. However, in survival analysis, when

researchers use the term, they typically refer to a non-normal para-

metric distribution. Evans, Hastings, and Peacock (2000) provide a

good reference reviewing statistical distributions. The types of para-

metric distributions employed in survival analysis include exponen-

tial, Weibull, Gompertz, standard gamma, generalized gamma, log-

normal, and log-logistic distributions. And the first three distributions

fall into the same category of ‘‘exponential-family distributions’’

because by constraining certain parameters, Weibull and Gompertz

distributions become exponential distributions. All these models take

the form of an OLS regression, that is,

Y ¼ X� þ e ¼ �0 þ �1X1 þ . . .�kXk þ e;

but assume a non-normal distribution for Y and e, except that the log-

normal model still assumes a normal distribution. More explicitly, the

dependent variable of a parametric model is log T, or the logarithm of

study time (survival time) that follows a known parametric distribution;

as such, the error term of the equation also follows a non-normal

distribution.

Note that the dependent variable of a parametric model is log T. Since

taking logarithms is a monotonic transformation, the study time and the

log of study time should change in the same direction, such that the longer

the study time, the higher the value of log T. Thus, the dependent variable is

basically a measure of the length of time remaining in a state of nonoccur-

rence of the event of interest. With such a definition, the dependent

variable is categorically different from that in the discrete-time model

that defines probability as the dependent variable, and from that in the

Cox regression that defines hazard rate as the dependent variable. The

difference centers on the sign of an estimated regression coefficient. This is
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because a long study time (i.e., a high value on log T ) is associated with a

low probability of event occurrence [(i.e., a low value on P(Y = 1))] or a

low hazard rate [i.e., a low value on h(t)]. So comparing regression

coefficients estimated from a parametric model, the analyst needs to

reverse the sign of the regression coefficients (i.e., to make positive esti-

mated coefficients negative, and negative coefficients positive), and then

compare the reverse-signed coefficients with coefficients estimated by the

discrete-time model or Cox regression. Only the reverse-signed coefficients

are comparable to the coefficients of discrete-time and Cox models.

THE EXPONENTIAL MODEL

The primary feature of an exponential model is that the study time T has

a constant hazard rate over the study window; that is, the rate of change

of this distribution does not vary over time, or h(t) = l for 0 £ t < 1,

where l is a constant. Graphically, the hazard rate of an exponential

distribution can be shown by Figure 5.1, where two hazard rates h(t) = 1
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Figure 5.1 An illustration of the constant hazard rate assumed by the exponential
model.
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and h(t) = .1 are illustrated as a constant function of study time. As the

figure shows, both hazard rates do not change values over time and

become straight lines parallel to the time axis.

Statisticians have revealed key properties of an exponential distribu-

tion. Denoting l as a constant hazard rate, the survivor function of the

exponential distribution is SðtÞ ¼ e�lt , the probability density function

(PDF) of the distribution is f ðtÞ ¼ le�lt , the mean of the distribution is

� ¼ l�1, the median of the distribution is tð50Þ ¼ 1
l log 2, and the pth

percentile of the distribution is tðpÞ ¼ 1
l log ð 100

100�p Þ.
If the study time T follows an exponential distribution, then the

model regressing log T on covariates with �= 1 is called an exponential

model, or formally,

log Ti ¼ �0 þ �1xi1 þ :::þ �kxik þ �"i ð5:1Þ

where � is constrained to be 1, " has a standard extreme-value distribu-

tion, with constant mean and variance. The extreme-value distribution is

unimodal and nonsymmetric, being slightly skewed to the left. The main

purpose for taking the log transformation of T is to ensure that the

predicted values of T are positive. � is also known as a scale parameter.

Later on I will introduce another parameter called a shape parameter.

If a researcher believes that the study time T is exponentially dis-

tributed, then he or she can run the model of (5.1) to estimate the

impacts of predictors x1 to xk on log T.

THE WEIBULL MODEL

The assumption about a constant hazard is rarely tenable in social,

health, and behavioral applications. A more general distribution is the

Weibull distribution that has a hazard function of

hðtÞ ¼ l�t��1; for 0 < t < 1:

This function depends on two parameters, l and g . When g = 1, the

hazard function is constant, that is, the survival times have an exponen-

tial distribution. So, an exponential distribution is a special case of a

Weibull distribution.
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Statisticians have revealed that the Weibull distribution has the

following properties: the survivor function of the Weibull distribution

is S tf g¼expð�lt�Þ; the probability density function (PDF) of the dis-

tribution is f ðtÞ ¼ l�t��1expð�lt�Þ; the mean of the distribution is

EðT Þ ¼ l�1=�Gð��1 þ 1Þ, where G(x) is a gamma function of

GðxÞ ¼
Z 1

0
ux�1e�udu;

the median of the distribution is tð50Þ ¼ 1
l log 2

� �1=�
; and the pth

percentile of the distribution is tðpÞ ¼ 1
l log

100
100�p

� 	n o1=�
.

The Weibull regression model has the same form as the exponential

model (i.e., equation (5.1)):

log Ti ¼ �0 þ �1xi1 þ ::: þ �kxik þ �"i

but relaxes the assumption of � = 1. � may be any positive value

estimated on a basis of the sample data. When � takes different values,

the hazard rate h(t) is known to change in the following ways:

• When �= 1, the distribution becomes exponential.

• When �> 1, h(t) decreases with time.

• When .5 <�< 1, h(t) increases with time at a decreasing rate.

• When 0 <�< .5, h(t) increases with time at an increasing rate.

• When �= .5, h(t) is a straight line with an origin at 0.

If a researcher believes that the study time T follows a Weibull

distribution, then he or she can run the model of (5.1) to estimate the

impacts of predictors x1 to xk on log T.

ASSESSING THE SUITABILITY OF APPLYING A
PARAMETRIC MODEL

Other parametric models take a similar form to that of equation (5.1)

but either make different assumptions about the known distribution

or introduce additional parameters. For instance, the log-normal
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regression assumes a normal distribution of the error term " instead of

an extreme-value distribution. The generalized gamma model and stan-

dard gamma model introduce an additional parameter, called a shape

parameter. For details of these models, readers may consult the refer-

ences listed in the beginning of this chapter.

Because the analyst typically does not know what type of distribution

is more appropriate to his or her data, the first task of running a para-

metric model is to assess the suitability of applying a parametric model.

In this section, I describe three approaches to accomplishing this goal.

1. Examining the Hazard Function

This is a very preliminary and crudemethod for assessing suitability.Researchers

run a univariate analysis to obtain estimates of hazard function h(t) by using life-
table or other approaches. Then they plot the hazard functions and examine the

hazard plot to see how h(t) changes over time. If h(t) is approximately constant,

an exponentialmodel is appropriate; if h(t) increases or decreasesmonotonically

with the increase of study time T, then a Weibull model is appropriate.

2. Graphic Approaches

This is a widely applied approach to determine the suitability of applying

certain parametric models. If the empirical data follow an exponential

distribution, then a plot of ½�log ŜðtÞ� against study time t (known as a

‘‘log-survivor plot’’) should yield a straight line with an origin at time 0. If

the empirical data follow a Weibull distribution, then a plot of

log ½�log ŜðtÞ� against log t (known as a ‘‘log-log survivor plot’’ or ‘‘log-

cumulative-hazard plot’’) should yield a straight line. Figure 5.2 shows

examples of these two plots based on the same data set. As the figure reveals,

the curve shown by the ‘‘log-log survivor plot’’ appears to be a straighter line

than that shown by the ‘‘log-survivor plot’’; for this data set, a Weibull

distribution is more plausible than an exponential distribution. To deter-

mine other types of models such as log-normal or log-logistic using graphic

approaches, see Allison (1995, pp. 92–93). Graphics may also be obtained

by running a parametric model first, and then the researcher examines the

so-called residual plot (Allison, 1995, pp. 94–97).

3. Likelihood Ratio Test

The most formal way to assess the suitability of a parametric model is to

perform a likelihood ratio test for nested models. The statistical definition
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of nested models is as follows: Model A is said to be nested within Model B

if A is a special case of B; that is, A can be obtained by imposing restrictions

on parameters in B. Thus, an exponential model is nested within a Weibull

model because the scale parameter of the exponential model is constrained

to be 1.

To evaluate whether model B is better than model A, the analyst

calculates
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Figure 5.2 Log-survivor and log-log survivor plots based on hypothetical data.
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�2½ðlog L f or AÞ � ðlog L f or BÞ�;

where L stands for likelihood, and using df = number of constrained

parameters to perform a chi-square test. If the p-value from the test is

statistically significant (i.e., if p<.05), then the analyst concludes that

model B is better than model A.

Using the same data introduced in Chapter 2 and illustrated in

Chapter 3 with a discrete-time model and in Chapter 4 with a Cox

regression, I ran several parametric models. I found that the log like-

lihood for the exponential model is –1027.64 and for the Weibull model

is –1018.22. Between the two models, only one parameter (i.e., the scale

parameter) is constrained, so df = 1. Performing the likelihood ratio test,

I obtained –2[(–1027.64)–(–1018.22)] = 18.84. With df of 1, from a chi-

square table I found that the p-value associated with this test is <.0001.

Therefore, I concluded that the Weibull model is more suitable than the

exponential model for my data set.

Using the same data set, I ran a few parametric models and con-

ducted the likelihood ratio tests to determine which parametric

models are suitable. Table 5.1 presents the results of these tests. The

table indicates that the exponential model should be rejected; the

generalized gamma model seems to be the best; and the Weibull

model is also possible for this data set. Hence, I conclude that these

two models should be retained as candidates of final models.

Estimated regression coefficients, significance tests of study variables,

and interpretation of these models will be presented in the final section

of this chapter.

For a social work application of the parametric models, particularly

application of the tests described above, readers are referred to Goerge

(1990).

THE PIECEWISE EXPONENTIAL MODEL

Although in social behavioral sciences the exponential model is seldom

applicable, a revised version of the exponential model, known as a

piecewise exponential model, is very promising and may be applied to

many empirical data sets to answer important research questions. For an
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application example of the piecewise exponential model, readers are

referred to Sandefur and Cook (1998), a study examining exit from

receiving AFDC assistance.

The central idea of the piecewise model is this: while a constant

hazard rate of a long study period ignores changes that occur in short

time periods, a piecewise exponential assumption is flexible enough to

do this and fits most applications. In other words, if the researcher can

split the long study period into a series of short periods, it is probably

reasonable to assume that within each short period the hazard rate is

constant. Figure 5.3 illustrates this central idea assuming piecewise con-

stant hazards.

Practically, the piecewise exponential model looks very similar to the

discrete-time model that is based on a person-time data file. However,

the piecewise exponent model has a more accurate measure of time than

the discrete-time model. As such, the piecewise exponential model is

usually applicable to many study settings.

There are two steps involved in running the piecewise exponential

model. First, based on the person-level data, the analyst creates a person-

time data file. The procedure is similar to that for creating the person-

time data for the discrete-time model. That is, the analyst defines the

study window (e.g., 12 months) and the metric of the time unit (e.g.,

Table 5.1 Likelihood Ratio Tests Based on Nested Models

Contrast Chi-square df p-value

Exponential vs.
Weibull

18.84 1 0.000

Exponential vs.
standard
gamma

16.23 1 0.000

Exponential vs. g.
gamma

22.95 2 0.000

Weibull vs g.
gamma

4.11 1 0.043

Log-normal vs. g.
gamma

9.07 1 0.003

Standard gamma
vs. g. gamma

6.72 1 0.010
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bi-months). However, it differs from the procedure for creating the

person-time data for a discrete-time model in the following ways: the

analyst needs to create two dependent variables instead of one for the

piecewise model (one is duration measuring the length of time for each

data line, and the other is the censoring code indicating event occurrence

or censoring). And second, after creating the person-time data, the

analyst runs an exponential model based on the person-time data to

obtain model estimates.

Table 5.2 illustrates the similarities and differences between the two

types of person-time data files (i.e., one is for the piecewise exponential

model, and the other is for the discrete-time model). For this illustration,

I used a 12-month study window and a bi-month time metric, so a

subject may contribute up to six data lines in the person-time data. The

similarities between the two files include the following: (a) the number

of data lines (i.e., person times) each subject contributes is exactly the

same between the two files; (b) the total number of data lines is exactly

the same between the two files—in this illustration, I had a total of 1,278

subjects; after conversion from the person data to person-time data, the
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Figure 5.3 An illustration of the meaning of the piecewise exponential model.
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total number of data lines is 6,112 for both files; and (c) the event code

(i.e., named reunify) is exactly the same between the two files.

The differences between the two files are these. First, the discrete-

time file does not contain a time variable measuring study time, but the

piecewise exponential file does; and the piecewise exponential file has a

precise measure of time for each data line or person-bi-months. The

second difference is worth explanation. Note how the piecewise expo-

nential file converts the length of time from the person data to the

person-time data: for subject id = 2, the study time losp1 = 180 days is

shown by the person file, so this subject’s time equals 180/30.4375 =

5.91375 months. Because each data line represents 2 months, the subject

then contributes three data lines; the first two lines have a value of 2.0000

on the time variable, and the third data line on time is simply the

Table 5.2 Comparison of Data Structure Between the File for the Piecewise
Exponential Model and the File for the Discrete-Time Model

id

id losp1 cen_r bm reunify
1 1 129. 00 1 1 0
2 1 129. 00 1 2 0
3 1 129. 00 1 3 0

4 2 180. 00 0 1 0
5 2 180. 00 0 2 0
6 2 180. 00 0 3 1

Data 1:
Piecewise 
exponential

Data 2:
Discrete
- time

losp1 cen_r los bm time reunify

1 1 129. 00 1 3 1 2. 00000 0
2 1 129. 00 1 3 2 2. 00000 0
3 1 129. 00 1 3 3 0. 23819 0

4 2 180. 00 0 3 1 2. 00000 0
5 2 180. 00 0 3 2 2. 00000 0
6 2 180. 00 0 3 3 1. 91376 1

days.

2 months each.  
These 2 lines 
represent 4 months 
(2x2=4) or 121.75 
days.

days
1.91376 x 30.4375 = 58.25 
days

That is, 180-121.75 = 58.25

Obs

Obs

Obs: observed data line.
id: identification number.
losp1: length of stay in the first spell of foster care (days).
cen_r: censoring code (1 censored, 0 event reunification).
los: length of time measured in bi-month.
bm: bi-month indicator.
time: length of time variable created for the piecewise exponential model.
reunify: a binary event code indicate event occurrence.
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remaining time from losp1 (i.e., 180 – 4(30.4375) = 58.25 days, and 58.25

days is equal to 1.91376 months = 58.25/30.4375); thus, the third data

line for this subject is coded 1.91376 on time.

With this data set, we can run the exponential parametric model. In

running the model, the hazard rates vary by person-time, not by person;

and therefore, the hazard rate is constant within each person-time or

each bi-month for this example. As the data file shows, the length of time

unit affects the estimation: if the analyst believes that the hazard rate

changes in a period shorter than 2 months, then a refined time metric

such as 1 month may be used.

AN ILLUSTRATING EXAMPLE AND MODEL
COMPARISONS

To illustrate the estimation and interpretation of parametric models, I

ran two parametric models (i.e., the Weibull and the generalized gamma

models, because the likelihood ratio tests indicate that only these two

parametric models are suitable), and two piecewise exponential models

(i.e., one with time-varying covariates and one with time-fixed covari-

ates) on the same data used in the reunification study. For model

comparisons, I added results of the discrete-time model and the Cox

regression to the final table (see Table 5.3). Themain findings of the table

are summarized below.

First, to make the results of the parametric models comparable to

those of the discrete-time and Cox models, I reversed the sign for all

regression coefficients estimated by the parametric models. That is, the

columns for these models are labeled ‘‘–B,’’ and the columns for the

discrete-time and Cox models are labeled ‘‘B.’’

Second is the problem of how to interpret regression coefficients

estimated by a parametric model. Let’s focus on coefficients for the

dummy variables first. Suppose we want to interpret the coefficient of

‘‘age 0’’ estimated by the Weibull model. –B for this variable is –.478.

Reversing it back to its original value (because for now I focus on the

interpretation of coefficients, not on model comparisons), B for ‘‘age 0’’ =

.478. Remember that a parametric model uses log T as the dependent

variable, so we need to take the exponent of B to ease the interpretation;

doing so, we obtain eB ¼ e:478 ¼ 1:613. Therefore, controlling for all other
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Table 5.3 Model Comparisons

Variable
Weibull

-B

Generalized
Gamma

-B

Piecewise
Exponential (1)

-B

Piecewise
Exponential (2)

-B
Discrete-Time

B

Cox
Regression

B

Entry cohort (prereform)

Postreform 1 .071 �.019 �.048 .037 �.077 �.045

Postreform 2 �.031 �.096 �.195 �.116 �.244 �.193
Child age at entry (8–11)
0 �.478 * �.546 * �.418 * �.384 * �.419 * �.415 *
1�3 �.059 �.144 �.137 �.066 �.147 �.132
4�7 �.290 �.367 �.274 �.221 �.287 �.276
12�16 �.189 �.292 �.136 �.119 �.167 �.133

Child gender (male)
Female .114 .145 .101 .121 .099 .098

Child race (other)

African American �.290 �.363 * �.224 �.234 �.214 �.222

Reason for placement
(physical abuse)

Neglect �.800 ** �.850 ** �.704 ** �.589 ** �.725 ** �.709 **

Dependency �.489 �.560 �.445 * �.333 �.463 * �.447 *

Other �.903 ** �.919 ** �.719 ** �.645 ** �.733** �.720 **
First placement type (kinship)
Foster .139 .207 .126 .156 .173 .118
Other �.267 �.262 �.214 �.179 �.197 �.221
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Table 5.3 (Continued)

Variable
Weibull

-B

Generalized
Gamma

-B

Piecewise
Exponential (1)

-B

Piecewise
Exponential (2)

-B
Discrete-Time

B

Cox
Regression

B

Mother’s income from TANF
& wages

(2-month lag,
time varying, in
$100)

.040 ** .042 ** .040 **

Mother’s income from
TANF & wages

(Total monthly
average prior to exit)

.001 ** .001 ** .001 **

% mother’s income due to
wages

(2-month lag,
time varying, 10%
points)

�.022 �.001 �.022

% mother’s income due to
wages

(Prior to exit) �.007 ** �.009 ** �.006 **

Scale 1.242 1.605 1.000 1.000
Shape .599

P-value for the Larange
multiplier test

p= .1423 p= .1557

Number of study subjects 1,278 1,278 1,278 1,278 1,278
Number of subject-bi-months 6,112 6,112 6,112

*p < .05, ** p < .01.
Note: A highlighted entry is an estimate whose sign and/or significance level are(is) different from its corresponding entry estimated by the Cox regression.



variables, the expected time to stay in foster care before reunification for

children ‘‘aged 0 at entry’’ is 61.3% longer than for children ‘‘aged 8–11 at

entry.’’ The interpretation of regression coefficients for other coefficients of

dummy variables from all parametric models can be performed in this

fashion. Let’s take the coefficient for a continuous variable (say, ‘‘% of

mother’s income due to wages’’) as a second example. TheWeibull model

shows that –B of ‘‘% of mother’s income due to wages’’ is –.007. Reversing

the sign, we obtain B = .007. For a continuous variable, we can use the

transformation 100ðeB � 1Þ, which gives the percentage increase in the

expected study time for each one-unit increase in the variable. Thus,

100ðeB � 1Þ ¼ 100ðe:007 � 1Þ ¼ 100ð1:007� 1Þ ¼ 0:702, meaning that

controlling for all other variables, each 10 percentage point increase in

mother’s income due to wages is associated with a 0.7% increase in the

child’s expected time to stay in foster care before reunification. All other

coefficients of continuous variables estimated by the parametric models

can be interpreted in this fashion.

Third, although a parametric model cannot handle time-varying cov-

ariates, this is not the case for the piecewise exponential model. Just like a

discrete-time model, a piecewise exponential model can sufficiently ana-

lyze time-varying covariates. This is because the piecewise model analyzes

survival timeusing person-timedata rather thanpersondata. This is truly a

unique advantage offered by the piecewise exponential model! The piece-

wise exponential model (1) of Table 5.3 shows B = –.040 for ‘‘mother’s

income from TANF and wages’’ on a time-varying basis with a 2-month

lag. Thus, 100ðeB � 1Þ ¼ 100ðe� :04 � 1Þ ¼ 100ð:9608� 1Þ ¼ �3:92,
meaning that controlling for all other variables, each $100 increase in

mother’s total monthly average income 2 months earlier is associated

with a 3.92% decrease in the child’s expected time to stay in foster care

before reunification (p<.01). Once again, the model confirms the impor-

tance of providing cash assistance to alleviate economic hardship for the

biological mothers of foster children.

Finally, from a modeling perspective, we can compare all models for

each variable. This is an important task for a rigorous statistical analysis.

The reason for doing this is obvious: each statistical model has its own

assumptions about the data set, and the analyst does not know the extent

to which his data violate the assumptions. Although through a careful

modeling process the analyst has checked the tenability of the assump-

tions, it is likely that important assumptions are violated and that
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estimates from the model are biased. Thus, for an important study like

the current one, it is crucial to analyze the same data using different

approaches and draw conclusions based on consistent findings from

multiple models. It is for this reason (i.e., to permit model comparisons)

that I reversed the sign of all coefficients estimated by the parametric

models. To compare coefficients across models, I choose the Cox regres-

sion as a baseline model. Note that I chose the Cox regression not

because it is the best model among all—we don’t know whether this is

case for the current study. I chose the Cox regression as a baseline purely

arbitrarily, and any one of the six models can serve as a baseline model.

To compare coefficients across models, I focus on two aspects: the sign of

an estimated coefficient and whether the coefficient is statistically sig-

nificant. Note that due to the nature of the dependent variable used by

different models, the magnitude of a coefficient is not meaningful and

comparable across models. Using the Cox regression as a baseline, I then

checked each coefficient across the six models and highlighted the

coefficient whose sign is contradictory to that of the Cox regression or

whose significance pattern is different from that of the Cox regression.

The results indicate three models showing exactly the same pattern, that

is, the piecewise exponential model (1), the discrete-time model, and the

Cox regression. This merely confirms our earlier knowledge about the

robustness of these three models. The differences on ‘‘post-reform

cohort 1’’ among these models can be ignored because none of the six

models shows a significant coefficient for this variable. There is only one

model (i.e., the generalized gamma model) that shows a significant

coefficient for the variable ‘‘African American.’’ Since the other five

models do not show significance for this variable, we probably can

conclude that this variable is not statistically significant. Therefore, the

model comparison narrows down to only one variable that has contra-

dictory patterns among models: the variable of ‘‘% of mother’s income

due to wages.’’ A further investigation reveals that all significant coeffi-

cients on this variable used a time-fixed method, so the difference is

really between time-varying and time-fixed methods. Thus, the model

comparisons lead us to choose any one of three models (i.e., Cox

regression, or discrete-time model, or piecewise exponential (1)) as

our final model, and based on one of the three sets of coefficients, we

can interpret and present our final findings. With an uncertain finding

about whether ‘‘% of mother’s income due to wages’’ is statistically
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significant, we should clearly report it, treat the current investigation

about this variable as inconclusive, and call for future studies of it.

Before concluding the chapter, I would like to offer a general com-

ment about model comparison. As the illustrating example shows, it is

important to conduct model comparisons, which offer numerous

advantages. Among other things, comparison provides an effective and

efficient tool for the researcher to test the sensitivity of study data to

model assumptions, to check the robustness of a given analytic model,

and most of all, to gain confidence about the study findings. In this

example, I showed three approaches to choosing a ‘‘best’’ model: graphic,

likelihood ratio test, and a comparison of substantive findings about

coefficient signs and significances.
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6

Multilevel Analysis of

Time-to-Event Data

This chapter focuses on a relatively new class of survival models: the

multilevel approaches to time-to-event data. In this chapter, I first

review the importance of conducting multilevel analysis in social work

research and the recent advances in biostatistics to correct for autocor-

related survival times. Next, I describe the independent assumption

embedded in the Cox proportional hazards model and detail the nega-

tive consequence of inclusion of autocorrelated data. I then review

available biomedical research models that correct for autocorrelation,

particularly, the WLWmethod. Finally, using empirical data, I illustrate

how to diagnose the presence of autocorrelation and how to use one such

corrective model. Most of the content presented in this chapter is based

on Guo and Wells (2003).

GROUPED DATA AND SIGNIFICANCE OF
CONDUCTING MULTILEVEL ANALYSIS

Social work researchers often encounter grouped or multilevel data in

which individuals are nested within families, and families are nested

within neighborhoods. Analyzing such data requires special treatment
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because most multivariate models assume that observations are inde-

pendent, and grouped data clearly violate this assumption.

Sibling-group data are such an example of violating the independent

assumption. These types of data often include children from the same

family who exit or reenter foster care at roughly the same time.

Placement of siblings in the same home is mandated by many states or

is the preference of many public agencies (Hegar, 1988; Smith, 1996).

A more important reason for conducting multilevel modeling is

substantive: researchers need to test how individual characteristics

interact with family characteristics, or how clients’ characteristics

interact with agency characteristics, and therefore, to test joint effects

of the two-level characteristics on the outcome variable. For instance, in

child welfare research, an important research question is this: what is the

joint impact of a child’s receipt of welfare and his or her mother’s receipt

of welfare on foster care outcomes? How are agency performance out-

comes related to local county and agency factors as well as individual

factors of the child? This type of cross-level interaction, or propositions

about macro-to-micro relations, cannot be answered by investigations

using conventional approaches.

Statisticians and biomedical researchers identified adverse conse-

quences of applying the Cox regression to grouped survival times

(Andersen & Gill, 1982; Prentice, Williams, & Peterson, 1981). They

noted that when the independent assumption of the Cox model is

violated, the tests of statistical significance are biased and in ways that

cannot be predicted beforehand (Wei, Lin, & Weissfeld, 1989).

Significant progress has been made toward a solution to the problem

of nonindependent event times. Several approaches have been applied in

biomedical research (Andersen & Gill, 1982; Lee, Wei, & Amato, 1992;

Liang, Self, & Chang, 1993; Prentice et al., 1981; Wei et al., 1989).

CONSEQUENCES OF USING AUTOCORRELATED DATA

To detail the consequences of including autocorrelated data in the Cox

proportional hazards model, it is useful to clarify a primary assumption

underlying the method. The Cox regression, like all regression-type

models, assumes that use of the model with data from the same unit

(such as a person, a sibling group, a family, or an organization) violates
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the assumption about independent event data. This is because data from

the same unit tend to be more alike than data from independent units

(Allison, 1995). Use of the Cox model without appropriately applying a

procedure to correct for autocorrelated data causes the estimation pro-

cedure to assume the sample contains more information than it actually

has (Allison, 1995, p. 240).

The major consequence of including autocorrelated data in the Cox

proportional hazardsmodel is that the tests of statistical significancemay

be misleading. Studies using both real data and Monte Carlo experi-

ments show that the standard errors produced by the Cox proportional

hazards model are biased downward and that test statistics produced by

the model are biased upward (Allison, 1995; Lin, 1994; Wei et al., 1989).

As a result, the Cox model may identify some independent variables as

statistically significant that are, in fact, statistically insignificant.

Grouped data may also lead to informative censoring. For instance,

when a foster care study uses a sample that contains a high proportion of

children who are siblings, the noninformative censoring assumption is

very likely to be violated. This is because children from the same sibling

group tend to have same length of time in foster care and a common

outcome. Therefore, if one child in a sibling group is randomly censored,

his or her siblings will also be randomly censored.

DIAGNOSTIC PROCEDURES

In spite of these consequences, no definitive tests have been developed to

assess the severity of autocorrelation in a given study. Following the work

of Allison (1995, chapter 8), I summarize below three procedures that

may be used to diagnose the severity of autocorrelation in a given study.

In the following exposition, I take data with sibling groups as an illus-

trating example.

1. Assess the Scope of the Problem

The first strategy is to examine study data to evaluate whether the

presence of sibling-group data is a problem. Examination involves iden-

tification of the proportion of children with siblings in the sample. If the

proportion is small, for example, 10% or less, the issue of autocorrelated
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data can be ignored. If the proportion is not small, for example, more

than 10%, the researcher needs to examine the beginning and ending

dates for the event under study. These may be the date on which a child

leaves foster care and returns home. If the dates differ for siblings, the

issue of autocorrelated data can be ignored. If the dates are frequently

approximately the same, one needs to calculate the standard deviation of

the length of time in care (or at home) within each sibling group. If the

within-group standard deviations are small, on average, the sample’s

intragroup correlation is likely to be high, and a corrective procedure

should be used in the analysis.

2. Assess the Intragroup Correlation

The second strategy is to assess directly the intra-sibling-group correla-

tion by running hierarchical linear modeling, or HLM. (Before running

the analysis, one needs to change the values of event times for censored

subjects for whom the event under study occurred after the end of the

study window to the length of the study window.)1 The intragroup

correlation is defined as the proportion of the variance in the trans-

formed event times that is between groups (Raudenbush & Bryk, 2002).

The intragroup correlation can be calculated by dividing the between-

group variance by the sum of the between-group variance and the

within-group variance. One can obtain the between-group and within-

group variances by running a one-way ANOVA with random effects

model in HLM. A high intragroup correlation, a correlation greater than

.5, for example, is an indication that a considerable proportion of the

variation in timing of an event is due to groups and that a corrected Cox

model should be used in the analysis.

3. Assess the Effect of an Omitted Sibling’s Length of
Time in Care

The third strategy is to use the event time of a sibling omitted from each

sibling group as one of the predictors in the Cox model. The model

should also include any covariates one would otherwise include in the

model because the question is whether there is residual autocorrelation

after the effects of the covariates have been removed. This analysis is

performed on a subset of the sample, that is, on only those who have a

Multilevel Analysis of Time-to-Event Data 119



sibling in the sample. A significant coefficient for the event time of

omitted siblings would indicate a high degree of intragroup correlation

among the sibling groups, and a corrected model should be used in the

analysis.

OVERVIEW OF THE MULTILEVEL APPROACHES

A variety of models have been developed to correct for the problems

associated with autocorrelation. Terry M. Therneau and Patricia M.

Grambsch (2000) and Philip Hougaard (2000) provide comprehensive

evaluations of recent developments, the types of data for which each is

best suited, and the computer software that is available for each one.

There are two types of autocorrelated multivariate event times. These

are clustered event data, or correlated event times among subjects from

the same group, and repeated event data, or the times the same event

occurs more than once to the same subject.

Models to correct for autocorrelation induced by clustered event

data fall into two broad categories: the frailty models and the marginal

models. The frailty models include random effects to represent extra

heterogeneity of the unit that gives rise to the dependence of event times

(Clayton & Cuzick, 1985; Guo & Rodriguez, 1992; Hougaard, 1986,

1987; Klein, 1992; Nielsen, Gill, Andersen, & Sorensen, 1992; Oakes,

1989, 1992). In order to use frailty models, one must specify correctly a

parametric distribution of the frailty (Lin, 1994), which is often

unknown to researchers. The frailty models are best suited to clinical

trials involving random selection of subjects or to samples involving

matched-pairs covariates (Hougaard, 2000). In this text, I focus on

marginal models because frailty models require stronger and more

restrictive assumptions.

The following two models are developed to handle repeated events

data: (a) the AG multiplicative intensity model (Andersen & Gill, 1982);

under the specification of this model, the risk of a recurrent event for a

subject satisfies the usual proportional hazards model and is unaffected

by earlier events that occurred to the subjects unless terms that capture

such dependence are included explicitly in the model as covariates (Lin,

1994); (b) the PWP Model (Prentice et al., 1981)—this model differs

from the AG model in two aspects: the risk sets for the (k+1)th
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recurrences are restricted to the individuals who have experienced the

first k recurrences, and the underlying intensity functions and regression

parameters are allowed to vary among distinct recurrences (Wei et al.,

1989).

Several computer software programs are available for fitting both

frailty and marginal models. The statistical software package S-Plus

offers an array of functions for fitting both frailty and marginal

models. Several SAS macros, along with most of the data sets discussed

in Therneau and Grambsch (2000), can be found in the companionWeb

page of their book. Several SAS macros developed by Allison can be

downloaded from the SASWeb page. The SAS Proc Phreg and Stata stcox

procedures offer the estimation of marginal approaches.

THE MARGINAL MODELS

The marginal models have much in common with the generalized

estimating equation (GEE) approach of Zeger, Liang, and Albert

(1988). Two marginal models are especially useful to the multilevel

analysis of survival data: the WLW model (Wei et al., 1989), and the

LWA model (Lee et al., 1992). These models are designated by the first

initials of their developers’ last names.2

The marginal models offer several advantages for multilevel analysis.

They are flexible in that they do not require assumptions about the

nature or structure of the dependence in correlated event times

(Allison, 1995; Wei et al., 1989). They are applicable to moderate-sized

samples (Wei et al., 1989).3 They are consistent with the conventional

Cox regression in the sense that the conventional model is a special case

of the marginal models (Hougaard, 2000). The computation of a mar-

ginal model is relatively simple once a data set has been created

(Therneau & Grambsch, 2000).

In general, both the WLW and the LWA models make no more

assumptions about the data than does the conventional Cox regression.

The fundamental difference between the WLW and LWA models is the

way each handles the baseline hazard function (i.e., h0(t) in equation

(4.1)). The WLW model allows the baseline hazard function to vary

among types of multivariate event times and to consider type-specific

regression parameters. By way of contrast, the LWA model postulates a
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common baseline hazard function for all types of event times (Lin,

1994).

Both models can be employed to facilitate multilevel analysis. The

WLWmodel can be used whether subjects within groups have common

or divergent baseline hazard rates whereas the LWA model can be used

only when they have common baseline hazard rates. I now use the WLW

model as one example to illustrate the methodology of correcting auto-

correlated event times.

To correct for biases in standard errors and to estimate parameters,

theWLW procedure runs a series of Cox regression models. To run these

models, the subjects within groups must be organized randomly. The

procedure requires that the investigator identify the subjects to be

analyzed in the first and succeeding models. Taking the sibling group

data as an example, the first model is for the first child selected from all

sibling groups, the second is for the second child from all groups, and so

on. The estimating procedure continues in this fashion until the number

of children gets too small to estimate a model reliably. Based on the

estimated variances, the WLW procedure then estimates the marginal

distributions of the distinct event times in order to yield a robust and

optimal estimation of the variance-covariance matrix. This variance-

covariance matrix is then used in statistical testing. Standard errors

from this matrix are usually larger than those estimated by the uncor-

rected model. Therefore, when autocorrelation is present, variables that

are significant in the uncorrected Cox model may become insignificant

in the Cox model corrected with the WLW procedure.4

Since the WLW model is designed to correct for biases in standard

errors, the estimated coefficients from this procedure are not expected to

differ in size from those produced by the uncorrected Cox model when

both models are constructed with data from the same subjects (Allison,

1995). (If the estimated coefficients do differ, they can generally be

ignored.) One limitation of the WLW procedure is that some subjects

in groups will be excluded from the analysis when the distribution of

group size is skewed.

To understand this limitation, suppose we analyze a sample of 40

children in three types of groups: (1) 10 groups of size one (i.e., single

child without siblings), (2) 10 groups of size two (i.e., each group

comprises two children coming from the same family), and (3) one

group of size 10 (i.e., all 10 children coming from one family). The
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WLW procedure will analyze all children from groups whose size is

either one or two but only two children from the group of size 10. This

is because when the WLW runs the third model for the third child from

each sibling group, there is only one child left, that is, the third child

from the group of size 10. The program WLW macro will stop at this

point because the sample size becomes too small to reliably run a model.

In this example, the WLW has to delete eight children or 20% of the

sample from the study.

AN ILLUSTRATING EXAMPLE

In this illustration, we demonstrate how to use the diagnostic procedures

described above. We also show the deficiencies of results from an

uncorrected Cox model and results from a Cox model corrected by

including a randomly selected child from each sibling group. We use

data from an investigation designed to identify which of 12 factors are

linked most strongly to timing of reunification of foster children within

18 months of entry into care (Wells & Guo, 2003). The study sample

includes 525 children first placed in foster care over a 6-month period in

the late 1990s.

1. Diagnosis of an Autocorrelation Problem

To illustrate how to diagnose the presence of autocorrelation in study

data, we constructed a data set in which 58% of study children (n = 302)

form 151 sibling groups each containing two siblings. The remaining

children (n = 223) do not have a sibling in the sample. As a result, the

distribution of the sibling group size, in this illustration, is not skewed.

Our examination of the dates of entry into foster care and exit from

foster care for subjects shows that children from the same sibling group

often have the same dates of entry and exit. As a result, the length of time

siblings spend in foster care is often the same. Of the 151 sibling groups,

116 or 76.8% have a standard deviation of zero for time spent in foster

care prior to exit.

Then, we examined the degree of correlation among siblings’ event

data. We changed the lengths of stay for children who were censored at

the end of the 18-month study window to 18 months, and then we used
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these transformed data to run a one-way ANOVA with random effects

model in HLM. The between-group variance of length of stay is

33059.49, and the within group variance of length of stay is 5159.63.

Together they yield an estimated intragroup correlation of 0.865.

Therefore, the intragroup correlation in this data set is high: about

86.5% of the variation in length of stay in this sample is due to groups,

and only 13.5% is due to individuals.

We also used the event time of a sibling who was omitted from

the analysis as one of the predictors of timing of reunification.

Following Allison’s suggestion (1995), we ran an uncorrected Cox

model using 151 children in the sample. The other predictor variables

used in the model include child age at entry, gender, ethnicity, health

status at entry, reason for a child’s placement, the type of placement,

mother’s metal health status, mother’s problem with substance abuse,

and other mother’s welfare use and employment variables. The coef-

ficient ‘‘Duration of an omitted sibling’’ is –0.012 (p<.0001), and the

hazard ratio is exp(–0.012) = 0.988. This means that the omitted

sibling’s length of stay is highly predictive of the length of stay of the

child in the omitted sibling’s sibling group. The correlation is almost

one: the hazard of reunification for any child included in the analysis

is almost the same as the hazard of his or her omitted sibling, other

things being equal.

As a result of these diagnostic procedures, one can conclude that the

event data from sibling groups are highly correlated, that the assumption

of the Cox proportional hazards model is violated, and that a correction

for the biases introduced by these violations is necessary to have an

efficient and a valid test of the statistical significance of each factor

included in the model.

2. Demonstration of the Utility of the WLW Model

To demonstrate the utility of the WLW model, we conducted two

comparative analyses. In the first analysis, we compared the results of

the corrected Cox model (the WLW model) with those of the uncor-

rected Cox model (‘‘Naı̈ve’’ model 1). In the second comparison, we

compared the results of the corrected Coxmodel (theWLWmodel) with

those of a second naı̈ve model, the random selection of one subject from

a group to include in the analysis (Naı̈ve model 2).
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We used the SAS WLW macro written by Allison (1995, pp. 242–

243) to estimate the WLWmodel. This macro can be run on SAS release

6.10 or higher and requires use of the Proc IML module. We used the

SAS Proc Phreg to estimate both of the naı̈ve models.

The WLW Model and the Naı̈ve Model 1. In the first comparison,

both analyses use the same 525 subjects. As the results in Table 6.1

show, most standard errors estimated by the Naı̈ve model 1 are

lower than the corresponding errors estimated by the WLW Model.

As a result, the p-values in the WLW model have also changed.

Naı̈ve model 1 identifies one variable, ‘‘Received TANF income and

lost TANF income,’’ as statistically significant at the .001 level, and

two variables, ‘‘Foster home’’ and ‘‘Percent time mother received

TANF-pre-placement window,’’ as statistically significant at the .05

level. Each of these variables is statistically insignificant at the same

level in the WLW model. On the other hand, Naı̈ve model 1

identifies the variable ‘‘Group home or hospital’’ as statistically

insignificant, and the WLW model identifies the variable as statis-

tically significant at the .001 level.

Table 6.1 also shows that at an alpha level of .05, the naı̈ve model

identifies 8 of 19 variables as statistically significant, but theWLWModel

identifies as statistically significant 6 of those 8 variables, plus one

variable that is statistically insignificant in the Naı̈ve model 1.

The WLW Model and the Naı̈ve Model 2. In the second analysis, we

compared the results from the WLW model with those from the second

uncorrected Cox model (the Naı̈ve model 2). These models use different

numbers of subjects: for the corrected model, 525 subjects, and for the

uncorrected model, 374 subjects, as a result of the inclusion of only one

randomly selected child from each sibling group.

As data in Table 6.1 show, the Naı̈ve model 2 identifies as statistically

insignificant one variable, ‘‘Group home or hospital,’’ that is statistically

significant at the .001 level in the WLW model. The Naı̈ve model 2

identifies two variables as statistically insignificant, ‘‘Age 0’’ and ‘‘Mother

mental problems: Presence,’’ that are statistically significant at the .05

level in the WLW model. Table 6.1 also shows that the hazard ratios in

the two models differ by 5 percentage points or more on the following

eight variables: ‘‘Age 1–3,’’ ‘‘Age 12–16,’’ ‘‘Female,’’ ‘‘Health problems at

entry: Presence,’’ ‘‘Dependency,’’ ‘‘Reason for placement: Other,’’

‘‘Group home or hospital,’’ and ‘‘Mother’s substance abuse: Presence.’’
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Table 6.1 Model Comparisons

Variable Naı̈ve Model 1: Same Set of
Subjects as the WLW Model
(n=525)

Naı̈ve Model 2: Randomly Selected
One Child fromEach Sibling Group
(n=374)

Robust Model WLW
(n=525)

B SE p-
value

Hazard
Ratio

B SE p-
value

Hazard
Ratio

B SE p-
value

Hazard
Ratio

Age at entry (in years)

8–11

0 –0.6158* 0.3086 0.0460 0.540 –0.7072 0.3751 0.0593 0.493 –0.7397* 0.3742 0.0481 0.477

1–3 –0.0367 0.2795 0.8954 0.964 –0.1687 0.3623 0.6415 0.845 –0.0694 0.3282 0.8326 0.933

4–7 –0.1106 0.2785 0.6913 0.895 –0.1444 0.3702 0.6964 0.866 –0.1792 0.3071 0.5596 0.836

12–16 –0.1679 0.2683 0.5316 0.845 –0.3466 0.3519 0.3246 0.707 –0.1082 0.3157 0.7317 0.897

Gender

Male

Female –0.0749 0.1769 0.6719 0.928 –0.4243 0.2188 0.0525 0.654 –0.1491 0.1876 0.4268 0.861

Ethnicity

Non-African-American

African American –0.3379 0.1978 0.0876 0.713 –0.2420 0.2410 0.3153 0.785 –0.2564 0.2409 0.2871 0.774

Health problems at entry

Absence

Presence –0.1808 0.1960 0.3563 0.835 –0.1225 0.2365 0.6044 0.885 –0.1854 0.2322 0.4247 0.831

Reason for placement

Physical abuse

Neglect –0.9016*** 0.2363 0.0001 0.406 –0.9684*** 0.2936 0.0010 0.380 –0.9381*** 0.2810 0.0008 0.391

Dependency –0.1544 0.3142 0.6231 0.857 –0.2706 0.3846 0.4818 0.763 –0.1408 0.3875 0.7163 0.869

Other –0.8223 0.6211 0.1855 0.439 –1.2673 0.7651 0.0976 0.282 –0.6175 0.5411 0.2538 0.539



First placement type

Kinship home

Foster home –0.3950* 0.1890 0.0366 0.674 –0.4037 0.2351 0.0860 0.668 –0.3683 0.2314 0.1114 0.692

Group home or hospital –0.9863 0.5459 0.0708 0.373 –0.8697 0.5622 0.1219 0.419 –2.7807*** 0.5221 <0.0001 0.062

Mother mental problems

Absence

Presence –0.7931* 0.3127 0.0112 0.452 –0.7437 0.4001 0.0631 0.475 –0.7403* 0.3695 0.0451 0.477

Mother substance abuse

Absence

Presence –0.3593 0.1984 0.0702 0.698 –0.1851 0.2444 0.4488 0.831 –0.2942 0.2396 0.2194 0.745

Percent time mother received

TANF - pre-placement

window

0.0061* 0.0030 0.0445 1.006 0.0059 0.0039 0.1279 1.006 0.0061 0.0038 0.1089 1.006

Mother’s receipt/loss TANF/

wages - post-placement

window

Received TANF, no loss

Never received TANF income 0.3008 0.2801 0.2828 1.351 0.2185 0.3444 0.5258 1.244 0.2375 0.3306 0.4725 1.268

Received TANF income, and

lost TANF income

–1.1978*** 0.3223 0.0002 0.302 –1.1289** 0.3960 0.0044 0.323 –1.1700** 0.3809 0.0021 0.310

Mother’s average monthly total

income from TANF/wages -

post-placement window

0.0013*** 0.0002 <0.0001 1.001 0.0012*** 0.0002 <0.0001 1.001 0.0013*** 0.0002 <0.0001 1.001

Mother’s percent average

monthly total income from

wages - post-placement

window

–0.0109*** 0.0025 <0.0001 0.989 –0.0111*** 0.0031 0.0003 0.989 –0.0112*** 0.0030 0.0002 0.989

Note: Comparison categories are listed first for each categorical variable. *** Significant at .001 level, ** at .01 level, * at .05 level, two-tailed test.



In summary, these comparisons show substantial differences

between the WLW model and the Naı̈ve model 1 and between the

WLW model and the Naı̈ve model 2 with respect to tests of statistical

significance. The WLW model also differs from the Naı̈ve model 2 with

respect to the magnitude of the hazard ratios. Moreover, the factors that

affect timing of reunification to a statistically significant degree in the

WLWmodel differ from those identified by the two naı̈ve models. These

comparisons reveal that applying uncorrected models to grouped sur-

vival data produces misleading results, and underscore the importance

of controlling for autocorrelation explicitly in a multilevel analysis of

time-to-event data.

In this chapter, I briefly review the statistical literature on developing

multilevel approaches to analyzing time-to-event data and show the

application of one of such model (i.e., the WLW model) to correcting

for autocorrelations introduced by sibling groups. I caution, however,

that use of the WLWmodel may not always be an improvement over an

uncorrected model. When a model is misspecified, that is, a model in

which important explanatory variables are not included, and the analysis

deletes too many subjects, differences between a WLW model and an

uncorrected Cox model disappear. Misspecification causes changes in

the estimated parameters and standard errors as a function of unob-

served heterogeneity (Allison, 1995).

Indeed, use of the WLW model may be inappropriate if too many

subjects are excluded from the analysis because the sample that is

included in the analysis no longer represents the entire sample of

interest. It is uncertain, however, how large a reduction renders use of

the WLW model invalid. If loss of subjects is a concern, investigators

may use the LWA procedure to correct for autocorrelation when they

can justify its use.
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7

Computing Software Packages

for Survival Analysis

All commercial software packages offer procedures for survival ana-

lysis. Issues related to running some procedures have been dis-

cussed in relevant places in the book. In this chapter I provide an

overview to highlight key issues in programming with SAS, SPSS, and

Stata. Syntax files using SAS, and Stata packages to generate the exam-

ples in this book are available on the book’s companion Web page.

Readers may find them useful.

SAS

All survival procedures offered by SAS require the user to specify the

value indicating censoring, not event. This feature is categorically dif-

ferent from SPSS and Stata. As a consequence, the user needs to be

cautious in syntax specification when running the same data with dif-

ferent packages.

Proc Lifetest is the procedure to generate a life table including

estimated hazard and survivor functions, the Kaplan-Meier estimation

of survivor function, bivariate tests (i.e., log-rank, Wilcoxon’s tests) on

differences of survivor curves between groups, and graphics including
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the hazard plot, survivor plot, log-survivor plot, and log-log survivor

plot (also known as log-cumulative-hazard plot). Additional graphic

procedures such as Proc gplot, the macro SMOOTH written by Allison

(1995), may be used to make the estimated curves smoother and more

suitable for presentation.

Proc Logistic estimates a binary logistic regression, and Proc Catmod

estimates a multinomial logit model. Hence, they are the procedures for

discrete-time models. Before running Proc Logistic or Proc Catmod, the

user needs to use programming commands to convert the person data

into person-time data. For examples of data conversion, see Allison

(1995) or syntax files available in the companionWeb page for this book.

Proc Phreg is the procedure to estimate the Cox proportional

hazards model. To run the model with time-varying covariates, the

user needs to specify which variables indicate the time-varying informa-

tion following the Proc Phreg statement and uses a series of ‘‘if. . .then’’

commands. The BASELINE key word in Proc Phreg may be used to

generate the model-predicted survivor curves. COVS(AGGREGATE) is

the key word to request the LWA or WLWmarginal models; but for the

WLW model, additional programming using Proc IML is required. The

WLWmacro created by Allison (1995) can also be used to run themodel.

Proc lifereg is the procedure to estimate the parametric models. The

DISTRIBUTION key word allows the user to specify different types of

parametric models; the choices are EXPONENTIAL for the exponential

model, GAMMA for the generalized or standard gamma model,

LOGISTIC for the logistic model, LLOGISTIC for the log-logistic

model, LNORMAL for the log-normal model, and WEIBULL for the

Weibull model. To run the piecewise exponential model, the user spe-

cifies DISTRIBUTION¼EXPONENTIAL, but it is necessary to run the

procedure using the person-time data.

SPSS

SURVIVAL is the procedure to generate the life table and the hazard

plot, survivor plot, log-survivor plot, and density (PDF) plot. KM

estimates the Kaplan-Meier estimation of survivor function and gener-

ates similar plots. Both procedures offer bivariate tests (i.e., log-rank,

Wilcoxon’s tests).
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LOGISTIC REGRESSION estimates the binary logistic regression

(i.e., for the discrete-time model analyzing single event), and

NOMREG estimates the multinomial logit model (i.e., for the discrete-

time model analyzing multiple events).

COXREG is the procedure to run the Cox proportional hazards

model. To specify time-varying covariates in the Cox regression, the

user needs to use TIME PROGRAM before running COXREG to inform

the program which variables contain time-varying information and how

to create the time-varying covariates for the Cox model; typically this is

done through a series of ‘‘if...’’ commands. To obtain model-predicted

survivor curves, the user specifies PLOT SURVIVAL. This procedure

only produces the curve using sample mean values of all independent

variables, or curves defined by a categorical independent variable.

Currently there is no procedure available to run multilevel analysis.

There is no procedure available to run the parametric models.

STATA

To run any procedure of survival analysis in Stata, the user needs to run

stset first to inform the program of key variables and their roles in the

analysis. Variables measuring the study time and the event code are

defined at this stage. If the data file is saved, next time the user does

not need to run stset again. Stata distinguishes between the single-record

data (also known as a wide or multivariate file) and multiple-record data

(also known as a long or univariate file), and this is a key feature Stata

uses to run models with time-varying covariates. To run time-varying

models, the user needs to organize the file in a multiple-record format.

Using stset, the user informs the program of the ID variable so the

program recognizes that within a same value of ID, records are for the

same individual but at different times.

Several procedures can be used to conduct univariate, bivariate, and

graphic analysis. sts is the procedure to generate, graph, list, and test the

survivor functions (via the Kaplan-Meier estimator) and the Nelson-Aalen

cumulative hazard function. stci computes means and percentiles of study

time, and their standard errors and confidence intervals. ltable displays

and graphs life tables for individual-level or aggregate data and provides

the likelihood-ratio and log-rank tests to discern group differences.
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The user needs to convert the person data into person-time data by

using Stata programming commands before running a discrete-time

model. Useful commands to fulfill this task include expand, stsplit,

and a user-developed program called prsnperd. After creating the

person-time data, logistic (for the binary logistic regression) or mlogit

(for the multinomial logit model) may be employed to conduct the

discrete-time analysis.

stcox is the procedure to conduct the Cox regression. As mentioned

earlier, time-varying information and the structure of a multiple-record

data file must be specified in stset before running stcox. Once this is

done, the time-varying variables can be specified as other independent

variables in the Cox regression without additional efforts. stcoxkm plots

Kaplan-Meier observed survivor curves and compares them with Cox

predicted curves. Thus, this is a procedure users can employ to check

the proportionality assumption. In the stcoxkm curves, the closer the

observed values are to the predicted values, the less likely it is that the

proportional-hazards assumption has been violated. stcurve plots

the survivor, hazard, or cumulative hazard functions based on an esti-

mated Cox regression (i.e., the user runs it after running stcox). Note that

stcurve provides all three types of curves, not just survivor curves.

stpower cox is the procedure to conduct power analysis for the Cox

regression and compute the needed sample size, power, and effect size

for a Cox model. A set of stcox postestimation commands are of special

interest after one runs stcox. The vce(robust) option can be used to

request the robust variance estimator for a Cox regression, that is, to

run the LWA model for multilevel analysis.

streg fits parametric survival models. distribution ( ) is the key word

to specify the parametric model of interest, and the choices are (expo-

nential) for the exponential model, (gompertz) for the Gompertz

model, (loglogistic) or (llogistic) for the log-logistic model, (weibull)

for the Weibull model, (lognormal) or (lnormal) for the log-normal

model, and (gamma) for the generalized gamma model. Like the

procedure for SAS, the user specifies (exponential) based on person-

time data to run the piecewise exponential model. stcurve following

streg plots the model-based survivor, hazard, or cumulative hazard

curves. A set of streg postestimation commands are of special interest

after one runs streg.
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8

Concluding Remarks

I n this chapter, I conclude by making a few remarks on criticisms of

studies using survival analysis, and on directions for future

development.

COMMON PITFALLS IN SURVIVAL ANALYSIS:
A CHECKLIST FOR CRITICAL REVIEW

In statistical analysis, goodness criteria are not completely clear.

Researchers often argue that the method must fit the research question

and that assumptions must always be met as a test of statistical con-

clusion validity. Often we have choices in the selection of statistical

methods and our choices should fit the data situation. Toward a better

understanding of when and how to use a suitable survival model, I list

below 12 pitfalls that can trip up empirical users when they use survival

analysis.

1. Inappropriate use of statistical models. Perhaps the most obvious pitfall

of all involves a mismatch of the research questions, the type of study

data, and the statistical method. In the current context, it is not

uncommon for a study’s research questions to concern timing of event

occurrence and the data to contain censoring of event times, but the
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analyst does not employ a survival model. Wrong models not suitable to

censored data include ANOVA, multiple regression analysis, and logistic

regression.

2. Incomplete description of key issues of survival models. This happens

when a study using survival analysis provides no information about the

study window, metric of time (year, month, day, etc.), and origin of

time. The study does not define censoring cases (or what type of cen-

soring: right-hand, left-hand, or random censoring, or whether random

censoring is informative) and provides no descriptive statistics about

event history data such as proportion of subjects who were censored (or

had events) during the study window.

3. Inappropriate use of descriptive statistics for censored data, such as mean,

standard deviation, and median. Whenever the event times contain

censored cases, the analyst should use median survivor function or

quantiles from a life table or Kaplan-Meier estimator to describe the

study data, and conduct bivariate analysis based on Greenwood’s for-

mula as well.

4. Inappropriate treatment for left-hand censoring. It’s not uncommon

that a survival analysis employs Cox regression to analyze data with left-

hand censoring, and the study ignores the consequences of applying such

a model to left-hand censored data.

5. Failure to provide evidence to support the suitability of applying a

parametric model. In this case, the analyst uses parametric models but

does not offer evidence to support the use of such models, particularly

with regard to the distributional function of the study time.

6. Mismatch between research questions and analytic model with

regard to time-varying covariates. In this case, testing time-varying

covariates is implied by research questions, but the analysis fails to

incorporate such covariates into the model. Additionally, the study

does not test interaction of a time variable and a time-fixed cov-

ariate (i.e., fails to run a nonproportional hazard model) if such

time-by-covariate interaction is strongly suggested by the study’s

substantive interest.

7. Failure to correct for autocorrelation. This pitfall occurs when a study

employs clustered or autocorrelated survival times (e.g., survival times of
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individuals from same family, neighborhood, or organization) but does

not take the nesting structure of the data into consideration. The LWA,

WLW, or frailty models should be employed in this context.

8. Insufficient interpretation about interactive effects. Significant interac-

tive effects are often important findings and contribute to the knowledge

base. It’s not uncommon that the analyst presents regression coefficients

(or hazard ratios) of the interaction terms in a table but fails to interpret

the findings explicitly, efficiently, and effectively. Because interaction

effects always involve three or more coefficients, the meaning of inter-

action (equivalently, buffering, moderating, and joint impact) is not self-

evident from the coefficients or hazard ratios themselves. It is important

to use graphic approaches or model-based simulations to interpret the

interactive effects in a detailed fashion.

9. Mismatch between research questions and analytic methods with regard

to hypotheses involving mediational and moderating effects. In this case, a

study question clearly hypothesizes a mediational effect, but the analyst

uses a method aiming to test an interactive or moderating effect in the

analysis; or vice versa.

10. Inadequacy in conducting model comparisons. This pitfall occurs when

a set of models were analyzed but the author fails to compare themwith a

suitable method or appropriate goodness-of-fit index. A common mis-

take in this context is that the analyst performed the likelihood ratio tests

between non-nested models.

11. Failure to conduct statistical power analysis. In this case, the sample

size employed by a study is small, but the researcher fails to offer

evidence that the study has adequate power. Whenever a study uses a

sample size below 50, the analyst should be cautious about its statistical

power, conduct formal power analysis, and present results of the power

analysis in conjunction with other findings.

12. A wrong model is used in power analysis. This pitfall occurs when the

analyst uses a power analysis designed for other types of statistical

analysis (i.e., not the kind of power analysis for survival data). Recall

that the power analysis for survival models defines effect size as a hazard

ratio. All other types of power analysis are not suitable for assessing the

statistical power of models involving hazard ratios.
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DIRECTIONS FOR FUTURE DEVELOPMENT

Over the past 30 years, methods of survival analysis have undergone a

significant change, and much progress has been made in analyzing time-

to-event data with various types of censoring, in facilitating a dynamic

investigation between event time and time-varying covariates in various

ways, in adjusting for clustering or autocorrelation so that a multilevel

analysis of survival data is possible, and much more. Given the rapid

development of new approaches and debate about existing methods, it is

difficult to predict what the future may hold. However, I think that the

following three directions are evident and are likely to contribute sub-

stantially to the advancement of survival analysis.

The first direction is a continuous development and improve-

ment of approaches to handling clustered event times. Hougaard

(2000, pp. 494–495) lists specific problems in this area that need to be

resolved. For instance, the publicly available software for the frailty

models can only handle the shared gamma and log-normal models and

cannot evaluate the uncertainty of dependence. The asymptotic theory

for multivariate failure time models needs to be developed. The frailty

models need to address issues such as additive versus dominant inheri-

tance, competing risks, single loci versus multi-loci dependence, and

additive versus multiplicative frailty. The marginal modeling approach

needs to be combined with the copula approach.

The second direction is to solidify the statistical theories of survival

analysis by connecting the existing models (e.g., the Kaplan-Meier esti-

mator and the Cox proportional hazards model) to the study of counting

process and martingale theory (Therneau & Grambsch, 2000). For

instance, linking the counting process theory to the Kaplan-Meier esti-

mator is promising and fruitful; studies using such a theory have found

that the Kaplan-Meier survivor functions are asymptotically normally

distributed (Hosmer & Lemeshow, 1999). Research is needed in applying

the counting process theory to prove the Nelson-Aalen estimator about

the cumulative hazard function. The current survival analysis relies

heavily on the Kaplan-Meier approach. Developing new survival

models based on the Nelson-Aalen estimator is deemed promising

(Therneau & Grambsch, 2000).

The third direction is a more innovative and wider application of the

advanced survival models to solving research problems outside the field
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of biomedicine. Toward that end, social work research has made tre-

mendous progress but continuous advancement is needed. Applying a

multilevel approach to studying event recurrence is very much needed as

the dominant analysis in the field focuses on only the first occurrence of

an event. Competing risks analysis is another effective method that can

be employed to address many substantively important questions.

Combining survival analysis with new developments aiming at control-

ling for selection bias can improve the internal validity of many evalua-

tion studies (Guo & Fraser, 2010).
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Glossary

Age, Period, and Cohort Effects Three essential components or

dimensions of longitudinal inquiry that play a vital role in

understanding the effect of time on a particular outcome for an

individual. Among the three effects, age reflects physiological change

during a life process; period denotes the date of the outcome, and if the

outcome varies with period whether the variation is likely due to some

underlying factor that affects the outcome and varies in the same way

for the entire population under study; and cohort refers to

generational effects caused by factors that only affect particular

groups when their outcome level changes with time.

Binary Logistic Regression A generalized linear model developed to

analyze the determinants of a binary outcome variable. In such a

nonlinear model, the dependent variable is not a linear function of

the vector of the independent variables; however, by using an

appropriate link function such as a logit function, the analyst

expresses the model as a generalized linear model. The model is

typically estimated by a maximum likelihood approach. In survival

analysis, researchers employ the binary logistic regression to estimate a

discrete-time-single-exit model.
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Bivariate Analysis Statistical analysis employs an independent-sample

t test, or chi-square test, or correlation analysis, or analysis of variance

(ANOVA) to examine the association between an outcome variable

and an explanatory variable. Bivariate survival analysis should take

data censoring into consideration. The following significance tests are

special forms of bivariate analysis for time-to-event data: the log-rank

test, the Wilcoxon test, the Breslow test, and the Tarone-Ware test.

Censoring A special type of data incompletion. In survival analysis,

censoring occurs when exact event times are known for only a portion

of the study subjects, and the remainder of the event times is known

only to exceed (or to be less than) a certain value. Right-hand censoring

refers to the situation in which the ending point of a ‘‘spell’’ or episode

is unknown, or the event of interest has not yet occurred at the end of

data collection. Left-hand censoring refers to the situation in which the

origin or the starting point of a spell is unknown. Random censoring

refers to the situation in which the researcher observes both the origin

and ending points, but the observation is terminated for reasons other

than the event of interest.

Cox Proportional Hazards Model Also known as the Cox regression.

Using a partial likelihood method, it estimates the regression

coefficients of the proportional hazards model by fully relying on

the ranks of the event times. Advantages of this approach include its

permission of analyzing time-to-event data without knowing the

parametric nature of a survival distribution (hence, it’s known as a

distribution-free model), and permission of incorporating time-

varying covariates in survival analysis. Recent advances and

innovative models based on the Cox regression include competing

risks analysis, creation of time-varying covariates that allow a time-

fixed covariate to interact with event time, and multilevel survival

analysis that handles data problem induced by clustering or

autocorrelation.

Cox Regression See Cox proportional hazards model.

Discrete-TimeModels Models that apply a binary logistic regression

or a multinomial logit model to a well-defined person-time data

set that pools together individuals’ event histories, and use

probability of event occurrence based on such data as a proxy of

hazard rate to discern important predictors of the probability

of event occurrence.
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Distribution Function or Cumulative Distribution Function

(CDF) A popular statistic measuring a distribution. In survival

analysis a CDF informs the probability that length of time T is less

than or equal to any given value t. It is a definite integral of PDF, from

time 0 (i.e., the onset of risk) to time t.

Duration Analysis or Transition Analysis A different name of

survival analysis typically used by economists.

Event History Analysis A different name of survival analysis typically

used by sociologists.

Failure-Time Analysis A different name of survival analysis typically

used by engineering researchers.

Frailty Models See Multilevel Survival Analysis.

Graphic Approaches Use plots of survival functions against time to

discern the shape of study subjects’ survival distribution, hazard rate,

and differences on these functions between groups, and to check

tenability of assumptions embedded in multivariate models so that

the researcher can gauge whether applying a specific model is

appropriate.

Hazard Function Also known as hazard rate. A hazard function is an

instantaneous probability measuring rate of change. It can be

expressed as a ratio of conditional probability for the event to occur

within an extremely small time interval (i.e., when the time interval

approaches zero or is infinitesimal) over the time interval.

Informative Random Censoring See Noninformative Random

Censoring.

Integrated Hazard Function or Cumulative Hazard Function The

total number of subjects who would be expected to have the event up

until time t. Formally, it is a definitive integral of the hazard function

h(t), from time 0 (i.e., the onset of risk) to time t.

Kaplan-Meier Estimator Also known as the product-limit estimator.

An analytic method to describe time-to-event data or to facilitate

bivariate analysis of such data. It incorporates information from all

the observations available, both uncensored and censored, by

considering survival to any point in time as a series of steps defined

by the observed survival and censored times. Greenwood’s formula

estimating the variance (hence the standard error) of survivor

function allows analysts to compare survival distributions between

groups to conduct a significance test.
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Left-Hand Censoring See Censoring.

Likelihood Ratio Test A statistical test that evaluates which model fits

the data better between two nested models. In conducting parametric

survival analysis, researchers use this test to assess the suitability of a

parametric model and to choose the most suitable one from several

parametric models.

Life Table or Life-TableMethod An analytic method to describe time-

to-event data. A life table is an extension of the traditional frequency

table that displays hazard rates and survival functions from an

empirical sample or population.

Longitudinal Inquiry A research perspective or approach distinguishes

itself from cross-sectional inquiry. The distinguishing feature of a

longitudinal inquiry is that the response variable of interest and a set

of explanatory variables in such studies are measured repeatedly over

time. The main objective of a longitudinal inquiry is to characterize

change in the response variable over time and to determine the

covariates most associated with any change. Survival analysis is one

of several statistical approaches facilitates longitudinal inquiry.

Marginal Models See Multilevel Survival Analysis.

Methods to Handle Tied Event Times Tied event times refer to the

data situation in which two or more subjects have exactly the same

value on study time. Methods developed to handle the tied times

include the Breslow, exact, Efron, and discrete methods. The basic

idea for all these methods is to consider true time-ordering among

tied subjects.

Multilevel Survival Analysis Also known as survival analysis of

multivariate failure time data. A special type of survival analysis

developed to correct for bias induced by clustering or nesting of

survival times. Models to correct for autocorrelations of survival

times fall into two broad categories: the frailty models and the

marginal models. The frailty models require the user to specify

correctly a parametric distribution of the frailty, and are best suited

to clinical trials involving random selection of subjects or to samples

involving matched-pairs covariates. The marginal models have much

in common with the generalized estimating equation (GEE) approach

that directly correct for estimated standard errors. The WLW and the

LWA models are two marginal approaches proving to be popular

among researchers of multilevel survival analysis.
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Multinomial Logit Model A generalized linear model developed to

analyze the determinants of a nominal outcome variable. In such a

nonlinear model, the dependent variable is not a linear function of

the vector of the independent variables; however, by using an

appropriate link function, the analyst expresses the model as a

generalized linear model. The model is typically estimated by a

maximum likelihood approach. In survival analysis, researchers

employ the multinomial logit model to estimate a discrete-time-

multiple-exits model. Such analysis of multiple exits is also known

as analysis of competing risks.

Multivariate Analysis Statistical analysis tests research hypotheses

regarding the net impact of an explanatory variable on the outcome

variable by controlling for all other explanatory variables. The

ordinary least squares (OLS) regression is the most popular method

of the multivariate analysis. Multivariate survival analysis should take

data censoring into consideration, which includes discrete-time, Cox

proportional hazards, and parametric models.

Noninformative Random Censoring Survival models assume that

random censoring is noninformative; that is, the censoring

mechanism is under the researcher’s control and is out of the study

subject’s control. When this assumption is violated, the researcher

faces a data problem of informative censoring, under which condition

study subjects would appear to have patterns among their event times,

and there exists a systematic difference between the probability of

having the defined event and the probability of being censored.

Nonparametric Method A special type of survival analysis that does

not have specific parameters (i.e., mathematically derived unknown

quantities in the population) to describe the survival distribution.

Examples of nonparametric methods are the life-table method, the

Kaplan-Meier estimator, and the discrete-time model.

Ordinary Least Squares (OLS) Regression The most important

statistical method developed to answer research questions that are

multivariate in nature. It aims to characterize the relationship between

a continuous dependent variable and a set of independent or

explanatory variables by using a least-squares estimation algorithm.

The OLS regression serves as the foundation for advanced models and

is the key to understanding multivariate survival analysis such as the

discrete-time model, Cox regression, and the parametric models.

Glossary 143



Parametric Method A special type of survival analysis that explicitly

uses parameters to describe the survival distribution (i.e., the

distribution is known to have additional shape and scale parameters

other than hazard rate, probability density function, cumulative

distribution function, survival function, or cumulative hazard

function). Examples of the parametric method are the exponential,

Weibull, Gompertz, standard gamma, generalized gamma, log-

normal, and log-logistic models. These multivariate models are

developed by using a similar framework as OLS regression, but

assume a parametric survival distribution for the study time and

error term of the regression equation.

Partial Likelihood Estimator An estimation algorithm developed to

estimate the Cox regression. The estimator has the following

important features: (a) the baseline hazard function in the model is

canceled out; (b) as a result, the likelihood function is solely expressed

by the coefficients to be estimated and the predictors; and (c) the

model carefully takes the information of censored cases into account

when building the likelihood function—censored cases are not

excluded, and their information (i.e., the hazard functions) is built

into the construction of the risk set.

Person-Level Data See Person-Time Data.

Person-Time Data A special type of data required by the discrete-time

models. Unlike the most common type of person-level data in which

each study subject contributes one and only one data line, the person-

time data creates multiple data lines for each study subject based on

the definitions of the study window, the time interval, censoring, and

time-varying covariates.

Piecewise Exponential Model A special type of parametric model that

assumes piecewise constant hazard rates. It combines the exponential

parametric model and the discrete-timemodel into one, and proves to

be promising for many empirical data commonly found in social,

health, and behavioral research.

Proportional Hazards Assumption An assumption embedded in the

Cox proportional hazards model. It states that the hazard for any

individual in a sample is a fixed proportion of the hazard for any other

individual, and the ratio of the two hazards is constant over time.

Probability Density Function (PDF) A popular statistic measuring a

distribution, commonly known as a frequency distribution. In
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survival analysis a PDF is similar to a hazard rate but the numerator of

the formula is an unconditional probability.

Random Censoring See Censoring.

Right-Hand Censoring See Censoring.

Semiparametric Method Also known as distribution-free method.

A special type of survival analysis that makes assumptions about the

hazard rate but does not use additional parameters to describe the

distribution of survival times. The best example of the semiparametric

method is the Cox proportional hazards model.

Survival Analysis A collection of statistical methods aim to analyze

timing of event occurrence and address questions that have to do with

whether and when an event of interest takes place.

Survivor Function An important function of survival analysis that

measures the probability of not having the event (surviving to, or

remaining in the subject set of having no event) by a particular time.

Time-to-Event Data Data contain information about a well-defined

time origin of a particular event and the time point at which such

event occurs.

Time-Fixed Covariates See Time-Varying Covariates.

Time-Varying Covariates Also known as time-dependent covariates.

These are the independent variables that change values over the course

of observation. In contrast, independent variables that do not change

value over time are called time-fixed, or time-constant, or time-

independent covariates. Incorporating time-varying covariates in a

survival analysis makes the investigation truly dynamic, that is, it

looks into the relationship between the timing of the event

occurrence and an independent variable from a truly changing

perspective.

Univariate Analysis Statistical analysis employs mean, median, and

standard deviation to discern central tendency and dispersion of the

study variables. Univariate survival analysis should take data

censoring into consideration, which includes estimation of hazard

and survivor functions from the life-table method and estimation of

survivor function from the Kaplan-Meier estimator.
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Notes

CHAPTER 2

1. Note that this function is called ‘‘survivor function,’’ not ‘‘survival function.’’

The difference signifies that the function specifically measures the probability

of survivors, that is, the probability of not having had the event (i.e., ‘‘survived’’

to) at a given time point t.

2. Different software packages define the plot slightly differently. SAS Proc

Lifetest defines the vertical axis as log[�log Ŝ ðtÞ], while Stata stphplot defines
it as �log[�log Ŝ ðtÞ], though both packages use log t as the horizontal axis.

CHAPTER 4

1. In the prior section, the illustrating model does not contain an interaction

term whereas the current model does.

CHAPTER 6

1. The issue of intragroup correlation is more complicated in survival analysis

than in other longitudinal studies because of censoring. The method of

assigning maximum length of stay to subjects whose lengths of study are

longer than the study window, as we recommend here, is an informal

procedure.

2. Liang et al. (1993) developed another marginal model, the ‘‘LSC’’ model,

which is basically the same as the LWA model (Lin, 1994). It employs the

same estimating function as that of the LWA, but replaces the ratio of survival

functions in estimating the ‘‘score function’’ by an analog that exploits pair-

wise comparisons of independent observations.
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3. Wei et al. (1989) employ a sample of 36 patients with approximately three

distinct event times for each patient.

4. Lin’s Monte Carlo simulation shows that the LWA-type model tends to be

more efficient than the WLW-type model when failure times are generated

with a common baseline hazard function, but the difference is very small. His

study using real clinical data shows that the LSC model produces parameter

estimates very similar to those of the WLW model, and the standard error

estimates are almost identical between the two (Lin, 1994).
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