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1. PYTHAGOREAN MATHEMATICAL PRINCIPLES 
Pythagoras founded* a school of philosophy in Croton in southern Italy that was renowned 

throughout the ancient Mediterranean world. As much a religious brotherhood as a scholastic 

academy teaching music, astronomy, ethics, arithmetic and geometry, its students were taught 

mathematics not — as it was considered by Plato — as a preparation for an otherworldly 

contemplation of divine principles but in order to contemplate the divine immanent in nature. The 

mathematical doctrines of Pythagoras cannot be properly understood without recognising that the 

modern dichotomy of science and religion did not exist for the Pythagoreans, who believed that  

                                                           
* Pythagoras’ early biographers provide an unreliable, inconsistent chronology.  But, as they agree that he left his 
home Samos for Italy during the rule of its dictator Polycrates (528–522BC) and was deported from Egypt after its 
invasion by Cambyses in 525 BC, he must have started his school at Croton between 525 BC and 522 BC. 

  
TTTHHHEEE      PPPYYYTTTHHHAAAGGGOOORRREEEAAANNN      NNNAAATTTUUURRREEE      OOOFFF      SSSUUUPPPEEERRRSSSTTTRRRIIINNNGGG   

AAANNNDDD      BBBOOOSSSOOONNNIIICCC      SSSTTTRRRIIINNNGGG      TTTHHHEEEOOORRRIIIEEESSS   

The Pythagorean doctrine of a four-fold hierarchy or pattern in natural
phenomena is generalised to the formulation of a 'Tetrad Principle' governing
fundamental subatomic particle structures and processes. This principle is shown
to prescribe the group-theoretical parameters of E8×E8, the anomaly-free,
superstring gauge symmetry group, as well as E8 and its exceptional subgroups
E7, E6 and F4. The tetractys — the Pythagorean geometrical symbol of whole
systems — is related to the space-times of superstrings and bosonic strings. As
further illustration of this powerful principle, the dimensionality of bosonic
strings and group-theoretical parameters of E8 are shown to be embodied in the
geometry of the first four Platonic solids, believed by the ancient Greeks to be the
shapes of the particles of the four elements Earth, Water, Air and Fire. 
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Pythagoras 

(from The Secret Teachings of All Ages, Manley P. Hall (The Philosophical Research 

 Society, Inc., Los Angeles, California, U.S.A., 1988). 

Hovering like a halo above the sage’s head, the tetractys is depicted by Hall as a triangular array of 

ten ‘yods’ (the comma-shaped yod is the tenth letter of the Hebrew alphabet). The author’s 

researches indicate that it was Pythagoras’ greatest discovery, because it turns objects with ‘sacred 

geometry’ into numbers of cosmic significance and relevance to modern theoretical physics. 
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man can realise his divine nature by knowing the universal principle which governs the cosmos (a 

word coined by Pythagoras himself, meaning “world-order,” a world ordered in a state of 

mathematical harmony). This principle is Number, which is “the principle, the source and the root 

of all things” (1). For the Pythagoreans, the spiritual and scientific dimensions of number were 

complementary and could not be separated. 

Pythagoras was not only the first to call himself a philosopher but also a priest-initiate of a 

mystery religion influenced heavily by Orphism, which taught that the essence of the gods is 

defined by number. Numbers, indeed, expressed the essence of all created things. According to the 

Pythagorean Philolaus: “All things which can be known have numbers, for it is not possible that 

without number anything can either be conceived or known” (2). The Pythagoreans were the first 

to assert that natural phenomena conformed to mathematical principles and so could be understood 

by means of mathematics. In this sense, they may be considered the first physicists. But their 

doctrine gradually became distorted into the proposition that not only does number express the 

essence of things but also that, ultimately, all things are numbers. Unconvinced by the peculiar 

emphasis Pythagoreans gave to numbers because he was not privy to the secrets of their teachings, 

Aristotle said of them: “These thinkers seem to consider that number is the principle both as matter 

for things and as constituting their attributes and permanent state” (3). 

The Pythagoreans thought that numbers had metaphysical characters, which expressed the nature 

of the gods. The number one (the Monad) represented the principle of unity — the undifferentiated 

source of all created things. The Pythagoreans did not even regard it as a number because for them 

it was the ultimate principle underlying all numbers. The number 2 (Dyad) represented duality — 

the beginning of multiplicity, but not yet the possibility of logos, the principle relating one thing to 

another. The number 3 (Triad) was called “harmony” because it created a relation or harmonia 

(“joining together”) between the polar extremes of the undifferentiated Monad and the unlimited 

differentiation of Dyad. 

Pythagoras was the first to use geometrical diagrams as models of cosmic wholeness and the 

celestial order. Numbers themselves were represented by geometrical shapes: triangles, squares, 

pentagons, etc. For example, a ‘triangular number’ is any number that is equal to the number of 

dots forming a triangular array (fig. 1) and a ‘square number’ is one that can be represented by a 

square array of dots. The ancient Greeks generalised such ‘figurative numbers’ by considering 

nests of n regular polygons nested inside one another so that they share two adjacent sides (fig. 2). 

Dots denoting the number 1 are spaced at regular intervals along the edges of the polygons, the 
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edge of each polygon having one more dot than the edge of its smaller predecessor. The total 

number PN
n of dots in a set of n nested regular polygons with N sides is called a “polygonal 

number.” The number 1 is the first polygonal number, i.e., PN
1 = 1. The second polygonal number, 

which is simply the number of corners of an N-sided, regular polygons, is PN
2 = N, the third is PN

3, 

etc. PN
n is given by: 

PN
n = ½n[(N–2)n – (N–4)] 

Table I lists for future reference formulae expressing the first ten types of polygonal numbers: 

TABLE I 
 

  3 P3
n ≡ Tn = ½n(n+1) 

  4 P4
n ≡ Sn = ½n(2n–0) 

  5 P5
n ≡ Pn = ½n(3n–1) 

  6 P6
n ≡ Hn = ½n(4n–2) 

  7 P7
n ≡ hn = ½n(5n–3) 

  8 P8
n ≡ On = ½n(6n–4) 

  9 P9
n ≡ Nn = ½n(7n–5) 

10 P10
n ≡ Dn = ½n(8n–6) 

11 P11
n ≡ En = ½n(9n–7) 

12 P12
n ≡ dn = ½n(10n–8) 

 

The best-known polygonal number is the famous Pythagorean Triangle or “tetractys” which, as the 

4th triangular number, is an equilateral triangular array of ten dots (fig. 3a). We shall call these 

dots “yods” after the dot-shaped, tenth letter yod of the Hebrew alphabet. The yod (•) at the centre 

of the tetractys in Figure 3b is the centre of a hexagon whose corners are the six other (•) yods. 

These seven yods will be called “hexagonal yods.” The four rows of yods forming the tetractys 

represent the first four integers 1, 2, 3 & 4. The tetractys denotes the number 10, the Decad, which 

for the Pythagoreans was the perfect number, symbolising wholeness and unity. 

The importance of the tetractys to them is illustrated by their oath of fellowship: 

“I swear by the discoverer* of the Tetractys, 
Which is the spring of all our wisdom, 
The perennial fount and root of Nature (4).” 

Why was this? Surely not merely because the tetractys was a representation of the perfect Decad?! 

Scholars know that it came to signify for the Pythagoreans an all-embracing paradigm for whole 

systems. They believed that a four-fold pattern permeated the natural world, examples of which 

are the four seasons, the point, line, surface and solid and the four elements Earth, Water, Air and 

                                                           
* A reference to Pythagoras. 
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TETRAD PRINCIPLE 

Integers of significance to the physics of fundamental processes are always either: 

1) the 4th member of a class of numbers (sometimes the (42 = 16)th member of a class); 

2) the sum of the first 4 members of a class; 

3) the sum of 4 consecutive members of a class, starting with the 4th; 

4) a property of either the 4th member or the first 4 members of a class of mathematical 

objects, or of the square (symbol of the Tetrad) or square array of integers or mathematical 

objects, or of a tetractys array or geometrical pattern of integers with orthogonal symmetry. 

Fire. However, this alone does not explain why they valued the tetractys so much. This article will 

reveal deeper meanings of the Pythagorean doctrine concerning the tetractys, which link it to 

current research into the theories of superstrings and bosonic strings. It will explain why the 

Pythagoreans called the Tetrad, or number 4, “the greatest miracle.” For, indeed, this is what it is, 

because it prescribes the mathematical description of the subatomic world. 

The mathematical counterpart of the Pythagorean metaphysical doctrine of the Tetrad will be 

called the “Tetrad Principle.” This states: 

The most obvious example from superstring theory of this principle is its prediction that space-

time has 10 dimensions, where 10 is the 4th triangular number: 

10 = 1 + 2 + 3 + 4. 

Many more will be encountered later. No claim is made for the converse of this principal, e.g., the 

4th (or 16th) member or the first 4 members of any class of mathematical objects always quantify 

a parameter governing fundamental processes. The Tetrad Principle is a necessary, but not 

sufficient, condition for a number to be of significance to the subatomic world. This means that a 

number which is predicted by a theory as having fundamental significance in the subatomic world 

and which is consistent with the Tetrad Principle is not necessarily an actual parameter of the 

physics of this world. The fact that examples to be discussed in Section 2 can be found which 

show how this principle prescribes parameters of the theories of superstrings and bosonic strings 

does not in itself indicate that these string theories are true. Taken individually, such examples 

merely demonstrate that they satisfy a necessary criterion for being valid. What, however, turns 

this criterion into a potent principle is the large degree to which these two theories support it. As 

Section 2 reveals, their degree of consistency with the Tetrad Principle so exceeds what chance 

would lead one to expect that such detailed conformity cannot plausibly be discounted as purely 
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coincidental. Instead, it is indicative of a powerful, hitherto unrecognised principle at work 

prescribing the mathematics of fundamental phenomena — one which the Pythagoreans appear to 

have intuited in their emphasis on the importance of the number 4 to the study of nature. 

The tetractys is but one member of an infinite series of tetractyses in which the nth member Tn is 

generated by replacing each yod in the (n–1)th member by a tetractys, two adjacent yods being 

substituted by two tetractyses sharing a corner (fig. 4). The Pythagorean Monad — the geometrical 

point — is the first member T0 of this series (the 0th-order tetractys), the Pythagorean Triangle 

(1st-order tetractys) is the second member T1, the 2nd-order tetractys T2 is the third, and so on. 

The Tetrad Principle prescribes properties of higher order tetractyses as well as T1 because they, 

too, are paradigms of whole systems, albeit more differentiated. Because of its importance to our 

discussion in Section 3, we illustrate below how the Tetrad Principle prescribes properties of T2: 

1) number of yods = 85 = 40 + 41 + 42 + 43; 

2) number of yods surrounding its centre = 84 = 12 + 32 + 52 + 72; 

3) number of corners (!) of 1st-order tetractyses = 15 = 4th Mersenne number = 4th triangular 

number after 1; 

4) number of sides of 1st-order tetractyses = 30 = 12 + 22 + 32 + 42; 

5) number of hexagonal yods (") = 70 = 4th, 4-dimensional, tetrahedral number after 1. 
  
2. TETRAD PRINCIPLE IN STRING THEORIES. 
In this section we shall illustrate the powerful role of the Pythagorean Tetrad Principle in 

prescribing the mathematical character of superstring and bosonic string theories by making 

explicit the arithmetic and geometric connections between the tetractys, the number 4 (as well as 

the integers 1, 2, 3 & 4) and group-theoretical parameters of the superstring gauge symmetry 

groups E8×E8, E8 and its exceptional subgroups. Examples of how the Tetrad Principle defines 

parameters of these two string theories are listed below: 

1) Dimensionality of superstring space-time = 10 = 1 + 2 + 3 + 4, whilst large-scale space-time is 

4-dimensional. As the 4th triangular number, 10 is symbolised by the Pythagorean tetractys 

(fig. 5). But this representation of the perfect Decad central to the number philosophy of 

Pythagoras is not merely a way of expressing the integers 1, 2, 3 & 4, as scholars have 

traditionally believed. It is the paradigm for superstring space-time itself, as its following 

physical interpretation demonstrates: the three yods at the corners of the tetractys not only 

define the shape of the simplest geometrical figure — the triangle — but also symbolise the 

dimensions of large-scale space in which the fundamental particles — superstrings — move. 

The 6 hexagonal yods at the corners of the hexagon symbolise the 6 higher, compactified 
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dimensions predicted by superstring theory, whilst the yod at the centre of the tetractys denotes 

the dimension of time. Just as the 9 yods on the boundary of the tetractys delineate its shape, 

so they denote the 9 form-creating spatial dimensions of superstrings. The differentiation: 

10 = 1 + 3 + 6 

between uncompactified and compactified dimensions of the 10-dimensional space-time 

predicted by superstring theory thus finds its geometrical counterpart in the tetractys. A 

modern-day Pythagorean would account for this analogy by declaring that the identity of 

number and form implies that the dimensionality of space-time — the precursor of form — 

must conform to the 10-fold nature of Unity, the Monad which, being the source of number, is 

also the origin of material form. 

2) According to the Pythagoreans, the integers 1, 2, 3 & 4 symbolised by the four rows of yods in 

the tetractys define, respectively, the dimensionless point, the 1-dimensional line with its 2 

endpoints, the 2-dimensional triangle with its 3 corners (hence, in general, surface) and the 

3-dimensional tetrahedron with its 4 corners (hence, in general, volume) (fig. 6). The 4 stages 

of generation from a mathematical point of the simplest polyhedron are an illustration of the 

Pythagorean doctrine of a 4-fold sequence in the generation of form. They comprise 26 points, 

lines, triangles and tetrahedra. In other words, 26 geometrical elements are required to create 

the simplest solid in 4 steps. Compare this with the fact that the critical dimension of space-

time for free bosonic strings to have no negative-probability ghost states (5) and for the theory 

to be Lorentz invariant (6) is 26. This is not a coincidence but an example of the Tetrad 

Principle generating identical numbers in contexts that, although ostensibly unrelated, are 

analogous in the sense that both the tetrahedron and bosonic string are basic forms, the former 

in the large-scale world and the latter in the subatomic world. 

More generally, 26 is the number of combinations of 10 different objects selected from the 4 

rows of a tetractys without mixing between rows (fig. 7). As 2n – 1 is the total number of 

different combinations of n objects and Mn = 2n – 1 is, by definition, the nth Mersenne number, 

26 is the sum of the first 4 Mersenne numbers 1, 3, 7 and 15, indicating how the Tetrad 

Principle determines the dimensionality of space-time predicted by bosonic string theory. 

26 can be represented as a tetractys array of the first 4 powers of 2: 

                                                    20  =   1 
                                                 20  21  =   3 
                                              20   21  22  =   7 
                                           20   21  22  23  = 15 

   Total = 26 
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This array has one other orientation: 

                                                   23  =    1 × 23  = 8 
                                                22  22  =    2 × 22  = 8 
                                             21   21  21  =    3 × 21  = 6 
                                          20  20  20   20  =    4 × 20  = 4 

The sum of the four powers 20 at its base is 4, the dimension of macroscopic space-time, the 

sum of the three powers 21 is 6, the number of compactified dimensions of superstrings, and 

the sum of the remaining powers of 2 is 16, the number of spatial dimensions of bosonic 

strings whose compactification was suggested originally by Freund (7) to generate 

E8×E8-invariant superstrings. The bifurcation: 26 = 10 + 16 is reproduced in this powers-of-2 

representation in an intuitively more fundamental way: 
 

         23              23 

     22   22           22   22 

26  =     21   21   21  =             +            21   21   21 

20   20   20   20   20               20      20   20 
 
i.e., the number (10) of superstring dimensions is the sum of the three powers of 2 at the form-

defining corners of the tetractys and the number (16) of compactified, purely bosonic 

dimensions is the sum of the seven powers of 2 located at the hexagonal yods of the tetractys. 

3) The square — the geometrical symbol of the Tetrad — arithmetically defines the number 26 in 

the following ways: 

A). Since 

     22 42 62 82 
 
     242   102 
   2600 = 
     222   122 
 
     202 182 162 142 
 
and 

  13  23   4 4 4 4 
             4       4       4 
       4 4 4 4 
                 = 100 =       4       4       4 
       4 4 4 4 
             4       4       4 
  43  33   4 4 4 4 

16 

10 
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(a square divided into tetractyses contains 25 yods and 100 = 25×4), 26 is the ratio: 

 
B). 26 is the arithmetic mean of the first 25 even integers up to 50: 
 

 
Since 

          14 
      24   24 

26×50 = 15 + 25 + 35 + 45 =     34   34   34 
44   44   44   44 
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and 
         42 
      32   32  

50 =      22   22   22 
12   12   12   12’ 

 
26 has the following representation in terms of 1, 2, 3 & 4: 
 

         14 
      24   24 
   34   34   34 

44   44   44   44 

26 = 
         42 
      32   32 
   22   22   22 
12   12   12   12 
 

4) Number of dimensions of macroscopic space-time = 4, the 4th positive integer; 

number of dimensions of superstring space-time = 10 = 4th triangular number; 

number of bosonic string dimensions whose compactification generates superstrings = 16 = 4th 

square number; 

number of compactified bosonic string dimensions = 22 = 4th pentagonal number = sum of 1, 

2, 3 & 4 raised, respectively, to powers 4, 3, 2 & 1: 

 14  23 

 
22 = 

 
 41  32 

As the geometrical symbol of the Tetrad, a square divided into 4 tetractyses generates the number 

of spatial dimensions of bosonic strings and differentiates between superstring and purely bosonic 

string dimensions: 

 

 

 

 

25 =                =  16(!) + 9("), 
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where 16 (4th square number) is the number of purely bosonic string dimensions whose 

compactification generates superstrings with 9 remaining spatial dimensions (9 = 4th odd 

integer after 1). The central yod (") symbolises the longitudinal dimension of a string, the 

surrounding 24 (= 1×2×3×4 = 4!) yods represent the 24 transverse dimensions of a bosonic 

string and the surrounding 8 yods (") denote the 8 transverse, purely superstring dimensions 

(8 = 4th even integer). 25 is the arithmetic mean of the cubes of the first 4 integers: 

25 = 13 + 23 + 33 + 43 
        4 

6) The rank 8 of the unified gauge symmetry group E8 is the 4th even number.  The rank 16 of 

E8×E8 is the 4th square number. 

7) A tetractys-divided square expresses the dimension 248 of E8 in terms of 1, 2, 3 & 4: 

 

8)  Using the identity: 

6200 = 248×25 = 22 + 32 + 42 + ... + 262, 

where the first term, 22 = 4, is the Tetrad and the last term is the square of the sum of the first 4 

Mersenne numbers, the square displays the following remarkable property of the number 248: 

 

 32   52    72     92    248 248 248 248 

       122        142        162                     248      248       248 

 252    42     62   112    248 248 248 248 

        262       22         182     =                         248      248       248 

 232  162    82   132    248 248 248 248 

        242        222      202                     248      248       248 

 212  192  172   152    248 248 248 248 
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Starting with the Tetrad 22 = 4 at the centre of the square and assigning the 24 (= 4!) 

squares 32, 42, ... 262 to the surrounding 24 yods of the 4 tetractyses, with squares of even 

integers inside the square and squares of odd integers on its boundary, the sum of these 25 

squares is that resulting from assigning the number 248 to each yod in the square. 

9) Starting with the 4th triangular number T4 = 10, the sum of the first (4 + 4 = 8) polygonal 

numbers of the 4th order is 248: 

 
of the first 4 polygonal numbers represented by regular polygons with odd numbers of corners 

is the number of non-zero roots of E8 of length squared 2 of the kind: 

± ui ± uj………………….…………………i, j = 1, 2,…8 

where u1 are 8 orthonormal unit vectors. The Tetrad also expresses this number as 

7   7   7   7 
7   7   7   7 
7   7   7   7 
7   7   7   7 

where 7 is both the 4th odd number and the 4th prime number. 112 is the 7th heptagonal 

number (note that the heptagon is 7-sided). The Tetrad also defines the number (128) of non-

zero roots of E8 of the kind: 

½(± u1 ± u2 ± ….. ± u8)…….………………………(even # of + signs) 

because 128 = 27 = 47/2 = (44th prime number)½. The total number of non-zero roots of E8 is 

         4! 
      4!   4! 

240 =    4!   4!   4!  
4!   4!   4!   4! 

112 = 

The sum: 
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This number has also the representation: 
 

It contains 36 even integers ending in the 4th square number, where 36 is the sum of the first 4 

even integers and the first 4 odd integers (also 4×4th odd integer after 1). The sum of the 

shaded triangular array of 15 integers is 112, and the sum of the remaining 21 integers is 128 

(15 = 8th odd integer, where 8 = 4th even integer, and 21 = 10th odd integer after 1, where 10 

= 4th triangular number). The sum of the 15 integers inside the boundary of the array of 36 

integers is 100, the (1 + 2 + 3 + 4 = 10)th square number, and the sum of the 21 integers on the 

boundary is 

140 = 12 + 22 + 32 + 42 + 52 + 62 + 72, 

namely, the 7th square pyramidal number (7 = 4th prime/odd number). The Tetrad thus 

differentiates between the two types of non-zero roots of E8. It also defines the 8 zero roots of 

E8 because 8 is the 4th even integer. 

Since 24 = 52 – 1 = 3 + 5 + 7 + 9, 

         24               3               5               7             9 
      24  24            3   3            5   5            7   7           9   9 

    240 =    24  24  24  =     3   3   3 +     5   5   5 +     7   7   7 +     9   9   9 
  24  24  24  24      3   3   3   3      5   5   5   5      7   7   7   7      9   9   9   9 

 
i.e., 240 is the sum of 
 

           4      4          8 
      4    4 

       40 =    4    4    4  = 
4    4    4    4    

 16          12 
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odd integers arranged as 4 tetractys arrays of the first 4 odd integers after 1. E8×E8 has 480 

non-zero roots. Since 480 = 16×30 = 42×(12 + 22 + 32 + 42) 

        42         82 
 
     = 
 
      162         122 

this group parameter is the sum of 4 square numbers spaced 4 units apart, starting with the 4th 

square. The number of zero roots of E8×E8 is 16, the 4th square number. These examples 

illustrate how the Tetrad Principle defines group theoretical parameters of the unified 

superstring gauge symmetry group E8×E8. 

10) Defining the two possible tetractys arrays of the nth powers of 1, 2, 3 & 4: 
 
            4n              1n 
         3n   3n          2n    2n 
           tn ≡     2n   2n   2n      ,           Tn ≡         3n    3n   3n               (n = 0, 1, 2, 3, … etc.) 
   1n   1n   1n  1n   4n   4n    4n   4n 

 
then, as To = to = 10 and Tn ≠ tn for n = 1, 2, 3, 4, there are 9 different numbers generated by 

the values n = 0, 1, 2, 3, 4 (9 = 4th odd integer after 1). Remarkably, their sum is 

 

2480 is the number of space-time components of the 248 ten-dimensional gauge fields of E8. 

The Tetrad and the tetractys thus define this physical parameter of superstring theory. The sum 

above may be written: 

 

The nine different tetractys arrays of powers of 0, 1, 2, 3 & 4 not only sum to 2480 but also 
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differentiate between the (1+7) zero roots of E8 and its 240 non-zero roots! 

11) Using the identity 
1240 = 12 + 22 + 32 + 42 + ... + 152, 

where 

    20           21 
       4 4 4 4 
  15 =    =       +       +       +         =  24 – 1 
       1 2 3 4 
    23           22 
 
is the 4th Mersenne number, the Maltese Cross array of integers 1–15 shown in Figure 8 sums 

to 4960. This is the number of the components of the 496 10-dimensional gauge fields of 

E8×E8. The representation is made up of 480 integers, where 480 is the number of non-zero 

roots of E8×E8, of which  

 

integers form the boundary of the Maltese Cross. The 240 integers comprising a pair of arms 

of the cross sum to 2480, the number of space-time components of the 248 gauge fields of E8. 

Of these integers, 

      12   32 
 
 

84 = 
 
 

72  52 

integers form the boundary of a pair of arms. This ancient religious emblem, whose four arms 

symbolise the Tetrad, thus defines the number of space-time components of all the gauge 

fields mediating the E8-invariant superstring force. 

12) According to Aristotle, the Pythagoreans gained mathematical insights through their use of the 

gnomon, or carpenter's square (8). For example, by sandwiching gnomons inside one another 
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with marked out points, they found that this generates a square array of points whose number 

is the sum of the (odd) numbers of points in successive gnomons, i.e., 

 
This made them realise that the square of any integer n is the sum of the first n odd integers. In 

particular, 4 gnomons generates the 4th square 16 as a 4×4 square array of points whose 

number is the sum of the first 4 odd integers — the numbers of points in successive gnomons: 

16 = 42 = 1 + 3 + 5 + 7. 

We pointed out in Section 1 that 

84 = 12 + 32 + 52 + 72 

is the number of yods surrounding the centre of a 2nd-order tetractys. The sum of these 4 

squares assigned to points along 4 successive gnomons is 

   12 32 52 72 
         13       33 
   32 32 52 72 
         496 =      = 
   52 52 52 72 
         73       53 
   72 72 72 72 
 
The sum of the cubes of the first 4 odd integers is the crucial dimension of the non-abelian 

gauge symmetry group governing superstring interactions that Michael Green and Gary 

Schwarz found to be free of quantum anomalies (9). This illustrates par excellence the 

prescriptive power of the Tetrad Principle and substantiates the title: “Holding the Key of 

Nature” that the Pythagoreans assigned to the number 4 (10). 

Just as 4 gnomons generate the dimension 496 of E8×E8 from the squares of the first 4 odd 

integers, so 10 (= 1 + 2 + 3 + 4) gnomons generate the dimension 133 of E7, the largest 
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exceptional subgroup of E8, from the first 10 odd integers: 

 
 

100 (= 13 + 23 + 33 + 43) odd integers make up the 10 gnomons. 1330 is also the sum of the 

10th set of the first 7 types of polygonal numbers (7 = 4th prime/odd number): 

T10 + S10 + P10 + H10 + h10 + O10 + N10 = 1330. 

13) The hexagon is the 4th regular polygon. If the first 16 (= 42) hexagonal numbers are assigned 

to successive dots in a 4×4 square array of dots, the last and largest hexagonal number is 

H16 = 496, 

which is the dimension of E8×E8. Using the identity 

Hn = 4Tn-1 + n 

(Appendix B), then 

H16 = 4T15 + 16 = 480 + 16, 

which compares with the fact that the 496 roots of E8×E8 consist of 480 non-zero roots and 16 

zero roots. 

14) The number of hexagonal yods in an n-sided regular polygon whose sectors are divided into 

three tetractyses is 

H(n) = 13n 

(Appendix C). A square (n = 4) has 13×4 = 52 hexagonal yods and a hexagon (n = 6) has 

13×6 = 78 hexagonal yods (fig. 9). The four-sided square thus defines the dimension 52 of the 

rank-4 exceptional group F4, whilst the 4th regular polygon (the six-sided hexagon) defines 

the dimension 78 of the rank-6 exceptional group E6, both groups being subgroups of E8. 

The first 12 integers evenly spaced along the sides of a square, 4 integers to a side, sum to 78: 
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      1 2 3 4 
 

12 5 
78 = 

11 6 
 

10 9 8 7 
 

15) A square whose sectors are turned into 2nd-order tetractyses has 288 yods surrounding its 

centre, where 

   288 = 11 + 22 + 33 + 44 

   = 1!×2!×3!×4! 
 
     3 5 7   9 
  
     11 13 15 17 
    =      (33 = 1! + 2! + 3! + 4!) 
     19 21 23 25 
 
     27 29 31 33 

showing how these integers 1, 2, 3 & 4 express this number. Of these yods, 

              4   4       8 
          4    4 

40 =    4    4    4 = 
4    4    4    4  
             16       12 

are corners of 1st-order tetractyses, leaving 248 hexagonal yods (shown by • yods in Figure 

10). The square — the geometrical symbol of the Pythagorean Tetrad — thus generates the 

dimension of E8 as well as its rank-4 exceptional subgroup F4.  Indeed, the latter number is 

also present in this representation as the number of hexagonal yods (!) in tetractyses at the 

corners of the 2nd-order tetractyses that do not also belong to adjacent tetractyses. 

Appendix D shows in general that an n-sided regular polygon divided into 2nd-order 

tetractyses has 72n yods surrounding its centre (72 = 36th even integer, where 36 is sum of the 

first 4 even integers and the first 4 odd integers). Of these, 10n yods are corners of 1st-order 

tetractyses, leaving 62n hexagonal yods. The number of yods surrounding the centre of an 

octagon = 72×8 = 576 = (4!)2 
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where 

 
Of these, (10×8 = 80) yods are corners, where 

 

 
 
leaving (576 – 80 = 496) hexagonal yods (notice that both 36 and 80 can be represented by 

octagonal arrays of integers, the former consisting of the first 8 integers and the latter 

consisting of the first 8 odd integers after 1). The octagon thus defines the dimension 496 of 

E8×E8, the direct product nature of the unified gauge symmetry group of superstrings 

reflecting the fact that an octagon is generated from two identical squares by rotating one 

relative to the other through an angle of 45o. 

16) 496 AS A PERFECT NUMBER 

The ancient Greeks classified numbers not only as even or odd, prime or composite, but also 

as excessive, defective or perfect. In excessive (or superabundant) numbers the sum of the 

divisors is larger than the number. In defective (or deficient) numbers, the sum is smaller than 

the number. Perfect numbers are equal to the sum of their divisors. The last of the 36 

propositions in Book IX of Euclid's Geometry asserts that, if (2n – 1) is prime, then 2n-1(2n – 1) 
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is a perfect number. This means that all perfect numbers of this form are even. In a work 

published posthumously in 1849, the mathematician Léonard Euler proved the converse of 

this proposition that all even perfect numbers are of the form given by Euclid. If the nth 

Mersenne number Mn = 2n – 1 is prime, then 2n-1 Mn is perfect (M1 = 1 is not regarded as a 

prime number). The first four perfect numbers: 

n Mn 2n-1Mn 
 
2 
3 
5 
7 

 
3 
7 
31 
127 

 
6 
28 
496 
9128 

 
were known to the ancient Greeks, the neo-Pythagorean Nichomachus being known to have 

spent considerable time hunting for 496 and 8128.* 496 is therefore the third perfect number. 

The first Mersenne number M1 = 1 does not define 1 as a perfect number because of the 

convention that 1 is not regarded as a prime number. It is amusing that 496 would be the 

fourth perfect number if this convention were not adopted, in agreement with the Tetrad 

Principle that the Pythagorean Tetrad defines members of classes of numbers or mathematical 

objects which have significance to the physics of nature. However, this principle is still upheld 

because 496 is defined by n = 5, i.e., the fourth of the integers after 1, which the Pythagoreans 

regarded not as a number but as the source of all numbers. 

As the sum of its factors, 496 is 

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248. 

Using the theorem (12) that the product of the factors, including itself, of the perfect number 

P=2n-1Mn is Pn, we see that, of all perfect numbers, 496 (n = 5) is uniquely connected to the 

Tetrad, 4, through its remarkable property: 

4964 = (1+2+4+8+16+31+62+124+248)4 = 1×2×4×8×16×31×62×124×248. 

Also, since every perfect number except 6 is (13) a partial sum of the series: 

13 + 33 + 53 + 73 + ...., 

then 496 (= 13 + 33 + 53 + 73) is defined by the Tetrad because it is the sum of the first 4 terms 

in this series. 

                                                           
* Pythagoras’ biographer Iamblichus may have known the fifth perfect number 33550336, although he does not give it. 
See reference 11, footnote, p. 74. 
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The ancient religious symbol of the pentagram provides a representation of the dimensions of 

E8 and E8×E8 (fig. 11). Notice in (b) that the first number is 24 = 42 and that the last number is 

28 = 44. The square also provides a representation of the E8 group parameter 240: 

     24 25 

240 = 

 27  26 

This again illustrates the Tetrad Principle because 240 is the sum of four successive powers of 

2, starting with 24 = 42, the fourth square number. Notice that 24 + 25 + 26 = 112, and that 27 = 

128, the numbers of the two different types of non-zero roots of E8. 

17) A pentagram array of the cubes of the integers 1, 2, 3 & 4 represents the number 496 (fig.12) . 

Notice that the representation contains 16 (= 42) cubes. 

18) A pentagon divided into tetractyses contains 31 yods, where 31 is the 4th Mersenne number 

above 1 (fig. 13). 496 is the 31st triangular number: 

496 = 1 + 2 + 3 + 4 + ... + 31. 

If we assign the 15 even integers 2, 4, ... 30 to the 15 yods on the boundary of the pentagon 

and the 16 odd integers 1, 3, 5, ... 31 to the 16 internal yods, the sum of these 31 integers is 

496, the sum of the interior integers is 256 (= 44) and the sum of the integers on the boundary 

is 240 (= (1 + 2 + 3 + 4)4!) (fig. 14). Since 496 = 31×16 = 31×42, assigning the 4th square 

number to each of the 31 yods in the pentagon generates the number 496 (fig. 15). The sum of 

the 15 squares on the boundary is 240, the same as the sum of the 15 internal squares 

surrounding the central integer 42 = 16. So, allocating the 4th square number to each of the 31 

yods of a tetractys-divided pentagon not only generates the number of roots of E8×E8 but also 

differentiates between the number (16) of its zero roots and the number (240 + 240 = 480) of 

its non-zero roots. Alternatively, if the 4th square 16 is assigned to the centre of a tetractys-

divided pentagon and the 15 successive even integers 18, 20, … 46 are assigned to the 15 yods 

on its boundary, the sum of the (42 = 16) even integers that start with 16 is 496 (fig. 16). 

Since 

240 = 5×48 = 5(72 – 1) = 5(3 + 5 + 7 + 9 + 11 + 13), 

this number is the sum of the 30 odd integers surrounding the central integer 1 in a five-

pointed array of consecutive odd integers (30 = 4th square pyramidal number) (fig. 17). As the 

sum of the odd integers 3, 5, ... 13 in each point, the number 48 is the 7th highly composite 

number (7 = 4th prime/odd number). It is the smallest integer to have 10 factors, including 
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unity and itself (14). It is thus defined by the Decad, called by the Pythagoreans “All Perfect.” 

48 is further related to the number 240 because 

is the sum of the first 48 odd integers after 1. 

These examples demonstrate the Pythagorean mathematical nature of superstring theory in the 

sense that they show that the group-theoretical parameters of E8×E8, and E8 are prescribed by the 

Tetrad Principle and find natural representation or expression in terms of the tetractys, the Tetrad 

and the integers 1, 2, 3 & 4. 

  
4. THE PLATONIC SOLIDS 
It is well known that five — and only five — polyhedra with equi-distant corners can exist in 

3-dimensional space. They are the tetrahedron, cube, octahedron, icosahedron and dodecahedron 

(fig. 18). The five regular polyhedra are known as the five Platonic solids, not because they were 

discovered by the Greek philosopher Plato but because of the special emphasis he placed upon 

them in expounding Pythagorean cosmology in his book Timaeus, where they were first described 

in print. 

The early Pythagoreans knew of all five polyhedra, for in the Fragments of Philolaus, regarded by 

scholars as the earliest surviving (and therefore most reliable) Pythagorean text, Philolaus, a  

TABLE II 

Number of polyhedral corners = V. 
Number of polyhedral sides = E. 
Number of polyhedral faces = F. 
Number of triangles in polyhedral face = I (I = 3 for tetrahedron, octahedron & icosahedron, = 4 
for cube, = 5 for dodecahedron). 
 

POLYHEDRON FACE V E F I 
 
Tetrahedron 
Cube 
Octahedron 
Icosahedron 
 
Dodecahedron 

 
Triangle 
Square 
Triangle 
Triangle 

SUBTOTAL = 
Pentagon 

TOTAL = 

 
4 
8 
6 
12 
30 
20 
50 

 
6 
12 
12 
30 
60 
30 
90 

 
4 
6 
8 
20 
38 
12 
50 

 
3 
4 
3 
3 
 
5 
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student of Lysis, one of the two Pythagoreans who escaped the persecution of the Pythagorean 

school at Croton in southern Italy, wrote that “there are five bodies in the sphere: fire, water, earth, 

air and the circle of the sphere which makes the fifth” (15). The ancients believed that the 

tetrahedron, cube, octahedron and icosahedron were the shapes of the atoms of, respectively, the 

elements Fire, Earth, Air and Water, whilst the cosmic sphere containing the stars was made out of 

the dodecahedron because the latter most resembled the perfect shape of the sphere.  

TABLE III 
 

 

Number of corners of triangles ≡ C = V + F. 
Number of sides of triangles ≡ S = E + IF. 
Number of triangles ≡ T = IF. 
 

POLYHEDRON C S T C + S C + S + T 
 
Tetrahedron 
Cube 
Octahedron 
Icosahedron 

SUBTOTAL = 
Dodecahedron 

TOTAL = 

 
8 
14 
14 
32 
68 
 32 
100 

 
18 
36 
36 
90 
180 
 90 
270 

 
12 
24 
24 
60 

120 
 60 
180 

 
26 
50 
50 
122 
248 
122 
370 

 
38 
74 
74 
182 
368 
182 
550 

 

Suppose that each triangular face of the tetrahedron, octahedron and icosahedron is divided into 

three triangular sectors, the square faces of the cube are divided into four triangles and the 

pentagonal faces of the dodecahedron are each divided into five triangular sectors (fig. 19). Table 

II shows the number of corners, edges and faces in each solid. Table III shows the numbers of 

corners, sides and triangles in their faces.  

The five Platonic solids contain 

    13    23           10 

              10  10 

   100 =    =    10  10  10 (10 = 1 + 2 + 3 + 4) 

        10  10  10  10  

    43    33 

corners of triangles and 

                55 
             55  55 
     550 =    55  55  55 
       55  55  55  55 
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triangles and their corners and sides, where 

                1  
             2    3 
     55 =    4    5    6 
       7    8    9   10 

is the 10th triangular number (10 = 4th triangular number). The Tetrad and Decad therefore define 

these geometrical parameters of the faces of the Platonic solids. 

According to Table III, the tetrahedron — the simplest regular polyhedron — contains 26 corners 

and sides, of which 4 are polyhedral corners, 6 are polyhedral edges and 16 are corners and sides 

created by the division of its faces into triangles. Compare this with the requirement in bosonic 

string theory that the 26 dimensions of space-time consist of the 4 dimensions of Einstein’s space-

time, the 6 higher compactified dimensions of superstrings and the 16 higher purely bosonic string 

dimensions. We see that the faces of the tetrahedron embody numbers defining the dimensional 

bifurcation of the string. This is an example of how the Tetrad Principle defines a physical 

parameter of nature, for the tetrahedron has 4 corners and 4 faces. Table III shows that 248 points 

and lines are needed to construct out of 120 triangles (120 = sum of squares of the first 4 even 

integers) the 38 faces of the 4 Platonic solids symbolising Earth, Air, Fire and Water (38 = 19th 

even number, 19 = 10th odd integer, 10 = 4th triangular number). The number of gauge bosons 

mediating superstring forces is thus the minimal number of geometrical elements required to 

define the triangle-divided surfaces of the first 4 regular polyhedra. Notice that the number of their 

polyhedral corners is: 

          12            22 
 
      30 = 
 
         42            32 

the number of polyhedral corners and edges delineating their faces is 

             9 

           9  9 

     90 =   9  9  9  

       9  9  9  9 

where 9 is the 4th odd integer after 1, and that the number of their corners, edges and faces is 

128 = 27 = (4 4th prime number)1/2. 
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Now consider each triangle in the faces of the Platonic solids to be a Pythagorean Triangle or 

tetractys, so that 4 yods lie along each polyhedral edge (fig. 19). Table IV shows the various yod 

populations of the regular polyhedra. The tetrahedron has 56 yods, where 56 = 7×8 (7 = 4th 

prime/odd integer, 8 = 4th even integer), of which 8 yods are corners of tetractyses, 16 yods lie on 

its edges (16 = 4th square number) and 48 yods are hexagonal yods (48 = 7th highly composite 

number, 7 = 4th prime/odd number). Once again, the Tetrad defines these properties. 
 

TABLE IV 

Number of yods on faces of polyhedron ≡ N = V + 2E + (3I + 1)F. 

Number of corners of tetractyses ≡ C = V + F. 

Number of hexagonal yods ≡ H = N – C = 2E + 3IF. 

Number of yods on edges of polyhedron ≡ B = V +2E. 
 

POLYHEDRON N B C H  
 
Tetrahedron 
Cube 
Octahedron 
Icosahedron 

SUBTOTAL = 
Dodecahedron 

TOTAL = 

 
56 
110 
110 
272 
548 
272 
820 

 
16 
32 
30 
 72 
150 
 80 
230 

 
8 
14 
14 
32 
68 
 32 
100 

 
48 
96 
96 
240 
480 
240 
720 

 
 

240 

 
The cube and octahedron each has 110 yods, where 

                 2 
               4  6 
              110 =     8  10  12 

14  16  18  20 

and the icosahedron and dodecahedron each has 272 yods, where 

       2      4      6     8 

       10   12   14   16 
             272 = 
       18   20   22   24 

       26   28   30   32 

The first 4 Platonic solids have 
137      137 

 
548 = 

           137        137 



 26 

yods, where 137 (the average number of yods in the first 4 polyhedra) is the 33rd prime number 

(33 = 1! + 2! + 3! + 4!). Of these, 

17     17 
 

68 = 

 

17     17 

yods are corners of tetractyses, where 17 (the average number of corners) is the 7th prime number 

(7= 4th prime/odd number), and 
 

25   26 

 

480 = 

 
28   27 

 
yods are hexagonal. As the 4th regular polyhedron — the icosahedron — has 
 

24   25 

 

240 = 

 
27   26 

 
such yods in its 60 tetractyses, we find that the first 4 regular polyhedra have 480 hexagonal yods 

in their 120 tetractyses (120 = 22 + 42 + 62 + 82), the fourth one having 240 such yods. The 

superstring gauge group E8×E8 has 480 non-zero roots and E8 has 240 such roots. A remarkable 

correspondence thus exists between these roots and the degrees of freedom symbolised by 

hexagonal yods generated by the construction of the faces of the first 4 Platonic solids from 

tetractyses. 

 

6. CONCLUSION 
The symbol of the Pythagorean paradigm of wholeness — the tetractys — has manifested in 

particle physics as the 10-dimensional space-time predicted by superstring theory. However, this 

representation of the Pythagorean Decad is but the most rudimentary example of a powerful Tetrad 

Principle governing the form of the mathematical description of subatomic reality. Many examples 

have been given in the context of superstring theory and bosonic string theory of how the number 
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4 plays a pivotal role in defining classes (and members of classes) mathematical objects that 

parameterise the physics of these fundamental (and as yet hypothetical) particles. Whilst 

coincidence might account for a few of these, the weight of evidence for the principle accumulated 

in this article renders such an explanation highly implausible. This is particularly so since the 

Tetrad Principle has been shown to define superstring and bosonic string parameters not only for a 

narrow range of numbers but also for mathematical objects that at first sight would seem most 

unlikely to have relevance to superstring theory, namely, the regular polyhedra, for the first four of 

which the dimension of E8 is embodied purely geometrically in their triangle-divided faces, whilst 

group parameters of E8 and E8×E8 appear in the yod population of their tetractys-divided faces. 

Such evidence of beautiful mathematics points towards the existence of a conceptual scheme in 

which the Pythagorean paradigm of the tetractys has a central place. From the perspective of this 

more general theory, the theories of superstrings and bosonic strings would then be seen to be just 

examples of how the Tetrad Principle determines the mathematics of the microphysical version of 

this universal theory of whole systems. This true ‘Theory of Everything’ is the mystical Kabbalah. 

Its relevance to particle physics is explored comprehensively in my book The Image of God in 

Matter, to be published soon by Bharatiya Vidya Bhavan. 
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APPENDIX A 
PROOF OF PN

n = ½[(N–2)n – (N–4)] 

The representation of PN
n consists of the superimposition of (n–1) regular polygons with 2,3,4, ... n 

dots along each of their N edges. The rth polygon has r dots per edge. The total number of dots in 

(n–1) separate polygons is 

Of these, there are 

2 + 3 + 4 + ... + (n–1) = ½n(n+1) – 1 

dots along one set of edges and 

1 + 2 + 3 + ... + (n–1) = ½n(n–1) 

dots along the set of adjacent edges. The total number of shared dots when the polygons are 

superimposed is 

½n(n+1) – 1 + ½n(n–1) = n2 – 1. 

The total number of unshared yods is 

½nN(n–1) – (n2–1) = ½n[(N–2)n – N] + 1. 

Superimposed, the (n–1) polygons have n dots along one shared edge and (n–1) dots along the 

adjacent shared edge. Hence the total number of dots in the representation is 

PN
n = (n–1) + n + ½n[(N–2)n – N] + 1 

       = ½n[(N–2)n – (N–4)] 

. 
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APPENDIX B 
 

The nth hexagonal number is 

Hn = ½n(4n–2) = 2n2 – n. 

The nth triangular number is 

Tn = ½n(n+1). 

Therefore 

Tn-1 = ½n(n–1). 

      4Tn-1 = 2n(n–1) = 2n2 – 2n = Hn – n. 

Therefore, 

   Hn = 4Tn-1 + n. 

 
APPENDIX C 

 
When divided into 3 tetractyses, each sector of an n-sided regular polygon contains 19 yods, of 

which 15 are hexagonal (fig. 20). 2 hexagonal yods on each of 2 sides of the sector are shared with 

adjacent sectors. Each of the n sectors therefore contributes 13 hexagonal yods. Number of 

hexagonal yods in polygon ≡ H(n) = 13n. 

 
APPENDIX D 

 
There are 85 yods in each sector of an n-sided regular polygon divided into n 2nd-order 

tetractyses. Of these, 13 yods on each of 2 sides are shared with adjacent sectors. Number of yods 

per sector surrounding centre of polygon = 85 – 13 = 72. Number of yods surrounding centre of 

n-sided polygon = 72n. Each sector has 15 corners of 1st-order tetractyses, of which 5 corners on 

each of 2 sides are shared with adjacent sectors. Number of tetractys corners per sector 

surrounding centre of polygon = 15 – 5 = 10. Number of tetractys corners surrounding centre of 

n-sided polygon = 10n. 
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      TRIANGULAR NUMBER   SQUARE NUMBER 

    21          36 
Figure 1 

 

Figure 2 

 

 

Figure 3 
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  0th-order       1st-order                  2nd-order 
  tetractys       tetractys                  tetractys 
      (T0)            (T1)           (T2) 

Figure 4 

 

 

Figure 5 

 

 
        NUMBER OF: 

      POINTS           LINES     TRIANGLES   TETRAHEDRA    TOTAL 

 

Figure 6 

 

 

 

TOTAL = 

= Macroscopic spatial dimension 

= Microscopic spatial dimension 

= Time dimension 

etc 
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n    Combinations  Number of combinations = 2n – 1 

1 A    A      1 

2              B    C  B, C, BC     3 

3          D    E    F  D, E, F, DE, DF, EF    7 

4       G    H    I    J  H, I, GH, GI, GJ, HI, HJ, IJ, 

    GHI, GHJ, IJ, HIJ, GHIJ             15 

           TOTAL =   26 

 

Figure 7 

 

 

Figure 8 
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Figure 9 

 

 

 

 

 

 

Figure 10 
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Figure 11 

33 13 

53 73 

496 = 

23 

27 24 

26 25 

Figure 12 

248 = 

496 = 248 = 
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Figure 13 

 

 

 

 

 

 

Figure 14 
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Figure 15 

 

 

 

 

 

Figure 16 
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Figure 17 
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Figure 18 
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Figure 19 

 

 

 

 

 

 

 

Figure 20 

 

hexagonal yod 


